
Atsushi Igarashi (Ed.)

 123

LN
CS

 1
00

17

14th Asian Symposium, APLAS 2016
Hanoi, Vietnam, November 21–23, 2016
Proceedings

Programming
Languages
and Systems

Lecture Notes in Computer Science 10017

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Atsushi Igarashi (Ed.)

Programming
Languages
and Systems
14th Asian Symposium, APLAS 2016
Hanoi, Vietnam, November 21–23, 2016
Proceedings

123

Editor
Atsushi Igarashi
Kyoto University
Kyoto
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-47957-6 ISBN 978-3-319-47958-3 (eBook)
DOI 10.1007/978-3-319-47958-3

Library of Congress Control Number: 2016954930

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 14th Asian Symposium on Programming
Languages and Systems (APLAS 2016), held in Hanoi, Vietnam, during November
21–23, 2016. APLAS aims to stimulate programming language research by providing a
forum for the presentation of the latest results and the exchange of ideas in program-
ming languages and systems. APLAS is based in Asia, but is an international forum
that serves the worldwide programming language community.

APLAS 2016 solicited submissions in two categories: regular research papers and
system and tool presentations. The topics covered in the conference include, but are not
limited to: semantics, logics, and foundational theory; design of languages, type sys-
tems, and foundational calculi; domain-specific languages; compilers, interpreters, and
abstract machines; program derivation, synthesis, and transformation; program analy-
sis, verification, and model-checking; logic, constraint, probabilistic and quantum
programming; software security; concurrency and parallelism; and tools for program-
ming and implementation.

This year 53 papers were submitted to APLAS. Each submission was reviewed by
three or more Program Committee members with the help of external reviewers. After
thoroughly evaluating the relevance and quality of each paper, the Program Committee
decided to accept 20 regular research papers and two system and tool presentations.
This year’s program also continued the APLAS tradition of invited talks by distin-
guished researchers:

– Kazuaki Ishizaki (IBM Researh – Tokyo) on “Making Hardware Accelerator Easier
to Use”

– Frank Pfenning (CMU) on “Substructural Proofs as Automata”
– Adam Chlipala (MIT) on “Fiat: A New Perspective on Compiling Domain-Specific

Languages in a Proof Assistant”

This program would not have been possible without the unstinting efforts of several
people, whom I would like to thank. First, the Program Committee and subreviewers
for the hard work put in towards ensuring the high quality of the proceedings. My
thanks also go to the Asian Association for Foundation of Software (AAFS), founded
by Asian researchers in cooperation with many researchers from Europe and the USA,
for sponsoring and supporting APLAS. I would like to warmly thank the Steering
Committee in general and Quyet-Thang Huynh, Hung Nguyen, and Viet-Ha Nguyen
for their support in the local organization and for organizing the poster session. Finally,
I am grateful to Andrei Voronkov, whose EasyChair system eased the processes of
submission, paper selection, and proceedings compilation.

September 2016 Atsushi Igarashi

Organization

General Co-chairs

Quyet-Thang Huynh Hanoi University of Science and Technology, Vietnam
Viet-Ha Nguyen Vietnam National University, Vietnam

Program Chair

Atsushi Igarashi Kyoto University, Japan

Program Committee

Andreas Abel Gothenburg University, Sweden
Walter Binder University of Lugano, Switzerland
Sandrine Blazy University of Rennes 1, IRISA, France
Iliano Cervesato CMU, Qatar
Bor-Yuh Evan Chang University of Colorado Boulder, USA
Kung Chen National Chengchi University, Taipei, Taiwan
Yuxi Fu Shanghai Jiao Tong University, China
Atsushi Igarashi Kyoto University, Japan
Oleg Kiselyov Tohoku University, Japan
Anthony W. Lin Yale-NUS College, Singapore
David Yu Liu SUNY Binghamton, USA
Hidehiko Masuhara Tokyo Institute of Technology, Japan
Bruno C.d.S. Oliveira The University of Hong Kong, Hong Kong,

SAR China
Nadia Polikarpova MIT, USA
Alex Potanin Victoria University of Wellington, New Zealand
G. Ramalingam Microsoft Research, India
Quan-Thanh Tho Ho Chi Minh City University of Technology, Vietnam
Tamara Rezk Inria, France
Sukyoung Ryu KAIST, Korea
Ulrich Schöpp Ludwig-Maximilians-Universität München, Germany
Éric Tanter University of Chile, Chile
Tachio Terauchi JAIST, Japan

Poster Chair

Hung Nguyen Hanoi University of Science and Technology, Vietnam

Additional Reviewers

Aotani, Tomoyuki
Asakura, Izumi
Bühler, David
Cai, Xiaojuan
Casinghino, Chris
Deng, Yuxin
Grigore, Radu
Groves, Lindsay
Hague, Matthew
Kaki, Gowtham
Kiefer, Stefan
Lam, Edmund Soon Lee
Laporte, Vincent
Le, Xuan Bach
Lengal, Ondrej
Li, Guoqiang
Liu, Annie
Long, Huan
Lu, Tianhan
Madiot, Jean-Marie
Meier, Shawn
Moir, Mark
Mover, Sergio
Ng, Nicholas

Patrignani, Marco
Pearce, David
Pérez, Jorge A.
Rosà, Andrea
Salucci, Luca
Springer, Matthias
Stein, Benno
Streader, David
Suenaga, Kohei
Sun, Haiyang
Swierstra, Doaitse
Tauber, Tomas
Tekle, Tuncay
Trivedi, Ashutosh
Tsukada, Takeshi
Wang, Meng
Weng, Shu-Chun
Wilke, Pierre
Xie, Ningning
Yang, Hongseok
Yang, Yanpeng
Zhang, Haoyuan
Zheng, Yudi

VIII Organization

Invited Papers

Making Hardware Accelerator Easier to Use

Kazuaki Ishizaki

IBM Research, Tokyo, Japan
kiszk@acm.org

Hardware accelerators such as general-purpose computing on graphics processing units
(GPGPU), field-programmable gate array (FPGA), or application specific integrated
circuit (ASIC) are becoming popular for accelerating computation-intensive workloads
such as analytics, machine learning, or deep learning. While such a hardware accel-
erator performs parallel computations faster by an order of magnitude, it is not easy for
a non-expert programmer to use the accelerator because it is necessary to explicitly
write and optimize low-level operations such as device managements and kernel
routines. While some programming languages or frameworks have introduced a set of
parallel constructs with a lambda expression to easily describe a parallel program, it is
executed on multi-core CPUs or multiple CPU nodes. There are some implementations
such as parallel stream APIs in Java 8 or Apache Spark. If a runtime system could
automatically convert the parallel program into a set of low-level operations for the
accelerator, it would be easy to use the accelerator and achieve high performance.

In this talk, we present our research that transparently exploits a successful hardware
accelerator GPGPUs in a programming language or framework. Our approach is to
generate GPGPU code from a given program that explicitly expresses parallelism without
accelerator-specific code. This approach allows the programmer to avoid explicitly
writing low-level operations for a specific accelerator.

First, we describe our compilation technique to generate GPGPU code from a
parallel stream in Java 8. We explain how to compile a Java program and what
optimizations we apply. It is available in IBM SDK, Java Technology Edition, Version
8. We then describe our compilation technique to generate GPGPU code from a pro-
gram in Apache Spark. We explain how to compile a program for Apache Spark to
generate GPGPU code and how to effectively execute the code.

Fiat: A New Perspective on Compiling
Domain-Specific Languages

in a Proof Assistant

Adam Chlipala

MIT CSAIL, Cambridge, MA, USA
adamc@csail.mit.edu

Domain-specific programming languages (DSLs) have gone mainstream, and with
good reason: they make it easier than ever to choose the right tool for the job. With the
proper tool support, large software projects naturally mix several DSLs. Orchestrating
such interlanguage cooperation can be difficult: often the choice is between inconve-
nient tangles of command-line tools and code generators (e.g., calling a Yacc-style
parser generator from a Makefile) and more pleasant integration with less specialized
compile-time optimization (e.g., a conventional embedded language). At the same time,
even a language for a well-defined domain will not cover its every subtlety and use
case; programmers want to be able to extend DSLs in the same way as they extend
conventional libraries, e.g. writing new classes within existing hierarchies defined by
frameworks. It can be taxing to learn a new extension mechanism for each language.
Compared to libraries in conventional languages, the original DSLs were difficult
enough to learn: they are documented by a combination of prose manuals, which may
easily get out of date, and the language implementations themselves, which are usually
not written to edify potential users. Implementations are also quite difficult to get right,
with the possibility for a malfunctioning DSL compiler to run amok more thoroughly
than could any library in a conventional language with good encapsulation features.

In this talk, I will introduce our solution to these problems: Fiat, a new program-
ming approach hosted within the Coq proof assistant. DSLs are libraries that build on
the common foundation of Coq’s expressive higher-order logic. New programming
features are explained via notation desugaring into specifications. Multiple DSLs may
be combined to describe a program’s full specification by composing different speci-
fication ingredients. A DSL’s notation implementations are designed to be read by
programmers as documentation: they deal solely with functionality and omit any
complications associated with quality implementation. The largest advantage comes
from the chance to omit performance considerations entirely in the definitions of these
macros. A DSL’s notation definitions provide its reference manual that is guaranteed to
remain up-to-date.

Desugaring of programming constructs to logical specifications allows mixing of
many programming features in a common framework. However, the specifications alone
are insufficient to let us generate good implementations automatically. Fiat’s key tech-
nique here is optimization scripts, packaged units of automation to build implementations
automatically from specifications. These are not all-or-nothing implementation strategies:

each script picks up on specification patterns that it knows how to handle well, with each
DSL library combining notations with scripts that know how to compile them effectively.
These scripts are implemented in Coq’s Turing-complete tactic language Ltac, in such a
way that compilations of programs are correct by construction, with the transformation
process generating Coq proofs to justify its soundness. As a result, the original notations
introduced by DSLs, with their simple desugarings into logic optimized for readability,
form a binding contract between DSL authors and their users, with no chance for DSL
implementation details to break correctness.

I will explain the foundations of Fiat: key features of Coq we build on, our core
language of nondeterministic computations, the module language on top of it that
formalizes abstract data types with private state, and design patterns for effective
coding and composition of optimization scripts. I will also explain some case studies
of the whole framework in action. We have what is, to our knowledge, the first pipeline
that automatically compiles relational specifications to optimized assembly code, with
proofs of correctness. I will show examples in one promising application domain,
network servers, where we combine DSLs for parsing and relational data management.

This is joint work with Benjamin Delaware, Samuel Duchovni, Jason Gross,
Clément Pit–Claudel, Sorawit Suriyakarn, Peng Wang, and Katherine Ye.

Fiat: A New Perspective on Compiling Domain-Specific Languages XIII

Contents

Invited Presentations

Substructural Proofs as Automata . 3
Henry DeYoung and Frank Pfenning

Verification and Analysis I

Learning a Strategy for Choosing Widening Thresholds
from a Large Codebase . 25

Sooyoung Cha, Sehun Jeong, and Hakjoo Oh

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features
in Machine Code . 42

Jiaqi Tan, Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan

Observation-Based Concurrent Program Logic for Relaxed Memory
Consistency Models . 63

Tatsuya Abe and Toshiyuki Maeda

Process Calculus

SPEC: An Equivalence Checker for Security Protocols 87
Alwen Tiu, Nam Nguyen, and Ross Horne

Binary Session Types for Psi-Calculi . 96
Hans Hüttel

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 116
Kai Stadtmüller, Martin Sulzmann, and Peter Thiemann

Profiling and Debugging

AkkaProf: A Profiler for Akka Actors in Parallel and Distributed
Applications . 139

Andrea Rosà, Lydia Y. Chen, and Walter Binder

A Debugger-Cooperative Higher-Order Contract System in Python 148
Ryoya Arai, Shigeyuki Sato, and Hideya Iwasaki

http://dx.doi.org/10.1007/978-3-319-47958-3_1
http://dx.doi.org/10.1007/978-3-319-47958-3_2
http://dx.doi.org/10.1007/978-3-319-47958-3_2
http://dx.doi.org/10.1007/978-3-319-47958-3_3
http://dx.doi.org/10.1007/978-3-319-47958-3_3
http://dx.doi.org/10.1007/978-3-319-47958-3_4
http://dx.doi.org/10.1007/978-3-319-47958-3_4
http://dx.doi.org/10.1007/978-3-319-47958-3_5
http://dx.doi.org/10.1007/978-3-319-47958-3_6
http://dx.doi.org/10.1007/978-3-319-47958-3_7
http://dx.doi.org/10.1007/978-3-319-47958-3_8
http://dx.doi.org/10.1007/978-3-319-47958-3_8
http://dx.doi.org/10.1007/978-3-319-47958-3_9

k-Calculus

A Sound and Complete Bisimulation for Contextual Equivalence
in k-Calculus with Call/cc . 171

Taichi Yachi and Eijiro Sumii

A Realizability Interpretation for Intersection and Union Types. 187
Daniel J. Dougherty, Ugo de’Liguoro, Luigi Liquori, and Claude Stolze

Open Call-by-Value. 206
Beniamino Accattoli and Giulio Guerrieri

Type Theory

Implementing Cantor’s Paradise . 229
Furio Honsell, Marina Lenisa, Luigi Liquori, and Ivan Scagnetto

Unified Syntax with Iso-types. 251
Yanpeng Yang, Xuan Bi, and Bruno C.d.S. Oliveira

Refined Environment Classifiers: Type- and Scope-Safe Code Generation
with Mutable Cells . 271

Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo

Verification and Analysis II

Higher-Order Model Checking in Direct Style . 295
Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

Verifying Concurrent Graph Algorithms. 314
Azalea Raad, Aquinas Hobor, Jules Villard, and Philippa Gardner

Verification of Higher-Order Concurrent Programs with Dynamic
Resource Creation . 335

Kazuhide Yasukata, Takeshi Tsukada, and Naoki Kobayashi

Programming Paradigms

Probabilistic Programming Language and its Incremental Evaluation 357
Oleg Kiselyov

ELIOM: A Core ML Language for Tierless Web Programming. 377
Gabriel Radanne, Jérôme Vouillon, and Vincent Balat

Separation Logic

DOM: Specification and Client Reasoning . 401
Azalea Raad, José Fragoso Santos, and Philippa Gardner

XVI Contents

http://dx.doi.org/10.1007/978-3-319-47958-3_10
http://dx.doi.org/10.1007/978-3-319-47958-3_10
http://dx.doi.org/10.1007/978-3-319-47958-3_10
http://dx.doi.org/10.1007/978-3-319-47958-3_11
http://dx.doi.org/10.1007/978-3-319-47958-3_12
http://dx.doi.org/10.1007/978-3-319-47958-3_13
http://dx.doi.org/10.1007/978-3-319-47958-3_14
http://dx.doi.org/10.1007/978-3-319-47958-3_15
http://dx.doi.org/10.1007/978-3-319-47958-3_15
http://dx.doi.org/10.1007/978-3-319-47958-3_16
http://dx.doi.org/10.1007/978-3-319-47958-3_17
http://dx.doi.org/10.1007/978-3-319-47958-3_18
http://dx.doi.org/10.1007/978-3-319-47958-3_18
http://dx.doi.org/10.1007/978-3-319-47958-3_19
http://dx.doi.org/10.1007/978-3-319-47958-3_20
http://dx.doi.org/10.1007/978-3-319-47958-3_21

Decision Procedure for Separation Logic with Inductive Definitions
and Presburger Arithmetic . 423

Makoto Tatsuta, Quang Loc Le, and Wei-Ngan Chin

Completeness for a First-Order Abstract Separation Logic 444
Zhé Hóu and Alwen Tiu

Author Index . 465

Contents XVII

http://dx.doi.org/10.1007/978-3-319-47958-3_22
http://dx.doi.org/10.1007/978-3-319-47958-3_22
http://dx.doi.org/10.1007/978-3-319-47958-3_23

Invited Presentations

Substructural Proofs as Automata

Henry DeYoung and Frank Pfenning(B)

Carnegie Mellon University, Pittsburgh, PA 15213, USA
{hdeyoung,fp}@cs.cmu.edu

Abstract. We present subsingleton logic as a very small fragment of
linear logic containing only �, 1, least fixed points and allowing cir-
cular proofs. We show that cut-free proofs in this logic are in a Curry–
Howard correspondence with subsequential finite state transducers. Con-
structions on finite state automata and transducers such as composition,
complement, and inverse homomorphism can then be realized uniformly
simply by cut and cut elimination. If we freely allow cuts in the proofs,
they correspond to a well-typed class of machines we call linear commu-
nicating automata, which can also be seen as a generalization of Turing
machines with multiple, concurrently operating read/write heads.

1 Introduction

In the early days of the study of computation as a discipline, we see funda-
mentally divergent models. On the one hand, we have Turing machines [16],
and on the other we have Church’s λ-calculus [4]. Turing machines are based
on a finite set of states and an explicit storage medium (the tape) which can
be read from, written to, and moved in small steps. The λ-calculus as a pure
calculus of functions is founded on the notions of abstraction and composition,
not easily available on Turing machines, and relies on the complex operation of
substitution. The fact that they define the same set of computable functions, say,
over natural numbers, is interesting, but are there deeper connections between
Turing-like machine models of computation and Church-like linguistic models?

The discovery of the Curry–Howard isomorphism [5,12] between intuitionistic
natural deduction and the typed λ-calculus adds a new dimension. It provides
a logical foundation for computation on λ-terms as a form of proof reduction.
This has been tremendously important, as it has led to the development of type
theory, the setting for much modern research in programming languages since
design of a programming language and a logic for reasoning about its programs
go hand in hand. To date, Turing-like machine models have not benefited from
these developments since no clear and direct connections to logic along the lines
of a Curry–Howard isomorphism were known.

In this paper, we explore several connections between certain kinds of
automata and machines in the style of Turing and very weak fragments of linear
logic [11] augmented with least fixed points along the lines of Baelde et al. [2]
and Fortier and Santocanale [9]. Proofs are allowed to be circular with some
conditions that ensure they can be seen as coinductively defined. We collectively
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 3–22, 2016.
DOI: 10.1007/978-3-319-47958-3 1

4 H. DeYoung and F. Pfenning

refer to these fragments as subsingleton logic because the rules naturally enforce
that every sequent has at most one antecedent and succedent (Sect. 2).

Our first discovery is a Curry–Howard isomorphism between so-called fixed-
cut proofs in �,1,μ-subsingleton logic and a slight generalization of deterministic
finite-state transducers that also captures deterministic finite automata (Sects. 3
and 4). This isomorphism relates proofs to automata and proof reduction to state
transitions of the automata. Constructions on automata such as composition,
complement, and inverse homomorphism can then be realized “for free” on the
logical side by a process of cut elimination (Sect. 5).

If we make two seemingly small changes – allowing arbitrary cuts instead
of just fixed cuts and removing some restrictions on circular proofs – proof
reduction already has the computational power of Turing machines. We can
interpret proofs as a form of linear communicating automata (LCAs, Sect. 6),
where linear means that the automata are lined up in a row and each automa-
ton communicates only with its left and right neighbors. Alternatively, we can
think of LCAs as a generalization of Turing machines with multiple read/write
heads operating concurrently. LCAs can be subject to deadlock and race con-
ditions, but those corresponding to (circular) proofs in �,1,μ-subsingleton logic
do not exhibit these anomalies (Sect. 7). Thus, the logical connection defines
well-behaved LCAs, analogous to the way natural deduction in intuitionistic
implicational logic defines well-behaved λ-terms.

We also illustrate how traditional Turing machines are a simple special case
of LCAs with only a single read/write head. Perhaps surprisingly, such LCAs
can be typed and are therefore well-behaved by construction: Turing machines
do not get stuck, while LCAs in general might (Sect. 7).

We view the results in this paper only as a beginning. Many natural questions
remain. For example, can we capture deterministic pushdown automata or other
classes of automata as natural fragments of the logic and its proofs? Can we
exploit the logical origins beyond constructions by cut elimination to reason
about properties of the automata or abstract machines?

2 A Subsingleton Fragment of Intuitionistic Linear Logic

In an intuitionistic linear sequent calculus, sequents consist of at most one conclu-
sion in the context of zero or more hypotheses. To achieve a pleasant symmetry
between contexts and conclusions, we can consider restricting contexts to have
at most one hypothesis, so that each sequent has one of the forms · � γ or A � γ.

Is there a fragment of intuitionistic linear logic that obeys this rather harsh
restriction and yet exists as a well-defined, interesting logic in its own right?
Somewhat surprisingly, yes, there is; this section presents such a logic, which we
dub �,1-subsingleton logic.

2.1 Propositions, Contexts, and Sequents

The propositions of �,1-subsingleton logic are generated by the grammar

A,B,C ::= A1 � A2 | 1 ,

Substructural Proofs as Automata 5

where � is additive disjunction and 1 is the unit of linear logic’s multiplicative
conjunction. Uninterpreted propositional atoms p could be included if desired,
but we omit them because they are unnecessary for this paper’s results. In Sect. 7,
we will see that subsingleton logic can be expanded to include more, but not all,
of the linear logical connectives.

Sequents are written Δ � γ. For now, we will have only single conclusions
and so γ ::= C, but we will eventually consider empty conclusions in Sect. 7. To
move toward a pleasant symmetry between contexts and conclusions, contexts
Δ are empty or a single proposition, and so Δ ::= · | A. We say that a sequent
obeys the subsingleton context restriction if its context adheres to this form.

2.2 Deriving the Inference Rules of �,1-Subsingleton Logic

To illustrate how the subsingleton inference rules are derived from their coun-
terparts in an intuitionistic linear sequent calculus, let us consider the cut rule.
The subsingleton cut rule is derived from the intuitionistic linear cut rule as:

Δ � A Δ′, A � γ

Δ,Δ′ � γ
� Δ � A A � γ

Δ � γ
cut

In the original rule, the linear contexts Δ and Δ′ may each contain zero or
more hypotheses. When Δ′ is nonempty, the sequent Δ′, A � γ fails to obey the
subsingleton context restriction by virtue of using more than one hypothesis.
But by dropping Δ′ altogether, we derive a cut rule that obeys the restriction.

The other subsingleton inference rules are derived from linear counterparts
in a similar way – just force each sequent to have a subsingleton context.
Figure 1 summarizes the syntax and inference rules of a sequent calculus for
�,1-subsingleton logic.

2.3 Admissibility of Cut and Identity

From the previous examples, we can see that it is not difficult to derive sequent
calculus rules for A1 � A2 and 1 that obey the subsingleton context restriction.
But that these rules should constitute a well-defined logic in its own right is
quite surprising!

Under the verificationist philosophies of Dummett [8] and Martin-Löf [13],
�,1-subsingleton logic is indeed well-defined because it satisfies admissibility of
cut and id, which characterize an internal soundness and completeness:

Theorem 1 (Admissibility of cut). If there are proofs of Δ � A and A � γ,
then there is also a cut-free proof of Δ � γ.

Proof. By lexicographic induction, first on the structure of the cut formula A
and then on the structures of the given derivations.

Theorem 2 (Admissibility of identity). For all propositions A, the sequent
A � A is derivable without using id.

6 H. DeYoung and F. Pfenning

Fig. 1. A sequent calculus for �,1-subsingleton logic

Proof. By structural induction on A.

Theorem 2 justifies hereafter restricting our attention to a calculus without the
id rule. The resulting proofs are said to be identity-free, or η-long, and are
complete for provability. Despite Theorem 1, we do not restrict our attention to
cut-free proofs because the cut rule will prove to be important for composition
of machines.

2.4 Extending the Logic with Least Fixed Points

Thus far, we have presented a sequent calculus for �,1-subsingleton logic with
finite propositions A1 � A2 and 1. Now we extend it with least fixed points
μα.A, keeping an eye toward their eventual Curry–Howard interpretation as the
types of inductively defined data structures. We dub the extended logic �,1,μ-
subsingleton logic.

Our treatment of least fixed points mostly follows that of Fortier and Santo-
canale [9] by using circular proofs. Here we review the intuition behind circular
proofs; please refer to Fortier and Santocanale’s publication for a full, formal
description.

Fixed Point Propositions and Sequents. Syntactically, the propositions are
extended to include least fixed points μα.A and propositional variables α:

A,B,C ::= · · · | μα.A | α

Because the logic’s propositional connectives – just � and 1 for now – are all
covariant, least fixed points necessarily satisfy the usual strict positivity condi-
tion that guarantees well-definedness. We also require that least fixed points are

Substructural Proofs as Automata 7

contractive [10], ruling out, for example, μα.α. Finally, we further require that
a sequent’s hypothesis and conclusion be closed, with no free occurrences of any
propositional variables α.

In a slight departure from Fortier and Santocanale, we treat least fixed points
equirecursively, so that μα.A is identified with its unfoldings, [(μα.A)/α]A and
so on. When combined with contractivity, this means that μα.A may be thought
of as a kind of infinite proposition. For example, μα.1 � α is something like
1 � (1 � · · ·).

Circular Proofs. Previously, with only finite propositions and inference rules
that obeyed a subformula property, proofs in �,1-subsingleton logic were the
familiar well-founded trees of inferences. Least fixed points could be added to
this finitary sequent calculus along the lines of Baelde’s μMALL [1], but it will
be more convenient and intuitive for us to follow Fortier and Santocanale and
use an infinitary sequent calculus of circular proofs.

To illustrate the use of circular proofs, consider the following proof, which
has as its computational content the function that doubles a natural number.
Natural numbers are represented as proofs of the familiar least fixed point Nat =
μα.1 � α; the unfolding of Nat is thus 1 � Nat.

This proof begins by case-analyzing a Nat (�l rule). If the number is 0, then the
proof’s left branch continues by reconstructing 0. Otherwise, if the number is
the successor of some natural number N , then the proof’s right branch continues
by first emitting two successors (�r2 rules) and then making a recursive call to
double N , as indicated by the back-edge drawn with an arrow.

In this proof, there are several instances of unfolding Nat to 1 � Nat. In
general, the principles for unfolding on the right and left of a sequent are

Δ � [(μα.A)/α]
Δ � μα.A

and
[(μα.A)/α] � γ

μα.A � γ

Fortier and Santocanale adopt these principles as primitive right and left rules
for μ. But because our least fixed points are equirecursive and a fixed point is
equal to its unfolding, unfolding is not a first-class rule of inference, but rather
a principle that is used silently within a proof. It would thus be more accurate,
but also more opaque, to write the above proof without those dotted principles.

Is µ Correctly Defined? With proofs being circular and hence coinductively
defined, one might question whether μα.A really represents a least fixed point

8 H. DeYoung and F. Pfenning

and not a greatest fixed point. After all, we have no inference rules for μ, only
implicit unfolding principles – and those principles could apply to any fixed
points, not just least ones.

Stated differently, how do we proscribe the following, which purports to rep-
resent the first transfinite ordinal, ω, as a finite natural number?

To ensure that μ is correctly defined, one last requirement is imposed upon
valid proofs: that every cycle in a valid proof is a left μ-trace. A left μ-trace
(i) contains at least one application of a left rule to the unfolding of a least fixed
point hypothesis, and (ii) if the trace contains an application of the cut rule,
then the trace continues along the left premise of the cut. The above Nat � Nat
example is indeed a valid proof because its cycle applies the �l rule to 1� Nat,
the unfolding of a Nat hypothesis. But the attempt at representing ω is correctly
proscribed because its cycle contains no least fixed point hypothesis whatsoever,
to say nothing of a left rule.

Cut Elimination for Circular Proofs. Fortier and Santocanale [9] present a
cut elimination procedure for circular proofs. Because of their infinitary nature,
circular proofs give rise to a different procedure than do the familiar finitary
proofs.

Call a circular proof a fixed-cut proof if no cycle contains the cut rule. Notice
the subtle difference from cut-free circular proofs – a fixed-cut proof may contain
the cut rule, so long as the cut occurs outside of all cycles. Cut elimination on
fixed-cut circular proofs results in a cut-free circular proof.

Things are not quite so pleasant for cut elimination on arbitrary circular
proofs. In general, cut elimination results in an infinite, cut-free proof that is
not necessarily circular.

3 Subsequential Finite-State Transducers

Subsequential finite-state transducers (SFTs) were first proposed by Schützen-
berger [15] as a way to capture a class of functions from finite strings to finite
strings that is related to finite automata and regular languages. An SFT T is
fed some string w as input and deterministically produces a string v as output.

Here we review one formulation of SFTs. This formulation classifies each
SFT state as reading, writing, or halting so that SFT computation occurs in
small, single-letter steps. Also, this formulation uses strings over alphabets with
(potentially several) endmarker symbols so that a string’s end is apparent from
its structure and so that SFTs subsume deterministic finite automata (Sect. 3.3).
Lastly, this formulation uses string reversal in a few places so that SFT config-
urations receive their input from the left and produce output to the right.

In later sections, we will see that these SFTs are isomorphic to a class of
cut-free proofs in subsingleton logic.

Substructural Proofs as Automata 9

3.1 Definitions

Preliminaries. As usual, the set of all finite strings over an alphabet Σ is
written as Σ∗, with ε denoting the empty string. In addition, the reversal of a
string w ∈ Σ∗ is written wR.

An endmarked alphabet is a pair Σ̂ = (Σi, Σe), consisting of disjoint finite
alphabets Σi and Σe of internal symbols and endmarkers, respectively, with Σe

nonempty. Under the endmarked alphabet Σ̂, the set of finite strings terminated
with an endmarker is Σ∗

i Σe, which we abbreviate as Σ̂+. It will be convenient
to also define Σ̂∗ = Σ̂+ ∪ {ε} and Σ = Σi ∪ Σe.

Subsequential Transducers. A subsequential finite-state string transducer
(SFT) is a 6-tuple T = (Q, Σ̂, Γ̂ , δ, σ, q0) where Q is a finite set of states that
is partitioned into (possibly empty) sets of read and write states, Qr and Qw,
and halt states, Qh; Σ̂ = (Σi, Σe) with Σe �= ∅ is a finite endmarked alphabet
for input; Γ̂ = (Γi, Γe) with Γe �= ∅ is a finite endmarked alphabet for output;
δ : Σ × Qr → Q is a total transition function on read states; σ : Qw → Q × Γ is
a total output function on write states; and q0 ∈ Q is the initial state.

Configurations C of the SFT T have one of two forms – either (i) w q v, where
wR ∈ Σ̂∗ and q ∈ Q and vR ∈ (Γ ∗

i ∪ Γ̂ ∗); or (ii) v, where vR ∈ Γ̂+. Let −→ be
the least binary relation on configurations that satisfies the following conditions.

read wa q v −→ w qa v if q ∈ Qr and δ(a, q) = qa

write w q v −→ w qb bv if q ∈ Qw and σ(q) = (qb, b) and v ∈ Γ ∗
i

halt q v −→ v if q ∈ Qh and vR ∈ Γ̂+

The SFT T is said to transduce input w ∈ Σ̂+ to output v ∈ Γ̂+ if there exists
a sequence of configurations C0, . . . , Cn such that (i) C0 = wRq0; (ii) Ci −→ Ci+1

for all 0 ≤ i < n; and (iii) Cn = vR.

3.2 Example of a Subsequential Transducer

Figure 2 shows the transition graph for an SFT over Σ̂ = ({a, b}, {$}). The
edges in this graph are labeled c or c to indicate an input or output of sym-
bol c, respectively. This SFT compresses each run of bs into a single b. For
instance, the input string abbaabbb$ transduces to the output string abaab$
because $bbbaabba q0 −→+ $baaba. We could even compose this SFT with itself,
but this SFT is an idempotent for composition.

3.3 Discussion

Acceptance and Totality. Notice that, unlike some definitions of SFTs, this
definition does not include notions of acceptance or rejection of input strings.
This is because we are interested in SFTs that induce a total transduction func-
tion, since such transducers turn out to compose more naturally in our proof-
theoretic setting.

10 H. DeYoung and F. Pfenning

Normal Form SFTs. The above formulation of SFTs allows the possibility
that a read state is reachable even after an endmarker signaling the end of the
input has been read. An SFT would necessarily get stuck upon entering such a
state because there is no more input to read.

The above formulation also allows the dual possibility that a write state
is reachable even after having written an endmarker signaling the end of the
output. Again, an SFT would necessarily get stuck upon entering such a state
because the side condition of the write rule, v ∈ Γ ∗

i , would fail to be met.
Lastly, the above formulation allows that a halt state is reachable before an

endmarker signaling the end of the input has been read. According to the halt
rule, an SFT would necessarily get stuck upon entering such a state.

Fortunately, we may define normal-form SFTs as SFTs for which these cases
are impossible. An SFT is in normal form if it obeys three properties:

– For all endmarkers e ∈ Σe and read states q ∈ Qr, no read state is reachable
from δ(e, q).

– For all endmarkers e ∈ Γe, write states q ∈ Qw, and states qe ∈ Q, no write
state is reachable from qe if σ(q) = (qe, e).

– For all halt states q ∈ Qw, all paths from the initial state q0 to q pass through
δ(e, q′) for some endmarker e ∈ Σe and read state q′ ∈ Qr.

Normal-form SFTs and SFTs differ only on stuck computations. Because we are
only interested in total transductions, hereafter we assume that all SFTs are
normal-form.

Deterministic Finite Automata. By allowing alphabets with more than one
endmarker, the above definition of SFTs subsumes deterministic finite automata
(DFAs). A DFA is an SFT with an endmarked output alphabet Γ̂ = (∅, {a, r}),
so that the valid output strings are only a or r; the DFA transduces its input
to the output string a or r to indicate acceptance or rejection of the input,
respectively.

Fig. 2. A subsequential finite-state transducer over the endmarked alphabet Σ̂ =
({a, b}, {$}) that compresses each run of bs into a single b

Substructural Proofs as Automata 11

3.4 Composing Subsequential Finite-State String Transducers

Having considered individual subsequential finite-state transducers (SFTs), we
may want to compose finitely many SFTs into a linear network that implements
a transduction in a modular way. Fortunately, in the above model, SFTs and
their configurations compose very naturally into chains.

An SFT chain (Ti)n
i=1 is a finite family of SFTs Ti = (Qi, Σ̂i, Γ̂i, δi, σi, qi) such

that Γ̂i = Σ̂i+1 for each i < n. Here we give a description of the special case
n = 2; the general case is notationally cumbersome without providing additional
insight.

Let T1 = (Q1, Σ̂, Γ̂ , δ1, σ1, i1) and T2 = (Q2, Γ̂ , Ω̂, δ2, σ2, i2) be two SFTs; let
Σ̂1 = Σ̂ and Γ̂1 = Σ̂2 = Γ̂ and Γ̂2 = Ω̂. A configuration of the chain (Ti)2i=1 is
a string whose reversal is drawn from either (Ω∗

i ∪ Ω̂∗)Q2 (Γ ∗
i ∪ Γ̂ ∗)Q1 Σ̂∗ or

(Ω∗
i ∪ Ω̂∗)Q2 Γ̂ ∗ or Ω̂+. Let −→ be the least binary relation on configurations

that satisfies the following conditions.

read wa qi v −→ w q′
i v if δi(a, qi) = q′

i

write w qi v −→ w q′
i bv if σi(qi) = (q′

i, b)
halt qi v −→ v if qi ∈ Qh

i and v is a config.

Thus, composition of SFTs is accomplished by concatenating the states of the
individual SFTs. The composition of T1 and T2 transduces w ∈ Σ̂+ to v ∈ Ω̂+

if wR i1 i2 −→∗ vR.
Notice that an asynchronous, concurrent semantics of transducer compo-

sition comes for free with this model. For example, in the transducer chain
w q1 q2 · · · qn, the state q1 can react to the next symbol of input while q2 is still
absorbing q1’s first round of output.

4 Curry–Howard Isomorphism for Subsingleton Proofs

In this section, we turn our attention from a machine model of subsequential
finite state transducers (SFTs) to a computational interpretation of the �,1,μ-
subsingleton sequent calculus. We then bridge the two by establishing a Curry–
Howard isomorphism between SFTs and a class of cut-free subsingleton proofs
– propositions are languages, proofs are SFTs, and cut reductions are SFT com-
putation steps. In this way, the cut-free proofs of subsingleton logic serve as a
linguistic model that captures exactly the subsequential functions.

4.1 A Computational Interpretation of �,1,µ-Subsingleton Logic

Figure 3 summarizes our computational interpretation of the �,1,μ-subsingleton
sequent calculus.

Now that we are emphasizing the logic’s computational aspects, it will be
convenient to generalize binary additive disjunctions to n-ary, labeled additive
disjunctions, ��∈L{�:A�}. We require that the set L of labels is nonempty, so that

12 H. DeYoung and F. Pfenning

Fig. 3. A proof term assignment and the principal cut reductions for the �,1,μ-
subsingleton sequent calculus

n-ary, labeled additive disjunction does not go beyond what may be expressed
(less concisely) with the binary form.1 Thus, propositions are now generated by
the grammar

A,B,C ::= ��∈L{�:A�} | 1 | μα.A | α .

Contexts Δ still consist of exactly zero or one proposition and conclusions γ
are still single propositions. Each sequent Δ � γ is now annotated with a proof
term P and a signature Θ, so that Δ �Θ P : γ is read as “Under the definitions
of signature Θ, the proof term P consumes input of type Δ to produce output
of type γ.” Already, the proof term P sounds vaguely like an SFT.

The logic’s inference rules now become typing rules for proof terms. The �r
rule types a write operation, writeR k;P , that emits label k and then continues;

1 Notice that the proposition �{k:A} is distinct from A.

Substructural Proofs as Automata 13

dually, the �l rule types a read operation, readL�∈L(� ⇒ Q�), that branches on
the label that was read. The 1r rule types an operation, closeR, that signals
the end of the output; the 1l rule types an operation, waitL;Q, that waits for
the input to end and then continues with Q. The cut rule types a composition,
P � Q, of proof terms P and Q. Lastly, unfolding principles are used silently
within a proof and do not affect the proof term.

The circularities inherent to circular proofs are expressed with a finite sig-
nature Θ of mutually corecursive definitions. Each definition in Θ has the form
Δ � X = P : γ, defining the variable X as proof term P with a type declaration
of Δ �Θ X : γ. We rule out definitions of the forms X = X and X = Y . To
verify that the definitions in Θ are well-typed, we check that �Θ Θ ok according
to the rules given in Fig. 3. Note that the same signature Θ′ (initially Θ) is used
to type all variables, which thereby allows arbitrary mutual recursion.

As an example, here are two well-typed definitions:

X0 = caseL(a ⇒ writeR a;X0

| b ⇒ X1

| $ ⇒ waitL;
writeR $; closeR)

X1 = caseL(a ⇒ writeR b;writeR a;X0

| b ⇒ X1

| $ ⇒ waitL;writeR b;
writeR $; closeR)

4.2 Propositions as Languages

Here we show that propositions are languages over finite endmarked alphabets.
However, before considering all freely generated propositions, let us look at one
in particular: the least fixed point StrΣ̂ = μα.��∈Σ{�:A�} where Aa = α for all
a ∈ Σi and Ae = 1 for all e ∈ Σe. By unfolding,

StrΣ̂ = ��∈Σ{�:A′
�} , where A′

� =

{
StrΣ̂ if � ∈ Σi

1 if � ∈ Σe

The proposition StrΣ̂ is a type that describes the language Σ̂+ of all finite
strings over the endmarked alphabet Σ̂.

Theorem 3. Strings from the language Σ̂+ are in bijective correspondence with
the cut-free proofs of · � StrΣ̂.

A cut-free proof term P of type · � StrΣ̂ emits a finite list of symbols from Σ̂. By
inversion on its typing derivation, P is either: writeR e; closeR, which terminates
the list by emitting some endmarker e ∈ Σe; or writeR a;P ′, which continues
the list by emitting some symbol a ∈ Σi and then behaving as proof term P ′ of
type · � StrΣ̂ . The above intuition can be made precise by defining a bijection
�−� : Σ̂+ → (· � StrΣ̂) along these lines. As an example, the string ab$ ∈ Σ̂+

with Σ̂ = ({a, b}, {$}) corresponds to �ab$� = writeR a;writeR b;writeR $; closeR.
The freely generated propositions correspond to subsets of Σ̂+. This can be

seen most clearly if we introduce subtyping [10], but we do not do so because
we are interested only in StrΣ̂ hereafter.

14 H. DeYoung and F. Pfenning

4.3 Encoding SFTs as Cut-Free Proofs

Having now defined a type StrΣ̂ and shown that Σ̂+ is isomorphic to cut-free
proofs of · � StrΣ̂ , we can now turn to encoding SFTs as proofs. We encode
each of the SFT’s states as a cut-free proof of StrΣ̂ � StrΓ̂ ; this proof captures
a (subsequential) function on finite strings.

Let T = (Q, Σ̂, Γ̂ , δ, σ, q0) be an arbitrary SFT in normal form. Define a
mutually corecursive family of definitions �q�T , one for each state q ∈ Q. There
are three cases according to whether q is a read, a write, or a halt state.

– If q is a read state, then �q� = readLa∈Σ(a ⇒ Pa), where for each a

Pa =

{
�qa� if a ∈ Σi and δ(a, q) = qa

waitL; �qa� if a ∈ Σe and δ(a, q) = qa

When q is reachable from some state q′ that writes an endmarker, we declare
�q� to have type StrΣ̂ � �q� : 1. Otherwise, we declare �q� to have type
StrΣ̂ � �q� : StrΓ̂ .

– If q is a write state such that σ(q) = (qb, b), then �q� = writeR b; �qb�. When q
is reachable from δ(e, q′) for some e ∈ Σe and q′ ∈ Qr, we declare �q� to have
type · � StrΓ̂ . Otherwise, we declare �q� to have type StrΣ̂ � StrΓ̂ .

– If q is a halt state, then �q� = closeR. This definition has type · � �q� : 1.

When the SFT is in normal form, these definitions are well-typed. A type dec-
laration with an empty context indicates that an endmarker has already been
read. Because the reachability condition on read states in normal-form SFTs
proscribes read states from occurring once an endmarker has been read, the
type declarations StrΣ̂ � StrΓ̂ or StrΣ̂ � 1 for read states is valid. Because
normal-form SFTs also ensure that halt states only occur once an endmarker
has been read, the type declaration · � 1 for halt states is valid.

As an example, the SFT from Fig. 2 can be encoded as follows.

StrΣ̂ = �{a:StrΣ̂ , b:StrΣ̂ , $:1}

StrΣ̂ � �q0� : StrΣ̂

�q0� = readL(a ⇒ �qa� | b ⇒ �q1�
| $ ⇒ waitL; �q$�)

StrΣ̂ � �q1� : StrΣ̂

�q1� = readL(a ⇒ �qb� | b ⇒ �q1�
| $ ⇒ waitL; �q′

b�)

StrΣ̂ � �qa�, �qb� : StrΣ̂

�qa� = writeR a; �q0�
�qb� = writeR b; �qa�

· � �q′
b�, �q$� : StrΣ̂

�q′
b� = writeR b; �q$�

�q$� = writeR $; �qh�

· � �qh� : 1
�qh� = closeR

If one doesn’t care about a bijection between definitions and states, some of
these definitions can be folded into �q0� and �q1�.

StrΣ̂ � �q0� : StrΣ̂

�q0� = caseL(a ⇒ writeR a; �q0�
| b ⇒ �q1�
| $ ⇒ waitL;

writeR $; closeR)

StrΣ̂ � �q1� : StrΣ̂

�q1� = caseL(a ⇒ writeR b;writeR a; �q0�
| b ⇒ �q1�
| $ ⇒ waitL;writeR b;

writeR $; closeR)

Substructural Proofs as Automata 15

This encoding of SFTs as proofs of type StrΣ̂ � StrΓ̂ is adequate at quite a
fine-grained level – each SFT transition is matched by a proof reduction.

Theorem 4. Let T = (Q, Σ̂, Γ̂ , δ, σ, q0) be a normal-form SFT. For all q ∈ Qr,
if Δ � (writeR a;P) : StrΣ̂ and δ(a, q) = qa, then (writeR a;P)��q� −→ P ��qa�.

Proof. By straightforward calculation.

Corollary 1. Let T = (Q, Σ̂, Γ̂ , δ, σ, q0) be a normal-form SFT. For all w ∈ Σ̂+

and v ∈ Γ̂+, if wR q0 −→∗ vR, then �w� � �q0� −→∗
�v�.

With SFTs encoded as cut-free proofs, SFT chains can easily be encoded
as fixed-cut proofs – simply use the cut rule to compose the encodings. For
example, an SFT chain (Ti)n

i=1 is encoded as �q1�T1 � · · · � �qn�Tn
. Because these

occurrences of cut do not occur inside any cycle, the encoding of an SFT chain
is a fixed-cut proof.

4.4 Completing the Isomorphism: From Cut-Free Proofs to SFTs

In this section, we show that an SFT can be extracted from a cut-free proof of
StrΣ̂ �Θ StrΓ̂ , thereby completing the isomorphism.

We begin by inserting definitions in signature Θ so that each definition of
type StrΣ̂ � StrΓ̂ has one of the forms

X = readLa∈Σ̂(a ⇒ Pa) where Pa = Xa if a ∈ Σi

and Pe = waitL;Y if e ∈ Σe

X = writeR b;Xb if b ∈ Γi

X = writeR e;Z if e ∈ Γe

By inserting definitions we also put each Y of type · � StrΓ̂ and each Z of type
StrΣ̂ � 1 into one of the forms

Y = writeR b;Yb if b ∈ Γi

Y = writeR e;W if e ∈ Γe

Z = readLa∈Σ̂(a ⇒ Qa) where Qa = Za if a ∈ Σi

and Qe = waitL;W if e ∈ Σe

where definitions W of type · � 1 have the form W = closeR. All of these forms
are forced by the types, except in one case: Pe above has type 1 � StrΓ̂ , which
does not immediately force Pe to have the form waitL;Y . However, by inversion
on the type 1 � StrΓ̂ , we know that Pe is equivalent to a proof of the form
waitL;Y , up to commuting the 1l rule to the front.

From definitions in the above form, we can read off a normal-form SFT. Each
variable becomes a state in the SFT. The normal-form conditions are manifest
from the structure of the definitions: no read definition is reachable once an end-
marker is read; no write definition is reachable once an endmarker is written; and
a halt definition is reachable only by passing through a write of an endmarker.

16 H. DeYoung and F. Pfenning

Thus, cut-free proofs (up to 1l commuting conversion) are isomorphic to
normal-form SFTs. Fixed-cut proofs are also then isomorphic to SFT chains
by directly making the correspondence of fixed-cuts with chain links between
neighboring SFTs.

5 SFT Composition by Cut Elimination

Subsequential functions enjoy closure under composition. This property is tra-
ditionally established by a direct SFT construction [14]. Having seen that SFTs
are isomorphic to proofs of type StrΣ̂ � StrΓ̂ , it’s natural to wonder how this
construction fits into this pleasing proof-theoretic picture. In this section, we
show that, perhaps surprisingly, closure of SFTs under composition can indeed
be explained proof-theoretically in terms of cut elimination.

5.1 Closure of SFTs Under Composition

Composing two SFTs T1 = (Q1, Σ̂, Γ̂ , δ1, σ1, q1) and T2 = (Q2, Γ̂ , Ω̂, δ2, σ2, q2)
is simple: just compose their encodings. Because �q1�T1 and �q2�T2 have types
StrΣ̂ � StrΓ̂ and StrΓ̂ � StrΩ̂ , respectively, the composition is �q1�T1 � �q2�T2

and is well-typed.
By using an asynchronous, concurrent semantics of proof reduction [7], par-

allelism in the SFT chain can be exploited. For example, in the transducer chain
�w� � �q1�T1 � �q2�T2 � �q3�T3 � · · · � �qn�Tn

, the encoding of T1 then react to the
next symbol of input while T2 is still absorbing T1’s first round of output.

Simply composing the encodings as the proof �q1�T1 � �q2�T2 is suitable and
very natural. But knowing that subsequential functions are closed under compo-
sition, what if we want to construct a single SFT that captures the same function
as the composition?

The proof �q1�T1 � �q2�T2 is a fixed-cut proof of StrΣ̂ � StrΩ̂ because �q1�T1

and �q2�T2 are cut-free. Therefore, we know from Sects. 4.3 and 4.4 that, when
applied to this composition, cut elimination will terminate with a cut-free cir-
cular proof of StrΣ̂ � StrΩ̂ . Because such proofs are isomorphic to SFTs, cut
elimination constructs an SFT for the composition of T1 and T2. What is inter-
esting, and somewhat surprising, is that a generic logical procedure such as cut
elimination suffices for this construction – no extralogical design is necessary!

In fact, cut elimination yields the very same SFT that is traditionally used
(see [14]) to realize the composition. We omit those details here.

5.2 DFA Closure Under Complement and Inverse Homomorphism

Recall from Sect. 3.3 that our definition of SFTs subsumes deterministic finite
automata (DFAs); an SFT that uses an endmarked output alphabet of Γ̂ =
({}, {a, r}) is a DFA that indicates acceptance or rejection of the input by pro-
ducing a or r as its output.

Substructural Proofs as Automata 17

Closure of SFTs under composition therefore implies closure of DFAs under
complement and inverse homomorphism: For complement, compose the SFT-
encoding of a DFA with an SFT over Γ̂ , not , that flips endmarkers. For inverse
homomorphism, compose an SFT that captures homomorphism ϕ with the SFT-
encoding of a DFA; the result recognizes ϕ−1(L) = {w | ϕ(w) ∈ L} where L is
the language recognized by the DFA. (For endmarked strings, a homomorphism
ϕ maps internal symbols to strings and endmarkers to endmarkers.) Thus, we
also have cut elimination as a proof-theoretic explanation for the closure of DFAs
under complement and inverse homomorphism.

6 Linear Communicating Automata

In the previous sections, we have established an isomorphism between the cut-
free proofs of subsingleton logic and subsequential finite-state string transducers.
We have so far been careful to avoid mixing circular proofs and general applica-
tions of the cut rule. The reason is that cut elimination in general results in an
infinite, but not necessarily circular, proof [9]. Unless the proof is circular, we
can make no connection to machines with a finite number of states.

In this section, we consider the effects of incorporating the cut in its full
generality. We show that if we also relax conditions on circular proofs so that
μ is a general – not least – fixed point, then proofs have the power of Turing
machines. The natural computational interpretation of subsingleton logic with
cuts is that of a typed form of communicating automata arranged with a linear
network topology; these automata generalize Turing machines in two ways – the
ability to insert and delete cells from the tape and the ability to spawn multiple
machine heads that operate concurrently.

6.1 A Model of Linear Communicating Automata

First, we present a model of communicating automata arranged with a linear
network topology. A linear communicating automaton (LCA) is an 8-tuple M =
(Q,Σ, δrL, δrR, σwL, σwR, ρ, q0) where:

– Q is a finite set of states that is partitioned into (possibly empty) sets of left-
and right-reading states, QrL and QrR; left- and right-writing states, QwL and
QwR; spawn states, Qs; and halt states, Qh;

– Σ is a finite alphabet;
– δrL : Σ × QrL → Q is a total function on left-reading states;
– δrR : QrR × Σ → Q is a total function on right-reading states;
– σwL : QwL → Σ × Q is a total function on left-writing states;
– σwR : QwR → Q × Σ is a total function on right-writing states;
– ρ : Qs → Q × Q is a total function on spawn states;
– q0 ∈ Q is the initial state.

18 H. DeYoung and F. Pfenning

Configurations of the LCA M are strings w and v drawn from the set (Σ∗Q)∗Σ∗.
Let −→ be the least binary relation on configurations that satisfies the following.

read-l wa q v −→ w qa v if q ∈ QrL and δL(a, q) = qa

read-r w q bv −→ w qb v if q ∈ QrR and δR(q, b) = qb

write-l w q v −→ wa qa v if q ∈ QwL and σL(q) = (a, qa)

write-r w q v −→ w qb bv if q ∈ QwR and σR(q) = (qb, b)

spawn w q v −→ w q′ q′′ v if q ∈ Qs and ρ(q) = (q′, q′′)

halt w q v −→ wv if q ∈ Qh

The LCA M is said to produce output v ∈ Σ∗ from input w ∈ Σ∗ if there exists
a sequence of configurations u0, . . . , un such that (i) u0 = wR q0; (ii) ui −→ ui+1

for all 0 ≤ i < n; and (iii) un = vR.
Notice that LCAs can certainly deadlock: a read state may wait indefinitely

for the next symbol to arrive. LCAs also may exhibit races: two neighboring read
states may compete to read the same symbol.

6.2 Comparing LCAs and Turing Machines

This model of LCAs makes their connections to Turing machines apparent.
Each state q in the configuration represents a read/write head. Unlike Turing
machines, LCAs may create and destroy tape cells as primitive operations (read
and write rules) and create new heads that operate concurrently (spawn rule).
In addition, LCAs are Turing complete.

Turing Machines. A Turing machine is a 4-tuple M = (Q,Σ, δ, q0) where Q
is a finite set of states that is partitioned into (possibly empty) sets of editing
states, Qe and halting states, Qh; Σ is a finite alphabet; δ : (Σ ∪ {ε}) × Qe →
Q × Σ × {L,R} is a function for editing states; and q0 ∈ Q is the initial state.

Configurations of the Turing machine M have one of two forms – either
(i) w q v, where w, v ∈ Σ∗ and q ∈ Q; or (ii) w, where w ∈ Σ∗. In other words,
the set of configurations is Σ∗QΣ∗ ∪Σ∗. Let −→ be the least binary relation on
configurations that satisfies the following conditions.

edit-l wa q v −→ w qa bv if δ(a, q) = (qa, b, L)
q v −→ qε bv if δ(ε, q) = (qε, b, L)

edit-r wa q cv −→ wbc qa v if δ(a, q) = (qa, b,R)
wa q −→ wb qa if δ(a, q) = (qa, b,R)
q cv −→ bc qε v if δ(ε, q) = (qε, b,R)

q −→ b qε if δ(ε, q) = (qε, b,R)
halt w q v −→ wv if q ∈ Qh

Substructural Proofs as Automata 19

LCAs Are Turing Complete. A Turing machine can be simulated in a rela-
tively straightforward way. First, we augment the alphabet with $ and ˆ symbols
as endmarkers. Each configuration w q v becomes an LCA configuration $w q vˆ.
Each editing state q becomes a left-reading state in the encoding, and each halt-
ing state q becomes a halting state. If q is an editing state, then for each a ∈ Σ:

– If δ(a, q) = (qa, b, L), introduce a fresh right-writing state qb and let δL(a, q) =
qb and σR(qb) = (qa, b). In this case, the first edit-l rule is simulated by
$wa q vˆ −→ $w qb vˆ −→ $w qa bvˆ.

– If δ(a, q) = (qa, b,R), introduce fresh left-writing states qb and qc for each
c ∈ Σ, a fresh right-reading state q′

b, and a fresh right-writing state qˆ. Set
δL(a, q) = qb and σL(qb) = (b, q′

b). Also, set δR(q′
b, c) = qc for each c ∈ Σ,

and δR(q′
b, ˆ) = qˆ. Finally, set σL(qc) = (c, qa) for each c ∈ Σ, and set

σR(qˆ) = (qa, ˆ). In this case, the first and second edit-l rule are simulated
by $wa q cvˆ −→ $w qb cvˆ −→ $wb q′

b cvˆ −→ $wb qc vˆ −→ $wbc qa vˆ and
$wa q ˆ −→ $w qb ˆ −→ $wb q′

b ˆ −→ $wb qˆ −→ $wb qa ˆ.
– The other cases are similar, so we omit them.

7 Extending �,1,µ-Subsingleton Logic

In this section, we explore what happens when the cut rule is allowed to occur
along cycles in circular proofs. But first we extend �,1,μ-subsingleton logic and
its computational interpretation with two other connectives: � and ⊥.

7.1 Including � and ⊥ in Subsingleton Logic

Figure 4 presents an extension of �,1,μ-subsingleton logic with � and ⊥.
Once again, it will be convenient to generalize binary additive conjunctions

to their n-ary, labeled form: ��∈L{�:A�} where L is nonempty. Contexts Δ still
consist of exactly zero or one proposition, but conclusions γ may now be either
empty or a single proposition.

The inference rules for � and ⊥ are dual to those that we had for � and 1;
once again, the inference rules become typing rules for proof terms. The �r rule
types a read operation, readR�∈L(� ⇒ P�), that branches on the label that was
read; the label is read from the right-hand neighbor. Dually, the �l rule types
a write operation, writeL k;Q, that emits label k to the left. The ⊥r rule types
an operation, waitR;P , that waits for the right-hand neighbor to end; the ⊥l
rule types an operation, closeL, that signals to the left-hand neighbor. Finally,
we restore id as an inference rule, which types � as a forwarding operation.

Computational Interpretation: Well-Behaved LCAs. Already, the syntax
of our proof terms suggests a computational interpretation of subsingleton logic
with general cuts: well-behaved linear communicating automata.

The readL and readR operations, whose principal cut reductions read and
consume a symbol from the left- and right-hand neighbors, respectively, become

20 H. DeYoung and F. Pfenning

Fig. 4. A proof term assignment and principal cut reductions for the subsingleton
sequent calculus when extended with � and ⊥

left- and right-reading states. Similarly, the writeL and writeR operations that
write a symbol to their left- and right-hand neighbors, respectively, become left-
and right-writing states. Cuts, represented by the � operation which creates a
new read/write head, become spawning states. The id rule, represented by the
� operation, becomes a halting state.

Just as for SFTs, this interpretation is adequate at a quite fine-grained level
in that LCA transitions are matched by proof reductions. Moreover, the types
in our interpretation of subsingleton logic ensure that the corresponding LCA is
well-behaved. For example, the corresponding LCAs cannot deadlock because cut
elimination can always make progress, as proved by Fortier and Santocanale [9];
those LCAs also do not have races in which two neighboring heads compete to
read the same symbol because readR and readL have different types and therefore
cannot be neighbors. Due to space constraints, we omit a discussion of the details.

7.2 Subsingleton Logic Is Turing Complete

Once we allow general occurrences of cut, we can in fact simulate Turing
machines and show that subsingleton logic is Turing complete. For each state q
in the Turing machine, define an encoding �q� as follows.

Substructural Proofs as Automata 21

If q is an editing state, let �q� = readLa∈Σ(a ⇒ Pq,a | $ ⇒ P ′
q) where

Pq,a =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�qa� � (writeL b;�) if δ(a, q) = (qa, b, L)
readRc∈Σ(c ⇒ (writeR c;writeR b;�) � �qa�

| ˆ ⇒ (writeR b;�) � �qa�

� (writeL ˆ;�)
)

if δ(a, q) = (qa, b,R)

and

P ′
q =

⎧⎪⎨
⎪⎩

(writeR $;�) � �qε� � (writeL b;�) if δ(ε, q) = (qε, b, L)
readRc∈Σ(c ⇒ (writeR c;writeR b;�) � �qε�

| ˆ ⇒ (writeR b;�) � �qε� � (writeL ˆ;�))
if δ(ε, q) = (qε, b,R)

If q is a halt state, let �q� = readRc∈Σ(c ⇒ (writeR c;�) � �q� | ˆ ⇒ �). Surpris-
ingly, these definitions �q� are in fact well-typed at Tape � epaT, where

Tape = μα.�a∈Σ{a:α, $:1}
epaT = μα.�a∈Σ{a:α, ˆ:Tape} .

This means that Turing machines cannot get stuck!
Of course, Turing machines may very well loop indefinitely. And so, for the

above circular proof terms to be well-typed, we must give up on μ being an
inductive type and relax μ to be a general recursive type. This amounts to
dropping the requirement that every cycle in a circular proof is a left μ-trace.

It is also possible to simulate Turing machines in a well-typed way without
using �. Occurrences of �, readR, and writeL are removed by instead using
� and its constructs in a continuation-passing style. This means that Turing
completeness depends on the interaction of general cuts and general recursion,
not on any subtleties of interaction between � and �.

8 Conclusion

We have taken the computational interpretation of linear logic first proposed
by Caires et al. [3] and restricted it to a fragment with just � and 1, but
added least fixed points and circular proofs [9]. Cut-free proofs in this fragment
are in an elegant Curry-Howard correspondence with subsequential finite state
transducers. Closure under composition, complement, inverse homomorphism,
intersection and union can then be realized uniformly by cut elimination. We
plan to investigate if closure under concatenation and Kleene star, usually proved
via a detour through nondeterministic automata, can be similarly derived.

When we allow arbitrary cuts, we obtain linear communicating automata,
which is a Turing-complete class of machines. Some preliminary investigation
leads us to the conjecture that we can also obtain deterministic pushdown
automata as a naturally defined logical fragment. Conversely, we can ask if the
restrictions of the logic to least or greatest fixed points, that is, inductive or

22 H. DeYoung and F. Pfenning

coinductive types with corresponding restrictions on the structure of circular
proofs yields interesting or known classes of automata.

Our work on communicating automata remains significantly less general than
Deniélou and Yoshida’s analysis using multiparty session types [6]. Instead of
multiparty session types, we use only a small fragment of binary session types;
instead of rich networks of automata, we limit ourselves to finite chains of
machines. And in our work, machines can terminate and spawn new machines,
and both operational and typing aspects of LCAs arise naturally from logical
origins.

Finally, in future work we would like to explore if we can design a subsingleton
type theory and use it to reason intrinsically about properties of automata.

References

1. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput.
Logic 13(1) (2012)

2. Baelde, D., Doumane, A., Saurin, A.: Infinitary proof theory: the multiplicative
additive case. In: 25th Conference on Computer Science Logic. LIPIcs, vol. 62, pp.
42:1–42:17 (2016)

3. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4 16

4. Church, A., Rosser, J.: Some properties of conversion. Trans. Am. Math. Soc.
39(3), 472–482 (1936)

5. Curry, H.B.: Functionality in combinatory logic. Proc. Nat. Acad. Sci. U.S.A. 20,
584–590 (1934)

6. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28869-2 10

7. DeYoung, H., Caires, L., Pfenning, F., Toninho, B.: Cut reduction in linear logic
as asynchronous session-typed communication. In: 21st Conference on Computer
Science Logic. LIPIcs, vol. 16, pp. 228–242 (2012)

8. Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press,
Cambridge (1991). From the William James Lectures 1976

9. Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut elimination.
In: 22nd Conference on Computer Science Logic. LIPIcs, vol. 23, pp. 248–262 (2013)

10. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2), 191–225 (2005)

11. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–102 (1987)
12. Howard, W.A.: The formulae-as-types notion of construction (1969), unpublished

note. An annotated version appeared in: To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pp. 479–490, Academic Press (1980)

13. Martin-Löf, P.: On the meanings of the logical constants and the justifications of
the logical laws. Nord. J. Philos. Logic 1(1), 11–60 (1996)

14. Mohri, M.: Finite-state transducers in language and speech processing. J. Comput.
Linguist. 23(2), 269–311 (1997)

15. Schützenberger, M.P.: Sur une variante des fonctions sequentielles. Theoret. Com-
put. Sci. 4(1), 47–57 (1977)

16. Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. Proc. Lond. Math. Soc. 42(2), 230–265 (1937)

http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-642-28869-2_10

Verification and Analysis I

Learning a Strategy for Choosing Widening
Thresholds from a Large Codebase

Sooyoung Cha, Sehun Jeong, and Hakjoo Oh(B)

Korea University, Seoul, South Korea
{sooyoung1990,gifaranga,hakjoo oh}@korea.ac.kr

Abstract. In numerical static analysis, the technique of widening
thresholds is essential for improving the analysis precision, but blind
uses of the technique often significantly slow down the analysis. Ideally,
an analysis should apply the technique only when it benefits, by carefully
choosing thresholds that contribute to the final precision. However, find-
ing the proper widening thresholds is nontrivial and existing syntactic
heuristics often produce suboptimal results. In this paper, we present a
method that automatically learns a good strategy for choosing widen-
ing thresholds from a given codebase. A notable feature of our method
is that a good strategy can be learned with analyzing each program in
the codebase only once, which allows to use a large codebase as train-
ing data. We evaluated our technique with a static analyzer for full C
and 100 open-source benchmarks. The experimental results show that
the learned widening strategy is highly cost-effective; it achieves 84 %
of the full precision while increasing the baseline analysis cost only by
1.4×. Our learning algorithm is able to achieve this performance 26 times
faster than the previous Bayesian optimization approach.

1 Introduction

In static analysis for discovering numerical program properties, the technique
of widening with thresholds is essential for improving the analysis precision
[1–4,6–9]. Without the technique, the analysis often fails to establish even sim-
ple numerical invariants. For example, suppose we analyze the following code
snippet with the interval domain:

1 i = 0;
2 while (i != 4) {
3 i = i + 1;
4 assert(i <= 4);
5 }

Note that the interval analysis with the standard widening operator cannot
prove the safety of the assertion at line 4. The analysis concludes that the interval
value of i right after line 2 is [0,+∞] (hence [1,+∞] at line 4) because of the
widening operation applied at the entry of the loop. A simple way of improving
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 25–41, 2016.
DOI: 10.1007/978-3-319-47958-3 2

26 S. Cha et al.

the result is to employ widening thresholds. For example, when an integer 4
is used as a threshold, the widening operation at the loop entry produces the
interval [0, 4], instead of [0,+∞], for the value of i. The loop condition i �= 4
narrows down the value to [0, 3] and therefore we can prove that the assertion
holds at line 4.

However, it is a challenge to choose the right set of thresholds that improves
the analysis precision with a small extra cost. Simple-minded methods can hardly
be cost-effective. For example, simply choosing all integer constants in the pro-
gram would not scale to large programs. Existing syntactic and semantics heuris-
tics for choosing thresholds (e.g. [3,6,8,9]) are also not satisfactory. For exam-
ple, the syntactic heuristic used in [3], which is specially designed for the flight
control software, is not precision-effective in general [12]. A more sophisticated,
semantics-based heuristic sometimes incurs significant cost blow up [8]. No exist-
ing techniques are able to prescribe small yet effective set of thresholds for arbi-
trary programs.

In this paper, we present a technique that automatically learns a good strat-
egy for choosing widening thresholds from a given codebase. The learned strategy
is then used for analyzing new, unseen programs. Our technique includes a para-
meterized strategy for choosing widening thresholds, which decides whether to
use each integer constant in the given program as a threshold or not. Follow-
ing [13], the strategy is parameterized by a vector of real numbers and the effec-
tiveness of the strategy is completely determined by the choice of the parameter.
Therefore, in our approach, learning a good strategy corresponds to finding a
good parameter from a given codebase.

A salient feature of our method is that a good strategy can be learned by
analyzing the codebase only once, which enables us to use a large codebase
as a training dataset. In [13], learning a strategy is formulated as a blackbox
optimization problem and the Bayesian optimization approach was proposed to
efficiently solve the optimization problem. However, we found that this approach
is still too costly when the codebase is large, mainly because it requires multiple
runs of the static analyzer over the entire codebase. Motivated by this limitation,
we designed a new learning algorithm that does not require running the analyzer
over the codebase multiple times. The key idea is to use an oracle that quantifies
the relative importance of each integer constant in the program with respect to
improving the analysis precision. With this oracle, we transform the blackbox
optimization problem to a whitebox one that is much easier to solve than the
original problem. We show that the oracle can be effectively obtained from a
single run of the static analyzer over the codebase.

The experimental results show that our learning algorithm produces a highly
cost-effective strategy and is fast enough to be used with a large codebase. We
implemented our approach in a static analyzer for real-world C programs and
used 100 open-source benchmarks for the evaluation. The learned widening strat-
egy achieves 84 % of the full precision (i.e., the precision of the analysis using
all integer constants in the program as widening thresholds) while increasing
the cost of the baseline analysis without widening thresholds only by 1.4×. Our

Learning a Strategy for Choosing Widening Thresholds 27

learning algorithm is able to achieve this performance 26 times faster than the
existing Bayesian optimization approach.

Contributions. This paper makes the following contributions.

– We present a learning-based method for selectively applying the technique of
widening thresholds. From a given codebase, our method automatically learns
a strategy for choosing widening thresholds.

– We present a new, oracle-guided learning algorithm that is significantly faster
than the existing Bayesian optimization approach. Although we use this
algorithm for learning widening strategy, our learning algorithm is generally
applicable to adaptive static analyses in general provided a suitable oracle is
given for each analysis.

– We prove the effectiveness of our method in a realistic setting. Using a large
codebase of 100 open-source programs, we experimentally show that our learn-
ing strategy is highly cost-effective, achieving the 84 % of the full precision
while increasing the cost by 1.4 times.

Outline. We first present our learning algorithm in a general setting; Sect. 2
defines a class of adaptive static analyses and Sect. 3 explains our oracle-guided
learning algorithm. Next, in Sect. 4, we describe how to apply the general app-
roach to the problem of learning a widening strategy. Section 5 presents the
experimental results, Sect. 6 discusses related work, and Sect. 7 concludes.

2 Adaptive Static Analysis

We use the setting of adaptive static analysis in [13]. Let P ∈ P be a program to
analyze. Let JP be a set of indices that represent parts of P . Indices in JP are
used as “switches” that determine whether to apply high precision or not. For
example, in the partially flow-sensitive analysis in [13], JP is the set of program
variables and the analysis applies flow-sensitivity only to a selected subset of JP .
In this paper, JP denotes the set of constant integers in the program and our
aim is to choose a subset of JP that will be used as widening thresholds. Once
JP is chosen, the set AP of program abstractions is defined as a set of indices as
follows:

a ∈ AP = ℘(JP).

In the rest of the paper, we omit the subscript P from JP and AP when there
is no confusion.

The program is given together with a set of queries (i.e. assertions) and the
goal of the static analysis is to prove as many queries as possible. We suppose
that an adaptive static analysis is given with the following type:

F : P × A → N.

Given a program P and its abstraction a, the analysis F (P,a) analyzes the
program P by applying high precision (e.g. widening thresholds) only to the

28 S. Cha et al.

program parts in the abstraction a. For example, F (P, ∅) and F (P, JP) repre-
sent the least and most precise analyses, respectively. The result from F (P,a)
indicates the number of queries in P proved by the analysis. We assume that the
abstraction correlates the precision and cost of the analysis. That is, if a′ is a
more refined abstraction than a (i.e. a ⊆ a′), then F (P,a′) proves more queries
than F (P,a) does but the former is more expensive to run than the latter. This
assumption usually holds in program analyses for C.

In this paper, we are interested in automatically finding an adaptation
strategy

S : P → A
from a given codebase P = {P1, . . . , Pm}. Once the strategy is learned, it is used
for analyzing unseen program P as follows:

F (P,S(P)).

Our goal is to learn a cost-effective strategy S∗ such that F (P,S∗(P)) has pre-
cision comparable to that of the most precise analysis F (P, JP) while its cost
remains close to that of the least precise one F (P, ∅).

3 Learning an Adaptation Strategy from a Codebase

In this section, we explain our method for learning a strategy S : P → A from
a codebase P = {P1, . . . , Pm}. Our method follows the overall structure of the
learning approach in [13] but uses a new learning algorithm that is much more
efficient than the Bayesian optimization approach in [13].

In Sect. 3.1, we summarize the definition of the adaptation strategy in [13],
which is parameterized by a vector w of real numbers. In Sect. 3.2, the opti-
mization problem of learning is defined. Section 3.3 briefly presents the exist-
ing Bayesian optimization method for solving the optimization problem and
discusses its limitation in performance. Finally, Sect. 3.4 presents our learning
algorithm that avoids the problem of the existing approach.

3.1 Parameterized Adaptation Strategy

In [13], the adaptation strategy is parameterized and the result of the strategy
is limited to a particular set of abstractions. That is, the parameterized strategy
is defined with the following type:

Sw : P → Ak

where Ak = {a ∈ A | |a| = k} is the set of abstractions of size k. The strat-
egy is parameterized by w ∈ R

n, a vector of real numbers. In this paper, we
assume that k is fixed, which is set to 30 in our experiments, and R denotes real
numbers between −1 and 1, i.e., R = [−1, 1]. The effectiveness of the strategy
is solely determined by the parameter w. With a good parameter w, the analy-
sis F (P,Sw(P)) has precision comparable to the most precise analysis F (P, JP)

Learning a Strategy for Choosing Widening Thresholds 29

while its cost is not far different from the least precise one F (P, ∅). Our goal is
to learn a good parameter w from a codebase P = {P1, P2, . . . , Pm}.

The parameterized adaptation strategy Sw is defined as follows. We assume
that a set of program features is given:

fP = {f1
P , f2

P , . . . , fn
P }

where a feature fk
P is a predicate over the switches JP :

fk
P : JP → B.

In general, a feature is a function of type JP → R but we assume that the result
is binary for simplicity. Note that the number of features equals to the dimension
of w. With the features, a switch j is represented by a feature vector as follows:

fP (j) = 〈f1
P (j), f2

P (j), . . . , fn
P (j)〉.

The strategy Sw works in two steps:

1. Compute the scores of switches. The score of switch j is computed by a linear
combination of its feature vector and the parameter w:

scorewP (j) = fP (j) · w. (1)

The score of an abstraction a is defined by the sum of the scores of elements
in a:

scorewP (a) =
∑
j∈a

scorewP (j).

2. Select the top-k switches. Our strategy selects top-k switches with highest
scores:

Sw(P) = argmax
a∈Ak

P

scorewP (a).

3.2 The Optimization Problem

Learning a good parameter w from a codebase P = {P1, . . . , Pm} corresponds
to solving the following optimization problem:

Find w∗ ∈ R
n that maximizes obj (w∗) (2)

where the objective function is

obj (w) =
∑
Pi∈P

F (Pi,Sw(Pi)).

That is, we aim to find a parameter w∗ that maximizes the number of queries
in the codebase that are proved by the static analysis with Sw∗ . Note that it
is only possible to solve the optimization problem approximately because the
search space is very large. Furthermore, evaluating the objective function is
typically very expensive since it involves running the static analysis over the
entire codebase.

30 S. Cha et al.

3.3 Existing Approach

In [13], a learning algorithm based on Bayesian optimization has been proposed.
To simply put, this algorithm performs a random sampling guided by a proba-
bilistic model:
1: repeat
2: sample w from R

n using probabilistic model M
3: s ← obj (w)
4: update the model M with (w, s)
5: until timeout
6: return best w found so far

The algorithm uses a probabilistic model M that approximates the objective
function by a probabilistic distribution on function spaces (using the Gaussian
Process [14]). The purpose of the probabilistic model is to pick a next parameter
to evaluate that is predicted to work best according the approximation of the
objective function (line 2). Next, the algorithm evaluates the objective function
with the chosen parameter w (line 3). The model M gets updated with the
current parameter and its evaluation result (line 4). The algorithm repeats this
process until the cost budget is exhausted and returns the best parameter found
so far.

Although this algorithm is significantly more efficient than the random sam-
pling [13], it still requires a number of iterations of the loop to learn a good
parameter. According to our experience, the algorithm with Bayesian optimiza-
tion typically requires more than 100 iterations to find good parameters (Sect. 5).
Note that even a single iteration of the loop can be very expensive in practice
because it involves running the static analyzer over the entire codebase. When
the codebase is massive and the static analyzer is costly, evaluating the objective
function multiple times is prohibitively expensive.

3.4 Our Oracle-Guided Approach

In this paper, we present a method for learning a good parameter without ana-
lyzing the codebase multiple times. By analyzing each program in the codebase
only once, our method is able to find a parameter that is as good as the para-
meter found by the Bayesian optimization method.

We achieve this by applying an oracle-guided approach to learning. Our
method assumes the presence of an oracle OP for each program P , which maps
program parts in JP to real numbers in R = [−1, 1]:

OP : JP → R.

For each j ∈ JP , the oracle returns a real number that quantifies the relative
contribution of j in achieving the precision of F (P, JP). That is, O(j1) < O(j2)
means that j2 contributes more than j1 to improving the precision during the
analysis of F (P, JP). We assume that the oracle is given together with the adap-
tive static analysis. In Sect. 4.3, we show that such an oracle easily results from
analyzing the program for interval analysis with widening thresholds.

Learning a Strategy for Choosing Widening Thresholds 31

In the presence of the oracle, we can establish an easy-to-solve optimization
problem which serves as a proxy of the original optimization problem in (2).
For simplicity, assume that the codebase consists of a single program: P = {P}.
Shortly, we extend the method to multiple training programs. Let O be the
oracle for program P . Then, the goal of our method is to learn w such that, for
every j ∈ JP , the scoring function in (1) instantiated with w produces a value
that is as close to O(j) as possible. We formalize this optimization problem as
follows:

Find w∗ that minimizes E(w∗)

where E(w) is defined to be the mean square error of w:

E(w) =
∑
j∈JP

(scorewP (j) − O(j))2

=
∑
j∈JP

(fP (j) · w − O(j))2

=
∑
j∈JP

(
n∑

i=1

f i
P (j)wi − O(j))2.

Note that the body of the objective function E(w) is a differentiable, closed-
form expression, so we can use the standard gradient decent algorithm to find a
minimum of E. The algorithm is simply stated as follows:

1: sample w from R
n

2: repeat
3: w = w − α · ∇E(w)
4: until convergence
5: return w

Starting from a random parameter w (line 1), the algorithm keeps going down
toward the minimum in the direction against the gradient ∇E(w). The single
step size is determined by the learning rate α. The gradient of E is defined as
follows:

∇E(w) =
(∂

∂w1
E(w),

∂

∂w2
E(w), · · · ,

∂

∂wn
E(w)

)
where the partial derivatives are

∂

∂wk
E(w) = 2

∑
j∈JP

(
n∑

i=1

f i
P (j)wi − O(j))fk

P (j)

Because the optimization problem does not involve the static analyzer and code-
base, learning a parameter w is done quickly regardless of the cost of the analysis
and the size of the codebase, and in the next section, we show that a good-enough
oracle can be obtained by analyzing the codebase only once.

It is easy to extend the method to multiple programs. Let P = {P1, . . . , Pm}
be the codebase. We assume the presence of oracles OP1 , . . . ,OPm

for each pro-
gram Pi ∈ P. We establish the error function EP over the entire codebase as
follows:

32 S. Cha et al.

EP(w) =
∑
P∈P

∑
j∈JP

(
n∑

i=1

f i
P (j)wi − OP (j))2

and now the gradient ∇EP(w) is defined with the partial derivatives:

∂

∂wk
EP(w) = 2

∑
P∈P

∑
j∈JP

(
n∑

i=1

f i
P (j)wi − O(j))fk

P (j).

Again, we use the gradient decent algorithm to find w that minimizes EP(w).

4 Learning a Strategy for Widening Thresholds

In this section, we explain how to employ the oracle-guided method to learn a
widening threshold strategy from a codebase. In Sect. 4.1, we define an interval
analysis that uses widening with thresholds. Sections 4.2 and 4.3 present the
features and oracle that we used for the interval analysis, respectively.

4.1 Interval Analysis with Widening Thresholds

We assume that a program P ∈ P is represented by a control flow graph P =
(C, ↪→), where C is the set of nodes (i.e. program points) and (↪→) ⊆ C × C is
a binary relation denoting control-flows of the program; c′ → c means that c is
the program point next to c′.

The abstract domain of the analysis maps programs points to abstract states:

D = C → S

where S is a map from program variables to the interval domain:

S = Var → I.

The abstract semantic function of the analysis is defined as follows:

F (X) = λc. fc(
⊔
c′→c

X(c′))

where we assume that transfer function fc : S → S is defined for each command
c. The goal of the analysis is to compute an upper bound of the least fixed point
of F :

lfpF =
⊔
i≥0

F i(⊥) = F 0(⊥) F 1(⊥) F 2(⊥) · · ·

This fixed point iteration may not terminate because the interval domain I is of
infinite height. Therefore, the analysis should use a widening operator for I. A
simple widening operator for the interval domain can be defined as follows: (For
simplicity, we omit the cases when intervals are bottom).

[l1, u1]�[l2, u2] = [(l2 < l1? − ∞ : l1), (u1 < u2? + ∞ : u1)] (3)

Learning a Strategy for Choosing Widening Thresholds 33

Note that this widening operator is very hasty and immediately replaces unstable
bounds by ∞.

The technique of widening with thresholds aims to improve the precision
by bounding the extrapolation by widening. Suppose we have a set T ⊆ Z of
thresholds. These thresholds are successively used as a candidate of a fixed point.
Formally, the widening operator �T with thresholds is defined as follows:

[l1, u1]�T [l2, u2] = [(l2 < l1?glb(T, l2) : l1), (u1 < u2?lub(T, u2) : u1)] (4)

where glb(T, i) and lub(T, i) are respectively the greatest lower bound and least
upper bound of i in thresholds T :

glb(T, i) = max{n ∈ T | n ≤ i}
lub(T, i) = min{n ∈ T | n ≥ i}

The widening operators for S and D are defined pointwise.
The precision improvement by widening with thresholds crucially depends

on the choice of the set T of thresholds, and our goal is to automatically learn a
good strategy for choosing T from a given codebase. In our implementation, the
set JP in Sect. 5.1 corresponds to the set of all integer constants in program P ,
and the strategy Sw chooses top-k integers from P based on the parameter w.

4.2 Features

To use the learning algorithm, we need to design a set of features for integer con-
stants in the program. We have designed 17 syntactic, semantic, and numerical
features (Table 1). A feature is a predicate over integers. For example, the first
feature in Table 1 indicates whether the number is used as the size of a statically
allocated array in the program.

The features have been designed with simplicity and generality in mind.
They do not depend on the interval analysis and therefore can be easily reused
for other types of numerical analyses. Features 1–12 describe simple syntactic
and semantic features for usages of integers in typical C programs. We used
a flow-insensitive pre-analysis to extract the semantic features (e.g. feature 7).
Features 13–17 describe numerical properties that are commonly found in C
programs. We were curious whether these common numerical properties have
impacts on the analysis precision when they are used for widening thresholds.
Once these features are manually designed, it is the learning algorithm’s job to
decide how much they are relevant in the given analysis task.

4.3 Oracle

To use our new learning algorithm, we need the oracle:

OP : ZP → R

34 S. Cha et al.

Table 1. Features for integer constants in C programs. Each feature represents a
predicate over integers.

Description

1 Used as The size of a static array

2 The Size of a static array − 1

3 Returned By a function (e.g. return 1)

4 Three successive numbers appear in the Program (e.g. n, n + 1, n + 2)

5 Most frequently appeared numbers in The program (i.e. top 10 %)

6 Least frequently appeared numbers in The program (i.e. bottom 10 %)

7 Passed as the size arguments of memory Copy functions (e.g. memcpy)

8 Used as the size of the destination arrays in memoryCopy functions (e.g. memcpy)

9 The null position of a string buffer Involved in some loop condition

10 The null position of a static array of primitive types (e.g., Arrays of int and char)

11 The null position of a static Array of structure fields

12 Constants involved in conditional Expressions (e.g. if (x == 1))

13 Integers Of the form 2n (e.g. 2, 4, 8, 16)

14 Integers Of the form 2n − 1 (e.g., 1, 3, 7, 15)

15 Integers In the range 0 < n ≤ 50

16 Integers In the range 50 < n ≤ 100

17 Integers In the range n > 1000

where ZP is the set of integer constants that appear in the program P . That is,
OP maps integer constants in the program into their relative importance when
they are used for widening thresholds.

We use a simple heuristic to build the oracle. The idea is to analyze the code-
base with full precision and estimate the importance by measuring how many
times each integer constant contributes to stabilizing the fixed point compu-
tation. The term full precision means that the heuristic uses a thresholds set,
which includes constant integers of the program’s variables, the sizes of static
arrays, and the lengths of constant strings. Through relatively cheap analysis
(e.g., flow insensitive), we get an abstract memory state which holds the candi-
date thresholds information we mentioned above.

Let P be a program in the codebase. We analyze the program by using all
its integer constants as thresholds. During the fixed point computation of the
analysis, we observe each widening operation and maintain a map C : ZP → N

that counts the integer constants involved in a local fixed point. That is, C(n) is
initially 0 for all n, and whenever we perform the widening operation on intervals:

[l1, u1]�[l2, u2] = [l3, u3]

we check if the result reaches a local fixed point (i.e. [l3, u3] � [l1, u1]). If so, we
increase the counter values for l3 and u3: C(l3) := C(l3)+1 and C(u3) := C(u3)+1.
We keep updating the counter C until a global fixd point is reached. Finally, we

Learning a Strategy for Choosing Widening Thresholds 35

normalize the values in C to obtain the oracle OP . We repeat this process over
the entire codebase and generate a set of oracles.

5 Experiments

In this section, we evaluate our approach with an interval analyzer for C and
open-source benchmarks. We organized the experiments to answer the following
research questions:

1. Effectiveness: How much is the analyzer with the learned strategy better
than the baseline analyzers? (Section 5.2)

2. Comparison: How much is our learning algorithm better than the existing
Bayesian optimization approach? (Section 5.3)

3. Important Features: What are the most important features identified by
the learning algorithm? (Section 5.4)

5.1 Setting

We implemented our approach in Sparrow, a static buffer-overflow analyzer
for real-world C programs [18]. The analysis is based on the interval abstract
domain and performs a flow-sensitive and selectively context-sensitive analy-
sis [11]. Along the interval analysis, it also simultaneously performs a flow-
sensitive pointer analysis to handle indirect assignments and function pointers
in C. The analyzer takes as arguments a set of integers to use for widening
thresholds. Our technique automatically generates this input to the analyzer, by
choosing a subset of integer constants that appear in the program.

To evaluate our approach, we collected 100 open-source C programs from
GNU and Linux packages. The list of programs we used is available in Table 5.
We randomly divided the 100 benchmark programs into 70 training programs
and 30 testing programs. A strategy for choosing widening threshold is learned
from the 70 training programs, and tested on the remaining 30 programs. We
iterated this process for five times. Tables 2 and 3 show the result of each trial.
In our approach, based on our observation that the number of effective widening
thresholds in each program is very small, we set k to 30, which means that
the strategy chooses the top 30 integer constants from the program to use for
widening thresholds.

In the experiments, we compared the performance of three analyzers.

– NoThld is the baseline Sparrow without widening thresholds. That is, it
performs the interval analysis with the basic widening operator in (3).

– FullThld is a variant of Sparrow that uses all the integer constants in the
program as widening thresholds. The thresholds set includes constant integers
in the program, the sizes of static arrays, and the lengths of constant strings.

– Ours is our analyzer whose threshold strategy is learned from the codebase.
That is, the threshold argument of the analyzer is given by the strategy learned
from the 70 programs via our oracle-guided learning algorithm.

36 S. Cha et al.

5.2 Effectiveness

Tables 2 and 3 show the effectiveness of the learned strategy in the training
and testing phases, respectively. Table 2 shows the training performance with 70
programs. For the five trials, NoThld proved 68,556 buffer-overrun queries. On
the other hand, FullThld proved 76,608 queries. For the training programs,
our learning algorithm was able to find a strategy that can prove 81.0 % of the
FullThld-only provable queries.

Table 3 shows the results on the 30 testing programs. In total, NoThld
proved the 23,344 queries, while FullThld proved 26,347 queries. Our analysis
with the learned strategy (Ours) proved 25,877 queries, achieving 84.3 % of
the precision of FullThld. In doing so, Ours increases the analysis time of
NoThld only 1.4×, while FullThld increases the cost by 4.8×.

5.3 Comparison

We have implemented the previous learning algorithm based on Bayesian opti-
mization [13] and compared its performance with that of our learning algorithm.

Table 2. Performance on the training programs.

Trial Training

NoThld FullThld Ours

prove prove prove quality

1 13,297 14,806 14,518 80.9 %

2 14,251 15,912 15,602 81.3 %

3 14,509 16,285 15,988 83.2 %

4 11,931 13,313 13,020 78.8 %

5 14,568 16,292 15,948 80.0 %

Total 68,556 76,608 75,076 81.0%

Table 3. Performance on the testing programs.

Trial Testing

NoThld FullThld Ours

prove sec prove sec cost prove sec quality cost

1 5, 083 222 5, 785 1, 789 8.0× 5, 637 361 78.9 % 1.6×
2 4, 129 605 4, 679 2, 645 4.4× 4, 623 748 89.8 % 1.2×
3 3, 871 397 4, 306 1, 068 2.7× 4, 237 543 84.1 % 1.4×
4 6, 449 792 7, 278 4, 606 5.8× 7, 133 1228 82.5 % 1.6×
5 3, 812 281 4, 299 1, 014 3.6× 4, 247 389 89.3 % 1.4×
Total 23, 344 2, 297 26, 347 11, 122 4.8× 25, 877 3, 269 84.3% 1.4×

Learning a Strategy for Choosing Widening Thresholds 37

Table 4. Performance comparison with the Bayesian optimization approach. For
Bayesian optimization, we set the maximum number of iterations to 100.

Trial Learning cost

Ours Bayesian optimization speedup

quality sec quality sec

1 80.9 % 6, 682 74.3 % 185,825 27.8×
2 81.3 % 5, 971 80.1 % 155,438 26.0×
3 83.2 % 7, 192 77.1 % 170,311 23.7×
4 78.8 % 3, 976 73.7 % 113,738 28.6×
5 80.0 % 6, 947 74.7 % 185,375 26.7×
Total 81.0 % 30, 768 76.0 % 810,687 26.3×

Fig. 1. Relative importance among features

Table 4 shows the results. For the five trials, our approach took on average 6,154
seconds to find a strategy of the average quality 81.0%. On the other hand, the
Bayesian optimization approach was able to find a strategy that resulted 76.0 %
quality on training sets after it exhausted its iteration budget, which took on
average 162,137 seconds. The results show that our learning algorithm is able to
find a better strategy 26 times faster than the existing algorithm.

The Bayesian optimization approach did not work well with a limited time
budget. When we allowed the Bayesian optimization approach to use the same
time budget as ours, the existing approach ended up with a strategy of the
average quality 57 %. Note that our algorithm achieves the quality 81% in the
same amount of time.

5.4 Important Features

In our approach, the learned parameter w indicates the relative importance of the
features in Table 1. To identify the important features for widening thresholds,
we performed the training phase ten times and averaged the parameters obtained
from each run.

38 S. Cha et al.

Figure 1 shows the relative feature importance identified by the learning algo-
rithm. During the ten trials, the feature 5 (most frequently appeared numbers
in the program) was always the highest ranked feature. Features 13 (numbers of
the form 2n) and 14 (numbers of the form 2n − 1) were also consistently listed
in the top 5.

These results were not expected from the beginning. At the initial stage of
this work, we manually identified important features for widening thresholds and
conjectured that the features 9, 10, and 11, which are related to null positions,
are the most important ones. Consider the following code:

char *text="abcd";
i=0;
while (text[i] != NULL) {

i++;
assert(i <= 4);

}

When we convert the loop condition into an equivalent one i �= 4 and use the
null position 4 as a widening threshold, we can prove the safety of the assertion
with the interval domain. We observed the above code pattern multiple times
in the target programs being investigated and thought that using null position
as thresholds would be one of the most important. However, the learning algo-
rithm let us realize that unexpected features such as 5, 13, and 14 are the most
important over the entire codebase, which is an insight hardly obtained manually
because it is infeasible for humans to investigate the large codebase.

6 Related Work

Widening with Thresholds. The technique of widening with thresholds has been
widely used in numerical program analyses [1–4,6–9]. For example, its effec-
tiveness has been shown with polyhedra [6], octagons [1,3,4], and intervals [7].
However, existing techniques use a fixed strategy for choosing the threshold set.
For example, in [1,3,4,7], all the integer constants that appear in conditional
statements are used for the candidate of thresholds. In [6], a simple pre-analysis
is used to infer a set of thresholds. The main limitation of these approaches is
that the strategies are fixed and overfitted to some particular class of programs.
For example, the syntactic and semantic heuristics were shown to be not always
cost-effective [6,7]. On the other hand, the goal of this paper is not to fix a par-
ticular strategy beforehand but to automatically learn a strategy from a given
codebase, so that it can be adaptively used in practice.

Learning-Based Program Analysis. Recently, machine learning techniques are
increasingly used in the field of program analysis [5,10,13,15–17]. Among them,
our work lies in the direction of designing an adaptive static analysis via learn-
ing [5,13]. In particular, our work is motivated by [13]’s result, which used

Learning a Strategy for Choosing Widening Thresholds 39

Table 5. Benchmark programs

Programs LOC Programs LOC

wwl-1.3+db.c 474 e2ps-4.34.c 6, 222

gosmore-0.0.0.20100711.c 497 apng2gif-1.5.c 6, 522

ircmarkers-0.14.c 619 isdnutils-3.25+dfsg1.c 6, 609

rovclock-0.6e.c 1, 177 bwm-ng-0.6.c 6, 833

xcircuit-3.7.55.dfsg.c 1, 222 diffstat-1.58.c 7, 077

iputils-20121221.c 1, 311 lgrind-3.67.c 7, 363

confget-1.02.c 1, 393 lacheck-1.26.c 7, 385

codegroup-19981025.c 1, 518 lakai-0.1.c 7, 487

time-1.7.c 1, 759 libdebug-0.4.4.c 7, 645

rexima-1.4.c 1, 843 cmigemo-1.2+gh0.20140306.c 7, 729

xinit-1.3.2.c 1, 893 barcode-0.96.c 7, 901

nlkain-1.3.c 1, 927 apngopt-1.2.c 8, 315

xchain-1.0.1.c 1, 955 makedepf90-2.8.8.c 8, 415

display-dhammapada-1.0.c 2, 007 mpage-2.5.6.c 8, 538

authbind-2.1.1.c 2, 041 stripcc-0.2.0.c 8, 914

unhtml-2.3.9.c 2, 057 photopc-3.05.c 9, 266

elfrc-0.7.c 2, 142 psmisc-22.20.c 9, 624

jbofihe-0.38.c 2, 182 ircd-ircu-2.10.12.10.dfsg1.c 10, 206

delta-2006.08.03.c 2, 273 auto-apt-0.3.23ubuntu0.14.04.1.c 11, 110

petris-1.0.1.c 2, 411 glhack-1.2.c 11, 237

libixp-0.6 20121202+hg148.c 2, 428 sac-1.9b5.c 11, 999

whichman-2.4.c 2, 493 dict-gcide-0.48.1.c 12, 318

acpi-1.7.c 2, 597 gzip-spec2000.c 12, 980

zmakebas-1.2.c 2, 606 cutils-1.6.c 14, 122

forkstat-0.01.04.c 2, 710 mtr-0.85.c 14, 127

setbfree-0.7.5.c 2, 929 rhash-1.3.1.c 14, 352

haskell98-tutorial-200006-2.c 3, 161 gnuspool-1.7ubuntu1.c 16, 665

kcc-2.3.c 3, 429 smp-utils-0.97.c 17, 520

ipip-1.1.9.c 3, 605 ccache-3.1.9.c 17, 536

gif2apng-1.7.c 3, 816 gzip-1.2.4a.c 18, 364

desproxy-0.1.0 pre3.c 3, 841 netkit-ftp-0.17.c 19, 254

magicfilter-1.2.c 3, 856 libchewing-0.3.5.c 19, 262

pgpgpg-0.13.c 3, 908 archimedes.c 19, 559

rsrce-0.2.2.c 3, 956 tcs-1.c 19, 967

rinetd-0.62.c 4, 123 gnuplot-4.6.4.c 20, 306

unsort-1.1.2.c 4, 290 phalanx-22+d051004.c 24, 099

hexdiff-0.0.53.c 4, 334 gnuchess-5.05.c 28, 853

acorn-fdisk-3.0.6.c 4, 450 combine-0.3.3.c 29, 508

pmccabe-2.6.c 4, 920 rtai-3.9.1.c 30, 739

dvbtune-0.5.ds.c 5, 068 gnushogi-1.4.1.c 31, 796

bmf-0.9.4.c 5, 451 tmndec-3.2.0.c 31, 890

libbind-6.0.c 5, 497 fondu-0.0.20060102.c 32, 298

mixal-1.08.c 5, 570 libart-lgpl-2.3.21.c 38, 815

cmdpack-1.03.c 5, 575 flex-2.5.39.c 39, 977

picocom-1.7.c 5, 613 fwlogwatch-1.2.c 46, 601

xdms-1.3.2.c 5, 614 chrony-1.29.c 49, 119

cifs-utils-6.0.c 5, 815 uudeview-0.5.20.c 54, 853

dtaus-0.9.c 6, 018 sn-0.3.8.c 56, 227

device-tree-compiler-1.4.0+dfsg.c 6, 033 shadow-4.1.5.1.c 85, 201

buildtorrent-0.8.c 6, 170 skyeye-1.2.5.c 85, 905

40 S. Cha et al.

Bayesian optimization to guide the learning process to more promising direc-
tions. We followed the general idea of the previous work, but we proposed a more
efficient learning algorithm than the Bayesian optimization method. Because Oh
et al.’s work uses the number of proven queries to measure quality of the learned
strategy, the learning algorithm has to perform full-scale analysis on all training
programs repeatedly until the learnt strategy meets a target quality. As we men-
tioned in Sect. 5.3, its takes too much time to get an acceptably good strategy
over the large codebase. By contrast, our method reduces the learning cost by
exploiting of the existence of the oracle for a given training program. Since the
process of obtaining the oracle requires performing single full-scale analysis per
training program, our learning algorithm radically reduced time cost than the
existing method.

7 Conclusion

In this paper, we proposed a method that automatically learns a good strategy
for choosing widening thresholds from a large codebase. We showed that the
learned strategy is highly cost-effective; we can achieve 84 % of the full precision
with the 1.4× increase in analysis time.

The success of the method is largely attributed to our new learning algorithm
that is significantly faster than the previous Bayesian optimization algorithm.
In the presence of a large codebase, the Bayesian optimization approach failed
to learn a good strategy in a reasonable amount of time. By contrast, our new
learning algorithm is at least 26 times faster and is able to find a better parameter
than the previous method.

Our approach is general enough to be used for other types of adaptive static
analyses. As future work, we plan to apply our technique to other instances such
as selective flow-sensitivity and context-sensitivity.

Acknowledgement. This work was supported by the Institute for Information &
communications Technology Promotion (IITP) grant funded by the Korea government
(MSIP) (No. R0190-15-2011, Development of Vulnerability Discovery Technologies for
IoT Software Security); the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2016R1C1B2014062); and the MSIP (Ministry of Science, ICT and
Future Planning), Korea, under the ITRC (Information Technology Research Center)
support program (IITP-2016-H85011610120001002) supervised by the IITP (Institute
for Information & communications Technology Promotion).

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt,
D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp.
85–108. Springer, Heidelberg (2002). doi:10.1007/3-540-36377-7 5

http://dx.doi.org/10.1007/3-540-36377-7_5

Learning a Strategy for Choosing Widening Thresholds 41

2. Bouissou, O., Seladji, Y., Chapoutot, A.: Acceleration of the abstract fixpoint
computation in numerical program analysis. J. Symb. Comput. 47(12), 1479–1511
(2012). International Workshop on Invariant Generation

3. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Antoine, M., Rival, X.: Why does
astrée scale up? Formal Methods Syst. Des. 35(3), 229–264 (2009)

4. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: Combination of abstractions in the ASTRÉE static analyzer. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-77505-8 23

5. Grigore, R., Yang, H.: Abstraction refinement guided by a learnt probabilistic
model. In: POPL (2016)

6. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. In: Formal Methods in System Design, pp. 157–185 (1997)

7. Kim, S., Heo, K., Hakjoo, O., Yi, K.: Widening with thresholds via binary search.
Pract. Exp. Softw. 46, 1317–1328 (2015)

8. Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with thresholds for pro-
grams with complex control graphs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 492–502. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24372-1 38

9. Mihaila, B., Sepp, A., Simon, A.: Widening as abstract domain. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 170–184. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38088-4 12

10. Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: POPL
(2012)

11. Hakjoo, O., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity guided
by impact pre-analysis. In: PLDI (2014)

12. Hakjoo, O., Lee, W., Heo, K., Yang, H., Yi, K.: Selective X-sensitive analysis guided
by impact pre-analysis. ACM Trans. Program. Lang. Syst. 38(2), 6:1–6:45 (2015)

13. Hakjoo, O., Yang, H., Yi, K.: Learning a strategy for adapting a program analysis
via Bayesian optimisation. In: OOPSLA (2015)

14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, Cambridge
(2005)

15. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37036-6 31

16. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol.
7935, pp. 388–411. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 21

17. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31424-7 11

18. Sparrow. http://ropas.snu.ac.kr/sparrow

http://dx.doi.org/10.1007/978-3-540-77505-8_23
http://dx.doi.org/10.1007/978-3-642-24372-1_38
http://dx.doi.org/10.1007/978-3-642-24372-1_38
http://dx.doi.org/10.1007/978-3-642-38088-4_12
http://dx.doi.org/10.1007/978-3-642-37036-6_31
http://dx.doi.org/10.1007/978-3-642-37036-6_31
http://dx.doi.org/10.1007/978-3-642-38856-9_21
http://dx.doi.org/10.1007/978-3-642-31424-7_11
http://ropas.snu.ac.kr/sparrow

AUSPICE-R: Automatic Safety-Property Proofs
for Realistic Features in Machine Code

Jiaqi Tan(B), Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan

Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, USA

{jiaqit,htay}@andrew.cmu.edu, rgandhi@ece.cmu.edu, priya@cs.cmu.edu

Abstract. Automatically generating proofs of safety properties for soft-
ware is important as software becomes safety-critical, e.g., in medical
devices and automobiles. While current techniques can automatically
prove safety properties for machine code, they either: (i) do not sup-
port user-mode programs in an operating system, (ii) do not support
realistic program features such as system calls, or (iii) have been demon-
strated only on programs of limited sizes. We present AUSPICE-R, which
automates safety-property proof generation for user-mode ARM machine
code containing system calls, and greatly improves the scalability of auto-
mated safety-property proof generation. AUSPICE-R uses an axiomatic
approach to model system calls, and leverages idioms in compiled code
to optimize its proof automation. We demonstrate AUSPICE-R on (i)
simple working versions of common text utilities that perform I/O, and
(ii) embedded programs for the Raspberry Pi single-board-computer con-
taining hardware I/O. AUSPICE-R automatically proves safety up to
12× faster, and supports programs 3× larger, than prior techniques.

1 Introduction

Interactive theorem proving (ITP) is a promising approach for reasoning about
programs, as it produces succinct proofs. While ITP has required manual user
inputs in “heavy-weight” [21] proofs of functional correctness, recent work [24,27]
has automated “light-weight” proofs for single classes of safety properties (e.g.,
Software Fault Isolation (SFI) [25], Control-Flow Integrity (CFI) [6]) using ITP
for machine code, eliminating the need for manual user inputs. Reasoning about
machine code provides a foundational approach for verification, as machine code
proofs are not affected by miscompilation bugs that may cause safety problems
[26], as compared to proofs about source-code. However, current approaches
for automating safety proofs for machine code are limited: they either target
embedded programs running directly on a processor without an operating system
(OS) [27], or they do not support proofs for user-mode machine code containing
system calls (syscalls) [24]. As embedded systems become more powerful, it is
increasingly common for them to run full-fledged OSes. Then, applications run
as user-mode programs [17], which need syscalls to perform useful tasks. In
addition, current approaches are limited in the scale of programs for which they
can feasibly generate safety proofs, due to their long proof times.
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 42–62, 2016.
DOI: 10.1007/978-3-319-47958-3 3

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 43

Modeling and proving safety properties about syscalls in machine code is
challenging as syscall behavior occurs in two processor modes: in the user-mode
where the syscall is invoked, and in the supervisor mode where the syscall is
serviced by an OS kernel. However, our safety properties focus on user-mode
behavior, and OS kernels are complex. Hence, we wish to ensure that our safety
proofs for user-mode machine code are modular, and avoid needing to prove that
syscalls are correctly serviced by the OS kernel. In addition, current approaches
for automating safety proofs face scalability challenges, due to the large num-
ber of logic terms manipulated. Hence, we wish to improve the scalability of
automatically generating safety proofs by reducing the computation required to
generate a safety proof.

In this paper, we present AUSPICE-R, an automated safety-property proof-
generation framework (for CFI [6]) for user-mode ARM machine code that sup-
ports syscalls, and scales up to larger programs than prior techniques. AUSPICE-
R extends our earlier work, AUSPICE [24]. First, to ensure modularity in its
safety proofs for machine code with syscalls, AUSPICE-R treats syscalls as black-
boxes: We focus on the inputs to and the user-mode-visible effects of syscalls;
we model the effects of syscalls using axioms that capture the specified (e.g.,
in the syscall API of the OS) behavior of the syscall. This lets us reason about
syscalls in user-mode machine code without having to verify the behavior of the
underlying OS. Second, we optimize the proof automation in AUSPICE-R to
improve the times taken to prove safety, and to increase the size of programs for
which safety can be proved. These optimizations leverage common conventions
found in gcc-emitted machine code to speed up AUSPICE’s analysis.

Our contributions are: (i) an axiomatic approach to modeling syscall behavior
with the goal of automating safety property proofs, (ii) a delayed algorithm
for performing safety property analysis to support syscalls, (iii) optimizations
to AUSPICE-R’s analysis that leverage idioms in compiled machine code, and
(iv) an evaluation of AUSPICE-R on programs containing syscalls that perform
both file and hardware I/O, that are significantly larger than in prior techniques.

2 Problem Statement

Goals. AUSPICE-R’s goals are to: (i) fully automate safety property proofs for
machine code containing system call (syscall) invocations, (ii) formalize the user-
mode-visible effects of a syscall while assuming that the underlying OS services
the syscall “correctly” (we discuss “correct” next), (iii) construct a formalization
that is sound with respect to the trustworthy Hoare Logic for ARM machine code
[18,19] that we build on, and (iv) work with programs compiled by unmodified
commodity compilers (e.g., gcc), i.e., we disallow compiler modifications.

Scope. In this work, we target machine code programs for the ARM platform, as
ARM is the dominant platform for embedded systems [4]. We consider programs
that run in user-mode on the Linux operating system (OS) in this work, and
we focus specifically on the safety property of Control-Flow Integrity (CFI) [6].

44 J. Tan et al.

In this work, we describe how to automate safety proofs for machine code with
syscalls; we address how to enforce these safety properties in source-code in [23].

Assumptions. AUSPICE-R extends AUSPICE [24], which builds on the Hoare
Logic for ARM machine code developed at Cambridge University [18,19] (which
we refer to as the Cambridge ARM model). Hence, safety proofs in AUSPICE-R
inherit some of the assumptions and limitations of AUSPICE and the Cambridge
ARM model. Specifically, we assume that our target machine code programs:

1. Have behavior that is not affected by hardware exceptions, interrupts, or
page-table operations (not modeled by Cambridge ARM model),

2. Do not contain recursive function calls (unsupported by AUSPICE),
3. Have no floating-point instructions (not modeled by Cambridge ARM model),
4. Have no goto nor longjmp statements (unsupported by AUSPICE),
5. Do not contain explicit function pointers (unsupported by AUSPICE),
6. Contain only sequential execution behavior (multi-threaded behavior and con-

currency are not modeled by the Cambridge ARM model),
7. Are statically compiled and linked, so that all executable code is present,
8. Are compiled with an unmodified version of gcc at -O0 optimization, and

obey the ARM-THUMB Procedure Call Standard (ATPCS) [3], and
9. Have well-defined function prologues and epilogues.

We also assume that our target programs run in an OS that isolates user
processes, preventing attackers from modifying the memory of a process, and
that the OS and physical security of the host are not compromised. We assume
that the underlying OS (Linux in this paper) “correctly” services syscall invoca-
tions by correctly restoring the context (program counter, register, and memory)
of the user process at the end of every syscall invocation, and providing its speci-
fied (e.g., in Sect. 2 of the Linux Programmer’s Manual [2]) functionality. Recent
work has verified the functional correctness of microkernels for realistic OSes
[11], making this assumption a realistic one. We also assume that each syscall is
invoked via an assembly wrapper with a C function prototype that sets up the
arguments for the syscall, whose name identifies the invoked syscall. This is the
convention by which common C libraries give programmers access to syscalls.

Non-goals. We do not verify that the OS correctly services syscalls. We consider
only direct (e.g., register and memory) effects of syscalls on CFI, but not OS state
not directly observed by a user-mode process (e.g., file descriptor mappings, user-
space memory mappings in mmap). We do not verify arbitrary safety properties:
we focus on the safety properties in Sect. 3.1 that ensure CFI.

3 Background

We summarize our prior work, AUSPICE [24], before we present AUSPICE-R’s
extensions. We describe the safety properties proved automatically by AUS-
PICE (Sect. 3.1) and the Cambridge ARM model which AUSPICE is based on
(Sect. 3.2), and AUSPICE’s proof rules (Sect. 3.3) and proof automation algo-
rithm (Sect. 3.4).

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 45

3.1 Safety Properties of Interest

The main goal of AUSPICE is to prove that a machine code program possesses
Control-Flow Integrity (CFI) [6]. CFI requires that the execution of a program
follows a path in a Control-flow Graph (CFG) that is “determined ahead of
time” [6]. For a program which has CFI with respect to its load-time CFG (i.e.,
its execution follows the CFG describing the instructions loaded from disk),
attackers cannot change the program’s execution in unintended ways (e.g., by
supplying malformed or malicious inputs), nor inject instructions to be executed.

AUSPICE proves CFI for a program by proving three safety properties: that
(1) loaded program instructions in memory cannot be overwritten, (2) function-
return addresses saved to the program’s stack cannot be overwritten, and (3) only
instructions at initially loaded addresses can be executed. AUSPICE instantiates
these safety properties as safety assertions at each instruction to be proved.

The above three safety properties are necessary and sufficient (in the absence
of goto and longjmp statements in C and explicit function pointers) to ensure
CFI holds for an ARM machine code program. To see why this is the case,
consider how the three safety properties together prevent a machine code pro-
gram’s CFG from being changed at run-time: Property (1) prevents CFG nodes
from being changed by preventing loaded instructions in memory from being
modified; Property (2) prevents CFG edges from being changed by preventing
function return addresses from being changed; Property (3) prevents CFG nodes
from being added by preventing the injection and running of new instructions.
Hence, the 3 safety properties that AUSPICE proves for each instruction in a
program are sufficient to prove that CFI holds (given our assumptions in Sect. 2).

3.2 Hoare Logic for ARM Machine Code: Cambridge ARM Model

Next, we describe the Hoare Logic we use to reason about ARM machine code.
The Cambridge ARM model [18] specializes a Hoare Logic [19] to reason about
low-level details of ARM machine code. This model is formalized in higher-order
logic and mechanized in the HOL4 [22] proof system, and captures low-level
details of processor state as seen by ARM machine code programs, namely: values
of registers and status flags, data values stored in memory, and the value of the
program counter (pc). The model represents the behavior of each instruction
using a Hoare triple theorem:

� SPEC x {p} c {q}
“SPEC” indicates the theorem is a Hoare triple; “x” is a tuple that defines the
next-step relation and other relations for the instruction set architecture (ISA)
modeled in the triple, and is instantiated with the “ARM MODEL” tuple of rela-
tions in the Cambridge ARM model [18] (other ISAs are also supported in the
Cambridge model [19], but are beyond the scope of this paper). Informally, the
theorem reads: if assertion p holds for the current processor state, and instruc-
tion c is executed, then q will hold for the resulting processor state. We refer to
p and q as the pre-state and post-state assertions of instruction c.

46 J. Tan et al.

Processor state assertions p and q either assert the value of a processor state
element (namely register values, status flags, memory, and the program counter
value), or are pure boolean assertions about logical variables. Pure boolean asser-
tions can be pre-conditions (labelled precond(·)), which are predicates known to
hold before an instruction executes (e.g., statements in the body of “if (i == 0)
{...}” have the pre-condition “i = 0”), or assumptions (labelled cond(·)).

State assertions can assert the values of multiple resources (e.g., multi-
ple registers) using the separating conjunction ∗ [20]. Note that ∗ in the
Cambridge ARM model prevents assertions about repeated processor resources
(e.g., the same register cannot be asserted about twice), but not memory loca-
tions. Instead, processor memory is treated as a single resource in the model.
Memory is represented as a map from 32-bit addresses to the bytes stored at
each address. AUSPICE uses the following proved rules from the Cambridge
ARM model:

SPEC x p c1 q SPEC x q c2 r

SPEC x p (c1; c2) r
COMPOSE

SPEC x p c q

SPEC x (p ∗ r) c (q ∗ r)
FRAME

Note that there are no side-conditions restricting the form of r in the Frame
rule above, as machine resource values are asserted using register relations (see
Sect. 4.1) rather than variables in the Hoare logic of the Cambridge ARM model
[19], effectively turning all symbolic variables into single-static assignment vari-
ables.

3.3 AUSPICE: Hoare Logic-Based Safety Property Proofs

Next, we describe AUSPICE’s proof rules which enable safety properties to
be proved automatically. Then, we describe AUSPICE’s abstract interpretation
algorithm for automating safety proofs.

AUSPICE defines proof rules to hierarchically build up, in a bottom-up fash-
ion, to a whole-program definition of safety with respect to its 3 safety properties.
First, AUSPICE defines proof rules for its safety properties to hold at the sin-
gle instruction and basic block levels (Fig. 1). The MEM CFI SAFE rule constructs
a “safe instruction” theorem by requiring each instruction’s Hoare triple to be
augmented with safety assertions (as assumptions) for AUSPICE’s three safety
properties. Our three safety properties (Sect. 3.1) are concretely instantiated
in the predicates ms, cfi1, cfi2 respectively with the safe ranges for memory
addresses written to, and the value of the program counter after each instruc-
tion runs. The code in the MEM CFI SAFE rule, “{(offset , ins)}”, enforces that
safe instruction theorems can be constructed only from a Hoare triple for a sin-
gle instruction with instruction word “ins” at address “offset” in the program.
Then, the MEM CFI SAFE COMPOSE rule builds up to a “safe basic block” theorem
by allowing only theorems for safe instructions, and theorems composed from
smaller safe basic blocks, to be composed. The MEMCFISAFE FRAME rule lifts the
FRAME rule in the Cambridge ARM model to reason about safe basic blocks.

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 47

Fig. 1. AUSPICE logic rules for single instruction and basic block level safety.

Fig. 2. AUSPICE’s FUNSAFE rule for function-level and whole-program safety. aPC

asserts that the program counter contains the asserted value.

Each MEMCFISAFE (i.e., safe instruction and safe basic block) theorem is also
sound with respect to the Cambridge ARM model, as AUSPICE proved:

� ∀x p c q · MEMCFISAFE x p c q ⇒ SPEC x p c q

Next, AUSPICE defines the FUNSAFE rule (Fig. 2), which enables local reason-
ing about safety properties at the function (and whole-program) levels. AUS-
PICE’s local reasoning principle [24] states that the safety properties at each
instruction depend only on the program state immediately before that instruc-
tion runs: thus, for a program to be safe, we only need to ensure that the safety
assertions at each instruction hold given the pre-conditions of all its predecessor
instructions. Informally, if the FUN SAFE theorem for a function holds, then the

48 J. Tan et al.

machine code of the function is safe with respect to AUSPICE’s three safety
properties. The safety of a (machine code) function is defined by the FUN SAFE
relation, with respect to: (i) addr, the address of the function, (ii) nodes, a set
of addresses of the function’s CFG nodes (i.e., its basic blocks), (iii) funcs, a
set of addresses of callee functions, (iv) cfgpred , cfgsucc , maps of CFG predeces-
sors/successors of each node, (v) assns, the safety assertions of the function’s
entry node, (vi) postcond, the pre-conditions of the function’s exit node, and
p,q, the pre-state/post-state of the function’s entry/exit nodes respectively.

Then, the 6 conjunct clauses of the FUNSAFE rule specify the requirements
that need to hold for the function to be safe. The requirements for the function
to be safe are instantiated according to the function’s CFG. The first 3 conjunct
clauses define: (i) the address of the function, as given by its entry node with the
smallest address, (ii) the entry node of the function to have no CFG predecessors,
and (iii) the exit node of the function to have no CFG successors.

The 4th to 6th conjunct clauses define the requirements for the function
to be safe for all control-flow transfers, that are either: (i) intra-procedural,
(ii) inter-procedural function calls, or (iii) inter-procedural function returns. The
FUNSAFE rule is instantiated with one clause for each CFG edge. Each conjunct
clause begins with a description of the CFG predecessor/successor relationships
for the kind of control-flow transfer described (e.g., ∀n, pred , succ · {n, pred} ⊆
nodes ⇒ pred ∈ cfgpred (n) ⇒ n ∈ cfgpred (succ) for intra-procedural control-
flow transfers). In each conjunct clause, the MEMCFISAFE and FUN SAFE terms
describe the behavior of the basic blocks or functions in the clause, and the
predicate r′ ⇒ s′ is the requirement for the pre-conditions r′ of each predecessor
basic block to discharge the safety assertions s′ at each basic block. Note also
that in each of the first two conjuncts of each requirement, the post-state of the
predecessor CFG node’s MEMCFISAFE or FUN SAFE which describes its behavior
must match the pre-state of the successor CFG node’s MEMCFISAFE or FUN SAFE.
This is in line with the standard COMPOSE rule in Hoare Logic.

Thus, the goal of the FUN SAFE theorem is to state that the machine code
of a function (and all its callee functions) possesses the three AUSPICE safety
properties at each instruction, which in turn implies that the program has CFI.
The soundness and correctness arguments for our proof rules are in [24].

3.4 Proof Automation in AUSPICE

Next, we describe AUSPICE’s proof automation algorithm (Fig. 3). At the top
level, AUSPICE calls SafeFunctionAnalysis for the entry-function of the pro-
gram. SafeFunctionAnalysis is a context-sensitive inter-procedural analysis
which returns a FUN SAFE theorem for a function proved safe, or terminates with
an error message. SafeFunctionAnalysis calls the abstract interpretation in
SafetyAssertionAnalysis (Fig. 4). This abstract interpretation is a back-
wards analysis, whose domain is predicates about processor state. The analy-
sis finds the pre-conditions needed to discharge the safety assertions at each
instruction, and its information records undischarged safety assertions. These

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 49

Fig. 3. Safe Function analysis in AUSPICE [24]. Uses single-instruction theorems from
the Cambridge ARM model, and returns FUN SAFE theorem for function. bb safe and
func safe contain basic block and callee function safety theorems respectively.

undischarged safety assertions are added as assumptions to predecessor theo-
rems using the Frame rule in Hoare logic in the AugmentTheorems function.
SafetyAssertionAnalysis also checks that undischarged assertions are not
propagated in a cycle, otherwise the analysis diverges with new undischarged
safety assertions continually recorded. Hence the analysis is terminated and fails.

4 Safety Proofs for Machine Code with System Calls

There are two main steps to support safety proofs of machine code with syscalls.
First, we model the supervisor call instruction (svc), whose effects occur in

both user-mode, and in supervisor-mode where the OS services the syscall. As
we focus on the safety of user-mode programs, we do not wish to fully model the
actions of the OS. Instead, we assume that the processor correctly handles the
mode-switch from user to supervisor mode, and that the OS correctly services the
syscall (Sect. 2). We focus on only the user-mode-observed effects after the syscall
has been serviced by the OS. We model syscalls in user-mode in an axiomatic
manner: we represent the user-mode-observed effects of syscalls as “axiomatized”
(rather than proven) Hoare triples, that we introduce as hypotheses in our model.

Second, we need to augment our syscall models to support safety proof
automation. AUSPICE’s proof automation needs concrete safety assertions for
each instruction. For typical instructions in user-mode programs, the proven
Hoare triple for each instruction contains enough information for computing
concrete safety assertions (Line 3 in Fig. 3). However, the effects of a syscall can-
not be determined from the svc instruction alone, and depends on the arguments
passed to it. These arguments are set up in the instructions leading to the svc
instruction, and in the callers of the syscall. In AUSPICE-R, we use a delayed
approach to analyze syscalls: We express the effects of syscalls symbolically, and
we concretize these symbolic variables later in the analysis when information is
available from callers of the syscall.

50 J. Tan et al.

Fig. 4. Safety assertion analysis in AUSPICE [24]. FindPreds gives the CFG prede-
cessors of a node; GetThmPreconds and GetThmAsserts are helper functions that
return the pre-conditions and safety assertions in a given Hoare triple; Prove invokes
the HOL4 METIS prover to try to discharge a safety assertion given a pre-condition;
FindAssertPath computes the propagation path of an undischarged safety assertion.

4.1 Modeling of System Calls in User-Mode Programs

Rationale Behind Model. First, we focus on the user-mode-visible effects of
syscalls that may affect our safety properties. Our safety properties are affected
by memory addresses that are written to, and by the value of the program
counter. As the processor will restore the program counter to the address of the
instruction immediately following the svc instruction (B1.8.10 in [5]), we need
to focus on only the addresses in the user process’s memory that are written to
during the servicing of the syscall. All other processor state (user-mode regis-
ters, apart from r0 which stores a return value, and status flag values) remains
unchanged, as user-mode registers are distinct from supervisor-mode registers,
and the processor restores the values of the original status flags (B1.8.10 in [5]).

Second, we need to know the user-mode visible effects of each syscall in user-
mode. We need to: (i) retrieve the number of the syscall invoked (passed in
register r7, based on the Linux Application Binary Interface (ABI) for ARM
[1]), (ii) identify the syscall invoked (e.g., from the Linux kernel’s documenta-
tion and/or source-code), and (iii) retrieve the arguments passed to the syscall
(via user-mode registers or the user-mode stack). This allows us to identify the
behavior of each invoked syscall from its specification. We can then instantiate
our safety-assertions from the user-mode-observed effects of each syscall invoca-
tion.

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 51

Fig. 5. Constructed Hoare triple axiom for the write syscall. 4w is a numerical constant
4, where the suffix w indicates 4 is a fixed-width word.

Axiomatization of System Call Effects. We “axiomatize” the Hoare triples
for syscalls by constructing an unproven Hoare triple for each syscall, which we
then introduce as an assumption. These unproven Hoare triples are collected as
hypotheses of the final safety proof, and they formalize our assumption of each
syscall’s effects on user-mode state, based on the syscall’s specification.

Figure 5 shows an example axiom for the write syscall. 3 kinds of assertion
relations are shown: (i) aR asserts the value of the specified register; (ii) aPC
asserts the value of the program counter; (iii) aMEMORY asserts the domain (df)
and contents of memory (map f from addresses to stored values). The pre-
state value of register r7 is asserted to be the literal 4, which is the syscall
number for write, while the other pre-state register values are asserted to be
symbolic variables (r0, r1, r2, r14), as they are unknown when we analyze the
svc instruction alone. We instantiate these symbolic variables with concrete
values later when analyzing the instructions leading up to the syscall invocation
(details in Sect. 4.2). While some of the asserted resources (e.g., register r1)
remain unchanged and could be omitted from the Hoare triple, we include this
information as it may be required in our analysis for modeling the full behavior
of the syscall.

Note that the Hoare triple is repeated on the left-hand-side of the turnstile
“�”, indicating that the Hoare triple is a hypothesis. The post-state of this axiom
for write is identical to its pre-state (except for the value of register r0, given by
the aR 0w assertion), as write does not modify any user-mode-visible processor
state. The value of register r0 in the post-state is given by the symbolic variable
rv, which indicates the return value from the syscall, and can represent the
return value of both failed and successful syscalls. This axiom is representative
of the other syscalls AUSPICE-R supports for which there are no effects that
are directly visible in user-mode: open, close, mmap, munmap, nanosleep.

In contrast, consider our constructed axiom for the read syscall in Fig. 6. read
has user-mode-visible effects: the bytes that it reads are written to and visible in
the process’s memory at the supplied address. The condition “cond(addrs ⊆ df)”
asserts that the set of addresses addrs supplied to the syscall are in the domain
of the memory map f. Also, the process’s memory is updated from map f to
(g f), where g represents the effects of read on memory. Note that addrs and g
are both symbolic. Note also that the value in register r0 (asserted by aR 0w) in

52 J. Tan et al.

Fig. 6. Constructed Hoare triple axiom for the read syscall.

the post-state of the axiom is symbolic, and can represent the return values from
both successful and failed invocations of the syscall. While the OS may not have
written to all the addresses in the set addrs when read fails or reads fewer than
the requested number of bytes, addrs conservatively lists the maximum extent
of the memory written to by read.

Fig. 7. Algorithm for unproven Hoare triple construction for syscalls.

Implementation. The construction of unproven Hoare triples for each syscall
(Fig. 7) is implemented as a wrapper around the model construction for individ-
ual instructions in the Cambridge ARM model, and replaces Line 10 in Fig. 3.
When a svc instruction (0xEF000000) is detected, AUSPICE-R constructs an
unproven Hoare triple based on the name of the function that the instruction
is in. ConstructSyscallTriple implements the unproven Hoare triple con-
struction process described above. We initially support modeling the following
syscalls for simple I/O operations: read, write, open, close, mmap, munmap,
nanosleep.

4.2 Supporting Safety Proof Automation for System Calls

Next, to support automated safety proofs in AUSPICE-R for syscalls, we need
to concretize the initially-symbolic effects in the unproven Hoare triples for each
syscall, as the safety assertion discharge in SafetyAssertionAnalysis (Fig. 4)
reasons about memory addresses individually. To concretize the symbolic effects
of a syscall’s unproven triple, AUSPICE-R examines the arguments the syscall
is invoked with when running SafeFunctionAnalysis (Fig. 3) on the caller of

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 53

the syscall. We first illustrate how the arguments to system calls are interpreted,
using the read syscall. Then we discuss how the symbolic effects are concretized,
before we describe how these are implemented in AUSPICE-R’s analysis.

Fig. 8. Example ARM machine
code invoking the c read wrapper
to the read syscall.

Fig. 9. Prototype of C function
wrapper to read syscall.

System Call Arguments. The Linux Pro-
grammer’s Manual [2] states that the read
syscall takes 3 arguments: (i) an integer indi-
cating the file descriptor, (ii) a pointer at
which to store bytes that have been read, and
(iii) the number of bytes to read. Figure 8
shows a fragment of machine code, where the
basic block at address 0x80E4 calls the func-
tion c read, which is the assembly-code wrap-
per that invokes the read syscall (at address
0x822C). Figure 9 shows the C prototype of
the assembly-code wrapper. For each invoca-
tion of the read syscall, the values of the argu-
ments to the syscall are loaded to the rele-
vant registers (r0, r1, r2) at the call-site to its
wrapper (i.e., at the basic block at 0x80E4).
AUSPICE-R extracts these values from the
post-state assertions of the Safe Basic Block
theorem for the call-site. Concretely, for this
example, the values to the arguments are fd =

0, buf = 0x10250, count = 3. Note that the arguments may still be symbolic
at this point (e.g., if reading a variable-length number of bytes). However, for
AUSPICE to prove our safety properties for the read syscall, the pointer to
store read bytes and the number of bytes to read must be concrete. This enables
AUSPICE-R to update the symbolic safety assertions in the FUN SAFE theorem
of read’s syscall wrapper with concrete expressions, thus enabling the safety
assertions to be discharged. If the pointer and number of bytes read remain
symbolic, SafetyAssertionAnalysis cannot reason about the symbolic safety
assertions, and the safety proof will fail.

Updating of Symbolic Effects. Next, we construct variable substitutions for
the initial symbolic effects (written-address set addrs and memory-update func-
tion g), which we apply to the unproven Hoare triple for the read syscall. These
substitutions concretize the effects of the syscall on user-mode processor state, so
that SafetyAssertionAnalysis can reason about the safety of these effects.
To complete its automated safety-property proofs, AUSPICE needs to enumerate
the memory address of each byte written to. While AUSPICE can reason about
byte-addresses containing symbolic variables (e.g., when the address written to
is a symbolic variable r3), it cannot reason about symbolic ranges of addresses
where the number of elements in the set is symbolic (even if the elements of
the set are drawn from a finite universe, e.g., fixed-width words). This is due to
limitations with HOL4’s built-in tactics for reasoning about sets (pred setLib).
Hence, AUSPICE-R enumerates the byte-addresses written to by the syscall.

54 J. Tan et al.

For the example in Fig. 8, 3 bytes are written at the address 0x10250. Hence,
we substitute addrs with {0x10250w; 0x10251w; 0x10252w}, and the update func-
tion g with the expression shown in Fig. 10. extmem c read 0x80E4 is an
opaque function that represents the results of external I/O, and it returns the
(symbolic) data read given the byte-number read; “=+” is the map update oper-
ator, where “a = +b” indicates the value b is stored at address a.

Fig. 10. Concretized memory-update expression for the read syscall in Fig. 8.

After substituting the symbolic effects for concrete values in each syscall’s
Hoare triple axioms, AUSPICE can automatically discharge the safety assertions
for these axioms (if the machine code contains the necessary safety-checks).

Implementation. Figure 11 describes the updated Safe Function analysis algo-
rithm in AUSPICE-R, incorporating the unproven Hoare triple axiomatization
(Line 12), and the concretization of symbolic effects (Line 7). In functions that
call syscalls, SafeFunctionAnalysisWithSyscalls is first called on each
syscall callee (Line 5). Then, the arguments to the syscall are available in the
caller of the syscall, and the FUN SAFE theorems of syscalls are concretized using
information from the caller’s basic blocks, bb safe (Line 7). This concretization
must take place before SafetyAssertionAnalysis (Line 8). AUSPICE-R adds
1300 lines of ML proof scripts to AUSPICE’s code-base of 11.8 KLOC of ML.

Fig. 11. Updated Safe Function analysis in AUSPICE-R with support for safety proofs
for machine code with syscalls. Lines 6, 7 and 12 are new to the analysis.

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 55

5 Optimizing Safety Proof Automation

AUSPICE-R optimizes SafeFunctionAnalysis (Fig. 3) and SafetyAsser-
tionAnalysis (Fig. 4) to speed up its safety-proof generation, so that larger pro-
grams can be verified in less time. AUSPICE-R leverages (i) common patterns in
gcc-compiled machine code for local-variable-writes to speed up SafetyAsser-
tionAnalysis, and (ii) the behavior of safety assertions in callee functions in
its inter-procedural analysis to speed up SafeFunctionAnalysis.

Common Compiler Conventions. SafetyAssertionAnalysis performs
two tasks: (i) it finds pairs of pre-conditions p ∈ P and safety assertions a ∈ A,
such that p ⇒ a, and (ii) for assertions a ∈ A for which no p is found, it
propagates a to predecessor nodes, and checks if a’s propagation path has a
cycle. However, computing the propagation path of assertion a is expensive, as
it requires symbolic execution along the propagation path.

We leverage two observations in gcc-compiled code: (i) there are two classes
of memory-writes: to local variables (i.e., a constant offset from the frame pointer
r11 or stack pointer r13), and to arbitrarily-computed addresses (typically
stored in registers); (ii) r11 and r13 are generally updated only at the start and
end of each function. Thus, safety assertions for writes to local variables will not
change during the analysis of function bodies. To speed up SafetyAssertion-
Analysis for writes to local variables, AUSPICE-R: (i) reduces the number of
assertion terms analyzed, and (ii) skips the propagation-cycle check.

Fig. 12. Optimized analysis step for SafetyAssertionAnalysis in AUSPICE-R.
Lines 5 to 10 are new to the analysis. is range and is localvar return true for
predicates that are ranges and that are about local-variable writes respectively.

56 J. Tan et al.

Figure 12 describes the optimized version of the inner analysis step in
SafetyAssertionAnalysis, which replaces AssertionAnalysisStep in
Fig. 4. First, we represent the safety assertions for local-variable writes using
range predicates: e.g., for a safety assertion “{r13 − 21w; r13 − 22w; r13−
23w; r13 − 24w} ⊆ {addr | addr < r11}”, the addresses that are offset from
r13 are where a local variable is stored on the stack; we replace this safety
assertion with the range predicate “24w ≤ r13 < r11 + 24w”, which implies
the original safety assertion. Thus, for writes to N different local variables in a
function, only 2 rather than 2N predicates are propagated: one each for Safety
Properties 1 and 2 (Sect. 3.1). We also define a narrowing operator for the meet
of two range predicates which returns the more restrictive of two predicates to
merge terms from multiple CFG paths. Second, since writes to local variables
are to fixed offsets from the frame pointer (r11) or stack pointer (r13), which
do not change in the function’s body, we do not need to compute nor check for
cycles in propagation paths.

Fig. 13. Example
program for inter-
procedural analysis.

Context-Sensitivity of Analysis. SafeFunction-
Analysis (Fig. 3) is an inter-procedural analysis which con-
structs a distinct Safe Function (FUN SAFE) theorem for
every call to each callee function. We use the program in
Fig. 13 to illustrate AUSPICE-R’s approach. First, consider
the behavior of SafeFunctionAnalysis in AUSPICE: in
foo(), bar() is called twice, thus one FUN SAFE theorem is
constructed for each of its two call-sites. We call this analy-
sis “call-site context-sensitive”, or CSCS. CSCS provides
the highest level of precision. We would like to reduce the
precision of our analysis to reduce the number of iterations

of SafeFunctionAnalysis (Fig. 3) needed to successfully generate a safety
proof.

Context-insensitive inter-procedural analysis provides the lowest level of pre-
cision: we analyze each function once for the whole program and generate one
FUN SAFE theorem for it. However, in our example, having only one FUN SAFE
theorem for each function results in imprecise analysis by forcing safety asser-
tions from instructions at different call-tree depths (e.g., foo() vs. baz()) to be
framed onto the same theorem (bar()). (We refer to the function-level CFG as
a call-tree, whose depth is the number of nested function calls.) This is logically
equivalent to different instances of the function’s stack overlapping in memory
at the same time, although during execution, only one instance of the function’s
stack exists in memory at any point in time, resulting in imprecise analysis.
Hence, the proof generation fails when there are safety assertions from a smaller
call-tree depth (e.g., foo()) than the call-tree depth of the currently-analyzed
function (e.g., baz()). Having one FUN SAFE theorem per-function per-call-tree-
depth is also insufficient, as two caller functions at the same call-tree depth could
have different stack sizes, resulting in the same contradiction as above.

On the other hand, in each function, we need to analyze each callee function
only once, regardless of how many times that callee function is called. We call this

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 57

analysis “single-function context-sensitive” (SFCS). When analyzing a function
F, we need only one FUN SAFE theorem for each callee function C, regardless of
how many times C is called in F. Then, we can frame the safety assertions from
all the return-sites of C in the function F to the single theorem for C, as there
would not be any contradiction in the analysis. In our example, we can merge
all the safety assertions required at all the return-sites from bar() in foo(),
and add them to the FUN SAFE theorem for bar(). While there is some loss of
precision (e.g., the FUN SAFE theorem for the second call to bar() does not need
to consider the safety assertions that need to be discharged when calling baz()),
we now need to run SafeFunctionAnalysis fewer times.

Limitations. AUSPICE-R continues to analyze syscall wrapper functions using
CSCS analysis, as AUSPICE-R needs to generate a unique FUN SAFE theorem
to correctly consider the arguments passed to a syscall at each distinct call-site.

6 Evaluation

First, we evaluate the ability of AUSPICE-R (with Sect. 5 optimizations) to auto-
matically prove safety properties in ARM machine code with syscalls. We picked
2 classes of programs: (i) simple versions of file I/O utilities that we implemented
for Linux on the ARM platform; (ii) programs with hardware inputs/outputs on
the Raspberry Pi single-board-computer. All our test programs are Linux user-
mode programs on ARM, and compiled with an unmodified gcc toolchain for
ARMv6 with -O0 optimization. All proofs were generated using the HOL4 proof
assistant [22] on an Intel Core i7 2.6 GHz with 16 GB RAM. Our test programs
are available at http://users.ece.cmu.edu/∼jiaqit/aplas16data.

6.1 File-Based I/O

We implemented simple versions of three common file I/O utilities in C for Linux
on the ARM platform. These programs contained the read, write, open, and
close syscalls. Table 1 summarizes our test programs, their sizes and function-
ality, and the times taken to automatically prove the safety of each program.
Our results show that AUSPICE-R can prove safety automatically in realistic
programs with useful I/O functionality, and AUSPICE-R took less than 2 h to
automatically prove the safety of each program.

6.2 Embedded Software

We implemented 4 programs containing hardware inputs and outputs on the
Raspberry Pi. These programs contained the mmap, munmap, open, close, and
nanosleep syscalls. Table 2 describes and summarizes our programs, their sizes,
and the times taken to prove safety automatically. The proof times for the blink
and light test-programs are under 2 h, and comparable to the proof times for our
file I/O examples above. The proof times for the lcd and fall-det test-programs

http://users.ece.cmu.edu/~jiaqit/aplas16data

58 J. Tan et al.

Table 1. Descriptions and proof times for file-based I/O utilities.

Program Lines of C Instructions Proof time Description

cat 411 207 26.9 min Outputs contents of a file
wc 427 641 95.1 min Counts number of words in

a file
grep 428 621 40.2 min Prints lines containing

given string

Table 2. Proof times for hardware I/O programs.

Program Lines of C Instructions Call-tree
depth

Proof
time

Description

blink 418 619 3 58.7 min Turn LED
repeatedly
on/off

light 429 854 4 81.7 min Use light-sensor to
light LED when
dark

lcd 559 2229 6 22.2 h Print string to
16 × 2
monochrome
LCD

fall-det 923 3331 6 47.9 h Detect human falls
with
accelerometer
using algorithm
in [13]

are significantly longer, as they are significantly larger, and have much deeper
call-trees: the run-time of AUSPICE-R’s inter-procedural analysis is exponential
in the depth of the call-tree. lcd and fall-det, with 2229 and 3331 instructions
respectively are, to the best of our knowledge, the largest programs for which
safety properties have been automatically proved using an approach that con-
siders the full semantics of instructions (vs. 1104 instructions using ARMor [27],
which also uses the Cambridge ARM model [18]).

6.3 Proof Optimization

We report the proof times for programs that have been evaluated on prior tech-
niques, to evaluate AUSPICE-R’s optimizations. Table 3 summarizes our results
for our 3 test programs (without syscalls): memcpy, which copies an array of

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 59

Table 3. Comparing AUSPICE-R’s proof times with AUSPICE [24] and ARMor [27].

Program Instructions AUSPICE-R AUSPICE-R vs. AUSPICE [24] AUSPICE-R vs. ARMor [27]

Proof time Proof time AUSPICE-R

X% faster

Proof time AUSPICE-R

X% faster

memcpy 116 6.5min 16.4min 252% - -

sort 337 9.4min 122min 1297% - -

string-search 530 0.76 h 6.05 h 796% 8h 1067%

Table 4. Comparison of number of iterations of analysis of Call-Site Context-
Sensitivity (CSCS) vs. Single-Function Context-Sensitivity (SFCS) (Sect. 5).

Program Instructions Iterations of analysis Optimization

CSCS (AUSPICE) SFCS (AUSPICE-R)

lcd 2229 2799 751 73%

fall-det 3331 5069 845 83%

integers; sort, which implements Insertion Sort; and string-search, from the
MiBench benchmark suite [12], which implements the Boyer-Moore string-search
algorithm. We compared AUSPICE-R’s proof times to our prior work, AUS-
PICE [24], for all 3 programs: AUSPICE-R’s safety proofs were between 252%
to 1297% faster. Also, AUSPICE-R’s proof time for string-search was 1067%
faster than ARMor [27] (which used an Intel Core i7 2.7 GHz). AUSPICE-R’s
proof optimizations significantly improved the times taken for automated safety
proofs.

To show the optimization gains from AUSPICE-R’s SFCS inter-procedural
analysis (Sect. 5), we compared the number of iterations of SafeFunction-
Analysis (Fig. 3) in SFCS to that in CSCS analysis. The optimization gains
are greatest in programs with repeated calls to non-syscall-wrapper functions.
We simulated the number of iterations the inter-procedural analysis needs to
run for lcd and fall-det by analyzing their function-level call-trees. Table 4
summarizes the results of using SFCS over CSCS. The number of iterations of
the inter-procedural analysis for constructing a safety proof reduced by 73% for
lcd, and by 83% for fall-det, showing that SFCS made our analysis feasible
for large test-programs.

7 Discussion

First, our axioms of syscall behavior provide a formal, succinct expression of our
expectations of the behavior of syscalls, as observed in user-mode. We envision
that these axioms can be used to empirically validate the behavior of syscalls in
future, e.g., through dynamic testing.

Second, we found our requirement of the read() syscall to accept only con-
crete lengths and buffer addresses to not be a significant limitation. To support
read()s to buffers of variable lengths and symbolic addresses, we implemented

60 J. Tan et al.

a wrapper function that reads to a fixed length/address buffer, and copies its
contents to the final destination buffer.

8 Related Work

ARMor [27], and our prior work AUSPICE [24], automatically prove safety prop-
erties for ARM machine code using HOL4 [22], and are closest to AUSPICE-R.
ARMor supports only “bare-metal” programs running without an OS, while
AUSPICE supports user-mode machine code but not syscalls. Goel et al. [21]
reason about x86 machine code with syscalls in the ACL2 logic for “heavy-
weight”, manual proofs of functional-correctness, while AUSPICE-R automates
proofs of “light-weight” safety properties. Goel’s formalization of x86 syscalls
tracks OS-state that may not be user-mode-visible that is needed for functional
correctness proofs, while AUSPICE-R focuses only on user-mode-visible state
that impacts our safety properties.

Sequoll [9] performs model-checking on ARM machine code using the Cam-
bridge ARM model [18]. Bedrock [10] “mostly-automates” functional correctness
proofs for an idealized machine-language, whereas, AUSPICE-R proves safety
properties for machine code emitted by standard compilers. CompCert [16] is a
compiler that has been formally verified to preserve the semantics of well-behaved
C programs during compilation. VST [8] is a program logic for reasoning about
programs in Cminor (a CompCert intermediate language), whose claims hold in
its compiled machine code due to its use of CompCert. Verasco [14] is a formally
verified static-analyzer for Cminor whose guarantees carry over to its compiled
code due to CompCert. It checks for the absence of run-time errors that can cause
safety violations such as the ones AUSPICE-R proves the absence of, but does
not produce proofs for individual programs. SeaHorn [7] and Dafny [15] allow
users to specify source-code assertions for checking arbitrary properties, while
AUSPICE-R focuses on specific safety properties for CFI [6], without needing
user specifications.

9 Conclusion and Future Work

We have presented AUSPICE-R, an extension to AUSPICE [24] that: (i) auto-
mates safety-property proofs in ARM machine code containing system calls
by axiomatizing their user-mode-visible effects, and (ii) optimizes automated
safety-property proofs by leveraging common conventions in compiled code and
by providing a more efficient inter-procedural analysis. We have demonstrated
AUSPICE-R on simple file I/O utilities implemented for Linux on ARM, and on
programs containing hardware I/O on the Raspberry Pi single-board-computer.
We showed that AUSPICE-R is up to 12× faster and supports programs up to
3x larger than prior work.

In future, we plan to tackle the challenges associated with more complex
syscalls, e.g., for network communications, that may have more complex user-
mode effects. We also plan to investigate how our axioms of syscall behavior can
be used to aid dynamic testing of syscall-servicing behavior by OS kernels.

AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features 61

References

1. Application Binary Interface for the ARM Architecture. http://bit.ly/22OaMai
2. Linux Programmer’s Manual: Syscalls. http://bit.ly/1VChJMY
3. The ARM-THUMB Procedure Call Standard (2000). http://bit.ly/1NbOQhT
4. As Gadgets Shrink, ARM Still Reigns As Processor King, September 2013. http://

onforb.es/19LIzgd
5. ARM Architecture Reference Manual: ARMv7-A and ARMv7-R edition (2014)
6. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity. In: ACM

CCS (2005)
7. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification

framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 20

8. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19718-5 1

9. Blackham, B., Heiser, G.: Sequel: a framework for model checking binaries. In:
IEEE RTAS (2013)

10. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI (2011)

11. Klein, G., et al.: seL4: formal verification of an OS kernel. In: SOSP, October 2009
12. Guthaus, M., et al.: MiBench: a free, commercially representative embedded bench-

mark suite. In: IEEE WWC Workshop (2001)
13. Jia, N.: Detecting human falls with a 3-axis digital accelerometer (2009). http://

bit.ly/23fXhFE
14. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified

C static analyzer. In: POPL (2015)
15. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.

In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

16. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

17. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle.
http://bit.ly/1Xk71rn

18. Myreen, M.O., Fox, A.C.J., Gordon, M.J.C.: Hoare logic for ARM machine code.
In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 272–286.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75698-9 18

19. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 44

20. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: IEEE
LICS (2002)

21. Goel, S., et al.: Simulation and formal verification of x86 machine-code programs
that make system calls. In: FMCAD (2014)

22. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-71067-7 6

23. Tan, J., Tay, H., Drolia, U., Gandhi, R., Narasimhan, P.: PCFIRE: towards prov-
able preventative control-flow integrity enforcement for realistic embedded soft-
ware. In: EMSOFT (2016)

http://bit.ly/22OaMai
http://bit.ly/1VChJMY
http://bit.ly/1NbOQhT
http://onforb.es/19LIzgd
http://onforb.es/19LIzgd
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-642-19718-5_1
http://bit.ly/23fXhFE
http://bit.ly/23fXhFE
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://bit.ly/1Xk71rn
http://dx.doi.org/10.1007/978-3-540-75698-9_18
http://dx.doi.org/10.1007/978-3-540-71209-1_44
http://dx.doi.org/10.1007/978-3-540-71067-7_6

62 J. Tan et al.

24. Tan, J., Tay, H.J., Gandhi, R., Narasimhan, P.: AUSPICE: Automatic Safety
Property verification for unmodified Executables. In: Gurfinkel, A., Seshia, S.A.
(eds.) VSTTE 2015. LNCS, vol. 9593, pp. 202–222. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-29613-5 12

25. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient software-based fault
isolation. In: SOSP (1993)

26. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: PLDI (2011)

27. Zhao, L., Li, G., Sutter, B.D., Regehr, J.: ARMor: fully verified software fault
isolation. In: EMSOFT (2011)

http://dx.doi.org/10.1007/978-3-319-29613-5_12

Observation-Based Concurrent Program Logic
for Relaxed Memory Consistency Models

Tatsuya Abe(B) and Toshiyuki Maeda

STAIR Lab, Chiba Institute of Technology,
2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan

{abet,tosh}@stair.center

Abstract. Concurrent program logics are frameworks for constructing
proofs, which ensure that concurrent programs work correctly. However,
most conventional concurrent program logics do not consider the com-
plexities of modern memory structures, and the proofs in the logics do not
ensure that programs will work correctly. To the best of our knowledge,
Independent Reads Independent Writes (IRIW), which is known to have
non-intuitive behavior under relaxed memory consistency models, has
not been fully studied under the context of concurrent program logics.
One reason is the gap between theoretical memory consistency models
that program logics can handle and the realistic memory consistency
models adopted by actual computer architectures. In this paper, we pro-
pose observation variables and invariants that fill this gap, releasing us
from the need to construct operational semantics and logic for each spe-
cific memory consistency model. We describe general operational seman-
tics for relaxed memory consistency models, define concurrent program
logic sound to the operational semantics, show that observation invari-
ants can be formalized as axioms of the logic, and verify IRIW under an
observation invariant. We also obtain a novel insight through construct-
ing the logic. To define logic that is sound to the operational semantics,
we dismiss shared variables in programs from assertion languages, and
adopt variables observed by threads. This suggests that the so-called
bird’s-eye view of the whole computing system disturbs the soundness of
the logic.

Keywords: Relaxed memory consistency model · Concurrent program
logic · Rely/guarantee method · Observation · Independent Reads Inde-
pendent Writes

1 Introduction

Memory structures are becoming increasingly complicated as computing systems
continue to grow. This can be overwhelming when attempting to write programs
that work on architectures consisting of complicated memory structures. Since
conventional program verification considers architectures with simple memory
structures, it struggles to deal with architectures that consist of complicated
memory structures.
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 63–84, 2016.
DOI: 10.1007/978-3-319-47958-3 4

64 T. Abe and T. Maeda

Fig. 1. Independent Reads Indepen-
dent Writes

Fig. 2. Non-remote-write-atomic
memories

To illustrate the problem, consider an example racy program. Readers may
consider that racy programs should be prohibited as their behaviors are specified
undefined in C++11 [12]. However, in lower-level programming (e.g., on virtual
machine or computer architecture), racy programs are necessary to implement
register algorithms, which provide mutual exclusion etc. Although such racy
programs are not typically large, their non-intuitive behaviors make it difficult
to verify them.

Figure 1 shows Independent Reads Independent Writes (IRIW) [4]. Variables
x and y are shared, and variables r0, r1, r2, and r3 are thread-local. We assume
that all variables are initialized to 0. IRIW consists of four threads. Two threads
are readers, which read values from the shared variables x and y. The other two
threads are writers. One writes 1 to x, and the other writes 1 to y. If the write
to x is performed before the write to y, then r2 ≤ r3 seems to hold, since r2 > r3
(i.e., r2 = 1 and r3 = 0) does not hold for the following reason:

1. r2 = 1 implies y = 1, and
2. we assume that the write to x is performed before the write to y;
3. therefore, when x is read (to r3), its value is 1.

Similarly, if the write to y is performed before the write to x, then r0 ≤ r1 seems
to hold. Therefore, it would appear that r0 ≤ r1 ∨ r2 ≤ r3.

However, this is not always the case, because an architecture may realize
a form of shared memory, as shown in Fig. 2. This means that the first reader
and writer share the same physical memory, and the second reader and writer
share another physical memory. Shared memory is realized by any mechanism for
data transfer (denoted by �) between the physical memories. The architecture
that has mechanism for data transfer is sensitive to the so-called remote-write-
atomicity [11] (also called multi-copy-atomicity in [24]). Remote-write-atomicity
claims that if two thread write values to (possibly distinct) locations, then the
other threads must observe the same order between the two write operations.

Here, let us assume that physical memories do not enjoy remote-write-
atomicity, that is, effects on one memory cannot be immediately transferred
to the other memory. Under this architecture, while the first reader may observe
that the write to x is performed before the write to y, the second reader may
observe that the write to y is performed before the write to x. Therefore, there
is no guarantee that r0 ≤ r1 ∨ r2 ≤ r3.

Thus, in modern program verification, we cannot ignore remote-write-
atomicity. However, to the best of our knowledge, there exists no concurrent

Observation-Based Concurrent Program Logic 65

program logic in which remote-write-atomicity can be switched on and off. One
reason is the existence of a gap between theoretical memory consistency mod-
els, which concurrent program logics can handle, and realistic memory consis-
tency models, which are those adopted by actual computer architectures. While
theoretical memory consistency models (axioms written in assertion languages)
in concurrent program logics describe relations between expressions, which are
often the orders of values that are evaluated by expressions, realistic memory con-
sistency models (which are often written in natural languages rather than formal
languages) describe the orders of executions of statements on actual computer
architectures. In this paper, we propose observation variables and invariants that
fill this gap, thus releasing us from the need to construct operational semantics
and logic for each specific memory consistency model. We define general oper-
ational semantics to consider cases in which threads own their memories, and
construct concurrent program logic in which we give proofs that ensure certain
properties hold when programs finish. We can control observation invariants as
uniform axioms of the logic. This enables us to show that a property holds when
a program finishes under an observation invariant, whereas the property does not
hold when the program finishes without the observation invariant. In Sect. 9, we
verify IRIW using this logic under an observation invariant induced by a realistic
memory consistency model like SPARC-PSO [27].

To the best of our knowledge, the derivation shown in Sect. 9 is the first to
ensure that a property holds in concurrent program logic that handles relaxed
memory consistency models like SPARC-PSO, although the behavior of IRIW
under more relaxed memory consistency models that refute the property has
been discussed several times in the literature (e.g., [4,22,24,25,31]).

In constructing the concurrent program logic, we obtained a novel insight into
the use of shared variables in an assertion language for operational semantics
with relaxed memory consistency models. First, we extend an assertion language
in the logic by introducing the additional variable xi to denote x as observed by
the i-th thread. The value of xi is not necessarily the same as that of x. Next, we
restrict the assertion language by dismissing shared variables in programs from
assertion languages. This prohibits us from describing the value of x. By design-
ing this assertion language, we can construct a concurrent program logic that is
sound to operational semantics (explained in Sect. 4) with relaxed memory con-
sistency models. This suggests that, in concurrent computation, the so-called
bird’s-eye view that overlooks the whole does not exist, and that each thread
runs according to its own observations, and some (or all) threads sometimes
reach a consensus.

The rest of this paper is organized as follows. Section 2 discusses related
work, and Sect. 3 presents some definitions that are used throughout this paper.
Section 4 gives operational semantics (based on the notion of state transition sys-
tems) for relaxed memory consistency models. Section 5 explains our concurrent
program logic. Section 6 defines validity of judgments. Section 7 introduces the
notion of observation invariants. Section 8 then presents our soundness theorem.

66 T. Abe and T. Maeda

In Sect. 9, we provide example derivations for concurrent programs. Section 10
concludes the paper and discusses ideas for future work.

2 Related Work

Stølen [28] and Xu et al. [35,36] provided concurrent program logics based on
rely/guarantee reasoning [13]. However, they did not consider relaxed memory
consistency models containing observation invariants, that is, they handle strict
consistency, the strictest memory consistency model. This paper handles relaxed
memory consistency models. The memory consistency models with observation
invariants in this paper are more relaxed than those obeying strict consistency.

Ridge [23] developed a concurrent program logic for x86-TSO [26] based on
rely/guarantee reasoning by introducing buffers. However, buffers to one shared
memory are known to be insufficient to cause the behavior of IRIW. This paper
handles more relaxed memory consistency models than x86-TSO, as threads
have their own memories to deal with observation invariants.

Ferreira et al. [7] introduced a concurrent separation logic that is parame-
terized by invariants, and explained the non-intuitive behavior of IRIW. Their
motivation for constructing a parametric logic coincides with ours. However,
their logic is based on command subsumptions, which describe the execution
orders of statements. This is different from our notion of observations; their
approach therefore has no direct connection to our logic, and gave no sufficient
condition to ensure the correctness of IRIW. Any connection between their logic
and ours remains an open question.

Vafeiadis et al. presented concurrent separation logics for restricted C++11
memory models [30,32]. The restricted C++11 semantics are so weak that the
property for IRIW (shown in Sect. 1) does not hold without additional assump-
tions. However, unlike our approach, they did not handle programs that contain
write operations to distinct locations, such as IRIW. In another paper [15], Lahav
and Vafeiadis described an Owicki–Gries style logic and verified a program con-
sisting of multiple reads and writes in the logic. This program is different from
IRIW, as the reads/writes are from/to the same location. The essence of IRIW
is to write to distinct locations x and y. Our paper proposes the notion of obser-
vation invariants, constructs a simple concurrent program logic, formalizes the
axioms of our logic, and gives a formal proof for IRIW. This simplification pro-
vides the insight explained in Sect. 1.

The authors proposed a notion of program graphs, representations of pro-
grams with memory consistency models, gave operational semantics and con-
struct program logic for them [1]. However, the semantics and logic cannot han-
dle the non-intuitive behavior of IRIW since remote-write-atomicity is implicitly
assumed.

There also exist verification methods that are different from those using con-
current program logics. Model checking based on exhaustive searches is a promis-
ing program verification method [2,10,14,17]. Given a program and an assertion,
model checking is good at detecting execution traces that violate the assertions,
but is less suitable for ensuring that the assertion holds.

Observation-Based Concurrent Program Logic 67

Some reduction methods to Sequential Consistency (SC) via race-freedom
of programs are well-known (e.g., [5,20,21]). However, verification of racy pro-
grams like concurrent copying protocols is one of the authors’ concerns [3], and
programs that have non-SC behaviors are our main targets.

Boudol et al. proposed an operational semantics approach to represent
a relaxed memory consistency model [5,6]. They defined a process calculus,
equipped with buffers that hold the effects of stores, and its operational seman-
tics to handle the non-intuitive behavior of IRIW. He proved Data Race Freedom
(DRF) guarantee theorem that DRF programs have the same behaviors as those
under SC. However, IRIW is not DRF.

Owens et al. reported that x86-CC [25] allows the non-intuitive behavior of
IRIW, and designed x86-TSO [22] that prohibits the behavior. He also extended
DRF to Triangular Race Freedom (TRF) that TRF programs have the same
behaviors under x86-TSO as those under SC [21]. Although IRIW is surely TRF,
a slight modification of IRIW in which additional writes to distinct variables at
the start on the reader threads are inserted is not TRF. Since the program has
a non-SC behavior, verification of the program under SC cannot ensure correct-
ness of the program under x86-TSO. Our verification method to use observation
invariants is robust to such slight changes. In addition, our method is not specific
to a certain memory consistency model like x86-TSO. An observation invariant
introduced in Sect. 7 for IRIW is independent of the slight change, and we can
construct a derivation for the program that is similar to the derivation for IRIW
explained in Sect. 9.3.

3 Concurrent Programs

In this section, we formally define our target concurrent programs.
Similar to the conventional program logics (e.g., [8]), sequential programs

are defined as sequences of statements. Let r denote the thread-local variables
that cannot be accessed by other threads, x, y, . . . denote shared variables, and
e denote thread-local expressions (thread-local variables, constant values val ,
arithmetic operations, and so on). A sequential program can then be defined as
follows:

S i ::= SKi | MVi r e | LDi r x | STi x e | IFi ϕ?S i:S i | WLi ϕ?S i | S i; S i

ϕ ::= e = e | e ≤ e | ¬ϕ | ϕ ⊃ ϕ | ∀ r. ϕ.

In the above definition, the superscript i represents (an identifier of) the
thread on which the associated statement will be executed. In the rest of this
paper, this superscript is often omitted when the context is clear. The SK state-
ment denotes an ordinary no-effect statement (SKip). As in conventional pro-
gram logics, MV r e denotes an ordinary variable substitution (MoVe). The load

and store statements denote read and write operations, respectively, for shared
variables (LoaD and STore). The effect of the store statement issued by one
thread may not be immediately observed by the other threads. The IF and

68 T. Abe and T. Maeda

WL statements denote ordinary conditional branches and iterations, respectively,
where we adopt ternary conditional operators (IF-then-else-end and WhiLe-do-
end). Finally, S ; S denotes a sequential composition of statements.

We write ϕ ∨ ψ, ϕ ∧ ψ, ϕ ↔ ψ, and ∃ r. ϕ as (¬ϕ) ⊃ ψ, ¬ ((¬ϕ) ∨ (¬ψ)),
(ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ), and ¬∀ r.¬ϕ, respectively. In the following, we assume that
¬, ∧, ∨, and ⊃ are stronger with respect to their connective powers. In addition
to the above definition, 	 is defined as the tautology ∀ r. r = r.

A concurrent program with N threads is defined as the composition of sequen-
tial programs by parallel connectives ‖ as follows:

P ::= S 0 ‖ S 1 ‖ . . . ‖ S N−1.

In this paper, the number of threads N is fixed during program execution.
Parentheses are often omitted, and all operators except ⊃ are assumed to be left
associative.

4 Operational Semantics

In this section, we define small-step operational semantics for the programming
language defined in Sect. 3. Specifically, the semantics is defined as a standard
state transition system, where a state (written as st) is represented as a pair
of 〈σ, Σ〉. The first element of the pair, σ, consists of the values of thread-local
variables and shared variables that threads observe on registers and memories;
formally, a function from thread identifiers and (thread-local and shared) vari-
ables to values. The second element, Σ, represents buffers that temporarily buffer
the effects of store operations to shared variables. It may be worth noting that,
in the present paper, buffers are not queues, that is, each buffer stores only the
latest value written to its associated variable, for simplicity. This is because the
present paper focuses on verifying IRIW, and storing the latest value suffices for
the purpose. Replacing buffers with queues is straightforward and not shown in
the present paper. Σ i, j refers to thread j’s buffer for effects caused by thread i’s
statements. If i = j, then thread j cannot observe the effects that are buffered.
If i = j, then thread j can observe the effects that are buffered.

Using Fig. 3, we now present an informal explanation of buffers and memories.
Thread 0 executes statement ST0 x1, and buffers Σ0,0 and Σ0,1 are updated. Next,
thread 1 executes statement LD1 r1 x. If the effect of ST0 x 1 has not yet reached
σ1, thread 1 cannot observe it, and reads the initialized value 0. If the effect
of ST0 x 1 has already reached σ1, thread 1 reads 1. Finally, thread 0 executes
statement LD0 r0 x. Whether the effect of ST0 x 1 has reached σ1 or not, thread 0
can observe it. Therefore, thread 0 reads a value of 1. Updates from Σ to σ are
performed without the need for statements.

Formally, in the following, a function from triples formed of two thread iden-
tifiers and shared variables to values is evaluated by currying all functions, for
the convenience of partial applications. We assume that the set of values contains
a special constant value udf to represent uninitialized or invalidated buffers. We
often write σi, Σi, and Σi j as σi, Σ i, and Σ i, j, respectively, for readability. We

Observation-Based Concurrent Program Logic 69

Fig. 3. Buffers and memories Fig. 4. Update functions

define the following two operations for update functions as in Fig. 4 where f
ranges over each among σ, σi, Σ, Σ i, and Σ i, j.

Figure 5 shows the rules of the operational semantics, where 〈|e|〉σi denotes
the valuation of an expression e as follows:

〈|val |〉σi = val 〈|r|〉σi = σir 〈|x|〉σi = σi x 〈|e1 + e2|〉σi = 〈|e1|〉σi + 〈|e2|〉σi . . .

and σi � ϕ denotes the satisfiability of ϕ on σi in the standard manner, which is
defined as follows:

σi � e1 = e2 ⇔ 〈|e1|〉σi = 〈|e2|〉σi σi � e1 ≤ e2 ⇔ 〈|e1|〉σi ≤ 〈|e2|〉σi σi � ¬ ϕ⇔ σi �� ϕ
σi � ϕ ⊃ ϕ′ ⇔ σi � ϕ implies σi � ϕ′ σi � ∀ r. ϕ(r) ⇔ σi � ϕ(v) for any v.

Fig. 5. Our operational semantics

70 T. Abe and T. Maeda

A pair of a program and a state is called a configuration. Each rule is repre-
sented by a one-step transition between configurations 〈P, st〉 δ−→ 〈P′, st ′〉, which
indicates that a statement causes 〈P, st〉 to transit to 〈P′, st ′〉, where δ is c or e.

Specifically, Rule O-ENV denotes a transition that requires no statement
in P, which means that other threads are executing statements or memories are
being updated from buffers. Although the rule was originally introduced to mean
that other threads consume statements in conventional operational semantics
for concurrent programming languages (with strict consistency) [35,36], the rule
has the additional meaning here that memories are updated from buffers in
constructing operational semantics for relaxed memory consistency models.

Readers unfamiliar with operational semantics for an imperative concurrent
programming language (and its rely/guarantee reasoning) may consider e−→ to
be nonsense because e−→ seems to allow any transitions. However, it is restricted
to being admissible under a rely-condition by the notion of validity for judgments
(called rely/guarantee specifications), as defined in Sect. 6. This is similar to the
context of Hoare logic, where transitions consuming statements are defined to
be large at first, and the transitions are restricted to be admissible ones under
pre-conditions by the notion of validity for Hoare triples. This is one of the
standard methods of defining operational semantics for an imperative concurrent
programming language (e.g., as seen in [35,36]), and is not caused by handling
relaxed memory consistency models. Here, in accordance with the standard, a
transition e−→ that consumes no statements is defined to be the product of states.

Rule O-MV evaluates e and updates σ with respect to r. Rule O-LD evaluates
x on Σ i,i, if Σ i,i x is defined (i.e., effects on x by statements on thread i itself are
buffered), and on σi otherwise, and updates σi with respect to r. O-ST evaluates
e and updates Σ i, j (not σi) with respect to x for any j; i.e., the rule indicates
that the effect of the store operation is buffered in Σ i, j. Rule O-IT handles a
branch statement by asserting that ϕ is satisfied under state σi, and P is chosen.
If σi is not satisfied, rule O-IE is applied and Q is chosen. Rule O-WT handles a
loop statement by asserting that ϕi is satisfied under state σ, and an iteration is
performed. If σi is not satisfied, rule O-WE is applied, and the program exits from
the loop. Rules O-SQ and O-PR handle sequential and parallel compositions of
programs, respectively.

5 Concurrent Program Logic

In this section, we define our concurrent program logic. Our assertion language
is defined as follows:

Φ ::= E = E | E ≤ E | ¬Φ | Φ ⊃ Φ | ∀ v. Φ v ::= r | xi | r | xi

where E represents a pseudo-expression denoting thread-local variables r, obser-
vation variables xi, next thread-local variables r, next observation variables xi,
constant values val , arithmetic operations, and so on. Our assertion language
does not contain a shared variable x that occurs in programs. This means that
nobody observes the whole system. This novelty is a key point of this paper. We

Observation-Based Concurrent Program Logic 71

often write r as ri when referring to r being a thread-local variable on the i-th
thread. The observation variable xi represents the value written to the shared
variable x by ST on a thread with identifier i. The next variable v represents the
value of v on a state to which the current state transits under the operational
semantics.

Figure 6 shows the judgment rules. They are defined in the styles of Stølen
and Xu’s proof systems [28,35,36], which have two kinds of judgments. Each
judgment of the form � Φ refers to satisfiability in the first-order predi-
cate logic with equations in a standard manner. Each judgment of the form
{pre , rely}P{guar , post} (where pre and post have no next variable) states that, if
program P runs under pre-condition pre and rely-condition rely (which are guar-
anteed by the other threads as well as the environments, as explained in Sect. 6)
according to the operational semantics of Sect. 4, then the guarantee-condition
guar (on which the other threads rely) holds, as in conventional rely/guaran-
tee systems. In the rest of this paper, we write � {pre , rely} P {guar , post} if
{pre , rely} P {guar , post} can be derived from the judgment rules of Fig. 6.

Fig. 6. Our concurrent program logic

72 T. Abe and T. Maeda

Fig. 7. The interpretation of the assertion language

Fig. 8. Invariants about variables before and after assignments

More specifically, rule L-MV of Fig. 6 handles the substitution of thread-local
variables with expressions. This is the same as in conventional rely/guarantee
proof systems. [e/v] represents the substitution of v with e. The first assumption
means that pre must be a sufficient condition that implies post with respect to the
substitution. We define � Φ as 〈σ, Σ〉, 〈σ′, Σ′〉 � Φ for any 〈σ, Σ〉, 〈σ′, Σ′〉, where
〈σ, Σ〉, 〈σ′, Σ′〉 � Φ is defined in a similar manner to a conventional rely/guarantee
system, as shown in Fig. 7. In the following, we often write 〈σ, Σ〉 � Φ when Φ has
no next variable. The second assumption means that pre must be a sufficient
condition that implies guar under an invariant about V before and after an
execution of an assignment C (formally defined as �C�V), where C is MV r e,
LD r x, or ST x e, and V is a finite set of non-next variables that occur in guar .
A formula �MVi r e�V is defined as r = e ∧ ∧

I(V\{r}), which means that the
value of r is equal to the evaluation of e while the values of variables in V\{r}
are assignment-invariant, where I(V) is { v = v | v ∈ V }. Its formal definition is
shown in Fig. 8. The third assumption means that pre and post are stable under
the rely condition guaranteed by another thread, where we denote that Φ is
stable under Ψ (written as Φ ⊥ Ψ) as Φ(u) ∧ Ψ(u, u) ⊃ Φ(u), where u denotes a
sequence of variables.

Rule L-SK states that an ordinary no-effect statement does not affect any-
thing.

Rule L-LD handles the substitution of thread-local variables with shared
variables. Note that r is substituted with the observation variables xi, instead of
the shared variables x. Rule L-ST handles the substitution of shared variables
with expressions. Note that, as for L-LD, this rule considers the observation
variable xi instead of the shared variable x.

Rules L-IF and L-WL handle branch and loop statements, respectively. Care-
ful readers may have noticed that Xu et al.’s papers [35,36] do not require

Observation-Based Concurrent Program Logic 73

the third assumption, which is implicitly assumed because these logics adopt
the restriction that rely/guarantee-conditions are reflexive (as in [19,29]). This
restriction often makes it difficult to write down derivations. Therefore, in this
paper, we do not adopt the restriction, following van Staden [33]. As suggested by
Nieto in [19], reflexivity is used to ensure soundness. However, we do not adopt
the reflexivity of rely/guarantee-conditions, but instead use the third assump-
tion regarding L-IF and L-WL, which prohibits the so-called stuttering transi-
tions [16], as explained in Sect. 6.

Rule L-SQ handles the sequential composition of programs. Rule L-WK is
the so-called consequence rule. L-PR handles parallel compositions of programs
in a standard rely/guarantee system. The third assumption means that P1’s
rely-condition rely1 must be guaranteed by the global rely-condition rely or P0’s
guarantee-condition guar0. The fourth assumption is similar. The fifth assump-
tion means that guar must be guaranteed by either guar0 or guar1.

6 Validity for Judgments

We now define computations of programs, and validity for judgments.
We define the set of computations Cmp(P) of P as a finite or infinite sequence

c of configurations whose adjacent configurations are related by c−→ or e−→
defined in Sect. 4. We write Cfg(c, i), Prg(c, i), and St(c, i) as the i-th configura-
tion, program, and state of c, respectively. By definition, the program Prg(c, 0) is
P. As mentioned in Sect. 5, we do not assume that the rely/guarantee-conditions
are reflexive. Therefore, our logic does not unconditionally ensure that the guar-
antee conditions hold on computations that contain 〈P, st〉 e−→ 〈P, st〉, as Xu
et al. noted in [36].

The length of a computation of c is denoted by |c|. If c is an infinite sequence,
then |c| is the smallest limit ordinal ω. Let c′ be a computation that satisfies
St(c′, |c′| − 1) = St(c, 0). We define c′ · c as a concatenation of c′ and c. We
define � {pre, rely}P{guar , post} as Cmp(P)∩A(pre , rely) ⊆ C(guar , post), which
means that any computation under pre/rely-conditions satisfies guarantee/post-
conditions, as shown in Fig. 9. Thus, this paper does not handle post-conditions
in non-terminating computations. This kind of validity is called partial correct-
ness [34].

Careful readers may have noticed that the second arguments of Σ and sub-
stitutions to Σ i, j (i = j) at rule O-ST are redundant, as e−→, which satisfies a
rely-condition, is allowed at any time, and our assertion language cannot describe
Σ i, j (i = j). Strictly speaking, although technically unnecessary and redundant,
we have adopted these arguments to explain admissible computations more intu-
itively. A computation that formally represents the non-intuitive behavior of
IRIW without remote-write-atomicity in Sect. 9.3 may help readers understand
how memories are updated by effects from buffers.

74 T. Abe and T. Maeda

Fig. 9. Computations under pre/rely-conditions satisfies guarantee/post-conditions

7 Observation Invariant

In this section, we propose an observation invariant, which is an invariant writ-
ten by observation variables. Formally, we define an observation invariant as a
formula of the first-order predicate logic with the equations of Sect. 5.

We adopt observation invariants as axioms of the logic in Sect. 5. For example,
let x0 = x1 be an observation invariant, which means that the value of x observed
by thread 0 coincides with the value of x observed by thread 1. Adopting the
observation invariant as an axiom means handling execution traces that always
satisfy σ0[Σ0,0]x = σ1[Σ1,1]x.

Let us consider three examples of observation invariants. The program shown
in Fig. 10 is called Dependence Cycle (DC). Although we intuitively think that
either r0 or r1 has an initial value of 0, r0 = 1 ∧ r1 = 1 may not hold under
a relaxed memory consistency model such as C++11 memory models. Memory
consistency models for programming languages are often very relaxed in consid-
eration of compiler optimization.

Our intuition that either r0 or r1 has an initial value is supported by no
speculation regarding store statements on distinct threads, which is assumed
under SPARC-PSO and similar architectures. For DC, this can be represented
as y0 = 0 ⊃ y1 = 0, x1 ≤ x1 ⊃ x0 ≤ x0, x1 = 0 ⊃ x0 = 0, and y0 ≤ y0 ⊃
y1 ≤ y1 if the buffers are empty with respect to x and y when DC launches,
and a rely-condition ensures no store operation to x and y. The first formula,
y0 = 0 ⊃ y1 = 0, means that thread 1 observes y = 0 as long as thread 0 observes
y = 0. This is because thread 0 is the only thread that has a store statement to
y in DC. The second formula, x1 ≤ x1 ⊃ x0 ≤ x0, means that thread 0 observes
that x is monotone if thread 1 observes x is monotone. Thread 0 cannot observe
x is not monotone, because thread 1 (which has a store statement to x and can
see its own buffer) observes x is monotone. The third and fourth formulas are
similar.

Next, let us consider an observation invariant for the One Reader One Writer
(1R1W) program shown in Fig. 11, which consists of one reader thread and one
writer thread. The reader thread in 1R1W has no store statement. Therefore,
y1 ≤ x1 ⊃ y0 ≤ x0 is an observation invariant for 1R1W under x86-TSO [26].
This prohibits the reordering of effects of store statements, where we assume
that the buffers are empty with respect to x and y when 1R1W launches, and
a rely-condition ensures no store operations to x and y. Note that this is not
an invariant under SPARC-PSO, which allows the effects of store statements

Observation-Based Concurrent Program Logic 75

Fig. 10. Dependence cycle Fig. 11. One reader one writer (1R1W)

to be reordered. The transfer of monotonicity x1 ≤ x1 ⊃ x0 ≤ x0 is also an
observation invariant, even under SPARC-PSO, since the reader thread has no
store statement to x.

Finally, let us consider an observation invariant for IRIW. Similar to DC,
the transfer of monotonicity (x2 ≤ x2 ⊃ x0 ≤ x0, x2 ≤ x2 ⊃ x1 ≤ x1,
y3 ≤ y3 ⊃ y0 ≤ y0, and y3 ≤ y3 ⊃ y1 ≤ y1) holds, because the reader threads in
IRIW have no store statement. In addition, x0 = x1 and y0 = y1 are invariants
under remote-write-atomicity (which is assumed under SPARC-PSO and similar
architectures), as threads 0 and 1 can detect nothing in their own buffers, and
share a common observation of a shared memory. Note that the invariants are
properly weaker than the strict consistency assumed by conventional concurrent
program logics [13,28,35,36], which forces the variable updates to be immedi-
ately observed by all threads, that is, x0 = x1 = x2 = x3 and y0 = y1 = y2 = y3.

8 Soundness

In this section, we present the soundness of the operational semantics defined
in Fig. 5. In Sect. 5, we derived a concurrent program logic that is sound to the
operational semantics defined in Fig. 5. However, the logic is actually insufficient
to derive some valid judgments.

Auxiliary variables are known to enhance the provability of concurrent pro-
gram logics [28]. Auxiliary variables are fresh variables that do not occur in
the original programs, and are used only for the description of assertions. By
using auxiliary variables in assertions, we can describe the progress of thread
executions as rely/guarantee-conditions. In Sect. 9.3, we show a typical usage of
auxiliary variables.

We extend our logic to contain the following inference rule (called the auxil-
iary variables rule [28,35]):

{pre ∧ pre0, rely ∧ rely0} P0 {guar , post} � ∃ z. rely0((u, z), (u, z))
� ∃ z. pre0(u, z) z ∩ (fv(pre) ∪ fv(rely) ∪ fv(guar) ∪ fv(post)) = ∅

(L-AX){pre , rely} (P0)z {guar , post}

where fv(Φ) denotes free variables that occur in Φ in a standard manner, and
(P0)z is defined as the program that coincides with P0, except that an assignment
A is removed if

– A is an assignment whose left value belongs to z,

76 T. Abe and T. Maeda

– no variable in z occurs in assignments whose left values do not belong to z,
and

– no variable in z freely occurs in conditional statements.

Let c be 〈P0, 〈σ0, Σ0〉〉 δ0−→ · · · δi−1−→ 〈Pi, 〈σi, Σi〉〉 δi−→ · · · for any 0 ≤ i. We
write tr(c, i) as δi. Given c ∈ Cmp(P0 ‖ P1), c0 ∈ Cmp(P0), and c1 ∈ Cmp(P1),
a ternary relation c = c0 ‖ c1 is defined if |c| = |c0| = |c1| and

1. St(c, i) = St(c0, i) = St(c1, i),
2. tr(c, i) = c implies either of tr(c0, i) = c or tr(c1, i) = c holds,
3. tr(c, i) = e implies tr(c0, i) = e and tr(c1, i) = e hold, and
4. Prg(c, i) = Prg(c0, i) ‖ Prg(c1, i)

for 0 ≤ i < |c|. We write ci and postfix(c, i) as the prefix of c with length i + 1
and the sequence that is derived from c by removing ci − 1, respectively.

Proposition 1. Cmp(P0 ‖ P1) = { c0 ‖ c1 | c0 ∈ Cmp(P0), c1 ∈ Cmp(P1) }.
Lemma 2. Assume � {pre0 ∧ pre1, rely} P0 ‖ P1 {guar , post0 ∧ post1} by
L-PR, Cmp(P0) ∩ A(pre0, rely0) ⊆ C(guar0, post0), Cmp(P1) ∩ A(pre1, rely1) ⊆
C(guar1, post1), � rely∨guar0 ⊃ rely1, � rely∨guar1 ⊃ rely0, � guar0∨guar1 ⊃
guar, and c ∈ Cmp(P0 ‖ P1) ∩ A(pre0 ∧ pre1, rely). In addition, we take
c0 ∈ Cmp(P0) and c1 ∈ Cmp(P1) such that c = c0 ‖ c1 by Proposition 1.

1. St(c, i),St(c, i + 1) � guar0 and St(c, i),St(c, i + 1) � guar1 hold for any
Cfg(c0, i)

c−→ Cfg(c0, i + 1) and Cfg(c1, i)
c−→ Cfg(c1, i + 1), respectively.

2. St(c, i),St(c, i+1) � rely∨guar1 and St(c, i),St(c, i+1) � rely∨guar0 hold for
any Cfg(c0, i)

e−→ Cfg(c0, i+ 1) and Cfg(c1, i)
e−→ Cfg(c1, i+ 1), respectively.

3. St(c, i),St(c, i + 1) � guar for any Cfg(c, i) c−→ Cfg(c, i + 1) holds.
4. Assume |c| < ω and Prg(c, |c| − 1) = ∅. Then, St(c, |c| − 1) � post0 ∧ post1

holds.

Proof. 1. Let us consider the former case. Without loss of generality, we can
assume that St(c, i),St(c, i + 1) � guar0 where St(c, j),St(c, j + 1) � guar0 and
St(c, j),St(c, j + 1) � guar1 for any 0 ≤ j < i.

By the definition, there exists Cfg(c, k) e−→ Cfg(c, k + 1) or Cfg(c1, k)
c−→

Cfg(c1, k + 1) corresponding to Cfg(c0, k)
e−→ Cfg(c0, k + 1) for any 0 ≤ k ≤ i.

Therefore, St(c, k),St(c, k + 1) � rely ∨ guar1 holds. By � rely ∨ guar1 ⊃ rely0,
c0i + 1 ∈ A(pre0, rely0) holds. Since Cmp(P0) ∩ A(pre0, rely0) ⊆ C(guar0, post0)
holds, in particular, St(c, i),St(c, i + 1) � guar0 holds. This contradicts
St(c, i),St(c, i + 1) � guar0. The latter case is similar.
2. Immediate from the definition of c = c0 ‖ c1 and 1.
3. Immediate from 1 and � guar0 ∨ guar1 ⊃ guar .
4. By 2, � rely ∨ guar0 ⊃ rely1, and � rely ∨ guar1 ⊃ rely0, c0 ∈ A(pre0, rely0)
and c1 ∈ A(pre1, rely1) hold.

By Cmp(P0) ∩ A(pre0, rely0) ⊆ C(guar0, post0) and Cmp(P1) ∩
A(pre1, rely1) ⊆ C(guar1, post1), St(c, |c|) � post0 and St(c, |c| − 1) � post1
hold. Therefore, St(c, |c| − 1) � post0 ∧ post1 holds. ��

Observation-Based Concurrent Program Logic 77

Theorem 3. � {pre , rely} P {guar , post} implies � {pre , rely} P {guar , post}.
Proof. By induction on derivation and case analysis of the last inference rule.

First, assume L-ST. Let c ∈ Cmp(STi x e)∩A(pre , rely). By O-ST, there exist
σ0, Σ0, . . . such that 〈σn+1, Σn+1〉 = 〈σn, Σ[i :=Σ i[j :=Σ i, j[x := 〈|e|〉σi] | 0 ≤ j <
N]]〉,
c = 〈STi x e, 〈σ0, Σ0〉〉 e−→∗ 〈STi x e, 〈σn, Σn〉〉 c−→ 〈SKi, 〈σn+1, Σn+1〉〉 e−→ · · · ,

〈σ0, Σ0〉 � pre, and 〈σ j, Σ j〉, 〈σ j+1, Σ j+1〉 � rely for any 0 ≤ j < n. By � pre ⊥
rely , 〈σn, Σn〉 � pre. By the definition, 〈σn, Σn〉, 〈σn, Σ[i :=Σ i[j :=Σ i, j[x := 〈|e|〉σi] |
0 ≤ j < N]]〉 � �STi x e�V . By � pre ⊃ �STi x e�V ⊃ guar ,
〈σn, Σn〉, 〈σn, Σ[i :=Σ i[j :=Σ i, j[x := 〈|e|〉σi] | 0 ≤ j < N]]〉 � guar , that is,
〈σn, Σn〉, 〈σn+1, Σn+1〉 � guar . In addition, assume |c| < ω. By � pre ⊃ [e/xi]post ,
〈σn, Σn〉 � [e/xi]post . By the definition, 〈σn, Σ[i :=Σ i[j :=Σ i, j[x := 〈|e|〉σi] | 0 ≤ j <
N]]〉 � post , that is, 〈σn+1, Σn+1〉 � post . By � post ⊥ rely , 〈σ|c|−1, Σ|c|−1〉 � post .

Second, assume L-WL. Let c ∈ Cmp(WLi ϕ?S i
0) ∩ A(pre , rely), which consists

of the following five segments:

– 〈S i, 〈σkn , Σkn〉〉 e−→∗ 〈S i, 〈σk0 , Σk0〉〉,
– 〈S i, 〈σk0 , Σk0〉〉 c−→ 〈S i

0; S
i, 〈σk0 , Σk0〉〉 where σk0 � ϕ,

– 〈S i, 〈σk0 , Σk0〉〉 c−→ 〈SKi, 〈σk0 , Σk0〉〉 e−→ · · · where σk0 � ϕ,
– 〈S i

0; S
i, 〈σk0 , Σk0〉〉 −→∗ 〈S i, 〈σkn , Σkn〉〉.

– 〈S i
0; S

i, 〈σk0 , Σk0〉〉 −→ · · · which does not reach S i.

where 〈σ′, Σ′〉, 〈σ′′, Σ′′〉 � rely for any 〈S ′, 〈σ′, Σ′〉〉 e−→ 〈S ′′, 〈σ′′, Σ′′〉〉 in the
five segments. By � pre ⊥ rely , 〈σk0 , Σk0〉 � pre. Let c′ be 〈S i

0, 〈σk0 , Σk0〉〉 −→∗

〈SKi, 〈σkn , Σkn〉〉. By induction hypothesis, 〈σ′, Σ′〉, 〈σ′′, Σ′′〉 � guar holds for any
〈S ′, 〈σ′, Σ′〉〉 c−→ 〈S ′′, 〈σ′′, Σ′′〉〉 in c′ holds. The case that c does not reach S i

is similar. Therefore, since � pre ⊃ I(V) ⊃ guar holds, 〈σ′, Σ′〉, 〈σ′′, Σ′′〉 � guar
holds for any 〈S ′, 〈σ′, Σ′〉〉 c−→ 〈S ′′, 〈σ′′, Σ′′〉〉 in c holds. In addition, assume
|c| < ω. By � pre ⊥ rely and induction hypothesis, 〈σk0 , Σk0〉 � pre holds. By
� pre ⊃ ¬ϕ ⊃ post and � post ⊥ rely , St(c, |c| − 1) � post .

Third, assume L-SQ. Let c ∈ Cmp(Pi
0; P

i
1) ∩ A(pre , rely). There exist

st0, δ0, . . . such that

c = 〈Pi
0; P

i
1, st0〉 δ0−→ · · · δn−1−→ 〈Pi

1, stn〉 δn−→ · · · ,
st0 � pre, and st j, st j+1 � rely for any 0 ≤ j < n. Let c′ and c′′ be
〈Pi

0, st0〉 δ0−→ · · · δn−1−→ 〈SKi, stn〉 and postfix(c, n), respectively. Obviously, c′ ∈
Cmp(Pi

0) ∩ A(pre, rely) holds. By induction hypothesis, c′ ∈ C(guar , Φ) holds.
By the definition, 〈σn, Σn〉 � Φ holds. Therefore, c′′ ∈ Cmp(Pi

1)∩A(Φ, rely) holds.
By induction hypothesis, c′′ ∈ C(guar , post) holds. Therefore, c ∈ C(guar , post)
holds.

Fourth, assume L-PR. By Lemmas 2.3 and 2.4.
Fifth, assume L-AX. Let c ∈ Cmp(P)∩ A(pre , rely). There exist σ0, Σ0, δ0, . . .

such that

c = 〈(P)z, 〈σ0, Σ0〉〉 δ0−→ · · · δn−1−→ 〈Pn, 〈σn, Σn〉〉 δn−→ · · · ,

78 T. Abe and T. Maeda

Fig. 12. A essential part of a derivation for DC

〈σ0, Σ0〉 � pre, and 〈σ j, Σ j〉, 〈σ j+1, Σ j+1〉 � rely for any 0 ≤ j < n. Since �
∃ z. pre0(u, z), � ∃ z. rely0((u, z), (u, z)), and z ∩ (fv(pre) ∪ fv(rely) ∪ fv(guar) ∪
fv(post)) = ∅, there exist P′

0, σ
′
0, Σ

′
0, . . . such that

c′ = 〈P′
0, 〈σ′

0, Σ
′
0〉〉 δ0−→ · · · δn−1−→ 〈P′

n, 〈σ′
n, Σ

′
n〉〉 δn−→ · · · ,

and P′
0 = P, (P′

n)z = Pn, σ′
j
i
v = σ j

iv, Σ′
j
i,i′
v = Σ j

i,i′v, 〈σ′
0, Σ

′
0〉 � pre ∧ pre0,

and 〈σ′
j, Σ

′
j〉, 〈σ′

j+1, Σ
′
j+1〉 � rely ∧ rely0 for any v ∈ z, 0 ≤ i, i′ < N and 0 ≤

j < n. Therefore, c′ ∈ Cmp(P) ∩ A(pre ∧ pre0, rely ∧ rely0) holds. By induction
hypothesis, c′ ∈ C(guar , post) holds. Therefore, c ∈ C(guar , post) holds.

The other cases are similar and omitted due to space limitation. ��

9 Examples

In this section, we verify several example racy programs.

9.1 Verification of DC

The first example program is DC, introduced in Sect. 7. The verification property,
a judgment consisting of the post-condition r0 = 0 ∨ r1 = 0 under appropriate
pre/rely-conditions, is shown with a derivation for DC.

Figure 12 shows an essential part of a derivation for DC, where

pre0 ≡ y0 = 0 ∧ ((x0 = 0 ∧ r0 = 0) ∨ (x0 = 1 ∧ r1 = 0))

pre1 ≡ post0 ≡ y0 = 0 ∧ (r0 = 0 ∨ (x0 = 1 ∧ r1 = 0))

post1 ≡ y0 = 1 ∧ (r0 = 0 ∨ (x0 = 1 ∧ r1 = 0))

rely0 ≡ (y0 = 0 ∨ r0 = 1 ⊃ r1 = 0) ∧ x0 ≤ x0 ∧ I{y0, r1} ∧ D ∧ D

guar0 ≡ (x0 = 0 ∨ r1 = 1 ⊃ r0 = 0) ∧ y0 ≤ y0 ∧ I{x0, x1, r1} ∧ D ∧ D

pre2 ≡ x1 = 0 ∧ ((y1 = 0 ∧ r1 = 0) ∨ (y1 = 1 ∧ r0 = 0))

pre3 ≡ post2 ≡ x1 = 0 ∧ (r1 = 0 ∨ (y1 = 1 ∧ r0 = 0))

post3 ≡ x1 = 1 ∧ (r1 = 0 ∨ (y1 = 1 ∧ r0 = 0))

rely1 ≡ (x1 = 0 ∨ r1 = 1 ⊃ r0 = 0) ∧ y1 ≤ y1 ∧ I{x1, r1} ∧ D ∧ D

guar1 ≡ (y1 = 0 ∨ r0 = 1 ⊃ r1 = 0) ∧ x1 ≤ x1 ∧ I{y0, y1r1} ∧ D ∧ D

Observation-Based Concurrent Program Logic 79

Fig. 13. An essential part of a derivation for 1R1W

and D, D are
∧{ (xi = 0 ∨ xi = 1) ∧ (yi = 0 ∨ yi = 1) | 0 ≤ i < 4 } and∧{ (xi = 0 ∨ xi = 1) ∧ (yi = 0 ∨ yi = 1) | 0 ≤ i < 4 }, respectively. Some

assumptions regarding the inference rules are omitted when the context renders
them obvious.

A key point is that � (rely0 ∧ rely1) ∨ guar0 ⊃ rely1 and � (rely0 ∧ rely1) ∨
guar1 ⊃ rely0 are derived from the observation invariants for DC, y0 = 0 ⊃ y1 =
0, x1 ≤ x1 ⊃ x0 ≤ x0, x1 = 0 ⊃ x0 = 0, and y0 ≤ y0 ⊃ y1 ≤ y1 introduced in
Sect. 7 at the final inference by L-PR.

9.2 Verification of 1R1W

Let us consider a relaxed memory consistency model that prohibits the reorder-
ing of the effects of store statements. Therefore, we expect r0 ≤ r1 under an
appropriate condition when the program in Fig. 11 finishes.

Figure 13 shows an essential part of a derivation for 1R1W, where

rely0 ≡ y0 ≤ x0 ∧ x0 ≤ x0 ∧ I{r0, r1} guar0 ≡ I{x1, y1}
rely1 ≡ I{x1, y1} guar1 ≡ y1 ≤ x1 ∧ x1 ≤ x1 ∧ I{r0, r1}

1R ≡ LD0 r0 y; LD0 r1 x, 1W ≡ ST1 x 1; ST1 y 1, and some assumptions of the
inference rules are omitted when the context renders them obvious.

A key point here is that � (rely0 ∧ rely1) ∨ guar0 ⊃ rely1 and � (rely0 ∧
rely1) ∨ guar1 ⊃ rely0 are derived from the observation invariants for 1R1W,
y1 ≤ x1 ⊃ y0 ≤ x0 and x1 ≤ x1 ⊃ x0 ≤ x0 introduced in Sect. 7 at the final
inference by L-PR.

As explained in Sect. 7, under SPARC-PSO, � (rely0 ∧ rely1)∨ guar1 ⊃ rely0

is not implied, since y1 ≤ x1 ⊃ y0 ≤ x0 is not an observation invariant.

9.3 Verification of IRIW

Finally, we demonstrate the verification of the program introduced in Sect. 1.
The verification property is a judgment consisting of the post-condition r0 ≤
r1 ∨ r2 ≤ r3 under appropriate pre/rely-conditions, although the judgment is
formally shown as (2) in this section since the pre/rely-conditions require some
notation.

80 T. Abe and T. Maeda

First, note that the post-condition does not always hold without axioms for
remote-write-atomicity. Actually, the following computation:

〈LD0 r0 x; LD0 r1 y ‖ LD1 r2 y; LD1 r3 x ‖ ST2 x 1 ‖ ST3 y 1, 〈σ, Σ〉〉
c−→∗ 〈LD0 r0 x; LD0 r1 y ‖ LD1 r2 y; LD1 r3 x, 〈σ,
Σ[x2,0 �→ 1, y3,0 �→ 1, x2,1 �→ 1, y3,1 �→ 1, x2,2 �→ 1, y3,2 �→ 1, x2,3 �→ 1, y3,3 �→ 1]〉〉
e−→∗ 〈LD0 r0 x; LD0 r1 y ‖ LD1 r2 y; LD1 r3 x, 〈σ[x0 �→ 1, y1 �→ 1],

Σ[y3,0 �→ 1, x2,1 �→ 1, x2,2 �→ 1, y3,2 �→ 1, x2,3 �→ 1, y3,3 �→ 1]〉〉
c−→∗ 〈SK, 〈σ[r00 �→ 1, r10 �→ 0, r21 �→ 1, r31 �→ 0, x0 �→ 1, y1 �→ 1],

Σ[y3,0 �→ 1, x2,1 �→ 1, x2,2 �→ 1, y3,2 �→ 1, x2,3 �→ 1, y3,3 �→ 1]〉〉
implies this fact, where we write the substitutions [vi �→ n] and [vi, j �→ n] as
[i :=σi[v := n]] and [i :=Σ i[j :=Σ i, j[v := n]]], respectively, for readability. Addition-
ally, σ and Σ are constant functions to 0 and udf, respectively. Note that we
must confirm that e−→ satisfies the rely-condition of (2).

Thus, the post-condition does not always hold with no additional axiom. Let
us show that the post-condition holds under appropriate pre/rely/guarantee-
conditions with axioms for remote-write-atomicity. To construct a derivation,
we add the auxiliary variables z0 and z1, as shown in Fig. 14.

Fig. 14. IRIW with auxiliary variables

We construct a derivation on each thread. The following three judgments:

{
z0 = 0 ∧ (x0 ≤ y0 ∨

(z1 = 1 ⊃ r2 ≤ r3)), rely0

}
LD r0 x

{
guar0, z0 = 0 ∧ r0 ≤ x0 ∧

((x0 ≤ y0 ∧ r0 ≤ y0) ∨ (z1 = 1 ⊃ r2 ≤ r3))

}
⎧⎨
⎩

z0 = 0 ∧ r0 ≤ x0 ∧
((x0 ≤ y0 ∧ r0 ≤ y0) ∨
(z1 = 1 ⊃ r2 ≤ r3)), rely0

⎫⎬
⎭ LD r1 y

⎧⎨
⎩

guar0, z0 = 0 ∧ r0 ≤ x0 ∧ r1 ≤ y0 ∧
((x0 ≤ y0 ∧ r0 ≤ r1) ∨

(z1 = 1 ⊃ r2 ≤ r3))

⎫⎬
⎭⎧⎨

⎩
z0 = 0 ∧ r0 ≤ x0 ∧ r1 ≤ y0 ∧

((x0 ≤ y0 ∧ r0 ≤ r1) ∨
(z1 = 1 ⊃ r2 ≤ r3)), rely0

⎫⎬
⎭ z0 = 1

⎧⎨
⎩

guar0, z0 = 1 ∧ r0 ≤ x0 ∧ r1 ≤ y0 ∧
((x0 ≤ y0 ∧ r0 ≤ r1) ∨

(z1 = 1 ⊃ r2 ≤ r3))

⎫⎬
⎭

are derived by L-LD and L-MV, where M(V) is
∧{ v ≤ v | v ∈ V }, and

rely0 ≡ (y0 < x0 ∨ (z0 = 1 ∧ r1 < r0) ⊃ z1 = 1 ⊃ r2 ≤ r3) ∧ M{x0, y0, z1} ∧ I{z0, r0, r1}
guar0 ≡ (x0 < y0 ∨ (z1 = 1 ∧ r3 < r2) ⊃ z0 = 1 ⊃ r0 ≤ r1) ∧

I{z1, x1, x2, x3, y1, y2, y3, r2, r3}.

Observation-Based Concurrent Program Logic 81

{
z0 = 0 ∧ (x0 ≤ y0 ∨

(z1 = 1 ⊃ r2 ≤ r3)), rely0

}
LD r0 x; LD r1 y;

z0 = 1

{
guar0, z0 = 1 ∧ ((x0 ≤ y0 ∧ r0 ≤ r1) ∨

(z1 = 1 ⊃ r2 ≤ r3))

}

is derivable by L-SQ. Similarly, so is
{

z1 = 0 ∧ (x1 ≤ y1 ∨
(z0 = 1 ⊃ r0 ≤ r1)), rely1

}
LD r2 y; LD r3 x;

z1 = 1

{
guar1, z1 = 1 ∧ ((x1 ≤ y1 ∧ r2 ≤ r3) ∨

(z0 = 1 ⊃ r0 ≤ r1))

}

from symmetricity, where

rely1 ≡ (x1 < y1 ∨ (z1 = 1 ∧ r3 < r2) ⊃ z0 = 1 ⊃ r0 ≤ r1) ∧ M{x1, y1, z0} ∧ I{z1, r2, r3}
guar1 ≡ (y1 < x1 ∨ (z0 = 1 ∧ r1 < r0) ⊃ z1 = 1 ⊃ r2 ≤ r3) ∧

I{z0, x0, x2, x3, y0, y2, y3, r0, r1}.

Let D and D be
∧{ (xi = 0 ∨ xi = 1) ∧ (yi = 0 ∨ yi = 1) | 0 ≤ i < 4 } and∧{ (xi = 0 ∨ xi = 1) ∧ (yi = 0 ∨ yi = 1) | 0 ≤ i < 4 }, respectively. Note that

v < v′ ∧ D ∧ D means v = 0 ∧ v′ = 1.
By L-ST, {D, rely2} ST y 1 {guar2,	} and {D, rely3} ST x 1 {guar3,	} are

derivable, where

rely2 ≡ x2 ≤ x2 ∧ D ∧ D rely3 ≡ y3 ≤ y3 ∧ D ∧ D

guar2 ≡ y2 ≤ y2 ∧ y3 ≤ y3 ∧ I{x0, x1, x2, x3, r0, r1, r2, r3} ∧ D ∧ D

guar3 ≡ x2 ≤ x2 ∧ x3 ≤ x3 ∧ I{y0, y1, y2, y3, r0, r1, r2, r3} ∧ D ∧ D.

Let us construct separate derivations corresponding to Independent Reads
(IR), Independent Writes (IW), and IRIW. To construct a derivation for IR, it
is sufficient that

� (rely0 ∧ rely1) ∨ guar0 ⊃ rely1 � (rely0 ∧ rely1) ∨ guar1 ⊃ rely0 (1)

is satisfied, as this implies⎧⎨
⎩
z0 = 0 ∧ z1 = 0 ∧

pre01,

rely0 ∧ rely1

⎫⎬
⎭ LD r0 x; LD r1 y;

z0 = 1

∣∣∣∣
∣∣∣∣ LD r2 y; LD r3 x;

z1 = 1

⎧⎨
⎩

guar0 ∨ guar1,
z0 = 1 ∧ z1 = 1 ∧
(r0 ≤ r1 ∨ r2 ≤ r3)

⎫⎬
⎭

under L-PR and L-WK, where pre01 ≡ x0 = 0 ∧ y0 = 0 ∧ x1 = 0 ∧ y1 = 0.
Therefore, we can deduce

{pre01, rely
01} LD r0 x; LD r1 y ‖ LD r2 y; LD r3 x {guar0 ∨ guar1, r0 ≤ r1 ∨ r2 ≤ r3}

by L-AX and L-WK, where rely01 ≡ M{x0, y0, x1, y1} ∧ I{r0, r1, r2, r3}.
Similarly, to construct a derivation for IW, it is sufficient that

� (rely2 ∧ rely3) ∨ guar2 ⊃ rely3 � (rely2 ∧ rely3) ∨ guar3 ⊃ rely2

is satisfied, since this allows us to deduce that {D, rely2 ∧ rely3} {ST y 1 ‖
ST x 1, guar2 ∨ guar3}	.

82 T. Abe and T. Maeda

We now construct the following derivation for IRIW

{pre01 ∧ D, rely01 ∧ rely2 ∧ rely3} IRIW {
∨

{ guar i | 0 ≤ i < 4 }, r0 ≤ r1 ∨ r2 ≤ r3} (2)

it is sufficient that the following is satisfied:

� guar0 ∨ guar1 ⊃ rely2 ∧ rely3 � guar2 ∨ guar3 ⊃ rely01. (3)

Let us recall the observation invariants x0 = x1 and y0 = y1 under the remote-
write-atomicity explained in Sect. 7. Obviously, the observation invariants imply
(1). Additionally, the transfer of monotonicity implies (3). Thus, under remote-
write-atomicity, which is more relaxed than strict consistency (and therefore
under SPARC-PSO), IRIW is guaranteed to work correctly.

10 Conclusion and Future Work

This paper has proposed the notion of observation invariants to fill the gap
between theoretical and realistic relaxed memory consistency models. We have
derived general small-step operational semantics for relaxed memory consistency
models, introduced additional variables xi to denote a value of x observed by i
in an assertion language, and stated a concurrent program logic that is sound
with respect to the operational semantics. Our analysis suggests that the non-
existence of shared variables without observations by threads in the assertion
language ensures the soundness. We have successfully constructed a formal proof
for the correctness of IRIW via the notion of observation invariants. To the best
of our knowledge, the derivation in this paper is the first to verify IRIW in a
logic that handles relaxed memory consistency models like SPARC-PSO.

There are four directions for future work. The first is to invent systematic
construction of observation invariants and to find further applications of obser-
vation invariants. The observation invariants shown in this paper are given in
ad-hoc ways. The example programs that are verified in this paper are small.
Systematic construction of observation invariants will tame observation invari-
ants for larger programs, provide further applications of observation invariants,
and enable us to compare our method with existing methods. The second is to
implement a theorem prover that can verify programs in the logic in this paper.
Manual constructions of derivations, which are done in this paper, are tedious
and error-prone. The third is to compare our logic with doxastic logic [18], which
is based on the notion of belief. We introduced the additional variable xi to denote
x as observed by thread i, but this variable does not always coincide with x on
physical memories. Therefore, xi may be considered to be x as believed by thread
i. The fourth is a mathematical formulation of our logic. Although mathemat-
ical formulations of rely/guarantee-reasoning have been stated in some stud-
ies (e.g., [9]), they assume that (program) shared variables are components in
assertion languages (called a cheat in [9]). Since the insight provided in this
paper dismisses shared variables from assertion languages, the assumption can-
not be admissible, and a new mathematical formulation of our logic based on
rely/guarantee-reasoning is significant.

Observation-Based Concurrent Program Logic 83

Acknowledgments. Some definitions in this paper are inspired by Qiwen Xu’s PhD
thesis [35]. The authors would like to thank him for answering our questions respect-
fully. The authors also thank the anonymous reviewers for several comments to improve
the paper. This work was supported by JSPS KAKENHI Grant Number 16K21335.

References

1. Abe, T., Maeda, T.: Concurrent program logic for relaxed memory consistency
models with dependencies across loop iterations. J. Inf. Process. (2016, to appear)

2. Abe, T., Maeda, T.: A general model checking framework for various memory con-
sistency models. Int. J. Softw. Tools Technol. Transferr (2016, to appear). doi:10.
1007/s10009-016-0429-y

3. Abe, T., Ugawa, T., Maeda, T., Matsumoto, K.: Reducing state explosion for
software model checking with relaxed memory consistencymodels. In: Proceedings
of SETTA. LNCS, vol. 9984 (2016, to appear). doi:10.1007/978-3-319-47677-3 8

4. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: Proceedings of PLDI, pp. 68–78 (2008)

5. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In: Pro-
ceedings of POPL, pp. 392–403 (2009)

6. Boudol, G., Petri, G., Serpette, B.P.: Relaxed operational semantics of concurrent
programming languages. In: Proceedings of EXPRESS/SOS, pp. 19–33 (2012)

7. Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and concurrent
separation logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 267–
286. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11957-6 15

8. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580, 583 (1969)

9. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. J. Log. Algebraic Program 80(6), 266–296 (2011)

10. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2003)
11. Intel Corporation: A Formal Specification of Intel Itanium Processor Family Mem-

ory Ordering (2002)
12. ISO, IEC 14882: 2011: Programming Language C++ (2011)
13. Jones, C.B.: Development methods for computer programs including a notion of

interference. Ph.D. thesis, Oxford University (1981)
14. Jonsson, B.: State-space exploration for concurrent algorithms under weak memory

orderings: (preliminary version). SIGARCH Comput. Archit. News 36(5), 65–71
(2008)

15. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47666-6 25

16. Lamport, L.: The temporal logic of actions. ACM TOPLAS 16(3), 872–923 (1994)
17. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying

programs on relaxed memory models. In: Pol, J., Weber, M. (eds.) SPIN
2010. LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16164-3 16

18. Meyer, J.J.C.: Modal epistemic and doxastic logic. In: Gabbay, D.M., Guenthner,
F. (eds.) Handbook of Philosophical Logic, vol. 10, 2nd edn, pp. 1–38. Springer,
Dordrecht (2004)

http://dx.doi.org/10.1007/s10009-016-0429-y
http://dx.doi.org/10.1007/s10009-016-0429-y
http://dx.doi.org/10.1007/978-3-319-47677-3_8
http://dx.doi.org/10.1007/978-3-642-11957-6_15
http://dx.doi.org/10.1007/978-3-662-47666-6_25
http://dx.doi.org/10.1007/978-3-662-47666-6_25
http://dx.doi.org/10.1007/978-3-642-16164-3_16
http://dx.doi.org/10.1007/978-3-642-16164-3_16

84 T. Abe and T. Maeda

19. Nieto, L.P.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003). doi:10.
1007/3-540-36575-3 24

20. Oracle Corporation: The Java Language Specification. Java SE 8 Edition (2015)
21. Owens, S.: Reasoning about the implementation of concurrency abstractions on

x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 23

22. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 391–407. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 27

23. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T., O’Hearn,
P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15057-9 4

24. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proceedings of PLDI, pp. 175–186 (2011)

25. Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S., Ridge, T., Braibant, T., Myreen,
M.O., Alglave, J.: The semantics of x86-CC multiprocessor machine code. In: Pro-
ceedings of POPL, pp. 379–391 (2008)

26. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

27. SPARC International Inc.: The SPARC Architecture Manual, Version 9 (1994)
28. Stølen, K.: Development of parallel programs on shared data-structures. Technical

report UMCS-91-1-1, Department of Computer Science, University of Manchester
(1991)

29. Tofan, B., Schellhorn, G., Bäumler, S., Reif, W.: Embedding rely-guarantee rea-
soning in temporal logic. Technical report, Institut für Informatik, Universität
Augsburg (2010)

30. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: Navigating weak memory with ghosts,
protocols, and separation. In: Proceedings of OOPSLA. 691–707(2014)

31. Vafeiadis, V.: Formal reasoning about the C11 weak memory model. In: Proceed-
ings of CPP (2015)

32. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11 con-
currency. In: Proceedings of OOPSLA, pp. 867–884 (2013)

33. Staden, S.: On rely-guarantee reasoning. In: Hinze, R., Voigtländer, J. (eds.)
MPC 2015. LNCS, vol. 9129, pp. 30–49. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19797-5 2

34. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press,
Cambridge (1993)

35. Xu, Q.: A theory of state-based parallel programming. Ph.D. thesis, Oxford Uni-
versity Computing Laboratory (1992)

36. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects Comput. 9(2), 149–174 (1997)

http://dx.doi.org/10.1007/3-540-36575-3_24
http://dx.doi.org/10.1007/3-540-36575-3_24
http://dx.doi.org/10.1007/978-3-642-14107-2_23
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-642-15057-9_4
http://dx.doi.org/10.1007/978-3-319-19797-5_2
http://dx.doi.org/10.1007/978-3-319-19797-5_2

Process Calculus

SPEC: An Equivalence Checker for Security
Protocols

Alwen Tiu, Nam Nguyen, and Ross Horne(B)

School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

atiu@ntu.edu.sg, nam4@e.ntu.edu.sg, rhorne@ntu.edu.se

Abstract. SPEC is an automated equivalence checker for security pro-
tocols specified in the spi-calculus, an extension of the pi-calculus with
cryptographic primitives. The notion of equivalence considered is a vari-
ant of bisimulation, called open bisimulation, that identifies processes
indistinguishable when executed in any context. SPEC produces compact
and independently checkable bisimulations that are useful for automat-
ing the process of producing proof-certificates for security protocols. This
paper gives an overview of SPEC and discusses techniques to reduce the
size of bisimulations, utilising up-to techniques developed for the spi-
calculus. SPEC is implemented in the Bedwyr logic programming lan-
guage that we demonstrate can be adapted to tackle further protocol
analysis problems not limited to bisimulation checking.

1 Introduction

SPEC is a tool for automatically checking the equivalence of processes specified
in the spi-calculus [1], an extension of the π-calculus [11], with operators encod-
ing cryptographic primitives. The spi-calculus can be used to encode security
protocols, and via a notion of observational equivalence, security properties such
as secrecy and authentication can be expressed and proved. Intuitively, obser-
vational equivalence between two processes means that the (observable) actions
of the processes cannot be distinguished in any execution environment (which
may be hostile, e.g., if it represents an active attacker trying to compromise the
protocol). The formal definition of observational equivalence [1] involves infi-
nite quantification over all such execution environments and is therefore not an
effective definition that can be implemented. SPEC implements a refinement
of observational equivalence, called open bisimulation [13,17,18] that respects
the context throughout execution. The decision procedure (for finite processes)
implemented here is derived from earlier work [19].

The current version of SPEC allows modelling of symmetric and asymmet-
ric encryption, digital signatures, cryptographic hash functions, and message
authentication codes (MAC). It is currently suited to work with finite processes,
i.e., those without recursion or replication. SPEC is designed with the goal of
producing explicit witness of equivalence, in the form of a bisimulation set, that
can be verified independently. To reduce the size of the witness, so as to ease
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 87–95, 2016.
DOI: 10.1007/978-3-319-47958-3 5

88 A. Tiu et al.

verification, we employ a technique known as bisimulation “up-to” [14]. Bisimu-
lation up-to allows one to quotient a bisimulation with another relation, as long
as the latter is sound w.r.t. bisimilarity. Section 5 discusses some simple up-to
techniques that produce significant reduction in proof size.

The proof engine of SPEC is implemented in the Bedwyr prover [2], with
a user interface implemented directly in OCaml utilising a library of functions
available from Bedwyr. The user, however, does not need to be aware of the
underlying Bedwyr implementation and syntax in order to use the tool. The
latest version of SPEC can be downloaded from the project page1.

This paper gives a high-level overview of SPEC and the theory behind it.
For a more detailed hands-on tutorial, the reader is referred to the user manual
included in the SPEC distribution. All examples discussed here can also be found
in the example directory in the distribution.

SPEC is one of a handful of tools for checking observational equivalence
for cryptographic process calculi. We briefly mention the other tools here;
Cheval’s Ph.D. thesis [8] gives a good overview of the state of the art. Brias and
Borgström implemented the SBC tool to check symbolic bisimulation for the
spi-calculus [4,5]. SBC does not allow compound keys in encryption, nor does it
support asymmetric encryption, so it is strictly less expressive than SPEC (see
Sect. 4). Blanchett implements an extension to ProVerif to check observational
equivalence of biprocesses [3], i.e., pairs of processes which differ only in the struc-
ture of the terms, by reducing it to reachability analysis. Other tools such as
AKISS [6], Adecs [8] and APTE [9] implement symbolic trace equivalence check-
ing (for bounded processes), which is coarser than bisimulation. However, unlike
SPEC, none of these tools currently produce proofs to support the correctness
claim for the protocols they verify.

2 The spi-Calculus

The spi-calculus generalises the π-calculus by allowing arbitrary terms (or mes-
sages) to be output, instead of just names. The set of messages allowed is defined
by the following grammar:

M,N :: = x | 〈M,N〉 | enc(M,N) | pub(M) | aenc(M,N) | sign(M,N) | h(M) | mac(M)

where x denotes a variable. The message 〈M,N〉 represents a pair of messages
M and N , enc(M,N) represents a message M encrypted with symmetric key
N using a symmetric encryption function, aenc(M,N) represents a message M
encrypted with public key N using an asymmetric encryption function, pub(M)
represents a public key corresponding to secret key M , sign(M,N) represents a
message M signed with secret key N using a digital signature function, h(M)
represents the hash of M and mac(M) represents the MAC of M .

The language of processes is given by the following grammar:

P :: = 0 | τ.P | x(y).P | x̄〈M〉.P | ν(x1, . . . , xm).P | (P | P) | (P + P) |!P |
[M = N]P | [checksign(M, N, L)]P |
let 〈x, y〉 = M in P | case M of enc(x, N) in P | let x = adec(M, N) in P.

1 http://www.ntu.edu.sg/home/atiu/spec-prover/.

http://www.ntu.edu.sg/home/atiu/spec-prover/

SPEC: An Equivalence Checker for Security Protocols 89

The intuitive meaning of each of the process constructs is as follows:

– 0 is a deadlocked process. It cannot perform any action.
– τ.P performs a silent action then continues as P .
– x(y).P is an input-prefixed process, where y is bound in P . The process accepts

a value on channel x, binds it to the variable y and evolves as P .
– x̄〈M〉.P is an output-prefixed process. It outputs a message M on channel x

and evolves into P .
– ν(x1, . . . , xm).P is a process that introduces m fresh names x1, . . . , xm that

can be used in the body of P. These fresh names may be used to represent
nonces in protocols or (private) encryption keys.

– P | Q is the parallel composition of P and Q.
– P + Q represents a non-deterministic choice between P and Q.
– !P is a replicated process representing infinitely many parallel copies of P .
– [M = N]P is a process which behaves like P when M is syntactically equal

to N .
– [checksign(M,N,L)]P is used to check that a signature is valid with respect to

a message and public key. This process behaves like P when M is a message,
N is message M signed with some secret key K, i.e. N = sign(M,K), and L
is the corresponding public key pub(K).

– let 〈x, y〉 = M in P is a deconstructor for pairs. The variables x and y are
binders whose scope is P . This process checks that M decomposes to a pair
of messages, and binds those messages to x and y, respectively.

– case M of enc(x,N) in P is a deconstructor for symmetrically encrypted
messages. The variable x here is a binder whose scope is P . This process
checks that M is a message encrypted with key N , decrypts the encrypted
message and binds it to x.

– let x = adec(M,N) in P is a deconstructor for asymmetrically encrypted
messages that binds free occurrences of x in P . This process checks that M is a
message encrypted with public key pub(N), and binds the resulting decrypted
message to x.

3 Open Bisimulation

The equivalence checking procedure implemented by SPEC is based on a notion
of open bisimulation for the spi-calculus developed in [17]. Two processes related
by open bisimulation [15] are observationally indistinguishable, and remain so
even if they are executed in an arbitrary execution context. Hence open bisim-
ulation is robust in an environment where processes are mobile.

An open bisimulation is a relation over processes, parameterised by a repre-
sentation of the history of messages called a bitrace, satisfying some conditions
(see [18,19]). The bitrace is a list of i/o pairs which are either an input pair, writ-
ten (M,N)i, where M and N are messages, or an output pair, written (M,N)o.
Note that open bisimulation uses names, indicated using boldface, to distinguish
extruded private names from free variables. We call these names rigid names, to
distinguish them from constants.

90 A. Tiu et al.

A bitrace represents the history of messages input and output by a pair of
processes. That is, the first (resp. the second) projection of a bitrace represents
a trace of the first (resp. the second) process in the pair. In an open bisimula-
tion, a bitrace attached to a pair of processes must be consistent [18]. Roughly,
consistency here means that the two traces that form the bitrace are indistin-
guishable to the attacker. One instance where this is the case is if the two traces
are syntactically identical. However, we also allow two traces to be indistin-
guishable if one can be obtained from the other by renaming the rigid names
in the traces. The idea is that these rigid names represent nonces (i.e., random
numbers) generated during runs of a protocol and should therefore be treated
as indistinguishable: a process that outputs a random number and terminates
should be considered indistinguishable from another process that also outputs
a random number and terminates, although they may output different random
numbers. The actual notion of consistency of bitraces extends this further to
allow traces that contain different encrypted parts that cannot be decrypted by
the attacker to be treated as indistinguishable. The reader is referred to [18] for
the formal definition of bitrace consistency.

Two processes P and Q are bisimilar if there exists a bisimulation set con-
taining the triple (H,P,Q), where H is a bitrace consisting of input pairs of
identical free variables occurring in P and Q. Intuitively, H makes explicit that
free variables in P and Q may be affected by earlier inputs in the context.

SPEC also supports progressing bisimulation [12], which is a form of weak
bisimulation sensitive to mobile contexts. Simulation is also supported by the
keyword sim in place of bisim.

4 An Example

We show here a simple example to illustrate features of the bisimulation output.
The SPEC distribution contains a number of examples, including small tests and
full protocols. Consider the following two processes.

P := a(x).ν(k).ā〈enc(x, k)〉.ν(m).ā〈enc(m, enc(a, k))〉.m̄〈a〉
Q := a(x).ν(k).ā〈enc(x, k)〉.ν(m).ā〈enc(m, enc(a, k))〉.[x = a]m̄〈a〉

This example is taken from [5], where it is used to show the incompleteness
of their symbolic bisimulation. The process P inputs a message via channel a,
binds it to x and outputs an encrypted message enc(x, k). It then generates a
new channel m, sends it off encrypted with the key enc(a, k). Here we assume a
is a constant (or a public channel), so it is known to the intruder. The process
then sends a message on the newly generated channel m. Although the channel
m is a secret generated by P , and it is not explicitly extruded, the intruder can
still interact via m if it feeds the name a to P (hence binds x to a). As a result,
the (symbolic) output enc(x, k) can be ‘concretized’ to enc(a, k), which can be
used to decrypt enc(m, enc(a, k)) to obtain m.

The process Q is very similar, except that it puts a ‘guard’ on the possibility
of interacting on m by insisting that x = a. The above informal reasoning about

SPEC: An Equivalence Checker for Security Protocols 91

the behaviour of P shows that it should be observationally equivalent to Q.
SPEC shows that the two processes are bisimilar, and produces the following
bisimulation (up-to) set:

1. Bi-trace: (?a, ?a)i

First process:
?a(n3).ν(n4).?a〈 enc(n3, n4) 〉.ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.n5〈 ?a 〉.0.
Second process:
?a(n3).ν(n4).?a〈 enc(n3, n4) 〉.ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.[n3 = ?a]n5〈 ?a 〉.0.

2. Bi-trace: (?a, ?a)i.(?n3 , ?n3)i.
First process:
ν(n4).?a〈 enc(?n3, n4) 〉.ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.n5〈 ?a 〉.0
Second process:
ν(n4).?a〈 enc(?n3, n4) 〉.ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.[?n3 = ?a]n5〈 ?a 〉.0.

3. Bi-trace: (?a, ?a)i.(?n3 , ?n3)i.(enc(?n3, n4) , enc(?n3, n4))o.
First process: ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.n5〈 ?a 〉.0
Second process: ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.[?n3 = ?a]n5〈 ?a 〉.0.

4. Bi-trace:
(?a, ?a)i.(?n3 , ?n3)i.(enc(?n3, n4) , enc(?n3, n4))o.

(enc(n5, enc(?a, n4)) , enc(n5, enc(?a, n4)))o.
First process: n5〈 ?a 〉.0, and second process: [?n3 = ?a]n5〈 ?a 〉.0.

5. Bi-trace:
(?a, ?a)i.(enc(?a, n3) , enc(?a, n3))o.(enc(n4, enc(?a, n3)) , enc(n4, enc(?a, n3)))o.

First process: 0, and second process: 0.

This is more or less the output produced automatically by SPEC, with minor
editing to improve presentation. A few notes on this output:

– Typesetting of names and variables: Variables are typeset by prefixing the
variables with a question mark ‘?’ to distinguish them from private names.
Notice how input prefixes are replaced with variables in the bitraces, e.g.,
when moving from 1 to 2.

– The triples are given in the order of the unfolding of the processes, e.g., the
first triple is the original input processes (with a bitrace indicating free variable
?a) which unfolds to the second triple. Notice that in moving from 4 to 5, the
input pair disappears from the bitrace. This is because the variable ?n3 gets
instantiated to ?a, and is removed from the bitrace by the simplification steps
of SPEC.

– Equivariance of bisimulation: Notice that in proceeding from 4 to 5 there is
an implicit renaming performed by SPEC. It is a by-product of equivariance
tabling implemented in Bedwyr (see Sect. 5). Each triple in the bisimulation set
output by SPEC represents an equivalence class of triples modulo renaming
of variables and names (but excluding constants).

92 A. Tiu et al.

5 Implementation

The proof engine of SPEC is implemented on top of the theorem prover/model
checker Bedwyr [2]. The logic behind Bedwyr is a variant of the logic Linc [16],
which is a first-order intuitionistic logic, extended with fixed points and a name-
quantifier ∇. The quantifier ∇ provides a logical notion of fresh names and
is crucial to modelling scope extrusion and fresh name generation in bisim-
ulation checking. Propositions are considered equivalent modulo renaming of
∇-variables. This property, called the equivariance principle, allows one to sup-
port equivariant reasoning in bisimulation checking, by encoding names in the
spi-calculus as ∇-quantified variables.

The proof extraction part of SPEC relies on the tabling mechanism in Bedwyr.
Bedwyr allows one to store previously proved goals in a table, and reuse them in
proving a query later. SPEC utilises this to store bisimulation triples in the table.
The earlier versions of Bedwyr implement a simple syntactic matching to query
a table, which results in too many variants of the same triples to be stored. In the
course of SPEC implementation, the tabling mechanism in Bedwyr is modified
so as to allow one to match a query with a table entry modulo renaming of
∇-variable. Logically, this is justified by the equivariant principle of the logic
underlying Bedwyr. We call this form of tabling equivariant tabling.

In the initial version of SPEC, where a näıve version of the bisimulation
algorithm from [19] was implemented, the size of the bisimulation sets quickly
got out of hand, even for small examples. Several simplifications have then been
introduced to reduce the size of the bisimulation sets. However, these simpli-
fications mean that the produced sets are no longer bisimulations; they are,
instead, bisimulation up-to sets, in the sense of [14]. The following are among
the simplifications done in bisimulation checking:

– Equivariant tabling. The bisimulation set is closed under renaming.
– Reflexivity checking. This says that any process P should be considered bisim-

ilar to itself. However, a simple syntactic check is not enough, and even
unsound. This is due to the fact that in a triple (H,P, P), the bitrace H
may have different orders of names. For example, if H = (a, b)o.(b, a)o, then
the triple (H, c̄〈a〉.0, c̄〈a〉.0) is not in the largest bisimilarity. One needs to
consider equality checking modulo renaming.

– Structural simplification. This is basically applying structural congruences to
simplify processes.

These rather straightforward simplifications, especially equivariant tabling, turn
out to be effective in reducing the bisimulation set and running time. Table 1
shows the significant effect of equivariant tabling on a selection of example prob-
lems. The protocols are single-session authentication protocols, encoded into the
spi-calculus by Brias and Borgström in the SBC prover. The table shows the
running time (in seconds) and the size of the bisimulation set produced for
each example. These examples were tested on a PC with Intel Xeon CPU E5-
1650, 16 GB RAM and running Ubuntu 14.04 LTS 64-bit operating system. The

SPEC: An Equivalence Checker for Security Protocols 93

descriptions of the protocols can be found in, e.g., the security protocol repository
at ENS Cachan.2 The performance gain seems to increase with larger examples,
e.g., the amended version of the Needham-Schroeder symmetric key authentica-
tion protocol produced more than ten thousand triples in the earlier unimproved
version of SPEC, but has been cut down to 835 triples in the current version.

Note that the running time is still considerably higher than other tools such as
ProVerif, which can solve all these problems in a few seconds. However, ProVerif
and other tools do not produce symbolic proofs of equivalence, so there is no
direct comparison with this proof-producing aspect of SPEC.

Table 1. Running time and bisimulation size for some authentication protocols

Protocol Equiv. tabling on Equiv. tabling off

Time Proof size Time Proof size

Andrew secure RPC (BAN version) 16 s 98 17 s 108

Denning-Sacco-Lowe 19 s 63 31 s 103

Kao Chow, v.1 140 s 223 215 s 300

Kao Chow, v.2 177 s 259 273 s 352

Needham-Schroeder symm. key 46 s 161 50 s 173

Needham-Schroeder symm. key (amended) 377 s 835 1598 s 2732

Yahalom (BAN version) 268 s 513 281 s 548

Yahalom (Paulson’s version) 288 s 513 300 s 548

6 Key Cycles Detection

Bedwyr is suited to protocol analysis problems beyond bisimulation. To illustrate
this power, SPEC includes a feature that detects key cycles. Key cycles are
formed when a key is directly or indirectly encrypted by itself. The absence of key
cycles in possible runs of a protocol is important in relating symbolic approaches
and computational approaches to protocol analysis [10]. For example, the process

nu(k1, k2).a〈enc(k1, k2)〉.a〈enc(k2, k1)〉
has a private key k1 encrypted with private key k2 which is encrypted with k1.
Key cycles are a security issue, since the computational security of the encryp-
tion function is dependent on the assumption there are no such cycles. Thus
although both k1 and k2 are never directly revealed to attackers, we cannot
computationally prove that the encryption cannot be broken.

For example, using keyword keycycle, SPEC detects that the following gen-
erates a key cycle.

P := ν(k1, k2, k3).(a〈enc(k1, k3) | a(x).case x of enc(y, k3).a〈enc(y, k2)〉 | a〈k2, k1〉)

2 http://www.lsv.ens-cachan.fr/Software/spore/.

http://www.lsv.ens-cachan.fr/Software/spore/

94 A. Tiu et al.

7 Future Work

We are investigating extensions of SPEC to include blind signatures [7], homo-
morphic encryption and the mismatch operator. Each of these features requires
a problem in the theory to be resolved, before an implementation can be proven
to be correct. SPEC is intended to be part of a tool chain for machine assisted
certification of security protocols. Another part of this tool chain will involve a
proof assistant that will be used to independently verify the bisimulation up-to
relations generated by SPEC. Independently verifiable bisimulation up-to rela-
tions would thereby form dependable proof certificates for security protocols.

Acknowledgements. The authors receive support from MOE Tier 2 grant MOE2014-
T2-2-076. The first author receives support from NTU Start Up grant M4081190.020.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
Inf. Comput. 148(1), 1–70 (1999)

2. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.F.: The Bedwyr system
for model checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

3. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Log. Algebr. Program. 75(1), 3–51 (2008)

4. Borgström, J.: Equivalences and calculi for formal verification of cryptographic
protocols. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2008)

5. Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28644-8 11

6. Chadha, R., Ciobâcă, V., Kremer, S.: Automated verification of equivalence prop-
erties of cryptographic protocols. In: Programming Languages and Systems, pp.
108–127 (2012)

7. Chaum, D.: Blind signature system. In: Advances in Cryptology, Proceedings of
CRYPTO 1983, Santa Barbara, California, USA, 21–24 August 1983, p. 153.
Plenum Press, New York (1984)

8. Cheval, V.: Automatic verification of cryptographic protocols: privacy-type prop-
erties. Ph.D. thesis, ENS Cachan, December 2012

9. Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 587–592.
Springer, Heidelberg (2014)

10. Comon-Lundh, H., Cortier, V., Zalinescu, E.: Deciding security properties for cryp-
tographic protocols. Application to key cycles. ACM Trans. Comput. Log. 11(2),
9:1–9:42 (2010). doi:10.1145/1656242.1656244

11. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part II. In:
Information and Computation, pp. 41–77 (1992)

12. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for
CCS. Fundamenta Informaticae 16(2), 171–199 (1992)

13. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Inf. 33(1), 69–97
(1996)

http://dx.doi.org/10.1007/978-3-540-28644-8_11
http://dx.doi.org/10.1145/1656242.1656244

SPEC: An Equivalence Checker for Security Protocols 95

14. Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comput. Sci. 8,
447–479 (1998)

15. Sangiorgi, D., Walker, D.: π-Calculus: A Theory of Mobile Processes. Cambridge
University Press, Cambridge (2001)

16. Tiu, A.: A logical framework for reasoning about logical specifications. Ph.D. thesis,
Pennsylvania State University, May 2004

17. Tiu, A.F.: A trace based bisimulation for the spi calculus: an extended abstract. In:
Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 367–382. Springer, Heidelberg
(2007)

18. Tiu, A.: A trace based bisimulation for the spi calculus. CoRR, abs/0901.2166
(2009)

19. Tiu, A., Dawson, J.E.: Automating open bisimulation checking for the spi calculus.
In: Proceedings of the 23rd IEEE Computer Security Foundations Symposium
(CSF 2010), pp. 307–321. IEEE Computer Society (2010)

Binary Session Types for Psi-Calculi

Hans Hüttel(B)

Department of Computer Science, Aalborg University, Aalborg, Denmark
hans@cs.aau.dk

Abstract. Binary session types can be used to describe communication proto-
cols, and to ensure a variety of properties, e.g. deadlock freedom, liveness, or
secure information flow. Session type systems are often formulated for variants
of the π-calculus, and for each such system, the central properties such as session
fidelity must be re-established.

The framework of psi-calculi introduced by Bengtson et al. makes it possible
to give a general account of variants of the pi-calculus. We use this framework
to describe a generic session type system for variants of the π-calculus. In this
generic system, standard properties, including fidelity, hold at the level of the
framework and are then guaranteed to hold when the generic system is instanti-
ated.

We show that our system can capture existing systems including the session
type system due to Gay and Hole, a type system for progress due to Vieira and
Vasconcelos and a refinement type system due to Baltazar et al. The standard
fidelity property is proved at the level of the generic system, and automatically
hold when the system is instantiated.

1 Introduction

Binary session types are a type discipline for concurrent processes that arose in the
work of Honda [16] in the setting of the π-calculus; a binary session type describes the
protocol followed by the two ends of a communication channel. A well-typed process
will not exhibit communication errors, since the endpoints of a channel are then known
to follow the dual parts of their protocol. Session types have been used for describing a
variety of program properties, including liveness properties. In the setting of sessions,
a particularly important property is that of progress [9,24], namely that a session will
be never stuck waiting for a message that does not arrive. Binary session type systems
have been extended with standard notions of polymorphism [12] and subtyping [13].

Overall, there are now many different session type systems that share certain fea-
tures and yet are different. For every such system certain properties must be established
in order for them to be useful; in particular, one must establish a fidelity property: any
usage of a channel in a well-typed process will evolve according to the usage of the
channel as described by its session type.

An attempt to classify existing type systems for process calculi is that of generic
type systems that consist of a collection of general type rules that can be instantiated to
give a concrete type system for a particular property. This approach was introduced by
Igarashi and Kobayashi [21] and continued by König [23].
c© Springer International Publishing AG 2016

A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 96–115, 2016.
DOI: 10.1007/978-3-319-47958-3 6

Binary Session Types for Psi-Calculi 97

At the level of process calculus semantics one can also formulate generic process
calculi. The psi-calculus framework of Bengtson et al. [2] uses a generic process syntax
and semantics, and concrete π-like process calculi can then be obtained by suitable
instantiations of the parameters of the generic calculus. The genericity of psi-calculus
comes from having the notion of mobile names with scope together with allowing for
channels to be arbitrary terms from a so-called nominal data type.

This paper presents a generic session type system for psi-calculi. Other generic type
systems have already been proposed in this setting: A type system generalizing simple
type systems [19] and a type system for resource-aware properties [20].

In our generic type system there is no type language for sessions; instead we assume
that session types have certain labelled transitions. This is in the tradition of behavioural
contracts [6] and the work of [7] that both provide behavioural type disciplines in which
types have transitions.

Psi-calculus session channels can be arbitrary terms, so a major challenge is to deal
with this. More precisely, we capture the terms-as-channels discipline by introducing a
notion of session constructor. Whenever a session is created, private session channels
are introduced by means of scoped endpoint constructors that must be applied to an
ordinary term in order to create a session channel from the term. The type system keeps
track of how the behaviour of a session channel evolves by using the transition relation
on types to keep track of the modified behaviour of the endpoint constructors.

The central safety result for a binary session type discipline is that of fidelity. In
order to express and prove that fidelity holds for all instances of our generic type system,
we give a labelled transition semantics that records the information consumed by each
step of a session.

Finally, we describe how existing binary session type systems arise as instances
of our general type system. Here, the use of assertions makes it possible to explicitly
capture the additional concepts used in some of these systems. The systems that we
study are a system for ensuring progress due to Vieira and Vasconcelos [24], a type
system for correspondence assertions due to Vasconcelos et al. [1] and the original
systems of Gay and Hole [13].

2 Psi-Calculi

In presentations of binary session type systems for process calculi (e.g. [1,14,24]),
a common approach taken is to use an untyped syntax of the process calculus along
with an untyped semantics. One will then state the fidelity and safety results by suit-
able annotations of the untyped process expressions and transitions. In this paper we
also take this route: We first introduce an untyped syntax of processes and an untyped
semantics. In Sect. 4.3 we then present a typed version of the syntax and show how to
find typed transitions from the untyped semantics.

2.1 Names, Terms and Assertions

Names are central to psi-calculi; we assume that these form a nominal set N – for the
precise definition, see [11]. Informally speaking, a nominal set is a set whose members

98 H. Hüttel

can be affected by names being bound or swapped. If x is an element of a nominal set
and a ∈ N , we write a � x, to denote that a is fresh for x; the notion extends to sets of
names in the expected way.

Psi-calculus processes can contain terms M,N, . . .; these must form a nominal data
type [2] T [11] which is a nominal set with internal structure. If Σ is a signature, a
nominal data type is then a Σ -algebra, whose carrier set is a nominal set. In the nominal
data types of ψ-calculi we use simultaneous term substitution X [z̃ := Ỹ] which is to be
read as stating that the terms in Ỹ replace the names in z̃ in X in a capture-avoiding
fashion.

Processes can also contain assertions Ψ , that must form a nominal datatype A.
We require a partial composition operator � on A, a symmetric and transitive binary
relation � on A and a special unit assertion 1 such that

Ψ1 �Ψ2 � Ψ2 �Ψ1 Ψ1 � (Ψ2 �Ψ3) � (Ψ1 �Ψ2)�Ψ3

Ψ �1 � Ψ Ψ � Ψ ′ ⇒ Ψ �Ψ1 � Ψ ′
�Ψ1

An assertionΨ is unlimited ifΨ �Ψ �Ψ . We have a partial order on assertions induced
by Ψ ≤ Ψ �Ψ ′, and we write Ψ < Ψ ′ iff Ψ ≤ Ψ ′ and Ψ �� Ψ ′.

2.2 Processes

Unlike the π-calculus, channels can be arbitrary terms in a psi-calculus. We therefore
assume a notion of channel equivalence; Ψ |= M ↔̇ N denotes that terms M and N
represent the same channel, given the assertion Ψ . That channel equivalence can in the
general case depend on the global knowledge, represented by Ψ , is due to the fact that
psi-calculus instances may use assertions that involve identities on names.

We extend psi-calculi with the selection and branching primitives of Honda et
al. [18], as these are standard in session calculi. Branching now becomes M � {l1 :
P1, . . . , lk : Pk} and selection is written as M � l.P1, where l ranges over a set of selector
label names. As in [18], these label names cannot be bound by input or restriction.

We introduce session channels by means of dual endpoints as in Giunti and Vas-
concelos [14]. The construct (νc)P can be used to set up a new session channel with
the session constructor c that can be used to build channels from terms. The notion of
session constructor is explained in Sect. 4.1.

All in all, this gives us the untyped formation rules

P :: =M(λ x̃)X .P | MN.P | P1 | P2 | (νc)P | !P | (|Ψ |) | case ϕ1 : P1, . . . ,ϕk : Pk
| M � l.P1 | M �{l1 : P1, . . . , lk : Pk}

Restriction and input are the binding constructs; we use bn(P) and n(P) to denote the
sets of bound names in P and names in P, respectively.

The input process M(λ x̃)X .P contains the pattern X ; this is to be thought of as a
term with free pattern variables x̃. We allow patterns to be arbitrary and simply require
that they form a nominal datatype. The input process can receive a term M if and only
if M matches the pattern X . The bound names of this process are x̃∪bn(P).

The output process MN.P sends out the term N on the channel M and continues as
P. The selector construct case ϕ1 : P1, . . . ,ϕk : Pk describes a conditional process that

Binary Session Types for Psi-Calculi 99

continues as Pi if condition ϕi is true. Any assertion Ψ can be embedded as the process
(|Ψ |), and in this way it is possible to express the notion of inaction (a ‘nil’ process).
The remaining process constructs are those of the π-calculus.

Moreover, processes can contain conditions ϕ that are used in the case-construct;
these are also assumed to form a nominal datatype.

3 An Annotated Semantics

Our labelled transition semantics has transitions are of the form Ψ � P
α−→ P′. This is

to be read as stating that, given the global knowledge represented by the assertion Ψ ,
process P can evolve to process P′ by performing the action α .

In the semantics, we need to give an account of pattern matching for input processes.
Like [5] we assume the existence of a match relation that describes the conditions
on pattern variables needed for a term N to match a pattern X . This match rela-
tion is particular to the actual psi-calculus instance under consideration. In any case,
L̃ ∈ MATCH(N, ỹ,X) if the term N can match the pattern X with pattern variables ỹ in
such a way that these variables are instantiated with the corresponding subterms of L̃.

Moreover, the semantics must describe when and how conditions in a case-construct
hold. We therefore assume the existence of an entailment relation Ψ |= ϕ that describes
when a condition ϕ is true, given an assertion Ψ . This relation is also particular to the
actual psi-calculus instance under consideration.

Finally, assertions are important in the semantics. We sometimes need to extract the
assertion information of a process P; we call this its frameF (P) =ΨP, where ΨP is the
composition of assertions in P. We let

F (P | Q) =F (P)�F (Q) F ((νb)P) = (νb)F (P)
F ((|Ψ |)) =Ψ F (P) = 1 otherwise

The semantics is specially tailored for stating and proving the safety properties of
our type system. The structure of actions is given by the formation rules

α ::=M� l | M� l | M(νã)N | KN | (νã)τ@(νb̃)(M N K) | (νã)τ@(M� l�N)

The labels for observable actions are as in [2]: M(νã)N denotes an output on channel
M of N that extrudes the names in ã, and KN denotes an input on channel K of term N.
The transition rules for observable transitions are given in Table 1.

On the other hand, τ-actions now record usage of bound names. This is a major
difference from the presentation in [2] and is introduced, since we have to describe how
the session type of a bound name that is used as a session constructor will evolve as the
result of a τ-action. The rules for τ-transitions are shown in Table 2.

In the label (νã)τ@(νb̃)(M N K) we record the set of private names ã that are used
in the channel subject pair (M,K) communication as well as the set of private names b̃
that are extruded from the output process. This is expressed by the side condition of the
rules (COM) and (RES-COM).

In the label (νã)τ@(M� l�N) we record the set of private names ã that are used
to build the selector pair (M,N). This is captured by the side conditions of the rules
(CHOOSE) and (RES-CHOOSE). If any of the sets in a label is empty, we omit it.

100 H. Hüttel

Table 1. Labelled transition rules for observable transitions. The symmetric versions of COM,
CHOOSE and PAR are omitted. In PAR we assume F (Q) = (νb̃Q)ΨQ where b̃Q � Ψ ,P and α .

4 Types in the Generic Type System

In this and the following section we present our generic type system; our account of ses-
sion types does not rely on a particular type language and is inspired by the transition-
based approach of [6].

4.1 Session Types and Endpoint Types

We let T range over the set of types and distinguish between base types B, session types
S and endpoint types TE . An endpoint type TE describes the behaviour at one end of a
channel. A session type S describes the behaviour at both ends of a channel and is a pair
(T1,T2) of endpoint types.

In psi-calculi channels can be arbitrary terms; in our setting we use special names
called session constructors; this is a term constructor that can be applied to an appropri-
ate number of terms. The result of this is a term that can be used as session channel. A
term M can contain more than one session constructor; if the principal session construc-
tor of the term is c, M will have a type of the form T@c. The type rules for terms depend
on the specific psi-calculus instance, and these rules must describe what is meant by the
principal session constructor and how the type of a composite term to be used as a
session channel is determined.

Binary Session Types for Psi-Calculi 101

Table 2. Labelled transition rules for τ-transitions. Symmetric versions of COM and CHOOSE are
omitted. In COM and CHOOSE we assume that F (P) = (νb̃P)ΨP and F (Q) = (νb̃Q)ΨQ where

b̃P � Ψ , b̃Q,Q,M and P, and b̃Q � Ψ , b̃P,P,K and Q.

Types may contain free names. A type with free names x̃ is denoted T (x̃), while a
type with names instantiated by the terms M̃ is denoted T [M̃].

We assume an additive structure on types [17].

Definition 1 (Type structure [17]). A type structure is a triple (T,+,
.=) where T is a

set of types,+ is a partial binary operation on T and
.= is a partial equivalence relation

on T such that T1+T2
.= T2+T1 and (T1+T2)+T3

.= T1+(T2+T3) for all T1,T2,T3 ∈T.

We say that an endpoint type TE is unlimited if TE = TE +TE and assume the exis-
tence of a type end; this is the type of a completed session. Following [14], we also
assume that the additive structure on types satisfies the axioms

(T1,T2)
.= (T1,T2)+(end,end) if T1,T2 are not unlimited (1)

(T1,T2)
.= T1 +T2 (2)

In all other cases, summation of session types is undefined.
The summation axiom (2) ensures that a session type can be split into its two end-

points, as will be clear from the type rule for parallel composition. Note that, because of
the axiom (2) and the commutativity requirement for structures, we identify the session
types (T1,T2) and (T2,T1).

Definition 2. Let T1 and T2 be types. We write T1 ≤ T2 if either T1 = T2 or for some T
we have T1 +T = T2. We write T1 ≤min T2 if T1 is a least type T such that T ≤ T2.

102 H. Hüttel

Note that the least type defined above need not be unique.

Transitions for Types. We assume a deterministic labelled transition relation defined on

the set of endpoint types. Transitions are of the form TE
λ−→ T ′ where

λ ::= !T1 | ?T1 | �l | �l

If a channel has endpoint type TE with a transition TE
?T1−−→ T ′

E , then following an input
of a term of type T1, the channel will now have endpoint type T ′

E . For a given type
language, we must give transition rules that describe how these transitions arise. The
type end has no transitions.

We assume a duality condition for labels in labelled type transitions; we define

!T1 = ?T2 and �l = �l and vice versa, and we require that λ = λ .
We assume an involution T on endpoint types. For base types (ranged over by B),

duality is not defined. For transitions we require that TE
λ−→ T ′

E ⇐⇒ TE
λ−→ T ′

E . Since
an unlimited type T satisfies that T = T +T , any type of this kind is only allowed to
have labelled transitions leading back to itself. That is, if T is unlimited, then whenever

T
λ−→ T ′ for some λ we require T ′ = T . A session type is balanced if the types of its

endpoint are dual to each other.

Definition 3. A session type S is balanced if S= (TE ,TE) for some TE.

4.2 Type Environments

A type environment Γ is a finite function from names to types, often written as x̃ : T̃ .
We denote the empty type environment by /0. Addition is defined by

Definition 4. Let Γ1 and Γ2 be type environments. The sum of Γ1 and Γ2 is defined as
the type environment Γ1 +Γ2 that is given by

(Γ1 +Γ2)(x) =

⎧⎪⎨
⎪⎩

Γ1(x) x ∈ dom(Γ1)\dom(Γ2)
Γ2(x) x ∈ dom(Γ2)\dom(Γ1)
Γ1(x)+Γ2(x) otherwise, i f this sum is de f ined

We write Γ1 ≤ Γ2 if there exists a Γ such that Γ1 +Γ = Γ2.
We write Γ ±c : T to denote Γ +c : T if c /∈ dom(Γ) and Γ ′+c : T if Γ =Γ ′+c :U

for some typeU ; this operation is used to denote how the type information for a session
constructor c is updated when a session channel built using the session constructor c
evolves. If c is already present in Γ , the session behaviour is updated. Otherwise, the
behaviour is added to Γ .

A type environment Γ is balanced if for every x ∈ dom(Γ) we have that whenever
Γ (x) = S, then S is balanced. Similarly, Γ is unlimited if for every x ∈ dom(Γ) we have
that Γ (x) is an unlimited type.

Binary Session Types for Psi-Calculi 103

4.3 A Typed Syntax and Its Semantics

From now on we will use a typed syntax for ψ-calculi, where restrictions are of the form
(νx : T)P and state that x has type T in P. If P is a process in the untyped syntax with all
bound names distinct and Γ is a type environment where dom(Γ) = bn(P), then PΓ is
the corresponding typed process which has been annotated according to the bindings in
Γ . If P1 and P2 are typed processes, we write P1 �P2 if P1 and P2 differ only in their type
annotations for bound names, i.e. for some P and Γ1,Γ2 where dom(ΓP1) = dom(ΓP2) we
have P1 = PΓ1 and P2 = PΓ2 .

We extend the semantics to the typed case as follows. For a typed process P we
write Ψ � P

α−→ P′ if there exists a type environment Γ such that P = PΓ where P is
an untyped process and Ψ � P

α−→ P′ where P′ = P′Γ ′ for some Γ ′. When no confusion
arises, we say that a typed transition follows from a given transition rule in the untyped
semantics if the corresponding untyped transition was concluded using this rule.

Note that in this typed interpretation we can have that Ψ � P
α−→ P′ for more than

one P′ for any given α , since there can be several different type annotations of the
result of a transition in the untyped semantics. All our results on type preservation are
therefore stated up to � and must be read as saying that there exists a type annotation
such that the conclusion holds. We therefore write Γ ,Ψ �� P if there exists a P1 where
P1 � P such that Γ ,Ψ � P1.

5 Type Judgements in the Generic Type System

Since the type system is generic, some parts of the type system depend on the specific
psi-calculus instance under consideration. The type rules for processes are common to
all instances, since the syntax for processes is always the same. On the other hand, the
structure and interpretation of terms, patterns, assertions, and conditions is specific to
each psi-calculus instance and must be defined separately. In the following sections we
describe the requirements that any such instance of the type system must follow.

The type judgements in any instance of the system are of the form Γ ,Ψ �J where
J is built using the formation rules

J ::=M : T | X : T̃ → U |Ψ | ϕ | P
Type judgments must satisfy the standard well-formedness requirement: whenever free
names occur, their types must be declared in the type environment. More specifically,
we require that judgements Γ ,Ψ � J must always be well-formed, i.e. that fn(J) ⊆
dom(Γ), and that the environment-assertion pair Γ ,Ψ must be similarly well-formed,
i.e. that fn(Ψ) ⊆ dom(Γ).

In order for our generic type system to be safe, we must keep track of the resources
used in communication and selections to ensure that they are only those needed. We
capture this by requiring certain judgements to be minimal.

Definition 5. We write Γ ,Ψ �min J if Γ ,Ψ � J and for every Γ ′ < Γ and Ψ ′ < Ψ
we have Γ ′,Ψ ′ �� J .

We require minimality to be unique up to assertion equivalence.

Requirement 1. If Γ1,Ψ1 �min J and Γ2,Ψ2 �min J then Γ1 = Γ2 andΨ1 � Ψ2.

104 H. Hüttel

5.1 Typing Session Channels

Since arbitrary terms can be used as session channels as long as they contain session
constructors, we need a special notation for describing that a term is a well-typed ses-
sion channel. We write Γ ,Ψ � M : T@c if the term M has type T when using session
constructor c. The rules defining this judgement depend on the instance of the type
system but we require that the session constructor must have an endpoint type for the
resulting channel to be typeable.

Requirement 2. If Γ ,Ψ � M : T@c then Γ (c) = TE for some endpoint type TE.

5.2 Typing Patterns

For patterns, judgments are of the form

Γ ,Ψ � X : T̃ → U

The intended interpretation is that the pattern X has type T̃ → U if the pattern variables
will be bound to terms of types T̃ whenever the pattern matches a term of type U .

In our treatment of typing patterns we again appeal to the matching predicate. The
type rules for patterns must be defined for each instance. However, we require the fol-
lowing application rule which says that if a term N matches a pattern of type T̃ → U ,
binding the pattern variables to terms of types T̃ , then N must be of type U .

(APP)

Γ ,Ψ ′ � X : T̃ → U L̃ ∈ MATCH(N, x̃,X)
Γi,Ψi � Li : Ti for 1 ≤ i ≤ |T̃ |

Γ +∑|T̃ |
i=1 Γi,Ψ � N :U

where Ψ =Ψ ′ ⊗
⊗

1≤i≤|T̃ |
Ψi

Moreover, the type rules must satisfy the converse requirement: If a term M matches
a pattern X , then all subterms Ñ that instantiate the pattern variables will have the types
required by the type of X . Moreover, the type environments and assertions required to
type these subterms are exactly those needed to type the corresponding parts of M.

Requirement 3. Suppose Ñ ∈ MATCH(M, x̃,X) andΓ1+ x̃ : T̃ ,Ψ1 �min X : T̃ →U. Then
there exist Γ2i,Ψ2i such that Γ2i,Ψ2i �min Ni : Ti for all 1 ≤ i ≤ |x̃| = n.

5.3 Type Rules for Terms, Assertions and Conditions

The sets of terms, assertions and conditions are specific to each psi-calculus instance,
so the type rules are also specific for the instance.

The type rules for terms must always satisfy the requirement that equivalent chan-
nels either have the same session type (in which case the channels are session channels)
or dual endpoint types (in which case the channels are the two endpoints of the same
session channel).

Requirement 4. If Ψ |=M ↔̇ K and Γ ,Ψ � M : S then Γ ,Ψ � K : S. If Ψ |=M ↔̇ K
and Γ ,Ψ � M : T then Γ ,Ψ � K : T .

The unit assertion must be typeable using no assumptions, i.e. we must have /0,1� 1.

Binary Session Types for Psi-Calculi 105

5.4 Type Rules for Processes

Type judgements for processes are of the form Γ ,Ψ � P, where Ψ is an assertion.
Table 3 contains the type rules for processes. In the type rules, and notably in (PAR),
we use a typed notion of frames for processes; the qualified frame of a process P is still
denoted F (P) but is now a pair 〈ΓP,ΨP〉, where ΨP is the composition of assertions in
P and ΓP records the types of the names local to ΨP. We define this as follows

F (P | Q) = 〈ΓP+ΓQ,ΨP �ΨQ〉
where F (P) = 〈ΓP,ΨP〉,F (Q) = 〈ΓQ,ΨQ〉

F ((νb : T)P) = 〈b : T +ΓP,ΨP〉 where F (P) = (ΓP,ΨP)
F ((|Ψ |)) = 〈 /0,Ψ〉

F (P) = 〈 /0,1〉 otherwise

For patterns, judgments are of the form Γ ,Ψ � X : T̃ → U . The intended interpre-
tation is that pattern X has type T̃ → U if the pattern variables are bound to terms of
types T̃ whenever the pattern matches a term of typeU . An important rule is (PAR); the
type addition axiom (2) enables us to split a session type into two endpoint types, one
for each parallel component; this follows Giunti and Vasconcelos [14].

The type rules for input and output generalize those of usual session type systems
such as [14]. In particular, the subject and the object of the prefix are typed in separate
subenvironments and the type of the subject is updated when typing the continuation.
As subjects in the psi-calculus setting can be arbitrary terms, one cannot simply update
the session type of a channel by updating the type bound to the channel in the type
environment. Instead, we update the type of the channel constructor used to construct
the channel.

6 A Type Preservation Theorem

We now establish a fidelity result that will ensure that whenever a process P is well-
typed in a balanced environment, then in any τ-transition that is the result of a commu-
nication or selection on a session channel constructed using session constructor c, the
resulting process will also be well-typed in a balanced environment – only now the type
of c has evolved according to the protocol specified by the session type.

The direction of a visible action α in the labelled semantics is either ! or ? for a
communication and � or � for a selection; we denote this by d(α).

Definition 6 (Well-typed label). Let α be a label. We call (α,(T,U)) a typed label if
U is either a type or •. We define Γ ,Ψ � α : (T@c,U) as follows:

1. If Γ1,Ψ1 � M : T@c and Γ2 + ã : T̃ ,Ψ2 � N :U and T
!U−→ T ′ then Γ1 +Γ2,Ψ1 �Ψ2 �

M(νã)N : (T@c,U).
2. if Γ1,Ψ1 � K : T@c and Γ2,Ψ2 � N : U and T

?U−→ T ′ then Γ1 +Γ2,Ψ1 �Ψ2 � KN :
(T@c,U) .

3. If Γ ,Ψ � M : T@c and T
�,l−−→ T ′ then Γ ,Ψ � M� l : (T@c,•).

106 H. Hüttel

Table 3. Psi-calculus type rules

4. If Γ ,Ψ � M : T@c and T
�,l−−→ T ′ then Γ ,Ψ � M� l : (T@c,•).

5. If Γ1,Ψ1, b̃1 : Ṽ1 � M(νã)N : (T@c,U) and Γ2,Ψ2, b̃2 : Ṽ2, ã : Ṽ3 � KN : (T@c,U)
then Γ1 +Γ2,Ψ1 �Ψ2 � (νb̃1 ∪ b̃2)τ@(νã)(M N K) : (T@c,U).

6. If Γ1 +Γ11,Ψ1 � M � l : (T@c,•) and Γ2 +Γ12,Ψ2 � K � l : (T@c,•) then Γ1 +
Γ2,Ψ1 �Ψ2 � τ@(νã)(M� l�K) : (T@c,•), where Γ11 +Γ12 = ã : T̃ .

Binary Session Types for Psi-Calculi 107

We write Γ ,Ψ �min α : (T@c,U) if the type judgements involved in the above are all
minimal.

For our result, we define session updates for τ-labels. The idea behind the definition
is that the behaviour of the session constructor should be updated in the type environ-
ment if the τ-label was due to a communication created by a free session constructor.
Otherwise, the behaviour is not mentioned in the type environment and not modified.

Definition 7 (Update for unobservable labels). Let Γ1,Γ be type environments with
Γ1 ≤ Γ . Then

1. If Γ1,Ψ1 � (νã)τ@(νb̃)(M N K) : (T@c,T1) and Γ = Γ ′ + c : (T ′,T ′′) with c /∈
b̃∪dom(Γ ′) and T ′ !T1−→ T ′

1 and T ′′ ?T1−−→ T ′′
2 , we let

Γ ± (νã)τ@(νb̃)(M N K : (T@c,T1))
def= Γ ′ + c : (T ′

1 ,T
′′

2)

2. If Γ1,Ψ1 � τ@(νã)(M � l � K) : (T@c,•) and Γ = Γ ′ + c : (T ′,T ′′) with c /∈
ã,dom(Γ ′) and T ′ �,l−−→ T ′

1 and T ′′ �,l−−→ T ′′
2 , we let

Γ ± τ@(νã)(M� l�K) : (T@c,•) def= Γ ′ + c : (T ′
1 ,T

′′
2)

Lemma 8 (Well-typed observable actions). Suppose we haveΨ0 � P
α−→ P′ and that

Γ ,Ψ � P withΨ ≤ Ψ0. Then

1. If α =M� l there exists a Γ ′ ≤ Γ and aΨ ′ ≤Ψ such that Γ ′,Ψ ′ �min α : (T1@c,T2)
2. If α =M� l there exists a Γ ′ ≤ Γ and aΨ ′ ≤Ψ such that Γ ′,Ψ ′ �min α : (T1@c,T2)
3. If α = M(νã)N there exists a Γ ′ ≤ Γ , a Γ ′

P ≤ ΓP and a Ψ ′ ≤ Ψ such that Γ ′ +
Γ ′
P ,Ψ ′ �min α : (T1@c,T2). Moreover, dom(Γ ′

P) = ã.
4. If α = KN there exists a Γ ′ ≤ Γ and a Ψ ′ ≤ Ψ , a Γ ′′ and a Ψ ′′ such that Γ ′ +

Γ ′′,Ψ ′
�Ψ ′′ �min α : (T1@c,T2) with Γ ′,Ψ ′ �min K : T1@c and Γ ′′,Ψ ′′ �min N : T2.

We can now show that all τ-transitions have a well-typed label. If P is well-typed
in a balanced type environment Γ and all type annotations of local names in P are
balanced, we write Γ ,Ψ �bal P,

Note that for τ-labels, the subject types involved have to be dual to each other for
the label to be well-typed.

Theorem 9 (Well-typed τ-actions). Suppose we have Ψ0 � P
α−→ P′, where α is a τ-

action and that Γ ,Ψ �bal P and Ψ ≤ Ψ0. Then for some Ψ ′ ≤ Ψ and Γ ′ ≤ Γ we have
Γ ′,Ψ ′ �min α : (T@c,U).

If Γ ,Ψ �bal P and P performs an internal move to P′, the fidelity theorem tells us
that P′ is also well-typed wrt. a balanced type environment in which the types of the
session name involved in the action have evolved according to its protocol.

Theorem 10 (Fidelity). Suppose we have Ψ0 � P
α−→ P′, where α is a τ-action and

that Γ ,Ψ �bal P. Then for some Γ ′ ≤ Γ and for some Ψ ′ ≤ Ψ we have Γ ′,Ψ ′ �min α :
(T@c,U) and Γ ± (α,(T@c,U)),Ψ ′ �bal� P′.

Proof. (Outline) By Theorem 9, we know that the label α is minimally well-typed; that
is, we have Γ ′,Ψ ′ �min α : (T@c,U) for some Γ ′ ≤ Γ ,Ψ ′ ≤ Ψ . The rest of the proof
now proceeds by induction in the proof tree for the transition Ψ0 � P

α−→ P′.

108 H. Hüttel

7 Instances of the Type System

In this section we describe how existing binary session type systems can be captured
within our generic type system. For each instance we represent the process calculus
used in the original type system as a psi-calculus and then define the sets of types, the
transition rules for session types and the addition operation on session types. We must
then supply type rules for terms, assertions and conditions.

For every existing type system with a typability relation �′ we describe a translation
�·� of the original type judgements Γ �′ P into our generic system such that we have

Γ �′ P ⇐⇒ �Γ �′ P�

In each case we show that the type rules for processes in the definition of �′ are instances
of our generic type rules for processes together with the new type rules for terms, asser-
tions and conditions for the instance.

7.1 Gay-Hole Sessions

The session type system due to Gay and Hole [13] introduces recursive types and sub-
typing for a π-calculus; the two ends of a channel c are distinct names, c+ and c−.
Session types are given by the formation rules

S ::= X | end |?T1.T2 |!T1.T2 | &〈l1 : S1, . . . , lk : Sk〉 | ⊕〈l1 : S1, . . . , lk : Sk〉 | μX .S

and endpoint types by the formation rules

T ::= X | S | μX .T | B
Base types B are self-dual. For session types we have

end
def= end ?T1.T2

def= !T1.T2

!T1.T2
def= ?T1.T2 &〈l1 : S1, . . . , lk : Sk〉 def= ⊕〈l1 : S1, . . . , lk : Sk〉

⊕〈l1 : S1, . . . , lk : Sk〉 def= &〈l1 : S1, . . . , lk : Sk〉 μX .S
def= μX .S

In our representation �� of the π-calculus used by [13] as a psi-calculus we represent
restriction (νc+,c− : T)P as (νc : (T,T))�P� and define addition by (T,T) = T+T . The
transition rules for Gay-Hole session types include the following.

(S-IN) ?T1.T2
?T1−−→ T2 (S-OUT) !T1.T2

!T1−−→ T2

(S-BRANCH) &〈l1 : S1, . . . , lk : Sk〉 � li−−→ Si (S-SELECT) �〈l1 : S1, . . . , lk : Sk〉 � li−−→ Si

The corresponding psi-calculus has terms that are names and uses names to which a
session constructor has been applied to create the endpoint of a session channel. To this
end we introduce two unit new terms + and − and let c be a unary term constructor. We
then represent (νc+,c− : T)P as (νc : (Unit → T,Unit → T))P. The names c+ and c−
correspond to c(+) and c(−), respectively.

A crucial notion of the type system is that of subtyping. Using our notion of type
transitions we can capture this as follows by a coinductive definition.

Binary Session Types for Psi-Calculi 109

Definition 11. A type simulation is a binary relation R on types which satisfies that
whenever (T,U) ∈ R we have

1. If T
!T1−→ T2 then U

!U1−−→U2 with (U1,T1) ∈ R and (T2,U2) ∈ R

2. If T
?T1−−→ T2 then U

?U1−−→U2 with (T1,U1) ∈ R and (T2,U2) ∈ R

3. If U
�k−−→U1 then T

�k−−→ T1 with (T1,U1) ∈ R

4. If T
�k−−→ T1 then U

�k−−→U1 with (T1,U1) ∈ R

If (T,U) ∈ R for some type simulation R we write T ≤U.

The type rules for typing session channels are given below. We only have one asser-
tion 1, and let 1 |= a ↔̇ a and 1 |= c(+) ↔̇ c(−).

(SUBSUME)
Γ ,Ψ � M : T T ≤ T ′

Γ ,Ψ � M : T ′

(LOOKUP) Γ ,Ψ � n : T if Γ (n) = T
(SESSION+) Γ ,Ψ � c(+) : T@c if Γ (c) = Unit → T
(SESSION−) Γ ,Ψ � c(−) : T@c if Γ (c) = Unit → T

7.2 A Type System for Progress

The type system by Vieira and Vasconcelos [24] captures a liveness property, namely
progress in a π-calculus: in any session, every communication requesting an input even-
tually takes part in a synchronization.

Session types T are annotated with events e and multiplicities linear (lin) and shared
(un); p denotes polarities and τ describes a synchronization pair.

p ::=! |? | τ L ::= end | e lin pT.L T ::= L | eunpT
Type judgements are of the form Γ ,≺� P where Γ is a type environment and ≺ a strict
partial order (spo) on events. Disjoint union of spo’s is denoted by ·∪ and is only defined
when the ordinary union would not introduce cycles in the resulting relation. The spo
formed by adding e as new least element to the spo ≺ is denoted e+ ≺. The support
supp(≺) is the set of events occurring in ≺. We use T ↓ to define the sequence of events
that occur along the session type T :

T ↓def=

⎧⎪⎨
⎪⎩
e+(L ↓) if T = e lin p/T1.L

{(end,�)} if T = end

{(e,�)} if T = eun pT1

A type is matched if it does not contain pending outputs, and we then write
matched(T).

When typing a parallel composition, the type environment is split into subenviron-
ments for each parallel component. Two of the rules for splitting types are

L= L1 ◦L2

e lin τT.L= e lin !T.L1 ◦ e lin ?T.L2
e un !T = e un !T ◦ e un !T

110 H. Hüttel

Thus, a linear synchronized pair can be split into an input type and an output type, while
any unlimited output type can be split into arbitrarily many copies.

Two of the type rules are shown below; Γend denotes any type environment Γ where
Γ (x) = end for all x ∈ dom(Γ).

Γend ;{(end,⊥)} � 0

Γ ,x : L,y : T ;≺� P e �∈ supp(≺)
Γ ,x : e lin?T.L;e+ ≺� x(y).P

In the representation in our generic type system, names become nullary session
constructors: for any name c in the original type system we have that if c has type T ,
the corresponding c in the representation has type T@c. We use events with polarities
e+ and e− to describe how events are associated with outputs and inputs, respectively,
at channel endpoints.

The formation rules for types are now

L ::= end | e+ lin !T.L | e− lin?T.L

T ::= L | e+ un!T | e− un?T | eun?T | eun!T | e linT.L

The sum operator for types is defined by

e+ lin !T.L1 + e− lin?T.L2 = e linT.L whereL= L1 +L2

The transition relation for types is defined as follows.

e+ lin !T.L
!T−→ L e− lin?T.L

?T−→ L

e+ un!T
!T−→ e+ un!T e− un?T

?T−→ e− un?T

We use assertions to represent strict partial orders and to guide the application of the
prefix type rules. The formation rules for assertions are (where k ≥ 0)

Ψ ::= un x{x1, . . . ,xn}(e+,T) | lin x{x1, ...,xn}(e+,T) | un x{x1, ...,xn}e
| lin{x1, ...,xn}e | {x1, . . . ,xk} ≺| 0 | matched(T)

≺ ::= {(e1
1,e

2
1), . . . ,(e

1
k ,e

2
k)} | (end,⊥)

The assertion (e+,T) denotes an event as used for typing an output. This is used to
ensure that assertion composition is well-defined wrt. the side conditions in the type
rules. The assertion un x{x1, . . . ,xk}(e+,T) records the set of names {x1, . . . ,xk} that
have already been used as shared channels and requires that the behaviour of the name
x that is now to be used as a shared channel must be typed in a type environment in
which every names have the following properties: It must be a shared channel, must
use event e, must communicate content of type T and cannot be one of the names in
{x1, . . . ,xk}. The matched(T) predicate in the type rule for restriction corresponds to a
new assertion matched(T).

Binary Session Types for Psi-Calculi 111

Composition is defined by a collection of axioms; these include

lin x{x1, . . . ,xk}e�{x,x1, . . . ,xk} ≺ = {x1, . . . ,xk}(e+ ≺) if e /∈≺
{x1, . . . ,xk} ≺1 �{x1, . . . ,xk} ≺2 = {x1, . . . ,xk} ≺1 ·∪ ≺2

The representation of processes is homomorphic except for restriction, where we must
add the condition that the type of x must be matched.

�(νx : T)P� = (νx : T)(matched(T) | �P�)

In the representation of the type system the type judgements of the original system
of the form Γ ;≺� P appear as judgments Γ ;Ψ≺ � P where Ψ≺ is the assertion that
represents the strict partial order ≺.

We here show one of the type rules for typing names; note how assertions are used
to guide typability together with the generic rule for typing input processes.

(LIN-NAME-IN) x : e lin?T.L, lin x{x1, . . . ,xk}e � x : elin?T.L

Vieira and Vasconcelos provide transition relations for type environments and for
strict partial ordering. Assuming these, they prove

Theorem 12 ([24]). If Γ1;≺1� P1 and P1 → P2 then Γ1;≺1→ Γ2;≺2 with Γ2;≺2� P2

This theorem follows directly from Theorem 10 for our generic type system, since
our transition relation on types corresponds to that of the original type system and since
the transition relation on spo’s is captured by the ordering relation ≤ on assertions.

The final theorem guarantees progress: a process P that is well-typed in a matched
type environment (i.e. a Γ where matched(T) for every x ∈ dom(Γ), where Γ (x) = T)
and has a communication prefix available (written active(P)), can always perform a
communication. However, the progress result

Theorem 13 ([24]). If active(P) and Γ ;≺� P and matched(Γ), P → P′ for some P′.

must still be established separately since this is a property of the specific instance.

7.3 Refinement Types

In [1], Baltazar et al. describe a π-calculus with refinement types that generalizes the the
correspondence type systems introduced by Gordon and Jeffrey [15] and later extended
by Fournet et al. to include formulae in a fragment of first-order logic [10].

The idea is to annotate processes with correspondence assertions that are formulae
from a multiplicative fragment of linear logic. The syntax of the calculus is given by

ϕ ::= A(ṽ) | ϕ1 �ϕ2 | 1
P ::= x(y).P1 | x〈v〉.P1 | P1 | P2 | !P | 0 | (νxy : T)P1 | (assume ϕ)P | assert ϕ.P

The restriction (νxy : T)P1 declares two endpoints of a session channel whose scope is
P1. Values v can be either names x or the null value ().

112 H. Hüttel

assert ϕ and assume ϕ are the correspondence assertions. In the reduction seman-
tics, an assert ϕ can only be passed if the assertion ϕ has been assumed previously:

(assume ϕ)(assert ϕ.P | Q) → P | Q

A process is safe if every assertion will be met by an assumption. Only communications
involving bound endpoints are allowed. This can be seen from the following reduction
rule that also states how endpoint types evolve. Here the q denotes (as in the previous
type system) if a type is linear (lin) or unrestricted (un).

(νxy : (q!w : T.U))(x〈v〉.P | y(z).Q | R) → (νxy :U [v/w])(P | Q[v/z] | R) (3)

The types in the system are given by the formation rules

T ::= unit | end | q p | {x : T | ϕ} | α | μα.T

q ::= lin | un p ::=?x : T1.T2 |!x : T1.T2

A session type p is a dependent type; it can be a refinement type {x : T | ϕ}. Types T
can be recursive types of the form μα.T where α is a recursion variable.

Type environments may contain formulae:

Γ ::= · | Γ ,x : T | Γ ,ϕ

A formula is well-formed in Γ , written Γ �wf ϕ if all its variables belong to dom(Γ).
A type environment is unlimited, written un(Γ) if for every x ∈ dom(Γ) we have that
Γ (x) = un p for some p. The splitting rules for type environments Γ are similar to those
of the type system for progress and are omitted here.

Two of the most interesting type rules are given below. In (T-REFE) we type a
refinement assertion by adding a type assumption for the name in the abstraction type
and instantiating it. (T-OUT) is a rule for name-dependent session types. When typing
the suffix of a communication, the remaining session type must be instantiated with the
name that was communicated.

(T-REFE)
Γ1,x : T,ϕ[x/y],Γ2 � P

Γ1,x : {y : T | ϕ},Γ2 � P

(T-OUT)
Γ1 � x : (q!y : T.U) Γ2 � v : T Γ3 + x :U [v/y] � P

Γ1 ◦Γ2 ◦Γ3 � x〈v〉.P
Most of the representation of the process calculus as a psi-calculus is straightfor-

ward. A restriction (νxy : T)P1 introduces two nullary session constructors x and y for
which we have that x ↔̇ y. We represent assumeϕ’s as assertions; to indicate their scope
every assertion is associated with a fresh name as follows.

�(assume ϕ)P� = (νc)(ϕ@c | �P�)

where c /∈ n(P)∪n(ϕ) and define the satisfaction relation as ϕ@c |= ϕ for any c.

Binary Session Types for Psi-Calculi 113

We encode an assert ϕ using the case construct

�assert ϕ.P�
def= case ϕ �P�

Type judgements Γ � P are represented as ΓΓ ,ΨΓ � P where ΓΓ is the collection of
type bindings in Γ and ΨΓ is the composition of the assertions in Γ .

The transition relation for types is defined as follows.

q?x : T1.T2
?T (y)−−−→ T2[y/x] for every y q !x : T1.T2

!T (y)−−−→ T2[y/x] for every y

The original type system satisfies the subject reduction property.

Theorem 14 ([1]). If Γ � P and P → P′ then Γ � P′.

It may be surprising that this result is captured by Theorem 10. However, Γ only
records the types of free names, and names involved in a reduction are bound according
to (3). Moreover, for this particular psi-calculus instance, assertions corresponding to
formulae do not disappear along a reduction, so the assertions needed to type the result-
ing component must be identical for it to be well-typed. On the other hand, the safety
result for well-typed processes must be established separately.

8 Conclusions and Future Work

In this paper we have presented a generic type system capable of capturing existing
session type systems in the setting of psi-calculi. Our type system satisfies a fidelity
property that carries over to specific instances that satisfy certain natural requirements.

A crucial aspect of the generic type system is its ability to use assertions to repre-
sent concrete instances. Assertions in the original psi-calculus framework were mostly
thought of as related to the operational semantics, but the work in this paper demon-
strates that assertions provide us with the necessary means of controlling typability.

A challenge is to be able to give a general account of the safety properties considered
in the instances studied in this paper, such that the type safety properties of instances
follow from a general theorem about well-typed processes. As the generic type system
can be instantiated both to type systems for safety properties such as that of [1] and
liveness properties such as that of [24], a general theorem of this kind will probably
require a classification of the properties of the assertions that can be used in a particular
type system instance.

A future goal is to show how to express the linear type system for psi-calculi of [20]
in the session type system and vice versa. In the setting of π-calculus, a translation from
session types to linear types was hinted at by Kobayashi and later carried out by Dardha
et al. [8]. An encoding along these lines will probably take the form of a translation
�P�Ψ where Ψ is an assertion that ‘renames’ the channel object to a fresh name.

Further work involves dealing with behavioural type systems in which the types
of an arbitrary number of names are modified as the result of performing a labelled
transition. This includes the systems for deadlock prevention due to Kobayashi [22].

114 H. Hüttel

In the present work, our notion of duality is the original one from [18]. However,
other notions of duality have recently been proposed [4] and a natural next step is to
capture these in a general setting. If our treatment is extended to a higher-order setting,
a new treatment of duality will also be necessary [3].

Acknowledgements. The author would like to thank Johannes Borgström and Björn Victor for
useful comments and suggestions. The work was supported by the COST Action IC1021 BETTY.

References

1. Baltazar, P., Mostrous, D., Vasconcelos, V.T.: Linearly refined session types. In: LINEAR-
ITY, pp. 38–49 (2012)

2. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: psi-calculi: a framework for mobile
processes with nominal data and logic. Logical Methods Comput. Sci. 7(1) (2011)

3. Bernardi, G., Hennessy, M.: Using higher-order contracts to model session types (Extended
Abstract). In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 387–401.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44584-6 27

4. Bernardi, G., Dardha, O., Gay, S.J., Kouzapas, D.: On duality relations for session types. In:
Maffei, M., Tuosto, E. (eds.) TGC 2014. LNCS, vol. 8902, pp. 51–66. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45917-1 4

5. Borgström, J., Gutkovas, R., Parrow, J., Victor, B., Pohjola, J.Å.: A sorted semantic frame-
work for applied process calculi (Extended Abstract). In: Abadi, M., Lluch Lafuente, A.
(eds.) TGC 2013. LNCS, vol. 8358, pp. 103–118. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-05119-2 7

6. Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: Foundations of session
types. In: PPDP, pp. 219–230. ACM (2009)

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. ACM Trans.
Program. Lang. Syst. 31(5), 19: 1–19: 61 (2009)

8. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings of the 14th
Symposium on Principles and Practice of Declarative Programming, PPDP 2012, pp. 139–
150. ACM, New York (2012)

9. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured commu-
nications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 257–275.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78663-4 18

10. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies. ACM
Trans. Program. Lang. Syst., 29(5) (2007)

11. Gabbay, M.J., Mathijssen, A.: Nominal (universal) algebra: equational logic with names and
binding. J. Log. Comput. 19(6), 1455–1508 (2009)

12. Gay, S.J.: Bounded polymorphism in session types. Math. Struct. Comput. Sci. 18(5), 895–
930 (2008)

13. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–3), 191–
225 (2005)

14. Giunti, M., Vasconcelos, V.T.: A linear account of session types in the pi calculus. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 432–446. Springer, Heidel-
berg (2010). doi:10.1007/978-3-642-15375-4 30

15. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. J. Comput. Secur.
11(4), 451–519 (2003)

16. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 509–523. Springer, Heidelberg (1993). doi:10.1007/3-540-57208-2 35

http://dx.doi.org/10.1007/978-3-662-44584-6_27
http://dx.doi.org/10.1007/978-3-662-45917-1_4
http://dx.doi.org/10.1007/978-3-319-05119-2_7
http://dx.doi.org/10.1007/978-3-319-05119-2_7
http://dx.doi.org/10.1007/978-3-540-78663-4_18
http://dx.doi.org/10.1007/978-3-642-15375-4_30
http://dx.doi.org/10.1007/3-540-57208-2_35

Binary Session Types for Psi-Calculi 115

17. Honda, K.: Composing processes. In: POPL, pp. 344–357 (1996)
18. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for struc-

tured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol.
1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/BFb0053567

19. Hüttel, H.: Typed π-calculi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 265–279. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6 18

20. Hüttel, H.: Types for resources in ψ-calculi. In: Abadi, M., Lluch Lafuente, A. (eds.)
TGC 2013. LNCS, vol. 8358, pp. 83–102. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-05119-2 6

21. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. Theoret. Comput. Sci.
311(1–3), 121–163 (2004)

22. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006). doi:10.
1007/11817949 16

23. König, B.: Analysing input/output-capabilities of mobile processes with a generic type sys-
tem. J. Logic Algebraic Program. 63(1), 35–58 (2005)

24. Torres Vieira, H., Thudichum Vasconcelos, V.: Typing progress in communication-centred
systems. In: Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 236–
250. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38493-6 17

http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-642-23217-6_18
http://dx.doi.org/10.1007/978-3-319-05119-2_6
http://dx.doi.org/10.1007/978-3-319-05119-2_6
http://dx.doi.org/10.1007/11817949_16
http://dx.doi.org/10.1007/11817949_16
http://dx.doi.org/10.1007/978-3-642-38493-6_17

Static Trace-Based Deadlock Analysis
for Synchronous Mini-Go

Kai Stadtmüller1, Martin Sulzmann1(B), and Peter Thiemann2

1 Faculty of Computer Science and Business Information Systems,
Karlsruhe University of Applied Sciences,

Moltkestrasse 30, 76133 Karlsruhe, Germany
kai.stadtmueller@live.de, martin.sulzmann@hs-karlsruhe.de

2 Faculty of Engineering, University of Freiburg,
Georges-Köhler-Allee 079, 79110 Freiburg, Germany

thiemann@acm.org

Abstract. We consider the problem of static deadlock detection for pro-
grams in the Go programming language which make use of synchronous
channel communications. In our analysis, regular expressions extended
with a fork operator capture the communication behavior of a program.
Starting from a simple criterion that characterizes traces of deadlock-free
programs, we develop automata-based methods to check for deadlock-
freedom. The approach is implemented and evaluated with a series of
examples.

1 Introduction

The Go programming language [6] attracts increasing attention because it offers
an elegant approach to concurrent programming with message-passing in the
style of Communicating Sequential Processes (CSP) [9]. Although message pass-
ing avoids many of the pitfalls of concurrent programming with shared state
(atomicity violations, order violations, issues with locking, and so on), it still
gives rise to problems like deadlock. Hence, the goal of our work is the sta-
tic detection of deadlocks in Go programs which make use of (synchronous)
message-passing using the unbuffered version of Go’s channels.

Related Work. Leaving aside data races, deadlocks constitute one of the core
problems in concurrent programming. However, most work on static detection
of deadlocks on the programming language level deals with shared-memory con-
currency.

Boyapati and coworkers [1] define a type-based analysis that relies on a partial
order on locks and guarantees that well-typed programs are free of data races
and deadlocks. The approaches by Williams and coworkers [22] and Engler and
Ashcraft [5] detect cycles in a precomputed static lock-order graph to highlight
potential deadlocks. In distributed and database systems, most approaches are
dynamic but also involve cycle detection in wait-for graphs (e.g., [10]). In these
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 116–136, 2016.
DOI: 10.1007/978-3-319-47958-3 7

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 117

approaches, the main points of interest are the efficiency of the cycle detection
algorithms and the methods employed for the construction and maintenance of
the wait-for graph.

Mercouroff [16] employs abstract interpretation for an analysis of CSP pro-
grams using an abstract domain that approximates the number of messages sent
between processes. Colby [4] presents an analysis that uses control paths to
identify threads that may be created at the same point and constructs the com-
munication topology of the program. A more precise control-flow analysis was
proposed by Martel and Gengler [15]. Similar to our approach, in their work the
accuracy of the analysis is enhanced by analyzing finite automata to eliminate
some impossible communication traces.

For message-passing programs, there are elaborate algorithms that attempt
accurate matching of communications in process calculi (e.g., the work of
Ladkin and Simon [14]). However, they consider messages between fixed part-
ners whereas we consider communication between multiple partners on shared
channels.

Further analysis of message passing in the context of Concurrent ML
(CML) [20] is based on effect systems that abstract programs into regular-
expression-like behaviors with the goal of detecting finiteness of communication
topologies [19]. The deadlock detection analysis of Christakis and Sagonas [3]
also constructs a static graph and searches it for cycles. Specific to Go, the paper
by Ng and Yoshida [18] translates Go programs into a core calculus with session
types and then attempts to synthesize a global choreography that subsumes all
session. A program is deemed deadlock-free if this synchronization succeeds and
satisfies some side condition. Like our work, they consider a fixed number of
processes and synchronous communication. Section 6 contains a more detailed
comparison with this work.

Kobayashi [13] considers deadlock detection for the π-calculus [17]. His type
inference algorithm infers usage constraints among receive and send operations.
In essence, the constraints represent a dependency graph where the program
is deadlock-free if there are no circular dependencies among send and receive
operations. The constraints are solved by reduction to Petri net reachability
[12]. A more detailed comparison with Kobayashi’s work is given in Sect. 6.

Contributions. Common to all prior work is their reliance on automata-/
graph-based methods. The novelty of our work lies in the use of a symbolic
deadlock detection method based on forkable behavior.

Forkable behaviors in the form of regular expressions extended with fork and
general recursion were introduced by Nielson and Nielson [19] to analyze the
communication topology of CML (which is based on ideas from CSP, just like
Go). In our own recent work [21], we establish some important semantic founda-
tions for forkable behaviors such as a compositional trace-based semantics and
a symbolic Finite State Automata (FSA) construction method via Brzozowski-
style derivatives [2]. In this work, we apply these results to statically detect
deadlocks in Go programs.

118 K. Stadtmüller et al.

func sel(x, y chan bool) {

z := make(chan bool)

go func() { z <- (<-x) }()

go func() { z <- (<-y) }()

<-z

}

func main() {

x := make(chan bool)

y := make(chan bool)

go func() { x <- true }()

go func() { y <- false }()

sel(x,y)

sel(x,y)

}

Listing 1.1. Message passing in Go

Specifically, we make the following contributions:

– We formalize Mini-Go, a fragment of the Go programming language which is
restricted to synchronous message-passing (Sect. 3).

– We approximate the communication behavior of Mini-Go programs with fork-
able behaviors (Sect. 4).

– We define a criterion for deadlock-freedom in terms of the traces resulting
from forkable behaviors. We give a decidable check for deadlock-freedom for
a large class of forkable behaviors by applying the FSA construction method
developed in prior work [21]. We also consider improvements to eliminate false
positives (Sect. 5).

– We evaluate our approach with examples and conduct a comparison with
closely related work (Sect. 6).

For further details such as proofs we refer to the online version of this paper1.

2 Highlights

Before we delve into deadlocks and deadlock detection, we first illustrate the
message passing concepts found in Go with the example program in Listing 1.1.
The main function creates two synchronous channels x and y that transport
Boolean values. Go supports (a limited form of) type inference and therefore no
type annotations are required. We create two threads using the go exp state-
ment. It takes an expression exp and executes it in a newly spawned go-routine
(a thread). Each of these expressions calls an anonymous function that performs
a send operation on one of the channels. In Go, we write x <- true to send
value true via channel x. Then we call the function sel twice. This function
1 http://arxiv.org/abs/1608.08330.

http://arxiv.org/abs/1608.08330

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 119

creates another Boolean channel z locally and starts two threads that “copy” a
value from one of the argument channels to z. In Go, we write <-x to receive a
value via channel x. Thus, z <- (<-x) sends a value received via channel x to
channel z.

So, the purpose of sel is to choose a value which can either be received via
channel x or channel y. As each channel is supplied with a value, each of the
two calls to sel might be able to retrieve a value. While there is a schedule such
that the main program runs to completion, it is also possible that execution of
the second sel call will get stuck. Consider the case that in the first call to sel
both helper threads get to execute the receive operations on x and y and forward
the values to channel z. In this case, only one of the values will be picked up by
the <-z and returned, but the local thread with the other value will be blocked
forever waiting for another read on z. In the second call to sel, none of the local
threads can receive a value from x or y, hence there will be no send operation
on z, so that the final receive <-z remains blocked.

Our approach to detect such devious situations is to express the communica-
tion behavior of a program in terms of forkable behaviors. For the main function
in Listing 1.1, we obtain the following forkable behavior

Fork(x !)·Fork(y !)·Fork(x?·z1 !)·Fork(y?·z1 !)·z1?·Fork(x?·z2 !)·Fork(y?·z2 !)·z2?

We abstract away the actual values sent and write x! to denote sending a message
to channel x and x? to denote reception via channel x. Fork() indicates a forkable
(concurrent) behavior which corresponds to go statements in the program. The
concatenation operator · connects two forkable behaviors in a sequence. The
function calls to sel are inlined and the local channels renamed to z1 and z2,
respectively.

The execution schedules of main can be described by a matching relation
for forkable behaviors where we symbolically rewrite expressions. Formal details
follow later. Here are some possible matching steps for our example.

Fork(x !) · Fork(y !) · Fork(x? · z1 !) · Fork(y? · z1 !) · z1?·
Fork(x? · z2 !) · Fork(y? · z2 !) · z2?

=⇒ {{x!, y!, x? · z1!, y? · z1!, z1? · Fork(x? · z2 !) · Fork(y? · z2 !) · z2?}}
x!·x?===⇒ {{y!, z1!, y? · z1!, z1? · Fork(x? · z2 !) · Fork(y? · z2 !) · z2?}}
z1!·z1?====⇒ {{y!, y? · z1!,Fork(x? · z2 !) · Fork(y? · z2 !) · z2?}}
=⇒ {{y!, y? · z1!, x? · z2!, y? · z2!, z2?}}
y!·y?·z2!·z2?========⇒ {{y? · z1!, x? · z2!}}
We first break apart the expression into its concurrent parts indicated by

the multiset notation {{·}}. Then, we perform two rendezvous (synchronization)
steps where the partners involved are underlined. In essence, the first call to
sel picks up the value sent via channel x. The last step where we combine two
synchronization steps (and also omit underline) shows that the second call to
sel picks up the value sent via channel y. Note that the main thread terminates

120 K. Stadtmüller et al.

but as for each call to sel one of the helper threads is stuck our analysis reports
a deadlock.

As mentioned above, another possible schedule is that the first call to sel
picks up both values sent via channels x and y. In terms of the matching relation,
we find the following

Fork(x !) · Fork(y !) · Fork(x? · z1 !) · Fork(y? · z1 !) · z1?·
Fork(x? · z2 !) · Fork(y? · z2 !) · z2?

x!·x?·y!·y?·z1!·z1?===========⇒ {{z1!, x? · z2!, y? · z2!, z2?}}
As we can see, the second helper thread of the first call to sel is stuck, both
helper threads of the second call are stuck as well as the main thread. In fact,
this is the deadlock reported by our analysis as we attempt to find minimal
deadlock examples.

The issue in the above example can be fixed by making use of selective
communication to non-deterministically choose among multiple communications.

func selFixed(x, y chan bool) {
select {

case z = <-x:
case z = <-y:

}
}

The select statement blocks until one of the cases applies. If there are multiple
select cases whose communication is enabled, the Go run-time system ‘randomly’
selects one of those and proceeds with it. Based on a pseudo-random number the
select cases are permuted and tried from top to bottom. Thus, the deadlocking
behavior observed above disappears as each call to selFixed picks up either a
value sent via channel x or channel y but it will never consume values from both
channels.

3 Mini-Go

We formalize a simplified fragment of the Go programming language where we
only consider a finite set of pre-declared, synchronous channels. For brevity, we
also omit procedures and first-class channels and only consider Boolean values.

Definition 1 (Syntax).

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 121

x, y, . . . Variables, Channel Names
s ::= v | Chan Storables
v ::= True | False Values
vs ::= [] | v : vs Value Queues
b ::= v | x | b&&b |!b Expressions
e, f ::= x ← yr | ys ← b Receive/Send
p, q ::= skip | if b then p else q | while b do p | p; q Commands

| select [ei ⇒ pi]i∈I Communications
| go p Threads

Variables are either bound to Boolean values or to the symbol Chan which
denotes a synchronous channel. Like in Go, we use the ‘arrow’ notation for
the send and receive operations on channels. We label the channel name to
distinguish receive from send operations. That is, from x ← yr we conclude that
y is the channel via which we receive a value bound to variable x. From ys ← b
we conclude that y is the channel to which some Boolean value is sent. Send and
receive communications are shorthands for unary selections: e = select [e ⇒ skip].

The semantics of a Mini-Go program is defined with a small-step semantics.
The judgment 〈S, {{p1, . . . , pn}}〉 T=⇒ 〈S′, {{p′

1, . . . , p
′
m}}〉 indicates that execution

of program threads pi may evolve into threads p′
j with trace T . The notation

{{p1, ..., pn}} represents a multi-set of concurrently executing programs p1, ..., pn.
For simplicity, we assume that all threads share a global state S and that distinct
threads have only variables bound to channels in common.

Program trace T records the communication behavior as a sequence of sym-
bols where symbol x! represents a send operation on channel x and symbol x?
represents a receive operation on channel x. As we assume synchronous commu-
nication, each communication step involves exactly two threads as formalized in
the judgment 〈S, {{p, q}}〉 T=⇒ 〈S′, {{p′, q′}}〉.

The semantics of Boolean expressions is defined with a big-step semantics
judgment S � b ⇓ v, where S is the state in which expression b evaluates to
value v. For commands, the judgment S � p ⇒ q formalizes one (small-) step
that executes a single statement. Thus, we are able to switch among different
program threads after each statement. Here are the details.

Definition 2 (State). A state S is either empty, a mapping, or an override a
state with a new mapping: S ::= () | (x �→ s) | S � (x �→ s)

We write S(x) to denote state lookup. We assume that mappings in the right
operand of the map override � take precedence. They overwrite any mappings
in the left operand. That is, (x �→ True) � (x �→ False) = (x �→ False). We
assume that for each channel x the state contains a mapping x �→ Chan.

122 K. Stadtmüller et al.

Definition 3 (Expression Semantics S � b ⇓ v).

S � True ⇓ True S � False ⇓ False

S(x) = v

S � x ⇓ v

S � b1 ⇓ False
S � b1&&b2 ⇓ False

S � b1 ⇓ True S � b2 ⇓ v

S � b1&&b2 ⇓ v

S � b ⇓ False
S � !b ⇓ True

S � b ⇓ True
S � !b ⇓ False

Definition 4 (Commands S � p ⇒ q).

(If-T)
S � b ⇓ True

S � if b then p else q ⇒ p
(If-F)

S � b ⇓ False
S � if b then p else q ⇒ q

(While-F)
S � b ⇓ False

S � while b do p ⇒ skip

(While-T)
S � b ⇓ True

S � while b do p ⇒ p;while b do p
(Skip) S � skip; p ⇒ p

(Reduce)
S � p ⇒ p′

S � p; q ⇒ p′; q
(Assoc) S � (p1; p2); p3 ⇒ p1; (p2; p3)

Definition 5 (Communication Traces).

T ::= ε empty trace
| x! send event
| x? receive event
| T · T sequence/concatenation

As we will see, the traces obtained by running a program are of a particular
‘synchronous’ shape.

Definition 6 (Synchronous Traces). We say T is a synchronous trace if T
is of the following more restricted form.

Ts ::= ε | α · ᾱ | Ts · Ts

where ᾱ denotes the complement of α and is defined as follows: For any channel
y, y? = y! and y! = y?.

We assume common equality laws for traces such as associativity of · and
ε acts as a neutral element. That is, ε · T = T . Further, we consider the two
synchronous traces α1 · α1 · ... · αn · αn and α1 · α1 · ... · αn · αn to be equivalent.

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 123

Definition 7 (Synchronous Communications 〈S, {{p, q}}〉 T=⇒ 〈S′, {{p′, q′}}〉).

(Sync)

for k ∈ I l ∈ J where
ek = x ← yr fl = ys ← b

S1(y) = Chan S1 � b ⇓ v S2 = S1 � (x �→ v)

〈S1, {{select [ei ⇒ pi]i∈I , select [fj ⇒ qj]j∈J}}〉 y!·y?
===⇒ 〈S2, {{pk, ql}}〉

A synchronous communication step non-deterministically selects matching
communication partners from two select statements. The sent value v is imme-
diately bound to variable x as we consider unbuffered channels here. Programs
pk and ql represent continuations for the respective matching cases. The com-
munication effect is recorded in the trace y! · y?, which arbitrarily places the
send before the receive communication. We just assume this order (as switching
the order yields an equivalent, synchronous trace) and use it consistently in our
formal development.

In the upcoming definition, we make use of the following helper operation:

p � q =

{
p q = skip

p; q otherwise.
Thus, one rule can cover the two cases that a go

statement is final in a sequence or followed by another statement. If the go
statement is final, the pattern go p � q implies that q equals skip. See upcoming
rule (Fork). Similar cases arise in the synchronous communication step. See
upcoming rule (Comm).

Definition 8 (Program Execution 〈S, {{p1, . . . , pn}}〉 T=⇒ 〈S′, {{p′
1, . . . , p

′
m}}〉).

(Comm)
〈S, {{p1, p2}}〉 T=⇒ 〈S′, {{p′

1, p
′
2}}〉

〈S, {{p1 � p′′
1 , p2 � p′′

2 , p3, . . . , pn}}〉 T=⇒ 〈S′, {{p′
1 � p′′

1 , p′
2 � p′′

2 , p3, . . . , pn}}〉

(Step)
S � p1 ⇒ p′

1

〈S, {{p1, . . . , pn}}〉 ε=⇒ 〈S, {{p′
1, . . . , pn}}〉

(Fork) 〈S, {{go p1 � q1, p2, . . . , pn}}〉 ε=⇒ 〈S, {{p1, q1, p2, . . . , pn}}〉

(Stop) 〈S, {{skip, p2, . . . , pn}}〉 ε=⇒ 〈S, {{p2, . . . , pn}}〉

(Closure)
〈S, P 〉 T=⇒ 〈S′, P ′〉 〈S′, P ′〉 T ′

=⇒ 〈S′′, P ′′〉
〈S, P 〉 T ·T ′

===⇒ 〈S′′, P ′′〉

Rule (Comm) performs a synchronous communication step whereas rule (Step)
executes a single step in one of the threads. Rule (Fork) creates a new thread.
Rule (Stop) removes threads that have terminated. Rule (Closure) executes mul-
tiple program steps. It uses P to stand for a multiset of commands.

124 K. Stadtmüller et al.

We are interested in identifying stuck programs as characterized by the fol-
lowing definition.

Definition 9 (Stuck Programs). Let C = 〈S, {{p1, . . . , pn}}〉 where n > 1 be
some configuration which results from executing some program p. We say that p
is stuck w.r.t. C if each pi starts with a select statement2 and no reduction rules
are applicable on C. We say that p is stuck if there exists a configuration C such
that p is stuck w.r.t. C.

A stuck program indicates that all threads are asleep. This is commonly
referred to as a deadlock. In our upcoming formal results, we assume that for
technical reasons there must be at least two such threads. Hence, a ‘stuck’ pro-
gram consisting of a single thread, e.g. xs ← True; y ← xr, is not covered by
the above definition. Our implementation deals with programs in which only a
single or some of the threads are stuck.

Our approach to detect deadlocks is to (1) abstract the communication
behavior of programs in terms of forkable behaviors, and then (2) perform some
behavioral analysis to uncover deadlocks. The upcoming Sect. 4 considers the
abstraction. The deadlock analysis is introduced in Sect. 5.

4 Approximation via Forkable Behaviors

Forkable behaviors extend regular expressions with a fork operator and thus
allow for a straightforward and natural approximation of the communication
behavior of Mini-Go programs.

Definition 10 (Forkable Behaviors [21]). The syntax of forkable behaviors
(or behaviors for short) is defined as follows:

r, s, t ::= φ | ε | α | r + s | r · s | r∗ | Fork(r)

where α are symbols from a finite alphabet Σ.

We find the common regular expression operators for alternatives (+), con-
catenation (·), repetition (∗) and a new fork operator Fork(). We write φ to
denote the empty language and ε to denote the empty word.

In our setting, symbols α are send/receive communications of the form x!
and x?, where x is a channel name (viz. Definition 5). As we assume that there
are only finitely many channels, we can guarantee that the set of symbols Σ is
finite.

A program p is mapped into a forkable behavior r by making use of judgments
p � r. The mapping rules are defined by structural induction over the input
p. Looping constructs are mapped to Kleene star. Conditional statements and
select are mapped to alternatives and a sequence of programs is mapped to some
concatenated behaviors.

2 Recall that primitive send/receive communications are expressed in terms of select.

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 125

Definition 11 (Approximation p � r).

skip � ε
p � r q � s

if b then p else q � r + s

p � r

while b do p � r∗
p � r q � s

p; q � r · s

x ← yr � y? ys ← b � y!
ei � ri pi � si for i ∈ I

select [ei ⇒ pi]i∈I �
∑

i∈I ri · si

p � r

go p � Fork(r)

What remains is to verify that the communication behavior of p is safely approx-
imated by r. That is, we need to show that all traces resulting from executing p
are also covered by r.

A similar result appears already in the Nielsons’ work [19]. However, there are
significant technical differences as we establish connections between the traces
resulting from program execution to the trace-based language semantics for fork-
able behaviors introduced in our prior work [21].

In that work [21], we give a semantic description of forkable behaviors in
terms of a language denotation L(r,K). Compared to the standard definition,
we find an additional component K which represents a set of traces. Thus, we
can elegantly describe the meaning of an expression Fork(r) as the shuffling of
the meaning of r with the ‘continuation’ K. To represent Kleene star in the
presence of continuation K, we use a fixpoint operation μF that denotes the
least fixpoint of F in the complete lattice formed by the powerset of Σ∗. Here,
F must be a monotone function on this lattice, which we prove in prior work.

Definition 12 (Shuffling). The (asynchronous) shuffle v‖w ⊆ Σ∗ is the set of
all interleavings of words v, w ∈ Σ∗. It is defined inductively by

ε‖w = {w} v‖ε = {v} xv‖yw = {x} · (v‖yw) ∪ {y} · (xv‖w)

The shuffle operation is lifted to languages by L‖M =
⋃{v‖w | v ∈ L,w ∈ M}.

Definition 13 (Forkable Expression Semantics). For a trace language K ⊆
Σ∗, the semantics of a forkable expression is defined inductively by

L(φ,K) = ∅
L(ε,K) = K
L(x,K) = {x · w | w ∈ K}

L(r + s,K) = L(r,K) ∪ L(s,K)
L(r · s,K) = L(r, L(s,K))

L(r∗,K) = μλX.L(r,X) ∪ K
L(Fork(r),K) = L(r)‖K

As a base case, we assume L(r) = L(r, {ε}).

Next, we show that when executing some program p under some trace T , the
resulting program state can be approximated by the left quotient of r w.r.t. T

126 K. Stadtmüller et al.

where r is the approximation of the initial program p. This result serves two pur-
poses. (1) All communication behaviors found in a program can also be found in
its approximation. (2) As left quotients can be computed via Brzozowski’s deriv-
atives [2], we can employ his FSA methods for static analysis. We will discuss
the first point in the following. The second point is covered in the subsequent
section.

If L1 and L2 are sets of traces, we write L1\L2 to denote the left quotient
of L2 with L1 where L1\L2 = {w | ∃v ∈ L1.v · w ∈ L2}. We write x\L1 as a
shorthand for {x}\L1. For a word w we give the following inductive definition:
ε\L = L and x · w\L = w\(x\L).

To connect approximations of resulting programs to left quotients, we intro-
duce some matching relations which operate on behaviors. To obtain a match
we effectively rewrite a behavior into (parts of) some left quotient. Due to
the fork operation, we may obtain a multiset of (concurrent) behaviors writ-
ten {{r1, ..., rn}}. We sometimes use R as a short-hand for {{r1, ..., rn}}. As in
the case of program execution (Definition 8), we introduce a helper operation

r • s =

{
r s = ε

r · s otherwise
to cover cases where a fork expression is either the

final expression, or possibly followed by another expression. We write · =⇒ · as a
short-hand for · ε=⇒ ·. We also treat r and {{r}} as equal.

Definition 14 (Matching Relation).

r
T=⇒ s

(L) r + s =⇒ r (R) r + s =⇒ s

(Kn) r∗ =⇒ r · r∗ (K0) r∗ =⇒ ε (X) α · r
α=⇒ r

(A1) ε · r =⇒ r (A2)
r =⇒ s

r · t =⇒ s · t
(A3) (r · s) · t =⇒ r · (s · t)

{{r1, . . . , rm}} T=⇒ {{s1, . . . , sn}}

(F) {{Fork(r) • s, r1, . . . , rn}} ε=⇒ {{s, r, r1, . . . , rn}} (C)
R

T=⇒ R′ R′ T ′
=⇒ R′′

R
T ·T ′
===⇒ R′′

(S1)
r

T=⇒ s

{{r, r1, . . . , rn}} T=⇒ {{s, r1, . . . , rn}}
(S2) {{ε, r1, . . . , rn}} ε=⇒ {{r1, . . . , rn}}

We establish some basic results for the approximation and matching relation.
The following two results show that matches are indeed left quotients.

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 127

Proposition 1. Let r, s be forkable behaviors and T be a trace such that r
T=⇒ s.

Then, we find that L(s) ⊆ T\L(r).

Proposition 2. Let r1,...,rm, s1,...,sn be forkable behaviors and T be a trace
such that {{r1, . . . , rm}} T=⇒ {{s1, . . . , sn}}. Then, we find that L(s1)‖...‖L(sn) ⊆
T\(L(r1)‖...‖L(rm)).

Finally, we establish that all traces resulting during program execution can
also be obtained by the match relation. Furthermore, the resulting behaviors are
approximations of the resulting programs.

Proposition 3. If S � p ⇒ q and p � r then r =⇒ s for some s where q � s.

Proposition 4. If 〈S, {{p1, ..., pm}}〉 T=⇒ 〈S′, {{q1, ..., qn}}〉 and pi � ri for i =
1, ...,m then {{r1, ..., rm}} T=⇒ {{s1, ..., sn}} where qj � sj for j = 1, .., n.

5 Static Analysis

Based on the results of the earlier section, all analysis steps can be carried out
on the forkable behavior instead of the program text. In this section, we first
develop a ‘stuckness‘ criterion in terms of forkable behaviors to identify programs
with a potential deadlock. Then, we consider how to statically check stuckness.

5.1 Forkable Behavior Stuckness Criterion

Definition 15 (Stuck Behavior). We say that r is stuck if and only if there
exists r

T=⇒ ε for some non-synchronous trace T .

Recall Definition 6 for a description of synchronous traces.
The following result shows that if the stuck condition does not apply, we can

guarantee the absence of a deadlock. That is, non-stuckness implies deadlock-
freedom.

Proposition 5. Let p be a stuck program and r be a behavior such that p � r.
Then, r is stuck.

The above result does not apply to stuck programs consisting of a single
thread. For example, consider p = xs ← True; y ← xr and r = x! ·x? where p �
r. Program p is obviously stuck, however, r is not stuck because any matching
trace for r is synchronous. For example, r

x!·x?===⇒ ε. Hence, Definition 9 assumes
that execution of program p leads to some state where all threads are asleep, so
that we can construct a non-synchronous trace for the approximation of p.

Clearly, the synchronous trace x! · x? is not observable under any program
run of p. Therefore, we will remove such non-observable, synchronous traces from
consideration. Before we consider such refinements of our stuckness criterion, we
develop static methods to check for stuckness.

128 K. Stadtmüller et al.

5.2 Static Checking of Stuckness

To check for stuckness, we apply an automata-based method where we first
translate the forkable behavior into an equivalent finite state machine (FSA) and
then analyze the resulting FSA for stuckness. The FSA construction method for
forkable behaviors follows the approach described in our prior work [21] where
we build a FSA based on Brzozowski’s derivative construction method [2].

We say that a forkable behavior r is well-behaved if there is no fork inside
a Kleene star expression. The restriction to well-behaved behaviors guarantees
finiteness (i.e., termination) of the automaton construction.

Proposition 6 (Well-Behaved Forkable FSA [21]). Let r be a well-behaved
behavior. Then, we can construct an FSA(r) where the alphabet coincides with
the alphabet of r and states can be connected to behaviors such that (1) r is the
initial state and (2) for each non-empty trace T = α1 · ... · αn we find a path
r = r0

α1→ r1...rn−1
αn→ rn in FSA(r) such that T\L(r) = L(rn).

The kind of FSA obtained by our method [21] guarantees that all matching
derivations (Definition 14) which yield a non-trivial trace can also be observed
in the FSA.

Proposition 7 (FSA covers Matching). Let r be a well-behaved behavior
such that r

T=⇒ {{s1, ..., sm}} for some non-empty trace T = α1 ·...·αn. Then, there
exists a path r = r0

α1→ r1...rn−1
αn→ rn in FSA(r) such that L(s1)‖...‖L(sm) ⊆

L(rn).

Based on above, we conclude that stuckness of a behavior implies that the
FSA is stuck as well. That is, we encounter a non-synchronous path.

Proposition 8. Let r be a well-behaved behavior such that r is stuck. Then,
there exists a path r = r0

α1→ r1...rn−1
αn→ rn in FSA(r) such that L(ri) �= {} for

i = 1, ..., n and α1 · ... · αn is a non-synchronous trace.

Proposition 9. Let r be a well-behaved behavior such that FSA(r) is stuck.
Then, any non-synchronous path that exhibits stuckness can be reduced to a non-
synchronous path where a state appears at most twice along that path

Based on the above, it suffices to consider minimal paths. We obtain these
paths as follow. We perform a breadth-first traversal of the FSA(r) starting
with the initial state r to build up all paths which satisfy the following criterion:
(1) We must reach a final state, and (2) a state may appear at most twice along
a path. It is clear that the set of all such paths is finite and their length is finite.
If among these paths we find a non-synchronous path, then the FSA(r) is stuck.

Proposition 10. Let r be a well-behaved behavior. Then, it is decidable if the
FSA(r) is stuck.

Based on the above, we obtain a simple and straightforward to imple-
ment method for static checking of deadlocks in Mini-Go programs. Any non-
synchronous path indicates a potential deadlock and due to the symbolic nature
of our approach, erroneous paths can be traced back to the program text for
debugging purposes.

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 129

5.3 Eliminating False Positives

Naive application of the criterion developed in the previous section yields many
false positives. In our setting, a false positive is a non-synchronous path that
is present in the automaton FSA(r), but which cannot be observed in any
program run of p. This section introduces an optimization to eliminate many
false positives. This optimization is integrated in our implementation.

For example, consider the forkable behavior r = Fork(x ! · y !) ·x? ·y? resulting
from the program p = go (xs ← True; ys ← False); z ← xr; z ← yr. Based on our

FSA construction method, we discover the non-synchronous path r
x!·y!·x?·y?−−−−−−→ ε

where ε denotes some accepting state. However, just by looking at this simple
program it is easy to see that there is no deadlock. There are two threads and for
each thread, each program statement synchronizes with the program statement
of the other thread at the respective position. That is, 〈 , {{p}}〉 x!·x?·y!·y?

======⇒ 〈 , {{}}〉.
So, a possible criterion to ‘eliminate’ a non-synchronous path from considera-

tion seems to be to check if there exists an alternative synchronous permutation
of this path. There are two cases where we need to be careful: (1) Conditional
statements and (2) inter-thread synchronous paths.

Conditional Statements. Let us consider the first case. For example, consider
the following variant of our example:

r = Fork(x ! · y !) · (x? · y? + y? · x?)

p = go (xs ← True; ys ← False);
if True then (z ← xr; z ← yr) else (z ← yr; z ← xr)

By examining the program text, we see that there is no deadlock as the program
will always choose the ‘if’ branch. As our (static) analysis conservatively assumes
that both branches may be taken, we can only use a synchronous permutation to
eliminate a non-synchronous path if we do not apply any conditional statements
along this path. In terms of the matching relation from Definition 14, we can
characterize the absence of conditional statements if none of the rules (L), (R),
(Kn) and (K0) has been applied.

Inter-thread Synchronous Paths. The second case concerns synchronization
within the same thread. Consider yet another variant of our example:

r = Fork(x ! · x?) · y! · y?

p = go (xs ← True; z ← xr); ys ← False; z ← yr

The above program will deadlock. However, in terms of the abstraction, i.e. fork-
able behavior, we find that for the non-synchronous path there exists a synchro-
nous permutation which does not make use of any of the conditional matching
rules, e.g. r

x!·x?·y!·y?
======⇒ {{}}. This is clearly not a valid alternative as for example

x! and x? result from the same thread.

130 K. Stadtmüller et al.

To identify the second case, we assume that receive/send symbols α in a
trace carry a distinct thread identifier (ID). We can access the thread ID of each
symbol α via some operator 	(·). Under our assumed restrictions (i.e., no forks
inside of loops, which is no go inside a while loop) it is straightforward to obtain
this information precisely.

We refine the approximation of a program’s communication behavior in terms
of a forkable behavior such that communications carry additionally the thread
identification number. Recall that we exclude programs where there is a go state-
ment within a while loop. Thus, the number of threads is statically known and
thread IDs can be attached to communication symbols via a simple extension
p

i� r of the relation p � r. The additional component i represents the identifi-
cation number of the current thread. We start with p

0� r where 0 represents the
main thread. We write symbol x!i to denote a transmission over channel x which
takes place in thread i. Similarly, symbol x?i denotes reception over channel x
in thread i. For each symbol, we can access the thread identification number via
operator 	(·) where 	(x!i) = i and 	(x?i) = i.

The necessary adjustments to Definition 11 are as follows.

skip � εi
p � ri q � si

if b then p else q � r + si

p � ri

while b do p � r∗i

p � ri q � si

p; q � r · si
x ← yr � y?ii ys ← b � y!ii

ei � rii pi � sii for i ∈ I

select [ei ⇒ pi]i∈I �
∑

i∈I ri · si

i
p � ri + 1

go p � Fork(r)
i

We summarize our observations.

Definition 16 (Concurrent Synchronous Permutation). Let T1 and T2 be
two traces. We say that T1 is a concurrent synchronous permutation of T2 iff
(1) T1 is a permutation of the symbols in T2, (2) T1 is a synchronous trace of
the form α1 · α1 · ... · αn · αn where 	(αi) �= 	(αi) for i = 1, ..., n.

Proposition 11 (Elimination via Concurrent Synchronous Permuta-
tion). Let p be a program. Let r be a well-behaved behavior such that p � r.
For any non-synchronous path T in FSA(r), there exists a synchronous path
T1, a non-synchronous path T2 and a concurrent synchronous permutation T3 of
T2 such that r

T1=⇒ {{r1, ..., rm}}, {{r1, ..., rm}} T2=⇒ {{}}, and {{r1, ..., rm}} T3=⇒ {{}}
where in the last match derivation none of the rules (L), (R), (Kn) and (K0)
have been applied. Then, program p is not stuck.

The ‘elimination’ conditions in the above proposition can be directly checked
in terms of the FSA(r). Transitions can be connected to matching rules.

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 131

This follows from the derivative-based FSA construction. Hence, for each non-
synchronous path in FSA(r) we can check for a synchronous alternative. We
simply consider all (well-formed) concurrent synchronous permutations and ver-
ify that there is a path which does not involve conditional transitions.

A further source for eliminating false positives is to distinguish among non-
determinism resulting from selective communication and nondeterminism due
to conditional statements. For example, the following programs yield the same
(slightly simplified) abstraction

r = Fork(x !) · (x? + y?)

p1 = go xs ← True; select [z ← xr ⇒ skip, z ← yr ⇒ skip]

p2 = go xs ← True; ifTrue then z ← xr ⇒ else z ← yr

It is easy to see that there is a non-synchronous path, e.g. r
x!·y?−−−→ ε. Hence, we

indicate that the program from which this forkable behavior resulted may get
stuck. In case of p1 this represents a false positive because the non-synchronous
path will not be selected.

The solution is to distinguish between both types of nondeterminism by
abstracting the behavior of select via some new operator ⊕ instead of +. We
omit the straightforward extensions to Definition 11. In terms of the matching
relation, + and ⊕ behave the same. The difference is that for ⊕ certain non-
synchronous behavior can be safely eliminated.

Briefly, suppose we encounter a non-synchronous path where the (non-

synchronous) issue can be reduced to {{α1 ⊕ ...⊕αn, β1 ⊕ ...⊕βm}} αi·βj===⇒ {{}} for
some i ∈ {1, ..., n} and j ∈ {1, ...,m} where αi · βj is non-synchronous. Suppose
there exists l ∈ {1, ..., n} and k ∈ {1, ...,m} such that {{α1 ⊕ ... ⊕ αn, β1 ⊕ ... ⊕
βm}} αl·βk===⇒ {{}} and αl · βk is synchronous. Then, we can eliminate this non-
synchronous path. The reason why this elimination step is safe is due to rule
(Sync) in Definition 7. This rule guarantees that we will always synchronize if
possible. As in case of the earlier ‘elimination’ approach, we can directly check
the FSA(r) by appropriately marking transitions due to ⊕.

Further note that to be a safe elimination method, we only consider select
statements where case bodies are trivial, i.e. equal skip. Hence, we find αi and
βj in the above instead of arbitrary behaviors. Otherwise, this elimination step
may not be safe. For example, consider

r = Fork(x ! · y !) · (x? · y? ⊕ x? · x?)

p = go (xs ← True; ys ← False); select [z ← xr ⇒ z ← yr, z ← xr ⇒ z ← xr]

Due to the non-trivial case body z ← xr we encounter a non-synchronous path
which cannot be eliminated.

132 K. Stadtmüller et al.

6 Experimental Results

6.1 Implementation

We have built a prototype of a tool that implements our approach, referred to
as gopherlyzer [8]. Our analysis operates on the Go source language where we
make use of the oracle tool [7] to obtain (alias) information to identify matching
channel names. We currently assume that all channels are statically known and
all functions can be inlined. The implementation supports select with default
cases, something which we left out in the formal description for brevity. Each
default case is treated as an empty trace ε.

Go’s API also contains a close operation for channels. Receiving from a closed
channel returns a default value whereas sending produces an error. An integra-
tion of this feature in our current implementation is not too difficult but left out
for the time being. The technical report provides further details.

Gopherlyzer generates the FSA ‘on-the-fly’ while processing the program. It
stops immediately when encountering a deadlock. We also aggressively apply
the ‘elimination’ methods described in Sect. 5.3 to reduce the size of the FSA.
When encountering a deadlock, the tool reports a minimal trace to highlight
the issue. We can also identify stuck threads by checking if a non-synchronous
communication pattern arises for this thread. Thus, we can identify situations
where the main thread terminates but some local thread is stuck. The reported
trace could also be used to replay the synchronization steps that lead to the
deadlock. We plan to integrate extended debugging support in future versions
of our tool.

6.2 Examples

For experimentation, we consider the examples deadlock, fanin, and
primesieve from Ng and Yoshida [18]. To make primesieve amenable to our
tool, we moved the dynamic creation of channels outside of the (bounded) for-
loop. Ng and Yoshida consider two further examples: fanin-alt and htcat. We
omit fanin-alt because our current implementation does not support closing
of channels. To deal with htcat we need to extend our frontend to support cer-
tain syntactic cases. In addition, we consider the examples sel and selFixed
from Sect. 2 as well as philo which is a simplified implementation of the dining
philosophers problem where we assume that all forks are placed in the middle
of the table. As in the original version, each philosopher requires two forks for
eating. All examples can be found in the gopherlyzer repository [8].

6.3 Experimental Results

Comparison with Dingo-Hunter [18]. For each tool we report analysis
results and the overall time used to carry out the analysis. Table 1 summarizes
our results which were carried out on some commodity hardware (Intel i7 3770
@ 3.6GHz, 16 GB RAM, Linux Mint 17.3).

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 133

Table 1. Experimental results. All times are reported in ms

Example LoC Channels Goroutines Select Deadlock dingo-hunter gopherlyzer

result time result time

deadlock 34 2 5 0 true true 155 true 21

fanin 37 3 4 1 false false 107 false 29

primesieve 57 4 5 0 true true 8000 true 34

philo 34 1 4 0 true true 480 true 31

sel 25 4 4 0 true true 860 true 24

selFixed 25 2 2 2 false false 85 false 30

Our timings for dingo-hunter are similar to the reported results [18], but it
takes significantly longer to analyze our variant of primesieve, where we have
unrolled the loop. There is also significant difference between sel and selFixed
by an order of magnitude. A closer inspection shows that the communicating
finite state machines (CFSMs) generated by dingo-hunter can grow dramatically
in size with the number of threads and channels used.

The analysis time for our tool is always significantly faster (between 3× and
235× with a geometric mean of 17×). Judging from the dingo-hunter paper,
the tool requires several transformation steps to carry out the analysis, which
seems rather time consuming. In contrast, our analysis requires a single pass
over the forkable behavior where we incrementally build up the FSA to search
for non-synchronous paths.

Both tools report the same analysis results. We yet need to conduct a more
detailed investigation but it seems that both approaches are roughly similar
in terms of expressive power. However, there are some corner cases where our
approach appears to be superior.

Consider the following (contrived) examples in Mini-Go notation: (go xs ←
True); y ← xr and y ← xr; (go xs ← True). Our tool reports that the first
example is deadlock-free but the second example may have a deadlock. The
second example is out of scope of the dingo-hunter because it requires all go-
routines to be created before any communication takes place. Presently, dingo-
hunter does not seem to check this restriction because it reports the second
example as deadlock-free.

Our approximation with forkable behaviors imposes no such restrictions. The
first example yields Fork(x !) ·x? whereas the second example yields x? ·Fork(x !).
Thus, our tool is able to detect the deadlock in case of the second example.

Comparison with Kobayashi [13]. We conduct a comparison with the TyPi-
Cal tool [11] which implements Kobayashi’s deadlock analysis [13]. As the source
language is based on the π-calculus, we manually translated the Go exam-
ples to the syntax supported by TyPiCal’s Web Demo Interface available from
Kobayashi’s homepage. The translated examples can be found in the gopherlyzer
repository [8].

134 K. Stadtmüller et al.

To the best of our knowledge, TyPiCal does not support a form of selective
communication. Hence, we need to introduce some helper threads which results
in an overapproximation of the original Go program’s behavior and potentially
introduces a deadlock. Recall the discussion in Sect. 2.

For programs not making use of selective communication (and closing of
channels; another feature not supported by TyPiCal), we obtain the same analy-
sis results. Analysis times seem comparable to our tool. The exception being
the primesieve example which cannot be analyzed within the resource limits
imposed by TyPiCal’s Web Demo Interface which we used in the experiments.
Like our tool, TyPiCal properly maintains the order among threads. Recall the
example y ← xr; (go xs ← True) from above.

Fig. 1. Analysis report: gopherlyzer versus TyPiCal

Finally, gopherlyzer reports the analysis result in a different way than TyP-
iCal. The left side of Fig. 1 contains a simple Go program and the right side its
translation to TyPiCal’s source language. TyPiCal reports that the program is
unsafe and might deadlock. Annotations ? and ! denote potentially stuck receive
and send operations whereas ?? and !! indicate that the operations might suc-
ceed. The trace-based analysis (on the left) yields a non-synchronous trace from
which we can easily pinpoint the position(s) in the program which are likely to
be responsible. In the example, the underlined events are connected to program
locations P1 and P2.

7 Conclusion

We have introduced a novel trace-based static deadlock detection method and
built a prototype tool to analyze Go programs. Our experiments show that our
approach yields good results and its efficiency compares favorably with existing
tools of similar scope.

Static Trace-Based Deadlock Analysis for Synchronous Mini-Go 135

In future work, we intend to lift some of the restrictions of the current app-
roach, for example, supporting programs with dynamically generated goroutines.
Such an extension may result in a loss of decidability of our static analysis. Hence,
we consider mixing our static analysis with some dynamic methods.

Acknowledgments. We thank the APLAS’16 reviewers for their constructive feed-
back.

References

1. Boyapati, C., Lee, R., Rinard, M.C.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: Proceedings of OOPSLA 2002, pp. 211–230.
ACM (2002)

2. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
3. Christakis, M., Sagonas, K.: Detection of asynchronous message passing errors

using static analysis. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol.
6539, pp. 5–18. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18378-2 3

4. Colby, C.: Analyzing the communication topology of concurrent programs. In:
Proceedings of PEPM 1995, pp. 202–213. ACM (1995)

5. Engler, D.R., Ashcraft, K.: RacerX: effective, static detection of race conditions
and deadlocks. In: Proceeding of SOSP 2003, pp. 237–252. ACM (2003)

6. The Go programming language. https://golang.org/
7. Oracle: a tool for answering questions about go source code. https://godoc.org/

golang.org/x/tools/cmd/oracle
8. Gopherlyzer: Trace-based deadlock detection for mini-go. https://github.com/

KaiSta/gopherlyzer
9. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–

677 (1978)
10. Huang, S.T.: A distributed deadlock detection algorithm for CSP-like communica-

tion. ACM Trans. Program. Lang. Syst. 12(1), 102–122 (1990)
11. Kobayashi, N.: TyPiCal: type-based static analyzer for the Pi-Calculus. http://

www-kb.is.s.u-tokyo.ac.jp/∼koba/typical/
12. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf.

42(4–5), 291–347 (2005)
13. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C.,

Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006). doi:10.1007/11817949 16

14. Ladkin, P.B., Simons, B.B.: Static deadlock analysis for CSP-type communications.
In: Fussell, D.S., Malek, M. (eds.) Responsive Computer Systems: Steps Toward
Fault-Tolerant Real-Time Systems, pp. 89–102. Springer, Boston (1995)

15. Martel, M., Gengler, M.: Communication topology analysis for concurrent pro-
grams. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885,
pp. 265–286. Springer, Heidelberg (2000). doi:10.1007/10722468 16

16. Mercouroff, N.: An algorithm for analyzing communicating processes. In: Brookes,
S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1991. LNCS, vol.
598, pp. 312–325. Springer, Heidelberg (1992). doi:10.1007/3-540-55511-0 16

17. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, New York (1999)

http://dx.doi.org/10.1007/978-3-642-18378-2_3
https://golang.org/
https://godoc.org/golang.org/x/tools/cmd/oracle
https://godoc.org/golang.org/x/tools/cmd/oracle
https://github.com/KaiSta/gopherlyzer
https://github.com/KaiSta/gopherlyzer
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
http://dx.doi.org/10.1007/11817949_16
http://dx.doi.org/10.1007/10722468_16
http://dx.doi.org/10.1007/3-540-55511-0_16

136 K. Stadtmüller et al.

18. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: Proceedings of CC 2016, pp. 174–184. ACM (2016)

19. Nielson, H.R., Nielson, F.: Higher-order concurrent programs with finite commu-
nication topology. In: Proceedings of POPL 1994, pp. 84–97. ACM Press, January
1994

20. Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press,
New York (1999)

21. Sulzmann, M., Thiemann, P.: Forkable regular expressions. In: Dediu, A.-H.,
Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618,
pp. 194–206. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30000-9 15

22. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection for Java libraries.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 602–629. Springer,
Heidelberg (2005). doi:10.1007/11531142 26

http://dx.doi.org/10.1007/978-3-319-30000-9_15
http://dx.doi.org/10.1007/11531142_26

Profiling and Debugging

AkkaProf: A Profiler for Akka Actors in Parallel
and Distributed Applications

Andrea Rosà1(B), Lydia Y. Chen2, and Walter Binder1

1 Faculty of Informatics, Università della Svizzera Italiana (USI),
Lugano, Switzerland

{andrea.rosa,walter.binder}@usi.ch
2 Cloud Server Technologies Group, IBM Research Zurich, Rüschlikon, Switzerland

yic@zurich.ibm.com

Abstract. Nowadays, numerous programming languages and frame-
works offer concurrency based on the actor model. Among the actor
libraries for the Java Virtual Machine, Akka is the most used one, as it
is employed in various parallel and distributed applications and frame-
works. Unfortunately, despite the spread of actors libraries, Akka in par-
ticular, existing profiling tools are not very effective at identifying per-
formance drawbacks in applications using actors. In this tool paper, we
aim at filling this gap by presenting AkkaProf, a profiling tool for Akka
actors. AkkaProf provides detailed metrics on actor utilization and on the
communication between them, two fundamental aspects of actor-based
applications that are overlooked by other profilers. AkkaProf aids perfor-
mance analysis in several applications and frameworks in both parallel
and distributed environments.

Keywords: Actor model · Concurrent applications · Parallel and dis-
tributed frameworks · Profiling tools · Performance evaluation and opti-
mization

1 Introduction

The actor model [1] is being adopted in concurrent applications by an increasing
community of developers. Essentially, the model is centered on actors, atomic
entities relying on message exchange to coordinate between each other and
executing computations, and builds on typical characteristics—such as asyn-
chronous communication, location transparent addressing, absence of locks and
shared states—that help avoiding deadlocks and data races. As a result, actors
are now consistently employed in both parallel and distributed environments,
either in isolation or mixed with other concurrent constructs [2].

The interest in adopting the model is confirmed by the large number of
programming languages and libraries that implement it for a great variety of
platforms. In this paper, we focus on the Java Virtual Machine (JVM). Among
the actor libraries targeting the JVM, Akka1 is the most popular one. As evidence
1 http://akka.io.

c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 139–147, 2016.
DOI: 10.1007/978-3-319-47958-3 8

http://akka.io

140 A. Rosà et al.

of its prominence over other actor libraries, Scala includes Akka actors since
20132, and numerous applications use Akka, including parallel and distributed
computing frameworks such as Signal/Collect [3], Apache Spark [4] and Apache
Flink [5].

Despite the spread of actors libraries, particularly Akka, and actor-based
applications, existing profiling tools are not very effective at analyzing the per-
formance of actor-based applications. The key properties that characterize actors
(i.e., the absence of locks, the large number of messages sent and received, the
fact that actors cannot share state between each other, and the actor behavior
being strongly dependent to the type of the received message) make actor uti-
lization and the communication between them fundamental metrics for locating
key performance drawbacks in such applications (see Sect. 4). Although tools for
profiling Akka applications are available [6,7], they focus mainly on mailboxes
and errors occurred to actors rather than on their utilization and communication.
Moreover, other profilers targeting parallel [8,9] or distributed [10,11] applica-
tions lack metrics dedicated to actors. As actors feature unique properties that
make them rather different from other concurrency abstractions, investigating
performance problems in Akka applications without the support of metrics ded-
icated to actors is a difficult task.

In this tool paper, we aim at filling this gap by introducing AkkaProf, a pro-
filing tool for Akka actors. AkkaProf is based on bytecode instrumentation mak-
ing possible to track and collect low-level metrics related to actors. In particular,
AkkaProf focuses on actor utilization and on the communication between them.
AkkaProf is implemented on top of the DiSL framework for program analysis [12]
that ensures full bytecode coverage such that the collected metrics are profiled
accurately. AkkaProf can benefit an increasing number of parallel and distrib-
uted applications and frameworks relying on Akka, and can aid several tasks,
such as analyzing the utilization of each actor, determining whether the load is
balanced in computing frameworks, and locating inefficiencies in actor commu-
nication. To the best of our knowledge, AkkaProf is the first profiler tracking
detailed metrics on the utilization and communication of Akka actors.

2 Motivating Scenarios

We motivate the need for a tool like AkkaProf by describing three scenarios, each
focusing on a specific context where our tool can be helpful. These scenarios will
guide the evaluation of AkkaProf described in Sect. 4.

In the first scenario, we consider a user who is interested in analyzing how
much actors are utilized in an application where concurrency is obtained exclu-
sively by means of Akka actors. In particular, she wants to assess whether the
application leverages an adequate number of actors, that is, that enough actors
are spawned to execute computations, and that none of them remains idle after
creation. AkkaProf can be helpful in reaching her goal, thanks to fine-grained
metrics centered on actor utilization. On the other hand, profiling tools for
2 Akka actors have replaced Scala actors since Scala 2.10.

AkkaProf: A Profiler for Akka Actors 141

Akka [6,7] and object profilers [8,9] lack metrics dedicated to actor utilization,
focusing mostly on actor mailboxes, errors occurred, or other CPU- or heap-
related metrics that provide little help when investigating actor utilization.

In the second scenario, we consider a user willing to investigate load balancing
in parallel processing frameworks, i.e., whether the subdivision of computations
is balanced between workers. In such frameworks, Akka actors can be used as
computing workers; for example, the Signal/Collect framework [3] does so. To
reach her goal, she might try to use existing profilers for parallel applications [8,9]
or apply existing techniques for load profiling [10,13] to computing workers.
Unfortunately, while the former tools are not very helpful when analyzing load
balancing, as they keep track neither of the amount of computations processed
by actors nor of the amount of messages exchanged, the latter usually center on
message latency rather than computations, and consider the latter at a coarse
granularity (e.g., the number of tasks), without looking at the size of each task or
the amount of computations assigned to tasks, which are very important in the
considered scenario. In contrast, AkkaProf collects information on the amount
of bytecodes executed per worker, a fine-grained metric that is very effective in
analyzing load balancing, in conjunction with metrics related to the message
exchange.

In the third use case, we consider a user who wants to analyze communication
between different workers in a distributed computing framework. In many dis-
tributed frameworks such as the popular Apache Spark [4] or Apache Flink [5],
endpoints managing communication are implemented as Akka actors. In these
frameworks, AkkaProf can track the amount of communication incurred between
endpoints, enabling performance evaluation and guiding related optimizations.
Alternatively, the user might consider other tools for network [14,15] or commu-
nication profiling [11]. However, the former track metrics and information at the
granularity of the network stack, being not very useful when analyzing message
exchange in applications using actors, while the latter cannot guarantee precise
results, and mainly focus on latencies in the communication.

3 Profiler Overview

AkkaProf instruments every Akka actor created during the execution of an actor-
based application, collecting detailed metrics on actor utilization and on the
communication between them. AkkaProf is implemented on top of DiSL [12], a
bytecode instrumentation framework achieving complete bytecode coverage. The
integration with DiSL ensures that all actors created (i.e., akka.actor.Actor and
all its subtypes) are effectively profiled and that the metrics tracked and collected
are accurate. In particular, since an important metric profiled by AkkaProf is the
number of executed bytecodes, full bytecode coverage ensures that all bytecode
instructions that are executed by Akka actors are counted, including those in
core library classes (such as java.lang).

Architecture. Figure 1 illustrates a high-level picture of the AkkaProf architec-
ture. AkkaProf is launched together with the target application. As AkkaProf is

142 A. Rosà et al.

Fig. 1. AkkaProf architecture for applications using a single JVM.

built on top of DiSL, a DiSL agent runs in the same JVM process as the target
application, while a DiSL instrumentation server is spawned in a separate JVM
process. The instrumentation performed by AkkaProf is done as follows. The
DiSL agent intercepts classes loaded on the target application (1) and forwards
them to the instrumentation server (2). Thanks to the AkkaProf instrumentation
logic running in the server, the latter determines the classes and the methods
that shall be instrumented to track the desired metrics (3). Classes are then sent
back to the target application (4). During the application execution, AkkaProf
runtime logic collects several metrics related to the utilization of each actor
and the communication occurred (5). Periodically, or at the end of the appli-
cation, AkkaProf stores collected metrics in traces (6). Finally, a trace analyzer
accumulates all traces (7) and aggregates metrics to compute per-actor data (8).
Although Fig. 1 exemplifies the AkkaProf architecture when the application uses
a single JVM, AkkaProf can be applied also to applications spawning multiple
JVMs or multiple nodes. We do not show the AkkaProf architecture in these
configurations due to the lack of space.

Metrics. The AkkaProf instrumentation logic enables the profiling of numerous
metrics on actors and messages. For each actor, our tool collects its creational
overhead and the amount of executed computations, both of them expressed as
the number of executed bytecodes, a platform-independent metric that makes it
possible to quantify computations while being less prone to perturbations aris-
ing from the instrumentation code [16]. Specifically, the former metric tracks the
number of bytecode instructions executed in the dynamic extent of the construc-
tor of each actor, while the latter captures the number of bytecode instructions
executed by actors when they receive a message. AkkaProf stores also other
information for each actor, e.g., their ID, class, and other Akka-specific data.
Regarding messages, our profiler collects information on every message sent or
received by actors, such as the message ID and class, mailbox queue order and
direction (i.e., sent or received), sender and receiver actor ID, and the transmis-
sion type (i.e., tell or ask). Additionally, the trace analyzer aggregates traces to
derive other per-actor metrics, such as the actor utilization, defined as the ratio
of the executed computations to the creational overhead of each actor. Small
values of actor utilization can be a sign of suboptimal performance, because the
system might spend more resources for the creation and initialization of actors

AkkaProf: A Profiler for Akka Actors 143

rather than for the execution of computations. On the contrary, high values of
utilization indicate that the application could be speeded up if more computing
actors are added.

4 Evaluation

In this section, we show how AkkaProf is helpful in analyzing the performance
of actor-based applications by discussing some profiling results obtained from
real-world workloads in the different scenarios introduced in Sect. 23.

Scenario 1 (actor utilization). To exemplify actor utilization profiling, we
use benchmarks from the Savina suite [17] as target applications. The suite is
composed of 30 diverse, CPU-intensive benchmarks implemented in 10 actor
frameworks for the Java platform, including Akka. To better highlight profiling
results, we categorize each actor spawned by the benchmarks in one of three
groups, according to its utilization u, i.e., (1) highly utilized (u >500k), (2) well-
utilized (1 < u ≤ 500k), and little utilized (0 ≤ u ≤ 1). We note that this is an
arbitrary classification done for the purpose of this paper.

Table 1. Distribution of actors wrt. their utilization in the Savina benchmark suite.
The left (right) side of the table reports five benchmarks with the highest percentage
of highly (little) utilized actors.

Benchmark # actors % actors Benchmark # actors % actors

Highly Well Little Highly Well Little

bndbuffer 85 90.6 7.0 2.4 pingpong 6 0.0 66.7 33.3

nqueenk 25 80.0 12.0 8.0 count 6 16.7 50.0 33.3

piprecision 25 80.0 12.0 8.0 sieve 15 0.0 86.7 13.3

uct 199977 77.7 22.3 0.0 bitonicsort 190525 0.0 91.7 8.3

recmatmul 25 20.0 72.0 8.0 nqueenk 25 80.0 12.0 8.0

Table 1 summarizes the percentage of highly, well, and little utilized Akka
actors in selected benchmarks. As shown by the left side of the table, a significant
percentage of actors is highly utilized in some benchmarks. Depending on the
characteristics of the environment and the available resources, utilization in these
benchmarks could be lowered by adding more actors, with the goal of better
exploiting resources available in the system. For example, in environments where
more cores are available than actors running at the same time, applications

3 All evaluation results are measured on a multicore platform (Intel Xeon E5-2680
2.7 GHz with 16 cores, 128 GB of RAM, CPU frequency scaling and Turbo mode
disabled, Oracle JDK 1.8.0 66 b17 Hotspot Server VM 64-bit, Ubuntu Linux Server
64-bit version 14.04.3 64-bit). Each Spark o Flink worker is deployed on one such
platform.

144 A. Rosà et al.

might be speeded up by adding more actors, as additional worker actors could
be executed by idle cores.

On the other hand, some benchmarks feature little utilized actors. Low
utilization might arise from an excessive amount of actors spawned wrt. the
amount of computations to be done, or unbalanced assignment of computations
to actors. As possible optimizations aimed at improving actor utilization—under
the assumption that the amount of computations cannot be altered—developers
might, in the first case, remove some actors. This action would avoid creating
actors that would be utilized only scarcely. In the latter case, developers could
consider redesigning the assignment of computations to worker actors where pos-
sible, aiming at improving load balancing. For example, bitonicsort might benefit
from such an action, as 15892 actors are underutilized because of bad design
rather than due to few computations to be executed.

Overall, AkkaProf is helpful in identifying highly and little utilized actors
thanks to dedicated actor-centric metrics.

Scenario 2 (load balancing). We show how AkkaProf helps investigating
load balancing with a field analysis on Signal/Collect [3], a parallel framework
for computations on large graphs. In Signal/Collect, vertices act as computa-
tional entities that interact by means of signals flowing along the edges. Vertices
are sharded across Akka worker actors, with each worker managing a whole ver-
tex shard. The framework transforms signals into messages exchanged among
Akka actors. AkkaProf can be applied proficiently to frameworks such as Sig-
nal/Collect to analyze whether computations are distributed equally between
workers. In particular, AkkaProf tracks the amount of computations as byte-
codes executed by workers, while signals can be analyzed by inspecting sent and
received messages.

Figure 2 shows the results profiled from an 8-worker computation of the
PageRank algorithm on a set of 20k webpages.4 Overall, the subdivision of
computations in the framework appears to be rather balanced between worker
actors. As shown by Fig. 2(a), all workers execute similar numbers of bytecodes,
i.e., around 640M, a sign of good load balancing. This is further confirmed by
Figs. 2(b) and (c), revealing that all workers send and receive similar amounts
of signals/messages. Overall, the number of executed bytecodes and messages
exchanged are two metrics collected by AkkaProf that aid the investigation of
load balancing in computing frameworks.

Scenario 3 (communication). Communication is a key activity in comput-
ing frameworks as it is involved in many operations, including job scheduling,
assignment of tasks to computing workers, logging, and heartbeat signaling. As
a result, an adequate knowledge on the communication occurred at runtime is
necessary to completely understand the application performance in computing
frameworks. Here, we use AkkaProf to compare the amount of messages sent
between the master and the worker nodes in the Apache Spark [4] and Apache

4 We applied the algorithm on a reduced set of 20k webpages taken from a public data
source [18].

AkkaProf: A Profiler for Akka Actors 145

Fig. 2. Load balancing in Signal/Collect during an 8-worker PageRank computation.
Results are broken down by worker actor. As worker actors can exchange messages
with other non-worker actors, the total number of messages sent and received does not
coincide.

Fig. 3. Messages sent in Spark and Flink
during a Kmeans computation on 10M
points.

Table 2. Messages sent by the master
node in Spark and Flink wrt. different
input sizes.

points # messages sent

Spark Flink

10k 3645 125005

100k 3651 92162

1M 3774 104878

10M 4088 110337

Flink [5] frameworks wrt. the amount of data processed. For each framework, we
set up a small cluster composed of 1 master and 4 worker nodes, and analyze the
communication incurred in a Kmeans computation. We repeat the evaluation for
different numbers of data points, i.e., 10k, 100k, 1M, and 10M, to relate commu-
nication to the data size. We note that the input data set and the parameters
of the computation are equal in Spark and Flink.

In Fig. 3, we compare the amount of messages sent by the master and the
workers where both frameworks execute a Kmeans computation on an input set
of 10M points. As can be seen from the figure, the number of messages sent is
overall well distributed among workers of the same computing framework, i.e.,
∼1.6k messages in Spark and ∼25k messages in Flink, while the master node
sends many more messages, i.e., 2.5× in Spark and 4.35× in Flink wrt. the
worker nodes. Judging from these results, communication in Spark appears to
be more optimized than in Flink, since the latter generates 20× more messages
than Spark given the same algorithm to be carried out. Exchanging too many
messages, as in the case of Flink, could be sign of bad performance. Regarding
the correlation between the amount of messages sent and the input data size (see
Table 2), Spark shows a strong positive correlation (the correlation coefficient5

between the two metrics is 0.99), while the correlation is rather weak in Flink (the
correlation coefficient is equal to 0.18). From the traces collected by AkkaProf,

5 With this term, we refer to the Pearson product-moment correlation coefficient.

146 A. Rosà et al.

we can observe a good degree of optimization in Spark communication, while
message exchange in Flink could be further optimized, given the strong negative
difference in the amount of messages sent wrt. Spark (at least in the case of the
workload studied here).

5 Concluding Remarks

In this tool paper, we have presented AkkaProf, a profiling tool for Akka actors.
To the best of our knowledge, AkkaProf is the first profiler tracking detailed
metrics on the utilization and communication of Akka actors. Evaluation results
demonstrate that AkkaProf can be used profitably in many scenarios. More
information on AkkaProf can be found in [19] and at http://www.inf.usi.ch/
phd/rosaa/akkaprof.

Limitations and Future Work. AkkaProf tracks creational overhead and the
amount of executed computations as bytecode count. While being less prone to
perturbations caused by the instrumentation and being platform-independent,
the bytecode count is unable to track code without a bytecode representa-
tion (e.g., native methods) and cannot catch optimizations removing bytecode
instructions during just-in-time compilation. We are extending AkkaProf to sup-
port machine code count profiling, which can be useful in scenarios where higher
accuracy is preferred to platform independence. We are also aware that certain
attributes related to Akka actors are not tracked by the current version of the
tool. For example, profiling of actor hierarchy and supervising strategy, failures,
and message flows between actors is currently not supported. We are extending
AkkaProf to support these metrics in our ongoing work.

Acknowledgments. This work has been supported by the Swiss National Science
Foundation (project 200021 141002) and by the European Commission (contract
ACP2-GA-2013-605442).

References

1. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: IJCAI, pp. 235–245 (1973)

2. Tasharofi, S., Dinges, P., Johnson, R.E.: Why do scala developers mix the
actor model with other concurrency models? In: Castagna, G. (ed.) ECOOP
2013. LNCS, vol. 7920, pp. 302–326. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39038-8 13

3. Stutz, P., Bernstein, A., Cohen, W.: Signal/collect: graph algorithms for the
(semantic) web. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp.
764–780. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17746-0 48

4. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI, pp. 2:1–2:14 (2012)

http://www.inf.usi.ch/phd/rosaa/akkaprof
http://www.inf.usi.ch/phd/rosaa/akkaprof
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.1007/978-3-642-17746-0_48

AkkaProf: A Profiler for Akka Actors 147

5. Apache: Flink. https://flink.apache.org
6. Lightbend Monitoring. https://www.lightbend.com/products/monitoring
7. Akka Tracing. https://github.com/levkhomich/akka-tracing
8. YourKit. https://www.yourkit.com
9. VisualVM. https://visualvm.java.net

10. Bestavros, A.: Load profiling in distributed real-time systems. Inf. Sci. 101, 1–27
(1997)

11. Vetter, J.: Dynamic statistical profiling of communication activity in distributed
applications. In: SIGMETRICS, pp. 240–250 (2002)

12. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a
domain-specific language for bytecode instrumentation. In: AOSD, pp. 239–250
(2012)

13. Tallent, N.R., Adhianto, L., Mellor-Crummey, J.M.: Scalable identification of load
imbalance in parallel executions using call path profiles. In: SC, pp. 1–11 (2010)

14. Yu, M., Greenberg, A., Maltz, D., Rexford, J., Yuan, L., Kandula, S., Kim, C.:
Profiling network performance for multi-tier data center applications. In: NSDI,
pp. 57–70 (2011)

15. Fonseca, R., Porter, G., Katz, R.H., Shenker, S., Stoica, I.: X-trace: a pervasive
network tracing framework. In: NSDI, pp. 271–284 (2007)

16. Binder, W., Hulaas, J.G., Villazón, A.: Portable resource control in java. In: OOP-
SLA, pp. 139–155 (2001)

17. Imam, S.M., Sarkar, V.: Savina - an actor benchmark suite: enabling empirical
evaluation of actor libraries. In: AGERE!, pp. 67–80 (2014)

18. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: KDD, pp. 44–54 (2006)

19. Rosà, A., Chen, L.Y., Binder, W.: Profiling actor utilization and communication
in Akka. In: Erlang, pp. 1–9 (2016)

https://flink.apache.org
https://www.lightbend.com/products/monitoring
https://github.com/levkhomich/akka-tracing
https://www.yourkit.com
https://visualvm.java.net

A Debugger-Cooperative Higher-Order Contract
System in Python

Ryoya Arai1, Shigeyuki Sato2(B), and Hideya Iwasaki1

1 The University of Electro-Communications, Tokyo, Japan
ryoya@ipl.cs.uec.ac.jp, iwasaki@cs.uec.ac.jp
2 Kochi University of Technology, Kochi, Japan

sato.shigeyuki@kochi-tech.ac.jp

Abstract. Contract programming is one of the most promising ways of
enhancing the reliability of Python, which becomes increasingly desired.
Higher-order contract systems that support fully specifying the behav-
iors of iterators and functions are desirable for Python but have not
been presented yet. Besides, even with them, debugging with contracts in
Python would still be burdensome because of delayed contract checking.
To resolve this problem, we present PyBlame, a higher-order contract
system in Python, and ccdb, a source-level debugger equipped with fea-
tures dedicated to debugging with delayed contract checking. PyBlame
and ccdb are designed on the basis of the standard of Python and thus
friendly to many Python programmers. We have experimentally con-
firmed the advantage and the efficacy of PyBlame and ccdb through
the web framework Bottle.

Keywords: Contracts · Python · Debugging

1 Introduction

Python is a dynamic language used in various areas such as data analytics and
web development. Software systems in Python grow increasingly large and com-
plicated and become hard to maintain. For maintaining large and complicated
systems, mechanical checking based on API specifications is of high importance.
A reasonable and promising approach for Python is “design by contract” [17].

Contracts are assertions of the preconditions and postconditions of functions.
They are represented as predicates over given arguments and results and are
dynamically checked, usually in debug mode. Because of this dynamic nature,
contracts are suited to Python. In addition to the classic work [18] on contracts
for Python, PyContracts1, a contract library of practical design in Python, is
now available. It enables us to benefit from “design by contract” in Python.

PyContracts provides first-order contracts in the sense that functions in con-
tracts are limited to unrestricted callable objects and checks contracts eagerly
in the sense that contracts are fully evaluated at the entries and exits of target
1 https://github.com/AndreaCensi/contracts.

c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 148–168, 2016.
DOI: 10.1007/978-3-319-47958-3 9

https://github.com/AndreaCensi/contracts

A Debugger-Cooperative Higher-Order Contract System in Python 149

functions. This is sufficient for a certain range of Python applications such as sci-
entific computing and data analytics based on NumPy2. However, it misses the
higher-order nature of Python and fails to support fully specifying the behaviors
of important kinds of Python objects such as iterators and functions. To utilize
contracts fully in Python, higher-order contract systems are required.

Higher-order contracts generally necessitate delayed checking [10,14,23],
which is to keep checking contracts with values observed in actual use. To under-
stand the necessity of delayed checking, consider function ints that returns an
iterator that yields integers infinitely. For example, a contract asserting that its
resultant iterators yield positive integers is a higher-order contract. At the exit
of ints, no value to be used for checking a resultant iterator is available. When
resultant iterators are used, we can check the contract with actually yielded val-
ues. Similar situations come from functions. Consider a contract that asserts two
given functions, say f and g, to be behaviorally equivalent, say ∀x, f(x) = g(x).
We cannot enumerate this x because of its arbitrariness.

Readers might consider that higher-order contracts can be eagerly checked
if values to be used for checking are finite. This is, however, unsafe in Python.
Consider function lines that returns an iterator that yields the lines of a given file.
Although we could enumerate all lines of a given file at the exit of lines, lines
can be appended to the file afterward. Eager checking misses such appended
lines although they can be observed in actual use. In higher-order functions,
given/resultant functions may contain side effects. For example, in the context
of web frameworks such as Python WSGI [8], given callbacks issue IO operations
internally. If we invoke such callbacks eagerly for checking, we will dirty external
environment with IO operations different from ones in actual use.

As can be seen from the above, delayed checking is necessary for higher-order
contract systems in Python, but unfortunately leaves problems in debugging.

Contract systems blame culprits for contract violations: the culprits for the
violations of contracts on arguments are callers (i.e., call sites) and those on
results are callees (i.e., function definitions). Although this blame information is
reasonably helpful for debugging with first-order contracts under eager checking,
it is not so helpful for debugging with higher-order contracts under delayed
checking. For example, consider assigning to ints, a contract that asserts its
resultant iterators to yield values greater than a global variable, say n. Even
though n is expected to be invariant in the contract, n cannot be guaranteed to be
invariant in Python. To figure out violations regarding this contract, we therefore
have to examine the value of n at the violation point as well as the violated value
yielded from iterators. Because iterators can be used from place to place in the
presence of side effects, it is burdensome to track violation situations. Blame
information about whether a culprit is a call site of ints or its definition does
not provide useful information for debugging. We will face a similar situation
for contracts on functions because of their closures. Furthermore, if we suppose
that contracts are inadequate, we should not trust the whole results of checking
in debugging. The standard blame information is therefore not always sufficient.

2 http://www.numpy.org/.

http://www.numpy.org/

150 R. Arai et al.

Generally, dealing with the above problems in debugging is part of the role of
debuggers rather than contract systems. A reasonable solution is therefore the
cooperation of debuggers with delayed contract checking. In this work, we have
developed PyBlame, a higher-order contract system in Python on the basis of
the work by Findler and Felleisen [10], and the contract-checking debugger ccdb
dedicated to debugging with delayed contract checking of PyBlame. The con-
tract language of PyBlame is based on Type Hints [19], ccdb is a domain-specific
extension of the Python standard debugger pdb, and the PyBlame implemen-
tation is a pure Python library, like PyContracts. Our PyBlame system is thus
designed to be friendly to many Python programmers.

PyBlame’s higher-order contracts on iterators and functions strongly sup-
port web development. Iterators are used extensively in the Python standard
library and web frameworks such as Tornado3 for abstracting IO. Higher-order
functions in the forms of callbacks and decorators are utilized in web frameworks
such as WSGI, Bottle4, and Flask5. We have experimentally confirmed the prac-
tical advantage of PyBlame in expressiveness through Bottle, and the efficacy
of ccdb in debugging Bottle-based applications.

Our work additionally has a notable point. To the best of our knowledge, the
cooperation of debuggers with delayed contract checking has not been seriously
investigated yet. Even Racket6, which is a full-blown programming language
equipped with a mature higher-order contract system, has excellent functionality
of debugging but provides no support dedicated to debugging with contract
checking. In this sense, our work is the first to investigate it.

Our main contributions are summarized as follows.

– We have developed PyBlame, a higher-order contract system in Python, on
the basis of the work by Findler and Felleisen [10] and Python Type Hints
[19], in the form of a pure Python library (Sects. 3 and 5).

– We have developed the contract-checking debugger ccdb equipped with fea-
tures dedicated to debugging with the contract checking of PyBlame by
extending the Python standard debugger pdb (Sect. 4). To the best of our
knowledge, this is the first to study debuggers cooperating with delayed con-
tract checking.

– We have experimentally demonstrated the practical advantage of PyBlame
over PyContracts in expressiveness by adding contracts into the web frame-
work Bottle, and how effectively ccdb functions in debugging Bottle-based
applications (Sect. 6). We also report the overhead of PyBlame.

2 PyBlame at a Glance

This section briefly describes usage of PyBlame and ccdb by example.
First, we introduce the following generator ascend with an example contract.

3 http://www.tornadoweb.org/.
4 http://bottlepy.org/.
5 http://flask.pocoo.org/.
6 https://racket-lang.org/.

http://www.tornadoweb.org/
http://bottlepy.org/
http://flask.pocoo.org/
https://racket-lang.org/

A Debugger-Cooperative Higher-Order Contract System in Python 151

def ascend(i):
"""

contracts:
i: int and ‘i > 0‘
returns: Iterator[x: int and ‘x >= glb ‘]
"""
i = max(i, glb)
while True:

yield i
i += 1

Generators in Python are functions in a form dedicated to producing iterators.
ascend returns an iterator that infinitely yields ascending integers starting from
a given i, where global variable glb denotes the greatest lower bound of them.

Contracts in PyBlame are described in docstrings, which are string literals
attached to declarations. The contract above denotes that the parameter i of
ascend is a positive integer and the result (named returns) is an iterator that
yields integers greater than or equal to glb, where x is bound to each yielded
value and predicates enclosed in backquotes are Boolean expressions in Python.

Next, we use this ascend as follows.

1 glb = 0
2 if wrongApp:
3 it = ascend (0)
4 else:
5 it = ascend (1)
6 fst = next(it)
7 glb = 3
8 snd = next(it)

In this example, if wrongApp is true, 0 is passed. This argument violates the
contract on i and PyBlame blames the call site at Line 3 as in common contract
systems. Concretely, after printing a stack backtrace from a violation point,
PyBlame shows the following:

target = <function ascend at 0x7f5944275d08>
expected = <0>Callable[[i: <2>int <1>and <3>‘i > 0‘],

returns: <4>Iterator[x: <6>int <5>and <7>‘x >= glb‘]]
violated = <3>‘i > 0‘
actual = 0
blame = ctx.

Here, target denotes a target function, which is a function having a concerned
contract. expected denotes the whole contract assigned to a target function,
which we call a top-level contract to contrast with its sub-contracts in the rest of
this paper. To distinguish sub-contracts, each of them is numbered with a con-
tract index, which is enclosed in <> in the above. violated denotes a minimal

152 R. Arai et al.

violated sub-contract. actual denotes an actual value that violates a violated
sub-contract. In this case, it means the value of i. blame denotes a culprit of
the violation, where ctx denotes a calling context (i.e., call site). This blame
information is sufficient to debug this case, even for users unaware of the imple-
mentation of ascend.

Letting wrongApp be false, we then consider the case where 1 is passed to
ascend. Since this argument is valid for the contract on i, this call of ascend
(Line 5) passes contract checking. The first value yielded from its resultant iter-
ator is 1 and the contract on returns, <7>‘x >= glb‘, holds at the first appli-
cation of next (Line 6) because glb is 0 at this point. The definition of glb,
however, changes to 3 at Line 7 and then <7>‘x >= glb‘ does not hold at the
second application of next (Line 8) because the second yielded value x is 2.
Since the contract on returns is violated, PyBlame blames the definition of
ascend by providing the following message:

... (the same as above)
violated = <7>‘x >= glb‘
actual = 2
blame = def,

where actual denotes the value of x and the definition (denoted by def) of
a target function is blamed. This blame information is logically correct. The
definition of ascend does not guarantee that its resultant iterators always yield
integers greater than or equal to glb. The definition does not match the contract
and hence should be wrong. However, from a practical viewpoint, the definition
is not always a true culprit because glb can be assumed to be a loop invariant.
Culprits in this kind of situations would be certain misunderstandings among
uses, definitions, contracts, and environments.

In order to figure out such misunderstandings, it is important for program-
mers to investigate the whole process of delayed checking and to observe the
environment during it. At least in the example above, the concerned call site of
ascend (Line 5) and all trigger points of its contract checking (Lines 6 and 8)
should be investigated. Although the example is so small as to find them quickly,
they can be far scattered over different modules in practice. Even finding them
is a burdensome task before observing environments.

Our debugger ccdb shoulders this burdensome task. It can set breakpoints
flexibly at program points concerned with contract checking on the basis of the
information logged by PyBlame. Concretely, PyBlame generates file .ccdbrc
when a contract violation occurs at Line 8. We then run ccdb with this file in the
same manner as pdb. ccdb automatically sets breakpoints at Lines 5, 6, and 8,
where contract checking was actually triggered. Besides, we can set breakpoints
at Lines 6 and 8, where the checking of <7>‘x >= glb‘ was actually triggered,
by using command ccbreak spam.py:ascend 7, where ascend is assumed to
be defined in file spam.py, on the ccdb prompt. After that, we can investigate
the behaviors of the example program at these points with the commands of pdb
and will identify misunderstandings (e.g., a careless change of glb) easily. Note
that pdb’s command display is ready-made for observing the changes of glb.

A Debugger-Cooperative Higher-Order Contract System in Python 153

Fig. 1. Syntax of contract language of PyBlame, where {s} denote 0 or more times
repetition of s, terms in a type-writer font are terminal, and ε denotes the empty.

The misunderstandings mentioned above can result in inadequate contracts.
We sometimes should investigate suspicious contracts. Even if <7>‘x >= glb‘ is
not actually violated, we could set breakpoints with the same command. We thus
can investigate unintentional passing of contract checking. Apart from ascend,
top-level contracts can be large and complicated. Another additional command
exam shows actually examined sub-contracts in order to make it easier to find
suspicious sub-contracts. ccdb thus alleviates the burden of debugging even in
the presence of inadequate contracts.

3 Contract Language

This section describes the contract language of PyBlame. As described in
Sect. 2, it is supposed to be used within the docstrings of target functions.

3.1 Syntax

We design our contract language as a mixture of type annotations and Python
expressions. We employ the syntax of Type Hints [19] for part of type annota-
tions. Figure 1 shows the syntax of our contract language.

〈var-con〉 denotes a contract on variables, where 〈var〉 is a target variable and
〈pred 〉 is the body part. Target variables are either parameters or the special
variable returns, which is bound to the result of the current call of target
functions. 〈var-con〉 on parameters corresponds to preconditions and the one on
returns corresponds to postconditions.

〈pred 〉 denotes predicates, where and and or are logical operators with
short-circuit evaluation. 〈python-exp〉 denotes arbitrary Boolean expressions in
Python, which are supposed to have no side effect in user’s responsibility. Eval-
uation rules for them shall be explained in the next subsection.

154 R. Arai et al.

〈type-con〉 denotes type-checking predicates. It basically follows the syntax of
Type Hints but enables us to describe 〈pred 〉 on elements of data structures as
contract 〈elem-con〉. 〈elem-con〉 can introduce names, 〈var〉, bound to element
values for enriching the 〈pred 〉 part: e.g., List[x : int and x > 0] denotes
a contract of positive integer lists. 〈type-con〉 therefore is more expressive than
common type checking.

Iterator denotes objects that satisfy the iterator protocol in Python. As in
the Python standard library document7, Iterable denotes objects that provide
iterators and Callable denotes function-like objects. Tuple, List, Set, and Dict
denote built-in ones in Python. Our system does not capture their subclasses but
implementation of capturing subclasses is straightforward.

〈param-con〉 is also based on Type Hints: e.g., ... denotes unrestricted para-
meters and [] denotes no parameter. Although not described in Fig. 1 for brevity,
it can accept arbitrary argument lists and keyword argument dictionaries: e.g.,
Callable[[*args: List[int], **kwargs: Dict[str,int]], bool] denotes
a contract on functions that return bool by taking an arbitrary number of int
arguments followed by keyword arguments of int. 〈base-type〉 is either a class
name in Python, which can be built-in or user-defined, or Any, which denotes
any value of any type. Note that the Any contract is assigned to all parameters
and returns by default.

There is a restriction on contracts on Iterator, Iterable, and Callable,
i.e., higher-order contracts, which are checked in a delayed manner. The restric-
tion is that at most one higher-order contract is permitted to exist within an
or-chain of contracts. It is added in order to simplify implementation of delayed
checking, as in Racket’s contract system8. Note that we can remove this restric-
tion, on the basis of the recent work by Keil and Thiemann [14].

3.2 Evaluation

Environments (i.e., evaluation contexts) for 〈python-exp〉 are based on the ones
in which target functions are defined, and augmented with argument environ-
ments, which include the entries of returns besides parameters if 〈python-exp〉 is
for postconditions. 〈elem-con〉 performs name binding optionally; it can shadow
names: e.g., x: int or List[x: str and ‘len(x) > 0‘] of 〈var-con〉 denotes
that parameter x is of int or is a list of positive-length strings. Environments
of 〈elem-con〉 within 〈tuple-con〉 are extended with name binding in the left-to-
right order. Note that local variables except for parameters in target functions
are not visible. The name lookup out of argument environments and 〈elem-con〉
complies with the semantics of Python; i.e., letting v be a name bound neither
in argument environments nor 〈elem-con〉, v is looked up in the same manner
as the target function name; e.g., glb in the contract in Sect. 2 is looked up in
the same manner as ascend. 〈class-name〉 is looked up in the environments in
which target functions are defined, independently of arguments and 〈elem-con〉.
7 http://docs.python.org/3/.
8 https://docs.racket-lang.org/reference/data-structure-contracts.html.

http://docs.python.org/3/
https://docs.racket-lang.org/reference/data-structure-contracts.html

A Debugger-Cooperative Higher-Order Contract System in Python 155

Sequences of 〈var-con〉 are serially evaluated. 〈elem-con〉 is evaluated in the
left-to-right order on argument lists like Scheme. Higher-order sub-contracts are
checked in a delayed manner, while first-order (or flat in Racket) sub-contracts
are fully evaluated in an eager manner. The evaluation order within higher-order
sub-contracts and that within first-order ones are preserved. For example, con-
sider the and-chains containing higher-order operands and first-order ones. The
first-order ones are evaluated from left to right at call/return time and check-
ing on them finishes, while the higher-order ones are checked from left to right
in a delayed manner. Higher-order or-chains are similar but delayed checking
on or-chain of higher-order contracts does not arise from them because of the
syntactic restriction above. This evaluation strategy is identical to Racket’s.

Nested 〈type-con〉 is evaluated from outermost constructs. This is impor-
tant for understanding higher-order contracts because they are gradually
evaluated in delayed checking. For example, consider f: <1>Callable[...,
<2>Iterable[<3>int]] of 〈var-con〉 and the following code:

iterable = f()
iterator = iter(iterable)
x = next(iterator),

where the contract on f is checked in a delayed manner. Then, the part of
<1> is checked at the call of f(); the part of <2> is checked at the call of
iter(iterable); the part of <3> is checked at the call of next(iterator).
Note that checking on Python-level signature matching in Callable is always
performed in an eager manner regardless of contracts on parameters.

4 Contract-Checking Debugger

This section describes our contract-checking debugger ccdb, which is a domain-
specific debugger for delayed contract checking. In the following subsections, we
describe domain-specific issues and the basic design of ccdb. We then explain
the features and usage of ccdb.

4.1 Motivation and Basic Design

As mentioned in Sects. 1 and 2, an essential issue of debugging on delayed con-
tract checking is that contract checking can occur from place to place and we
sometimes have to investigate each result of this checking together with the
current environment.

A common way of investigating environments at some points is to use break-
points of debuggers. With breakpoints at triggers of delayed checking, we would
utilize the functionality of debuggers fully for dealing with the issue above. It is,
however, difficult to statically determine exact trigger points of delayed check-
ing. With static (may) analysis, we would get too many trigger points to debug
without burden. For example, it is even difficult for static analysis to focus on

156 R. Arai et al.

the trigger points of a specific sub-contract. We therefore consider it reason-
able to utilize dynamic information for determining breakpoints concerned with
contract checking.

Use of complete dynamic information is generally expensive and far from
lightweight use because data to be recorded have to be huge. For the simplicity
of tooling, we then assume that programmers can reproduce the same behaviors
of target programs. Although it is generally nontrivial, it is assumed in common
use of traditional debuggers. Under this assumption, we can consider two-phase
debugging with contracts: with the first run (called check-run) of target pro-
grams, we record points concerned with delayed contract checking; in the second
run (called debug-run), we use debuggers for investigating suspicious code at the
recorded points. We have adopted this two-phase approach.

Essentially desired functionality is to set breakpoints at trigger points of
delayed contract checking. Because contracts can be large and complicated in
practice, it is particularly important for debugging to focus on a specific sub-
contract of a top-level contract. The primary domain-specific feature should be
to set breakpoints at trigger points of specific sub-contracts.

Note that we could set breakpoints at trigger points of delayed checking
by setting breakpoints to predicates in contracts without dedicated commands.
In order to focus on specific sub-contracts in such cases, users would manage
to introduce dummy predicates only for breakpoints by hand. This is never
desirable because it dirties contracts for debugging as well as is error-prone. A
command dedicated to this domain-specific feature is therefore desired.

Besides this domain-specific feature, features of matured debuggers are also
desired for debugging. It is reasonable to extend existing debuggers so as to
avoid reinventing the wheel and imposing on users a cost to learn APIs. The
most friendly debugger with Python programmers is the standard debugger pdb,
which is a source-level debugger suitable to Python. We therefore have adopted
pdb for a base debugger and extended it with domain-specific features.

In summary, the following is the basic design of ccdb.

– It requires users to do the check-run and debug-run of target programs and
to reproduce their behaviors.

– It enables us to set breakpoints at trigger points of specific sub-contracts.
– It is based on pdb for becoming friendly with common Python programmers.

4.2 Features and Usage

ccdb provides four domain-specific commands: ccbreak, contract, exam, and
blame. We describe their features together with their use cases.

First of all, these domain-specific commands enable us to focus on spe-
cific sub-contracts. To enable us to identify sub-contracts, as shown in Sect. 2,
PyBlame numbers in preorder all sub-contracts of each top-level contract with
contract indices. Index 0 always means a top-level contract. With a triple of
a module name, function name, and contract index, we can identify a specific

A Debugger-Cooperative Higher-Order Contract System in Python 157

sub-contract globally. Note that contract indices of and and or used in com-
mand arguments have different meanings for usability. They denote all their
sub-contracts but not themselves; e.g., in the contract shown in Sect. 2, index 1
denotes the set of indices 2 and 3.

The ccbreak command sets breakpoints at the trigger points of a given sub-
contract. This is the primary feature of ccdb. Breakpoints are set at the trigger
points of checking of a violated sub-contract by default but ccbreak enables us
to set ones at those of non-violated sub-contracts. This is particularly useful for
investigating suspicious sub-contracts, where contracts may be inadequate for
specifications. With the standard commands to enable/disable breakpoints, we
also can focus on specific triggers of delayed checking in debugging.

The contract command pretty-prints the top-level contract of a given func-
tion. This pretty-print includes contract indices. By using this command, we
choose which contract index we focus on, particularly just before debug-run.

The exam command displays actually examined sub-contracts in a given sub-
contract in the form of contract indices. This is useful for investigating whether
contract checking worked expectedly because we can cause unintentional skips
of sub-contracts with the short-circuit evaluation of and and or.

The blame command shows the standard blame information of a given con-
tract, i.e., points out a culprit if the contract is violated. This is useful for
contracts on higher-order functions because the criteria of blames for them are
a bit complicated. PyBlame follows the basic criterion [10] of blames.

Although these commands take the names of modules and functions but not
expressions, we can identify them on ccdb owing to Python’s reflection.

5 Implementation

This section describes the implementation of our system, assuming some knowl-
edge on the Python standard library9. Note that our implementation is a set of
pure Python modules based on CPython 3.4 or later.

5.1 Outline

We describe the outline of PyBlame by following the workflow of our system
shown in Fig. 2.

Given a source-code file containing docstrings that declare contracts, first,
the main module pyblame of PyBlame parses it into an AST. Next, pyblame
examines the docstrings of all functions on the AST and attaches to each function
having a contract, a decorator that wraps a given function with a proxy object.
This proxy object is an object that behaves the same as a wrapped object except
for checking the associated contract by intercepting arguments and results. The
details of proxy objects shall be explained later. Lastly, pyblame compiles this
decorator-attached AST to a bytecode object and runs it as a check-run.

9 https://docs.python.org/3/library/index.html.

https://docs.python.org/3/library/index.html

158 R. Arai et al.

Fig. 2. Workflow of our system, where rectangles denote our system. pyblame is the
main module of PyBlame and the proxy is part of it; target.py is a main program
given to pyblame and imports module.py; .ccdbrc is a configuration file.

To enable PyBlame in all the modules used from a given program, pyblame
adds an import hook globally for hijacking the implementation of all import
statements so that the compilation above is applied to imported modules. Once
modules are imported, their compiled bytecode objects are cached, and will be
simply returned in the later imports. This import hook thus enables PyBlame
recursively for all.

To enable ccdb to take account of delayed checking and blame, PyBlame
generates configuration files of ccdb. Proxy objects record all triggers of delayed
checking and log them to files.

5.2 Proxy Objects

Use of proxy objects is a key technique of implementing contract checking as a
library like PyContracts and Racket’s contract system because contract checking
ought to be transparent within target programs.

As described in the previous subsection, proxy objects wrap target functions
so as to check their contracts at call/return time. If contracts are first-order, these
proxy objects suffice for checking. If they are higher-order, arguments and/or
results are also wrapped with other proxy objects that perform delayed checking.
Since targets of delayed checking can be passed to functions with contracts, proxy
objects for delayed checking can be nested.

The notion above is the same as Racket’s contract system, but in Python,
functions are merely objects, i.e., stateful and mutable. Any effect on proxy
objects such as property access and method invocation has to be bypassed to
their wrapped objects. Fortunately, Python provides various hook methods that
trap operations on objects, which are just the very thing for proxy objects.
Concretely, we have used the getattribute hook for trapping any property

A Debugger-Cooperative Higher-Order Contract System in Python 159

access (including method invocation). In this hook, we can distinguish operations
on objects, e.g., call , calling as functions, and next , extracting the next
value as iterators. The getattribute hooks of proxy objects, according to the
associated contracts, trap appropriate operations and check arguments and/or
results, and bypass the other operations to wrapped objects. The implementation
of proxy classes has been based on that in Reticulated Python10.

Although many operations are successfully trapped in Python hook methods,
there are exceptional cases. The first is object identity, which the is operator
tests and the built-in function id returns. The second is type extraction with
the built-in function type. The third is reflection functionality provided in the
inspect module. These are representative. Generally, the functionality imple-
mentation at the CPython interpreter level would be untrappable at the Python
language level. This is a known issue on the Python language; in fact, PyPy pro-
vided to resolve it transparent proxies [1], which have still been experimental11.
We therefore consider this issue to be beyond the scope of our work.

5.3 Compilation to Proxy Objects

The compilation of our contract language to proxy objects are performed at func-
tion definition time by decorators attached to target functions. This compilation
is straightforward on the basis of the work [10] of Racket’s contract system. Yet,
we have simplified implementation by exploiting the Python standard library.

Since contracts in our contract language are designed to inhabit docstrings,
target programs of pyblame follow the Python syntax. We have simply employed
the standard parser ast module for parsing given source files. We have developed
only a parser for docstrings with contracts. Although our contract language has
syntactic flexibility derived from Python such as parameter lists of functions, it
is basically a simple extension of Python Type Hints. We therefore have been
able to employ Python’s reflection for parsing; e.g., Signature extracted with
inspect is ready-made for parsing parameter lists. Besides, inspect has been
useful for constructing environments; we have used run-time stack frames, which
inspect provided, in generated decorators for environments on the basis of the
fact that they will be called only at the definition positions of target functions.
Because our AST transformations are merely to attach decorators to functions,
we have been able to use simply the built-in functions compile and exec for
bytecode compilation and running.

5.4 Debugger and Debugger Support

ccdb is simply a surface extension of pdb. Proxy objects of PyBlame record
information on delayed checking of each contract in a check-run and logs it in
the form of a configuration file of ccdb. Then, ccdb simply loads this configuration

10 https://github.com/mvitousek/reticulated.
11 http://doc.pypy.org/en/latest/objspace-proxies.html.

https://github.com/mvitousek/reticulated
http://doc.pypy.org/en/latest/objspace-proxies.html

160 R. Arai et al.

file and prepares for the domain-specific commands on the basis of the APIs of
pdb. Only this point is the extension of pdb in ccdb.

Configuration files concretely include the following:

– The program point (i.e., file name and line number) and concerned sub-
contract of each trigger of the checking of each top-level contract,

– A string representation containing contract indices, of each sub-contract,
– The target of the blame of each sub-contract, and
– A set of examined sub-contracts,

where a sub-contract c in the top-level contract of a function named f in a
module (i.e., file) named m is represented as a triple of m, f , and the contract
index of c. These data are sufficient to implement the domain-specific commands.

6 Experiments

This section describes experiments that we conducted. All source files are avail-
able on http://www.scinfo.kochi-tech.ac.jp/sato-s/pyblame.zip.

6.1 Expressiveness

PyBlame is a higher-order contract system, which has not ever been devel-
oped in Python, while PyContracts is a (matured) first-order contract system.
For this difference, PyBlame is more expressive than PyContracts in principle.
However, it does not demonstrate that the expressiveness of PyBlame is more
advantageous in practice. As mentioned in Sect. 1, we observed higher-order pro-
gramming in Python in web frameworks. We therefore selected Bottle (version
0.13-dev), which is a small yet complete web framework, for a benchmark for
evaluating the expressiveness of PyBlame.

Table 1. Breakdown of contracts assigned to Bottle.

Iterator Iterable Callable Higher-order Callback Total

3 2 9 11 14 47

On the basis of the documentation (mostly in docstrings) of Bottle, we
assigned contracts to its public methods and top-level functions, which were
considered as core APIs. Table 1 shows the breakdown of the contracts assigned,
of which the number was 47. Iterator, Iterable, and Callable in Table 1
denote the number of top-level contracts where they were used. The total num-
ber of higher-order top-level contracts was 11. It is worth noting that the number
of top-level contracts in which callbacks were used was 14 although PyBlame
did not regard them as higher-order. We decided to assign ‘callable(c)’ to
callback c. Callbacks were, in fact, basically like Callable[..., str] but in

http://www.scinfo.kochi-tech.ac.jp/sato-s/pyblame.zip

A Debugger-Cooperative Higher-Order Contract System in Python 161

some cases were not. For example, they can be the instances of template classes,
which produce strings via method render, not function calling. In redirection,
they just raise exceptions without returning values. The documentation of Bottle
was not sufficiently clear for us to determine desired specifications. Without the
ambiguity of specifications, it would be intuitive to assign higher-order contracts
to them. In this sense, the total number of higher-order contracts and potential
ones was 25. From these results, we have confirmed that the APIs of Bottle actu-
ally had a higher-order nature as we expected and higher-order contracts that
PyBlame supports are practically advantageous to web frameworks like Bottle.

6.2 Overhead

PyBlame is not offering its run-time performance because it is for debugging
programs regarding their behaviors. How much overhead PyBlame incurs is,
however, informative for users to reason practically feasible settings for debug-
ging. We therefore measured the run-time overhead of PyBlame. We used for a
experimental environment, a laptop PC equipped with Intel Core i7 CPU M620
and 8-GB memory of DDR3-1333 running Debian stretch (Linux 4.5.0-2-amd64).
All Python programs ran on CPython 3.5.1.

We used for measuring overhead three benchmark programs: empty-bottle,
loop-n, and rec-n. empty-bottle is the Bottle having contracts described in the
previous subsection without any application so as to end quickly, where its source
code was of 4,223 LOC. This is for measuring the overhead of load-time transfor-
mation. loop-n is a loop iterating n times with an iterator that yields the same
integer as with itertools.repeat and has a type-checking contract that always
holds. This indicates the overhead of trapping functions and recording logs. rec-
n is a recursive function that corresponds to loop-n. This indicates the worst-
case overhead of nesting of proxy objects, where n proxy objects are eventually
nested. Note that we do not regard the time for evaluating contracts themselves
as overhead because they are part of programs and their practical feasibility
relies completely on users. Dumping configuration files are cheap because of
their small sizes; its cost is negligible compared to the others.

Table 2. Elapsed time in seconds of benchmarks with/without PyBlame, where N/A
means that it did not finish successfully in realistic time.

empty-bottle loop-105 loop-75 · 106 rec-69 rec-997

Without PyBlame 0.144 0.040 13.876 0.020 0.024

With PyBlame 1.100 14.072 N/A 2.120 N/A

We measured the elapsed time of each benchmark with/without PyBlame
by using the time command. Table 2 shows the results of measurement, where
each result was the median of 10 trials. The check-run of empty-bottle was about
7.6× slower than the plain run. The check-run of loop-n was about 750× slower

162 R. Arai et al.

by comparing results at different n. rec-n showed the difference in feasibility as
well as time. The check-run exceeded the stack limit of CPython at n = 70,
while the plain run exceeded the limit at n = 998. This was because check-
ing via nesting of proxy objects expended more stack space than rec-n itself.
PyBlame incurs considerable overhead and therefore necessitates small input
for debugging.

6.3 Debugging Scenarios

In order to demonstrate how effectively ccdb functions, we explain debugging of
a simple yet realistic example based on Bottle, shown in Fig. 3.

Fig. 3. Example application prof.py based on Bottle.

prof.py provides profile pages at paths /spam and /ham. Each profile page is
generated from template prof.tpl. Functions spam and ham return dictionaries
to be substituted into prof.tpl for generating pages. Two key decorator-based
APIs of Bottle are used there. One is bottle.view: it produces a decorator
that converts a function returning a dictionary into a function producing a page
of string by substituting the dictionary to a given template file. The other is
bottle.route: it produces a decorator that associates a function producing
a page with a given path. Note that decorator attachment @ corresponds to

A Debugger-Cooperative Higher-Order Contract System in Python 163

function composition. By attaching these two decorators to spam and ham, the
corresponding pages are thus respectively provided.

Now, prof.tpl is supposed to require the value of ’name’ field for render-
ing pages. Function load prof view, which wraps bottle.view(’prof.tpl’),
declares and enforces this requirement by using a contract, where the parameter
must denotes a set of required field names. spam returns a dictionary containing
an entry of ’name’, while ham does not, which is a bug. Without the contract, the
access to /ham simply causes an uninformative internal error. With the contract,
it instead causes a contract violation more helpful for debugging.

Then, consider this violation. The point where it occurs is deep in Bottle (i.e.,
module bottle) and far from the point of the root cause (i.e., the definition point
of ham) because ham is part of a callback registered. Its stack backtrace is not
informative at all because it does not contain any program point of prof.py.
From this violation, PyBlame provides the following blame information:

target = <function load_prof_view at 0x7fcdccced378>

expected = <0>Callable[[must: <1>Set[<2>str]],

returns: <3>Callable[[<4>Callable[..., r: <6>dict <5>and

<7>‘must <= r.keys()‘]],

<8>Callable[..., <9>str]]]

violated = <7>‘must <= r.keys()‘

actual = {’user_id’: 309}

blame = ctx,

where actual denotes the value of r. The calling context of load prof view is
blamed but its very call site is not wrong. This blame informs us only that some
problem lies around its call site(s). This is not satisfactory for debugging.

ccdb enables us to examine programs efficiently by focusing on the violated
sub-contract. First, from the violated sub-contract, we notice that must and
r matter. For examining what object must is bound to, the trigger point(s) of
delayed checking regarding <1> is helpful. By using ccbreak, we can set a break-
point at the trigger point (Line 14). From the source code there, we notice that
an object to which must fields is bound matters. Assuming that must fields
is a correct invariant, the next concern is a function that produces the violation
value of r. The trigger points of checking regarding <4> are helpful for examining
it because load prof view returns a decorator. By using ccbreak, we can set
breakpoints at the application points of its resultant decorator (Lines 17 and 22).
After that, by examining the source code of these suspicious functions, we are
eventually able to find a bug of ham, whose source code can be shown there by
command source ham. wrapped . This is a typical usage of ccdb and useful
for common situations.

Next, consider a more complicated situation such that must fields destruc-
tively changes to {’user id’} before a web server in Bottle is ready. This is
a very hard situation because the access to /spam causes a contract violation
even though the result of spam suffices for rendering a page. Furthermore, the
contract is correctly satisfied at the definition point of spam. This situation is
similar to the example of ascend described in Sect. 2. To figure out this prob-
lem, we have to monitor the object to which must is bound. As mentioned above,

164 R. Arai et al.

we can identify the target object with the one to which must fields is bound
at Line 14 in prof.py. At this point, we can introduce a fresh global variable,
say tar, bound to the target object by executing tar = must fields on the
ccdb prompt. After that, we can keep monitoring the target via prof. tar at
arbitrary breakpoints. Although this monitoring would not solve a bug directly,
it brings us a better understanding of this very hard situation. It is worth noting
that such complicated situations are not artificial in Python programming. Since
everything in Python is an object and objects are generally stateful, even con-
tracts in Python easily become stateful. ccdb alleviates the burden of debugging
complicated situations derived from the stateful nature of Python.

Lastly, consider dealing with inadequate contracts: false-positive ones and
false-negative ones. False-positive cases are relatively tractable because wrong
sub-contracts are violated. In the same manner as the above, we can examine
a wrong sub-contract and the values of its internal expressions at the violation
point. False-negative cases are more unclear. For example, assuming that we
wrongly write or instead of and, i.e., r: dict or ‘must <= r.keys()‘, con-
tract violations that depend on the contents of must fields do not occur. We
can recognize something wrong from errors caused by the access to /ham but
obtain no information useful for debugging from contracts themselves. However,
by using exam, we can immediately find ‘must <= r.keys()‘ not evaluated and
notice that a logical operator around it is wrong.

Through these cases, we have confirmed that ccdb are useful for debugging
with delayed contract checking.

7 Related Work

This section discusses related work particularly on contract programming and
on type checking, and describes the points of our work.

7.1 Contract Programming

Meyer [17] presented the notion of contracts and contract programming (i.e.,
design by contract). His contract system was implemented as a part of Eiffel,
a typed object-oriented language. In the context of object-oriented languages,
contract systems were implemented in dynamic languages such as Smalltalk [2]
and Python [18]. PyContracts presented a modern and practical design of the
classic work [18].

Findler and Felleisen [10] brought contracts into higher-order (functional)
languages. This prominent work was followed by various extensions such as
contracts for first-class classes [21,22], contracts regarding property access [12],
typed lazy contracts [4], option contracts [7], and contracts with union and inter-
section [14], where several [12,21,22] were particularly for dynamic languages.
PyBlame mimics Racket’s implementation12 based on the work [10].

12 https://docs.racket-lang.org/reference/contracts.html.

https://docs.racket-lang.org/reference/contracts.html

A Debugger-Cooperative Higher-Order Contract System in Python 165

While contract systems themselves support debugging, several studies uti-
lized contracts for related tasks such as test case generation [13,15] and auto-
matic program repair [25]. Nevertheless, to the best of our knowledge, the coop-
eration of debuggers has not been well studied. Although IDE integration [9]
and automatic program repair [25] could be seen as special forms of debugger
cooperation, they did not deal with higher-order contracts. For example, ccdb
enables us to set breakpoints around delayed checking of specified sub-contracts.
We have not found the same functionality in existing work, while BPGen [26],
for example, generated breakpoints automatically on the basis of dynamic fault
localization techniques and Chiş et al. [3] pointed out importance of domain-
specific debuggers. All in all, we believe that our work on debugger cooperation
presents a new point of view in contract programming.

7.2 Type Checking

Although static type checking is the common and standard approach to mechan-
ical checking based on API specifications, standard type systems do not work
well for dynamic languages including Python. Many studies dealt with taming
their dynamic nature in type systems. Notable work is gradual typing [20], which
enables us to specify partially typed programs remaining partially untyped (i.e.,
dynamic). Static type checking works well for the typed part in gradually typed
programs by adding run-time type checking around the boundaries between the
typed and the untyped. Gradually typed ones were developed for many dynamic
languages: e.g., TypeScript13 for JavaScript, Hack14 for PHP, Typed Racket15

for Racket, and Reticulated Python [24] and mypy16 for Python. Gradual typing
enriches checking merely on static properties of APIs, which are much restric-
tive and far from dynamic languages, while contracts enrich checking on dynamic
properties, which are inherent in dynamic languages.

A best-effort approach to static type checking on dynamic properties of pro-
grams is hybrid type checking [11,16], which is based on refinement types. Refine-
ment types there are types with arbitrary predicates like contracts. Although
static checking of such refinement types is generally undecidable, yet it is fea-
sible for some specific cases. Hybrid type checking employs theorem provers for
static type checking in tractable cases and uses dynamic checking for intractable
cases. Later developed was a more sophisticated design of refinement types [5,6]
dedicated to dynamic languages like JavaScript, where dynamic idioms were
statically checked.

These work extended ranges of static checking of contracts but this is orthog-
onal to dynamic checking, which our work deals with. Besides, the problem set-
ting of our work is different from those of their work. Our setting in use of
contracts subsumes the presence of unknown background codebases as in appli-
cations based on web frameworks. Backgrounds can be stateful and interaction
13 https://www.typescriptlang.org/.
14 http://hacklang.org/.
15 https://docs.racket-lang.org/ts-guide/.
16 http://mypy-lang.org/.

https://www.typescriptlang.org/
http://hacklang.org/
https://docs.racket-lang.org/ts-guide/
http://mypy-lang.org/

166 R. Arai et al.

with them can be implicitly effectful. This setting makes static checking almost
infeasible. Rich run-time information, which debuggers provide, on undesired
behaviors is still more helpful and important. The presence of static checking
does not diminish the significance of our work.

8 Conclusion

In this paper, we have presented PyBlame, a higher-order contract system
in Python, and ccdb, a source-level debugger that takes account of the con-
tract checking of PyBlame. Delayed contract checking is important for Python
contracts but debugging with it is burdensome. The cooperation of debuggers
alleviates this burden.

As concluding remarks, we describe two extensions of PyBlame left for
future work. The first is to provide contracts for coroutines. For simplicity, we
regarded generators as functions that return iterators. Precisely, their results are
not simple iterators but coroutines, which can take values to yield values. Python
3.5 has introduced language constructs dedicated to coroutines and strongly
supports asynchronous IO with coroutines. Because we consider coroutine-based
APIs of asynchronous IO to be useful partially for web development, coroutines
are worth supporting in PyBlame. The second is to provide contracts on series
observed in iterators and coroutines. To describe a contract asserting iterators,
for example, to yield monotonically increasing sequences, we have to use two
adjacent observations on yielded values. Recording all observations for contracts
will incur unacceptable spatial overhead. Moderately expressive contracts with
reasonable expense are desirable for observation series.

References

1. D12.1: High-level backends and interpreter feature prototypes. PyPy EU-Report
(2007)

2. Carrillo-Castellon, M., Garcia-Molina, J., Pimentel, E., Repiso, I.: Design by con-
tract in smalltalk. J. Object-Oriented Program 7(9), 23–28 (1996)

3. Chiş, A., Gı̂rba, T., Nierstrasz, O.: The moldable debugger: a framework for devel-
oping domain-specific debuggers. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2014, pp. 102–
121. ACM (2014)

4. Chitil, O.: Practical typed lazy contracts. In: Proceedings of the 17th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2012, pp. 67–
76. ACM (2012)

5. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: Proceed-
ings of the 2012 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA 2012, pp. 587–606. ACM (2012)

6. Chugh, R., Rondon, P.M., Jhala, R.: Nested refinements: a logic for duck typ-
ing. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, pp. 231–244. ACM (2012)

A Debugger-Cooperative Higher-Order Contract System in Python 167

7. Dimoulas, C., Findler, R.B., Felleisen, M.: Option contracts. In: Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA 2013, pp. 475–494. ACM (2013)

8. Eby, P.J.: PEP 3333 - Python Web Server Gateway Interface v1.0.1 (2010). https://
www.python.org/dev/peps/pep-3333/

9. Fähndrich, M., Barnett, M., Leijen, D., Logozzo, F.: Integrating a set of contract
checking tools into visual studio. In: Proceedings of the Second International Work-
shop on Developing Tools as Plug-Ins, TOPI 2012, pp. 43–48. IEEE (2012)

10. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings
of the Seventh ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2002, pp. 48–59. ACM (2002)

11. Flanagan, C.: Hybrid type checking. In: Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2006, pp. 245–256. ACM (2006)

12. Heidegger, P., Bieniusa, A., Thiemann, P.: Access permission contracts for scripting
languages. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2012, pp. 111–122. ACM
(2012)

13. Heidegger, P., Thiemann, P.: Contract-driven testing of JavaScript code. In: Vitek,
J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 154–172. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13953-6 9

14. Keil, M., Thiemann, P.: Blame assignment for higher-order contracts with inter-
section and union. In: Proceedings of the 20th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2015, pp. 375–386. ACM (2015)

15. Klein, C., Flatt, M., Findler, R.B.: Random testing for higher-order, stateful pro-
grams. In: Proceedings of the 2010 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications, OOPSLA 2010, pp. 555–
566. ACM (2010)

16. Knowles, K., Flanagan, C.: Hybrid type checking. ACM Trans. Program. Lang.
Syst. 32(2), 6:1–6:34 (2010)

17. Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51 (1992)
18. Plösch, R.: Design by contract for Python. In: Proceedings of the Fourth Asia-

Pacific Software Engineering and International Computer Science Conference,
APSEC 1997, pp. 213–219. IEEE (1997)

19. van Rossum, G., Lehtosalo, J., Langa, �L.: PEP 484 - Type Hints (2014). https://
www.python.org/dev/peps/pep-0484/

20. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming 2006. TR-2006-06, University of Chicago (2006)

21. Strickland, T.S., Dimoulas, C., Takikawa, A., Felleisen, M.: Contracts for first-class
classes. ACM Trans. Program. Lang. Syst. 35(3), 11:1–11:58 (2013)

22. Strickland, T.S., Felleisen, M.: Contracts for first-class classes. In: Proceedings of
the 6th Symposium on Dynamic Languages, DLS 2010, pp. 97–112. ACM (2010)

23. Strickland, T.S., Tobin-Hochstadt, S., Findler, R.B., Flatt, M.: Chaperones and
impersonators: run-time support for reasonable interposition. In: Proceedings of
the 2012 ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA 2012, pp. 943–962. ACM (2012)

24. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for Python. In: Proceedings of the 10th ACM Symposium on Dynamic
Languages, DLS 2014, pp. 45–56. ACM (2014)

https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
http://dx.doi.org/10.1007/978-3-642-13953-6_9
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/

168 R. Arai et al.

25. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Auto-
mated fixing of programs with contracts. In: Proceedings of the 19th International
Symposium on Software Testing and Analysis, ISSTA 2010, pp. 61–72. ACM (2010)

26. Zhang, C., Yan, D., Zhao, J., Chen, Y., Yang, S.: BPGen: an automated breakpoint
generator for debugging. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, ICSE 2010, vol. 2, pp. 271–274. ACM (2010)

k-Calculus

A Sound and Complete Bisimulation
for Contextual Equivalence in λ-Calculus

with Call/cc

Taichi Yachi(B) and Eijiro Sumii(B)

Tohoku University, Sendai, Japan
{yachi,sumii}@sf.ecei.tohoku.ac.jp

Abstract. We develop a sound and complete proof method of contex-
tual equivalence in λ-calculus with the abortive control operator call/cc
(as opposed to delimited control operators like shift and reset), and
prove the non-trivial equivalence between λf. f() and λf. f(); f() for
example, both for the first time to our knowledge. Although our method
is based on environmental bisimulations (Sumii et al. 2004-), it makes
an essential and general change to their metatheory, which is not only
necessary for handling call/cc but is also applicable in other languages
with no control operator.

1 Introduction

Background: Continuation and Control Operator. Call-with-current-continua-
tion, or call/cc in short, is a “classical” control operator—in the double sense
that it is the most traditional continuation operator and that it corresponds to
the classical logic [8]—found in some implementations of functional program-
ming languages such as Scheme and ML (including SML/NJ1 and OCaml2).
Simply put, callcc f applies the given function f to (a reified copy of) the
current evaluation context E [7]. It can be formalized by the reduction rule
E[callcc f] → E[f(λx. abort E[x])] that reifies the evaluation context E as
λx.E[x] and inserts another control operator abort which discards its own
evaluation context like E[abort M] → M . For instance, the following pseudo-
program, using call/cc for an exception-like global exit,

let mul l = callcc(λk. letrec mul ′ l =
if null l then 1 else if head l = 0 then k 0 else head l × mul ′(tail l)

in mul ′ l) in mul [2, 0, 3, 1] + 4

reduces roughly as follows:

1 http://www.smlnj.org/doc/SMLofNJ/pages/cont.html
2 http://pauillac.inria.fr/∼xleroy/software.html#callcc

c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 171–186, 2016.
DOI: 10.1007/978-3-319-47958-3 10

http://www.smlnj.org/doc/SMLofNJ/pages/cont.html
http://pauillac.inria.fr/~xleroy/software.html#callcc

172 T. Yachi and E. Sumii

mul [2, 0, 3, 1] + 4 wheremul l = callcc(λk. . . .)
→∗ callcc(λk. . . .) + 4 where l = [2, 0, 3, 1]
→∗ (letrec . . . in mul ′ [2, 0, 3, 1]) + 4 where k = λx. abort(x + 4)
→∗ 2 × (if head [0, 3, 1] = 0 then k 0 else . . .) + 4
→∗ 2 × k 0 + 4
→ 2 × abort(0 + 4) + 4
→ 0 + 4
→ 4

Note that the evaluation context [] + 4 around callcc(λk. . . .)—underlined in
the reduction sequence above—is duplicated (not discarded) and remains even
after it is reified as k = λx. abort(x + 4), unlike the case of the C operator [6].
Note also that the context 2 × [] + 4 around abort(0 + 4)—double-underlined
above—is discarded, hence the epithet of call/cc as an “abortive” control oper-
ator (like the C operator, but unlike the delimited continuation operators such
as shift and reset [4]).

Background II: Contextual Equivalence in the Presence of Call/cc. Just as equiv-
alence of expressions plays a central role in mathematics, equivalence of pro-
grams is an essential notion in programming language theory. Contextual equiv-
alence [14] (also known as observational equivalence) is a general notion of pro-
gram equivalence, defining that two programs are contextually equivalent when
they yield the same result under any context in the language. Contextual equiv-
alence in languages with control operators is known to be tricky because even
if M → N (that is, a term M reduces in one step to another term N), it may
not be the case that E[M] → E[N], since the evaluation context E may be
captured or discarded by operators like callcc or abort in M . Many theories
for program equivalence with continuation operators have been proposed (such
as [1–3,5–7,9–11,15,16,18], just to name a few).

However, to our knowledge, there is no proof method that is complete with
respect to observational equivalence (“operational semantics”) in a language with
call/cc (and no state): existing equational theories (“axiomatics semantics”) [6,
7,11,15,16] are only complete with respect to βη-equivalence after continuation-
passing style (CPS) translation (“denotational semantics”), and no complete
logical relations or bisimulations [1–3,5,9,10,18] have been proposed for call/cc
without state.

To see the difficulty of program equivalence in the presence of call/cc (but no
state), consider the two functions λf. f() and λf. f(); f()—where M ;N abbre-
viates (λz.N)M for some z that does not appear free in N—in call-by-value λ-
calculus with call/cc (and only pure primitives). Their CPS translations are not
βη-equivalent, of course. They are not normal form bisimilar [18], either: normal
form bisimilarity coincides with equivalence in the presence of state, where f() is
of course not equivalent to f(); f() (more syntactically, normal form bisimilarity
cannot equate them because the contexts [] and []; f() are distinct). Since those
existing techniques are incomplete, it is unclear whether λf. f() and λf. f(); f()

A Sound and Complete Bisimulation for Contextual Equivalence 173

are contextually equivalent or inequivalent, even though they cannot be proved
equivalent by any of the existing methods.

Our Contribution. In this paper, we propose a non-trivial variant of environ-
mental bisimulations [17,19–21, etc.] for λ-calculus with call/cc, and prove its
soundness and completeness with respect to contextual equivalence. Complete-
ness means that all contextually equivalent programs are bisimilar in our theory.
By contraposition, it also means that two programs are known to be contextually
inequivalent if they are shown to be non-bisimilar. This is useful in practice even
though the contextual equivalence, and therefore our bisimilarity, is undecidable.
In addition, our bisimulations can actually prove the equivalence of programs
like λf. f() and λf. f(); f(), which to our knowledge was not possible previously.

Overview. The rest of this paper is structured as follows. After defining the
target language in Sect. 2, we define our bisimulations in Sect. 3, for which up-
to techniques are developed in Sects. 4 and 5. Section 6 presents examples and
Sect. 7 concludes with remarks.

2 The Language

Our target language is untyped call-by-value λ-calculus with tuples and call/cc
(but no state) with the following syntax:

L,M,N,C,D :: = term
x variable
λx.M function
MN application
〈M1, . . . ,Mn〉 tuple (n ≥ 0)
#iM projection
callcc k.M call/cc
cont(E) continuation

T,U, V,W :: = value
x
λx.M
〈V1, . . . , Vn〉
cont(E)

E,F,G:: = evaluation context
[] hole
EM
V E
〈V1, . . . , Vm−1, E,Mm+1, . . . ,Mn〉
#i(E)

I:: = redex
(λx.M)V
#i〈V1, . . . , Vi, . . . , Vn〉
callcc k.M
cont(E)V

We write fv(M) and fv(E) for the set of free variables (defined as usual) appear-
ing in M and E, respectively, and [V/x]M for the standard capture-avoiding
substitution of variable x with value V in term M . We write E[M] for the
non-binding hole-filling (that is, capture-avoiding substitution of []) of E with
M . We use syntactic sugar λ .M for λx.M with x �∈ fv(M), and M ;N for
(λ .N)M (with higher precedence than λ-abstraction, that is, λx.M ;N stands
for λx. (M ;N), not (λx.M);N).

Although the definition above is standard, a few points deserve mentioning.

174 T. Yachi and E. Sumii

– First of all, instead of introducing the second control operator abort, we
chose to have the reified continuation cont(E) directly in the language. For
this reason, we needed to define the syntax of evaluation contexts at the same
time as the definition of (the syntax of) terms. We also defined (syntactic)
values for call-by-value (and left-to-right) evaluation.

– Secondly, we use a term C (or D) with free variables x1, . . . , xn as a (non-
binding and) possibly non-evaluation context with possibly multiple holes. For
example, term C = x1x2 represents context []1[]2, with hole-filling C[V1, V2]
represented by (capture-avoiding) substitution [V1, V2/x1, x2]C.

– We adopt the monolithic syntax callcc k.M instead of callcc(λk.M) just
for the sake of convenience. No expressiveness is lost, since callcc V in the
latter syntax can be implemented as callcc k. V k in the former.

– Tuples are introduced for studying the treatment of stuck terms such as
〈〉(λx. x) in our bisimulation theory.

The operational semantics (the small-step reduction relation
top→, to be spe-

cific) is defined by rules:

E[(λx.M)V]
top→ E[[V/x]M] (E-AppAbs)

E[#i〈V1, . . . , Vi, . . . , Vn〉] top→ E[Vi] (E-ProjTuple)
E[callcc k.M]

top→ E[[cont(E)/k]M] (E-CallCC)
E[cont(F)V]

top→ F [V] (E-Throw)

A term M is called a normal form if there is no N such that M
top→ N . A normal

form that is not a value is called stuck. We write
top
� for the reflexive transitive

closure of
top→. We say that term M converges and write M ↓ if M

top
� V for some

value V . Conversely, M diverges, written M ↑, if there is no normal form N such

that M
top
� N .

Although the definition above is also standard, remember that, because of
E-CallCC and E-Throw, M

top→ N does not generally imply E[M]
top→ E[N],

hence the decoration
top

on the arrow →.
In some examples, we will use the syntactic sugar recfun(f(x) = M) to

denote a value V such that E[V W]
top
� E[[W/x][V/f]M] for any E and W ,

defined using a (call-by-value) fixed point operator as usual.
We will extensively (though often implicitly) use the following lemmas in our

bisimulation proofs. Henceforth, we often use overlines to denote sequences, like
[V /x]M = [V1, . . . , Vn/x1, . . . , xn]M for example.

Lemma 2.1 (composition of evaluation contexts). For any evaluation con-
texts E1 and E2, their composition E1[E2] is again an evaluation context.

Proof. By induction on the syntax of E1.

Lemma 2.2 (unique decomposition into evaluation context and
redex). E1[I1] = E2[I2] implies E1 = E2 and I1 = I2.

A Sound and Complete Bisimulation for Contextual Equivalence 175

Proof. By induction on the structure of E1.

Lemma 2.3 (deterministic reduction). M
top→ N and M

top→ N ′ imply N =
N ′.

Proof. By case analysis on the definition of M
top→ N , with Lemma 2.2.

Definition 2.4 (contextual equivalence). Closed values V and V ′ are con-
textually equivalent, written V ≡ V ′, when [V/x]C ↓ if and only if [V ′/x]C ↓
for any C with fv(C) = {x}.

Although this definition only considers contextual equivalence of closed val-
ues, open terms could also be treated as in previous work [22] by consider-
ing the contextual equivalence of closing abstractions λx.M and λx.M ′ for
fv(M,M ′) ⊆ {x} instead of open terms M and M ′ (assuming that M and M ′

are contextually equivalent to (λx.M)x and (λx.M ′)x, respectively).
The definition above does not distinguish stuck and divergent terms, as is

often the case with weak bisimulations in general; it would however be straight-
forward (though slightly cumbersome) to adapt our definition of contextual
equivalence and bisimulations to make this distinction.

Definition 2.5. The pure reduction
pure→ is defined by the rules E[(λx.M)V]

pure→
E[[V/x]M] and E[#i〈V1, . . . , Vi, . . . , Vn〉] pure→ E[Vi].

Lemma 2.6. If M
pure→ N , then M

top→ N .

Proof. Trivial by definition.

Lemma 2.7. If M
pure→ N , then E[M]

pure→ E[N] for any evaluation context E.

Proof. By Definition 2.5 and Lemma 2.1.

Lemma 2.8 (pure progress). For any term M , we have either:

1. M is a value V ,
2. M is a type error, that is, has the form E[〈V1, . . . , Vn〉V] or E[#i(λx.N)],
3. M makes a pure progress, that is, M

pure→ N for some N ,
4. M captures a continuation, that is, has the form E[callcc k.N],
5. M invokes a continuation, that is, has the form E[cont(F)V],
6. M applies a free variable, that is, has the form E[xV], or else
7. M projects a free variable, that is, has the form E[#ix].

Proof. By induction on the syntax of M .

Note that all the cases except the last two are preserved by substitution of
variables in M with values.

Corollary 2.9 (context reduction). For any C with fv(C) ⊆ {x}, we have
either:

– C has one of the forms E[xiV], E[#jxi], E[callcc k.M], or E[cont(F)V],
– there exists some D such that [V /x]C

pure→ [V /x]D for any V , or else
– [V /x]C is a normal form for any V .

Proof. By Lemma 2.8.

176 T. Yachi and E. Sumii

3 Our Bisimulations

In this section, we define our variant of environmental bisimulations step-by-step.

Definition 3.1. Value relations R, S, . . . are binary relations on closed values.
Term relations X , Y, . . . are binary relations on closed terms.

Definition 3.2. The context closure R� of a value relation R is defined as:

R� = {([V /x]C, [V
′
/x]C) | (V , V

′
) ∈ R, fv(C) ⊆ {x}}

∪ {([V /x]E, [V
′
/x]E) | (V , V

′
) ∈ R, fv(E) ⊆ {x}}

Note our abuse of notation that R� relates both terms and evaluation contexts
for the sake of brevity.

Lemma 3.3 (context closure reduction). Let M = [V /x]C and M ′ =
[V

′
/x]C with V R� V

′
and fv(C) ⊆ {x} (so M R� M ′). Then we have either:

– C has the form E[xiW], hence M = F [ViU] and M ′ = F ′[V ′
i U ′] for F =

[V /x]E and F ′ = [V
′
/x]E (so F R� F ′) as well as U = [V /x]W and U ′ =

[V
′
/x]W (so U R� U ′),

– C has the form E[#jxi], hence M = F [#jVi] and M ′ = F ′[#jV
′
i] for F =

[V /x]E and F ′ = [V
′
/x]E (so F R� F ′),

– there exists some D such that [W/x]C
top→ [W/x]D for any W , hence M

top→
[V /x]D and M ′ top→ [V

′
/x]D (so the reducts are again related by R�), or else

– [W/x]C is a normal form for any W , hence so are M and M ′.

Proof. By Lemma 2.9 with:

– If C has the form E[callcc k.M], we have [W/x]C
top→ [W/x]D for any W ,

with D = E[[cont(E)/k]M] in the third case above.
– If C has the form E[cont(F)V], we have [W/x]C

top→ [W/x]D for any W , with
D = F [V] in the third case above.

Definition 3.4. A term relation X is a termination simulation when, for any
M X M ′,

1. for any N with M
top→ N , there exists some N ′ such that M ′ top

� N ′ with
N X N ′, and

2. M ′ ↓ if M is a value.

A termination simulation X is called a termination bisimulation if X −1 is
also a termination simulation. The termination similarity ≺ is the largest termi-
nation simulation, and the termination bisimilarity ∼ is the largest termination
bisimulation.

Although termination (bi)simulations themselves are rather trivial as a proof
method, we will later extend them with more sophisticated up-to techniques.

A Sound and Complete Bisimulation for Contextual Equivalence 177

Lemma 3.5 (soundness and completeness of termination similarity).
If and only if M ≺ M ′, M ↓ implies M ′ ↓.

Since our language is deterministic (Lemma 2.3), simulation equivalence
coindices with bisimilarity:

Lemma 3.6. M ≺ M ′ and M ′ ≺ M implies M ∼ M ′ and vice versa.

Proof. For the forward direction, take X = {(N,N ′) | M ≺ M ′, M ′ ≺ M, M
top
�

N, M ′ top
� N ′}, which is a termination bisimulation. The converse is trivial.

Definition 3.7. A value relation R is adequate if all of the following conditions
are satisfied:

1. For any V RV ′, the top-level types of V and V ′ match, that is, V is a function
if and only if V ′ is also a function, V is an n-tuple if and only if so is V ′,
and V is a continuation if and only if V ′ is.

2. For any λx.M R λx.M ′, we have E[(λx.M)W] ∼ E′[(λx.M ′)W ′] for any
E R� E′ and W R� W ′.

3. For any 〈V1, . . . , Vn〉 R 〈V ′
1 , . . . , V

′
n〉, we have Vi R V ′

i for i = 1, . . . , n.
4. For any cont(E) R cont(E′), we have E[W] ∼ E′[W ′] for any W R� W ′.

By symmetry, R−1 is also adequate if R is adequate.
The term “adequate” derives from Koutavas [13] and is not directly related

to computational adequacy of denotational semantics.
The most significant difference of Definition 3.7 from previous environmental

bisimulations (such as [19]) is the introduction of arbitrary related evaluation
contexts E R� E′ (in addition to arbitrary related arguments W R� W ′) in
clause 2. They are necessary since we do not always have E[M]

top→ E[N] even
if M

top→ N because of call/cc as mentioned in Sect. 1. In return, we no longer
need to relate the values resulting from the reductions in Definition 3.4, thereby
breaking the mutual (co)induction between the definitions of bisimulations for
values and terms. (These features are also shared by some previous work [10]).

In the following sections, we will show that closed values V and V ′ are con-
textually equivalent if and only if V R V ′ for some adequate R (using up-to
techniques for this proof itself).

4 Up-to Reduction

Generally speaking, bisimulations up-to something are a weakened version of
bisimulations where the reducts of related terms do not necessarily have to be
related themselves, but they instead have only to be related “modulo” that some-
thing. In this section we introduce one of such techniques for our bisimulations
to omit intermediate reducts.

Definition 4.1. A term relation X is a termination simulation up-to reduction
when, for any M X M ′, either

178 T. Yachi and E. Sumii

– M is stuck,
– M ↑,
– M ↓ and M ′ ↓, or else

– there exist some N , L, and L′ such that M
top→ N

top
� L and M ′ top

� L′ with
L X L′.

The termination similarity ≺→ up-to reduction is the largest of such X . Ter-
mination bisimulations and the termination bisimilarity ∼→ up-to reduction is
defined accordingly.

Again, (part of) the definition above may seem redundant, but it is defined
as such to allow later extension with another up-to technique.

Lemma 4.2 (soundness and completeness of up-to reduction). ≺→

equals ≺, that is, M ≺→ M ′ if and only if M ≺ M ′.

Proof. The “if” direction is trivial since Definition 4.1 is weaker than Defini-

tion 3.4. The “only if” is proved by checking that X = {(M,M ′) | M
top
� L, L ≺→

M ′} is a termination bisimulation, which is straightforward.

Adequacy up-to reduction is defined by replacing ≺ with ≺→ in Definition 3.7.

5 Up-to Context

We now introduce our bisimulations up-to (reduction and) context, which is the
most powerful of up-to techniques in general. Intuitively, it allows one to remove
a context that is common to the terms being compared.

Definition 5.1. A term relation X is a termination simulation up-to reduction
and R-context when, for any M X M ′, either

– M is stuck,
– M ↑,
– M ↓ and M ′ ↓, or else

– there exist some N , L, and L′ such that M
top→ N

top
� L and M ′ top

� L′ with
L X L′ or L R� L′.

The termination similarity ≺R and bisimilarity ∼R up-to reduction and R-
context are defined as usual.

Adequacy up-to reduction and context is defined accordingly with ∼R in
place of ∼ (or ∼→). We often omit the “reduction and” part in “up-to reduction
and context” when it is unimportant.

Note that every adequate R is also adequate up-to reduction, and every
adequate R up-to reduction is also adequate up-to reduction and context since
the latter definitions are weaker than the former.

A Sound and Complete Bisimulation for Contextual Equivalence 179

Lemma 5.2 (adequacy implies bisimulation up-to (reduction and) con-
text). M R� M ′ implies M ∼R M ′ if R is adequate up-to reduction and context.

Proof. We prove that R� ∪ ∼R is a termination bisimulation up-to reduction
and context. The case for ∼R is trivial. For R�, the case follows from Lemma 3.3
and the definition of adequacy up-to reduction and context.

Lemma 5.3 (soundness and completeness of up-to context). ≺R equals
≺→, provided that R is adequate up-to reduction and context.

Proof. Soundness follows from Definition 5.1 and Lemma 5.2. Completeness is
trivial.

The soundness and completeness of our bisimulation proof method are thus
obtained:

Theorem 5.4 (soundness and completeness of adequacy). Let V and V ′

be closed values. Then V R V ′ for some adequate R up-to reduction and context
if and only if V and V ′ are contextually equivalent.

Proof. The “if” part follows by taking ≡ itself as R and checking its adequacy.
The other direction follows from Lemma 5.2.

6 Examples

Example 6.1 (from the Introduction). For the sake of exposition, assume that
we have integers and their lists as primitives, and let:

mul = λ�′. callcc k. loopk�′

loopk = recfun(f(�) =
if null � then 1 else
if head � = 0 then k 0 else
head � × f(tail �))

mul ′ = λ�′. loop′�′

loop′ = recfun(f(�) =
if null � then 1 else

head � × f(tail �))

We prove that R = {(mul ,mul ′)} is adequate up-to reduction and context,
for which it suffices to show E[mul V] ∼R E′[mul ′ V ′] for any E R� E′ and
V R� V ′. If neither V nor V ′ is an integer list, both E[mul V] and E′[mul ′ V ′]
get stuck. Otherwise V = V ′ since V R� V ′. If V (as well as V ′) includes 0 as an

element, we have E[mul V]
top
� E[. . . cont(E)0 . . .]

top
� E[0] and E′[mul ′ V ′]

top
�

E′[· · · × 0 × . . .]
top
� E′[0]. Otherwise E[mul V]

top
� E[i1 × · · · × in × 1] and

E′[mul V ′]
top
� E′[i1 × · · · × in × 1] for V = V ′ = [i1, . . . , in]. Thus in both cases

the reducts are related by R� and we are done with the proof up-to R-context.

180 T. Yachi and E. Sumii

Example 6.2 (adapted from Sect. 5 of [23], a contextual equivalence in the pres-
ence of continuations and exceptions but no state). Let us fix an arbitrary closed
term M and define R = {(λ .M, λ .M ;M)}. We show that R is adequate up-to
reduction and context as follows. Take arbitrary E R� E′ and U R� U ′. It suffices
to show E[(λ .M)U] ∼R E′[(λ .M ;M)U ′].

If E′[M ;M]
top
� E′[M], then we have E′[(λ .M ;M)U ′]

top→ E′[M ;M]
top
�

E′[M]. We are done since E[(λ .M)U]
top→ E[M] with E[M] R� E′[M].

Thus suppose E′[M ;M]
top

�� E′[M]. We define S by induction with the fol-
lowing rule

E0 S� E′
0

cont(E[E0]) S cont(E′[E′
0;M])

and then define:

X = {(E[(λ .M)U], E′[(λ .M ;M)U ′])}
∪ {(E[N], E′[N ′;M]) | E′[N ′;M]

top

�� E′[M], N S� N ′}
∪ {(N,N ′) | N ′ top

�� E′[M], N S� N ′}

Let us check the conditions of a termination bisimulation up-to reduction (and
R-context, though the latter up-to technique will not be used here) for each part
of the definition of X .

The first part is trivial since E[(λ .M)U]
top→ E[M] and E′[(λ .M ;M)U ′]

top→
E′[M ;M] with M S� M , where the reducts are related by the second part.

As for the second part, we proceed by case analysis on the reductions of N
and N ′ with N S� N ′. Note that N ′ (and therefore N) cannot be a value since

E′[M ;M]
top
� E′[N ′;M]

top

�� E′[M].

– The only non-trivial case is when N and N ′ invoke continuations, that is, when
N = F [cont(E1)W] and N ′ = F ′[cont(E′

1)W
′] for some F S� F ′, cont(E1)S�

cont(E′
1), and W S� W ′.

• If cont(E1)Scont(E′
1), then by inversion E1 = E[E0] and E′

1 = E′[E′
0;M]

for some E0 S� E′
0, so the reducts E1[W] = E[E0[W]] and E′

1[W
′] =

E′[E′
0[W

′];M] with E0[W]S� E′
0[W

′] are again related by the second part.
• Otherwise, we have E1 S� E′

1 and the reducts E1[W] and E′
1[W

′] with
E1[W] S� E′

1[W
′] are related by the third part.

– The inductive rule above is applied when N and N ′ capture their continu-
ations, that is, when N = E0[callcc k.N0] and N ′ = E′

0[callcc k.N ′
0]

for some E0 S� E′
0 and callcc k.N0 S� callcc k.N ′

0, so that the
reducts E[E0[[cont(E[E0])/k]N0]] and E′[E′

0[[cont(E
′[E′

0;M])/k]N ′
0];M],

with cont(E[E0]) S cont(E′[E′
0;M]) by the rule and therefore E0[[cont

(E[E0])/k]N0] S� E′
0[[cont(E

′[E′
0;M])/k]N ′

0], are again related by the second
part.

The proof for the third part is similar.

A Sound and Complete Bisimulation for Contextual Equivalence 181

Example 6.3. We show that V = λf. f〈〉 and V ′ = λf. f〈〉; f〈〉 are contextually
equivalent. The proof is similar to Example 6.2 but is slightly more complicated
because nested calls to V or V ′ are possible in f〈〉. Take

X = {(N,N ′) | N S�
N ′ N ′}

∪ {(E[N], E′[N ′;W ′〈〉]) | E′[N ′;W ′〈〉]
top

�� E′[W ′〈〉], N S�
E′[N ′;W ′〈〉] N

′}

where:

V SN ′ V ′
N ′ top

�� E′[W ′〈〉] E0 S�
N ′ E′

0

cont(E[E0]) SN ′ cont(E′[E′
0;W

′〈〉])
Note that [V/x]C X [V ′/x]C for any C with fv(C) ⊆ {x}, by the first part of X .

Note also that M ′ top
� N ′ implies SM ′ ⊆ SN ′ . (The latter can be shown from the

fact that M ′ top→ N ′ implies L SM ′ L′ ⇒ L SN ′ L′, for any M ′, N ′, L, and L′, by
induction on the derivation of L SM ′ L′.)

We show that X is a termination bisimulation up-to reduction.

– In the first part,
• If N = F [V W] and N ′ = F ′[V ′W ′] for some F S�

N ′ F ′ and W S�
N ′ W ′,

then N
top→ F [W 〈〉] and N ′ top→ F ′[W ′〈〉;W ′〈〉].

∗ If F ′[W ′〈〉;W ′〈〉] top
� F ′[W ′〈〉], then we are done by the first part with

F [W 〈〉] S�
F ′[W ′〈〉] F

′[W ′〈〉].
∗ Otherwise, we are done by the second part with W 〈〉 S�

F ′[W ′〈〉;W ′〈〉]
W ′〈〉.

• If N = F [cont(E[E0])U] and N ′ = F ′[cont(E′[E′
0;W

′〈〉])U ′] for some

F S�
N ′ F ′, N ′ top

�� E′[W ′〈〉], E0 S�
N ′ E′

0, and U S�
N ′ U ′, then N

top→ E[E0[U]]
and N ′ top→ E′[E′

0[U
′];W ′〈〉], so we are done by the second part with

E0[U] S�
E′[E′

0[U
′];W ′〈〉] E

′
0[U

′].
• If N = F [cont(F0)U] and N ′ = F ′[cont(F ′

0)U
′] for some F S�

N ′ F ′,
F0 S�

N ′ F ′
0, and U S�

N ′ U ′, then N
top→ F0[U] and N ′ top→ F ′

0[U
′], so we are

done by the first part with F0[U] S�
F ′

0[U
′] F

′
0[U

′].
• The other cases are routine.

– In the second part,
• If N = F [V W2] and N ′ = F ′[V ′W ′

2] for some F S�
E′[N ′;W ′〈〉] F ′ and

W2 S�
E′[N ′;W ′〈〉] W ′

2, then E[N]
top→ E[F [W2〈〉]] and E′[N ′;W ′〈〉] top→

E′[F ′[W ′
2〈〉;W ′

2〈〉];W ′〈〉].
∗ If E′[F ′[W ′

2〈〉;W ′
2〈〉];W ′〈〉] top

� E′[F ′[W ′
2〈〉];W ′〈〉] (= L′), then we are

done by the second part with F [W2〈〉] S�
L′ F ′[W ′

2〈〉].
∗ Otherwise, let E2 = E[F] and E′

2 = E′[F ′;W ′〈〉]. We are done by the

second part with E′
2[W

′
2〈〉;W ′

2〈〉]
top

�� E′
2[W

′
2〈〉] and W2〈〉S�

E′
2[W

′
2〈〉;W ′

2〈〉]
W ′

2〈〉.

182 T. Yachi and E. Sumii

• If N = E0[callcc k.N0] and N ′ = E′
0[callcc k.N ′

0] for some E0 S�
N ′ E′

0

and callcc k.N0 S�
N ′ callcc k.N ′

0, then E[N]
top→ E[E0[[cont(E[E0])/k]

N0]]
and E′[N ′;W ′〈〉] top→ E′[E′

0[[cont(E
′[E′

0;W
′〈〉])/k]N ′

0];W
′〈〉] (= L′), so

we are done by the second part with cont(E[E0])SL′cont(E′[E′
0;W

′〈〉])
by the second inductive rule above and therefore E0[[cont(E[E0])/k]N0]
S�

L′ E′
0[[cont(E

′[E′
0;W

′〈〉])/k]N ′
0].

• If N and N ′ are values, then the assumption E′[N ′;W ′〈〉]
top

�� E′[W ′〈〉]
does not hold.

• The other cases are similar to the first part.

Example 6.4 (Call/cc in a loop, taken from Sect. 5.3 of [10]). Let V =
λx. callcc k. Vkx for Vk = recfun(f(x) = f(xk)) and V ′ = recfun(f(x) =
callcc k. f(xk)). Intuitively, V captures a continuation outside a loop, while V ′

repeatedly captures essentially the same continuation inside the loop. We show
the contextual equivalence of V and V ′. Let R = {(V, V ′)}. It suffices to show
E[V W] ∼R E′[V ′W ′] for arbitrary E R� E′ and W R� W ′. Let us define

V S V ′ cont([]) S cont([])

cont(F) S cont(F ′) F0 S� F ′
0

cont(F [F0]) S cont(F ′[F ′
0])

cont(F) S cont(F ′)
cont(F [Vcont(F)[]]) S cont(F ′[V ′[]])

and X = {(F [N], F ′[N ′]) | cont(F) S cont(F ′), N S� N ′}. We show that X is
a termination bisimulation up-to reduction (and R-context) by case analysis on
the reductions of F [N] and F ′[N ′].

Again, once the definitions above have been set up, the following details are
routine and may be skipped.

– When N = F0[V W2] and N ′ = F ′
0[V

′W ′
2] for some F0 S� F ′

0 and W2 S�

W ′
2, we have F [N]

top
� F [F0[Vcont(F [F0])(W2cont(F [F0]))]] and F ′[N ′]

top
�

F ′[F ′
0[V

′(W ′
2cont(F

′[F ′
0]))]], and apply the third and fourth inductive rules

above to obtain cont(F [F0[Vcont(F [F0])[]]]) S cont(F ′[F ′
0[V

′[]]]) and therefore
W2cont(F [F0]) S� W ′

2cont(F
′[F ′

0]).
– When N = F0[cont(F1)W2] and N ′ = F ′

0[cont(F
′
1)W

′
2] for some F0 S� F ′

0,
cont(F1)S� cont(F ′

1), and W2 S� W ′
2, we have F [N]

top→ F1[W2] and F ′[N ′]
top→

F ′
1[W

′
2].

• If cont(F1) S cont(F ′
1), then we are done since W2 S� W ′

2.
• Otherwise F1 S� F ′

1 and we are also done since cont([]) S cont([]) and
F1[W2] S� F ′

1[W
′
2].

– When N = F0[callcc k.N0] and N ′ = F ′
0[callcc k.N ′

0] for some F0 S� F ′
0

and callcc k.N0S�callcc k.N ′
0, we have F [N]

top→ F [F0[[cont(F [F0])/k]N0]]
and F ′[N ′]

top→ F ′[F ′
0[[cont(F

′[F ′
0])/k]N ′

0]], and apply the third induc-
tive rule above to obtain cont(F [F0]) S cont(F ′[F ′

0]) and therefore
[cont(F [F0])/k]N0 S� [cont(F ′[F ′

0])/k]N ′
0.

A Sound and Complete Bisimulation for Contextual Equivalence 183

– When N = W2 and N ′ = W ′
2 for some W2 S� W ′

2, we proceed by induction on
the derivation of cont(F) S cont(F ′).

• If F = F ′ = [], then F [N] = W2 and F ′[N ′] = W ′
2, and we are done

trivially.
• If F = F1[F0] and F ′ = F ′

1[F
′
0] for some cont(F1) S cont(F ′

1) and F0 S�

F ′
0, then F [N] = F1[F0[W2]] and F ′[N ′] = F ′

1[F
′
0[W

′
2]] with cont(F1) S

cont(F ′
1) and F0[W2] S� F ′

0[W
′
2]. If F0 = F ′

0 = [], then F0[W2] and F ′
0[W

′
2]

are values, and we are done by the induction hypothesis. Otherwise F0[W2]
and F ′

0[W
′
2] are not values and the proof is the same as in the other cases

where N and N ′ are not values.
• If F = F0[Vcont(F0)[]] and F ′ = F ′

0[V
′[]] for some cont(F0) S cont(F ′

0),

then F [N]
top
� F0[Vcont(F0)(W2cont(F0))] and F ′[N ′]

top
� F ′

0[V
′(W ′

2cont(F
′
0))],

and we are done since W2cont(F0)S� W ′
2cont(F

′
0) and, by the fourth rule,

cont(F0[Vcont(F0)[]]) S cont(F ′
0[V

′[]]).

The other cases are straightforward.

Example 6.5 (adapted from Sect. 4 of [23], a contextual equivalence in the pres-
ence of continuations but no exceptions or state). We show that R = {(T, T ′)}
with

T = λ .MW

W = λ . V
T ′ = λ .MW ′

W ′ = λ .MW ;V

is adequate up-to context and reduction for any Mw with fv(Mw) = {w} and
closed V . It suffices to show E[TU] ∼R E′[T ′U ′] for any E R� E′ and U R� U ′.
Let

X = {(E[TU], E′[T ′U ′])}
∪ {(N,N ′) | ∀G′. E′[MW ′]

top
� G′[MW ;V] ⇒ G′[MW ;V]

top
� G′[V],

E′[MW ′]
top
� N ′,

N R�
2 N ′ for R2 = R ∪ {(W,W ′)}}

∪ {(E[N], G′[N ′;V]) | G′[N ′;V]
top

�� G′[V],
N S�

G′[N ′;V] N
′}

∪ {(N,N ′) | N S�
N ′ N ′}

where:

N ′ top

�� G′[V] G0 S�
N ′ G′

0

cont(E[G0]) SN ′ cont(G′[G′
0;V])

It is easy to see that M ′ top
� N ′ implies SM ′ ⊆ SN ′ as in Example 6.3.

We prove that X is a termination bisimulation up-to reduction.

– In the first part of X , we have E[TU]
top→ E[MW] and E′[T ′U ′]

top→ E′[MW ′].

• If, for some G′, E′[MW ′]
top
� G′[MW ;V] and G′[MW ;V]

top

�� G′[V], then we
are done by the third part with MW S�

G′[MW ;V] MW .

184 T. Yachi and E. Sumii

• Otherwise, for any G′, E′[MW ′]
top
� G′[MW ;V] implies G′[MW ;V]

top
�

G′[V], so we are done by the second part with E[MW] R�
2 E′[MW ′].

– In the second part,
• If N = F [WU] and N ′ = F ′[W ′U ′] for some F R�

2 F ′ and U R�
2 U ′, then

N
top→ F [V] and N ′ top→ F ′[MW ;V]

top
� F ′[V], so we are done by the second

part with F [V] R�
2 F ′[V].

• If N = F [TU] and N ′ = F ′[T ′U ′] for some F R�
2 F ′ and U R�

2 U ′, then
N

top→ F [MW] and N ′ top→ F ′[MW ′], so we are done by the second part with
F [MW] R�

2 F ′[MW ′].
Proofs for the other cases are routine.

– In the third part,
• If N = G0[callcc k.N0] and N ′ = G′

0[callcc k.N ′
0] for some G0

S�
G′[N ′;V] G′

0 and callcc k.N0 S�
G′[N ′;V] callcc k.N ′

0, then E[N]
top→

E[G0[[cont(E[G0])/k]N0]] and G′[N ′;V]
top→ G′[G′

0[[cont(G
′[G′

0;V])/k]
N ′

0];V] (= L′), so we are done by the third part with cont(E[G0])
SL′ cont(G′[G′

0;V]) by the inductive rule above and therefore
G0[[cont(E[G0])/k]N0] S�

L′ G′
0[[cont(G

′[G′
0;V])/k]N ′

0].
• If N = F [cont(G1)U] and N ′ = F ′[cont(G′

1)U
′] for some F S�

G′[N ′;V] F ′,

U S�
G′[N ′;V] U

′, and cont(G1)SG′[N ′;V] cont(G′
1), then E[N]

top→ G1[U] and

G′[N ′;V]
top→ G′

1[U
′], so we are done by the third part with the inversion

of the rule.
• If N = F [cont(G1)U] and N ′ = F ′[cont(G′

1)U
′] for some F S�

G′[N ′;V] F ′,

U S�
G′[N ′;V] U

′, and G1 S�
G′[N ′;V] G

′
1, then E[N]

top→ G1[U] and G′[N ′;V]
top→

G′
1[U

′], so we are done by the fourth part with G1[U] S�
G′

1[U
′] G

′
1[U

′].

• If N and N ′ are values, then the assumption G′[N ′;V]
top

�� G′[V] does not
hold.

The other cases are routine.
– Proof for the fourth part is similar.

7 Conclusions

As already discussed in Sect. 1, a large amount of work exists on control operators
but none of them to our knowledge was (sound and) complete with respect to
contextual equivalence in the presence of call/cc (but no state), as they could
only be complete (if at all) with respect to CPS conversion (or in the presence
of state [10, personal communication]).

Our examples in Sect. 6 are mostly taken from previous work [10,23]. In
particular, Thielecke [23] defines a bisimulation theory for each of the examples
in his paper. Our bisimulations may partly be seen as a generalization of his3.
3 In fact, we finished most of our proofs before discovering his unpublished manu-

script [23], often reinventing essential ideas that are specific to each example.

A Sound and Complete Bisimulation for Contextual Equivalence 185

It is sometimes argued [12] that the undelimited continuation operator call/cc
is inferior to delimited ones such as shift and reset. The present work can be
seen as an approach to tackling with theoretical difficulties of reasoning about
undelimited continuations.

Although our bisimulations generalize “brute-force” contextual equivalence
proofs and remove many “boilerplate parts,” some of them still remain as one
can see via the examples in Sect. 6. It would be interesting future work to con-
sider how to get rid of them without sacrificing completeness (and simplicity).
Mechanical verification using proof assistants would also be useful.

Our bisimulations in this paper are non-trivially different from environment
bisimulations, as discussed after Definition 3.7. In fact, this difference could also
be adapted for languages without call/cc or any control operator. It may also
be interesting to investigate the merit of this direction.

Acknowledgments. We thank Oleg Kiselyov for informing us of the problem of con-
textual equivalence between M and M ; M , and the anonymous reviewers for use-
ful comments. This research and the authors are partially supported by KAKENHI
JP16K12409, JP15H02681, JP25540001, and JP22300005.

References

1. Aristizábal, A., Biernacki, D., Lenglet, S., Polesiuk, P.: Environmental bisimula-
tions for delimited-control operators with dynamic prompt generation. In: Kesner,
D., Pientka, B. (eds.) 1st International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2016, 22–26 June 2016, Porto, Portugal. LIPIcs,
vol. 52, pp. 9:1–9:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016).
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.9

2. Biernacki, D., Lenglet, S.: Normal form bisimulations for delimited-control oper-
ators. In: Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp.
47–61. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29822-6 7

3. Biernacki, D., Lenglet, S.: Environmental bisimulations for delimited-control oper-
ators. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 333–348. Springer,
Heidelberg (2013). doi:10.1007/978-3-319-03542-0 24

4. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Functional Program-
ming, pp. 151–160 (1990). http://doi.acm.org/10.1145/91556.91622

5. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. J. Funct. Program. 22(4–5), 477–528 (2012).
http://dx.doi.org/10.1017/S095679681200024X

6. Felleisen, M., Friedman, D.P., Kohlbecker, E.E., Duba, B.F.: A syntac-
tic theory of sequential control. Theor. Comput. Sci. 52, 205–237 (1987).
http://dx.doi.org/10.1016/0304-3975(87)90109–5

7. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of
sequential control and state. Theor. Comput. Sci. 103(2), 235–271 (1992).
http://dx.doi.org/10.1016/0304-3975(92)90014–7

8. Griffin, T.: A formulae-as-types notion of control. In: Allen, F.E. (ed.) Conference
Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, San Francisco, California, USA, January 1990, pp. 47–58. ACM Press
(1990). http://doi.acm.org/10.1145/96709.96714

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.9
http://dx.doi.org/10.1007/978-3-642-29822-6_7
http://dx.doi.org/10.1007/978-3-319-03542-0_24
http://doi.acm.org/10.1145/91556.91622
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.1016/0304-3975(87)90109--5
http://dx.doi.org/10.1016/0304-3975(92)90014--7
http://doi.acm.org/10.1145/96709.96714

186 T. Yachi and E. Sumii

9. Hur, C., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and
kripke logical relations. In: Field, J., Hicks, M. (eds.) Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, 22–28 January 2012, pp. 59–72.
ACM (2012). http://doi.acm.org/10.1145/2103656.2103666

10. Hur, C.K., Neis, G., Dreyer, D., Vafeiadis, V.: A logical step forward in paramet-
ric bisimulations. Technical report MPI-SWS-2014-003, Max Planck Institute for
Software Systems (2014)

11. Kameyama, Y., Hasegawa, M.: A sound and complete axiomatization of delimited
continuations. In: Runciman, C., Shivers, O. (eds.) Proceedings of the Eighth ACM
SIGPLAN International Conference on Functional Programming, ICFP 2003, Upp-
sala, Sweden, 25–29 August 2003, pp. 177–188. ACM (2003). http://doi.acm.org/
10.1145/944705.944722

12. Kiselyov, O.: An argument against call/cc. http://okmij.org/ftp/continuations/
against-callcc.html

13. Koutavas, V.: Reasoning about imperative and higher-order programs. Ph.D. the-
sis, Northeastern University (2008)

14. Morris Jr., J.H.: Lambda-calculus models of programming languages. Ph.D. thesis,
Massachusetts Institute of Technology (1968)

15. Sabry, A.: Note on axiomatizing the semantics of control operators. Technical
report CIS-TR-96-03, Department of Computer Science, University of Oregon
(1996)

16. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
LISP Symb. Comput. 6(3–4), 289–360 (1993)

17. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. In: Twenty-Second Annual IEEE Symposium on Logic in Com-
puter Science, pp. 293–302 (2007)

18. Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequen-
tial control and state. In: Palsberg, J. (ed.) Semantics and Algebraic Specifica-
tion, Essays Dedicated to Peter D. Mosses on the Occasion of His 60th Birth-
day. LNCS, vol. 5700, pp. 329–375. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04164-8 17

19. Sumii, E.: A complete characterization of observational equivalence in polymorphic
λ-calculus with general references. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS,
vol. 5771, pp. 455–469. Springer, Heidelberg (2009)

20. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. In: Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 161–172 (2004)

21. Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. In:
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 63–74 (2005)

22. Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. J. ACM
54(5–26), 1–43 (2007). Extended abstract appeared in Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 63–74 (2005)

23. Thielecke, H.: Contrasting exceptions and continuations (2001). http://www.cs.
bham.ac.uk/hxt/research/exncontjournal.pdf

http://doi.acm.org/10.1145/2103656.2103666
http://doi.acm.org/10.1145/944705.944722
http://doi.acm.org/10.1145/944705.944722
http://okmij.org/ftp/continuations/against-callcc.html
http://okmij.org/ftp/continuations/against-callcc.html
http://dx.doi.org/10.1007/978-3-642-04164-8_17
http://dx.doi.org/10.1007/978-3-642-04164-8_17
http://www.cs.bham.ac.uk/hxt/research/exncontjournal.pdf
http://www.cs.bham.ac.uk/hxt/research/exncontjournal.pdf

A Realizability Interpretation for Intersection
and Union Types

Daniel J. Dougherty1, Ugo de’Liguoro2, Luigi Liquori3(B), and Claude Stolze4

1 Worcester Polytechnic Institute, Worcester, USA
dd@cs.wpi.edu

2 Università di Torino, Torino, Italy
ugo.deliguoro@unito.it

3 INRIA Sophia Antipolis-Méditerranée, Valbonne, France
Luigi.Liquori@inria.fr

4 ENS Rennes and UPMC, Bruz, France
Claude.Stolze@ens-rennes.fr

Abstract. Proof-functional logical connectives allow reasoning about
the structure of logical proofs, in this way giving to the latter the status
of first-class objects. This is in contrast to classical truth-functional con-
nectives where the meaning of a compound formula is dependent only
on the truth value of its subformulas.

In this paper we present a typed lambda calculus, enriched with strong
products, strong sums, and a related proof-functional logic. This calcu-
lus, directly derived from a typed calculus previously defined by two
of the current authors, has been proved isomorphic to the well-known
Barbanera-Dezani-Ciancaglini-de’Liguoro type assignment system. We
present a logic L∩∪ featuring two proof-functional connectives, namely
strong conjunction and strong disjunction. We prove the typed calculus
to be isomorphic to the logic L∩∪ and we give a realizability semantics
using Mints’ realizers [Min89] and a completeness theorem. A prototype
implementation is also described.

1 Introduction

This paper is a contribution to the study of intersection and union type systems
and their role in logical investigations.

There are two well-known points of view on type systems: (i) types as spec-
ifications and terms as programs, and (ii) types as propositions and terms as
evidence. Let us call the former the “computational” perspective, and the latter
the “logical” one.

In the logical view a type judgment t : σ is taken to mean that t is a construc-
tion providing evidence of the proposition σ, reducing to a canonical element of
σ. Typed λ-calculi defined in this way are at the core of proof assistants and
logical frameworks. On the other hand, in the computational view a judgment

Work supported by the COST Action CA15123 EUTYPES “The European research
network on types for programming and verification”.

c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 187–205, 2016.
DOI: 10.1007/978-3-319-47958-3 11

188 D.J. Dougherty et al.

t : σ is taken to mean that t denotes an element of the datatype σ, which may
in fact be defined in a way external to the system for making type-judgments.

Within the computational tradition itself there are two approaches:
explicitly-typed calculi (“Church-style”) and type assignment systems (“Curry-
style”). These represent more than a difference in presentation: in type assign-
ment systems types provide a means for making assertions about the semantics
of raw terms, while in explicitly typed calculi types are a method of insuring
that only well-behaved terms are considered at all.

The logical view resides naturally in a system of Church-style explicit typ-
ing. Existing logical frameworks and proof assistants take such explicitly-typed
calculi for their foundation.

Intersection types originated within the computational perspective as a tool
for analyzing the functional behavior of λ-terms: intersection type systems give
characterizations of each of the sets of strongly normalizing, weakly normal-
izing, and head-normalizing terms [Pot80,CDC80,BCDC83]. From a program-
ming languages perspective, intersection types support (finitary) overloading.
Subtyping arises naturally in the study of intersection types.

Later, union types were introduced, as a foundational study [BDCd95]
and also from programming languages motivation [MPS86,CF93,Dun12].
Union types are somewhat similar to sum types, but as Pierce [Pie02] notes:
“The main formal difference between disjoint and non-disjoint union types is
that the latter lack any kind of case construct: if we know only that a value v
has type T1 ∪ T2 then the only operations we can safely perform on v are ones
that make sense for both T1 and T2”.

Naturally, the question arose whether intersection, union, and subtyping can
be given a logical explanation. Pottinger [Pot80] already identified this question:
“Since the meaning of ∩ is reasonably clear (to claim that A∩B is to claim that
one has a reason for asserting A which is also a reason for asserting B), it would
obviously be of interest to figure out how to add ∩ to intuitionist logic and then
consider the analysis of intuitionist mathematical reasoning in the light of the
resulting system”. A natural logical analogue of computational interpretation of
union types is “if we want to reason from an assumption v that T1∪T2 holds, then
we may reason separately assuming v is evidence of T1 and that v is evidence of
T2 as long as we use that evidence in the same way.”

There has subsequently been a lot of work on this question of understand-
ing “proof-functional” connectives [MR72,LE85,Min89,AB91,BM94,DCGV97]
where the logical analogue of intersection has come to be called “strong con-
junction”, with “strong disjunction” corresponding to union of course, and, in
[DCGV97] with subtyping associated with “relevant implication”, long of inter-
est to philosophers. It became clear that a focus on realizability was most fruit-
ful, typically taking untyped terms (from λ-calculus or combinatory logic) as
realizers.

Independent of this thread of research, the question arose whether inter-
section and union type systems could be presented naturally in Church-
style, i.e. explicitly typed. There are technical obstacles to an explicitly-typed

A Realizability Interpretation for Intersection and Union Types 189

treatment that would inherit the core properties of the type-assignment app-
roach: subject reduction, subject expansion, strong normalization, unicity of
typing, decidability of type reconstruction and type checking. Several proposals
[PT94,Rey96,CLV01] [Ron02,WDMT02,WH02,Dun12] were explored, none of
which met all the criteria above. The system presented here derives from the sys-
tem of Λ∩

t [LR07] subsequently generalized in the system Λ∩∪
t [DL10] to include

union types. These systems do satisfy the core properties listed above. They do
not include subtyping, and left open the question of a logical interpretation of
the λ-calculus presented.

All of the work on understanding the logical aspects of intersection, union,
and subtyping took place in the Curry-style framework. This was natural given
the fact that type assignment was the most natural framework for intersection
and union types, because the typing rules are not syntax directed. But the fact
that most uses of λ-calculi in logical systems use explicitly-typed terms poses a
compelling question, the main topic of the current paper:

Can a logical investigation of intersection and union types, with/without
subtyping, take place in the context of an explicitly-typed λ-calculus?

The motivation is that success here should point the way towards applications
of intersection and union types in proof assistants and logical frameworks. The
hope is that they can provide as much insight into logical systems as they have
in the computational arena.

1.1 Contributions

Our results can be thought of as exploring the relationships between the following
four formal systems:

– the original system Λ∩∪
u for type assignment with intersection and union types

from [BDCd95],
– the typed calculus Λ∩∪

t for type assignment with intersection and union types
defined in [DL10],

– the proof-functional logic L∩∪, defined in this paper, and
– a natural deduction system NJ(β) for derivations in first-order intuitionistic

logic with untyped λ-terms.

Judgements in these systems take the following four forms below. On the right-
hand sides of the turnstiles, M is an untyped λ-term, Δ is a simply-typed
λ-term with strong products and strong sums, and σ is a simple type formed
using →,∩, and ∪. The rσ[M] are typing predicates to be realized.

Λ∩∪
u B, xι : τ � M : σ

Λ∩∪
t Γ

@
, xι @ ι : τ � M @ Δ : σ

L∩∪ Γ, ι : τ � Δ : σ

NJ(β) G, rτ [xι] � rσ[M]

190 D.J. Dougherty et al.

The relationship between Λ∩∪
t and Λ∩∪

u was explored in [DL10], and is recalled
in Sect. 2. The first contribution of this paper is the definition of a new notion,
the essence �Δ � of a typed term Δ, used to connect Λ∩∪

t and L∩∪. Specifically,
we prove, as Theorem 6,

Γ
@� M@Δ : σ if and only if Γ � Δ : σ and �Δ � � M. (1)

Here Γ is obtained from Γ
@
by erasing all the “x@”, and � is a suitable syntactic

preorder on untyped λ-terms. This justifies thinking of L∩∪ as a proof-functional
logic. We think of the Λ∩∪

t as a bridge between the intersection and union type
assignment system and the logic L∩∪.

Our second contribution is to show how Λ∩∪
t supports a realizability analysis

of L∩∪. In particular, Sect. 3 shows that

Γ
@� M@Δ : σ and only if Δ realizes GΓ � rσ[M]. (2)

Together with the equivalence in (1) this represents a complete analysis of the
relationship between Curry-style and Church-style typing and the associated
logic for intersection and union.

Section 4 presents further theoretical and pragmatic developments. Sub-
sect. 4.1 extends the typed system and the logic by adding a natural notion of
subtyping. This is represented in the type assignment system as a non-syntax-
directed substitution rule, in the typed calculus as an explicit coercion, and in the
logic calculus as another well-known proof-functional connective called relevant
implication. In Subsect. 4.2 we briefly describe our prototype implementation of
the type checking and proof inhabitation for the system with intersection/strong
conjunction and union/strong disjunction and coercions as relevant implication.

1.2 Related Work

There are far too many studies of type systems featuring intersection, union,
and subtyping to identify individually here. We have tried to outline the main
currents of research in the introduction; here we will mention some work that is
directly related to the contributions of this paper.

The formal investigation of soundness and completeness for a notion of real-
izability was initiated by Lopez-Escobar [LE85] and subsequently refined by
Mints [Min89]. It is Mints’ approach that we build on here.

The connection between intersection types and relevant implication was
noticed by Alessi and Barbanera in [AB91]. Barbanera and Martini [BM94] stud-
ied three proof-functional operators, namely the strong conjunction, the relevant
implication (see Meyer-Routley’s [MR72] system B+), and the strong equiva-
lence connective for double implication, relating those connectives with suitable
type assignments system, a realizability semantics and a completeness theorem.

Dezani-Ciancaglini, Ghilezan, and Venneri [DCGV97], investigated a Curry-
Howard interpretation of intersection and union types (for Combinatory Logic).
Using the well understood relation between combinatory logic and λ-calculus,

A Realizability Interpretation for Intersection and Union Types 191

they encode type-free λ-terms in suitable combinatoric logic formulas and then
type them using intersection and union types. As they put it, their goal is “. . . to
set out a logical system... such that the intersection and union type constructors
are interpreted as propositional connectives and then their derivability is com-
pletely represented by derivability in a logical Hilbert-style, axiomatization.” This
is a complementary approach to the realizability-based one here.

Barbanera, Dezani-Ciancaglini, and de’Liguoro [BDCd95] presented an
untyped λ-calculus with related type assignment system featuring intersection
and union types. The previous work [DL10] presented a typed calculus that
explored the relationship between the proof-functional intersections and unions
and the truth-functional (strong) products and (strong) sums; the intersection
and union aspect of the system was isomorphic, after erasure, to the Barbanera-
Dezani-Ciancaglini-de’Liguoro [BDCd95] type assignment system. The type sys-
tem we consider is built out of an infinitely enumerable set of type variables
φ0, φ1, . . . and the constant type ω, by means of the arrow (“→”), union (“∪”),
and intersection (“∩”) constructors. Therefore, types have the following syntax:

σ ::= φ | ω | σ → σ | σ ∪ σ | σ ∩ σ.

Fig. 1. The Intersection and Union Type Assignment System Λ∩∪
u [BDCd95].

2 Type Assignment Λ∩∪
u and the Typed Calculus Λ∩∪

t

The type assignment system Λ∩∪
u is the set of inference rules for assigning inter-

section and union types to terms of the pure λ-calculus. The presentation here,
in Fig. 1, is taken from [BDCd95]: the terms are standard raw λ-terms, and the
types are generated from a set of base types by the constructors →,∩, and ∪.

192 D.J. Dougherty et al.

Fig. 2. The Typed Calculus Λ∩∪
t [DL10].

Theorem 1 (Main properties of Λ∩∪
u [BDCd95]).

Characterization. The terms typable without use of the ω rule are precisely
the strongly normalizing terms. �	

Parallel reduction. If B � M : σ and M →gk N then B � N : σ. Here
→gk is the “Gross-Knuth” reduction, where all residuals of redexes in M are
contracted (Def. 13.2.7 in [Bar84]). �	

In [DL10] a typed λ-calculus Λ∩∪
t was defined, whose goal was to capture a

decidable and Church-style version of the Curry-style Λ∩∪
u . The pseudo-terms

of the Λ∩∪
t calculus have the form M@Δ, where M and Δ have the following

syntax:

M ::= xι | λxι.M | M M

Δ ::= ι | ∗ | λι:σ.Δ | ΔΔ | 〈Δ, Δ〉 | [λι:σ.Δ , λι:σ.Δ] · Δ | priΔ | iniΔ i = 1, 2

Note that the metasymbols λ and · are per se nothing but parts of the
strong sum construction. The typed judgments are of the shape Γ

@� M@Δ : σ,
where in a nutshell M is a type-free λ-term, Δ is a typed λ-term enriched with
strong product, strong sum, projections, and injections to faithfully “memorize”
every step of a type assignment derivation, and Γ

@
contains declarations of the

shape xι@ι:σ, where xι and ι are free-variables of M and Δ, respectively. The

A Realizability Interpretation for Intersection and Union Types 193

inference rules are presented in Fig. 2. The main feature of the system was to keep
M to be “synchronized” with Δ. As an example, we can derive the judgement
� λxι.xι@〈λι:σ1.ι , λι:σ2.ι〉 : (σ1 → σ1) ∩ (σ2 → σ2). As another example, the
term [λι1:σ1.Δ1 , λι2:σ2.Δ1] ·Δ3 corresponds to the familiar case statement. The
type ω plays the role of a terminal object, that is to say it is an object with a
single element. The connection with type-assignment is this: every term can be
assigned type ω so all proofs of that judgment have no content: all these proofs
are considered identical ([Rey98], p. 372). As is typical we name the unique
element of the terminal object as ∗.

The relation between untyped and typed reductions is subtle because of the
presence of the “Gross-Knuth” parallel reduction in the untyped calculus and a
fairly complex notion of synchronization of M and Δ, via synchronized β- and
Δ-reductions in the typed calculus. In a nutshell, for a given term M@Δ, the
computational part (M) and the logical part (Δ) grow up together while they
are built through application of rules (Var), (→ I), and (→ E), but they get
disconnected when we apply the (∩I), (∪I) or (∩E) rules, which change the
Δ but not the M . This disconnection is “logged” in the Δ via occurrences of
〈− , −〉, [− , −], pri, and ini. In order to correctly identify the reductions that
need to be performed in parallel in order to preserve the correct syntax of the
term, an ad hoc notion of “overlapping” that helps to define a redex taking into
account the surrounding context was defined in [DL10]. Therefore, we define ⇒
as the union of two reductions: ⇒β dealing with β-reduction occurring in both
M and Δ, and ⇒Δ dealing with reductions arising from reduction only in Δ.
We refer to the complete reduction definition in [DL10]. Here are some main
properties of the system Λ∩∪

t . Since the system is explicitly typed, properties
such as type checking and type reconstruction are immediate.

Theorem 2 (Main properties of Λ∩∪
t [DL10]).

Subject reduction. If Γ
@� M@Δ : σ and M@Δ ⇒ M ′@Δ′, then

Γ
@� M ′@Δ′ : σ. �	

Church-Rosser. The reduction relation ⇒ is confluent. �	
Strong normalization. If M@Δ is typable without using rule (ω) then M is

strongly normalizing. �	
Type reconstruction algorithm. There is an algorithm Type satisfying

Soundness. If Type(Γ
@
,M@Δ) = σ, then Γ

@� M@Δ : σ. �	
Completeness. If Γ

@� M@Δ : σ, then Type(Γ
@
,M@Δ) = σ. �	

Type checking algorithm. There is an algorithm Typecheck satisfying
Γ

@� M@Δ : σ if and only if Typecheck(Γ
@
,M@Δ,σ) = true.

Judgment decidability. It is decidable whether Γ
@� M@Δ : σ is derivable. �	

Isomorphism of typed-untyped derivations. Let DerΛ∩∪
u and DerΛ∩∪

t be
the sets of all (un)typed derivations. There are functions F : DerΛ∩∪

t ⇒
DerΛ∩∪

u and G : DerΛ∩∪
u ⇒ DerΛ∩∪

t showing the systems Λ∩∪
t and Λ∩∪

u to
be isomorphic in the following sense: F ◦ G is the identity in DerΛ∩∪

u and
G ◦ F is the identity in DerΛ∩∪

t modulo uniform naming of variable-marks,
i.e., G(F(Γ

@� M@Δ : σ)) = ren(Γ
@
) � ren(M@Δ) : σ, where ren is a simple

function renaming the free occurrences of variable-marks. �	

194 D.J. Dougherty et al.

Fig. 3. The Type Reconstruction and Type Checking Algorithms for Λ∩∪
t .

The algorithms Type and Typecheck in Fig. 3 are exactly the ones from [DL10].

2.1 The Proof Essence Partial Function

We start with a simple question: assuming M@Δ is derivable, can we extract
the computational part M from a proof-term Δ? Luckily the answer is positive.
To do that, let us extend the pure λ-calculus syntax by a constant Ω, typable
by ω only, and consider the following pre-order join (partial) operation:

Definition 3. Let � be the least pre-congruence over untyped λ-terms extended
with the constant Ω such that:

1. Ω � M for any M
2. if M =α M ′ and M ′ � N then M � N
3. if M =η M ′ and M ′ � N then M � N

By identifying η-convertible terms, the relation � is a partial order; next we show
that the set of extended λ-terms is closed under join of compatible terms: M and
N are compatible, written M ↑ N , if M � P � N , for some P . Although the
next lemma is intuitively clear its proof rather technical. We include the proof
because existence of join of compatible terms is necessary for the subsequent
definition of “essence” to make sense; it also provides a decision method for
compatibility and a method to compute the join.

A Realizability Interpretation for Intersection and Union Types 195

Fig. 4. Syntactical join

Lemma 4. For any pair M , N of extended λ-terms it is decidable whether they
are compatible. Moreover, if M ↑ N then there exists a term M 	N which is the
join of M and N w.r.t. � that is unique up to η-equality.

Proof. First observe that if M � P =η Q then P � Q, as � includes =η and
M � Q, by transitivity of �.

Let ≤ be the last pre-congruence such that Ω ≤ M , for any M . Then the
relation � coincides with the transitive closure of (=η ≤)∪ (≤=η), where M(=η

≤)N if M =η P ≤ N for some P , and similarly M(≤=η)N . Now suppose that

M =η M ′ ≤ P ≥ N =η N ′

Since η-reduction is Church-Rosser and strongly normalizing, there exist the
unique η-normal forms M ′′ of M,M ′, and P ′′ of P and N ′′ of N,N ′, respectively.
By definition and the above remark we have M ′′ � P ′′ � N ′′; we claim that
M ′′ ≤ P ′′ ≥ N ′′.

If M ′ ≤ P , then for some context with n holes C[·]1 · · · [·]n we have M ′ ≡
C[Ω]1 · · · [Ω]n and P ≡ C[P1]1 · · · [Pn]n for some Pi’s. Assuming for simplicity
n = 1 and that M ′ →η M ′′ in one step by contracting the η-redex λx.R x, we
either have that the hole filled by Ω does not occur in R or that R contains
it. In the first case λx.R x is (the only) η-redex of P and we trivially obtain
P →η P ′′ ≥ M ′′ by contracting the same redex. In the second case Ω is a
subterm of R which is such that R ≤ R′ and P ≡ C[λx.R′ x] for some R′: then
we have M ′′ ≡ C[R] ≤ C[R′] ≡ P ′′ with P →η P ′′. The case of n > 1 or
M ′ →+

η M ′′ in several steps is a straightforward generalization thereof. By a
similar reasoning we conclude that P ′′ ≥ N ′′ as well. Also the proof that if

M ≤ Q =η Q′ ≥ N

then M ′′ ≤ Q′′ ≥ N ′′, where M ′′, Q′′ and N ′′ are the respective η-normal forms
of M , Q and Q′, N is analogous.

From this it follows that if M � P � N , then M ′′ ≤ P ′′ ≥ N ′′ for their
respective η-normal forms; as the inverse implication holds by definition, we can
decide whether M ↑ N by reducing both M and N to their η-normal forms
M ′′ and N ′′, and then deciding whether they are compatible w.r.t. the simpler
relation ≤. In such a case we have that M 	 N = M ′′ ∨ N ′′, where ∨ is defined
in Fig. 4, namely the lub w.r.t. ≤. �	

196 D.J. Dougherty et al.

Let us define the essence of a Δ, written �Δ �, as a partial mapping as follows:

Definition 5 (Proof essence). The type-free essence M of a typed proof Δ is:

� ∗ � �
= Ω � ι � �

= xι

�λι:σ1.Δ � �
= λxι.�Δ � �Δ1 Δ2 � �

= �Δ1 � �Δ2 �
� [λι:σ1.Δ1 , λι:σ2.Δ2] · Δ3 � �

= (�Δ1 � 	 �Δ2 �){�Δ3 �/xι} � iniΔ � �
= �Δ �

� 〈Δ1 , Δ2〉 � �
= �Δ1 � 	 �Δ2 � � priΔ � �

= �Δ �
The “essence” map is partial because join is such; it is however always defined
when applied to a typed proof-term Δ in the typed calculus Λ∩∪

t of [DL10] (see
Theorem 6 below) and it produces a type-free λ-term M . Note that M and Δ are
both typable with σ using the type assignment and the type system, respectively.
Summarizing, the signature of the essence is as follows:

� − � : proof-terms (Δ’s) → untyped λ-terms (M ’s).

2.2 The Proof-Functional Logic L∩∪

Indeed, for a given typable Δ, the left-hand side of the @, namely M , can be
omitted since it represents just the essence of Δ, i.e. �Δ � � M . Thus we can
introduce the proof-functional logic, called L∩∪ and presented in Fig. 5. The
following theorem holds:

Theorem 6 (Equivalence). Let Γ be obtained by Γ
@
, simply by erasing all the

“x@”. Then Γ
@� M@Δ : σ if and only if Γ � Δ : σ and �Δ � � M . �	

Fig. 5. The proof-functional logic L∩∪.

A Realizability Interpretation for Intersection and Union Types 197

Proof. The left-to-right is by induction over the the derivation of Γ
@� M@Δ : σ.

First observe that if the derivation consists of axiom (ω) then Δ ≡ ∗ and σ = ω
and � ∗ � = Ω � M . If the derivation ends by

Γ
@� M@Δ1 : σ1 Γ

@� M@Δ2 : σ2

Γ
@� M@〈Δ1 , Δ2〉 : σ1 ∩ σ2

(∩I)

then by induction we have that both �Δ1 � and �Δ2 � are defined and that �Δ1 � �
M � �Δ2 �, therefore � 〈Δ1 , Δ2〉 � = �Δ1 �	�Δ2 � is defined and �Δ1 �	�Δ2 � � M
as desired.

If the derivation ends by (∪E) we reason in the same way as in case (∩I),
while all other cases are immediate by induction and the fact that � is a pre-
congruence.

The converse direction is is a straightforward induction over the derivation
of Γ � Δ : σ. �	

Since L∩∪ is a proof-functional logic it is natural to consider the pair “Δ : σ”
as a logical formula. Pictorially speaking, we could say that the type assignment
system of [BDCd95] and the logic L∩∪ are “bridged” by the typed system Λ∩∪

t ,
and the above. We prove this fact by means of the concept of essence. This is,
to the best of our knowledge, the first attempt to interpret union as a proof-
functional connective.

3 Realizability Interpretation of Union Types

In contrast to the system of intersection types, the type assignment system
Λ∩∪
u has no simple set-theoretic interpretation (see [BDCd95]). On the other

hand system Λ∩∪
t is grounded on the proof-functional logic L∩∪, though this is

hardly standard. In this section we provide both a natural semantics for union
types and a foundation for the logic L∩∪. We do this by interpreting the union
type assignment system into the intuitionistic first order theory NJ(β), Mint’s
provable realizability of intersection types extended with union. Then we prove
that the Δ’s terms of system Λ∩∪

t are just proof-terms in NJ(β).
From Theorem 6 we know that if Γ

@ � M@Δ : σ, then there is a tight
relation among Δ and M , which is captured by the essence mapping. Comparing
system Λ∩∪

t to the original Λ∩∪
u it is easily seen that Δ is a proof-term of the

statement M : σ in system Λ∩∪
u . But Δ is a simply typed term: in fact if we

drop the restriction concerning the “essence” in rules (∩I) and (∪E) in system
L∩∪ replacing σ ∩ τ by σ × τ and σ ∪ τ by σ + τ then we get a simply typed
λ-calculus with product and sums, namely the intuitionistic propositional logic
with implication, conjunction, and disjunction in disguise.

We will provide a foundation for the proof-functional logic L∩∪ by interpret-
ing the L∩∪ into an extension of Mints’ provable realizability. However when
proving a formula rσ[M] we have two kinds of realizers: the former is the untyped
λ-term M, that we propose to call just a “method” borrowing terminology from

198 D.J. Dougherty et al.

Barbanera-Martini, the latter kind are Δ’s that turn out to be realizers in the
ordinary sense of intuitionistic logic.

Therefore, we prove a completeness proof that this is the case, namely that
Γ � Δ : σ is derivable in L∩∪ if and only if Δ realizes GΓ � rσ[M] for some M
related to Δ by the essence mapping.

For this aim we use and extend Mints’ approach of Provable Realizability
[Min89,AB91,BM94]. We interpret the statement � M@Δ : σ as “Δ is a con-
struction of M : σ”; on the other hand M : σ is the meaning of the formula
rσ[M], provided that we extend the notion to cope with union types; the latter
formula reads as “M is a method to assess σ” in terms of [LE85,BM94]; now the
meaning of Δ is that of a constructive proof of rσ[M], and hence it is a “realizer”
of this formula. In short we have “two kinds” of realizers on two levels: the M ,
which is a Mints’ realizer of σ, and the Δ which is an ordinary realizer, in the
sense of standard Brouwer–Heyting–Kolmogorov interpretation of intuitionistic
logic, of the statement rσ[M].

To avoid confusion, in the following we shall reserve the word “realizer”
for the Δ-terms, and we will use the word “method” referring to the untyped
λ-term M .

Definition 7. Let Pφ(x) be a unary predicate for each atomic type φ. Then we
define the predicates rσ[M] for types σ and terms M by induction over σ, as the
first order logical formulae:

rφ[x] ≡ Pφ(x)

rσ1→σ2 [x] ≡ ∀y.rσ1 [y] ⊃ rσ2 [x y]

rσ1∩σ2 [x] ≡ rσ1 [x] ∧ rσ2 [x]

rσ1∪σ2 [x] ≡ rσ1 [x] ∨ rσ2 [x]

In the above ⊃, ∧ and ∨ are the logical connectives for implication, conjunc-
tion and disjunction respectively, that must be kept distinct from ∩ and ∪. In
the first order language whose terms are type-free λ-terms, we have formulas of
the shape rσ[M], whose intended meaning is that M is a method for σ in the
intersection-union type discipline. Note that in rσ[x] the term-variable x is the
only free-variable; in particular in rσ1→σ2 [M] ≡ ∀y.rσ1 [y] ⊃ rσ2 [M y] we assume
that y �∈ Fv(M).

By NJ we mean the natural-deduction presentation of the intuitionistic first-
order predicate calculus. Derivations in NJ are trees of judgments G � A, where
G is the set of undischarged assumptions, rather than trees of formulas as in
Gentzen’s original formulation.

Definition 8 (The system NJ(β)). The system NJ(β) is the natural deduction
system for first order intuitionistic logic with untyped λ-terms and predicates
Pφ(x), the latter being axiomatized via the Post rules:

GΓ �NJ(β) Pφ(M) M =βη N

GΓ �NJ(β) Pφ(N)
(Axβη)

GΓ �NJ(β) Pω(M)
(Axω)

A Realizability Interpretation for Intersection and Union Types 199

If A is a formula of NJ(β) and G
�
= {A1, . . . , An} is a set of formulæ (a con-

text), then we write G �NJ(β) A to mean that A is derivable in G. To the
context Γ

�
= {ι1:σ1, . . . , ιn:σn} of the logic L∩∪ we associate the NJ(β) context

GΓ
�
= rσ1 [xι1], . . . , rσn

[xιn]. Note that GΓ,ι:σ
�
=GΓ , rσ[xι] and xι �∈ Fv(GΓ), since

ι �∈ Dom(Γ), by context definition.
The following lemmas are useful to eliminate some of the intricacies of using

derivations in the full system NJ(β), involving the universal quantifier in the
definition of rσ→τ [M].

Lemma 9. The following rule is admissible in NJ(β):

GΓ �NJ(β) A{M/x} M =βη N

GΓ �NJ(β) A{N/x} (Eqβη)

Proof. By induction over the proof of GΓ �NJ(β) A{M/x}. �	
Lemma 10. The following rules are admissible in NJ(β):

GΓ , rσ1 [x] �NJ(β) rσ2 [M]

GΓ �NJ(β) rσ1→σ2 [λx.M]

GΓ �NJ(β) rσ1→σ2 [M] GΓ �NJ(β) rσ1 [N]

GΓ �NJ(β) rσ2 [M N]

GΓ �NJ(β) rσ1 [M] GΓ �NJ(β) rσ2 [M]

GΓ �NJ(β) rσ1∩σ2 [M]

GΓ �NJ(β) rσ1∩σ2 [M] i ∈ {1, 2}
GΓ �NJ(β) rσi

[M]

GΓ �NJ(β) rσi
[M] i ∈ {1, 2}

GΓ �NJ(β) rσ1∪σ2 [M]

GΓ , rσ1 [x] �NJ(β) rσ3 [M]
GΓ , rσ2 [x] �NJ(β) rσ3 [M] GΓ �NJ(β) rσ1∪σ2 [N]

GΓ �NJ(β) rσ3 [M{N/x}]

Proof. In each case, use induction over the proof of the indicated premisses. �	
In spite of the similarity of the rules in Lemma 9 with those of system L∩∪ there
are no restrictions on the shape of the derivations of the rσ[M]. This is due to
the fact the last lemma is about derivations of the predicate rσ[M] and not just
of the proof-functional “formula” σ. Nonetheless we have:

Lemma 11. If Γ
@� M@Δ : σ in system Λ∩∪

t then GΓ �NJ(β) rσ[M].

Proof. By induction over the derivation of Γ
@� M@Δ : σ using Lemmas 9, and

10 �	
Theorem 12 (Soundness). If Γ � Δ : σ is derivable in L∩∪ then there exists
M such that GΓ �NJ(β) rσ[M].

Proof. By Theorem 6 if Γ � Δ : σ is derivable then Γ
@ � M@Δ : σ for some

M � �Δ �. The thesis follows by Lemma 11. �	

200 D.J. Dougherty et al.

We say that the derivation of GΓ � rσ[M] is standard if it uses only the rules
of the Post system, rule (Eqβη) and the rules from Lemmas 9 and 10; then we
write GΓ �S rσ[M].

Recall that NJ(β) is a particular case of systems called I(S) in [Pra71], which
enjoys the property of being strongly normalizable. The normal form of a deriva-
tion, called “fully normal derivation” by Prawitz, is split into a topmost “ana-
lytical part” consisting of elimination rules, an intermediate “minimum part”
consisting of rules of the Post system, and a final “synthetical part” (ending
with the very conclusion of the derivation) only consisting of introduction rules.
This implies the subformula property.

Lemma 13. If GΓ �NJ(β) rσ[M] then GΓ �S rσ[M].

Proof. By induction over the fully-normal derivation of GΓ � rσ[M], and then
by cases of σ. If σ is φ or ω then both the analytic and the synthetic parts are
empty, and the thesis is immediate. Otherwise:

Case σ ≡ σ1 ∩ σ2. Since rσ1∩σ2 [M] ≡ rσ1 [M]∧rσ2 [M], the fully-normal deriva-
tion of GΓ � rσ1 [M] ∧ rσ2 [M] must end with (∧I), whose premises are
GΓ � rσi

[M], i ∈ {1, 2} and the thesis follows by induction.
Case σ = σ1 → σ2. We have rσ1→σ2 [M] ≡ ∀y.rσ1 [y] ⊃ rσ2 [M y], so that the

synthetic part ends by:

GΓ , rσ1 [y] � rσ2 [M y]
GΓ � rσ1 [y] ⊃ rσ2 [M y]

(⊃ I)

GΓ � ∀y.rσ1 [y] ⊃ rσ2 [M y]
(∀I)

where y �∈ Fv(GΓ)∪Fv(M) because of the side condition of rule (∀I) and the
definition of rσ1→σ2 [M]. By induction GΓ , rσ1 [y] �S rσ2 [M y], from which we
obtain the standard derivation:

GΓ , rσ1 [y] �S rσ2 [M y]
GΓ �S rσ1→σ2 [λy.M y] λy.M y =η M

GΓ �S rσ1→σ2 [M]

Case σ = σ1 ∪ σ2. Then rσ1∪σ2 [M] ≡ rσ1 [M] ∨ rσ2 [M] and the fully-normal
derivation of GΓ � rσ1 [M] ∨ rσ2 [M] ends by (∨I), therefore by induction
GΓ �S rσi

[M] with i ∈ {1, 2} and the thesis follows. �	
Definition 14 (Δ-realizability). We say that a closed Δ realizes the formula
rσ[M], written Δ � rσ[M], if �Δ � � M and:

Δ � rφ[M] always
Δ � rω[M] ⇔ Δ ≡ ∗

Δ � rσ→τ [M] ⇔ ∃M ′ =βη M.∀Δ′, N. Δ′ � rσ[N] ⇒ (ΔΔ′) � rτ [M ′N]
Δ � rσ∩τ [M] ⇔ Δ ≡ 〈Δ1 , Δ2〉 ∧ Δ1 � rσ[M] ∧ Δ2 � rτ [M]
Δ � rσ∪τ [M] ⇔ (Δ ∗−→ in1Δ1 ∧ Δ1 � rσ[M]) ∨ (Δ ∗−→ in2Δ2 ∧ Δ2 � rτ [M])

A Realizability Interpretation for Intersection and Union Types 201

We then define Δ � GΓ � rσ[M] where Δ is a possibly open term such that
Fv(Δ) = {ι1, . . . , ιk} ⊆ Fv(Γ), if and only if for all closed Δ1, . . . ,Δk and terms
N1, . . . , Nk such that Δi � rΓ (ιi)[Ni] for all i = 1, . . . , k it is the case that
(writing xi ≡ xιi):

Δ{Δ1/ι1} · · · {Δk/ιk} � rσ[M{N1/x1} · · · {Nk/xk}].

Lemma 15. If GΓ �NJ(β) rσ[M] then there exists Δ such that Δ � GΓ � rσ[M].

Proof. By Lemma 13 we can argue by induction over the standard derivation of
GΓ � rσ[M]. If it ends by a Post rule, then the thesis is trivial. Suppose that it
ends by the inference

GΓ � rσ1 [M] GΓ � rσ2 [M]
GΓ � rσ1∩σ2 [M]

Then by induction there are Δ1,Δ2 such that �Δi � � M and Δi � GΓ � rσi
[M].

Taking Δ ≡ 〈Δ1 , Δ2〉 we have that �Δ1 � � M � �Δ2 � and �Δ � = �Δ1 �	�Δ2 � �
M hence Δ � GΓ � rσ1∩σ2 [M]. All other cases are similar. �	
Lemma 16. If Δ � GΓ � rσ[M] then there exists N and Δ′ such that M =βη N

and Γ
@� N@Δ′ : σ.

Proof. By induction over σ. �	
Theorem 17 (Completeness). If GΓ �NJ(β) rσ[M] then there exists N =βη

M and Δ such that Γ
@� N@Δ : σ and therefore Γ � Δ : σ.

Proof. By the hypothesis and Lemma 15 we know that there is a Δ′ such that
Δ′ � GΓ � rσ[M]. By Lemma 16 this implies that Γ

@� N@Δ : σ for some Δ
and N =βη M , and we conclude by Theorem 6. �	

4 Further Logical Developments and Implementation

There is active ongoing work on both the theoretical and practical directions of
this project.

4.1 Implicit Subtyping as Explicit Coercions

The logic L∩∪ does not encompass the subtyping relation treated in [BDCd95],
which extends the subtyping relation among intersection types introduced in
[BCDC83]. Given such a relation ≤, the subsumption rule takes the form:

B � M : σ σ ≤ τ

B � M : τ
(Sub)

This rule has a character similar to the intersection and union introduction
rules because the subject M of the conclusion is the same as in the premise.
This calls for a consistent treatment on the side of the Δ’s that are typed terms.

202 D.J. Dougherty et al.

In [DL10] it was hinted that the subtyping as coercion should be the proper
approach, in the sense that whenever σ ≤ τ there should exist a coercion λ-term
coeσ≤τ : σ → τ such that the following rule is sound:

Γ � Δ : σ σ ≤ τ

Γ � (coeσ≤τ Δ) : τ
(coe)

According to the logic L∩∪ this rule is sound if � coeσ≤τ (Δ) � � M , while accord-
ing to the realizability interpretation this is the case if realizers of rσ[M] are sent
to realizers of rτ [M]. We argue that this is the case by showing that, at least for
the type theory Ξ from [BDCd95], we could establish the following:

Conjecture 18. If σ ≤ τ ∈ Ξ then there exists a combinator coeσ≤τ such that
� coeσ≤τ : σ → τ is a theorem of L∩∪ and � coeσ≤τ � � λx.x.

We end this subsection by observing that Conjecture 18 is in accordance with the
logical interpretation of intersection types proposed in [BM94]. In fact from the
logical point of view, subtyping of intersection (and union) types corresponds
to inject concepts and rules proper to the Minimal Relevant Logical system
B+ introduced by Meyer-Routley in’72. As nicely explained in the Barbanera-
Martini paper, the relevant implication, denoted by ⊃r from the logic side and
→r from the type side, captures the behavior of the coercion function coeσ≤τ as
follows:

“To assert σ →r τ (read also σ ≤ τ) is to assert that any proof-inhabitant
of σ is also a proof-inhabitant of τ”.

Our system then meets the latter requirement because any coercion is “essen-
tially” the identity.

4.2 Logical Frameworks

The results presented here are part of a larger project to build a small logical
framework, à la the Edinburgh Logical Framework [HHP93], featuring proof-
functional logical connectives like strong conjunction (intersection) and strong
sum (union), and allowing reasoning about the structure of logical proofs, in this
way giving to the latter the status of first-class objects. We could also mention
the high expressivity of ad hoc (intersection) polymorphism, since it allows to
typecheck the untyped λ-term abstraction λx.x x (self-application), essence of a
suitable Δ term, with the intersection type (σ ∩ (σ → σ)) → σ. Other insights
could come in studying case constructs typechecked with union types.

Another positive outcome of this research line would be the introduction
of proof-functional types into existing interactive theorem provers such as Coq
[Coq16] or Isabelle [Isa16], and dependently typed programming languages such
as Agda [Agd16], Epigram [Epi16], or Idris [Idr16].

Finally, other advances in research line could come in studying other proof-
functional logical connectives, like relevant implication (where the implication is

A Realizability Interpretation for Intersection and Union Types 203

established by an identity map) and strong equivalence (where the two directions
of the equivalence are established by mutually inverse maps), the two being
proof-functional interpretations of subtyping and provable type isomorphism,
respectively.

4.3 Prototype Implementation

Our current implementation experiments with a small kernel for a logical frame-
work featuring union and intersection types satisfying the De Brujin Principle
saying “Keep the framework as weak as possible (A plea for weaker frameworks”).

The prototype is written in the functional language ML. Its Read-Eval-Print-
Loop (REPL) can read a file containing some signatures, and process it using a
lexer, then a parser. Then it can do the following actions:

– type-check the proof
– normalize the proof using strong reduction
– add some definitions in the global context
– perform a (human interactive) type inhabitation algorithm

We are putting our current efforts into make the REPL to consider proofs (Δ
terms) as a genuine first-class objects.

We implemented the Λ∩∪
t calculus and the proof-functional logic L∩∪ as

presented here. We have added a wildcard type called “?” to deal with union
introduction, and we added an unification algorithm to apply eliminations rule
for implication and union types. The actual type system also features a first
implementation of dependent-types à la LF: explicit coercions and strong equiv-
alence are on the top of our implementation’ todo list. The aim of the prototype
is to check the expressiveness of the proof-functional nature of the logical engine
in the sense that when the user must prove e.g. a strong conjunction formula
σ1 ∩ σ2 obtaining (mostly interactively) a witness Δ1 for σ1, the prototype can
“squeeze” the essence M of Δ1 to accelerate, and in some case automatize, the
construction of a witness Δ2 proof for the formula σ2 having the same essence
M of Δ1. Existing proof assistants could get some benefit if extended with a
proof-functional logic. We are also started an encoding of the proof-functional
operators of intersection and union in Coq. The actual state of the prototype
can be retrieved at https://github.com/cstolze/Bull.

Acknowledgment. We are grateful to the anonymous reviewers for their useful
remarks.

References

[AB91] Alessi, F., Barbanera, F.: Strong conjunction and intersection types. In:
Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 64–73. Springer,
Heidelberg (1991). doi:10.1007/3-540-54345-7 49

[Agd16] The Agda Programming Language (2016). http://wiki.portal.chalmers.se/
agda/pmwiki.php. Accessed 2 Sept 2016

https://github.com/cstolze/Bull
http://dx.doi.org/10.1007/3-540-54345-7_49
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

204 D.J. Dougherty et al.

[Bar84] Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, vol. 103
of Studies in Logic and the Foundations of Mathematics. revised edition
(1984)

[BCDC83] Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model
and the completeness of type assignment. J. Symbolic Logic 48(4), 931–
940 (1983)

[BDCd95] Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Intersection and
union types: syntax and semantics. Inf. Comput. 119(2), 202–230 (1995)

[BM94] Barbanera, F., Martini, S.: Proof-functional connectives and realizability.
Arch. Math. Logic 33, 189–211 (1994)

[CDC80] Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality
theory for the λ-calculus. Notre Dame J. Formal Logic 21(4), 685–693
(1980)

[CF93] Coppo, M., Ferrari, A.: Type inference, abstract interpretation and strict-
ness analysis. Theoret. Comput. Sci. 121(1), 113–143 (1993)

[CLV01] Capitani, B., Loreti, M., Venneri, B.: Hyperformulae, parallel deductions
and intersection types. Electr. Notes Theor. Comput. Sci. 50(2), 180–198
(2001)

[Coq16] The Coq Proof Assistant (2016). https://coq.inria.fr/. Accessed 2 Sept
2016

[DCGV97] Dezani-Ciancaglini, M., Ghilezan, S., Venneri, B.: The relevance of inter-
section and union types. Notre Dame J. Formal Logic 38(2), 246–269
(1997)

[DL10] Dougherty, D.J., Liquori, L.: Logic and computation in a lambda calculus
with intersection and union types. In: Clarke, E.M., Voronkov, A. (eds.)
LPAR 2010. LNCS (LNAI), vol. 6355, pp. 173–191. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17511-4 11

[Dun12] Dunfield, J.: Elaborating intersection and union types. In: Proceedings
of the 17th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2012, pp. 17–28. ACM (2012)

[Epi16] The Epigram Programming Language (2016). https://code.google.com/
archive/p/epigram/. Accessed 2 Sept 2016

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
ACM 40(1), 143–184 (1993)

[Idr16] The Idris Programming Language (2016). http://www.idris-lang.org/.
Accessed 2 Sept 2016

[Isa16] The Isabelle Proof Assistant (2016). https://isabelle.in.tum.de/. Accessed
2 Sept 2016

[LE85] Lopez-Escobar, E.G.K.: Proof functional connectives. In: Prisco, C.A.
(ed.) Methods in Mathematical Logic. LNM, vol. 1130, pp. 208–221.
Springer, Heidelberg (1985). doi:10.1007/BFb0075313

[LR07] Liquori, L., Della Rocca, S.R.: Intersection typed system à la Church. Inf.
Comput. 9(205), 1371–1386 (2007)

[Min89] Mints, G.: The completeness of provable realizability. Notre Dame J. For-
mal Logic 30(3), 420–441 (1989)

[MPS86] MacQueen, D., Plotkin, G., Sethi, R.: An ideal model for recursive poly-
morphic types. Inf. Control 71, 95–130 (1986)

[MR72] Meyer, R.K., Routley, R.: Algebraic analysis of entailment I. Logique et
Anal. 15, 407–428 (1972)

[Pie02] Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge
(2002)

https://coq.inria.fr/
http://dx.doi.org/10.1007/978-3-642-17511-4_11
https://code.google.com/archive/p/epigram/
https://code.google.com/archive/p/epigram/
http://www.idris-lang.org/
https://isabelle.in.tum.de/
http://dx.doi.org/10.1007/BFb0075313

A Realizability Interpretation for Intersection and Union Types 205

[Pot80] Pottinger, G.: A type assignment for the strongly normalizable λ-terms.
In: To Curry, H.B. (ed.) Essays on Combinatory Logic, Lambda Calculus
and Formalism, pp. 561–577. Academic Press (1980)

[Pra71] Prawitz, D.: Ideas and results in proof theory. In: Proceedings of the Sec-
ond Scandinavian Logic Symposium, North-Holland (1971)

[PT94] Pierce, B.C., Turner, D.N.: Simple type-theoretic foundations for object-
oriented programming. J. Funct. Programm. 4(2), 207–247 (1994)

[Rey96] Reynolds, J.C.: Design of the programming language Forsythe. Algol-
like Languages. Progress in Theoretical Computer Science, pp. 173–233.
Birkhäuser, Boston (1997)

[Rey98] Reynolds, J.C.: Theories of Programming Languages. Cambridge Univer-
sity Press, New York (1998)

[Ron02] Della Rocca, S.R.: Intersection typed lambda-calculus. Electr. Notes.
Theor. Comput. Sci. 70(1), 163–181 (2003)

[WDMT02] Wells, J.B., Dimock, A., Muller, R., Turbak, F.: A calculus with poly-
morphic and polyvariant flow types. J. Funct. Program. 12(3), 183–227
(2002)

[WH02] Wells, J.B., Haack, C.: Branching types. In: Métayer, D. (ed.) ESOP 2002.
LNCS, vol. 2305, pp. 115–132. Springer, Heidelberg (2002). doi:10.1007/
3-540-45927-8 9

http://dx.doi.org/10.1007/3-540-45927-8_9
http://dx.doi.org/10.1007/3-540-45927-8_9

Open Call-by-Value

Beniamino Accattoli1(B) and Giulio Guerrieri2

1 Inria, UMR 7161, LIX, École Polytechnique, Palaiseau, France
beniamino.accattoli@inria.fr

2 Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
giulio.guerrieri@univ-amu.fr

Abstract. The elegant theory of the call-by-value lambda-calculus relies
on weak evaluation and closed terms, that are natural hypotheses in the
study of programming languages. To model proof assistants, however,
strong evaluation and open terms are required, and it is well known that
the operational semantics of call-by-value becomes problematic in this
case. Here we study the intermediate setting—that we call Open Call-
by-Value—of weak evaluation with open terms, on top of which Grégoire
and Leroy designed the abstract machine of Coq. Various calculi for Open
Call-by-Value already exist, each one with its pros and cons. This paper
presents a detailed comparative study of the operational semantics of
four of them, coming from different areas such as the study of abstract
machines, denotational semantics, linear logic proof nets, and sequent
calculus. We show that these calculi are all equivalent from a termination
point of view, justifying the slogan Open Call-by-Value.

1 Introduction

Plotkin’s call-by-value λ-calculus [26] is at the heart of programming languages
such as OCaml and proof assistants such as Coq. In the study of programming
languages, call-by-value (CBV) evaluation is usually weak, i.e. it does not reduce
under abstractions, and terms are assumed to be closed. These constraints give
rise to a beautiful theory—let us call it Closed CBV —having the following har-
mony property, that relates rewriting and normal forms:

Closed normal forms are values (and values are normal forms)

where values are variables and abstractions. Harmony expresses a form of inter-
nal completeness with respect to unconstrained β-reduction: the restriction to
CBV β-reduction (referred to as βv-reduction, according to which a β-redex can
be fired only when the argument is a value) has an impact on the order in which
redexes are evaluated, but evaluation never gets stuck, as every β-redex will
eventually become a βv-redex and be fired, unless evaluation diverges.

It often happens, however, that one needs to go beyond the perfect setting
of Closed CBV by considering Strong CBV, where reduction under abstractions
is allowed and terms may be open, or the intermediate setting of Open CBV,
where evaluation is weak but terms are not necessarily closed. The need arises,
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 206–226, 2016.
DOI: 10.1007/978-3-319-47958-3 12

Open Call-by-Value 207

most notably, when trying to describe the implementation model of Coq [13], but
also from other motivations, such as denotational semantics [4,8,25,28], monad
and CPS translations and the associated equational theories [12,16,21,29,30],
bisimulations [18], partial evaluation [17], linear logic proof nets [2], or cost
models [1].

Näıve Open CBV. In call-by-name (CBN) turning to open terms or strong evalu-
ation is harmless because CBN does not impose any special form to the argument
of a β-redex. On the contrary, turning to Open or Strong CBV is delicate. If one
simply considers Plotkin’s weak βv-reduction on open terms—let us call it Näıve
Open CBV —then harmony does no longer hold, as there are open β-normal
forms that are not values, e.g. xx, x(λy.y), x(yz) or xyz. As a consequence,
there are stuck β-redexes such as (λy.t)(xx), i.e. β-redexes that will never be
fired because their argument is normal, but it is not a value, nor will it ever
become one. Such stuck β-redexes are a disease typical of (Näıve) Open CBV,
but they spread to Strong CBV as well (also in the closed case), because evalu-
ating under abstraction forces to deal with locally open terms: e.g. the variable
x is locally open with respect to (λy.t)(xx) in s = λx.((λy.t)(xx)).

The real issue with stuck β-redexes is that they prevent the creation of other
redexes, and provide premature βv-normal forms. The issue is serious, as it can
affect termination, and thus impact on notions of observational equivalence. Let
δ := λx.(xx). The problem is exemplified by the terms t and u in Eq. (1) below.

t := ((λy.δ)(zz))δ u := δ((λy.δ)(zz)) (1)

In Näıve Open CBV, t and u are premature βv-normal forms because they
both have a stuck β-redex forbidding evaluation to keep going, while one would
expect them to behave like the divergent term Ω := δδ (see [2,4,8,15,25,28] and
pp. 7–12).

Open CBV. In his seminal work [26], Plotkin already pointed out an asymmetry
between CBN and CBV: his CPS translation is sound and complete for CBN,
but only sound for CBV. This fact led to a number of studies about monad, CPS,
and logical translations [12,16,20,21,29,30] that introduced many proposals of
improved calculi for CBV. Starting with the seminal work of Paolini and Ronchi
Della Rocca [23,25,28], the dissonance between open terms and CBV has been
repeatedly pointed out and studied per se via various calculi [1,2,4,8,13–15]. A
further point of view on CBV comes from the computational interpretation of
sequent calculus due to Curien and Herbelin [9]. An important point is that the
focus of most of these works is on Strong CBV.

These solutions inevitably extend βv-reduction with some other rewriting
rule(s) or constructor (as let-expressions) to deal with stuck β-redexes, or even
go as far as changing the applicative structure of terms, as in the sequent calculus
approach. They arise from different perspectives and each one has its pros and
cons. By design, these calculi (when looked at in the context of Open CBV)
are never observationally equivalent to Näıve Open CBV, as they all manage

208 B. Accattoli and G. Guerrieri

to (re)move stuck β-redexes and may diverge when Näıve Open CBV is instead
stuck. Each one of these calculi, however, has its own notion of evaluation and
normal form, and their mutual relationships are not evident.

The aim of this paper is to draw the attention of the community on Open
CBV. We believe that it is somewhat deceiving that the mainstream operational
theory of CBV, however elegant, has to rely on closed terms, because it restricts
the modularity of the framework, and raises the suspicion that the true essence
of CBV has yet to be found. There is a real gap, indeed, between Closed and
Strong CBV, as Strong CBV cannot be seen as an iteration of Closed CBV
under abstractions because such an iteration has to deal with open terms. To
improve the implementation of Coq [13], Grégoire and Leroy see Strong CBV
as the iteration of the intermediate case of Open CBV, but they do not explore
its theory. Here we exalt their point of view, providing a thorough operational
study of Open CBV. We insist on Open CBV rather than Strong CBV because:

1. Stuck β-redexes and premature βv-normal forms already affect Open CBV;
2. Open CBV has a simpler rewriting theory than Strong CBV;
3. Our previous studies of Strong CBV in [4,8] naturally organized themselves as

properties of Open CBV that were lifted to Strong CBV by a simple iteration
under abstractions.

Our contributions are along two axes:

1. Termination Equivalence of the Proposals: we show that the proposed gener-
alizations of Näıve Open CBV are all equivalent, in the sense that they have
exactly the same sets of normalizing and diverging terms. So, there is just
one notion of Open CBV, independently of its specific syntactic incarnation.

2. Quantitative Analyses and Cost Models: the termination results are comple-
mented with quantitative analyses establishing precise relationships between
the number of steps needed to evaluate a given term in the various calculi. In
particular, we relate the cost models of the various proposals.

The Fab Four. We focus on four proposals for Open CBV, as other solutions,
e.g. Moggi’s [21] or Herbelin and Zimmerman’s [16], are already known to be
equivalent to these ones (see the end of Sect. 2):

1. The Fireball Calculus λfire, that extends values to fireballs by adding so-called
inert terms in order to restore harmony—it was introduced without a name
by Paolini and Ronchi Della Rocca [25,28], then rediscovered independently
first by Leroy and Grégoire [13] to improve the implementation of Coq, and
then by Accattoli and Sacerdoti Coen [1] to study cost models;

2. The Value Substitution Calculus λvsub, coming from the linear logic interpre-
tation of CBV and using explicit substitutions and contextual rewriting rules
to circumvent stuck β-redexes—it was introduced by Accattoli and Paolini [4]
and it is a graph-free presentation of proof nets for the CBV λ-calculus [2];

Open Call-by-Value 209

3. The Shuffling Calculus λshuf , that has rules to shuffle constructors, similar to
Regnier’s σ-rules for CBN [27], as an alternative to explicit substitutions—it
was introduced by Carraro and Guerrieri [8] (and further analyzed in [14,15])
to study the adequacy of Open/Strong CBV with respect to denotational
semantics related to linear logic.

4. The Value Sequent Calculus λvseq, i.e. the intuitionistic fragment of Curien
and Herbelin’s λ̄μ̃-calculus [9], that is a CBV calculus for classical logic pro-
viding a computational interpretation of sequent calculus rather than natural
deduction (in turn a fragment of the λμμ̃-calculus [9], further studied in e.g.
[6,10]).

A Robust Cost Model for Open CBV. The number of βv-steps is the canonical
time cost model of Closed CBV, as first proved by Blelloch and Greiner [7,11,31].
In [1], Accattoli and Sacerdoti Coen generalized this result: the number of steps
in λfire is a reasonable cost model for Open CBV. Here we show that the number
of steps in λvsub and λvseq are linearly related to the steps in λfire, thus providing
reasonable cost models for these incarnations of Open CBV. As a consequence,
complexity analyses can now be smoothly transferred between λfire, λvsub, and
λvseq. Said differently, our results guarantee that the number of steps is a robust
cost model for Open CBV, in the sense that it does not depend on the chosen
incarnation. For λshuf we obtain a similar but strictly weaker result, due to some
structural difficulties suggesting that λshuf is less apt to complexity analyses.

On the Value of the Paper. While the equivalences showed here are new, they
might not be terribly surprising. Nonetheless, we think they are interesting, for
the following reasons:

1. Quantitative Relationships: λ-calculi are usually related only qualitatively,
while our relationships are quantitative and thus stronger: not only we show
simulations, but we also relate the number of steps.

2. Uniform View: we provide a new uniform view on a known problem, that will
hopefully avoid further proliferations of CBV calculi for open/strong settings.

3. Expected but Non-Trivial: while the equivalences are more or less expected,
establishing them is informative, because it forces to reformulate and connect
concepts among the different settings, and often tricky.

4. Simple Rewriting Theory: the relationships between the systems are devel-
oped using basic rewriting concepts. The technical development is simple,
according to the best tradition of the CBV λ-calculus, and yet it provides a
sharp and detailed decomposition of Open CBV evaluation.

5. Connecting Different Worlds: while λfire is related to Coq and implementa-
tions, λvsub and λshuf have a linear logic background, and λvseq is rooted in
sequent calculus. With respect to linear logic, λvsub has been used for syntac-
tical studies while λshuf for semantical ones. Our results therefore establish
bridges between these different (sub)communities.

Finally, an essential contribution of this work is the recognition of Open CBV
as a simple and yet rich framework in between Closed and Strong CBV.

210 B. Accattoli and G. Guerrieri

Road Map. Section 2 provides an overview of the different presentations of Open
CBV. Section 3 proves the termination equivalences for λvsub, λfire and λshuf ,
enriched with quantitative information. Section 4 proves the quantitative termi-
nation equivalence of λvsub and λvseq, via an intermediate calculus λvsubk

.
A longer version of this paper is available on Arxiv [3]. It contains two Appen-

dices, one with a glossary of rewriting theory and one with omitted proofs.

Fig. 1. Näıve Open CBV λPlot

2 Incarnations of Open Call-by-Value

Here we recall Näıve Open CBV, noted λPlot, and introduce the four forms of
Open CBV that will be compared (λfire, λvsub, λshuf , and λvseq) together with a
semantic notion (potential valuability) reducing Open CBV to Closed CBV. In
this paper terms are always possibly open. Moreover, we focus on Open CBV
and avoid on purpose to study Strong CBV (we hint at how to define it, though).

Näıve Open CBV: Plotkin’s Calculus. λPlot [26]. Näıve Open CBV is Plotkin’s
weak CBV λ-calculus λPlot on possibly open terms, defined in Fig. 1. Our pre-
sentation of the rewriting is unorthodox because we split βv-reduction into two
rules, according to the kind of value (abstraction or variable). The set of terms
is denoted by Λ. Terms (in Λ) are always identified up to α-equivalence and the
set of the free variables of a term t is denoted by fv(t). We use t{x�u} for the
term obtained by the capture-avoiding substitution of u for each free occurrence
of x in t. Evaluation →βv

is weak and non-deterministic, since in the case of
an application there is no fixed order in the evaluation of the left and right
subterms. As it is well-known, non-determinism is only apparent: the system is
strongly confluent (see the appendix in [3] for a glossary of rewriting theory).

Proposition 1. →βy
, →βλ

and →βv
are strongly confluent.

Strong confluence is a remarkable property, much stronger than plain con-
fluence. It implies that, given a term, all derivations to its normal form (if any)
have the same length, and that normalization and strong normalization coincide,
i.e. if there is a normalizing derivation then there are no diverging derivations.
Strong confluence will also hold for λfire, λvsub and λvseq, not for λshuf .

Open Call-by-Value 211

Let us come back to the splitting of →βv
. In Closed CBV it is well-known

that →βy
is superfluous, at least as long as small-step evaluation is considered,

see [5]. For Open CBV, →βy
is instead necessary, but—as we explained in the

introduction—it is not enough, which is why we shall consider extensions of λPlot.
The main problem of Näıve Open CBV is that there are stuck β-redexes breaking
the harmony of the system. There are three kinds of solution: those restoring
a form of harmony (λfire), to be thought as more semantical approaches; those
removing stuck β-redexes (λvsub and λshuf), that are more syntactical in nature;
those changing the applicative structure of terms (λvseq), inspired by sequent
calculus.

Fig. 2. The Fireball Calculus λfire

2.1 Open Call-by-Value 1: The Fireball Calculus λfire

The Fireball Calculus λfire, defined in Fig. 2, was introduced without a name by
Paolini and Ronchi Della Rocca in [25] and [28, Definition 3.1.4, p. 36] where its
basic properties are also proved. We give here a presentation inspired by Accat-
toli and Sacerdoti Coen’s [1], departing from it only for inessential, cosmetic
details. Terms, values and evaluation contexts are the same as in λPlot.

The idea is to restore harmony by generalizing →βy
to fire when the argument

is a more general inert term—the new rule is noted →βi
. The generalization of

values as to include inert terms is called fireballs. Actually fireballs and inert
terms are defined by mutual induction (in Fig. 2). For instance, λx.y is a fireball
as an abstraction, while x, y(λx.x), xy, and (z(λx.x))(zz)(λy.(zy)) are fireballs
as inert terms. Note that ii′ is an inert term for all inert terms i and i′. Inert
terms can be equivalently defined as i ::= x | if . The main feature of an inert
term is that it is open, normal and that when plugged in a context it cannot
create a redex, hence the name (it is not a so-called neutral term because it
might have redexes under abstractions). In Grégoire and Leroy’s presentation
[13], inert terms are called accumulators and fireballs are simply called values.

Evaluation is given by the fireball rule →βf
, that is the union of →βλ

and →βi
.

For instance, consider t := ((λy.δ)(zz))δ and u := δ((λy.δ)(zz)) as in Eq. (1),
p. 2: t and u are βv-normal but they diverge when evaluated in λfire, as desired:
t →βi

δδ →βλ
δδ →βλ

. . . and u →βi
δδ →βλ

δδ →βλ
. . . .

The distinguished, key property of λfire is (for any t ∈ Λ):

212 B. Accattoli and G. Guerrieri

Proposition 2 (Open Harmony). t is βf -normal iff t is a fireball.

The advantage of λfire is its simple notion of normal form, i.e. fireballs, that
have a clean syntactic description akin to that for call-by-name. The other calculi
will lack a nice, natural notion of normal form. The drawback of the fireball
calculus—and probably the reason why its importance did not emerge before—
is the fact that as a strong calculus it is not confluent: this is due to the fact that
fireballs are not closed by substitution (see [28, p. 37]). Indeed, if evaluation is
strong, the following critical pair cannot be joined, where t := (λy.I)(δδ) and
I := λz.z is the identity combinator:

I βλ
← (λx.I)δ βi

← (λx.(λy.I)(xx))δ →βλ
t →βλ

t →βλ
. . . (2)

On the other hand, as long as evaluation is weak (that is the case we con-
sider) everything works fine—the strong case can then be caught by repeatedly
iterating the weak one under abstraction, once a weak normal form has been
obtained (thus forbidding the left part of (2)). In fact, the weak evaluation
of λfire has a simple rewriting theory, as next proposition shows. In particular
it is strongly confluent.

Proposition 3 (Basic Properties of λfire).

1. →βi
is strongly normalizing and strongly confluent.

2. →βλ
and →βi

strongly commute.
3. →βf

is strongly confluent, and all βf -normalizing derivations d from t ∈ Λ (if
any) have the same length |d|βf

, the same number |d|βλ
of βλ-steps, and the

same number |d|βi
of βi-steps.

2.2 Open Call-by-Value 2: The Value Substitution Calculus λvsub

Rewriting Preamble: Creations of Type 1 and 4. The problem with stuck
β-redexes can be easily understood at the rewriting level as an issue about
creations. According to Lévy [19], in the ordinary CBN λ-calculus redexes can
be created in 3 ways. Creations of type 1 take the following form

((λx.λy.t)r)s →β (λy.t{x�r})s

where the redex involving λy and s has been created by the β-step. In Näıve
Open CBV if r is βv-normal and not a value then the creation cannot take place,
blocking evaluation. This is the problem concerning the term t in Eq. (1), p. 2.
In CBV there is another form of creation—of type 4—not considered by Lévy:

(λx.t)((λy.v)v′) →βv
(λx.t)(v{y�v′})

i.e. a reduction in the argument turns the argument itself into a value, creating
a βv-redex. As before, in an open setting v′ may be replaced by a normal form
that is not a value, blocking the creation of type 4. This is exactly the problem
concerning the term u in Eq. (1), p. 2.

Open Call-by-Value 213

The proposals of this and the next sections introduce some way to enable
creations of type 1 and 4, without substituting stuck β-redexes nor inert terms.

The value substitution calculus λvsub of Accattoli and Paolini [2,4] was intro-
duced as a calculus for Strong CBV inspired by linear logic proof nets. In Fig. 3
we present its adaptation to Open CBV, obtained by simply removing abstrac-
tions from evaluation contexts. It extends the syntax of terms with the construc-
tor [x�u], called explicit substitution (shortened ES, to not be confused with the
meta-level substitution {x�u}). A vsub-term t[x�u] represents the delayed sub-
stitution of u for x in t, i.e. stands for let x = u in t. So, t[x�u] binds the free
occurrences of x in t. The set of vsub-terms—identified up to α-equivalence—is
denoted by Λvsub (clearly Λ � Λvsub).

Fig. 3. The Value Substitution Calculus λvsub

ES are used to remove stuck β-redexes: the idea is that β-redexes can be
fired whenever—even if the argument is not a (vsub-)value—by means of the
multiplicative rule →m; however the argument is not substituted but placed in
a ES. The actual substitution is done only when the content of the ES is a vsub-
value, by means of the exponential rule →e. These two rules are sometimes noted
→dB (β at a distance) and →vs (substitution by value)—the names we use here
are due to the interpretation of the calculus into linear logic proof-nets, see [2].
A characteristic feature coming from such an interpretation is that the rewriting
rules are contextual, or at a distance: they are generalized as to act up to a list of
substitutions (noted L, from List). Essentially, stuck β-redexes are turned into
ES and then ignored by the rewriting rules—this is how creations of type 1 and
4 are enabled. For instance, the terms t := ((λy.δ)(zz))δ and u := δ((λy.δ)(zz))
(as in Eq. (1), p. 2) are e-normal but t →m δ[y�zz]δ →m (xx)[x�δ][y�zz] →e

(δδ)[y�zz] →m (xx)[x�δ][y�zz] →e (δδ)[y�zz] →m . . . and similarly for u.
The drawback of λvsub is that it requires explicit substitutions. The advantage

of λvsub is its simple and well-behaved rewriting theory, even simpler than the
rewriting for λfire, since every rule terminates separately (while βλ does not)—in
particular strong confluence holds. Moreover, the theory has a sort of flexible
second level given by a notion of structural equivalence, coming up next.

214 B. Accattoli and G. Guerrieri

Proposition 4 (Basic Properties of λvsub, [4]).

1. →m and →e are strongly normalizing and strongly confluent (separately).
2. →m and →e strongly commute.
3. →vsub is strongly confluent, and all vsub-normalizing derivations d from t ∈

Λvsub (if any) have the same length |d|vsub, the same number |d|e of e-steps,
and the same number |d|m of m-steps

4. Let t∈Λ. For any vsub-derivation d from t, |d|e ≤ |d|m.

Structural Equivalence. The theory of λvsub comes with a notion of structural
equivalence ≡, that equates vsub-terms that differ only for the position of ES.
The basic idea is that the action of an ES via the exponential rule depends on the
position of the ES itself only for inessential details (as long as the scope of binders
is respected), namely the position of other ES, and thus can be abstracted away.
A strong justification for the equivalence comes from the linear logic interpreta-
tion of λvsub, in which structurally equivalent vsub-terms translate to the same
(recursively typed) proof net, see [2].

Structural equivalence ≡ is defined as the least equivalence relation on Λvsub

closed by evaluation contexts (see Fig. 3) and generated by the following axioms:

t[y�s][x�u] ≡com t[x�u][y�s] if y /∈ fv(u) and x /∈ fv(s)
t s[x�u] ≡@r (ts)[x�u] if x �∈ fv(t)
t[x�u]s ≡@l (ts)[x�u] if x �∈ fv(s)

t[x�u[y�s]] ≡[·] t[x�u][y�s] if y �∈ fv(t)

We set →vsub≡ :=≡→vsub≡ (i.e. for all t, r ∈ Λvsub: t →vsub≡ r iff t ≡ u →vsub

s ≡ r for some u, s ∈ Λvsub). The notation →+
vsub≡ keeps its usual meaning, while

→∗
vsub≡ stands for ≡ ∪ →+

vsub≡, i.e. a vsub≡-derivation of length zero can apply
≡ and is not just the identity. As ≡ is reflexive, →vsub � →vsub≡.

The rewriting theory of λvsub enriched with structural equivalence ≡ is
remarkably simple, as next lemma shows. In fact, ≡ commutes with evalua-
tion, and can thus be postponed. Additionally, the commutation is strong, as it
preserves the number and kind of steps—one says that it is a strong bisimulation
(with respect to →vsub). In particular, the equivalence is not needed to compute
and it does not break, or make more complex, any property of λvsub. On the
contrary, it enhances the flexibility of the system: it will be essential to establish
simple and clean relationships with the other calculi for Open CBV.

Lemma 5 (Basic Properties of Structural Equivalence ≡, [4]). Let t, u ∈
Λvsub and x ∈ {m, eλ, ey, e, vsub}.
1. Strong Bisimulation of ≡ wrt →vsub: if t ≡ u and t →x t′ then there exists

u′ ∈ Λvsub such that u →x u′ and t′ ≡ u′.
2. Postponement of ≡ wrt →vsub: if d : t →∗

vsub≡ u then there are s ≡ u and
e : t →∗

vsub s such that |d| = |e|, |d|eλ
= |e|eλ

, |d|ey
= |e|ey

and |d|m = |e|m.
3. Normal Forms: if t ≡ u then t is x-normal iff u is x-normal.
4. Strong confluence: →vsub≡ is strongly confluent.

Open Call-by-Value 215

2.3 Open Call-by-Value 3: The Shuffling Calculus λshuf

The calculus introduced by Carraro and Guerrieri in [8], and here deemed Shuf-
fling Calculus, has the same syntax of terms as Plotkin’s calculus. Two addi-
tional commutation rules help →βv

to deal with stuck β-redexes, by shuffling
constructors so as to enable creations of type 1 and 4. As for λvsub, λshuf was
actually introduced, and then used in [8,14,15], to study Strong CBV. In Fig. 4
we present its adaptation to Open CBV, based on balanced contexts, a special
notion of evaluation contexts. The reductions →σ� and →β�

v
are non-deterministic

and—because of balanced contexts—can reduce under abstractions, but they are
morally weak: they reduce under a λ only when the λ is applied to an argument.
Note that the condition x /∈ fv(s) (resp. x /∈ fv(v)) in the definition of the
shuffling rule 	→σ1 (resp. 	→σ3) can always be fulfilled by α-conversion.

Fig. 4. The Shuffling Calculus λshuf

The rewriting (shuffling) rules →σ�
1

and →σ�
3

unblock stuck β-redexes. For
instance, consider the terms t := ((λy.δ)(zz))δ and u := δ((λy.δ)(zz)) where
δ := λx.xx (as in Eq. (1), p. 2): t and u are β�

v-normal but t →σ�
1

(λy.δδ)(zz) →β�
v

(λy.δδ)(zz) →β�
v

. . . and u →σ�
3

(λy.δδ)(zz) →β�
v

(λx.δδ)(zz) →β�
v

. . . .
The similar shuffling rules in CBN, better known as Regnier’s σ-rules [27], are

contained in CBN β-equivalence, while in Open (and Strong) CBV they are more
interesting because they are not contained into (i.e. they enrich) βv-equivalence.

The advantage of λshuf is with respect to denotational investigations. In [8],
λshuf is indeed used to prove various semantical results in connection to linear
logic, resource calculi, and the notion of Taylor expansion due to Ehrhard. In
particular, in [8] it has been proved the adequacy of λshuf with respect to the
relational model induced by linear logic: a by-product of our paper is the exten-
sion of this adequacy result to all incarnations of Open CBV. The drawback of
λshuf is its technical rewriting theory. We summarize some properties of λshuf :

Proposition 6 (Basic Properties of λshuf , [8]).

1. Let t, u, s ∈ Λ. If t →β�
v

u and t →σ� s then u �= s.
2. →σ� is strongly normalizing and (not strongly) confluent.
3. →shuf is (not strongly) confluent.
4. Let t ∈ Λ: t is strongly shuf-normalizable iff t is shuf-normalizable.

216 B. Accattoli and G. Guerrieri

In contrast to λfire and λvsub, λshuf is not strongly confluent and not all
shuf-normalizing derivations (if any) from a given term have the same length
(consider, for instance, all shuf-normalizing derivations from (λy.z)(δ(zz))δ).
Nonetheless, normalization and strong normalization still coincide in λshuf

(Proposition 6.4), and Corollary 18 in Sect. 3 will show that the discrepancy
is encapsulated inside the additional shuffling rules, since all shuf-normalizing
derivations (if any) from a given term have the same number of β�

v-steps.

2.4 Open Call-by-Value 4: The Value Sequent Calculus λvseq

A more radical approach to the removal of stuck β-redexes is provided by what
is here called the Value Sequent Calculus λvseq, defined in Fig. 5. In λvseq, it is the
applicative structure of terms that is altered, by replacing the application con-
structor with more constructs, namely commands c and environments e. Morally,
λvseq looks at a sequence of applications from the head, that is the value on the
left of a command 〈v |e〉 rather than from the tail as in natural deduction. In fact,
λvseq is a handy presentation of the intuitionistic fragment of λ̄μ̃, that in turn is
the CBV fragment of λμμ̃, a calculus obtained as the computational interpreta-
tion of a sequent calculus for classical logic. Both λ̄μ̃ and λμμ̃ are due to Curien
and Herbelin [9], see [6,10] for further investigations about these systems.

Fig. 5. The Value Sequent Calculus λvseq

A peculiar trait of the sequent calculus approach is the environment con-
structor μ̃x.c, that is a binder for the free occurrences of x in c. It is often said
that it is a sort of explicit substitution—we will see exactly in which sense, in
Sect. 4.

The change of the intuitionistic variant λvseq with respect to λ̄μ̃ is that
λvseq does not need the syntactic category of co-variables α, as there can be
only one of them, denoted here by ε. From a logical viewpoint, this is due
to the fact that in intuitionistic sequent calculus the right-hand-side of � has
exactly one formula, that is, neither contraction nor weakening are allowed
on the right. Consequently, the binary abstraction λ(x, α).c of λ̄μ̃ is replaced
by a more traditional unary one λx.c, and substitution on co-variables is

Open Call-by-Value 217

replaced by a notion of appending of environments, defined by mutual induc-
tion on commands and environments as follows:

〈v |e′〉@e := 〈v |e′@e〉 ε@e := e

(v ·e′)@e := v ·(e′@e) (μ̃x.c)@e := μ̃y.(c{x�y}@e) with y /∈ fv(c) ∪ fv(e)

Essentially, c@e is a capture-avoiding substitution of e for the only occurrence
of ε in c that is out of all abstractions, standing for the output of the term.
The append operation is used in the rewrite rule →λ̄ of λvseq (Fig. 5). Strong
CBV can be obtained by simply extending the grammar of evaluation contexts
to commands under abstractions.

We will provide a translation from λvsub to λvseq that, beyond termination
equivalence, will show that switching to a sequent calculus representation is
equivalent to a transformation in administrative normal form [29].

The advantage of λvseq is that it avoids both rules at a distance and shuffling
rules. The drawback of λvseq is that, syntactically, it requires to step out of
the λ-calculus. We will show in Sect. 4 how to reformulate it as a fragment of
λvsub, i.e. in natural deduction. However, it will still be necessary to restrict the
application constructor, thus preventing the natural way of writing terms.

The rewriting of λvseq is very well-behaved, in particular it is strongly con-
fluent and every rewriting rule terminates separately.

Proposition 7 (Basic properties of λvseq)

1. →λ̄ and →μ̃ are strongly normalizing and strongly confluent (separately).
2. →λ̄ and →μ̃ strongly commute.
3. →vseq is strongly confluent, and all vseq-normalizing derivations d from a

command c (if any) have the same length |d|, the same number |d|μ̃ of
μ̃-steps, and the same number |d|λ̄ of λ̄-steps.

2.5 Variations on a Theme

Reducing Open to Closed Call-by-Value: Potential Valuability. Potential valu-
ability relates Näıve Open CBV to Closed CBV via a meta-level substitution
closing open terms: a (possibly open) term t is potentially valuable if there is a
substitution of (closed) values for its free variables, for which it βv-evaluates to
a (closed) value. In Näıve Open CBV, potentially valuable terms do not coincide
with normalizable terms because of premature βv-normal forms—such as t and
u in Eq. (1) at p. 2—which are not potentially valuable.

Paolini, Ronchi Della Rocca and, later, Pimentel [22–25,28] gave several oper-
ational, logical, and semantical characterizations of potentially valuable terms in
Näıve Open CBV. In particular, in [25,28] it is proved that a term is potentially
valuable in Plotkin’s Näıve Open CBV iff its normalizable in λfire.

Potentially valuable terms can be defined for every incarnation of Open CBV:
it is enough to update the notions of evaluation and values in the above definition

218 B. Accattoli and G. Guerrieri

to the considered calculus. This has been done for λshuf in [8], and for λvsub

in [4]. For both calculi it has been proved that, in the weak setting, potentially
valuable terms coincides with normalizable terms. In [15], it has been proved
that Plotkin’s potentially valuable terms coincide with shuf-potentially valuable
terms (which coincide in turn with shuf-normalizable terms). Our paper makes
a further step: proving that termination coincides for λfire, λvsub, λshuf , and λvseq

it implies that all their notions of potential valuability coincide with Plotkin’s,
i.e. there is just one notion of potential valuability for Open (and Strong) CBV.

Open CBV 5, 6, 7, The literature contains many other calculi for CBV,
usually presented for Strong CBV and easily adaptable to Open CBV. Some of
them have let-expressions (avatars of ES) and all of them have rules permuting
constructors, therefore they lie somewhere in between λvsub and λshuf . Often, they
have been developed for other purposes, usually to investigate the relationship
with monad or CPS translations. Moggi’s equational theory [21] is a classic
standard of reference, known to coincide with that of Sabry and Felleisen [29],
Sabry and Wadler [30], Dychoff and Lengrand [12], Herbelin and Zimmerman
[16] and Maraist et al.’s λlet in [20]. In [4], λvsub modulo ≡ is shown to be
termination equivalent to Herbelin and Zimmerman’s calculus, and to strictly
contain its equational theory, and thus Moggi’s. At the level of rewriting these
presentations of Open CBV are all more involved than those that we consider
here. Their equivalence to our calculi can be shown along the lines of that of
λshuf with λvsub.

3 Quantitative Equivalence of λfire, λvsub, and λshuf

Here we show the equivalence with respect to termination of λfire, λvsub, and
λshuf , enriched with quantitative information on the number of steps.

On the Proof Technique. We show that termination in λvsub implies termination
in λfire and λshuf by studying simulations of λfire and λshuf into λvsub. To prove
the converse implications we do not use inverse simulations. Alternatively, we
show that βf - and shuf-normal forms are essentially projected into vsub-normal
forms, so that if evaluation terminates in λfire or λshuf then it also terminates on
λvsub.

Such a simple technique works because in the systems under study normal-
ization and strong normalization coincide: if there is a normalizing derivation
from a given term t then there are no diverging derivations from t (for λvsub

and λfire it follows from strong confluence, for λshuf is given by Proposition 6.4).
This fact is also the reason why the statements of our equivalences (forthcoming
Corollaries 13 and 17) address a single derivation from t rather than considering
all derivations from t. Moreover, for any calculus, all normalizing derivations
from t have the same number of steps (in λshuf it holds for β�

v-steps, see Corol-
lary 18), hence also the quantitative claims of Corollary 13 and Corollary 17 hold
actually for all normalizing derivations from t.

In both simulations, the structural equivalence ≡ of λvsub plays a role.

Open Call-by-Value 219

3.1 Equivalence of λfire and λvsub

A single βv-step (λx.t)v →βv
t{x�v} is simulated in λvsub by two steps: (λx.t)v

→m t[x�v] →e t{x�v}, i.e. a m-step that creates a ES, and a e-step that turns
the ES into the meta-level substitution performed by the βv-step. The simulation
of an inert step of λfire is instead trickier, because in λvsub there is no rule to
substitute an inert term, if it is not a variable. The idea is that an inert step
(λx.t)i →βi

t{x�i} is simulated only by (λx.t)i →m t[x�i], i.e. only by the
m-step that creates the ES, and such a ES will never be fired—so the simulation
is up to the unfolding of substitutions containing inert terms (defined right next).
Everything works because of the key property of inert terms: they are normal
and their substitution cannot create redexes, so it is useless to substitute them.

The unfolding of a vsub-term t is the term t

→

obtained from t by turning ES
into meta-level substitutions; it is defined by:

x

→

:= x (tu)

→

:= t

→

u

→

(λx.t)

→
:= λx.t

→

(t[x�u])

→

:= t

→ {x�u

→ }

For all t, u ∈ Λvsub, t ≡ u implies t

→
= u

→

. Also, t

→

= t iff t ∈ Λ.
In the simulation we are going to show, structural equivalence ≡ plays a role.

It is used to clean the vsub-terms (with ES) obtained by simulation, putting
them in a canonical form where ES do not appear among other constructors.

A vsub-term is clean if it has the form u[x1�i1] . . . [xn�in] (with n ∈ N),
u ∈ Λ is called the body, and i1, . . . , in ∈ Λ are inert terms. Clearly, any term (as
it is without ES) is clean. We first show how to simulate a single fireball step.

Lemma 8 (Simulation of a βf -Step in λvsub). Let t, u ∈ Λ.

1. If t →βλ
u then t →m→eλ

u.
2. If t →βi

u then t →m≡ s, with s∈Λvsub clean and s

→

= u.

We cannot simulate derivations by iterating Lemma 8, because the starting
term t has no ES but the simulation of inert steps introduces ES. Hence, we
have to generalize Lemma 8 up to the unfolding of ES. In general, unfolding ES
is a dangerous operation with respect to (non-)termination, as it may erase a
diverging subterm (e.g. t := x[y�δδ] is vsub-divergent and t

→

= x is normal).
In our case, however, the simulation yields clean vsub-terms, so the unfolding
is safe since it can erase only inert terms that cannot create, erase, nor carry
redexes.

By means of a technical lemma (see the appendix in [3]) we obtain:

Lemma 9 (Projection of a βf -Step on →vsub via Unfolding). Let t be a
clean vsub-term and u be a term.

1. If t

→ →βλ
u then t →m→eλ

s, with s∈Λvsub clean and s

→

= u.
2. If t

→ →βi
u then t →m≡ s, with s∈Λvsub clean and s

→

= u.

Via Lemma 9 we can now simulate whole derivations (in forthcoming Theo-
rem 12).

220 B. Accattoli and G. Guerrieri

Simulation and Normal Forms. The next step towards the equivalence is to
relate normal forms in λfire (aka fireballs) to those in λvsub. The relationship is
not perfect, since the simulation does not directly map the former to the latter—
we have to work a little bit more. First of all, let us characterize the terms in λvsub

obtained by projecting normalizing derivations (that always produce a fireball).

Lemma 10. Let t be a clean vsub-term. If t

→

is a fireball, then t is {m, eλ}-
normal and its body is a fireball.

Now, a {m, eλ}-normal form t morally is vsub-normal, as →ey
terminates

(Proposition 4.1) and it cannot create {m, eλ}-redexes. The part about creations
is better expressed as a postponement property.

Lemma 11 (Linear Postponement of →ey
). Let t, u ∈ Λvsub. If d : t →∗

vsub u
then e : t →∗

m,eλ
→∗

ey
u with |e|vsub = |d|vsub, |e|m = |d|m, |e|e= |d|e and |e|eλ

≥ |d|eλ
.

The next theorem puts all the pieces together.

Theorem 12 (Quantitative Simulation of λfire in λvsub). Let t, u ∈ Λ. If
d : t →∗

βf
u then there are s, r∈Λvsub and e : t →∗

vsub r such that

1. Qualitative Relationship: r ≡ s, u = s

→

= r

→

and s is clean;
2. Quantitative Relationship:

1. Multiplicative Steps: |d|βf
= |e|m;

2. Exponential (Abstraction) Steps: |d|βλ
= |e|eλ

= |e|e.
3. Normal Forms: if u is βf -normal then there exists g : r →∗

ey
q such that q is

a vsub-normal form and |g|ey
≤ |e|m − |e|eλ

.

Corollary 13 (Linear Termination Equivalence of λvsub and λfire). Let t ∈
Λ. There is a βf -normalizing derivation d from t iff there is a vsub-normalizing
derivation e from t. Moreover, |d|βf

≤ |e|vsub ≤ 2|d|βf
, i.e. they are linearly

related.

The number of βf -steps in λfire is a reasonable cost model for Open CBV [1].
Our result implies that also the number of m-steps in λvsub is a reasonable cost
model, since the number of m-steps is exactly the number of βf -steps. This fact is
quite surprising: in λfire arguments of βf -redexes are required to be fireballs, while
for m-redexes there are no restrictions on arguments, and yet in any normalizing
derivation their number coincide. Note, moreover, that e-steps are linear in m-
steps, but only because the initial term has no ES: in general, this is not true.

3.2 Equivalence of λshuf and λvsub

A derivation d : t →∗
shuf u in λshuf is simulated via a projection on multiplicative

normal forms in λvsub, i.e. as a derivation m(t) →∗
vsub≡ m(u) (for any vsub-term

t, its multiplicative and exponential normal forms, denoted by m(t) and e(t)
respectively, exist and are unique by Proposition 4). Indeed, a β�

v-step of λshuf is
simulated in λvsub by a e-step followed by some m-steps to reach the m-normal

Open Call-by-Value 221

form. Shuffling rules →σ� of λshuf are simulated by structural equivalence ≡ in
λvsub: applying m(·) to ((λx.t)u)s →σ�

1
(λx.(ts))u we obtain exactly an instance

of the axiom ≡@l defining ≡: m(t)[x�m(u)]m(s) ≡@l (m(t)m(s))[x�m(u)] (with
the side conditions matching exactly). Similarly, →σ�

3
projects to ≡@r or ≡[·]

(depending on whether v in →σ�
3

is a variable or an abstraction). Therefore,

Lemma 14 (Projecting a shuf-Step on →vsub≡ via m-NF). Let t, u∈Λ.

1. If t →σ� u then m(t) ≡ m(u).
2. If t →β�

v
u then m(t) →e→∗

m m(u).

In contrast to the simulation of λfire in λvsub, here the projection of a single
step can be extended to derivations without problems, obtaining that the number
of β�

v-steps in λshuf matches exactly the number of e-steps in λvsub. Additionally,
we apply the postponement of ≡ (Lemma 5.2), factoring out the use of ≡ (i.e.
of shuffling rules) without affecting the number of e-steps.

To obtain the termination equivalence we also need to study normal forms.
Luckily, the case of λshuf is simpler than that of λfire, as next lemma shows.

Lemma 15 (Projection Preserves Normal Forms). Let t ∈ Λ. If t is shuf-
normal then m(t) is vsub-normal.

The next theorem puts all the pieces together (for any shuf-derivation d, |d|β�
v

is the number of β�
v-steps in d: this notion is well defined by Proposition 6.1).

Theorem 16 (Quantitative Simulation of λshuf in λvsub). Let t, u ∈ Λ. If
d : t →∗

shuf u then there are s ∈ Λvsub and e : t →∗
vsub s such that

1. Qualitative Relationship: s ≡ m(u);
2. Quantitative Relationship (Exponential Steps): |d|β�

v
= |e|e;

3. Normal Form: if u is shuf-normal then s and m(u) are vsub-normal.

Corollary 17 (Termination Equivalence of λvsub and λshuf). Let t ∈ Λ.
There is a shuf-normalizing derivation d from t iff there is a vsub-normalizing
derivation e from t. Moreover, |d|β�

v
= |e|e.

The obtained quantitative equivalence has an interesting corollary that shows
some light on why λshuf is not strongly confluent. Our simulation maps β�

v-steps
in λshuf to exponential steps in λvsub, that are strongly confluent, and thus in
equal number in all normalizing derivations (if any) from a given term. Therefore,

Corollary 18 (Number of β�
v-Steps is Invariant). All shuf-normalizing

derivations from t ∈ Λ (if any) have the same number of β�
v-steps.

Said differently, in λshuf normalizing derivations may have different lengths
but the difference is encapsulated inside the shuffling rules →σ�

1
and →σ�

3
.

Concerning the cost model, things are subtler for λshuf . Note that the rela-
tionship between λshuf and λvsub uses the number of e-steps, while the cost model
(inherited from λfire) is the number of m-steps. Do e-steps provide a reasonable
cost model? Probably not, because there is a family of terms that evaluate in
exponentially more m-steps than e-steps. Details are left to a longer version.

222 B. Accattoli and G. Guerrieri

4 Quantitative Equivalence of λvsub and λvseq, via λvsubk

The quantitative termination equivalence of λvsub and λvseq is shown in two steps:
first, we identify a sub-calculus λvsubk

of λvsub equivalent to the whole of λvsub,
and then show that λvsubk

and λvseq are equivalent (actually isomorphic). Both
steps reuse the technique of Sect. 3, i.e. simulation plus study of normal forms.

4.1 Equivalence of λvsubk and λvsub

The kernel λvsubk
of λvsub is the sublanguage of λvsub obtained by replacing the

application constructor tu with the restricted form tv where the right subterm
can only be a value v—i.e., λvsubk

is the language of so-called administrative
normal forms [29] of λvsub. The rewriting rules are the same of λvsub. It is easy to
see that λvsubk

is stable by vsub-reduction. For lack of space, more details about
λvsubk

are in the appendix of [3].
The translation (·)+ of λvsub into λvsubk

, which simply places the argument
of an application into an ES, is defined by (note that fv(t) = fv(t+) for all
t∈Λvsub):

x+ := x (tu)+ := (t+x)[x�u+] where x is fresh

(λx.t)+ := λx.t+ t[x�u]+ := t+[x�u+]

Lemma 19 (Simulation). Let t, u ∈ Λvsub.

1. Multiplicative: if t →m u then t+ →m→ey
≡ u+;

2. Exponential: if t →eλ
u then t+ →eλ

u+, and if t →ey
u then t+ →ey

u+.
3. Structural Equivalence: t ≡ u implies t+ ≡ u+.

The translation of a vsub-normal form is not vsubk-normal (e.g. (xy)+ =
(xz)[z�y]) but a further exponential normalization provides a vsubk-normal
form.

Theorem 20 (Quantitative Simulation of λvsub in λvsubk
). Let t, u ∈ Λvsub.

If d : t →∗
vsub u then there are s ∈ Λvsubk

and e : t+ →∗
vsubk

s such that

1. Qualitative Relationship: s ≡ u+;
2. Quantitative Relationship:

1. Multiplicative Steps: |e|m = |d|m;
2. Exponential Steps: |e|eλ

= |d|eλ
and |e|ey

= |d|ey
+ |d|m;

3. Normal Form: if u is vsub-normal then s is m-normal and e(s) is vsubk-normal.

Unfortunately, the length of the exponential normalization in Theorem 20.3
cannot be easily bounded, forbidding a precise quantitative equivalence. Note
however that turning from λvsub to its kernel λvsubk

does not change the number
of multiplicative steps: the transformation preserves the cost model.

Corollary 21 (Termination and Cost Equivalence of λvsub and λvsubk
).

Let t ∈ Λvsub. There exists a vsub-normalizing derivation d from t iff there exists
a vsubk-normalizing derivation e from t+. Moreover, |d|m = |e|m.

Open Call-by-Value 223

4.2 Equivalence of λvsubk and λvseq

The translation · of λvsubk
into λvseq relies on an auxiliary translation (·)• of

values and it is defined as follows:

x• := x (λx.t)• := λx.t
v := 〈v |ε〉 tv := t@(v• ·ε) t[x�u] := u@μ̃x.t

Note the subtle mapping of ES to μ̃: ES correspond to appendings of μ̃ to the
output of the term u to be substituted, and not of the term t where to substitute.

It is not hard to see that λvsubk
and λvseq are actually isomorphic, where

the converse translation (·)�, that maps values and commands to terms, and
environments to evaluation contexts, is given by:

x� := x ε� := 〈·〉 〈v |e〉� := e�〈v�〉
(λx.c)� := λx.c� (v ·e)� := e�〈〈·〉v�〉 (μ̃x.c)� := c�[x�〈·〉]

For the sake of uniformity, we follow the same structure of the other
weaker equivalences (i.e. simulation plus mapping of normal forms, here working
smoothly) rather than proving the isomorphism formally. The simulation maps
multiplicative steps to λ̄ steps, whose number, then, is a reasonable cost model
for λvseq.

Lemma 22 (Simulation of →vsubk
by →vseq). Let t and u be vsubk-terms.

1. Multiplicative: if t →m u then t →λ̄ u.
2. Exponential: if t →e u then t →μ̃ u.

Theorem 23 (Quantitative Simulation of λvsubk
in λvseq). Let t and u be

vsubk-terms. If d : t →∗
vsubk

u then there is e : t →∗
vseq u such that

1. Multiplicative Steps: |d|m = |e|λ̄ (the number λ̄-steps in e);
2. Exponential Steps: |d|e = |e|μ̃ (the number μ̃-steps in e), so |d|vsubk

= |e|vseq;
3. Normal Form: if u is vsubk-normal then u is vseq-normal.

Corollary 24 (Linear Termination Equivalence of λvsubk
and λvseq). Let

t be a vsubk-term. There is a vsubk-normalizing derivation d from t iff there is
a vseq-normalizing derivation e from t. Moreover, |d|vsubk

= |e|vseq, |d|e = |e|μ̃
and |d|m = |e|λ̄.

Structural Equivalence for λvseq. The equivalence of λvsub and λvsubk
relies on the

structural equivalence ≡ of λvsub, so it is natural to wonder how does ≡ look on
λvseq. The structural equivalence � of λvseq is defined as the closure by evaluation
contexts of the following axiom

D〈μ̃x.D′〈μ̃y.c〉〉 �μ̃μ̃ D′〈μ̃y.D〈μ̃x.c〉〉 where x /∈ fv(D′) and y /∈ fv(D).

As expected, � has, with respect to λvseq, all the properties of ≡ (see
Lemma 5). They are formally stated in the appendix of [3], for lack of space.

224 B. Accattoli and G. Guerrieri

5 Conclusions and Future Work

This paper proposes Open CBV as a setting halfway between Closed CBV, the
simple framework used to model programming languages such as OCaml, and
Strong CBV, the less simple setting underling proof assistants such as Coq. Open
CBV is a good balance: its rewriting theory is simple—in particular it is strongly
confluent, as the one of Closed CBV—and it can be iterated under abstractions
to recover Strong CBV, which is not possible with Closed CBV.

We compared four representative calculi for Open CBV, developed with dif-
ferent motivations, and showed that they share the same qualitative (termina-
tion/divergence) and quantitative (number of steps) properties with respect to
termination. Therefore, they can be considered as different incarnations of the
same immaterial setting, justifying the slogan Open CBV.

The qualitative equivalences carry semantical consequences: the adequacy
of relational semantics for the shuffling calculus proved in [8] actually gives a
semantic (and type-theoretical, since the relational model can be seen as a non-
idempotent intersection type system) characterization of normalizable terms for
Open CBV, i.e. it extends to the other three calculi. Similarly, the notion of
potential valuability for Plotkin’s CBV λ-calculus, well-studied in [22–25,28] and
recalled at the end of Sect. 2, becomes a robust notion characterizing the same
terms in Open (and Strong) CBV.

Quantitatively, we showed that in three out of four calculi for Open CBV,
namely λfire, λvsub and λvseq, evaluation takes exactly the same number of βf -
steps, m-steps and λ̄-steps, respectively. Since such a number is known to be a
reasonable time cost model for λfire [1], the cost model lifts to λvsub and λvseq,
showing that the cost model is robust, i.e. incarnation-independent. For the shuf-
fling calculus λshuf we obtain a weaker quantitative relationship that does not
allow to transfer the cost model. The β�

v-steps in λshuf , indeed, match e-steps in
λvsub, but not m-steps. Unfortunately, the two quantities are not necessarily poly-
nomially related, since there is a family of terms that evaluate in exponentially
more m-steps than e-steps (details are left to a longer version). Consequently,
λshuf is an incarnation more apt to semantical investigations rather than com-
plexity analyses.

Future Work. This paper is just the first step towards a new, finer understanding
of CBV. We plan to purse at the least the following research directions:

1. Equational Theories. The four incarnations are termination equivalent but
their rewriting rules do not induce the same equational theory. In particular,
λfire equates more than the others, and probably too much because its theory
is not a congruence, i.e. it is not stable by context closure. The goal is to estab-
lish the relationships between the theories and understand how to smooth the
calculi as to make them both equational and termination equivalent.

2. Abstract Machines. Accattoli and Sacerdoti Coen introduce in [1] reasonable
abstract machines for Open CBV, that is, implementation schemas whose
overhead is proven to be polynomial, and even linear. Such machines are

Open Call-by-Value 225

quite complex, especially the linear one. Starting from a fine analysis of the
overhead, we are currently working on a simpler approach providing cost
equivalent but much simpler abstract machines.

3. From Open CBV to Strong CBV. We repeatedly said that Strong CBV can
be seen as an iteration of Open CBV under abstractions. This is strictly
true for λvsub, λshuf , and λvseq, for which the simulations studied here lift
to the strong setting. On the contrary, the definition of a good strong λfire

is a subtle open issue. The natural candidate, indeed, is not confluent (but
enjoys uniqueness of normal forms) and normalizes more terms than the other
calculi for Strong CBV. Another delicate point is the design and the analysis
of abstract machines for Strong CBV, of which there are no examples in the
literature (both Grégoire and Leroy’s [13] and Accattoli and Sacerdoti Coen’s
[1] study machines for Open CBV only).

4. Open Bisimulations. In [18] Lassen studies open (or normal form) bisimula-
tions for CBV. He points out that his bisimilarity is not fully abstract with
respect to contextual equivalence, and his counterexamples are all based on
stuck β-redexes in Näıve Open CBV. An interesting research direction is to
recast his study in Open CBV and see whether full abstraction holds or not.

Acknowledgment. Work partially supported by the A*MIDEX project ANR-11-
IDEX-0001-02 funded by the “Investissements d’Avenir” French Government program,
managed by the French National Research Agency (ANR), and by ANR projects ANR-
12-JS02-006-01 (CoQuaS) and ANR-11-IS02-0002 (Locali).

References

1. Accattoli, B., Sacerdoti Coen, C.: On the relative usefulness of fireballs. In: LICS
2015, pp. 141–155 (2015)

2. Accattoli, B.: Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci.
606, 2–24 (2015)

3. Accattoli, B., Guerrieri, G.: Open call-by-value (Extended Version). CoRR
abs/1609.00322 (2016). http://arxiv.org/abs/1609.00322

4. Accattoli, B., Paolini, L.: Call-by-value solvability, revisited. In: Schrijvers, T.,
Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 4–16. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29822-6 4

5. Accattoli, B., Sacerdoti Coen, C.: On the value of variables. In: WoLLIC 2014, pp.
36–50 (2014)

6. Ariola, Z.M., Bohannon, A., Sabry, A.: Sequent calculi and abstract machines.
ACM Trans. Program. Lang. Syst. 31(4), 13:1–13:48 (2009)

7. Blelloch, G.E., Greiner, J.: Parallelism in sequential functional languages. In:
FPCA, pp. 226–237 (1995)

8. Carraro, A., Guerrieri, G.: A semantical and operational account of call-by-value
solvability. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 103–118.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54830-7 7

9. Curien, P.L., Herbelin, H.: The duality of computation. In: ICFP, pp. 233–243
(2000)

http://arxiv.org/abs/1609.00322
http://dx.doi.org/10.1007/978-3-642-29822-6_4
http://dx.doi.org/10.1007/978-3-642-54830-7_7

226 B. Accattoli and G. Guerrieri

10. Curien, P.-L., Munch-Maccagnoni, G.: The duality of computation under focus. In:
Calude, C.S., Sassone, V. (eds.) TCS 2010. IAICT, vol. 323, pp. 165–181. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15240-5 13

11. Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine.
Theor. Comput. Sci. 398(1–3), 32–50 (2008)

12. Dyckhoff, R., Lengrand, S.: Call-by-value lambda-calculus and LJQ. J. Log. Com-
put. 17(6), 1109–1134 (2007)

13. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP
2002, pp. 235–246 (2002)

14. Guerrieri, G.: Head reduction and normalization in a call-by-value lambda-calculus.
In: WPTE 2015, pp. 3–17 (2015)

15. Guerrieri, G., Paolini, L., Ronchi Della Rocca, S.: Standardization of a call-by-value
lambda-calculus. In: TLCA 2015, pp. 211–225 (2015)

16. Herbelin, H., Zimmermann, S.: An operational account of call-by-value minimal
and classical λ-calculus in natural deduction form. In: TLCA, pp. 142–156 (2009)

17. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall Inc., Upper Saddle River (1993)

18. Lassen, S.: Eager normal form bisimulation. In: LICS 2005, pp. 345–354 (2005)
19. Lévy, J.J.: Réductions correctes et optimales dans le lambda-calcul. Thése d’Etat,

Univ. Paris VII, France (1978)
20. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,

call-by-need and the linear λ-calculus. TCS 228(1–2), 175–210 (1999)
21. Moggi, E.: Computational λ-calculus and Monads. In: LICS 1989, pp. 14–23 (1989)
22. Paolini, L., Pimentel, E., Ronchi Della Rocca, S.: Strong normalization from an

unusual point of view. Theor. Comput. Sci. 412(20), 1903–1915 (2011)
23. Paolini, L.: Call-by-value separability and computability. In: ICTCS, pp. 74–89

(2002)
24. Paolini, L., Pimentel, E., Ronchi Della Rocca, S.: Lazy strong normalization. In:

ITRS 2004. Electronic Notes in Theoretical Computer Science, vol. 136C, pp. 103–
116 (2005)

25. Paolini, L., Ronchi Della Rocca, S.: Call-by-value solvability. ITA 33(6), 507–534
(1999)

26. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

27. Regnier, L.: Une équivalence sur les lambda-termes. TCS 2(126), 281–292 (1994)
28. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus. Springer, Heidel-

berg (2004)
29. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.

Lisp Symbolic Comput. 6(3–4), 289–360 (1993)
30. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang.

Syst. 19(6), 916–941 (1997)
31. Sands, D., Gustavsson, J., Moran, A.: Lambda calculi and linear speedups. In: The

Essence of Computation, Complexity, Analysis, Transformation. Essays Dedicated
to Neil D. Jones, pp. 60–84 (2002)

http://dx.doi.org/10.1007/978-3-642-15240-5_13

Type Theory

Implementing Cantor’s Paradise

Furio Honsell1, Marina Lenisa1, Luigi Liquori2, and Ivan Scagnetto1(B)

1 Università di Udine, Udine, Italy
{furio.honsell,marina.lenisa,ivan.scagnetto}@uniud.it
2 INRIA, Sophia Antipolis Méditerranée, Valbonne, France

Luigi.Liquori@inria.fr

Dedicated to Marco Forti for his 70th birthday
Aus dem Paradies, das Cantor uns geschaffen hat,

soll uns niemand vertreiben können.
David Hilbert

Abstract. Set-theoretic paradoxes have made all-inclusive self-referen-
tial Foundational Theories almost a taboo. The few daring attempts
in the literature to break this taboo avoid paradoxes by restricting the
class of formulæ allowed in Cantor’s näıve Comprehension Principle. A
different, more intensional approach was taken by Fitch, reformulated by
Prawitz, by restricting, instead, the shape of deductions, namely allowing
only normal(izable) deductions. The resulting theory is quite powerful,
and consistent by design. However, modus ponens and Scotus ex contra-
dictione quodlibet principles fail. We discuss Fitch-Prawitz Set Theory
(FP) and implement it in a Logical Framework with so-called locked
types, thereby providing a “Computer-assisted Cantor’s Paradise”: an
interactive framework that, unlike the familiar Coq and Agda, is closer
to the familiar informal way of doing mathematics by delaying and con-
solidating the required normality tests. We prove a Fixed Point Theorem,
whereby all partial recursive functions are definable in FP. We establish
an intriguing connection between an extension of FP and the Theory of
Hyperuniverses: the bisimilarity quotient of the coalgebra of closed terms
of FP satisfies the Comprehension Principle for Hyperuniverses.

Keywords: Fitch-Prawitz set theory · Logical frameworks · Paradoxes ·
Coalgebras · Hyperuniverses

1 Introduction

The discovery of set-theoretic paradoxes at the turn of last century, such as
Russell’s, Burali-Forti’s and Curry’s, inhibited mainstream foundational research
from exploring self-referential, all-inclusive Foundational Theories. There are a

Work supported by the COST Action IC1201 BETTY “Behavioural Types for Reli-
able Large-Scale Software Systems” and by the COST Action CA15123 EUTYPES
“The European research network on types for programming and verification”.

c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 229–250, 2016.
DOI: 10.1007/978-3-319-47958-3 13

230 F. Honsell et al.

very few exceptions in the literature. Quine’s NF and the Theory of Hyper-
universes by Forti and Honsell [FH96] avoid paradoxes while preserving exten-
sionality, by restricting the class of formulæ allowed in Cantor’s Comprehension
Principle to stratified or to generalized positive formulæ, respectively.

In 1952, Frederic Brenton Fitch [Fit52] introduced a Foundational Set-
Theory, consistent by design, which has a more intensional flavour. It com-
pensates the potentially paradoxical effects of an un-constrained näıve Compre-
hension Principle by restricting the class of deductions. Fitch introduced two
possible conditions which are rather idiosyncratic and unnecessarily restrictive,
see [Fit52]. It was not until Prawitz in 1966 [Pra06], who gave a natural deduction
presentation of Fitch’s Theory, that a more principled restriction on deductions
was introduced, namely that the deduction be normal.

Apart from the restriction on the shape of deductions, Fitch-Prawitz Set
Theory, FP, is otherwise a standard first order theory with classical negation.
Sets, i.e. abstractions, are introduced and eliminated in the natural way, and
equality is expressed by Leibniz equality. FP subsumes higher-order logic for
all orders. Fitch himself showed how a considerable part of the theory of Real
Numbers can be developed in FP. The theory however is only paraconsistent,
in that Scotus principle ex contradictione quodlibet fails. Moreover the standard
rules, such as modus ponens or extensionality are not admissible.

In this paper, we discuss FP and give a Fixed Point Theorem, whereby all
partial recursive functions are definable in FP as one would in functional pro-
gramming languages.

Furthermore we show how to encode the highly unorthodox side condition of
FP in a Logical Framework based on Constructive Set Theory featuring locked
types, [HLMS16]. This allows to build an extremely flexible, all-inclusive interac-
tive foundational environment for developing Mathematics and its foundations.
This is indeed an interactive, computer-assisted Cantor’s Paradise, where one
can optimistically use the unrestricted Comprehension Principle, in the style of
[CSW14,DHJG06] and of optimistic concurrency control in distributed systems.
I.e., the nuisance of checking consistency is done automatically at the end!

Finally, we provide an intriguing set-theoretic connection between an exten-
sion of FP and the Theory of Hyperuniverses, [FHL94]. Namely we show that
the strongly extensional quotient, i.e. the bisimilarity quotient, of the coalgebra
of closed terms of Fitch-Prawitz Theory satisfies the restricted Comprehension
Principle of Hyperuniverses. The relevance of this result is twofold. It provides a
purely proof-theoretic consistency proof for the Theory of Hyperuniverses. More-
over, it shows that, if we insist on extensionality, a consistent Comprehension
Principle cannot be broadened much beyond positive formulæ.

Synopsis. In Sect. 2, we present the theory FP, and in Sect. 3 we discuss it. In
Sect. 4, we show how Mathematics can be developed in FP, in particular we
prove the Fixed Point Theorem. In Sect. 5, we show how to encode FP in a
Logical Framework featuring locked types. In Sect. 6, we study the connection
between FP and the extensional Theory of Hyperuniverses. In Sect. 7 we discuss

Implementing Cantor’s Paradise 231

FP as a logical framework and compare it to other “optimistic” frameworks.
Final remarks appear in Sect. 8.

2 The Theory of Fitch-Prawitz, FP

We present a classical version of the logical theory of Fitch-Prawitz, which we
call FP. We follow essentially [Pra06]. The theory FP includes the usual logical
connectives ∧,∨,→, and the ∀,∃ quantifiers, the logical constant ⊥, together
with an unrestricted set constructor. Negation is not a primitive connective, ¬A
being expressed as A → ⊥. The crucial non-standard restriction is that only
normal deductions are allowed in Fitch-Prawitz theory.

2.1 The Language of FP

Definition 1 (Symbols). The symbols consist of the binary constant ∈, the
constant λ for set abstraction, the logical constant ⊥, the logical connectives
¬, ∧, ∨, →, the universal and existential quantifiers ∀ and ∃. We assume a
denumerable set of variables, denoted by lower-case letters x, y, z, . . .

Definition 2 (Terms and Formulæ). Terms and formulæ are defined by
mutual induction:
(T) t, u :: = x | λx.A
(F) A,B, . . . , P, . . . :: = ⊥ | ¬A | A∧A | A∨A | A → A | ∀x.A | ∃x.A | t ∈ u,
where ¬A is an abbreviation for A →⊥.

We use standard conventions concerning free and bound occurrences of variables,
and, of course, Barendregt’s hygiene condition. Open and closed terms and for-
mulæ are defined as usual. The set of free variables of a term t or a formula
A will be denoted by Fv(t)/Fv(A). The set of closed terms/formulæ is denoted
by T 0/F0. Formula contexts A[], where A[] is an incomplete formula with a
hole, are defined as usual. We denote by t[u/x], A[u/x] the (capture-avoiding)
substitution of the term u for the variable x in the term t or in the formula A.

2.2 Inference Rules and Deductions

We present inference rules in natural deduction style (see Fig. 1). The inference
rules consist of an introduction and an elimination rule for each logical connec-
tive, for ∀,∃ quantifiers, and for λ, and of a rule for ⊥.

The rules of FP appear in Fig. 1. In the rules ∀I) and ∃E), the variable y
does not belong to free variables of A\{x} and it must not occur free in any
hypothesis or undischarged assumptions.

Notice that in FP the rule of negation introduction is absorbed by →I).
We call quasi-deduction the standard notion of deduction in Natural Deduc-

tion. In FP, not all quasi-deductions are allowed, but only those which essentially
correspond to normal deductions in Natural Deduction.

232 F. Honsell et al.

Fig. 1. FP rules in natural deduction style

Definition 3. The premisses A in the rule →E), C in the rule ∨E), B in the
rule ∃E) are called minor premisses. A premiss that is not minor is called a
major premiss.

Definition 4 (Deductions).

– We call quasi-deduction in FP a standard deduction in the system FP, i.e. a
formula tree obtained by applying the inference rules.

– A formula occurrence in a deduction that is both the consequence of an appli-
cation of a I-rule or of the ⊥-rule, and major premiss of an application of a
(correspondent) E-rule is said to be a maximum formula in the deduction.

– A deduction in FP is a quasi-deduction with no maximum formulæ, i.e. a
normal deduction.

– We write Γ
FP A, for Γ set of formulæ, when there is a deduction of the
formula A from the set of formulæ in Γ .

– A deduction from no assumptions is called a proof.

The shape of normal deductions manifestly accounts for the fact that no
information can be logically extracted from a formula which had not been already
available at the outset. Normal Deductions apparently satisfy a sort of nihil fit
ex nihilo. Namely in a main branch β of a deduction Π, the formula occurrences
in β that are major premisses of E-rules precede all formula occurrences in β

Implementing Cantor’s Paradise 233

which are premisses of I-rules or the ⊥-rule. In the proposition-as-types analogy,
normal proofs correspond to normal forms of λ-calculus. In most popular logics,
all deductions can be normalized, although non normal proofs are usually more
concise and more natural. The use of lemmata, or cuts, produces non-normal
proofs. Normalization then amounts to proving all lemmata from first principles
within each proof. But cuts, as in FP can lead to circularities. In Sect. 3.1 we
give examples of deductions which cannot be normalized. These arise from the
unrestricted use of elimination rules, and therefore might yield deductions of ⊥.

If we consider the fragment of the system FP where we omit the λ-rules,
we obtain a system for classical logic with the property that each derivation is
normalizable, i.e. for each derivation there exists a corresponding derivation in
normal form (see [Pra06], Ch. III, Theorems 1 and 2). In the full system FP this
property fails. In derivations, it is still possible to remove any given maximum
formula, but in general it is impossible to remove all maximum formulæ.

Nevertheless, FP is consistent, namely, there is at least a formula which is
not derivable, i.e. ⊥. If this were the case, the ⊥-rule would make the system
trivial. This is essentially Theorem 3 of [Pra06], but since consistency does not
require a tight control on the shape of subformulæ, we shortcircuit some of the
arguments.

Proposition 1. The system FP is consistent.

Proof. We proceed by contradiction. Assume that there is a proof Π (i.e., a
deduction in normal form depending on the empty set) of ⊥. Consider a main
branch β of Π. One can easily see that the formula occurrences in β that are
major premisses of E-rules precede all formula occurrences in β which are pre-
misses of I-rules or the ⊥-rule. Otherwise there would be a first formula occur-
rence in β which is a major premiss of an E-rule but succeeds a premiss of an
I-rule or the ⊥-rule, and such a formula would be a maximum formula contrary
to the hypothesis that β is normal. But there are no I-rules for ⊥ hence there are
no premisses of I-rules in β. Hence the first formula in β must be an undischarged
assumption, and this contradicts the initial hypothesis that Π is a proof. ��

3 The Theory FP: Pros and Cons

Why Normal Deductions? Restricting the class of legitimate deductions in
FP to normal deductions yields consistency by design, see Proposition 1. Alter-
nately, one could have brutally accepted only deductions which do not derive
⊥, but then huge complications would arise because we do need subdeductions
which yield ⊥, in dealing with negation.

Moreover, since Classical Logic is normalizing, FP is a conservative exten-
sion with respect to classical theorems which do not mention simultaneously
both λ and ∈. This allows to develop in FP a considerable portion of standard
Mathematics, see [Fit52].

In [Fit52], Fitch did not introduce the normal deduction proviso to qualify
proper deductions. He discussed instead two alternate conditions which appear

234 F. Honsell et al.

rather idiosyncratic and unnecessarily restrictive, which he called the simple
and the special restrictions. The simple restriction does not allow to derive e.g.
A → (B → ((A ∧ B) → C) → C), while the special restriction does not allow to
derive (P ↔ (P → Q)) → Q or ((A → (A → B) → B) → A) → A.

Negation. We have already pointed out that negation is not a primitive logical
operator, but it is encoded using ⊥, namely ¬A

Δ= A → ⊥. The ⊥)-rule enforces
classical negation. It clearly subsumes the intuitionistic rule ex falso sequitur
quodlibet, namely ⊥

A .
Moreover, applying the →E)-rule and provided the overall deduction normal-

izes, it encompasses also the double negation rule, namely ¬¬A
A , and hence

it proves also tertium non datur, i.e. ((A → ⊥) → ⊥) → A.

Full Elimination Rules Are Not Admissible. The choice of allowing only
normal deductions makes standard elimination rules “unsafe”, i.e. not admissi-
ble. E.g. Modus Ponens, i.e. the →E)-rule, cannot be applied näıvely, in that if
we have normal deductions of A → B and of A, it is not true in general that the
extended deduction obtained by an application of the →E)-rule is still normal.

Normalizable Quasi-deductions. FP#. The constraint of considering quasi-
deductions to be legal only if already in normal form can be weakened to allow
for normalizable quasi-derivations. In order to define normalizable deductions
we need to introduce a calculus of deductions, a sort of λ-calculus as in the
propositions-as-types paradigm, and define an appropriate notion of reduction
which reflects the inversion principle underpinning the normalization procedure.
One can easily see that this can be done and that the deduction calculus is
strongly normalizing. Then, consistency of FP# follows from that of FP. This
extension of FP, called FP# has been recently discussed in [HLMS16], where
a type system for characterizing the strongly normalizable λ-terms has been
introduced, see Subsect. 4.1 below.

Paraconsistency. In FP Duns Scotus rule ex absurdis sequitur quodlibet,
namely: A ¬A

⊥ is not admissible, let alone derivable. Since ¬A is encoded as
A →⊥, the derivability of Scotus rule would require an application of the →E)-
rule, which is subject to restrictions on the subdeductions, and hence is not
safe in general. In Subsect. 3.1 we will see that also Aristotle’s non-contradiction
principle fails, namely we have that for suitable A’s
FP A ∧ ¬A. Thus FP
is paraconsistent. This is inevitable since, in FP a strong fixed point theorem
(Theorem 1) holds.

In the original system of Fitch [Fit52], negation is a primitive unary connec-
tive which behaves differently from our encoding of ¬ and satisfies Scotus rule.
In [Pra06], Prawitz calls it constructive negation. To allow for this notion of
negation, Fitch has to give up excluded middle and negation introduction (which

Implementing Cantor’s Paradise 235

he calls reductio ad absurdum). Both restrictions, introduced by Fitch in [Fit52]
on quasi-deductions to qualify them as deductions, ensure that the system is
consistent but not paraconsistent.

3.1 The Taming of Russell’s and Curry’s Paradoxes

The interest in the theory of Fitch-Prawitz FP lies in its power of taming the
näıve Comprehension Principle, namely permitting to reason on the set of ele-
ments satisfying any formula P .

Thus, in particular, Russell’s and Curry’s classes are definable in FP, but the
deductions, involving these classes, which would allow to derive ⊥ in classical
logic are not normalizable.

Russell’s Paradox. Let us define t
Δ= λx.(x �∈ x), where t �∈ t denotes the

formula ¬(t ∈ t), i.e. t ∈ t →⊥. Then we have the following quasi-deduction:

t ∈ t(1)

t �∈ t t ∈ t(1)

⊥
t �∈ t(1)

t ∈ t

t ∈ t(1)

t �∈ t t ∈ t(1)

⊥
t �∈ t(1)

⊥
the index (1) above indicates where hypotheses are discharged. Notice that we
have both
FP t ∈ t and
FP t �∈ t, since the two subderivations are legal in
FP. However ⊥ is not derivable, since the overall quasi-deduction cannot be
transformed into a normal deduction. If we perform a step of →-reduction we
end up introducing a new λ-reduction, indefinitely. We can derive legally instead

FP (t ∈ t) ∧ (t �∈ t). This amounts to the failure of Aristotle’s Principle of non-
contradiction. However, Scotus rule does not apply, and hence this contradiction
does not trivialize the theory, but just makes it paraconsistent.

Curry’s Paradox. Let P be any formula, and let Y
Δ= λx.(x ∈ x → P). Then

we have the following quasi-deduction:

Y ∈ Y (1)

Y ∈ Y → P Y ∈ Y (1)

P

Y ∈ Y → P (1)

Y ∈ Y (1)

Y ∈ Y → P Y ∈ Y (1)

P

Y ∈ Y → P (1)

Y ∈ Y
P

Clearly, the above quasi-deduction cannot be transformed into a normal deduc-
tion, because the same infinite reduction-chain that occurs in Russell’s paradox
above would be generated here. Notice that the two quasi-derivations obtained
by just dropping the last application of the →E)-rule are in normal form.

236 F. Honsell et al.

Moreover, from the very definition of Y , by applying the λI)-rule, we obtain
(Y ∈ Y → P) → (Y ∈ Y), and by applying the λE)-rule, we obtain (Y ∈ Y) →
(Y ∈ Y → P). Hence we have
FP (Y ∈ Y) ↔ (Y ∈ Y → P). This is related
to the Fixed Point Theorem of Sect. 4.1, which takes us very close to a paradox
but not quite. Russell’s class is a special case of Curry’s Paradox, if the formula
P is taken to be ⊥.

The Role of Structural Rules in the Paradoxes. In deriving both Russell’s
and Curry’s Paradoxes, we have used the structural rule of contraction. In each
branch we have discharged two instances of the same assumption. Grishin [Gri82]
was the first to show that Näıve Set Theory without contraction is consistent,
albeit very weak. To see this it is enough to realize that it amounts to a Set
Theory whose logic is Girard’s Linear Logic without exponentials, and therefore
all deductions are normalizable even in the presence of λ and ∈. Hence the
“murderer” who chases us away from Cantor’s Paradise, namely the “root cause”
of the set-theoretic paradoxes, is not extensionality or tertium non datur, it is
not even related to negation. It is the structural rule of contraction which, via
Curry’s Paradox, yields inconsistency even in minimal logic.

Incidentally, we point out that the expressive power of J.Y. Girard’s Light
Linear Logic with abstractions, LLLs (see [Gir98], Appendix A.1) lies in between
Grishin’s Näıve Set Theory without contraction, and the theory of Fitch-Prawitz.

3.2 Equality and Extensionality

Equality in FP is expressed as Leibniz Equality, namely

t1 = t2
Δ= ∀x. t1 ∈ x ↔ t2 ∈ x.

In Set Theory, it is natural to consider a much stronger version of equality,
namely Extensional Equality

t1 � t2
Δ= ∀x. x ∈ t1 ↔ x ∈ t2.

In FP we can derive t1 � t2 → t1 = t2. The converse implication amounts to the
Extensionality Axiom t1 = t2 → t1 � t2.

Grishin [Gri82] showed in 1982 that, adding Extensionality, the contraction
rule becomes derivable. Hence it allows to derive Russell’s Paradox already in a
Näıve Set Theory based on Linear Logic without exponentials.

Extensionality has a similar impact also on FP. First we need to extend the
notion of normal deduction to deductions which make use of axioms. This is
done simply by stipulating that axioms behave as undischarged assumptions.
Hence, the analogue of Grishin’s result for FP is that one can derive a normal
deduction of ⊥ whose only assumptions are instances of Extensionality. Thus,
the Extensionality Axiom makes FP inconsistent. We give a direct proof of this:

Implementing Cantor’s Paradise 237

Proposition 2. Ext
FP ⊥.

Proof. Let Y
Δ= {x | x ∈ x}, ∅ Δ= {x | ⊥}, R

Δ= {x | x ∈ x → ⊥}, X
Δ= {x | R ∈

R}. Then R ∈ R
FP ∀x.x ∈ ∅ ↔ x ∈ X. Namely,

R ∈ R

x ∈ X(1)

R ∈ R
R ∈ R → ⊥

⊥
x ∈ ∅

x ∈ X → x ∈ ∅

x ∈ ∅(1) R ∈ R(2)

⊥
R ∈ R → ⊥

R ∈ R
x ∈ X

x ∈ ∅ → x ∈ X

Using Ext, we have R ∈ R
FP ∀x.∅ ∈ x ↔ X ∈ x. By instantiating x to Y we
get R ∈ R
FP ∅ ∈ Y ↔ X ∈ Y , hence using λE), we obtain R ∈ R
FP ∅ ∈ ∅ ↔
X ∈ X. Since, by λI) R ∈ R
FP X ∈ X, by →E) we get R ∈ R
FP ∅ ∈ ∅ and
by λE) R ∈ R
FP ⊥. Finally, since
FP R ∈ R (see Russell’s Paradox at the
beginning of Sect. 3.1), we get a contradiction. One can easily check that all the
above arguments are indeed normal deductions. ��
Sect. 6 is devoted to show how Extensionality can be recovered in a weak FP.

4 Developing Mathematics in FP

In this Section we show that even if Extensionality is inconsistent with FP, nev-
ertheless Leibniz Equality allows us to derive a considerable part of Mathematics
and Logic in FP. Similar developments can be carried out also in Fitch original
Theory [Fit52] and in Girard’s LLLs [Gir98], Appendix A.1.

First we need to introduce the following fundamental abbreviations:

∅ Δ= λx.⊥ V
Δ= λx.(x = x) {x | A} Δ=λx.A {t} Δ= λx.(x = t)

{t1, . . . , tn} Δ= λx.(x = t1 ∨ . . . x = tn) 〈t1, t2〉 Δ= {t1, {t2}}
〈t1, . . . , tn〉 Δ= t

Δ= 〈. . . 〈t1, t2〉, . . . , tn〉 λx1 . . . xn.A
Δ= λz.(z = 〈x1, . . . , xn〉 ∧ A).

One can easily see that when any such abbreviation is taken as the definition
in FP of the intended notion, it satisfies in FP the standard properties of this
notion. E.g. two t-ple’s are equal if and only if all their components are equal.

4.1 The Fixed Point Theorem

The outstanding expressive power of FP derives from the following logical Fixed
Point Theorem, which allows us to define entities in FP following a sort of func-
tional programming paradigm.

Theorem 1 (Fixed Point (FPT)). Let A be a formula with free variables
x, z1, . . . , zn, n > 0. Then there exists a term u such that
FP z ∈ u ←→ A[u/x],
where z is a shorthand for 〈z1, . . . , zn〉.

238 F. Honsell et al.

Proof. Let u
Δ= {z | 〈z, t〉 ∈ t}, where t

Δ= {〈z, y〉 | A[{w | 〈w, y〉 ∈ y}/x]}.
Then the implication z ∈ u −→ A[u/x] and its converse can be derived via two
applications, respectively, of the λE-rule, and of the λI-rule. ��
Paraconsistency follows immediately from Theorem 1, just take the formula A to
be z /∈ x. Notice that the contradiction, ⊥, arises from z ∈ u ←→ z /∈ u, only if
we can either use freely the structural rule of contraction or a non-normalizable
proof. The former is precisely what is not allowed in Girard’s LLLs, while non-
normalizable proofs are precisely what are ruled out by FP.

Curry’s paradoxical Y as defined in Sect. 3 is closely related to the fixed
point construction but it is not an instance of it. In fact, an alternative Y
can be obtained using the Fixed Point Theorem. Namely, consider the formula
A

Δ= z ∈ x → P . Then, by the Fixed Point Theorem, there exists a term u
such that
FP z ∈ u ←→ (z ∈ u → P). Now, by substituting u for z, we get
u ∈ u ←→ (u ∈ u → P). By the proof of the Fixed Point Theorem, u can be
taken to be {z | 〈z, t〉 ∈ t}. Of course, the Fixed Point Theorem above admits a
straightforward generalization to the n-ary case, i.e. the case of n formulæ. We
will illustrate the power of the Fixed Point Theorem in the following examples.

Selfsingleton Construction. Using the Fixed Point Theorem, one can build
the selfsingleton set in FP. Namely, let A be the formula z = x. Then, by the
Fixed Point Theorem, there exists a term u such that
FP z ∈ u ←→ z = u. By
the proof of the Fixed Point Theorem, u can be defined by u

Δ= {z | 〈z, t〉 ∈ t},
where t

Δ= {〈z, y〉 | z = {w | 〈w, y〉 ∈ y}}.
The natural question arises as to whether there exist more than one selfsin-

gleton. The answer is positive, since any fixed point operator induces a differ-
ent one. For instance, in the proof of the Fixed Point Theorem, one can take
u

Δ= {z | 〈z, a, t〉 ∈ t} and t
Δ= {〈z, a, y〉 | A[{w | 〈w, a, y〉 ∈ y}/x]}, for any a, thus

getting a different fixed point operator, which thus yields a different selfsingleton.

Recursive Definitions of Functions and Sets. The Fixed Point Theorem,
FPT , allows us to define recursive sets and functions in FP as in functional
programming using general recursion, see also [Gir98], Appendix A.1.

Numerals. To define numerals, consider two fixed conventional sets/terms, which
we denote by 0 and S, to represent zero and successor. E.g. take ∅ and V . Then
apply FPT to the formula ANat:

ANat[z, x] Δ= (∀A. (0 ∈ A ∧ ∀y ∈ A. < S, y >∈ A)) −→ z ∈ A) −→ z ∈ x.

By FPT there exists a term Nat such that

FP z ∈ Nat ←→ ANat[z,Nat].

We have enforced Induction on Nat by means of minimality. In what follows, we
use the standard notation 0,1, . . . to denote numerals.

Implementing Cantor’s Paradise 239

Subtraction. To define the subtraction function, consider the following formula:

ASubt[z, x] Δ= (∀A.

∀y1, y2, y3 ∈ Nat.

⎧⎨
⎩

〈〈0, y2〉, 0〉 ∈ A ∧
〈〈y1, 0〉, y1〉 ∈ A ∧

〈〈y1, y2〉, y3〉 ∈ A → 〈〈y1 + 1, y2 + 1〉, y3〉 ∈ A

⎫⎬
⎭ → z ∈ A)

−→ z ∈ x.

Then, by the FPT , there exists a term Subt such that

FP 〈〈z1, z2〉, z3〉 ∈ Subt ←→ ASubt[z,Subt].

Lambda Terms. The set of closed λ-terms Λ0 is definable starting from three
conventional sets, var the variable marker, app, the application marker, and lam
the λ-abstraction marker. For simplicity we omit the “minimality”conditions.
Consider the following formula AΛ0 :

AΛ0
Δ= (∃n ∈ Nat. z = 〈var, n〉) ∨ (∃y1, y2 ∈ x. z = 〈app, y1, y2〉) ∨

(∃y ∈ x. ∃n ∈ Nat. z = 〈lam, n, y〉).
Then, by the FPT , there exists a term Λ0 such that

FP z ∈ AΛ0 ←→ (∃n ∈ Nat. z = 〈var, n〉) ∨ (∃y1, y2 ∈ Λ0. z = 〈app, y1, y2〉) ∨
(∃y ∈ Λ0. ∃n ∈ Nat. z = 〈lam, n, y〉).

Given a term N of λ-calculus we denote by Ñ its FP representation.

Normal λ-terms. Using Theorem 1 and the set Λ0 defined above, we can define
the relation Rβ consisting of the pairs of terms in Λ0 such that 〈M̃, Ñ〉 ∈ Rβ iff
the λ-terms M and N are β-convertible. Again applying Theorem 1 we can now
define a predicate Λ+ such that x ∈ Λ+ is equivalent in FP to x ∈ Λ0 ∧ ∀y.y ∈
Λ+ → ∃u.〈u, 〈app, x, y〉〉 ∈ Rβ ∧ u ∈ Λ+. Then, there is a normal proof in FP of
M̃ ∈ Λ+ only if M is a closed strongly normalizing term.

In Sect. 3, we introduced FP#, the extension of FP where normalizable deduc-
tions are legal. In [HLMS16], a type system was suggested for characterizing the
strongly normalizable λ-terms. That construction amounts to carrying out the
above argument in FP# instead of FP. A legal deduction in FP# of M̃ ∈ Λ+

would then amount to typing M with the type Λ+. There is indeed a natural
reflection of the metatheoretic normalizability of the FP# deduction of the typing
judgement M̃ ∈ Λ+, and the fact that M is indeed strongly normalizable!

Partial Recursive Functions. The above examples can be generalized. Relying
on the FPT , we can define objects as in Functional Programming provided
we enforce the “minimality” condition, thereby showing that FP is a Universal
Model of Computation:

240 F. Honsell et al.

Theorem 2. For any partial recursive function h on natural numbers of arity
k, there exists a formula Ph with free variables x1, . . . , xk, y such that

h(n1, . . . , nk) � m ⇐⇒
FP Ph[ñ1/x1, . . . , ñk/xk, m̃/y],

where n1, . . . nk,m are natural numbers and ñ1, . . . , ñk, m̃ denote the correspond-
ing numerals in FP.

Notice that if we do not enforce the “minimality”condition in the formulæ
used in FPT , then we might end up with a lot of “junk”. This might be a
feature, whereby one can include also infinite and circular objects, i.e. introduce
co-inductive datatypes.

5 Encoding FP in a Type Theoretic Logical Framework

An implementation of FP in a computer-assisted proof development environ-
ment, such as LF, see [HHP93,PS99,WCPW03,COQ], would take us as close
as consistently possible to Cantor’s Paradise. However, FP is a formal system
whose encoding in standard Logical Frameworks is not straightforward. It is
indeed very awkward to capture the side-condition which allows only normal
deductions.

In this section, we assume the reader familiar with Logical Frameworks and
we present the encoding of FP in LLFP [HLMS16], a recent extension of the
Edinburgh LF which features lock types. This encoding provides, in effect, a
paramount example of the power of locks.

In LLFP , a new type constructor is introduced and, as costumary in Con-
structive Type Theory, it is explained through appropriate Introduction, Elim-
ination, and Equality rules. More precisely, in LLFP we define objects using
a new constructor of the form LP

N,σ[M], whose type LP
N,σ[ρ] is assigned via

the type-checking introduction rule (O·Lock). Correspondingly, also an unlock
destructor, UP

N,σ[M], is introduced whose type is given by the elimination rule
(O · Top · Unlock). This latter rule allows for the elimination of the lock-type
constructor, under the condition that a specific predicate P is verified, possibly
externally, on a judgement. The rules mentioned above are:

Γ �Σ M : ρ Γ �Σ N : σ

Γ �Σ LP
N,σ[M] : LP

N,σ[ρ]
(O·Lock)

Γ �Σ M : LP
N,σ[ρ]

P(Γ �Σ N : σ)

Γ �Σ UP
N,σ[M] : ρ

(O·Top·Unlock)

The equality rule for lock types amounts to a new form of reduction called lock
reduction (L-reduction), UP

N,σ[LP
N,σ[M]] →L M , which allows for the removing

of a lock, in the presence of an unlock with the same superscripts and subscripts.
The L-reduction combines with standard β-reduction into βL-reduction.

Implementing Cantor’s Paradise 241

Capitalizing on the monadic nature of the lock constructor [HLMS16], one
can use locked terms without necessarily establishing the predicate, provided
an outermost lock is present. This increases the expressivity of the system, and
allows for reasoning under the assumption that the verification is successful, as
well as for postponing and reducing the number of verifications. The rules which
make all this work are:

Γ, x:τ �Σ LP
S,σ[ρ] : type Γ �Σ N : LP

S′,σ′ [τ] σ=βLσ′ S=βLS′

Γ �Σ LP
S,σ[ρ[UP

S′,σ′ [N]/x]] : type
(F ·Guarded·Unlock)

Γ, x:τ �Σ LP
S,σ[M] : LP

S,σ[ρ] Γ �Σ N : LP
S′,σ′ [τ] σ=βLσ′ S=βLS′

Γ �Σ LP
S,σ[M [UP

S′,σ′ [N]/x]] : LP
S,σ[ρ[UP

S′,σ′ [N]/x]]
(O·Guarded·Unlock)

The second rule is the counterpart of the elimination rule for monads, once we
realize that the standard destructor of monads letTP(Γ �S:σ)x = A in N can be
replaced in this setting by N [UP

S,σ[A]/x]. This is the case since the LP
S,σ[·]-monad

satisfies the property letTP x = M in N → N if x /∈ Fv(N), provided x occurs
guarded in N , i.e. within subterms of the appropriate lock-type. The first rule
takes care of elimination at the level of types.

The system LLFP can smoothly enforce the global normalization constraint
of FP locally by enforcing a suitable lock on the proof-object. The crucial step
is the definition of the predicate involved in the lock, because it needs to be
well-behaved, see [HLMS16], Definition 2.1. Namely it must be closed under sub-
stitution as well as signature and context extension, and this is problematic when
dealing with open terms. To overcome these difficulties we need to introduce the
notion of skeleton of a term in a given signature Σ:

Definition 5. Given a signature Σ, let ΛΣ (respectively Λo
Σ) be the set of LLFP

terms (respectively closed LLFP terms) definable using constants from Σ. A term
M has a skeleton in ΛΣ if there exists a context N [, . . . ,] ∈ ΛΣ with n holes
such that M ≡ N [M1, . . . ,Mn] for suitable terms M1, . . . ,Mn.

Furthermore we need to introduce two basic judgements to deal with vari-
ables. Namely we make the distinction between generic judgements, which can-
not be directly utilized in arguments, but which can be assumed, and apodictic
judgements, which are directly involved in proof rules. In order to make use of
generic judgements, one has to downgrade them to an apodictic one, and this is
achieved by a suitable coercion function.

The encoding in LLFP of the system of Fitch as presented in Sect. 2.1 is given
in the following definition, where (due to lack of space) we focus on the crucial
connectives and rules of FP:

Definition 6 (LLFP signature ΣFP for Fitch Prawitz Set Theory FP).
The following constants are introduced:

o : Type ι : Type

T : o -> Type δ : ΠA:o.(V(A) -> T(A))

242 F. Honsell et al.

V : o -> Type ⊃ : o -> o -> o false : o

lam : (ι -> o)-> ι ε : ι -> ι -> o not: o -> o

⊃ intro: ΠA,B:o.(V(A) -> T(B)) -> (T(A ⊃B))

⊃ elim : ΠA,B:o.Πx:T(A).Πy:T(A⊃B) -> LFitch
〈x,y〉,T(A)×T(A⊃B)[T(B)]

λ intro : ΠA:ι ->o.Πt:ι.T(A t) -> T(ε t (lam A))

λ elim : ΠA:ι ->o.Πt:ι.T(ε t (lam A))->T(A t)

bot : ΠA:o.(V(not A) -> T(false)) -> T(A)

where o is the type of propositions, ⊃ is the implication connective, ε is the
“membership” predicate, not is the negation, lam is the “abstraction” operator
for building “sets”, T is the apodictic judgement, V is the generic judgement, δ
is the coercion function, and 〈x, y〉 denotes the encoding of pairs, whose type is
denoted by σ×τ , e.g. λu:σ → τ → ρ. u x y : (σ → τ → ρ) → ρ. The predicate in
the lock is defined as follows: Fitch(Γ
ΣFP

〈x, y〉 : T(A)×T(A ⊃ B)) holds iff x
and y have skeletons in ΛΣFP

, all the holes of which have either type o or are
guarded by a δ, and hence have type V(A), and, moreover, the proof derived by
combining the skeletons of x and y is normal in the natural sense.

The notion of normal deduction is the standard notion of Definition 4. The
predicate Fitch is well-behaved because it considers terms only up-to holes in
the skeleton, which can have type o or are generic judgements. Adequacy for
this signature can be achieved in the format of [HLLMS13]:

Theorem 3 (Adequacy for FP). If A1, . . . , An are the atomic formulæ occur-
ring in B1, . . . , Bm, A, then B1 . . . Bm
FP A iff there exists a normalizable M
such that A1:o, . . . , An:o, x1:V(B1), . . . , xm:V(Bm)
ΣFP

M:T(A) (where A, and Bi rep-
resent the encodings of, respectively, A and Bi in LLFP , for 1 ≤ i ≤ m).

If in the definition of the well-behaved predicate Fitch we enforce that the
deduction is normalizable, we obtain a signature for FP#. The predicate would
then be only semi-decidable.

In the spirit of LLFP , we do not specify how to enforce the verification of
the constraint in the locks. This is left for optimization. The idea underpinning
LLFP is to specify neatly the interface that this, possibly external, module needs
to satisfy in order to be safely plugged in the Logical Framework.

6 The Extensional Quotient of FP

In this section, we relate Fitch-Prawitz Set Theory, FP, to the Theory of Hyper-
universes, TH. Namely, we show that the extensional quotient of the closed term
model of a suitable extension of FP, called FP+, is a hyperuniverse.

6.1 The Theory of Hyperuniverses TH

The näıve Comprehension Principle can be consistently approximated, by
restricting the class of admissible formulæ. In [FH89,FH89a], the Generalized
Positive Comprehension Scheme has been introduced, namely:

Implementing Cantor’s Paradise 243

Axiom 1 (Generalized Positive Comprehension Scheme (GPC)). {x |
A} is a set, if A is a Generalized Positive Formula, where Generalized Positive
Formulæ (GPF) are the smallest class of formulæ

– including u ∈ t, u = t;
– closed under the logical connectives ∧,∨;
– closed under the quantifiers ∀x,∃x,∀x ∈ y,∃x ∈ y, where ∀x ∈ y.A (∃x ∈ y.A)

is an abbreviation for ∀x.(x ∈ y → A) (∃x.(x ∈ y → A));
– closed under the formula ∀x.(B → A), where A is a generalized positive for-

mula and B is any formula such that Fv(B) ⊆ {x}.

In [FH89,FH89a], the Theory of Hyperuniverses TH, namely GPC +
Extensionality, was introduced and proved consistent, together with many exten-
sions which include arbitrary models of Zermelo-Frænkel Set Theory.

The theory TH is a rather expressive Set Theory, in which one can show the
existence of many large sets, e.g.:

– the universe V , the empty set ∅;
– 〈x, y〉, {t}, {t, u}, t∪u, t∩u, t×u, t◦u,

⋃
t,

⋂
t, dom(t), cod(t), t−1,P(t), �(t) =

{x | t ∩ x �= ∅}, t̂(u) = {z | ∃w ∈ u. 〈w, z〉 ∈ t},F(t) = {y | t ∈ y}, t1 t2 =
{〈u, v, w〉 | 〈u, v〉 ∈ t1 ∧ 〈u,w〉 ∈ t2};

– the equality Δ
Δ= {〈x, y〉|x = y}, the membership relation ∈ Δ= {〈x, y〉|x ∈ y},

the graph of the projection functions π1, π2, π1
Δ= {z | ∃x, y. z = 〈〈x, y〉, x〉},

the inclusion relation ⊆ Δ= {z | ∃x, y. (z = 〈x, y〉 ∧ ∀w. y ∈ w −→ x ∈ w)},
the graph of the singleton function λx.{x} Δ= {z | z = 〈x, {x}〉}.

We call hyperuniverses the set-theoretic structures which are models of TH,
following the terminology of [FH89,FH89a], where many such structures were
defined using topological and categorical tools.

6.2 The Extensional Quotient of the Fitch-Prawitz Coalgebra

In this section we study the extensional quotient, or extensional collapse, of the
Fitch-Prawitz coalgebra of closed terms. In particular, we show that a suitable
extension of FP, called FP+, yields an extensional collapse which is (strongly)
extensional, and satisfies the GPC scheme, i.e. it is a hyperuniverse. This result
establishes a connection between FP and TH. For basic definitions and results
on coalgebras, we refer to [JR11]. The theory FP+ is the extension of FP with
the following ω-rule:

(Bounded-ω)
A[w/x] for all closed w s.t. B[w/x], Fv(B) ⊆ {x}

∀x.(B[w/x] → A)

Even if the (Bounded-ω)-rule has infinitely many premisses, once it is taken
as an introduction rule, the notions of quasi-deduction and deduction for FP can
be naturally extended to FP+. Consistency of FP+ is proved then as for FP.

244 F. Honsell et al.

Notice that in our setting the conclusion of the (Bounded-ω)-rule really
amounts to a restricted quantification w.r.t. a closed term. Given that Fv(B) ⊆
{x}, the formula ∀x.(B[w/x] → A) amounts to ∀x ∈ {z | B[z]}.A, where
{z | B[z]} is a closed term. Notice that the Induction Rule is subsumed by
the (Bounded-ω)-rule. Before defining the coalgebra of closed FP+-terms, we
recall the notion of set-theoretic structure:

Definition 7 (Set-theoretic Structure). A set-theoretic structure (X,∈) is
a first-order structure X together with a binary predicate ∈ on X × X, denoting
the membership relation.

Notice that set-theoretic structures are coalgebras for the powerset functor
P() on the category Set. The following definition will be useful in the sequel.

Definition 8 ((Strongly) Extensional Coalgebra)

– A P()-coalgebra (X, fX) is extensional if f is injective.
– A P()-coalgebra (X, fX) is strongly extensional if the unique coalgebra mor-

phism from (X, fX) into the final coalgebra is injective.

Clearly, strong extensionality implies extensionality.
The provable instances of the ∈-relation on the set of closed FP+-terms, T 0,

naturally induce a coalgebra structure for the powerset functor.

Definition 9 (Fitch-Prawitz Coalgebra). Let fT 0 : T 0 −→ P(T 0) be the
P()-coalgebra defined by fT 0(t) = {s |
FP+ s ∈ t}, where P() denotes the
standard powerset functor on the category Set.

Given a P()-coalgebra (X, fX), there is a unique mapping into the final
coalgebra, g : (X, fX) → (Ω, fΩ), where (Ω, fΩ) denotes the final coalgebra.
This latter is clearly extensional, actually it is strongly extensional. The image
via g of (X, fX) into the final coalgebra (Ω, fΩ) is called the extensional quotient
of (X, fX). The extensional quotient is given by the equivalence classes under
bisimilarity. In FP+ (actually already in FP), the notion of bisimilarity can be
defined in the theory itself.

Definition 10 (Bisimilarity)

– Let ABis be the FP+formula with free variable x defined by
ABis

Δ= ∀t, t′ (〈t, t′〉 ∈ x −→ ∀s(s ∈ t −→ ∃s′(s′ ∈ t′ ∧ 〈s, s′〉 ∈ x)) ∧
∀s′(s′ ∈ t′ −→ ∃s.(s ∈ t ∧ 〈s, s′〉 ∈ x))).

A bisimulation is a binary relation R such that
FP+ ABis[R/x].
– The bisimilarity relation ∼ is defined by the following FP+-term:

∼ Δ= {〈t, t′〉 | ∃R. (〈t, t′〉 ∈ R ∧ ABis[R/x])}.

In the following lemma we show that bisimilarity is a maximal bisimulation
equivalence:

Implementing Cantor’s Paradise 245

Lemma 1. (a) Bisimilarity is an equivalence on FP+.
(b)
FP+ t ∼ t′ ←→ ∀s(s ∈ t −→ ∃s′(s′ ∈ t′ ∧ s ∼ s′)) ∧

∀s′(s′ ∈ t′ −→ ∃s.(s ∈ t ∧ s ∼ s′)).

Proof. (a) Straightforward.
(b) (⇒) This amounts to
FP+ ABis[∼ /x], which can be easily proved.
(⇐) This follows by defining R

Δ= {(t, t′) | ∀s(s ∈ t −→ ∃s′(s′ ∈ t′ ∧ s ∼
s′)) ∧ ∀s′(s′ ∈ t′ −→ ∃s.(s ∈ t ∧ s ∼ s′))} and R′ Δ=R∪ ∼, and proving

FP+ ABis[R′/x]. ��
We can now quotient the FP+-coalgebra by the bisimilarity ∼.

Definition 11 (∼-quotient of the FP+-coalgebra). Let M = T 0/ ∼ be the
quotient of T 0 by the bisimilarity ∼ on FP+, i.e., for any t ∈ T 0, we define
t ∈ M by t

Δ= {t′ |
FP+ t ∼ t′}.
M can be endowed with a structure of P()-coalgebra as follows. Let fM : M →
P(M) be defined by fM(t) = {s |
FP+ s ∈ t}. Then the projection π : T 0 → M,
defined by π(t) = t, is a coalgebra-morphism from (T 0, fT 0) to (M, fM), i.e.

T 0

π

��

fT 0 �� P(T 0)

P(π)

��
M

fM
�� P(M)

Finally we prove strong extensionality of M w.r.t. FP+, notice the role of
the (Bounded-ω)-rule.

Proposition 3. The quotient M is extensional, i.e. for all t, t′ ∈ M,

t = t′ ⇐⇒ fM(t) = fM(t′).

Proof. If fM(t) = fM(t′), i.e. {s |
FP+ s ∈ t} = {s′ |
FP+ s′ ∈ t′}, then for
all s, (
FP+ s ∈ t =⇒ ∃s′ (
FP+ s′ ∈ t′ ∧
FP+ s ∼ s′)), and vice versa, hence,
for all s, (
FP+ s ∈ t =⇒
FP+ ∃s′ (s′ ∈ t′ ∧
FP+ s ∼ s′)), and vice versa.
Therefore, by applying the bounded-ω-rule, we get

FP+ ∀s(s ∈ t −→ ∃s′(s′ ∈ t′ ∧ s ∼ s′))∧ ∀s′(s′ ∈ t′ −→ ∃s.(s ∈ t ∧ s ∼ s′)),
hence by Lemma 1,
FP+ t ∼ t′, i.e. t = t′. ��
Corollary 1. The quotient M is strongly extensional.

We prove now that M satisfies the Generalized Positive Comprehension
Scheme, namely it is a hyperuniverse. We start with the following definition,
which actually defines an inner model of TH in FP#:

246 F. Honsell et al.

Definition 12. Let A be a formula with constants in M. We define a corre-
sponding formula Â by induction on A as follows:

A
Δ= ⊥ =⇒ Â

Δ= ⊥
A

Δ= u ∈ t =⇒ Â
Δ=∃u′.u′ ∼ u ∧ u′ ∈ t

A
Δ= u = t =⇒ Â

Δ=u ∼ t

A
Δ= ¬A1 =⇒ Â

Δ= ¬Â1

A
Δ= A1 ∧ A2 =⇒ Â

Δ= Â1 ∧ Â2

A
Δ= A1 ∨ A2 =⇒ Â

Δ= Â1 ∨ Â2

A
Δ= A1 → A2 =⇒ Â

Δ= Â1 → Â2

A
Δ= ∀x.A1 =⇒ Â

Δ= ∀x.Â1

A
Δ= ∃x.A1 =⇒ Â

Δ= ∃x.Â1

Lemma 2. For all A, u, t, x, Â[t/x] ≡ Â[t/x] and u[t/x] ≡ u[t/x].

The following lemma, whose proof which uses (Bounded-ω-rule), is crucial.

Lemma 3. For all GPF A with free variables x1, . . . , xn, for all t1, . . . , tm ∈ T 0,
m ≤ n, we have: M |= A[t1/x1, . . . , tm/xm] ⇐⇒
FP+ Â[t1/x1, . . . , tm/xm].

Proof. By induction on A, using Lemma 2, and the (Bounded-ω)-rule for dealing
with the restricted ∀-case.
Base cases. A

Δ=u = v. Let M |= (u = v)[t/x], i.e., using Lemma 2, this holds
if and only if M |= (u[t/x] = v[t/x], and this amounts to
FP+ u[t/x] ∼ v[t/x].

A
Δ= u ∈ v. Let M |= (u ∈ v)[t/x], i.e., using Lemma 2, this amounts to
FP+

∃u′ (u′ ∼ u[t/x] ∧ u′ ∈ v[t/x]).
Induction step. We only deal with two cases: the remaining are similar.
A

Δ= A1 ∧ A2. Let M |= (A1 ∧ A2)[t/x], then M |= A1[t/x] and M |= A2[t/x].
By induction hypothesis,
FP+ Â1[t/x] and
FP+ Â2[t/x], hence
FP+ (Â1 ∧
Â2)[t/x]. The converse implication follows from the standard definition of the
interpretation of ∧ in a first-order structure.
A

Δ= ∀y ∈ z.A1. Unrestricted quantification is clearly a special case of this one,
and by our earlier remark the case where A

Δ=∀y.(B → A1), with Fv(B) ⊆ {y},
amounts to restricted quantification. So if M |= ∀y ∈ z. A1[t/x, u/z] then
for all t′ such that M |= t′ ∈ u, we have that M |= A1[t/x, u/z, t′/y]. Then
by induction hypothesis we have that for all t and for all t′, such that
FP+

∃y′.y′ ∼ t′ ∧ y′ ∈ u we have that
FP+ Â[t/x, u/z, t′/y], hence applying the
(Bounded-ω)-rule, we have that
FP+ ∀y.∃y′.y′ ∼ u ∧ y′ ∈ z → Â[t/x, u/z].
The reverse implication follows from the interpretation of first-order formulæ in a
structure. ��

Now we are in the position to establish the main theorem of this section.

Theorem 4 (M satisfies GPC). For any formula A in GPF with free vari-
able x, M |= t ∈ v ⇐⇒ M |= A[t/x], where v

Δ= {x | Â}. Hence M is a
hyperuniverse.

Proof. (⇒) From M |= t ∈ {x | Â} we have
FP+ ∃t′.t′ ∼ t ∧ t′ ∈ {x | Â}.

Hence
FP+ ∃t′.t′ ∼ t ∧ Â[t′/x], which, by Lemma 3, implies M |= A[t′/x],
for t′ ∼ t. Hence M |= A[t/x] . (⇐) By Lemma 3, from M |= A[t/x] it follows

FP+ Â[t/x]. Hence
FP+ t ∈ {x | Â}, which implies M |= t ∈ {x | Â}. ��

Implementing Cantor’s Paradise 247

7 FP as a Logical Framework

FP is essentially Näıve Set-Theory, probably the most natural and straightfor-
ward of all Logical Frameworks, which we are familiar with since our schooldays.
The reason for considering FP is twofold. The first reason is pragmatic, i.e., to
explore how to use it for fast and loose formal reasoning on general recursion
and datatypes, i.e., as a proper Logical Framework (we borrow from [DHJG06]
this felicitous expression). The second reason is foundational. FP allows for a
fine-tuned analysis of paradoxes arising from diagonal arguments.

Recently, in the formal methods community, there has been growing interest
in logical systems which support convenient and fast, but logically unsound
or even invalid features and heuristics [Cap05,CSW14,DHJG06]. Those arise
especially in program transformation and program synthesis in non-terminating
functional languages when dealing with general recursion. Albeit invalid, these
methods are nonetheless extremely useful pragmatically. Furthermore, they can
be justified. But this can be done only at the end, once there is a good reason
for going through the often daunting overhead of checking all the totality and
predicativity preconditions [DHJG06,CSW14]. Oleg Kiselyov has remarked that
the principled but cautious approach of Coq and Agda is akin to pessimistic
concurrency: assuming that shared resources are likely to be contended and hence
have to be proactively protected with (often numerous) locks. An alternative is
optimistic concurrency, proceeding as if there were no contention – checking for
consistency only at the end of a transaction. Optimistic concurrency is akin to
loose and fast programming and the approach to termination checking, which
can be carried out in Twelf and LF [Twelf,WN13].

Using FP as a Logical Framework goes precisely in the direction of optimistic
reasoning, actually at two different levels. The first is that of using Lock types
in the implementation to check the normalizability of deductions. Locks do not
amount merely to the postponement of the checks. They rather allow for aggre-
gating and simplifying the checks, so that the final check can be done possibly at
some other level, rather than delegated to the metalanguage as in Coq or Agda.

Somewhat more ambitious, and not completely explored yet, is the pragmatic
value of using a paraconsistent system. It was De Bruijn the founding author of
AUTOMATH, himself, who first raised the challenging and provocative question:
do we really need a terminating metalanguage? Of course if we use Scotus rule,
then our reasoning is empty. But otherwise we still have plenty of useful argu-
ments to carry out which can make visible truly false or missing requirements. So,
even paraconsistent systems can increase our confidence in the outcome. After
all, absolute certainty cannot be achieved, even with terminating systems.

A sharper understanding of which statements have a paraconsistent cognate
is still missing. These arise usually in connection with diagonal arguments. Rea-
soning with small sets or, as we have shown, generalized positive formulæ does
not lead to paraconsistencies. But there are probably many more classes of sen-
tences, for instance in connection with the foundations of Category Theory.

248 F. Honsell et al.

8 Conclusions and Final Remarks

We have discussed the Näıve Set Theory of Fitch-Prawitz [Fit52,Pra06], FP,
which is consistent by design, but nevertheless is expressive enough to define
all partial recursive functions. Furthermore we have related it to the Theory of
Hyperuniverses [FH89a,FHL94]. Foundationally, FP allows for a deeper under-
standing of the limitations implied by set theoretic paradoxes. In particular, we
have that even if
FP+ u �∈ v, then not necessarily M |= u �∈ v. This hints
to the fact that, while retaining Extensionality, we cannot hope to go signifi-
cantly beyond GPC in approximating the näıve Comprehension Principle, e.g.
to include some negative formulæ. Pragmatically, FP offers a natural mathemat-
ical framework where to develop “optimistically” [CSW14,DHJG06] important
branches of Mathematics from Real Numbers [Fit50] to Category Theory. We
have encoded FP in the type-theoretic Logical Framework LLFP , [HLMS16],
which is currently under implementation, thereby providing what we called a
“Computer Assisted Cantor’s Paradise”. Further lines of research on FP are the
following.

Alternate Inner Models. In Sect. 6.2 we have proved that in FP+ we can define an
Inner Model for TH, namely, the model M. But there are also inner models which
have more than one selfsingleton and hence satisfy only Extensionality. E.g., the
extensional quotient w.r.t. a bisimulation, which is an equivalence but does not
equate the two selfsingletons defined in Subsect. 4.1, would be an example of a
hyperuniverse which is not strongly extensional.

Propositions as Types for FP. So far we have based FP on classical logic. But we
can replace the ⊥)-rule by its intuitionistic version, namely ex falso quodlibet, to
get an intuitionistic version of FP. One can then extend the λ-calculus language
of proofs with new constructs to account for the rules concerning ∈ and λ in FP.
A simple solution is to extend a typed λ-calculus for intuitionistic proofs with a
1-ple constructor < M > to account for λI), and correspondingly introduce a π
elimination constructor to account for λE):

Γ �FP M : P (t)

Γ �FP< M >: t ∈ λx.P (x)
λIntro

Γ �FP N : t ∈ λx.P (x)

Γ �FP π(N) : P (t)
λElim

The two constructors are related by the obvious reduction π(〈N〉) −→ N . We can
then prove that all proof terms corresponding to a contraction-free intuitionistic
deduction are normalizing, thereby recovering Grishin’s result. Notice that in
normal deductions, where introduction constructs appear outermost w.r.t. elim-
ination constructs, one can apply π only to variables, i.e. generic proof terms.

Escaping Gödel’s Second Incompleteness Theorem. Since FP is a cut free Set The-
ory, i.e. it is consistent by design, within FP one can prove that there is a model
of FP. This does not contradict Gödel’s second Incompleteness Theorem, since
FP is not closed under modus ponens which is the, so-called, Hilbert-Bernays
third condition necessary for Gödel’s result to go through.

Implementing Cantor’s Paradise 249

FP and Higher-Order Logics. The Theory FP, being a theory of sets, subsumes
higher order logics for any order. For instance ∀P.Q[P] can be expressed as
∀x. Pred(x) → Q[x], for a suitable definition of Pred.

The Ubiquitous Hyperuniverse. Nω(∅). In [FH89a,FHL94], many hyperuniverses
have been introduced. One of these, Nω(∅), arises in many conceptually inde-
pendent contexts, nicely described by Abramsky in [Abr11]. Namely, Nω(∅) is
Cantor-1 space, the union of Cantor’s space (obtained removing the middle
thirds of the unit interval) with the centres of the removed intervals. Nω(∅) is
the unique solution of the metric domain equation X ∼= Pcl(X 1

2
) in the category

of complete metric spaces. Nω(∅) is the space of maximal points of the solution in
Plotkin’s category of SFP domains of the domain equation X ∼= PP (X⊥) ⊕⊥ 1,
see [ABH03]. Nω(∅) is the free Stone modal Algebra over 0 generators. By
Theorem 4 we can add a new item to the list, namely: Nω(∅) is the extensional
quotient of Fitch-Prawitz coalgebra.

Acknowledgments. The authors are grateful to the anonymous referees, and to Oleg
Kiselyov, for many useful remarks and intriguing questions.

References

[ABH03] Alessi, F., Baldan, P., Honsell, F.: A category of compositional domain-
models for separable Stone spaces. Theor. Comput. Sci. 2901, 599–635
(2003)

[Abr11] Abramsky, S.: A Cook’s Tour of the Finitary Non-Well-Founded Sets.
CoRR, abs/1111.7148 (2011). http://arXiv.org/abs/1111.7148

[Cap05] Capretta, V.: General recursion via coinductive types. Log. Meth. Comput.
Sci. 1(2), 1–18 (2005)

[CSW14] Casinghino, C., Sjöberg, V., Weirich, S.: Combining proofs and programs
in a dependently typed language. In: POPL 2014, pp. 33–45. ACM (2014)

[COQ] Development Team: Assistant, The Coq Proof Documentation, system
download. http://coq.inria.fr/

[DHJG06] Danielsson, N.A., Hughes, J., Jansson, P., Gibbons, J.: Fast and loose
reasoning is morally correct. In: POPL 2006, pp. 206–217. ACM (2006)

[FH89] Forti, M., Hinnion, R.: The consistency problem for positive comprehen-
sion principles. J. Symb. Log. 54, 1401–1418 (1989)

[FH89a] Forti, M., Honsell, F.: Models of self-descriptive set theories. In: Colom-
bini, F., Marino, A., Modica, L., Spagnolo, S. (eds.) Partial Differential
Equations and the Calculus of Variations. Birkhäuser, Boston (1989). Ded-
icated to Ennio De Giorgi on his sixtieth birthday

[FHL94] Forti, M., Honsell, F., Lenisa, M.: Processes and hyperuniverses. In:
Pŕıvara, I., Rovan, B., Ruzička, P. (eds.) MFCS 1994. LNCS, vol. 841,
pp. 352–363. Springer, Heidelberg (1994). doi:10.1007/3-540-58338-6 82

[FH96] Forti, M., Honsell, F.: A general construction of hyperuniverses. Theor.
Comput. Sci. 156(1&2), 203–215 (1996)

[Fit50] Fitch, F.B.: A demonstrably consistent mathematics. J. Symb. Log. 15(1),
17–24 (1950)

http://arXiv.org/abs/1111.7148
http://coq.inria.fr/
http://dx.doi.org/10.1007/3-540-58338-6_82

250 F. Honsell et al.

[Fit52] Fitch, F.B.: Symbolic Logic - An Introduction. The Ronald Press,
New York (1952)

[Gir98] Girard, J.-Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998).
doi:10.1006/inco.1998.2700

[Gri82] Grishin, V.N.: Predicate and set-theoretic calculi based on logics without
contractions. Math. USSR Izv. 18, 41–59 (1982)

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
ACM (JACM) 40(1), 143–184 (1993). ACM

[HLLMS13] Honsell, F., Lenisa, M., Liquori, L., Maksimovic, P., Scagnetto, I.: An open
logical framework. JLC 26(1), 293–335 (2016). (First pub. in 2013)

[HLMS16] Honsell, F., Liquori, L., Maksimovic, P., Scagnetto, I.: A logical framework
for modeling external evidence, side conditions, and proof irrelevance using
monads. In: LMCS (2016, to appear)

[JR11] Jacobs, B., Rutten, J.: An introduction to (co)algebras and (co)induction.
In: Sangiorgi, D., Rutten, J. (eds.) Advanced Topics in Bisimulation and
Coinduction, pp. 38–99. Cambridge University Press, Cambridge (2011)

[PS99] Pfenning, F., Schürmann, C.: System description: twelf—a meta-logical
framework. In: Pfenning, F., Schürmann, C. (eds.) CADE 1999. LNCS
(LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999). doi:10.1007/
3-540-48660-7 14

[Pra06] Prawitz, D.: Natural Deduction – A proof-theoretical Study. Dover Pub-
lications, New York (2006)

[Twelf] The Twelf Project. http://twelf.org/wiki/Totality assertion
[WN13] Wang, Y., Nadathur, G.: Towards extracting explicit proofs from totality

checking in twelf. In: LFMTP 2013, pp. 55–66. ACM (2013)
[WCPW03] Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent log-

ical framework: the propositional fragment. In: Berardi, S., Coppo, M.,
Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24849-1 23

http://dx.doi.org/10.1006/inco.1998.2700
http://dx.doi.org/10.1007/3-540-48660-7_14
http://dx.doi.org/10.1007/3-540-48660-7_14
http://twelf.org/wiki/Totality_assertion
http://dx.doi.org/10.1007/978-3-540-24849-1_23

Unified Syntax with Iso-types

Yanpeng Yang(B), Xuan Bi, and Bruno C.d.S. Oliveira

The University of Hong Kong, Pokfulam, Hong Kong, China
{ypyang,xbi,bruno}@cs.hku.hk

Abstract. Traditional designs for functional languages (such as Haskell
or ML) have separate sorts of syntax for terms and types. In contrast,
many dependently typed languages use a unified syntax that accounts
for both terms and types. Unified syntax has some interesting advan-
tages over separate syntax, including less duplication of concepts, and
added expressiveness. However, integrating unrestricted general recur-
sion in calculi with unified syntax is challenging when some level of
type-level computation is present, as decidable type-checking is easily
lost.

This paper argues that the advantages of unified syntax also apply to
traditional functional languages, and there is no need to give up decidable
type-checking. We present a dependently typed calculus that uses unified
syntax, supports general recursion and has decidable type-checking. The
key to retain decidable type-checking is a generalization of iso-recursive
types called iso-types. Iso-types replace the conversion rule typically used
in dependently typed calculus, and make every computation explicit via
cast operators. We study two variants of the calculus that differ on the
reduction strategy employed by the cast operators, and give different
trade-offs in terms of simplicity and expressiveness.

1 Introduction

We live exciting times in the design of functional programming languages. In
recent years, dependent types have inspired novel designs for new programming
languages, such as Agda [19] or Idris [6], as well as numerous programming lan-
guage research [2,3,8,23–25,28]. Dependently typed languages bring additional
expressiveness to type systems, and they can also support different forms of
assurances, such as strong normalization and logical consistency, not typically
present in traditional programming languages. Nevertheless, traditional designs
for functional languages still have some benefits. While strong normalization and
logical consistency are certainly nice properties to have, and can be valuable to
have in many domains, they can also impose restrictions on how programs are
written. For example, the termination checking algorithms typically employed
by dependently typed languages such as Agda or Idris can only automatically
ensure termination of programs that follow certain patterns. In contrast Haskell
or ML programmers can write their programs much more freely, since they do
not need to worry about retaining strong normalization and logical consistency.
Thus there is still plenty of space for both types of designs.
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 251–270, 2016.
DOI: 10.1007/978-3-319-47958-3 14

252 Y. Yang et al.

From an implementation and foundational point-of-view, dependently typed
languages and traditional functional languages also have important differences.
Languages like Haskell or ML have a strong separation between terms and types
(and also kinds). This separation often leads to duplication of constructs. For
example, when the type language provides some sort of type level computation,
constructs such as type application (mimicking value level application) may be
needed. In contrast many dependently typed languages unify types and terms.
There are benefits in unifying types and terms. In addition to the extra expres-
siveness afforded, for example, by dependent types, only one syntactic level is
needed. Thus duplication can be avoided. Having less language constructs sim-
plifies the language, making it easier to study (from the meta-theoretical point
of view) and maintain (from the implementation point of view).

In principle having unified syntax would be beneficial even for more tra-
ditional designs of functional languages, which have no strong normalization or
logical consistency. Not surprisingly, researchers have in the past considered such
an option for implementing functional languages [3,7,21], by using some variant
of pure type systems (PTS) [5] (normally extended with general recursion). Thus,
with a simple and tiny calculus, they showed that powerful and quite expressive
functional languages could be built with unified syntax.

However having unified syntax for types and terms brings challenges. One
pressing problem is that integrating (unrestricted) general recursion in depen-
dently typed calculi with unified syntax, while retaining logical consistency,
strong normalization and decidable type-checking is difficult. Indeed, many early
designs using unified syntax and unrestricted general recursion [3,7] lose all three
properties. For pragmatic reasons languages like Agda or Idris also allow turning
off the termination checker, which allows for added expressiveness, but loses the
three properties as well. More recently, various researchers [8,24,27] have been
investigating how to combine those properties, general recursion and dependent
types. However, this is usually done by having the type system carefully con-
trol the total and partial parts of computation, adding significant complexity to
those calculi when compared to systems based on pure type systems.

Nevertheless, if we are interested in traditional languages, only the loss of
decidable type-checking is problematic. Unlike strong normalization and logical
consistency, decidable type-checking is normally one property that is expected
from a traditional programming language design.

This paper proposes λI: a simple call-by-name variant of the calculus of
constructions. The key challenge solved in this work is how to define a calculus
comparable in simplicity to the calculus of constructions, while featuring both
general recursion and decidable type checking. The main idea, is to recover
decidable type-checking by making each type-level computation step explicit. In
essence, each type-level reduction or expansion is controlled by a type-safe cast.
Since single computation steps are trivially terminating, decidability of type
checking is possible even in the presence of non-terminating programs at the
type level. At the same time term-level programs using general recursion work
as in any conventional functional languages, and can be non-terminating.

Unified Syntax with Iso-types 253

Our design generalizes iso-recursive types [22], which are our main source of
inspiration. In λI, not only folding/unfolding of recursion at the type level is
explicitly controlled by term level constructs, but also any other type level com-
putation (including beta reduction/expansion). There is an analogy to language
designs with equi-recursive types and iso-recursive types, which are normally
the two options for adding recursive types to languages. With equi-recursive
types, type-level recursion is implicitly folded/unfolded, which makes establish-
ing decidability of type-checking much more difficult. In iso-recursive designs,
the idea is to trade some convenience by a simple way to ensure decidability.
Similarly, we view the design of traditional dependently typed calculi, such as
the calculus of constructions as analogous to systems with equi-recursive types.
In the calculus of constructions it is the conversion rule that allows type-level
computation to by implicitly triggered. However, the proof of decidability of type
checking for the calculus of constructions [10] (and other normalizing PTS) is
non-trivial, as it depends on strong normalization [16]. Moreover decidability is
lost when adding general recursion. In contrast, the cast operators in λI have to
be used to explicitly trigger each step of type-level computation, but it is easy
to ensure decidable type-checking, even with general recursion.

We study two variants of the calculus that differ on the reduction strategy
employed by the cast operators, and give different trade-offs in terms of simplicity
and expressiveness. The first variant λIw uses weak-head reduction in the cast
operators. This allows for a very simple calculus, but loses some expressiveness
in terms of type level computation. Nevertheless in this variant it is still possible
to encode useful language constructs such as algebraic datatypes. The second
variant λIp uses parallel reduction for casts and is more expressive. It allows
equating terms such as Vec (1 + 1) and Vec 2 as equal. The price to pay for
this more expressive design is some additional complexity. For both designs type
soundness and decidability of type-checking are proved.

It is worth emphasizing that λI does sacrifice some convenience when per-
forming type-level computations in order to gain the ability of doing arbitrary
general recursion at the term level. The goal of this work is to show the benefits
of unified syntax in terms of economy of concepts for programming language
design, and not use unified syntax to express computationally intensive type-
level programs. Investigating how to express computationally intensive type-level
programs (as in dependently typed programming) in λI is left for future work.

In summary, the contributions of this work are:

– The λI calculus: A simple calculus for functional programming, that col-
lapses terms, types and kinds into the same hierarchy and supports general
recursion. λI is type-safe and the type system is decidable. Full proofs are
provided in the extended version of this paper [29].

– Iso-types: λI generalizes iso-recursive types by making all type-level compu-
tation steps explicit via casts operators. In λI the combination of casts and
recursion subsumes iso-recursive types.

– A prototype implementation: The prototype of λI is available online1.
1 https://bitbucket.org/ypyang/aplas16.

https://bitbucket.org/ypyang/aplas16

254 Y. Yang et al.

2 Overview

In this section, we informally introduce the main features of λI. In particular,
we show how the casts in λI can be used instead of the typical conversion rule
present in calculi such as the calculus of constructions. The formal details of λI
are presented in Sects. 3 and 4.

2.1 The Calculus of Constructions and the Conversion Rule

The calculus of constructions (λC) [10] is a higher-order typed lambda calculus
supporting dependent types (among various other features). A crucial feature of
λC is the conversion rule:

Γ � e : τ1 Γ � τ2 : s τ1 =β τ2

Γ � e : τ2

It allows one to derive e : τ2 from the derivation of e : τ1 and the beta equality
of τ1 and τ2. This rule is important to automatically allow terms with beta
equivalent types to be considered type-compatible. For example, consider the
following identity function:

f = λy : (λx : �. x) Int . y

The type of y is a type-level identity function applied to Int . Without the con-
version rule, f cannot be applied to 3 for example, since the type of 3 (Int)
differs from the type of y ((λx : �. x) Int). Note that the beta equivalence
(λx : �. x) Int =β Int holds. The conversion rule allows the application of f to
3 by converting the type of y to Int .

Decidability of Type Checking and Strong Normalization. While the conversion
rule in λC brings a lot of convenience, an unfortunate consequence is that it cou-
ples decidability of type checking with strong normalization of the calculus [16].
Therefore adding general recursion to λC becomes difficult, since strong nor-
malization is lost. Due to the conversion rule, any non-terminating term would
force the type checker to go into an infinite loop (by constantly applying the
conversion rule without termination), thus rendering the type system undecid-
able. For example, assume a term z that has type loop, where loop stands for any
diverging computation. If we type check (λx : Int . x) z under the normal typing
rules of λC, the type checker would get stuck as it tries to do beta equality on
two terms: Int and loop, where the latter is non-terminating.

2.2 An Alternative to the Conversion Rule: Iso-types

In contrast to the conversion rule of λC, λI features iso-types, making it explicit
as to when and where to convert one type to another. Type conversions are
explicitly controlled by two language constructs: cast↓ (one-step reduction) and
cast↑ (one-step expansion). The benefit of this approach is that decidability of
type checking is no longer coupled with strong normalization of the calculus.

Unified Syntax with Iso-types 255

Reduction. The cast↓ operator allows a type conversion provided that the result-
ing type is a reduction of the original type of the term. To explain the use of
cast↓, assume an identity function g defined by g = λy : Int . y and a term e such
that e : (λx : �. x) Int . In contrast to λC, we cannot directly apply g to e in λI
since the type of e ((λx : �. x) Int) is not syntactically equal to Int . However,
note that the reduction relation (λx : �. x) Int −→ Int holds. We can use cast↓
for the explicit (type-level) reduction:

cast↓ e : Int

Then the application g (cast↓ e) type checks.

Expansion. The dual operation of cast↓ is cast↑, which allows a type conversion
provided that the resulting type is an expansion of the original type of the term.
To explain the use of cast↑, let us revisit the example from Sect. 2.1. We cannot
apply f to 3 without the conversion rule. Instead, we can use cast↑ to expand
the type of 3:

(cast↑ [(λx : �. x) Int] 3) : (λx : �. x) Int

Thus, the application f (cast↑ [(λx : �. x) Int] 3) becomes well-typed. Intuitively,
cast↑ performs expansion, as the type of 3 is Int , and (λx : �. x) Int is the
expansion of Int witnessed by (λx : �. x) Int −→ Int . Notice that for cast↑ to
work, we need to provide the resulting type as argument. This is because for the
same term, there may be more than one choice for expansion. For example, 1+2
and 2 + 1 are both the expansions of 3.

One-Step. The cast rules allow only one-step reduction or expansion. If two
type-level terms require more than one step of reductions or expansions for nor-
malization, then multiple casts must be used. Consider a variant of the example
such that e : (λx : �. λy : �. x) Int Bool . Given g = λy : Int . y , the expression
g (cast↓ e) is ill-typed because cast↓ e has type (λy : �. Int)Bool , which is not
syntactically equal to Int . Thus, we need another cast↓:

cast↓ (cast↓ e) : Int

to further reduce the type and allow the program g (cast↓ (cast↓ e)) to type check.

Decidability Without Strong Normalization. With explicit type conversion rules
the decidability of type checking no longer depends on the strong normaliza-
tion property. Thus the type system remains decidable even in the presence
of non-termination at type level. Consider the same example using the term z
from Sect. 2.1. This time the type checker will not get stuck when type check-
ing (λx : Int . x) z . This is because in λI, the type checker only performs
syntactic comparison between Int and loop, instead of beta equality. Thus it
rejects the above application as ill-typed. Indeed it is impossible to type check
such application even with the use of cast↑ and/or cast↓: one would need to
write infinite number of cast↓’s to make the type checker loop forever (e.g.,
(λx : Int . x)(cast↓(cast↓ . . . z))). But it is impossible to write such program in
practice.

256 Y. Yang et al.

Variants of Casts. A reduction relation is used in cast operators to convert types.
We study two possible reduction relations: call-by-name weak-head reduction and
full reduction. Weak-head reduction cannot reduce sub-terms at certain positions
(e.g., inside λ or Π binders), while full reduction can reduce sub-terms at any
position. We define two variants of casts, namely weak and full casts, by employ-
ing weak-head and full reduction respectively. We also create two variants of λI,
namely λIw and λIp. The only difference is that λIw uses weak-head reduction
in weak cast operators cast↑ and cast↓, while λIp uses full reduction, specifically
parallel reduction, in full cast operators cast⇑ and cast⇓. Both variants reflect
the idea of iso-types, but have trade-offs between simplicity and expressiveness:
λIw uses the same call-by-name reduction for both casts and evaluation to keep
the system and metatheory simple, but loses some expressiveness, e.g. cannot
convert Vec (1 + 1) to Vec 2. λIp is more expressive but results in a more com-
plicated metatheory (see Sect. 4.2). Note that when generally referring to λI, we
do not specify the reduction strategy, which could be either variant.

2.3 General Recursion

λI supports general recursion and allows writing unrestricted recursive programs
at term level. The recursive construct is also used to model recursive types at
type level. Recursive terms and types are represented by the same μ primitive.

Recursive Terms. The primitive μx : τ. e can be used to define recursive func-
tions. For example, the factorial function would be written as:

fact = μf : Int → Int . λx : Int . if x == 0 then 1 else x × f (x − 1)

We treat the μ operator as a fixpoint, which evaluates μx : τ. e to its recursive
unfolding e[x �→ μx : τ. e]. Term-level recursion in λI works as in any standard
functional language, e.g., fact 3 produces 6 as expected (see Sect. 3.4).

Recursive Types. The same μ primitive is used at the type level to represent
iso-recursive types [11]. In the iso-recursive approach a recursive type and its
unfolding are different, but isomorphic. The isomorphism is witnessed by two
operations, typically called fold and unfold. In λI, such isomorphism is witnessed
by cast↑ and cast↓. In fact, cast↑ and cast↓ generalize fold and unfold: they can
convert any types, not just recursive types, as we shall see in the example of
encoding parametrized datatypes in Sect. 5.

3 Dependent Types with Iso-types

In this section, we present the λIw calculus, which uses a (call-by-name) weak-
head reduction strategy in casts. This calculus is very close to the calculus of
constructions, except for three key differences: (1) the absence of the � constant
(due to use of the “type-in-type” axiom); (2) the existence of two cast opera-
tors; (3) general recursion on both term and type level. Unlike λC the proof of

Unified Syntax with Iso-types 257

decidability of type checking for λIw does not require the strong normalization
of the calculus. Thus, the addition of general recursion does not break decidable
type checking. In the rest of this section, we demonstrate the syntax, operational
semantics, typing rules and metatheory of λIw. Full proofs of the meta-theory
can be found in the extended version of this paper [29].

3.1 Syntax

Figure 1 shows the syntax of λIw, including expressions, contexts and values. λIw
uses a unified representation for different syntactic levels by following the pure
type system (PTS) representation of λC [5]. There is no syntactic distinction
between terms, types or kinds. We further merge types and kinds together by
including only a single sort � instead of two distinct sorts � and � of λC. This
design brings economy for type checking, since one set of rules can cover all
syntactic levels. We use metavariables τ and σ for an expression on the type-
level position and e for one on the term level. We use τ1 → τ2 as a syntactic
sugar for Πx : τ1. τ2 if x does not occur free in τ2.

Explicit Type Conversion. We introduce two new primitives cast↑ and cast↓
(pronounced as “cast up” and “cast down”) to replace the implicit conversion
rule of λC with one-step explicit type conversions. The type-conversions perform
two directions of conversion: cast↓ is for the one-step reduction of types, and
cast↑ is for the one-step expansion. The cast↑ construct takes a type parameter
τ as the result type of one-step expansion for disambiguation (see also Sect. 2.2).
The cast↓ construct does not need a type parameter, because the result type of
one-step reduction is uniquely determined, as we shall see in Sect. 3.5.

We use syntactic sugar castn↑ and castn↓ to denote n consecutive cast opera-
tors (see Fig. 1). Alternatively, we can introduce them as built-in operators but
treat one-step casts as syntactic sugar instead. Making n-step casts built-in can
reduce the number of individual cast constructs, but makes cast operators less
fundamental in the discussion of meta-theory. Thus, in the paper, we treat n-step
casts as syntactic sugar but make them built-in in the implementation for better
performance. Note that castn↑ is simplified to take just one type parameter, i.e.,
the last type τ1 of the n cast operations. Due to the determinacy of one-step
reduction (see Lemma 1), the intermediate types can be uniquely determined,
thus can be left out from the castn↑ operator.

General Recursion. We add one primitive μ to represent general recursion. It has
a uniform representation on both term level and type level: the same construct
works both as a term-level fixpoint and a recursive type. The recursive expression
μx : τ. e is polymorphic, in the sense that τ is not restricted to � but can be any
type, such as a function type Int → Int or a kind � → �.

3.2 Operational Semantics

Figure 2 shows the small-step, call-by-name operational semantics. Three base
cases include S Beta for beta reduction, S Mu for recursion unrolling and

258 Y. Yang et al.

Fig. 1. Syntax of λIw

Fig. 2. Operational semantics of λIw

S CastElim for cast canceling. Three inductive cases, S App, S CastDown
and S CastUp, define reduction at the head position of an application, and the
inner expression of cast↓ and cast↑ terms, respectively. Note that S CastElim
and S CastDown do not overlap because in the former rule, the inner term of
cast↓ is a value (see Fig. 1), i.e., cast↑ [τ] v , but not a value in the latter rule.

The reduction rules are called weak-head because only the head term of an
application can be reduced, as indicated by the rule S App. Reduction is also not
allowed inside the λ-term and Π-term which are both defined as values. Weak-
head reduction rules are used for both type conversion and term evaluation.
Thus, we refer to cast operators in λIw as weak casts. To evaluate the value of
a term-level expression, we apply the one-step (weak-head) reduction multiple
times, i.e., multi-step reduction, the transitive and reflexive closure of the one-
step reduction.

3.3 Typing

Figure 3 gives the syntax-directed typing rules of λIw, including rules of context
well-formedness � Γ and expression typing Γ � e : τ . Note that there is only
a single set of rules for expression typing, because there is no distinction of
different syntactic levels.

Most typing rules are quite standard. We write � Γ if a context Γ is well-
formed. We use Γ � τ : � to check if τ is a well-formed type. Rule T Ax

Unified Syntax with Iso-types 259

is the “type-in-type” axiom. Rule T Var checks the type of variable x from
the valid context. Rules T App and T Lam check the validity of application
and abstraction respectively. Rule T Pi checks the type well-formedness of the
dependent function. Rule T Mu checks the validity of a recursive term. It ensures
that the recursion μx : τ. e should have the same type τ as the binder x and
also the inner expression e.

The Cast Rules. We focus on the rules T CastUp and T CastDown that
define the semantics of cast operators and replace the conversion rule of λC.
The relation between the original and converted type is defined by one-step
weak-head reduction (see Fig. 2). For example, given a judgment Γ � e : τ2 and
relation τ1 −→ τ2 −→ τ3, cast↑ [τ1] e expands the type of e from τ2 to τ1, while
cast↓ e reduces the type of e from τ2 to τ3. We can formally give the typing
derivations of the examples in Sect. 2.2:

Γ � e : (λx : �. x) Int
(λx : �. x) Int −→ Int

Γ � (cast↓ e) : Int

Γ � 3 : Int Γ � (λx : �. x) Int : �
(λx : �. x) Int −→ Int

Γ � (cast↑ [(λx : �. x) Int] 3) : (λx : �. x) Int

Importantly, in λIw term-level and type-level computation are treated differently.
Term-level computation is dealt in the usual way, by using multi-step reduction
until a value is finally obtained. Type-level computation, on the other hand, is
controlled by the program: each step of the computation is induced by a cast. If
a type-level program requires n steps of computation to reach the normal form,
then it will require n casts to compute a type-level value.

Pros and Cons of Type in Type. The “type-in-type” axiom is well-known to give
rise to logical inconsistency [14]. However, since our goal is to investigate core
languages for languages that are logically inconsistent anyway (due to general
recursion), we do not view “type-in-type” as a problematic rule. On the other
hand the rule T Ax brings additional expressiveness and benefits: for example
kind polymorphism [30] is supported in λIw.

Syntactic Equality. Finally, the definition of type equality in λIw differs from
λC. Without λC’s conversion rule, the type of a term cannot be converted freely
against beta equality, unless using cast operators. Thus, types of expressions are
equal only if they are syntactically equal (up to alpha renaming).

3.4 The Two Faces of Recursion

Term-Level Recursion. In λIw, the μ-operator works as a fixpoint on the term
level. By rule S Mu, evaluating a term μx : τ. e will substitute all x ’s in e with
the whole μ-term itself, resulting in the unrolling e[x �→ μx : τ. e] . The μ-term
is equivalent to a recursive function that should be allowed to unroll without
restriction. Recall the factorial function example in Sect. 2.3. By rule T Mu, the
type of fact is Int → Int . Thus we can apply fact to an integer. Note that by

260 Y. Yang et al.

Fig. 3. Typing rules of λIw

rule S Mu, fact will be unrolled to a λ-term. Assuming the evaluation of if -
then-else construct and arithmetic expressions follows the one-step reduction,
we can evaluate the term fact 3 as follows:

fact 3
−→ (λx : Int . if x == 0 then 1 else x × fact (x − 1)) 3 -- by S App

−→ if 3 == 0 then 1 else 3 × fact (3 − 1) -- by S Beta

−→ . . . −→ 6

Note that we never check if a μ-term can terminate or not, which is an
undecidable problem for general recursive terms. The factorial function example
above can stop, while there exist some terms that will loop forever. However,
term-level non-termination is only a runtime concern and does not block the
type checker. In Sect. 3.5 we show type checking λIw is still decidable in the
presence of general recursion.

Type-Level Recursion. On the type level, μx : τ. e works as a iso-recursive
type [11], a kind of recursive type that is not equal but only isomorphic to its
unrolling. Normally, we need to add two more primitives fold and unfold for
the iso-recursive type to map back and forth between the original and unrolled
form. Assuming there exist expressions e1 and e2 such that e1 : μx : τ. σ and
e2 : σ[x �→ μx : τ. σ] , we have the following typing results:

unfold e1 : σ[x �→ μx : τ. σ]
fold [μx : τ. σ] e2 : μx : τ. σ

by applying standard typing rules of iso-recursive types [22]:

Γ � e1 : μx : τ. σ

Γ � unfold e1 : σ[x �→ μx : τ. σ]

Γ � μx : τ. σ : �
Γ � e2 : σ[x �→ μx : τ. σ]

Γ � fold [μx : τ. σ] e2 : μx : τ. σ

Unified Syntax with Iso-types 261

However, in λIw we do not need to introduce fold and unfold operators,
because with the rule S Mu, cast↑ and cast↓ generalize fold and unfold. Con-
sider the same expressions e1 and e2 above. The type of e2 is the unrolling
of e1’s type, which follows the one-step reduction relation by rule S Mu: μx :
τ. σ −→ σ[x �→ μx : τ. σ] . By applying rules T CastUp and T CastDown,
we can obtain the following typing results:

cast↓ e1 : σ[x �→ μx : τ. σ]
cast↑ [μx : τ. σ] e2 : μx : τ. σ

Thus, cast↑ and cast↓ witness the isomorphism between the original recursive
type and its unrolling, behaving in the same way as fold and unfold in iso-
recursive types.

An important remark is that casts are necessary, not only for controlling the
unrolling of recursive types, but also for type conversion of other constructs,
which is essential for encoding parametrized algebraic datatypes (see Sect. 5).
Also, the “type-in-type” axiom [7] makes it possible to encode fixpoints even
without a fixpoint primitive, i.e., the μ-operator. Thus if no casts would be
performed on terms without recursive types, it would still be possible to build a
term with a non-terminating type and make type-checking non-terminating.

3.5 Metatheory

We now discuss the metatheory of λIw. We focus on two properties: the decid-
ability of type checking and the type safety of the language. First, we show that
type checking λIw is decidable without requiring strong normalization. Second,
the language is type-safe, proven by subject reduction and progress theorems.

Decidability of Type Checking. The proof for decidability of type checking is by
induction on the structure of e. The non-trivial case is for cast-terms with typing
rules T CastUp and T CastDown. Both rules contain a premise that needs
to judge if two types τ1 and τ2 follow the one-step reduction, i.e., if τ1 −→ τ2
holds. We show that τ2 is unique with respect to the one-step reduction, or
equivalently, reducing τ1 by one step will get only a sole result τ2. Such property
is given by the following lemma:

Lemma 1 (Determinacy of One-step Weak-head Reduction). If e −→
e1 and e −→ e2, then e1 ≡ e2.

We use the notation ≡ to denote the alpha equivalence of e1 and e2. Note that
the presence of recursion does not affect this lemma: given a recursive term μx :
τ. e, by rule S Mu, there always exists a unique term e ′ ≡ e[x �→ μx : τ. e] such
that μx : τ. e −→ e ′. With this result, we show it is decidable to check whether
the one-step relation τ1 −→ τ2 holds. We first reduce τ1 by one step to obtain τ ′

1

(which is unique by Lemma1), and compare if τ ′
1 and τ2 are syntactically equal.

Thus, we can further show type checking cast-terms is decidable.

262 Y. Yang et al.

For other forms of terms, the typing rules only contain typing judgments in
the premises. Thus, type checking is decidable by the induction hypothesis and
the following lemma which ensures the typing result is unique:

Lemma 2 (Uniqueness of Typing for λIw). If Γ � e : τ1 and Γ � e : τ2,
then τ1 ≡ τ2.

Thus, we can conclude the decidability of type checking:

Theorem 1 (Decidability of Type Checking for λIw). Given a well-formed
context Γ and a term e, it is decidable to determine if there exists τ such that
Γ � e : τ .

We emphasize that when proving the decidability of type checking, we do
not rely on strong normalization. Intuitively, explicit type conversion rules use
one-step weak-head reduction, which already has a decidable checking algorithm
according to Lemma 1. We do not need to further require the normalization of
terms. This is different from the proof for λC which requires the language to be
strongly normalizing [16]. In λC the conversion rule needs to examine the beta
equivalence of terms, which is decidable only if every term has a normal form.

Type Safety. The proof of the type safety of λIw is by showing subject reduction
and progress theorems:

Theorem 2 (Subject Reduction of λIw). If Γ � e : σ and e −→ e′ then
Γ � e ′ : σ.

Theorem 3 (Progress of λIw). If ∅ � e : σ then either e is a value v or there
exists e ′ such that e −→ e ′.

The proof of subject reduction is straightforward by induction on the deriva-
tion of e −→ e′. Some cases need supporting lemmas: S CastElim requires
Lemma 1; S Beta and S Mu require the following substitution lemma:

Lemma 3 (Substitution of λIw). If Γ1, x : σ, Γ2 � e1 : τ and Γ1 � e2 : σ,
then Γ1, Γ2[x �→ e2] � e1[x �→ e2] : τ [x �→ e2] .

The proof of progress is also standard by induction on ∅ � e : σ. Notice
that cast↑ [τ] v is a value, while cast↓ e1 is not: by rule S CastDown, e1 will
be constantly reduced until it becomes a value that could only be in the form
cast↑ [τ] v by typing rule T CastDown. Then rule S CastElim can be further
applied and the evaluation does not get stuck. Another notable remark is that
when proving the case for application e1 e2, if e1 is a value, it could only be a
λ-term but not a cast↑-term. Otherwise, suppose e1 has the form cast↑ [Πx :
τ1. τ2] e ′

1. By inversion, we have ∅ � e ′
1 : τ ′

1 and Πx : τ1. τ2 −→ τ ′
1. But such τ ′

1

does not exist because Πx : τ1. τ2 is a value which is not reducible.

Unified Syntax with Iso-types 263

4 Iso-types with Full Casts

In Sect. 3, casts use one-step weak-head reduction, which is also used by term
evaluation and simplifies the design. To gain extra expressiveness, we take one
step further to generalize casts with full reduction. In this section, we present a
variant of λI called λIp, where casts use parallel reduction for type conversion.
Full specification and proofs can be found in the extended version [29].

4.1 Full Casts with Parallel Reduction

Using weak-head reduction in cast operators keeps the simplicity of the language
design. However, it lacks the ability to do full type-level computation, because
reduction cannot occur at certain positions of terms. For example, weak casts
cannot convert the type Vec (1+1) to Vec 2 since the desired reduction is at the
non-head position. Thus, we generalize weak casts to full casts (cast⇑ and cast⇓)
utilizing one-step parallel reduction (−→p) for type conversion. Figure 4 shows
the definition of −→p. It allows to reduce terms at any position, e.g., non-head
positions or inside binders λx : �. 1+1 −→p λx : �. 2, thus enables full type-level
computation for casts.

Fig. 4. One-step parallel reduction of erased terms

There are three remarks for parallel reduction worth mentioning. First, par-
allel reduction is defined up to erasure, a process that removes all casts from
terms (see Fig. 5). We use metavariable r and ρ to range over erased terms and
types, respectively. The only syntactic change of erased terms is that there is no
cast. The syntax is omitted here and can be found in the extended version [29].
It is feasible to define parallel reduction only for erased terms because casts in
λIp (also λIw) are only used to ensure the decidability of type checking and have
no effect on dynamic semantics, thus are computationally irrelevant.

Second, the definition of parallel reduction in Fig. 4 is slightly different
from the standard one for PTS [1]. It is partially parallel: rules P Beta and
P MuBeta do not parallel reduce sub-terms but only do beta reduction and
recursion unrolling, respectively. Such definition makes the decidability prop-
erty (see Lemma 6) easier to prove than the conventional fully parallel version.

264 Y. Yang et al.

Fig. 5. Erasure of casts Fig. 6. Values and evaluation rules of
erased terms

Fig. 7. Syntactic and typing changes of λIp

It also requires fewer reduction steps than the non-parallel version, thus corre-
spondingly needs fewer casts.

Third, parallel reduction does not have the determinacy property like weak-
head reduction (Lemma 1). For example, for term (λx : �. 1 + 1) Int , we can
(parallel) reduce it to either (λx : �. 2) Int by rule P App and P Lam, or 1 + 1
by rule P Beta. Thus, to ensure the decidability, we also need to add the type
annotation for cast⇓ operator to indicate what exact type we want to reduce to.
Similar to cast⇑, cast⇓ [τ] v is a value, which is different from the weak cast↓-term.

Figure 7 shows the syntactic and typing changes of λIp. Notice that in λIw,
reduction rules for type casting and term evaluation are the same, i.e., the
weak-head call-by-name reduction. But in λIp, parallel reduction is only used
by casts. We define weak-head reduction (−→) for term evaluation individually
(see Fig. 6). Note that the relation −→ is defined only for erased terms, which
is similar to the treatment of −→p. We also define syntactic values for erased
terms, ranged over by u (see Fig. 6).

4.2 Metatheory

We show that the two key properties, type safety and decidability of type check-
ing, still hold in λIp.

Unified Syntax with Iso-types 265

Type Safety. Full casts are more expressive but also complicate the metatheory:
term evaluation could get stuck by full casts. For example, the following term,

(cast⇓ [Int → Int] (λx : ((λy : �. y) Int). x)) 3

cannot be further reduced because the head position is already a value but not
a λ-term. Note that weak casts do not have such problem because only cast↑ is
annotated and not legal to have a Π-type in the annotation (see last paragraph
of Sect. 3.5). To avoid getting stuck by full casts, one could introduce several
cast push rules similar to System FC [26]. For example, the stuck term above
can be further evaluated by pushing cast⇓ into the λ-term:

(cast⇓ [Int → Int] (λx : ((λy : �. y) Int). x)) 3 −→ (λx : Int . x) 3

However, adding “push rules” significantly complicates the reduction rela-
tions and metatheory. Instead, we adopt the erasure approach inspired by
Zombie [24] and Guru [25] that removes all casts when proving the type safety.
We define a type system for erased terms, called erased system. Its typing judg-
ment is Δ � r : ρ where Δ ranges over the erased context. Omitted typing rules
are available in the extended version [29].

The erased system is basically calculus of constructions with recursion and
“type-in-type”. Thus, we follow the standard proof steps for PTS [5]. Notice
that term evaluation uses the weak-head reduction −→. We only need to prove
subject reduction and progress theorems for −→. But we generalize the result
for subject reduction, which holds up to the parallel reduction −→p.

Lemma 4 (Substitution of Erased System). If Δ1, x : ρ′,Δ2 � r1 : ρ and
Δ1 � r2 : ρ′, then Δ1,Δ2[x �→ r2] � r1[x �→ r2] : ρ[x �→ r2].

Theorem 4 (Subject Reduction of Erased System). If Δ � r : ρ and
r −→p r ′ then Δ � r ′ : ρ.

Theorem 5 (Progress of Erased System). If ∅ � r : ρ then either r is a
value u or there exists r ′ such that r −→ r ′.

Given that the erased system is type-safe, if we want to show the type-safety
of the original system, it is sufficient to show the typing is preserved after erasure:

Lemma 5 (Soundness of Erasure). If Γ � e : τ then |Γ | � |e| : |τ |.

Decidability of Type Checking. The proof of decidability of type checking λIp is
similar to λIw in Sect. 3.5. The only difference is for cast rules TF CastUp and
TF CastDown, which use parallel reduction |τ1| −→p |τ2| as a premise. We
first show the decidability of parallel reduction:

Lemma 6 (Decidability of Parallel Reduction). If Δ � r1 : ρ1 and Δ �
r2 : ρ2, then whether r1 −→p r2 holds is decidable.

As cast⇑ and cast⇓ are annotated, both τ1 and τ2 can be determined and
the well-typedness is checked in the original system. By Lemma 5, the erased
terms keeps the well-typedness. Thus, by Lemma 6, it is decidable to check if
|τ1| −→p |τ2|. We conclude the decidability of type checking by following lemmas:

266 Y. Yang et al.

Lemma 7 (Uniqueness of Typing for λIp). If Γ � e : τ1 and Γ � e : τ2,
then τ1 ≡ τ2.

Theorem 6 (Decidability of Type Checking for λIp). Given a well-formed
context Γ and a term e, it is decidable to determine if there exists τ such that
Γ � e : τ .

5 Application of Iso-types

λI is a simple core calculus, but expressive enough to encode useful language
constructs. We have implemented a simple functional language Fun to show
how features of modern functional languages can be encoded in λI. We focus on
common features available in traditional functional languages and some inter-
esting type-level features, but not the full power of dependent types. Supported
features include algebraic datatypes, records, higher-kinded types, kind poly-
morphism [30] and datatype promotion [30].

Due to lack of space, many examples illustrating the various language features
supported in Fun are provided only in the extended version [29]. Here we show
the essential idea of how to exploit iso-types to encode language constructs.

Encoding Parametrized Algebraic Datatypes with Weak Casts. We give an exam-
ple of encoding parametrized algebraic datatypes in λIw via μ-operator and weak
casts. Importantly we should note that having iso-recursive types alone (and
alpha equality) would be insufficient to encode parametrized types: the general-
ization afforded by iso-types is needed here. In Fun we can define polymorphic
list as:

data List a = Nil | Cons a (List a);

This Fun definition is translated into λIw using a Scott encoding [18] of
datatypes:

List = μL : � → �. λa : �.Πb : �. b → (a → L a → b) → b
Nil = λa : �. cast2↑ [List a] (λb : �. λn : b. λc : (a → List a → b).n)
Cons = λa : �. λx : a. λ(xs : List a).

cast2↑ [List a] (λb : �. λn : b. λc : (a → List a → b). c x xs)

The type constructor List is encoded as a recursive type. The body is a type-level
function that takes a type parameter a and returns a dependent function type,
i.e., Π-type. The body of Π-type is universally quantified by a type parameter b,
which represents the result type instantiated during pattern matching. Following
are the types corresponding to data constructors: b for Nil , and a → L a → b
for Cons, and the result type b at the end. The data constructors Nil and Cons
are encoded as functions. Each of them selects a different function from the
parameters (n and c). This provides branching in the process flow, based on
the constructors. Note that cast↑ is used twice here (written as cast2↑): one for

Unified Syntax with Iso-types 267

one-step expansion from τ to (λa : �. τ) a and the other for folding the recursive
type from (λa : �. τ) a to List a, where τ is the type of cast2↑ body.

We have two notable remarks from the example above. First, iso-types are
critical for the encoding and cannot be replaced by iso-recursive types. Since
type constructors are parameterized, not only folding/unfolding recursive types,
but also type-level reduction/expansion is required, which is only possible with
casts. Second, though weak casts are not as powerful as full casts, they are
capable of encoding many useful constructs, such as algebraic datatypes and
records [29]. Nevertheless full-reduction casts enable other important applica-
tions. Some applications of full casts are discussed in the extended version [29].

6 Related Work

Core Calculus for Functional Languages. Girard’s System Fω [14] is a typed
lambda calculus with higher-kinded polymorphism. For the well-formedness of
type expressions, an extra level of kinds is added to the system. In comparison,
because of unified syntax, λI is considerably simpler than System Fω, both in
terms of language constructs and complexity of proofs. As for type-level com-
putation, System Fω differs from λI in that it uses a conversion rule, while λI
uses explicit casts. The current core language for GHC Haskell, System FC [26]
is a significant extension of System Fω, which supports GADTs [20], functional
dependencies [15], type families [13], and kind equality [28]. These features use
a non-trivial form of type equality, which is currently missing from λI. On the
other hand, λI uses unified syntax and has only 8 language constructs, whereas
System FC uses multiple levels of syntax and currently has over 30 language
constructs, making it significantly more complex. One direction of our future
work is to investigate the addition of such forms of non-trivial type-equality.

Unified Syntax with Decidable Type-Checking. Pure Type Systems [4] show how
a whole family of type systems can be implemented using just a single syntactic
form. PTSs are an obvious source of inspiration for our work. Although this
paper presents a specific system based on λC, it should be easy to generalize
λI in the same way as PTSs and further show the applicability of our ideas to
other systems. An early attempt of using a PTS-like syntax for an intermediate
language for functional programming was Henk [21]. The Henk proposal was to
use the lambda cube as a typed intermediate language, unifying all three levels.
However the authors have not studied the addition of general recursion nor full
dependent types.

Zombie [8] is a dependently typed language using a single syntactic category.
It is composed of two fragments: a logical fragment where every expression is
known to terminate, and a programmatic fragment that allows general recursion.
Though Zombie has one syntactic category, it is still fairly complicated (with
around 24 language constructs) as it tries to be both consistent as a logic and
pragmatic as a programming language. Even if one is only interested in modeling
a programmatic fragment, additional mechanisms are required to ensure the

268 Y. Yang et al.

validity of proofs, e.g., call-by-value semantics and value restriction [23,24]. In
contrast to Zombie, λI takes another point of the design space, giving up logical
consistency and reasoning about proofs for simplicity in the language design.

Unified Syntax with General Recursion and Undecidable Type Checking.
Cayenne [3] integrates the full power of dependent types with general recursion,
which bears some similarities with λI. It uses one syntactic form for both terms
and types, allows arbitrary computation at type level and is logically inconsistent
because of allowing unrestricted recursion. However, the most crucial difference
from λI is that type checking in Cayenne is undecidable. From a pragmatic
point of view, this design choice simplifies the implementation, but the desirable
property of decidable type checking is lost. Cardelli’s Type:Type language [7]
also features general recursion to implement equi-recursive types. Recursion and
recursive types are unified in a single construct. However, both equi-recursive
types and the Type:Type axiom make the type system undecidable. ΠΣ [2] is
another example of a language that uses one recursion mechanism for both types
and functions. The type-level recursion is controlled by lifted types and boxes
since definitions are not unfolded inside boxes. However, ΠΣ does not have
decidable type checking due to the “type-in-type” axiom. And its metatheory is
not formally developed.

Casts for Managed Type-Level Computation. Type-level computation in λI
is controlled by explicit casts. Several studies [12,17,23–26] also attempt to
use explicit casts for managed type-level computation. However, casts in those
approaches are not inspired by iso-recursive types. Instead they require equality
proof terms, while casts in λI do not. The need for equality proof terms compli-
cates the language design because: (1) building equality proofs requires various
other language constructs, adding to the complexity of the language design and
metatheory; (2) It is desirable to ensure that the equality proofs are valid. Oth-
erwise, one can easily build bogus equality proofs with non-termination, which
could endanger type safety. Guru [25] and Sep3 [17] make syntactic separation
between proofs and programs to prevent certain programmatic terms turning
into invalid proofs. The programmatic part of Zombie [23,24], which has no such
separation, employs value restriction that restricts proofs to be syntactic val-
ues to avoid non-terminating terms. PTS with convertibility proofs (PTSf) [12]
extends PTS by replacing the implicit conversion rule with explicit conversion
proofs embedded into terms. However, it requires many language constructs to
build equality proofs; and it does not allow general recursion, thus does not
need to deal with problem 2). Our treatment of full casts in λIp, using a sep-
arate erased system for developing metatheory, is similar to the approach of
Zombie or Guru which uses an unannotated system.

Restricted Recursion with Termination Checking. As proof assistants, depen-
dently typed languages such as Coq [9] and Adga [19] are conservative as to
what kind of computation is allowed. They require all programs to terminate by
means of a termination checker, ensuring recursive calls are decreasing. Decid-
able type checking and logical consistency are preserved. But the conservative,

Unified Syntax with Iso-types 269

syntactic criteria is insufficient to support a variety of important programming
paradigms. Agda offers an option to disable the termination checker to allow
writing arbitrary functions. However, this may endanger both decidable type
checking and logical consistency. Idris [6] is a dependently typed language that
allows writing unrestricted functions. However, to achieve decidable type check-
ing, it also requires termination checker to ensure only terminating functions are
evaluated by the type checker. While logical consistency is an appealing property,
it is not a goal of λI. Instead λI aims at retaining (term-level) general recursion
as found in languages like Haskell or ML, while benefiting from a unified syntax
to simplify the implementation of the core language.

7 Conclusion

This work proposes λI: a minimal dependently typed core language that allows
the same syntax for terms and types, supports type-level computation, and pre-
serves decidable type checking under the presence of general recursion. The key
idea is to control type-level computation using iso-types via casts. Because each
cast can only account for one-step of type-level computation, type checking
becomes decidable without requiring strong normalization of the calculus. At
the same time one-step casts together with recursion provide a generalization
of iso-recursive types. Two variants of λI show trade-offs of employing differ-
ent reduction strategies in casts. In future work, we hope to investigate surface
language mechanisms, such as type families in Haskell, to express intensive type-
level computation in a more convenient way.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
This work has been sponsored by the Hong Kong Research Grant Council Early Career
Scheme project number 27200514.

References

1. Adams, R.: Pure type systems with judgemental equality. J. Funct. Program.
16(02), 219–246 (2006)

2. Altenkirch, T., Danielsson, N.A., Löh, A., Oury, N.: ΠΣ: dependent types without
the sugar. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic
Programming. LNCS, vol. 6009, pp. 40–55. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-12251-4 5

3. Augustsson, L.: Cayenne – a language with dependent types. In: ICFP 1998. pp.
239–250 (1998)

4. Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2),
125–154 (1991)

5. Barendregt, H.: Lambda Calculi with types. Handbook of Logic in Computer Sci-
ence 2, 117–309 (1992)

6. Brady, E.: IDRIS–systems programming meets full dependent types. In: PLPV
2011, pp. 43–54 (2011)

7. Cardelli, L.: A Polymorphic Lambda-Calculus with type: type. Digital Systems
Research Center (1986)

http://dx.doi.org/10.1007/978-3-642-12251-4_5
http://dx.doi.org/10.1007/978-3-642-12251-4_5

270 Y. Yang et al.

8. Casinghino, C., Sjöberg, V., Weirich, S.: Combining proofs and programs in a
dependently typed language. In: POPL 2014, pp. 33–45 (2014)

9. Coq development team: The coq proof assistant. http://coq.inria.fr/
10. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76, 95–120

(1988)
11. Crary, K., Harper, R., Puri, S.: What is a recursive module?. In: PLDI 1999, pp.

50–63 (1999)
12. van Doorn, F., Geuvers, H., Wiedijk, F.: Explicit convertibility proofs in pure type

systems. In: LFMTP 2013, pp. 25–36 (2013)
13. Eisenberg, R.A., Vytiniotis, D., Peyton Jones, S., Weirich, S.: Closed type families

with overlapping equations. In: POPL 2014 (2014)
14. Girard, J.Y.: Interprtation fonctionnelle et limination des coupures de l’arithmtique

d’ordre suprieur. Ph.D. thesis, Universit Paris VII (1972)
15. Jones, M.P.: Type classes with functional dependencies. In: Proceedings of the 9th

European Symposium on Programming Languages and Systems, March 2000
16. Jutting, L.: Typing in pure type systems. Inf. Comput. 105(1), 30–41 (1993)
17. Kimmell, G., Stump, A., Eades III, H.D., Fu, P., Sheard, T., Weirich, S.,

Casinghino, C., Sjöberg, V., Collins, N., Ahn, K.Y.: Equational reasoning about
programs with general recursion and call-by-value semantics. In: PLPV 2012, pp.
15–26 (2012)

18. Mogensen, T.A.: Theoretical pearls: efficient self-interpretation in Lambda Calcu-
lus. J. Funct. Program. 2(3), 345–364 (1992)

19. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

20. Peyton Jones, S., Washburn, G., Weirich, S.: Wobbly types: type inference for
generalised algebraic data types. Technical report, MS-CIS-05-26, University of
Pennsylvania, July 2004

21. Jones, S.P., Meijer, E.: Henk: a typed intermediate language. In: Types in Compi-
lation Workshop (1997)

22. Pierce, B.C.: Types and Programming Languages. MIT press, Cambridge (2002)
23. Sjöberg, V., Casinghino, C., Ahn, K.Y., Collins, N., Eades III, H.D., Fu, P.,

Kimmell, G., Sheard, T., Stump, A., Weirich, S.: Irrelevance, heterogenous equal-
ity, and call-by-value dependent type systems. In: MSFP 2012, pp. 112–162 (2012)

24. Sjöberg, V., Weirich, S.: Programming up to congruence. In: POPL 2015, pp. 369–
382 (2015)

25. Stump, A., Deters, M., Petcher, A., Schiller, T., Simpson, T.: Verified programming
in Guru. In: PLPV 2009, pp. 49–58 (2008)

26. Sulzmann, M., Chakravarty, M.M.T., Jones, S.P., Donnelly, K.: System F with
type equality coercions. In: TLDI 2007, pp. 53–66 (2007)

27. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: ICFP 2011, pp. 266–278
(2011)

28. Weirich, S., Hsu, J., Eisenberg, R.A.: System FC with explicit kind equality. In:
ICFP 2013, pp. 275–286 (2013)

29. Yang, Y., Bi, X., Oliveira, B.C.d.S.: Unified syntax with iso-types. Extended Ver-
sion (2016). https://bitbucket.org/ypyang/aplas16

30. Yorgey, B.A., Weirich, S., Cretin, J., Jones, S.P., Vytiniotis, D., Magalhães, J.P.:
Giving Haskell a promotion. In: TLDI 2012, pp. 53–66 (2012)

http://coq.inria.fr/
https://bitbucket.org/ypyang/aplas16

Refined Environment Classifiers

Type- and Scope-Safe Code Generation
with Mutable Cells

Oleg Kiselyov1(B), Yukiyoshi Kameyama2, and Yuto Sudo2

1 Tohoku University, Sendai, Japan
oleg@okmij.org

2 University of Tsukuba, Tsukuba, Japan
kameyama@acm.org

Abstract. Generating high-performance code and applying typical
optimizations within the bodies of loops and functions involves moving
or storing open code for later use, often in a different binding environ-
ment. There are ample opportunities for variables being left unbound or
accidentally captured. It has been a tough challenge to statically ensure
that by construction the generated code is nevertheless well-typed and
well-scoped : all free variables in manipulated and stored code fragments
shall eventually be bound, by their intended binders.

We present the calculus for code generation with mutable state that
for the first time achieves type-safety and hygiene without ad hoc restric-
tions. The calculus strongly resembles region-based memory manage-
ment, but with the orders of magnitude simpler proofs. It employs the
rightly abstract representation for free variables, which, like hypothesis
in natural deduction, are free from the bureaucracy of syntax imposed
by the type environment or numbering conventions.

Although the calculus was designed for the sake of formalization and
is deliberately bare-bone, it turns out easily implementable and not too
bothersome for writing realistic program.

1 Introduction

Code generation exhibits the all-too-common trade-off: obtaining code with the
highest performance; statically ensuring the code quality; being able to use the
code-generating system in practice – choose two. Optimizing compilers and many
practical code-generating tools do all desired optimizations. The correctness of
the result is ensured however only by careful programming. This is not a problem
in case of a compiler written by a small team of experts and changed relatively
infrequently. The lack of static assurances is worrisome for code transforma-
tion and generation libraries written by domain experts, who have less time
to devote to proofs and have to continually tune their libraries to the domain
knowledge and circumstances. There is the attested danger of generating code
with unbound, or worse, unexpectedly bound variables. At the very least, we
would like to guarantee that the generated code – at all times, even the code
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 271–291, 2016.
DOI: 10.1007/978-3-319-47958-3 15

272 O. Kiselyov et al.

fragments – is well-formed, well-typed, and all of its free variables will eventu-
ally be bound by their intended binders. This guarantee should hold before we
compile the generated code, which is typically unfit for human reading. Ideally,
the guarantee should hold even before we compile the generator.

On the other side of the trade-off are the staged calculi such as λ◦ and λα

[4,15] that express code generators with the desired static guarantees. They
are called ‘staged’ because evaluation is stratified: the result of the present, or
Level-0, stage is the code to be evaluated at the next, Level-1, or future stage.
The calculi have been implemented as full-featured staged languages used in
practice [8,17]. Another example is Pouillard’s [13] code generation and analysis
library with proven correctness. Alas, all these systems restrict the range of safe
operations on open code: in particular, they limit or outlaw the operations that
move or store open code, retrieving it later in a different binding environment.
Such operations are required for many optimizations such as let-insertion, mem-
oization, loop interchange and tiling. There have been general approaches that
permit the desired open code motions and provide static guarantees: for exam-
ple, [12]. Alas, they are too complex to use in practice or even to implement. For
more discussion, see Sect. 5 and especially [6].

StagedHaskell [6] overcomes the impasse, but partially. It is the library for
code generation that supports code movements, including movements via any
computational (monadic) effect. Using a contextual modal type system, the
library statically assures that at all times the generated code is well-formed,
well-typed and well-scoped : all free variables in manipulated and stored code
fragments shall eventually be bound by their intended binders. However, the
safety properties have been argued only informally. The main reason is that
the complexity of the Haskell implementation, specifically, the encoding of the
contextual modal type system, make the formal reasoning difficult.

The present paper takes the first step of formalizing StagedHaskell: it distills
the staged calculus <NJ> that safely permits open code movements across dif-
ferent binding environments via mutable cells. The calculus can express realistic
examples from StagedHaskell, such as the assert-insertion, see Sect. 4.

Although <NJ> was motivated by code generation with safety guarantees,
it turned a vantage point to view seemingly unrelated areas. First, there is an
uncanny similarity between generating code of functions (or other blocks with
local binders) and region-based memory management. Preventing the ‘extrusion’
of free variables out of the bodies of generated functions is similar to keeping
reference cells allocated within a region from leaking out. We have consciously
used this similarity, adapting techniques from region calculi [5].

The key to ensuring hygiene and type safety when manipulating open code is
reflecting free variables of a code fragment in its type – which evokes contextual
modal type theory [10] and, in general, sequent calculus. The structural rules
such as weakening now turn up in programs, e.g., as ‘shifts’ of De Bruijn indices
[3]. After all, in metaprogramming, meta-level becomes the object level. ‘The
bureaucracy of syntax’ now worries not only logicians but also programmers.

Refined Environment Classifiers 273

A particularly elegant method to overcome the complexities and redundancies
of concrete name and environment representations is environment classifiers [15]
(recalled and discussed in Sect. 3.2). A single classifier represents a set of free
variables, abstracting from their order, quantity, or names. Unfortunately, in the
presence of effects, the original environment classifiers are too coarse, abstracting
away the information needed to ensure the type safety of effectful generators.
Inspired by the concept of local assumptions from Natural Deduction NJ, we
have identified the minimal necessary refinement of environment classifiers.

Contributions. Our specific contributions are as follows:

– Practical two-stage calculus <NJ> whose type system statically ensures hygiene
and the type-safety of the generated code in the presence of mutable reference
cells. The calculus distills the design of the practical StagedHaskell library.
The calculus itself is easily implementable.

– Refinement of environment classifiers – imposing partial order – that preserves
all their simplicity and advantages and is compatible with effects.

<NJ> is close to the current MetaOCaml [8], which permits leaking of vari-
ables (scope extrusion) but raises a run-time error at the moment the code with
leaked (extruded) variables is about to be used. Our calculus prevents such errors
statically.

The calculus has been implemented as a simple embedding in OCaml, whose
type checker checks <NJ> types and even infers them. Signatures are only needed
for functions that receive code values as arguments and use them in distinct
binding environments. One is immediately reminded of MLF [9]; this is not
an accident, as we shall see in Sect. 3.3. All examples in the paper are slightly
reformatted running code. The implementation, with more examples, is available
at http://okmij.org/ftp/tagless-final/TaglessStaged/metaNJ.ml.

This paper is organized as follows: The next section introduces the calculus,
using many examples to illustrate its syntax and dynamic semantics. Section 3
describes the type systems and proves its soundness. Section 3.1 specifically
demonstrates the obvious and very subtle dangers arising from storing open
code in mutable cells, and how <NJ> prevents the dangers but not the free use of
reference cells. Responsible for this are refined environment classifiers; Sect. 3.2
discusses what, why and how. Section 4 shows off a complex example: It is used
exactly as was explained in [6], deliberately to demonstrate that <NJ> is capable
of representing practical StagedHaskell examples.

2 <NJ>, Its Syntax and Semantics

Formally, the syntax of <NJ> is defined in Fig. 1. This section introduces the
calculus and its dynamic semantics more accessibly, on a series of small examples.

<NJ> is a lambda-calculus with reference cells and special constants to create
and combine code values. Whereas 1 : int is the familiar constant of the base
type int, cint 1 is an expression of the code type 〈 int〉γ which evaluates to 〈1〉.

http://okmij.org/ftp/tagless-final/TaglessStaged/metaNJ.ml

274 O. Kiselyov et al.

The code types are explained in Sect. 3. Here, cint is a special code-generating
constant, also called code combinator1 [16,18]. We underline all such constants.
Likewise, cbool true evaluates to 〈true〉 Since the cint and cbool expressions are
common we adopt the abbreviated notation % that stands for either constant,
depending on the context.

The bracketed expressions like 〈1〉 cannot appear in source programs; they
come only during and as the result of reductions. This is the most visible dis-
tinction from stage calculi like λα [15] and MetaOCaml. Neither do we have
‘splicing’ (or, ‘escape’, unquotation). Bracketed expressions are essentially con-
stants: they cannot be decomposed, inspected, or substituted into. Only a subset
of expressions may be bracketed: underlined constants and the brackets them-
selves are excluded. <NJ> therefore is the two-stage calculus, for generating code
but not for generating code generators2. We will sometimes use the superscript
e1 to emphasize the distinction between the host language and the generated
language. Most of the time the superscript is elided for ease of notation.

Figure 2 defines the constants of <NJ>. They come in different arities. Seen
earlier 1 and true are zero-ary constants, denoted as c0 in Fig. 1. On the other
hand, cint and cbool have the arity 1, and are not considered expressions per se:
only their applications to one argument are expressions, see Fig. 1. Likewise, + is
an arity-2 constant, requiring two arguments to be regarded as an expression. We
write such an expression in the conventional infix notation 1 + 2, which evaluates
to 3. Besides cint and cbool, there are constants that combine already built code
values: %1 ± %1 of the code type 〈 int 〉γ evaluates as follows according to the
rules of Figs. 3 and 4.

%1 + %2 � 〈1〉 + %2 � 〈1〉 + 〈2〉 � 〈1+2〉
Here, ± is an arity-2 constant, which we also write in infix. Again, all constants
must be fully applied: there are no partial applications, sections, or other sugar.

<NJ> is the lambda-calculus, with the standard abstractions λx. e and appli-
cations e1 e2. We let let x = e1 in e2 stand as the abbreviation for (λx.e2) e1,
and e1; e2 for let x = e1 in e2 where x does not appear free in e2. The semantics
of <NJ> is the standard small-step left-to-right call-by-value, see Fig. 3. (Heaps
will be explained later on and can be ignored for now). <NJ> can also generate
the code of functions, using the expression form λx. e with peculiar semantics,
which we explain in detail. For example, the expression λx. x ±%3 eventually
generates the code of the function that increments its argument by 3:

λx. x + %3 � λy.〈y〉 + %3 � λy.〈y〉 + 〈3〉 � λy.〈y+3〉 � 〈λy.y+3〉
First, the expression λx. x ±%3 reduces by choosing a fresh variable name y,
replacing all free occurrences of x in its body with 〈y〉 and wrapping the result
in λy. (Expressions of the form λy.e come up during the evaluation and do not
appear in source programs.) Next, the body of thus built λy.〈y〉 ±%3 reduces as

1 The StagedHaskell library, the prototype of <NJ>, is a code-combinator library.
2 This restriction certainly simplifies the formalism. It is also realistic: in all our expe-

rience of using MetaOCaml, the multi-stage language, we are yet to come across any
real-life example needing more than two stages. Template Haskell is also two-stage.

Refined Environment Classifiers 275

described earlier. The final reduction in the sequence builds the resulting code.
Thus producing the code for functions has two separate phases: generating the
name for the bound variable, and generating the binder for that name at the
end. In many staged calculi the two phases can be (and are) combined. The
effects force them apart however, as we shall see soon.

Fig. 1. Syntax of <NJ>. The constants ci with their arities i are defined in Fig. 2.

Fig. 2. The constants ci of <NJ> with their arities i. The underlined constants, whose
result type is code type, are code combinators. The shown types are schematic: t
denotes any suitable type and γ any suitable classifier. We silently add other arithmetic
and comparison constants and code combinators, similar to + and =. Although the
constants may have function types, they are not expressions, unless applied to the right
number of arguments.

For another illustration we take the familiar power example: generating a
function that raises its argument to the given power by repeated multiplications.

let body = λf n x. if n=0 then %1 else x ∗ f (n−1) x in
λn. λx. (fix body) n x

Applying the result to, say, 3 produces 〈λy. y ∗ y ∗ y ∗ 1〉.
<NJ> has mutable state in the form of the familiar mutable cells, such as those

found in ML and many other languages. Correspondingly, the calculus has the

276 O. Kiselyov et al.

Fig. 3. Dynamic semantics of <NJ>: reductions e1 � e2. The reductions involving
(code-generating) constants are defined in Fig. 4.

Fig. 4. Constant (code-generating) reductions

form ref e to create a fresh reference cell holding the value of e, !e to dereference
it, obtaining the held value, and e1 := e2 to replace the value of the cell e1 with
the value of e2, returning the latter value. The semantics is standard, involving
locations l and the heap H, the finite map from locations to values. The empty
heap is denoted as [] ; (l :v,H) is the heap that contains the association of l with
v plus the associations in H. The domain of the latter does not include l. From
λU [2] we borrow the heap-like name heap N, which is the set of names used for
variables in the generated code. As we shall see throughout the paper, there is an
uncanny similarity between reference cells and the future-stage variable names.

The full dynamic semantics of <NJ> thus deals with reductions between con-
figurations, made of the name and location heaps, and an expression, see Fig. 3.
We will often elide the heaps when presenting reductions, especially in exam-
ples. As an illustration, the following reductions show the evaluation of a sample
imperative code, and the generation of the imperative code:

Refined Environment Classifiers 277

N;H;let r = ref (2+3) in r := 0; ! r �∗

N;(l :5,H); l := 0; ! l �∗ N;(l :0,H);! l � N;(l :0,H);0
clet r = ref (%2 + %3) in clet z = r := %0 in !r ≡
(λr. (λz. ! r) @ r := %0) @ ref (%2 + %3) �∗

(λy. (λu. !〈y〉) @ 〈y〉 := %0) @ ref (%2 + %3) �∗

(λy. 〈λu. !y〉 @ 〈y := 0〉) @ ref (%2 + %3) �∗

〈(λy. (λu. !y) (y := 0)) (ref (2 + 3))〉
where we used clet x = e1 in e2 to stand for (λx. e2) @ e1. In the first example,
l denotes a fresh location. We elided the heaps in the second example.

So far, the lambda-calculus fragment of <NJ>, the code generating and the
reference cell fragments looked like orthogonal extensions. There is one part
of the semantics where they interact non-trivially. It has to do with generat-
ing functions and using reference cells to store open code. The following is an
example of how not to use reference cells to store open code: it is the infamous
scope-extrusion example.

N;H;let r = ref %0 in (λx. r := x); ! r � N;(l : 〈0〉 ,H); (λx. l := x); ! l �
(y,N);(l : 〈0〉 ,H); (λy. l := 〈y〉); ! l � (y,N);(l : 〈y〉 ,H): (λy. 〈y〉); ! l �
(y,N);(l : 〈y〉 ,H); 〈λy. y〉 ; ! l �
(y,N);(l : 〈y〉 ,H); ! l � (y,N);(l : 〈y〉 ,H); 〈y〉

When building the functions’s body we store the code with the yet-to-be-bound
variable y in the reference cell. After the function is constructed we retrieve from
the reference cell the code with what is by now the unbound variable y. We have
just seen the most blatant example of scope extrusion; alas, there are also subtle,
and hence far more dangerous cases; we discuss them in Sect. 3.1.

Our dynamic semantics is really non-chalant about unbound future-stage
variables, treating them essentially as constants. To be pedantic, y in the result
of the scope-extrusion example is bound, technically: it occurs in the name heap.
Real staged languages such as MetaOCaml and Scala-Virtualized [14] likewise
allow unbound variables to appear in code values (in case of MetaOCaml, for
a short interval). We will show in the next section that a well-typed <NJ> pro-
gram never generates code with unbound variables. The scope-extrusion program
above does not type-check.

Storing open code in reference cells has many legitimate uses. Here we show
one simple example. It is again the power function, but now with reference cells.
Merely computing xn looks in <NJ> as

λn.λx. let r = ref 1 in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r

To obtain the code for computing xn for a fixed n, we turn the above program
into the generator, in a rather straightforward way:

let body = λn.λx. let r = ref %1 in
fix (λf .λn. if n = 0 then 0 else (r := !r ∗ x; f (n−1))) n; ! r

in λn. λx. body n x

Applying the result to, say, 3 produces, as before, 〈λy. y ∗ y ∗ y ∗ 1〉. The ref-
erence cell r accumulates progressively longer code for the product, containing

278 O. Kiselyov et al.

multiple occurrences of the free variable y, to be bound at the end. Section 4
shows more interesting, realistic example of reference cells in code generators, of
assertion insertion.

3 Type System

Figure 1 also defines the syntax of types t, which include the standard, base
types of int and bool, the arrow (function) type and the reference type t ref.
Non-standard is the code-type 〈t〉γ , containing the so-called classifier γ – similar
in intent, but more precise than the environment classifier of [15], as mentioned
in the Introduction. One may think of the classifier γ as a type-level represen-
tation, or ‘name’, of a Level-1 variable – although strictly speaking a classifier
represents a binding environment. We delay the further discussion of classifiers
till Sect. 3.2, after we explained the typing rules that govern classifiers, the par-
tial order on classifiers and classifier subtyping. Since <NJ> is a two-level system
– the generated code does not contain any code generating expressions – we
distinguish level 1 types t1 from level 0 types t: the former omits code types. To
relieve the notation burden, however, we will often use the same meta-variable
t for both sorts of types, using t1 only where necessary for disambiguation.

Figure 5 defines judgements and their components. The main typing judge-
ment – the expression e has the type t at the level L – has the form
Υ ;Θ;Γ �L e : t. Here, Γ is the standard environment, an ordered sequence asso-
ciating types with free variables in an expression. Free variables in e1 expressions
(that is, expressions within brackets) are Level-1 free variables; their associations
(y:t1)γ in Γ are annotated with the classifier γ. Besides the free variable bind-
ings, Γ also contains classifiers γ and classifier subtyping witnesses γ1�γ2 to be
explained shortly. Υ and Θ are essentially the typings of the name and location
heaps. Θ is indeed a finite map from locations to types; Υ on the other hand,
has more structure. It is an ordered sequence. It contains the classifier γ for
each name in N. Like Γ , it also contains the types associated with each name
(Level-1 variable) and the classifier subtyping witnesses. One may think of Γ as
a local type environment and Υ as a ‘global’ one. The initial Υ contains only the
pre-defined classifier γ0. We use the standard ∈ notation to assert that Γ or Υ
sequences contain a particular element. In addition, we write l ∈ Θ to say the
location is in the domain of the finite map Θ. The notation b ∈ (Γ � Υ) means
that some binding b is an element of Γ , or else it is an element of Υ (note the
asymmetry).

Fig. 5. Judgements, environments, classifiers

Refined Environment Classifiers 279

Fig. 6. Well-formedness of environments and heap typings � Υ ok, Υ � Θ ok, Υ � Γ ok

Some judgements are generic, so we use superscript L that stands for either
empty or a classifier. If L is not empty, then, strictly speaking, the judgement
should be written as Υ ;[]; Γ �γ e1: t1, meaning that only a subset of expressions
(and types) are allowed at level 1. In particular, locations cannot appear at
Level 13: normally locations result from evaluating expressions ref e; although
such expressions may appear in the generated code, they remain unevaluated.
There are no code combinators in <NJ> that could produce the value 〈 l 〉. A
substitution cannot insert a location either, since the generated code cannot be
substituted into. Therefore, the heap typing Θ is irrelevant in such judgements.
We will almost always drop the superscript in e1 and t1 (we keep it in the rule
(Code) as reminder).

Figure 6 states the well-formedness constraints on the environments and heap
typings, which can be summarized as the absence of duplicates and the classifiers
being defined before use. It becomes clear that each Level-1 variable binding
recorded in the global Υ or local Γ environment has its own classifier. Indeed, a
classifier acts as a type-level ‘name’ of a Level-1 variable. To ease the notation,
hereafter we shall assume well-formedness of all environments and heap typings.
We write Γ ,Γ ’ and Υ ,Υ ’ for the concatenation of two sequences such that the
result must be well-formed.

The typing of expressions is presented in Fig. 7 whereas Fig. 9 defines the
typing of heaps. Most of the type system is standard. The rule (Const) uses
the types of constants tc, given in Fig. 2. We abuse the notation and treat, for
type-checking purposes, constant expressions such as c2 e1 e2 as applications to
c2, although c2 is not an expression per se. The rules (Sub0) and (Sub1) rely
on the partial order on classifiers specified in Fig. 8 in the straightforward way:
Υ ,Γ |= γ1�γ2 if either γ1�γ2 literally occurs in the environments as a witness,
or can be derived by reflexivity and transitivity.
3 If we generate code for later use, e.g., as a library of specialized algorithms, it makes

no sense for the generated code to contain pointers into the generator’s heap. By
the time the produced code is run, the generator will be long gone. Although shared
heap may be useful in run-time-code specialization, none of the staged calculi to our
knowledge consider this case.

280 O. Kiselyov et al.

Fig. 7. Type system: typing of expressions

Fig. 8. Partial order on classifiers Υ ;Γ |= γ1�γ2

Fig. 9. Type system: typing of heaps Υ � N and Υ ;Θ � H

The most interesting are the rules (CAbs) and (IAbs). To explain them and
to illustrate the type system, we show two sample typing derivations. The first
deals with the term λx1.λx2.x1 ± x2 – generating the curried addition func-
tion – in the initial environment, in which Υ contains only the predefined clas-
sifier γ0, and Θ and Γ are empty. In the following derivation, Γ2 stands for
γ1, (γ1�γ0), (x1:〈int〉γ1), γ2, (γ2�γ1), (x2:〈int〉γ2).

Υ ;Θ;Γ2 � x1: 〈int〉γ1 Υ ;Γ2 |= γ1�γ2

Υ ;Θ;Γ2 � x1: 〈int〉γ2 Υ ;Θ;Γ2 � x2: 〈int〉γ2

Υ ;Θ;Γ2 � x1 + x2: 〈int〉γ2

Υ ;Θ;(γ1, (γ1�γ0), (x1:〈int〉γ1)) � λx2. x1 + x2: 〈int→int〉γ1

Υ ;Θ;[] � λx1.λx2. x1 + x2 : 〈int→int→int〉γ0

Refined Environment Classifiers 281

The side-conditions of (CAbs) tell that the classifiers γ1 and γ2 are ‘fresh’.
Section 3.1 shows another attempted (but not completed) derivation, in case of
scope extrusion. The second derivation is for the expression λy1.λx2. 〈y1〉 + x2,
which results from the one-step reduction of the expression in the pre-
vious derivation. Now, Υ1 stands for γ0, γ1, γ1�γ0, (y1:int)

γ1 and Γ2 for
γ2,γ2�γ1,(x2:〈int〉γ2).

Υ1;Θ;Γ2 �γ1 y1: int

Υ1;Θ;Γ2 � 〈y1〉: 〈int〉γ1 Υ1;Γ2 |= γ2�γ1

Υ1;Θ;Γ2 � 〈y1〉: 〈int〉γ2 Υ1;Θ;Γ2 � x2: 〈int〉γ2

Υ1;Θ;Γ2 � 〈y1〉 + x2: 〈int〉γ2

Υ1;Θ;[] � λx2. 〈y1〉 + x2: 〈int→int〉γ1

Υ1;Θ;[] � λy1.λx2. 〈y1〉 + x2 : 〈int→int→int〉γ0

It should be clear, already from (IAbs) in fact, that λy. is not really a binding
form. The environment Γ in (IAbs) is empty since λy.e shows up only during
evaluation and it is not a value.

Proposition 1 (Canonical Forms). The only values of base types int and bool
are zero-ary constants (numerals and booleans, respectively). Values of reference
types t ref are locations. Values of code types are all bracketed expressions 〈e〉
and of the function types t1→t2 are abstractions λx.e.

Although constants of arity 1 and above also have function types (see Fig. 2), not
applied to the right number of arguments they are not regarded as expressions.

Proposition 2 (Weakening). If Υ ;Θ;Γ �L e:t, Υ � N, and Υ ;Θ � H hold, so
do (Υ ,Υ ’);(Θ,Θ’);(Γ ,Γ ’) �L e:t and (Υ ,Υ ’) � N and (Υ ,Υ ’);(Θ,Θ’) � H.

Recall that comma denotes concatenation that preserves well-formedness; which
implies Θ and Θ’ are disjoint. The proof is straightforward.

Theorem 1 (Subject Reduction). If Υ ;Θ;[] � e: t, Υ � N, Υ ;Θ � H, and
N;H;e � N’;H’;e’, then Υ ’;Θ ’;[] � e ’: t, Υ ’ � N’, Υ ’;Θ’ � H’, for some Υ ’ and
Θ’ that are the extensions of the corresponding unprimed things.

We outline the proof in AppendixA.

Theorem 2 (Progress). If Υ ;Θ;[] � e: t, Υ � N and Υ ;Θ � H, then either e is
a value or there are N’, H’ and e’ such that N;H;e � N’;H’;e’.

The proof is the easy consequence of the canonical forms lemma. For example,
if the last rule in the derivation of Υ ;Θ;[] � e: t is (IAbs), then e must have the
form λy.e’ for some e’ , where e’ must itself be typeable in the same Υ and Θ.
By induction hypothesis, e’ either reduces, or is a value. In the latter case, by
the canonical forms lemma, it should be of the form 〈e2〉 for some e2 – meaning
λy.〈e2〉 can reduce.

282 O. Kiselyov et al.

Corollary 1. If ([], γ0);[];[] � e:〈t〉γ0 and [];[]; e � N;H;v then v has the
form 〈e1〉 and ([], γ0);[];[] �γ0 e1:t.

That is, if a well-typed program of the type 〈t〉γ0 terminates it generates the
code well-typed in the empty environment. The generated code hence has no
unbound variables.

3.1 Scope Extrusion

When generating the body of a function, its formal argument is available as a
code value – as the free variable. Scope extrusion occurs when that open code
value is used outside the dynamic scope of the function generator and hence the
free variable can never be properly bound. Although the error is obvious once we
attempt to compile the generated code, it is not at all obvious what part of the
generator is responsible. Debugging generated code is very difficult in general.
We now demonstrate how <NJ> prevents scope extrusion.

We start with the example of blatant scope extrusion, from Sect. 2:

let r = ref %0 in (λx. r := x); ! r

We have seen that its evaluation indeed produces the code with an unbound
variable. The example does not type check however. Specifically, the type
error occurs not when the open code is retrieved from the reference cell r
at the end. Rather, the generator of the function body, specifically, r := x
fails to type-check. Here is the attempt at the derivation, where we assumed
γ ∈ (Γ � Υ) and so is γ1 (which may be the same as γ). We take Γ2 to be
Γ ,(r :〈 int〉γ1 ref),γ2,γ2�γ,(x:〈int〉γ2) where γ2 is fresh.

Υ ;Θ;Γ2 � r := x: 〈int〉γ2

Υ ;Θ;(Γ ,(r:〈 int 〉γ1 ref)) � (λx. r := x): 〈 int→int〉γ

Υ ;Θ;Γ � let r = ref cint 0 in (λx. r := x): 〈 int→int〉γ

The derivation cannot be completed since r has the type 〈 int〉γ1 ref but x is of
the type 〈 int〉γ2 where γ2 is specifically chosen by (CAbs) to be different from
any other classifiers in Γ and Υ , including γ1.

If such examples were our only worry, a simpler type system would have
sufficed. Instead of named classifiers, we would annotate code types with just a
natural number: the nesting level of λ. Our blatant example will likewise fail to
type-check. The error will be reported later, however, when type checking the
last expression ! r retrieving the code with the already leaked variable as the
program result. The program result must be closed: be at the 0th nesting level.
The type system of [3] (extended with reference cells) likewise rejects the blatant
example, as was described in that paper. (After all, their type system annotates
code types with the typing environment sequence, which is the refinement of
the nesting depth.) MetaOCaml also reports the scope extrusion error – when
running the program and executing the ! r expression. In contrast, <NJ> rejects
r := x, when merely attempting to leak out the free variable.

Refined Environment Classifiers 283

Alas, scope extrusion can be subtle. Consider a small modification of the
earlier example:

let r = ref %0 in (λx. r := x); (λz. ! r)

The simpler type system with mere level counting accepts the code: the free
variable leaks out of one binder into another, at the same nesting level of λ.
Likewise, the calculus of [3] (extended with reference cells as described therein)
will type-check and even run the example, producing the code for the identity
function. This is not what one may expect from the generator λz. ! r. Our <NJ>
rejects r := x in the first part of the example as described earlier: it rejects even
an attempt to leak the variable.

Finally, scope extrusion may be harmless, as in the following, yet another
variation of the example:

let r = ref (λz.z) in (λx. r := (λz. (x; z)); %0); !r

When generating the body of the function, we incorporate the free variable x in
the closure λz. (x; z), but in a way that it does not contribute to the result and
hence is not reflected in the closure’s type, which remains int→int. Technically,
the free variable has leaked – but in a useless way, embedded in dead code.

<NJ> accepts the latter example. When run, it indeed produces the closure
with an unbound variable – which remains typeable since the unbound variable
is still in the global heap N and its classifier in Υ . Such open code must have been
dead, however: it cannot be the result of a well-typed generator, since the type
of such result would have contained the classifier γ that is different from γ0. The
well-typed generator program must have the type 〈t〉γ0 . We have seen before
that even a fragment, let alone the whole program, that attempts to ‘usefully
leak’ a bound variable will fail to type-check.

Accepting unbound variables in dead code has many precedents. Most region
calculi (see [5] and references therein) and their implementations (such as runST
monad in Haskell) allow dangling references, provided they are not accessed –
that is, remain embedded in essentially dead code.

3.2 Environment Classifiers, Binding Abstractions, and Lexical
Scope

As we have seen from Sect. 3.1, the key to preventing scope extrusion is annotat-
ing the type of a code value with some representation of free variables that may
be contained therein. This section discusses a few choices for the representation
and the position of <NJ> among them as the most abstract while still sufficient
to prevent scope extrusion. By free variables we always mean Level-1 free vari-
ables: all values and terms produced and evaluated in stage calculi are closed
with respect to Level-0 variables.

On one end of the spectrum is annotating the type of a code value with the
names of the containing free variables, or the typing environment: the set or
the sequence listing the free variables and their types. Taha and Nielsen [15,
Sect. 1.4] describe many difficulties of this approach (the sheer size of the type
being one of them), which makes it hard to implement, and use in practice.

284 O. Kiselyov et al.

On the other extreme is the most abstract representation of a set of free
variables: as a single name (the environment classifier, [15]) or a number, the
cardinality of the set. Section 3.1 showed that this is not sufficient to prevent the
scope extrusion, of the devious, most harmful sort.

The approach of [3] also annotates the code types with the type environ-
ment; however, by using De Bruijn indices, it avoids many difficulties of the
nominal approach, such as freshness constraints, α-renaming, etc. The approach
is indeed relatively easy to implement, as the authors have demonstrated. Alas,
although preventing blatant scope extrusion, it allows the devious one, as we
saw in Sect. 3.1.

The representation of [3] is also just too concrete: the code type
〈 int 〉(int,bool,int) tells not only that the value may contain three free variables
with the indices 0, 1 and 2. The type also tells that the int and the bool vari-
ables will be bound in that order and there is no free variable to be bound in
between. There is no need to know with such exactitude when free variables will
be bound. In fact, there is no need to even know their number, to prevent scope
extrusion. The concreteness of the representation has the price: the system of [3,
Sect. 3.3] admits the term, in our notation, λf .λx.λy.f y, which may, depending
on the argument f, generate either 〈λx.λy.y〉 or, contrary to any expectation,
〈λx.λy.x〉.

Such a behavior is just not possible in <NJ>: consider λx. f x where f is some
function on code values. The function receives the code of a Level-1 variable
and is free to do anything with it: discard it, use it once or several times in the
code it is building, store in global reference cells, as well as do any other effects,
throw exceptions or diverge. Still, we are positive that whatever f may do, if
it eventually returns the code that includes the received Level-1 variable, that
variable shall be bound by λx. of our expression – regardless of whatever binders
f may introduce. This is what we call ‘lexical’ scope for Level-1 variables: the
property, not present in [7] (by choice) or [3].

<NJ> avoids the problematic ‘variable conversions’ because it does not exposes
in types or at run-time any structure of the Level-1 typing environment. The
environment classifier in <NJ> is the type-level representation of the variable
name. There is a partial order on classifiers, reflecting the nesting order of the
corresponding λx generators. The relation γ2�γ1 tells that the variable corre-
sponding to γ1 is (to be) introduced earlier than the free variable corresponding
to γ2, with no word on which or how many variables are to be introduced in-
between. The code type is annotated not with the set of free variables, not with
the set of the corresponding classifiers – but only with the single classifier, the
maximal in the set. The type system ensures that there is always the maxi-
mal element. To be precise, any free Level-1 variable that may appear within
λy. 〈e〉 : 〈t1→t2〉γ2 is marked by such a classifier γ1 that γ2�γ1. Therefore, any
such variable will be bound by an ancestor of λy. This is another way to state
the property of ‘lexical scope’ for free variables.

Refined Environment Classifiers 285

3.3 Classifier Polymorphism

The classifier polymorphism and its importance are best explained on examples.
The following generator

λx. let f = λz. cint x + %1 + z in let f ’ = λz’. (cint x + %1) ∗ z’ in e

contains the repeated code that we would like to factor out, to make the gener-
ators clearer and more modular:

λx. let u = cint x + %1 in let f = λz. u + z in let f ’ = λz’. u ∗ z’ in e

One may worry if the code type-checks: after all, u is used in contexts associated
with two distinct classifiers. The example does type-check, thanks to (Sub0)
rule: u can be given the type 〈 int〉γ0 , and although z:〈 int〉γ1 and z ’: 〈 int〉γ2 are
associated with unrelated classifiers, γ1�γ0 and γ2�γ0 hold.

Alas, the classifier subtyping gets us only that far. It will not help in the
more interesting and common example of functions on code values:

λx. let u = λz.cint x + z in let f = λz. u z + z in let f ’ = λz’. u z’ ∗ z’ in e

where the function u is applied to code values associated with unrelated classi-
fiers. To type-check this example we need to give u the type ∀ γ. 〈 int〉γ→〈int〉γ .
Before, γ was used as a (sometimes schematic) constant; now we use it as a
classifier variable.

Extending <NJ> with let-bound classifier polymorphism with attendant value
restriction is unproblematic and straightforward. In fact, our implementation
already does it, inheriting let-polymorphism from the host language, OCaml.
Sometimes we may need more extensions, however.

For example, we may write a generator that introduces an arbitrary, sta-
tically unknown number of Level-1 variables, e.g., as let-bound variables to
share the results of computed expressions. Such pattern occurs, for example,
when specializing dynamic programming algorithms. AppendixB demonstrates
the let-sharing on the toy example of specializing the Fibonacci-like function,
described in [6, Sect. 2.4]. As that paper explains, the generator requires poly-
morphic recursion – which is well-understood. Both Haskell and OCaml supports
it, and hence our implementation of <NJ>. Polymorphic recursion also shows in
[3].

There are, however, times (not frequent, in our experience) where
even more polymorphism is needed. The poster example is the staged
eta-function, the motivating example in [15]: λf . λx. f x, whose type is,
(〈t1〉γ → 〈t2〉γ) → 〈t1→t2〉γ , approximately. The type is not quite right: f
accepts the code value that contains a fresh free variable, which comes with
a previously unseen classifier. Hence we should assign eta at least the type
(∀ γ1. 〈t1〉γ1 → 〈t2〉γ1) → 〈t1→t2〉γ – the rank-2 type. This is still not quite
right: we would like to use eta in the expression such as λu. eta (λz. u ± z),
where f combines the open code received as argument with some other open
code. To type-check this combination we need Υ ,Γ |= γ1�γ. Hence the correct
type for eta should be

∀ γ. (∀ γ1�γ. 〈t1〉γ1 → 〈t2〉γ1) → 〈t1→t2〉γ

286 O. Kiselyov et al.

with the bounded quantification. One is immediately reminded of MLF . Such
bounded quantification is easy to implement, however, by explicit passing of
subtyping witnesses (as done in the implementation of the region calculus [5])
Our implementation of <NJ> supports it too – and how it cannot: eta is just the
first-class form of λ. Thus the practical drawback is the need for explicit type
signatures for the sake of the rank-2 type (just as signatures are required in MLF

when the polymorphic argument function is used polymorphically). Incidentally,
the original environment classifiers calculus of [15] gives eta the ordinary rank-1
type: here the coarseness of the original classifiers is the advantage. The formal
treatment of rank-2 classifier polymorphism is the subject of the future research.

4 Complex Example

To demonstrate the expressiveness of <NJ>, we show a realistic example of assert-
insertion – exactly the same example that was previously written in Staged-
Haskell. The latter is the practical Haskell code-generation library, too complex
to reason about formally and prove correctness. The example was explained in
detail in [6]; therefore, we elide many explanations here.

For the sake of the example, we add the following constants to <NJ>:

/ : int → int → int assert : bool → bool
/ : 〈 int 〉γ → 〈int〉γ → 〈int〉γ assertPos : 〈 int 〉γ → 〈t〉γ → 〈t〉γ

The first two are the integer division and the corresponding code combinator;
assert e returns the result of the boolean expression, if it is true. Otherwise, it
crashes the program. The constant assertPos is the corresponding combinator,
with the reduction rule assertPos 〈e1〉 〈e2〉 � 〈assert (e1>0); e2〉 .

The goal is to implement the guarded division, which makes sure that the
divisor is positive before attempting the operation. The naive version

let guarded div = λx.λy. assertPos y (x / y)

to be used as

λy. complexExp + guarded div %10 y

produces 〈λx. complexExp + (assert (x>0); (10 / x))〉. The result is hardly sat-
isfactory: we check the divisor right before the division. If it is not positive, the
time spent computing complexExp is wasted. If the program is going to end up
in error, we had rather it end sooner than much later.

The solution is explained in [6], implemented in StagedHaskell and is repro-
duced below in <NJ>. Intuitively, we first reserve the place where it is appropriate
to place assertions, which is typically right at the beginning of a function. As we
go on generating the body of the function, we determine the assertions to insert
and accumulate them in a mutable ‘locus’. Finally, when the body of the function
is generated, we retrieve the accumulated assertion code and prepend it to the
body. The function add assert below accumulates the assertions; assert locus
allocates the locus at the beginning and applies the accumulated assertions at
the end.

Refined Environment Classifiers 287

let assert locus = λf.
let r = ref (λx.x) in let c = f r in
let transformer = !r in transformer c

let add assert locus transformer =
locus := (let oldtr = !locus in λx. oldtr (transformer x))

let guarded div = λlocus.λx.λy. add assert locus (λz. assertPos y z); (x / y)

They are to be used as in the example below:

λy. assert locus (λlocus. λz. complexExp + guarded div locus z y)

As we generate the code, the reference cell r within the locus accumulates the
transformer (code-to-code function), to be applied to the result. In our exam-
ple, the code transformer includes open code (embedded within the assertPos
expression), which is moved from within the generator of the inner function. The
example thus illustrates all the complexities of imperative code generation. The
improved generated code

〈λx. assert (x>0); (λy. complexExp + y / x)〉
checks the divisor much earlier: before we started on complexExp, before we even
apply the function (λy. complexExp + y / x). If we by mistake switch y and z in
guarded div locus z y, we get a type-error message.

5 Related Work

We thoroughly review the large body of related work in [6]. Here we highlight
only the closest connections. First is Template Haskell, which either permits
effectful generators but then provides no guarantees by construction; or pro-
vides guarantees but permits no effects – the common trade-off. We discuss this
issue in detail in [6]. BER MetaOCaml [8] permits any effects and ensures well-
scopedness, even in open fragments, using dynamic checks. StagedHaskell and
<NJ> are designed to prevent scope extrusion even before running the generator.

Safe imperative multi-staged programming has been investigated in [1,17].
Safety comes at the expense of expressiveness: e.g., only closed code is allowed
to be stored in mutable cells (in the former approach).

We share with [15] the idea of using an opaque label, the environment clas-
sifier, to refer to a typing environment. The main advantage of environment
classifiers, their imprecision (they refer to infinite sets of environments), is also
their drawback. On one hand, they let us specify staged-eta Sect. 3.3 without
any first-class polymorphism. On the other hand, the imprecision is not enough
to safely use effects.

Chen and Xi [3] and Nanevski et al. [10] annotate the code type with the
type environment of its free variables. The former relies on the first-order syn-
tax with De Bruijn indices whereas the latter uses higher-order abstract syntax.
Although internally Chen and Xi use De Bruijn indices, they develop a pleas-
ant surface syntax a la MetaOCaml (or Lisp’s antiquotations). The De Bruijn

288 O. Kiselyov et al.

indices are still there, which may lead to unpleasant surprises, which they dis-
cuss in [3, Sect. 3.3]. Their type system indeed rejects the blatant example of
scope extrusion. Perhaps that is why [3] said that reference cells do not bring
in significant complications. However, scope extrusion is much subtler than its
well-known example: Sect. 3.1 presented a just slightly modified example, which
is accepted in Chen and Xi’s system, but produces an unexpected result. We
refer to [6] for extensive discussion.

One may think that any suitable staged calculus can support reference cells
through a state-passing translation. The elaborate side-conditions of our (CAbs)
and (IAbs) rules indicate that a straightforward state-passing translation is not
going to be successful to ensure type and scope safety.

Staged-calculi of [3,15] have a special constant run to run the generated code.
Adding it to <NJ> is straightforward.

Our bracketed expressions are the generalization of data constructors of the
code data type in the ‘single-stage target language’ [2, Fig. 2]. Our name heap
also comes from the same calculus. The latter, unlike <NJ>, is untyped, and
without effects.

6 Conclusions and Future Work

We have described the first staged calculus <NJ> for imperative code generators
without ad hoc restrictions – letting us even store open code in reference cells and
retrieve it in a different binding environment. Its sound type system statically
assures that the generated code is by construction well-typed and well-scoped,
free from unbound or surprisingly bound variables. The calculus has been dis-
tilled from StagedHaskell, letting us formally prove the soundness of the latter’s
approach. The distilled calculus is still capable of implementing StagedHaskell’s
examples that use mutation.

<NJ> has drawn inspiration from such diverse areas as region-based memory
management and Natural Deduction. It turns out a vantage point to overview
these areas.

<NJ> trivially generalizes to effects such as exceptions or IO. It is also easy to
extend with new non-binding language forms. (Binding-forms like for-loops can
always be expressed via lambda-forms: see Haskell or Scala, for example.) <NJ>
thus serves as the foundation of real staged programming languages. In fact, it
is already implemented as an OCaml library. Although the explicit weakening
is certainly cumbersome, it turns out, in our experience, not as cumbersome as
we had feared. It is not a stretch to recommend the OCaml implementation of
<NJ> as a new, safe, staged programming language.

Extension to effects such as delimited control or non-determinism is however
non-trivial and is the subject of on-going research. We are also investigating
adding first-class bounded polymorphism for classifiers, relating <NJ> more pre-
cisely to MLF .

Refined Environment Classifiers 289

Acknowledgments. We thank anonymous reviewers for many helpful comments.
This work was partially supported by JSPS KAKENHI Grant Numbers 15K12007,
16K12409, 15H02681.

A Proof Outlines: Subject Reduction Theorem

Lemma 1 (Substitution). (1) If Υ ;Θ;(Γ ,(x:t1)) � e: t and Υ ,Θ,Γ � e1: t1
then Υ ;Θ;Γ � e[x:=e1]: t. (2) If Υ ;Θ;(Γ ,γ2,γ2�γ1,Γ ’) �L e: t and γ1 ∈ Υ and
γ2’ �∈ (Γ � Υ), then (Υ ,γ2’,γ2’�γ1);Θ,(Γ ,Γ ’[γ2:=γ2’]) �L e: t[γ2:=γ2’] (if L was
γ2 it is also replaced with γ2’).

This lemma is proved straightforwardly.

Theorem 3 (Subject Reduction). If Υ ;Θ;[] � e: t, Υ � N, Υ ;Θ � H, and
N;H;e � N’;H’;e’, then Υ ’;Θ ’;[] � e ’: t, Υ ’ � N’, Υ ’;Θ’ � H’, for some Υ ’ and
Θ’ that are the extensions of the corresponding unprimed things.

Proof. We consider a few interesting reductions. The first one is

N;H;λx. e � (N,y);H;λ y. e[x:=〈y〉], y
∈ N

We are given N’ is N,y, H’ is H, and Υ ;Θ;[] � λx.e : 〈t1→t2〉γ , which means
γ ∈ Υ and Υ ;Θ;(γ2,γ2�γ,(x:〈t1〉γ2)) � e:〈t2〉γ2 for a fresh γ2. We choose Υ ’ as
Υ ,γ1,γ1�γ,(y:t1)

γ1 where γ1 is fresh, and Θ’ as Θ. Υ ’ is well-formed and is an
extension of Υ . Furthermore, Υ ’ � N,y. By weakening, Υ ’ � Θ ok and Υ ’;Θ � H
if it was for Υ . We only need to show that Υ ’;Θ ;[] � λy. e[x:=〈y〉] : 〈t1→t2〉γ ,
which follows by (IAbs) from Υ ’;Θ ;[] � e[x:=〈y〉] : 〈t2〉γ1 , which in turn follows
from the fact that Υ ’;Θ ;[] � 〈y〉 : 〈t1〉γ1 and the substitution lemma.

The next reduction is

N;H;λy.〈e〉 � N;H;〈λy.e〉
We are given Υ ;Θ;[] � λy.〈e〉 : 〈t1→t2〉γ , Υ � N and Υ ,Θ � H. Since N
and H are unchanged by the reduction, we do not extend Υ and Θ. By
inversion of (IAbs) we know that Υ is Υ ’,γ1,γ1�γ,(y:t1)

γ1 ,Υ ’’ and
∀ γ2. Υ |= γ1�γ2 and γ2 �= γ1 imply Υ |= γ�γ2 and Υ ;Θ;[] � 〈e〉 : 〈t2〉γ1 , or,
by inversion of (Code) Υ ;[];[] �γ1 e : t2. By weakening,
Υ ;[];([],(y ’: t)γ) �γ1 e : t2. An easy substitution lemma gives us
Υ ;[];([],(y ’: t)γ) �γ1 e’ : t2 where e’ is e[y:=y’], keeping in mind that
Υ |= γ1�γ. The crucial step is strengthening. Since we have just substi-
tuted away (y:t1)

γ1 , which is the only variable with the classifier γ1 (the
correspondence of variable names and classifiers is the consequence of well-
formedness), the derivation Υ ;[];([],(y ’: t)γ) �γ1 e’ : t2 has no occurrence of
the rule (Var) with L equal to γ1. Therefore, any subderivation with L being
γ1 must have the occurrence of the (Sub1) rule, applied to the derivation
Υ ;[];([],(y ’: t)γ) �γ2 e’:t’ where Υ |= γ1�γ2 and γ2 is different from γ1. The
inversion of (IAbs) gave us ∀ γ2. Υ |= γ1�γ2 and γ1 �= γ2 imply Υ |= γ�γ2.
Therefore, we can always replace each such occurrence of (Sub1) with the one
that gives us Υ ;[];([],(y ’: t)γ) �γ e ’: t ’ . All in all, we build the derivation of

290 O. Kiselyov et al.

Υ ;[];([],(y ’: t)γ) �γ e’ : t2, which gives us Υ ;[];[] �γ λy.e : t1→t2 and then
Υ ;[];[] � 〈λy.e〉 : 〈t1→t2〉γ .

Another interesting case is

N;H;λy.E[ref 〈y〉] � N;(H,l : 〈y〉);λy.E[l]
Given, Υ ;Θ;[] � λy.E[ref 〈y〉] : 〈t1→t2〉γ which means
Υ = Υ ’, γ1, γ1�γ, (y:t1)

γ1 , Υ ’’. Take Θ’ = Θ,(l:〈t1〉γ1 ref). It is easy to see that
Υ � Θ’ ok and Υ ,Θ’ � H,(l:〈y〉). The rest follows from the substitution lemma.

B Generating Code with Arbitrary Many Variables

Our example is the Fibonacci-like function, described in [6, Sect. 2.4]:

let gib = fix (λf .λx.λy.λn.
if n=0 then x else if n=1 then y else f y (x+y) (n−1))

For example, gib 1 1 5 returns 8. The naive specialization to the given n

let gib naive =
let body = fix (λf .λx.λy.λn.
if n=0 then x else if n=1 then y else f y (x+y) (n−1))
in λn.λx.λy. body x y n

is unsatisfactory: gib naive 5 generates

λx.λy. (y + (x + y)) + ((x + y) + (y + (x + y)))

with many duplicates, exponentially degrading performance. A slight change

let gibs =
let body : ∀ γ. 〈 int 〉γ → 〈int〉γ → int → 〈 int 〉γ = fix (λf.λx.λy.λn.
if n=0 then x else if n=1 then y else clet z = (x+y) in f y z (n−1))
in λn.λx.λy. body x y n

gives a much better result: gibs 5 produces

λx.λy. (λz. (λu. (λw. (λx1.x1) (u + w)) (z + u)) (y + z)) (x + y)

which runs in linear time. The improved generator relies on polymorphic recur-
sion: that is why the signature is needed.

References

1. Calcagno, C., Moggi, E., Taha, W.: Closed types as a simple approach to safe imper-
ative multi-stage programming. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.)
ICALP 2000. LNCS, vol. 1853, pp. 25–36. Springer, Heidelberg (2000). doi:10.
1007/3-540-45022-X 4

2. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage lan-
guages using ASTs, gensym, and reflection. In: Pfenning, F., Smaragdakis, Y. (eds.)
GPCE 2003. LNCS, vol. 2830, pp. 57–76. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39815-8 4

3. Chen, C., Xi, H.: Meta-programming through typeful code representation. J. Funct.
Program. 15(6), 797–835 (2005)

http://dx.doi.org/10.1007/3-540-45022-X_4
http://dx.doi.org/10.1007/3-540-45022-X_4
http://dx.doi.org/10.1007/978-3-540-39815-8_4
http://dx.doi.org/10.1007/978-3-540-39815-8_4

Refined Environment Classifiers 291

4. Davies, R.: A temporal logic approach to binding-time analysis. In: LICS, pp.
184–195 (1996)

5. Fluet, M., Morrisett, J.G.: Monadic regions. J. Funct. Program. 16(4–5), 485–545
(2006)

6. Kameyama, Y., Kiselyov, O., Shan, C.: Combinators for impure yet hygienic code
generation. Sci. Comput. Program. 112, 120–144 (2015)

7. Kim, I.S., Yi, K., Calcagno, C.: A polymorphic modal type system for lisp-like
multi-staged languages. In: POPL, pp. 257–268 (2006)

8. Kiselyov, O.: The design and implementation of BER MetaOCaml. In: Codish, M.,
Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 86–102. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-07151-0 6

9. Le Botlan, D., Rémy, D.: MLF: raising ML to the power of system F. In: ICFP,
pp. 27–38 (2003)

10. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. Trans.
Comput. Logic 9(3), 1–49 (2008)

11. POPL 2003: Conference Record of the Annual ACM Symposium on Principles of
Programming Languages (2003)

12. Pottier, F.: Static name control for FreshML. In: LICS, pp. 356–365. IEEE Com-
puter Society (2007)

13. Pouillard, N., Pottier, F.: A fresh look at programming with names and binders.
In: ICFP, pp. 217–228. ACM, New York (2010)

14. Rompf, T., Amin, N., Moors, A., Haller, P., Odersky, M.: Scala-virtualized: lin-
guistic reuse for deep embeddings. High. Order Symbolic Comput. 25, 165–207
(2013)

15. Taha, W., Nielsen, M.F.: Environment classifiers. In: POPL [11], pp. 26–37
16. Thiemann, P.: Combinators for program generation. J. Funct. Program. 9(5), 483–

525 (1999)
17. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint: Java

multi-stage programming using weak separability. In: PLDI 2010. ACM, New York
(2010)

18. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: POPL
[11], pp. 224–235

http://dx.doi.org/10.1007/978-3-319-07151-0_6

Verification and Analysis II

Higher-Order Model Checking in Direct Style

Taku Terao1,2(B), Takeshi Tsukada1, and Naoki Kobayashi1

1 The University of Tokyo, Tokyo, Japan
terao1984@is.s.u-tokyo.ac.jp

2 JSPS Research Fellow, Tokyo, Japan

Abstract. Higher-order model checking, or model checking of higher-
order recursion schemes, has been recently applied to fully automated
verification of functional programs. The previous approach has been
indirect, in the sense that higher-order functional programs are first
abstracted to (call-by-value) higher-order Boolean programs, and then
further translated to higher-order recursion schemes (which are essen-
tially call-by-name programs) and model checked. These multi-step
transformations caused a number of problems such as code explosion.
In this paper, we advocate a more direct approach, where higher-order
Boolean programs are directly model checked, without transformation to
higher-order recursion schemes. To this end, we develop a model check-
ing algorithm for higher-order call-by-value Boolean programs, and prove
its correctness. According to experiments, our prototype implementation
outperforms the indirect method for large instances.

1 Introduction

Higher-order model checking [14], or model checking of higher-order recursion
schemes (HORS), has recently been applied to automated verification of higher-
order functional programs [9,11,12,15,17]. A HORS is a higher-order tree gram-
mar for generating a (possibly infinite) tree, and higher-order model checking is
concerned about whether the tree generated by a given HORS satisfies a given
property. Although the worst-case complexity of higher-order model checking
is huge (k-EXPTIME complete for order-k HORS [14]), practical algorithms
for higher-order model checking have been developed [4,8,16,18], which do not
always suffer from the k-EXPTIME bottleneck.

A typical approach for applying higher-order model checking to program
verification [11] is as follows. As illustrated on the left-hand side of Fig. 1, a
source program, which is a call-by-value higher-order functional program, is first
abstracted to a call-by-value, higher-order Boolean functional program, using
predicate abstraction. The Boolean functional program is further translated to a
HORS, which is essentially a call-by-name higher-order functional program, and
then model checked. We call this approach indirect, as it involves many steps of
program transformations. This indirect approach has an advantage that, thanks
to the CPS transformation used in the translation to HORS, various control

c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 295–313, 2016.
DOI: 10.1007/978-3-319-47958-3 16

296 T. Terao et al.

Fig. 1. Overview: indirect vs. direct style

structures (such as exceptions and call/cc) and evaluation strategies (call-by-
value and call-by-name) can be uniformly handled. The multi-step transforma-
tions, however, incur a number of drawbacks as well, such as code explosion and
the increase of the order of programs (where the order of a program is the largest
order of functions; a function is first-order if both the input and output are base
values, and it is second-order if it can take a first-order function as an argu-
ment, etc.). The multi-step transformations also make it difficult to propagate
the result of higher-order model checking back to the source program, e.g., for
the purpose of counter-example-guided abstraction refinement (CEGAR), and
certificate generation.

In view of the drawbacks of the indirect approach mentioned above, we advo-
cate higher-order model checking in a more direct style, where call-by-value
higher-order Boolean programs are directly model checked, without the trans-
lation to HORS, as illustrated on the right-hand side of Fig. 1. That would
avoid the increase of the size and order of programs (recall that the complex-
ity of higher-order model checking is k-EXPTIME complete for order-k HORS;
thus the order is the most critical parameter for the complexity). In addition,
the direct style approach would take an advantage of optimization using the
control structure of the original program, which has been lost during the CPS-
transformation in indirect style.

Our goal is then to develop an appropriate algorithm that directly solves the
model-checking problem for call-by-value higher-order Boolean programs. We
focus here on the reachability problem (of checking whether a given program
reaches a certain program point); any safety properties can be reduced to the
reachability problem in a standard manner.

From a purely theoretical point of view, this goal has been achieved by
Tsukada and Kobayashi [20]. They developed an intersection type system for
reachability checking of call-by-value higher-order Boolean programs, which gives

Higher-Order Model Checking in Direct Style 297

a better (and exact in a certain sense) upper bound of the worst case complex-
ity of the problem than the näıve indirect approach. However their algorithm,
which basically enumerates all the types of subterms, is far from practical since
the number of candidate types for a given subterm is hyper-exponential.

Now the challenge is to find an appropriate subset of types to be considered
for a given program: this subset has to be large enough to correctly analyze
the behaviour of the program and, at the same time, sufficiently small to be
manipulated in realistic time. In previous work [4,18] for a call-by-name lan-
guage, this subset is computed with the help of the control-flow analysis, which
gives an over-approximation of the behaviour of the program. The näıve adap-
tation of this idea to a call-by-value language, however, does not work well. This
is because the flow-information tends to be less accurate for call-by-value pro-
grams: in an application t1 t2, one has to over-approximate the evaluation of
both t1 and t2 in call-by-value, whereas in call-by-name t2 itself is the accurate
actual argument. We propose an algorithm (the 0-Control-Flow-Analysis (CFA)
guided saturation algorithm) that deeply integrates the type system and the 0-
CFA. The integration reduces the inaccuracy of the flow analysis and makes the
algorithm efficient, although it is technically more complicated.

We have implemented the algorithm, and confirmed through experiments
that for large instances, our direct approach for model checking call-by-value
Boolean programs outperforms the previous indirect approach of translating a
call-by-value program to HORS and then model-checking the HORS.

The contributions of this paper are summarized as follows.

– A practical algorithm for the call-by-value reachability problem in direct style.
The way to reduce type candidates using control-flow analysis is quite different
from that of previous algorithms [4,18].

– The formalization of the algorithm and a proof of its correctness. The proof is
more involved than the corresponding proof of the correctness of Tsukada and
Kobayashi’s algorithm [20] due to the flow-based optimization, and also than
that of the correctness of the HorSat algorithm [4], due to the call-by-value
evaluation strategy.

– Implementation and evaluation of the algorithm.

The rest of this paper is structured as follows. Section 2 defines the target
language, its semantics, and the reachability problem. Section 3 gives an inter-
section type system that characterizes the reachability of a program. Section 4
describes the 0-CFA guided saturation algorithm, and proves its correctness.
Section 5 describes the experimental results. Section 6 discusses related work,
and the final section concludes the paper. Some proofs and figures are omitted
in this version and are available in the long version [19].

2 Call-by-Value Reachability Problem

2.1 Target Language

We first introduce notations used in the rest of this paper. We write Lab,
Var, and Fun, respectively for the countable sets of labels, variables, and

298 T. Terao et al.

function symbols. We assume that the meta-variable � represents a label, the
meta-variables x, y represent variables, and f, g represent function symbols. We
write dom(g) for the domain set of a function g, and x̃ for a finite sequence like
x1, . . . , xk. Let ρ be a map. We denote ρ[x �→ v] as the map that maps y to v
if x = y and that behaves as the same as ρ otherwise. We denote ∅ as both the
empty set and the empty map, whose domain set is the empty set.

Fig. 2. Syntax

The target language of the reachability analysis in this paper is a simply-
typed, call-by-value lambda calculus with Booleans, tuples and global mutual
recursions. The syntax of the language is given in Fig. 2. Each subterm is labeled
with Lab in this language, for the control-flow analysis described later. We call
terms for labeled ones, and expressions for unlabeled ones. The expression op(t̃)
is a Boolean operation, such as t1 ∧ t2, t1 ∨ t2, and ¬t, and πk

i t is the i-th
(zero-indexed) projection for the k-tuple t. The expression t1 ⊕ t2 is a non-
deterministic choice of t1 and t2. The terms Ω and fail represent divergence and
failure, respectively. The assume-expression assume t1; t2 evaluates t2 only if t1
is evaluated to true (and diverges if t1 is evaluated to false).

A sort is the simple type of a term, which is either Boolean sort bool, a tuple
sort, or a function sort; we use the word “sort” to distinguish simple types from
intersection types introduced later. A local sort environment and (resp. global
sort environment) is a finite map from variables (resp. function symbols) to sorts.
A global definition is a finite map from function symbols to lambda-expressions.
A program consists of a global definition D, a global sort environment K, and a
term, called the main term.

Next, we define well-sorted terms. Let K be a global sort environment, Σ
a local sort environment, and κ a sort. A sort judgment for a term t (resp. an
expression e) is of the form K, Σ � t : κ (resp. K, Σ � e : κ). The sort system
of the target language is the standard simple type system with the following
primitive types: fail : κ, Ω : κ, assume : bool → κ, and ⊕ : κ → κ → κ. The
inference rules are given in the long version [19].

Higher-Order Model Checking in Direct Style 299

The depth of a sort κ, written dep(κ), is defined as follows: dep(bool) =
1, dep(〈κ1, . . . , κk〉) = max(dep(κ1), . . . , dep(κk)), and dep(κ1 → κ2) = 1 +
max(dep(κ1), dep(κ2)). The depth of a well-sorted term t, written dep(t), is the
maximum depth of sorts which appear in the derivation tree of K, Σ � t : κ. Let
D be a global definition, and K be a global sort environment. We write � D : K
if dom(D) = dom(K) and ∀f ∈ dom(D).K, ∅ � D(f) : K(f). We say program
P = let rec D : K in t0 has sort κ if � D : K, and K, ∅ � t0 : κ. We say P is
well-sorted if P has some sort κ. The depth of a well-sorted program P is the
maximum depth of terms in P .

Example 1. Consider the program P1 = let rec D1 : K1 in t1 where:

D1 = { f �→ λ(y : bool → bool). tf } K1 = { f �→ (bool → bool) → bool }
tf = (assume (y1 true2)3; (assume (¬(y5 true6)7)8; fail9)10)11

t1 = (let z = (λ(x : bool). (true12 ⊕ false13)14)15 in (f16 z17)18)19

P1 is well-sorted and has sort bool.

2.2 Semantics

We define the operational semantics of the language in the style of Nielson
et al. [13]; this style of operational semantics is convenient for discussing flow
analysis later. First, we define the following auxiliary syntactic objects:

e ::= · · · | c | bind ρ in t

ρ (Environments) ::= {x1 �→ v1, . . . , xn �→ vk }
c (Closures) ::= close p in ρ

v (Values) ::= w�

w (Pre-values) ::= b | f | c | 〈v1, . . . , vk〉
The term close p in ρ represents a closure, and the term bind ρ in t evaluates
t under the environment ρ. An environment is a finite map from variables to
values. A value is either a Boolean, a function symbol, a closure, or a tuple
of values. We note that values (resp. pre-values) are subclass of terms (resp.
expressions). We extend the sort inference rules to support these terms as follows:

K � ρ : Σ′ K, Σ′ � p : κ

K, Σ � close p in ρ : κ
(Close)

K � ρ : Σ′ K, Σ′ � t : κ

K, Σ � bind ρ in t : κ
(Bind)

dom(ρ) = dom(Σ) ∀x ∈ dom(ρ). K, ∅ � ρ(x) : Σ(x)
K � ρ : Σ

(Env)

A sort judgment for environments is of the form K � ρ : Σ, which means that
for each binding x �→ v in ρ, v has type Σ(x).

Next, we define reduction relations. We fix some well-sorted program P =
let rec D : K in e0. Let ρ be an environment, and Σ be a local sort environment

300 T. Terao et al.

such that K � ρ : Σ. The reduction relation for terms is of the form ρ �D t −→ t′,
where K, Σ � t : κ for some sort κ. The reduction rules are given in Fig. 3. In rule
(Op-2), [[op]] denotes the Boolean function that corresponds to each operation
op, and FV (p) denotes the set of free variables of p. We write ρ �D t −→∗ t′ for
the reflexive and transitive closure of ρ �D t1 −→ t2.

Fig. 3. Reduction relation

2.3 Reachability Problem

We are interested in the reachability problem: whether a program P may execute
the command fail We define the set of error expressions, called Err, as follows:1

1 Note that the terms like assume false; t and Ω are not error expressions. They are
intended to model divergent terms, although they are treated as stuck terms in the
operational semantics for a technical convenience.

Higher-Order Model Checking in Direct Style 301

φ (Error expr.) ::= fail | let x = φ� in t2 | bind ρ in φ� | 〈ṽ, φ�, t̃〉 | op(ṽ, φ�, t̃)
| assume φ�; t | φ� t | v φ�.

Then, the reachability problem is defined as follows.

Definition 1 (Reachability Problem). A program P = let rec D : K in t0
is unsafe if ∅ �D t0 −→∗ φ� holds for some φ ∈ Err. A well-sorted program P
is called safe if P is not unsafe. Given a well-sorted program, the task of the
reachability problem is to decide whether the program is safe.

Example 2 For example, P1 = let rec D1 : K1 in t1 in Example 1 is unsafe, and
the program P2 = let rec D1 : K1 in t2 below is safe.

t2 = (let w = (true20 ⊕ false21)22 in (f23 (λ(x : bool). w24)25)26)27

3 Intersection Type System

In this section, we present an intersection type system that characterizes the
unsafety of programs, which is an extension of Tsukada and Kobayashi’s type
system [20].

The sets of value types σ and term types τ are defined by:

σ ::= true | false | 〈σ1, . . . , σk〉 |
∧
i∈I

(σi → τi) τ ::= σ | fail

Value types are those for values, and term types are for terms, as the names
suggest. Intuitively the type true describes the value true. The type of the
form 〈σ1, . . . , σk〉 describes a tuple whose i-th element has type σi. A type of
the form

∧
i∈I(σi → τi) represents a function that returns a term of type τi if

the argument has type σi for each i ∈ I. Here, we suppose that I be some finite
set. We write

∧ ∅ if I is the empty set. A term type is either a value type or the
special type fail, which represents a term that is evaluated to an error term. We
also call a local type environment Δ (resp. a global type environment Γ) for a
finite map from variables (resp. function symbols) to value types.

The refinement relations σ :: κ and τ :: κ for value/term types are defined
by the following rules:

b :: bool
σi :: κ1 τi :: κ2 for each i

(
∧

i σi → τi) :: (κ1 → κ2)
σi :: κi for each i

〈σ1, . . . , σk〉 :: 〈κ1, . . . , κk〉 fail :: κ .

We naturally extend this refinement relation to those for local/global type envi-
ronments and denote Δ :: Σ and Γ :: K.

302 T. Terao et al.

Fig. 4. Typing rules

There are four kinds of type judgments in the intersection type system;

– Γ,Δ � t : τ for term t;
– Γ,Δ � e : τ for expression e;
– Γ,Δ � t̃ : σ̃ or Γ,Δ � t̃ : fail for sequence t̃; and
– Γ � ρ : Δ for environment ρ.

The typing rules for those judgments are given in Fig. 4. Intuitively, the type
judgment for terms represents “under-approximation” of the evaluation of the
term. The judgment Γ,Δ � t : σ intuitively means that there is a reduc-
tion ρ �D t −→∗ v for some value v of type σ, and Γ,Δ � t : fail
means that ρ �D t −→∗ φ� for some error expression φ. For example, for
the term t1 = 〈true ⊕ false, true〉�, the judgments Γ,Δ � t1 : 〈true, true〉
and Γ,Δ � t1 : 〈false, true〉 should hold because there are reductions ρ �D

t1 −→∗ 〈true, true〉� and ρ �D t1 −→∗ 〈false, true〉�. Furthermore, for the

Higher-Order Model Checking in Direct Style 303

term t2 = (let x = true ⊕ false in assume x; fail)�, Γ,Δ � t2 : fail because
ρ �D t2 −→∗ (bind ρ[x �→ true] in fail)�. We remark that a term that always
diverges (e.g. Ω and assume false; t) does not have any types. The judgments
Γ,Δ � t̃ : σ̃ and Γ,Δ � t̃ : fail are auxiliary judgments, which correspond to
the evaluation strategy that evaluates t̃ from left to right. For example, the rule
(Seq-F) means that the evaluation t̃ = t1 . . . tk fails (e.g. Γ,Δ � t̃ : fail) if
and only if some ti fails (e.g. Γ,Δ � ti : fail), and t0, . . . , ti−1 are evaluated
to some values ṽ (e.g. Γ,Δ � t1, . . . , ti−1 : σ̃). The judgment for environments
Γ,Δ � ρ : Δ represents that for each binding [x �→ v] in ρ, v has type Δ(x).

The type system above is an extension of Tsukada and Kobayashi’s one [20].
The main differences are:

– Our target language supports tuples as first-class values, while tuples may
occur only as function arguments in their language. By supporting them, we
avoid hyper-exponential explosion of the number of types caused by the CPS-
transformation to eliminate first-class tuples.

– Our target language also supports let-expressions. Although it is possible to
define them as syntactic sugar, supporting them as primitives makes our type
inference algorithm more efficient.

We define some operators used in the rest of this section. Let σ and σ′ be
value types that are refinements of some function sort. The intersection of σ and
σ′, written as σ ∧ σ′, is defined by:∧

i∈I

(σi → τi) ∧
∧
j∈J

(σj → τj) =
∧

k∈(I∪J)

(σk → τk),

where σ =
∧

i∈I(σi → τi) and σ′ =
∧

j∈J(σj → τj). Let D be a global definition,
and Γ and Γ ′ be global type environments. We say Γ ′ is a D-expansion of Γ ,
written as Γ �D Γ ′, if the following condition holds:

Γ �D Γ ′ ⇐⇒ dom(Γ) = dom(Γ ′),
∀f ∈ dom(Γ).∃σ. Γ, ∅ � D(f) : σ and Γ ′(f) = (Γ (f) ∧ σ)

This expansion soundly computes types of each recursive function. Intuitively,
Γ �D Γ ′ means that, assuming Γ is a sound type environment for D, Γ ′(f) is
a sound type of f because Γ ′(f) is obtained from Γ (f) by adding a valid type
of D(f). We write Γ�

D for the environment {f �→ ∧ ∅ | f ∈ dom(D)}, which
corresponds to approximating D as D� = {f �→ λx : κ. Ω | f ∈ dom(D)}. It is
always safe to approximate the behaviour of D with Γ�

D . We write �∗
D for the

reflexive and transitive closure of �D. We say Γ is sound for D if Γ�
D �∗

D Γ .
Theorem 1 indicates that the intersection type system characterizes the

reachability of Boolean programs. The proof is similar to the proof of the cor-
responding theorem for Tsukada and Kobayashi’s type system [20]: see the long
version [19].

Theorem 1. Let P = let rec D : K in t0 be a well-sorted program. P is unsafe
if and only if there is a global type environment Γ that is sound for D, and that
Γ, ∅ � t0 : fail.

304 T. Terao et al.

According to this theorem, the reachability checking problem is solved by
saturation-based algorithms. For example, it is easily shown that the following
näıve saturation function FD is sufficient for deciding the reachability.

FD(Γ)(f) = Γ (f) ∧
∧{

σ → τ

∣∣∣∣ D(f) = λx : κ. t, σ :: κ,
Γ, [x �→ σ] � t : τ

}

The saturation function is effectively computable. To compute the second
operand of ∧ in the definition of FD(Γ)(f), it suffices to pick each σ such that
σ :: κ, and computes τ such that Γ, [x �→ σ] � t : τ . Note that there are only
finitely many σ such that σ :: κ. Given a well-sorted program let rec D : K in t0,
let Γ0 = Γ�

D and Γi+1 = FD(Γi). The sequence Γ0, Γ1, . . . , Γm, . . . converges for
some m, because Γi �D Γi+1 for each i, and �D is a partial order on the (finite)
set of type environments. Thus, the reachability is decided by checking whether
Γm, ∅ � t0 : fail holds.

4 The 0-CFA Guided Saturation Algorithm

In the following discussion, we fix some well-sorted program P = let rec D :
K in t0. We assume that all variables bound in lambda-expressions or let-
expressions in P are distinct from each other, and that all the labels in P are
also distinct from each other. Therefore, we assume each variable x has the
corresponding sort, and we write sort(x) for it.

This section presents an efficient algorithm for deciding the reachability prob-
lem, based on the type system in the previous section. Unfortunately, the näıve
algorithm presented in Sect. 3 is impractical, mainly due to the (Fun) rule:

Γ,Δ[x �→ σi] � t : τi σi :: κ for each i ∈ I

Γ,Δ � λx : κ. t :
∧

i∈I(σi → τi)
(Fun)

The rule tells us how to enumerate the type judgments for λx : κ. t from those
for t, but there are a huge number of candidate types of the argument x because
they are only restricted to have a certain sort κ; when the depth of κ is k, the
number of candidate types is k-fold exponential. Therefore, we modify the type
system to reduce irrelevant type candidates.

4.1 The δ̂-Guided Type System

A flow type environment is a function that maps a variable x to a set of value
types that are refinement of sort(x). Let Γ be a global type environment, δ̂ be
a flow type environment, and Δ be a local type environment. We define the
δ̂-guided type judgment of the form either Γ,Δ �δ̂ t : τ or Γ,Δ �δ̂ e : τ . The
typing rules for this judgment are the same as that of Γ,Δ � t : τ , except for
(Fun), which is replaced by the following rule:

Higher-Order Model Checking in Direct Style 305

S =
{

(σ, τ)
∣∣∣ σ ∈ δ̂(x), Γ,Δ[x �→ σ] �δ̂ t : τ

}
Γ,Δ �δ̂ λx : κ. t :

∧
(σ,τ)∈S(σ → τ)

(Fun’)

This modified rule derives the “strongest” type of the lambda-abstraction,
assuming δ̂(x) is an over-approximation of the set of types bound to x. This
type system, named the δ̂-guided type system, is built so that the type judg-
ments are deterministic for values, lambda-abstractions and environments.

Proposition 1. Suppose Γ :: K. Then,

– K, ∅ � v : κ implies ∃!σ.σ :: κ ∧ Γ, ∅ �δ̂ v : σ,
– K, ∅ � p : κ implies ∃!σ.σ :: κ ∧ Γ, ∅ �δ̂ p : σ, and
– K � ρ : Σ implies ∃!Δ.Δ :: Σ ∧ Γ �δ̂ ρ : Δ.

Thereby, we write [[v]]Γ,δ̂, [[p]]Γ,δ̂ and [[ρ]]Γ,δ̂ for the value type of value v, lambda-
abstraction p, and environment ρ, respectively.

We define the δ̂-guided saturation function GD(δ̂, Γ) as follows:

GD(δ̂, Γ)(f) = Γ (f) ∧ [[D(f)]]Γ,δ̂

It is easily shown that the soundness theorem of δ̂-guided type system holds.

Theorem 2 (Soundness). Let P = let rec D : K in t0 be a well-sorted
program. Let δ̂0, δ̂1, . . . be a sequence of flow type environments. We define a
sequence of global type environments Γ0, Γ1, . . . as follows: (i) Γ0 = Γ�

D , and
(ii) Γi+1 = GD(δ̂i, Γi) for each i ≥ 0. The program P is unsafe if there is some
m such that Γm, ∅ �δ̂m

t0 : fail.

However, the completeness of the δ̂-guided type system depends on the flow
environments used during saturation. For example, if we use the largest flow
type environment, that is, δ̂(x) = {σ | σ :: sort(x) }, we have the completeness,
but we lose the efficiency. We have to find a method to compute a sufficiently
large flow type environment δ̂ such that the δ̂-guided type system achieves both
the completeness and the efficiency.

In the call-by-name case, a sufficient condition on δ̂ to guarantee the com-
pleteness can be formalized in terms of flow information [4]. For each function call
t1 t2, we just need to require that δ̂(x) ⊇ {σ | Γ,Δ �δ̂ t2 : σ } for each possible
value λx. t of t1.

However, in the call-by-value case, the condition on δ̂ is more subtle because
the actual value bound to argument x is not t2 itself but an evaluation result of
t2. In order to prove that the δ̂-guided type system is complete, it is required
that δ̂(x) contains all the types of the values bound to x during the evalua-
tion,2 i.e. δ̂(x) ⊇ { [[v]]Γ,δ̂ | ρ �D t2 −→∗ v }. Therefore, we have to prove that

2 In the call-by-name case, this property immediately follows from the condition δ̂(x) ⊇
{ σ | Γ, Δ �δ̂ t2 : σ } because t2 is not evaluated before the function call.

306 T. Terao et al.

{ [[v]]Γ,δ̂ | ρ �D t2 −→∗ v } ⊇ {σ | Γ,Δ �δ̂ t2 : σ }, but this fact follows from the
completeness of the δ̂-guided type system, which causes a circular reasoning.

In the rest of this section, we first formalize 0-CFA for our target language,
propose our 0-CFA guided saturation algorithm, and prove the correctness of
the algorithm.

4.2 0-CFA

We adopt the formalization of 0-CFA by Nielson et al. [13].
An abstract value is defined by:

av (abstract values) ::= bool | p | f | 〈av1, . . . , avk〉.

The set of abstract values is denoted as V̂alue. An abstract value is regarded
as a value without environments. The abstract value of a value v, written v̂, is
defined by:

ŵ� = ŵ b̂ = bool f̂ = f

̂close p in ρ = p ̂〈v1, . . . , vk〉 = 〈v̂1, . . . , v̂k〉.

An abstract cache is a function from Lab to P(V̂alue), and an abstract envi-
ronment is a function from Var to P(V̂alue). Let Ĉ be an abstract cache,
and ρ̂ be an abstract environment. We define the relations (Ĉ, ρ̂) |=D e� and
(Ĉ, ρ̂) |=D ρ, which represents (Ĉ, ρ̂) is an acceptable CFA result of the term e�

and the environment ρ, respectively.
The relations are co-inductively defined by the rules given in Fig. 5. In the

(tuple) rule, Ĉ(�1) ⊗ · · · ⊗ Ĉ(�k) means the set { 〈v̂1, . . . , v̂k〉 | ∀i.v̂i ∈ Ĉ(�i) }.
In the (proj) rule, πk

i (Ĉ(�1)) = { v̂i | 〈v̂0, . . . , v̂k−1〉 ∈ Ĉ(�1) }. The relation
(Ĉ, ρ̂) |=D e� is defined so that if e� is evaluated to a value v, then the abstract
value of v is in Ĉ(�). The relation (Ĉ, ρ̂) |=D ρ means that for each binding
x �→ v in ρ, ρ̂(x) contains the abstract value of v.

4.3 The 0-CFA Guided Saturation Algorithm

We propose a method to compute a sufficiently large δ̂ so that the δ̂-guided type
system would be complete. Let Ĉ be an abstract cache. We define two relations
(Ĉ, δ̂) |=D,Γ (t,Δ), and (Ĉ, δ̂) |=D,Γ ρ. The relation (Ĉ, δ̂) |=Γ (t,Δ) means
intuitively that, during any evaluations of t under an environment ρ such that
Γ � ρ : Δ, the type of values bound to variable x is approximated by δ̂(x). The
derivation rules for those relations are given in Fig. 6. We regard these rules as an
algorithm to saturate δ̂, given Ĉ, Δ and t. The algorithm basically traverses the
term t with possible Δ using δ̂-guided type system as dataflow, and propagates
types to δ̂ using the rule (App): if t is an function call e�

1 t2, the algorithm
enumerates each lambda abstraction λx : κ. t0 that e�

1 may be evaluated to by
using Ĉ, and propagates each type σ of t2 (i.e. Γ,Δ �δ̂ t : σ) to δ̂(x).

Higher-Order Model Checking in Direct Style 307

Fig. 5. 0-CFA rules

Algorithm 1 shows our algorithm for the reachability problem, named the 0-
CFA guided saturation algorithm. Given a well-sorted program P = let rec D :
K in t0, the algorithm initializes Γ0 with Γ�

D , computes a 0-CFA result (Ĉ, ρ̂)
such that (Ĉ, ρ̂) |=D t, sets i = 0, and enters the main loop. In the main loop, it
computes δ̂i such that (Ĉ, δ̂i) |=D,Γi

t0, and then, sets Γi+1 with GD(δ̂i, Γi) and
increments i. The algorithm outputs “Unsafe” if Γi �δ̂i

t0 : fail holds for some
i. Otherwise, the main loop eventually breaks when Γi = Γi−1 holds, and then,
the algorithm outputs “Safe”.

We explain how the saturation algorithm runs for the program P1 in Exam-
ple 1. Let �1 and �2 be the labels of the first application of y and the second
application of y in function f . A result of 0-CFA would be Ĉ(�1) = Ĉ(�2) =
λ(x : bool). true ⊕ false. Let Γ0 = { f �→ ∧ ∅ }. Then, δ̂0 would be

δ̂0(y) = {
∧

∅, (true → true) ∧ (true → false) } δ̂0(x) = { true } .

Therefore, Γ0, ∅ �δ̂0
D1(f) : (true → true) ∧ (true → false) → fail holds, and

it would be Γ1 = { f : (true → true) ∧ (true → false) → fail }. In the next

308 T. Terao et al.

Fig. 6. Derivation rules for (Ĉ, δ̂) |=D,Γ (t, Δ) and (Ĉ, δ̂) |=D,Γ ρ

Algorithm 1. The 0-CFA guided saturation algorithm
function IsSafe(P = let rec D : K in t0)

Γ0 := Γ �
D

Compute (Ĉ, ρ̂) such that (Ĉ, ρ̂) |=D t0
i := 0
repeat

Compute δ̂i such that (Ĉ, δ̂i) |=D,Γi (t0, ∅)
Γi+1 = GD(δ̂i, Γi)
i := i + 1
if Γi−1, ∅ �δ̂i−1

t0 : fail then
return Unsafe

end if
until Γi−1 = Γi

return Safe
end function

Higher-Order Model Checking in Direct Style 309

iteration, there are no updates, i.e. δ̂1 = δ̂0 and Γ1 = Γ0. Because Γ1, ∅ �δ̂1
t1 :

fail holds, the algorithm outputs “Unsafe”.

4.4 Correctness of the 0-CFA Guided Saturation Algorithm

We prove the correctness of Algorithm 1. If the algorithm outputs “Unsafe”,
the given program is unsafe by using Theorem 2. In order to justify the case
that the algorithm outputs “Safe”, we prove the completeness of the δ̂-guided
type system.

First, the following lemma indicates that (Ĉ, ρ̂) |=D t and (Ĉ, δ̂) |=D,Γ (t,Δ)
satisfy subject reduction, and also that the δ̂-guided type system satisfies subject
expansion. This lemma solves the problem of circular reasoning discussed at the
end of Sect. 4.1.

Lemma 1. Let Γ be a global type environment such that Γ = GD(δ̂, Γ). Suppose
that (Ĉ, ρ̂) |=D t1, (Ĉ, ρ̂) |=D ρ, ρ �D t1 −→ t2, (Ĉ, δ̂) |=D,Γ ρ, and (Ĉ, δ̂) |=D,Γ

(t1,Δ), where Δ = [[ρ]]Γ,δ̂. Then, (i) (Ĉ, δ̂) |=D t2, (ii) (Ĉ, δ̂) |=D,Γ (t2,Δ), and
(iii) for any term type τ , Γ,Δ �δ̂ t2 : τ implies Γ,Δ �δ̂ t1 : τ .

We use the fact that δ̂-guided type system derives fail for error terms.

Lemma 2. Let φ be a well-sorted error expression. Then, Γ, ∅ �δ̂ φ : fail.

Then, we have the following completeness theorem, which justifies the correctness
of Algorithm 1.

Theorem 3. Let P = let rec D : K in t0 be a well-sorted program, Γ be
a global type environment such that Γ :: K and Γ = GD(δ̂, Γ). Suppose that
(Ĉ, ρ̂) |=D t0, and (Ĉ, δ̂) |=D,Γ (t0, ∅). If Γ, ∅ � �δ̂t0 : fail then P is safe.

Proof. We prove the contraposition. Assume that P is unsafe, i.e., that there is
a sequence e0 . . . en such that e�

0 = t0, ∅ �D e�
i −→ e�

i+1 for each 0 ≤ i ≤ n − 1,
and that e�

n is an error term. We have ∀τ.Γ, ∅ �δ̂ e�
n : τ =⇒ Γ, ∅ �δ̂ t0 : τ by

induction on n and using Lemma 1. By Lemma 2, Γ, ∅ �δ̂ e�
n : fail. Therefore,

we have Γ, ∅ �δ̂ t0 : fail. ��

5 Implementation and Experiments

5.1 Benchmarks and Environment

We have implemented a reachability checker named HiBoch for call-by-value
Boolean programs. In order to evaluate the performance of our algorithm, we
prepared two benchmarks. The first benchmark consists of Boolean programs
generated by a CEGAR-based verification system for ML programs. More pre-
cisely, we prepared fourteen instances of verification problems for ML programs,
which have been manually converted from the MoCHi benchmark [17], and
passed them to our prototype CEGAR-based verification system, which uses

310 T. Terao et al.

HiBoch as a backend reachability checker. During each CEGAR cycle, the sys-
tem generates an instance of the reachability problem for Boolean programs by
predicate abstraction, and we used these problem instances for the first bench-
mark.

The second benchmark consists of a series of Boolean programs generated by
a template named “Flow”, which was manually designed to clarify the differences
between the direct and indirect styles. More details on this benchmark are given
in the long version [19].

We compared our direct method with the previous indirect method, which
converts Boolean programs to HORS and checks the reachability with a higher-
order model checker. We use HorSat [4] as the main higher-order model checker
in the indirect method; since HorSat also uses a 0-CFA-based saturation algo-
rithm (but for HORS, not for Boolean programs), we believe that HorSat is
the most appropriate target of comparison for evaluating the difference between
the direct/indirect approaches. We also report the results of the indirect method
using the other state-of-the-art higher-order model checkers HorSat2 [10] and
Preface [16], but one should note that the difference of the performance may
not properly reflect that between the direct/indirect approaches, because Hor-
Sat2 uses a different flow analysis and Preface is not based on saturation.

The experimental environment was as follows. The machine spec is 2.3 GHz
Intel Core i7 CPU, 16 GB RAM. Our implementation was compiled with the
Glasgow Haskell Compiler, version 7.10.3, HorSat and HorSat2 were compiled
with the OCaml native-code compiler, version 4.02.1, and Preface was run on
Mono JIT compiler version 3.2.4. The running times of each model checker were
limited to 200 s.

5.2 Experimental Result

Figures 7 and 8 show the experimental results. The horizontal axis is the size
of Boolean programs, measured on the size of the abstract syntax trees, and
the vertical axis is the elapsed time of each model checker, excluding the elapsed
times for converting the reachability problem instances to the higher-order model
checking instances.

For the first benchmark, HiBoch solves all the test cases in a few seconds. For
the instances of size within 5000, HorSat2 is the fastest, and HiBoch is the sec-
ond fastest, which is 4–7 times faster than HorSat (and also Preface). For the
instances of size over 5000, HiBoch is the fastest3 by an order of magnitude. We
regard the reason of this result as the fact that these instances have larger arity
(where the arity means the number of function arguments). The indirect style
approach suffers from huge numbers of combinations between argument types.
Our direct approach reduces many irrelevant combinations using the structure
of call-by-value programs, which is lost during the CPS-transformation.

For the second benchmark, as we expected, HiBoch clearly outperforms the
indirect approaches, even the one using HorSat2.
3 Unfortunately, we could not measure the elapsed time of HorSat2 for some large

instances because it raised stack-overflow exceptions.

Higher-Order Model Checking in Direct Style 311

Fig. 7. Experimental result for MoCHi benchmark

Fig. 8. Experimental result for flow benchmark

6 Related Work

As mentioned already, the reachability of higher-order call-by-value Boolean
programs has been analyzed by a combination of CPS-transformation and
higher-order model checking [11,17]. Because the näıve CPS-transformation algo-
rithm often generates too complex HORS, Sato et al. [17] proposed a method
called selected CPS transformation, in which insertion of some redundant con-
tinuations is avoided. The experiments reported in Sect. 5 adapt this selective

312 T. Terao et al.

CPS transformation, but the indirect method still suffers from the complexity
due to the CPS transformation.

Tsukada and Kobayashi [20] studied the complexity of the reachability prob-
lem, and showed that the problem is k-EXPTIME complete for depth-k pro-
grams. They also introduced an intersection type system and a type inference
algorithm, which are the basis of our work. However, their algorithm has been
designed just for proving an upper-bound of the complexity; the algorithm is
impractical in the sense that it always suffers from the k-EXPTIME bottleneck,
while our 0-CFA guided algorithm does not.

For first-order Boolean programs, Ball and Rajamani [2] proposed a path-
sensitive, dataflow algorithm and implemented Bebop tool, which is used as a
backend of SLAM [1]. It is not clear whether and how their algorithm can be
extended to deal with higher-order Boolean programs.

Flow-based optimizations have been used in recent model checking algorithms
for higher-order recursion schemes [3,4,16,18]. However, näıve application of
such optimizations to call-by-value language would be less accurate because we
need to estimate the evaluation result of not only functions but also their argu-
ments. Our method employs the intersection type system to precisely represent
the evaluation results.

Some of the recent higher-order model checkers [10,16] use more accurate flow
information. For example, Preface [16] dynamically refines flow information
using type-based abstraction. We believe it is possible to integrate more accurate
flow analysis [5–7] also into our algorithm.

7 Conclusion

We have proposed a direct algorithm for the reachability problem of higher-order
Boolean programs, and proved its correctness. We have confirmed through exper-
iments that our direct approach improves the performance of the reachability
analysis.

We are now developing a direct-style version of MoCHi, a fully automated
software model checker for OCaml programs, on top of our reachability checker
for Boolean programs, and plan to compare the overall performance with the
indirect style. We expect that avoiding CPS transformations also benefits the
predicate discovery phase.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Numbers
JP16J01038 and JP15H05706.

References

1. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
technology transfer of formal methods inside microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24756-2 1

http://dx.doi.org/10.1007/978-3-540-24756-2_1

Higher-Order Model Checking in Direct Style 313

2. Ball, T., Rajamani, S.K.: Bebop: a path-sensitive interprocedural dataflow engine.
In: Proceedings of PASTE 2001, pp. 97–103. ACM (2001)

3. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: C-SHORe: acollapsible app-
roach to higher-order verification. In: Proceedings of ICFP 2013, pp. 13–24 (2013)

4. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013, LIPIcs, vol. 23, pp. 129–148 (2013)

5. Gilray, T., Lyde, S., Adams, M.D., Might, M., Horn, D.V.: Pushdown control-flow
analysis for free. In: Proceedings of POPL 2016, pp. 691–704. ACM (2016)

6. Horn, D.V., Might, M.: Abstracting abstract machines. In: Proceedings of ICFP
2010, pp. 51–62. ACM (2010)

7. Johnson, J.I., Horn, D.V.: Abstracting abstract control. In: Proceedings of DLS
2014, pp. 11–22. ACM (2014)

8. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009, pp. 25–36. ACM (2009)

9. Kobayashi, N.: Model checking higher-order programs. J. ACM 60(3) (2013)
10. Kobayashi, N.: HorSat2: a saturation-based higher-order model checker. A toolpa-

per under submission (2015). http://www-kb.is.s.u-tokyo.ac.jp/∼koba/horsat2
11. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-

order model checking. In: Proceedings of PLDI 2011, pp. 222–233. ACM (2011)
12. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termina-

tion verification for higher-order functional programs. In: Shao, Z. (ed.) ESOP
2014. LNCS, vol. 8410, pp. 392–411. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54833-8 21

13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999)

14. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of LICS 2006, pp. 81–90. IEEE Computer Society Press
(2006)

15. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL 2011, pp. 587–598. ACM (2011)

16. Ramsay, S.J., Neatherway, R.P., Ong, C.L.: A type-directed abstraction refinement
approach to higher-order model checking. In: Proceedings of POPL 2014, pp. 61–
72. ACM (2014)

17. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Proceedings of PEPM 2013, pp. 53–62. ACM (2013)

18. Terao, T., Kobayashi, N.: A ZDD-based efficient higher-order model checking algo-
rithm. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 354–371. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-12736-1 19

19. Terao, T., Tsukada, T., Kobayashi, N.: Higher-order model checking in direct style
(2016). http://www-kb.is.s.u-tokyo.ac.jp/∼terao/papers/aplas16.pdf

20. Tsukada, T., Kobayashi, N.: Complexity of model-checking call-by-value programs.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 180–194. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54830-7 12

http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2
http://dx.doi.org/10.1007/978-3-642-54833-8_21
http://dx.doi.org/10.1007/978-3-642-54833-8_21
http://dx.doi.org/10.1007/978-3-319-12736-1_19
http://www-kb.is.s.u-tokyo.ac.jp/~terao/papers/aplas16.pdf
http://dx.doi.org/10.1007/978-3-642-54830-7_12

Verifying Concurrent Graph Algorithms

Azalea Raad1(B), Aquinas Hobor2, Jules Villard1, and Philippa Gardner1

1 Imperial College, London, UK
azalea@doc.ic.ac.uk

2 Yale-NUS College and School of Computing,
National University of Singapore, Singapore, Singapore

Abstract. We show how to verify four challenging concurrent fine-
grained graph-manipulating algorithms, including graph copy, a specu-
latively parallel Dijkstra, graph marking and spanning tree. We develop
a reasoning method for such algorithms that dynamically tracks the con-
tributions and responsibilities of each thread operating on a graph, even
in cases of arbitrary recursive thread creation. We demonstrate how to
use a logic without abstraction (CoLoSL) to carry out abstract reasoning
in the style of iCAP, by building the abstraction into the proof structure
rather than incorporating it into the semantic model of the logic.

1 Introduction

The verification of fine-grained concurrent algorithms is nontrivial. There has
been much recent progress verifying such algorithms modularly using variants
of concurrent separation logic [4,6,9,12,15,16]. One area of particular difficulty
has been verifying such algorithms that manipulate graphs. This is only to be
expected: even in a semi-formal “algorithmic” sense, the correctness arguments
of concurrent graph algorithms can be dauntingly subtle [2].

To verify such algorithms, we must not only understand these algorithmic
arguments, but must also determine a precise way to express them in a suit-
able formal system. Even sequential graph algorithms are challenging to ver-
ify due to the overlapping nature of the graph structures, preventing e.g. easy
use of the frame rule of separation logic [8]. Concurrent graph algorithms pose
a number of additional challenges, such as reasoning how the actions of each
thread advance the overall goal despite the possible interference from other
threads.Unsurprisingly, verifications of such algorithms are rare in the litera-
ture.

We verify the functional correctness of four nontrivial concurrent fine-grained
graph algorithms. We study a structure-preserving copy, a speculatively-parallel
version of Dijkstra’s shortest-path algorithm, a graph marking, and a spanning
tree algorithm. We have found common “proof patterns” for tackling these algo-
rithms, principally reasoning about the functional correctness of the algorithm
on abstract mathematical graphs γ, defined as sets of vertices and edges. We use
such abstractions to state and prove key invariants. Another pattern is that we
track the progress of each thread using a notion of tokens to record each thread’s
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 314–334, 2016.
DOI: 10.1007/978-3-319-47958-3_17

Verifying Concurrent Graph Algorithms 315

portion of the computation. Informally, if the token of thread t is on vertex v,
then t is responsible for some work on/around v. Our tokens are sufficiently
general to handle sophisticated parallelism. (e.g. dynamic thread creation/de-
struction).

We then reason about the memory safety of the algorithm by connecting our
reasoning on mathematical graphs to spatial graphs (sets of memory cells in the
heap) by defining spatial predicates that implement mathematical structures in
the heap e.g. graph(γ) def= We define our spatial predicates in such a way that
simplifies many of the proof obligations (e.g. when parallel computations join).

This pattern of doing the algorithmic reasoning on abstract states is similar to
the style of reasoning used in logics such as CaReSL [16] and iCAP [15]. CaReSL
introduced the idea of reasoning on abstract states. Later, iCAP extended
the program logic of CAP [4] to reason about higher-order code and adopted
CaReSL’s abstract states. Just as with these logics, we carry out our reasoning
on abstract states, which enables simpler proofs and lessens the burden of side
conditions such as establishing stability. With these logics, this abstract style
of reasoning has been “baked in” to the semantic models. Here, we demonstrate
that this baking is unnecessary by using a logic (CoLoSL [12]) without such
built-in support. We do not use any of the unique features of CoLoSL. As such,
we believe that our proofs and style of abstract reasoning port to other program
logics without difficulty.

Related Work. There has been much work on reasoning about graph algo-
rithms using separation logic. For sequential graph algorithms, Bornat et al. pre-
sented preliminary work on dags in [1], Yang studied the Schorr-Waite graph
algorithm [17], Reynolds conjectured how to reason about dags [13], and Hobor
and Villard showed how to reason about dags and graphs [8]. We make critical
use of some of Hobor and Villard’s graph-related verification infrastructure.

Many concurrent program logics have been proposed in recent years; both
iCAP and CaReSL encourage the kind of abstract reasoning we employ in our
verifications. However, published examples in these logics focus heavily on veri-
fying concurrent data structures, whereas we focus on verifying concurrent graph
algorithms. Moreover, the semantic models for both of these logics incorporate
significant machinery to enable this kind of abstract reasoning, whereas we are
able to use it without built-in support.

There has hardly been any work on concurrent graph algorithms. Raad
et al. [12] and Sergey et al. [14] have verified a concurrent spanning tree algo-
rithm, one of our examples. In [12], Raad et al. introduced CoLoSL and gave
a shaped-based proof of spanning tree to demonstrate CoLoSL reasoning. A
full functional correctness proof in CoLoSL was available at the time, although
not using the proof pattern presented here. Later in [14], Sergey et al. gave
a full functional correctness proof in Coq, but only that single example. We
believe we are the first to verify copy_dag, which is known to be difficult, and
parrellel_dijkstra, which we believe is the first verification of an algorithm
that uses speculative parallel decomposition [7].

316 A. Raad et al.

Outline. The rest of this paper is organised as follows. In Sect. 2 we give
an overview of the CoLoSL program logic and outline our proof pattern. We
then use our proof pattern to verify the concurrent copy_dag (Sect. 3) and
parallel_dijkstra (Sect. 4) algorithms, and finish with concluding remarks.
We refer the reader to [10,11] for the verification of two further concurrent graph
algorithms for graph marking and computing the spanning tree of a graph.

2 Background

2.1 CoLoSL: Concurrent Local Subjective Logic

In the program logic of CoLoSL [12], the program state is modelled as a pair
comprising a thread-local state, and a global shared state accessible by all threads.
For instance, a shared counter at location x can be specified as:

Cdef= ι›
�

�

�

�
∃v≤max. x �→v › x+1 �→max

I
I

def=
{
ι : x �→v∧v<max � x �→v+1

The assertion C states that the counter at location x is a shared resource (denoted
by the

�

�

�

	
box) with some value v ≤ max, that the maximum value permitted

for the counter (max) is also a shared resource stored at location x+1, and that
the current thread holds some capability ι in its local state. The interference
relation, I, describes how the shared state may be updated and is specified
through actions indexed by capabilities. A thread can perform an action if it
holds the capability for that action in its local state. Here, I declares one action
for incrementing the value of x, indexed by the increment capability ι. As such,
this thread (or any other that also holds some ι capability in its local state) may
increment x by one, provided that the incremented value does not exceed max.

Shared state assertions can be freely duplicated using the Copy principle
in Fig. 1. This allows us to duplicate and pass on the knowledge about the
shared state to new threads, using the standard parallel composition rule Par.
To allow local reasoning, a thread may weaken its view of the shared state to
obtain a partial subjective view of it using the Forget principle. For instance
given the counter specification C above, if this thread is not interested in loca-
tion x+1 where max is stored, it may forget it and obtain

�

�

�

�
∃v ≤ max. x �→ v

I
.

That is, each (subjective) shared state assertion describes (potentially) only
parts of the shared global resources. As such, subjective views may arbitrar-
ily overlap with each other. For instance, while this thread chooses to forget
the x+1 location in C, a second thread may choose to observe both x and
x+1, and a third thread may choose to observe x+1 only. CoLoSL also allows
for weakening (framing) of the interference relation using the Shift principle:
�

�

�

	
P

I∪I′ ∧ [side-condition-omitted] Shift=⇒
�

�

�

	
P

I
. Hence, subjective views may also

arbitrarily overlap in their interference relations. Due to space constraints we
have omitted this rule from Fig. 1 as we do not use it in this paper. Different
subjective views of the shared state can be combined using the Merge principle.

Verifying Concurrent Graph Algorithms 317

Fig. 1. An excerpt of the reasoning principles and proof rules in CoLoSL

Since subjective views may overlap both in their resources and interference rela-
tions, we use the overlapping conjunction [8], ∪›, to combine the resources, and
set union ∪ to combine their interference relations. Intuitively, P∪› Q describes a
state comprising two (potentially) overlapping parts satisfying P and Q, respec-
tively.

CoLoSL is parametric in the model of its resources and may be instantiated
with any PCM (partial commutative monoid).1 In the example above (counter),
our resource PCM is that of ordinary concrete heaps, H

def=(H,	, ∅), with the
composition operator as the disjoint function union, and the function with empty
domain (∅) as the single unit element. In the remainder of this paper, we take
our PCM elements as pairs (hc, hg) in the PCM H

2def=
(H2, (,), (∅, ∅)

)
where

hc is the concrete heap, and hg is the ghost heap. CoLoSL is also parametric in
its capability model and may be instantiated with any PCM. In the following
sections, we choose the capability PCM on a per-example basis (see Footnote 1).

CoLoSL borrows the consequence rule (Con) of the Views framework [3],
with � denoting the semantic consequence relation (semantic implication). That
is, we write P � Q when the set of low-level machine states described by P
are contained in that of Q. This way ghost heaps may be manipulated by an
application of Con rather than explicit ghost instructions.

2.2 Proof Pattern: Combining Mathematical and Spatial Reasoning

Our graph verifications follow a common pattern which we outline as follows.
First, we select an appropriate abstract model for mathematical graphs, which
is typically sets of vertices and edges together with labels. Second, we choose
a token model. We use tokens to identify each thread uniquely and to track
the contribution of each thread to the global computation. For instance, for an
algorithm with only two threads this might be as simple as the set {red, blue},
identifying each thread as a distinct colour.

Third, we define mathematical actions to capture the operations performed
by threads. These actions model both concrete updates to the graph (e.g. remov-
ing an edge), as well as ghost updates used solely for reasoning (e.g. adding or
removing tokens to track the computation progress). Fourth, we define math-
ematical assertions to describe program invariants and pre-/postconditions.
These assertions are on mathematical graphs and involve abstract concepts

1 CoLoSL stipulates that PCMs satisfy the cross-split property [8], which ours do.

318 A. Raad et al.

(e.g. reachability along a path). As a key proof obligation, we must prove that
our mathematical assertions are stable with respect to our mathematical actions,
i.e. they remain true under the actions of other threads in the environment.

Fifth, we define spatial predicates (e.g. graph(γ)) that describe how math-
ematical graphs are implemented in the heap. For instance, a graph may be
implemented as a set of heap-linked nodes or as an adjacency matrix. We then
combine these spatial predicates with our mathematical actions to define spa-
tial actions. Intuitively, if a mathematical action transforms γ to γ′, then the
corresponding spatial action transforms graph(γ) to graph(γ′).

3 Copying Heap-Represented Dags Concurrently

The copy_dag(x) program in Fig. 4 makes a deep structure-preserving copy of
the dag (directed acyclic graph) rooted at x concurrently. To do this, each node
x in the source dag records in its copy field (x->c) the location of its copy when
it exists, or 0 otherwise. Our language is C with a few cosmetic differences.
Line 1 gives the data type of heap-represented dags. The statements between
angle brackets <.> (e.g. lines 5–7) denote atomic instructions that cannot be
interrupted by other threads. We write C1 || C2 (e.g. line 9) for the parallel
computation of C1 and C2. This corresponds to the standard fork-join parallelism.

A thread running copy_dag(x) first checks atomically (lines 5–7) if x has
already been copied. If so, the address of the copy is returned. Otherwise, the
thread allocates a new node y to serve as the copy of x and updates x->c
accordingly; it then proceeds to copy the left and right subdags in parallel by
spawning two new threads (line 9). At the beginning of the initial call, none of
the nodes have been copied and all copy fields are 0; at the end of this call, all
nodes are copied to a new dag whose root is returned by the algorithm. In the
intermediate recursive calls, only parts of the dag rooted at the argument are
copied. Note that the atomic block of lines 5–7 corresponds to a CAS (compare
and set) operation. We have unwrapped the definition for better readability.

Although the code is short, its correctness argument is rather subtle as we
need to reason simultaneously about both deep unspecified sharing inside the
dag as well as the parallel behaviour. This is not surprising since the unspecified
sharing makes verifying even the sequential version of similar algorithms non-
trivial [8]. However, the non-deterministic behaviour of parallel computation
makes even specifying the behaviour of copy_dag challenging. Observe that each
node x of the source dag may be in one of the following three stages:

1. x is not visited by any thread (not copied yet), and thus its copy field is 0.
2. x has already been visited by a thread π, a copy node x′ has been allocated,

and the copy field of x has been accordingly updated to x′. However, the
edges of x′ have not been directed correctly. That is, the thread copying x
has not yet finished executing line 10.

3. x has been copied and the edges of its copy have been updated accordingly.

Verifying Concurrent Graph Algorithms 319

Note that in stage 2 when x has already been visited by a thread π, if another
thread π′ visits x, it simply returns even though x and its children may not have
been fully copied yet. How do we then specify the postcondition of thread π′

since we cannot promise that the subdag at x is fully copied when it returns?
Intuitively, thread π′ can safely return because another thread (π) has copied x
and has made a promise to visit its children and ensure that they are also copied
(by which time the said children may have been copied by other threads, incur-
ring further promises). More concretely, to reason about copy_dag we associate
each node with a promise set identifying those threads that must visit it.

Consider the dags in Fig. 2 where a node x is depicted as (i) a white circle

when in stage 1, e.g. x, 0 in Fig. 2a; (ii) a grey ellipse when in stage 2, e.g. x, x′

π

in Fig. 2b where thread π has copied x to x′; and (iii) a black circle when in stage
3, e.g. x, x′ in Fig. 2g. Initially no node is copied and as such all copy fields
are 0. Let us assume that the top thread (the thread running the very first call
to copy_dag) is identified as π. That is, thread π has made a promise to visit
the top node x and as such the promise set of x comprises π. This is depicted
in the initial snapshot of the graph in Fig. 2a by the {π} promise set next to x.
Thread π proceeds with copying x to x′, and transforming the dag to that of
Fig. 2b. In doing so, thread π fulfils its promise to x and π is thus removed from
the promise set of x. Recall that if another thread now visits x it simply returns,
relinquishing the responsibility of copying the descendants of x. This is because
the responsibility to copy the left and right subdags of x lies with the left and
right sub-threads of π (spawned at line 9), respectively. As such, in transforming
the dag from Fig. 2a to b, thread π extends the promise sets of l and r, where
π.l (resp. π.r) denotes the left (resp. right) sub-thread spawned by π at line 9.
Subsequently, the π.l and π.r sub-threads copy l and r as illustrated in Fig. 2c,
each incurring a promise to visit y via their sub-threads. That is, since both l
and r have an edge to y, they race to copy the subdag at y. In the trace detailed
in Fig. 2, the π.r.l sub-thread wins the race and transforms the dag to that of
Fig. 2d by removing π.r.l from the promise set of y, and incurring a promise at z.
Since the π.l.r sub-thread lost the race for copying y, it simply returns (line 3).
That is, π.l.r needs not proceed to copy y as it has already been copied. As such,
the promise of π.l.r to y is trivially fulfilled and the copying of l is finalised. This
is captured in the transition from Fig. 2d to e where π.l.r is removed from the
promise set of y, and l is taken to stage 3. Thread π.r.l.l then proceeds to copy z,
transforming the dag to that of Fig. 2f. Since z has no descendants, the copying
of the subdag at z is now at an end; thread π.r.l.l thus returns, taking z to stage
3. In doing so, the copying of the entire dag is completed; sub-threads join and
the effect of copying is propagated to the parent threads, taking the dag to that
depicted in Fig. 2g.

Note that in order to track the contribution of each thread and record the
overall copying progress, we must identify each thread uniquely. To this end, we
appeal to a token (identification) mechanism that can (1) distinguish one token
(thread) from another; (2) identify two distinct sub-tokens given any token, to

320 A. Raad et al.

Fig. 2. An example trace of copy_dag

reflect the new threads spawned at recursive call points; and (3)model a parent-
child relationship to discern the spawner thread from its sub-threads. We model
our tokens as a variation of the tree share algebra in [5] as described below.

Trees as Tokens. A tree token (henceforth a token), π ∈ Π, is defined by the
grammar below as a binary tree with boolean leaves (◦, •), exactly one • leaf,
and unlabelled internal nodes.

Π � π:: = • | ◦ π | π ◦
We refer to the thread associated with π as thread π. To model the parent-
child relation between thread π and its two sub-threads (left and right), we
define a mechanism for creating two distinct sibling tokens π.l and π.r defined
below. Intuitively, π.l and π.r denote replacing the • leaf of π with ◦ • and • ◦,
respectively. We model the ancestor-descendant relation between threads by the� ordering defined below where + denotes the transitive closure of the relation.

•.l = ◦ •
�
◦ π

�
.l = ◦ π.l

�
π ◦

�
.l = π.l ◦

•.r = • ◦
�
◦ π

�
.r = ◦ π.r

�
π ◦

�
.r = π.r ◦

�def
= {(π.l, π), (π.r, π) | π ∈ Π}+

We write ππ′ for π=π′ ∨ π�π′, and write π �| π′ (resp. π | π′) for ¬(π � π′)
(resp. neg(π π′)). Observe that • is the maximal token, i.e. ∀π ∈ Π.π •.
As such, the top-level thread is associated with the • token, since all other
threads are its sub-threads and are subsequently spawned by it or its descen-
dants (i.e. π=• in Fig. 2a–g). In what follows we write π to denote the token set
comprising the descendants of π, i.e. π

def= {π′ | π′ π}.
As discussed in Sect. 2.2, we carry out most of our reasoning abstractly by

appealing to mathematical objects. To this end, we define mathematical dags as
an abstraction of the dag structure in copy_dag.

Mathematical Dags. A mathematical dag, δ ∈ Δ, is a triple of the form
(V,E,L) where V is the vertex set; E : V → V0×V0, is the edge function with
V0 = V 	 {0}, where 0 denotes the absence of an edge (e.g. a null pointer); and

Verifying Concurrent Graph Algorithms 321

L = V →D, is the vertex labelling function with the label set D defined shortly.
We write δv, δe and δl, to project the various components of δ. Moreover, we
write δl(x) and δr(x) for the first and second projections of E(x); and write δ(x)
for (L(x), δl(x), δr(x)) when x ∈ V . Given a function f (e.g. E,L), we write
f [x �→ v] for updating f(x) to v, and write f	[x �→ v] for extending f with x
and value v. Two dags are congruent if they have the same vertices and edges,
i.e. δ1 ∼= δ2

def= δv1=δv2 ∧ δe1=δe2 . We define our mathematical objects as pairs of
dags (δ, δ′) ∈ (Wδ×Wδ), where δ and δ′ denote the source dag and its copy,
respectively.

To capture the stages a node goes through, we define the node labels as
D=

(
V0 × (Π 	{0}) ×P(Π)

)
. The first component records the copy information

(the address of the copy when in stage 2 or 3; 0 when in stage 1). This corresponds
to the second components in the nodes of the dags in Fig. 2, e.g. 0 in x, 0 . The
second component tracks the node stage as described on page 5: 0 in stage 1
(white nodes in Fig. 2), some π in stage 2 (grey nodes in Fig. 2), and 0 in stage
3 (black nodes in Fig. 2). That is, when the node is being processed by thread π,
this component reflects the thread’s token. Note that this is a ghost component in
that it is used purely for reasoning and does not appear in the physical memory.
The third (ghost) component denotes the promise set of the node and tracks
the tokens of those threads that are yet to visit it. This corresponds to the sets
adjacent to nodes in the dags of Fig. 2, e.g. {π.l} in Fig. 2b. We write δc(x), δs(x)
and δp(x) for the first, second, and third projections of x’s label, respectively. We
define the path relation, x

δ� y, and the unprocessed path relation, x
δ�0 y, as

follows and write δ�› and δ�›
0 for their reflexive transitive closure, respectively.

x
δ� y

def= δl(x)=y ∨ δr(x)=y x
δ�0 y

def= x
δ� y ∧ δc(x) = 0 ∧ δc(y) = 0

The lifetime of a node x with label (c, s, P) can be described as follows.
Initially, x is in stage 1 (c=0, s=0). When thread π visits x, it creates a copy
node x′ and takes x to stage 2 (c=x′, s=π). In doing so, it removes its token π
from the promise set P , and adds π.l and π.r to the promise sets of its left and
right children, respectively. Once π finishes executing line 10, it takes x to stage
3 (c=x′, s=0). If another thread π′ then visits x when it is in stage 2 or 3, it
removes its token π′ from the promise set P , leaving the node stage unchanged.

As discussed in Sect. 2.2, to model the interactions of each thread π with the
shared data structure, we define mathematical actions as relations on mathe-
matical objects. We thus define several families of actions, each indexed by a
token π.

Actions. The mathematical actions of copy_dag are given in Fig. 3. The A1
π

describes taking a node x from stage 1 to 2 by thread π. In doing so, it removes
its token π from the promise set of x, and adds π.l and π.r to the promise sets
of its left and right children respectively, indicating that they will be visited by
its sub-threads, π.l and π.r. It then updates the copy field of x to y, and extends
the copy graph with y. This action captures the atomic block of lines 5–7 when

322 A. Raad et al.

Fig. 3. The mathematical actions of copy_dag

successful. The next two sets capture the execution of atomic commands in
line 10 by thread π where A2

π and A3
π respectively describe updating the left and

right edges of the copy node. Once thread π has finished executing line 10 (and
has updated the edges of y), it takes x to stage 3 by updating the relevant ghost
values. This is described by A4

π. The A5
π set describes the case where node x has

already been visited by another thread (it is in stage 2 or 3 and thus its copy field
is non-zero). Thread π then proceeds by removing its token from x’s promise set.
We write Aπ to denote the actions of thread π: Aπ

def= A1
π ∪A2

π ∪A3
π ∪A4

π ∪A5
π.

We can now specify the behaviour of copy_dag mathematically.

Mathematical Specification. Throughout the execution of copy_dag, the
source dag and its copy (δ, δ′), satisfy the invariant Inv below.

Inv(δ, δ′)def
= acyc(δ)∧acyc(δ′)∧(∀x′ ∈δ′. ∃!x∈δ. δc(x)=x′)∧(∀x ∈ δ. ∃x′. ic(x, x′, δ, δ′))

ic(x, x′, δ, δ′)def
= (x=0 ∧ x′=0)∨�

x�=0∧�
(x′=0∧ δc(x)=x′∧ ∃y. δp(y)=|∅ ∧ y

δ�›
0 x)

∨�x′=|0∧x′ ∈ δ′∧∃π, l,r, l′,r′. δ(x)=((x′,π,−), l,r)∧δ′(x′)=(−, l′,r′)
∧(l′ �=0 ⇒ ic(l, l′, δ, δ′)) ∧ (r′ �=0 ⇒ ic(r, r′, δ, δ′))

�
∨�x′=|0∧x′ ∈ δ′∧∃l, r, l′, r′. δ(x)=((x′, 0, −), l, r)∧δ′(x′)=(−, l′,r′)

∧ ic(l, l′, δ, δ′) ∧ ic(r, r′, δ, δ′)
���

with acyc(δ) def= ¬∃x. x
δ�+ x, where δ�+ denotes the transitive closure of δ� .

Informally, the invariant asserts that δ and δ′ are acyclic (first two conjuncts),
and that each node x′ of the copy dag δ′ corresponds to a unique node x of the
source dag δ (third conjunct). The last conjunct states that each node x of
the source dag (i.e. x�=0) is in one of the three stages described above, via the
second disjunct of the ic predicate: (i) x is not copied yet (stage 1), in which
case there is an unprocessed path from a node y with a non-empty promise set
to x, ensuring that it will eventually be visited (first disjunct); (ii) x is currently

Verifying Concurrent Graph Algorithms 323

being processed (stage 2) by thread π (second disjunct), and if its children have
been copied they also satisfy the invariant; (iii) x has been processed completely
(stage 3) and thus its children also satisfy the invariant (last disjunct).

The mathematical precondition of copy_dag, Pπ(x, δ), is defined below where
x identifies the top node being copied (the argument to copy_dag), π denotes
the thread identifier, and δ is the source dag. It asserts that π is in the promise
set of x, i.e. thread π has an obligation to visit x (first conjunct). Recall that
each token uniquely identifies a thread and thus the descendants of π correspond
to the sub-threads subsequently spawned by π. As such, prior to spawning new
threads the precondition asserts that none of the strict descendants of π can be
found anywhere in the promise sets (second conjunct), and π itself is only in
the promise set of x (third conjunct). Similarly, neither π nor its descendants
have yet processed any nodes (last conjunct). The mathematical postcondition,
Qπ(x, y, δ, δ′), is as defined below and asserts that x (in δ) has been copied to
y (in δ′); that π and all its descendants have fulfilled their promises and thus
cannot be found in promise sets; and that π and all its descendants have finished
processing their charges and thus cannot correspond to the stage field of a node.

Pπ(x, δ) def= (x=0 ∨ π ∈ δp(x)) ∧ ∀π′.∀y ∈ δ.
(π′∈ δp(y) ⇒ π′�|π)∧(x=| y ⇒ π ∈| δp(y))∧(δs(y)=π′⇒ π′|π)

Qπ(x, y, δ, δ′) def= (x=0∨(δc(x)=y∧y ∈ δ′)) ∧ ∀π′.∀z ∈ δ.
π′ ∈ δp(z) ∨ δs(z)=π′ ⇒ π′ | π

Observe that when the top level thread (associated with •) executing
copy_dag(x) terminates, since • is the maximal token and all other tokens are
its descendants (i.e. ∀π. π •), the second conjunct of Q•(x, ret, δ, δ′) entails
that no tokens can be found anywhere in δ, i.e. ∀y. δp(y)=∅ ∧ δs(y)=0. As such,
Q•(x, ret, δ, δ′) together with Inv entails that all nodes in δ have been correctly
copied into δ′, i.e. only the third disjunct of ic(x, ret, δ, δ′) in Inv applies.

Recall from Sect. 2.2 that as a key proof obligation we must prove that our
mathematical assertions are stable with respect to our mathematical actions.
This is captured by Lemma 1 below. Part (1) states that the invariant Inv is
stable with respect to the actions of all threads. That is, if the invariant holds
for (δ1, δ2), and a thread π updates (δ1, δ2) to (δ3, δ4), then the invariant holds
for (δ3, δ4). Parts (2) and (3) state that the pre- and postconditions of thread
π′ (Pπ′

and Qπ′
) are stable with respect to the actions of all threads π, but

those of its descendants (π ∈| π′). Observe that despite this latter stipulation, the
actions of π are irrelevant and do not affect the stability of Pπ′

and Qπ′
. More

concretely, the precondition Pπ′
only holds at the beginning of the program

before new descendants are spawned (line 9). As such, at these program points
Pπ′

is trivially stable with respect to the actions of its (non-existing) descendants.
Analogously, the postcondition Qπ′

only holds at the end of the program after
the descendant threads have completed their execution and joined. Therefore,
at these program points Qπ′

is trivially stable with respect to the actions of its
descendants.

324 A. Raad et al.

Lemma 1. For all mathematical objects (δ1,δ2), (δ3,δ4), and all tokens π, π′,

Inv(δ1, δ2) ∧ (δ1,δ2)Aπ (δ3,δ4) ⇒ Inv(δ3, δ4) (1)

Pπ′
(x, δ1) ∧ (δ1,δ2)Aπ (δ3,δ4) ∧ π ∈| π′ ⇒ Pπ′

(x, δ3) (2)

Qπ′
(x, y, δ1, δ2) ∧ (δ1,δ2)Aπ (δ3,δ4) ∧ π ∈| π′ ⇒ Qπ′

(x, y, δ3, δ4) (3)

Proof. Follows from the definitions of Aπ, Inv, P, and Q. The full proof is given
in [10].

We are almost in a position to verify copy_dag. As discussed in Sect. 2.2, in
order to verify copy_dag we integrate our mathematical correctness argument
with a machine-level memory safety argument by linking our abstract mathe-
matical objects to concrete structures in the heap. We proceed with the spatial
representation of our mathematical dags in the heap.

Spatial Representation. We represent a mathematical object (δ, δ′) in the
heap through the icdag (in-copy) predicate below as two disjoint (›-separated)
dags, as well as a ghost location (d) in the ghost heap tracking the current
abstract state of each dag. Observe that this way of tracking the abstract state
of dags in the ghost heap eliminates the need for baking in the abstract state into
the model. That is, rather than incorporating the abstract state into the model
as in [15,16], we encode it as an additional resource in the ghost heap. We use
⇀⇁ for ghost heap cells to differentiate them from concrete heap cells indicated
by �→. We implement each dag as a collection of nodes in the heap. A node
is represented as three adjacent cells in the heap together with two additional
cells in the ghost heap. The cells in the heap track the addresses of the copy
(c), and the left (l) and right (r) children, respectively. The ghost locations are
used to track the node state (s) and the promise set (P). It is also possible (and
perhaps more pleasing) to implement a dag via a recursive predicate using the
overlapping conjunction ∪› (see [10]). Here, we choose the implementation below
for simplicity.

icdag(δ1, δ2)
def= d ⇀⇁ (δ1, δ2) › dag(δ1) › dag(δ2) dag(δ)def= �

x∈δ
node(x, δ)

node(x, δ) def= ∃l, r, c, s, P. δ(x)=(c, s, P), l, r ∧ x �→ c, l, r › x ⇀⇁ s,P

We can now specify the spatial precondition of copy_dag, Pre(x, π, δ), as a
CoLoSL assertion defined below where x is the top node being copied (the argu-
ment of copy_dag), π identifies the running thread, and δ denotes the initial
top-level dag (where none of the nodes are copied yet). Recall that the spatial
actions in CoLoSL are indexed by capabilities; that is, a CoLoSL action may
be performed by a thread only when it holds the necessary capabilities. Since
CoLoSL is parametric in its capability model, to verify copy_dag we take our
capabilities to be the same as our tokens. The precondition Pre states that the

Verifying Concurrent Graph Algorithms 325

current thread π holds the capabilities associated with itself and all its descen-
dants (π›). Thread π will subsequently pass on the descendant capabilities when
spawning new sub-threads and reclaim them as the sub-threads return and join.
The Pre further asserts that the initial dag δ and its copy currently correspond to
δ1 and δ2, respectively. That is, since the dags are concurrently manipulated by
several threads, to ensure the stability of the shared state assertion to the actions
of the environment, Pre states that the initial dag δ may have evolved to another
congruent dag δ1 (captured by the existential quantifier). The Pre also states that
the shared state contains the spatial resources of the dags (icdag(δ1, δ2)), that
(δ1, δ2) satisfies the invariant Inv, and that the source dag δ1 satisfies the math-
ematical precondition Pπ. The spatial actions on the shared state are declared
in I where mathematical actions are simply lifted to spatial ones indexed by the
associated capability. That is, if thread π holds the π capability, and the actions
of π (Aπ) admit the update of the mathematical object (δ1, δ2) to (δ′

1, δ
′
2), then

thread π may update the spatial resources icdag(δ1, δ2) to icdag(δ′
1, δ

′
2). Finally,

the spatial postcondition Post is analogous to Pre and further states that node
x has been copied to y.

Pre(x, π, δ)def= π› ›
�

�

�

�
∃δ1,δ2. icdag(δ1, δ2) › (δ∼̇=δ1∧Inv(δ1,δ2)∧Pπ(x, δ1))

I

Post(x, y, π, δ)def= π› ›
�

�

�

�
∃δ1,δ2. icdag(δ1,δ2) › (δ∼̇=δ1∧Inv(δ1,δ2)∧Qπ(x, y,δ1,δ2))

I

π› def= �
π∈π

π I
def=

{
π : icdag(δ1, δ2) ∧ (δ1, δ2)Aπ(δ′

1, δ
′
2) � icdag(δ′

1, δ
′
2)

Verifying copy_dag. We give a proof sketch of copy_dag in Fig. 4. At each
proof point, we have highlighted the effect of the preceding command, where
applicable. For instance, after line 4 we allocate a new node in the heap at
y as well as two consecutive cells in the ghost heap at y. One thing jumps
out when looking at the assertions at each program point: they have identical
spatial parts in the shared state: icdag(δ1, δ2). Indeed, the spatial graph in the
heap is changing constantly, due both to the actions of this thread and the
environment. Nevertheless, the spatial graph in the heap remains in sync with
the mathematical object (δ1, δ2), however (δ1, δ2) may be changing. Whenever
this thread interacts with the shared state, the mathematical object (δ1, δ2)
changes, reflected by the changes to the pure mathematical facts. Changes to
(δ1, δ2) due to other threads in the environment are handled by the existential
quantification of δ1 and δ2.

On line 3 we check if x is 0. If so the program returns and the postcon-
dition, Post(x, 0, δ, π), follows trivially from the definition of the precondition
Pre(x, δ, π). If x �= 0, then the atomic block of lines 5–7 is executed. We first check
if x is copied; if so we set b to false, perform action A5

π (i.e. remove π from the
promise set of x) and thus arrive at the desired postcondition Post(x, δc1(x), π, δ).
On the other hand, if x is not copied, we set b to true and perform A1

π. That is,
we remove π from the promise set of x, and add π.l and π.r to the left and right
children of x, respectively. In doing so, we obtain the mathematical precondi-
tions Pδ1(l, π.l) and Pδ1(r, π.r). On line 8 we check whether the thread did copy

326 A. Raad et al.

Fig. 4. The code and a proof sketch of copy_dag

Verifying Concurrent Graph Algorithms 327

x and has thus incurred an obligation to call copy_dag on x’s children. If this is
the case, we load the left and right children of x into l and r, and subsequently
call copy_dag on them (line 9). To obtain the preconditions of the recursive
calls, we duplicate the shared state twice (

�

�

�

	
P

I

Copy×2
=⇒

�

�

�

	
P

I
›

�

�

�

	
P

I
›

�

�

�

	
P

I
), drop

the irrelevant pure assertions, and unwrap the definition of π›. We then use the
Par rule (Fig. 1) to distribute the resources between the sub-threads and col-
lect them back when they join. Subsequently, we combine multiple copies of the
shared states into one using Merge. Finally, on line 10 we perform actions A2

π,
A3

π and A4
π in order to update the edges of y, and arrive at the postcondition

Post(x, y, π, δ).

Copying Graphs. Recall that a dag is a directed graph that is acyclic. However,
the copy_dag program does not depend on the acyclicity of the dag at x and thus
copy_dag may be used to copy both dags and cyclic graphs. The specification
of copy_dag for cyclic graphs is rather similar to that of dags. More concretely,
the spatial pre- and postcondition (Pre and Post), as well as the mathematical
pre- and postcondition (P and Q) remain unchanged, while the invariant Inv is
weakened to allow for cyclic graphs. That is, the Inv for cyclic graphs does not
include the first two conjuncts asserting that δ and δ′ are acyclic. As such, when
verifying copy_dag for cyclic graphs, the proof obligation for establishing the
Inv stability (i.e. Lemma 1(1)) is somewhat simpler. The other stability proofs
(Lemma 1(2) and (3)) and the proof sketch in Fig. 4 are essentially unchanged.

4 Parallel Speculative Shortest Path (Dijkstra)

Given a graph with size vertices, the weighted adjacency matrix a, and a des-
ignated source node src, Dijkstra’s sequential algorithm calculates the shortest
path from src to all other nodes incrementally. To do this, it maintains a cost
array c, and two sets of vertices: those processed thus far (done), and those
yet to be processed (work). The cost for each node (bar src itself) is initialised
with the value of the adjacency matrix (i.e. c[src]=0; c[i]=a[src][i] for i=|src).
Initially, all vertices are in work and the algorithm proceeds by iterating over
work performing the following two steps at each iteration. First, it extracts a
node i with the cheapest cost from work and inserts it to done. Second, for
each vertex j, it updates its cost (c[j]) to min{c[j], c[i]+a[i][j]}. This greedy
strategy ensures that at any one point the cost associated with the nodes in
done is minimal. Once the work set is exhausted, c holds the minimal cost for
all vertices.

We study a parallel non-greedy variant of Dijkstra’s shortest path algorithm,
parallel_dijkstra in Fig. 5, with work and done implemented as bit arrays. We
initialize the c, work and done arrays as described above (lines 2–5), and find the
shortest path from the source src concurrently, by spawning multiple threads,
each executing the non-greedy dijkstra (line 6). The code for dijkstra is given
in Fig. 5. In this non-greedy implementation, at each iteration an arbitrary node
from the work set is selected rather than one with minimal cost. Unlike the greedy
variant, when a node is processed and inserted into done, its associated cost is

328 A. Raad et al.

Fig. 5. A parallel non-greedy variant of Dijkstra’s algorithm

not necessarily the cheapest. As such, during the second step of each iteration,
when updating the cost of node j to min{c[j], c[i]+a[i][j]} (as described above),
we must further check if j is already processed. This is because if the cost of j
goes down, the cost of its adjacent siblings may go down too and thus j needs
to be reprocessed. When this is the case, j is removed from done and reinserted
into work (lines 9–11). If on the other hand j is unprocessed (and is in work), we
can safely decrease its cost (lines 7–8). Lastly, if j is currently being processed
by another thread, we must wait until it is processed (loop back and try again).

The algorithm of parallel_dijkstra is an instance of speculative paral-
lelism [7]: each thread running dijkstra assumes that the costs of the nodes in
done will not change as a result of processing the nodes in work and proceeds
with its computation. However, if at a later point it detects that its assumption
was wrong, it reinserts the affected nodes into work and recomputes their costs.

Mathematical Graphs. Similar to dags in Sect. 3, we define our mathematical
graphs, γ ∈ Γ, as tuples of the form (V,E,L) where V is the set of vertices,
E :V → (V →W) is the weighted adjacency function with weights W def= N	{∞},
and L : V →D is the label function, with the labels D defined shortly. We use
the matrix notation for adjacency functions and write E[i][j] for E(i)(j).

Verifying Concurrent Graph Algorithms 329

Unlike copy_dag in Sect. 3 where a new thread is spawned at every recursive
call point, in parallel_dijkstra the number of threads to run concurrently is
decided at the beginning (line 7) and remains unchanged thereafter. This allows
for a simpler token mechanism. We define our tokens as elements of the (count-
ably) infinite set t ∈ Θ

def=N\{0, 1}. We refer to the thread with token t simply
as thread t. Recall that each node x in the graph can be either: unprocessed (in
work); processed (in done); or under process by a thread (neither in work nor in
done). We define our labels as D

def= W × ({0, 1} 	 Θ
) × (V →{◦, •} 	 W). The

first component denotes the cost of the shortest path from the source (so far)
to the node. The second component describes the node state (0 for unprocessed,
1 for processed, and t when under process by thread t). The last component
denotes the responsibility function. Recall that when a thread is processing a
node, it iterates over all vertices examining whether their cost can be improved.
To do this, at each iteration the thread records the current cost of node j under
inspection in oldcost (line 5). If the cost may be improved (i.e. the conditional
of line 6 succeeds), it then attempts to update the cost of j with the improved
value (lines 8, 10). Note that since the cost associated with j may have changed
from the initial cost recorded (oldcost), the update operation may fail and thus
the thread needs to re-examine j. To track the iteration progress, for each node
the responsibility function records whether (i) its cost is yet to be examined (◦);
(ii) its cost has been examined (•); or (iii) its cost is currently being examined
(c ∈ W) with its initial cost recorded as c (oldcost=c). We use the string nota-
tion for responsibility functions and write e.g. •n.c.◦m, when the first n nodes
are mapped to •, the (n+1)st node is mapped to c, and the last m nodes are
mapped to ◦. We write ◦ (resp. •) for a function that maps all elements to ◦
(resp. •).

Given a graph γ=(V,E,L), we write γv for V , γe for E, and γl for L. We
write γc(x), γs(x) and γr(x), for the first, second and third projections of L(x),
respectively. Two graphs are congruent if they have equal vertices and edges:
γ1 ∼= γ2

def= γv
1=γv

2 ∧ γe
1=γe

2 . We define the weighted path relation (γ�c), and its
reflexive transitive closure as:

x
γ�c y

def
=(γe)[x][y]=c x

γ�›
c y

def
=(x=y∧c=0)∨(∃c1,c2,z. c=c1+c2∧x

γ�c1 z ∧ z
γ�›

c2 y)

Actions. We define several families of actions in Fig. 6, each of which indexed
by a token t. The A1

t describes the CAS operation of line 2 in the algorithm: the
state of a node is changed from unprocessed to being processed by thread t (i
is removed from work). The A2

t describes a ghost action at line 5 for iteration
j when storing the current cost of j in oldcost. The thread has not yet exam-
ined the cost of node j (R[j]=◦). It then reads the current cost (c′) of j and
(ghostly) updates the responsibility function. The A3

t describes the CAS opera-
tions of lines 7 and 9 when successful: when processing i, we discovered that the
cost of j may be improved (c+E[i][j] ≤ c′). In the former case, j is currently

330 A. Raad et al.

Fig. 6. The mathematical actions of dijkstra

unprocessed (in work, s=0), while in the latter j is processed (in done, s=1). In
both cases, we remove j from the respective set and temporarily change its state
to under process by t until its cost is updated and it is reinserted into the rele-
vant set. The A4

t describes the CAS operations in lines 8 and 10 when successful.
The cost of j has not changed since we first read it (R[j]=c′) and we discovered
that this cost may be improved (c′′≤c′). The responsibility of i towards j is then
marked as fulfilled (R′[j]=•) and the cost of j is updated until it is subsequently
reinserted into work via A5

t . The A5
t denotes the reinsertion of j into work in

lines 8 and 11 following successful CAS operations at lines 8 and 10. The state of
j is changed to 0 to reflect its insertion to work. The A6

t and A7
t sets respectively

describe the reinsertion of j into work and done in lines 8 and 10, following failed
CAS operations at lines 8 and 10. When attempting to update the cost of j, we
discovered that the cost of j has changed since we first read it (c′ =| c′′). We thus
reinsert j into the relevant set and (ghostly) update the responsibility function
to reflect that j is to be re-examined (R′[j]=◦). The A8

t describes a ghost action
in line 6 when the conditional fails: examining j yielded no cost improvement
and thus the responsibility of i towards j is marked as fulfilled. Lastly, the A9

t

captures the atomic operation in line 14: processing of i is at an end since all
nodes have been examined. The state of i is thus changed to processed (i is
inserted into done). We write At for actions of t, i.e. At

def=
⋃

i∈{1...9}
Ai

t.

Verifying Concurrent Graph Algorithms 331

Mathematical Invariant. Throughout the execution of dijkstra for a source
node src, the graph γ satisfies the invariant Inv(src, γ) described below.

Inv(γ, src) def=∀x ∈ γ.minsrc
γ (x,γc(x))

∨(∃y, z, c.minsrc
γ (y, γc(y)) ∧ γ(y)=|1 ∧ γr[y][z]=0

∧ y
γ�c z ∧ witsrc

γ (γc(y)+c, z, x)
)

minsrc
γ (x, c) def=min{c′ | s

γ�›
c′ x} = c

witsrc
γ (c, z, x) def=minsrc

γ (z, c) ∧ γc(z) > c

∧ (z=x ∨ (∃c′,w. z
γ�c′ w ∧ witsrc

γ (c+c′, w, x)))

The Inv(γ, src) asserts that for any node x, either its associated cost from src
is minimal; or there is a minimal path to x from a node y (via z), such that the
cost of y is minimal and y is either unprocessed or is being processed. Moreover,
none of the nodes along this path (except y) are yet associated with their correct
(minimal) cost. As such, when y is finally processed, its effect will be propagated
down this path, correcting the costs of the nodes along the way. Observe that
when dijkstra terminates, since all nodes are processed (i.e. ∀x. γs(x)=1), the
Inv(γ, src) entails that the cost associated with all nodes is minimal.

Lemma 2. For all mathematical graphs γ, γ′, source nodes src, and tokens t,
the Inv(γ, src) invariant is stable with respect to At:

Inv(γ, src) ∧ γ At γ′ ⇒ Inv(γ′, src)

Proof. Follows from the definitions of At and Inv. The full proof is given in [10].

Spatial Representation. Using the g(γ) predicate below, we represent a math-
ematical graph γ in the heap as multiple ›-separated arrays: two bit-arrays for
the work and done sets, a two-dimensional array for the adjacency matrix, a one
dimensional array for the cost function, and finally two ghost arrays for the label
function (one for the responsibility function, another for the node states).

g(γ) def= work(γ) › done(γ) › adj(γ) › cost(γ) › resp(γ) › state(γ)
work(γ) def= �

i∈{i|γs(i)=0}

(
work[i] �→ 1

)› �
i∈{i|γs(i)=| 0}

(
work[i] �→ 0

)
done(γ) def= �

i∈{i|γs(i)=1}

(
done[i] �→ 1

)› �
i∈{i|γs(i)=| 1}

(
done[i] �→ 0

)
adj(γ) def= �

i∈γ
(�
j∈γ

a[i][j] �→ γe[i][j]) cost(γ) def= �
i∈γ

(c[i] �→ γc(i))

resp(γ) def= �
i∈γ

(
�
j∈γ

r[i][j] ⇀⇁ γr[i][j]
)

state(γ) def= �
i∈γ

(
s[i] ⇀⇁ γs(i)

)
We specify the spatial precondition of dijkstra, Pre(t,γ0), as a CoLoSL asser-
tion defined below where t identifies the running thread, and γ0 denotes the
original graph (at the beginning of parallel_dijkstra, before spawning new

332 A. Raad et al.

Fig. 7. A proof sketch of the dijkstra algorithm (continued in Fig. 8)

threads). We instantiate the CoLoSL capabilities to be the same as our tokens.
The precondition Pre states that the current thread t holds the t capability, that
the original graph γ0 may have evolved to another congruent graph γ (captured
by the existential quantifier) satisfying the invariant Inv, and that the shared
state contains the spatial resources of the graph g(γ). As before, the spatial
actions on the shared state are declared in I by lifting mathematical actions to
spatial ones indexed by the corresponding capability. Finally, the spatial post-
condition Post is analogous to Pre and further states that all nodes in γ are
processed (in done).

Pre(t,γ0)
def= t ›

�

�

�

�
∃γ. g(γ)›(γ0∼̇=γ ∧ Inv(γ, src))

I
I

def=
{
t : g(γ)∧γ At γ′ � g(γ′)

Post(t,γ0)
def= t ›

�

�

�

�
∃γ. g(γ)›(γ0∼̇=γ ∧ Inv(γ, src) ∧ ∀x∈γ. γs(x)=̇1)

I

Verifying parallel_dijkstra. A proof sketch of dijkstra is given in Figs. 7
and 8. As before, in all proof points the spatial part (g(γ)) remains unchanged,

Verifying Concurrent Graph Algorithms 333

Fig. 8. A proof sketch of the dijkstra algorithm (continued from Fig. 7)

and the changes to the graph are reflected in the changes to the pure mathe-
matical assertions. Observe that when all threads return, the pure part of the
postcondition (Inv(γ, src) ∧ ∀x ∈ γ. γs(x)=̇1) entails that all costs in cost are
minimal as per the first (and the only applicable) disjunct in Inv(γ, src). As such,
the proof of parallel_dijkstra is immediate from the parallel rule (Par).

Concluding Remarks. We have verified two sophisticated concurrent graph
algorithms, copy_dag and parallel_dijkstra, neither of which has been veri-
fied previously. We used several proof patterns, such as doing the tricky reasoning
on mathematical abstractions and using tokens to track the progress of cooper-
ating threads. We used an “iCAP-like” abstract proof style despite using CoLoSL
which does not support this proof style natively. In [10,11] we verify two further
graph algorithms using our proof pattern: graph marking, which is the simplest

334 A. Raad et al.

nontrivial concurrent algorithm and which accordingly enjoys the cleanest proof;
and spanning tree, which has been done previously but with different invariants.

Acknowledgements. This research was supported by EPSRC programme grants
EP/H008373/1 and EP/K008528/1, Yale-NUS College and R-607-265-045-121.

References

1. Bornat, R., Calcagno, C., O’Hearn, P.: Local reasoning, separation and aliasing.
In: SPACE, vol. 4 (2004)

2. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-
the-fly darbage collection: an exercise in cooeration. In: Bauer, F.L., Dijkstra,
E.W., Ershov, A., Griffiths, M., Hoare, C.A.R., Wulf, W.A., Samelson, K. (eds.)
Language Hierarchies and Interfaces. LNCS, vol. 46, pp. 43–56. Springer, Heidel-
berg (1976). doi:10.1007/3-540-07994-7_48

3. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL, pp. 287–300 (2013)

4. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M., Vafeiadis, V.: Con-
current abstract predicates. In: ECOOP, pp. 504–528 (2010)

5. Dockins, R., Hobor, A., Appel, A.: A fresh look at separation algebras and share
accounting. In: APLAS (2009)

6. Feng, X.: Local rely-guarantee reasoning. In: POPL, pp. 315–327 (2009)
7. Grama, A., Anshul, G., Karypis, G., Kumar, V.: Introduction to Parallel Comput-

ing, 2nd edn. Addison Wesley, Boston (2003)
8. Hobor, A., Villard, J.: The ramifications of sharing in data structures. In: Gia-

cobazzi, R., Cousot, R. (eds.) POPL, pp. 523–536. ACM (2013)
9. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.: Communicating state tran-

sition systems for fine-grained concurrent resources. In: ESOP, pp. 290–310 (2014)
10. Raad, A.: Ph.D. thesis, Imperial College London (2016, to appear)
11. Raad, A., Hobor, A., Villard, J., Gardner, P.: Verifying concurrent graph algo-

rithms (extended) (2016)
12. Raad, A., Villard, J., Gardner, P.: CoLoSL: concurrent local subjective logic. In:

ESOP, pp. 710–735 (2015)
13. Reynolds, J.: A short course on separation logic (2003). http://www.cs.cmu.edu/

afs/cs.cmu.edu/project/fox-19/member/jcr/wwwaac2003/notes7.ps
14. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-

current programs. In: PLDI (2015)
15. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: ESOP

(2014)
16. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning

in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)
17. Yang, H.: Local reasoning for stateful programs. Ph.D. thesis, University of Illinois

(2001)

http://dx.doi.org/10.1007/3-540-07994-7_48
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/wwwaac2003/notes7.ps
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/wwwaac2003/notes7.ps

Verification of Higher-Order Concurrent
Programs with Dynamic Resource Creation

Kazuhide Yasukata, Takeshi Tsukada(B), and Naoki Kobayashi

The University of Tokyo, Tokyo, Japan
{yasukata,tsukada,koba}@kb.is.s.u-tokyo.ac.jp

Abstract. We propose a sound and complete static verification method
for (higher-order) concurrent programs with dynamic creation of
resources, such as locks and thread identifiers. To deal with (possibly
infinite) resource creation, we prepare a finite set of abstract resource
names and introduce the notion of scope-safety as a sufficient condition
for avoiding the confusion of different concrete resources mapped to the
same abstract name. We say that a program is scope-safe if no resource is
used after the creation of another resource of the same abstract name. We
prove that the pairwise-reachability problem is decidable for scope-safe
programs with nested locking. We also propose a method for checking
that a given program is scope-safe and with nested locking.

1 Introduction

Verification of concurrent programs is important but fundamentally difficult.
Ramalingam [11] has proved that the reachability problem for two-thread pro-
grams is undecidable in the presence of rendezvous-style synchronization and
recursive procedures. To deal with this limitation, several restricted models of
concurrent computation have been studied. Kahlon et al. [2] have shown that the
pairwise-reachability problem (“Given a program and their control locations, can
the locations be reached simultaneously”) for multi-threaded programs (without
dynamic thread creation) is decidable if only nested locking with a finite num-
ber of locks is allowed as synchronization primitives. The result has later been
extended to allow dynamic thread creation [7], joins (to wait for the termination
of all the child threads) [1], and higher-order functions [13].

One of the important limitations in the programming models in the above
line of work is that the dynamic creation of locks is not allowed; the number
of locks must be finite and they must be statically allocated. In real programs,
dynamic creation of locks is common; for example, in Java, every object may
be used as a lock. Another, related limitation is that, although dynamic thread
creation is supported [1,7,13], there is no way to refer to each thread, e.g., to
specify the target of a join; the models in [1,13] support join operations, but
they can only be used for synchronizing with all the child threads. Again, this
deviates from real concurrent programming models.

To address the limitation above, we propose a method for checking the
pairwise reachability of higher-order concurrent programs with primitives for
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 335–353, 2016.
DOI: 10.1007/978-3-319-47958-3 18

336 K. Yasukata et al.

dynamic creation of locks and thread identifiers. To keep the verification prob-
lem decidable, however, we introduce the notion of scope safety. We consider a
map from concrete resources (such as locks and thread identifiers) to abstract
resources, and say that a program is scope-safe if, intuitively, at most one con-
crete resource per each abstract resource is accessible to each thread at each
run-time state. For example, consider the following program:

main() {
l = newlock(); /* create a new lock */
spawn{acq(l);L:rel(l);}; /* spawn a child thread */
acq(l);L:rel(l); /* acquire and release l */
main(); } /* repeat */

The main function repeatedly creates a new lock, spawns a child process, and
synchronizes with it through the lock. Although infinitely many locks are cre-
ated, only one lock is visible to each thread; thus, the program is scope-safe.
We show that for the class of scope-safe programs with nested locking, the pair-
wise reachability problem is decidable. Our method is an extension of Yasukata
et al.’s one [13], based on higher-order model checking. We also present a method
for deciding whether a given program satisfies the required condition: scope
safety and nested locking. The latter method is also based on a reduction to
higher-order model checking. We have implemented our verification method and
confirmed its effectiveness.

The rest of the paper is structured as follows. Section 2 introduces the target
language with dynamic lock creation and gives the formal definitions of pairwise
reachability and scope safety. Section 3 describes our method for checking the
pairwise-reachability of a given program under the assumption that the program
is scope-safe and has nested locking. Section 4 describes a method for checking
whether a given program is scope-safe and has nested locking. Section 5 briefly
describes how to extend our method for pairwise reachability to support join
operations. Section 6 reports the experimental reports. Section 7 discusses related
work and Sect. 8 concludes the paper.

Due to the space limitation, we omit some proofs and formal definitions,
which can be found in the full version available at the last author’s web page.

2 Pairwise Reachability Problem and Scope Safety

This section formally defines the problem that we address in this paper, namely,
the pairwise reachability problem of higher-order concurrent programs with
dynamic lock creation. We also introduce the notion of scope safety, which is
a condition on programs that is crucial for the soundness and completeness of
our verification method.

2.1 Language

The target of our analysis is a simply-typed, call-by-name, non-deterministic,
higher-order language with primitives for nested locking and dynamic creation

Verification of Higher-Order Concurrent Programs 337

of threads and locks. An extension with join primitives shall be introduced later
in Sect. 5.

Definition 1 (Programs). A program p is a finite set of function definitions:

p = {F1 x̃1 = e1, . . . , Fn x̃n = en}.

Here, Fi and x̃i denote a function symbol and a sequence of variables respectively.
We allow more than one definition for each function symbol (so that a program
has non-determinism), and assume that Fi = S and x̃i is an empty sequence for
some i; S serves as the “main” function. The meta-variable e ranges over the set
Exp of expressions, defined by:

e : := () | x | F | e1 e2 | newκ e | acq(e1); e2 | rel(e1); e2 | spawn(ec); ep | e�.

Here, � and κ range over a finite set Label of program point labels and a finite
set K of identifiers (called abstract lock names, or abstract locks).

The intuitive meaning of each expression is as follows; the formal operational
semantics will be given later. The expression () denotes the unit value, and
e1e2 applies the function e1 to e2. The expression newκ e creates a new (con-
crete) lock with abstract name κ, and passes it to the function e. The expression
acq(e1); e2 waits to acquire the lock e1, and executes e2 after the acquisition.
The expression rel(e1); e2 releases the lock e1 and then executes e2. The expres-
sion spawn(ec); ep spawns a child thread that executes ec, and then the parent
thread itself executes ep. The labeled expression e� just behaves like e; � is used
to specify the pairwise reachability problem, and does not affect the operational
semantics.

We require that all the programs must be simply-typed. The set of types is
defined by:

τ : := � | lock | τ1 → τ2,

where � and lock describe the unit value and locks respectively. The type τ1 → τ2
describes functions from τ1 to τ2. The typing rules are standard ones (see the full
version). The only point deserving attention is that in each function definition
F x̃ = e, the type of e must be �; this condition can be ensured by applying CPS
transformation [9].

Remark 1. The language has only the unit value and locks as primitive data.
Boolean values can be expressed by using Church encoding. Infinite data domains
such as integers and lists can also be handled by using predicate abstraction [6]
(though the completeness of the analysis will be lost by the abstraction).

Example 1. Consider the following program p.

p =
{

S = newκ F
F x = spawn(acq(x); (rel(x); ())�); (acq(x); (rel(x); S)�)

}
.

This program is obtained by CPS-transforming the following C-like code:

338 K. Yasukata et al.

main() { x = newlock(); spawn{acq(x);L:rel(x);};
acq(x);L:rel(x); main(); }

In every loop, the root thread and a created child thread enter the program point
labeled � by using a created lock x.

Now we define the operational semantics of the language. In the following
semantics, we use a sequence ι of natural numbers as a thread identifier and a
triple (κ, ι,m) as a lock identifier (also called a concrete lock name); that is just
for the technical convenience in formalizing our method. Intuitively, (κ, ι,m) rep-
resents the m-th lock created by the thread ι at newκ. We write ν for a lock iden-
tifier. In presenting the operational semantics below, e ranges over expressions
extended with lock identifiers: e ::= · · · | (κ, ι,m). A thread state is a quadruple
(e, L, s, σ) where e is the (extended) expression to be executed by the thread,
L ∈ (K × N

∗ × N+)∗ describes the lock acquisition history of the thread, s ∈ N

is the number of children spawned by the thread so far, and σ is a partial map
from K to N

∗ × N+; intuitively, σ(κ) = (ι,m) means that the concrete lock
with abstract name κ created most recently by the thread or inherited from
the parent thread is (κ, ι,m). A configuration is a partial map c from a finite
set consisting of sequences of natural numbers (where each sequence serves as a
process identifier) to the set of thread states. A transition relation c1

ι,a−−→p c2 on
configurations is the least relation closed under the rules given below. We write
� for the disjoint union, ∅ for the empty map, and f{x �→ v} for the map defined
by: f{x �→ v}(x) = v and f{x �→ v}(y) = f(y) for y �= x.

F x̃ = e′ ∈ p

c � {ι �→ (F ẽ, L, s, σ)} ι,•−−→p c � {ι �→ ([ẽ/x̃]e′, L, s, σ)}

σ(κ) = (ι,m) σ′ = σ{κ �→ (ι,m + 1)}
c � {ι �→ (newκ e, L, s, σ)} ι,new(κ,ι,m+1)−−−−−−−−−→p c � {ι �→ (e (κ, ι,m + 1), L, s, σ′)}

∀ι′,m.(σ(κ) = (ι′,m) ⇒ ι �= ι′) σ′ = σ{κ �→ (ι, 1)}
c � {ι �→ (newκ e, L, s, σ)} ι,new(κ,ι,1)−−−−−−−→p c � {ι �→ (e (κ, ι, 1), L, s, σ′)}

(κ, ι′,m) �∈ locked(c � {ι �→ (acq(κ, ι′,m);e, L, s, σ)})

c � {ι �→ (acq(κ, ι′,m);e, L, s, σ)} ι,acq(κ,ι′,m)−−−−−−−−→p c � {ι �→ (e, L · (κ, ι′,m), s, σ)}

L = L′ · (κ, ι′,m)

c � {ι �→ (rel(κ, ι′,m);e, L, s, σ)} ι,rel(κ,ι′,m)−−−−−−−→p c � {ι �→ (e, L′, s, σ)}

c � {ι �→ (spawn(ec);ep, L, s, σ)} ι,sp(ι·s)−−−−−→p c �
{

ι �→ (ep, L, s + 1, σ),
ι · s �→ (ec, ε, 0, σ)

}

Verification of Higher-Order Concurrent Programs 339

c � {ι �→ (e�, L, s, σ)} ι,�−→p c � {ι �→ (e, L, s, σ)}

L = ε

c � {ι �→ ((), L, s, σ)} ι,$−−→p c

In the first rule, [ẽ/x̃]e′ denotes the expression obtained from e′ by simultane-
ously substituting ẽ for x̃. The second and third rules are for lock creations. A
lock identifier of the form (κ, ι,m′) is allocated to a new lock, where m′ is the
number of locks created so far (including the new one) by the thread ι at newκ.
In the fourth rule, locked(c) denotes the set of locks acquired by some thread,
i.e., the set {(κ, ι,m) | ∃ι′. c(ι′) = (e, L, s, σ) ∧ (κ, ι,m) ∈ L}. The fourth and
fifth rules ensure that locks are acquired/released in a nested manner, i.e., that
each thread releases locks in the opposite order of acquisition; the execution of
a thread violating this condition gets stuck. We write c0 for the initial config-
uration {ε �→ (S, ε, 0, ∅)}. We sometimes omit transition labels and just write
c −→p c′ for c

ι,a−−→p c′ for some ι and a.
Recall that a program has to acquire/release locks in the nested manner;

otherwise a thread spawned by the program gets stuck at a release operation. We
say that a program has nested locking if no release operations get stuck, that is,
whenever the program reaches a configuration c�{ι �→ (rel(κ, ι′,m);e, L, s, σ)},
(κ, ι′,m) is the last lock acquired by the thread ι, i.e., L is of the form L′·(κ, ι′,m).

2.2 Pairwise Reachability

Now we define the goal of our analysis: pairwise reachability.

Definition 2 (Pairwise Reachability). Let p be a program and �1, �2 be
labels. We say that (�1, �2) is pairwise-reachable by p, written p � �1‖�2, if

c0 −→∗
p c � {ι1 �→ (e�1

1 , L1, s1, σ1), ι2 �→ (e�2
2 , L2, s2, σ2)}

holds for some c, ι1, ι2, L1, L2, s1, s2, σ1, σ2 with ι1 �= ι2. The pairwise-reachability
problem is the problem of deciding whether p � �1‖�2 holds.

Example 2. Recall the program of Example 1. It has the following transitions:

{ε �→ (S, ε, 0, ∅)} −→ {ε �→ (newκ F, ε, 0, ∅)}
−→{ε �→ (spawn(acq(κ, ε, 1); (rel(κ, ε, 1); ())�); · · · , ε, 0, {κ �→ (ε, 1)})}

−→∗
{

ε �→ (newκ F, ε, 1, {κ �→ (ε, 1)}),
0 �→ (acq(κ, ε, 1); (rel(κ, ε, 1); ())�, ε, 0, {κ �→ (ε, 1)}

}

−→
{

ε �→ (spawn(acq(κ, ε, 2); (rel(κ, ε, 2); ())�); · · · , ε, 1, {κ �→ (ε, 2)}),
0 �→ (acq(κ, ε, 1); (rel(κ, ε, 1); ())�, ε, 0, {κ �→ (ε, 1)})

}

−→∗

⎧
⎨

⎩

ε �→ (S, ε, 2, {κ �→ (ε, 2)}),
0 �→ (acq(κ, ε, 1); (rel(κ, ε, 1); ())�, ε, 0, {κ �→ (ε, 1)}),
1 �→ (acq(κ, ε, 2); (rel(κ, ε, 2); ())�, ε, 0, {κ �→ (ε, 2)})

⎫
⎬

⎭

−→∗
{

ε �→ (S, ε, 2, {κ �→ (ε, 2)}), 0 �→ ((rel(κ, ε, 1); ())�, (κ, ε, 1), 0, {κ �→ (ε, 1)}),
1 �→ ((rel(κ, ε, 2); ())�, (κ, ε, 2), 0, {κ �→ (ε, 2)})

}

340 K. Yasukata et al.

Thus, the program is pairwise-reachable to (�, �). If the definition of F is replaced
by:

F x = spawn(acq(x); (rel(x); ())�); (acq(x); (rel(x); F x)�),

then the resulting program is not pairwise-reachable to (�, �), since all the pro-
gram points � are now guarded by the same (concrete) lock.

2.3 Scope Safety

Pairwise reachability is known to be decidable for the language without dynamic
lock creations [13]. In the presence of dynamic lock creations, the decidability of
pairwise reachability is open, to our knowledge. To make the problem tractable,
we introduce the notion of scope safety : a thread of a scope-safe program can
access only the newest lock in the scope for each abstract lock κ.

Definition 3 (Scope-Safety). A program p is scope-safe if

c0 −→∗
p c � {ι �→ (op(κ, ι′,m); e, L, s, σ)} =⇒ σ(κ) = (ι′,m)

holds for every c, ι, (κ, ι′,m), e, L, s, σ and op ∈ {acq, rel }.

For a scope-safe program, the number of locks is locally bounded in the
sense that, at each run-time state, the number of locks accessible to each thread
is bounded. Note that the number of locks in a configuration is still unbounded.

Example 3. The program in Example 1 is scope-safe. Although infinitely many
locks are created with the abstract lock name κ, every thread accesses only the
lock that is most recently created by itself or the parent thread.

The following program is not scope-safe:

S = newκ G G x = newκ(F x)
F x y = spawn(acq(x); (rel(x); ())�); (acq(y); (rel(y); S)�).

F x y accesses two locks x and y with the same abstract lock κ simultaneously.
If κ in G is renamed to κ′, however, the resulting program is scope-safe, since x
and y now have different abstract lock names: κ and κ′ respectively.

Now we can state the main result of this paper proved in the next section.

Theorem 1. The pairwise reachability problem for scope-safe programs with
nested locking is decidable.

We think that the scope-safety is a natural assumption, and that there are
many programs that create an unbounded number of locks but satisfy the scope
safety. Like the program in Example 1, such a program typically spawns an
unbounded number of threads, each of which creates a lock (thus; the number of
locks is globally unbounded) and uses it locally for synchronizations with child
threads.

Verification of Higher-Order Concurrent Programs 341

3 Verification of Pairwise Reachability

This section gives a sound and complete verification method of the pairwise-
reachability problem of scope-safe programs with nested locking. We reduce
the problem to (a variant of) higher-order model checking, a decision problem
whether a language of a given higher-order tree grammar is a subset of a given
regular tree language.

1. We use (extended) action trees [1,7], which represent transition sequences in
a thread-wise manner. Let ATrees(p) be the set of all action trees representing
possible transitions of the program p. Then p � �1‖�2 if and only if ATrees(p)
contains an action tree with leaves labeled by �1 and �2, respectively. Writing
R�1,�2 for the set of action trees with leaves labeled by �1 and �2, the pairwise
reachability problem is reduced to the emptiness problem of ATrees(p)∩R�1,�2 .

2. If we could represent ATrees(p) by a higher-order tree grammar, we would be
done, since the emptiness problem ATrees(p) ∩ R�1,�2

?= ∅ is equivalent to the

higher-order model checking problem ATrees(p)
?⊆ R�1,�2 ; note that R�1,�2 is

regular. Unfortunately, however, it is not easy to give a grammar to generate
ATrees(p) because of synchronization by locks. Instead we consider a superset
of ATrees(p), written RelaxedATrees(p), including action trees that are infeasi-
ble because of locks. In other words, an action tree in RelaxedATrees(p) repre-
sents a transition sequence in which the synchronization constraint on locks
is ignored. It is easy to construct a grammar generating RelaxedATrees(p).

3. We give a way to check the feasibility of an action tree (i.e. whether an action
tree conforms to the synchronization constraint on locks) by introducing an
operational semantics of action trees. Let LSATrees be the set of feasible action
trees. We show that ATrees(p) = RelaxedATrees(p) ∩ LSATrees provided that
p is a scope-safe program. Thus, the pairwise reachability is reduced to the
(non)-emptiness of RelaxedATrees(p) ∩ LSATrees ∩ R�1,�2 .

4. We show that LSATrees is a regular tree language.

Now the pairwise reachability problem has been reduced to the emptiness prob-
lem RelaxedATrees(p)∩LSATrees∩R�1,�2

?= ∅, which is equivalent to the instance
of higher-order model checking problem:

RelaxedATrees(p)
?⊆ LSATrees ∩ R�1,�2

and thus decidable. In the rest of this section, we first review higher-order model
checking [5,8], in Sect. 3.1. We then explain each step in Sects. 3.2, 3.3, 3.4
and 3.5.

3.1 Higher-Order Model Checking

Higher-order model checking is concerned about properties of the trees generated
by higher-order tree grammars called higher-order recursion schemes (HORS, in

342 K. Yasukata et al.

short). In the standard definition of higher-order model checking [5,8], a HORS
is treated as a generator of a single, possibly infinite tree. In the present paper,
we consider a (non-deterministic) HORS as a generator of a finite tree language
(i.e., a set of finite trees).

Definition 4 (Non-deterministic HORS). Let Σ be a finite set of symbols
called tree constructors. We assume that each tree constructor is associated with
a non-negative integer called an arity. A (non-deterministic) HORS is a set of
function definitions: {F1 x̃1 = t1, . . . , Fn x̃n = tn}, where ti ranges over the set of
terms given by: t : :=a | x | F | t1 t2. Here, a ranges over Σ. As in the language
in Sect. 2, we allow more than one definition for each function symbol Fi, and
require that Fi = S and x̃i is empty for some i. We also require that HORS
be simply-typed; in each definition F x̃ = t, t must have the tree type o. Each
constructor of arity k is given type o → · · · → o︸ ︷︷ ︸

k

→ o.

Given a HORS G, the reduction relation −→G on terms is defined by:
(i) F t1 · · · tk −→G [t1/x1, . . . , tk/xk]t if F x1 · · · xk = t ∈ G; and (ii)
a t1 · · · ti · · · tk −→G a t1 · · · t′i · · · tk if ti −→G t′i. We call a term t a (Σ-labeled)
tree if it consists of only tree constructors, and write Tree for the set of trees.
The language generated by a HORS G, written L(G), is {t ∈ Tree | S −→∗

G t}.

Compared with the language in the previous section, we have tree construc-
tors in HORS instead of primitives on locks and treads. The following is an easy
corollary of the decidability of (the standard version of) higher-order model
checking [8].

Theorem 2. Given a HORS G and a regular language R, it is decidable whether
L(G) ⊆ R holds.

3.2 Action Trees

Action trees, first introduced by Lammich et al. [7], represent thread-wise action
histories of a concurrent program. We extend them to deal with dynamic lock
creation.

Definition 5 (Action Trees). The set T of action trees, ranged over by γ, is
defined inductively by: γ : :=⊥ | $ | � γ | newκγ | acqκγ | relκγ | sp γp γc.

Each inner node of γ represents an action performed by a thread. The tree
� γ means that the thread has reached an expression labeled � and then behaved
like γ. The tree newκγ means that the thread has created a new lock of abstract
name κ, and then behaved like γ. The tree acqκγ (resp. relκγ) means that the
thread has acquired (resp. released) a lock of abstract name κ, and then behaved
like γ. The tree sp γp γc means that the thread has spawned a child thread that
behaved like γc, and the thread itself behaved like γp.

A leaf node represents the status of the thread: ⊥ means that it is alive and
$ means that it has terminated.

Verification of Higher-Order Concurrent Programs 343

Example 4. The figure on the righthand side below shows the action tree corre-
sponding to the transition sequence in Example 2. The superscripts 0–12 are the
node numbers added for the convenience of explanation; they reflect the order
of actions in the transition sequence in Example 2.

new0
κ

sp1

acq2κ

rel3κ

new4
κ

sp5

⊥6 acq10κ

�11

⊥12

acq7κ

�8

⊥9

The tree represents the computation in which (i) the root
thread creates a new lock with abstract name κ (as shown by
node 0), spawns a new thread (node 1), acquires and releases
the lock (nodes 2 and 3), creates another lock with the same
abstract name κ (node 4) and spawns another thread (node 5),
and (ii) the two child threads acquire the locks (nodes 7 and 10)
and reaches the program point � (nodes 8 and 11). The leaves
of the action tree show that all the threads are still alive (nodes
6, 9 and 12). Note that the locks acquired by the two child
threads are different, although nodes 7 and 10 have the same
label acqκ; based on the scope safety assumption, κ refers to
the lock created at the closest ancestor node labeled by newκ.
Thus, nodes 7 and 10 refer to the locks created at nodes 0 and
4 respectively.

Note also that the action tree does not specify the order
between actions of different threads. For example, the action at
node 7 may occur before the one at node 4. Due to the synchro-
nization constraint on locks, however, some order may be implicitly imposed; for
example, since nodes 2, 3, and 7 refer to the same lock created at node 0, the
action at 3 must precede the one at 7. ��
For a sequence of events (ι1, a1) · · · · · (ιn, an), we write a((ι1, a1) · · · · · (ιn, an))
for the corresponding action tree; see the full version for the formal definition.
We write ATrees(p) for the set

{a((ι1, a1) · · · · · (ιn, an))
| c0

ι1,a1−−−→p c1
ι2,a2−−−→p . . .

ιn,an−−−→p cn; c0 is the initial configuration.}
of action trees of all the possible transition sequences of the program p.

We write R�1,�2 for the set of action trees of the form C[�1⊥, �2⊥], where
C is a tree context with two holes. Note that R�1,�2 does not depend on the
program. Clearly, the set R�1,�2 is regular. By the definition of ATrees(p), the
pairwise reachability is reduced to the non-emptiness of ATrees(p) ∩ R�1,�2 , as
stated below.

Lemma 1. For every program p and every pair of labels (�1, �2), we have

p � �1‖�2 ⇐⇒ ATrees(p) ∩ R�1,�2 �= ∅.

3.3 Relaxed Transition of Programs

The next step is to obtain a finitary representation of ATrees(p). If we were
able to represent ATrees(p) as a HORS, then the (non-)emptiness problem

344 K. Yasukata et al.

ATrees(p) ∩ R�1,�2 obtained in Lemma 1 can be solved by higher-order model
checking. Unfortunately, a direct construction of such a HORS is difficult, due
to the synchronization constraint on locks.

Instead, we consider an approximation RelaxedATrees(p) of ATrees(p), which
are obtained by ignoring the synchronization constraint, and represent it as
a HORS. The set ATrees(p) is then obtained as RelaxedATrees(p) ∩ LSATrees,
where LSATrees is the set of all the action trees that respect the synchroniza-
tion constraint but are independent of the program p. In this subsection, we
define RelaxedATrees(p) and provide its grammar representation; LSATrees shall
be constructed and proved to be regular in Sects. 3.4 and 3.5.

A relaxed transition relation c1
ι,a���p c2 on configurations is the least relation

closed under the rules in Sect. 2 except that the conditions (κ, ι′,m) �∈ locked(c�
{ι �→ (acq(κ, ι′,m); e2, L, σ)}) of the fourth rule (for lock acquisition), L =
L′·(κ, ι′,m) of the fifth rule (for lock release) and L = ε of the last rule (for thread
termination) are removed. Similarly to ATrees(p) we write RelaxedATrees(p) for
the set

{a((ι1, a1) . . . (ιn, an)) | c0
ι1,a1���p . . .

ιn,an���p cn}
of action trees of all possible relaxed transition sequence of the program p. Obvi-
ously RelaxedATrees(p) is a superset of ATrees(p).

We can easily transform a given program p into a HORS Gp whose language
is RelaxedATrees(p). Each lock is replaced by a pair of tree constructors acqκ

and relκ, and each action in the program is replaced by a construction of the
corresponding tree node. For example, spawn(e1); e2 and newκ e1 are respec-
tively transformed to sp e′

1 e′
2, and newκ (e′

1 (acqκ, relκ)), where e′
i is obtained

by recursively transforming ei. (Here, for the sake of simplicity, we have used
pairs as primitives; they can be represented as functions using the standard
Church encoding.) In addition, since we are interested in intermediate states of
a program instead of the final state, we prepare rules to abort reductions and
generate leaves ⊥. We illustrate these points through an example below; the
formal definition of Gp is given in the full version.

Example 5. Recall Example 1. The set RelaxedATrees(p) is generated by the fol-
lowing HORS Gp:

S = Newκ F
F x = Spawn (Acq x (Label� (Rel x End))) (Acq x (Label� (Rel x S)))
Newκ e = newκ (e (acqκ, relκ)) Acq (xa, xr) e = xa e Rel (xa, xr) e = xr e
Spawn ec ep = sp ep ec Label� e = � e End = $
N x̃ = ⊥ (for each N ∈ {S, F,Newκ,Acq,Rel ,Spawn,Label�,End}.)

The first two lines correspond to the function definitions in the original programs;
we have just replaced each action with the corresponding function symbols. The
next two lines define functions for generating a tree node corresponding to each
action. The function Newκ represents a new lock as a pair (acqκ, relκ) and passes
it to e as an argument. The function Acq extracts the first component acqκ of
lock x, which is a tree constructor acqκ, and creates a node acqκ. Similarly the

Verification of Higher-Order Concurrent Programs 345

Rel rule creates a node relκ. The last rule is used to stop the thread and generate
the symbol ⊥ meaning that the thread is alive. ��

3.4 Lock Sensitivity of Action Trees

The set RelaxedATrees(p) may contain action trees for which there are no cor-
responding transition sequences that respect the synchronization constraint. To
exclude them, we introduce a subset LSATrees of γ, which consists of only action
trees that have corresponding transition sequences for some program (that satis-
fies scope safety and well-nested locking), so that the set ATrees(p) is represented
by RelaxedATrees(p)∩LSATrees. To this end, we introduce an abstract transition
relation ĉ

ι,a−−→ ĉ′, obtained by replacing expressions with action trees.

Definition 6 (Abstract Configurations). An abstract thread state is a
quadruple (γ, L, s, σ), obtained by replacing the first component of a thread
state in Sect. 2 with an action tree γ. An abstract configuration ĉ is a partial
map from the set of thread identifiers to the set of abstract thread states. The
transition relation on abstract configurations is defined by:

ĉ � {ι �→ (γ, L, s, σ)} ι,•−−→ ĉ � {ι �→ (γ, L, s, σ)}

σ(κ) = (ι,m) σ′ = σ{κ �→ (ι,m + 1)}
ĉ � {ι �→ (newκ γ, L, s, σ)} ι,new(κ,ι,m+1)−−−−−−−−−→ ĉ � {ι �→ (γ, L, s, σ′)}

∀ι′,m.(σ(κ) = (ι′,m) ⇒ ι �= ι′) σ′ = σ{κ �→ (ι, 1)}
ĉ � {ι �→ (newκ γ, L, s, σ)} ι,new(κ,ι,1)−−−−−−−→ ĉ � {ι �→ (γ, L, s, σ′)}

σ(κ) = (ι′,m) (κ, ι′,m) �∈ locked(ĉ � {ι �→ (acqκ γ, L, s, σ)})

ĉ � {ι �→ (acqκ γ, L, s, σ)} ι,acq(κ,ι′,m)−−−−−−−−→ ĉ � {ι �→ (γ, L · (κ, ι′,m), s, σ)}

σ(κ) = (ι′,m) L = L′ · (κ, ι′,m)

ĉ � {ι �→ (relκ γ, L, s, σ)} ι,rel(κ,ι′,m)−−−−−−−→ ĉ � {ι �→ (γ, L′, s, σ)}

ĉ � {ι �→ (sp γp γc, L, s, σ)} ι,sp(ι·s)−−−−−→ ĉ �
{

ι �→ (γp, L, s + 1, σ),
ι · s �→ (γc, ε, 0, σ)

}

ĉ � {ι �→ (� γ, L, s, σ)} ι,�−→ ĉ � {ι �→ (γ, L, s, σ)}

L = ε

ĉ � {ι �→ ($, L, s, σ)} ι,$−−→ ĉ

346 K. Yasukata et al.

Here, locked(ĉ) is defined similarly to that for (concrete) configurations, by

locked(ĉ) = {(κ, ι′,m) | ∃ι. ĉ(ι) = (γ, L, s, σ) ∧ (κ, ι′,m) ∈ L}.

In the rules above for acquiring and releasing locks, we have added the con-
dition σ(κ) = (ι′,m), which captures the scope safety assumption.

Using the abstract transition relation, the set of lock sensitive action trees is
defined as follows.

Definition 7 (Lock Sensitivity). An action tree γ is lock sensitive if { 0 �→
(γ, ε, 0, ∅) } ∗−→ ⊥̂, where ⊥̂ is any abstract configuration such that ⊥̂(ι) =
(γ, L, s, σ) implies γ = ⊥. We write LSATrees for the set of lock-sensitive action
trees.

Theorem 3. Let p be a scope-safe program. Then,

ATrees(p) = RelaxedATrees(p) ∩ LSATrees.

Intuitively, the theorem above holds because the concrete transition system
c

ι,a−−→p c′ is obtained as the product of the relaxed transition system and the
abstract transition system; see the full version for a proof.

3.5 Regularity of LSATrees

We show that LSATrees is a regular tree language. To this end, we adapt the
notion of an acquisition structure [1,7] to deal with an unbounded number of
locks. An acquisition structure is a summary of the usage of locks in an action
tree.

Let us first review the idea behind acquisition structures. Let ĉi = { ιi �→
(γi, Li, si, σi) } (i = 1, . . . , n) be abstract configurations that are individually
lock-sensitive, i.e. ĉi

∗−→ ⊥̂i for some bottom configuration ⊥̂i for each i. We
would like to decide if the merged configuration is also lock-sensitive, i.e. whether⊎n

i=1 ĉi
∗−→ ⊎n

i=1 ⊥̂i. In some cases, it is obviously impossible.

– Let Ǎf
i be the set of (concrete) locks that the final configuration ⊥̂i has. If

Ǎf
i ∩ Ǎf

j �= ∅, the merged configuration is not lock-sensitive since
⊎n

i=1 ⊥̂i

violates the condition that each lock can be assigned to at most one thread.
– Let us call (an occurrence of) an acquire operation in the transition sequence

π : ĉi
∗−→ ⊥̂i final if the lock is not released in the following subsequence. Let

Gπ be the strict preorder1 on concrete lock names defined by (ν, ν′) ∈ Gπ just
if an acquire operation of ν′ appears after the final acquisition of ν in π. Let Ǧi

be the intersection of Gπ for all possible transition sequences π : ĉi
∗−→ ⊥̂i. If⋃n

i=1 Ǧi is cyclic, the merged configuration is not lock-sensitive. For example, if
(ν, ν′), (ν′, ν) ∈ ⋃n

i=1 Ǧi and π :
⊎n

i=1 ĉi
∗−→ ⊎n

i=1 ⊥̂i, then the final acquisition
of ν in π must precede that of ν′ and vice versa, a contradiction.

1 A strict preorder, often written as <, is an irreflexive and transitive relation.

Verification of Higher-Order Concurrent Programs 347

Conversely, provided that Li = ε for all i, the above conditions are sufficient
for the lock-sensitivity of the merged configuration. A transition sequence can
be constructed by an eager scheduling as follows. If there is a thread whose next
operation is not a final acquisition, run the thread. Furthermore if the thread
acquires a lock, run it until the lock is released; then, by nested locking, the
thread does not have any lock at that state. If all the threads reach ⊥ or final
acquisition operations, choose a thread acquiring a minimal lock with respect to⋃n

i=1 Ǧi. Since such a lock is ensured not to appear in the sequel, we can safely
forget the lock and regard the thread as having no lock.

Unlike the previous work [1,7], the number of locks is unbounded in our set-
ting. However the above test is concerned only about the locks shared by ĉi and
ĉj for some i �= j. Thanks to the scope-safety of the program, the locks used by
ĉi are in { (κ, σ(κ)) | κ ∈ K } or those that will be generated by ĉi in the subse-
quent computation. Hence the restrictions of Ǎf

i and Ǧi to { (κ, σi(κ)) | κ ∈ K },
which is finite, is sufficient for the purpose. We represent those restrictions as
sets and relations on abstract locks κ ∈ K.

The formal definition of the acquisition structure of an action tree is as
follows. It has additional fields: A (the set of locks used in the action tree) is used
to compute G in an inductive way, and R (the list of dangling release operations)
and T (the leaf node of this thread) are used to check if the locks are used in the
expected manner (i.e. well-nested, no re-entrant and that a terminating thread
have released all the locks). Given a relation G, let G+ be its transitive closure
and G�A be the restriction { (x, y) ∈ G | x, y ∈ A }. Given a set A, we write A�

for the set of all finite sequences on A without repetition.

Definition 8 (Acquisition Structure). The acquisition structure as(γ) of an
action tree γ is a tuple (A,Af , R, T,G) ∈ P(K)×P(K)×K�×{ $,⊥}×P(K×K),
inductively defined as follows (where we write Aγ for the first component of as(γ)
and so on, and undef means undefined):

as(⊥) = (∅, ∅, ε, ⊥, ∅) as($) = (∅, ∅, ε, $, ∅) as(� γ) = as(γ)

as(acqκ γ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(Aγ ∪ {κ}, Af
γ , R′, Tγ , Gγ)

(if Rγ = R′ · κ)

(Aγ ∪ {κ}, Af
γ ∪ {κ}, ε, Tγ , (Gγ ∪ ({κ} × Aγ))+)

(if Rγ = ε and Tγ = ⊥ and Gγ ∪ ({κ} × Aγ) is acyclic)

undef (otherwise)

as(relκ γ) =

{
(Aγ , Af

γ , Rγ · κ, Tγ , Gγ) (if κ /∈ Rγ)

undef (if κ ∈ Rγ)

as(sp γp γc) =

⎧
⎪⎨

⎪⎩

(Aγp ∪ Aγc , Af
γp ∪ Af

γc , Rγp , Tγp , (Gγp ∪ Gγc)
+)

(if Rγc = ε and Af
γp ∩ Af

γc = ∅ and Gγp ∪ Gγc is acyclic)

undef (if Rγc 	= ε or Af
γp ∩ Af

γc 	= ∅ or Gγp ∪ Gγc is cyclic)

as(newκ γ) =

{
(Aγ\{κ}, Af

γ\{κ}, Rγ , Tγ , Gγ�K\{κ}) (if κ /∈ R)

undef (if κ ∈ R).

For every action tree γ, no element κ ∈ K appears twice in the sequence Rγ ∈ K∗

(if defined). Hence the set of all acquisition structures can be seen as finite.

348 K. Yasukata et al.

The set of lock-sensitive action trees is characterized by the acquisition struc-
ture; see the full version for a proof.

Theorem 4. An action tree γ is lock sensitive iff as(γ) = (∅, ∅, ε, T, ∅).

By the definition of the acquisition structure, it can be obviously computed
by a bottom-up tree automaton. Hence:

Theorem 5. LSATrees is a regular tree language.

Now we can reduce the pairwise-reachability problem to a higher-order model
checking problem as follows. Let p be a scope-safe program and (�1, �2) be
a pair of labels. Then p � �1‖�2 if and only if RelaxedATrees(p) ∩ LSATrees ∩
R�1,�2 �= ∅ by Lemma 1 and Theorem 3. This is equivalent to RelaxedATrees(p) �⊆
LSATrees ∩ R�1,�2 . Since LSATrees is regular (Theorem 5), the right-hand-side is
regular. Hence the problem is an instance of higher-order model checking, and
thus decidable. This completes the proof of the main theorem, Theorem 1.

4 Checking Scope-Safety and Well-Nested Locking

The verification method for the pairwise reachability in the previous section is
sound and complete for the class of scope-safe programs with nested locking.
For programs outside the class, our verification method is unsound.2 Thus, it is
desirable to have methods for checking that a given program satisfies the con-
ditions of scope-safety and well-nested locking. Fortunately, higher-order model
checking can also be used for that purpose, as described below.

4.1 Strong Scope Safety

For ease of explanation, we first present a method for checking a stronger condi-
tion called strong scope-safety. We call a program strongly scope-safe if it satisfies
the conditions of Definition 3 where the transition relation −→p is replaced with
the relaxed transition relation ���p.

It would be quite easy to find a violation of strong scope-safety if one could
construct a “concrete action tree”, in which lock operations are annotated by
concrete lock names, e.g. new

(ι,m)
κ . In this setting, what we should do is to

check whether the “concrete action tree” has a node op(ι,m)
κ (op ∈ { acq, rel })

whose nearest ancestor newκ-node is annotated with a different concrete name
(ι′,m′)(�= (ι,m)). Although the naive application of this idea seems to require
infinitely many names, we can do this by using only two names because it suffices
to ensure that two chosen concrete lock names are indeed different.

Given a transition sequence, and a subset X of concrete lock names, its semi-
concrete action tree is an action tree in which lock operations are annotated with
2 Since the pairwise reachability is usually considered an undesirable behavior (e.g. a

race), we say that a pairwise reachability analysis is sound when it does not miss
the possibility of pairwise reachability.

Verification of Higher-Order Concurrent Programs 349

A or B, e.g. newA
κ , where A means that the concrete lock name is in X and B

otherwise. A semi-concrete action tree violates scope-safety if there is a node opB
κ

(op ∈ { acq, rel }) whose nearest ancestor newκ node is labeled with A (i.e. it is
newA

κ). This is a regular tree property, which we write as S.
A HORS GA,B

p generating the set of semi-concrete action trees of a program
p can be constructed in the same way as in Sect. 3.3, except that the behaviour
of Newκ is now nondeterministic as follows:

Newκ e = newA
κ (e (ackA

κ , relAκ)) Newκ e = newB
κ (e (ackB

κ , relBκ)).

Intuitively New nondeterministically chooses if the newly created concrete lock
name should belong to X or not.

By the discussion above, it should be clear that a program is strongly scope-
safe if and only if L(GA,B

p) ∩ S = ∅. Thus, the problem to check whether a given
program is strongly scope-safe is decidable.

4.2 Well-Nested Locking

Here we give a method for conservatively checking whether a given scope-safe
program has nested locking, ignoring inter-thread synchronization.

We give a sketch of the construction of a top-down tree automaton, which
nondeterministically chooses a thread of the action tree and computes acquired
locks, and accepts the tree if the chosen thread indeed violates well-nested lock-
ing. A state is either � (meaning that the automaton has not chosen a thread)
or a sequence R ∈ (K ∪ { })∗ (meaning that the chosen thread has acquired
(and not released) the locks in the order specified in R) such that each κ ∈ K
appears at most once in R. The symbol is used to express locks that have been
shadowed (i.e., those that are no longer visible due to the creation of a lock of
the same abstract name). For example, if the current node is new(κ) and the
state is R · κ · R′, then the automaton changes its state to R · · R′ and moves
to the child node. If the node is acqκ and the state is R, then the automaton
checks if κ appears in R; if so, the automaton rejects the tree since this thread
gets stuck (note that locks are non-reentrant) and does not violate well-nested
locking; otherwise, it moves to the child node with the state R · κ. If the node
is rel(κ) and the state is R · κ, then the automaton goes to the child node with
the state R. If the automaton sees rel(κ) at the state R · ξ (ξ ∈ K ∪ { }) with
κ �= ξ, then it accepts the tree because this release operation violates well-nested
locking. In the construction above, R may contain an unbounded number of ,
so the number of states is infinite. However, only the right-most occurrence of
 is meaningful and one can safely forget the other occurrences of . Thus the
number of states can be reduced to finite.

Let us write N for the tree language accepted by the above automaton. The
following result is obvious.

Lemma 2. Let p be a scope-safe program. If L(GA,B
p)∩N = ∅, then p has nested

locking.

350 K. Yasukata et al.

4.3 Scope-Safety and Well-Nested Locking

We have seen above that L(GA,B
p)∩ (N∪S) = ∅ implies p is a scope-safe program

with nested locking. The converse does not hold, however. This is because even
if L(GA,B

p)∩ (N∪S) �= ∅, γ ∈ L(GA,B
p)∩ (N∪S) may be infeasible because of the

synchronization through locks.
We can obtain a complete method by taking into account the lock-sensitivity

of action trees, in a manner similar to Sect. 3.4. We call a (semi-concrete) action
tree γ almost lock-sensitive if it is obtained by adding an action to a lock-sensitive
action tree (i.e. there exists a pair of a one-hole tree context C and an action
tree γ′ such that γ = C[γ′], C[⊥] is lock-sensitive and γ′ has exactly one node
whose label is not ⊥). Let LSATrees′ be the set of semi-concrete action trees that
are almost lock-sensitive.

Lemma 3. (L(GA,B
p) ∩ LSATrees′) ∩ (N ∪ S) = ∅ if and only if p is a scope-safe

program with nested locking.

As a corollary, we obtain:

Theorem 6. The problem to check whether a given program is scope-safe and
has nested locking is decidable.

5 Extension with Join Operations

We briefly discuss our method for pairwise reachability (described in Sect. 3) to
support first-class thread identifiers and join operations. The target language
is extended as follows. We introduce a new base type ID for thread IDs. Each
spawn expression spawn(ec); ep is now annotated with an abstract thread ID
θ, which does not affect the transition but is used to define the notion of scope
safety. The expression spawns a new child thread ec, and executes ep(ι), where
ι is the (unique) identifier (ID) of the new thread; thus ep has type ID → �.
We add a new expression join(e1); e2, which waits for the termination of the
thread with ID e1, and then executes e2. A program of the extended language
is scope-safe if, in addition to the condition on scope-safety on locks, it satisfies
the analogous condition on thread identifiers, that each join operation may refer
to only the newest thread identifier in the scope for each abstract thread ID θ.

Example 6. The following program is a variation of the program in Example 1.

p2 =
{

S = newi F F x = spawnθ(acq(x); (rel(x); $)�);G x)
G x t = acq(x); (rel(x); join(t); S).

}

The function F takes a lock as an argument, spawns a new thread, and passes its
identifier to G x. The program is scope-safe. Unlike the program in Example 1,
(�, �) is not pairwise reachable, because the root thread waits for the termination
of a child thread before spawning another thread.

Verification of Higher-Order Concurrent Programs 351

Our pairwise reachability verification method in Sect. 3 can be smoothly
extended, except for the regularity of the set of lock-sensitive action trees, which
we briefly discuss below. Let ĉ1 = { ι �→ (γ, s + 1, L, σ) } and ĉ′

1 = { ι · s �→
(γ′, 0, ε, σ) } be abstract configurations and assume that each of them is schedu-
lable alone, i.e. ĉ1

∗−→p ⊥̂1 and ĉ2
∗−→p ⊥̂2. The question is when ĉ1 � ĉ′

1 is schedu-
lable. If ĉ1 does not do join(ι · s), the schedulability of ĉ1 � ĉ′

1 can be checked in
the same way as in Sect. 3.5. If ĉ1 does a join(ι·s) action, an additional condition
is required for schedulability of ĉ1 � ĉ′

1: if ν ∈ L and ν will not be released until
the join operator, then ĉ2 cannot use this lock. Hence the additionally required
piece of data is the set of pairs (ι′, ν′) of a thread ID and a lock name such that
ν′ is kept locked from the current state until a join(ι′) action. Since only the
thread IDs and lock names in the scope are relevant, this information can be
described in finite states.

6 Experiments

We have implemented a tool for checking the pairwise reachability and strong
scope safety based on our methods. The tool uses HorSat2 [3] as the backend
higher-order model checker. We have tested the tool on a machine with an Intel
Core i5 CPU with 2.5 GHz and 16 GB memory.

Program Reachability SS PR

example1 YES 0.002 0.385
example2 NO 0.002 29.5
datarace NO 0.004 1.04

The table on the righthand side
shows the result of preliminary exper-
iments. The column “Reachability”
shows the answers for the pairwise
reachability problems. The columns
“SS” and “PR” respectively show the
times spent for checking (strong) scope-safety and pairwise-reachability, mea-
sured in seconds. indicates the elapsed time of scope-safety checking and
pairwise-reachability checking. The programs example1 and example2 are those
given in Examples 1 and 6 respectively. The benchmark program datarace mod-
els the following C-like code:

main() { r = newref(); l = newlock();

spawn{acq(l);write(r);rel(l);}; acq(l);write(r);rel(l); main(); }

where the dynamic creation of reference cells is handled in a manner similar
to that of locks and thread identifiers. We checked whether two write commands
for the same reference cell may be reached simultaneously. All the programs
are strongly scope-safe. According to the experimental results, the strong scope
safety can be checked instantly. The pairwise reachability checking is slower, but
reasonably fast, considering the complexity of higher-order model checking [8].
The pairwise reachability checking for example2 took much longer than for the
other programs. We think this is due to the use of the join primitive, which
probably blowed up the space exploited by the model checker. This suggests
that a further improvement of the higher-order model checker is required for
handling real-world programs; we leave it for future work.

352 K. Yasukata et al.

7 Related Work

There have been several studies on the decidability of pairwise reachability of
concurrent programs with nested locking [1,2,7,13]. To our knowledge, however,
our result is the first one that allows dynamic creation of an unbounded number
of locks, albeit under the condition of scope safety. The notion of scope safety
is also new. The idea of reducing pairwise reachability to higher-order model
checking has been first proposed by Yasukata et al. [13]; our method described
in Sect. 3 is an extension of their method to deal with an unbounded number of
locks. There are many other methods for analyzing concurrent programs with
dynamic resource creation [4,10,12], but they are either incomplete or unsound
(due to over- or under-approximation of reachable states).

The idea of non-deterministically tracking the usage of locks used in Sect. 4
(for checking scope safety and well-nested locking) has been inspired from
Kobayashi’s work for applying higher-order model checking to resource usage
analysis [5]. His method is for sequential (functional) programs, however.

8 Conclusion

We have presented a method for deciding the pairwise reachability of concurrent
programs with dynamic creation of resources and thread identifiers. We have
introduced the notion of scope safety, and proved that our method is sound and
complete for scope-safe programs with nested locking. We have also presented
methods for checking whether a given program satisfies the conditions of scope
safety and well-nested locking.

Acknowledgment. We would like to thank anonymous referees for useful com-
ments. This work was supported by JSPS KAKENHI Grant Number JP15H05706
and JP16K16004.

References

1. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-
sensitive forward reachability analysis for concurrent programs with dynamic
process creation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 199–213. Springer, Heidelberg (2011)

2. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

3. Kobayashi, N.: HorSat2: a saturation-based higher-order model checker. http://
www-kb.is.s.u-tokyo.ac.jp/∼koba/horsat2/

4. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K. (ed.)
Formal Methods at the Crossroads. From Panacea to Foundational Support. LNCS,
vol. 2757, pp. 439–453. Springer, Heidelberg (2003)

5. Kobayashi, N.: Model checking higher-order programs. J. ACM 60(3), 20 (2013)

http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2/

Verification of Higher-Order Concurrent Programs 353

6. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. Proceedings of PLDI 2011, pp. 222–233 (2011)

7. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009)

8. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS, pp. 81–90 (2006)

9. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

10. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: practical static race detection
for C. ACM Trans. Program. Lang. Syst. (TOPLAS) 33(1), Article 3 (2011)

11. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

12. Terauchi, T.: Checking race freedom via linear programming. In: Proceedings of
PLDI 2008, pp. 1–10. ACM, New York (2008)

13. Yasukata, K., Kobayashi, N., Matsuda, K.: Pairwise reachability analysis for higher
order concurrent programs by higher-order model checking. In: Baldan, P., Gorla,
D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 312–326. Springer, Heidelberg
(2014)

Programming Paradigms

Probabilistic Programming Language
and its Incremental Evaluation

Oleg Kiselyov(B)

Tohoku University, Sendai, Japan
oleg@okmij.org

Abstract. This system description paper introduces the probabilistic
programming language Hakaru10, for expressing, and performing infer-
ence on (general) graphical models. The language supports discrete
and continuous distributions, mixture distributions and conditioning.
Hakaru10 is a DSL embedded in Haskell and supports Monte-Carlo
Markov Chain (MCMC) inference.
Hakaru10 is designed to address two main challenges of probabilistic pro-
gramming: performance and correctness. It implements the incremen-
tal Metropolis-Hastings method, avoiding all redundant computations.
In the presence of conditional branches, efficiently maintaining depen-
dencies and correctly computing the acceptance ratio are non-trivial
problems, solved in Hakaru10. The implementation is unique in being
explicitly designed to satisfy the common equational laws of probabilis-
tic programs. Hakaru10 is typed; specifically, its type system statically
prevents meaningless conditioning, enforcing that the values to condition
upon must indeed come from outside the model.

1 Introduction

Broadly speaking, probabilistic programming languages are to express compu-
tations with degrees of uncertainty, which comes from the imprecision in input
data, lack of the complete knowledge or is inherent in the domain. More precisely,
the goal of probabilistic programming languages is to represent and automate
reasoning about probabilistic models [4,16], which describe uncertain quantities–
random variables–and relationships among them. The canonical example is the
grass model, with three random variables representing the events of rain, of
a switched-on sprinkler and wet grass. The (a priori) probabilities of the first
two events are judged to be 30 % and 50 % correspondingly. Probabilities are
real numbers from 0 to 1 that may be regarded as weights on non-deterministic
choices. Rain almost certainly (90 %) wets the grass. The sprinkler also makes
the grass wet, in 80 % of the cases. The grass may also be wet for some other
reason. The modeler gives such an unaccounted event 10 % of a chance. This
model is often depicted as a directed acyclic graph (DAG)–so-called Bayesian, or
belief network [17] (Fig. 1)–with nodes representing random variables and edges
conditional dependencies. Associated with each node is a distribution (such as
Bernoulli distribution bern: the flip of a biased coin), or a function that computes
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 357–376, 2016.
DOI: 10.1007/978-3-319-47958-3 19

358 O. Kiselyov

a distribution from the node’s inputs (such as the noisy disjunction nor to be
described below).

grass is wet

nor 0.9 0.8 0.1

rainbern 0.3 sprinkler bern 0.5

Fig. 1. Grass model

The sort of reasoning we wish to
perform on the model is finding out
the probability distribution of some
of its random variables. For exam-
ple, we can work out from Fig. 1 that
the probability of the grass being wet
is 60.6 %. Such reasoning is called
probabilistic inference. Often we are
interested in the distribution condi-

tioned on the fact that some random variables have been observed to hold a
particular value. In our example, having observed in the morning that the grass
is wet, we want to find out the chance it was raining overnight. We are thus
estimating a hidden parameter–inferring the likelihood of an unseen or unob-
servable cause–from observations. For background on the statistical modeling
and inference, the domain area of the present paper, the reader is referred to
Pearl’s classic [17] and Getoor and Taskar’s collection [4].

In the probabilistic language Hakaru10 to be presented in this paper, the
conditional model just described in English can be written as follows:

grass = do
rain ← dist bern 0.3
sprinkler ← dist bern 0.5
grass is wet ← dist (True � condition � nor 0.9 0.8 0.1) rain sprinkler
return rain

−− noisy−or function
nor strengthX strengthY noise = \x y →
bern $ 1 − nnot (1−strengthX) x ∗ nnot (1−strengthY) y ∗ (1−noise)

−− noisy not function
type Prob = Double
nnot :: prob → Bool → Prob
nnot p True = p
nnot p False = 1

Even though some words like dist are not yet defined, one can already see the cor-
respondence with Fig. 1. The grass code compactly and, mainly, unambiguously
represents the model–for the domain experts and also for the Hakaru10 system.
The latter relieves us from working out probabilities by hand, performing the
requested inference. Thus probabilistic programming languages let us separate
the description of the model from computations on them, making the models
declarative and accessible, for domain experts, to discuss and modify.

Probabilistic programming languages are easier to use and develop when they
are embedded DSLs, implemented as a library or a macro on top of the existing
general-purpose programming language. Hakaru10 is in fact such a DSL, embed-
ded in Haskell. The grass model is the ordinary Haskell function, making use of
the library functions bern, dist and condition. The full power of Haskell and all

Probabilistic Programming Language and its Incremental Evaluation 359

of its libraries is available for expressing deterministic parts of the model (such
as the noisy-or probability computation). Embedded DSL let us also take the
full advantage of the abstraction facilities of the host language such as func-
tions, module systems, etc. For example, we have defined nor as a particular
parameterized Bernoulli distribution conditioned on two inputs x and y. This
function can later be re-used in other models. We may hence compose models
from simpler components. Starting from the pioneering work of Sato [19], many
probabilistic DSL have been proposed [5,8], with host languages been logical
[2,19], functional [6,12,20,22], object-functional [18], etc. Wingate et al. [21]
deserves special mention for proposing a technique of adding probabilistic pro-
gramming facilities to just about any language. The authors demonstrated this
on the examples of Scheme and Matlab. Wingate’s et al. approach has become
well-spread and employed in many more probabilistic systems such as [9,22].

There are so many probabilistic languages and we are still writing papers
about (more of) them–driven by two main challenges. One is obvious, the other
may come as a surprise. The obvious challenge is performance. An expressive,
pleasant to use, well abstracted probabilistic programming language may be, it
is all for naught if doing inference with realistic models takes unreasonable time
or runs out of memory. For example, the probability monad–which adds weights
to the well-known List monad for non-determinism–is the straightforward and
the easiest to understand example of probabilistic programming in Haskell. It
is Haskell folklore, well described in [3]. It is also disastrously inefficient, failing
even for toy problems. Therefore, it is all too common in Machine Learning/AI
communities to tailor the model to a specific inference method, and tune the
inference code for a specific model. However prominent are the drawbacks of
such tight coupling, often it is the only way to handle problems of realistic size.

That correctness is still a challenge may be surprising. Given the long history
of probabilistic programming, one may think that the basics of the implemen-
tation are beyond doubts. Yet we keep finding problems in the published work
[11]. The well-known and widely used systems such as STAN [9] turn out to
give plain wrong answers even in simple cases, as Hur et al. [10] have clearly
demonstrated.

Contributions. Hakaru10 was developed to address both challenges, performance
and correctness. It started as a project to improve the implementation of the
(original) Hakaru [24] on two points: avoid redundant re-computations and to
strengthen the typing discipline. It was discovered [11] along the way that the
implementation principles, taken from [21] were flawed. Hakaru10 is the complete
re-write, on new principles, to be described in the present paper. Specifically, the
paper makes the following contributions.

1. It presents the probabilistic programming language Hakaru10 embedded as a
DSL in Haskell.

2. It describes the design of Hakaru10, specifically, its type system, which ensures
not only that a model is well-typed, but also that it is well-conditioned. That
is, the values used for conditioning really come from the sources external to

360 O. Kiselyov

the model, rather than being produced from random sources and computa-
tions within the model. In [20] that semantic well-conditioning constraint is
a mere coding convention, whose violation leads to a run-time exception. We
encode the constraint in types, without losing the benefits of the do-notation.
Although the original Hakaru [24] enforced well-conditioning statically, it had
to give up on the ordinary monads and made the conditioning difficult and
error-prone to use: the observed quantities had to be referred to by De Bruijn-
like indices. The type system of Hakaru10 improves not only on the static
guarantees but also on the ‘syntax’ of the language: its Haskell embedding.

3. We describe the implementation of the Metropolis-Hastings (MH) probabilis-
tic inference method (one of the Markov Chain Monte Carlo (MCMC) meth-
ods, see Sect. 4 for a reminder) that ensures semantic-preserving model trans-
formations such as introduction and elimination of dirac random variables.
The implementation is thus guaranteed to obey theoretically justified equa-
tional laws of probabilistic programs. The correct MH implementation, in the
presence of branching, is quite non-trivial [10].

4. We present the method to improve the efficiency of MH by avoiding redundant
re-computations. Although the idea is simple–upon resampling re-compute
only those parts of the model that depend on the changed value–the challenge
is to minimize the overhead of determining the dependencies and their order.
The challenge is acute in the presence of branching: if-then-else statements.

Hakaru10 thus fixes the three problems of the popular Wingate et al. app-
roach [21] that have been pointed out in [11]. First, the implementation is
designed to respect the unit law of the Dirac distribution. Second, Hakaru10 by
design avoids the accidental sharing of random primitives. In Wingate et al. such
sharing, however unjustified theoretically, was justified practically as increasing
the performance. Hakaru10 improved the performance by avoiding unnecessary
recomputations. The third problem, not able to use conditioning other than ‘at
the top level’ has also been dealt with. This problem is so involved and important
that is out of scope here, to be discussed in a separate paper.

We start in Sect. 2 with a Hakaru10 tutorial. Section 3 briefly evaluates the
expressiveness and performance of the system. Section 4 describes the implemen-
tation in detail. We then review the related work and conclude. The complete
code for Hakaru10 with many tests and examples is available at http://okmij.
org/ftp/kakuritu/Hakaru10/.

2 Hakaru10 by Example

This section introduces Hakaru10 on a series of many small examples, showing off
the features of the language. Incidentally, these simple models are useful regres-
sion tests for any probabilistic system. The section also demonstrates equational
laws, or valid transformations of Hakaru10 programs.

Hakaru10 is designed for models that are described by a finite directed acyclic
graph like Fig. 1, whose nodes represent random variables and edges indicate
(typically causal) dependencies. Unlike graphical models in the strict sense [16],
we allow dependencies with arbitrary pure computations.

http://okmij.org/ftp/kakuritu/Hakaru10/
http://okmij.org/ftp/kakuritu/Hakaru10/

Probabilistic Programming Language and its Incremental Evaluation 361

2.1 Model Compositions and Their Laws

The first, elementary program is
pbern = dist bern 0.4
whose inferred type is Model Bool. The program represents the model con-

sisting of a single Boolean (‘Bernoulli’) random variable, whose distribution is
True with the probability 40 % and False with the probability 60 %. One may
think of the function bern :: Double → DistK Bool as creating a distribution given
its parameter, and dist :: (a → DistK b) → a → Model b as sampling from it1.
The types DistK and Model are abstract; the latter has the additional structure
to be shown shortly.

The function mcmC, the interpreter of probabilistic programs,
mcmC :: Integer → Model a → [a]
pbern run = mcmC 10 pbern

performs the MH inference on a model and returns the list of samples from
the model’s distribution. In particular, mcmC 10 pbern produces a list of 10
booleans, which indeed contains 4 True and 6 False values. Hakaru supports not
only discrete like bern but also continuous distributions:

pnorm = dist normal 10 0.5

Here, pnorm, of the inferred type Model Double is a model with the single
normally-distributed random variable, with the mean 10 and the standard devi-
ation 0.5. Hakaru10 offers other primitive distributions, such as categorical, uni-
form, gamma and beta.

Almost all models are more complex, with more random variables, and
mainly, with dependencies between random variables. (Hakaru10 intentionally
does not support cyclic dependencies, as the semantics of such models is prob-
lematic.) The following model has two random variables, normal- and Dirac-
distributed2. The parameter of the latter depends on the value of the former,
for which we re-use the earlier written pnorm:

−− pdep1 :: Model Double
pdep1 = do
x ← pnorm
diracN (x+1)

To build complex models we use the Haskell do notation. In the example above,
we ‘name’ the submodel (random variable) pnorm as x, which we later use in the
expression to compute the parameter of the Dirac distribution. Haskell embed-
ding truly brings modularity: we can name Hakaru10 models (binding them to
Haskell variables) and (re)use constructed models as parts of other models, as
we have just done with pnorm. Since the Dirac distribution is frequent and spe-
cial, as we are about to see, there is a shorter syntax for it, just diracN. As
expected, the inferred distribution of pdep1 is exactly the same as that of dist
normal 11 0.5.

1 These signatures are somewhat simplified. We will later see that dist is overloaded.
2 Dirac distribution, or Dirac delta, is taken as density of a discrete random variable

with the single value.

362 O. Kiselyov

Likewise, the model
pdepR = do
x ← pnorm
diracN x

is equivalent to just pnorm. This is the general property, not limited to normal
distributions: for any model p

do {x ← p; diracN x}
has the distribution identical to that of p. Even the sequences of samples for the
two programs are identical. Likewise, for any e,

do {x ← diracN e; p}
is equivalent to let x=e in p. Hence diracN acts as the left and the right unit
of the model composition. Not surprisingly, diracN has the alias return. At this
point a Haskell programmer may think that Model is a monad. This is not quite
true, as we shall soon see.

The joint distribution of pbern and pnorm models is described by
pjoin = do
x ← pbern
y ← pnorm
return (pair x y)

Then mcmC 100 pjoin produces a set of (Bool,Double) pairs sampled from the
joint distribution, which in this case is the product of pbern and pnorm distribu-
tions. That the distributions of x and y are independent can be seen syntactically,
from the fact that the model named y, namely, pnorm, has no mentioning of x.
We can even integrate (that is, ‘marginalize’) over x:

pmarg = do
x ← pbern
y ← pnorm
return y

Since x does not appear further in the program, this random variable is irrelevant
and is essentially marginalized. Hence the distribution of pmarg is the same as
that of pnorm (although the sequences of samples certainly differ). This property
is again general, for all models (not using conditioning, see below).

To demonstrate once more the advantage of the Haskell embedding, we bor-
row the example of a simple hierarchical model from [10, Fig. 3]. In the stand-
alone, C-like imperative probabilistic language of that paper, the example looks
as follows:

double x;
int i = 0;
x ˜ Gaussian(0, 1);
while (i < 10) do {
x ˜ Gaussian(x, 3);
i = i+1;

}
return x;

The graph of this model with 11 variables looks like the straight line. In this
C-like code, like in C, x denotes a sample from the model rather than a model.

In Hakaru10, we write the hierarchical model as

Probabilistic Programming Language and its Incremental Evaluation 363

phier = (iterate (\m → do {x←m; dist normal x 3}) $ dist normal 0 1) !! 10

taking the advantage of Haskell’s standard library: iterate f x produces a list

104 105 106

10−2

10−1

samples

KL Divergence for the Hierarchical model whose i-th element is the i-th iterate of
f over x. The significance of the example
is that the popular probabilistic program-
ming systems like STAN infer a wrong dis-
tribution for it, as demonstrated in [10].
Hakaru10, like the system of [10], infers
the expected normal distribution with the
center 0 and the standard deviation

√
91.

We can verify the fact by computing the
(estimate of the) KullbackLeibler (KL)
divergence, a common metric of dissimi-
larity between distributions:

phier kl n = kl (tabulate 0.5 $ mcmC n phier)
(tabulate 0.5 $ mcmC n $ dist normal 0 (sqrt 91))

Here tabulate computes the histogram with the specified bin size. The above
figure plots phier kl n for the different number of samples n. For the correct
sampler, KL is expected to decay as O(n−k) for some constant k. Hence, the
plot of KL vs. n on the log-log scale should look like a straight line.

2.2 Branching Models

Hakaru10 can express not only ‘straight-line’ but also branching models. An
example is a simple mixture model

mixng = do
x ← dist normal 0 1
if ((>0) <$> x)

(dist normal 10 2)
(dist gamma 3 (1/3))

whose distribution is the mixture of normal and gamma distributions, with the
random variable x determining the proportion of the mixture. One can also read
this program as sampling either from the normal or the gamma distributions,
depending on the sign of x. The mixng program is the first betraying Model being
not quite a monad. The variable x is not actually of the type Double, as one might
have thought. We have maintained the illusion so far because numbers in Haskell
are overloaded. Sadly, booleans are not. As should be apparent from the use of
Applicative operator <$>, which is just fmap, Model a is something like M (A a)
where M is a monad but A is an applicative. We discuss the representation of
Model in Sect. 4.

Just by looking at the mixng code one can tell that what matters for the
final distribution is the event of x being positive–which, for the standard normal
distribution happens 50 % of the time. Therefore, mixng should be equivalent to
the following mixture

364 O. Kiselyov

mixng’ = do
x ← dist bern 0.5
if x

(dist normal 10 2)
(dist gamma 3 (1/3))

That is, mcmC 5000 mixng should be roughly the same sequence of samples as
mcmC 5000 mixng’–and also as interleave (mcmC 2500 (dist normal 10 2)) (mcmC
2500 (dist gamma (1/3))). Again, we verify the similarity using the KL diver-
gence, which is under 2.3e−2. This example is also borrowed from [10, Fig. 2].
Despite its simplicity, several widely known and used probabilistic programming
systems (e.g., STAN) infer wrong distributions for it.

2.3 Conditioning

Finally, Hakaru10 supports conditioning, that is, inferring the conditional dis-
tribution of a model where some of its variables have been observed to hold
particular values. Conditioning is extraordinarily tricky, especially in case of
continuous distributions. The interested reader may look up the Borel paradox.
The syntax and the type system of Hakaru10 are specifically designed to steer
the programmer (far) away from the pitfalls.

We take as an example the experiment of estimating the bias of a coin, that
is, its inherent probability b of coming up as head (that is, True). We toss the
coin twice and observe the results as c1 and c2. The following is the model of
the experiment, taking the observed values as parameters.

biased coin c1 c2 = do
b ← dist beta 1 1
dist (c1 � condition � bern) b
dist (c2 � condition � bern) b
return b

We do not know the true bias b, but assume a priori that it is distributed as
beta 1 1. This is a popular assumption (not in small part due to the fact we
can compute the posterior analytically). We toss the coin twice and ‘observe the
results as c1 and c2’: specify that the first toss came in reality as c1 and the
second as c2. Then biased coin c1 c2 gives us the (posterior) distribution of b,
letting us estimate the coin’s bias. If in the experiment the coin came up first
head and then tail, the posterior analytically is beta 2 2, with the average 0.5
and the variance 0.05. Running mcmC 10000 (biased coin True False) gives the
list of 10000 samples, from which we estimate the average as 0.499.

As biased coin code demonstrates, in Hakaru10 conditioning may only be
applied to distributions. One may think that (c1 �condition� bern) creates a new
distribution out of bern, with the singular value c1. Conditioning on arbitrary
boolean formulas is fraught with peril, both theoretical and practical, degener-
ating MCMC algorithm into the inefficient rejection sampling. Since repeated
conditioning does not make sense, (c1 �condition� (c2 �condition� bern)) is a type
error. Hakaru10 is indeed typed, although we have not paid much attention to
types, which were all inferred. Types do prevent silly errors like

Probabilistic Programming Language and its Incremental Evaluation 365

biased coin ill typed c1 c2 = do
b ← dist bern 0.5
dist (c1 � condition � bern) b
dist (c2 � condition � bern) b
return b

since the parameter of bern, the probability, cannot be a Boolean. Types also
prevent less obvious errors like

biased coin ill typed too c1 c2 = do
b ← dist bern 0.5
dist (b � condition � bern) 0.4
return b

Here, we attempted to condition bern on the random choice within the model.
This is not allowed: observations must be external to the model. In [20], this
semantic condition was a merely a coding convention, whose violation manifested
as a run-time exception. In Hakaru10, the violation is a type error.

Previously we have seen that random variables that do not contribute to the
result in any way are effectively marginalized. Conditioning changes that. The
two condition lines in the biased coin model are the random variables that do not
seem to contribute to the model (therefore, we did not even give them names).
However, they had effect. The following model makes that fact clear:

post bias c = do
coin ← dist bern 0.5
if coin (dist (c � condition � normal) 0 1)

(dist (c � condition � normal) 100 1)
return coin

The result of the model does not overtly depend on the result of the if state-
ment. However, it changes the coin’s posterior distribution: running mcmC 100
(post bias 1) gives all True samples.

We conclude the tutorial by looking back at the canonical grass model exam-
ple described in Sect. 1, repeated below for reference.

grass = do
rain ← dist bern 0.3
sprinkler ← dist bern 0.5
grass is wet ← dist (True � condition � nor 0.9 0.8 0.1) rain sprinkler
return rain

This code hopefully has become more understandable. Evaluating mcmC 20000
grass and counting the number of True gives the posterior estimate of rain hav-
ing observed that the grass is wet: it comes out to 0.468, which matches the
analytically determined result.

3 Evaluation

The Hakaru10 tutorial might have given an impression that Hakaru10 tries so
hard to preclude problematic behavior, by restricting conditioning and models,
that one cannot do much interesting in it. In this section we briefly evaluate the
expressiveness of the language on two realistic models.

366 O. Kiselyov

Bayesian Linear Regression. The first model comes from the small problems
collection of challenge problems3 assembled in the course of DARPA’s Prob-
abilistic Programming for Advancing Machine Learning (PPAML) program4.
It is Problem 4.1, Bayesian linear regression: Given the set of training points
(xij , yi), i = 1..N, j = 1..k and the generative model yi =

∑
j xij ∗ wj + noisei

find the posterior distribution on wj . In the conventional linear regression lan-
guage, we are given N observations of y assumed to be a linear combination of
the controlled quantities x with the parameters w; we have to estimate w. The
generative model is expressed in Hakaru10 as

type RegrDatum = ([Double],Double) −− Xs and Y
model::[RegrDatum]→ Model [Double]
model xsy = do

let mu = replicate dimK 0
w mean ← normals mu 2
w ← normals w mean 1
noise sd ← (1/) <$> dist gamma 0.5 0.5
let make cond (xs,y) = dist (y � condition � normal) (dot xs w) noise sd
mapM make cond xsy
return $ collect w

Its argument is the list of the training points (xij , yi). The model starts by defin-
ing the prior for the parameters w and the standard deviation noise sd for the
noise (as specified in the problem description). We then create a random variable
for each noisy observation point and condition it to yi. We are interested in the
distribution of the parameter vector w given the conditioning. The Hakaru10
model rather closely matches the problem description (and the RSTAN code
given in the problem description document). The model is straightforward but
not small: its graph has 511 vertices (there are five hundred observations and
five parameters).

The model is naturally expressed in terms of vectors; Hakaru10 however does
not provide out of the box any distributions over vectors. Nevertheless, we can
express them through Hakaru10 primitives in our host language, Haskell. For
example, we can write normals, which produces a list of independently distributed
normal random variables of the same standard deviation std whose means are
given by the list means:

normals means std = mapM (\m → dist normal m std) means

Likewise we can write collect (to convert a list of random variables into a random
list) in pure Haskell–to say nothing of the dot-product dot.

Population Estimation. We also evaluate Hakaru10 by implementing a realistic
model of population estimation, taken from [14, Ex 1.1]: “An urn contains an
unknown number of balls–say, a number chosen from a Poisson or a uniform dis-
tributions. Balls are equally likely to be blue or green. We draw some balls from
the urn, observing the color of each and replacing it. We cannot tell two identi-
cally colored balls apart; furthermore, observed colors are wrong with probability
3 http://ppaml.galois.com/wiki/wiki/CP4SmallProblemsCollection.
4 http://www.darpa.mil/program/probabilistic-programming-for-advancing-

machine-Learning.

http://ppaml.galois.com/wiki/wiki/CP4SmallProblemsCollection
http://www.darpa.mil/program/probabilistic-programming-for-advancing-machine-Learning
http://www.darpa.mil/program/probabilistic-programming-for-advancing-machine-Learning

Probabilistic Programming Language and its Incremental Evaluation 367

0.2. How many balls are in the urn? Was the same ball drawn twice?” This exam-
ple is hard to implement in many probabilistic programming languages. That is
why it was used to motivate the language BLOG.

First we define ball colors
data Color = Blue | Green deriving (Eq, Show)
opposite color ::Color→ Color
opposite color Blue = Green
opposite color Green = Blue

and introduce the distribution for the observed ball color accounting for the
observation error:

observed color color = categorical [(color , 0.8), (opposite color color , 0.2)]

Although the exact number of balls in unknown, we can reasonably impose
an upper bound. We create that many instances of uniformly color-distributed
random variables, for each ball. We populate the IntMap data structure, mapping
ball’s index to the corresponding random variable, for easy retrieval.

maxBalls = 8
balls prior n = do
balls ← sequence ◦ replicate n $ dist uniformly (pure [Blue,Green])
return $ M.fromList $ zip [1..] balls

Some of these random variables will be unused since the number of balls in the
urn is often less than the upper bound. The unused variables will be marginal-
ized5.

The model is conceptually simple: it takes a list of observations obs as an
argument, generates random variables for all possible balls, draws the number
of balls from the prior and dispatches to the instance of the model with that
number of balls.

cballs model [obs1,obs2 ,...] = do
balls ← balls prior maxBalls
nballs ← dist uniformly (pure [1.. maxBalls])
if ((== 1) <$> nballs) (cballs model with Nballs balls obs 1) $
if ((== 2) <$> nballs) (cballs model with Nballs balls obs 2) $
...
if ((== 8) <$> nballs) (cballs model with Nballs balls obs 8) $
return ()

return nballs

When the number of balls is fixed, the experiment is easy to model: pick one
ball b and check its true color balls ! b against the color of the first observed
ball; repeat for the second observed ball, etc.

5 Imposing the upper bound on the number of balls may be undesirable, especially
for the Poisson distribution. In principle, Hakaru10 could instantiate conditional
branches of a model lazily; in which case balls could be an infinite list. We are
investigating this possibility.

368 O. Kiselyov

cballs model with Nballs balls [obs1,obs2 ,...] nballs = do
b ← dist uniformly (pure [1.. nballs])
if ((== 1) <$> b) (dist (obs1 �condition� observed color) (balls ! 1)) $
if ((== 2) <$> b) (dist (obs1 �condition� observed color) (balls ! 2)) $

...
b ← dist uniformly (pure [1.. nballs])
if ((== 1) <$> b) (dist (obs2 �condition� observed color) (balls ! 1)) $
if ((== 2) <$> b) (dist (obs2 �condition� observed color) (balls ! 2)) $

...
...
return ()

The result is a rather large Bayesian network with deeply nested conditional
branches with conditioning in the leaves. The fact that the same balls variable
is shared among all branches of the complex if-statement corresponds to the
intuition that the same ball can be drawn twice since we return the drawn balls
into the urn. A ball keeps its true color, no matter how many times it is drawn.

The code outline just shown is not proper Hakaru10 (and is not proper
Haskell) because of many ellipses. It is clear however that the code has the reg-
ular structure, which can be programmed in Haskell. For example, the (proper,
this time, with ellipses filled in) code for cballs model is as follows:

cballs model :: [Color] → Model Int
cballs model obs = do

balls ← balls prior maxBalls
nballs ← dist uniformly (pure [1.. maxBalls])
let obs number i = if ((== i) <$> nballs) $ cballs model with Nballs balls obs i
foldr obs number (return (pure())) [1.. maxBalls]
return nballs

One may think that the huge size of the model makes the inference difficult.
However, only small part of the large nest of conditional branches is evalu-
ated on each MH step. Therefore, performance is rather good: on 1.8 GHz Intel
Core i3, Hakaru10 running within the GHCi interpreter (bytecode, no optimiza-
tions) takes 16 s to do 10,000 samples and reproduce the results of this model
programmed in Hansei [12] (running in OCaml bytecode, using importance sam-
pling, taking 5000 samples within 13.4 s) and the results reported in [14, Fig. 1.7],
which took 35 s on 3.2 GHz Pentium 4 to obtain.

3.1 Performance

The motivation for Hakaru10 was to improve the performance of the original
Hakaru [24], which was the straightforward implementation of the Wingate
et al. [21] algorithm. The previous section has already touched upon the
Hakaru10 performance. This section evaluates performance directly, against the
original Hakaru, on the phier model from Sect. 2. Recall, its expected distribu-
tion is normal with the average 0 and variance 91. The table below reports the
estimates of the average and variance, as well as the CPU time taken to obtain 1
million samples from the model. The table compares Hakaru10 with the original
Hakaru. The platform is Intel Core i3 1.8 GHz; the systems were compiled with
GHC 7.8.3 with the −O2 flag.

Probabilistic Programming Language and its Incremental Evaluation 369

Average Variance CPU time (sec)

Hakaru original 0.39 87 72 s

Hakaru10 0.22 93 20 s

Hakaru10 indeed significantly improves performance.

4 Implementation

Hakaru10 programs represent directed graphical models. Although we can use
state and other effects (e.g., reading various parameters from a file) to build
the graph, models themselves are declarative, describing connections between
random variables, or their distributions. Having built the model, we want to
determine the distribution of some of its random variables, either marginalizing
or conditioning on the others. Usually we determine the desired distribution
as a sequence of samples form it. If the model is encoded as a program that
does the sampling of random variables respecting the dependencies, determining
the distribution amounts to repeatedly running the program and collecting its
results. Taken literally, this process is rather inefficient however.

Conditioning, especially in the case of continuous distributions, poses a prob-
lem. Consider the model

do
tempr ← dist uniform (−20) 50
(25 � condition � normal) tempr 0.1
return tempr

which represents a simple measurement (of tempr, the air temperature). The
measurement has random noise, which is believed to be Gaussian with the stan-
dard deviation 0.1. We are interested in the distribution of the true temperature
given the observed value 25 ◦C. The naive procedure will uniformly sample tempr
from [−20, 50], then sample from normal tempr 0.1, and, if the latter result differs
from 25, reject the tempr sample and repeat. Alas, we will be rejecting almost
all samples and produce nothing: mathematically speaking, the event that a
value drawn even from the normal distribution centered at 25, is exactly 25
has the zero probability. A more useful question therefore to ask is how likely
25 may come as a sample from the distribution normal tempr 0.1. It becomes
clear why Hakaru10 insists the conditioning be applied only to distributions: we
have to know what distribution the observation comes from, so we can tell how
likely it is. Sampling thus becomes an optimization problem, maximizing the
livelihood. One of the multi-dimensional optimization methods is Markov-Chain
Monte-Carlo (MCMC).

Hakaru10 supports one of the MCMC methods: Metropolis-Hastings (MH)
method of sampling from a model distribution. We remind the algorithm on the
following example:

370 O. Kiselyov

mhex = do
x ← dist normal 0 1
y ← dist normal x 2
if ((>0.5) <$> x)

(return x)
(do {z ← dist beta 1 1; return (y + z)})

The algorithm constructs the sequence of Doubles, drawn from the distribution
of mhex, that is, the distribution of the values returned by the last statement
of the program. To start with, MH “runs” the program, sampling from the
distributions of its random variables. For example, x gets a sample from the
standard normal distribution, say, 0.1. Then y is sampled from normal 0.1 2, say,
as −0.3, and z is sampled as 0.5. The result of the whole program is then 0.2.
Along with the samples, MH remembers their probability in the distribution. It
is more convenient to work with the logarithms, that is, log likelihoods (LL).
For example, the LL of the initial x sample is −0.616. The collection of samples
along with their LLs is called the trace of the program. LL of the trace is the
sum of the LLs of its samples.

The just constructed trace becomes the initial element in the Markov chain.
The next element is obtained by attempting to ‘disturb’ the current trace. This is
the key to the efficiency of Markov Chain Monte Carlo (MCMC) as contrasted to
the naive resampling (simple Monte Carlo): rather than resample all of the ran-
dom variables, we attempt to resample only one/a few at a time. The algorithm
picks a subset of random variables and proposes to change them, according to
some proposal distribution. Commonly, and currently implemented in Hakaru10,
the algorithm selects one random variable and resamples it from its distribution.
Suppose we pick x and find another sample from its standard normal distribu-
tion. Suppose the result is 0.6. The program is then re-run, while keeping the
values of the other random variables. In other words, we re-compute the trace to
account for the new value of x. The change in x switches to the first branch of the
if statement, and the program result becomes 0.6. Since y was not affected by the
change proposal, its old sample, −0.3, is kept. However, it is now drawn from the
different distribution, normal 0.6 2, an hence has the different LL. Thus even if
a random variable does not contribute to the result of a trace, it may contribute
to its LL. From the LLs of the original and the updated trace, MH computes
the acceptance ratio (a number between 0 and 1) and accepts the updated trace
with that probability. If the trace is accepted, it becomes the new element of
the Markov chain. Otherwise, the original trace is retained as current. Running
the trace re-computation many times constructs the sequence of samples from
the distribution of the trace–or, retaining only the trace result, the sequence of
samples from the program distribution.

4.1 Design Overview

We now describe the Hakaru10 implementation in more detail. Hakaru10 rep-
resents the trace–random variables of the model and their dependencies–as a
directed acyclic graph (DAG). Each node (vertex) in the graph stands for one

Probabilistic Programming Language and its Incremental Evaluation 371

random variable (whose value can be sampled and resampled) or an observed
variable, whose value cannot be resampled. There are also computational nodes,
representing ‘samples’ from the dirac distribution. They cannot be resampled
either. Section 4.3 describes the reasons for the special treatment of the dirac
distribution. One node in a graph, with no outgoing vertices, is designated as
the ‘result’ node. The graph with the result type a has the type SExp a6. For the
grass model the trace graph has three nodes and looks exactly like the graphical
representation of the model, Fig. 1.

A Hakaru10 model has the type
type Model a = MCMCM (SExp a)

It is a computation that constructs the trace graph. MCMCM is a monad, but
SExp is not. It is an applicative [13]: it lets us construct new graph nodes, without
looking at their values. The function

mcmC :: Integer → Model a → [a]

first builds the trace graph and then repeatedly runs the trace update algorithm
the specified number of times. The fact that SExp is not a monad is significant:
the current node values cannot influence the graph construction. Therefore, after
the graph is built, its structure does not change. All dependencies among nodes
can be computed once and for all.

The type system not only makes the implementation more efficient. It also
enforces semantic constraints. Let’s recall the code that attempts to condition
on the value computed within the model, which is invalid semantically.

biased coin ill typed too c1 c2 = do
b ← dist bern 0.5
dist (b � condition � bern) 0.4
return b

This code does not type-check since the first argument of condition should be
Bool, since bern is the distribution over booleans. However, b is not Bool, it
is of the type SExp Bool. In the original Hakaru [24], the semantic constraint
was enforced via a parameterized monad, which made its syntax (the Haskell
embedding) cumbersome. Worse, the values to condition upon could only be
referred to indirectly, via De Bruijn-like indices, which were very easy to confuse.
The type system of the embedded language thus has significant influence on its
‘syntax’, its embedding.

4.2 Incremental Recomputation

One of the main features of Hakaru10 is its incremental recomputation algo-
rithm, which avoids the redundant computations during the trace update. Only
those nodes that (transitively) depend on the resampled random variable are
recomputed. The following example should clarify the meaning of the depen-
dency:

6 The actual implementation has one more level of indirection, but the description
given here is a good approximation.

372 O. Kiselyov

pdep = do
x ← dist normal 0 1
y ← dist normal x 1
z ← dist normal y 1
return (x+y+z)

Suppose MH proposes to resample x (and only x). Although the y sample keeps
its old value, its distribution parameters, x specifically, changed. Therefore, the
LL of the old y sample in the new distribution has to be recomputed. The
variable z is not affected by the resampling proposal; also, the parameters of its
distribution remain the same. Therefore, no update to the z node is needed. The
last, Dirac, node of the trace, corresponding to return (x+y+z), is also updated,
to account for the new x: the special treatment of Dirac nodes is explained in
the next subsection.

Since the type system ensures that the structure of the graph is preserved,
the dependency graph can be computed and topologically sorted once and for all.
The fact that Hakaru10 models are acyclic and Hakaru10 programs are declar-
ative (with no mutations) lets us avoid the topological sort and rely on the
‘creation times’ of trace nodes. A node can only depend on those constructed
before it.

The update procedure has the obvious correctness requirement: a node is
updated only after all the nodes it depends on have been updated. If we con-
sider the trace update as a graph traversal, the correctness property amounts to
maintaining the invariant that a visited node has the creation time earlier than
any other node in the update queue. This invariant has guided writing the code
and remains in the code in the form of assertions (mostly for documentation).

4.3 Special Treatment of the Dirac Distribution

Hakaru10 by design enforces the laws that
do { x ← p; diracN x } ≡ p
do { x ← diracN v; p } ≡ let x = v in p

for all programs p.
The law is tricky to enforce. Moreover, an MH implementation that does not

pay attention to it (such as [21], for example) exhibits incorrect behavior, as
pointed out in [11]. We recall the latter’s argument here.

Let us consider the following program
p2 = do {x ← dist uniform 0 1; diracN x}

Suppose in the initial trace x is sampled to 0.5 and the MH algorithm now
proposes to change it to 0.7. When updating the trace, the values of other random
variables are kept as their are; only their LL may change. Thus the value of the
dirac node will be kept at 0.5; the update procedure will then try to find its LL
within the changed distribution dirac 0.7. Clearly the LL of the old sample in the
new distribution is − inf. Therefore, the proposal to resample x will be rejected.
Every proposal to modify x will likewise be rejected and so the Markov chain of
p2 will contain the identical samples.

Probabilistic Programming Language and its Incremental Evaluation 373

Mathematically, composing with Dirac is the identity transformation, so p2
should be equivalent to just uniform 0 1, whose Markov chain is anything but
constant. Without taking precautions, the MH algorithm converges to the wrong
distribution for p2.

One may be tempted to dismiss the problem: the chain fails to mix (all
proposals are rejected) because of the single-variable update proposals. However,
more general proposals require the interface for the user to tell the system how to
make correlated multi-variable proposals. Moreover, the user has to know how to
make good a proposal, which is a non-trivial skill. Asking the end user for non-
trivial extra hints seems especially bothersome for such a simple problem. Once
we know which equational laws we have to satisfy, it is quite easy to account for
it and make the problems involving dirac go away.

Therefore, Hakaru10 implementation treats dirac nodes specially. They are
considered as pure computation nodes, and their value is always updated when-
ever their dependencies change. In effect, any proposal to change one random
variable is automatically extended to the proposal to change all dependent dirac
random variables, in a way that the latters’ LL stays zero. Hakaru10 thus employs
multi-variable correlated proposals, for all dirac variables. Therefore, Hakaru10
satisfies the Dirac laws by construction.

4.4 Branching

Branching models, with if-expressions, bring in quite a bit of complexity. A
change in the branch condition effectively causes one part of the model van-
ish and a new submodel, from the other branch, to appear. Maintaining node
dependencies and correctly computing the acceptance ratio in such a dynamic
environment is non-trivial.

Hakaru10 avoids any modifications to the graph structure during the trace
update. It compiles both if-branches when constructing the initial graph. That
is, the model if test thModel elModel corresponds to the following DAG:

test-node

thModel elModel

exit-node

The entry node corresponds to the test condition. The exit
node is the result node of the entire if-statement; it holds the
value of the thModel or the elModel, depending on the value
of the test-node.

Updating the nodes in the inactive branch, whose values
will be ultimately ignored, is not good for performance. There-
fore, we mark the nodes in the non-current branch as inactive,
and delay their updates until they are activated. Thus each

node, along with its current value, LL and the distribution also keeps the inacti-
vation count. (The inactivity mark is not a simple boolean because of the nested
conditionals and because the same node may appear in several conditionals).

5 Related Work

There are many probabilistic programming languages, with a variety of imple-
mentations [7,16]. Closely related to Hakaru10 in its design is Figaro [18], which

374 O. Kiselyov

is also an embedded DSL, in Scala. Like Hakaru10, a Figaro program produces a
trace graph, which is then repeatedly updated by the MH algorithm. Figaro does
not appear to use the incremental evaluation. Infer.net [15] is also an embedded
DSL, for the .NET platform, that first constructs a graph; instead of MH it relies
mostly on Expectation Propagation and its variants for inference.

The system of Ścibior et al. [20] is related in its use of Haskell and MCMC.
The similarities end here, however. Ścibior et al. use a monad to express mod-
els. Therefore, the model construction is “too dynamic” and the semantic con-
straints on conditioning cannot be statically enforced. On the other hand, Ścibior
et al. can express cyclic models (whose semantics, however, may be difficult to
determine.) Ścibior et al. implement different MCMC algorithms; none of the
implementations are incremental at present.

Although the MH algorithm is the old staple–the original MCMC algorithm–
it is not the only one. More advanced MCMC algorithms have been proposed, and
recently have been incorporated into probabilistic programming, most promi-
nently in Anglican [22]. It is an interesting challenge to turn these algorithms
incremental and implement within Hakaru10, while preserving Hakaru10’s fea-
tures such as conditioning within conditional branches.

Yang et al. [23] propose an incremental evaluation algorithm, using in effect
staging, or program generation. They analyze the initial trace and then generate
code for the efficient MH update.

Hur et al. [10], whose paper we often used for references and examples, pro-
pose the provably correct MH algorithm for the imperative, C-like probabilistic
language. It has to deal with the problem of multiple assignments to random
variables. The problem does not exist in the declarative Hakaru10, where a ran-
dom variable, as the name of a model, is immutable.

6 Conclusions and Future Work

We have presented the probabilistic programming language Hakaru10 embedded
as a DSL in Haskell. The language features the type system to prevent silly and
more subtle mistakes with probabilistic conditioning. We have described the
incremental MH evaluation of Hakaru10 programs.

The immediate future work is using the language for more, interesting models.
We should consider adding Dirichlet processes. An interesting design challenge
is the interface to let the user specify proposals, including proposals to change
several random variables in concert.

Although the minimalism of Hakaru10 simplifies the implementation and
checking of its correctness, it makes writing interesting models, such as those
in Sect. 3, cumbersome. Hakaru10 may hence be viewed as an intermediate lan-
guage. Fortunately, Haskell proved quite powerful ‘macro’ language to improve
convenience.

Acknowledgments. I am indebted Rob Zinkov and Chung-chieh Shan for many
helpful discussions. Comments and suggestions by anonymous reviewers are gratefully
acknowledged. The work on Hakaru10 was supported by DARPA grant FA8750-14-2-
0007.

Probabilistic Programming Language and its Incremental Evaluation 375

References

1. AISTATS, number 33. MIT Press, Cambridge (2014)
2. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic Prolog and

its application in link discovery. In: Veloso, M.M. (ed.) Proceedings of the 20th
International Joint Conference on Artificial Intelligence, pp. 6–12, January 2007

3. Erwig, M., Kollmansberger, S.: Probabilistic functional programming in Haskell.
J. Funct. Program. 16(1), 21–34 (2006)

4. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press,
Cambridge, November 2007

5. Goodman, N.D.: The principles and practice of probabilistic programming. In:
POPL 2013: Conference Record of the Annual ACM Symposium on Principles of
Programming Languages, pp. 399–402. ACM Press, New York, January 2013

6. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: McAllester, D.A., Myllymäki, P.
(eds.) Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence,
pp. 220–229, Corvallis, Oregon, 9–12. AUAI Press, July 2008

7. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages (2014). http://dippl.org

8. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE, pp. 167–181. ACM (2014)

9. Hoffman, M.D., Gelman, A.: The No-U-Turn Sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. e-Print 1111.4246, arXiv.org (2011)

10. Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S.: A provably correct sampler for
probabilistic programs. In: FSTTCS 2015 (2015)

11. Kiselyov, O.: Problems of the lightweight implementation of probabilistic pro-
gramming. In: Proceedings of Workshop on Probabilistic Programming Semantics
(2016)

12. Kiselyov, O., Shan, C.C.: Monolingual probabilistic programming using generalized
coroutines. In: Proceedings of the 25th Conference on Uncertainty in Artificial
Intelligence, pp. 285–292, Corvallis, Oregon, 19–21. AUAI Press, June 2009

13. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

14. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: BLOG:
probabilistic models with unknown objects. In: Getoor and Taskar [4], chapter 13,
pp. 373–398

15. Minka, T., Winn, J.M., Guiver, J.P., Kannan, A.: Infer.NET 2.2. Microsoft
Research Cambridge (2009). http://research.microsoft.com/infernet

16. Murphy, K.: Software for graphical models: a review. Int. Soc. Bayesian Anal. Bull.
14(4), 13–15 (2007)

17. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, 2nd edn. Morgan Kaufmann, San Francisco (1988)

18. Pfeffer, A., Figaro: an object-oriented probabilistic programming language. Tech-
nical report 137, Charles River Analytics (2009)

19. Sato, T.: A glimpse of symbolic-statistical modeling by PRISM. J. Intell. Inf. Syst.
31(2), 161–176 (2008)

20. Ścibior, A., Ghahramani, Z., Gordon, A.D.: Practical probabilistic programming
with monads. In: Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,
pp. 165–176. ACM Press, New York (2015)

http://dippl.org
http://arXiv.org
http://research.microsoft.com/infernet

376 O. Kiselyov

21. Wingate, D., Stuhlmüller, A., Goodman, N.D.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: AIS-
TATS, no. 15, pp. 770–778, Revision 3, February 8, 2014. MIT Press, Cambridge
(2011)

22. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic
programming inference. In: AISTATS 2014 [1], pp. 1024–1032 (2014)

23. Yang, L., Hanrahan, P., Goodman, N.D.: Generating efficient MCMC kernels from
probabilistic programs. In: AISTATS [1], pp. 1068–1076 (2014)

24. Zinkov, R., Shan, C-C.: Probabilistic programming language Hakaru. v1. DARPA
PPAML Report (2014)

ELIOM: A Core ML Language for Tierless
Web Programming

Gabriel Radanne1(B), Jérôme Vouillon2, and Vincent Balat2

1 Univ Paris Diderot, Sorbonne Paris Cité, IRIF UMR 8243 CNRS, Paris, France
gabriel.radanne@pps.univ-paris-diderot.fr

2 CNRS, IRIF UMR 8243, Univ Paris Diderot, Sorbonne Paris Cité, BeSport,
Paris, France

jerome.vouillon@pps.univ-paris-diderot.fr,

vincent.balat@univ-paris-diderot.fr

Abstract. Eliom is a dialect of OCaml for Web programming in which
server and client pieces of code can be mixed in the same file using syn-
tactic annotations. This allows to build a whole application as a single
distributed program, in which it is possible to define in a composable way
reusable widgets with both server and client behaviors. Our language also
enables simple and type-safe communication. Eliom matches the speci-
ficities of the Web by allowing the programmer to interleave client and
server code while maintaining efficient one-way server-to-client communi-
cation. The Eliom language is both sufficiently small to be implemented
on top of an existing language and sufficiently powerful to allow express-
ing many idioms of Web programming.

In this paper, we present a formalization of the core language of
Eliom. We provide a type system, the execution model and a compi-
lation scheme.

Keywords: Web · Client-server · OCaml · ML · Eliom · Functional

1 Introduction

Web programming usually relies on the orchestration of numerous languages and
tools. Web pages are written in HTML and styled in CSS. Their dynamic behav-
ior is controlled through client-side languages such as JavaScript or Action-
Script. These pages are produced by a server which can be written in about
any language: PHP, Ruby, C++ . . . They are produced based on information
stored in databases and retrieved using a query language such as SQL.

Programmers must not only master these tools, but also keep synchronized
the numerous software artifacts involved in a Web site and make them com-
municate properly. The server must be able to interact with the database, then

This work was partially performed at IRILL, center for Free Software Research and
Innovation in Paris, France, http://www.irill.org.

c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 377–397, 2016.
DOI: 10.1007/978-3-319-47958-3 20

http://www.irill.org

378 G. Radanne et al.

send the relevant information to the client. In turn, the client must be able to
understand the received data, and interact back properly with the server.

These constraints makes Web programming tedious and prone to numerous
errors, such as communication errors. This issue, present in the Web since its
inception, has become even more relevant in modern Web applications.

Separation of client and server code also hinders composability, as related
pieces of code, that build fragments of a Web page and that define the specific
behavior of these fragments, typically have to be placed in different files.

1.1 The Need for Tierless Languages

One goal of a modern client-server Web application framework should be to make
it possible to build dynamic Web pages in a composable way. One should be able
to define on the server a function that creates a fragment of a page together with
its associated client-side behavior; this behavior might depend on the function
parameters. From this point of view, a DSL for writing HTML documents and
serialization libraries are two key ingredients to assemble page fragments and
communicate between client and server, but are not enough to associate client
behaviors to these page fragments in a composable way.

This is where so-called tierless languages come into play. Such languages
unify the client and server part of the application in one language with seamless
communication. For most of these languages, two parts are extracted from a
single program: a part runs on the server while the other part is compiled to
JavaScriptand runs on the client.

1.2 ELIOM

We present Eliom, an extension of OCaml for tierless programming that
supports composable and typesafe client-server interactions. Eliom is part
of the larger Ocsigen [4,12] project, which also includes the compiler
js of ocaml[24], a Web server, and various related libraries to build client-
server applications. Besides the language presented here, Eliom comes with a
complete set of modules, for server and/or client side Web programming, such
as RPCs; a functional reactive library for Web programming; a GUI toolkit [16];
a powerful session mechanism, to manage the server side state of a Web appli-
cations on a per-tab, per-browser, or per-user basis; an advanced service iden-
tification mechanism [2], providing a way to implement traditional Web inter-
action (well-specified URLs, back button, bookmarks, forms, . . .) in few lines
of code. The Ocsigen project started in 2004, as a research project, with the
goal of building a complete framework, usable in the industry. Ocsigen already
has several industrial users, most using the Eliom language we present in this
paper: BeSport [5], NYU gencore [13], Pumgrana [19], . . .

Eliom: A Core ML Language for Tierless Web Programming 379

1.3 A Core Language for Tierless Web Programming

All of the modules and libraries implemented in Ocsigen, and in particular in
the Eliom framework, are implemented on top of a core language that allows
to express all the features needed for tierless web programming.

Composition. Eliom encourages the building of independent and reusable com-
ponents that can be assembled easily. It allows to define and manipulate on the
server, as first class values, fragments of code which will be executed on the
client. This gives us the ability to build reusable widgets that capture both the
server and the client behaviors transparently. It also makes it possible to define
libraries and building blocks without explicit support from the language.

Leveraging the type system. Eliom introduces a novel type system that allows
composition and modularity of client-server programs while preserving type-
safety and abstraction. This ensures, via the type-system, that client code is not
used inside server code (and conversely) and ensures the correctness of client-
server communications.

Explicit communication. Communication between the server and the client in
Eliom is always explicit. This allows the programmer to reason about where the
program is executed and the resulting trade-offs. The programmers can ensure
that some data stay on the client or on the server, or choose how much commu-
nication takes place and where computation is performed.

A simple and efficient execution model. Eliom relies on a novel and efficient
execution model for client-server communication that avoids constant back-and-
forth communication. This model is simple and predictable. Having a predictable
execution model is essential in the context of an impure language, such as ML.

These four properties lead us to define a core language, Eliomε, that features
all these characteristics, while being small enough to be reasoned about in a
formal way. Having a small core language into which more complex constructs
can be reduced has several advantages. First, it is sufficient to trust the core
language. All the desirable properties about the core language will also be valid
for the higher-level abstractions introduced later.

A minimal core language also makes the implementation on top of an existing
language easier. In the case of Eliom, it allows us to implement our extension
on top of the existing OCaml compiler with a reasonably small amount of
changes. By extending an existing language, we gain the ability to use numer-
ous preexisting libraries: cooperative multitasking [23], HTMLmanipulation [22]
and database interaction [20] are all provided by libraries implemented in pure
OCaml that we can leverage for Web programming, both server and client side.

We present the Eliom language from a programming point of view in Sect. 2.
We then specify Eliomε, an extension of core ML featuring the key points of
Eliom, which allows us to describe the type system and the execution model of
Eliom in Sect. 3 and the compilation model in Sects. 4 and 5.

380 G. Radanne et al.

2 How to: Client-Server Web Programming

An Eliom application is composed of a single program which is decomposed by
the compiler into two parts. The first part runs on a Web server, and is able to
manage several connections and sessions at the same time, with the possibility of
sharing data between sessions, and to keep state for each browser or tab currently
running the application. The client program, compiled statically to JavaScript,
is sent to each client by the server program together with the HTMLpage, in
response to the initial HTTP request. It persists until the browser tab is closed
or until the user follows an external link.

Eliom is using manual annotations to determine whether a piece of code is
to be executed server or client side [1,3]. This choice of explicit annotations is
motivated by the fact that we believe that the programmer must be well aware
of where the code is executed, to avoid unnecessary remote interactions. This
also avoids ambiguities in the semantics and allows for more flexibility.

In this section, we present the language extension that deals with client-
server code and the corresponding communication model. Even though Eliom
is based on OCaml, little knowledge of OCaml is required. We explicitly write
some type annotations for illustration purposes but they are not mandatory.

2.1 Sections

The location of code execution is specified by section annotations. We can specify
that a declaration is performed on the server, or on the client:
1 let%server s = ...
2 let%client c = ...

A third kind of section, written as shared, is used for code executed on both
sides. We use the following color convention: client is in yellow, server is in blue
and shared is in green.

2.2 Client Fragments

A client-side expression can be included inside a server section: an expression
placed inside [%client ...] will be computed on the client when it receives
the page; but the eventual client-side value of the expression can be passed
around immediately as a black box on the server.
1 let%server x : int fragment = [%client 1 + 3]

For example, here, the expression 1 + 3 will be evaluated on the client, but it’s
possible to refer server-side to the future value of this expression (for example,
put it in a list). The value of a client fragment cannot be accessed on the server.

2.3 Injections

Values that have been computed on the server can be used on the client by
prefixing them with the symbol ˜%. We call this an injection.

Eliom: A Core ML Language for Tierless Web Programming 381

1 let%server s : int = 1 + 2
2 let%client c : int = ˜%s + 1

Here, the expression 1 + 2 is evaluated and bound to variable s on the server.
The resulting value 3 is transferred to the client together with the Web page.
The expression ˜%s + 1 is computed client-side.

An injection makes it possible to access client-side a client fragment which
has been defined on the server:
1 let%server x : int fragment = [%client 1 + 3]
2 let%client c : int = 3 + ˜%x

The value inside the client fragment is extracted by ˜%x, whose value is 4 here.

2.4 Examples

We show how these language features can be used in a natural way to build
HTML pages with dynamic behavior in a composable fashion. More detailed
examples are available on the Ocsigen website [12].

Increment Button. We can define a button that increments a client-side
counter and invokes a callback each time it is clicked. We use a DSL to spec-
ify HTML documents. The callback action is a client function. The state is
stored in a client-side reference. The onclick button callback is a client func-
tion that modifies the references and then calls action. This illustrates that
one can define a function that builds on the server a Web page fragment with a
client-side state and a parametrized client-side behavior. It would be straightfor-
ward to extend this example with a second button that decrements the counter
(sharing the associated state).
1 let%server counter (action:(int -> unit) fragment) =
2 let state = [%client ref 0] in
3 button ˜button_type:‘Button
4 ˜a:[a_onclick [%client fun _ -> incr ˜%state; ˜%action !(˜%state)]]
5 [pcdata "Increment"]

List of Server Side Buttons with Client Side Actions. We can read-
ily embed client fragments inside server datastructures. Having explicit location
annotations really helps here. It would not be possible to achieve this for arbi-
trary datastructures if the client-server delimitations were implicit.

For instance, one can build an HTML unordered list of buttons from a list
composed of pairs of button names and their corresponding client-side actions.
1 let%server button_list (l : (string * handler fragment) list) =
2 let aux (name, action) =
3 li [button ˜button_type:‘Button ˜a:[a_onclick action] [pcdata name]]
4 in ul (List.map aux l)

382 G. Radanne et al.

2.5 Libraries

These examples show how to build reusable widgets that encapsulate both client
and server behavior. They also show some of the libraries that are provided with
Eliom. In contrast to many Web programming languages and frameworks, which
provides built-in constructions, all these libraries have been implemented only
with the primitives presented in this paper. Using fragments and injections along
with converters, which are presented later, we can implement numerous libraries
such as remote procedure calls, client-server HTML or reactive programming
directly inside the language, without any compiler support.

2.6 Client-Server Communication

In the examples above, we showed complex patterns of interleaved client and
server code, including passing client fragments to server functions, and subse-
quently to client code. This would be costly if the communication between client
and server were done naively. Instead, a single communication takes place: from
the server to the client, when the Web page is sent. This is made possible by the
fact that client fragments are not executed immediately when encountered inside
server code. The intuitive semantics is the following: client code is not executed
right away; instead, it is registered for later execution, once the Web page has
been sent to the client. Then all the client code is executed in the order it was
encountered on the server. This intuitive semantics allows the programmer to
reason about Eliom programs, especially in the presence of side effects, while
still being unaware of the details of the compilation scheme.

3 A Client-Server Language

We present Eliomε, an extension of core ML containing the key features of
Eliom. It differs from Eliom as follows. Shared sections are not formalized, as
they can be straightforwardly expanded out into a client and a server section by
duplicating the code. Additionally, we do not model the interactive behavior of
Web servers. Thus, Eliomε programs compute a single Web page.

3.1 Syntax

In order to clearly distinguish server code from client code, we use subscripts
to indicate the location where a piece of syntax belongs: a ‘s’ subscript denotes
server code, while a ‘c’ subscript denotes client code. For instance, es is a server
expression and τc is a client type. We also use ‘ς’ subscripts for expressions which
are location-agnostic: they can stand for either s or c. When the location is clear
from the context, we omit the subscripts.

The syntax is presented in Fig. 1. It follows the ML syntax, with two addi-
tional constructs for client fragments and injections respectively. [26] was used
as a base for the elaboration of Eliomε. The language is parametrized by its

Eliom: A Core ML Language for Tierless Web Programming 383

Fig. 1. Eliomε’s grammar

constants. There are different sets of constants for the server and for the client:
Consts and Constc. A program is a series of bindings, either client or server
ones, ending by a client expression. The value of this expression will typically
be the Web page rendered on the client’s browser.

A client fragment {{ ec }} stands for an expression computed by the client
but that can be referred from the server. An injection f%es is used inside client
code to access values defined on the server. This involves a serialization on the
server followed by a deserialization on the client, which is explicitly specified
by a converter f . To simplify the semantics, we syntactically restrict converters
to be either a variable x or a server constant cc. We describe converters more
precisely in Sect. 3.2.

Furthermore, we add a validity constraints to our programs: We only consider
programs such that variables used under an injection are declared outside of the
local client scope, which can be either a client declaration or a client fragment.

3.2 Type System

The type system of Eliomε is an extension of the regular ML type system. We
follow closely [26]. Again, the language is split into a client and a server part.

σς :: = ∀α∗.τς (TypeSchemes)
τs:: = α | τs → τs | {τc} | τs � τc | κ for κ ∈ ConstTypes

τc:: = α | τc → τc | κ for κ ∈ ConstTypec (Types)

ConstTypeς is the set of ground types. Two server-side types are added to
core ML types: {τc} is the type of a client fragment whose content is of type
τc and τs � τc is the type of converters from server type τs to client type τc.
This last type is described in more details below. No client-side constructions
are added to core ML types: in particular, the type of a client expression can
never contain the type of a client fragment {τc}.

The typing rules are presented in Fig. 2. There are three distinct judgments:
� is the typing judgment for programs, �c for client expressions and �s for
server expressions. �ς is used for rules that are valid both on client and server
expressions. An environment Γ contains two kinds of bindings: client and server
bindings, marked with the subscripts s and c respectively. The instantiation

384 G. Radanne et al.

relation is noted by σ � τ . It means that the type τ is an instance of the type
scheme σ. Close(τ, Γ) is the function that closes a type τ over the environment Γ ,
hence producing a scheme. TypeOfς is a map from constants to their types. Most
rules are straightforwardly adapted from regular ML rules. The main rules of
interest are Fragment and Injection: Rule Fragment is for the construction
of client fragments. If ec is of type τc in context Γ , then {{ ec }} is of type {τc} in
the same context. Rule Injection is for the communication of server to client.
If the server expression es is of type τs and the converter f is of type τs � τc, we
can use, in a client declaration, the expression f%es with type τc. Since no other
typing rules involves client fragments, it is impossible to deconstruct them.

Converters. To transmit values from the server to the client, we need a serial-
ization format. We assume the existence of a type serial in both ConstTypes

and ConstTypec, which represents the serialization format. The actual format
is irrelevant. For instance, one could use JSON or XML.

Converters are special values that describe how to move a value from the
server to the client. A converter can be understood as a pair of functions. A
converter f of type τs � τc is composed of a server-side encoding function of
type τs → serial, and a client-side decoding function of type serial → τc. We
assume the existence of two built-in converters:

– The serial converter of type serial � serial. Both sides are the identity.
– The fragment converter of type ∀α.({α} � α). Note that this type scheme

can only be instantiated with client types.

Type Universes. It is important to note that there is no identity converter
(of type ∀α.(α � α)). Indeed the client and server type universes are distinct
and we cannot translate arbitrary types from one to the other. Some types are
only available on one side: database handles, system types, JavaScriptAPI
types. Some types, while available on both sides, are simply not transferable.
For example, functions cannot be serialized.Finally, some types may share a
semantic meaning, but not their actual representation. This is the case where
converters are used. For example, integers are often 64-bit on the server and
are 32-bit in JavaScript. So, there is an ints and an intc type, along with a
converter of type ints � intc. Another example is an HTTPendpoint. On the
server, it is a URL together with a function called when the endpoint is reached.
On the client, it is only the URL of the specified endpoint. These two types are
distinct but share the same semantic meaning, and a converter relates them.

Implementation of Converters. Specifying which converter to use for which
injection is quite tedious in practice. The current implementation of Eliom uses
runtime information to discover which converter to apply. A better implemen-
tation would use ad-hoc polymorphism, such as modular implicits [25] or type
classes, to define converters.

Eliom: A Core ML Language for Tierless Web Programming 385

Fig. 2. Typing rules for Eliomε

3.3 The Semantics

We now define an operational semantics for Eliomε. The goal of this semantics
is to provide a good model of how programs behave. It does not model finer
details of the execution like network communication. However, the order of exe-
cution is the one a programmer using Eliom should expect. Before defining the
semantics, let us provide preliminary definitions. Values are defined in Fig. 3. For
the evaluation of constants, we assume the existence of two partial functions, δc

and δs that interpret the application of a constant to a closed value in order to
yield another closed value: δς(cς , vς) = v′

ς

A queue ξ accumulates the expressions that will have to be evaluated client-
side. It contains bindings [r �→ ec], where r is a variable. We adopt the convention
that bold letters, like r, denote a variable bound to a client expression. The queue
is a first-in, first-out data structure. We note ++ the concatenation on queues.
Substitute of a variable by a value in an expression or a program is noted e[v/x].

Eliomεis eager and call by value. Evaluation contexts are shown in Fig. 3.
Injections are rewritten inside client expressions. The location where this can
take place is specified by context C[ec] below. We write e�

c for a client expression
containing no injection. Thus, we are forcing a left to right evaluation inside client
fragments. The evaluation context for expressions Eς [eς] is standard, except

386 G. Radanne et al.

that, we also evaluate server expressions in injections f%es inside client code.
Program contexts F [eς] specifies that the evaluation can take place either in a
server declaration or in server code deep inside injections.

Fig. 3. Eliomε’s values and evaluation contexts

The semantics is shown in Fig. 4. We define three single-step reduction rela-
tions: two relations −→ on expressions indexed by the expression location ς, and

the relation ↪−→ on programs (or, more precisely on pairs of a program and an

environment of execution ξ). We write −→∗ and ↪−→∗ for the transitive closures of
these relations.

Server declarations are executed immediately (rules Lets and Context).
However client declarations are not. Instead the corresponding expressions are
stored in the queue ξ in the order of the program (rule Letc). When encounter-
ing a client fragment {{ ec }}, the expression ec is not executed at once. Instead,
{{ ec }} is replaced by a fresh variable r and ec is stored in ξ (rule Client-
Fragments). When a converter is called inside client code, the encoding part
of the converter is executed immediately, while the decoded part is transmitted
to the client (rules Converters and Converterc, followed by Contextς).
The primitive encode returns the server side encoding function of a converter;
the primitive decode returns a reference to a client fragment implementing the
client side decoding function of a converter. The serial and fragment convert-
ers are basically the identity, so they are erased once the value to be transferred
has been computed (rules Serials and Serialc).

Once all the server declarations have been executed, the expressions in ξ are
executed in the same order they were encountered prior in the evaluation (rules
Exec, Context and Bind). This means that the execution of an Eliomε pro-
gram can be split into two phases: server-side execution, then client-side execu-
tion. Even though server and client declarations are interleaved in the program,
their executions are not. During the first half of the execution, ξ grows as frag-
ments and client code are stored. During the second half of the execution, ξ
shrink until it is empty.

This semantics is not equivalent to immediately executing every piece of
client code when encountered: the order of execution would be different. The
separation of code execution in two stages, the server stage first and the client
stage later, allows to properly model common web pattern and to minimize
client-server communications. Since execution of stages are clearly separated,

Eliom: A Core ML Language for Tierless Web Programming 387

Fig. 4. Eliomε’s operational semantics

only one communication is needed, between the two stage execution. We will see
this in more details in the next two sections.

388 G. Radanne et al.

4 Compilation to Client and Server Languages

In a more realistic computation model, different programs are executed on the
server and on the client. We thus present a compilation process that separates
the server and client parts of Eliom programs, resulting in purely server-side
and client-side programs. We express the output of the compiler in an ML-like
language with some specific primitives for both sides. The further compilation of
these ML-like languages to machine code for the server, and to JavaScriptfor
the client [24] is out of the scope of this paper.

4.1 The Languages

We define MLs and MLc, two ML languages extended with specific primitives
for client-server communication.

p:: = let x = e in p | bind x = e in p | e (Programs)
e:: = v | (e e) | let x = e in e (Expressions)
v:: = c | x | Y | λx.e (Values)
c ∈ Const (Constants)

Again, the language is parametrized by a set of constants. We assume a
constant () of type unit. As previously, we write r for a variable referring to a
client expression, when we want to emphasize this fact for clarity. The language
also contains a bind construction. Like a let binding, it binds the value of an
expression e to a variable x in a program p. However, the variable x is not
lexically scoped: you should see it as a global name, that can be shared between
the client and the server code.

Primitives. A number of primitives are used to pass information from the
server to the client. We use globally scoped variables for communication. In an
actual implementation, unique identifiers would be used. We use various meta-
variables to make the purpose of these global variables clearer. x is a variable that
references an injection, f references a closure. The server language MLs provides
these primitives:

– “injection x e” registers that x corresponds to the injection e.
– “fragment f e” registers a client fragment to be executed on the client; the

code is expected to be bound to f on the clients and the injections values are
given by the vector of expressions e.

– “end ()” signals the end of a server declaration, and hence that there will be
no more client fragments from this declaration to execute.

The primitive “exec ()” of the client language MLcexecutes the client fragments
encountered during the evaluation of the last server declaration.

The primitive end () and exec () are used to correctly interleave the evalua-
tion of client fragments (coming from server declarations) and client declarations,
since server declarations are not present on the client.

Eliom: A Core ML Language for Tierless Web Programming 389

Fig. 5. MLε’s evaluation contexts

4.2 The Semantics

The semantics of MLε uses similar tools as the semantics of Eliomε. The
rules for MLs and MLcare presented in Fig. 6. The rules that are common
with Eliomε are omitted. A FIFO queue ξc records the client fragments to
be executed: it contains bindings [r �→ e] as well as a specific token end that
signals the end of a server-side declaration.

Injections are recorded server-side in an environment γinj which contains a
mapping from the injection reference x to either a reference r to the correspond-
ing client fragment or a value of type serial. Evaluation contexts are shown in
Fig. 5.

The semantics for MLs is given in Fig. 6. It possesses two specific rules,
Injections and ClientFragments which queue injections and client frag-
ments inside respectively γinj and ξc. The rule ClientFragments generates a
fresh reference r for each client fragment that will eventually be bound client-side
to a value by the ExecValc rule.

At the end of the execution of the server program, ξc only contains bindings
of the shape [r �→ (f v)]. We then transmit the client program and the content
of γinj and ξc to the client. Before client execution, we substitute once and for
all the injections by their values provided by γinj: p′

c = pc[γinj]. We can then
execute the client program p′

c.
The execution of client fragments is segmented by server-side declaration,

materialized client-side by a call to exec. Each client fragment coming from the
evaluation of the related server declaration is executed in turn through the rules
Execc, ExecValc and Bind. Once no more client fragments coming from this
declaration is found in ξc, rule ExecEndc is applied.

4.3 From ELIOMε to MLε

Before introducing the exact semantics of these primitives, we specify how
Eliomε is translated using these primitives, which will make their behavior
clearer. A key point is that we adopt a distinct compilation strategy for client
declarations and for client fragments. Indeed, client declarations are much sim-
pler than client fragments, as they are executed only once and immediately.
Their code can be used directly in the client, instead of relying on a sophisti-
cated mechanism.

The rewriting function ρ from Eliomε to MLε can be split into two func-
tions ρs and ρc, respectively for server and client code. For each case, we first
decompose injections f%es into an equivalent expression:

fragment%(decode f) serial%(encode f es)

390 G. Radanne et al.

Fig. 6. Semantics for MLs and MLc

Translating client declarations is done by taking the following steps:

– For each injection fragment%es or serial%es, we generate a fresh name x.
– In MLs, the primitive “injection x es” is called for each injection; it signals

that the value of x should be transmitted to the client.
– In MLc, we replace each injection fragment%es or serial%es by x.

An example is presented Fig. 7. On the server, the return value of the program
is always () since the server program never returns anything. The client program
returns the same value as the Eliomε one. The reference to the client fragment
implementing the decoder is associated to variable conv int, to be transmitted
and used by the client to decode the value.

Fig. 7. Example: Compilation of injections

Translating server declarations containing client fragments is a bit more
involved. We need to take care of executing client fragments on the client.

Eliom: A Core ML Language for Tierless Web Programming 391

– For each client fragment {{ e }} containing the injections fi%ei, we create a
fresh reference f .

• In MLc, we bind f to “λx0, x1,(e′)” where e′ is the expression where
each injection fragment%ei or serial%ei has been replaced by xi.

• In MLs, we replace the original client fragment by “fragment f [e0, . . .]”
which encode the injected values and registers that the closure f should
be executed on the client.

– In MLs, we call “end ()” which signals the end of a declaration by sending
the end token on the queue.

– In MLc, we call “exec ()” which executes all the client fragments, until the
end token is reached.

An example is presented in Fig. 8. You can see that the computation is prepared
on the client (by binding a closure), scheduled by the server (by the fragment
primitive) and then executed on the client (thanks to primitive exec). Also note
that client fragments without any injection are bound to a closure with a unit
argument, in order to preserve side effect order.

A more detailed presentation of the translation rules are given in Appendix A.

Fig. 8. Example: Compilation of client fragments

5 Relating ELIOMε and MLε

We need to guarantee that the translation from Eliomε to the two languages
two languages, MLs and MLc is faithful.

Since Eliomε is parametrized by its constants, the functions δ, Const and
TypeOf must satisfy a typability condition for the language to be sound.

Hypothesis 1 (δ-typability). For ς in {c, s}, if TypeOfς(c) � τ ′ → τ and
�ς v : τ ′ then δς(c, v) is defined and �ς δς(c, v) : τ

We extend the typing relation to account for the execution queue ξ. The
judgment ξ � p : τ states that, given the execution queue ξ, the program p has
type τ . We also introduce an judgment Γ � ξ : Γ′ to type execution queues,
where the environment Γ ′ extends Γ with the types of the bindings in ξ. We
introduce the following typing rules.

392 G. Radanne et al.

Queue

∅ � ξ : Γ Γ � p : τ

ξ � p : τ

Empty

Γ � ∅ : Γ

Append
Γ �c e : τ Γ, (r : {τ})s, (r : τ)c � ξ : Γ′

Γ � [r �→ e] ++ ξ : Γ′

The rule Queue tells us that if we can type a queue, producing an environ-
ment Γ , and we can type a program p in this environment, then we can type the
pair of the queue and the program. This allows us to type a program during its
evaluation, and in particular when the queue is no longer empty since the rule
ClientValue has been applied.

Assuming the δ-typability hypothesis, we can now give the following two
theorem. This guarantees that the semantics of Eliomεcan be used to reason
about side effects and evaluation behaviors in compiled Eliomεprograms.

Theorem 1 (Subject Reduction). If ξ1 � p1 : τ and p1 | ξ1 ↪−→ p2 | ξ2 then
ξ2 � p2 : τ .

Theorem 2 (Simulation). Let p be an Eliomε program with an execution
p | ∅ ↪−→∗ v | ∅ For an execution of p that terminates, we can exhibit a chained

execution of ρs(p) and ρc(p) such that evaluation is synchronized with p.

6 Related Work

Unified Client-Server Languages. Various directions have been explored to
simplify Web development and to adapt it to current needs. Eliom places itself
in one of these directions, which is to use the same language on the server and
the client. Several unified client-server languages have been proposed. They can
be split in two categories. JavaScriptcan be used on the server, with Node.js;
it can be used as a compilation target: for instance, Google Web Toolkit
for Java or Emscripten for C.

The approach of compiling to JavaScriptwas also used to develop new
client languages aiming to address the shortcomings of JavaScript. Some
of them are new languages, such as Haxe, Elm or Dart. Others are simple
JavaScriptextensions, such as TypeScript or CoffeeScript. These various
proposals do not help in solving client-server communication issues: the pro-
grammer still writes the client and server code separately and must ensure that
messages are written and read in a coherent way.

Tierless Languages and Libraries. Several other languages share with
Eliom the characteristic of mixing client and server code in an almost trans-
parent way. We will first give a high-level comparison of the various trade-offs
involved.

In Eliom, code location is indicated by manual annotations. Several other
approaches infer code location using known elements (database access is on the

Eliom: A Core ML Language for Tierless Web Programming 393

server, dynamic DOM interaction is done on the client, etc.) and control flow
analysis [9,17,18]. This approach presents various difficulties and drawbacks:
It is extremely difficult to integrate to an existing language; it is difficult to
achieve with an effectful language; the slicing cannot be as precise as explicit
annotations. For example it will not work if the program builds datastructures
that mix client fragments and other data, as shown in Sect. 2.4. We believe that
the efficiency of a complex Web application relies a lot on the programmer’s
ability to know exactly where the computation is going to happen at each point
in time. In many cases, both choices are possible, but the result is very different
from a user or a security point of view.

Eliom has two type universes for client and server types (see Sect. 3.2). This
allows the type system to check which functions and types are usable on which
side. Most other systems do not track such properties at the type level.

Eliom uses asymmetric communication between client and server (see
Sect. 3.3). Most other languages provide only two-way communications. The
actual implementation of Eliom also provides two-way communications as a
library, allowing the user to use them when appropriate.

We now provide an in-depth comparison with the most relevant approaches.
Ur/Web [7,8] is a new statically typed language special purposed for Web

programming. While similar in scope to Eliom, it presents a very different app-
roach: Ur/Webuses whole-program compilation and a global automatic slicing
to separate client and server code. This makes some examples hard to express,
such as the one in Sect. 2.4. Client and server locations are not tracked by the
type system and are not immediately visible in the source code, which can make
compiler errors hard to understand, and is incompatible with separate compila-
tion. Furthermore and contrary to Eliom, several primitives such as RPC are
hardcoded in the language.

Hop [6,21] is a dialect of Scheme for programming Web applications. Like
Eliom it uses explicit location annotations and provide facilities to write com-
plex client-server applications. However, as a Scheme-based language, it does not
provide static typing. In particular, contrary to Eliom, Hopdoes not enforce sta-
tically the separation of client and server universes (such as using database code
inside the client).

Links [10] is an experimental functional language for client-server Web pro-
gramming with a syntax close to JavaScriptand an ML-like type system. Its
type system is extended with a notion of effects, allowing a clean integration of
database queries in the language. It does not provide any mechanisms to separate
client and server code, so they are shared by default, but uses effects to avoid
erroneous uses of client code in server contexts (and conversely). Compared to
Eliom, compilation is not completely available and Linksdoes not provide an
efficient communication mechanism.

Haste [11] is an extension of Haskell similar to Eliom. Instead of using
syntactic annotations, it embeds client and server code into monads. This app-
roach works well in the Haskell ecosystem. However Haste makes the strong
assumption that there exists a universe containing both client and server types,

394 G. Radanne et al.

shared by the client and the server. Eliom, on the contrary, does not make this
assumption, so the monadic bind operator for client fragments, of type (’a ->
{ ’b })-> { ’a } -> { ’b }, makes no sense: ’a would be a type both

in the server and the client, which is not generally true.
Meteor.js [15] is a framework to write both the client and the serve side

of an application in JavaScript. It has no built-in mechanism for sections
and fragments but relies on if statements on the Meteor.isClient and
Meteor.isServer constants. This means that there are no static guaran-
tees over the respective execution of server and client code. Besides, it provides
no facilities for client-server communication such as fragments and injections.
Compared to Eliom, this solution only provides coarse grain composition.

MetaOCaml [14] is an extension of OCaml for meta programming, it
introduces a quotation annotation for staged expressions for which execution
will be delayed. While having a different goal, stage quotations are very simi-
lar to Eliom’s client fragments. The main difference is the choice of universes:
Eliom possesses two universes, client and server, that are distinct. MetaOCaml
possesses a series of universes for each stage, included in one another.

7 Conclusion

We have presented a formalization of the core language Eliomε, a client-server
Web application programming language. First, we have given a formal semantics
and a type system for a language that contains the key features of Eliom. This
semantics is intuitive and easy to understand. It corresponds to what a program-
mer needs to know. Then, we have defined a lower level semantics, corresponding
to how Eliom is compiled. We then showed how this compilation is done and
that it preserves the semantics.

Eliomε is used as a core language for the larger Eliom framework and
the Ocsigen ecosystem. Eliomε is sufficiently small to be reasoned about and
implemented on top of an existing language, such as OCaml. It is also expressive
enough to allow the implementation, without any additional language built-in
constructs, to all kinds of widgets and libraries used for Web programming.

The implementation of Eliom as an extension of an existing language makes
it possible to reuse a large set of existing libraries and benefit from an already
large community of users. Web programming is never about the Web per se, but
almost always related to other fields for which dedicated libraries are necessary.

Explicit annotations indicate at which location the program execution takes
place. Adding them is really easy for programmers and is a good way to help
them see exactly where computation is going to happen, which is crucial when
developing real-size applications. Eliom makes it impossible to introduce by
mistake unwanted communication.

Eliom makes strong use of static typing to guarantee many properties of the
program at compile time. Developing both the client and server parts as a single
program allows to guarantee the consistency between the two parts, to check all
communications: injections, server push, remote procedure calls, . . .

Eliom: A Core ML Language for Tierless Web Programming 395

These design choices have always been guided by concrete uses. From the
beginning, Ocsigen has been used for developing real-scale applications. The
experience of users has shown that the use of a tierless language is more than
a viable alternative to the traditional Web development techniques, and is well
suited to the current evolution of the Web into an application platform. The
fluidity gained by using a tierless programming style with static typing matches
the need of a new style of applications, combining both the advantages of sophis-
ticated user interfaces and the specificities of Web sites (connectivity, traditional
Web interaction, with URLs, back button, . . .). This is made even more con-
venient through the use of features such as an advanced service identification
model and the integration of reactive functional programming that are provided
by Eliom but have not been covered here.

A Translation from ELIOMε to MLε

We define two rewriting functions, ρs and ρc, which take as input an Eliomε pro-
gram and output respectively an MLs and an MLc program.

We define some preliminaries notations. Brackets [and] are used as meta-
syntactic markers for repeated expressions: [. . .]i is repeated for all i. The
bounds are usually omitted. Lists are denoted with an overline: xi is the
list [x0, . . . , xn−1]. We allow the use of lists inside substitutions to denote
simultaneous independent substitutions. For instance e[vi/xi] is equivalent to
e[v0/x0] . . . [vn−1/xn−1]. We will only consider substitutions where the order is
irrelevant.

We also consider two new operations:

– injections(ec) returns the list of injections in ec.
– fragments(es) returns the list of fragments in es.

The order corresponds to the order of execution for our common subset of ML.
As in Sect. 4.3, we assume that fragments are first rewritten in the following

manner:

f%es −→ fragment%(decode f) serial%(encode f es)

We also assume that expressions inside injections are hoisted out of the local
client scope. For example {{ f%(3+x) }} is transformed to λy.{{ f%y }} (3+x).
More formally, we apply the following transformations:

{{ C[f%es] }} −→ (λx.C[f%x]) es

letc y = C[f%es] in p −→ lets x = es in letc y = C[f%x] in p

Wherex is fresh.

This transformation preserves the semantics, thanks to the validity constraint
on programs presented in Sect. 3.1.

We can now define ρs and ρc by induction over Eliomεprograms. We refer
to Sect. 4.3 for a textual explanation.

396 G. Radanne et al.

Since we already translated custom converters, all the converters considered
are either fragment or serial. Here is the definition for client sections:

ρs(letc x = ec in p) ≡ [
injection xi ei;

]
i

ρs(p)

ρc(letc x = ec in p) ≡ let x = ec[xi/fi%ei] in ρc(p)

Where

⎧⎪⎨
⎪⎩

fi%ei = injections(ec)
∀i, ei does not contain fragments.
xi is a list of fresh variables.

Here is the definition for server sections. Note the presence of lists of lists, to
handle injections inside each fragment.

ρs(lets x = es in p) ≡ let x = es[fragment fi ai/{{ ei }}]i in end(); ρs(p)

ρc(lets x = es in p) ≡ [
bind fi = λ(x)i.(ei[(x)i/(f%a)i]) in

]
i
exec(); ρc(p)

Where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{{ ei }} = fragments(es)
fi is a list of fresh variables.
∀i, (f%a)i = injections(ei)
∀i, (x)i is a list of fresh variables;

Finally, the returned expression of an Eliomεprogram. The translation is
similar to client sections:

ρs(ec) ≡ [
injection xi ei;

]
i

()

ρc(ec) ≡ ec[xi/fi%ei]
Where

⎧⎪⎨
⎪⎩

fi%ei = injections(ec)
∀i, ei does not contain fragments.
xi is a list of fresh variables.

References

1. Balat, V.: Client-server web applications widgets. In: WWW 2013 Dev Track (2013)
2. Balat, V.: Rethinking traditional web interaction: theory and implementation. Int.

J. Adv. Internet Technol. 63–74 (2014)
3. Balat, V., Chambart, P., Henry, G.: Client-server web applications with Ocsigen.

In: WWW 2012 Dev Track, p. 59. Lyon, France, April 2012
4. Balat, V., Vouillon, J., Yakobowski, B.: Experience report: Ocsigen, a web pro-

gramming framework. In: ICFP, pp. 311–316. ACM (2009)
5. BeSport. http://www.besport.com/
6. Boudol, G., Luo, Z., Rezk, T., Serrano, M.: Reasoning about web applications: an

operational semantics for HOP. Trans. Program. Lang. Syst. 34(2), 10 (2012)
7. Chlipala, A.: An optimizing compiler for a purely functional web-application lan-

guage. In: ICFP (2015)
8. Chlipala, A.: Ur/Web: a simple model for programming the web. In: POPL (2015)
9. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure

web applications via automatic partitioning. In: SOSP 2007 (2007)

http://www.besport.com/

Eliom: A Core ML Language for Tierless Web Programming 397

10. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: web programming with-
out tiers. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO
2006. LNCS, vol. 4709, pp. 266–296. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74792-5 12

11. Ekblad, A., Claessen, K.: A seamless, client-centric programming model for type
safe web applications. In: SIGPLAN Symposium on Haskell, Haskell 2014 (2014)

12. Eliom web site. http://ocsigen.org/
13. New York University Gencore. http://gencore.bio.nyu.edu/
14. Kiselyov, O.: The design and implementation of BER MetaOCaml - system descrip-

tion. In: FLOPS (2014)
15. Meteor.js. http://meteor.com
16. Ocsigen toolkit. http://ocsigen.org/ocsigen-toolkit/
17. Opa web site. http://opalang.org/
18. Philips, L., De Roover, C., Van Cutsem, T., De Meuter, W.: Towards tierless web

development without tierless languages. In: Onward! 2014 (2014)
19. Pumgrana. http://www.pumgrana.com/
20. Scherer, G., Vouillon, J.: Macaque : Interrogation sûre et flexible de base de données

depuis OCaml. In: 21ème journées francophones des langages applicatifs (2010)
21. Serrano, M., Queinnec, C.: A multi-tier semantics for Hop. Higher-Order Symbolic

Comput. 23(4), 409–431 (2010)
22. Tyxml. http://ocsigen.org/tyxml/
23. Vouillon, J.: Lwt: a cooperative thread library. In: ACM Workshop on ML (2008)
24. Vouillon, J., Balat, V.: From bytecode to JavaScript: the Js of ocaml compiler.

Softw. Pract. Experience 44(8), 951–972 (2014)
25. White, L., Bour, F., Yallop, J.: Modular implicits. In: ML workshop (2014)
26. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.

115(1), 38–94 (1994)

http://dx.doi.org/10.1007/978-3-540-74792-5_12
http://dx.doi.org/10.1007/978-3-540-74792-5_12
http://ocsigen.org/
http://gencore.bio.nyu.edu/
http://meteor.com
http://ocsigen.org/ocsigen-toolkit/
http://opalang.org/
http://www.pumgrana.com/
http://ocsigen.org/tyxml/

Separation Logic

DOM: Specification and Client Reasoning

Azalea Raad(B), José Fragoso Santos, and Philippa Gardner

Imperial College, London, UK
azalea@doc.ic.ac.uk

Abstract. We present an axiomatic specification of a key fragment of
DOM using structural separation logic. This specification allows us to
develop modular reasoning about client programs that call the DOM.

1 Introduction

The behaviour of JavaScript programs executed in the browser is complex. Such
programs manipulate a heap maintained by the browserss and call a wide range of
APIs via specific objects in this heap. The most notable of these is the Document
Object Model (DOM) API and the DOM document object, which are used to
represent and manipulate the web page. JavaScript programs must run uniformly
across all browsers. As such, the English standards of JavaScript and DOM
are rather rigorous and are followed closely by browser vendors. While there
has been work on formal specifications of JavaScript [14], including mechanised
specifications [4], and some work on the formal specification of DOM [9,22] and
on the verification of JavaScript programs [7], we are not aware of any work on
the verification of JavaScript programs that call the DOM.

The W3C DOM standard [1] describes an XML update library used by all
browsers. This English standard is written in an axiomatic style that lends itself
well to formalisation. The first formal axiomatic DOM specification has been
given in [9,22], using context logic (CL) [5,6], which extends ideas from sepa-
ration logic (SL) [19] to complex data structures. However, this work has sev-
eral shortcomings. First, it is not simple to integrate SL reasoning about e.g.
C [19], Java [16] and JavaScript [7] with the DOM specifications in CL. The
work in [9,22] explores the verification of simple client programs manipulating
a variable store and calling the DOM. It does not verify clients manipulating a
standard program heap. Second, this specification does not always allow compo-
sitional client-side reasoning. Finally, this specification makes simplifying choices
(e.g. with live collections), and does not always remain faithful to the standard.

We present a faithful axiomatic specification of a key fragment of the DOM
and verify substantial client programs, using structural separation logic (SSL)
introduced in [8,25]. SSL provides fine-grained reasoning about complex data
structures. The SSL assertion language contains the commutative separating
conjunction (∗), as in SL, that serves to split the DOM tree into smaller sub-
trees. By contrast, the CL assertion language contains the non-commutative
separating application (•), that splits the DOM tree into a tree context with

c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 401–422, 2016.
DOI: 10.1007/978-3-319-47958-3 21

402 A. Raad et al.

a hole applied to a partial DOM tree. These two operators are not compati-
ble with each other. In particular, the integration of the CL DOM specification
with an SL-based program logic involves extending the program logic to include a
frame rule for the separating application. By contrast, the integration of our SSL
DOM specification with an SL-based program logic requires no extensions. We
can reason about DOM client programs written in e.g. C, Java and JavaScript,
by simply using a combination of the appropriate SL-based program logic for
reasoning about the particular programming language and our DOM axioms. We
illustrate this by verifying several realistic ad-blocker client programs written in
JavaScript, using the program logic of [7]. Our reasoning abstracts the complexi-
ties of JavaScript, simply using standard SL assertions, an abstract variable store
predicate, and JavaScript heap assertions. It is thus straightforward to transfer
our ideas to other languages, as we show in Sect. 3.

As the authors noted in [9,22], CL does not always allow for local reasoning.
As we demonstrate in Sect. 2, it also does not provide compositional reasoning.
In contrast, SSL provides both local and compositional client reasoning. We
demonstrate this by presenting a simple client program which can be specified
using a single SSL triple whose precondition captures its intuitive footprint,
compared to six CL triples, whose preconditions are substantially larger than
the footprint.

The DOM English standard [1] is written in an axiomatic style, allowing
for a straightforward comparison of our formal axiomatic specification with the
standard. A typical way to justify an axiomatic specification of a library is to
compare it against an operational semantics, as in [9,22,25] for DOM. However,
this approach seems unsuitable as it involves inventing an operational semantics
for the library, even though the standard is written in an axiomatic style. Instead,
we justify our specification with respect to reference implementations that can
be independently tested. In [17] we present two JavaScript implementations of
our DOM fragment, and prove them correct with respect to our specifications.

Related Work. There has been much work on simple models of semi-structured
data, following the spirit of DOM, such as [2,3,6] (axiomatic, program logic)
and [20] (operational, information flow). We do not detail this work here. Instead,
we concentrate on axiomatic and operational models, with a primary focus on
DOM. Smith et al. developed an axiomatic specification of the DOM [9,22] in
CL [5,6], as discussed above. Others have also studied operational models of
DOM. Lerner et al. were the first to formalise the DOM event model [13]. This
model is executable and can be used as an oracle for testing browser compliance
with the standard. Unlike our work, this model was not designed for proving
functional properties of client programs, but rather meta-properties of the DOM
itself. The main focus of this work is the event dispatch model in DOM. Rajani
et al. [18] have developed an operational model for DOM events and live collec-
tions, in order to study information flow. We aim to study DOM events in the
future.

There has been much work on type analysis for client programs calling the
DOM. Thiemann [24] developed a type system for establishing safety properties
of DOM client programs written in Java. He extended the Java type system

DOM: Specification and Client Reasoning 403

of [10] with recursion and polymorphism, and used this extension to specify the
DOM data structures and operations. Later, Jensen et al. added DOM types to
JavaScript [11,12,21], developing a flow sensitive type analysis tool TAJS. They
used DOM types to reason about control and data flow in JavaScript applications
that interact with the DOM. Recently, Park et al. developed a framework for sta-
tically analysing JavaScript web applications that interact with the DOM [15].
As with TAJS, this framework uses configurable DOM abstraction models. How-
ever, the proposed models are significantly more fine-grained than those of TAJS
in that they can precisely describe the structure of DOM trees whereas TAJS
simply treats them as black boxes. In [23], Swamy et al. translate JavaScript
to a typed language and type the DOM operations. The DOM types are inten-
tionally restrictive to simplify client analysis (e.g. modelling live collections as
iterators in [23]). In contrast, there has been little work on the verification of
programs calling the DOM. Smith et al. [9,22] look at simple client programs
which manipulate the variable store and the DOM. However, their reasoning is
not compositional, as previously discussed and formally justified in Sect. 2.

Outline. In Sect. 2, we summarise our contributions. In Sect. 3, we present our
DOM specification and describe how our specification may be integrated with an
arbitrary SL-based program logic. In Sect. 4, we verify a JavaScript ad-blocker
client program which calls the DOM, and we finish with concluding remarks.

2 Overview

2.1 A Formal DOM Specification

The W3C DOM standard [1] is presented in an object-oriented (OO) and
language-independent fashion. It consists of a set of interfaces describing the
fields and methods exposed by each DOM datatype. A DOM object is a tree
comprising a collection of node objects. DOM defines twelve specialised node
types. As our goal is to present our specification methodology, we focus on
an expressive fragment of DOM Core Level 1 (CL1) that allows us to create,
update, and traverse DOM documents. We thus model the four most commonly
used node types: document, element, text and attribute nodes. Additionally, we
model live collections of nodes such as the NodeList interface in DOM CL1-
4 (discussed in Sect. 3.5). Our fragment underpins DOM Core Levels 1–4. As
shown in [22], it is straightforward to extend this fragment to the full DOM CL1
without adding to the complexity of the underlying program logic. It will be
necessary to extend the program logic as we consider additional features in the
higher levels of the standard (e.g. DOM events). However, these features will
not affect the fragment specified here. We proceed with an account of our DOM
fragment, hereafter simply called DOM.

DOM Nodes. Each node in DOM is associated with a type, a name, an optional
value, and information about its surroundings (e.g. its parent, siblings, etc.).
Given the OO spirit of the standard, each node object is uniquely identified by its
reference. To capture this more abstractly (and admit non-OO implementations),

404 A. Raad et al.

#document 7

html 12

head 10

#text 5

Lorem

body 4

ad 9

img 3

width 17

#text 23

800px

src 13

#text 1

goo.gl/K4S0d0

img 8

article 6

#text 11

ipsum
img 2

D

(a)

#document 7

html 12

head 10

#text 5

Lorem

body 4

ad 9

x img 8

article 6

#text 11

ipsum
img 2

D x

img 3

y

src 13

#text 1

goo.gl/K4S0d0

y

width 17

#text 23

800px

(b)

Fig. 1. A complete DOM heap (a); same DOM heap after abstract allocation (b)

we associate each node with a unique node identifier. As mentioned earlier, the
standard defines twelve different node types of which we model the following
four. Document nodes represent entire DOM objects. Each DOM object contains
exactly one document node, named #document, with no value and at most a
single child, referred to as the document element. In Fig. 1a, the document node
is the node with identifier 7 (with document element 12). Text nodes (named
#text) represent the textual content of the document. They have no children and
may have arbitrary strings as their values. In Fig. 1a, node 5 is a text node with
string data “Lorem”. Element nodes structure the contents of a DOM object.
They have arbitrary names (not containing the ‘#’ character), no values and an
arbitrary number of text and element nodes as their children. In Fig. 1a, node 12
is an element node with name “html” and two children with identifiers 10 and
4. Attribute nodes store information about the element nodes to which they are
attached. The attributes of an element must have unique names. Attribute nodes
may have arbitrary names (not containing the ‘#’ character) and an arbitrary
number of text nodes as their children. The value of an attribute node is given
by concatenating the values of its children. In Fig. 1a, the element node with
identifier 3 has two attributes: one with name “width”, identifier 17, and value
“800px” (i.e. the value of text node 23); and another with name “src”, identifier
13, and value “goo.gl/K4S0d0” (i.e. the value of text node 1).

DOM Operations. The complete set of DOM operations and their axioms
are given in [17]. In Sect. 3, we present the axioms for the operations used
in the examples of this paper. Here, we describe the n.getAttribute(s) and
n.setAttribute(s,v) operations and their axioms to give an intuitive account
of SSL. The n.getAttribute(s) operation inspects the attributes of element

DOM: Specification and Client Reasoning 405

node n. It returns the value of the attribute named s if it exists, or the
empty string otherwise. For instance, given the DOM tree of Fig. 1a, when
variable n holds value 3 (the element node named “img”, placed as the left
child of node “ad”), and s holds “src”, then r = n.getAttribute(s) yields
r=“goo.gl/K4S0d0”.

Intuitively, the footprint of n.getAttribute(s) is limited to the element
node n and its “src” attribute. To describe this footprint minimally, we need to
split the element node at n away from the larger surrounding DOM tree. To do
this, we introduce abstract DOM heaps that store abstract tree fragments. For
instance, Fig. 1a contains an abstract DOM heap with one cell at address D and a
complete abstract DOM tree as its value. It is abstract in that it hides the details
of how a DOM tree might be concretely represented in a machine. Abstract heaps
allow for their data to be split by imposing additional instrumentation using
abstract addresses. Such splitting is illustrated by the transition from Fig. 1a to
b. The heap in Fig. 1a contains a complete tree at address D. This tree can be
split using abstract allocation to obtain the heap in Fig. 1b with the subtree at
node 3 at a fresh, fictional abstract cell x, and an incomplete tree at D with a
context hole x indicating the position to which the subtree will return. Since we
are only interested in the attribute named “src”, we can use abstract allocation
again to split away the other unwanted attribute (“width”) and place it at a
fresh abstract cell y as illustrated in Fig. 1b. The subtree at node 3 and its “src”
attribute correspond to the intuitive footprint of n.getAttribute(s). Once the
getAttribute operation is complete, we can join the tree back together through
abstract deallocation, as in the transition from Fig. 1b to a.

Using SSL [25], we develop local specifications of DOM operations that only
touch the intuitive footprints of the operations. The assertion language com-
prises DOM assertions that describe abstract DOM heaps. For example, the
DOM assertion α �→ img3[β � src13[#text1[goo.gl/K4S0d0]], ∅] describes the
abstract heap cell at x in Fig. 1b, where α and β denote logical variables corre-
sponding to abstract addresses x and y, respectively. It states that the heap cell
at abstract logical address α holds an “img” element with identifier 3, no chil-
dren (∅) and a set of attributes described by β � src13[#text1[goo.gl/K4S0d0]],
which contains a “src” attribute (with identifier 13 and value “goo.gl/K4S0d0”)
and other attributes to be found at abstract logical address β. The attributes of
a node are grouped by the commutative � operator. When we are only inter-
ested in the value of an attribute, we can write an assertion that is agnos-
tic to the shape of the text content under the attribute. For instance, we can
write α �→ img3[β � src13[t], ∅] ∗ val(t, goo.gl/K4S0d0) to state that attribute
13 contains some text content described by logical variable t, and that the
value of t (i.e. the value of the attribute) is “goo.gl/K4S0d0”. Assertion val(t,
goo.gl/K4S0d0) is pure in that it contains no resources and merely describes the
string value of t.

406 A. Raad et al.

Using SSL triples, we can now locally specify r = n.getAttribute(s) as1:⎧⎨
⎩
store(n : n, s : s, r : −)
∗α �→ s′

n[β � sm[t], γ]
∗ val(t, s′′)

⎫⎬
⎭ r = n.getAttribute(s)

⎧⎨
⎩
store(n : n, s : s, r : s′′)
∗α �→ s′

n[β � sm[t], γ]
∗ val(t, s′′)

⎫⎬
⎭ (1)

{
store(n : n, s : s, r : −)
∗ α �→ s′

n[a, γ] ∗ out(a, s)

}
r = n.getAttribute(s)

{
store(n : n, s : s, r : “ ”)
∗ α �→ s′

n[a, γ] ∗ out(a, s)

}
(2)

SSL triples have a fault-avoiding, partial-correctness interpretation as in other
separation logics: if an abstract DOM heap satisfies the precondition then either
the operation does not terminate, or the operation terminates and the resulting
state will satisfy the postcondition. Axiom (1) captures the case when n contains
an attribute named s; axiom (2) when n has no such attribute. The precondition
of (1) contains three assertions. Assertion store(n : n,s : s,r : −) describes a
variable store where program variables n, s and r have logical values n, s and an
arbitrary value (−), respectively.2 Assertion α �→ s′

n[β � sm[t], γ] describes an
abstract DOM heap cell at the logical abstract address α containing the subtree
described by assertion s′

n[β � sm[t], γ]. This assertion describes a subtree with
a single element node with identifier n and name s′. Its children have been
framed off, leaving behind the context hole γ (using abstract allocation as in the
transition from Fig. 1a to 1b, then framing off the cell at γ). It has an attribute
named s with identifier m and text content t, plus (potentially) other attributes
that have been framed off, leaving behind the context hole β. This framing off of
the children and attributes other than s captures the intuition that the footprint
of n.getAttribute(s) is limited to element n and attribute s. Lastly, assertion
val(t, s′′) states that the value of text content t is s′′. The postcondition of (1)
declares that the subtree remains the same and that the value of r in the variable
store is updated to s′′, i.e. the value of the attribute named s.

The precondition of (2) contains the assertion α �→ s′
n[a, γ] where, this time,

the attributes of the element node identified by n are described by the logical
variable a. With the precondition of (1), all other attributes can be framed off
leaving context hole β. With the precondition of (2) however, the attributes are
part of the intuitive footprint since we must check the absence of an attribute
named s. This is captured by the out(a, s) assertion. The postcondition of (2)
declares that the subtree remains the same and the value of r in the variable store
is updated to the empty string “ ”, as mandated by the English specification.

The n.setAttribute(s,v) operation inspects the attributes of element node
n. It then sets the value of the attribute named s to v if such an attribute exists

1 It is possible to combine multiple cases into one by rewriting the pre- and postcon-
ditions as a disjunction of the cases and using logical variables to track each case.
For clarity, we opt to write each case separately.

2 Since DOM may be called by different client programs written in different languages,
store denotes a black-box predicate that can be instantiated to describe a variable
store in the client language. Here, we instantiate it as the JavaScript variable store.

DOM: Specification and Client Reasoning 407

(3). Otherwise, it creates a new attribute named s with value v and attaches it
to node n (4). We can specify this English description as (see footnote 1):

⎧⎨
⎩
store(n : n, s : s, v : s′′)
∗α �→ s′

n[β � sm[t], γ]
∗ δ �→ ∅g

⎫⎬
⎭n.setAttribute(s,v)

⎧⎨
⎩

∃r. store(n : n, s : s, v : s′′)
∗α �→ s′

n[β�sm[#textr[s′′]], γ]
∗ δ �→ t

⎫⎬
⎭ (3)

{
store(n : n, s : s, v : s′′)
∗α �→ s′

n[a, γ] ∗ out(a, s)

}
n.setAttribute(s,v)

{∃m,r.store(n : n, s : s, v : s′′)
∗α �→ s′

n[a�sm[#textr[s′′]], γ]

}
(4)

Recall that attribute nodes may have an arbitrary number of text nodes as their
children where the concatenated values of the text nodes denotes the value of the
attribute. As such, when n contains an attribute named s, its value is set to v by
removing the existing children (text nodes) of s, creating a new text node with
value v and attaching it to s (axiom 3). What is then to happen to the removed
children of s? In DOM, nodes are not disposed of: whenever a node is removed,
it is no longer a part of the DOM tree but still exists in memory. To model
this, we associate the document object with a grove designating a space for the
removed nodes. The δ �→ ∅g assertion in the precondition of (3) simply reserves
an empty spot (∅g) in the grove. In the postcondition the removed children of s
(i.e. t) are moved to the grove. Similarly, when n does not contain an attribute
named s, a new attribute named s is created and attached to n. The value of
s is set to v by creating a new text node with value v and attaching it to s
(axiom 4).

Comparison with Existing Work [9,22]. In contrast to the commutative
separating conjunction ∗ in SSL, context logic (CL) and multi-holed context
logic (MCL) use a non-commutative separating application • to split the DOM
tree structure. For instance, the C •α P formula describes a tree that can be split
into a context tree C with hole α and a subtree P to be applied to the context
hole. The application is not commutative; it does not make sense to apply a
context to a tree. In [9,22], the authors noted that the appendChild axiom was
not local, as it required more than the intuitive footprint of the operation. What
they did not observe was that CL client reasoning is not compositional. Consider
a program C that copies the value of the “src” attribute in element p to that
of q:

C � s = p.getAttribute("src"); q.setAttribute("src",s)

Let us assume that p contains a “src” attribute while q does not. Using SSL,
we can specify C as follows, where S � store(p:p,q:q,s:−) ∗ val(t, s1) ∗ out(a, s),
P �sp[γ1 � srcn[t], f1], Q�s′

q[a, f2] and Q′ �s′
q[a � sm[#textr[s1]], f2]:{

S ∗ α �→ P ∗ β �→ Q
}

C

{∃m,r. S ∗ α �→ P ∗ β �→ Q′} (5)

Observe that the p and q elements may be in one of three orientations with
respect to one another: (i)p and q are not related and describe disjoint subtrees;

408 A. Raad et al.

(ii)q is an ancestor of p; and (iii) p is an ancestor of q. All three orientations are
captured by (5). In contrast, using MCL (adapted to our notation) C is specified
as follows where i-iii correspond to the three orientations above.

(i)
{
S ∗ ((C•αP)•βQ

)}
C

{∃m,r. S ∗ ((C•αP)•βQ′)}
(ii)
{
S ∗ (Q•αP

)}
C

{∃m,r. S ∗ (Q′•αP
)}

(iii)
{
S ∗ (P•αQ

)}
C

{∃m,r. S ∗ (P•αQ′)}

When p and q are not related, the precondition of (i) states that the DOM
tree can be split into a subtree with top node q, and a tree context with hole
variable β satisfying the C •α P formula. This context itself can be split into
a subcontext with top node p and a context C with hole α. The postcondition
of (i) states that q is extended with a “src” attribute, and the context C •α P
remains unchanged. This specification is not local in that it is larger than the
intuitive footprint of C. The only parts of the tree required by C are the two
elements p and q. However, the precondition in (i) also requires the surrounding
linking context C: to assert that p and q are not related (p is not an ancestor of
q and vice versa), we must appeal to a linking context C that is an ancestor of
both p and q. This results in a significant overapproximation of the footprint.
As either C or P , but not both, may contain context hole β, (i) includes the
behaviour of (iii), which can thus be omitted. We have included it as it is more
local.

More significantly however, due to the non-commutativity of • we need to
specify (ii) and (iii) separately. Therefore, the number of CL axioms of a client
program may grow rapidly as its footprint grows. Consider the program C

′ below:

C
′ � s = p.getAttribute("src"); s’ = r.getAttribute("src");

q.setAttribute("src", s+s’)

with its larger footprint given by the distinct p, q, r. When p and q contain a
“src” attribute and r does not, we can specify C

′ in SSL with one axiom similar to
(5). By contrast, when specifying C

′ in MCL, not only is locality compromised in
cases analogous to (i) above, but we need eight separate specifications. Forgoing
locality, as described above, we still require six specifications. This example
demonstrates that CL reasoning is not compositional for client programs.

2.2 Verifying JavaScript Programs that Call the DOM

We demonstrate how to use our DOM specification to reason about client pro-
grams that call the DOM. Our DOM specification is agnostic to the choice of
client programming language. In contrast to previous work [9,22], our DOM
specification integrates simply with any SL-based program logic such as those
for Java [16] and JavaScript [7]. Here, we choose to reason about JavaScript
client programs.

We study a JavaScript image sanitiser that sanitises the “src” attribute of
an element node by replacing its value with a trusted URL if the value is black-
listed. To determine whether or not a value is blacklisted, a remote database

DOM: Specification and Client Reasoning 409

Fig. 2. The specifications of sanitiseImg (above); a proof sketch of (8) (below)

is queried. The results of successful lookups are stored in a local cache to min-
imise the number of queries. In Sect. 4, we use this sanitiser to implement an
ad blocker that filters untrusted contents of a web page. The code of this sani-
tiser, sanitiseImg, is given in Fig. 2. It inspects the img element node for its
“src” attribute (line 2). When such an attribute exists (line 3), it consults the
local cache (cache) to check whether its value (url) is blacklisted (line 4). If so,
it changes its value to the trusted cat value. If the cache lookup is unsuccess-
ful (line 6), the database is queried by the isBlackListed call (line 7). If the
value is deemed blacklisted (line 8), the value of “src” is set to the trusted cat
value (line 9), and the local cache is updated to store the lookup result (line 10).
Observe that sanitiseImg does not use JavaScript-specific constructs (e.g. eval)
and simply appeals to the standard language constructs of a while language. As
such, it is straightforward to transform this proof to verify sanitiseImg written
in e.g. C and Java.

The behaviour of sanitiseImg is specified in Fig. 2. The specifications in (6)–
(9) capture different cases of the code as follows: in (6) img has no “src” attribute

410 A. Raad et al.

(i.e. the conditional of line 3 fails); in (7) the value of “src” is blacklisted in the
local cache (line 5); in (8) the value is blacklisted and the cache has no record
of it (lines 9–10); and in (9) the value is not blacklisted and the cache has no
record of it (i.e. the conditional of 8 fails). We focus on (8) here; the remaining
ones are analogous. The precondition of (8) consists of four assertions: the st
captures the values of program variables; the P describes an element with an
attribute named “src” and value s1; the (c, s1) �→ 0 asserts that the s1 field of
cache c holds value 0 (i.e. value s1 may or may not be blacklisted but the cache
has no record of it); and isB(s1) states that s1 is blacklisted. This last assertion
is used in the isBlackListed call of line 7 with its behaviour as specified in
Fig. 2. A proof sketch of specification (8) is given in Fig. 2. At each proof point,
we have highlighted the effect of the preceding command, where applicable.

3 A Formal DOM Specification

We give our formal axiomatic specification of DOM, comprising the DOM model
in Sect. 3.1 eliding some details about DOM live collections until Sect. 3.5, the
DOM assertions in Sect. 3.2, the framework for reasoning about DOM client
programs in Sect. 3.3, the DOM axioms in Sect. 3.4, and DOM live collections in
Sect. 3.5.

3.1 DOM Model

We model DOM heaps (e.g. Fig. 1) as mappings from addresses to DOM data.
To this end, we assume a countably infinite set of identifiers, n∈Id, a designated
document identifier associated with the document object, d ∈ Id, a countably
infinite set of abstract addresses, x∈AAdd, and a designated document address
D, where the sets Id, AAdd and {D} are pairwise disjoint.

DOM Data. DOM nodes are the building blocks of DOM data. Formally,
we write: (i) #textn[s]fs for the text node with identifier n and text data s;
(ii) sn[a, f]tsfs for the element node with identifier n, tag name s, attribute set
a, and children f ; (iii) sn[tf]ts for the attribute node with identifier n, name
s, and children tf ; and (iv) #docd[e]tsfs & g for the document object with the
designated identifier d, document element e (or ∅e for no document element)
and grove g, ignoring the fs and ts for now. DOM nodes can be grouped into
attribute sets, forests, groves, and text forests, respectively ranged over by a,
f , g and tf . An attribute set represents the attribute nodes associated with
an element node and is modelled as an unordered, possibly empty collection of
attribute nodes. A forest represents the children of an element node, modelled
as an ordered, possibly empty collection of element and text nodes. A grove is
where the orphaned nodes are stored. In DOM, nodes are never disposed of and
whenever a node is removed from the document, it is moved to the grove. The
grove is also where newly created nodes are placed. The document object is thus
associated with a grove, modelled as an unordered, possibly empty collection of
text, element and attribute nodes. A text forest represents the children of an

DOM: Specification and Client Reasoning 411

attribute node, modelled as an ordered, possibly empty collection of text nodes.
We associate each node with a set of forest listeners, fs; we further associate ele-
ment and document nodes with a set of tag listeners, ts. We delay the motivation
for these listeners until Sect. 3.5 when we model live collections. DOM data may
be either incomplete with context holes (e.g. x), or complete with no context
holes. Notationally, data written in bold may contain context holes; regular font
indicates the absence of context holes.

Definition 1. The sets of strings s∈S, texts t∈T, elements e∈E, documents
doc∈D, attribute sets a∈A, forests f ∈F, groves g∈G, and text forests tf ∈TF,
are defined below where x∈AAdd, n∈Id, fs∈P (Id) and ts∈P (S×Id):

s ::=∅s |c |s1.s2 t ::=#textn[s]fs e ::=sn[a, f]tsfs a ::=∅a |x |sn[tf]fs |a1 � a2
doc ::=#docd[∅e]tsfs & g | #docd[e]tsfs & g | #docd[x]tsfs & g

f ::=∅f |x | t |e | f1⊗f2 g ::=∅g |x | t |e |sn[tf]fs |g1⊕g2 tf ::=∅tf |x | t |tf1
tf2

where the operations .,
, ⊗, � and ⊕ are associative with identities ∅s, ∅tf ,
∅f , ∅a and ∅g, respectively; the � and ⊕ operations are commutative; and all
data are equal up to the properties of .,
, ⊗, � and ⊕. Data does not contain
repeated identifiers and abstract addresses; element nodes contain attributes with
distinct names. The set of DOM data is d∈Data�E ∪ F ∪ TF ∪ A ∪ G ∪ D.

When the type of data is clear from the context, we drop the subscripts for
empty data and write e.g. ∅ for ∅f . We drop the forest and tag listeners when
not relevant to the discussion and write e.g. sn[a, f] for sn[a, f]tsfs . Given the
set of DOM data Data, there is an associated address function, Adds(.), which
returns the set of context holes present in the data. Context application d1 ◦xd2

denotes the standard substitution of d2 for x in d1 (d1[d2/x]) provided that
x ∈ Adds(d1) and the result is well-typed, and is otherwise undefined.

DOM Heaps. A DOM heap is a mapping from addresses, x∈Addr�AAdd
{D}, to DOM data. DOM heaps are subject to structural invariants to ensure
that they are well-formed. In particular, a context hole x must not be reachable
from the abstract address x in the domain of the heap. For instance, {x �→
sn[∅,y],y �→ s′

m[∅,x]} is not a DOM heap due to the cycle. We capture this by
the reachability relation � defined as: x � y ⇐⇒ y ∈ Adds(h(x)), for heap h
and address x ∈ Addr. We write �+ to denote the transitive closure of �.

Definition 2. The set of DOM heaps is: h ∈ DOMHeap ⊆ ({D}⇀D) ∪
(AAdd

fin
⇀ Data) provided that for all h ∈ DOMHeap and x ∈ Addr the follow-

ing hold:
1. identifiers and context holes are unique across h;
2. ¬∃x. x �+ x;
3. context holes in h are associated with data of correct type:

∀x,y. y ∈ Adds(h(x)) ∧ y ∈ dom(h) ⇒ ∃d. h(x) ◦y h(y)=d
DOM Heap composition, • : DOMHeap×DOMHeap ⇀ DOMHeap, is the stan-
dard disjoint function union provided that the resulting heap meets the constraints
above. The empty DOM heap, 0, is a function with an empty domain.

412 A. Raad et al.

Definition 3. The abstract (de)allocation relation, ≈: DOMHeap×DOMHeap,
is defined as follows where ∗ denotes the reflexive transitive closure of the set.

≈�
{
(h1,h2), (h2,h1) ∃x,d1,d2,x. h1(x)=(d1◦xd2) ∧ h2=h1[x �→d1]•[x �→d2]

}∗
During abstract allocation (from h1 to h2), part of the data d2 at address

x is split and promoted to a fresh abstract address x in the heap leaving the
context hole x behind in its place. Dually, during abstract deallocation (from h2

to h1) the context hole x in DOM data d1 is replaced by its associated data d2

at abstract address x, removing x from the domain of the heap in doing so.

3.2 DOM Assertions

DOM assertions comprise heap assertions describing DOM heaps such as those
in Fig. 1. DOM heap assertions are defined via DOM data assertions describing
the underlying DOM structure such as nodes, forests and so forth. As we show
later, pure assertions such as out(a, s) in Sect. 2 are derived assertions defined
in Fig. 4.

Definition 4. The DOM assertions, ψ∈DOMAsst, and DOM data assertions,
φ∈DOMDAsst, are defined as follows where α,a,n, · · · denote logical variables.

ψ ::= D �→ φ | α �→ φ DOM heap assertions
φ ::= false | φ1⇒φ2 | ∃x. φ | v | α | φ1 ◦α φ2 | ♦α classical|context hole

|#textn[φ]f |sn[φ1,φ2]ef |sn[φ]f |#docn[φ1]ef &φ2|∅e nodes|empty doc. element
| ∅s | φ1.φ2|∅a | φ1 � φ2|∅f | φ1 ⊗ φ2 strings|attr. sets|forests
| ∅g | φ1 ⊕ φ2|∅tf | φ1
 φ2 groves|text forests

The D �→φ assertion describes a single-cell DOM heap at document address
D; similarly, the α �→φ describes a single-cell DOM heap at the abstract address
denoted by α. For data assertions, classical assertions are standard. The v is
a logical variable describing DOM data. The α is a logical variable denoting
a context hole; the φ1 ◦α φ2 describes data that is the result of replacing the
context hole α in φ1 with φ2; ♦α describes data that contains the context hole α.
The node assertions respectively describe element, text, attribute and document
nodes with their data captured by the corresponding sub-assertions. The ∅e,
∅s, ∅a, ∅f , ∅g and ∅tf describe an empty document element, string, attribute
set, forest, grove and text forest, respectively. Similarly, φ1.φ2, φ1 � φ2, φ1 ⊗ φ2,
φ1 ⊕ φ2 and φ1
 φ2 respectively describe a string, attribute set, forest, grove
and text forest that can be split into two, each satisfying the corresponding
sub-assertion.

3.3 PLDOMLogic

We show how to reason about client programs that call the DOM. Our DOM
specification is agnostic to the client programming language and we can rea-
son about programs in any language with an SL-based program logic. To this

DOM: Specification and Client Reasoning 413

end, given an arbitrary programming language, PL, with an SL-based program
logic, PLLogic, we show how to extend PLLogic to PLDOMLogic, in order
to enable DOM reasoning. Later in Sect. 4, we present a particular instance of
PLDOMLogic for JavaScript, and use it to reason about JavaScript clients that
call the DOM.

States. We assume the underlying program states of PLLogic to be modelled
as elements of a PCM (partial commutative monoid) (PLStates, ◦, 0PL), where
◦ denotes state composition, and 0PL denotes the unit set. To reason about
the DOM operations, in PLDOMLogic we extend the states of PLLogic to
incorporate DOM heaps; that is, we define a program state to be a pair, (h,h),
comprising a PL state h ∈ PLStates, and a DOM heap h ∈ DOMHeaps.

Definition 5. Given the PCM of PL, the set of PLDOMLogic program states
is Σ ∈State�PLStates×DOMHeap. State composition, +:State×State⇀
State, is defined component-wise as +�(◦, •) and is not defined if composition
on either component is undefined. The unit set is I � {(h,0) | h ∈ 0PL}.

Assertions. We assume the PLLogic assertions to include: (i) standard classical
assertions; (ii) standard boolean assertions; (iii) standard SL assertions; and
(iv) an assertion to describe the p variable store as seen in Sect. 2 of the form
store(. . .). In PLDOMLogic we extend the PLLogic assertions with those of
DOM (Definition 4), semantic implication �, and the semantic magic wand ∼∗,
described shortly.

Definition 6. The set of PLDOMLogic assertions, P ∈Asst, is defined as fol-
lows in the binding order ∗,⇒,�,−∗,∼∗, with �∈{∈,=,<,≤,⊂,⊆}:

P,Q ::= false | P ⇒ Q | ∃x. P|E1�E2 Classical|Boolean assertions
| emp |P ∗ Q |P −∗Q SL assertions
| store(x,

i : vi)|Λ variable store|PLLogic-specific assertions
| ψ|P � Q |P ∼∗Q DOM|Structural assertions

Assertions are interpreted as sets of program states (Definition 5). Classi-
cal and boolean assertions are standard. The emp assertion describes an empty
program state in the unit set I; the P ∗ Q describes a state that can be split
into two substates satisfying P and Q. The −∗ connective is the right adjunct
of ∗, i.e. P ∗ (P−∗Q) ⇒ Q. Informally, a state that satisfies P−∗Q is one that is
missing P , and when combined with P , it satisfies Q. The store(x,

i :vi) describes
a variable store in PL where variables xi have values vi, respectively. The Λ
describes states of the form (h,0) where h satisfies Λ. Dually, the ψ describes
states of the form (h,h) where h ∈ 0PL and h satisfies ψ. The P � Q asser-
tion denotes semantic implication and integrates logical implication (⇒) with
abstract (de)allocation on DOM heaps (Definition 3). The ∼∗ connective is the
semantic right adjunct of ∗: P ∗(P ∼∗Q) � Q. It is similar to −∗ and incorporates
the ≈ relation on DOM heaps. Intuitively, a state that satisfies P ∼∗Q is one
that is missing P , such that when combined with P and undergone a number

414 A. Raad et al.

⎧⎨
⎩
store(n :n, o :o, r :−)
∗ α �→sn[β, γ]e1f1
∗ δ �→s′

o[ζ,t ∧ isComplete]e2f2

⎫⎬
⎭ r = n.appendChild(o)

⎧⎨
⎩
store(n :n, o :o, r :o)
∗ α �→sn[β,γ ⊗ s′

o[ζ,t]e2f2]e1f1
∗ δ �→ (∅f ∨∅g)

⎫⎬
⎭

⎧⎨
⎩
store(n : n, s : s, r : −)
∗ α �→ #docn[β]ef & γ
∗ safeName(s)

⎫⎬
⎭ r = n.createElement(s)

{∃r, f′, e′. store(n :n, s :s, r :r)

∗ α �→#docn[β]ef &γ⊕sr[∅a,∅f]e
′

f′

}

{
store(n :n, o :o, r :−)
∗ α �→#textn[s.s

′]f ∗ o ˙ =|s|
}

r = n.splitText(o)

{∃r,f′.store(n:n,o:o,r:r)
∗ α �→#textn[s]f⊗#textr[s

′]f′

}
{
store(n:n, r:−)
∗ α �→ sn[β,t]ef ∗ TIDs(t, l)

}
r = n.childNodes

{∃f,f′. store(n:n, r:f)

∗ α �→sn[β,t]ef′ ∗f⊆̇f′∗f∈̇f′

}
{
store(n:n, s:s, r:−)
∗ α �→s′

n[β,t]ef∗search(t,s,l)

}
r= n.getElementsByTagName(s)

{∃r, e′. store(n :n, s :s, r :r)

∗ α �→s′
n[β,t]e

′
f ∗e⊆̇e′∗(s,r)∈̇e′

}
{
store(f:f, r:−)∗α �→sn[β,t]ef′
∗TIDs(t,l) ∗ f∈̇f′

}
r = f.length

{∃r. store(f :f, r :r)
∗ α �→ sn[β,t]ef′ ∗ r ˙ =|l|

}
⎧⎨
⎩
store(f :f, i : i, r :−)
∗ α �→ s′

n[β,t]ef′ ∗ (s, f)∈̇e
∗ search(t, s, l) ∗ 0≤̇i<̇ |l|

⎫⎬
⎭ r = f.item(i)

⎧⎨
⎩

∃r. store(f :f, i : i, r :r)
∗ α �→ s′

n[β,t]ef′
∗r ˙ =|l|i

⎫⎬
⎭

Fig. 3. DOM core level 1 axioms (excerpt)

of (possibly zero) abstract (de)allocations, it satisfies Q. We write E1�̇E2 for
E1�E2∧emp.

Programming Language, Proof Rules and Soundness. We extend the
programming language of PL with the operations of our DOM fragment
(e.g. getAttribute in Sect. 2.1). The proof rules of PLDOMLogic are those of
PLLogic with the exception of the rule of consequence: we generalise the premise
to allow semantic implication (�) between assertions rather than logical implica-
tion (⇒). We further extend the proof rules with the axioms of DOM operations,
DOMAx, defined shortly in Sect. 3.4 below. The modified rule of consequence
and the rule for DOM axioms are given below. We prove PLDOMLogic sound
in [17].

P � P ′ {P ′} C {Q′} Q′ � Q

{P} C {Q} (Con)
(P, C, Q) ∈ DOMAx

{P} C {Q} (Ax)

3.4 DOM Operations and Axioms

We formally axiomatise the behaviour of a DOM operations associated with
our fragment. In Fig. 3 we give a select number of axioms including those of
the operations used in the examples of this paper. The behaviour of some of
the operations is captured by several axioms; we have omitted analogous cases.
A full list of DOM operations modelled and their axioms, DOMAx, are given
in [17].

The assertions in the pre- and postconditions of axioms are of the form
store(· · ·) ∗ ψ where the store predicate states the value associated with each

DOM: Specification and Client Reasoning 415

program variable, and ψ is a DOM assertion that describes the operation foot-
print. Since the DOM library may be called by different client programs written
in different programming languages, store denotes a black-box predicate that can
be instantiated to describe a variable store in the client programming language.
In Sect. 4 we reason about JavaScript client programs that call the DOM and
thus instantiate store to describe the JavaScript variable store emulated in the
heap.

We now describe of the DOM operations in Fig. 3 and their axioms, delaying
the description of the last four operations until Sect. 3.5.

n.appendChild(o): when n and o both identify nodes, this operation
appends o to the end of n’s child list and returns o. It fails if o is an ances-
tor of n (otherwise it would introduce a cycle and break the DOM structure);
or if n is a text node or a document node with a non-empty document element;
or if o is an attribute or a document node. Figure 3 shows the axiom for when
o is an element node (o). To ensure that o is not an ancestor of n, we require
the entire subtree at o to be separate from the subtree at n. This is achieved by
the isComplete assertion and the separating conjunction ∗. The isComplete is a
derived assertion defined in Fig. 4. It describes DOM data with no context holes.
The postcondition leaves ∅f ∨∅g in place of o once moved since we do not know
if o has come from a forest or grove position. The disjunction leaves the choice
to the frame.

n.createElement(s): when n identifies a document node, it creates a new
element named s, and returns its identifier. The new element has no attributes or
children and resides in the grove. The grove in the precondition is thus extended
with the new node in the postcondition. The safeName(s) assertion is defined in
Fig. 4 ensures that the tag name does not contain the invalid character ‘#’.

n.splitText(o): when n identifies a text node and o denotes an integer, it
breaks the data of n into two text nodes at offset o (indexed from 0), keeping
both nodes in the tree as siblings. It fails when o is an invalid offset (i.e. negative
or greater than the length). The return value is the identifier of the new node.

Our specifications have smaller footprints than those of [9,22]. In particu-
lar, the axiom of appendChild requires a substantial overapproximation of the
footprint due to the reasons discussed in Sect. 2.1, namely the need for a linking
context (see page 7). This axiom is given below using MCL [5] (adapted to our
notation):{
(C•α sn[a, γ])•β s′

o[a
′,t]

}
n.appendChild(o)

{
(C•α sn[a, γ ⊗ s′

o[a
′,t]])•β ∅f

}
This axiom is not small enough: the only parts required by appendChild are the
tree at o being moved, and the element n whose children are extended by o.
However, as before the precondition above also requires the linking context C.

3.5 Live Collections

The DOM API provides several interfaces for traversing DOM trees based on
live collections of nodes, such as the NodeList interface in DOM CL1-4. DOM

416 A. Raad et al.

Fig. 4. Derived DOM assertions

CL 4 also introduces the HTMLCollection interface for live collections of ele-
ment nodes. We describe our model of live collections in terms of NodeLists.
However, our model is abstract and captures the behaviour of both NodeLists
and HTMLCollections.

The NodeList interface is an ordered collection of nodes. NodeLists are
live in that they dynamically reflect document changes. Several DOM opera-
tions return NodeLists. For example, n.getElementsByTagName(s) returns a
NodeList (using depth-first, left-to-right search) containing the identifiers of the
elements named s underneath the tree rooted at n. Given the DOM tree of
Fig. 1a, when n=4 and s=“img”, then r = n.getElementsByTagName(s) yields
r=[3, 8, 2]. However, since NodeLists are live, if node 8 is later removed from the
document, then r=[3, 2]. When s=“* ” denoting a wildcard, then the result-
ing NodeList must contain the identifiers of all element nodes underneath
n. For instance, with the DOM tree of Fig. 1a, when n=4 and s=“ * ”, then
r = n.getElementsByTagName(s) yields r=[9, 3, 8, 6, 2]. This operation may be
called on both document and element nodes. We thus associate each such node
with a set of tag listeners, ts. Each listener is of the form (s,fid) where s denotes
the search string (e.g. “img” in the example above) and fid ∈ Id denotes the
identifier of the resulting NodeList.

The n.childNodes operation also returns a NodeList, containing the identi-
fiers of the immediate children of n. For instance, with the DOM tree of Fig. 1a,
when n=4, then r = n.childNodes returns r=[9, 6]. Again, the value of r is live
and dynamically reflects the changes to the child forest of n. The n.childNodes
operation may be called on any DOM node. We therefore associate each DOM
node with a set of forest listeners, fs. Each forest listener, fid ∈ Id, denotes
the identifier of a NodeList. Our specification is the first that faithfully models
the behaviour of NodeLists. In particular, both [9] and [22] associate a single
forest listener with DOM nodes and consequently admit behaviours that are not
guaranteed by the standard. We proceed with the NodeList axioms in Fig. 3.

n.childNodes: when n=n, this operation returns (the identifier of) a for-
est listener NodeList f associated with n. Figure 3 shows the axiom for when
n is an element. When asked for a forest listener NodeList, a node may either
return an existing one, or generate a fresh one and extend its set with it. This

DOM: Specification and Client Reasoning 417

flexibility is due to an under-specification in the standard. Thus, in the post-
condition the original set f is extended to f′ (f⊆̇f′) with return value f ∈ f′.
The TIDs(t,l) assertion is defined in Fig. 4 and states that list l contains the
top-level node identifiers (from left to right) of the forest denoted by t. For
instance, TIDs(t, [9, 6]) holds in Fig. 1a when t denotes the child forest of node
4 (named “body”). As such, the TIDs(t,l) in the precondition stipulates that
t contain enough resource for compiling a list of the immediate children of n
(i.e. the top-level nodes in t).

n.getElementsByTagName(s): when n=n and s=s, this operation returns
(the identifier of) a NodeList containing the identifiers of the elements with
tag name s in the forest underneath n. The axiom in Fig. 3 describes the case
when n is an element node. The original set of tag listeners e is extended
to e′ with (s, r) ∈ e′ where r is the return value. The search(t, s, l) asser-
tion is defined in Fig. 4 and describes the search result of getElementsByTag-
Name (i.e. the list l contains the identifiers of those element nodes in the for-
est t whose name matches s). For instance, when t denotes the child forest
of node 4 (named “body”) in Fig. 1a, then both search(t, “img”, [3, 8, 2]) and
search(t, “ * ”, [9, 3, 8, 6, 2]) hold. As such, the search(t, s, l) in the precondition
ensures that t contains enough resource for compiling a list of elements named s.

f.length: when f=f identifies a NodeList, its length is returned. The axiom
in Fig. 3 describes the case when f is a forest listener NodeList on element n;
the return value is the number of n’s immediate children. This is captured by
TIDs(t,l) stipulating that list l contains the identifiers of those nodes at the top
level of child forest t. The return value is thus the length of l (i.e. |l|).

f.item(i): this is analogous to f.length with |l|i denoting the ith item of
l. The axiom in Fig. 3 describes the case when f is a tag listener NodeList on n.

4 Verifying JavaScript Programs that Call the DOM

We instantiate the method described in Sect. 3.3 to extend the SL-based
JavaScript program logic (hereafter JSLogic) in [7], to JSDOMLogic, in order to
enable DOM reasoning. We then use JSDOMLogic to reason about a realistic
ad blocker program in Sect. 4.1, and a further ad blocker in [17]. These examples
are interesting as they combine JavaScript heap reasoning with DOM reasoning.

JSLogic States. The states of JSLogic are JavaScript heaps. A JavaScript heap,
h∈JSHeap, is a partial function mapping references, which are pairs of memory
locations and field names, to values. A heap cell is written (l, x) �→7, stating that
the object at l has a field named x and holds value 7. An empty JavaScript
heap is denoted by 0JS; JavaScript heap composition, ◦ : JSHeap×JSHeap⇀
JSHeap, is the standard disjoint function union. The PCM of JavaScript heaps
is (JSHeap, ◦, {0JS}). The states of JSDOMLogic are then pairs of the form
(h,h), comprising a JavaScript heap h, and a DOM heap h (see Definition 5).

JSLogic Assertions, Programming Language and Proof Rules. As stip-
ulated by Definition 6, the JSLogic assertions include the standard boolean,

418 A. Raad et al.

classical and SL assertions. JSLogic further includes JavaScript heap assertions
of the form (E1, E2) �→E3, describing a single-cell JavaScript heap. The variable
store in JavaScript is emulated in the heap. As required by Definition 6, JSLogic
introduces a derived assertion store(x,

i : vi), describing the JavaScript variable
store in the heap where variables xi have values vi. The programming language
of JSLogic is a broad subset of the JavaScript language [7]. The JSLogic asser-
tions, their semantics, the definition of store, and the JSLogic proof rules are
given in [7].

4.1 A JavaScript Ad Blocker

We use JSDOMLogic to reason about an ad blocker script used for blocking
the images from untrusted sources in a DOM tree. The adBlocker1(n) pro-
gram in Fig. 5 compiles a NodeList containing all “img” elements in the tree
rooted at n by calling the getElementsByTagName operation. It then iterates
over this NodeList, sanitising each image by executing the sanitiseImg pro-
gram in Sect. 2.

At each iteration i, the subtree at node n=n is described by tree(i,e) where
ti denotes the child forest of n at iteration i, and e denotes the tag listener set
associated with n, and l denotes the list of “img” elements below n.3

Since we iterate over the “img” elements in l and inspect their attributes,
we need to partition them in into three categories: (i) empty : without a “src”
attribute; (ii) untrusted : with a“src” attribute and a blacklisted value; (iii)
trusted : with a “src” attribute and a trusted value. At each iteration, if the
node considered is untrusted, it is sanitised and removed from the untrusted
category. We thus define a fourth category, sanitised, including those elements
whose values were initially blacklisted and are later sanitised. This is captured
by partition(i)3. The first part states that the list of “img” elements l can be
partitioned into the three categories described above where l≡ s states that set
s is a permutation of list l. The second part states that list l has been processed
up to index i; i.e. the sanitised category ss includes all the untrusted elements
in l up to index i. The last four parts describe the “img” elements according to
their category.

The partition predicate describes the “img” elements in l only and does not
include the remainder of the subtree at n. At every iteration, this remainder
is untouched and the modified parts are in the partitions. We thus describe
the remainder for an arbitrary iteration i as ∀i. partition(i)∼∗tree(i,e), i.e. the
entire tree for that iteration, tree(i,e), minus its partitions. The unfolded tree
at iteration i, unfld(i,e)3, consists of the partitions at i, plus the remainder.

Note that for NodeList operations such as item (line 5), we need the folded
tree (tree(i,e)) with the entire subtree containing the “img” list l, as required by

3 All free logical variables on the right-hand side are parameters of the predicate on the
left. We omit them for readability as they do not change throughout the execution.
By contrast, the iteration number i, and the tag listeners e of node n may change
(the latter may grow by getElementsByTagName) and are explicitly parameterised.

DOM: Specification and Client Reasoning 419

cache(c)� �
f∈X

(c,f) �→1 ∨(c,f) �→0
)

unfld(i,e)�∃α,β,γ
l
.partition(i)∗(∀i.partition(i)∼∗tree(i,e))

tree(i, e)�α �→sn[a,ti]
e
f∗search(ti,“img”,l) fld(i,e)�tree(i,e)∗ (∀i,e. tree(i,e)∼∗unfld(i,e)) ∧ emp

)
rem(i)� ∃ss. ss ˙ =su ∩ {|l|j | j < i} ∗ β �→ ∅g

⊕
j∈ss

aj

partition(i)� l ≡̇ se � su � st ∗ ∃ss. ss ˙ =su ∩ {|l|j | j < i} ∗ �
j∈ss

αj �→ imgj[βj�srcmj [#text−[s]−]f′
j
,γj]

ej
fj

)
�
j∈se

(αj �→ imgj[aj,γj]
ej
fj ∗ out(aj,src)) ∗�

j∈st
αj �→ imgj[βj�srcmj [aj]f′

j
,γj]

ej
fj ∗val(aj,vj)∗¬isB(vj)

)
�

j∈su\ss
αj �→ imgj[βj�srcmj [aj]f′

j
,γj]

ej
fj ∗ val(aj,vj) ∗ isB(vj)

)
{
store(n:n,cat:s,cache:c,imgs:−,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)∗fld(0,e)∗rem(0)

}
1. adBlocker1(n) � {
2. imgs = n.getElementsByTagName("img");{

∃r, e′. store(n:n,cat:s,cache:c,imgs:r,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)
∗ rem(0) ∗ fld(0,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′

}

3. len = imgs.length; i = 0;{∃r, e′. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:0,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(0) ∗ fld(0,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′

}
{∃r, e′, i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ fld(i,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l|
}

4. while(i<len){
5. c = imgs.item(i);{∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ fld(i,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l|
}

//Apply derivation steps in (10)-(12).{∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i)∗e⊆̇e′∗(“img”,r)∈̇e′∗i<̇ |l|∗unfld(i,e′)∗((∀i,e. tree(i,e)∼∗unfld(i,e)) ∧ emp)

}

6. sanitiseImg(c,cat);{∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i+1)∗e⊆̇e′∗(“img”,r)∈̇e′∗i<̇ |l|∗unfld(i+1,e′)∗((∀i,e. tree(i,e)∼∗unfld(i,e))∧emp)

}

// Apply derivation steps in (12)-(14).{∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i+1) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i<̇ |l| ∗ fld(i+1, e′)

}

7. i = i+1;{∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l| ∗ fld(i, e′)

}

8. } }
{∃r,e′,i. store(n:n,cat:s,cache:c,imgs:−,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)

∗ cache(c) ∗ rem(|l|) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l| ∗ fld(|l| , e′)

}

Fig. 5. A proof sketch of the adBlocker1 program (see Footnote 3)

their axioms (Fig. 3). Conversely, for the sanitiseImg call (line 6), we need the
unfolded “img” elements (partition(i)) so that we can access the relevant “img”
node at each iteration. We thus need to move between the folded and unfolded
tree depending on the operation considered. The fld(i,e) predicate describes the
folded tree at iteration i. The first part, tree(i,e), describes the resources of the
folded tree at iteration i. The second part contains no resources (emp); it simply
states that at any iteration i, the folded tree tree(i,e), can be exchanged for
the unfolded tree unfld(i,e). As we show in the derivation below, this second
part allows us to move from folded to unfolded resources (10–12) and vice versa
(12–14), for any i. The bi-implication of (10) follows from the definition of fld

420 A. Raad et al.

and that empty resources (emp) can be freely duplicated. In (11) we eliminate
the first universal quantifier. We then eliminate the adjunct (P ∗ (P ∼∗Q) � Q)
and arrive at (12). The implication of (13) follows from the definition of unfld
and the elimination of the first universal quantifier. To get (14), we eliminate
the adjunct, eliminate the existential quantifiers and wrap the definition of fld.

fld(i, e) ⇔ tree(i, e) ∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp)

∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) (10)
⇒ tree(i, e) ∗ (tree(i, e)∼∗unfld(i, e)) ∗ (∀i,e. tree(i′,e)∼∗unfld(i,e)∧emp) (11)
� unfld(i,e) ∗ (∀i,e. tree(i, e)∼∗unfld(i,e) ∧ emp) (12)

⇒ ∃α, β, γ
l
. partition(i) ∗ (partition(i) ∼∗tree(i, e))

∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) (13)
� tree(i, e) ∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) ⇔ fld(i, e) (14)

Recall that when the value of an attribute node is updated via the setAt-
tribute operation, its text forest is replaced with a new text node containing
the new value, and its old text forest is added to the grove (see axiom (3)). As
such, at each iteration if we sanitise the “src” attribute of c (via sanitiseImg
in line 6), then the old text forest of the “src” attribute is moved to the grove.
This is described by the rem(i) assertion stating that for each attribute node
sanitised so far (i.e. those in ss), the old text forest aj has been added to the
grove.

Recall that sanitiseImg (Fig. 2) maintains a local cache of blacklisted URLs,
implemented as an object at c with one field per URL (where (c, f) �→1 asserts
the URL f is blacklisted, and (c, f) �→0 asserts that there are no cached results
associated with f). We thus define the cache as the collection of all fields (denoted
by X) on c with value 1 or 0, where � is the iterated analogue of ∗.

We give a proof sketch of adBlocker1 in Fig. 5. The precondition consists of
the variable store, the cache and the unprocessed (iteration 0) tree. The post-
condition comprises the store, the cache and the fully processed (iteration |l|)
tree with the tag listeners of n extended with a new listener for “img”.

Concluding Remarks. We use SSL [25] to formally specify an expressive frag-
ment of DOM Core Level 1, closely following the standard [1]. In comparison
to existing work [9,22], our specification (i) allows for local and compositional
client specification and verification; (ii) can be simply integrated with SL-based
program logics; and (iii) is faithful to the standard with respect to the behaviour
of live collections. We demonstrate our compositional client reasoning by extend-
ing JSLogic [7] to incorporate our DOM specification and verifying functional
properties of ad-blocker client programs that call the DOM.

Acknowledgements. This research was supported by EPSRC programme grants
EP/H008373/1, EP/K008528/1 and EP/K032089/1.

DOM: Specification and Client Reasoning 421

References

1. W3C DOM standard. www.w3.org/TR/REC-DOM-Level-1/level-one-core.html
2. Biri, N., Galmiche, D.: A separation logic for resource distribution. In: Pandya,

P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 23–37.
Springer, Heidelberg (2003)

3. Biri, N., Galmiche, D.: Models and separation logics for resource trees. J. Logic
Comput. 17, 687–726 (2007)

4. Bodin, M., Chargueraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudz̆iūnienė,
D., Schmitt, A., Smith, G.: A mechanised JavaScript specification. In: POPL (2014)

5. Calcagno, C., Dinsdale-Young, T., Gardner, P.: Adjunct elimination in context
logic for trees. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 255–270.
Springer, Heidelberg (2007)

6. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. In: POPL
(2005)

7. Gardner, P., Maffeis, S., Smith, G.: Towards a program logic for JavaScript. In:
POPL (2012)

8. Gardner, P., Raad, A., Wheelhouse, M., Wright, A.: Local reasoning for concurrent
libraries: mind the gap. In: MFPS (2014)

9. Gardner, P., Smith, G., Wheelhouse, M., Zarfaty, U.: Local Hoare reasoning about
DOM. In: PODS (2008)

10. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. In: OOPSLA (1999)

11. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03237-0 17

12. Jensen, S.H., Madsen, M., Møller, A.: Modeling the HTML DOM and browser API
in static analysis of JavaScript Web applications. In: ESEC/FSE 2011 (2013)

13. Lerner, B.S., Carroll, M., Kimmel, D.P., La Vallee, H.Q., Krishnamurthi, S.: Mod-
eling and reasoning about DOM events. In: WebApps (2012)

14. Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for JavaScript. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89330-1 22

15. Park, C., Won, S., Jin, J., Ryu, S.: A static analysis of JavaScript web applications
in the wild via practical DOM modeling (T). In: ASE (2015)

16. Parkinson, M.: Local reasoning for Java. Ph.D. thesis, Cambridge University (2006)
17. Raad, A.: Ph.D. thesis, Imperial College (2016, to appear)
18. Rajani, V., Bichhawat, A., Garg, D., Hammer, C.: Information flow control for

event handling and the DOM in web browsers. In: CSF (2015)
19. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:

LICS (2002)
20. Russo, A., Sabelfeld, A., Chudnov, A.: Tracking information flow in dynamic tree

structures. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp.
86–103. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04444-1 6

21. Møller, A., Jensen, S.H., Madsen, M.: Modeling the HTML DOM and browser API
in static analysis of JavaScript web applications. In: FSE (2011)

22. Smith, G.: Local reasoning for web programs. Ph.D. thesis, Imperial College (2010)
23. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-

order programs with the Dijkstra Monad. In: PLDI (2013)

www.w3.org/TR/REC-DOM-Level-1/level-one-core.html
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1007/978-3-642-04444-1_6

422 A. Raad et al.

24. Thiemann, P.: A type safe DOM API. In: Bierman, G., Koch, C. (eds.) DBPL
2005. LNCS, vol. 3774, pp. 169–183. Springer, Heidelberg (2005). doi:10.1007/
11601524 11

25. Wright, A.: Structural separation logic. Ph.D. thesis, Imperial College (2013)

http://dx.doi.org/10.1007/11601524_11
http://dx.doi.org/10.1007/11601524_11

Decision Procedure for Separation Logic
with Inductive Definitions and Presburger

Arithmetic

Makoto Tatsuta1(B), Quang Loc Le2, and Wei-Ngan Chin3

1 National Institute of Informatics, Sokendai, Tokyo, Japan
tatsuta@nii.ac.jp

2 Singapore University of Technology and Design, Singapore, Singapore
3 National University of Singapore, Singapore, Singapore

Abstract. This paper considers the satisfiability problem of symbolic
heaps in separation logic with Presburger arithmetic and inductive defin-
itions. First the system without any restrictions is proved to be undecid-
able. Secondly this paper proposes some syntactic restrictions for decid-
ability. These restrictions are identified based on a new decidable subsys-
tem of Presburger arithmetic with inductive definitions. In the subsystem
of arithmetic, every inductively defined predicate represents an eventu-
ally periodic set and can be eliminated. The proposed system is quite
general as it can handle the satisfiability of the arithmetical parts of
fairly complex predicates such as sorted lists and AVL trees. Finally, we
prove the decidability by presenting a decision procedure for symbolic
heaps with the restricted inductive definitions and arithmetic.

1 Introduction

In the last decade, separation logic has provided an appealing paradigm to sup-
port memory safety verification [1,2]. For automated program verification, it is
necessary to decide the truth of entailment of symbolic heaps. This paper will
examine the decidability of the satisfiability problem for symbolic heaps. Deci-
sion procedures for satisfiability are important to support entailment proving [5].

This paper considers the symbolic heaps as the conjunction of equalities and
disequalities, and the spatial conjunction of empty heap, points-to predicate,
and inductive predicates. Inductive definitions for symbolic-heap systems are
important [4,7,8] as they can provide a flexible way to express a wide range of
recursive data structures. Recently, various extensions of symbolic heaps with
arithmetic have been advocated for verifying both quantitative properties and
data contents [5,9–11]. These extensions aim to handle more complex data struc-
tures involving arithmetic as well as shape information, such as length of lists,
minimum values of lists, sorted lists, and even height-balanced AVL trees.

Our work extends the satisfiability decision procedure for symbolic heaps
with inductive definitions [4] to symbolic heaps with inductive definitions and
Presburger arithmetic. First we show that the satisfiability of symbolic heaps in
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 423–443, 2016.
DOI: 10.1007/978-3-319-47958-3 22

424 M. Tatsuta et al.

the system SLA1 which includes (unrestricted) inductive definitions and Pres-
burger arithmetic is undecidable. The undecidability is proved by simulating
multiplication and reducing to it Peano arithmetic which is undecidable.

Next, we propose some restrictions on SLA1 to obtain a decidable subsystem,
called SLA2. For this purpose, we will use the three ideas: (1) a decidable sub-
system DPI of Presburger arithmetic and inductive definitions, (2) projections
and unfolding trees, and (3) a periodic structure in the sequence of base pairs.

Our first idea is to propose the decidable system DPI as a subsystem of Pres-
burger arithmetic and inductive definitions with some restrictions. Although the
truth for Presburger arithmetic is known to be decidable [6], the decidability of
Presburger arithmetic and inductive definitions is challenging; it is undecidable
without any restrictions, since some inductive predicate can simulate multipli-
cation and reduce Peano arithmetic to it. We will choose the restrictions so
that inductive predicates exactly represent eventually periodic sets. Our choice
is reasonable, since Presburger arithmetic is one of the strongest decidable sys-
tems and eventually periodic sets are the same as sets characterized by some
Presburger arithmetical formulas [6]. Under this restriction, we can show the
decidability by eliminating inductive predicates. Our restriction seems compli-
cated, but it is quite general as it can handle non-trivial data structures, such
as arithmetical parts of sorted lists and AVL trees.

Our second idea is to decide the satisfiability of a given symbolic heap in
separation logic with inductive definitions and arithmetic by deciding the satis-
fiability of its spatial part and its numeric part. The former satisfiability always
implies the latter satisfiability, but the converse does not necessarily hold. In
order to synchronize these two parts and guarantee the converse, we will use
unfolding trees, which are described, for example, in [7]. An unfolding tree T
of an inductive predicate P specifies how P is unfolded. Thus, P unfolded by
T is true in separation logic with inductive definitions and arithmetic iff the
spatial projection of P unfolded by T is true in separation logic with inductive
definitions and the numeric projection of P unfolded by T is true in arithmetic
with inductive definitions.

Our third idea is to use base pairs. Brotherston et al. [4] showed the satis-
fiability of symbolic heaps is decidable in the system of separation logic with
inductive definitions. They introduced base pairs and an inductive predicate is
interpreted by a set of base pairs. In this paper, we will use their ideas and
interpret a symbolic heap without inductive predicates by a single base pair.
One of the key observations is that we can find some periodic structure in a
given sequence of the interpretations of symbolic heaps, since the set of base
pairs is finite in our setting.

Then we will define the decidable system SLA2 as the system SLA1 with some
restrictions to inductive definitions, so that the arithmetical part of inductive
definitions are those of the system DPI. When the unfolding trees are linear,
we can find some periodic structure in the sequence of base pairs that interpret
the inductive predicate unfolded by those trees, which enables us to decide its
satisfiability. For any tree-like data structures, the system SLA2 concurrently

Decision Procedure for Separation Logic 425

allows size properties, such as the length of lists and the height of trees, and
data information such as the minimum and the maximum of data.

To summarize, we make the following technical contributions in this paper:
(1) We prove that SLA1 is undecidable. (2) We propose the decidable subsystem
DPI of Presburger arithmetic with inductive definitions, and prove its decid-
ability. (3) We present the decidable subsystem SLA2 of symbolic heaps with
Presburger arithmetic and inductive definitions, provide its decision procedure,
and prove its decidability.

The decidability results of this paper provide theoretical foundations to
advance satisfiability decision procedures in verification systems of heap-
manipulating programs, like [5,9–11]. A system of symbolic heaps with inductive
definitions and arithmetic adds significantly to the expressivity of our specifica-
tion logic. However no decidability results for such a system have been achieved
prior to our current proposal. For symbolic-heap systems with inductive defin-
itions and without arithmetic, [4] shows the decidability of the satisfiability of
symbolic heaps, and [7,8] proves the decidability of the truth of the entailments of
symbolic heaps under some restrictions such as bounded treewidth. For symbolic-
heaps systems with arithmetic and without inductive definitions, entailment
decision procedures for hard-coded predicates and entailment of prenex formulas
with some quantification were proposed in [3,9–11]. For symbolic-heaps systems
with inductive definitions and arithmetic, [5] provided a semi-decision procedure
for the validity of the entailments for symbolic heaps. Our results thus provide an
important step towards state-of-the-art research on the decidability of symbolic
heaps with inductive definitions and arithmetic.

Section 2 defines the system SLA1 and its semantics, and shows the unde-
cidability. Section 3 proposes the decidable subsystem DPI of Presburger arith-
metic with inductive definitions, and proves its decidability. The decidable sys-
tem SLA2 is presented in Sect. 4. This section also defines unfolding trees and
base pairs, and proves the decidability of SLA2 by providing its decision proce-
dure. We conclude in Sect. 5.

2 System SLA1

We start off by defining the system SLA1 of separation logic and Presburger
arithmetic with inductive definitions. By combination of separation logic and
arithmetic, this system can describe range of complex data structures with pure
properties, for example, sorted lists with length information.

2.1 Syntax

We use vector notations x to denote a sequence x1, . . . , xk. |x| denotes the length
of the sequence. For simplicity sometimes we also use a notation of a sequence
to denote a set. We also write x = y to denote xi = yi for all i, and f(x) for
the sequence f(x1), . . . , f(xk). We write ≡ for the syntactical equivalence. N
denotes the set of natural numbers.

426 M. Tatsuta et al.

The language of SLA1 is defined in Fig. 1. We assume first-order variables
Vars :: = x, y, v, . . . and inductive predicate symbols P :: = P1, P2, We assume
variables are implicitly classified into pointer variables and integer variables. NC
is a positive number, which specifies the number of elements in a cell.

Pointer terms t ::= x | nil
Pure formulas Π ::= true | false | t = t | t �= t | Π ∧ Π
Integer constants k ::= . . . | − 1 | 0 | 1 | 2 | . . .
Arithmetical terms a ::= x | k | k × a | a + a | − a | max(a, a) | min(a, a)
Arithmetical formulas Λ ::= true | a = a | a ≤ a | ¬Λ | Λ ∧ Λ | ∃x.Λ
Terms u ::= a | t
Spatial formulas Σ ::= emp | t �→ (u1, . . . , uNC) | P (t,a) | Σ ∗ Σ
Symbolic Heaps φ ::= Π ∧ Σ ∧ Λ
Definition Clauses Φ ::= ∃x.φ
Definition Bodies Ψ ::= Φ | Ψ ∨ Ψ
Inductive Definitions pred P (x) ≡ Ψ

Fig. 1. Syntax of SLA1

We often omit Π or Λ when they are true. SLA1 has an inductive definition
system, which is a finite set of inductive definitions given by pred. The system
SLA1 has symbolic heaps Π∧Σ as well as Presburger arithmetic Λ and inductive
predicates P .

We assume ∗ is more tightly bound than ∧. We sometimes write ∗kAk for a
sequence of separating conjunctions such as A1 ∗ A2 ∗ A3. We often write a1a2

for a1 × a2. We write FV(O) for the set of free variables in O where O is some
syntactic object.

In the following, we illustrate the expressiveness of SLA1 with two examples
and use them as running examples throughout the paper.

Example 1 (Sorted Lists). The following predicate sortll for sorted lists can be
defined in SLA1.

pred sortll(x, y, z) ≡ x �→ (z,nil) ∧ y = 1
∨ ∃x1y1z1.x �→ (z, x1) ∗ sortll(x1, y1, z1) ∧ y = y1 + 1 ∧ z ≤ z1.

y and z represent the length and the minimum value of the list respectively.

Example 2 (AVL Trees). The following predicate avl for AVL trees can be
defined in SLA1.

pred avl(x, h) ≡ emp ∧ x = nil ∧ h = 0∨
∃x1x2h1h2.x �→ (x1, x2) ∗ avl(x1, h1) ∗ avl(x2, h2)
∧ h = max(h1, h2) + 1 ∧ −1 ≤ h1 − h2 ≤ 1.

h is the height of the tree.

Decision Procedure for Separation Logic 427

We call a definition clause a base case when it does not contain any inductive
predicates, and we call a definition clause an induction case when some inductive
predicates appear in it.

We write Ψ [x := t] for ordinary capture-avoiding substitution. Φ1[P :=
λx.Φ2] is defined as the definition clause obtained for Φ1 by replacing every
P (t) by Φ2[x := t] and moving existential quantifiers to the head. We often
write Φ[P, . . . , P] to explicitly show occurrences of an inductive predicate P .
When we use Φ1[P], we write Φ1[λx.Φ2] for Φ1[P][P := λx.Φ2].

For an induction case Φ[P] with one occurrence of P and n ≥ 0, we define

Φ0[P] ≡ P (x),

Φn+1[P] ≡ Φ[λx.Φn[P]].

2.2 Semantics

We write Z for the set of integers. We assume the set Val of values and the set
Loc of addresses such that Val = Z ∪ {null} and Val ∩ Loc = ∅. We use

Heaps = Locs →fin (Loc ∪ Val)NC,

Stores = Vars → Loc ∪ Val.

We assume a cell will be interpreted by (Loc∪Val)NC and s(nil) = null. We use
s and h by assuming s ∈ Stores and h ∈ Heaps. We also assume that s(k) = k
for an integer constant k, and ×,+,−,max,min,≤ are interpreted for integers by
a usual semantics, and the interpretation s |= Λ for an arithmetic formula Λ is
defined using the standard model of integers Z.

The semantics s, h |= ∃z.φ of this logic is defined in a usual way as follows.
s |= t1 = t2 if s(t1) = s(t2),
s |= t1 �= t2 if s(t1) �= s(t2),
s |= Π1 ∧ Π2 if s |= Π1 and s |= Π2,
s, h |= emp if Dom(h) = ∅,
s, h |= t �→ (t1, . . . , tn) if Dom(h) = {s(t)} and h(s(t)) = (s(t1), . . . , s(tn)),
s, h |= Σ1 ∗ Σ2 if s, h1 |= Σ1 and s, h2 |= Σ2 for some h1 + h2 = h,
s, h |= P 0

i (t) does not hold,
s, h |= P k+1

i (t) if s, h |= Φ[Pi := P k
i](t) for some definition clause Φ of Pi,

s, h |= Pi(t) if s, h |= Pm
i (t) for some m,

s, h |= Π ∧ Σ ∧ Λ if s |= Π and s, h |= Σ and s |= Λ, and
s, h |= ∃zzφ if s[z := b], h |= ∃zφ for some b ∈ Loc ∪ {null} with a pointer

variable z and some b ∈ Z with an integer variable z.

2.3 Undecidability in SLA1

This section shows that without any restrictions on the shape of inductive defi-
nitions, the satisfiability is undecidable in SLA1.

428 M. Tatsuta et al.

Theorem 2.1. The satisfiability of symbolic heaps is undecidable in SLA1.

Proof. For any primitive recursive function f(x), there is an inductive predicate
F such that for any numbers n,m, f(n) = m iff s0, h0 |= F (n,m) where s0 is
the dummy store such that s0(x) = null for all x, and h0 is the empty heap such
that Dom(h0) = ∅. In this case, we say the inductive predicate F represents the
primitive recursive function f . We can show it by induction on the definition of
f . We will show only the following cases, since they are only interesting cases.

Case 1. Assume f is the successor function. We define

F (x, y) ≡ y = x + 1 ∧ emp.

Then m = n + 1 iff s0, h0 |= F (n,m).
Case 2. Assume a primitive recursive function f(x, y) is defined by

f(0, y) = g(y),
f(x + 1, y) = h(x, y, f(x, y)).

By induction hypothesis for g and h we have inductive predicates G and H that
represent g and h respectively. We define the inductive predicate F by

F (x, y, z) ≡ x = 0 ∧ G(y, z) ∧ emp ∨ ∃x1.x = x1 + 1 ∧ F (x1, y, z1) ∗ H(x, y, z1, z).

Then F represents f , namely, f(n,m) = l iff s0, h0 |= F (n,m, l).
Let T (x, y, z) be Kleene’s T predicate, namely, for any numbers n,m, l,

T (n,m, l) is true iff the n-th partial recursive function with input m terminates
with the computation history coded by l.

Since T is primitive recursive (namely, its characteristic function is a primitive
recursive), there is an inductive predicate T ′ such that T (n,m, l) is true iff
s0, h0 |= T ′(n,m, l).

Hence the n-th partial recursive function with input m terminates iff
T ′(n,m, x) is satisfiable in SLA1. Hence the satisfiability in SLA1 would solve
the halting problem if the satisfiability in SLA1 were decidable. Consequently
the satisfiability in SLA1 is undecidable. ��

3 Presburger Arithmetic with Inductive Definitions

In this section, we define the system PI of Presburger arithmetic with positive
inductive definitions. The truth in this system is undecidable. We will use this
system as our starting point for constructing a decidable subsystem.

3.1 Presburger Arithmetic with Positive Inductive Definitions

Definition 3.1 (System PI). We assume the same first-order variables, the
same inductive predicate symbols, the same integer constants, the same arith-
metical terms, and the same arithmetical formulas as those of SLA1 presented
in Fig. 1. For PI, we define the following.

Decision Procedure for Separation Logic 429

φ :: = Λ | P (a) | φ ∧ φ.
Formulas Φ :: = ∃x.φ.
Definition Bodies Ψ :: = Φ | Ψ ∨ Ψ .
Inductive Definitions pred Pi(x) ≡ Ψ .

a is interpreted in Z. We define the truth of Λ by the standard model of integers.
We interpret an inductive predicate by the least fixed point in a usual way.

The truth of formulas in this system is undecidable for the following reason.
We can define multiplication as follows:

pred P (x, y, z) ≡ x = 0 ∧ z = 0 ∨ ∃x1z1.x = x1 + 1 ∧ P (x1, y, z1) ∧ z = z1 + y.

Then P (x, y, z) is true iff x × y = z is true. Since Presburger arithmetic with
multiplication is equivalent to Peano arithmetic, the truth of this system is
undecidable.

3.2 Decidable Subsystem DPI

We define a subsystem DPI of Presburger arithmetic with inductive definitions.
The idea is that we impose some restrictions on the inductive definitions so
that every inductive predicate defines some eventually periodic set. Since the
decidability proof of Presburger arithmetic relies on the fact that a definable set
is exactly an eventually periodic set, this restriction enables us to use the same
proof idea for its extension with inductive definitions.

We explain our ideas of restrictions. (1) We assume we have only single
induction (namely we do not use mutual induction). Moreover we assume we
have at most one induction case. These restrictions enable us to compute the
inductive predicates by iteration of the induction case to the base case. (2) When
we have more than one arguments of inductive predicates, the i-th argument
uses only the i-th arguments of recursive calls. For example, when the induction
case of P (x, y) has recursive calls P (x1, y1) and P (x2, y2), then x is computed
by using only x1 and x2, and y is computed by using only y1 and y2. (3) We
assume the induction case has some shape like ∃x1(x = x1 + c ∧ P (x1)). In this
case, by letting Q be the set represented by the base case, P represents the set
{x + nc | x ∈ Q,n ∈ N}, which is eventually periodic. We assume this shape of
induction case for some argument, for example, the j-th argument. (4) For the
other arguments (the i-th argument where i �= j), we assume we reach the fixed
point by applying the induction case once. For example, if the induction case for
P (x) is ∃x1(x ≥ x1 ∧ P (x1)), this restriction is satisfied.

Definition 3.2 (System DPI). The language of DPI is the same as that of PI
except inductive definitions. The inductive definitions of DPI are defined as those
of PI with the following restriction: every inductive definition has the shape

pred P (x) ≡ Λ, or pred P (x) ≡
∧

1≤i≤m

Λ0,i ∨ ∃z.
∧

1≤i≤m

Λi ∧
∧

1≤l≤L

P (zl)

430 M. Tatsuta et al.

where m is the arity of P , FV(Λ0,i) ⊆ {xi}, z ⊇ zl, there is j such that Λi is
either of xi = f(zi), xi ≥ f(zi), or xi ≤ f(zi) for all i �= j, and Λj is either of
the following:

(1) xj = f(zj) + c ∧ Λ′,
(2) xj ≥ f(zj) + c ∧ Λ′,
(3) xj ≤ f(zj) + c ∧ Λ′,
(4) a conjunction of the following forms with some integer constant n > 0:

Λ′, nxj = f(zj), nxj ≥ f(zj), or nxj ≤ f(zj),

where c is some integer constant, zj is z1j , . . . , zL
j , Λ′ is an arithmetical formula

such that FV(Λ′) ⊆ zj and Λ′[zj := z] is true for any z, f(zj) is a combination
of z1j , . . . , zL

j with max,min, defined by

f(zj) ::= zl
j | max(f(zj), f(zj)) | min(f(zj), f(zj)),

and f ’s may be different from each other in the conjunction of (4).

Note that in DPI, each inductive definition has at most one induction case, and
mutual inductive definitions are not allowed.

Example 3 (Arithmetical Part of Sorted List Predicate). Let sortllN be an
inductive predicate symbol. The arithmetical part sortllN of the predicate
sortll is inductively defined by

pred sortllN (y, z) ≡ y = 1 ∨ ∃y1z1.sortll
N (y1, z1) ∧ y = y1 + 1 ∧ z ≤ z1.

Example 4 (Arithmetical Part of AVL Tree Predicate). Let avlN be an inductive
predicate symbol. The arithmetical part avlN of the predicate avl is inductively
defined by

pred avlN (h) ≡ h = 0 ∨ ∃h1h2.avl
N (h1) ∧ avlN (h2)

∧ h = max(h1, h2) + 1 ∧ −1 ≤ h1 − h2 ≤ 1.

Definition 3.3. A set S of integers is defined to be eventually periodic if there
are some M ≥ 0, p1, p2 > 0 such that n ∈ S iff n + p1 ∈ S for all n ≥ M , and
n ∈ S iff n − p2 ∈ S for all n ≤ −M . Then we call the set (M,p1, p2)-periodic.

Lemma 3.4. If S �= ∅ is (M,p1, p2)-periodic, then {x | nx = y, y ∈ S} is
(M,p1, p2)-periodic for n > 0.

Proof. Let S′ be {x | nx = y, y ∈ S}. Assume x ∈ S′ and x ≥ M . There is y
such that nx = y and y ∈ S. Since y = nx ≥ x ≥ M and n(x+p1) = nx+np1 =
y + np1 ∈ S, we have x + p1 ∈ S′.

Assume x + p1 ∈ S′ and x ≥ M . There is y such that n(x + p1) = y and
y ∈ S. Since y − np1 = nx ≥ x ≥ M and nx = y − np1 ∈ S, we have x ∈ S′.

Similarly for x ≤ −M , x ∈ S′ iff x − p2 ∈ S′.
Hence S′ is (M,p1, p2)-periodic. ��

Decision Procedure for Separation Logic 431

Theorem 3.5 (Inductive Predicate Elimination). For every inductive
predicate P , there is a formula Λ equivalent to P (x) such that Λ does not contain
any inductive predicates.

Proof. Let

pred P (x) ≡
∧

1≤i≤m

Λ0,i ∨ Φ1,

Φ1 ≡ ∃z.
∧

1≤i≤m

Λi ∧
∧
l

P (zl).

Let x be (x1, . . . , xm), S be {x | P (x)}, Q be {x |
∧
i

Λ0,i}, Si be {xi | P (x)},

and Qi be {xi | Λ0,i}. We have Q = Q1 × . . . × Qm.
Since {f(zi) |

∧
l

zl
i ∈ X} = X, we have the following facts: {xi | xi =

f(zi) ∧
∧
l

zl
i ∈ X} = X, {xi | xi ≥ f(zi) ∧

∧
l

zl
i ∈ X} = X+, and {xi | xi ≤

f(zi) ∧
∧
l

zl
i ∈ X} = X−, where X+ is ∅ if X = ∅, {z | z ≥ min X} if minX

exists, Z otherwise, and X− is ∅ if X = ∅, {z | z ≤ max X} if max X exists, Z
otherwise.

Define F : p(Zm) → p(Zm) by F (X)=Q ∪ {x | Φ1[λx.(x ∈ X)]}. Then
S=

⋃∞
n=0 Fn(∅). We define Fj :p(Z)→p(Z) by Fj(X)=Qj∪{xj | Λj∧

∧
l

zl
j ∈ X}.

By the above facts, the i-th element of Fn(∅) is Qi, Qi+, or Qi− for all i �= j
and n > 1. Hence S = S1 × . . . × Sm where Si = Qi, Qi+, or Qi− for all i �= j,
and Sj =

⋃∞
n=0 Fn

j (∅), since the j-th value xj depends on only the previous j-th
values zj in the definition of P .

It is known that a set definable in Presburger arithmetic is exactly an eventu-
ally periodic set [6]. Hence each Qj is eventually periodic. Let Qj be (M,p1, p2)-
periodic.

We show Sj is eventually periodic by considering cases by the cases (1) to
(4) in the restriction 2 according to the shape of Λj .

We have the fact (a) : {f(zj) |
∧
l

zl
j ∈ X ∧ Λ′} = X. We can show it as

follows: take a in the righthand side. By taking zl
j to be a, since Λ′[zj := a] is

true and f(zj) = a, we have a is in the lefthand side.
The case (1). Λj is xj = f(zj)+c∧Λ′. We have Fj(X) = Qj ∪{x+c | x ∈ X}

and Sj = {x+nc | x ∈ Qj , n ∈ N}. Let Ri be {x ∈ Qj | x ≡ i (mod c)}. Assume
c > 0. Define R′

i as ∅ if Ri = ∅, {ki + nc | n ∈ N} if Ri has the minimum
ki, and {x | x ≡ i (mod c)} otherwise. Then Sj =

⋃
0≤i<c R′

i. Then Sj is
(M ′, c, p2)-periodic where M ′ = max0≤i<c(M, |ki|). Similarly, if c < 0 then Sj is
(M ′, p1,−c)-periodic where M ′ = max0≤i<c{M, |ki| | Ri has the maximum ki}.
If c = 0, then Sj = Qj and Sj is (M,p1, p2)-periodic.

432 M. Tatsuta et al.

The case (2). Λj is xj ≥ f(zj) + c ∧ Λ′. We have Fj(X) = Qj ∪ {x | x ≥
x′ + c, x′ ∈ X}. If Qj = ∅, then Sj = ∅. Assume Qj �= ∅. Sj is Z if Qj does
not have any minimum. Assume Qj has the minimum. If c < 0 then Qj = Z. If
c ≥ 0 then Sj is Qj ∪ {x | x ≥ min Qj + c}. Hence either is eventually periodic.

The case (3). Λj is xj ≤ f(zj)+c∧Λ′. This case is shown in a similar manner
to the case (2).

The case (4). Λj is a conjunction of the forms Λ′, nxj = f1(zj), nxj ≥ f2(zj),
and nxj ≤ f3(zj). First we show Sj is (M,p1, p2)-periodic when Λj is either
nxj = f(zj) ∧ Λ′, nxj ≥ f(zj) ∧ Λ′, or nxj ≤ f(zj) ∧ Λ′.

Case (4).1. Λj is nxj = f(zj)∧Λ′. If Qj = ∅, then Sj = ∅ and it is (M,p1, p2)-
periodic. If Qj �= ∅, by Lemma 3.4 and the fact (a), Sj is (M,p1, p2)-periodic.

Case (4).2. Λj is nxj ≥ f(zj) ∧ Λ′. If Qj = ∅, then Sj = ∅. Assume Qj �= ∅.
If Qj does not have any minimum, Sj = Z. Assume Qj has the minimum k.
If X has the minimum, Fj(X) = Qj ∪ {x | x ≥ �(min X)/n�}. By this, Sj is
{x | x ≥ k} if k > 0 and n = 1, {x | x > 0} if k > 0 and n > 1, {x | x ≥ 0}
if k = 0, {x | x ≥ k} if k < 0. Moreover k ≥ −M . Hence either is (M,p1, p2)-
periodic.

Case (4).3. Λj is nxj ≤ f(zj) ∧ Λ′. In a similar way to the case (4).2, we can
show Sj is (M,p1, p2)-periodic.

We have shown Sj is (M,p1, p2)-periodic when Λj is either nxj = f(zj)∧Λ′,
nxj ≥ f(zj) ∧ Λ′, or nxj ≤ f(zj) ∧ Λ′.

We show the general case when Λj is
∧
k

Λ′
k where Λ′

k is either nxj = f1(zj)∧

Λ′, nxj ≥ f2(zj)∧Λ′, or nxj ≤ f3(zj)∧Λ′. Let F ′
k(X) = Qj∪{xj | Λ′

k∧
∧
l

zl
j ∈ X}

and S′
k be the least fixed point of F ′

k. Since the least fixed point of
⋂

k F ′
k(X) is the

intersection of the least fixed points of F ′
k(X) for all k, we have Sj =

⋂
k S′

k. We
have the fact: if Xi is (M,p1, p2)-periodic for all i, then

⋂
i Xi is also (M,p1, p2)-

periodic. By this fact, since S′
k is (M,p1, p2)-periodic for all k, Sj is (M,p1, p2)-

periodic.
We have shown that the truth of P (x1, . . . , xm) is equivalent to

∧
1≤i≤m

(xi ∈

Qi)∨xj ∈ (Sj −Qj)∧
∧

1≤i≤m,j �=i

(xi ∈ Si) and each of Qi, Qj , Si, Sj is eventually

periodic. Since an eventually periodic set is definable by a Presburger formula
[6], we have a formula that does not contain any inductive predicates and is
equivalent to P (x1, . . . , xm). ��

The decision procedure for DPI is obtained by computing the above M,p1, p2
and Sj according to the decidability proof.

4 Decidable Subsystem SLA2

In this section we define a decidable subsystem SLA2 of the system SLA1.

Decision Procedure for Separation Logic 433

4.1 Syntax of SLA2

First we define a numeric projection from SLA1 to PI. Next we define a spatial
projection from SLA1 to the symbolic-heap system presented in [4] (we call it
SL).

We define the system SL. The difference from the system in [4] is that the
number of elements in a cell is fixed to be NC in SL and SL has only single
induction (namely, it does not have mutual induction).

Definition 4.1 (System SL). Pointer terms t ::= x | nil.
Pure formulas Π ::= true | false | t = t | t �= t | Π ∧ Π.
Spatial formulas Σ ::= emp | t �→ (t1, . . . , tNC) | P (t) | Σ ∗ Σ.
Symbolic Heaps φ ::= Π ∧ Σ.
Definition Clauses Φ ::= ∃x.φ.
Definition Bodies Ψ ::= Φ | Ψ ∨ Ψ .
Inductive Definitions pred P (x) ≡ Ψ .

We assume inductive predicate symbols PN and PS for each inductive pred-
icate symbol P . We write xN and xS for the integer variables and the pointer
variables among the variables x respectively.

Definition 4.2 (Projection). The numeric projection (Σ)N is defined by
(emp)N ≡ (t �→ (u))N ≡ true, (P (t,a))N ≡ PN (a), and (Σ1 ∗ Σ2)N ≡
(Σ1)N ∧ (Σ2)N .

(φ)N is defined by (Π ∧ Σ ∧ Λ)N ≡ (Σ)N ∧ Λ.
(Φ)N is defined by (∃x.φ)N ≡ ∃xN .(φ)N .
(Ψ)N is defined by (Ψ1 ∨ Ψ2)N ≡ (Ψ1)N ∨ (Ψ2)N .
The spatial projection (u)S is defined by (t)S ≡ t and (a)S ≡ nil.
The spatial projection (Σ)S is defined by (emp)S ≡ emp, (t �→ (u))S ≡ t �→

((u)S), (P (t,a))S ≡ PS(t), and (Σ1 ∗ Σ2)S ≡ (Σ1)S ∗ (Σ2)S .
(φ)S is defined by (Π ∧ Σ ∧ Λ)S ≡ Π ∧ (Σ)S .
(Φ)S is defined by (∃x.φ)S ≡ ∃xS .(φ)S .
(Ψ)S is defined by (Ψ1 ∨ Ψ2)S ≡ (Ψ1)S ∨ (Ψ2)S .

We give the spatial projections of the predicates sortll and avl in Sect. 2.1.
Their numerical projections are already given in Sect. 3.

Example 5 (Spatial Part of Sorted Lists).

pred sortllS(x) ≡ x �→ (nil,nil) ∨ ∃x1.x �→ (nil, x1) ∗ sortllS(x1).

Example 6 (Spatial Part of AVL Trees).

pred avlS(x) ≡ emp ∧ x = nil ∨ ∃x1x2.x �→ (x1, x2) ∗ avlS(x1) ∗ avlS(x2).

Definition 4.3 (System SLA2). The language of SLA2 is the same as that
of SLA1 except inductive definitions. The inductive definitions of SLA2 are
those of SLA1 with the following two restrictions. Let the inductive definition
pred P (x) ≡ Ψ.

434 M. Tatsuta et al.

(1) Its numeric projection pred PN (xN) ≡ (Ψ)N is an inductive definition
of DPI.

(2) If the induction case has more than one occurrences of P , then the spatial
projection of Ψ has the following form

(Ψ)S ≡ ψ0 ∨ ∃z.Π ∧ ∗k∈Kwk �→ (tk) ∗ ∗lP
S(zl),

where ψ0 is a disjunction of the base cases, zl ⊆ z, the variables in (zl)l are
mutually distinct and do not appear in Π or {wk | k ∈ K}.

We explain the condition (2). Let the induction case with more than one
occurrences of P be Φ. It says the argument zl of P are distinct existential
variables and they do not appear in Π or {wk | k ∈ K}. Hence for the existential
variables, we can choose arbitrary values such that PS(x) is satisfiable by taking
x to these values. In particular, we can choose some values such that the base case
is true. Hence (Φ)S(T ′) is satisfiable for some unfolding tree T ′ of height 1, when
(Φ)S(T) is satisfiable for some unfolding tree T of height ≥ 1. Consequently The
restriction (2) guarantees that if an unfolding tree T of P is not linear, then the
base pair that interprets P unfolded by T is determined to be two possibilities
depending on the height 0 or ≥ 1 of T .

Example 7 (Sorted Lists). The predicate sortll in Sect. 2.1 can be defined
in SLA2 as its spatial projection sortllS(x) satisfies the restriction (2) (the
condition trivially holds since it does not apply) and its numeric projection
sortllN (x) is in DPI.

Example 8 (AVL Trees). The predicate avl in Sect. 2.1 can be defined in SLA2
as its spatial projection avlS(x) satisfies the restriction (2) and its numeric
projection avlN (x) is in DPI.

4.2 Unfolding Tree

This section defines unfolding trees, introduced in [7], in our notation. We use
unfolding trees to synchronize the spatial part and the numeric part of a given
symbolic heap in the proof of the decidability for SLA2. In general we can define
unfolding trees for any logical system with inductive definitions including SLA1,
SLA2, DPI, and SL.

Definition 4.4 (Unfolding Tree). Suppose the inductive definition of P

pred P (x) ≡
∨

1≤i≤I

Φi ∨ Φ[P, . . . , P]

where Φi is a base case and the induction case Φ[P, . . . , P] contains n occurrences
of P . An unfolding tree T of P is defined by T ::= i | (T1, . . . , Tn) where 1 ≤ i ≤ I.

An unfolding tree T of P specifies how we unfold the inductive predicate P . It
is described as follows.

Decision Procedure for Separation Logic 435

Definition 4.5. Suppose pred P (x) ≡
∨

1≤i≤I

Φi ∨ Φ[P, . . . , P].

For an unfolding tree T of P , P (T) is defined by:

P (i) ≡ λx.Φi,

P ((T1,...,Tn)) ≡ λx.Φ[P (T1), . . . , P (Tn)].

We write T (i, k) for (. . . (i) . . .) where . . . denotes k parentheses. T (i, k) is the
unfolding tree of length k with the leaf i and n = 1.

The next proposition guarantees the synchronization of the spatial and
numeric projections by an unfolding tree.

Proposition 4.6. s, h |= P (T)(t,a) in SLA2 for some h iff s, h |= PS(T)(t) in
SL for some h and s |= PN(T)(a) in DPI.

Proof. By induction on T . ��
The next proposition says the truth of P is that of P unfolded by some

unfolding tree.

Proposition 4.7. s, h |= P (T)(x) for some T iff s, h |= P (x).

Proof. The only if part is proved by P k(x) where k is the height of T . The if
part is shown by the definition of the truth. ��

4.3 Base Pairs

In this section, we define base pairs adopted from [4]. We use base pairs to
characterize unfolding trees T such that P (T)(x) is satisfiable. For this purpose,
we define a base pair (B,Π) for P (T)(t) so that (B,Π) is satisfiable iff P (T)(t)
is satisfiable.

Compared with the base pairs in [4], [4] interprets a symbolic heap with
inductive predicates by a set of base pairs. On the other hand we will interpret a
symbolic heap φ̌ without any inductive predicates by a single base pair. A single
base pair can work since φ̌ does not contain disjunction.

Since we want the set of equivalence classes of base pairs to be finite, we
have some notational difference with [4]: While [4] uses a multiset V for a base
pair (V,Π), we use a set B for a base pair (B,Π). For free variables, [4] uses
λx.(V,Π), but we implicitly use x. (V,Π) is satisfiable when Π is satisfiable in
[4], but our (B,Π) is satisfiable when Π ∧ ⊗B is satisfiable.

Definition 4.8 (Base Pair). We call (B,Π) a base pair when Π is a pure
formula, and B is a set of pointer variables. For a pure formula Π, Π is defined
to be consistent if Π �� false.

436 M. Tatsuta et al.

For notation of multisets, we write {e[x] |M x ∈M V ∧. . .} a multiset counting
repetition of e[x] where each x is taken from the multiset V counting repetition.

We define [t]Π as {u | Π � u = t}. It is an equivalence class containing t by
the equality of Π.

For a multiset V of terms and a pure formula Π, we define V/Π as
{[t]Π |M t ∈M V }. It is a multiset of equivalence classes by the equality of
Π. V/Π is called sound when V/Π does not have any duplicates and does not
have any equivalence class containing nil.

Definition 4.9 (Satisfiable Base Pair). A base pair (B,Π) is defined to be
satisfiable if Π is consistent and B/Π is sound.

We define ⊥ as (∅, false). For a multiset V of terms and a pure formula Π,
we define (V,Π) as (V,Π) if Π is consistent and B/Π is sound. Otherwise we
define it as ⊥.

For a multiset V of terms, we define the multiset V [x := t]M by replacing x
by t counting repetition. We use � for the multiset union.

We define

Π1 ∧ (V,Π) = (V,Π1 ∧ Π),
(V,Π)[x := t]M = (V [x := t]M ,Π[x := t]),
(V1,Π1) ∗ (V2,Π2) = (V1 � V2,Π1 ∧ Π2).

Definition 4.10. We define (V1,Π1) � (V2,Π2) by Π1 ↔ Π2 and V1/Π1 =
V2/Π2. Then we say (V1,Π1) and (V2,Π2) are equivalent.

We write Π ↔x Π ′ when Π → Π0 iff Π ′ → Π0 for every Π0 such that
FV(Π0) ⊆ x and Π0 is either true, false, t1 = t2, or t1 �= t2. We define Π − x as
some Π ′ such that FV(Π ′) ⊆ FV (Π) − x and Π ′ ↔x Π.

For a set B of variables, we define ⊗B as∧
{t �= u | t, u ∈ B, t �≡ u} ∧

∧
{t �= nil | t ∈ B}.

We define a language that contains P (T)(t). Since P (T)(t) is obtained from
P (t) by unfolding inductive predicates, it does not contain any inductive predi-
cates but it may have nested existential quantifiers. We use the name with ˇ for
the corresponding syntactical category.

Spatial formulas Σ̌ ::= emp | t �→ (t1, . . . , tNC) | ∃x.φ̌ | Σ̌ ∗ Σ̌.
Symbolic Heaps φ̌ ::= Π ∧ Σ̌.
We define [[]] for this language. We define [[Σ̌]] by:

[[emp]] = (∅, true),
[[t �→ (t1, . . . , tNC)]] = ({t}, true),

[[∃x.φ̌]] = (B − x, (Π ∧ ⊗B) − x),

[[Σ̌1 ∗ Σ̌2]] = [[Σ̌1]] ∗ [[Σ̌2]].

Decision Procedure for Separation Logic 437

We define [[φ̌]] by [[Π ∧ Σ̌]] = Π ∧ [[Σ̌]].
Note that [[φ̌]] is (B,Π) such that B is a set of variables, FV(B),FV(Π) ⊆

FV(φ̌), and (B,Π) is satisfiable if (B,Π) �= ⊥.
For a set x of variables, we write βx for the set of equivalence classes of

base pairs with its free variables in x by �. We will often write (B,Π) for the
equivalence class containing (B,Π). For example, we will write (B,Π) ∈ X ⊆ βx

when the equivalence class containing (B,Π) is in X. Note that [[φ̌]] ∈ βFV(φ̌).
The next lemma is useful to calculate [[]] by substitution. We write φ̌[φ̌1] to

explicitly display an occurrence of φ̌1 in φ̌.

Lemma 4.11. (1) [[φ̌[x := t]]] � [[φ̌]][x := t]M .
(2) If [[φ̌1]] � [[φ̌2]], then [[φ̌[φ̌1[x := t]]]] � [[φ̌[φ̌2[x := t]]]].

Proof. (1) By induction on φ̌.
(2) By induction on φ̌ and (1). ��
We have the following lemma similar to Lemmas 3.7 and 3.8 in [4].

Lemma 4.12. (1) If [[φ̌]] = (B,Π) and s |= Π ∧ ⊗B, then there is h such that
s, h |= φ̌ and s(B) ⊆ Dom(h), and moreover we can freely choose values in
Dom(h) − s(B).

(2) If s, h |= φ̌ and [[φ̌]] = (B,Π), then s |= Π ∧ ⊗B and s(B) ⊆ Dom(h).

Proof. Each of (1) and (2) is proved by induction on φ̌. ��
The following proposition is an instance of the theorem 3.9 in [4] in our terms.

It says a base pair characterizes the satisfiability.

Proposition 4.13. φ̌ is satisfiable iff [[φ̌]] is satisfiable.

Proof. By Lemma 4.12 (1) and (2). ��

4.4 Decidability in SLA2

This section provides the decision procedure of the satisfiability in SLA2 and
proves its correctness.

Our ideas of our decision algorithm are as follows. (1) We list up unfold-
ing trees T such that [[PS(T)(t)]] (the spatial part unfolded by T) is satisfiable.
(2) The set {T | [[PS(T)(t)]] satisfiable} has a periodic structure for the follow-
ing reason. In the case where the induction case has only one occurrence of
the inductive predicate, since the set of base pairs is finite, we have a periodic
structure. In the case where the induction case has more than one occurrences
of the inductive predicate, the satisfiability for T of height ≥ 1 is the same as
that for T of height 1 by the restriction (2) of SLA2. (3) In the case where the
induction case has only one occurrence of the inductive predicate, according to
the set X = {T | [[PS(T)

1 (t)]] satisfiable}, we make new inductive definitions for
inductive predicates P1,i so that for any unfolding tree T ′, P

(T ′)
1,i is equivalent

438 M. Tatsuta et al.

to P
N(T)
1 for some T ∈ X. (4) We decide the numeric part of these inductive

predicates P1,i by the decidability of DPI.
We will use the next two lemmas to define our decision procedure for SLA2,

which can be straightforwardly shown.

Lemma 4.14. For an induction case Φ[P] with one occurrence of P in DPI,
Φn[P] is an induction case of P in DPI for n > 0.

We write T̃ to the set of leaves of an unfolding tree T .

Lemma 4.15. Assume pred P2(x) ≡
∨

1≤i≤I2

Φ2,i ∨Φ2[P2, P2] in SLA2. If ΦS
2,i is

satisfiable for all i ∈ ˜(T1, T2) ∪ ˜(T3, T4), then [[PS((T1,T2))
2 (x)]] = [[PS((T3,T4))

2 (x)]].

The next theorem is one of our main results.

Theorem 4.16. The satisfiability of symbolic heaps is decidable in SLA2.

Proof. For simplicity, we discuss only the case when only P1 and P2 are inductive
predicates, the induction case of P1 has one occurrence of P1, and the induction
case of P2 has two occurrences of P2. For simplicity, we also assume P1 and P2

take one pointer variable and one integer variable.

The decision procedure for the satisfiability of a given symbolic heap in SLA2
is presented in Algorithm 1, where the input is the following symbolic heap:

φ ≡ Π ∧ ∗k∈Kwk �→ (uk) ∗ ∗1≤i≤IP1(t1,i, a1,i) ∗ ∗1≤j≤JP2(t2,j , a2,j) ∧ Λ,

with the inductive definitions

pred P1(x, y) ≡
∨

1≤i≤I1

Φ1,i ∨ Φ1[P1],

pred P2(x, y) ≡
∨

1≤i≤I2

Φ2,i ∨ Φ2[P2, P2],

where x is a pointer variable and y is an integer variable.
Note. In the algorithm, for 1≤i≤I, we use (li, ni) to represent ni-times appli-

cation of the induction case to the li-th base case. For 1≤j≤J , we use 1≤mj≤I2
to represent the mj-th base case and (r, r) to represent the unfolding tree of
height 1 with the r-th base case.

First we will show that there exist pi < qi in the step 1. By definition,

(Φn+1
1 [λx.Φ1,i])S = (Φ1[λx.Φn

1 [λx.Φ1,i]])S .

Hence, by Lemma 4.11 (2), if [[Φn
1 [λx.Φ1,i]]] � [[Φn′

1 [λx.Φ1,i]]], then
[[(Φn+1

1 [λx.Φ1,i])S]] � [[(Φn′+1
1 [λx.Φ1,i])S]]. Since the equivalence class contain-

ing [[(Φn
1 [λx.Φ1,i])S]] is in βx for n = 0, 1, 2, . . ., and βx is finite, we have the

same occurrences of some equivalence class in the sequence. Hence we have some

Decision Procedure for Separation Logic 439

Algorithm 1. Decision Procedure for SLA2
input : φ
output: Yes or No
Step 1. Compute pi, qi for each 1 ≤ i ≤ I1 as follows. Choose i. Compute the
sequence [[(Φn

1 [λx.Φ1,i])
S]] for n = 0, 1, 2, Take the smallest pi, qi such that

pi < qi, and the pi-th occurrence and the qi-th occurrence are equivalent.
Set I3 to be {i | Φ2,i satisfiable}. Set C to be
{(l1, n1, . . . , lI , nI , m1, . . . , mJ) | 1 ≤ li ≤ I1, 0 ≤ ni < qi, 1 ≤ mj ≤ I2 ∨ (mj =
(r, r) ∧ r ∈ I3)}.

Step 2. If C is empty, then return No and stop. Otherwise take some new
element in C and go to the next step.

Step 3. Check whether the following formula is satisfiable:

[[Π ∧ ∗k∈Kwk �→ ((uk)S) ∗ ∗1≤i≤IP
S(T (li,ni))
1 (t1,i) ∗ ∗1≤j≤JP

S(mj)

2 (t2,j)]].

If it is not satisfiable, then go to the step 2 for the next loop.
Step 4. For each 1 ≤ i ≤ I, by Lemma 4.14 and Theorem 3.5, define Λ1,i as
some arithmetical formula equivalent to P1,i(a1,i) where P1,i is defined by

pred P1,i(y) ≡ (Φni
1 [λy.Φ1,li])

N ∨ (Φqi−pi
1 [P1])

N [PN
1 := P1,i].

For each 1 ≤ j ≤ J , by Theorem 3.5, define Λ2,j as (Φ2,mj)
N [y := a2,j] if

1 ≤ mj ≤ I2, and some arithmetical formula equivalent to
(Φ2[P2, P2])

N [PN
2 := P3][y := a2,j] where P3 is defined by

pred P3(y) ≡
∨
i∈I3

ΦN
2,i ∨ (Φ2[P2, P2])

N

if mj = (r, r).

Step 5. Check if the following formula is satisfiable
∧

1≤i≤I

Λ1,i ∧
∧

1≤j≤J

Λ2,j ∧ Λ

If it is true, then return Yes and stop.
Step 6. Go to the step 2 for the next loop.

n < n′ such that [[(Φn
1 [λx.Φ1,i])S]] and [[(Φn′

1 [λx.Φ1,i])S]] are equivalent. We can
take pi, qi as the least ones among these n, n′.

Next, by the following (1) and (2), we will show that the algorithm returns
Yes iff φ is satisfiable.

(1) We will show that the algorithm returns Yes if φ is satisfiable.
Assume φ is satisfiable.
Let x = x1,1 . . . x1,I1x2,1 . . . x2,I2 , y = y1,1 . . . y1,I1y2,1 . . . y2,I2 , t =

t1,1 . . . t1,I1t2,1 . . . t2,I2 , and a = a1,1 . . . a1,I1a2,1 . . . a2,I2 . Define the predicate
P by

P (x,y) ≡ Π ∧ ∗k∈Kwk �→ (uk) ∗ ∗1≤i≤IP1(x1,i, y1,i) ∗ ∗1≤j≤JP2(x2,j , y2,j).

Since P (t,a) and φ are equivalent, P (t,a) is satisfiable. By Proposition 4.7 we
have some T such that P (T)(t,a) is satisfiable. By Proposition 4.6, both PS(T)(t)
and PN(T)(a) are satisfiable.

440 M. Tatsuta et al.

Let T be (T1,1, ..., T1,I , T2,1, ..., T2,J). Let

φ′≡ Π∧ ∗k∈K wk �→ (uk) ∗ ∗1≤i≤IP
(T1,i)
1 (t1,i, a1,i) ∗ ∗1≤j≤JP

(T2,j)
2 (t2,j , a2,j)

Then P (T)(t,a) is φ′, PS(T)(t) is φ′S , and PN(T)(a) is φ′N . Hence both φ′S and
φ′N are satisfiable. By Proposition 4.13, [[φ′S]] is satisfiable.

Let T1,i be T (li, n′
i). Take ni such that n′

i = ni+k(qi−pi) for some k ≥ 0 and
ni < qi − pi. Since [[PS(T1,i)

1 (x)]] = [[(Φn′
i

1 [λx.Φ1,li])
S]], and [[(Φpi

1 [λx.Φ1,li])
S]] �

[[(Φqi
1 [λx.Φ1,li])

S]] by the step 1, we have [[PS(T1,i)
1 (x)]] � [[PS(T (li,ni))

1 (x)]].
Define mj as T2,j if 1 ≤ T2,j ≤ I2 and (r, r) if T2,j is (T1, T2) for some T1, T2

and r is arbitrarily chosen from ˜(T1, T2). Since P
S(T2,j)
2 (t2,j) is satisfiable, ΦS

2,i is

satisfiable for all i ∈ ˜(T1, T2). Since [[PS((T1,T2))
2 (x)]] = [[PS((r,r))

2 (x)]] by Lemma
4.15, [[PS(T2,j)

2 (x)]] = [[PS(mj)
2 (x)]].

Since [[PS(T1,i)
1 (x)]] � [[PS(T (li,ni))

1 (x)]], [[PS(T2,j)
2 (x)]] = [[PS(mj)

2 (x)]], and
[[φ′S]] is satisfiable,

[[Π ∧ ∗k∈Kwk �→ ((uk)S) ∗ ∗1≤i≤IP
S(T (li,ni))
1 (t1,i) ∗ ∗1≤j≤JP

S(mj)
2 (t2,j)]]

is satisfiable by Lemma 4.11 (2). Hence we go from the step 3 to the step 4.
Since φ′N is satisfiable, we have s such that s |= φ′N . Hence s |=

P
N(T1,i)
1 (a1,i), s |= P

N(T2,j)
2 (a2,j), and s |= Λ. Since P

N(T (li,k(qi−pi)))
1 (y) ≡

P k
1,i(y), we have P

N(T1,i)
1 (y) → P1,i(y). Therefore P

N(T1,i)
1 (a1,i) → Λ1,i by the

step 4. If 0 ≤ T2,j ≤ I2, then P
N(T2,j)
2 ≡ Λ2,j by the step 4. If T2,j = (T1, T2),

then P
N(T2,j)
2 (a2,j) → (Φ2[P2, P2])N [PN

2 := P3][y := a2,j] and P
N(T2,j)
2 → Λ2,j

by the step 4. Hence we have s |= Λ1,i and s |= Λ2,j . Hence s |=
∧

1≤i≤I

Λ1,i ∧
∧

1≤j≤J

Λ2,j ∧ Λ. Hence the algorithm returns Yes at the step 5.

(2) We will show that φ is satisfiable if the algorithm returns Yes.
We have some (l1, n1, . . . , lI , nI ,m1, . . . ,mJ) such that

[[Π ∧ ∗k∈Kwk �→ ((uk)S) ∗ ∗1≤i≤IP
S(T (li,ni))
1 (t1,i) ∗ ∗1≤j≤JP

S(mj)
2 (t2,j)]]

is satisfiable by the step 3, and
∧

1≤i≤I

Λ1,i ∧
∧

1≤j≤J

Λ2,j ∧ Λ is satisfiable by the

step 5.
Then we have s such that s |=

∧
1≤i≤I

Λ1,i ∧
∧

1≤j≤J

Λ2,j ∧ Λ. Then s |= Λ1,i.

Since Λ1,i ↔ P1,i(a1,i), we have some ki ≥ 0 such that s |=
P

N(T (li,ni+ki(qi−pi)))
1 (a1,i). Define T1,i as T (li, ni + k(qi − pi)). Then s |=

P
N(T1,i)
1 (a1,i).

We define T2,j such that s |= P
N(T2,j)
2 (a2,j) by cases according to mj .

Case 1. 1 ≤ mj ≤ I2. We define T2,j as mj . Then s |= P
N(T2,j)
2 (a2,j).

Decision Procedure for Separation Logic 441

Case 2. mj = (r, r). Since Λ2,j ↔ (Φ2[P2, P2])N [y := a2,j], there are T3,j , T4,j

such that Φ2,i is satisfiable for all i ∈ ˜(T3,j , T4,j), and s |= (Φ2[P, P])N [P :=
P

N(T3,j)
2 , P

N(T4,j)
2][y := a2,j], which is P

N((T3,j ,T4,j))
2 (a2,j). Define T2,j as

(T3,j , T4,j). Then s |= P
N(T2,j)
2 (a2,j).

Let

φ′≡ Π∧ ∗k∈K wk �→ (uk) ∗ ∗1≤i≤IP
(T1,i)
1 (t1,i, a1,i) ∗ ∗1≤j≤JP

(T2,j)
2 (t2,j , a2,j)∧Λ.

Then we have s |= φ′N .
[[PS(T1,i)

1 (x)]] � [[PS(T (li,ni))
1 (x)]] by the step 1.

We can show that [[PS(T2,j)
2 (x)]] = [[PS(mj)

2 (x)]] as follows. If 1 ≤ mj ≤ I2,
then T2,j = mj and the claim holds. Assume mj = (r, r). Then T2,j is (T3,j , T4,j).
Since [[PS(T2,j)

2 (x)]] = [[PS((r,r))
2 (x)]] by Lemma 4.15, we have the claim.

Since [[PS(T1,i)
1 (x)]] � [[PS(T (li,ni))

1 (x)]], [[PS(T2,j)
2 (x)]] = [[PS(mj)

2 (x)]], and

[[Π ∧ ∗k∈Kwk �→ ((uk)S) ∗ ∗1≤i≤IP
S(T (li,ni))
1 (t1,i) ∗ ∗1≤j≤JP

S(mj)
2 (t2,j)]]

is satisfiable, by Lemma 4.11 (2),

[[Π ∧ ∗k∈Kwk �→ ((uk)S) ∗ ∗1≤i≤IP
S(T1,i)
1 (t1,i) ∗ ∗1≤j≤JP

S(T2,j)
2 (t2,j)]]

is satisfiable. Namely [[φ′S]] is satisfiable. By Proposition 4.13, φ′S is satisfiable.
Hence we have s′, h such that s′, h |= φ′S .

We define s′′ by s′′(x) = s′(x) for a pointer variable x and s′′(y) = s(y) for
an integer variables y. We have s′′, h |= φ′S .

Let x = x1,1 . . . x1,I1x2,1 . . . x2,I2 , y = y1,1 . . . y1,I1y2,1 . . . y2,I2 , t =
t1,1 . . . t1,I1t2,1 . . . t2,I2 , and a = a1,1 . . . a1,I1a2,1 . . . a2,I2 . Define the predicate
P by

P (x,y) ≡ Π ∧ ∗k∈Kwk �→ (uk) ∗ ∗1≤i≤IP1(x1,i, y1,i) ∗ ∗1≤j≤JP2(x2,j , y2,j).

Define T as (T1,1, ..., T1,I , T2,1, ..., T2,J). Then P (T)(t,a) is φ′, PS(T)(t) is φ′S ,
and PN(T)(a) is φ′N .

Since

s′′, h |= PS(T)(t),

s′′ |= PN(T)(a),

by Proposition 4.6 we have some h′ such that

s′′, h′ |= P (T)(t,a).

Namely s′′, h′ |= φ′. Hence s′′, h′ |= φ. ��

442 M. Tatsuta et al.

5 Conclusion

We have proved that the satisfiability of symbolic heaps in SLA1 system with
inductive definitions and Presburger arithmetic without any restrictions is unde-
cidable. We have proposed a decidable symbolic-heap subsystem SLA2 with
inductive definitions and Presburger arithmetic with some restrictions, and pro-
vided its decision algorithm as well as its correctness proof. To support this
result, we have also defined a related decidable subsystem DPI of Presburger
arithmetic and inductive definitions with some restrictions.

We have imposed a significant restriction on SLA2 for the case when the
unfolding trees becomes non-linear. SLA2 supports AVL trees, but does not
support sorted AVL trees because the minimum values and the maximum values
interact. Future work could relax the restrictions by using semilinear sets so that
it supports a wider class of data structures. We have not investigated pointer
arithmetic. An extension of our results to pointer arithmetic could be another
future work.

Acknowledgments. This work is partially supported by MoE Tier-2 grant
MOE2013-T2-2-146.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 9

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005). doi:10.1007/11575467 5

3. Bozga, M., Iosif, R., Perarnau, S.: Quantitative separation logic and programs with
lists. J. Autom. Reason. 45(2), 131–156 (2010)

4. Brotherston, J., Fuhs, C., Gorogiannis, N., Perez, J.N.: A decision procedure for
satisfiability inseparation logic with inductive predicates. In: Proceedings of CSL-
LICS 2014 (2014). Article 25

5. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties viauser-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

6. Enderton, H.B.: A Mathematical Introduction to Logic, 2 edn. Academic Press
(2000)

7. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 2

8. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive sep-
aration logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 201–218. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11936-6 15

9. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 54

http://dx.doi.org/10.1007/978-3-540-30538-5_9
http://dx.doi.org/10.1007/11575467_5
http://dx.doi.org/10.1007/978-3-642-38574-2_2
http://dx.doi.org/10.1007/978-3-319-11936-6_15
http://dx.doi.org/10.1007/978-3-319-11936-6_15
http://dx.doi.org/10.1007/978-3-642-39799-8_54

Decision Procedure for Separation Logic 443

10. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-08867-9 47

11. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan,
C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg (2013).
doi:10.1007/978-3-319-03542-0 7

12. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of Seventeenth Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS2002), pp. 55–74 (2002)

13. Brotherston, J., Gorogiannis, N., Kanovich, M., Rowe, R.: Model checking for
symbolic-heap separation logic with inductive predicates. In: Proceedings of POPL-
43, pp. 84–96 (2016)

http://dx.doi.org/10.1007/978-3-319-08867-9_47
http://dx.doi.org/10.1007/978-3-319-03542-0_7

Completeness for a First-Order Abstract
Separation Logic

Zhé Hóu(B) and Alwen Tiu

Nanyang Technological University, Singapore, Singapore
{zhe.hou,atiu}@ntu.edu.sg

Abstract. Existing work on theorem proving for the assertion language
of separation logic (SL) either focuses on abstract semantics which are
not readily available in most applications of program verification, or on
concrete models for which completeness is not possible. An important
element in concrete SL is the points-to predicate which denotes a sin-
gleton heap. SL with the points-to predicate has been shown to be non-
recursively enumerable. In this paper, we develop a first-order SL, called
FOASL, with an abstracted version of the points-to predicate. We prove
that FOASL is sound and complete with respect to an abstract seman-
tics, of which the standard SL semantics is an instance. We also show
that some reasoning principles involving the points-to predicate can be
approximated as FOASL theories, thus allowing our logic to be used for
reasoning about concrete program verification problems. We give some
example theories that are sound with respect to different variants of
separation logics from the literature, including those that are incompat-
ible with Reynolds’s semantics. In the experiment we demonstrate our
FOASL based theorem prover which is able to handle a large fragment of
separation logic with heap semantics as well as non-standard semantics.

1 Introduction

Separation Logic (SL) is widely used in program verification and reasoning about
memory models [29,31]. SL extends the traditional Hoare Logic with logical con-
nectives ∗,−∗ from the logic of Bunched Implications (BI). These new connec-
tives in BI provide an elegant way to reason about resources locally, enabling
analyses of large scale programs. Current work on SL can be divided into two
categories: one on the abstract separation logics and the other on the concrete
ones. On the abstract side there has been study on BI and its Boolean vari-
ant BBI [23,28]. Closely related are abstract separation logic and its neigh-
bours [9,22]. Abstract separation logics lack the interpretation of the points-to
predicate �→, which represents a single memory cell. In this setting, the seman-
tics is just an extension of commutative monoids with certain properties usually
called separation theory [8,13]. On the concrete side there have been develop-
ments along several directions, such as proof methods for SL with memory model
semantics [15,17,25], and symbolic heaps [1,2,6,27]. There have been numerous
modifications of SL, e.g., Fictional Separation Logic [19], Rely/Guarantee [35],
Concurrent Separation Logic [4].
c© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 444–463, 2016.
DOI: 10.1007/978-3-319-47958-3 23

Completeness for a First-Order Abstract Separation Logic 445

To support reasoning about Hoare triples, it is essential to have proof meth-
ods for the assertion logic. In the reminder of this paper we focus on the assertion
logic of separation logic. Although theorem proving for propositional abstract
separation logics (PASLs) is undecidable [7,23], there have been semi-decision
procedures for those logics [5,8,16,24,30]. However, since PASLs do not impose
a concrete semantic model, they usually cannot be directly used in program
verification. The situation is more intriguing for separation logic with memory
model semantics. Calcagno et al. showed that the full logic is not recursively
enumerable [10], thus it is not possible to have a sound and complete finite proof
system for the full separation logic. Interestingly, their result uses only an exten-
sion of first-order logic, without function symbols, but with a two-field points-to
predicate, i.e., predicates of the form [a �→ c, d], which represents a memory cell
with a record of two fields. Recent study also shows that the points-to predicate
�→ is a source of undecidability. For example, restricting the record field (i.e.,
right hand side) of �→ to one variable and allowing only one quantified vari-
able reduces the satisfiability of SL to PSPACE-complete [12]. The above work
indicates that directly handling the points-to predicate in the logic may not be
easy. Section 4 of [17] details related issues on various proof systems for separa-
tion logic with memory model. Another complicating factor in designing a proof
system for separation logic is the “magic wand” −∗ connective. The separation
conjunction ∗ can be encoded using −∗ , but not the other way around [3,11].
Consequently, most proof methods for SL with concrete semantics are restricted
to fragments of SL, typically omitting −∗ . The connective −∗ , however, has
found many applications, such as tail-recursion [26], iterators [20], “septraction”
in rely/guarantee [35], amongst other motivating examples discussed in the intro-
duction of [25].

Since completeness with respect to Reynolds’s model is not possible, an inter-
esting question arises as to what properties of points-to (−∗ is not so crucial
in terms of the completeness property) one should formalize in the system, and
what kind of semantics the resulting proof system captures. There have been at
least a couple of attempts at designing a proof system that features both −∗ and
points-to; one by Lee and Park [25] and the other by Hou et al. [17]. In [25], Lee
and Park claimed incorrectly that their proof system is complete with respect to
Reynolds’s semantics, though this claim was later retracted.1 In [17], Hou et al.
give a proof system LSSL that is sound with respect to Reynolds’s semantics,
but no alternative semantics was proposed nor any completeness result stated.
It is also not clear in general what proof rules one should include in the proof
system such as that in [17]. This has led to the introduction of various ad hoc
proof rules in [17], which are often complex and unintuitive, in order to cap-
ture specific properties of the underlying concrete separation logic models (e.g.,
Reynolds’s model), resulting in a complex proof system, which is both hard to
implement and hard to reason about.

1 See http://pl.postech.ac.kr/SL/ for the revised version of their proof system, which
is sound but not complete w.r.t. Reynolds’s semantics.

http://pl.postech.ac.kr/SL/

446 Z. Hóu and A. Tiu

In this paper, we revisit our previous work [17] in order to provide an abstract
semantics and a sound and complete proof system with respect to that abstract
semantics, that are useful for reasoning about the meta-theory of the proof sys-
tem, and easy to extend to support reasoning about various concrete models of
separation logic. Our point of departure is to try to give a minimal proof system
and encode as many properties of points-to as possible using logical theories,
rather than proof rules, and to formalize as inference rules only those properties
that cannot be easily encoded as theories. This led us to keep only two proof
rules for the points-to predicate from [17] (see the rules �1 and �2 in Fig. 1
in Sect. 3). Semantically, these two rules are justified by a new semantics of an
abstract version of the points-to predicate (notationally represented by � here,
to distinguish it from the points-to predicate �→ in the concrete SL), that is, it
is a function that constructs a heap from a tuple of values. In particular, we
do not assume that the constructed heap from a tuple is a singleton heap, so a
points-to predicate such as [a � b, c] in our semantics denotes a heap, but not
necessarily a singleton heap mapping a to a two-field record (b, c). Reasoning
in the concrete models, such as Reynolds’s SL, which may require properties of
singleton heaps, can be approximated by adding theories to restrict the inter-
pretation of points-to (see e.g., Sect. 5.1). Obviously one would not be able to
completely restrict the interpretation of � to singleton heaps via a finite theory,
as one would then run into the same incompleteness problem as shown in [10].

The proof system for the first-order abstract separation logic that we intro-
duce here, called LSFOASL, is based on the proof system LSPASL for proposi-
tional abstract separation logic (PASL) [16], which is a labelled sequent calculus.
We choose labelled calculi as the framework to formalize our logic since it has
been shown to be a good framework for proof search automation for abstract
separation logics [17,24]. Formulas in a labelled sequent in LSPASL are inter-
preted relative to the interpretation of the labels they are attached to, so a
labelled formula such as h : F , where h is a label and F is a formula, denotes
the truth value of F when evaluated against the heap h. In extending PASL
to the first-order case, especially when formulating theories for specific concrete
models, it turns out that we need to be able to assert that some formulas hold
universally for all heaps, or that they hold in some unspecified heap, both of
which are not expressible in PASL. To get around this limitation, we introduce
modal operators to allow one to state properties that hold globally in all heaps
or in some heap. Section 5 shows some examples of uses of these modal operators
in theories approximating concrete models of separation logics.

The semantics of FOASL is formally defined in Sect. 2. In Sect. 3 we present
the proof system LSFOASL, which is an extension of LSPASL with rules for
first-order quantifiers, the points-to predicate and modal operators. In Sect. 4,
we prove soundness and completeness of LSFOASL with respect to the semantics
described in Sect. 2. The completeness proof is done via a counter-model con-
struction similar to that in [16,21] for the propositional case, but our proof is
significantly more complicated as we have to deal with the first-order language
and the construction of the model for the points-to predicate, which requires a

Completeness for a First-Order Abstract Separation Logic 447

novel proof technique. We show in Sect. 5 that all the inference rules for points-
to in the labelled sequent calculus LSSL [17] can be derived using theories in
our logic, except one rule called HC, which is not used in the current program
verification tools. Our theories for points-to cover the widely-used symbolic heap
fragment of SL, thus our logic can be used in many existing program verification
methods. Furthermore, we can also prove many formulae that are valid in SL
but which cannot be proved by most existing tools. An implementation is dis-
cussed in Sect. 6, we show that our prover can reason about the standard heap
semantics and the non-standard ones.

2 First-Order Abstract Separation Logic

This section introduces First-order Abstract Separation Logic (FOASL). The
formulae of FOASL are parameterized by a first order signature Σ = (R, C),
consisting of a set of predicate symbols R and a set of constants C. Constants
are ranged by a, b and c, and predicate symbols by p and q (possibly with
subscripts). We also assume an infinite set V of first-order variables, ranged over
by x, y, z. A term is either a constant or a variable, and is denoted by e, s and t.
We assume that R includes a symbol =, denoting the equality predicate, and a
finite collection of abstract points-to predicates. We shall use the notation �n to
denote an abstract points-to predicate of arity n. We use an infix notation when
writing the abstract points-to predicates. For an abstract points-to predicate of
arity k, taking arguments t1, . . . , tk, we write it in the form:

t1 �k t2, . . . , tk.

We shall omit the superscript k when the arity of � is not important or can
be inferred from the context of discussion. Note that the abstract points-to �
is not the points-to predicate in SL, but is a weaker version whose properties
will be discussed later. To simplify presentation, we do not consider function
symbols in our language, but it is straightforward to add them. In any case,
the incompleteness result for concrete SL of [10] holds even in the absence of
function symbols, so the omission of function symbols from our logic does not
make the completeness proof for our logic conceptually easier.

The formulae of FOASL are given by the following grammar:

F ::= �∗ | ⊥ | p(t1, . . . , tk) | s � t1, . . . , tl | s = t | F → F |
F ∗ F | F−∗ F | ♦F | ∃x.F

The logical constant ⊥, the connective → and the quantifer ∃ are the usual logical
operators from first-order logic. The operator ♦ is a modal operator (denoting
“possibility”). Classical negation ¬F is defined as F → ⊥. Other operators, i.e.,
�, ∨, ∧, ∀, and �, can be defined via classical negation, e.g., �A = ♦(A →
⊥) → ⊥. The connectives ∗ and −∗ correspond to separation conjunction and
the “magic wand” from separation logic [31], and �∗ is the multiplicative truth.

The semantics of FOASL is defined based on a separation algebra, i.e., a
commutative monoid (H, ◦, ε) where H is a non-empty set, ◦ is a partial binary

448 Z. Hóu and A. Tiu

Table 1. The semantics of FOASL.

M, v, h � p(t1, · · · , tn) iff (tM
1 , · · · , tM

n) ∈ pI

M, v, h � A → B iff M, v, h �� A or M, v, h � B
M, v, h � �∗ iff h = ε
M, v, h � ⊥ iff never

M, v, h � A ∗ B iff h1 ◦ h2 = h and M, v, h1 � A and M, v, h2 � B for some h1, h2

M, v, h � A−∗ B iff for all h1, h2, if h ◦ h1 = h2 and M, v, h1 � A, then M, v, h2 � B
M, v, h � ∃x.A(x) iff ∃d ∈ D.M, v[d/x], h � A(x)
M, v, h � ♦A iff ∃h1 ∈ H.M, v, h1 � A
M, v, h � t1 = t2 iff tM

1 and tM
2 are the same element in D.

M, v, h � t1 � t2, . . . , tk iff fk(t
M
1 , . . . , tM

k) = h.

function H × H ⇀ H written infix, and ε ∈ H is the unit. This separation
algebra satisfies the following conditions, where ‘=’ is interpreted as ‘both sides
undefined, or both sides defined and equal’:

identity: ∀h ∈ H.h ◦ ε = h.
commutativity: ∀h1, h2 ∈ H.h1 ◦ h2 = h2 ◦ h1.
associativity: ∀h1, h2, h3 ∈ H.h1 ◦ (h2 ◦ h3) = (h1 ◦ h2) ◦ h3.
cancellativity: ∀h1, h2, h3, h4 ∈ H. if h1 ◦ h2 = h3 and h1 ◦ h4 = h3 then

h2 = h4.
indivisible unit: if h1 ◦ h2 = ε then h1 = ε.
disjointness: ∀h1, h2 ∈ H. if h1 ◦ h1 = h2 then h1 = ε.
cross-split: if h1 ◦ h2 = h0 and h3 ◦ h4 = h0, then ∃h13, h14, h23, h24 ∈ H such

that h13 ◦ h14 = h1, h23 ◦ h24 = h2, h13 ◦ h23 = h3, and h14 ◦ h24 = h4.

Note that partial-determinism is assumed since ◦ is a partial function: for any
h1, h2, h3, h4 ∈ H, if h1 ◦ h2 = h3 and h1 ◦ h2 = h4 then h3 = h4.

A FOASL model is a tuple M = (D, I, v,F ,H, ◦, ε) where D is a non-empty
domain, I is an interpretation function mapping constant symbols to elements
of D, and predicate symbols, other than = and �, to relations. The function v
is a valuation function mapping variables to D. We use a set F of functions to
interpret the abstract points-to predicates. To each abstract points-to predicate
of arity n, we associate an n-argument total function fn : D × · · · × D �→ H ∈
F . The tuple (H, ◦, ε) is a separation algebra. For a predicate symbol p and
a constant symbol c, we write pI and cI , respectively, for their interpretations
under I. We write tM for the interpretation of term t in the model M. For a
variable x, xM = v(x). A term t is closed if it has no variables, and we write tI

for the interpretation of t since it is independent of the valuation function v.
A separation algebra (H, ◦, ε) can be seen as a Kripke frame, where H is the

set of worlds and the (ternary) accessibility relation R is defined as: R(h1, h2, h3)
iff h1 ◦ h2 = h3. Modal operators are thus a natural extension to FOASL.

The semantics of FOASL formulae are defined via Kripke style notations in
Table 1, where M = (D, I, v,F ,H, ◦, ε) is a FOASL model, and h, h1, h2 ∈ H.
In the table, we write v[c/x] to denote the valuation function that may differ
from v only in the mapping of x, i.e., v[c/x](x) = c and v[c/x](y) = v(y) if
y = x. A FOASL formula A is true at h in the model M = (D, I, v,F , H, ◦, ε)

Completeness for a First-Order Abstract Separation Logic 449

if M, v, h � A. It is true in M if it is true at some h in H. A formula is valid
if it is true in all models; a formula is satisfiable if it is true in some model. A
formula is called a sentence if it has no free variables.

Besides the first-order language, FOASL has two main extensions over PASL:
the abstract points-to predicate � and the modality ♦. We explain their intu-
itions here. In the concrete SL models, the points-to predicate [a �→ b] is true
only in a singleton heap that maps a to b. In our abstract semantics for [a � b],
we drop the requirement that the heap must be singleton. Instead, we generalize
this by parameterizing the semantics with a function (the function f discussed
earlier) that associates values to (possibily non-singleton) heaps. The predicate
[a � b] is true in a world h iff h is the image of f2(a, b). As a consequence of this
interpretation of �, we have the following properties where �t is a list of fields:

– (Injectivity) If s � �t holds in both h1 and h2, then h1 = h2.
– (Totality) For any s and �t, there is some h such that s � �t holds in h.

The latter in particular is a consequence of the fact that functions in F are
total functions. We do not impose any other properties on �. For example,
we do not assume an invalid address nil such that nil �→ �t must be false. The
reason we cannot disprove nil � �t is partly because we do not insist on a fixed
interpretation of nil in our logic. This does not mean that nil � �t is valid in our
logic; it is only satisfiable. We can strengthen � by adding more theories to it,
including a formula to force nil � �t to be unsatisfiable. See Sects. 5 and 6 for
details.

To motivate the need for the modal operators, consider an example to approx-
imate, in our framework, a separation logic where the points-to relation maps an
address to a multiset of addresses. In the binary case, one could formalize this
as:

F = ∀x, y, z.(x �→ y, z) → (x �→ z, y)

We can encode this property as a rule in a labelled sequent calculus as shown
below left. When generalising this to points-to of (n + 1)-arities, we will have to
consider adding many variants of rules that permute the right hand side of �→,
which is what we are trying to avoid. Alternatively, we can add the formula F
to the antecedent of the sequent, and attach a label l to F , and do a forward-
chaining on l : F , as shown below right, where Γ,Δ are sets of labelled formulae:

Γ ; l : (a �→ c, b) � Δ

Γ ; l : (a �→ b, c) � Δ

· · · Γ, l : F, l : (a �→ c, b) � Δ

Γ, l : F, l : (a �→ b, c) � Δ

where the · · · are the instantiation of x, y, z with a, b, c respectively, and the
discharge of the assumption (x �→ y, z) of F . However, if (a �→ b, c) in the
conclusion is attached to another label (world) m, we then have to add m : F to
the sequent. In effect, we would have to add an infinite set of labelled formulae
of the form k : F to the sequent to achieve the same effect of the inference rule.
With modalities, we can simply use l : �F , which would then allow F to be used
at any world in the antecedent of the sequent.

450 Z. Hóu and A. Tiu

Example 1. Consider Reynolds’s semantics for separation logic [31], with an
abstract points-to predicate of arity two. This can be shown to be an instance
of our abstract semantics, where the domain D is the set of integers, H is the
set of heaps (i.e., finite partial maps from integers to integers), ε denotes the
empty heap, and the function f2 is defined as f2(a, b) = [a �→ b] where [a �→ b]
is the singleton heap, mapping a to b. The operation ◦ on H is defined as heap
composition. It can be shown that (H, ◦, ε) forms a separation algebra. Note
that if we relax the interpretation of H to allow infinite heaps, (H, ◦, ε) is still
a separation algebra, which shows that our semantics may admit non-standard
interpretations of separation logic.

3 LSFOASL: A Labelled Calculus for FOASL

Let LVar be an infinite set of label variables, the set L of labels is LVar ∪ {ε},
where ε ∈ LVar is a label constant. We overload the notation and write h with
subscripts as labels. A function ρ : L → H from labels to worlds is a label
mapping iff it satisfies ρ(ε) = ε, mapping the label constant ε to the identity
world of H. A labelled formula is a pair consisting of a label and a formula. We
write a labelled formula as h : A, when h is the label and A is the formula of
the labelled formula. A relational atom is an expression of the form (h1, h2 	h3),
where h1, h2 and h3 are labels, this corresponds to h1 ◦h2 = h3 in the semantics.
A relational atom is not a formula; rather it can be thought of as a structural
component of a sequent. A sequent takes the form G;Γ � Δ where G is a set
of relational atoms, Γ,Δ are sets of labelled formulae, and ; denotes set union.
Thus Γ ;h : A is the union of Γ and {h : A}. The left hand side of a sequent is
the antecedent and the right hand side is the succedent.

We call our labelled proof system LSFOASL. The logical rules of LSFOASL

are shown in Fig. 1, structural rules are in Fig. 2. To simplify some rules, we
introduce the notation h1 ∼ h2 as an abbreviation of (ε, h1 	 h2). We use the
notation [t/x] to denote a variable substitution, and similarly [h′/h] for a label
substitution, where h is a label variable. The equality rules, for terms (=1 and
=2) and labels (∼1 and ∼2), are the usual equality rules (see e.g., [34]). These
rules allow one to replace a term (label) with its equal anywhere in the sequent.
Note that in those rules, the replacement of terms (labels) need not be done for
all occurrences of equal terms; one can replace just one occurrence or more. For
example, below left is a valid instance of =2. This is because both the premise
and the conclusion of the rules are instances of the sequent below right:

h : s = t;h1 : p(t, s) � h2 : q(s, s)
=2

h : s = t;h1 : p(s, s) � h2 : q(s, s)
h : s = t;h1 : p(x, s) � h2 : q(s, s)

i.e., the premise sequent is obtained from the above sequent with substitution
[t/x], and the conclusion sequent with [s/x]. A similar remark applies for label
replacements in sequents affected via ∼2 . The rules �1 and �2 respectively
capture the injectivity and the totality properties of the underlying semantic
function interpreting �.

Completeness for a First-Order Abstract Separation Logic 451

idG;Γ ;h : A � h : A;Δ
⊥LG;Γ ;h : ⊥ � Δ

G;h ∼ ε;Γ � Δ
�∗LG;Γ ;h : �∗ � Δ

�∗RG;Γ � ε : �∗;Δ

G;Γ ;h : A � h : B;Δ
→ RG;Γ � h : A → B;Δ

G;Γ � h : A;Δ G;Γ ;h : B � Δ
→ LG;Γ ;h : A → B � Δ

(h1, h2 � h0);G;Γ ;h1 : A;h2 : B � Δ
∗LG;Γ ;h0 : A ∗ B � Δ

(h1, h0 � h2);G;Γ ;h1 : A � h2 : B;Δ
−∗ RG;Γ � h0 : A−∗ B;Δ

(h1, h2 � h0);G;Γ � h1 : A;h0 : A ∗ B;Δ (h1, h2 � h0);G;Γ � h2 : B;h0 : A ∗ B;Δ
∗R

(h1, h2 � h0);G;Γ � h0 : A ∗ B;Δ

(h1, h0 � h2);G;Γ ;h0 : A−∗ B � h1 : A;Δ (h1, h0 � h2);G;Γ ;h0 : A−∗ B;h2 : B � Δ
−∗ L

(h1, h0 � h2);G;Γ ;h0 : A−∗ B � Δ

G;Γ ;h : A(y) � Δ
∃LG;Γ ;h : ∃x.A(x) � Δ

G;Γ � h : A(t);h : ∃x.A(x);Δ
∃RG;Γ � h : ∃x.A(x);Δ

G;Γ ;h′ : A � Δ
♦LG;Γ ;h : ♦A � Δ

G;Γ ;h : t = t � Δ
=1G;Γ � Δ

G;h : s = t;Γ [t/x] � Δ[t/x]
=2G;h : s = t;Γ [s/x] � Δ[s/x]

G;Γ � h′ : A;h : ♦A;Δ
♦RG;Γ � h : ♦A;Δ

G;Γ ;h : s � �t � Δ �1G;Γ � Δ

G;h1 ∼ h2;Γ ;h1 : s � �t;h2 : s � �t � Δ �2
G;Γ ;h1 : s � �t;h2 : s � �t � Δ

Side conditions:
In ∗L and −∗ R, the labels h1 and h2 do not occur in the conclusion.
In ∃L, y is not free in the conclusion. In ♦L, h′ does not occur in the conclusion.
In �1, h does not occur in the conclusion.

Fig. 1. Logical rules in LSFOASL.

h ∼ h;G;Γ � Δ ∼1G;Γ � Δ

h1 ∼ h2;G[h2/h];Γ [h2/h] �Δ[h2/h] ∼2
h1 ∼ h2;G[h1/h];Γ [h1/h] � Δ[h1/h]

(h2, h1 � h0); (h1, h2 � h0);G;Γ � Δ
E

(h1, h2 � h0);G;Γ � Δ

(h1, h1 � h2);h1 ∼ ε;G;Γ � Δ
D

(h1, h1 � h2);G;Γ � Δ

(h3, h5 � h0); (h2, h4 � h5); (h1, h2 � h0); (h3, h4 � h1);G;Γ � Δ
A

(h1, h2 � h0); (h3, h4 � h1);G;Γ � Δ

(h1, h2 � h0);h0 ∼ h3;G;Γ � Δ
P

(h1, h2 � h0); (h1, h2 � h3);G;Γ � Δ

(h1,h2� h0);h2 ∼ h3;G;Γ � Δ
C

(h1,h2� h0); (h1, h3 � h0);G;Γ �Δ

(h5, h6 � h1); (h7, h8 � h2); (h5, h7 � h3); (h6, h8 � h4); (h1, h2 � h0); (h3, h4 � h0);G;Γ �Δ
CS

(h1, h2 � h0); (h3, h4 � h0);G;Γ � Δ

Side conditions:
In A, the label h5 does not occur in the conclusion.
In CS, the labels h5, h6, h7, h8 do not occur in the conclusion.

Fig. 2. Structural rules in LSFOASL.

452 Z. Hóu and A. Tiu

An extended model (M, ρ) is a FOASL model M equipped with a label
mapping ρ. A sequent G;Γ � Δ is falsifiable in an extended model if: (1) every
relational atom (h1, h2 	 h3) ∈ G is true, i.e., ρ(h1) ◦ ρ(h2) = ρ(h3); (2) every
labelled formula h : A ∈ Γ is true, i.e., M, v, ρ(h) � A; (3) every labelled formula
h′ : B ∈ Δ is false, i.e., M, v, ρ(h′) � B. A sequent is falsifiable if it is falsifiable
in some extended model.

To prove a formula F , we start from the sequent � h : F with an arbitrary
label h = ε, and try to derive a closed derivation by applying inference rules
backwards from this sequent. A derivation is closed if every branch can be closed
by a rule with no premises. The soundness of LSFOASL can be proved by arguing
that each rule preserves falsifiability upwards. The proof is given in [18].

Theorem 1 (Soundness). For every FOASL formula F , if � h : F is deriv-
able in LSFOASL for any label h, then F is a valid FOASL formula.

4 Counter-Model Construction

We now give a counter-model construction for LSFOASL to show that LSFOASL

is complete w.r.t. FOASL. The proof here is motivated by the completeness proof
of the labelled sequent calculus and labelled tableaux for PASL [16,21], but this
proof is significantly more complex, as can be seen in the definition of Hintikka
sequent below, which has almost twice as many cases as the previous work. The
constructed model extends the non-classical logic model in the previous work
with a Herbrand model as in first-order logic. For space reasons we only set up
the stage here and give the full proofs in [18].

We define a notion of saturated sequent, i.e., Hintikka sequent, on which all
possible rule instances in LSFOASL have been applied. In the following, we
denote with R a relational atom or a labelled formula.

Definition 1 (Hintikka sequent). Let L be a FOASL language and let T
be the set of closed terms in L. A labelled sequent G;Γ � Δ, where Γ,Δ
are sets of labelled sentences, is a Hintikka sequent w.r.t. L if it satisfies the
following conditions for any sentences A,B, any terms t, t′, and any labels
h, h0, h1, h2, h3, h4, h5, h6, h7:

1. If h1 : A ∈ Γ and h2 : A ∈ Δ then h1 ∼ h2 �∈ G.
2. h : ⊥ �∈ Γ .
3. If h : �∗ ∈ Γ then h ∼ ε ∈ G.
4. If h : �∗ ∈ Δ then h ∼ ε �∈ G.
5. If h : A → B ∈ Γ then h : A ∈ Δ or h : B ∈ Γ.
6. If h : A → B ∈ Δ then h : A ∈ Γ and h : B ∈ Δ.
7. If h0 : A∗B ∈ Γ then ∃h1, h2 ∈ L s.t. (h1, h2 �h0) ∈ G, h1 : A ∈ Γ and h2 : B ∈ Γ.
8. If h3 : A ∗ B ∈ Δ then ∀h0, h1, h2 ∈ L if (h1, h2 � h0) ∈ G and h0 ∼ h3 ∈ G then

h1 : A ∈ Δ or h2 : B ∈ Δ.
9. If h3 : A−∗ B ∈ Γ then ∀h0, h1, h2 ∈ L if (h1, h2 � h0) ∈ G and h2 ∼ h3 ∈ G, then

h1 : A ∈ Δ or h0 : B ∈ Γ.
10. If h2 : A−∗ B ∈ Δ then ∃h0, h1 ∈ L s.t. (h1, h2 � h0) ∈ G, h1 : A ∈ Γ and

h0 : B ∈ Δ.

Completeness for a First-Order Abstract Separation Logic 453

11. If h : ∃x.A(x) ∈ Γ then h : A(t) ∈ Γ for some t ∈ T .
12. If h : ∃x.A(x) ∈ Δ then h : A(t) ∈ Δ for every t ∈ T .
13. If h : ♦A ∈ Γ then ∃h1 ∈ L s.t. h1 : A ∈ Γ .
14. If h : ♦A ∈ Δ then ∀h1 ∈ L, h1 : A ∈ Δ.
15. For any t ∈ T , ∃h ∈ L s.t. h : t = t ∈ Γ .
16. If h1 : t = t′ ∈ Γ and h2 : A[t/x] ∈ Γ (h2 : A[t/x] ∈ Δ) then h2 : A[t′/x] ∈ Γ

(resp. h2 : A[t′/x] ∈ Δ).
17. For any label h ∈ L, h ∼ h ∈ G.
18. If h1 ∼ h2 ∈ G and a relational atom or a labelled formula R[h1/h] ∈ G ∪ Γ (resp.

R[h1/h] ∈ Δ), then R[h2/h] ∈ G ∪ Γ (resp. R[h2/h] ∈ Δ).
19. If (h1, h2 � h0) ∈ G then (h2, h1 � h0) ∈ G.
20. If {(h1, h2 � h0); (h3, h4 � h6); h1 ∼ h6} ⊆ G then ∃h5 ∈ L. {(h3, h5 � h0), (h2, h4 �

h5)} ⊆ G.
21. If {(h1, h2 � h0); (h3, h4 � h9); h0 ∼ h9} ⊆ G then ∃h5, h6, h7, h8 ∈ L s.t. {(h5, h6 �

h1), (h7, h8 � h2), (h5, h7 � h3), (h6, h8 � h4)} ⊆ G.
22. For every abstract points-to predicate �k in the language and for any t1, . . . , t

′
k ∈ T ,

∃h ∈ L s.t. h : t1 �k t2, . . . , tk ∈ Γ .
23. If {h1 : s � �t, h2 : s � �t} ⊆ Γ then h1 ∼ h2 ∈ G.
24. If {(h1, h3 � h2), h1 ∼ h3} ⊆ G then h1 ∼ ε ∈ G.
25. If {(h1, h2 � h0), (h4, h5 � h3), h1 ∼ h4, h2 ∼ h5} ⊆ G then h0 ∼ h3 ∈ G.
26. If {(h1,h2� h0), (h4, h5 � h3), h1 ∼ h4, h0 ∼ h3} ⊆ G then h2 ∼ h5 ∈ G.

The next lemma shows that we can build an extended FOASL model (M, ρ)
where M = (D, I, v,F ,H, ◦, ε) that falsifies the Hintikka sequent G;Γ � Δ.
The D, I part is a Herbrand model as in first-order logic. The construction of
the monoid (H, ◦, ε) is similar to the one for PASL [16], where H is the set of
equivalent classes of labels in the sequent. The interpretation of the predicate
� is defined based the set of functions F . For each n-ary predicate �n, there
is a function fn ∈ F defined as below:

fn(t1, · · · , tn) = [h]G iff h′ : t1 �n t2, · · · , tn ∈ Γ and h ∼ h′ ∈ G.

where [h]G is the class of labels equivalent to h in G. F is the set of all such
functions. By Condition 22 and 23 of the Hintikka sequent, each function in F
must be a total function. The full proof is in [18].

Lemma 1 (Hintikka’s Lemma). Suppose L is a FOASL language with a
non-empty set of closed terms. Every Hintikka sequent w.r.t. L is falsifiable.

Then we show how to construct a Hintikka sequent for an unprovable for-
mula using the proof system LSFOASL. Unlike the usual procedure, we have to
consider the rules with no (or more than one) principal formulae. To this end,
we define a notion of extended formulae as in the previous work [16]:

ExF ::= F | ≡1 | ≡2 | �→1 | �→2 | E | A | CS | ≈1 | ≈2 |
P | C | D

Here, F is a FOASL formula, the other symbols correspond to the special rules in
LSFOASL. For example, ≡1 and ≡2 correspond to rules =1 and =2; �→1 and �→2

correspond to �1 and �2; ≈1 and ≈2 correspond to ∼1 and ∼2. The saturation
procedure is performed according to a schedule, which is defined below.

454 Z. Hóu and A. Tiu

Definition 2 (Schedule). A rule instance is a tuple (O, h,ExF,R, S, n), where
O is either 0 (left) or 1 (right), h is a label, ExF is an extended formula, R is
a set of relational atoms such that |R| ≤ 2, S is a set of labelled formulae with
|S| ≤ 2, and n is a natural number. Let I denote the set of all rule instances. A
schedule is a function from natural numbers N to I. A schedule φ is fair if for
every rule instance I, the set {i | φ(i) = I} is infinite.

It is easy to verify that a fair schedule must exist. This is proved by checking
that I is a countable set [21], which follows from the fact that I is a finite product
of countable sets. We fix a fair schedule φ for the following proofs. We assume
the set L of labels is totally ordered and can be enumerated as h0, h1, h2, · · · ,
where h0 = ε. Similarly, we assume an infinite set of closed terms which can
be enumerated as t0, t1, t2, · · · , all of which are disjoint from the terms in F .
Suppose F is an unprovable formula, we start from the sequent � h1 : F and
construct an underivable sequent as below.

Definition 3. Let F be a formula which is not provable in LSFOASL. We
assume that every variable in F is bounded, otherwise we can rewrite F so that
unbounded variables are universally quantified. We construct a series of finite
sequents 〈Gi;Γi � Δi〉i∈N from F where G1 = Γ1 = ∅ and Δ1 = a1 : F . Suppose
Gi;Γi � Δi has been defined, we define Gi+1;Γi+1 � Δi+1 in the sequel. Suppose
φ(i) = (Oi, hi, ExFi, Ri, Si, ni). When we use ni to select a term (resp. label) in
a formula (resp. relational atom), we assume the terms (resp. labels) are ordered
from left to right. If ni is greater than the number of terms in the formula (labels
in the relational atom), then no effect is taken. We only show a few cases here,
and display this rather involved construction in the Appendix of [18].

– If Oi = 0, ExFi is a FOASL formula Ci = F1 ∗ F2 and hi : Ci ∈ Γi, then
Gi+1 = Gi ∪ {(h4i, h4i+1 	 hi)}, Γi+1 = Γi ∪ {h4i : F1, h4i+1 : F2}, Δi+1 = Δi.

– If ExFi is ≡1 and Si = {hi : tn = tn}, where n ≤ i + 1, then Gi+1 = Gi,
Γi+1 = Γi ∪ {hi : tn = tn}, and Δi+1 = Δi.

– If ExFi is ≡2 and Si = {h : t = t′, h′ : A[t/x]} ⊆ Γi, where x is the nith term
in A, then Gi+1 = Gi, Γi+1 = Γi ∪ {h′ : A[t′/x]}, and Δi+1 = Δi.

– If ExFi is ≡2 and Si = {h : t = t′, h′ : A[t/x]} where h : t = t′ ∈ Γi,
h′ : A[t/x] ∈ Δi, and x is the nith term in A. Then Gi+1 = Gi, Γi+1 = Γi,
and Δi+1 = Δi ∪ {h′ : A[t′/x]}.
The first rule shows how to use the ∗L rule and how to deal with fresh vari-

ables. The indexing of labels guarantees that the choice of h4i, h4i+1, h4i+2,
h4i+3 are always fresh for the sequent Gi;Γi � Δi. Similarly, the term ti+1 does
not occur in the sequent Gi;Γi � Δi. The second rule generates an identity
equality relation for the term tn. The last two rules find a formula h′ : A in the
antecedent and succedent respectively, and replace t with t′ in A. The construc-
tion in Definition 3 non-trivially extends a similar construction of Hintikka CSS
due to Larchey-Wendling [21] and a similar one in [16].

We also borrow the notions of consistency and finite-consistency from
Larchey-Wendling’s work [21]. We say G′;Γ ′ � Δ′ ⊆ G;Γ � Δ iff G′ ⊆ G,

Completeness for a First-Order Abstract Separation Logic 455

Γ ′ ⊆ Γ and Δ′ ⊆ Δ. A sequent G;Γ � Δ is finite if G, Γ,Δ are finite sets. Define
G′;Γ ′ � Δ′ ⊆f G;Γ � Δ iff G′;Γ ′ � Δ′ ⊆ G;Γ � Δ and G′;Γ ′ � Δ′ is finite. If
G;Γ � Δ is a finite sequent, it is consistent iff it does not have a derivation in
LSFOASL. A (possibly infinite) sequent G;Γ � Δ is finitely-consistent iff every
G′;Γ ′ � Δ′ ⊆f G;Γ � Δ is consistent.

We write Li for the set of labels occurring in the sequent Gi;Γi � Δi, and
write Di for the set of terms which are disjoint from those in F in that sequent.
Thus L1 = {a1} and D1 = ∅. The following lemma states some properties of the
construction of the sequents Gi;Γi � Δi.

Lemma 2. For any i ∈ N , the following properties hold:

1. Gi;Γi � Δi has no derivation
2. Li ⊆ {a0, a1, · · · , a4i−1}

3. Di ⊆ {t0, t1, · · · , ti}
4. Gi;Γi � Δi ⊆f Gi+1;Γi+1 � Δi+1

Given the construction of the series of sequents in Definition 3, we define a
notion of a limit sequent as the union of every sequent in the series.

Definition 4 (Limit sequent). Let F be a formula unprovable in LSFOASL.
The limit sequent for F is the sequent Gω;Γω � Δω where Gω =

⋃
i∈N Gi and

Γω =
⋃

i∈N Γi and Δω =
⋃

i∈N Δi and where Gi;Γi � Δi is as defined in
Definition 3.

The last step is to show that the limit sequent is a Hintikka sequent, which
gives rise to a counter-model of the formula that cannot be proved.

Lemma 3. If F is a formula unprovable in LSFOASL, then the limit sequent
for F is a Hintikka sequent.

Now we can finish the completeness theorem: whenever a FOASL formula
has no derivation in LSFOASL, there is an infinite counter-model. The theorem
states the contraposition.

Theorem 2 (Completeness). If F is valid in FOASL, then F is provable in
LSFOASL.

5 Theories for �→ in Separation Logics

Our predicate � admits more interpretations than the standard �→ predicate in
SL heap model semantics. We can, however, approximate the behaviors of �→ by
formulating additional properties of �→ as logical theories. We show next some
of the theories for �→ arising in various SL semantics.

456 Z. Hóu and A. Tiu

5.1 Reynolds’s Semantics

The �→ predicate in Reynolds’s semantics can be formalized as follows, where
the store s is a total function from variables to values, and the heap h is a finite
partial function from addresses to values:

s, h � x �→ y iff dom(h) = {s(x)} and h(s(x)) = s(y).

Here we tackle the problem indirectly from the abstract separation logic
angle. We give the following theories to approximate the semantics of �→ in SL:

1. �∀e1, e2.(e1 �→ e2) ∧ �∗ → ⊥ 2. �∀e1, e2.(e1 �→ e2) → ¬(¬�∗ ∗ ¬�∗)
3. �∀e1, e2, e3, e4.(e1 �→ e2) ∗ (e3 �→ e4) → ¬(e1 = e3)
4. �∀e1, e2, e3, e4.(e1 �→ e2) ∧ (e3 �→ e4) → (e1 = e3) ∧ (e2 = e4)
5. �∃e1∀e2.¬((e1 �→ e2)−∗ ⊥) 6. �∀e1, e2.(e1 �→ e2) → (e1 � e2)

Note that the opposite direction (e1 � e2) → (e1 �→ e2) does not necessarily hold
because � is weaker than �→. The above theories intend to capture the inference
rules for �→ in LSSL [17], the captured rules are given in Fig. 3. The first five
formulae simulate the rules �→ L1, �→ L2, �→ L3, �→ L4, and HE respectively.
The rule �→ L5 can be derived by �2 and Formula 6.

	→ L1G;Γ ; ε : e1 �→ e2 � Δ

(ε, h0 � h0);G[ε/h1, h0/h2];Γ [ε/h1, h0/h2];h0 : e1 �→ e2 � Δ[ε/h1, h0/h2]

(h0, ε � h0);G[ε/h2, h0/h1];Γ [ε/h2, h0/h1];h0 : e1 �→ e2 � Δ[ε/h2, h0/h1] 	→ L2
(h1, h2 � h0);G;Γ ;h0 : e1 �→ e2 � Δ

	→ L3
(h1, h2 � h0);G;Γ ;h1 : e �→ e1;h2 : e �→ e2 � Δ

G;Γθ;h : e1θ �→ e2θ � Δθ
	→ L4G;Γ ;h : e1 �→ e2;h : e3 �→ e4 � Δ

G[h1/h2];Γ [h1/h2];h1 : e1 �→ e2 � Δ[h1/h2] 	→ L5G;Γ ;h1 : e1 �→ e2;h2 : e1 �→ e2 � Δ

(h1, h0 � h2);G;Γ ;h1 : e1 �→ e2 � Δ
HEG;Γ � Δ

Side conditions:
Each label being substituted cannot be ε. In �→ L4, θ = mgu({(e1, e3), (e2, e4)}).
In HE, h0 occurs in conclusion, h1, h2, e1 are fresh.

Fig. 3. Points-to rules in LSSL.

Lemma 4. The inference rules in Fig. 3 are admissible in LSFOASL when For-
mula 1–6 are assumed true.

The validity of Formula 1–6 w.r.t. Reynolds’s SL model is easy to check,
the rationale is similar to the soundness of corresponding rules in LSSL [17].
Therefore Reynolds’s SL is an instance of our logic.

Lemma 5. Formula 1–6 are valid in Reynolds’s SL semantics.

Completeness for a First-Order Abstract Separation Logic 457

The rules in Fig. 3 cover most of the rules for �→ in LSSL [17], but we have
not found a way to handle the following rule (with two premises):

(h1, h2 	 h0);G;Γ � Δ

(h3, h4 	 h1); (h5, h6 	 h2);G;Γ ;h3 : e1 �→ e2;h5 : e1 �→ e3 � Δ
HCG;Γ � Δ

The rule HC effectively picks two arbitrary heaps h1 and h2, and does a case
split of whether they can be combined or not. This rule seems to require more
expressiveness than our logic. However, the above formulae cover most of prop-
erties about �→ that existing tools for SL can handle, including the treatments
in [17] and those for symbolic heaps [2].

5.2 Vafeiadis and Parkinson’s SL

Vafeiadis and Parkinson’s SL [35] is almost the same as Reynolds’s definition,
but they only consider values as addresses. This is a common setting in many
applications, such as [14]. In this setting, the following formula is valid: �∗ →
¬((e1 �→ e2)−∗ ¬(e1 �→ e2)). This formula, however, is invalid in Reynolds’s SL.
Obviously Formula 1 to 6 are valid in Vafeiadis and Parkinson’s SL, thus their
logic is also an instance of our abstract logic. To cater for the special feature, we
propose a formula for “total addressability”:

7. ∀e1, e2.♦(e1 �→ e2)

This formula ensures that there must exist a heap (e1 �→ e2) no matter what
values e1, e2 have. This is sound because in Vafeiadis and Parkinson’s SL, e1
must denote a valid address, thus h with dom(h) = {s(e1)} and h(s(e1)) = s(e2),
where s is the store, must be a legitimate function, which by definition is a heap.

5.3 Lee et al.’s SL

Lee et al.’s proof system for SL corresponds to a non-standard semantics
(although they used Reynolds’s semantics in their paper) [25]. While there is not
a reference of a formal definition of their non-standard semantics, their inference
rule −∗ Disj suggests that they forbid “incompatible heaps”. For example, if
there exists a heap e1 �→ e2, then there shall not exist another heap (e1 �→ e3),
where e2 = e3. Their −∗ Disj rule can help derive the following formula, which
is invalid in Reynolds’s SL:

(((e1 �→ e2) ∗ �)−∗ ⊥) ∨ (((e1 �→ e3) ∗ �)−∗ ¬((e1 �→ e2)−∗ ⊥)) ∨ (e2 = e3)

If we assume that the above non-standard semantics conform with Reynolds’s
SL in other aspects (as validated by Formula 1–6), then it can be seen as a special
instance of our abstract logic. The compatibility property can then be formulated
as follows:

8. ∀e1, e2.♦(e1 �→ e2) → ¬(∃e3.¬(e2 = e3) ∧ ♦(e1 �→ e3))

With Formula 8 we can prove the invalid formula above.

458 Z. Hóu and A. Tiu

5.4 Thakur et al.’s SL

There are SL variants that forbid heaps with cyclic lists, for example, the one
defined by Thakur et al. [33]. Consequently, the following two formulae are unsat-
isfiable in their SL:

e1 �→ e1 e1 �→ e2 ∗ e2 �→ e1

To formulate this property, we first define a notion of a path:

∀e1, e2.�(path(e1, e2) ≡ e1 �→ e2 ∨ (∃e3.(e1 �→ e3) ∗ path(e3, e2)))

where ≡ denotes logical equivalence (bi-implication). Now the property of “acy-
clism” can be formulated as

9. ∀e1, e2.�(path(e1, e2) → e1 = e2)

which renders cyclic paths unsatisfiable in our logic, too. Note that since our
proof system does not support inductive definitions, we cannot force the inter-
pretation of path to be the least fixed point of its definition. We leave the incor-
poration of inductive definitions to future work.

6 Implementation and Experiment

Our theorem prover for FOASL extends our previous prover for Reynolds’s
SL [17] with the ability to handle (non-inductive) predicates and modalities. To
speed up proof search, instead of implementing =2 and ∼2, we use the following
rules:

G;Γ [s/t] � Δ[s/t]
=′

2G;h : s = t;Γ � Δ

Gθ;Γθ � Δθ
∼′

2

h1 ∼ h2;G;Γ � Δ

where θ = [h1/h2] if h2 = ε and θ = [h2/h1] otherwise.

These two rules can be shown to be interchangeable with =2 and ∼2. One direc-
tion, i.e., showing that =′

2 and ∼′
2 can be derived in FOASL, is straightfor-

ward. The other direction requires some further justification. Let LS′
FOASL be

LSFOASL with =2 and ∼2 replaced by =′
2 and ∼′

2 respectively, we then need to
show that =2 and ∼2 are admissible in LS′

FOASL. To prove this, we follow a sim-
ilar proof for free-equality rules for first-order terms by Schroeder-Heister [32].
The key part in that proof is in showing that provability is closed under sub-
stitutions. In our setting, we need to show that LS′

FOASL is closed under both
term substitutions and label substitutions, which are stated below.

Lemma 6. If G;Γ � Δ is derivable in LS′
FOASL, then so is G;Γ [s/t] � Δ[s/t]

for any terms s and t.

Lemma 7. If G;Γ � Δ is derivable in LS′
FOASL, then so is G[h1/h2];�

Γ [h1/h2]Δ[h1/h2] for any label h1 and label variable h2.

Completeness for a First-Order Abstract Separation Logic 459

Note that by restricting h2 to a label variable, we forbid ε to be substituted in
the above lemma. These two lemmas require induction on the height of deriva-
tions, and routine checks confirm that they both hold. Then it is a corollary
that =2 and ∼2 are admissible in LS′

FOASL.
Since the heap model is widely used, our prover also includes useful rules to

reason in the heap model, such as the derived rules in Fig. 3. But we currently
have not included the HC rule in our proof search procedure. Since many appli-
cations of SL involve reasoning about invalid addresses, such as nil, we also add
a theory to capture a simple aspect of the invalid address nil:

10. �∀�e.(nil �→ �e) → ⊥
Since the current prover is an extension of our previous prover, it builds in the
inference rules for linked lists and binary trees for reasoning about the symbolic
heap fragment of SL. It is also capable of proving theorems used in verification
of a tail-recursive append function [26], as shown in [17]. However, we do not
exploit these aspects here.

We illustrate a list of formulae provable by our prover in Table 2. Formulae
1–4 are examples drawn from Galmiche and Méry’s work on resource graph

Table 2. Experiment on selected formulae.

Formula Time

1 ((�−∗ (((k �→ c, d)−∗ (l �→ a, b)) → (l �→ a, b))) → (l �→ a, b)) < 0.001s

2 ((∃x2.((∃x1.((x2 �→ x1, b) → ⊥)) → ⊥)) → (∃x3.(x3 �→ a, b))) < 0.001s

3 (((�∗ → ⊥) → ⊥) → ((∃x1.((x1 �→ a, b) ∗ �)) → ⊥)) < 0.001s

4 ((∃x3 x2 x1.(((x3 �→ a, x2) ∗ (x1 �→ c, d)) ∧ x2 = x1)) →
(∃x5 x4.((x4 �→ c, d) ∗ (x5 �→ a, x4))))

< 0.001s

5 ((((e1 �→ e2) ∗ �) ∧ (((e3 �→ e4) ∗ �)∧
(((e5 �→ e6) ∗ �) ∧ (¬(e1 = e3) ∧ (¬(e1 = e5) ∧ ¬(e3 = e5)))))) →
(((e1 �→ e2) ∗ ((e3 �→ e4) ∗ (e5 �→ e6))) ∗ �))

0.9s

6 ((((e1 �→ e2) ∗ ¬((e3 �→ e4) ∗ �)) ∧ ((e3 �→ e4) ∗ �)) → e1 = e3) < 0.001s

7 ¬((¬�∗ ∗ ¬�∗)−∗ ⊥) 0.0015s

8 ((¬(((l1 �→ p) ∗ (l2 �→ q))−∗ (¬(l3 �→ r)))) →
(¬((l1 �→ p)−∗ (¬(¬((l2 �→ q)−∗ (¬(l3 �→ r))))))))

< 0.001s

9 ((¬((l1 �→ p)−∗ (¬(¬((l2 �→ q)−∗ (¬(l3 �→ r))))))) →
(¬(((l1 �→ p) ∗ (l2 �→ q))−∗ (¬(l3 �→ r)))))

< 0.001s

10 ((¬((lx �→ ly)−∗ (¬((l1 �→ p) ∗ (l2 �→ q))))) →
(¬((¬((¬((lx �→ ly)−∗ (¬(l1 �→ p)))) ∗ ((l2 �→ q)∧
(¬(∃x1.((lx �→ x1) ∗ �)))))) ∧ (¬((¬((lx �→ ly)−∗
(¬(l2 �→ q)))) ∗ ((l1 �→ p) ∧ (¬(∃x2.((lx �→ x2) ∗ �)))))))))

< 0.001s

11 ((∀x2 x1.♦(x2 �→ x1)) → (�∗ → ¬((e1 �→ e2)−∗ ¬(e1 �→ e2)))) < 0.001s

12 ((∀x3 x2.(♦(x3 �→ x2) → ¬(∃x1.(¬(x2 = x1) ∧ ♦(x3 �→ x1))))) →
((((e1 �→ e2) ∗ �)−∗ ⊥) ∨ ((((e1 �→ e3) ∗ �)−∗ ¬((e1 �→ e2)−∗ ⊥))
∨e2 = e3)))

0.0025s

460 Z. Hóu and A. Tiu

tableaux for SL [15]. Formula 5 is a property about overlaid data structures: if
the current heap contains (e1 �→ e2) and (e3 �→ e4) and (e5 �→ e6), and they are
pairwise distinct, then the current heap contains the combination of the three
heaps. Formula 6 says that if the current heap can be split into two parts, one is
(e1 �→ e2) and the other part does not contain (e3 �→ e4), and the current heap
contains (e3 �→ e4), then we deduce that (e3 �→ e4) and (e1 �→ e2) must be the
same heap, therefore e1 = e3. Formula 7 says that any heap can be combined with
a composite heap. We give a derivation of formula 7 in AppendixA. Formulae
8–10 are properties of “septraction” in SL with Rely-Guarantee [35]. Finally,
formulae 11 and 12 show that our prover can easily support reasoning about
Vafeiadis and Parkinson’s SL (cf. Sect. 5.2) and Lee et al.’s SL (cf. Sect. 5.3)
by simply adding the corresponding theories as assumptions. This is a great
advantage over our previous work where new rules have to be implemented to
extend the ability of the prover. To our knowledge most existing provers for
SL cannot prove the formulae in Table 2. Examples of larger formulae used in
program verification can be found in the experiment of our previous prover [17],
upon which this prover is built.

7 Conclusion

This paper presents a first-order abstract separation logic with modalities. This
logic is rich enough to express formulae in real-world applications such as pro-
gram verification. We give a sound and complete labelled sequent calculus for
this logic. The completeness of the finite calculus implies that our logic is recur-
sively enumerable. To deal with �→, we give a set of formulae to approximate the
semantics of memory model. Of course, we cannot fully simulate �→, but we can
handle most properties about �→ compared with existing tools for SL. Moreover,
we can prove numerous formulae that many existing tools for SL cannot handle.
The techniques discussed in this paper are demonstrated in a rather flexible theo-
rem prover which supports automated reasoning in different SL variants without
any change to the implementation. With this foundation, one can simply add
formulae as “assumption”, and prove theorems that cannot be proved in the
base logic.

Acknowledgments. This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its National Cybersecurity R&D Program
(Award No. NRF2014NCR-NCR001-30) and administered by the National Cybersecu-
rity R&D Directorate.

A An Example Derivation

We sometimes write r × n when it is obvious that the rule r is applied n times.
We omit some formulae to save space. The derivation is given in the next page.
The sub-derivation Π1 is similar to Π2.

Completeness for a First-Order Abstract Separation Logic 461

⊥
L

··
· ;

h
4

:
⊥

�
··

·
Π

1

�
∗ R

··
·;

ε
:
e 3

�→
e 4

�
ε

:
�∗

··
·

i
d

··
·;

ε
:
e 3

�→
e 4

�
ε

:
e 3

�→
e 4

;·
··

∧
R

··
·;

ε
:
e 3

�→
e 4

�
ε

:
(e

3
�→

e 4
)
∧

�∗ ;
··

·
⊥

L

··
·;

ε
:
⊥;

ε
:
e 3

�→
e 4

�
··

·
→

L

··
·;

ε
:
((

e 3
�→

e 4
)
∧

�∗)
→

⊥;
ε

:
e 3

�→
e 4

�
··

·
∀L

×
2

··
·;

ε
:
∀e

1
,e

2
.(

(e
1

�→
e 2

)
∧

�∗)
→

⊥;
ε

:
e 3

�→
e 4

�
··

·
�

L
o
n

F
o
rm

u
la

1
··

· ;
ε

:
e 3

�→
e 4

�
··

·
E

q
1

(ε
,h

3
�

ε)
;·

··
;h

3
:
e 3

�→
e 4

�
··

·
�

∗ L
··

·;
h
3

:
e 3

�→
e 4

;h
3

:
�∗

�
··

·
¬
R

··
·;

h
3

:
e 3

�→
e 4

�
h
3

:
¬�

∗ ;
··

·
∗R

(h
3
, h

1
�

h
5
);

··
·;

h
1

:
e 1

�→
e 2

;h
3

:
e 3

�→
e 4

�
h
5

:
((

¬�
∗)

∗(
¬�

∗)
);

··
·

−∗
L

(h
5
,h

0
�

h
4
);

(h
3
,h

1
�

h
5
);

··
· ;

h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
;h

1
:
(e

1
�→

e 2
);

h
3

:
(e

3
�→

e 4
)

�
··

·
E

(h
0
,h

5
�

h
4
);

(h
3
,h

1
�

h
5
);

··
· ;

h
0

:
((

¬�
∗)

∗(
¬�

∗)
) −

∗⊥
;h

1
:
(e

1
�→

e 2
);

h
3

:
(e

3
�→

e 4
)

�
··

·
A

(h
0
,h

1
�

h
2
);

(h
2
,h

3
�

h
4
);

··
·;

h
0

:
((

¬�
∗)

∗(
¬�

∗)
) −

∗⊥
;h

1
:
(e

1
�→

e 2
);

h
3

:
(e

3
�→

e 4
)

�
··

·
E

×
2

(h
1
, h

0
�

h
2
);

(h
3
,h

2
�

h
4
);

··
·;

h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
;h

1
:
(e

1
�→

e 2
);

h
3

:
(e

3
�→

e 4
)

�
h
4

:
⊥ ;

h
2

:
⊥

− ∗
R

(h
1
,h

0
�

h
2
);

··
·;

h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
;h

1
:
(e

1
�→

e 2
)

�
h
2

:
(e

3
�→

e 4
)−

∗⊥
;h

2
:
⊥

¬
L

(h
1
, h

0
�

h
2
);

··
· ;

h
2

:
¬(

(e
3

�→
e 4

)−
∗⊥

);
h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
;h

1
:
(e

1
�→

e 2
)

�
h
2

:
⊥

∀L
(h

1
, h

0
�

h
2
);

··
·;

h
2

:
∀e

2
.¬

((
e 3

�→
e 2

)−
∗⊥

);
h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
;h

1
:
(e

1
�→

e 2
)

�
h
2

:
⊥

∃L
(h

1
,h

0
�

h
2
);

··
· ;

h
2

:
∃e

1
∀e

2
. ¬

((
e 1

�→
e 2

)−
∗⊥

);
h
0

:
((

¬�
∗)

∗ (
¬�

∗)
) −

∗⊥
;h

1
:
(e

1
�→

e 2
)

�
h
2

:
⊥

�
L

o
n

F
o
rm

u
la

5
(h

1
,h

0
�

h
2
);

··
·;

h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
; h

1
:
(e

1
�→

e 2
)

�
h
2

:
⊥

−∗
R

··
·;

h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
�

h
0

:
(e

1
�→

e 2
)−

∗⊥
¬
L

··
·;

h
0

:
¬(

(e
1

�→
e 2

)−
∗⊥

);
h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
�

∀L
··

·;
h
0

:
∀e

2
.¬

((
e 1

�→
e 2

)−
∗⊥

);
h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
�

∃L
··

·;
h
0

:
∃e

1
∀e

2
.¬

((
e 1

�→
e 2

)−
∗⊥

);
h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
�

�
L

o
n

F
o
rm

u
la

5
;h

0
:
A;

h
0

:
((

¬�
∗)

∗(
¬�

∗)
)−

∗⊥
�

¬
R

;h
0

:
A

�
h
0

:
¬(

((
¬�

∗)
∗(

¬�
∗)

)−
∗⊥

)
→

R

;�
h
0

:
A

→
¬(

((
¬�

∗)
∗(

¬�
∗)

)−
∗⊥

)

462 Z. Hóu and A. Tiu

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic assertion
checking with separation logic. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever,
W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg
(2006). doi:10.1007/11804192 6

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic Execution with Separation
Logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005). doi:10.1007/11575467 5

3. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Inf. Comput. 211,
106–137 (2012)

4. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.
375(1–3), 227–270 (2007)

5. Brotherston, J.: A unified display proof theory for bunched logic. ENTCS 265,
197–211 (2010)

6. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 12

7. Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and
its neighbours. J. ACM 61(2), 14:1–14:43 (2014). doi:10.1145/2542667

8. Brotherston, J., Villard, J.: Parametric completeness for separation theories. In:
POPL, pp. 453–464. ACM (2014)

9. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS, pp. 366–378. IEEE (2007)

10. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and Complexity Results
for a Spatial Assertion Language for Data Structures. In: Hariharan, R., Vinay,
V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer,
Heidelberg (2001). doi:10.1007/3-540-45294-X 10

11. Demri, S., Deters, M.: Expressive completeness of separation logic with two vari-
ables and no separating conjunction. In: CSL/LICS (2014)

12. Demri, S., Galmiche, D., Larchey-Wendling, D., Méry, D.: Separation logic with
one quantified variable. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin,
N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 125–138. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06686-8 10

13. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10672-9 13

14. Galmiche, D., Méry, D., Pym, D.: The semantics of BI and resource tableaux.
MSCS 15(6), 1033–1088 (2005)

15. Galmiche, D., Méry, D.: Tableaux and resource graphs for separation logic. J. Logic
Comput. 20(1), 189–231 (2010)

16. Hóu, Z., Clouston, R., Goré, R., Tiu, A.: Proof search for propositional abstract
separation logics via labelled sequents. In: POPL (2014)

17. Hóu, Z., Goré, R., Tiu, A.: Automated theorem proving for assertions in separa-
tion logic with all connectives. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015.
LNCS (LNAI), vol. 9195, pp. 501–516. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21401-6 34

18. Hóu, Z., Tiu, A.: Completeness for a first-order abstract separation logic [cs.LO]
(2016). arXiv: 1608.06729

http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/11575467_5
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1145/2542667
http://dx.doi.org/10.1007/3-540-45294-X_10
http://dx.doi.org/10.1007/978-3-319-06686-8_10
http://dx.doi.org/10.1007/978-3-642-10672-9_13
http://dx.doi.org/10.1007/978-3-319-21401-6_34
http://dx.doi.org/10.1007/978-3-319-21401-6_34
http://arxiv.org/abs/1608.06729

Completeness for a First-Order Abstract Separation Logic 463

19. Jensen, J.B., Birkedal, L.: Fictional separation logic. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 377–396. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28869-2 19

20. Krishnaswami, N.R.: Reasoning about iterators with separation logic. In: SAVCBS,
pp. 83–86. ACM (2006)

21. Larchey-Wendling, D.: The formal strong completeness of partial monoidal Boolean
BI. JLC 26(2), 605–640 (2014)

22. Larchey-Wendling, D., Galmiche, D.: Exploring the relation between intuitionistic
BI and Boolean BI: an unexpected embedding. MSCS 19(3), 435–500 (2009)

23. Larchey-Wendling, D., Galmiche, D.: The undecidability of Boolean BI through
phase semantics. In: LICS, pp. 140–149 (2010)

24. Larchey-Wendling, D., Galmiche, D.: Looking at separation algebras with Boolean
BI-eyes. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705,
pp. 326–340. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44602-7 25

25. Lee, W., Park, S.: A proof system for separation logic with magic wand. In: POPL,
pp. 477–490. ACM (2014)

26. Maeda, T., Sato, H., Yonezawa, A.: Extended alias type system using separating
implication. In: TLDI, pp. 29–42. ACM (2011)

27. Pérez, J.A.N., Rybalchenko, A.: Separation logic + superposition calculus = heap
theorem prover. In: PLDI. ACM (2011)

28. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. BSL 5(2), 215–244
(1999)

29. O’Hearn, P., Reynolds, J., Yang, H.: Local Reasoning about Programs that Alter
Data Structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

30. Park, J., Seo, J., Park, S.: A theorem prover for Boolean BI. In: POPL 2013, New
York, NY, USA, pp. 219–232 (2013)

31. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE (2002)

32. Schroeder-Heister, Peter: Definitional reflection and the completion. In: Dyckhoff,
Roy (ed.) ELP 1993. LNCS, vol. 798, pp. 333–347. Springer, Heidelberg (1994).
doi:10.1007/3-540-58025-5 65

33. Thakur, A., Breck, J., Reps, T.: Satisfiability modulo abstraction for separation
logic with linked lists. In: SPIN 2014, pp. 58–67 (2014)

34. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press, New York (1996)

35. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 18

http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-662-44602-7_25
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/3-540-58025-5_65
http://dx.doi.org/10.1007/978-3-540-74407-8_18

Author Index

Abe, Tatsuya 63
Accattoli, Beniamino 206
Arai, Ryoya 148

Balat, Vincent 377
Bi, Xuan 251
Binder, Walter 139

Cha, Sooyoung 25
Chen, Lydia Y. 139
Chin, Wei-Ngan 423

de’Liguoro, Ugo 187
DeYoung, Henry 3
Dougherty, Daniel J. 187

Fragoso Santos, José 401

Gandhi, Rajeev 42
Gardner, Philippa 314, 401
Guerrieri, Giulio 206

Hobor, Aquinas 314
Honsell, Furio 229
Horne, Ross 87
Hóu, Zhé 444
Hüttel, Hans 96

Iwasaki, Hideya 148

Jeong, Sehun 25

Kameyama, Yukiyoshi 271
Kiselyov, Oleg 271, 357
Kobayashi, Naoki 295, 335

Le, Quang Loc 423
Lenisa, Marina 229
Liquori, Luigi 187, 229

Maeda, Toshiyuki 63

Narasimhan, Priya 42
Nguyen, Nam 87

Oh, Hakjoo 25
Oliveira, Bruno C.d.S. 251

Pfenning, Frank 3

Raad, Azalea 314, 401
Radanne, Gabriel 377
Rosà, Andrea 139

Sato, Shigeyuki 148
Scagnetto, Ivan 229
Stadtmüller, Kai 116
Stolze, Claude 187
Sudo, Yuto 271
Sulzmann, Martin 116
Sumii, Eijiro 171

Tan, Jiaqi 42
Tatsuta, Makoto 423
Tay, Hui Jun 42
Terao, Taku 295
Thiemann, Peter 116
Tiu, Alwen 87, 444
Tsukada, Takeshi 295, 335

Villard, Jules 314
Vouillon, Jérôme 377

Yachi, Taichi 171
Yang, Yanpeng 251
Yasukata, Kazuhide 335

	Preface
	Organization
	Invited Papers
	Making Hardware Accelerator Easier to Use
	Fiat: A New Perspective on Compiling Domain-Specific Languages in a Proof Assistant
	Contents
	Invited Presentations
	Substructural Proofs as Automata
	1 Introduction
	2 A Subsingleton Fragment of Intuitionistic Linear Logic
	2.1 Propositions, Contexts, and Sequents
	2.2 Deriving the Inference Rules of ,1-Subsingleton Logic
	2.3 Admissibility of Cut and Identity
	2.4 Extending the Logic with Least Fixed Points

	3 Subsequential Finite-State Transducers
	3.1 Definitions
	3.2 Example of a Subsequential Transducer
	3.3 Discussion
	3.4 Composing Subsequential Finite-State String Transducers

	4 Curry--Howard Isomorphism for Subsingleton Proofs
	4.1 A Computational Interpretation of ,1,-Subsingleton Logic
	4.2 Propositions as Languages
	4.3 Encoding SFTs as Cut-Free Proofs
	4.4 Completing the Isomorphism: From Cut-Free Proofs to SFTs

	5 SFT Composition by Cut Elimination
	5.1 Closure of SFTs Under Composition
	5.2 DFA Closure Under Complement and Inverse Homomorphism

	6 Linear Communicating Automata
	6.1 A Model of Linear Communicating Automata
	6.2 Comparing LCAs and Turing Machines

	7 Extending ,1,-Subsingleton Logic
	7.1 Including and in Subsingleton Logic
	7.2 Subsingleton Logic Is Turing Complete

	8 Conclusion
	References

	Verification and Analysis I
	Learning a Strategy for Choosing Widening Thresholds from a Large Codebase
	1 Introduction
	2 Adaptive Static Analysis
	3 Learning an Adaptation Strategy from a Codebase
	3.1 Parameterized Adaptation Strategy
	3.2 The Optimization Problem
	3.3 Existing Approach
	3.4 Our Oracle-Guided Approach

	4 Learning a Strategy for Widening Thresholds
	4.1 Interval Analysis with Widening Thresholds
	4.2 Features
	4.3 Oracle

	5 Experiments
	5.1 Setting
	5.2 Effectiveness
	5.3 Comparison
	5.4 Important Features

	6 Related Work
	7 Conclusion
	References

	AUSPICE-R: Automatic Safety-Property Proofs for Realistic Features in Machine Code
	1 Introduction
	2 Problem Statement
	3 Background
	3.1 Safety Properties of Interest
	3.2 Hoare Logic for ARM Machine Code: Cambridge ARM Model
	3.3 AUSPICE: Hoare Logic-Based Safety Property Proofs
	3.4 Proof Automation in AUSPICE

	4 Safety Proofs for Machine Code with System Calls
	4.1 Modeling of System Calls in User-Mode Programs
	4.2 Supporting Safety Proof Automation for System Calls

	5 Optimizing Safety Proof Automation
	6 Evaluation
	6.1 File-Based I/O
	6.2 Embedded Software
	6.3 Proof Optimization

	7 Discussion
	8 Related Work
	9 Conclusion and Future Work
	References

	Observation-Based Concurrent Program Logic for Relaxed Memory Consistency Models
	1 Introduction
	2 Related Work
	3 Concurrent Programs
	4 Operational Semantics
	5 Concurrent Program Logic
	6 Validity for Judgments
	7 Observation Invariant
	8 Soundness
	9 Examples
	9.1 Verification of DC
	9.2 Verification of 1R1W
	9.3 Verification of IRIW

	10 Conclusion and Future Work
	References

	Process Calculus
	SPEC: An Equivalence Checker for Security Protocols
	1 Introduction
	2 The spi-Calculus
	3 Open Bisimulation
	4 An Example
	5 Implementation
	6 Key Cycles Detection
	7 Future Work
	References

	Binary Session Types for Psi-Calculi
	1 Introduction
	2 Psi-Calculi
	2.1 Names, Terms and Assertions
	2.2 Processes

	3 An Annotated Semantics
	4 Types in the Generic Type System
	4.1 Session Types and Endpoint Types
	4.2 Type Environments
	4.3 A Typed Syntax and Its Semantics

	5 Type Judgements in the Generic Type System
	5.1 Typing Session Channels
	5.2 Typing Patterns
	5.3 Type Rules for Terms, Assertions and Conditions
	5.4 Type Rules for Processes

	6 A Type Preservation Theorem
	7 Instances of the Type System
	7.1 Gay-Hole Sessions
	7.2 A Type System for Progress
	7.3 Refinement Types

	8 Conclusions and Future Work
	References

	Static Trace-Based Deadlock Analysis for Synchronous Mini-Go
	1 Introduction
	2 Highlights
	3 Mini-Go
	4 Approximation via Forkable Behaviors
	5 Static Analysis
	5.1 Forkable Behavior Stuckness Criterion
	5.2 Static Checking of Stuckness
	5.3 Eliminating False Positives

	6 Experimental Results
	6.1 Implementation
	6.2 Examples
	6.3 Experimental Results

	7 Conclusion
	References

	Profiling and Debugging
	AkkaProf: A Profiler for Akka Actors in Parallel and Distributed Applications
	1 Introduction
	2 Motivating Scenarios
	3 Profiler Overview
	4 Evaluation
	5 Concluding Remarks
	References

	A Debugger-Cooperative Higher-Order Contract System in Python
	1 Introduction
	2 PyBlame at a Glance
	3 Contract Language
	3.1 Syntax
	3.2 Evaluation

	4 Contract-Checking Debugger
	4.1 Motivation and Basic Design
	4.2 Features and Usage

	5 Implementation
	5.1 Outline
	5.2 Proxy Objects
	5.3 Compilation to Proxy Objects
	5.4 Debugger and Debugger Support

	6 Experiments
	6.1 Expressiveness
	6.2 Overhead
	6.3 Debugging Scenarios

	7 Related Work
	7.1 Contract Programming
	7.2 Type Checking

	8 Conclusion
	References

	\boldlambda -Calculus
	A Sound and Complete Bisimulation for Contextual Equivalence in -Calculus with Call/cc
	1 Introduction
	2 The Language
	3 Our Bisimulations
	4 Up-to Reduction
	5 Up-to Context
	6 Examples
	7 Conclusions
	References

	A Realizability Interpretation for Intersection and Union Types
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Type Assignment u and the Typed Calculus t
	2.1 The Proof Essence Partial Function
	2.2 The Proof-Functional Logic L

	3 Realizability Interpretation of Union Types
	4 Further Logical Developments and Implementation
	4.1 Implicit Subtyping as Explicit Coercions
	4.2 Logical Frameworks
	4.3 Prototype Implementation

	References

	Open Call-by-Value
	1 Introduction
	2 Incarnations of Open Call-by-Value
	2.1 Open Call-by-Value 1: The Fireball Calculus
	2.2 Open Call-by-Value 2: The Value Substitution Calculus
	2.3 Open Call-by-Value 3: The Shuffling Calculus
	2.4 Open Call-by-Value 4: The Value Sequent Calculus
	2.5 Variations on a Theme

	3 Quantitative Equivalence of lambda-fire, lambda-vsub, and lambda-shuf
	3.1 Equivalence of fireball-calculus and vsub-calculus
	3.2 Equivalence of shuffling-calculus and vsub-calculus

	4 Quantitative Equivalence of lambda-vsub and lambda-vseq, via lambda-vsubk
	4.1 Equivalence of vsubk and vsub
	4.2 Equivalence of vsubk and vseq

	5 Conclusions and Future Work
	References

	Type Theory
	Implementing Cantor's Paradise
	1 Introduction
	2 The Theory of Fitch-Prawitz, FP
	2.1 The Language of FP
	2.2 Inference Rules and Deductions

	3 The Theory FP: Pros and Cons
	3.1 The Taming of Russell's and Curry's Paradoxes
	3.2 Equality and Extensionality

	4 Developing Mathematics in FP
	4.1 The Fixed Point Theorem

	5 Encoding FP in a Type Theoretic Logical Framework
	6 The Extensional Quotient of FP
	6.1 The Theory of Hyperuniverses TH
	6.2 The Extensional Quotient of the Fitch-Prawitz Coalgebra

	7 FP as a Logical Framework
	8 Conclusions and Final Remarks
	References

	Unified Syntax with Iso-types
	1 Introduction
	2 Overview
	2.1 The Calculus of Constructions and the Conversion Rule
	2.2 An Alternative to the Conversion Rule: Iso-types
	2.3 General Recursion

	3 Dependent Types with Iso-types
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Typing
	3.4 The Two Faces of Recursion
	3.5 Metatheory

	4 Iso-types with Full Casts
	4.1 Full Casts with Parallel Reduction
	4.2 Metatheory

	5 Application of Iso-types
	6 Related Work
	7 Conclusion
	References

	Refined Environment Classifiers
	1 Introduction
	2 <NJ>, Its Syntax and Semantics
	3 Type System
	3.1 Scope Extrusion
	3.2 Environment Classifiers, Binding Abstractions, and Lexical Scope
	3.3 Classifier Polymorphism

	4 Complex Example
	5 Related Work
	6 Conclusions and Future Work
	A Proof Outlines: Subject Reduction Theorem
	B Generating Code with Arbitrary Many Variables
	References

	Verification and Analysis II
	Higher-Order Model Checking in Direct Style
	1 Introduction
	2 Call-by-Value Reachability Problem
	2.1 Target Language
	2.2 Semantics
	2.3 Reachability Problem

	3 Intersection Type System
	4 The 0-CFA Guided Saturation Algorithm
	4.1 The -Guided Type System
	4.2 0-CFA
	4.3 The 0-CFA Guided Saturation Algorithm
	4.4 Correctness of the 0-CFA Guided Saturation Algorithm

	5 Implementation and Experiments
	5.1 Benchmarks and Environment
	5.2 Experimental Result

	6 Related Work
	7 Conclusion
	References

	Verifying Concurrent Graph Algorithms
	1 Introduction
	2 Background
	2.1 CoLoSL: Concurrent Local Subjective Logic
	2.2 Proof Pattern: Combining Mathematical and Spatial Reasoning

	3 Copying Heap-Represented Dags Concurrently
	4 Parallel Speculative Shortest Path (Dijkstra)
	References

	Verification of Higher-Order Concurrent Programs with Dynamic Resource Creation
	1 Introduction
	2 Pairwise Reachability Problem and Scope Safety
	2.1 Language
	2.2 Pairwise Reachability
	2.3 Scope Safety

	3 Verification of Pairwise Reachability
	3.1 Higher-Order Model Checking
	3.2 Action Trees
	3.3 Relaxed Transition of Programs
	3.4 Lock Sensitivity of Action Trees
	3.5 Regularity of LSATrees

	4 Checking Scope-Safety and Well-Nested Locking
	4.1 Strong Scope Safety
	4.2 Well-Nested Locking
	4.3 Scope-Safety and Well-Nested Locking

	5 Extension with Join Operations
	6 Experiments
	7 Related Work
	8 Conclusion
	References

	Programming Paradigms
	Probabilistic Programming Language and its Incremental Evaluation
	1 Introduction
	2 Hakaru10 by Example
	2.1 Model Compositions and Their Laws
	2.2 Branching Models
	2.3 Conditioning

	3 Evaluation
	3.1 Performance

	4 Implementation
	4.1 Design Overview
	4.2 Incremental Recomputation
	4.3 Special Treatment of the Dirac Distribution
	4.4 Branching

	5 Related Work
	6 Conclusions and Future Work
	References

	ELIOM: A Core ML Language for Tierless Web Programming
	1 Introduction
	1.1 The Need for Tierless Languages
	1.2 ELIOM
	1.3 A Core Language for Tierless Web Programming

	2 How to: Client-Server Web Programming
	2.1 Sections
	2.2 Client Fragments
	2.3 Injections
	2.4 Examples
	2.5 Libraries
	2.6 Client-Server Communication

	3 A Client-Server Language
	3.1 Syntax
	3.2 Type System
	3.3 The Semantics

	4 Compilation to Client and Server Languages
	4.1 The Languages
	4.2 The Semantics
	4.3 From ELIOM to ML

	5 Relating ELIOM and ML
	6 Related Work
	7 Conclusion
	A Translation from ELIOM to ML
	References

	Separation Logic
	DOM: Specification and Client Reasoning
	1 Introduction
	2 Overview
	2.1 A Formal DOM Specification
	2.2 Verifying JavaScript Programs that Call the DOM

	3 A Formal DOM Specification
	3.1 DOM Model
	3.2 DOM Assertions
	3.3 PLDOMLogic
	3.4 DOM Operations and Axioms
	3.5 Live Collections

	4 Verifying JavaScript Programs that Call the DOM
	4.1 A JavaScript Ad Blocker

	References

	Decision Procedure for Separation Logic with Inductive Definitions and Presburger Arithmetic
	1 Introduction
	2 System SLA1
	2.1 Syntax
	2.2 Semantics
	2.3 Undecidability in SLA1

	3 Presburger Arithmetic with Inductive Definitions
	3.1 Presburger Arithmetic with Positive Inductive Definitions
	3.2 Decidable Subsystem DPI

	4 Decidable Subsystem SLA2
	4.1 Syntax of SLA2
	4.2 Unfolding Tree
	4.3 Base Pairs
	4.4 Decidability in SLA2

	5 Conclusion
	References

	Completeness for a First-Order Abstract Separation Logic
	1 Introduction
	2 First-Order Abstract Separation Logic
	3 LSFOASL: A Labelled Calculus for FOASL
	4 Counter-Model Construction
	5 Theories for in Separation Logics
	5.1 Reynolds's Semantics
	5.2 Vafeiadis and Parkinson's SL
	5.3 Lee et al.'s SL
	5.4 Thakur et al.'s SL

	6 Implementation and Experiment
	7 Conclusion
	A An Example Derivation
	References

	Author Index

