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Preface

This book describes the applications of the fundamental interactions of 
electromagnetic waves and materials as described in the preceding volume, “Basic
Electromagnetism and Materials”. It is addressed to students studying masters or 
doctorate courses in electronics, electromagnetism, applied physics, materials 
physics, or chemical physics. In particular, this volume analyzes the behavior of 
materials in the presence of an electromagnetic field and related applications in the 
fields of electronics, optics, and materials physics. The study of the fundamental 
processes due to electromagnetic fields is detailed and includes processes of 
radiation, intense fields (including the electrooptical effect), and confined media  
and of those related to particle mechanics that are used in large-scale apparatuses. 

The first three chapters are dedicated to the description of materials placed 
under a varying electric field. The material is treated particularly from the viewpoint 
of a dielectrician, with the classic representations (sometimes termed as in the 
complex plane) of Debye, Cole Cole, and Cole Davidson. The origins of the 
relaxation mechanisms in the Hertzian domain due to slow-moving charges, such as 
space charges, bound charges associated with permanent dipoles, and electrons 
trapped in insulators or semiconductors are treated. A study of the latter material 
makes possible a determination of the energy associated with trap depths, an 
important value for electricians, semiconductor optoelectricians, dielectricians, and 
opticians (through fluorescence studies). 

The second chapter details the relations between components for conductivity 
and dielectric permittivity. They show, among other things, that a material is never 
an ideal (perfect) conductor or insulator. For a material subject to an electromagnetic 
wave, there are simple relations between these two components written in a complex 
form to take into account the realities of the materials. Spectroscopic analysis is 
notably detailed. 

The Kramers Krönig relations are then established in Chapter 3 by means of a 
formal physical treatment of signals. They show that the knowledge of a spectrum of 
the real component of the dielectric permittivity (also true for an optical index or for 
the magnetic permeability) permits a deduction of the imaginary component for a 
given frequency and vice versa. The spectra of dielectrics thus are completed for the 
infrared and optical frequencies by a study of the ionic and above all electronic 
polarization. For each degree of bonding of electrons (valence electrons in internal 
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or external layers) it is shown that there is a corresponding absorption frequency, 
which in turn gives rise to different absorption peaks and dispersion domains. The 
range of various phenomena is grouped together in a single figure, which 
summarizes the responses of a dielectric to waves throughout the electromagnetic 
spectrum. For further details on infrared or optical waves, the reader would 
obviously have to turn to a course on quantum mechanics, but the physical origin of 
optical losses that intervene in guided propagation is well described using the 
presented classical electromagnetic theory. 

Chapters 4 and 5 detail studies of waves in more semiconductor-type solids. 
Initially, the behavior of a wave associated with electrons in periodic medium is 
described to show that it is the establishment of stationary waves for particular 
values of the wave vector that generates forbidden bands. These bands make 
possible a distinction between insulators, semiconductors, and metals for which the 
population of the bands is described as simply by introducing state density 
functions. The electromagnetic properties, and in particular in the optical domain, of 
semiconductors are then depicted. These include, notably, reflectivity and absorption 
coefficients and the establishment of the relation between the size of the gap and the 
dielectric permittivity. The origin of forbidden transitions and radiative transitions is 
given, and Chapter 4 is completed with a determination of the equation for the levels 
of absorption and transmission in semiconductors, which controls their opto-
electronic properties. Chapter 5 describes the electrical and magnetic properties of 
homogeneous and inhomogeneous semiconductors. Point by point, the practical 
characteristics of conductivity (along with the physical significance of the squared 
resistance and a discussion on abuses of its use) and the thermoelectric effect are 
dealt with (in the form of problems). The characterizations of magnetoresistances 
are introduced and the Hall effect with two types of carriers is studied through the 
use of set problems. Finally, the origin of the Gunn effect is presented along with its 
application to the generation of microwaves. 

Chapters 6 and 7 go beyond the electromagnetic phenomena introduced in the 
preceding chapters. It is here that the nonlinear response of a material to an 
electromagnetic wave is brought under examination, in particular by looking at the 
Pockels effect underlying the operation of electrooptical modulators. The effects of 
cavities and microcavities on the behavior of waves then is introduced, taking into 
account its importance in present-day applications, especially in optics where the 
laser effect is widely used in material physics (for optical characterizations). The 
ablation by laser of materials has given rise to deposition methods, which here are 
limited to the application of ion beams in the last three chapters. 

Thus Chapters 8 and 9 study and apply particle mechanics in the presence of an 
electromagnetic field. The classic trajectories are first detailed, and they include 
electromagnetic deviation, cycloid-type trajectories in E x B fields and associated 
with the magnetron effect (used in vacuum techniques), and trajectories associated 
with electronic or ionic optics in large-scale apparatuses such as electron 
microscopes and ion accelerators. A description of such a machine thus is proposed, 
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with a detailed appraisal of an ion accelerator equipped with an ion source [termed a 
cyclotronic resonance, ECR], ionic optics, and a mass filter, the operation of which 
all rely on the laws of electromagnetism (for example, the penetration of 
microwaves into a plasma to generate ECR-type ions). Chapter 10 is used to study 
ion material interactions that govern implantation mechanisms in semiconductors, 
material surface treatments (cleaning, engraving, and densification), and their 
fabrication (pulverization using a single- or double-beam configuration). Finally, a 
detailed description of ion sources is given, each of which use the generation of a 
plasma distributed in a specific manner by the electromagnetic interaction of 
charged particles with the atomic element to be ionized. 

ACKNOWLEDGMENTS. I would like to offer my special thanks to the translator of this 
text, Dr. Roger C. Hiorns. Dr. Hiorns is following postdoctorial studies in the 
synthesis of polymers for electroluminescent and photovoltaic applications at the 
Laboratoire de Physico-Chimie des Polymères (Université de Pau et des Pays de 
l’Adour, France). 



Contents

Chapter 1. Dielectrics under varying regimes:
   phenomenological study of dielectric relaxation.................... 1

1.1. Definitions for dielectric permittivities and dielectric
conductivity and classification of dielectric phenomena  ................... .. .1

   1.1.1. Absolute permittivity.......................................................................... 1 
  1.1.2. Relative permittivity........................................................................... 2 
   1.1.3. Complex relative permittivity............................................................. 2 
   1.1.4. Limited permittivity............................................................................ 3 
  1.1.5. Dielectric conductivity....................................................................... 3 
  1.1.6. Classification of diverse dielectric phenomena.................................4
 1.2. Classic study of the Debye dipolar absorption (DDA).............................6

1.2.1. The form of the polarization under a continuous
(stationary) regime............................................................................ 6 

  1.2.2. Dipolar polarization as a function of time........................................7 
  1.2.3. Debye equations and the Argand diagram........................................8 
  1.2.4.  Practical representations.................................................................10 
 1.3. The double-well potential model:  physical representations.................12
  1.3.1. Introduction......................................................................................12 

1.3.2. Polarization associated with the displacement of electrons
between two positions separated by a potential barrier................ 12 

  1.3.3. Dipole rotation due to an electric field............................................17 
1.3.4. Practical determination of the depth of potential wells..................19 

 1.4. Problems.....................................................................................................21
  1.4.1. Problem 1. The double- well potential at a state of equilibrium....21 
  1.4.2. Problem 2. The Cole Cole diagram................................................25 
  1.4.3. Problem 3. The Cole Davidson diagram........................................30 

1.4.4. Problem 4. Linear relationships based on the Debye equations:    
the Cole Brot equations..................................................................33 



    Applied electromagnetism and materialsx

Chapter 2. Characterization of dielectrics............................................ 39

2.1. Introduction:  representation of a dielectric with an equivalent
circuit........................................................................................................ 39

2.2. Circuits exhibiting relaxation phenomena as possible
equivalents to real dielectrics:  plots of ’ = f( ) and ’’ = g( )....... 40

  2.2.1. Parallel circuit ..............................................................................   40 
  2.2.2. Circuit in series...............................................................................  41 

2.2.3. Association of serial and parallel circuits and relaxation plots...  42 
 2.3. Resonating circuit.................................................................................... 44

2.4. Representation of a heterogeneous dielectric (powders) using
a model of layers: two parallel circuits in series and the
Maxwell Wagner Sillars effect............................................................. 45

2.5. Impedance spectroscopy.......................................................................... 48
2.5.1. Example using a parallel circuit..................................................... 48
2.5.2. Summary......................................................................................... 49

2.6. Dielectric measurements: summary of the analytical apparatus
used with respect to frequency domain................................................. 51
2.6.1. Opening remark: expressions for the quality factor and

tangential loss for the different circuits equivalent to
capacitors or bobbins...................................................................... 51 

2.6.2. Very low frequencies (0 to 10 Hz)..................................................  53 
2.6.3. From low frequencies to radio frequencies (10 to 107 Hz)............ 55 
2.6.4. Radio frequencies and shortwave (103 to 108 Hz).......................... 57 
2.6.5. High frequencies............................................................................. 59 

2.7. Applied determination of dielectric parameters for frequencies
below 108Hz (classic range for dielectric studies)................................. 60

  2.7.1. Condenser form................................................................................60
2.7.2. Connections and the effect of connecting wire capacities..............60 
2.7.3. Preparing equations to calculate ’ and ’’....................................61

 2.8. Problems.................................................................................................... 64
2.8.1. Problem 1. R-C in series..................................................................64
2.8.2. Problem 2. R-C in series and in parallel with a 

capacitor (Cp)........................ ..........................................................65 
  2.8.3. Problem 3. R-C in parallel and in series with

a resistor (Rs)................................................................................ 66
2.8.4. Problem 4. R-C in parallel and in series with

a capacitor (Cs).............................................................................. 67 
2.8.5. Problem 5. R-C in parallel and in series with

a parallel R-C................................................................................. 68 



     Contents xi

Chapter 3. Spectroscopy of dielectrics and the Krönig-Kramers 
relations.............................................................................. 71

3.1. Introduction:  dielectric response and direct current.......................... 72
3.1.1. A résumé of the components that make up the dielectric

response......................................................................................... 71
3.1.2. Influence of “pseudofree” charges on electric behavior.............. 72
3.1.3. Separation of dielectric response from DC conductivity..............  73 

3.2. Complex conductivity............................................................................. 73
3.2.1. General equations for real and imaginary components of 

conductivity................................................................................... 73
3.2.2. Dielectric conductivity due to residual free or bound charges.....  76 

3.3. Theoretical study of the dielectric function: the relaxation function,
the Krönig Kramers equations and their use....................................... 82
3.3.1. Preliminary remarks......................................................................  82 
3.3.2.  The impulsive response and the relaxation function.................... 82 
3.3.3.  Introducing the general expression for the response

to a signal......................................................................................  84 
3.3.4. Relation between dielectric permittivities and the relaxation 

function........................................................................................... 85 
  3.3.5. The Krönig Kramers relations....................................................... 86 

3.3.6. Application to Debye relaxations.................................................... 88 
3.3.7. Generalization of the Krönig Kramers relations...........................90 
3.3.8. Application of the Krönig Kramers relations.................................92 

3.4. Complete polarization of dielectrics, characteristics of spectra
from dielectrics, and an introduction to spectroscopy......................... 93
3.4.1. Electronic polarization and the relation between the angular

frequency of an electronic resonance and the gap in an
insulator.......................................................................................... 93 

  3.4.2. Ionic polarization.............................................................................97
3.4.3. Resultant polarization in an insulator............................................ 97

  3.4.4. The resultant dielectric spectrum ...................................................98 
3.4.5. Coefficient for the optical and peak absorptions............................99 

 3.5. Problems...................................................................................................101
3.5.1. Problem 1. Alternative conductivity...............................................101
3.5.2. Problem 2. Optical properties of gaseous electrons......................105 
3.5.3. Problem 3. Relation between the function of

relaxation (macroscopic magnitude) and the
autocorrelation function (microscopic magnitude) .....................107



    Applied electromagnetism and materialsxii

Chapter 4. Interactions of electromagnetic waves and solid semi-
conductors..............................................................................111

4.1. Wave equations in solids: from Maxwell's to Schrödinger's
equations via the de Broglie relation.....................................................112

4.2.  Bonds within solids: weak and strong bond approximations........... 113
4.2.1.  Weak bonds.................................................................................. 113
4.2.2.  Strong bonds................................................................................. 115
4.2.3.  Choosing approximations for either strong or weak bonds.... ....116

4.3.  Evidence for the band structure in weak bonds................................ 117
4.3.1.  Preliminary result for the zero- order approximation................. 117
4.3.2.  Physical origin of the forbidden bands....................................... 118
4.3.3.   Simple estimation of the size of the forbidden band.................. 121

4.4. Insulator, semiconductors, and metals: charge carrier
generation in the bands......................................................................... 121
4.4.1. Distinctions between an insulator, a semiconductor, and a

metal................................................................................................. 121
4.4.2. Populating permitted bands......................................................... 122

4.5. Optical properties of semiconductors: reflectivity, gap size, and
the dielectric permittivity..................................................................... 128

  4.5.1. The dielectric function and reflectivity......................................... 128
4.5.2. The relation between static permittivity and the size of

the gap............................................................................................. 130
  4.5.3. Absorption..................................................................................... 132

4.6. Optoelectronic properties: electron-photon interactions and
radiative transitions.............................................................................. 132
4.6.1. The various absorption and emission mechanisms.................... 132
4.6.2. Band-to-band transitions and the conditions for radiative

transitions................................................................................... 135
4.7. Level of absorption and emission....................................................... 139

4.7.1. Optical function of the state density........................................... 139
  4.7.2. Probabilities of occupation.......................................................... 141
  4.7.3. Probabilities for radiative transitions........................................... 141

4.7.4. Overall level of emission or absorption transitions..................... 142
4.7.5. Absorption coefficient .................................................................. 142

 4.8. Problem....................................................................................................145

Chapter 5. Electrical and magnetic properties of
semiconductors ................................................................... 147

5.1. Introduction ........................................................................................... 147
5.2. Properties of a semiconductor under an electric field....................... 148



     Contents xiii

5.2.1. Ohm’s law for a semiconductor................................................... 148
5.2.2. Effect of a concentration gradient and the diffusion current..... 150
5.2.3. Inhomogeneous semiconductor, the internal field, and

Einstein’s relation........................................................................ 152 
5.2.4. Measuring the conductivity of a semiconductor and resistance

squared.......................................................................................... 154 
5.2.5. Resistance per square or more simply put resistance squared

and denoted R .............................................................................. 158 
5.3. Magnetoelectric characterization of semiconductors ......................... 160

5.3.1. The Hall effect................................................................................160 
5.3.2. Magnetoresistance and magnetoconductance............................. 162

5.4. The Gunn effect and microwave emissions.......................................... 167
5.4.1. Expressions for , j, and <v> for carriers in a semi-

conductor with a conduction band of two minima.................... 167
5.4.2. Emission of an electromagnetic wave in the microwave

region.......................................................................................... 171
5.5. Problems ............................................................................................... 173

  5.5.1. Problem 1. Hall constant............................................................ 173
  5.5.2. Problem 2. Seebeck effect........................................................... 175

Chapter 6. Introduction to nonlinear effects.................................... 181

 6.1. Context................................................................................................ 181
6.2. Mechanical generation of the second harmonic

(in one dimension) ........................... ................................................... 182
6.2.1. Effect of an intense optical field E  ........................................ 182
6.2.2. Putting the problem into equations............................................ 183
6.2.3.  Solution to the problem of displacement terms........................ 185
6.2.4.  Solution to the problem in terms of polarization..................... 187

  6.2.5. Comments.................................................................................... 189
6.3. Electrooptical effects and the basic equations.................................... 190

6.3.1. Excitation from two pulsations and an introduction to the
Pockels effect.............................................................................. 190

6.3.2. Basic equations for nonlinear optics.......................................... 192
6.4. Principle of electrooptical modulators................................................ 194

  6.4.1. Phase modulator.......................................................................... 194
  6.4.2. Amplitude modulator................................................................... 197

6.4.3. The merit factor........................................................................... 198
 6.5. Problems............................................................................................... 199

6.5.1. Problem 1. Second-order susceptibility and molecular
centrosymmetry........................................................................ 199

6.5.2.  Problem 2. Phenomenological study of the Pockels effect...... 200



    Applied electromagnetism and materialsxiv

Chapter 7. Electromagnetic cavities.................................................... 207

 7.1. Definition.............................................................................................. 207
7.2. Resonance conditions for a cavity and proper resonance modes.... 207

 7.3. Fabry Perot- type optical cavities..................................................... 209
7.3.1. Generalities and the Fabry Perot resonator............................. 209
7.3.2. Form of stationary wave system:  resonance modes.................. 210
7.3.3. An alternative point of view and the Fabry  Perot

interferometer.............................................................................. 211
7.4. The Airy laser formula.......................................................................... 212
7.5. Modification of spontaneous emission in a planar cavity

and the angular diagram..................................................................... 214
7.6. Microcavities and photonic forbidden band (PFB) structures......... 216

7.6.1. Exampled scale effects ............................................................... 216
  7.6.2. PFB structures............................................................................. 217

7.7. Microcavities using whispering gallery modes..................................... 219
  7.7.1 Generalities.................................................................................... 219
  7.7.2 Principle......................................................................................... 220

7.7.3 Basic equations for whispering  gallery modes..............................221
7.7.4.  Photon lifetimes and extraction of the radiation....................... 223

 7.8. Problem................................................................................................... 223

Chapter 8. Particles in electromagnetic fields:
ionic and electronic optics.................................................. .. 227

8.1. Mechanics of particles in an electromagnetic field.............................. 227
8.1.1. Introduction to mechanics: an aide-mémoire............................ 227
8.1.2. Movement of a charged particle in an electric or

magnetic field................................................................................ 229
8.2. Ionic or electronic optics: the electrostatic lens .................................. 236

8.2.1. The analogue to the refractive index: trajectorial
refraction of a charged particle placed in a succession of 
equipotential zones....................................................................... 236

8.2.2. Practical determination of equipotential surfaces
(and thus field lines).................................................................... 238

8.2.3.  Focusing trajectories with an electrostatic lens of axial
symmetry (generating a radial field) .......................................... 240

8.2.4. Electrostatic lens with a rotational symmetry (generating
an electrical field consisting of radial and longitudinal
components).................................................................................. 243 

8.2.5. Equation for the trajectory in the electrostatic lens ................... 247
8.2.6. Focal length of a three-electrode lens ......................................... 249



     Contents xv

 8.3. Problems................................................................................................. 251
8.3.1. Problem 1. Mathematical study of a cycloid ............................... 251
8.3.2. Problem 2. The effect of a crossed field E B on a charged

particle q ...................................................................................... 252
8.3.3. Problem 3. Movement of a particle in a uniform B field........... 257

Chapter 9. Electromagnetic processes applied to a large-scale
apparatus: the ion accelerator........................................... 265

9.1. Introduction: general principles and overall design of a
machine for implanting ions................................................................ 265

9.2. Setup of an ion beam............................................................................ 266
  9.2.1. Overall description........................................................................ 266

9.2.2. Use and distribution of high tensions within the apparatus...... 267
9.2.3. The Wien filter............................................................................... 269
9.2.4. The neutrals’ trap.......................................................................... 272

  9.2.5. Sweeping........................................................................................ 273
9.2.6. Determination of the number of implanted ions and the

Faraday cage................................................................................. 274
9.2.7. General remarks on the mechanism used to produce ions......... 275
9.2.8. Nature of the electric discharge.................................................... 277 

9.3. ECR-type source of ions (“cyclotronic resonance”) ........................... 279
9.3.1. Principals of an ECR source ........................................................ 279
9.3.2. Magnetic field effects on the pathway and confinement of 

electrons:  increasing the ionisation yield.................................... 281
 9.4. Problem....................................................................................................285

Chapter 10. Electromagnetic ion–material interactions...................... 295
10.1. High-energy collisions between atoms and ions: the

nature of the interaction potentials..................................................... 295
10.1.1.  General form of interaction potentials.......................................295
10.1.2.  The Thomas Fermi model......................................................... 298

  10.1.3. The universal interatomic potential............................................ 300
10.2. Hypotheses for the dynamics of inelastic and elastic collisions

between two bodies and various energy losses and electron
and nuclear stopping powers............................................................... 301



    Applied electromagnetism and materialsxvi

  10.2.1. Introduction ................................................................................ 301
10.2.2. Various hypotheses and assumptions concerning classic

(Rutherford) diffusion theory...................................................... 302
  10.2.3. Elastic and inelastic collisions.................................................... 302 

10.2.4. Origin of electronic and nuclear energy losses ......................... 302
  10.2.5. Electronic stopping power........................................................... 303

10.2.6. Nuclear stopping power............................................................... 306
10.3.  The principal stages in calculating stopping powers.........................306

10.3.1. Rutherford-type diffusion for a particle of charge  + Z1 e
and mass M1, by a particle of charge + Z2e  and mass M2.......... 306 

10.3.2. Low-velocity incident particle (inferior to the velocity of
electrons in the K layer): expression for the electronic
stopping power Se.......................................................................... 314 

10.3.3.  Nuclear stopping power.............................................................. 316
10.3.4.  Total energy loss......................................................................... 317

10.4. The various phenomena of ion material interactions and their 
applications..........................................................................................319

10.4.1. The various phenomena.............................................................. 319
  10.4.2. Ionic implantation........................................................................320

10.4.3. Target amorphism and “mixing” in the volume of initially
surface-deposited atoms (“Ion beam mixing”)............................ 321

10.4.4. Mechanism of physical pulverization..........................................322 
  10.4.5. Ion-beam  assisted deposition.....................................................324 

10.5.  Additional information on various ion sources and their
functioning...........................................................................................327

10.5.1. The electron cyclotron resonance (ECR) source...................... 327
10.5.2. Basic element in an ion source; the Penning source................ 327
10.5.3.  The hollow cathode source......................................................... 328
10.5.4. Grid sources and broad beams.................................................... 329

10.6. Problem..................................................................................................332

References...................................................................................................341

Index...........................................................................................................343



Chapter 1 

Dielectrics under Varying Regimes: 
Phenomenological Study of

Dielectric Relaxation 

1.1. Definitions for dielectric permittivities and dielectric conductivity and 
classification of dielectric phenomena

1.1.1. Absolute permittivity
The absolute permittivity ( ) of an isotropic material can be defined in general terms

as the quotient of the electrical induction (D) and the electric field (E), i.e.,
D
E

.

Given that the field and the induction are zero in a metal at equilibrium (where 
V = constant and Emetal = - grad V = 0 and Dmetal = 0), the equation for continuity at
an interface between a metallic electrode and a dielectric means that for the normal
component  [Dn]diel ( = D in the present configuration) to the dielectric: 

[Dn]diel – [Dn]metal = D – 0 = D = real, from which real
E

.

For two electrodes of equal surface (S) separated by a dielectric so that they are 
a distance (d) apart, having a potential difference (V) that gives rise to a charge (Q), 
the preceding ratio means that: 

real Q / S Cd
E V / d S

,

where C is the capacity.
As a consequence, in the MKS unit system, the absolute permittivity is

expressed as Farad meter-1. If the “material” under question is a vacuum, then

0 = 91
10

36
 F m-1.

However, in the UES CGS system, 0 1 .
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1.1.2. Relative permittivity
It is more often practical to use relative permittivity ( r)—commonly and abusively
cited as simply “permittivity”—which is defined by the equation r 0 , where r

is a number without dimensions. This number in the UES system is equal to the
absolute permittivity (or the dielectric constant) which explains the confusion often
found between the two magnitudes.

If an alternating tension, given by j t
0V V e , is applied to the terminals of a

planar condenser (that has a capacitance denoted by  when the dielectric is a 
vacuum), the intensity of the current (

0C
I) circulating between the electrodes when 

there is a supposedly perfect dielectric between the electrodes, which does not give

rise to leak currents and has a permittivity denoted by r, is given by
dQ

I
dt

.

Knowing that 0
0

C d
S

, we thus find that r
0 0

Cd / S C
C d / S C0

. For the 

alternating tension, j t
r 0 0Q CV C V e , from which r 0I j C V .

1.1.3. Complex relative permittivity
The reality is that the dielectrics generally used are not perfect and in fact provide
for a wide variety of currents, which will be detailed later on. Nevertheless, the
different causes can result in similar effects, for example, free or bound carriers can
result both in heating and dielectric losses. Such currents are entirely due to the
dielectric material, and they can be characterized as an imaginary component with a 
relative permittivity:

r rr ' j " .

In order to simplify the notation used, the indices (r) are often omitted, and it is up to 
the reader to know whether the text deals with relative or absolute permittivities.

The current intensity in the condenser is now stated therefore as:
"

r 0 r 0I C V j C V  = IR + jIC.

The second term, corresponding to a dephasing of 2  between tension and current,

is pure capacitance, and r
’ thus only characterizes the capacitance (insulating) of the

dielectric. The first term, due to the fact that the tension (V) and the intensity are in
phase, corresponds to the resistive part of the dielectric which is characterized by

r
’’.
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The power dissipated by the Joule effect thus is given by

" 2
J 0 R0 0 r 0

1 1
P = V I = C V

2 2
,

where IR = = I" j
r 0 0C V e t

R0ej t, and the value r
’’ is called the dielectric 

absorption as it intervenes in the equation for the electrical energy converted into
heat in the medium (therefore absorbed by the dielectric) and then lost into the
electric circuit. 

The quantity given by:

 tan  = R

c

I

I
 = 0

0

"C V
'C V

 = 
"
'

is the (dielectric) tangential loss and makes it possible to define the loss angle ( )
which represents the dephasing between the resultant current and the “ideal

capacitance” (Ic) for this current. The value given by
1

Q
tan

 is the quality factor

of the condenser and increases as tan  decreases (Figure 1.1.). 

CI VC

R
V

I
R

I

Figure 1.1.  Definition of the loss angle .

1.1.4. Limited permittivity
The permittivity limited to low frequencies ( s) can be absolute or—occasionally—
relative with the “r” being omitted by convention. At zero frequency, the field is in
effect static. There is also a permittivity limited to high frequencies ( ) (infinite
frequency).

1.1.5. Dielectric conductivity 
By plugging the equations E = V/d  and  C0= 0S/d into the for I, we obtain:

r 0 r 0
S S

I '' Ed j '
d d

Ed .
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It is possible to write the complex equation by using the equations J =  E and 

 I =  J dS = J S, so that: 0 r 0 r
J I

'' j '
E ES

.

The real component of the conductivity is in this case called the dielectric
conductivity, and is thus

d 0 ''r .

1.1.6. Classification of diverse dielectric phenomena 
As was above indicated, the introduction of an imaginary term into the dielectric
permittivity (in ’’) to take into account a current that is in phase with the tension 
does not make any reference to the origin of that current, its conduction, and any
associated losses. In fact, a large number of phenomena can be responsible for this
dielectric absorption: 
I. absorption due to free charge conduction, for example thermal carriers generated
in the permitted band present at very low densities in insulators due to their large
forbidden band limiting their generation, and ions giving rise to ionic conduction at
low frequencies;
II. the Maxwell Wagner effect due to charge accumulation at discontinuities in the
dielectric, for example, those notably found in powders;
III. the Debye dipolar absorption due to bound carriers and electric dipoles;
IV. anomalies in ’ and ’’ due to orientations changed by impurities such as water
at the surface of the solid; 
V. anomalies in ’ and ’’ caused by phase changes; and 
VI. absorptions due to resonances. 

Each phenomenon can be classed as a function of its appearance at a particular
frequency or temperature range as indicated in Freymann's representation, which is
shown in Figure 1.2. For a more classical representation of ’ and ’’ as functions of 
frequency only, please see Chapter 3. 

Phenomenon I is caused by leak currents of free charges alone, the number of 
which can be increased by the introduction of impurities as they insert trapping 
levels into the large forbidden band of the dielectric. Examples include ZnS and CdS 
doped with copper in a fashion similar to semiconductors. It is the electrons from the
impurities, which, under the action of a sufficiently high field, reach high enough 
energies so that their collisions with the lattice of the material result in an ionization
of atoms. This facilitates the ejection of electrons to the conduction band and results 
in what is called an intrinsic breakdown of the dielectric.
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low temperatureshigh temperatures

"

100 Hz 1 MHz 105 MHz

1/T

V
IV

IIIII

I

VIIIIIII

Figure 1.2. Representation of ’and ’’ as a function of 1/T. 

Phenomenon II corresponds to an accumulation of charges such as electrons 
around discontinuities in the dielectric. This problem can be modeled as a condenser 
consisting of several layers of dielectric.

Phenomenon III, the Debye dipolar absorption (DDA), is generally the result of 
two neighboring and indissolubly tied dipole charges (+ and -), otherwise called
bound carriers. It is caused by the dielectric relaxation associated with the
orientation of dipoles excited by an applied electric field. This orientation is delayed
by a relaxation time due to an inertia in the movement of the dipole caused by
viscous frictions in the material. Section 1.2 details this mechanism and furthermore
shows how a single charge jumping over a potential barrier can be characterized as 
the same type of relaxation.

Phenomenon IV can correspond to a superficial conductivity caused by
“semiconducting” materials such as dust, soiling, water (which has a very high 
dielectric constant of around 80 and is a conductor when impure), etc., deposited on 
the surface of the insulator. This is the reason why dielectric surfaces should be well
cleaned prior to study (notably with alcohol or acetone to remove any humidity and 
then with a nonpolar solvent such as benzene so as to remove all polar molecules
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and grease that may perturb the measurements) and why measurements should be
effected under a dry atmosphere.

Phenomenon V corresponds to an evolution in ’ following a change in the
dielectric density with a change in phase. Most importantly, when the dielectric is 
polar, there is more or less a locking of the dipoles in their new phase, for example
when the material changes from being a liquid to being a solid. This mechanism is
sometimes accompanied by frictional forces being exerted between neighboring 
dipoles. This results in the dipole being heated in an effect that is similar to that of a 
current.

Phenomenon VI can be explained by considering that the charges of the
medium (electrons, ions) are elastically tied to their equilibrium positions. For the
most simple cases, they can be thought of as harmonic oscillators. Once the field 
that causes the imbalance is removed, the charges return to their equilibrium
position through an oscillation, the amplitude of which decreases as rapidly as the 
damping forces are large. This model indicates the possibility of their being a 
resonating absorption, where the power taken from an alternating field is at a 
maximum. In addition, their should be frequencies corresponding to resonations of 
electrons (more or less in internal layers) or the movement of ions (see also Chapter
8 of Volume 1, and also Chapter 3 in this volume).

This chapter will look specifically at phenomena I, II, and II, which are
normally observed in the Hertzian domain (very approximately in the range from
continuous to 1011 Hz). Chapter 3 establishes the general theory for the effect of
variable fields on a linear material, which gives rise to the Kramers-Krönig
equations. These in turn make it possible to obtain the values for ’ from a spectrum
of ’' and visa versa for a given frequency. In addition, there is a summary of the
various behaviors exhibited by dielectrics throughout the electromagnetic spectrum.

1.2. Classic study of the Debye dipolar absorption (DDA) 
Dielectric relaxation phenomena are associated with the orientation of permanent
dipoles subject to an excitation due to an electric field. The orientation is delayed by
a frictional resistance of the material and is characterized by a relaxation time.

1.2.1. The form of the polarization under a continuous (stationary) regime
When a field (E) is applied to a dielectric, the electrics and then the nuclei move
almost immediately as their inertia (mass) is very small and the deformation
polarization ( ) is established nearly instantaneously. However, things are not
quite the same for permanent dipoles, as whole molecules have to be orientated
while interacting with their neighbors. To summarize, after a very long time (t), for 
the stationary regime, we can state that the static polarization is the sum of:

E AP +P
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a quasi-instantaneous polarization denoted by P  (which is equal to the sum of

electronic and atomic polarizations and exists whatever the frequency of the 
applied field); and
a stationary dipolar polarization  . S(dipole)P

Therefore, .S(total) S(dipole)P =P +P

Given that the general expression for polarization is P = (  - 0)E, then
P  = (  - 0)E and PS(total) = ( s - 0)E , 

from which can be deduced that:
PS(dipole) = PS(total) - P  = ( s - 0)E  -( - 0)E = ( s - )E.

1.2.2. Dipolar polarization as a function of time
If E is applied at an instant t = 0, the polarization given by E AP P P  thus will
disappear instantaneously. Given that with time the dipoles will undergo an 
orientation, the polarization at the instant t is given by

(dipole)P(t) = P +P = (  - 0)E(t)  from which 

P(dipole) = (  - )E.

If it is accepted that the variation in dipolar polarization is proportional to its 
difference from the equilibrium value, which also means accepting that the dipolar
polarization varies with time even more that the difference from its final value, we 
can state that: 

(dipole)
S(dipole) (dipole)

dP 1
(P P )

dt
,

where  is the relaxation time.

As , we have S(dipole) sP ( )E

(dipole)
s (dip

dP 1
( )E P

dt ole) .

If we apply an alternating sinusoidal field, we thus have:

(dipole) j t
(dipole) s 0

dP
P ( )E e

dt
.

The integration of the equation without its second term gives:
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(dipole)
t

P Cexp .

By applying the varying constant method, we find that by substituting
C exp(- t/ ) into the differential equation, such that:

1 j
t

s 0
1

C (t) ( )E e  from which
1 j

t
s 0( )E

C e
1 j

K .

The consequence is that 
t

j ts 0
(dipole)

( )E
P Ke

1 j
e .

The first term is characteristic of a transitional regime which tends toward zero
when  t . The second represents a permanent regime for which:

j ts 0
(dipole)

( )E
P e

1 j
.

1.2.3. Debye equations and the Argand diagram
1.2.3.1. Debye equations
Identification with P(dipôle) ( )E   where j , gives:

s s( )(1 j
1 j 1 ² ²

)
.

Identification of the real and imaginary parts yields the Debye equations, which are
also plotted in Figure 1.3.

Via the use of an equivalent circuit, it is possible to see that the Debye
equations can determine relaxation spectra.

s
2 2

s
2 2

s
2 2

s

1
( )

1
' ( )

tan
'
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’’

’

’ ’’

2
s

1

s

Figure 1.3. Debye relaxation plots. 

1.2.3.2. The Argand diagram (Cole–Cole  representation)
By suitably rearranging Debye's equations, Cole and Cole showed that a circle
represents  as a function of .

In effect, these equations make it possible to write:
2

2 2 s
2 2

( )
( ) ( )

1
from which can be pulled: .2 2

s s( ) ( ) ( ) 0

When  and , we know that0 0  and, respectively, s  and 
.

When 1, s

2
 and s

2
.

In a system with axes x  and y , the coordinate points are ,

, and 

s( ,0)

( ,0) s s( ,
2 2

) . All of these points are distributed along a curve 

defined by the preceding equation, which can be rearranged in the form:
2 2

2s s( ) ( )
x y

2 2
 . 
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This line is in fact a circle and has as its center s( ,
2

0) and a radius given by

s

2
. Figure 1.4 thus gives a representation, with s

max
s

sin .

’

max

increasing

’’

2
s

2
s

s

Figure 1.4. Argand's diagram for ’’ = f( ’).

1.2.4.  Practical representations
In practical terms, it is quite rare to actually see a semicircular plot of ’’ = f( ’)
directly from the Debye equations. This is because in most dielectrics there are
actually several types of dipoles each with its own relaxation time and indeed a
number of different relaxation mechanisms (related to the different equilibrium
positions that the dipole can take up). The upshot is that there is a distribution of 
relaxation times and a representation of ’’ = f( ’) that is not quite semicircular. In
reality, there are two types of diagrams that can be observed.

1.2.4.1. Cole and Cole's flattened half-sphere (Figure 1.5 and Problem 1.4.2.)
With   u = ( ’ - ) - i ’’
           v = ( s- ’) + i ’’

and with an angle of 
2

(1-h) between u and v, we can show that:

s
(1 h)1 j

 . 
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The parameter h introduced in the above equation characterizes the relaxation time.
If h = 0, then semicircular Debye form is found, whereas if h  1, then an infinite
relaxation time is indicated.

’

increasing
’’

s

 (1-h) /2
u v

Figure 1.5. Flattened half-circle after Cole  Cole.

1.2.4.2. Cole–Davidson's oblique arc (see also Problem 1.4.3)

’

 croissant
’’

s
2

Figure 1.6. The Cole Davidson asymmetric arc.

The plot shown in Figure 1.6 represents a distribution of relaxation times with
an “excess” absorption at high frequencies. This behavior can be represented by the
following equation:

s

1

1 i
, where 0 <  1. 

It is possible to analytically show that
d ''

tg
d ' 2

, where geometric definition of 

 in Figure 1.6 represents the Cole–Davidson arc.



     Applied electromagnetism and materials12

1.3. The double-well potential model:  physical representations 
1.3.1. Introduction

distance

a
BA

U

0

potential energy

Figure 1.7.  The double-well potential model. 

A system that has two equilibrium positions, each separated by a potential barrier of 
a certain height (U), can be represented by a potential model based on two wells, as 
shown in Figure 1.7. With this in mind, it is possible to see how a molecule in the
absence of an electric field can occupy two energetically identical sites A and B
separated by U. If there is no barrier, then 0 = 0/2  represents the oscillation
frequency for a molecule between A and B and 0 exp(-U/kT) represents the
probability that the molecule will move from A to B or B to A per unit time.
However, in the presence of an electric field, the depths of the potential wells differ
by U, and the probabilities of movement from A to B or from B to A also will be
unequal. For the material, the population of the two wells will no longer be the same
and the polarization of the system will evolve according to an exponential law 
toward an equilibrium value.

The potential model based on two wells also can be used to represent the
displacement of an electron between two localized trapping levels in a forbidden 
band of an insulator or semiconductor. The A and B correspond to two trap levels
between which the electron may slip via the conduction band. The U represents the
depth of the trapping levels (the energies of which may be modified by applying an
electric field) with respect to the conduction band. From the induced polarization it
is possible to determine U for the traps. The following sections will detail this
problem further before returning to look at dipolar relaxation. How to obtain an
empirical value of U for these potential barriers then will be described.

1.3.2. Polarization associated with the displacement of electrons between two
positions separated by a potential barrier

1.3.2.1. Trap levels and phosphorescence 
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The existence of trap levels in solids was demonstrated while following the optical
processes in class II–VI semiconductors. Figure 1.8 shows an example of the
electronic levels found in an inorganic phosphor based on ZnS(Cu).

trapping     detrapping (by thermal agitation of the crystal agitation)                         I A     IIB   IIIP

excitation luminogen level

 U 
A       B  A

U

insulation
band

valence band

trap Et

phosphorescence
fluorescence

conduction band 

Figure 1.8. Fluorescence and phosphorescence mechanisms. 

Phosphorescence is a radiation that follows, after a certain delay, a luminous
excitation. The latter excites electrons toward the conduction band (CB), which then
move through intermediate levels due to traps in the forbidden band. The delay is
caused by this stepwise movement. It is the relaxation of the electrons from their
excited state to lower states that is delayed with a probability given by the law of
Mott, Randall, and Wilkins. This law, which can be written as: 

p = s exp( -U /kT),
where s is a constant for a group of traps, describes the process whereby there is a
delay and a persistence of the emission. The latter gives rise to the phosphorescence
persistence. In contrast, fluorescence comes from an emission that is instantaneous
with respect to the excitation, i.e., the electrons have not passed through trap levels.
 = 1 /p is equivalent to the average lifetime of an electron in a trap.

For phosphorescence, in physical terms, the electrons trapped at a level A that
are subject to a thermal energy (kT) (from phonons) can pass (transition IA in Figure
1.8) through to another energetic position B by crossing (transition IIB) a potential
barrier of a given height (U). This barrier is at a trapping level denoted by Et with
respect to the bottom of the conduction band. The group of transitions IA, IIB, IIIP
describe the mechanism of phosphorescence. In addition, different levels of traps 
can exist (U, U2, etc.). 
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1.3.2.2. Transposition to a dielectric possessing trap levels and the electric field 
effect on transitions between them

In the absence of an electric field, for an electron (of charge –q) the two equilibrium
positions A and B separated by a given distance (a) and a potential barrier (U)
assumed to be greater than kT, there is statistically speaking the same chance that it 
can be found in A or B. Therefore, Figure 1.7 can be used to represent this situation.
The probability per unit time for a hopping transition from A to B (and visa versa) is 
given by P0 exp(-U/kT) where P0 is the same probability when the barrier is 
suppressed, i.e., U = 0. At an equilibrium, all the electrons of this type of which 
there are N per unit volume are equally shared between two sites. The average 
polarization due to these electrons is zero. 

When a field (E) is applied along AB (for dielectric measurements), the
potential energies  and  of an electron differ by :AU BU

A BU U qaE .

Taking the orientation of E into account, we have VA < VB, so that by 
consequence (where U = - q V and V Ed Ea AU),  is greater than 

by
BU

U = qaE, 
if the origin of the potentials is taken with respect to B, as in Figure 1.9. This

destroys the symmetry of the system and implies that there is a probability of
presence of an electron at B greater than that at A. This assumes that we use the
Boltzmann function, which is proportional to exp(-U/kT) to describe the distribution
function.

B

A

a

- E   +

U
U

potential
energy

charge displacement

Figure 1.9. Effect of applying an electric field to a potential barrier.
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(i)  Calculation of transition probabilities
Initially, it is assumed that the electrons oscillate (through thermal energy) about 
their equilibrium positions at a frequency given by 0/2 . In the absence of a barrier, 
the probability (P0) that an electron will carry out a transition from A to B or from B
to A in one second is thus P0 = 0/2 .

However, with a barrier of a given height (U) and in the presence of an
electric field as in Figure 1.9, the probability for transitions per second from A to B 
(PAB) or B to A (PBA) must take the apparent height of the barrier into account, that
is (U – qaE) on the A side and U on the B side. So, now:

0
AB

U qaE
P exp(

2 kT
)   and 0

BA
U

P exp(
2 k

)
T

 (1’). 

If we assume that qaE << kT, as is generally the case for dielectric 
measurements carried out for weak fields of around 1 V cm-1, we can state that: 

U
0 kTAB BA

qaE qaE
P e (1 ) P (1

2 kT
)

kT
. (1)

(ii) Calculation for the number of particles in the A and B states at a given instant
If at a given time (t) there are NA electrons in A and NB in B, then there are NAPAB

electrons making the transition A B and NBPBA undergoing the transition B A.
From this, we can state that

A
A AB B BA

dN
N P N P

dt
    and B

A AB B BA
dN

N P N P
dt

. (2’) 

With the total number of electrons, given by N = NA + NB, being constant and by
taking the difference between these two equations [by their addition and the removal
of  to make apparentA BA B ABN P N P BA AB(P P )  and AB BA(P P ) ], we
obtain:

B A
BA AB B A AB BA

d(N N )
(P P )(N N ) (P P )N

dt
.  (2) 

Using Eq. (1) we have (with qaE << kT):

AB BA BA BA BA
qaE

P P P (1 ) P 2P
kT

, (3)

and

AB BA BA
qaE

P P P
kT

. (4) 
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By substituting Eqs. (3) and (4) into Eq. (2), we obtain:

B A
BA B A BA

d(N N ) qaE
2P (N N ) 2P N

dt 2kT
.

The integration of the differential equation without the second term yields:
NB – NA = C exp(-2PBAt).  By transferring this into the differential equation and by
varying the constant denoted C, we obtain:

BA
qaE

C N exp(2P t)
2kT

K .

By using the limiting condition, as in when t = 0, NA = NB = N/2, it is possible to

deduce that 
qaE

K , and from which:N
2kT

B A BA
N qaE

N N (1 exp[ 2P t])
2 kT

. (5)

1.3.2.3. Equation for the polarization at an instant t following electron movement
1.3.2.3.1. Displacement of charges of a given concentration 
The movement of a charge ( q ) by a distance (i i ) is effectively the same as
superimposing a dipole given by i iµ q i

i

. This is schematized in Figure 1.10. 

Figure 1.10. Movement of qi by i.

In order to obtain the final state with respect to the initial state, it suffices to
superimpose on the latter the dipole i iq , as demonstrated in Figure 1.11. 

i +qi
B

final state 
        qi displaced by i

A
+ iq i

A B

initial state 

i iA B

iq iq
i = qi i

=+
+ iq 0

0
A i

iq
B

Figure 1.11. Displacement of qi by i is the same as applying i = qi i . 
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The polarization (dipole moment per unit volume) associated with the
movement ( i) of qi charges is the same as applying a dipole moment per unit
volume equal to , where  is the number of  charges per unit
volume. If there are various charges, given by i, then the total polarization is thus:

i i iP n q i

i

in iq

i i i
i i

P P n q .

1.3.2.3.2. Polarization due to the displacement of N electrons per unit volume shared
over a double-well potential of a given initial depth (U) 

Hypothetically, it is assumed that the two wells are separated by a certain distance
(a) and that they are equivalent, so that NA = NB = N/2.

Under these circumstances, the influence of a field (E) moves the electronic 
charges (-q) in A by +a and those in B by –a. 

i i i A B
i

P n q N ( q)( a) N ( q)( a)

                = B AN qa N qa   = qa B A(N N ) .   (6) 

By substituting Eq. (5) for (NB – NA) into Eq. (6), we obtain:

BA
N q²a²E

P (1 exp[ 2P
2 kT

t]) . (7)

1.3.3. Dipole rotation due to an electric field
The result of the preceding calculation also can be applied to a rotating dipole (using 
the dipolar polarization given in Section 1.2). The dipoles, which have moment
given by µi = qi i, initially can be orientated at either of the energetically equivalent
positions (E = 0) A or B. These sites are separated by the potential barrier U, as 
described in Figure 1.12. 

Ep

A B A

2 0

µB

y

z

x

B

AµA
 = 

Figure 1.12.  Potential energy (Ep) as a function of dipole orientation ( ).

This characteristic can be demonstrated in two different ways.
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1.3.3.1. Using the equivalence of dipole rotation and charge displacement
As shown in Figure 1.13, turning a dipole with a moment given by µ = (q a) through
180° is the same as applying a dipole with a moment p = 2µ = 2qa  to the system.
This effectively results in the movement of a charge of 2q (see also the preceding 
Section 1.3.2.3.1). Equation (7) for polarization written for the movement of a
charge of value 2q is thus:

BA
N (2q)²a²E

P (1 exp[ 2P t])
2 kT

.

With p = 2qa, this expression can be rewritten:

BA BA
N p²E 2µ²E

P (1 exp[ 2P t]) N (1 exp[ 2P t])
2 kT kT

.  (7’)

p = 2  = 2q a

µB-q
+ =

180° rotation (inversion)
a a a

 Position B 
    +q-q

Position A
+q µA -2q +2q

Figure 1.13. Dipolar charge displacement following a 180° rotation.

1.3.3.2. By direct calculation
To get some bearings we can suppose that the two positions A and B correspond to 
two orientations of a molecule, which differ by  =  (as in Figure 1.12), and that
the electric field (E) then applied is directed along the dipole (µ) associated with the 
molecule at B.

For the B state, the energy of the system is given by

WB = - µ.E = - µ E cos(2 ) = - µ E ,

and therefore the corresponding energy for the molecule at A is :

 WA = - µ.E = - µ E cos( ) = + µ E. 

In the presence of E, the potential energy of the two sites therefore differs by:
U = WA – WB = 2 µ E = pE , where  p = 2µ. 

We therefore can go on to develop the calculation much as was the case in
Section 1.3.2.2, with the condition that the difference in energy (qaE) between A
and B is replaced by the new energy difference U = 2 µ E = pE (Figure 1.9).
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By denoting the number of molecules per unit volume as N, this also being the
number of dipoles per unit volume, at a time t = 0 (from when E is applied) we have 
NA = NB = N/2, and in place of Eq. (5) we can state that 

B A BA
N pE

N N (1 exp[ 2P
2 kT

t]) .      (5’) 

The polarization, or rather the resultant dipole moment per unit volume, is thus
given by P = (NB – NA)p, and once again Eq. (7) yields Eq. (7') (see preceding 
paragraph).

BA BA
N p²E 2µ²E

P (1 exp[ 2P t]) N (1 exp[ 2P t])
2 kT kT

               (7’) 

1.3.4. Practical determination of the depth of potential wells
1.3.4.1. Fundamental formulae
Following on from Eqs. (7) and (7'), if t , P  PS (where PS is the static 
polarization). PS is therefore given by, respectively,

S
N q²a²E

P
2 kT

(8)

or

S
µ²E

P 2N
kT

. (8’)

In the following Section 1.4.1, a problem directly demonstrates the use of Eq.
(8) for a stationary regime (which does not go to the limits). The exercise also can 
be used to reproduce Eq. (8') in a close variation (the rotation of the dipoles can be
substituted by their displacement as these acts are physically equivalent as detailed
in Section 1.3.3.1).

The term exp(-2PBAt) in Eqs. (7) and (7') represents a transition regime due to
the delay (dephasing) between electrons trapped in potential wells, or dipoles, in
following the applied field. As this term varies exponentially with time it is 
characteristic of the relaxation of the system. It is also a function of the macroscopic
relaxation (Y(t)) which is defined in Chapter 3. 

The double-well potential model thus represents a relaxation, much as that
found through Debye's theory, and gives rise to the same types of dielectric
equations (Debye equations). The term characteristic of the transition regime
appears in the equation for P(dipole) detailed in Section 1.2.2. The form of the
macroscopic relaxation function is given by Y(t) = exp(- t / ) and is developed in
Chapter 3. 
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The equality of the two terms for relaxation described in the double-well model
and in Debye's theory makes it possible to state that:

BA
BA

t 1
exp( 2P t) exp( ), so that .

2P

With PBA, given by Eq. (1’), we can deduce that:

U U
kT kT0

0
e e  . (9)

It is worth noting also that the term 0 =  / 0 represents the time required for one 
oscillation, as in A  B  A, for example. In addition, as U >> kT, then  >> 0.

The earlier representations of the Debye plots showed that ’’ goes through a 
maximum at a frequency ( c) which is such that c  = 1. Taking Eq. (9) for  into

account, we thus have: ,    so that U / kT
c 01 2 e

U
kTc

0

1
e

2
.

In practice, this equation is used in the form given as:

c
U

Log Log2
kT 0 . (10)

1.3.4.2. Experimental determination

Figure 1.14. Representation of ln c =f(1/T).

log A 
log c

|slope| = U/k  U 

1/T0 1/T
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If we plot the log of the critical frequency as an inverse function of temperature,
theoretically we should obtain a straight line. The slope of the line should permit a 
calculation of the height of the potential barrier and the ordinate at the origin the
value of 0, as indicated in Figure 1.14. Hence, in reality the two physical
magnitudes 0 and, most importantly, U can be determined quite facilely, as detailed
below.

The law observed is this of the form c A exp( U / kT) , so in turn

c
U

ln ln A
kT

. When 1/T = 0, we have log c = ln A, and with the ordinate at

the origin giving ln A, we find that:

0 = 1/2  A.

Additionally, when T = T0, then ln c=0, so that 
0

1 k
ln A

T U
, which makes it 

possible to calculate:
U = .0kT Ln A

Here, U is in eV, and k = 8.64 10-5 eV K-1 molecule-1

1.4. Problems
1.4.1. Problem 1. The double-well potential at a state of equilibrium
This question concerns an electron of a given charge (-q) which, in a solid dielectric,
has two equivalent equilibrium positions denoted A and B which are separated by a 
specified distance (a). If the probability of these transitions is of the form
P0 exp(- U/kT) where P0 is a constant equal to the transition probability if the barrier
state (U) were removed, in order to pass from A to B, and visa versa, the electron
must overcome the potential barrier of height U >> kT. At equilibrium, the total
number of electrons per unit volume (N) are equally shared between the two sites A 
and B and the average polarization is zero. 

U

a
 A         O       B 

energy
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1. At a time t = 0, a field ( E ) along AB is applied directed from B toward A. 

a.  Draw the new energy scheme for E  0. Indicate the heights UA and UB seen by 
electrons at A and B. 
b. From the answers to the above, determine the new probabilities PAB and PBA of 
electrons passing from A to B and B to A, respectively.

2. NA and NB denote the populations of electrons per unit volume at A and B. 

a. Write the condition for equilibrium for the system subject to E .

b. Determine NA and NB at the equilibrium in the presence of E ;  the results will be
expressed as a function of N. 

3.  From which, determine the expression for the polarization ( P ) in the potential
well model studied above. Give an equation for the dielectric susceptibility under a 
weak field. 

Answers to problem 1 
1.
a. As indicated in Figure 1.19, the electron observes a potential barrier denoted as
UA or UB depending on if it is at A or B, respectively. These are such that: 

AU U qEa

.BU =U

b. The probabilities PAB and PBA are given by the pair of Eqs. (1') detailed in Section
1.3.2.2, i.e.,

0
AB

U qaE
P exp(

2 kT
)   and 0

BA
U

P exp(
2 k

)
T

.

2.
a. In place of writing down the kinetics of how wells A and B are filled from Eqs.
(2') (see Section 1.3.2.2 which details the variations in populations with time) and 
then take t to infinity so as to reach the equilibrium state (Eq. (7) of Section 1.3.2.3),
the equation for equilibrium can be written directly. The inconvenience of this 
method, it should be mentioned, is that the transition state, bound to the relaxation 
function, does not appear.
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In effect, the concentrations at A and at B are constant; in other words, there are
as many electrons moving from A to B as there are moving from B to A. If AN  and 

BN  represent the concentrations at A and at B, then the equilibrium is when

A AB B BAN P N P .

b. Therefore, we have to resolve the system of two unknowns AN  and BN  with the
help of two equations:

A BN N N       (1)  (Conservation of charges in the presence of E );

A AB B BAN P N P .      (2) 

By substituting into Eq. (2) the values of PAB and PBA recalled above, and by

multiplying the two parts of Eq. (2) by

a
U qE

2exp( )
kT

, we obtain:

A BN N N (1 )

A B

a a
qE qE

2 2N exp( ) N exp( )
kT kT

. (2 )

By making

a
qE

2u
kT

, we then need to resolve 

A BN N N                                                   (3) and 

A BN exp(u) N exp( u) .                               (4) 

By carrying Eq. (3) into Eq. (4), as in: 

B B(N N )exp(u) N exp( u) ,

then the multiplication of the 2 parts by exp(-u) gives

B B(N N ) N exp( 2u) , and hence BN 1 exp( 2u) N .
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 Finally, B
N N

N
qEa1 exp( 2u) 1 exp( )
kT

.

When NA is such that A BN N N , we find that 

A
N 1 1 exp( 2u) 1

N N N 1 N
1 exp( 2u) 1 exp( 2u) 1 exp( 2u)

.

Multiplying above and below by e yieldsxp(2u)

A
1 N

N N
qEa1 exp(2u) 1 exp( )
kT

.

3.
The polarization due to the movement of electrons between A and B is given by the
equation . Taking the values of B AP qa(N N ) BN  and AN found above on 
board, we have:

S
1 1

P qaN(
1 exp( 2u) 1 exp(2u)

) .

Multiplying the first bracketed term above and below by yieldsexp(2u)

  PS =
exp(2u) 1

qaN
1 exp(2u) 1 exp(2u)

        =
exp(2u) 1 exp u exp( u)

qaN qaN
exp(2u) 1 exp u exp( u)

sinh u
qaN qaN tanh u

cosh u
,

and thus

S
qaE

P qaN tanh(
2kT

) .

Comment. Under conditions of a weak field,
qaE qaE

tanh( )
2kT 2kT

, and:
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S 0 S 0 SP ( 1)E E
2 2

S
0

q a N
2 kT

               =
qaE

qa     (see Eq. (8)) N
2kT

2 2

S
q a N

1
2kT

.

This directly gives Eq. (8), found in Section 1.3.4, for the static polarization (static 
regime) that was brought about by taking the dynamic regime to its limit at t .

1.4.2. Problem 2. The Cole Cole diagram
Throughout this problem, the usual dielectric notation is used, i.e. ' j '' .

1. Recall the Debye equations (for the phenomena of dielectric absorption for a 
single relaxation time). Show how they can be condensed to the form,

s

1 j
.

2. The Argand diagram (representation in a complex plane)
So that the image point (M) of , defined by ' j '' , is placed in the first 
quadrant the conventions of notation are detailed in the figure below.

’/2
j

M
direction of 
positive
angles

’’

Making sv ' j ''  and u ' j '' , this question is set within the
confines of Debye's theory.

a.  Algebraically calculate the ratio of
v
u

 and specify the modulus and the argument.

b.  Indicate the image of v and u on the diagram.
c. From this, determine the geometrical form in which all M points are placed. 

3. Empirical observations of dielectric behavior indicate that the representation
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’’ = f( ’) is rarely a perfect circle, as is otherwise predicted by Debye's theory.
What is more normally found is a “flattened” half-circle, shown in the figure below, 
for which Cole and Cole proposed the following analytical expression: 

s
1 h

' j ''
1 j

.

’’

A

M

   B

S

v
u

’

The same algebraic definitions for u and v are used as in the first question. Specify
the angle ( ) between u and v that is expressed as a function of the h parameter
introduced in the Cole Cole equation. Determine the physically acceptable variation 
in h.

4. To designate the position of the center (G) of the circle—only the “flattened” arc
appears in the Cole Cole diagram—an angle ( ) is used. It is such that
where the points A and B, respectively defined by

GAB
' and s' , are both on 

the O ' axis. Give  as a function of the parameter h. 

5. Calculate as a function of , , and h the reduced forms defined by
s

'
 and 

s

''
.

Answers to problem 2 

1.  The Debye equations are s
2 21

 and s
2 2

( )

1
, and make

it possible to state that ' j '' = s s
2 2 1 j

1 1 j
.

2. a. In a complex plane therefore: 

s1 j ,
' j ''
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and hence ss ' j' j ''
j

' j '' ' j

''

''
.

By making  and sv ' j '' u ' j '' , we can write that:

v
j

u
.

And as j cos jsin exp j
2 2 2

(j is obtained from 1 with a /2

rotation), we also have:

j
2v

e
u

.

b. So for u and v we have the representation shown below in the figure.

c. As j is equivalent to a rotation of 
2

, u and v are orthogonal. The results is that the

point M, the image of , belongs to the circle that cuts the abscissas at ' (point
A) and (B).s'

’’

’

u 2
  v 

M

s

A B

3.  For the newer form, s
1 h

' j ''
1 j

, it can be determined that

1 h s1 j
' j ''

,

so also 
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1 h s ' j '' v
j

' j '' u
.

The result is that

1 h 1 h1 hv
j exp j

u 2
1 h .

As a consequence, u and v are in effect no longer orthogonal but at an angle of 

1 h
2

where h varies as a function of the “flattened” character of the circle. 

In comparison with Debye's diagram, where u and v are separated by an angle of
2

,

h now takes on a limited value, as in h = 0. As the semicircle flattens out, so that the
limit tends toward the ' axis, h thus tends toward 1. The range of variation in h is
therefore 0 h 1 .

4.  The angle  is introduced in order to define the center (G) of a circle 
that is no longer on the ' axis. The angle at G given by  = 

GAB
AGB  is therefore such 

that its complementary angle 2  intercepts the same arc as the angle 

, which for its part is such that:AMB

1 h 1 h
2 2

.

’’

A

M

u
   Bv

S

G

’

We thus have 
2

2
, from which: 
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2 2 1 h .

As , it can be deduced that:2

h
2 2

.

5. Here we are looking to determine the reduced expressions for
s

1 h
' j ''

1 j
.

 As 
h

j 1 h j j1 h 2 2 2 h h h
j e e e j cos jsin sin jcos

2 2 2 2
h

,

so that by making

 C = 1 h h
1 si

2
n  and 1 h h

D c
2

os ,

we have

1 h1 j = 1 h h h
1 sin jcos

2 2
C jD= .

The initial equation therefore gives rise to

s' j ''
C jD

s

' 1
R

C jD
 and 

s

'' 1
Im

C jD
.

With
1 C j

C jD C² D²
D

, these equations now become:

s

' C
C² D²

 and 
s

'' D
C² D²

.
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Now having
2

1 h 2 1 h 2

2 1 h 1 h

h h
C² D² 1 sin cos

2 2
h

1 2 sin ,
2

we finally obtain:

1 h

2 1 h 1 hs

h
1 sin' 2

h
1 2

2
sin

1 h

2 1 h 1 hs

h
cos'' 2

h
1 2

2
sin

.

1.4.3. Problem 3. The Cole Davidson diagram
For a dielectric that exhibits an asymmetric behavior with respect to frequency, that
is to say that it shows “excessive” absorption at higher frequencies, the Argand 
diagram displays an “oblique arc” at high frequencies (see figure below).

’

’’

s

For this particular scenario, Cole and Davidson proposed an analytical model of

the curves behavior, as in
s

1

1 j
, where 0 1 .

In the following problem, we will look at the significance of the parameter .
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1. By making , show that the analytical equation introduced above can 

be written in the form:

tan

s
exp( j ) cos .

From this, determine the two reduced expression, as in
s

'
and

s

''
.

2.  With the variable being , calculate 
d ''
d '

.

3. In the representation given by ’’ = f( ’), to which limit does the preceding 

equation (
d ''
d '

) tend toward at high frequencies ( )?

4. Under these conditions, what does  represent with respect to the plot of
’’ = f( ’)? Give a schematic representation.

Answers to problem 3 

1. By multiplying the top and bottom by 1 j , the analytical form proposed 

can be written as: 
s

1 j

1 ² ²
.

By making , we have:tan

s

1 j tan

1 tan ²
.

With
1

1 tan ²
cos ²

, we directly obtain:

/ 21/ 2 / 2s

cos jsin
exp( j )cos exp( j ) cos .

1 tan ²1 tan ² 1 tan ²

By identification of the real and imaginary parts, we obtain:

s

'
cos cos  and 

s

''
cos sin .
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2. We have 

d ''
d '' d '' d d

d 'd ' d d '
d

.

Making , it is hence possible to state that:sE

1

d '' d
E cos sin

d d

E cos . .cos sin . cos sin ,

from which : 1d ''
E cos cos 1

d
.

Similarly,

1

d ' d
E cos cos

d d

E cos . .sin cos . cos sin

from which : 1d '
E cos sin 1

d
.

The result is that:

d ''
d '' d co tan 1

d 'd '
d

.

3. On reaching the limit at higher frequencies, tan ,  which is to

say that
2

. As co tan tan
2

, we have co tan 1 tan
2 2

,

from which: 
d ''

tan
d ' 2

.
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It is possible therefore to propose the following representation for the angle

given by
2

:

’’

s

2

Comment. With the arc being asymmetric, the maximum value for " is no longer
obtained when , but rather when the value of 1 max is such that

max

''
0

( )
.

The calculation shows that this condition is obtained when  is such that

M
1

1 2
. Hence, as Arc tan :

max
1

tan
1 2

.

1.4.4. Problem 4. Linear relationships based on the Debye equations: the
Cole Brot equations

This question concerns a dielectric material that exhibits various Debye-type
relaxation times with each mechanism characterized by a single relaxation time ( ).
Therefore, we will look for various representations that make it possible to isolate a 
single Debye-type relaxation time that is such that c = 1. The term c is the
angular frequency at which the absorption is at a maximum.

1.

a.   Making , show thatx c

c
x  where c  designates the wavelength

corresponding to c.
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b. From the reduced Debye equations, as in 2 2
s

1

1
 and 

2 2
s( ) 1

, show that plots of 
''

f ( ')
x

 and '' x g( ')  are straight

lines.

2.

a.   Through the equation s

1 j
, show that:

s' ( ) '' ; and 

''
' .

If  and c denote the critical frequency, calculate 
c

as a function of . From this

determine the two new expressions for ’ as a function of 1x ''  or of 2
''

x

(the Cole equations).

b. Show that it is thus possible to determine, from the graphic representations of ’
as a function of the two variables x1 and x2, the parameters s ,  and c .

3. In fact, the preceding graphic Cole representations demand an experimental
determination of ' and ". This question deals with the search for equations which
make it possible to work uniquely with ' or with " (Brot's equations).
a.  A graphic representation using only "

By making y
''

 and x = ², show that we can obtain the linear equation

y = ax + b. Define a and b, and hence give the expressions for s and  as a 
function of these parameters a and b. 
b. A graphic representation using only '
The values that ' takes rest on three parameters, namely, s , , and . Obviously,
it would be impossible to determine all three simply by using a linear representation.
Show that it is nevertheless possible to determine  and s if  is known, and 
likewise that  and  can be calculated if s has been found. 
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Answers to problem 4 
1.

a. If , we also can write withx c 1  that c

c c
x  as 

2 c
 and c

c c

2 c 2 c
2 c .

b. With , the reduced equations can be written as: x

2 2
s

1
1 x²1

1
(1)  and

2 2
s

x
( ) 11 x²

. (2)

The result of Eq. (2) is that
s

''
x 1 x² , and hence with Eq. (1):

s

s

'' ''
x

' '
''

'
x

.

In addition, if we form  we can obtain from Eq. (2):'' x

s s s
x² 1 x² 1 1

'' x 1
1 x² 1 x² 1 x²

.

With Eq. (1) we obtain:

s s
s

'' x 1 ' .

To summarize, we thus have
''

'
x

 and s'' x ' , and hence the plots of 

''
f ( ')

x
 and  are straight lines. '' x g( ')



     Applied electromagnetism and materials36

2.

a. The relation s

1 j
 gives s' j '' 1 j ,

and hence identification of the real and imaginary parts yields:

's' '' s' ( ) '

' '' 0
''

' .

As
c c c

, we also find that:

s 1
c

1
' '' f '' f (x )              (3) and 

c
'' ''

' g 2g(x ) . (4)

b. We thus in fact have: 1
s

c

x
'   (3’)   and 

c 2' x .   (4’) 

With s = b1,  = b2, and c 2
1

1
a

a
, Eqs. (3’) and (4’) can be rewritten as: 

y1 = a1x1 + b1   (3’’)  and 

y2 = a2x2 + b2 . (4’’)

The ordinate at the origin gives s (from Eq. (3')) and  (from Eq. (4’’). The
slopes of the two lines permit a determination of c .

3.

a. As s
2 2

( )

1
, we have:
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s s s

1 ² ² 1
y ²

''
. By making x = ², we obtain

the linear relationship y = ax + b with
s

a  and
s

1
b .

The upshot is that 2
s

1
a b

, and hence 

s
1
ab

.

In addition, s
s

1
² a

b
, from which

a
b

.

b.   If  is known, it is possible to state that: s
2 21

, and hence 

2 2 2
2

s s s

1 1 1
.

If we plot
1

f ² , the ordinate at the origin gives , from

which can be calculated , while the slope gives

1
s

s

2

s
, from which can be 

determined .

If s is known, from the equation s
2 21

 we can draw out:

s
s 2 2

² ²

1
,

from which 
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2 2

s s s

1 1
² ² ² ²

,

 so that : 

s s s

1 1 1 1
² ²

.

On plotting
s

1
f

' ²
1

, the slope gives  and the ordinate at the origin

gives .



Chapter 2 

Characterization of Dielectrics 

2.1. Introduction:  representation of a dielectric with an equivalent circuit 
The general form for the intensity (I) in a condenser filled with a real dielectric, 
detailed in Section 1.13, is given by I = r’’C0V + j r’C0V = IR + jIC . The 
corresponding impendence (Z) is such that the admittance (Y) is:

1 I
Y

Z V
= r’’C0 + j r’C0. (1)

Using normal notation, the intensity also can be written in the form:
I = jIC + IR = (j C + G)V . 

At this level, it is often premature to conclude that a dielectric behaves like a 
pure capacitor (where ) in parallel with a resistor. The conductance (G),
where a priori G =

'
r 0C C

r’’C0, does not relate to just one dielectric loss, but rather a
number of different processes that consume energy, all of which may vary in type.
In effect, G represents a number of dielectric loss mechanisms. It is for this reason
that a parallel circuit based on a resistor (Rp) and a capacitor (Cp) is too simple a 
representation. However, a single dipole gives rise to a single type of behavior, as 
detailed in Section 2.2.1. Nevertheless, other types of behavior, and there are many
of them, are due to other types of equivalent dipoles. Each will be singled out in this
chapter, prior to studying the methods used to characterize dielectrics, which
themselves occasionally necessitate equivalent dipole forms to the dielectrics. 
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Different analyses of dielectrics also can be carried out. As observed for the
specific case of relaxation mechanisms, the tradition is to plot not only ’ = f(log ),
’’ = f(log ), but also ’’ = f( ’). As is shown later on, analysis by impedance

spectroscopy uses other classical representations.
By making Z = Z’ – i Z’’ and Y = Y’ – iY’’ (in simplification and by tradition,

the complex impedance and admittance are written Z and Y), these representations
are:

Y’’ = f(Y’) , Z’’ = g(Z’) , C’’ = h(C’). 

This latter representation is based on the fact that the capacitance (C) can be

taken in the form
S

C
d

, so that when  is complex
S

C
d

.

With C C' iC '' , we immediately have:

S
C C'( ) iC ''( ) '( ) i ''( )

d
. (2)

To within the factor  S/d, C’ and C’’ evolve just as ’ and ’’. In addition, Z and 

Y are such that by definition 
1

Z
Y

. They are the inverse of one another.

Inversions within the complex plane are such that if the representation of one of 
these magnitudes is a circle, then its inverse is a straight line, and visa versa.

2.2. Circuits exhibiting relaxation phenomena as possible equivalents to real
dielectrics:  plots of ’ = f( ) and ’’ = g( )

2.2.1. Parallel circuit

Cp (b)

r’
r’’

0

pC

CRp

(a)

Figure 2.1.  (a) Scheme of a parallel circuit and (b) plots of ’ =(log ) and ’’ = f(log ).

For the equivalent dipole shown in Figure 2.1a, we have:
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p p C

1 1 1
Z R Z p

 , so that with ZCp = 
p

1
j C

,

p
p p

1 1
j C

Z R
. (3)

Identification with Eq. (3) leads to:

r’’C0 + j r’C0 p
p

1
j C

R
,

so that identification of real and imaginary parts gives

r’ = p

0

C

C

r’’ = 
0 p

1
C R

.

(4)

The use of a simple parallel circuit thus results in the representation presented
in Figure 1b, which is far from the dielectric losses observed for a polar dielectric 
under radio frequency conditions (see also Figure 2.3 for the Debye dipolar 
absorption plots).

2.2.2. Circuit in series
It can appear more interesting to treat dielectric losses using a resistor in series (Rs)
with a pure capacitor (Cs), as shown in Figure 2.2a. The impendence of the dipole is
therefore given by:

ZS = RS +
S

1
j C

 = S S

S

1 j C R
j C

(5),  so that 

S

1
Z

=
2

S S
2 2
S S

j C ²C R

1 ²C R
S  .  By identification with Eq. (1), we have:

r’ = S
2

0 S S

C

C 1 C R

r’’ = 
2
S S

2
0 S S

C R

C 1 C R
.

(5’)
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r’’

r’

0

SC
C

(b)

RS
CS

(a)

Figure 2.2.  (a) Scheme of a circuit in series and (b) plots of ’ =(log ) and ’’ = f(log ).

Once again, the representation of a dielectric by a simple equivalent circuit 
does not exhibit the characteristics of r’( ) and r’’( ) as found for a polar
dielectric under radio frequency conditions, as indicated in Figure 2.2. 

2.2.3. Association of serial and parallel circuits and relaxation plots
As discussed in Chapter 1, the plots of dipolar relaxation are characterized by a 
constant value at low frequencies followed by a slow decrease with respect to '( ).
For r’’( ), the variations present a peak.

Thus, a circuit equivalent to a dielectric cannot easily consist of just a 
resistor (R) and a capacitor (C). Nevertheless, and as is demonstrated below, a 
combination of parallel and serial circuits can be used to describe most relaxation
curves. In effect, from the equivalent dipole shown in Figure 2.3a it is possible to
state that: 

S p

1 1 1
Z Z Z

, where Zp = 
p

1
j C

 and ZS = RS + 
S

1
j C

.

From this we can determine that:

1
Z

=
2
S S

2 2
S S

²C R

1 ²C R
+ j S

p 2 2
S S

C
C

1 ²C R
.      (6) 

By making S = RSCS, identification with Eq. (1) leads to:

r’ = p S
2

0 0 S

C C 1
C C 1 ²

r’’ = 
2

S S
2 2

0 S S

R C

C 1 ²C R
=

(7)

S S
2

0 S

C
C 1 ²

.
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’’

’

’ ’’

(b)

1

s

(a)

CS

RSCp

Figure 2.3.  (a) Scheme of equivalent series parallel circuit and 

 (b) plots of ’ =(log ) and ’’ = f(log ).

Following these equations, it is possible to say that:
if  = 0, r’’ = 0, then r’ is at a maximum (the derivative

2
S S

220 S

' C 2
C 1 ²

 cancels out when  = 0) and is equal to

( r’)max = p

0

C C

C
S = S . (8)

if , r’’  0, and r’ tends towards a minimal, as in

( r’)min = p

0

C

C
=  . (9)

the angular frequency for which r’’ is at a maximum is given by a solution

to the equation
2

r S S S
2

0 S S

'' C 2 ²
1

C 1 ² 1 ² 2 = 0. From this can be 

determined that

max = 
S S

1 1
C RS

.           (10) 

The maximum value for r’’, which is therefore when S = 1, is given by

( r’’)max = S

0

C
2C

, so that in addition ( r’’)max =
1
2

( S - ).
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From this we find the plots shown in Figure 2.3b. The dipole used (series and
parallel combined) thus can be a good equivalent to a dielectric exhibiting a Debye 
type relaxation phenomenon, as the two plots have the same form.

In fact, if we take the preceding values from Eqs. (8) and (9) for S and into
the Eqs. (7) that give r’( ) and r’’( ), we find the Debye equations, i.e.,

s
r 2 21

  and s
r 2 2

( )

1
.

Comment.  The angular frequency ( max ) for which

s
2 2

s

' ( )
tan

'
 is a maximum can be calculated using

max

tan
0 , which leads to 2 S P

max 2
S

1 C / C
, from which: 

(tg )max=

1/ 2
S p

p S

1 C / C

2 1 C / C
.

Together, the above equations allow calculations of the values of Cp, RS, and CS

for a given dielectric when plots of r’( ) and r’’( ) have been obtained. In effect,
Eqs. (8) and (9) can be used to determine Cp and CS, while Eq. (10) yields RS. These 
values placed in Eq. (7) give rise to the theoretical plots. 

2.3. Resonating circuit 

(b) 0

’r ’’r

’r ’’r

(a)

C
R

L

Figure 2.4.  (a) A RLC resonance circuit and (b) a resonance plot. 

Here
j

Z R j L
C

 =
RC j(1 ²LC)

C
(11),  so that:



                        Chapter 2. Characterization of dielectrics 45

2 2
2

C RC j 1 ²LC C RC j 1 ²LC1
Z ²R²C² 1 ²LC 1 R²C²

LC ² ²
LC L²C²

 .

By making 2
0

1
LC

  and 
R
L

, we have:

22
0

RC j 1 ²LC1 L²C
Z ² ² ²

 . 

By identification with Eq. (1) and on making 2
p

0

1
LC

, we obtain:

2
0' 20 0

r p2 22 2 2
0 0 0

1 1 1
1 ²LC ² ²L²CC LC LC

² ² ² ² ² ² ² ²
2

²

'' 20
r p2 22 2

0 0

R
L²C

² ² ² ² ² ²
. (13) 

(12)

The plots of absorption with the resonance when  = 0 are shown in Figure 2.4b. 
They are similar to those found in other studies on resonance phenomena, such as
detailed in Chapter 8 of Volume 1 or Chapter 3 of this book. 

2.4. Representation of a heterogeneous dielectric (powders) using a model of 
layers: two parallel circuits in series and the Maxwell Wagner Sillars
effect

The titled representation can be carried out through the following problems:
1. C0 denotes the capacitance of a vacuum condenser. On being filled with a real 
dielectric, characterized as having a complex dielectric permittivity ( r) given by

r = r’ - j r’’, applied to its terminals is an alternating tension (V) given by
V = V0 ej t. Give the general expression for the admittance obtained as a function of

r’, r’’, C0, and .
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2. When a dielectric is heterogeneous, such as is the case for a powder, then the
representation can be made using a succession of electric dipoles each made up of a 
resistance in parallel with a capacitor. In this problem, we will limit ourselves to the
two-layer model shown in Figure 2.5a. 

Making:
C = C1 + C2

1 2

1 2

R R
R

R R

1 = R1C1, 2 = R2C2,  = RC,
determine the admittance equivalent to the model used as a function of , 1, 2, ,
R1, and R2.

3. For a model based on a bilayer dielectric, the law of the variation of the dielectric 
permittivity as a function of angular frequency can be found by considering the 
expressions for:
a. r’ and r’’ as a function of , 1, 2, , R1, R2, and C0; and
b. the limiting values of r’ denoted S and  when tends toward 0 or ,
respectively.
Give the expressions detailed in a and b.

4.Express r’ as a function of S, , and . Express r’’ as a function of S, , , ,
R1, R2 and C0. Compare them to the classic Debye equations. Conclude.

 C1

R1 R2

 C2

’r r’’

’’r of 'pure' Debye

’’r  of the MWS model

(b)

’r

(a)

Figure 2.5. (a) Double circuit layer and (b) characteristic plots of the 
Maxwell Wagner Sillars (MWS) effect.
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Answers

1.  Again, I = r’’C0V + j r’C0V , so that Y = 
I
V

= r’’C0 + j r’C0.     (14) 

2.  The impendence of the two-layer model is given by Z = Z1 + Z2, so that

1

1
Z

1
j C

R1

+
2

1
1

j C
R2

=

1 2
1 2 1 2

1 2

1 1 2 2

R R
j (C C ) R R

R R

1 j R C 1 j R C

      = 1 2

1 2

R R 1 j

1 j 1 j
.

From this can be determined that:

1 21 j 1 j 1 j1 1
Y

Z R1 R2 1 ² ² (15)

1 2 1 2 1 2 1 21 1 ² ² ( ) j (1 ² ) j ( )
Y .

R1 R2 1 ² ²
The identification with Eq. (14) gives

r’ = 
0 1 2

1
C R R

1 2 1 2²
1 ² ²

r’’ = 
0 1 2

1
C R R

1 2 1 21 ² ² ( )
.

1 ² ²

From which can be directly determined that:

when  = 0, r’ S = 1 2

0 1 2C R R

when , r’  = 1 2

0 1 2

1
.

C R R

(16)

By plugging these values into Eq. (16), we have:
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s
r 2 21

''
r

0 1 2

1
C R R

 + s
2 2

( )
.

1

(17)

The evolution of the plot r’= f( ) is identical to that of a Debye lot. In ’’r the
second term is identical to that of the Debye type, while the first term appears as a 

supplementary term that caries with
1

. Therefore, when  0, r’’ .

In general terms, for the layer model, or so-called Maxwell–Wagner–Sillars
model, the evolution of r’’( ) is that given in Figure 2.5b. This corresponds to the
description of phenomenon II detailed in Section 1.1.6. 

2.5. Impedance spectroscopy 
Given the discussion above, it is now possible to graphically summarize the 
representations of ' and " as a function of the angular frequency, ’’ = f( ’), and 
also |Im(Z)| = f[Re(Z)] or Im(Y) = f[Re(Y)]. A logarithmic scale (log ) is used so as 
to cover a wide range of frequencies.

2.5.1. Example using a parallel circuit
In this particular case, from Eq. (3) it is possible to write:

P
P 2 2 2

P P

R
Re(Z )

(1 R C )
,     (18)

and
2
P P

P 2 2 2
P P

R C
Im(Z )

(1 R C )
.      (19) 

With the help of these equations, we can obtain a relationship between Re (ZP) and 
Im (ZP) by writing:

2 22P P
P p

R R
Re(Z ) ( ) Im(Z )

2 4
.

This equation corresponds to the equation for a circle centered on real axes PR
( ,0

2
)

with a radius PR
2

. The representation of |Im (ZP)|=f (Re (ZP)) is thus given in

Figure 2.6b with respect to the angular frequency ( ) which varies from 0 to  + ,
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and:
 if  = 0, then  Re (Zp) = Rp and  Im (Zp) = 0; and 
 if ,   then Re (Zp)    0 and Im (Zp)    0. 

The angular frequency for which Im (Zp) is at a maximum is given by the condition:

max

2 2 2 2 2 2
P P P P P P P P

2 2 2 2
P P

2 2 2 2
P P P P

2 2 2 2
P P

d Im (Z) R C (1 R C ) R C (2 R C )
d (1 R C )

R C (1 R C )
0

(1 R C )

2

from which max
P P

1
R C

.

At this angular frequency, we therefore find P
P max

R
Im (Z )

2
and

P
e P

R
R (Z ) , hence the representations shown in Figure 2.6b. 

2

Figure 2.6. Plots of  (a) Re(Zp) = f( ) and |Im(Zp)| = f( ) and (b) |Im(Zp)| = f[Re(Zp)].

1/RPCP

ZP

RP

O

         Re 
         |Im|RP/2 RP/2

Re(ZP)RP/2 RP

|Im(ZP)
max

1

P PR C

2.5.2. Summary 
Figure 2.7 shows the assembled behaviors of dielectric behaviors, shown 
successively by plots of:

’ and ’’= f( ) (1st column);
’’ = f( ’) or C’’ = f(C’) (2nd column);

 |Im Z| = f[Re(Z)]  (3rd column) and
 |Im Y| = f[Re(Y)]  (4th column).
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The principal calculations not already covered and contributing to Figure 2.7 
have been placed at the end of this chapter in Section 2.8. 

’ and ’’              C’’=f(C’)       |Z’’|=f(Z’)    Y’’=f(Y’) 
            or ’’=f( ’’)

Figure 2.7. Representations of characteristic behaviors [ ’ and ’’=f( ), C’’=f(C’) or 
’’=f( ’), | Z’’|=f(Z’), Y’’=f(Y’)]  of various circuits equivalent to real dielectrics. 
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2.6. Dielectric measurements: summary of the analytical apparatus used with
respect to frequency domain 

The apparatus may vary with the frequency under study. The ranges involved are
schematized in Figure 2.8. 

opticIRIRLLF RFAF SW µWVL

log( )  0   3  6  9  12 

Figure 2.8. The electromagnetic spectrum, from left to right: very low frequencies (vlf); low 
frequencies (VF); audio frequencies (AF); radio frequencies (RF); short wave (SW);

microwave (µW); far infrared (FIR); infrared (IR); and waves in the optical domain (optic)
where  = 0.8 to 0.4 µm. 

Before venturing into the various corresponding methods, it will be useful to
make a preliminary remark.

2.6.1. Opening remark: expressions for the quality factor and tangential loss for
the different circuits equivalent to capacitors or wound bobbins

In general terms, the quality factor (Q) is defined in electrical technology by the 
relationship:

e

maximum value of energy stored during time T W
Q 2 2

energy transformed into heat during T w
 . 

2.6.1.1. Condenser in a representation of a circuit in series (Cs-Rs)
If the intensity is in the form 0i I sin t , we thus have:

2
T 2 2 s 0

e s 00
2 R I

w R I sin t dt
2

 . 

In addition, W = 2
s s0

1
C V

2
, where 0

s0
s

I
V

C
 is the maximum tension at the

condenser terminals.

Thus
2
0

2
s

1 I
W

2 C
, from which  Qs = 

s s

1
C R

.

From this can be determined that s s
s

1
tan C R

Q s .
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The latter equation also can be obtained directly from a Fresnel diagram. In such a 

representation, ZS = RS +
S

1
j C

, from which: 

S

1
Z

=
2
S S S

2 2
S S

²C R j C

1 ²C R
 and

2
S S S

R C2 2
S S S

V ²C R j C
I V I

Z 1 ²C R
I .

From this can be directly determined, as shown in Figure 2.9, that
2

R S S
S S

C S

I ²C R
tan C R

I C
, and which verifies that Q = 

1
tan

.

|IR|

|IC|

Figure 2.9. Loss angle ( ) in a Fresnel diagram. 

2.6.1.2. Condenser in a parallel representation (parallel circuit Cp-Rp)

The tension at the terminals of the equivalent dipole are assumed to be of the form

, and 0V V sin t
2
0

e
p

2 V
w

2R
 and 2

p 0
1

W C V
2

 . The result is that

Qp = .p pC R

Thus p
p p

1 1
tan

Q C Rp
, and this expression also can be found through the

Fresnel diagram, as p
p p Cp p

1 1 1 1
j C

Z R Z R
, so that:

p R
p

V 1
I V j C I

Z R CI , from which: 

R

C p

I 1
tan

I C Rp
, which is what we set out to show. 
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2.6.1.3. Quality factor for a reel represented by a circuit in series (Lp-Rp)
Just as for the condenser represented by a circuit in series,

2
T 2 2 s 0

e s 00
2 R I

w R I sin t dt
2

as the losses are due to the Joule effect arising 

from  the resistor in series Rs.

With 2
s 0

1
W L I

2
, we thus find that

s

s
L

s

L
Q

R
.

2.6.1.4. Quality factor for a reel represented by a parallel circuit   (Lp - Rp)

Just as for the condenser represented by a parallel circuit, we have
2
0

e
p

2 V
w

2R
.

With
2 2

2 0
p 0 p 2 2 2

p p

1 1 V 1 V
W L I L

2 2 2L L
0 , we have 

p

p
L

p

R
Q

L
.

2.6.2. Very low frequencies (0 to 10 Hz) 
Classically, voltmeters and ammeters are used to plot the current traversing a 
dielectric sample with time during the process of charging and discharging a
condenser containing a dielectric. The currents can be extremely small, of the order
of pA, and often a continuous current amplifier is used. 

In order to obtain permittivities from continuous currents, a simple method
consists of measuring the time constant for a condenser, either with or without
dielectric, to discharge through a standard resister (R0).

2.6.2.1. First measurement
Initially, a condenser filled with air and capacitance (C0) is placed under a known 
tension (V0). The initial charge is given by q0 = C0V0. At a time t = 0, the charged 
condenser is connected to the terminals of R0 and at a time t1 during its discharge the
tension (V1) at R0 is recorded using a voltammeter of high internal impedance (Rv).
In effect, the value of the resistor to use for the calculation is given by

0 v
eq

0 v

R R
R

R R
. If Rv >> R0,  then .eq 0R R

We thus have  V1 = R0 i(t1) . With i(t1) = 0

0 0

V t
exp

R R C
1

0
, we obtain:
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0 1

1 0

V t
ln

V R C0

s

,     (20) 

from which can be determined C0.

2.6.2.2. Second measurement
A dielectric is placed between the armatures of the condenser, which now has a 
capacitance denoted by C, and then the unit is charged at V0. On discharge, the time
taken ( ) for the terminals at R0 to return to V is measured. If we assume that the real 
condenser is represented by C in series with a resistance (Rs), then the discharge is 
through a total resistance given by e 0R R R . In this case, 

0
0 0

0 s 0 s

V
V R i( ) R exp

R R R R C
.

With 0

0

R
1

R Rs
 we find

0 0
0 s e

V V exp V exp
R R C R C

 . 

From this can be deduced that

0

e

V
Ln

V R C
.     (21) 

In this last equation, there are two unknown values, i.e., Re (or more exactly, Rs) and 
C.

2.6.2.3. Third measurement
The aim is to determine the value of C. So, we connect in parallel with C a 
calibrated capacitor filled with air (and therefore with negligible losses). After
charging the circuit to V0, the time ( ') required for the same discharge as above is
then recorded. This means that:

0
0 0 0

0 S e 1 e 1

V '
V R i( ') R exp V exp

R R R C C R C C
'

0

e 1

V '
Ln

V R C C
. (22)
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Comparing Eqs. (21) and (22) yields
eR C

=
e 1

'
R C C

, from which we have 

1C C C
'

, so that 1C
C

' 1
. (23)

2.6.2.4. Result

We can find Rs from Eq. (21). Simply put, we have '
r

0

C
C

. In addition,

''
r

s'
r

tan CR , and hence ''
r s

0

C²
R

C
.

2.6.3. From low frequencies to radio frequencies (10 to 107 Hz) 

   ZB
 ZC

  ZX

ZU

ZA

Figure 2.10. General scheme of a bridge. At equilibrium, i = 0 through ZU and

ZX ZB = ZA ZC.

Within the titled range of frequencies, a bridge as shown in Figure 2.10 is normally
used. When the equilibrium point is reached, that is i = 0 in ZU, then we have
ZX ZB = ZA ZC. The type of condenser determines the type of bridge used, of which
there are several of the more widely known described below.

2.6.3.1. The Sauty bridge for almost perfect condensers where D = tan  =0 
In this case, we simply find:

X
X

1
Z

j C
 for a perfect condenser of capacitance to be determined;
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A
A

1
Z

j C
 for a perfect calibrated condenser;

for pure resistance; and BZ RB

C  for pure resistance. CZ R

The equation for equilibrium leads to B
X A

C

R
C C

R
.

2.6.3.2. Wien bridge: low loss condensers where tan  << 0.1 
For such condensers, we use the series representation to give:

X X
X

1
Z R

j C
, where CX is the capacity of the condenser and RX its 

resistance;

A A
A

1
Z R

j C
, where CA is the capacity of a perfect, calibrated condenser 

set in parallel with RA which is a calibrated resistance;
 is a pure resistance; andBZ RB

C  is for pure resistance. CZ R

The equilibrium condition leads, with imaginary and real parts being equalized, to: 

RX RB = RA RC  and B

X A

R R
C C

C . From this can be determined that:

B
X A

C

R
C C

R
 and X X X Atan D R C C RA .

2.6.3.3. A Nernst bridge: generally higher loss condensers where 0 tan 1 .
Here the parallel representation of a condenser is used, so that:

X
X X

1 1
j C

Z R
, where the condenser under study is represented by a 

capacitor (CX) in parallel with RX;

A
A A

1 1
j C

Z R
, perfect, calibrated condenser CA in parallel with the resistor

RA;
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, pure resistance; andBZ RB

C , pure resistance. CZ R

By equalizing the real and imaginary parts, the equilibrium conditions gives: 
C

X A
B

R
R R

R
 and , from which can be deduced that:X C A BC R C R

B
X A

C

R
C C

R
  and X

X X A A

1 1
tan D

C R C R
.

2.6.3.4. Comment
The vectorial voltammeters with synchronous detection, which appeared on the
market during the 1980s, make possible the determination of the components of a
complex impedance (or its modulus and dephasing) by comparing the reference 
signal and the signal leaving the impedance. Such apparatuses allow an extraction of 
a weak signal from background noise, which can be particularly important at very
low frequencies. They typically can be used within a range of frequencies from 1 Hz 
to 100 kHz, values that were previously outside the range of a single apparatus with
a correct order of precision ( tan  10-3).

2.6.4. Radio frequencies and shortwave (103 to 108 Hz) 
At this scale of frequency, resonant (Q meter) circuits are used

R L C

UC E

Figure 2.11.  Oscillating circuit used in Q meters.

2.6.4.1. General terms for a Q meter 
It is worth noting that in the oscillating circuit shown in Figure 2.11, the intensity of

the current through the circuit is written in the form
2

E
I

1
R² L

C

.
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At the point of resonance, we have 
E

I
R

and  = 0 so that 0
0

1
L

C
.

The tension at the terminals of the condenser is thus given by:

0

0
C

0

1 E L
U Z I E E

C R R
Q ,

where Q is the quality coefficient of the reel. 

2.6.4.2. Fundamental operation

S

  I 

r0

L

C

V.L.

Rp
CX

Figure 2.12. Operational structure of a Q meter

Figure 2.12 shows a frequency and tension variable oscillator (S) placed in a circuit
that measures the current intensity (I). The circuit is closed around a constant, pure
resistance (r0) generally called the “injection resistor”, and includes a high quality
and calibrated variable condenser (C) which along with L makes up the basic block
r0 – L – C. In order to determine the parameters of the dielectric it is placed in 
parallel with C and represented in the figure by the parallel CX and Rp. Then C is 
regulated until the maximum deviation is reached at the voltammeter (VL), which is
joined to the terminals of C. 

Q is determined by comparing the injected tension r0I at the terminals of r0 with
the tension UC0 that appears at the terminals of C at the resonance point. We
therefore find:

0C

0

U
Q

r I
.

If I is kept constant, then for each value of UC0 there is a corresponding value of 
Q, and it is possible to directly graduate the voltammeter as a coefficient of the over
voltage.
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2.6.5. High frequencies
2.6.5.1. From 108 to 109 Hz:  using transmission lines

detector

coaxial cable sample

Figure 2.13. Transmission line. 

Transmission lines work through the establishment of stationary waves by reflection
of an incident wave at an end of the line. The sample under study is formed as a 
small disk and is placed at one end of the transmission line. A detector is used to 
analyze the maximum and minimum stationary waves obtained with and without the
dielectric.

2.6.5.2. From 109 to 3 1011 Hz: use of microwave techniques
In this range of frequencies, waveguides and resonating cavities are used. In the
waveguide, progressive waves propagate along a direction z that is normal to the
sample. At the dielectric/air interface, the wave is partly reflected and partly
transmitted. In the empty space that precedes the sample face, the incident and
reflected waves undergo interference. It is thus possible to write that:

1 1ik z ik zi t
1 0E E (x, y) e e re ,

where r denotes the reflection factor, and 1 r1k µ
c r1 .

In the second medium, there are no parasitic reflections, and the transmitted
wave is in the form , where t is the transmission

coefficient (see Chapter 4), and 

2ik zi t
2 0E E (x, y)e te

2 r2k µ
c r2 .

For nonmagnetic media µr1 = µr2 = 1, and  k1 and k2  are only dependent on 1

and 2. In order to determine 2, the phase of the transmitted wave needs to be
characterized, and the wave vector (k2) must be taken in its complex form, as in:

'
2 22k k k ik''

2 , where  relates to the real part of the permittivity and the
attenuation (by absorption) of the wave. 

'
2k ''

2k
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2.6.5.2. Frequencies above 1012 Hz:  spectroscopic techniques
The classic method to analyze a spectrum is with a spectrometer that consists of a 
polychromatic source (white light of a large spectrum produced, for example, by an 
incandescent filament) coupled with a slit and a system of mirrors to generate a 
beam of parallel rays that are incident on a diffraction grating. The grating is used to
select the required wavelength. The radiation thus chosen is focused on an exit slit, 
which is in close proximity to the sample under study. Once having passed through
the sample, the light is analyzed with a detector (thermocouple in the infrared region
and photomultiplier in the UV-visible) and recorded. The spectrum obtained 
represents the transmitted signal as a function of frequency.

This procedure, however, can be quite long as the grating has to turn over the
required frequency range. An alternative method consists in measuring not as a 
function of frequency but of time. Here the wave used contains a range of 
frequencies that can be analyzed by a detector connected to a computer. The wave 
signal can then be sampled, for example, every millisecond for two seconds so as to
give a high data count (2000 in this example). The application of a Fourier
transformation on the stored data (which requires just a few seconds more) makes it
possible to display the amplitudes and frequencies of the cosinusoidal incident
waves. In effect the Fourier transformation converts a time-based spectrum to one 
based on a range of frequencies (further details on this can be found in most courses
on the theory of data treatment).

2.7. Applied determination of dielectric parameters for frequencies below 
108Hz (classic range for dielectric studies) 

2.7.1. Condenser form 
Flat or cylindrical condensers may be used, depending on whether solid (in the
shape of disks) or liquid samples are used. For the latter, total influence condensers
are used so that there is no distortion in the field lines separating the dielectric 
medium and air. A cap, with a small hole through which is passed the sample, is
used, is placed so that it is part of the external electrode which surrounds the internal 
electrode. The field lines therefore retain the same distribution whatever the 
dielectric placed between the armatures, and the measurements can be carried out 
using a single field line distribution.

2.7.2. Connections and the effect of connecting wire capacities 
2.7.2.1. Measurement with one of the two wires grounded to earth
This setup is normally used in combination with a Q meter or a bridge in order to
measure the capacitance of shielded cables or the entry capacitance of an amplifier.
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2.7.2.2. Measurement with two wires “floating” with respect to earth
In this case, the two exits of the apparatus are held independent of the bridge 'guard'
which is now connected to earth. The setup, shown in Figure 2.14, which measures
the connectors at the condenser, consists of three junctions around three capacitors:
  the actual capacity of the condenser between the electrodes denoted CX;
  the auxiliary capacitors denoted CA and CB due to the junction wires.

The capacitors thus form a triangular system that makes up the unknown 
branch of the bridge in which CX—to be determined—is included. It is now thus
possible to demonstrate that if CA and CB are sufficiently small, their influence on 
the oscillator, the detector, and hence the characterization of CX is negligible. For
example, for an HP 4270 bridge (and similarly for an HP 4284 bridge), the
constructor states that 50 cm of the coaxial cable (Filotex RG 58 A/U) will introduce
an additional relative error of only 0.01 % while measuring a 10 nF capacitor at 10
kHz.

   A

  D

  CB  CA

  B

  CX

  B

  D

  CB  CA

  CX

  A

Figure 2.14. Triangular system of capacitors  (ABD) equivalent to a capacitor (CX) setup 
with two connecting cables (of capacity CA and CB) at a bridge. 

2.7.3. Preparing equations to calculate ’ and ’’
2.7.3.1. For a dielectric represented by a parallel circuit (Nernst bridge)
As shown in Figure 2.15, G0 and G are, respectively, the conductivities of the empty
and filled condensers. The capacities due only to the active part with respect to the 
electrodes are, respectively, denoted C0 and ’C0. The parasitic capacity (due to
connections and electrode insulation) is represented by Ci (for a cylindrical 
condenser, Ci is for the most part due to the insulating ring placed between the 
coaxial electrodes, as indicated in Figure 2.15c).
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insulating ring 
contributing to Ci

(b)

’C0Ci
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Figure 2.15. Schemes of equivalent circuits for (a) a parallel circuit with an empty
condenser; (b) with a condenser filled with dielectric or permittivity '; and (c) a 

cross section of a cylindrical condenser showing between the two coaxial electrodes
the insulating ring which generates most of Ci.

The admittances of the parallel circuits therefore are given by:
 Y0 = G0 + j (C0 + Ci) when the condenser is empty and the capacity equated as 

   C0i =  (C0 + Ci) is effectively that of the apparatus;
  Y = G0 + j (  C0 + Ci) = G + j CXi  when the condenser is filled with dielectric.
With  = ’ - j ’’, and G = G0 + ’’C0 the equation CXi = ’C0 + Ci represents the 
real capacity observed for the apparatus when a dielectric is present. 

From the last two equations, we can deduce that:

Xi i 0 0Xi i Xi 0i

0 0 0

C C C CC C C C
' 1

C C C
, so that

0

C
' 1

C
  with Xi 0iC C C ,

where represents the variation in measured capacity without or with the
dielectric in the condenser used to make the measurement.

C

0

G
''

C
, with 0

Xi 0i

1 1
G G G

R R
. As in a parallel circuit,

P
P P

1
tan D

C R
, we also have Xi Xi 0i OiG D C D C , where 

and are the loss tangents observed for a condenser with a dielectric or
without, respectively.

XiD

0iD

We thus reach: 
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Xi i
Xi 0i

0 0

C C
'' D D 1

C C
.

Generally, Ci is small (  0.2 pF) with respect to C0 (  20 pF), so the equation can 
be written more simply as:

Xi
Xi 0i

0

C
'' D D

C
.

2.7.3.2. Dielectric represented by a circuit in series (Wien bridge)
Figure 2.16 shows the scheme for a circuit equivalent to a condenser with an 
insulating parasitic capacitance (Ci). The impendence thus is given in the form:

0 0s
0s

j
Z R

C
, where 0s 0 iC C C .

When a dielectric is introduced, the impendence changes to: 

0s
0 i

j
Z R

C C
.

A calculation analogous to that in the preceding section gives: 

0

C
' 1

C
 et Xs

Xs
0

C
'' D

C
,

where DXs represents the loss tangent for a cell filled with dielectric material and
CXs = ’C0 + Ci  gives the corresponding capacity.

    R0s

    Ci

    C0

Figure 2.16. Scheme of an equivalent circuit in a series for a vacuum-filled condenser taking 
the parasitic capacitor (Ci) into account.

2.7.3.3. The Q meter
On considering losses as being due to a conductance in parallel to the condenser, the
variation in admittance on introducing a dielectric into the condenser is given by 
(see also Section 2.7.3.1):

0Y Y Y G j C
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where  and 0G ''C 0C ' 1 C .

With an empty cell connected to the junction of a calibrated and variable 
condenser (C) identified in Figure 2.12, and with an established resonance, C
represents the change in the variable capacitor. This makes it possible to reestablish
the resonance when the dielectric is introduced into the measuring condenser. 

In this representation of dielectric losses, the coefficient for the overvoltage (of 
the form Qp =  from Section 2.6.1.2) is given by (where  = p pC R 0):

 in a vacuum Q0 = , so that the resonance point (0 0 0C R 0 0
0 0

1
C

L
),

0
0

0

R
Q

L 0
0 0

1 1

0R LQ
G ;

with a dielectric Q = , and at resonance (0C R 0
0

1
C

L
),

0

R
Q

L

0

1 1
G

R LQ
.

The result is that 0
0 0

1 1 1 1 Q
G G G

L Q Q L QQ
.

The values for ’ and ’’ are thus given by:

0

C
' 1

C
 and 

0 0

1 Q
''

²LC QQ
.

2.8. Problems
For the various possible equivalent circuits (R-C in series, R-C in series and in
parallel with a capacitor, parallel R-C in series with a resistor Rs, parallel R-C
circuit in series with a capacitor Cs, parallel R-C in series with a parallel R-C), 
justify by calculation the choice of one or the other of the following possible
representations: Im(Z)=R(Z) or Im(Y)=R(Y). Plot |Im(Z)| = f( ), Re(Z) = f( ) and 
|Im(Z)| = f[Re(Z)] or Im(Y) = f( ), Re(Y) = f( ) and Im(Y) = f[Re(Y)].

2.8.1. Problem 1. R-C in series
RS CS
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With
1 j

Zs Rs Rs
j Cs Cs

,

we have:

Re(Zs)= RS and |Im(Zs)| = 
S

1
C

.

0

        Re(Zs)
          |Im|(Zs)|

 Rs

Zs | Im(Zs)|

Rs0 Re(Zs)

 increasing 

2.8.2. Problem 2. R-C in series and in parallel with a capacitor (Cp)

Cp

Rs Cs

P
S

1 1
j C

Z Z
 ; with S S

S S
S S

1 1 j R C
Z R

j C j C
, we have:

2 2
S S

P P 2 2 2
S S S S

1 j C j C
j C j C

Z 1 j R C 1 R C
S SR C

,

2 2
S S S

P2 2 2 2 2 2
S S S S

R C C
Y j C

1 R C 1 R C
.
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 if   = 0 , Re(Y) = 0       and Im (Y) = 0; 

 if   , Re(Y)    1/Rs  and Im (Y) .

         Re 
         |Im|

1/Rs

O

Y

 increasing 

Im(Y)

O 1/Rs Re(Y)

2.8.3. Problem 3. R-C in parallel and in series with a resistor (Rs)

Cp

Rp

Rs

2
P P

S 2 2 2 2 2 2
P P P P

R R
Z R j

1 R C 1 R C
PC

;

 if  = 0 , Re (Z) = Rs + Rp  and Im(Z) = 0; 

 if  ,  Re(Z) = Rs    and Im (Z)   0. 

1/RpCp

       Re 
       |Im|

O

Rs+Rp

Z

RP/2

Rs Re(Z)
O

|Im(Zp)|

Rp/2

Rs

 increasing 

2
P

S
RR Rs+Rp



                        Chapter 2. Characterization of dielectrics 67

The angular frequency for which Im(ZP) is at a maximum is given by:

max

2 2 2 2 2 2
P P P P P p P P

2 2 2 2
P P

d Im(Z) R C (1 R C ) R C (2 R C )

d (1 R C )

2

2 2 4 3
P P P P

2 2 2 2
P P

R C R C
0

(1 R C )
,

from which it can be deduced that max
P P

1
R C

.

At this angular frequency, we thus have:

P
max

R
Im (Z)

2
 and P

e S
R

R (Z) R
2

.

2.8.4. Problem 4. R-C in parallel and in series with a capacitor (Cs)

Cp

Rp

Cs

P p P SP
2

S P p S p P S

1 j R C j R C1 R
Z

JC 1 j R C C C R j C
,

2 3 2
P S P S S P P S P

2 2 2 4 2
P S P S

R C C jC jC C R (C C )
Z

R C C C

2 2
S P S P P SP

2 2 2 2 2
P SP

C R jC 1 R C (C C )

1 R C C
;
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if   0, Re(Z)   Rp  and Im(Z) ;

if  , Re(Z)   0    and Im(Z)   0. 

      Re 
       |Im|

O

Z

Rp

Re(Z)

|Im(Z)|
 increasing 

Rp 0 

2.8.5. Problem 5. R-C in parallel and in series with a parallel R-C

C1

R1 R2

C2

1 2
1 2

1 1 2 2

R R
Z Z Z

1 j R C 1 j R C

2 2 2 2 2 2
1 1 1 2

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2

R R C R R
j j

(1 R C ) (1 R C ) (1 R C ) (1 R C )
2 2C

2 2 2 2
1 2 1 1 2 2

2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2

R R R C R C
j

(1 R C ) (1 R C ) (1 R C ) (1 R C )
;

if   0,   Re(Z)    R1+R2    and  Im(Z)    0; 

if ,    Re(Z)  0   and  Im(Z)    0. 

The angular frequency for which the Im(Z) is at a maximum is given by the solution
to the equation:
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2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2

2 2 2 2 2 2 2 2
1 1 2 2

d Im (Z) R C (1 R C ) R C (1 R C )
0

d (1 R C ) (1 R C )
,

which in turn gives   and2 2 2 2
1 1 1 1R C (1 R C ) 0 2 2 2 2

2 2 2 2R C (1 R C ) 0 , from
which can be deduced the two relaxation frequencies, as in:

1
1 1

1
R C

   and 2
2 2

1
R C

.

This is observed in the representation of a dielectric by the layer model given by
Maxwell Wagner Sillars (MWS model).

 increasing 

R1+R2R1 Re (Z)

Im( )Z



Chapter 3 

Spectroscopy of Dielectrics and the
Kramers–Krönig Relations 

3.1. Introduction:  dielectric response and direct current 
3.1.1. A résumé of the components that make up the dielectric response 
Chapter 1 of this volume detailed the mechanisms responsible for the phenomena of 
charge relaxation due to dipole moments generated by bound charges and associated 
with directional polarization. In solids, this mechanism gives rise to dielectric losses 
that generally attain a maximum in the radio frequency range. In liquids, which are 
less dense, the same maximum is most often displaced toward the shortwave and 
microwave regions. 

Chapter 2 was particularly concerned with:  
 recalling the form of the plots obtained by resonance absorption originally detailed 

in Chapter 8, Volume 1. When associated with polarization by displacement of the 
electric field due to bound and covalently bound electrons, the absorption is 
generally in the visible range. When the mechanism is due to polarization of ions, 
the absorption is generally in the infrared region. In both cases the quantification of 
the mechanisms (not detailed in this text) makes it possible to: 

o relate electronic energy levels of various electrons to their electronic 
configuration and their associated quantum numbers; 

o introduce the notion of phonons for the levels of vibrational energies that 
atoms and ions undergo. 
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 showing that the accumulated charges on either side of an interface give rise to the 
so-called Maxwell Wagner Sillars (MWS) dielectric losses associated with the
interfacial polarization and at a maximum at low frequencies (ca 100 Hz). 

In all of the above listed cases, only the displacement of bound charges (such as 
positive or negative charges at a permanent or induced dipole, interfacial dipoles, 
electronic charges bound to and as part of a covalent or ionic bond) has been 
reviewed. When influenced by a varying (normally sinusoidal) electric field, the
dipoles change direction with movements “perturbed” by intermolecular interactions
so that they follow the orientation of the electric field with a certain dephasing, and 
hence give rise to dielectric losses.

3.1.2. Influence of “pseudofree” charges on electric behavior
The movement of free or “pseudofree” charges can be added to the above list for 
certain specific cases such as, for example, electrons in a thermally generated 
conduction band across a large forbidden band in an insulator. Within the order of 
collisions against the lattice or impurities—which introduce a relaxation time ( )
equal to the average time between two successive collisions—these charges have a 
practically instantaneous response to an electric field.

Assuming that that  is identical for all carriers, whatever their energy, the 
classic Drude model (which leads to Ohm's law) gives the following expressions:

 for direct current conductivity (see Volume 1, Section 1.3.4.2):

DC
nq²
m *

;

 for alternating current conductivity (see Problem 1):

AC
nq² 1 j

( )
m * 1 ²

,

wherein at low frequencies << 1 always and AC DC . For 
example, when  10-15 s, it suffices that  1014 Hz. 

The direct current conductivity ( DC) thus is associated with the transport of charges 
that have enough energy to overcome the distance between the two electrodes. The
current is dependent upon and extremely sensitive to changes in the parameters of
electric field intensity and temperature.

Comment. For the specific case of amorphous semiconductors, there are also
carriers that hop between neighboring states and limited distances, given the rapid
change in the electric field. Only hops to energetic positions that are easily 
accessible occur. The frequency of the hops increases with the frequency of the
applied field, so that the alternating conductivity associated with the charge 
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displacement is of the form  = A s, where A is a constant and s is a parameter
often around 0.8 (Austin and Mott's law).

3.1.3. Separation of dielectric response from DC conductivity
The resultant conductivity is thus a combination of two components: one due to 
“pseudofree” carriers (Section 3.1.2) and the other due to dielectric losses (Section 
3.1.1).

DC conductivity (Section 3.1.2) is not in fact associated with a dielectric 
response (Section 3.1.1), which is actually due to an excitation from an alternating 
field. The response can be placed in terms of:

 phenomena due to dielectric absorption ( ") associated with a Debye 
dipolar relaxation, a MWS effect, or a resonance absorption; and 
 a variation in the permittivity ( ') and phenomena due to dielectric

dispersion.

However, on going toward very low frequencies and DC, there is a single
component that appears at the level of the complex dielectric permittivity. This is 
because only " evolves in the presence of this conduction mechanism ( DC), which
otherwise does not contribute to the component of permittivity ( ').

In the following Section 3.2, there is a relatively electrotechnical discussion on 
the behavior of DC conductivity and how it may be isolated from the dielectric 
conductivity (due to bound charges). Section 3.3 details the Kramers–Krönig theory 
which establishes the general relation between ' and ". On knowing the real
component throughout the whole spectrum, this relation makes it possible to realize
the imaginary component of the dielectric, and visa versa. The formula makes it
possible also to characterize the CD conductivity when only " changes with
frequency. In effect, if the Fourier transformation of " (proportional to ') gives a 
constant value toward low frequencies, then ' does not give rise to a dispersion
effect and the corresponding variation in " can be due only to a component of the
DC conductivity. 

3.2. Complex conductivity 
3.2.1. General equations for real and imaginary components of conductivity
3.2.1.1. Equivalence of current density and electronic polarization current density
This section concerns only the electronic current and its equivalent, as will be seen.
For the volume (or “internal part”) of the material the current density is given by the
equation .int intj v
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Under the effect of an excitation provided by a sinusoidal electric field (given by
i t

0E E e ), the speed of the electrons in complex notation is given in the form:

dr
v i

dt
r .

The electronic polarization associated with the displacement ( r ) of electrons (e) of 
density ne is given by:

eP n er ,

and int = ne(-e). From this we have 

eP n er
int eintj v i n er  = i P =

P
t

, (1)

where
P
t

 is the density of electronic polarization current which closely follows the

internal current density.

3.2.1.2. Recall: total current density in a dielectric without losses ( r = r) placed
between metallic electrodes

The density of the total current (jtot) such that totI j .dS , so that I = jtot.S for a
simple structure (homogeneous media between plane electrodes as detailed in

Section 5.2.3, Volume 1) can be formulated with T = 
Q
S

 (total superficial charge 

density):

tot
I dQ / dt

j
S S

= Td Q d
dt S dt

. (2)

As T = 0 + P (sum of the densities of free and polarization charges), we
have:

jtot = 0d
dt

+ Pd
dt

, so that with P = P, then  jtot = 0d
dt

+
dP
dt

.         (3) 

For its part, the electric field between the electrodes that contain a dielectric of 
absolute permittivity ( ) can be expressed in two ways. In terms of moduli (see 
Volume 1, Section 5.2.3) we have either:
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 E = T , which with Eq. (2) gives:

tot
dE

j
dt

= 0 r D
dE

j
dt

,         (4) 

  where  is the displacement current;  or Dj

 E = 0

0
, which with Eq. (3) we have tot 0

dE
j

dt
+

dP
dt

, so that with Eq. (1) it is

possible to state that:

tot 0 int
dE

j j
dt

, (5)

in which the term 0
dE
dt

 is thus the displacement current in a vacuum and

int
dP

j
dt

 is the polarization current. 

3.2.1.2. Density of the total current in a dielectric with losses and a relative
permittivity ( r)

In such a system, 0P E 0 r( 1)E , and

int
P

j
t

= 0 r - 0
E
t

. (6)E
t

In analogy to Eq. (5), the density of the total current is given by:

0tot int
E

j
t

j , so that on taking Eq. (6) and 0 rD E  into account:

 = 
D
t

.   (7) E
ttotj = 0 r

With r = r’ – j r’’, we have:

totj =
D
t

= 0 r’
E
t

 - j 0 r’’
E
t

.

Incidentally, it is worth noting that the displacement current given by Eq. (4) is in

this case Dj = 0 r’
E
t

 (and not, as might otherwise be thought possible,
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0 r tot
D E

j
t t

).

The total current density ( totj ) thus can be written for a field given by

i t
0E E e , as:

totj = j 0 r’ E  + 0 r’’ E . (8)

For its part, the complex conductivity ( ) can be defined by the relation:

totj = E  . (9)

Then by writing  in the form  = ’ + i ’’, so that totj = ’ E + i ’’ E , we have 

by identification with Eq. (8):

’ = 0 r’’ = ’’
’’ = 0 r’ = ’.

(10)

The real part of the complex conductivity thus can be related to the imaginary
part of the dielectric permittivity. Inversely, the imaginary part of the conductivity is 
equated with the real part of the dielectric permittivity.

In fact, the term r’’ of the dielectric permittivity can contain different
components, depending on the physical origin of the real conductivity of the
dielectric (residual free or pseudofree charges, dielectric losses due to bound 
charges).

3.2.2. Dielectric conductivity due to residual free or bound charges 
3.2.2.1. Dielectric with only residual free charges
It is assumed here that the dielectric is nonpolar and therefore does not exhibit
dielectric losses due to either induced or permanent dipoles. Only a few residual free 
charges are present, for example, electrons in a thermally generated conduction band 
across a large forbidden band in an insulator or “pseudofree” charges. For a purely 
dielectric and nonpolar contribution there is no dephasing between the excitation
E = i t

0E e and the establishment of the response in terms of polarization of the

dielectric (i.e., no dielectric absorption) so that 0 rP ( 1)E  where r takes on a 

real magnitude. In addition, 0 rD E .

The resultant current for such a system is thus due to two components:
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one due to a perfect dielectric of absolute permittivity given by ’ = 0 r, and 

capacity
S '

C
d

 where S is the plane surface area and d is the distance 

separating the electrodes; and 
  the other due to free charges that continuously generate a conductivity ( 0) due to

a conductance (G) such that G = 
1
R

, where the resistance R for such a structure is 

given by R = 0
d
S

. With 0 = 
0

1
, we have G = 0

S
d

.

Figure 3.1 represents the resultant intensity which is such that:

I = (YC + YR) V = (i C + G)V = (i ’ + 0) S
V
d

= (i ’ + 0) S E 

  = j.S 

 I 

 V

I C
= 

i
C

V

IR = GV 

Figure 3.1. Fresnel diagram for a dielectric with a low conductance (G).

In terms of vectors, it is possible to state that:

j =  (i ’ + 0) E  = i ’ E  + 0 E     (11) 

= ’
E
t

+ 0 E  = Dj + cj .

The term = ’Dj
E
t

 denotes the displacement current and the term cj = 0 E  is that

of the conduction current. It is advantageous to note that Dj  is not underlined as its
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associated physical magnitude has only one component tied to the only term '
which is real.

E
t

However, totj = , introduced in Section 3.2.1.2 and having two physical

components associated with the real and imaginary part of , has to be noted in its
complex form (and thus underlined).

In global terms, we also can take into accounts these two components by:
  as above in Eq. (9), introduce a complex conductivity  = ’ + i ’’  such that 

j = E .  On identification with Eq. (11), we obtain  = 0 + i ’, from which: 

’ = 0

’’= ’

  or by introducing a complex permittivity as in  = ’ - i ''  such that:

E
t

j = . (12)

We thus have = i ( ’ - ij '' ) E = i ’ E + '' E  (noting that  is the
imaginary component of the permittivity only in the presence of free charges). By 
identification with Eq. (11) it is possible to deduce that:

''

'' = 0 .            (13) 

The losses simply due to free charges can be represented either by the 
conductivity ( 0), or with an imaginary component of  such that '' = 0/ . This 
latter equation represents the evolution of phenomenon I detailed in Section 1.1.6. 

3.2.2.2. Dielectric with residual free and bound charges 
In this case, the current vector density exhibits two components:

 one still corresponds to free charges (free electrons and ions) which generate a 
conductivity 0, and thus a conduction current density cj = 0 E , which can be 
written, taking into account the result from the preceding Section 3.2.2.1 as: 

"
cj E ; and 

the other a component due to the dielectric which now, in addition, exhibits 
losses associated with the displacement of bound carriers (electronic
polarization associated with electrons bound in covalent bonds, ionic
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polarization due to ions in ionic bonds, dipole polarizations, and so on). This

component is in the form diélj = diel
E
t

, where diel = ’ - i d’’  and d’’

denotes the imaginary component of the dielectric permittivity due simply to 
bound charges.
We thus find:

diélj = i  ( ’ - i d’’) E = i ’ E + d’’ E .

The total current density vector thus can be written as: 

totj = +cj diélj =  i ’ E + ( l’’+ d’’) E .

By identification with the general expression, as in

totj = E  = ’ E + i ’’ E  (where  = ’ + i ’’), we have: 

’ = ( '' + d’’) = 0 + d’’

’’ = ’.
(14)

In the absence of free charges, 0 = 0 and ’ = d’’ = die which is the purely
dielectric conductivity. This conductivity is in fact the result of various dielectric
contributions:

diel = dipolar + electronic polarization+ ionic polarization +... 

                           = d’’=  ( ’’dipolar + ’’elec + ’’ion +...). (15)

In the presence of free charges, the conductivity ( 0 = ) should be added. 
The complex part of the permittivity thus becomes

''

’’ = + ’’''
dipolar + ’’elec + ’’ion +..., where ='' 0 , and 0 is independent of 

frequency if the charges are completely free (which can follow extremely high 
frequencies due to the limitation in Ohm's law, as detailed in Chapter 1, Volume 1).

It thus is possible to see that  increases toward very low frequencies. This
can result in the introduction of a “perturbation” term in the resulting value 
measured for " as 

''

0 is no longer infinitely small. This term  is an electrical one,
which takes into account all electrical measurements.  However, in order to study

''
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simply the dielectric contribution, this term must be withdrawn from the
characterization. This is possible by use of the theoretical relations devised by
Krönig and Kramers, as indicated in Section 3.3 and in practical terms in the
following Section.

3.2.2.3. Practical separation of the influences due to free charge conduction on 
dielectric losses caused by dipoles

For a dielectric made up of a polar medium with residual free charges, the dielectric 
permittivity is given by  = ’ – i ’’ = ’ – i ( + ’’''

dip) . It thus is possible to
write:

 either  = ’ – i ( ’’dip + ) , from which the dielectric losses due to Debye dipolar
absorptions mean that

''

s'' 0
dip ( ' - i '') i i

1 i
.       (16) 

The plot of '' f ( ')  is no longer a circle but gives rise to the form illustrated in
Figure 3.2. 

s

 1

 2
3

0

0 ’

’’

Figure 3.2. Influence of direct current (where 03 > 02 > 01 > 00) on the plot of ’’ = f( ’).

 or ’’= + ’’''
dip, and if the dielectric losses are modeled on the Debye theory,

then we can state that: 

’’= 0 + ( s - )
1 ² ²

.

A plot of log ’’ as a function of frequency makes it possible to easily
distinguish the alternating conductivity associated with the dipolar relaxation (in
general terms for bound charges) from the conductivity due to free charges.
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In effect, from the preceding relation, it can be deduced that: 

 when  << 1, we have ’’ =  I’’ 0  (in zone I)  log I’’= log 0 – log ;

 when  >> 1, we have ’’ = I I’’ s( )
 (in zone II) and 

   log II’’= log s( )
- log ;

 when  1, then ’’ s(
2

)
 + 0

s(
2

)
 , and practically speaking 

0  10-18 << s(
2

)
10-11.

The result is that the plots of  log I’’= f(log )  and   log II’’= f(log ), which 

have slopes equal to –1, display a variance of z = log s

0

( )
, which is 

independent of . This difference makes it possible to determine 0. From the plots

of log ’’ = f(log ) (shown in Figure 3.3), we can obtain s( )
2

 and hence .

By plugging in the values of ( s - ) and  into z one determines 0 (which also can 
be obtained through extrapolation as indicated in Figure 3.3). 

log ’’

0

log 0

   log

   log
( )

2
s

  zone  I 

zone II 

   z 

 log
1

Figure 3.3. Representation of log ’’ = f(log ) permitting determination of the parameter z. 
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3.3. Theoretical study of the dielectric function: the relaxation function, the 
Kramers Krönig equations, and their use

3.3.1. Preliminary remarks
Here is established two fundamental equations which will then be used to formulate
equations describing—in general terms—the response of a dielectric to an excitation
caused by an electric field. When a field (E) is applied to a dielectric, the electrons
and the nuclei (of atoms) of the medium move rapidly as they have a low inertia and
their polarization is practically instantaneous. This is especially so in respect of the
movements of dipolar polarizations due to the considerable inertia associated with
the molecules involved. After a long period of time for which we can assume that a
static regime has taken over, we can now write that  Ps(total) = P  + Ps(dipole),
where:
 P denotes the polarization which is practically instantaneous, and hence follows
high (infinite) frequency fields; and 

 Ps(dipole) denotes the dipolar polarization which takes a nonnegligible time to be
established.

By using the fundamental equation, as in P = 0( r – 1)E = (  – 0)E, we thus
have:

Ps(total) =  ( s – 0)E     and  P   =  ( – 0)E,  from which: 

Ps(dipole) = Ps(total) - P   =  ( s – )E .       (17) 

In addition, if P(t) represents the total polarization at any instant (t), and if 
P(dipole) is the dipolar polarization at the same instant t, then similarly

P (t) =P  + P(dipole).

In general terms, if the permittivity is complex (  ), we have:  P(t) = (  – 0)E,
and hence:

P(dipole) = P (t) - P  = (  – )E. (18)

3.3.2.  The impulsive response and the relaxation function
Figure 3.4 shows the electric field, which is initially applied to a material. The field
can be written as: 

1E(t) E (t t )1 , (19)

where (t – t1) = 1 when    t   t1 and (t – t1) = 0 when t >  t1.
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0 1t

1E( )E t

 t 

Figure 3.4. Representation of an “exciting” electric field.

Under a stationary regime, which corresponds to  t1 (as E = E1 = constant), the
dipolar polarization (P) of the dielectric can be written, according to Eq. (17), as: 

sP (dipole) E1 , where by notation s( ) .

By making  Ps(dipole) = P = P1 , we also have: 1
1

P P
E .

Under a varying regime, we can write: 1
P(t)

E Y(t t )1 , where 

corresponds to the function of decreasing dipolar polarization. The latter does not
instantaneously cancel out at  t = t

1Y(t t )

1 due to the dipole inertia (see Figure 3.5). 

( )P t

t1

1
1

P
E

t
1 1

( )
( )

P t
E Y t t

Figure 3.5. Dielectric response [P(t)/ ] to the field [E(t)] of Figure 3.4. 

Given that when   we have 1t t
P(t) 1

1
P(t )

E , we can obtain a value for

Y when , as Y .1t t (0) 1

After an infinite period of time, the polarization tends toward zero (the dipoles
are spread in an isotropic manner and their statistical result is zero in the absence of
an orientating field after an infinite time), which means that Y( ) 0 .
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We will now define the function for the macroscopic relaxation. In order to do
this, we make  and 1t 0 11E . Under these conditions:

E(t) (t)  where (t) = 1    when t 0 ;

                    = 0     when  0;t

and
P(t)

Y(t)  when Y(0) = 1 and  Y( ) = 0. 

Y(t)  thus appears as the response to the signal given by (t) ; and

Y(t) is called the macroscopic relaxation function, as it is tied to the
polarization which represents the macroscopic state of the dielectric. 

3.3.3.  Introducing the general expression for the response to a signal
After having considered the field 1E(t) E (t - t )1 , we now look at the “block
function” for which it is assumed that:

when ,  the field is equal to1(t t) t t1 1E

when   and , the field is equal to 0.1t (t t) t 1t

Schematically, we have the distribution presented in Figure 3.6. 

E(t)
              E1

               t1 - t    t1
t

Figure 3.6. Electric field for a “block function”. 

For the field given by E  we can write:(t)

1 1 1 1E(t) E (t t ) E (t t t)

[where this block function is equal to (E1 when t  t1), minus  (E1 when   t  t1- t)].
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Given the preceding Section 3.3.2, with respect to the response, we can write: 
P(t)

1 1 1 1 1 1 1E Y(t t ) E Y(t t t) E Y(t t t) Y(t t ) .

In addition, any field [E(t)] that is time dependent can be obtained by
considering the result as a superposition of the block functions of an amplitude
given by  each applied for a time t such that iE it t it t .

The individual effect of each of these block functions will give a response of 

the type
P(t)

, as indicated above.

The superposition of these block functions thus gives a field, for a linear
dielectric, which gives rise to a response summing the responses of the applied
signals. This can be written as: 

i i i i
i

P(t)
E (t ) Y(t t t) Y(t t

where t  represents the growth in  [or init i(t t ) ].

At the limit t 0, the block functions are transformed into impulse functions,
and the summation becomes an integral, as in:

i i
i

i

Y(t t t) Y(t t )]P(t)
E t

t t 0
i

i i
i

Y(t t )
E(t ) dt

(t t )

We thus have demonstrated that it is possible to write—by changing the
notation from ti to t’: 

tP(t) Y(t t )
E(t ) dt

(t t )

where the summation is overall possible instants t' from  up to , the latter 
being the instant at which the response is characterized.

t

3.3.4. Relation between dielectric permittivities and the relaxation function 
Under a static regime, where E =  (the subscript s denoting “static”), we have 
seen in Eq. (17) that the dipolar polarization can be written as (dipole)
= . Given that

sE

sP

s( ) sE )s( we thus can state that (dipole) = sP sE .

Under a regime that varies as a function of time, the expression for the dipolar
polarization at an instant (t) is given by Eq. (18) from Section 3.3.1, so that:
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P(t) ( )E(t)  where j t
0E(t) E e  for sinusoidal regimes.

From which can be deduced that:
t

j t j t
0 0

s

P(t) Y(t t )
E e E e dt

(t t )
.

On changing the variable, as in t t (where t is fixed and corresponds to the
point where the polarization is calculated and t’ varies, then dt d  and 

, ).t t 0 t
This gives:

t
j t ' j t j

0

Y(t t ) Y( )
e dt e e

(t t )
d ,

from which 

j

s 0

Y( )
e d .

By again changing the variable (by notation) to t , we can write in more
general terms that:

j t

s 0

Y
e

t
dt = L(-Y’(t)), (20)

where L is the Laplace function. 

3.3.5. The Kramers  Krönig relations

On integrating the preceding Eq. (20) by parts, with u = e-j t   and  dv =
dY

dt
dt

, we 

have:

j t

s 0

dY
e dt

dt
j t j t

0 0
Ye j Ye dt

        = j t

s 0

j
1 j e Y(t)dt

(as Y(0) = 1 and Y( ) 0).

Finally:
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s s

s s s 0 0

j
1 j cos t Y(t)dt sin t Y(t)dt ,

from which we have the two equations:

s 0

( )
cos t Y(t)dt            (21) 

s

s 0

( )
sin t Y(t)dt .        (22) 

By reciprocal Fourier transformation, we directly obtain:

0 s

2 d
Y(t) cos t       (23) 

Y(t)= s

0 s

2 d
sin t .         (24) 

Plugging Eq. (24) into Eq. (21) gives

s

s 0 0 s

2 ( )
cos tdt sin t

d

R
s

R 0 0 s

2 d
lim dt cos t sin ' t ,

from which: 

’’ =
R

s
R 0 0

2 d
lim ( )cos t sin tdt

 =
R

s
R 0 0

2 ( )
lim d cos t sin t dt .

In the sense of the distributions, the integral
R R

0 0

1
cos t sin tdt sin( )t sin( )t dt

2

when , tends towardR

2 2
1 1 1
2

.
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We thus obtain in definitive terms

s s
2 2 2 2

0 0

2 ( ) 2
( ) d d

( )
.

This relation can be expressed as a function of :

s
2 2 2 2

0 0

2 2 ( )
( ) d d  ; 

so that with 2 2
0 0

d d
21 n

n
=

0

1 1 n
log 0

2 1 n
 (in which we 

made n ) , we can deduce that 

2 2
0

2 ( )
( ) d .         (25) 

Similarly, by substituting Eq. (23) into Eq. (22), we obtain:

2 2
0

2 ( )
( ) d .          (26) 

3.3.6. Application to Debye relaxations
3.3.6.1.  Form of the Y(t) function for a Debye process 

Here we show that the Y(t) function therefore must be in the form
t

Y(t) e .

Following the preceding calculations [Eq. (20)]: 

s
L(-Y’(t)).

On calculating L(-Y’(t))  with 
t1

Y '(t) e  we thus find:
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1
( j )tj t

0 0

1
L( Y '(t) e Y 'dt e dt  =

1 j
t

0

1
e dt

1 j
t

0

1 1
e

1 j 1 j
.

We clearly rediscover the equations, which describe a Debye process, which
also can be obtained via a classic route (integration of the relaxation equation):

s

1
1 j

.

3.3.6.2. When several Debye domains are superimposed 
For a discrete distribution of relaxation times ( i ), it is possible to show that the
preceding equation takes on the form:

i

is i

A
1 j

.

We can give the physical significance of , then determine the relaxation function
for which the limiting values can be verified.

iA

On separating the real and imaginary values, it is possible to state: 
 that

i
2 2

is i

A

1
, which indicates that the constants  are characteristic of 

the amplitude of various dispersion domains which verify the equation ;

iA

i
i

A 1

    and 

i i
2 2

is i

( ) A

1
 . By making i

i

t
m  and ix  , this expression

makes it possible to calculate from Eq. (23) the relaxation function, as in

i
i 2

i 0

2 cos m x
Y(t) A dx

1 x
.
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Knowing that m
2

0

cos mx
dx e

21 x
 (and by noting that 0),im

we obtain i i

t
m

i i
i i

2
Y(t) A e A e Y

2 i
i

.

(While checking that i
i

Y(t 0) A 1, ).Y(t ) 0

Inversely, from the hypothesis that the resultant relaxation function corresponds
to the sum if contributions of each relaxing domain, it is possible to state that each 

domain (i) is represented by a relaxation function i i
i

t
Y A exp  so that

i i
i i i

t
Y Y A exp  .

Performing a calculation similar to that shown in Section 3.3.6.1 and using Eq. (20)
directly gives the following equation:

i

is i

A
1 j

for which we can say Q.E.D. 

3.3.7. Generalization of the Kramers Krönig relations
The Kramers Krönig relations, which we have just established for the relaxation
phenomena induced by orientations from dielectric polarizations, are in fact valid 
with respect to all linear phenomena described by phenomenological processes.

3.3.7.1. Extension to induced polarizations mechanisms
So, just as the dielectric relaxation could be described with the help of a
phenomenological mechanism (by bringing in the dipolar relaxation time), the
mechanisms for resonance attached to induced polarization mechanisms can be
studied similarly in a phenomenological manner. In effect, the absorption peaks are 
localized around angular frequencies ( k) that characterize the discrete energy levels
associated with induced displacements. These absorption peaks, characterized by the 
function denoted ’’( )thus can be written using delta functions, of which the
frequency dependency is in the form ''

( ) k k
k

A , where k is the

angular frequency of the resonance under consideration.
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With the help of one of the Kramers Krönig relations, it is possible to
deduce the frequency dependence of ’( ). The equation thus is brought from Eq. 
(26) and adapted to the limits of the resonance absorption. It should be noted that
Eq. (26) is typical of the absorption due to relaxation mechanisms. In effect, while

Eq. (26) directly yields for ’( ), the equation ' k k
( ) 2 2

k k

2 A
, we must

still replace  by 0. This is because the polarization given by the dipolar 
polarization in Eq. (18), i.e.,

P(dipole) = (  – )E = 0( r – r )E,

needs to be replaced by the induced polarization, which is in the form

Pi = 0( r – 1)E. 

The result is that r  must be replaced by 1, and that  replaced by 0. This means
that for resonance phenomena, we should write:

' k k
( ) 0 2 2

k k

2 A
.

For infinitely narrow bands (where k), ’( ) goes to infinity at each 
absorption frequency, in a process known as catastrophic resonance. On making

, we have:k kB A / 0

' k k
r( ) 2 2

k k

2 B
1 ,

which closely resembles the equation found by a direct dielectric study of resonance
phenomena [see Eq. (17) of Chapter 8, Volume 1].

3.3.7.2. Extension to other electromagnetic phenomena 
These equations can be extended to other phenomena, notably:
 magnetic systems where Krönig Kramer type relations exist between  and ,
which are defined from the complex magnetic susceptibility, given by

j ; and 

 conduction, where the complex conductivity given by  = ’ – i ’’ is such that, for 
example:

2 2
0

2 ''( )
'( ) d .



 Applied electromagnetism and materials 92

3.3.8. Application of the Krönig Kramers relations 
3.3.8.1. Determination of Y or ’ from ’’ for a whole spectrum 
Knowing for a whole frequency range makes it possible to determine and

 via Eqs. (23) and (26). This calculation is performed by numerical integration on
a computer.  Its interest lies in the possibility of determining

Y(t)

 with considerable
precision, an otherwise difficult value to obtain from certain regions of the
electromagnetic spectrum (far infrared, for example). In addition, the macroscopic
relaxation function [ Y ], which cannot be determined directly, can be 
characterized.

(t)

3.3.8.2. Dielectric dispersion and the identification of effects due to dielectric
absorption and electric conduction

3.3.8.2.1. Estimation of the dielectric dispersion
The total dispersion of a material can be obtained by making  tend toward zero in
Eq. (26). This gives (with the following change in notation ’ ):

s
0 0

2 ( ) 2
d ( )d(Ln ) .          (27) 

We can also write: 

s
0

d
''( )

2
, (28)

where the surface delimited by a plot of ’’ as a function of ln  is equal to

s2
.

In fact, to each polarization mechanism ( ), we can associate an absorption
with a dispersion of an amplitude ( ) which is such that:

peak

2
( )d(Ln ) .             (29) 

3.3.8.2.2. Identification of effects due to dielectric absorption and electrical
conduction by free or “pseudofree” charges

As set out in Section 3.3.7, the Krönig Kramers relations can be established
regardless of the polarization mechanism. They thus are applicable to all dispersion 
phenomena. Equation (29) in fact shows that for a given mechanism ( ) for a 
polarization, the amplitude of the associated dispersion is equal to, within a factor of
2/ , to the area of the absorption peak plotted against a logarithmic scale. This 
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therefore irrefutably demonstrates that a polarization mechanism is obligatorily
accompanied by a mechanism of dielectric loss, as indicated in Figure 3.7. 

’ ’’

s

’’

ln

Figure 3.7. Relaxation between an increasing dispersion for a given polarization mechanism 
and dielectric losses. 

In more practical terms, and by using the reverse argument, if we observe a 
variation in an electrical absorption which is unaccompanied by a dispersion 
phenomenon, then the corresponding losses cannot be the result of a polarization
mechanism. In the low frequency region, and toward the continuous, such a
variation in absorption (increasing " toward the very low frequencies) can be
observed without a corresponding variation in '. The increase in " toward the very
low frequencies therefore must be tied to the continuous conductivity ( 0) such that 

'' 0  [from Eq. (13)]. In this equation, ''  represents the actually measured

dielectric losses resulting from dielectric effects and not a polarization mechanism.
It should be remembered of course that apparatuses only measure, without
discriminating between causes (such as mechanisms due to polarization and 
conductivity of free and pseudofree charges) which give rise to the same effects, i.e.,
a variation in ". This may be contrasted though against measurements of ', where a 
dispersion may be recorded for a polarization mechanism, but no change is observed
when dealing with the conduction of free charge carriers.

3.4. Complete polarization of dielectrics, characteristics of spectra from
dielectrics, and an introduction to spectroscopy 

3.4.1. Electronic polarization and the relation between the angular frequency of 
an electronic resonance and the gap in an insulator

3.4.1.1. Electronic polarization associated with different types of electrons
During the study made in Chapter 8, Volume 1, on the polarization of electrons, it
was only the valence electrons that were considered (as demonstrated in the values 
chosen for 0e). These electrons are the ones that occupy the external layers and 
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typically participate in chemical, covalent bonding. However, we should take into
account all types of electrons, notably those in the deeper, internal layers which are
strongly bound to the nucleus. While not very sensitive to the forces of an external 
electromagnetic field, they can enter into a resonance with high energies of the order 
of 104 eV. These values correspond to those of an electromagnetic field of an
extremely high angular frequency (  10-10 m, equivalent to  1019 rad s-1).

Electronic polarization thus can be made of as many electronic components as
there are types of electrons. In the spectra, we will limit ourselves to studying three
types of absorption peaks corresponding to three types of pulsations. The first two,

0e1 and 0e2, are characteristic of valence electrons, and the third, 0p, is 
characteristic of electrons in deeper layers (see also Figure 3.10). Using quantum
theory, it is possible to determine a breakdown in these levels by use of the
characteristic quantum numbers for each of the electronic configurations. 

3.4.1.2. Relation between static permittivity [ r’(0)] and the gap of an insulator (EG)
Equation (10) detailed in Volume 1, Chapter 8, makes it possible to express the
static dielectric permittivity bound to the electronic polarization as a function of the
plasma angular frequency ( p) and the resonance pulsation frequency ( 0), as in:

r’(0) = 1 +
2
p
2
0

. To indicate that this permittivity is attached to the contribution

made by electronic (the most external of the electrons) polarization, an additional
subscript e has been added giving re’(0).

In addition, if we accept as a first approximation that the gap (the size of the
forbidden band) of an insulator is such that EG 0 , we can then state that:

2
p

2
G

²

E
=

2
p

2
0

²

²
=

2
p
2
0

= re’(0) – 1. 

So as to set ourselves some guidelines, if we take p 16 eV and EG = 6 

eV, we end up with

0

e’(0) = re’(0) – 1 = 
16²

7.11
6²

, which gives re’(0)   8.11. 

To justify the hypothesis that the gap (EG) is such that EG 0 , we can remark
that until now we have considered only the effect of the electronic polarization,
along with, for these electrons, a maximum absorption (characterized by ") at the 
angular frequency  = 0 = 0e . The subscript e once again has been added to 
indicate that the resonance angular frequency corresponds to that for an electronic
resonance. Where any steric and frictional interactions are negligible, i.e.,

0 >>  = 1/ , then the plot of ’’( ) has a mid-height width which tends toward
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low values with respect to 0 (see also Volume 1, Chapter 8):

 = 2 - 1 =  = 1/  << 0.

0e

’’

Figure 3.8. Absorption peak in terms of 0e.

The representation of ’’( ) shown in Figure 3.8 is thus that of a peak situated
at  = 0 = 0e. Outside of this peak, where 0e, we find that ’’ is zero and 
there is no absorption. It thus is possible to state that the optical absorption (for a 
transition from the valence to the conduction band) corresponds to a gap with an
average energy of the order of the energy of the resonance, as in EG 0e .

Numerical applications:
 diamond: EG = 5.4 eV, 0e = 8 x 1015 rad s-1

0 = 2 c/ 0e  0.25 µm (UV);

 glass: EG  10 eV, 0e = 1.5 x 1016 rad s-1
0  0.13 µm (UV); and 

 silicon: EG = 1.1 eV, 0e = 1.7 x 1015 rad s-1 , and hence 0  1.1 µm (IR). 

In dielectrics, typically, the time  = e which corresponds to an electronic
relaxation time is such that e  10-8 to 10-9 s. Taking the preceding values of 

0e into account, where 0e  1015  to 1016 rad s-1, we have 0e e  107 >> 1 (which
verifies the hypothesis formulated above that 0 >>  = 1/ .

Thus from the equations for e’( ) [Eqs. (6') and (9) in Volume 1, Chapter 8]:

 when  << 0e, then  = 
2

20e 0e
0e

e e 0e e
. The result is that (under

a poorly damped regime):

e’( ) = e’(0)
2
0e

2 2
0e

 ;   (30)
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 when  >> 0e , we then have

e’( ) = e’(0) 2
0e

2 2
0e

22 2 2
0e

2
- e’(0) 2

0e

2

4 2 2

e’( )= - e’(0)
2
0e

2 2  . 

With  >> 0e  1015 to 1016 rad s-1 and e  10-8   to 10-9 s, and hence 
 >> 1/ e = , we obtain the expression identical to that given as Eq. (19) in

Chapter 8 of Volume 1:

e’( )  - e’(0)
2
0e
2 .    (31) 

As in this region,  >> 0e, the result is that e’( ) 0 . Equally, as
re’’ = e’’( )  0, we thus have r re’   1 = r0 . The dielectric practically 

behaves as a vacuum because at these very high frequencies the electrons cannot 
follow the electric field. 

e’( ) = re’( ) - 1 e’’( ) = r’’( )

e’(0) r’’( )

e’( )

re’( )

e’( )

re’( )

1
0

re’( )

0
- 1 0e

Figure 3.9. Dispersion and absorption of dielectric resonance. 
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To conclude, in dielectrics, the representations of e’( ) [or re’( )] and of 
r’’( ) have the forms shown in Figure 3.9. The plots of e’( ) and re’( ) are in 

fact identical to the plots detailed in Figures 8.3 and 8.4 of Chapter 8, Volume 1. 

3.4.2. Ionic polarization
Ionic polarization comes from the displacement of ionized atoms. Being 
considerably heavier than electrons by a factor of around 104 they cannot follow
such high-field frequencies. The proper angular frequency of ions, denoted here as 

0i, is mainly situated between 5 x 1012  and 1014 rad s-1, and corresponds to the
infrared/far infrared regions. 

On using angular frequencies far enough from 0i, the system is weakly 
damped and the dielectric susceptibility is real ( i’’  0). The component of the ionic
susceptibly thus gives rise to an equation similar to Eqs. (30) and (31). Now the
subscript i denoting “ionic” replaces that of e, and: 
 when  << 0i (microwave and radiofrequency region), we obtain by analogy to

Eq. (30), i( ) i’( ) = i’(0)
2
0i

2 2
0i

.  (32)

As  << 0i, we have i’( ) i’(0) = ri’(0) – 1, and the susceptibility is
practically constant; and

 when  >> 0i , we obtain through a similar analogy but with Eq. (31):

i( ) i’( )  - i’(0)
2
0i
2 .  (33) 

As  >> 0i, then 
2
0i
2  0 and i’(  >> 0i)  0. 

In effect, just as for the electronic frequencies, the ionic frequencies can be 
associated with different types of ions and also different types of ion displacements
(harmonic and anharmonic potentials). Only quantum theory can elucidate the
associated discrete energy levels. 

3.4.3. Resultant polarization in an insulator
Generally speaking, the resultant polarization is the sum of all components of 
polarization susceptible to appear in a given medium. It is thus possible to state that:

total dipolar ionic electronicP P P P ,
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where each component can again be thought of as a resultant of a number of 
contributions, as discussed above for electrons and ions. For its part, the dipolar
polarizations bring in various types of dipolar relaxations. These include, for
example, the so-called , , and  relaxations which characterize different dipolar
movements in polymers (such as main chain segmental rotations).

On trying to sum up the various polarization mechanisms, it is important to
bring in the polarization associated with space charges. In heterogeneous systems
they generate an “interfacial” polarization (see also Section 2.5.4 of Volume 1) at
interfaces (joints between grains). Given that these space charges have a low 
mobility, and that therefore there is a considerable time interval required for them to
reach an interface, the interfacial polarization (Pinterface) takes quite some time to be
established. Thus, Pinterface only appears when low of very low frequencies are used
(of the order of hundreds, a single or even fractions of a hertz).

The preceding expression thus should give the definitive equation: 

total int erface dipolar ionic electronicP P P P P

where

P interface = 0 int E , P dipolar = 0 dip E , P ionic = 0 ion E , P electronic = 0 e E ,

and:

P total = 0 ( int + dip + i + e ) E = 0 Tot E  . 

Hence the dielectric susceptibility also appears as a sum of the components given: 

Tot = int + dip + i + e.

3.4.4. The resultant dielectric spectrum
The overall dielectric spectrum is presented in Figure 3.10. The figure shows both
the real (plots in the upper half) and the imaginary components (lower half plots) for
the susceptibilities of a material that possesses all of the types of polarization
discussed so far. The material that is imagined for this figure is thus polar and
contains space charges. 

If the material is subject to a very high frequency electromagnetic (EM) wave
(with  > 1019 Hz), the oscillation is too fast for any of the polarizable elements of
the material to react. The dielectric permittivity is thus close to 1, as shown in zone 1 
of Figure 3.10 where the absolute permittivity is thus close to 0. At these 
frequencies the material behaves as if it were a vacuum. However, once the
frequency is slightly reduced below these frequencies, the material gives rise to a 
relative permittivity below 1, indicating that the phase velocity propagates at a value
greater than c.
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0

Figure 3.10. The resultant dielectric spectrum.

At frequencies below 1019 Hz, the electrons of the (deep) internal layers can be 
excited by the electric field. This creates an absorption at a resonance frequency ( 0p
= 1019 Hz) and a polarization of the medium that presents a higher permittivity, i.e.,
’r > 1 , as indicated in zone 2 of the figure.

On decreasing the frequency further, we are in a range close to that of the
optical spectrum, and it is now the valence electrons that contribute to the 
polarization. Again here is an increase in ’r, as shown in zones 31 and 32, each 
relating to two valence electrons types.

At frequencies of the order of 3 x 1012 Hz (  100 µm), the ions can now also
add their characteristics to the polarization, so that there is once again an increase in 
the permittivity (see zone 4).

On reaching the Hertzian region (  < 1010 to 1011 Hz), the dipoles can relax 
with the internal forces of the material. The dipolar polarization that is thus
generated also contributes to the increasing value of the dielectric permittivity (zone
5).

Finally, for frequencies below around a hundred hertz, it is monocharged and
slow-moving species such as positive and negative ionic impurities that now have
the time to reach interfaces (grain joints if the material is heterogeneous). This gives
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rise to an interfacial polarization that again adds to the increasing permittivity in the
final zone 6. 

3.4.5. Coefficient for the optical and peak absorptions
In general terms, we have seen that (Volume 1, Section 7.2.2) direct progressive
wave in an absorbing medium is of the form (using electrokinetic notation):

m

m
0

E=E  exp(-n'' z) exp(j[ t-n' z])
c c

2 n ''
  = E  exp(- z) exp(j[ t-n' z]).

c

In the latter equation, there is introduced a vacuum wavelength ( 0) that is such that

0
2 c

cT . It also is related to  by the equation 0c
vT T

n ' n '
. In 

addition to which, in place of the extinction index (n"), we often use the absorption 

index ( ) which is defined by
n ''
n '

, in such a way that the wave also can be 

written as:

m
2

E=E  exp(- z) exp(j[ t-n' z])
c

.

We also know that n’²-n’’² = r’ and that 2 n’ n’’ = r’’ (Section 7.2.2, Volume 1), 
from which: 

r’ = n’²-n’’² = n’²
n '' ²

1 1 ²
n ' ²

n ' ²

r’’ = 2 n’ n’’= 2 n’²
n ''
n '

= 2 n’² .

In addition, the intensity (I) of the wave is proportional to the square of the 

amplitude of the electric field; in other words 
2

I exp(-2 z) . The coefficient of 

the optical absorption (µ) and hence also the extinction coefficient ( ), can be 
introduced with the help of Lambert's law, which states that:

z z

0

I
e 10

I
 , 

where I is the intensity of the initial wave (I0) after having traversed a length (z) of a 
medium.
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Hence, we need to verify that
2

2 µ , i.e., that 
4

µ .

The upshot of this is that µ is proportional to  and inversely proportional to the
wavelength.
 As r’’ = 2 n’² , (so that  2  = r’’/n’²) hence:

''
'' r
r

2
µ

n ' ² n 'c
.

From this the structure of µ can be directly determined from that of r’’.
In fact, an approach based on quantum mechanics is necessary to

understand the electronic states of the bands, from which can be deduced the exact
structure of the spectrum.

Comment: expression for 

As , we also can deduce that: ze 10 z

 = µ log10e = 
4

 log10e.

3.5. Problems
3.5.1. Problem 1. Alternating conductivity
From an initial instant (t0 = 0), we consider a number of free electrons at a 
concentration denoted by n0 that undergo random collisions in a solid. 

1.  Using the notation n(t) for the number of electrons that have yet to undergo
collisions at an instant t (t > t0), and P to denote the probability that an electron will
collide per unit time, the random character of the collisions makes it possible to 
write down the positive amount (-dn) of electrons that have collisions for the first
time during an interval given by [t, t+dt]  as dn n(t)Pdt .

a.  Calculate the law for the evolution of n(t) as a function of time.
b. Give the law of probability that an electron at an instant t0 will not undergo a 
collision during a period up to time t. 
c.  Indicate the law of probability for an electron that does not undergo a collision 
prior to instant t but has a first collision during the period between t and t + dt.
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2.  Using the same group, calculate the average time ( ) between two successive
collisions for an electron that at an initial time t0 = 0 has just undergone its last
collision.

3.  To the above detailed system is applied a constant electric field E .

a.  Give the fundamental equation for the dynamics of an electron in the system.
b. From which, determine the speed v(t)  at a time t for an electron that underwent
at the initial time t0 its last collision.

c.  If the average initial velocity is zero 0v(t ) 0 , i.e., the field is insufficiently

strong to enforce an orientation, calculate as a function of  the average value of 
for the total number of electrons which is denoted byv(t) dv  (which is such that 

d
0

1 qE
v t

n m * 0t dn ). Note that in order to simplify the calculation, use t0 = 

0 as indicated above. 

4. A time-dependent electric field is now applied to the system and it is such that
.j t

0E E e

a.  Determine the new equation for v(t) .

b. With the help of a calculation analogous to that developed in 3c, determine the
new value for the average value of v(t)  for the total number of electrons.

5.

a.  Give the expression for the continuous conduction ( =) when E  is a constant.

b.  Express the real part of the alternating current ( ) obtained when the field is in
the form . Express the result as a function of j t

0E E e =.

Answers
1.

a. We thus have , and hence dn n(t)Pdt
dn

Pdt
n

. Integration gives

, and the constant K can be determined using limiting conditions.n(t) K exp( Pt)

When t = t0, then n(t0) = n0. The result is that 0K n exp(Pt )0 , and finally,
.0 0n(t) n exp( P[t t ])
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Comment. The minus sign expresses the decrease with time in the concentration of
electrons that have not undergone collisions. This justifies a posteriori the insertion 
of the negative sign in the starting equation dn n(t)Pdt .

b.  Here, n(t) represents the concentration of electrons that have not yet undergone 
collisions at an instant t. The number of electrons in this group (n0) is given by

0
0

n(t)
exp( P[t t ])

n
.

c. The probability that an electron will undergo its first collision during the period 
between t  and  t + dt is given by the product of the independent probabilities, as in:

{probability of no collision up to t} x {probability of a collision between t and t+dt}

= { }{ } = 0exp( P[t t ]) Pdt
0 0

n(t) dn dn
n n(t) n

.

2.  For an electron in the group given the number i which undergoes its first collision 
at the instant ti following the instant t0, the time required for the first collision thus is 
given by (ti – t0). Relative to the total number of electrons of concentration n0, the 
average time required for an electron to undergo its first collision thus is 

0n
i 0

i 10

1
t t

n
t . In terms of integrals, we thus have 

0

1
t t

n
dn ,

so that with t0 = 0, and hence dn exp Pt Pdt :

0
0 0 0

1
t t n exp Pt Pdt t e xp Pt Pdt

n
 .

By making , we thus havex Pt
0

1 1
x exp( x)dx

P P

0

 [  is 

performed by integration of parts by making x = u  and  exp(-x) dx = dv].
0

x exp( x)dx

We thus have:

0

0 0
0

x exp( x)dx

x exp x exp x dx x exp x exp x 1

the result of which is that
1
P

.
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Physically speaking, this result is reasonably obvious. If P = 10 %, the electron
has a 10 % chance of undergoing a collision in 1 second. This means that on average 
the electron will have a collision every 10 seconds. This can be written as:

t = 10 seconds 
1
P

.

3.

a.  The fundamental dynamic equation is
dv

m * qE
dt

.

b.  Integration between t and t0 directly yields 0 0
qE

v(t) v(t ) (t t
m *

. Here, 

t0 = 0, 
qE

v(t) v(0) t
m *

.

c. On average, the initial velocity is zero ( 0v(t ) 0 ), and with respect to the whole 
group of electrons, we have:

 either directly
qE

v(t) t
m *

; or

 we use the fact that 0
0 0 0

1 1 qE qE
v(t) vdn t n exp Pt Pdt t

n n m * m *
.

We thus find that  where v µE
q

µ
m *

, and 
nq²

qnµ
m *

.

4.
a.  The fundamental dynamic equation remains the same (within a form close to that
of the field), and the integration thus gives:

0

t
0 0

0 0
t

qE qE 1
v(t) v(t ) exp j t dt v(t ) exp j t exp j t

m * m * j 0 .

b.  With 0v(t ) 0 , and in analogy to question 3, we have 

0j tj t0 0
0

0 0 0

1 1 qE 1 t t
v(t) vdn  e e n exp

n n m * j
dt

, from which: 

0j tj t0 0

0

qE 1 t t dt
v(t) exp  e e

m * j
.

A rather long calculation gives:
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0 0j t j t0 0 1 jqE qE
v(t) e e

m * 1 j m * 1 ² ²
, so that by taking t0 = 0, we 

have 0 1 jqE
v(t)

m * 1 ² ²
.

5.

a.  We have seen that
nq²

qnµ
m *

.

b.  Then under alternating conditions, we have 

0qE
Re v(t)

m * 1 ² ²
,  and  µ  =

q
m * 1 ² ²

, and hence 

1
1 ² ²

.

For its part, the complex conductivity is given by
nq² 1 j
m * 1 ²

.

3.5.2. Problem 2. Optical properties of gaseous electrons
Optical properties of gaseous electrons (  >> 1, in opposition to the condition 

 << 1 for the low frequency regime given in Section 3.1.2)
As indicated in Problem 1, the collisions of gaseous electrons require that there is a 
parameter termed the “relaxation time”. This parameter also can be introduced by
considering that the collisions give rise to a heating of the system (Joule effect)
which can be represented by frictional forces of a value that increases with the 
velocity of the electrons. We thus can state that tf m v  where the parameter
must have a dimension that is inverse to time (so that the equation is dimensionally
correct). We thus can have  = 1/ , where  has the dimension of time.
1.  From the deduction of the velocity of the electrons from the fundamental
dynamic equation, show how we can obtain the same expression as in Problem 1 for
the conductivity. Consider the physical significance of .
2. In place of assuming the approximation  << 1 given for low frequencies in
Section 3.1.2, we now have a system based on gaseous electrons, which would mean
that  >> 1. Show that when  > p, where p is an angular frequency to be 
determined, waves in the form E = E0 exp(i t) can propagate through the electron
gas.
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Answers
1. This problem is in fact the same as that in Section 8.4, Volume 1. From the

fundamental dynamic equation, where 
dv m

F = m f qE v
dt

, we can 

deduce the complex notations
dv m

m v
dt

qE . In order to determine for v a 

solution i t
0v v e , we obtain

m
im v + v qE from which can be deduced 

that 0
0

qE
v  = -

m(1 i )
.

The conduction current associated with the electrons of volume density (ne) is 

given by Ohm's law:
nq²

j v - n q v E E
m(1 i )

, and hence:

nq²
 = 

m(1 i ) (1 i )
,

by making
nq²
m

.

We can see that the equation thus obtained is identical to that obtained in
Problem 1, which shows that it is the same —and hence the same relaxation time—
that intervenes in these two cases. 

2. In the optical domain it is possible to use Maxwell's equations for a rapidly

varying regime (where the electrons “bathe” in a vacuum):
B

rotE
t

 and 

0 0
E

rot B µ ( j )
t

. The elimination of B between the two equations [which

can be done by calculating rot(rotE) ]  gives rise to 0 0
²E

E = ( )
t t

j

²
.

By using: j E   and i t
0E E e  , we have 

0 0
0

² i n q² 1
E 1

c² m 1 i
E , so that with

0

i nq² 1
( ) 1

m 1 i
 , 

we thus have 0 0
²

E (
c²

)E .
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In the optical domain, where  >> 1, on setting p
0

ne²
² = 

m
  we obtain:

2
p( ) ( ) 1
²

.

When  > p, we thus have ( ) > 0, and the wave can propagate in the
medium (progressive wave).

3.5.3. Problem 3. Relation between the function of relaxation (macroscopic
magnitude) and the autocorrelation function (microscopic magnitude)
This problem concerns a polar molecule with a permanent electric dipole and the 
possibility of occupying two equivalent equilibrium positions each separated by an 
angle ( ) of 180 °. By representing the problem as a pair of potential wells, show
that there is an identity between the relaxation function [Y(t)] (which is of
macroscopic magnitude as is bound to " which describes the global state of the
sample) and the autocorrelation function of the dipolar moment µ , which is defined

by the equation
2

µ(t).µ(0)
(t)

µ(0)
 ; (t) can be seen as being of microscopic

magnitude as it is related to the orientation and moment of the dipole.

Answer
The two equivalent positions of the dipole,
labeled 1 and 2 in the adjacent figure, are 
separated by a potential barrier of height
denoted U. With their being equivalent, the
dipole has an equal chance of being in 1 or in
2. The function (t) thus is a sum of the two
contributions 1 and 2 of the dipole initially
placed in 1 or 2. Each contribution is 
evidently weighted by probabilities of
presence at equilibrium i.e. ½.

180 °

energy

U

 2 1

k k

As an example, we will use a general resolution method that will make it 
possible to resolve the more complex problems concerning dipole distributions in
this exercise.

Denoting k for the equal transition probabilities i going from 1 to 2 or from 2 to
1, the equations that describe as a function of time the variations in the well
populations are:
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1
1 2

2
1 2

dN
kN kN

dt

dN
kN kN ,

dt

1

1

2 2

dN
N k kdt which can be rewritten as A ,  where A

dN N k k
dt

.

The proper vectors of (A) are such that: 

2 2

k  k
det A I 0

k k

k k

² 2 k 0 ,   and hence:

1

2

0
2k.

The diagonal matrix is . At
0  0

D
0 2k 1 = 0, the corresponding proper 

vector   is such that AV1
1

1

x
V

y 1 = 1V1, so that 1 1A I V 0 . We thus obtain

the equation 1 1kx ky 0 , for which the simplest solution is 1 1x y 1 , from

which .1
1

1

x 1
V

y 1

Similarly, at 2 =  2k, the corresponding proper vector 2
2

2

x
V

y
is such that

AV2 = 2V2, and hence .2 2A I V 0

We thus obtain the equation 2 2kx ky 0  for which the simplest solution is 

, from which2 2x y 1 2
2

2

x 1
V

y 1
.
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If Z1 and Z2 represent N1 and N2 in the new base V1,V2, we then can write:

1

1

2 2

dZ
Zdt D

dZ Z
dt

,   from which

1
1 1

2kt2
2 2 2

dZ
0 Z C

dt
dZ

2kZ Z C e .
dt

The “pathway matrix” (in the new base) is 
1 1

P
1 1

, so that:

1

2 2

1N Z
P

N Z
, from which can be deduced that:

2kt
1 1 2

2kt
2 1 2

N C C e

N C C e .

If P1(t) and P2(t) represent the probabilities of presence in wells 1 and 2 at an

instant t, we then can write that P1( ) + P1( ) = 1, from which C1 = 
1
2

, so that:

2kt
1 2

2kt
2 2

1
P (t) C e

2
1

P (t) C e .
2

Supposing that the dipole is initially in position 1: 
2kt

1 2 1

2
2kt

2 2 2

1 1
P (0) 1 C P (t) 1 e

12 2C  and
1 12P (0) 0 C P (t) 1 e .
2 2

At an instant t, the dipole moment that follows the initial dipole position is: 
2kt

1 2 1 21µ(t) µP (t) µcos P (t) µ P (t) P (t) µe ,

from which: 

2kt1
1 2

µ(t).µ(0)
(t) e

µ(0)
.

If the dipole is initially in position 2, then:
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2kt
1

2 2
2

2kt
2 2

1
1 P (t) 1 eP (0) 0 C 1 2C   and2 12P (0) 1 P (t) 1 e .

2

At an instant t, the dipole moment, which follows that initial position, is now:

2kt
2 1 2 12µ(t) µP (t) µcos P (t) µ P (t) P (t) µe ,

from which: 

2kt2
2 2

µ(t).µ(0)
(t) e

µ(0)
.

Taking into account the symmetry of the problem, it is normal that we find the same
result as would be the case for 1(t) .

From this can finally be deduced that:

2kt
1 2

1 1
(t) (t) (t) e

2 2
.

The relaxation time is such that
1

2k
, and the equation found for (t)  is identical

to that for Y(t) as we end up with a Debye “relaxation” process for the double
potential wells.



Chapter 4 

Interactions of Electromagnetic Waves and 
Solid Semiconductors 

After having concentrated on the electromagnetic properties of dielectrics in the last
chapters, this chapter looks at semiconductors. Conduction electrons in semi-
conductors are more numerous and freer in their movement. We thus will look at the 
propagation of the de Broglie wave associated with these electrons, which will take
us to a filling pattern for energy bands. This structure not only conditions the optical 
(at around 1015 Hz) and optoelectronic properties of these materials but also their
electrical and magnetic properties under continuous fields (which are detailed in the
following chapter).

A study of the energy levels associated with charge carriers—of a 
concentration to be determined—necessitates most notably a resolution of the
equation for the propagation of the waves associated with these carriers. This is
within a potential (potential energy) characteristic of the medium's nature, which for
semiconductors is generally a solid consisting of a periodic crystalline lattice. 

Without dwelling on the physical details of such systems, which are 
generally covered in many courses on solid, quantum, and electronic physics, this
chapter details the basics needed to establish the fundamental properties of a
semiconductor excited by an electromagnetic field. Just as for dielectrics, it is
assumed that the excitation is sufficiently weak so as to remain in a linear regime.
Nonlinear effects will be discussed in Chapter 6.

4.1. Wave equations in solids: from Maxwell's to Schrödinger's equations via de
Broglie's relation

The dual particle wave theory brought de Broglie to associate a particle of a given
mass (m) with a wave of a given wavelength ( ):

h
mv

. (1)
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For its part, the equation for the propagation of waves in a vacuum is in the
form:

1 ²s
s

c² t²
0 .         (2) 

With a monochromatic wave in the form

 s = i t i2 tA(x, y, z)e A(x, y, z)e

we have s = A  and i te i t²s
²Ae

t²
 .

On introducing
c

2 (wavelength in a vacuum), Eq. (2) for the wave

propagation can be written:
²

A A
c²

0 (3)

4 ²
A A

²
0 . (3’)

A particle, for example, an electron, with mass m placed in a time
independent potential energy [V(x,y,z)], has an energy (E) given by:

1
E mv²

2
V .

Its speed is thus in the form:

2 E V
v

m
 . (4)

The de Broglie wave associated with a frequency ( ) given by
E
h

 can be 

represented by a function as in:
E

2 i ti2 t he e . (5)

In accordance with Schrödinger, the function verifies a relation analogous to
Eq. (3), and by taking Eqs. (1) and (4) for the wavelength into account by using

h h
mv 2m E V

 , (6)
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 we end up with
2m

(E V) 0
²

.  (7) 

This is Schrödinger's equation. For a crystal where the potential V is 
periodic, there are well-defined solutions for the equation. As detailed further on, 
these solutions are presented in the form of permitted (valence and conduction) and 
forbidden (“gap” for semiconductors) bands. 

4.2.  Bonds within solids: weak and strong bond approximations
Conduction properties of metals have been interpreted in terms of a relatively simple
theory based on free electrons. The essence of this theory was that the free 
conduction electrons were moving in a flat bottomed well, of which the limits
coincided with the physical limits of the solid. In three dimensions this analysis is
made using a “box”, which is generally treated during first-degree level courses. 

In order to take account of the electrical properties of semiconductors and 
insulators (where the electrons are no longer free) and to improve upon the theories
for metals, it is necessary to use more elaborate potential models that bring into play
finer interactions between the electrons and their environment. There are in fact two
methods that may be chosen, depending on the nature of the solid.

4.2.1.  Weak bonds 
This approach uses a more highly developed version of the potential box model. The 
electrons are now supposed to interact with an internal periodic potential generated
by a crystalline lattice. The potential is coulombic as it is proportional to 1/r the
distance from the ions placed at nodes in the lattice.

Figure 4.1 schematizes the line of periodically arranged atoms, each separated 
by a given distance (a). The electrons each belong to an orbital with a radius denoted 
R (as in Figure 4.1a).

Figure 4.1b gives a representation of a one-dimensional potential energy of the
electrons for which the condition is that of a < 2R. Elsewhere in this text, the
common abuse of terms will be made by simply denoting the potential energy as 
potential.

Depending on the direction defined by a line Ox joining the nuclei of atoms,
when an electron tends toward a nucleus, the potentials diverge. In fact, a study 
made considering only the potential Ox has little to do with reality. This is because 
the electrons in this study are those of conduction that reside in the external layers.
With respect to a straight line (D) that does not pass through the nuclei, the
electron nuclei distance does not tend to zero and the potentials that go toward
infinite values join up.
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       e-

[a]        (1) O          (2) R R

               a 
Potential               r
energy

 [b] 

potential generated
by atom 2 

potential generated
by atom 1 resultant potential 

with respect to Ox

resultant
potential
along D

x
(D

Figure 4.1. Weak bonding and (a) atomic orbitals (s type of radius R) in a periodic lattice 
and (b) the resultant potential energy (thick line) as observed by electrons in a 

one dimensional representation.

In addition, the applied condition a < R decreases the barrier (due to a strong
overlapping of the two potential plots) that exists midway between two adjacent 
nuclei. This condition makes it possible to obtain a resultant potential in a solid that
exhibits weak periodic fluctuations. The initial representation of the potential as a 
flat-bottomed well (approximation to zero order for the free electrons) is now
replaced by a container with a periodic bottom.

As a first approximation and in one dimension (r  x), the potential can be

placed in the form V(x) = w0 cos 
2

x
a

. The term w0, and hence the perturbation of 

the crystalline lattice become smaller as the condition a < 2R becomes increasingly
correct. Put more practically, the smaller the term a with respect to 2R, then the
smaller the perturbation, and the greater the justification for using a method by
perturbation. The corresponding approximation (to the first order with a

Hamiltonian for the perturbation given by H(1) = w0 cos 
2

x
a

) is that of a semifree

electron which is a considerable improvement over that of the free electron, which
ignores H(1). The resulting theory for a weak bond can be well applied to metallic
bonds where electrons are easily delocalized in a lattice due to the low value of w0.
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4.2.2.  Strong bonds 
This approach is considerably more “chemical” in nature. It consists of deducing the
properties of a solid from the actual states of the atoms of which it consists. Also
considered are the chemical bonds between the atoms in terms of linear
combinations of atomic orbitals. This reasoning is more acceptable than the
proposition that electrons reside simply at their “resident” atom, and this 
approximation for strong bonds is all the more justified as the condition a  2R is
well satisfied (see Figure 4.2a). This approximation is generally applied to
covalently bonded solids where the valence electrons are localized between two
atoms.

               e-

[a]             (1)                       (2) R

a (D)
r

  potential 
  energy 

[b]

       Eloc Eloc Eloc

potential
generated
by atom 1 

resultant
potential
along Ox

potential
generated by atom

resultant
potential

along D with
a 2r: strong

bond

deep and 
independent

wells with the 
level Eloc

degenerated
N times

potential wells 
with respect to 

D with a >> 2R 

R x

Figure 4.2. Strong bonds:  (a) atomic orbitals (s type with radius R) in a periodic lattice 
of period a satisfying the equation a  2R,  and (b) resultant potential energy (thick line)

observed by electrons in a one-dimensional representation.

Once again, if we study the plot of the potential with respect to Ox, we obtain a 
function that diverges when the electrons approach the nuclei. This discontinuity is
suppressed with respect to the straight line (D) for valence electrons. There are two
possible reasons for this (Figure 4.2b):



Applied electromagnetism and materials116

 first, if a >> 2R, then very deep potential wells appear (as there is 
practically no overlapping between the potentials generated by adjacent nuclei). At a 
limit, there is a chain of N atoms with N valence electrons, with sufficiently long 
bonds so as to assume that the N electrons are independent (with N very deep and 
independent potential wells) and the energy levels are degenerated N times (so that 
it is not possible to discern them from one another as they are all identical and 
denoted Eloc in the figure); and 

 second, if a  2R and the closing up of the atoms induces a slight 
overlapping of the potentials generated by the nuclei, then the potential wells are no 
longer independent and the degeneration is increased. The electrons from one bond 
now can interact with the others of a neighboring bond, and we obtain a breakdown 
of the energy levels into a band. It is worth noting that the resultant potentials are 
nevertheless considerably deeper than those in the weak bonds (a < 2R), so that the 
electrons remain more localized around their atom of “residence”. In contrast to the 
weak bonds, a simple treatment using the perturbation method is no longer possible 
given the depth of these wells. 

4.2.3.  Choosing approximations for either strong or weak bonds 
Metals exhibit electromagnetic behaviors that are essentially conditioned by that of 
the conduction electrons. As highlighted in Section 4.2.1, these electrons are 
associated with a strong delocalization over the whole lattice, and thus demand 
treatment as if they were weak bonds. In contrast, dielectrics (insulators) exhibit 
highly localized electrons spread over one or two attaching electrons. The dielectrics 
therefore can be treated only using strong bond theory. Semiconductors, however, 
exhibit localizations less than carriers, which can be delocalized over the whole 
lattice (if they are of the most energetic electrons), and they are termed semifree 
electrons. Thus, depending on the nature of the electrons of the semiconductor, it 
can appear more legitimate to use either the strong bond approximation (for more 
internal valence layers) or the weak bond approximation (for conducting electrons). 

In fact, a determination of the solutions for the energy in both cases—
strong or weak bonds—yields a structure of permitted energy bands separated by a 
forbidden band. The strong bond approximation requires longer calculations and 
involves the Hückel theory for chemists or the Floquet theory for physicists. For 
further details, see, for example, “Optoelectronics of molecules and polymers” by  
A. Moliton. Weak bonds can be treated more facilely, and it is this route that is 
chosen here. 



Chapter 4.  Interaction of EM waves and solid semiconductors 117

4.3. Evidence for the band structure in weak bonds 
4.3.1. Preliminary result for the zer  order approximation
A weak bond thus corresponds to a potential in which the electrons are placed as 
represented in Figure 4.3, as deduced from Figure 4.1. 

Potential energy (spatial
origin at a mode in the
lattice)

w(x) = w0 cos xa
2

      O 
x

V = V0 = 0a

Figure 4.3. Plot of potential energy w(x) = w0 cos xa
2 demonstrating that w0 < 0. 

In preliminary terms, we can recall that for a free electron (zero order
approximation) the potential follows the form of a flat-bottomed well. This is 
indicated in Figure 4.3 by the straight line passing through the nuclei. For this
system, where V = V0 = 0, Schrödinger's equation for the amplitudes is given by:

0 02m
E

²
0 . With

2m
k² = E

²
, by privileging the physical solutions that

assure the propagation of the wave associated with the electron we have the
equation . In addition, the plot of E = f(k) is obtained from

E = E

0 iAe kx

0 = 
²

k²
2m

.

The perturbation of the potential by the lattice effect manifests itself by the
generation of a periodic potential for which the first term of development in a 
Fourier series makes it possible to state that to a first approximation:

  V  V(1) = w(x) = w0 cos xa
2 . The wave function itself is thus perturbed. It takes

on the form of a Bloch function, as in , where u(x) is 
a periodic function (the lattice). This notably comes from the fact that the wave 
function must remain invariant with respect to a modulus transition (T

0 ikx
k (x) u(x) e u(x)

a), which 
would impose u(x) = u(x+a). 
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4.3.2.  Physical origin of the forbidden bands 
Figure 4.4 shows a periodic chain subject to a ray of light. The ray is reflected by the
lattice atoms, and following reflection a system of additive interferences occur when
the difference in the step  of the two waves is equal to a whole number of repeated
wavelengths of the incident ray.

In one dimension, the difference in step between waves (1) and (2) following 
reflection is given by  = 2a, so that the incident waves that give rise to the
maximum will have a wavelength ( n) which is such that  = 2a = n n.

The modulus of the wave vector is k = 
2

, and that of the incident waves such 

that k = kn =
n

2
n

a
 will undergo the maximum reflection (Bragg's condition). 

(1)           a
(2)

a

Figure 4.4.  Bragg reflection for a one-dimensional crystal.

For a weak bond, we can assume that incident wave associated with an electron
is only weakly perturbed by the linear chain and that its amplitude can be written to
the zero order approximation in the form . The time dependent

incident wave is thus [ (

0 i
k Ae kx

kx t)x, t)] Ae0 i(
k inc. . This is the expression for an

incident plane progressive wave moving toward x > 0. When k = kn exactly, this
incident wave, [ , is reflected with respect to a wave 

propagating toward the values x < 0, as in [ . The 

superposition of the two types of wave (incident and reflected) gives rise to the
establishment of a stationary wave regime, which corresponds to two forms of the
solution (symmetric and antisymmetric), i.e., 

)txk(i
.inc

0
k n

n
Ae)]t,x(

)txk(i
.refl

0
k n

n
Ae)]t,x(

-i tn
 cos ( x) e

a
(8)   and -i tn

sin ( x) e
a

. (9)

 For each of these two solutions for the wave function for electrons satisfying
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k = kn = n
a

, there are two corresponding types of presence probabilities: 

+ = + +* n
 cos ² ( x)

a
  and - = - -* n

sin² ( x)
a

.

For the same given value of kn, Figure 4.5 represents the presence probability
densities denoted +, -, and for the respective stationary, + and -, and 
progressive waves where i(kx t)

k[ (x, t)] A e . Taking its form into account, the
progressive wave corresponds to  = constant. When k = kn, this progressive wave 
only can exist by neglecting the reflection effect at the periodic (a) lattice and the 
zero order approximation given by V = V0 = 0. In addition, with V  V0, this type of
wave only can exist when k  kn.

(x)

- +

 = constant

x
  a

atomic nuclei

Figure 4.5. Presence densities + , - ,  , respectively, associated with 
stationary waves +, , and a progressive wave. 

Figure 4.5 gives a graphic representation, which shows that:
 associated with + is a maximum concentration of electrons in the neighborhood of 
the atomic nuclei. The average energy (w+) of this configuration is the lowest
(negative coulombic energy for the highest module as the electron nuclei distance
is at its smallest);

 associated with - is the maximum concentration of electrons midway between
electrons. They are associated with an energy denoted w –, which is the highest
(greatest distance between electrons and nuclei and a small modulus of coulombic
potential); and
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 associated with  = constant (equal spread if electrons associated with an 
intermediate electron nuclei distance) is an intermediate energy that approximates
to that of a free electron. 

Finally, it is the existence for the same value of  kn for k (k = kn = n
a

) for the 

two physical solutions + and -, which generate the two values for energy. Figure
4.6 shows the dispersion plot for the energy E = f(k).

The difference between the two values corresponds to a “gap” in the energy
given by  EG = w - - w+ . This is the forbidden band as we pass brutally from one
energy w+ to the other w – all at the same value of k = kn.

E  E0

EG

w - 

EG
w+

    O a a
2   k 

Figure 4.6. Plot of E = f(k). The zero order approximation, which corresponds to a 
perturbation potential w(x) = 0 (we ignore the interaction of electrons with the lattice 

 as in the flat bottomed well) so that we have an energy given by E0 = 
²k²

2m
.

The effect of the lattice, through the reflection of waves associated with electrons on atoms of

the periodic chain, is that for each value of   k = kn = n
a

 there are two solutions for the 

energy, where  w+ < w –  .
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4.3.3.   Simple estimation of the size of the forbidden band 
The + and - functions, normalized over a segment given by L = Na, i.e., a one
dimensional chain containing N + 1  N atoms, are such that: 

L Na

0
A² (x) ² dx 1 ,  and hence

2
(x)  cos ( x)

L a

L Na

0
A² (x) ² dx 1 ,  and hence

2
(x)  sin ( x)

L a
.

The energy gap is thus equal to EG = w - - w+ = - (w + - w -), so that in terms of
quantum mechanics:

EG = - ( w(x) - w(x)  (10) 

= -
L

0

0

2w 2
cos  ( x) [cos² x - sin² x]dx

L a a a
=-

L
0

0
0

2w 2
cos ² ( x) dx w

L a
.

Finally, we reach EG =  w0 , which is a positive value because w0 must be
negative (potential energy plot is at a minimum at the nuclei where the origin is 
taken, as shown in Figure 4.3). 

Thus with EG = |w0|, we can conclude that the greater w0 is, that is to say the
stronger the electron lattice interactions are, then the greater the forbidden band. 

4.4. Insulator, semiconductors, and metals: charge carrier generation in the 
bands

4.4.1. Distinctions between an insulator, a semiconductor, and a metal
More complete calculations, with a rigorous resolution of the Schrödinger equation
in the presence of a periodic potential, have been developed in solid physics books
such as that by C. Kittel.

In general terms, the last completely occupied band is called the valence band 
and the first empty band is termed the conduction band. 

The distinction between insulator, semiconductor, and metal is made from the
study of the way in which these bands are filled. In a completely rigorous treatment
(such as in a solid physics course) we have to determine the electronic densities
relative to each band of electronic transportation. In the following paragraph, we
will detail the essential results.

As a first step, and in order to simplify things, we can state that: 
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 When the last occupied band is completely filled (valence band) and when the
following band is completely empty (conduction band), then the material is an
insulator. The electronic gap (EG), or rather the size of the forbidden band, thus is
determined by the difference in energy between the lowest part of the conduction
band (EC) and the highest of the valence band (EV). The gap EG = EC – EV should
in principle be sufficiently large (typically > 5 eV) so as to disallow a significant
passage of electrons, under a thermal agitation of kT, from the valence to the
conduction band

 When we have the same scenario as in the preceding case, but the size of the gap is 
only of the order of 1 eV, then we have a semiconductor. With a low population of
electrons in the conduction band derived from the valence band by thermal
activation we have an intrinsic semiconductor. In this case, the Fermi level
(average energy level for the electrons) remains localized in the middle of the gap. 
The introduction of doping atoms that generate levels in the neighborhood of the
permitted bands (for example, n doping which forms bands of levels just under 
EC) displaces the Fermi level toward the limits of the permitted bands, which thus 
exhibit a greater population of electrons. We have in this case a extrinsic semi-
conductor.

 When the last band is but partially occupied (typically half-full) and the electrons 
can easily move from the inside of this band under the effect of a weak external
excitation (for example, an electric field or a thermal gradient), then we have a 
metal.

4.4.2. Populating permitted bands
4.4.2.1.  The state density functions
The state density function can be defined either within a space of energies, or within 
a space of wave numbers denoted k (reciprocal space). 
 Definitions

In the space of energies, the state density function, denoted Z(E), is such that Z(E)dE 
represents the number of electronic states (each described by a wave function) of an 
energy in between E and E + dE, which are in a unit volume system (when one
dimensional L =1, and when three dimensional V = 1). 

Similarly, and still with respect to a unit volume in direct space, in the k space 
the state density function is denoted N(k), and is such that N(k) dk represents the
number of electronic states for which the vector k  is situated between  and 

.
k

k dk
The association displayed in Figure 4.7 shows that for one dimension, where k 

can be either positive or negative (which is due to the privileged solutions for the
wave function being associated to a propagation which equally can be well toward
the positive or negative values of k), we should have: 
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Z(E) dE = 2 N(k) dk. (11)

The interval dE in energy space corresponds to a k space interval of 2.dk which is 
situated between and  and between - kk k dk  and  – ( k dk ).

E

                          E + dE
            E 

        k  k+ dk      k
k

dkk

(a)

dkk

k

          ky

dkk
k

     O                kx

E =Cte 
                      E + dE = Cte 

(b)

k

       

Figure 4.7. Corresponding E and k spaces where E= k²/2m  (a) in one
dimension and (b) in two dimensions.

²

 Determination of  three dimensional state density functions
In three dimensions (3D), as illustrated in Figure 4.7 where one can imagine that the
circles in the plane of the figure are cross sections of equal-energy spheres, the
correspondence between the state density functions becomes Z(E) dE = N(k) dVk = 
N(k) 4  k² dk, from which:

N(k)
Z(E) 4 k²

dE
dk

. (12)

For free electrons, we have 
²k²

E
2m

 (see Section 4.3.1) and 
dE ²k
dk m

, so that:

4 mk
Z(E) N(k)

²
.

We now evaluate N(k). In reciprocal space, the electrons are distributed within cells 

of sides given by x y z
2

k k k
L

 and volume given by

3 3
3

3
8 8

k
VL

, where V is the volume of the material (which is taken to be
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equal to unity in order to determine the state density functions). As in cells of
volume k3 it is possible to place two electrons, of opposing spin direction, so that 
we have: N(k) k3 = 2, so that:

3
1

N(k)
4

. (13)

The result is that
4 mk m

Z(E) N(k) k
² ² ²

, so that with
2mE

k
²

 , we find 

3 / 2
3

4
Z(E) (2m) E

h
. (14)

The evolution of the Z(E) function for the free electrons (zero interaction
potential with the lattice) is given in Figure 4.8a. For semifree electrons distributed
with respect to the bottom of the conduction band (EC), where interactions of the
carriers with the lattice means replacing the mass (m) of the electrons by their 
effective mass (me*), the state density function is represented in Figure 4.8b. It can 
be written for the electrons as:

* 3/ 2
C e3

4
Z (E) (2m ) (E E )

h
C .            (15) 

Similarly for holes with effective masses denoted by mh* distributed from the upper
most point of the valence band (EV) downward, we have:

* 3/ 2
V h V3

4
Z (E) (2m ) (E E)

h
.   (16) 

(a)

O E

Z(E)

ZV(E) ZC(E)(b)

Z(E)

O EV       EC E

Figure 4.8. State density functions for  (a) state density function for free electrons  and 
(b) and semifree carriers. 
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4.4.2.2. Electronic densities in permitted bands 
The density of electrons [n(E)] is such that if n(E) dE represents the number of
electrons per unit volume which have an energy between E and E +dE, then this
number is equal to the product of the number of available states between E and E +
dE [in other words Z(E) dE] by the probability of state occupation. In Fermi
statistics, this probability for electrons situated at a energy level denoted E is in the
form:

n
F

1
F (E)

E E
1 exp

kT

.    (17) 

The result is that the electronic density [n(E)] in the conduction band, with 
* 3/ 2

C e3
4

A (2m )
h

, is given by:

1
F

C n C
E E

n(E) Z (E).F (E) A 1 exp (E E
kT C . (18) 

We now will look at the equivalent case for holes in the valence band. For a
given energy E, whether occupied by an electron or a hole (electron vacancy), we 
can write, using Fp(E) to denote the probability of occupation of an energy level by a 
hole, that Fn(E) + Fp(E) = 100 % = 1, so that Fp(E) = 1 – Fn(E) .

With * 3/ 2
V h3

4
A (2m )

h
the concentration of holes [p(E)] in the valence band 

is given by:
1

F
V p V V

E E
p(E) Z (E).F (E) A 1 1 exp (E E.

kT
        (19) 

In practice, Eqs. (18) and (19) can be simplified for nondegenerate
semiconductors. A low concentration of carriers in the bands associated with a 
Fermi position distanced from the band limits EC or EV by at least 2kT means that
the Fermi function of Eq. (17) can be replaced, as we shall see, by the Boltzmann
function, as in f(E) = exp[-(E – EF)/kT].

The concentrations (population per unit volume) of electrons in the conduction
band and holes in the valence band are finally obtained by integrating over the width
of the permitted bands.
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EF

EC

EV

Z(E)

E

O

EC

EV

E

O
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Fp
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F(E)

p(E)

E
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EV

n(E)

carrier
concentration

O

(a) (b) (c)
(d)

Figure 4.9. (a) Filling bands in an intrinsic semiconductor;  (b) state density functions; 
(c) occupation probability functions; and (d) concentration functions. 

For electrons, we need to calculate:

n n(E) dE =
EC

highest point in
conduction band

n(E) dE 
EC

. (20)

As elsewhere, we can extend the integration up to infinity as the probability of
occupation between the highest point of the conduction band and infinity is zero 
(Figure 4.9). Taking Eq. (18) into account, we thus have:

C

C C
FE

1
n A E E dE

E E
1 exp

kT

. (21)

With (E – EF) > 2 kT, we have FE E
exp

kT
> exp(2) 7.4, and as 1 turns out to be 

negligible with respect to FE E
exp

kT
, we thus can state that 

F

F

1 E
exp

E E kT1 exp
kT

E
. The Fermi function is approximated by using

the Boltzmann function, and hence Eq. (21) becomes:
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C

F
C C

E

E E
n A E E exp dE

kT
. (22)

We then change the variable, CE E
u

kT
, and hence dE = (kT) du. With

F C C F C CE E E E E E E E E E
exp exp exp exp

kT kT kT kT
F ,

 we thus have 3/ 2 C F

0

E E
n kT exp u exp( u)du

kT
.

As
0

u exp( u)du
2

, we finally obtain

C F
c

E E
n N exp

kT
, avec 

3 / 2*
e

c
2 m kT

N 2
h²

.       (23) 

Similarly, for holes, we have: 
V VE E

low point of
valence band

p p(E) dE = p(E) dE . (24)

Between and the lowest point of the valence band there is a zero probability of
occupation by holes, so we can extend the integration to .

A similar calculation to that carried out for electrons gives:

F V
v

E E
p N exp

kT
,  where 

3/ 2*
p

v
2 m kT

N 2
h²

. (25)

Notably, we can deduce from Eqs. (23) and (25) that:

G
c v

E
np N N exp .

kT
(26)

This product is independent of the position of EF. For a given semiconductor, the
product of np is constant, in accordance with the law of mass action. For an intrinsic 
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semiconductor, n = p = ni .  Combining this with the mass action law of Eq. (26), we
can determine that:

1/ 2 G
i c v

E
n N N exp

2kT

v

. (27)

4.5. Optical properties of semiconductors: reflectivity, gap size, and the 
dielectric permittivity 

Absorption of radiation is determined by the different types of electrons excited in
the semiconductor. This response is characterized by the dielectric function. For 
radiative transitions, we shall see that they depend either directly or indirectly on the
nature of the gap. 

4.5.1. The dielectric function and reflectivity
In a semiconductor, there exist at the same time:
 valence electrons relatively well localized around their atoms; and 
 throughout the lattice reasonably delocalized electrons (semi-free), which generate 

the transport properties specific to semiconductors.

4.5.1.1. Effect of localized electrons
The forces that attach the electrons are similar to those found in dielectrics. Thus, 
their response to the optical field in terms of the dielectric function is in the form of
Eqs. (6) and (7) of Chapter 8, Volume 1. These electrons are characterized by an 
oscillation with an angular frequency ( 0) and a frictional force given in the form

. For a single type of these electrons, there are real and imaginary parts
of

tf m

r with values respectively given by:

2 2
02

r p 22 2
0

' 1
² ²

  (28) 

2
r p 22 2

0

 '' =
² ²

.   (29) 

In these equations, p is the plasma angular frequency and is such that 2 e
p

0

n q²
m

,

where ne is the density of electrons (number per unit volume) of the type under
consideration (with their own angular frequency 0 and relaxation time  = 1/ ).
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The function denoted   is not equal to zero only when  = r '' 0 , outside of which,
 is stuck at zero if = 0 (Figure 4.10b). The dielectric function thus is real and 

written:
r ''

2
p

r 2 2
0

' 1 . (30)

=0

=0

0

1

0

r'
r '' =0

0

Figure 4.10. Representative plots of the dielectric function for bound electrons: 
(a) r ' = f( )  and (b) r '' = f( ).

In Figure 4.10a, we can see that between angular frequencies  = T and 
, we have a negative r

’. As the index is defined in its most general form by

r ( ) n²  [see Eq. (24) of Chapter 7, Volume 1], here the index must be purely
imaginary so that n’ = 0.  Thus, an incident wave with the general form:

mE E exp( n '' z) exp( j[n ' z t])
c c

, (31)

is reduced to: mE E exp n '' z exp j t
c

.

This is a wave that cannot propagate in the medium. The Fresnel equations (see
Chapter 12, Volume 1), can be used to give the coefficients of reflection and
transmission for the incident wave. For the range of frequencies given
by , the incident wave undergoes a reflection. In this case, the

perpendicular to the incident is of the form

T
n 1 (n ' 1) in"

R
.n 1 (n ' 1) in"

 We thus can see that
2 2

2
2 2 n ' 0

(n ' 1) n"
R

(n ' 1) n"
 1  . 
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4.5.1.2. Effect of semifree electrons (delocalized)
At ambient temperature, the presence of free or rather semifree carriers in a semi-
conductor brings in a specific contribution to the dielectric relaxation function. This
component has a form recalling that of a metal where the returning force on the 
electrons is zero, as in 0 = 0 [see also Section 8.4, Volume 1, which used the
preceding Eqs. (28) and (29) for 0 = 0]. Hence, 

2
sp

r

s

( ) 1
i

²
. (32)

In this equation, s is the relaxation time of the semifree electrons on the lattice and
2 es
sp

0

n q²
m

 is such that sp is the plasma angular frequency associated with the

semifree electrons of a density denoted nes.

When  > 1/ s (in the optical domain), the permittivity tends toward that given

in the equation for plasmas, where 
2
sp

rr ( ) 1 ( )
²

. However, when

 < sp, then  and the optical index is purely imaginary. Therefore, the 
wave cannot propagate within the medium that thus reflects the light (see, for 
example, Section 11.6, Volume 1, and Figure 4.11).

r ( ) 0

sp

reflection
zone

s1/r

Figure 4.11. The dielectric function for semifree electrons in the optical domain.

4.5.2. The relation between static permittivity and the size of the gap 
As discussed above, it is the internal (localized) electrons that determine the optical
absorption which takes place for frequencies corresponding to the proper angular 
frequencies ( 0) for each j (= 1, 2,...) type of localized electron. The term 0j is used
to denote the proper angular frequency for each j type electron; hence, each of the 
different values of 0j locates peaks successively spread throughout the
electromagnetic spectrum. Each of these is associated with a different electronic
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transition due to the optical absorption. For semiconductors found in column IV of 
the periodic table, the lowest values of 0j, denoted 01, therefore must correspond 
to the fundamental transition of an electron between the valence and conduction 
bands, as indicated in Figure 4.12.  It should be noted that the reality is more
complicated as the bands are not necessarily flat. This can be found, for example, in
levels distributed in band tails permitted in the forbidden band.

conduction band (CB)

valence band (VB)

forbidden
band

G 0E 1

Figure 4.12.  Fundamental transition across the permitted band. 

In addition, we can relate the size of the gap (EG) with the static permittivity
[ ’r(0)]. In effect, from Eq. (28), we can deduce that when  = 0, we have:

2
p p

r 02
r0

' (0) 1
' (0) 1

, so that:

p
G 0

r
E

' (0) 1
. (33)

We can see straight away that when the static dielectric permittivity increases,
the gap decreases. This evolution well confirms the values given in the table below.

EG (eV) r(0) G(µm)=hc/EG p (eV)

C 5.4 5.7 0.24 11,7
Si 1.1 12 1.1 3,6
Ge 0.7 16 1.8 2,7

Sn-  0 24
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4.5.3. Absorption

In Eq. (31), the part that details the absorption is mE E exp( n '' z)
c

. As 

2
rn ( ) , and hence (n’ + i n’’)² = ( ’ – i ’’) , we thus find by identification of 

the imaginary parts that
''

n ''
2n '

.

The attenuation factor µ for the I energy density proportional to the square of
the amplitude follows:

2

0

I exp n '' x exp 2n '' x
c c

 I exp( x)

''
2n ''

c c n '
.

This is evidently the same theoretical absorption coefficient as that already
found for dielectrics in Section 3.4.5, hence its being denoted as µ (so as to not be
confused with the dielectric polarisability which is also classically denoted as ).
We now will look at the form of this coefficient while taking into account the nature 
of the transitions specific to semiconductors.

4.6. Optoelectronic properties: electronphoton interactions and radiative 
transitions

4.6.1.  The various absorption and emission mechanisms
4.6.1.1. Band  to  band (interband) transitions
As indicated in Figure 4.13a, these transitions are typically between the valence and 
conduction bands and can be divided into:

the fundamental absorption, where the absorption of a photon generates the
transition of an electron from the valence to the conduction band. The frequency of
the photon ( ) must be such that  > G = EG/h. Thus an electron hole pair is
generated, in a process used in radiation captors;

spontaneous emission, which is the inverse of that the above, where an electron
spontaneously transits from the conduction band to the balance band and gives rise
to a photon; and 
 a stimulated emission, which is due to a photon that irradiates the semi-conductor

and induces the transition of an electron from the conduction to the valence band
and the simultaneous emission of a photon of the same energy as the exciting 
photon. This process is central to semiconductor based lasers.
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In general terms, the band to band transition can involve one or more phonons. 
A phonon is a quasiparticle that corresponds to a quanta of a thermal vibration
supplied by thermal excitation of the atoms in the material.
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Figure 4.13. Various transitions: (a) band to band; (b) band to impurities;
and  (c) intraband between free carriers.

4.6.1.2. Transitions from the bands to impurities (Figure 4.13b) 
These can result from photons that, for example, in a p-type semiconductor pass a

valence band electron to the level of an acceptor where the electron is trapped. A 
hole thus is formed in the valence band. 

4.6.1.3. Transitions due to free carriers (intraband)
 A photon can transmit its energy to an electron which is thus pushed up to an empty
and higher level in the band (shown for the conduction band in Figure 4.13c). This
process is followed by a thermalization of the electron which relaxes back to a lower
point in the conduction band while losing its surplus energy thermally to the lattice, 
and hence lattice vibrations.

4.6.1.4. Phonon transitions 
 Low energy photons (of long wavelengths) can give up their energy to the lattice 
by directly exciting vibrations of the atoms, from which are generated phonons. 

4.6.1.5. Excitonic transitions (Figure 4.14) 
The absorption of a photon can generate an electron and a hole separated by a finite

distance so that they can be bound to one another by a coulombic interaction energy.
This pairing can be compared to a hydrogen atom, as here the role of the nucleus is
played out by the hole (termed a Wannier exciton).
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The levels of the quantified energies are defined with respect to EG (see Figure 

4.14) and are of the form
4

Gn G 2 2 2 2
0 r

m * e 1
E E

32 ² n
, where m* is the reduced 

mass of the hole electron system.
The dissociation of the exciton corresponds to n , a state for which the hole 

and the electron are free (electron being free in the conduction band). In this
state where the electron and the hole are no longer tied by a bonding energy their
bonding energy is zero while the separation of energy between them is given by

EG = EG .

When the excitonic state corresponds to a level n, the electron and the hole are 
thus tied by a bonding energy (Ebn), which is such that:

4

bn G Gn 2 2 2 2
0 r

m * e 1
E E E

32 ² n
. (35) 

In other terms, this is the energy that the exciton requires to yield a separated hole
and electron to the bands where they are free (noting that when n , Ebn  0). 

The energy of separation of an electron and a hole in an exciton for its part is in
the form EGn. A peak due to an absorption at the lowest possible frequency
corresponds to the energetic transition EG1, not Eb1 (the bonding energy).

  EG1 EGn

EG

energy

O

EGexciton bonding 
energy Ebn

Figure 4.14. Exciton energy level (EGn) and bonding energy level (Ebn).



Chapter 4.  Interaction of EM waves and solid semiconductors 135

4.6.1.6. Result (see, for example, Figure 4.15)
All transitions contribute to the absorption coefficient. Photons with energies h  > 
EG essentially induce interband transitions. The maximum absorption corresponds to
the transition between zones of strong (h  > EG) and weak absorptions. This 
transition is much more abrupt for direct gap semiconductors such as GaAs than for
indirect gap semiconductors which include Si. The following section details the
nature of these gaps and their corresponding transitions. 
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Figure 4.15. Absorption coefficients for Si and GaAs 
demonstrating the various transitions.

4.6.2. Band  to  band transitions and the conditions for radiative transitions
4.6.2.1. Equations for conservation of energy and momentum
In general terms, electronic transitions, which are accompanied by the absorption or 
emission of a photon, are termed radiative transitions. These processes are 
controlled by rules for what are elastic collisions between two particles, namely,
electrons and photons. There is of course no modification of the internal energy.
They state that: 
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There is a conservation of energy during a transition of an electron from level E1
in the valence band to level E2 in the conduction band. For an absorption or 
emission of a photon of energy given as Ept = h , then 

E2 – E1 =  Ept = h . (36)

There is a conservation of momentum given by p k . Using the self-same
evident notations, we have:

2 1 ptp p p , from which

2 1 pk k k t , (37)

 where ptk  is the photon wave vector.

4.6.2.2. Estimations for the size of wave vectors of electrons and photons, and 
vertical transitions

 kpt is such that pt
pt

2
k , where pt is the wavelength of a photon

accompanying the valence to conduction band transition. With the gap being
EG, we have EG  h pt,

so that pt (µm)
1.24

EG (eV)
. When EG  1.2 eV, then pt  1 µm = 103 nm, with

the result that 2
pt 3

10
k 10 n

10
1m ; and 

 k2 and k1 are of the order of kelectron , which varies from 0 at the center of the band 

to
a

at the edges (shown in Figure 4.6). When a  0.3 nm (lattice repeat unit),

we have kelectron a
10 nm 1 .

The dispersion curves for the photons (see Figure 7.3, Volume 1, where k = kpt
is in effect very small) and the electrons, when traced together for one value of m,
give yield plots similar to those shown in Figure 4.16, taking into account the
relative values of kelectron and kpt.

The dispersion curve for a photon practically corresponds to a vertical straight
line when presented against a plot on the same scale for electron dispersion. In other
terms, the wave vector of the photon is always negligible with respect to that of an 
electron or a hole. As a consequence, Eq. (37) can be simplified to:

2k k1 . (38)
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This condition is called the selection rule for k vectors. The electronic
transitions should be vertical within a graph of E = f(k). Thus, we can conclude that
radiative transitions (accompanied by the absorption or emission of a photon) are
vertical transitions (change in k negligible with respect to the E(k) carrier diagram).

E
electron

photon

k

Figure 4.16. Dispersion curves for photons and electrons. 

4.6.2.3. Direct or indirect gap semiconductors
A semiconductor has a direct gap if in the representation of E = f(k) of the energy
levels of the carriers, the extremes of the permitted bands (i.e., the highest point of
the valence band and the lowest of the conduction band) have the same value of k 
(as shown in Figure 4.17a). In contrast, an indirect gap semiconductor is so termed
when these extremes are out of step and do not have the same value of k, as in
Figure 4.17b. As a consequence, and taking Eq. (38) into account for k vectors, in 
the neighborhood of the fundamental gap, the direct gap materials assist relatively
large radiative transitions. However, indirect gap semiconductors necessitate the
intervention of a third particle (phonon) of large momentum in order to undergo 
oblique transitions between the extremes of the permitted bands.

absorption emission

BV

BC

k

non-radiative
transitionsBV

BC

E E

k

Figure 4.17 Semiconductors: (a) direct gap and (b) indirect gap.
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In more precise terms, the radiative electron hole recombination is unlikely in
an indirect gap semiconductor. In effect, the conservation of energy is respected
(electronic transition emitting a photon) and the conservation of momentum is not 
due to the oblique nature of the conduction to valence band transition. The transition 
brings into play a considerable variation in the wave vector (and the quantity of
momentum), which is incompatible, as already stated above, with the low
momentum of the photon. In order to assume this nonnegligible change in the wave 
vector, the system needs the help of a third particle as in a phonon (indicated in
Figure 4.18a). In effect, the latter has a low energy but carries a considerable degree 
of movement (with k values or the order of /a, close to that of the electrons) and the 
two conservation equations are thus verified (as shown in Figure 4.18a). 
Nevertheless, the resulting transition remains improbable, as it necessitates the
simultaneous intervention of three particles that have little chance of doing so. This
is why silicon, which has an indirect gap, has a level of recombination considerably
below that of GaAs, which has a direct gap. 
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Figure 4.18. For an indirect gap: (a) oblique transition during emission, with conservation
of energy in the vertical transition (photon emission) and moment conservation (by phonon 

intervention) in the horizontal transition; and (b) transition during absorption where the 
vertical transition corresponds to the energy of the photons generating the electrons in the 
conduction band, which then deexcite toward the bottom of the band by transmitting energy
to lattice phonons. The transition remains improbable due to the necessity of having three 

particles come together simultaneously, as in electron, photon, and phonon. 

E

For the same reasons, and as shown in Figure 4.18b, the oblique transitions are
equally improbable. Absorption phenomena nevertheless can occur easily, simply by
bringing in the vertical transition that starts from the summit of the valence band (a
vertical transition which is in accordance with the k selection rules). This does
necessitate, however, a surplus of energy with respect to the fundamental energy
gap. The excess energy with respect to the bottom of the conduction band is then
loss by an electron that is thermalized at the bottom of the conduction band through
a loss of energy through the lattice in the form of phonons. 
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4.7. Level of absorption and emission
We now turn to the probability densities for emission or absorption of a photon 
during direct band-to-band transitions. There are three factors that determine the
result. They are the densities of the states with which the photons interact, the 
probability of occupation in those states, and the probabilities of transitions between
the states brought into play.

4.7.1. Optical function of the state density
4.7.1.1. Relation for the carrier energy levels and the effective masses 
In Eq. (36), the energy level denoted E2 for a free electron in the conduction
band with respect to the energy origin (EC) at the bottom of the conduction band is

given in the form
2²k

2m
 (see Section 4.3.1). Being semifree given its interactions

with the lattice, the electron mass needs to be replaced by the effective mass me* so 
that the energy E2 is in the form:

2

2 C *
e

²k
E E

2m
. (39)

For their part, the holes (with the same wave number k as for the electrons–
direct gap conductor) in the valence band are situated under the summit (EV) of this
band.  They have an energy (E1) given by (where mh* is the effective mass of a hole)

2

1 V *
h

²k
E E

2m
. (40)

Taking the difference between Eqs. (39) and (40) we obtain with EG = EC – EV :
2 2

2 1 G * *
e h

²k ²k
E E E h

2m 2m
. (41) 

By making * *
r e

1 1 1

m m m*
v

, we deduce that:

*
r

G
2m

k² (h E )
²

 . (42)

The ratio of Eq. (42) in Eqs. (39) and (40) finally gives:
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*
r

2 C G*
e

m
E E h E

m
(43)

*
r

1 V G*
v

m
E E h E

m
. (44)

4.7.1.2. State densities [ ( )] for which photons (h ) interact in a direct gap 
semiconductor

The calculation of the number [ ( )] of states implicated per unit time (for a unit
volume of material) in the direct optical transitions a priori should bring in the
densities of states in the valence and conduction bands. 

For example, in a direct gap semiconductor, from each of the E2 states situated 
within a range of energies (dE2), a radiation of frequency  can be emitted, which is 
within a zone of frequencies given by d . The E2 and the energy of the radiation h
also are related by Eq. (43) for a direct gap semiconductor. In addition, in such a 
conductor, there is a relation between the number of energy levels in the range dE2
from which the emission can occur and the number of emissions within the range
d . It can be written as:

ZC(E2)dE2 = ( ) d ,

where 2dE
d

 is determined from Eq. (43). 

From this,
*

2 r
C 2 C 2*

e

dE hm
Z (E ) Z (E )

d m
, from which we can deduce 

with Eq. (15) that:
3/ 2*

r 1/ 2
G

2m
h E

²
, with h  EG. (45)

The state density function with which the photons (of energy h ) can interact, 
otherwise termed the optical density-of-states function [ ( )], is represented in
Figure 4.19. It increases in accordance with the square root of (h  - EG).
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h

( )

EG

Figure 4.19. Relation between ( ) and h .

4.7.2. Probabilities of occupation 
The probability [Fe( )] for each level that photon emission will occur [between E2
and E1 according to Eq. (41)], is obtained by multiplying the probability of the 
function “the E2 level in the conduction band is full” by the probability of the 
function “that the level E1 of the valence band is empty”, as in:

e c 2 vF ( ) F (E )[1 f (E )]1

2

, (46)

where Fc(E2) is the Fermi function for electrons in the E2 level of the conduction
band and Fv(E1) is the Fermi function for electrons in the E1 level of the valence
band.

The probability that the required occupation of the different levels for the
absorption of a photon, denoted as fa( ), can be calculated in a similar manner, as in:

a v 1 cF ( ) F (E )[1 F (E )] . (47)

4.7.3. Probabilities for radiative transitions 
The radiative lifetime can be denoted as r. The probability that a carrier (which
conforms to the conditions of recombination) spontaneously produces radiation with
a frequency  is P( ) = 1/ r.

In the presence of a photon flux of density , of received frequency  (photons
per unit time and unit surface), the system can absorb a part of the flux or produce a 
stimulated emission. The probability per unit time (probability density) for one
carrier to make the transition by absorption or by emission (by stimulation) of a
photon (frequency ) depends on the efficient section of the incident flux with the
medium. In atomic physics, we introduce a term for the efficient section for the
transition for the material denoted ( ).
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The product of this and the received photon flux  thus represents the
probability of absorption or stimulated emission per unit time and is otherwise
termed the probability density which is such that  W( ) = ( ) .

In atomic physics, we have for a flux of photons distributed with a form factor

[g( )] that 
r

²
( ) g( )

8
 (see, for example, B.E.A. Saleh and M.C. Teich in

Fundamentals of Photonics, Chapters 12 and 15, Wiley, 1991). Here we are 
concerned with a single frequency centered about the principal frequency ( ) for 
absorption or emission, so that the absorption or stimulated emission probability
density is given by

r

²
W( )

8
.

4.7.4. Overall level of emission or absorption transitions
Finally, the levels of spontaneous or stimulated emission (for a volume V = 1) and 
absorption are in the form, respectively:

sp e
r

1
r F   (48) 

st e
r

²
r

8
F (49)

ab a
r

²
r

8
F . (50)

4.7.5. Absorption coefficient
If (z) and (z)  + d (z) represent the density of flux entering and leaving a 
cylinder of length dz and section S = 1, then the flux density of lost photons is given
by d (z). This is equal to the difference between the density of the absorbed photon
flux and the flux density of photons emitted by stimulation along the length (dz) of 
the cylinder, so that:

ab std z r r dz .

With the help of Eqs. (49) and (50), we deduce:

a e
r

d (z) ²
( ) F ( ) F ( ) (z) ( ) (z)

dz 8
. (51)
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This relation defines the absorption coefficient µ( ), which is thus in the form:

a e g
r r

²
( ) ( ) F ( ) F ( ) ( )F ( )

8 8
²

. (52)

From Eqs. (46) and (47), the factor introduced [ gF ( ) ] is such that:

g a e v 1 cF ( ) F ( ) F ( ) F (E ) F (E2 ) . (53)

At the thermodynamic equilibrium, where the Fermi’s pseudolevel coincides 
with the Fermi level (EF), the functions Fv(E) and Fc(E) coincide with the Fermi

function, as in:
F

1
F(E)

1 exp (E E ) / kT
 and . We can 

thus remark that in this case of thermodynamic equilibrium, when E

g 1F ( ) F(E ) F(E )2

2

2 > E1, then the
term and there is an absorption of radiation (the gain in radiation can 

only be obtained outside of equilibrium under electrical or optical injection regimes.
gF ( ) 0

The introduction of Eq. (45) into Eq. (52) gives rise to:
1/ 2

G 1µ( ) D h E F(E ) F(E ) , (54)

where
2 *3/ 2

r
2

r

2  m
D

h
.

With EF placed in the gap of the material, far enough from the limits of the
permitted bands, then F(E1)  1 and F(E2)  0, from which F(E1) - F(E2)  1. In this
case, we can write that:

2 *3 / 2
1/ 2 1/ 2r

G G2
r

2 *3/ 2
1/ 2r

G2 2
r

2  m
µ( ) D h E h E

h

2  c m
h E .

n² h

(55)

A plot of (µh² ²)2 as a function of (h  - EG) makes it possible to obtain EG by
extrapolation.
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The coefficient ( ) for the efficient section introduces the ² (or 1/ ²) term into
the expression for D, and hence for µ. This term, obtained from results of atomic
physics, is introduced in different ways for semiconductors, depending on the
author.

So, Pankove (Optical Processes in Semiconductors, Dober Publishing, 1975) 
indicates that the absorption coefficient is described for: 

 permitted direct transitions as 
3/ 2* *

h e
* *

1/ 2 h e
G *

e

2m m
q²

m m
µ(h ) A * h E  where A*

nch²m
;

 forbidden direct transitions as 
5 / 2* *

h e
* *

1/ 2 h e
G * *

e h

2m m
q²

m m4
µ(h ) A ' h E  where  A'

3 nch²m m h
;

 indirect transitions between valleys: transitions with equally possible emission
or absorption of phonons of energy Epn can occur and

2
G pn

e
pn

A h E E
µ (h )

E
1 exp

kT

  when h  > EG + Epn

2
G pn

a
pn

A h E E
µ (h )

E
exp 1

kT

 when h  > EG - Epn.

Note that the form of the denominator of the absorption coefficients comes from the 
statistical distribution of phonons, which is itself derived from the Bose Einstein
distribution.
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4.8. Problem
For indirect intervalley transitions, show schematically how the radiative transitions 
(h ) with either emission or absorption of phonons of energy Epn can intervene. 
Determine the condition on the energy of these phonons. How can the gap EG be 
determined?

Answer

k

E

EG

EG - Epn= h a

h e
=EG + Epn

(a)

phonon absorption

phonon emission 

h

( k)phono

(b)

T2 > T1

h

e

2
a T T

1
a T T

(Ea)T=T1 (Ee)T=T1

T1

Ee =
EG + Epn

Ea = 
 EG - Epn

Figure 4.20. (a) Transition with emission or absorption of a phonon  and (b)
determination of the gap EG and the weak energy of the phonon Epn.

When h  EG + Epn, an electronic transition of the height of EG accompanied by the 
emission of a phonon with energy Epn is possible (Figure 4.20). For this condition on 
h , an electronic transition by EG accompanied by the absorption of a phonon also is 
possible, as this mechanism only requires the energy given by EG - Epn. In addition,
under this condition, we have:

e aµ(h ) µ (h ) µ (h ) .

(Inversely, if we “only” have h  > EG - Epn, then only the transition with phonon 
absorption is possible).
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Also when h  > EG + Epn, and if the temperature is not very high, then the
density of phonons is relatively low (due to the low degree of thermally induced 
quantic vibrations). The denominator µa is very high for a low temperature and the
coefficient µa, associated with the condition h  > EG  Epn, is very low. At the same
time, the phonon emission mechanism (associated with an absorption factor µe
considerably greater than µa) is preponderant and corresponds to the condition
h  > EG + Epn.

In addition if we trace the plots of µ(h ) f (h ) , then we have the
representations shown in Figure 4.20b where there are two linear domains. From
these, the extrapolation to µa = 0 gives the value of Ea = EG  Epn and the
extrapolation at µe = 0 gives the value Ee = EG + Epn. From these two equations with
two unknowns, we can determine EG and Epn.

At high temperatures, the intervening phonons are far more numerous and have
a value greater than µa, as we can see in Figure 4.20b where T1 > T2. Additionally,
the two representations for T = T1 and T = T2 are shifted so as to take into account
the shift of the gap EG with temperature.



Chapter 5 

Electrical and Magnetic Properties of 
Semiconductors

5.1. Introduction
This chapter looks at the electronic and magnetic properties of semiconductors in a
similar way to the study made on insulators in the volume, Basic Electromagnetism
and Materials. While the applied fields will be essentially static, there will be a 
chance to follow, for example, microwave emissions due to the Gunn effect in
semiconductors, which act as solid sources.

Initially, the properties can be studied by using a small perturbation, notably a 
weak electric field, so that with respect to the thermodynamic equilibrium, the n and
p concentrations of the carriers are not modified in the bands of the applied field. In 
effect, only the position of the carriers with respect to the internal levels can change 
(see Figure 5.1a). This essentially concerns electrons. 
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Figure 5.1. (a) Intraband displacement of carriers under the effect of a weak perturbation 
and (b) effect of a strong perturbation with modification of the band population.
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Inversely, following a stronger perturbation (Figure 5.1b), the concentration of 
carriers can be modified inside the bands, for example, by injection of carriers into 
bands to produce electroluminescence in the domain of optoelectronics.

5.2. Properties of a semiconductor under an electric field
5.2.1. Ohm’s law for a semiconductor
5.2.1.1. Classic form
Drude’s classic theory (see Chapter 1, Volume 1) can be developed for a 
semiconductor and equally well for electrons as for holes. In the presence of an
electric field ( ), their respective speeds are: E

n n

p p

v µ E (1)

v µ E , (2)

where µn and µp are the mobilities (defined as positive magnitudes) of the
electrons and holes such that: 

n
n *

e

q
µ

m
 and p

p *
h

q
µ

m
. (3)

Using this approach, n and p represent the average time between two 
successive collisions of electrons and holes. By denoting the concentrations of
electrons and holes as n and p, respectively, and in accordance with the definition of 
the current density given by j v  (where  = n =  q n  for electrons and  = p

= q p for holes), we have as expressions for the corresponding current densities: 

n n nj q n v  (4),  so with Eq. (1), we have j q n µ En (4’)

p p pj q p v  (5),  so with Eq. (2), we have j  = q p µ Ep . (5’)

We can remark that the current of electrons goes in the sense of the electric 
field (from the positive to the negative pole). This conforms to the conventional 
sense of current flow, while the actual displacement of the electrons (given by the 
direction of  as determined by the electrostatic force that attracts the electrons 
toward the positive pole) goes in the opposite direction. For holes, displacement and 
current density go in the direction of the electric field.

nv

Finally, the resultant current density (for electrons and holes) is:
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n p n pj j j ( )E (6)

where

n
n n*

e

pq²
qnµ

m
 and p

p p*
h

pq²
qpµ

m
. (7)

5.2.1.2.  Conduction mechanism in a band energy scheme 
In the absence of an electric field, the energy bands of a semiconductor are
represented by the limits of the horizontal bands of value EC (lowest point of the
conduction band) and EV (highest point on the valence band). 

Take an electron that is situated at a point A which is the same as the origin O
of an axis Ox along which the electron is transported (Figure 5.2). There is a cathode
placed at x = 0 and an anode at x = OB = AB = xB.

The origin of the potentials at the cathode are at point O (x = 0) and correspond 
to the EC level of the semiconductor. A potential V > 0 is applied to the anode 
situated at x = xB. The applied electric field ( E ) goes from B toward O and the 
potential energy of a electron at x = xB  is decreased by qV following the application
of this field (point B, pinpoints the position of the electron at x = xB, thus dropped 
by qV to the position B’).

EC when V= 0 

B’

EC

EV

+ E

EV when V= 0

B

-qV

qV
A1

A1’
A2

A2’
Ai’

Ai

xB
x x3 x2 x1

A
O

Figure 5.2. Transport of an electron within a semiconductor band scheme.
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It is worth considering the transport of an electron from x = 0 to x = xB at the 
scale of the lattice. Over a distance AA1 equal to the mean free pathway ( ), the 
electron gains a kinetic energy denoted Ec, which is equal to the work of the
electric force and can be written in the form Ec = |q E |. At A1, the electron 
undergoes a collision with the lattice as AA1 = , and its speed and also its kinetic
energy return to zero. The electron has in effect lost Ec to the lattice, which is now
warmed in accordance with Joule’s law following the passage of current from A to
A1. Finally, following collision at A1, the electron only has the potential energy for
the position A1’, which is situated at the bottom of the conduction band.

At A1’, the electron subjected to E  recommences the same trip which will take
it through A2’ (with the intermediate position in A2), then A3’, up to point B’. At this
point the electron will cede an energy qV to the lattice which is either transformed
into heat or radiation at each of the successive impacts at A1, A2, Ai...

5.2.2. Effect of a concentration gradient and the diffusion current
5.2.2.1. Fick’s first law

Supposing that by using any one of several possible, for example, localized
doping, we have created a concentration gradient. Figure 5.3 shows an example
where there are many carriers in A and relatively few in B. This gradient will
generate a movement of carriers from the high to the low concentration zone in an 
attempt to reestablish a uniform equilibrium. This phenomenon is that of diffusion 
which occurs in other physical systems such as with heat and with gases. The 
diffusion thus corresponds to a drift of carriers in the direction of decreasing
concentration.

A
displacement

grad n
B

Figure 5.3.  Diffusion phenomenon.

In order to establish the form of the diffusion current, we consider a flux (F) of
carriers expressed as the number of carriers that traverse (or rather diffuse across) a
unit surface per unit time. Fick’s law gives the physical hypothesis that the flux is as 
large as the concentration gradient is high. Nevertheless, as the flux corresponds to a 
drift in the direction opposite to the concentration gradient (Figure 5.3), we can 
write that for electrons and holes, respectively, that: 

n nF D grad n (8)

p pF D grad p . (9)
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The proportionality coefficients Dn and Dp are positive and are termed diffusion
constants, respectively, for electrons and holes.

L= v (t=1) 
S = 1

Figure 5.4.  Volume associated
 with a flux of particles.

Given the definition of flux, the latter is represented by the number of carriers
contained within a cylinder of cross sectional area S (at unity) and length L 
corresponding to the transport of carriers moving at speed v for a space of time t = 1, 
(Figure 5.4). Hence, L = v x 1 = v , and the volume of the cylinder is given by  :

V = L x S = v. 
The associated flux therefore is such that:

nF nvn ,  for electrons of concentration n and speed nv ;

pF pvp ,  for holes with concentration p and speed pv .

By introducing these values for nF  and pF  into the Eqs. (4) and (5) for the current

densities, we have the form of the diffusion currents of the electrons and the holes:

n n nj q F q D grad n (10)

p p pj q F q D grad p . (11)

5.2.2.2.  Current in a semiconductor with a concentration gradient and subject to an 
electric field 

Equations (4’), (5’), (10), and (11) give the resultant currents for electrons and holes:

n n nj q n µ E + q D grad n (12)

p p pj q p µ E - q D grad p . (13)
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The density of the resultant current over the complete section of the semiconductor
therefore is given by:

nJ j jp . (14)

5.2.3. Inhomogeneous semiconductor, the internal field, and Einstein’s relation
5.2.3.1. Internal field in an inhomogeneous semiconductor

Consider an inhomogeneous n-type semiconductor that is isolated and at
thermal equilibrium. There is no current of electrons and the resultant current given
by Eq. (12) thus is zero. Also, we have:

n n nj q n µ E + q D grad n = 0 ,

from which it is possible to determine the expression for the internal field:

nint
n

1 D
E

n
gradn . (15)

5.2.3.2. Einstein’s equation
 Concentration of carriers expressed as a function of ni

The concentrations of electrons and of holes are given by Eqs. (23) and (25) of
Chapter 4, which can be written:

F C
c

E E
n N exp

kT
 and F V

v
E E

p N exp
kT

.

On introducing the intrinsic level (EI), which gives the position of the Fermi level of
an intrinsic semiconductor, we can state that

F I F IE E E En p , and hence 

v
I V C

c

1 kT
E E E Ln

2 2
N
N

.

It is thus possible to write that

v
F C F I I C F I C V

c

1 kT
E E E E E E E E E E Ln

2 2
N

.
N
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This equation plugged in to the expression for n gives:

v
F I G

F I Gc
c c v

1 kT N
E E E Ln

E E E2 2 N
n N exp N N exp exp .

kT kT 2kT

Similarly, introducing n into the expression for ni given in Eq. (27) of Chapter 4 
finally gives:

F
i

E E
n n exp

kT
I . (16)

In the same manner, we find for the hole concentration that

I
i

E E
p n exp

kT
F . (17) 

  Einstein’s equation

By making T
kT

u
q

andas the thermal potential F IE E
U

q
 as the crystal

potential, Eq. (16) can be written as I
T

U
n n exp( )

u
.

In one dimension, we have TU / uI

T T

dn n dU n dU
e

dx u dx u dx
.

In three dimensions, we thus have 
T

n
grad n grad U

u
, and the electric field given

by Eq. (15) can be rewritten:

nint
n

1 D
E gradn

n
n

n T

D 1
. gradU
u

.

       A comparison with intE grad U yields Einstein’s equation:

pn
T

n p

DD kT
u

q
. (18)
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5.2.4. Measuring the conductivity of a semiconductor and resistance squared 
5.2.4.1. Principle
The contact between the classic metallic electrodes and a semiconductor can be non-
Ohmic. This is where the work function of the metal (electrode) is greater than that
of the semiconductor. The electronic transport in the direction metal-to-
semiconductor thus is partially blocked and there are mechanisms specific to the
interface (such as thermoelectric effects, the Schottky effect, or tunnel injections)
that determine the current (I) rather than the resistance of the material (which would 
give the classic Ohm’s law as in V = RI from which R could be determined knowing
V for a given value of I). Other effects such as the injection of minority carriers can 
perturb also the measurement of the current in a classic two-electrode configuration.

In order to get around the problem of the nature of the contact, we can use a 
system based on four electrodes, as illustrated in Figure 5.5.

 Two electrodes are used to inject a current directly measured, but for which
the origin is not of importance (whether by a thermoelectric or a Schottky effect or 
whatever). The relation V = RI is not used, and as a consequence, the contact 
resistance is not taken into account.

 Two other electrodes which are independent from the first pair are used to
measure the tension by a zeroing method. The current being zero in the circuit that
measures V, the nature of the contact between these two electrodes and the
semiconductor does not intervene and therefore does not determine the measurement
of V. 

A
I

B C D

VI

Figure 5.5.  Four point configuration for 

 measuring conductivity.

5.2.4.2. Determination of the resistivity of an infinitely thick film of semiconductor
Following an injection of current of intensity I at A, there is the appearance of 
current half-lines originating at O, as shown in Figure 5.6 and if the semiconductor
is isotropic and homogeneous. As the current density vector
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j (=  E = - grad V ) is collinear with the potential gradient (which is normal to
the equipotentials), the equipotentials can be represented by spheres and the current
lines as radii to these spheres.

For a potential difference (dV) between two points P and Q defined by the
intersection of equipotentials V and V + dV (half-spheres of radius r and r + dr) 
along the surface of the semiconductor, we can state that with the resistance dR 

between two spheres being
dr

dR
2 r²

 (  is the semiconductor resistivity), in 

terms of moduli we have:
dr

dV I dR I
2 r²

.

j

V+dV=Cte

V=Cte

I

Q  P A

Figure 5.6. Current injection into an infinity thick semiconductor film.

Algebraically, there is a drop in the tension across dR of I dR, and therefore
dr

dV I
2 r²

. From this can be determined that for two points B and C (Figure

5.5) defined with respect to A by B = dB and AC = dc (also with
dr 1
r² r

) we 

have:
B

C

dB
B C BC

C d B C

dr I 1 1
V V V dV I

2 r² 2 d d
.

Now consider the problem for point D where the current is extracted from the
semiconductor. We can think that an electrode placed at D injects a current –I, so
that if we make DB = dB’ and DC = dC’, the current created between B and C is the
potential difference , as in:'

BCV
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B

C

d 'B
'
BC B C ' '

C d ' C B

dr I 1 1
V V ' V ' dV ' I

2 r² 2 d d
.

Finally, the two electrodes at A and D give rise to a potential difference (Figure
5.7a) whatever the position of the points:

'
BC BC ' ' '

B C B C

I 1 1 1 1
V V V

2 d d d d
. (19)

A B
+

I
(b)

I

c 2 V

cB

V
d’BdB

C
DA

d’CdC I exit
+

I entrance CD

(a)

Figure 5.7. (a) Configuration for any four points and
(b) square configuration.

  Equidistance points in a line (Figure 5.5)
Here dB = d, dC = 2d, d’B = 2d, d’C = d, which on plugging into Eq. (19) gives:

V
2 d

I,  hence 2 d
V
I

where  =
1

=
1

2 d
I
V

(20)

(with d in cm,  is in -1 cm-1, and 1 -1 cm-1 = 102 -1 m-1 ). 

  Points in a square (Figure 5.7b) 

With dB = d’C = c and dC = d’B = c 2  , we have from Eq. (19): 

2 1
V

c 2
I , from which: 

10.75 c
V
I

 and  = 0.093
1
c

I
V

. (21)
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5.2.4.3. Determination of the resistivity of an infinity thin film of semiconductor
The injection of a current I into a homogeneous plaque of infinite surface area and 
extreme thinness (e) results in current lines being parallel to the surface. Due to 
symmetry, and using the same arguments as those presented in the preceding 
section, the equipotentials can be represented by cylinders (which also are Gaussian 
surfaces) of height e and with an axis extending from the injected current. The
current lines are the radii of the cylinders, as shown in Figure 5.8. 

j j e

IQ P

A

Figure 5.8. Current and equipotential  lines in an infinitely 
thin film.

The resistance between two cylinders of radius r and r + dr is given by
dr

dR
2 re

. The potential difference between these two cylinders of which the

lateral surfaces are traversed by a current I (in other words between two points P and 

Q which are separated by a distance dr) thus is given by
dr

dV IdR I
2 re

, so 

that algebraically we have for the drop in potential
dr

dV  I
2 re

.

We thus obtain two points B and C located with respect to A by AB = dB and 
AC = dc, to give:

B

C

dB
C

B C BC
C d

dr I d
V V V dV I Ln

2 re 2 e dB
.

Similarly, the contribution to the voltage between B and C from the electrode D
from which the current comes is:

B

C

'd 'B
' ' ' B
B C BC '

C d ' C

dr I d
V V V dV I Ln

2 re 2 e d
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The two electrodes at A and D finally give rise to a potential difference V 
between B and C which is such that:

'
C B

'
B C

I d d
V Ln

2 e d d
 . (22)

  For aligned and equidistant points, we thus find:
I V 0.22 I

V Ln2 , and hence 4.53 e and
e I e V

. (23)

  For points placed in a square (Figure 5.7b), we thus find: 
I V 0.11 I

V Ln2 , so that 9.06 e   and
2 e I e V

. (24)

5.2.5. Resistance per square or more simply put resistance squared and denoted R
For parallelepiped (Figure 5.9a) with rectangular upper and lower surfaces of sides
denoted a and and a lateral face of height e, the resistance between the two 

opposed lateral faces separated by  is given by rectR
S e a

.

If = a, the upper and lower faces are squares of side length a (as in Figure 
5.9b), and the resistance between two lateral faces becomes what is termed the 
resistance squared, of which the value is independent of the value of a because:

Rsquare R
e

, (25)

the unit of which is the ohm per square, i.e., / .

Between Rrect and R  we have the relation  Rrect = R
a

.

The expression for the resistivity always being empirical and in the form [Eqs. 
(20,21,23,24)]

V
K e

I
, (26)

where K is a fixed value for a given configuration (for a thin sample, K = 4.53, and
for square points, K = 9.06). 
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The ratio of Eq. (26) to Eq. (25) gives:

R
V

K
I

. (27)

e

a
aaa

e

(a) (b)

Figure 5.9. Upper face as (a) a rectangle and (b) a square.

Important comment 
Equation (27) is often abusively interpreted by those working in electronics as they
use it to deduce the square resistance (that is to say its value and therefore its 
measurement) independently of the size of the sample. This is false, because Eq.
(25) shows that the value of R depends on the thickness (e) of the sample and the
resistivity ( ) only depends on the physical nature of the material. The only thing
that is true is that the value of R  does not depend on the value of the side (a) of the
sample measured.

Also, it should be stated that the measurement of the square resistance does not
necessitate knowledge of the thickness of the sample, as it is simply a measurement
of V/I, within an order of K. 

Therefore, a comparison of the square resistance is one at a macroscopic level
for the resistance, which has geometric dimensions. A physical and microscopic
comparison of materials necessitates knowledge of  for each material. In order to 
determine we need to know the thickness of the material, in accordance with Eq. 
(26), for example.

To go even further and say that two samples have the same resistance squared 
is not the same as saying that they are made from the same material (and have the
same physical constant ). This could only be true at a limit if the samples also have
the same thickness (which is often unknown anyway due to ignorance of the doping
thickness,  hence the use of resistance squared!). 
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5.3. Magnetoelectric characterization of semiconductors 
5.3.1. The Hall effect
5.3.1.1.  Phenomenological study of the Hall field
The geometrical configuration chosen in Figure 5.10 shows a bar (parallelepiped)
semiconductor with its edges parallel to the axes of the trihedral Oxyz. It is placed in
a uniform magnetic field zeBB 00  that is applied along Oz. A current is passed 
through along the length and denoted jx following the application of an electric field
( ) along Ox. xE

Following the deviation of the trajectory of the carriers by the Laplace
force (which moves them toward the faces parallel to Oxz), there is the addition of a 
transversal component denoted Eh along Oy. This is due to the potential difference,
called Hall’s voltage, which appears following charge displacement along the lower
face of the parallelepiped (parallel to Oxz). 

z

 y 

x
0B

xE
jx

pv
nv

n pF F
+ + + ++ + + + 

electron
transport

hole
transport

h n(E )
h p(E )

n nj nqv

p pj pqv

h
Vh

Figure 5.10. Configuration of electric and magnetic fields.

In effect, the Laplace forces

n nF q v B0 for electrons , (28)

for holes,         (29) p pF q v B0

are both orientated along ( Oy ), and electrons and holes move toward the lower

face. This gives rise to an electric field (termed the Hall field) h n
E  that is 

orientated toward  for electron transport, along with a field denoted

following O  for holes. 

Oy h p
E

y



Chapter 5. Electrical and magnetic properties of semiconductors 161

5.3.1.2.  The Hall constant
The Hall field in turn generates a force due to the electron current 

, and a force due to the holes given byh n h n(F ) q(E ) h p h p(F ) q(E ) . These 

forces are both directed along Oy , and as a consequence are opposed to the Laplace 

forces  and .nF pF

Under a permanent regime, we have Laplace Hall
dv

m 0 F F
dt

, so that 

. There is no current flow between the upper and lower faces 

(unconnected by a closed circuit and therefore “open circuit”), and at equilibrium
the Laplace and Hall forces compensate one another. We thus have:

Laplace HallF F

nfor electrons: , whereby using Eq. (4) gives:n 0 hq v B q(E )

h n 0 n n 0 n
1

(E ) B j R B j
nq

 where n
1

R
nq

0 . (30)

for holes: , where using Eq. (5) gives:p 0 hq v B q(E )p

h p 0 p p 0 p
1

(E ) B j R B j
pq

 where p
1

R
pq

0 . (31)

The Hall tension (Vh) between the lower and upper faces is, in moduli, in the 
form

0 0
h h

B I B 1 I
V E h j h h B

cq h cq cq 0 ,

where c is the concentration of carriers so that c = n or c = p, h is the height of the
parallelepiped along Oy, and  is the width of the parallelepiped along Oz. 

Algebraically, for the electrons the potential difference is negative and:

h 0 n 0
1 I I

V B R B
nq

0 . (32)

For the holes the Hall potential difference is positive and:

h 0 p 0
1 I I

V B R B
pq

0 . (33)
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To conclude, the Hall voltage is:
positive for a hole current and negative for an electric current;
proportional to the magnetic field B0 and the intensity I of the current; and
inversely proportional to the concentration of carriers.

Numerically the value of Vh  is of the order of 10 mV in semiconductors. In
metals where the concentration of carriers is much higher, the same tension is
considerably reduced and becomes around 10 µV.

5.3.1.3.  Mobility and Hall mobility 

For holes, according to Eq. (7) , so thatp qpµp
p

p
q p

µ
.  From Eq. (31), we 

also have 
p

1
q p

R
, from which we can pull out:

p pµ R p . (34)

For the electrons, we have n

n n

1
nq

R µ
, so that

n nµ R n (35)

(as Rn is negative, we once again find µn being positive, as defined above). 
In effect, the preceding physical theory is rather well simplified, as we have 

assumed that each of the carriers (electrons or holes) have the same single speed. 
This neglects any changes due to phonons or impurities in the lattice. In this case, a 
term needs to be introduced so that, for example, Eq. (34) can be rewritten as 

, where µp p p HR r µ µ H is called the Hall mobility (of the order of 20 to 90 % 

larger than the conduction mobility µp). This Hall mobility thus is given as a product 
of the conductivity and the Hall constant.

5.3.2. Magnetoresistance and magnetoconductance
5.3.2.1. Definitions
In general terms, if (0) and (0), respectively, denote the resistivity and
conductivity of a sample measured in the absence of a magnetic field, and if (H)
and (H), respectively, denote the resistivity and conductivity of the same sample
measured in the presence of a magnetic field H, then:
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 the magnetoresistance (MR) is defined by

0

(H) (0)
MR

(0)
, (36)

 the magnetoconductance  (MC) is defined by

0

(H) (0)
MC

(0)
, (37)

 the relation that exists between MR and MC is thus:

0 0

(H) (0)
MR MC

(0)
. (38)

Depending on whether the direction of the applied electric field is normal (

along Oz and  along Ox) or parallel (
0B

xE Ex and B0  along Ox) to the direction of 
the magnetic field, we respectively use the terms of transversal or longitudinal
magnetoresistance (or of magnetoconductance). In accordance with the most
generally studied configurations, the following calculations consider the transversal
magnetoresistance shown in Figure 5.11 which adopts the same format as Figure
5.10.

The calculations are for a semiconductor that typically contains two types of
charges with algebraic values q1 and q2, for which the densities are n1 and n2 and the
effective masses are m1* and m2*. With the carriers being either electrons at the 
bottom of the conduction band or holes at the top of the valence band, these masses
are positive. The relaxation times are denoted 1 and 2, and their mobilities are 
defined by µ1= |q1| 1/m*1 and µ2= |q2| 2/m*2 (positive magnitudes for this definition).

jx
h

0B

z
x

 y 

xE

Figure 5.11. Configuration of the electric and magnetic fields used in 
measuring transversal magnetoresistance. 
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5.3.2.2. Carrier speeds (exampled calculation for one carrier type)
For a carrier with a mass m* and an algebraic charge q, taking into account the
presence of a frictional force of the form –m* v / , the dynamic fundamental
relation is written:

0
dv v

m qE q v B m *
dt

.

Under a permanent regime , we obtain(d/dt) = 0 E
m*v
q

v B0 .

As
q

m *
, projections to the axes Ox and Oy yield:

x x
x y 0 y 0

y y
y x 0 x 0

qm * v v
E v B -v B (39)

q q
m * v vq

E v B v B .  (40)
q q

The addition of Eq. (39) multiplied by  µ
q

q
 to Eq. (40) multiplied by µ²B0 yields

x 0 y x 0
q

E µ²B E v 1 µ²B ²
q

.

By assuming that the induction B0 is sufficiently weak so that µ²B0² <<1, and 
by neglecting the terms for B0 at a power greater than or equal to 3, we obtain:

x 0 x
q

v µ(1 µ²B ²)E µ²B E
q 0 y . (41)

Similarly, the addition of Eq. (39) multiplied by -µ²B0 to Eq. (40) multiplied by

µ
q

q
 , yields:

y 0 y
q

v µ(1 µ²B ²)E µ²B E
q 0 x . (42)
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5.3.2.3. Equations for two types of carriers
When there are two types of carriers (1 and 2), and in the absence of an induction
B0, there is no current along Oy. The conductivity [ (0)] is therefore of the form

(0) = q1 n1µ1 + q2 n2µ2.

In the presence of B0, the components of the current density are such that:

Jx = n1q1v1x + n2q2v2x = xx Ex + xy Ey

Jy = n1q1v1y + n2q2v2y = yx Ex + yy Ey,
where

xx = yy  = q1 n1µ1(1 - µ1²B0²) + q2 n2µ2(1 - µ2²B0²)

xy = - yx  = (q1n1µ1² + q2n2µ2²)B0 . 

For a sample of limited size along Oy, the face of the sample being at open
circuit (for example, with a voltammeter of great impedance for measuring the Hall
effect), there is no current debit along Oy and jy is zero. From this can be deduced
that

Ey
yx

yy
Ex

xy

xx
Ex . By moving this into jx  we obtain:

xx xy
x x

xx

² ²
j E xE , (43)

where is the longitudinal conductivity (in the direction of the applied field Ex).

By substituting the expressions for xx and xy into that for , we obtain:

1 1 1 2 2 2 1 2 2
1 1 1 2 2 2 0

1 1 1 2 2 2

q n µ q n µ µ µ ²
q n µ q n µ B

q n µ q n µ
. (44)

Note that in the minus sign indicates that the charges are of the same
sign, whereas the plus sign indicates the opposite.

1 2(µ µ )

5.3.2.3. Expressions for the magnetoconductance and the magnetoresistance
The transversal magnetoconductance (MC), which corresponds to a measure of the
conductivity ( ) along a direction Ox normal to the direction Oz of the applied
magnetic induction, is defined by the ratio:
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l 0

0 0

(H) (0)
MC

(0)
,

from which we have:

1 1 1 2 2 2 1 2 2
0

0 1 1 1 2 2 2

q n µ q n µ µ µ ²
B

q n µ q n µ ²
. (45)

When two types of charges are identical (q1 = q2 = q and are either both holes
or electrons) the expression can be simplified, as in:

1 2 1 2 1 2
0

0 1 1 2 2

n n µ µ ²µ µ
B ²

n µ n µ ²

For charges with opposite signs (q1 = q2 = q), we obtain

1 2 1 2 1 2
0

0 1 1 2 2

n n µ µ ²µ µ
B ²

n µ n µ ²

Finally, for both cases, the law of evolution is given by:

0
0

A B ² , where A > 0 (46)

For its part, the magnetoresistance (MR) is such that:

2
0

0 0

(H) (0)
A B

(0)
. (47)

This is an increasing function paired to B0. Whatever the direction of B0, this
magnetoresistance represents the growth in the transverse resistance (that is to say 
jx  B0) when we apply a weak magnetic induction.
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5.4. The Gunn effect and microwave emissions 
5.4.1. Expressions for , j, and <v> for carriers in a semiconductor with a 

conduction band of two minima
It is worth recalling first of all from Section 5.1 that for electrons in a semiconductor
conduction band the average drift speed of the electrons (which are noted here as
<v> = ) is given in the formdv

d n
q

v E
m *

µ E , (1’)

where  is the relaxation time corresponding to the interval between two successive
collisions.

For intense fields, the carriers reach speeds of the order of the thermal speed 

(vth) which is such that 2
th

1 3
m * v kT

2 2
, and the mobility µ tends toward zero

along with . A representation is given in Figure 5.12.

vd
vth

E

dv  = µ.E

Figure 5.12. Variation in the drift velocity with 
 electric field. 

Thus, the electronic current density n nj v  is written for the linear part of

the plot where n d nv v µ E . Hence d nj qnv qnµ E En , and the
differential conductivity is given by:

n n
dj nq²

qnµ 0
dE m *

. (48)

If we consider a semiconductor such as GaAs or InP, the conduction band has 
two minima in accordance with the representation given in Figure 5.13, which 
illustrates the case of a crystal of GaAs doped with As. The concentration of the 
ionized doping atoms is denoted N. 
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EC

EV

E

mL m

k

EG 1.4 eV

m 0.36  eV

Figure 5.13. Band scheme for GaAs, with two minima in the 
conduction band.

The so-called “light” electrons of concentration  and effective mass  are 
situated at the bottom of the conduction band. The “heavy” electrons populate the
bottom of the second minimum with a concentration n

n m

L and an effective mass mL
more or less equal to the mass of free electrons, i.e., mL = m.

In general terms, and for whatever electric field, it is these two types of
electronic charges that participate in the conduction. Here, and as a first
approximation, we can assume that the relaxation time ( ) for the two types of 
electron are identical. We thus have: 

q
µ

m
 (49)

L
L

q
µ

m
. (50) 

By dividing Eqs. (50)/(49) we find:

L
L

m
µ µ

m
. (51)

The conductivity is:

L L L
L

m
q n µ n µ qµ n n

m
. (52)
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It is possible to hypothesize that the concentration (nL) of heavy electrons 
increases with the electric field (to the detriment of the concentration of light
electrons) in the following manner:

L
0

E
n N

E
, (53)

where E0 is the field for which nL = N, and by as a consequence, = 0 (as N is such 
that N = n + n

n

L).

Simultaneously, the law of variation for  isn

L
0

E
n N n N 1

E
,             (54) 

when E < E0, substitution of Eqs. (53) and (54) into (52) gives:

0 0 L

E E m
qNµ 1

E E m
, (55)

from which can be deduced that

0 0 L

E E m
j E qNµ 1

E E m
E .      (56) 

The average drift velocity (v) for the sum of the electrons of concentration
N is such that j = qNv, and for this average speed relative to all electrons, 
we have:

0 0 L

j E E
v µ E 1

Nq E E m
m

; (57)

when E > E0, n =0, nL = N,

L

m
qNµ

m
,

L

m
j qNµ E

m
(58)

and:

L

j m
v µ

Nq m
E . (59)

Equations (56) and (58) make it possible to describe the function j = f(E).
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Figure 5.14 shows that it must go through a maximum at a field Em which must

be such that 
mE E

dj
0

dE
.

With Eq. (56), this condition gives rise to:

m
0 0 L E E

2E 2E m
1 0

E E m
, from which 0 L

m
L

E m
E

2 m m
.

When  we findLm m

0
m

E
E

2
. (58)

Finally, when E < Em ( E0/2), the differential conductivity ( diff) is positive. When
Em ( E0/2) < E < E0, then diff is negative.

When E > E0, we have a single type of carrier with a concentration N = nL, so 
that j = q nLµLE [linear law in contrast to Eq. (56)], and diff = q nLµL.

zone of
NDR

Lj qNµ E

j qNµ E

E

j

Em  E0/2 E0

Figure 5.14. Plot of j = f(E) and the zone of negative differential 
resistance (NDR) (or conductivity).

As
j

v
Nq

, a plot of v = g(E) as shown in Figure 5.15 has the same

appearance as that of the plot of  j = f(E). It is only at very high fields, though, that
the drift velocity approaches the thermal velocity.
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vd

v+ = v -

vth

vm GaAs

Em

Si

E+E -
E0

E

Figure 5.15. Variation in the drift velocity with the 
electric field for GaAs.

5.4.2. Emission of an electromagnetic wave in the microwave region
Between Em and E0, the differential resistance is negative and gives rise to unstable
states in the semiconductor. There can arise therefore in the semiconductor various
regions each characterized by different values of conductivity and field. 

So if the semiconductor is placed in a field just above Em , the current density is 
practically at a maximum. If there is an initial instability or a small heterogeneity in
the semiconductor in a region that we suppose extends from x1 to x2, the electric 
field can be sufficiently greater than Em so that the current, and hence the carrier 
velocity, is considerably lower than their maximum values jm and vm (see Figure 
5.15). The carriers thus see their velocity reduced in the x1 plane, and as a 
consequence they have a tendency to accumulate, whereas in x2 they are late in
arriving and as a consequence there is a positive charge formation (by non-
compensation).

A dipolar layer is thus formed between x1 and x2, which contributes in the zone 
[x1  x2] to a localized supplementary field Esupplem. (Figure  5.16). This field is in
addition to the field E already in this zone, resulting in a more intense field,
E+ = E + Esupplem., which further reinforces the slowing down of electrons, which
now exhibit a velocity given by v+ < vm (Figure 5.15). Inversely, given the polarity
of the dipolar layer, outside the zone [x1 - x2] the field is reduced toward a value E -

< Em much like the velocity which takes on a value  v – < vm . Outside of the zone 
[x1 - x2] where the field is E - < Em, any instabilities can no longer be formed (and 
remain localized in the initial zone). Because of the symmetry of the plot of
v = f(E) around Em, the velocity of the electrons is in fact reduced to the same value
v – = v+ = v’ both in the zone [x1 - x2] and outside (with the evident notations,
v- = µextE-  and v+ = µx1x2E+).
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+

x1 x2

Esupplem.

+E

velectronsn

x

Figure 5.16. Modification of a field by the 
presence of a dipolar layer.

Taking the localization of defaults around the interfaces into account, the 
instabilities (at the layer x1 – x2) are in fact formed in the neighborhood of the
cathode and thus are transported without modification at a velocity v’ across the
semiconductor. During this voyage, the density of the current in the sample is
j’ = q N v’.

When the domain reaches the anode where it is destroyed, the current in the 
sample once again takes on its initial and practically maximum value of jm
associated with a field just above Em. The conditions to reform a new domain are
thus reunited. The process in effect occurs periodically with a frequency associated
with the velocity v’ of the propagation of the domain. If the domain has a length L, 

the impulsions (layer x1 – x2) exhibit a frequency given by
v '

'
L

.

Orders of scale
The frequency of the oscillations thus produced can be evaluated for GaAs. For
example, v’ = v- = µextE- where µext is the mobility in the volume of the
semiconductor in which a field governs E- which is slightly less that Em . The µext is 
then given by Eq. (57) where E = E-. For GaAs, where E0 = 6 kV cm-1, we can take

E-  Em  E0/2 = 3 kV cm-1, from which with
L

m
m

<< 1, we have 

 v’ = 
0

E
v µ E 1

E
.

From this can be deduced an order of scale of v’  105 m s-1.
For a sample of length L  10-5 m, i.e., L = 10 µm, we have ’  10 GHz.
When L = 10-4 m , i.e., L = 100 µm, we obtain ’  1 GHz. 
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This is an emission in the microwave domain, and since its discovery in 1963,
there have been numerous solid sources using the Gunn effect which have been 
developed. Their emission frequency can be adjusted simply by changing the length
L (typically between 1 and 100 µm) of the GaAs sample. The homogeneity of the
sample nevertheless must be carefully controlled so that domains are not formed in
various parts around the crystal.

5.5. Problems
5.5.1. Problem 1. Hall constant
1. Establish the expression for the Hall constant for a material with two types of 

carriers.
2. Study the particular cases where the two types of carriers are identical

(q1 = q2 = q), the signs different (q1 = - q2 = q), where there is in effect only one 
type of carrier (n2 = 0). 

3. Show how from measurements of conductivity, the magnetoresistance and the
Hall constant, it is possible to determine expressions for the mobilities µ1 and µ2
of the carriers as well as their concentration n if the two carriers (of opposing
charges) have the same concentration. 

Answers

1.  The Hall constant (RH) can be defined by
Ey

jx
B0RH ,

 where jx  Ex   and Ey
xy

xx
Ex .

For a material with two carriers, we have:

y y xy xyx xyxx

x l x xx xx xx xy xx xy

E E 1
j E ² ² ² ²

.

By neglecting the small terms (which is the same as keeping the 1st degree
term for B0 on the numerator and the 0 degree term on the denominator) we end up 
with:

y 1 1 1 2 2 2 0 1 1 1 2 2 2
0 H H

x 1 1 1 2 2 2 1 1 1 2 2 2

E q n ² q n ² B q n ² q n ²
B R , soit R

j ( q n q n )² ( q n q n )²
.
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2. Specific cases 
a. The two charges are identical and q1 = q2 = q, so 

1 1 2 2
H

1 1 2 2

n ² n ²1
R

q (n n )²
 .  If q > 0 (holes), RH > 0 while q < 0 (electrons)

gives RH < 0.  If in addition, n1 = n2 = n ,

1 2
H

1 2

² ²1
R

qn ( )²
.

b. The two charges have different signs q1 = - q2 = q, so 

1 1 2 2
H

1 1 2 2

n ² n ²1
R

q (n n )²
, and if in addition, n1 = n2 = n ,

1 2
H

1 2

² ²1
R

qn ( )²
.

c.  If there is only one type of carrier, for example, n2 = 0, then by making

n1 = n, q1 = q  and µ1 = µ, we have H
1

R
qn

.

 RH clearly has the same sign as q. 

3. Applied determination of the characteristics n1, µ1, n2, µ2 of a semiconductor
It is assumed that we have at our disposal the following characteristics:
 continuous conductivity (in the absence of B0) corresponding to (0) = 0;
 the magnetoresistance (which according to our hypotheses has a small effect) 

as MR or ;  and 

 the Hall constant RH.

From this it is a priori possible to determine the four magnitudes listed above. 
If the material is an intrinsic semiconductor, we can assume that n1 = n2 = n, and the
signs are opposed, as in q1 = q2 =q.

This leaves but three unknowns, namely n, µ1, and µ2, which can be derived
from three independent equations:
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(0) = q n(µ1 + µ2),

1 2 1 2 0q n(µ µ )(1 µ µ B ²) ,

1 2
H

1 2

² ²1
R

qn ( )²
.

It is possible to state that for the Hall effect, it is the carriers with the greatest 
mobility that give their sign to RH (if µ1 > µ2, RH 1/q = 1/q1 , and if µ1 < µ2, then
RH -1/q =1/q2).

5.5.2. Problem 2. Seebeck effect 
1. Preliminary question on the electric current in a semiconductor

This concerns an inhomogeneous n-type semiconductor at thermal equilibrium
and not subject to an external electric field.

a. Give the general expression for the electronic current density (which
contains two components, one being tied to the concentration gradient).

b.  From this, deduce the expression for the internal field.

2.  General expression for the Seebeck coefficient 
This concerns an initially homogeneous n-type semiconductor that is one-

dimensional along Ox onto which is applied a temperature gradient at two surface
points A and B. The hottest point is at A, and typically [TA – TB]  5 K is small.

    cold                     hot
  point B                                    point A 

                                                             Ox

Once again it is supposed that the form of the current density can be written 
using two terms, one relating to the thermal gradient ( gradT which gives rise to the
internal diffusion of carriers) and the other to the conduction generated by an 
internal field E . Thus:

nj  E M gradT .
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At equilibrium, the resultant current nj  is zero and the internal field can be

written in the form  in an equation that defines S, the Seebeck 
coefficient.

E S gradT

a.  Express S as a function of M and of .
b. Express S as a function of V = VA – VB and of T =TA – TB.
It is often the latter equation that serves in defining Seebeck’s coefficient, and it 

will be used in the rest of this problem.

3. Expression for S in a nondegenerate n-type semiconductor
a. Indicate the physical method and calculation required to find out the

electronic concentration (n) for a semiconductor with the form
3/2 c FE E

n = n(T) AT  exp( )
Tk

.

b.  A diffusion current jD is created by a concentration current which is itself

formed by a temperature gradient (which we can simplify to
dT
dx

 for a one

dimensional problem).
  The fact that [TA – TB] 5 K is typically small indicates what with respect

to the EF of the semiconductor?

Express jD as a function of the diffusion constant Dn and of 
dT
dx

.

c. Following the diffusion, an internal electric field appears and generates an 
antagonistic electric current jC.

. Give the equilibrium condition for the system.
Recall Einstein’s relation. From this deduce the expression for S for a n-type

semiconductor as a function of (EC – EF),  e (electronic charge), k, and T. 

4. Show how knowing both the conductivity and S make it possible to determine the
carrier mobility.

Answers
1.

a.  Electronic current density:

n n n n nj E qD gradn qnµ E qD gradn .



Chapter 5. Electrical and magnetic properties of semiconductors 177

b. At equilibrium, no current goes through the semiconductor, so jn = 0 and 

, from whichn nqnµ E qD gradn n

n

1 D
E g

n µ
radn . (1)

2.

a.  We thus have , and at  equilibrium we also have jnj  E M gradT n = 0. 

From this can be deduced that
M

E gradT . (2)

As S is defined by   we therefore haveE S gradT
M

S .

b. From  it is possible to deduce algebraically with respect to Ox 
that

E gradV

A B

A B

V V V
E

x x x
. (3)

Similarly, from Eq. (2) we can state that in one dimension

A B

A B

T T T
E S S

x x x
 . (4)

From Eqs. (3) and (4) we deduce that A B

A B

V V V
S

T T T
. (5)

3.

a. We have , where 
CE

n Z(E)F(E)dE CZ(E) E E , and for a non-

degenerate semiconductor [(E – EF) > 2 or 3 kT]] FE E
F(E) exp

kT
. We also 

have [where Cn is a constant for the proportionality factor in Z(E)]: 

C

F
n C

E

E E
n C E E exp( )dE

kT
.

By making CE E
u

kT
,
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and by writing F C CE E E E E E
exp( ) exp( )exp( )

kT kT kT
F

we find that 3/ 2
n

0

EC EF
n C (kT) exp u exp( u)du

kT
.

As
0

u exp( u)du
2

, we finally have:

3/ 2 C FE E
n AT exp

kT
 . (6)

b.
    As T  constant across the whole semiconductor, EF constant with respect

to T across the semiconductor.

  We have D n n n
dn dn dT

j qD gradn qD qD
dx dT dx

.

Taking Eq. (6) into account, we have:

3 / 2 C F C F C Fdn E E 3 E E E E 3
AT exp n

dT kT 2T kT² kT² 2T
, from

which

C F
D n

E E 3 dT
j qD n

kT² 2T dx
. (7)

c.

From n c Dj j j 0  at equilibrium, the result is that Dj cj , so that 

with , that is to say, cj qnµ En c n
dV

j qnµ
dx

 , we have 

C F
n n

E E 3 dT dV
D µ

kT² 2T dx dx
. (8)

 Einstein’s relation can be written as n

n

D kT kT
µ q e

, where e > 0, and the

electronic charge is denoted as – e. 
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Finally we have 
(5) (7)

n C F

n

dV D E E 3
S

dT µ T kT 2
,

so that with Einstein’s relation, n

n

D
µ T e

k
 , and 

C F
N

k E E 3
S S

e kT 2
. (9)

As EC > EF = EFn (n-type semiconductor), we have (EC – EFN) > 0, and S = SN > 0. 

Comment 1. In more general terms, the thermoelectric power (SN) has the form

C F
N

k E E
S S B

e kT
, (9’)

and here B = 3/2.  However, in more general theories, we have
5

B
2

s , where s 

takes on different values depending on the theoretical model used for conduction.

Comment 2. For a p-type semiconductor, we obtain F V
P

k E E 3
S S

e kT 2
,

and SP > 0. Hence the Seebeck coefficient can be used to characterize the p or n-type 
character of the semiconductor.

4.  If we know the conductivity, so that n = q n µn, then for a n-type 
semiconductor, we have 

nµ
qn

 . (10)

With n given by Eq. (6), which also can be written as 
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3/ 2 C F C F
C

E E E E
n AT exp N exp

kT kT
,

then by taking Eq. (9’) into account, we have 

C
qS

n N exp B
k

,

and Eq. (10) yields:

n
n

C

qS
µ exp

qN k
B . (11)



Chapter 6 

Introduction to Nonlinear Effects 

This chapter details the effects of the intensity of electromagnetic waves on 
materials. When the intensity reaches a sufficiently high level, the material’s 
response is no longer linear. Of particular interest is the expression for polarization 
under such conditions, along with the applications that result from the electrooptical
effects.

6.1. Context 
The previous volume, entitled “Basic Electromagnetism and Materials”, describes 
nonlinear properties of materials. They were considered to be singularly due to the 
materials themselves, for example, in the case of ferroelectric and ferromagnetic 
materials, which give rise to electric polarization and a spontaneous magnetic 
intensity, respectively. The electric and magnetic dipole moments of these materials 
thus are not proportional to the magnetic or electric excitation field.  

The nonlinear properties provoked by an electric excitation must be such that 
the electric field gives rise to nonlinear displacement forces in the material. In 
general, we can suppose that a material submitted to one or more external electric 
forces undergoes deformations which are typically ion displacements in 
minerals where ionic bonds dominate or electronic displacements in organic 
materials where electronic and molecular orbitals dominate through covalent 
atomic bonds. 

With appropriate external fields, the recall force that is exercised on displaced 
charges (ionic in minerals and electrons in organics) no longer follows the classic 
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expression frecall  =  kx. The recall force is a simple elastic force that pulls displaced 
electrons back to their equilibrium positions. The polarizations are no longer linear. 

The first part of this chapter takes as an example the application of an intense
external field (E ) that is associated with an optical wave and affects the movements
of electrons in a material. The second-order form of the electronic polarization is
deduced, and the nonlinear response to the electric field, produced by the electric
field in terms of polarization, is considered.

The second part looks at the optical properties of materials subject to a field
signal denoted (Es) of static or low frequency. Within this is also propagating an 
optical wave with a field E . This gives rise to a study of the index of the material
and the intensity or dephasing of the optical wave following its propagation in the
material. The use of this system in electrooptical modulators then will be detailed. 

6.2. Mechanical generation of the second harmonic (in one dimension)
6.2.1. Effect of an intense optical field (E )
For an electronic polarization, nonlinear effects result when the recall force, which 
exercises a field E (denoted here E E ), no longer takes on a simple linear form:

fr =  k x  =  m ² x. 

In the case where fr is reduced to this simple form, then it is the coulombic field,
caused by the action of the nuclei on the electrons, which is responsible for the recall
force. Typically, the internal electric fields are of the order of 10 V cm8  to 109 -1,
while the optical field is only around 104 V cm-1 for an optical field of several
MW cm-1.

When a field, such as a laser, is no longer negligible with respect to the internal
field, then the recalling force should be changed to:

rf  k x  d x²  m ² x m ² x² ,

where fr, as a consequence, is derived from a potential, or more precisely, an 
anharmonic potential energy (W or rather more conventionally denoted V):

3
r

1 1
f grad W grad V V kx² dx

2 3
.
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6.2.2. Putting the problem into equations

The anharmonic potential given in the form 31 1
V x kx² dx

2 3
, along with the

corresponding recall force rf kx dx² , are schematized in Figure 6.1. 

(a)
1

²
2

V x kx (b) 31 1
²

2 3
V x kx dx

xx

x

rf kx ²x

x

2
0² ²rf kx dx m x m

Figure 6.1.  Representation of potentials and their corresponding forces: (a) harmonic 
and (b) anharmonic.

The response of the system, in terms of electron displacement to an electronic 
polarization, to the optical excitation which is an electric field of the form

is governed by a fundamental dynamic law in which the
displacement x(t) is varied in response to the different harmonic components (Figure 
6.2).

0E E cos t
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decomposition

movement through influence 
F = fr + ft + fC, where fC = qE, 

and E(t) = E0 cos t intense 
x

tim
e

x

Figure 6.2. Application of  an anharmonic potential (zone a) to a charge, 

 giving rise to a decomposition (zone b) of the displacement of the charge.

With the system not being linear, we need to be prudent in our use of the

habitual imaginary notation j  t
0E Re E e and remain with real functions.

By denoting the conjugated complex as cc, we can write that:

j  t0
0

E
E E cos  t e cc

2
.
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When using a classic study of the movement of electrons in a material, where 
there is a linear regime with the recall force being given as fr = - k x, we bring in all
of the forces applied to the system, i.e., 

 coulombic force Cf  q E (where here q is the charge under consideration,
and q =  e for electrons);

   frictional force ft , which is such that t xf m v m x ; and

   a recalling force , which is further detailed in Chapter 8, Volume 1.rf kx

2 ²
The same is applicable to a nonlinear regime, as long as fr is defined by its new

equation, as in .r 0f kx dx² m x m ²x

The fundamental dynamic equation with respect to x is written in the form:

r t Cm x F f f f , so that by simplifying with m we have:

2 2 2 j  t0
0

qE
x x x x e cc

2m
. (1)

Under a permanent regime, x is now related to the various anharmonic
components (Figure 6.2), and hence:

i t i2 t
0 1 2

1
x t x x e x e ... cc

2
. (2)

In order to simplify the calculation, we can take 0x 0 .

6.2.3.  Solution to the problem of displacement terms
The resolution of the problem is through a long series of calculations, which involve
plugging the equation for x(t) into Eq. (1).

We thus obtain Eq. (3):
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2
i  t 2 i t i  t

1 2 1

2
i  t i2 t0

2 1

i
x e cc 2 x e cc x e cc

2 2

i  x e cc x e cc
2

2 2
i  t i2 t0 0

2 2

2
2 2i  t * i  t * * 3i t 2 4i  t
1 1 2 1 1 2 2 1 2 2

x e cc (x e cc)
2 2

x e 2x x e x x x x 2x x e x e cc
4

i  t0qE
e cc .   (3)

2m

6.2.3.1. First-order terms (linear approximation)

The identification of coefficients of the terms to i te  in Eq. (3) gives rise to: 

0 0
1 2 2

00

qE 1 qE 1
x

m 2 m ii 2
 . (4)

if resonance at = 0

3.2.3.2. Second-order terms

Similarly, the identification of coefficients for terms in i2  te  makes it possible to
determine , which verifies:2x

2
2 2

2 0x 4 2i  x
2

2
1 .

We thus can see that it is the term in that generates the movement in  (term d 
x²  in the equation f

2
1x 2

r = m 0²x + m ² x² = kx + d x² ).

By substituting Eq. (4) for  in our last equation, we obtain:1x

2 2
0

2 22 2 2 2
0 0

q² E 1
x

2m² i  4 2i
 . (5)
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6.2.4.  Solution to the problem in terms of polarization
6.2.4.1. Polarizabilities and polarizations of different orders 
The generalized formula for the dipole moment (p) of a molecule with a permanent
dipole (µ0) submitted to a local field denoted lE is:

p = µ0 + 0 ([ ] +[ ]lE lE lE +[ ] lE lE lE +…).  (6) 

Just as  represents the first-order polarizability,  (units 10-4 m V-1) gives the
molecular polarizability to a second order, which is also called the first-order
hyperpolarizability. Similarly,  denotes the third-order polarizability. In more
general terms, [ ], [ ], and [ ] are tensors. 

The corresponding macroscopic polarization, such that P np where n is the 

number of molecules per unit volume, when subject to a wave E is in one
dimension of the form:

( ) (2 )
0 1 2P P E E E ,   (7) 

where  is the absolute dielectric susceptibility such that  = 0 r and r = ( r – 1) 
is the relative dielectric susceptibility.

In even more general terms, we should write:

0 1 2 3P P E E E [ ]E E E ... ,

where the i terms are tensors. See also Comment 3 of Section 6.2.5.3 for more
detailed remarks.

When the molecules are ordered in such a way in a system that there is a center 
of inversion, which results in centrosymmetric dispositions, then strong microscopic
nonlinearities (high ) become inoperable at a macroscopic scale ( (2 )

2 small).
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6.2.4.2. First-order susceptibility
The linear polarization due to a movement 1x t  of a charge q [where x1 is given by
Eq. (4)] is such that:

1 i  t1
1

x
P (t) Nqx t Nq e cc

2
.

By identification with 1 i  t0
1

P
P (t) Ee cc

2
, we obtain

1 2 2
0 0

Nq² 1
m i

. (8)

As discussed in Volume 1, we once again find the expression for the dielectric
susceptibility for a linear material.

6.2.4.3. Second-order susceptibility
This appears in the second-order term of polarization, which is written by analogy to 
the linear polarization, while taking Eq. (7) into account, so:

22 2 i2  t i2 t0 2
02

x
P t  E e cc Nq e cc

2 2
.

From Eq. (5), we thus can deduce 2
2  :

3 2
2

2 2 22 2 2 20 0 0

Nq 1

2m i  4 2i
. (9)

Just as also exhibits real and imaginary parts, but its

denominator is doubly resonant at

1 ,  in fact 2
2

0  and 0
2

.
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6.2.5. Comments
6.2.5.1. Comment 1
As the charge under study is the electron, q = e and q3 = e3 . Equation (9) in fact 
can be written as:

3 2
2

2 2 22 2 2 20 0 0

Ne 1

2m i  4 2i
. (9’)

6.2.5.2. Comment 2 

In addition, we can establish the following relation between the linear  and 

nonlinear

1
2

2 susceptibilities:

2 2
22

2 32 2
01 1

m

2N²q
.

The parameter , called Miller’s parameter, is in fact practically identical for all

materials:

2

2  3 to  8 x  SI  for InAs, GaSb, GaAs, CdTe, ZnTe, and ZnSe.910

6.2.5.3. Comment 3
The problem so far has been treated in just one dimension. If in place of just one 
component the incident wave has three, then the second-order polarization has 
components denoted . In the most general of cases, these can be

obtained from all possible quadratic components of , as in:
x y zP ,  P ,  and P

x yE , E ,  and Ez

, where

2
x
2
y

2x 2
zy 0 2

z y
z

z x

x y

E

E
P

EP
E EP
E E
E E

2

2  is a tensor.
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6.3. Electrooptical effects and the basic equations
6.3.1. Excitation from two pulsations and an introduction to the Pockels effect 
The above classic study showed that in the mechanics of the second harmonic, an
excitation at a photon E  can generate displacements at  frequencies [movement
x1(t)]  and 2  [displacement x2(t)]. The frequency of the photons emitted by the 
charges moving along x1 (at frequency ) or along x2 (at a frequency of 2 ) will
occur with a dipolar radiation of frequency  or 2 .

We thus can generalize this emission mechanism to that of the excitation of a 
system with two photons of angular frequencies ’ and ’’. The emissions detailed
in Figure 6.3 thus are expected.

’
’’

    2 ’
  2 ’’
  (p ’ + q ’’)
where p and q are 
integers

’

’’

Figure 6.3. Possible emissions from a system excited by pulsations ’ and ’’.

We can use the classic expression [Eq. (7) from Section 6.1.2] for the second- 
order (relative) susceptibility established for a system excited by one pulsation .
For an excitation pulsation , by makingi

2 2
i 0 i iD( ) i ,  this equation

can be rewritten as: 

i
3 2

2
2 2

0 i i

Nq 1
2m² D D 2

.

Similarly, for an excitation based on two waves (pulsations ’ and ’’), the 
harmonic of the pulsation T = ’ + ’’ is associated with a second-order 
susceptibility in the form:

3 2
' ''

2
0

Nq 1
2m² D ' D '' D ' ''

.
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Thus there is an interesting and specific case when one of the waves is an 
optical wave (of angular frequency ’ = ), and the other is a low-frequency wave 
which could have a zero frequency of a static field ( ’’ = 0). The preceding formula
thus becomes:

3 2
0

2
0

Nq 1
2m² D 0 D D

.

This second-order susceptibility no longer depends only on the optical 
pulsation . Nevertheless, a simplification to a single term for a polarization varying
with a single pulsation  can be misrepresentative, just as the direct calculation for 
the polarization showed. This calculation is actually rather complicated, and in order 
to study these electrooptical effects, it is preferable to use a phenomenological study
(see Problem 2 of this chapter). This simplifies the calculation when using a small
variation in the index for a static or low-frequency field (for further details see 
Section 6.3.2). 

Comment. If the expression for the polarization is directly written in its classical
from, then 2

0 1 2P t P E t E t ... , and here 

j  t
0E t E E e cc  (and is the absolute susceptibility),

while the dependence of the susceptibility on two pulsations (static and optical) can
bring in rather difficult calculations.

In effect, we should write (with first and second-order susceptibilities, 1 and

2 ):

2j  t j t
1 20 0P t E E e cc E E e cc ... .

Straight away we can see that this text is ambiguous, as in fact, for the first term, for 
example, 1 carries both the static term  and the optical term . In 

order to avoid these difficulties, it is preferable to present the more simple and
empirical examples, as in Problem 1 and Section 6.3.2. 

0E j tE e
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6.3.2. Basic equations for nonlinear optics
6.3.2.1. The classic equations
When subject to an electric force [static of low frequency electric field (Es)], a 
material undergoes deformations, which typically correspond to ionic displacements
in minerals and electronic displacements in organics (deformation of 
electronic/molecular orbitals). The resulting variations in polarizations induce a 
modification in the measured index at a given value of  (see Figure 6.4). 

When the index varies proportionally with the applied field, the electrooptical
effect is linear in what is called the Pockels effect. When the index varies
quadratically with the applied field (proportional to the square of the applied field),
the electrooptical effect is called the Kerr effect. 

electric
field Es

optical
field
E

Figure 6.4. Coupling of the electric field Es and the optical field E  through an electro-
optical material.

In the hypothesis that the variation in the index is small with respect to the
applied field Es ( E to simplify the following notation), a Taylor development about
the values of the index for E = 0 can be carried out.

By notation n(E=0) = n(0) = n, 1
E 0

dn
a

dE
, 2

E 0

d²n
a

dE²
,

we thus find

1 2
1

n(E) n a E a E² ...
2

    (1) 

For reasons of notation that will be made apparent in Section 6.3.2.2, we 
introduce the electrooptical coefficients by making:

1
3

2a
r -

n

2
3

a
s -

n
so that:

3 31 1
n(E) n - rn E - sn E² ...

2 2
    (2) 
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Typically the second and third-order terms are small (by several orders of size) with 
respect to n. 

6.3.2.2. Form of the electric impermeability
The electric impermeability is useful when describing anisotropic media (ellipsoidal
indices) and is defined by:

 = 1/ r = 1/n².

As in one part:

1
n²

,  so that 3
d 2
dn n

 ,

and in another:

3 31 1
n n(E) - n  -  rn E -  sn E²

2 2
,

we thus can write:

3 3
3

d 2 1 1
n rn E sn E² ... rE sE²

dn 2 2n
.

With , we finally arrive at: (E)

(E) rE sE² ...    (3) 

We should immediately remark that the coefficients r and s were initially
defined so as to arrive at this relatively simple equation which introduces into
Eq. (3) for  the coefficient r or s in front of E  or E². 

6.3.2.3. Pockels effects and order of scale
In a lot of materials, the term for the Kerr effect (second order) is small with respect
to the Pockels effect (first order), so that: 

31
n(E)  n rn E.

2
      (4) 
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Typically, r 10-12 to 10-10 m V-1, which is around 1 to 100 pm V-1.

When E = 106 V m-1, the term 31
rn E

2
is of the order of 10-6 to 10-4, which is a 

very small variation in the index induced by E (often used minerals include KH2PO4,
LiNbO3, LiTaO3, and CdTe). 

6.4. Principle of electrooptical modulators
As a generalization, there are two types of modulators. They are:

  phase modulators which make it possible to transmit information optically by
modifying the phase of the optical wave [using a signal V(t) or E(t) ]; and 

amplitude modulators in which the signal modulates the intensity of the 
optical wave (parallel monochromatic luminous beams with a laser beam).

6.4.1. Phase modulator
The phase modulator does not require a particularly complicated structure. It is
constructed from a single optical waveguide which makes up the arm of the
modulator and into which the incident optical wave is injected. The modulation is
produced by a transversal tension (V) associated with an electric field (Es  E) that 
induces a dephasing ( ) dependent on the frequency of the electric field. The 
continuous information in this frequency thus is inscribed upon the optical wave in
the form of a phase modulation, as schematized in Figure 6.5. It should be noted that
the figure does not show the positions of the electrodes used to apply E. 

exit signal
modulated by E

optical wave 
of period T 

E

L

d

electrooptical material

Figure 6.5. Schematization of a phase modulator.

In fact there are two possible dispositions: one is that of a sandwich structure
with the electrodes sandwiching the electrooptical material and the other uses 
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coplanar electrodes, that is to say they are deposited on the same surface of the 
electrooptical material and are separated by a narrow nonmetallic band which has
parallel sides of dimension . In the latter, the form of the field lines is such that the 
interaction with the electrooptical material is reduced. The covering factor (T)
between the optical and electrical fields diminishes and results in an increase in the 
half-wave tension (V ), which is defined below.

When an optical beam traverses a Pockels cell of length L and is submitted to a 
field E, the wave undergoes a dephasing:

0
0

2
n(E)k L n(E)L ,       (5) 

where o is the wavelength in a vacuum.

The introduction of Eq. (4) into Eq. (5) yields:

3

0 0

2 2 1
nL L r n E

2

3

0
0

r n EL
 ,          (6) 

where 0
0

2 nL
 represents the dephasing when E = 0, meaning without an

applied field E (or tension V). 

O

0

     V
V

Figure 6.6. Variation in the dephasing ( ) as a function of the polarization tension (V),
along with a definition of V . (for a transversal  cell).



Applied electromagnetism and materials196

The variation in  (dephasing in the presence of a polarization field E) as a
function of the polarization tension (V) is represented in Figure 6.6. From this can 
be defined the so-called half-wave tension which is such that its application leads to
a dephasing by  with respect to a wave not subject to E:

0 – ( )V=tension half-wave =  .            (7) 

In a transversal cell, this half-wave tension denoted V , (which verifies
0 – ( )V=V  = ), is such that:

E = (V/d) V=V  = V /d . 

This value introduced into Eq. (6) gives rise to Eq. (7), which can be written in
the form:

0 – ( )V=V  =  =
3

0

rn V L
d

.

From which can be deduced:

0
3

d
V

Lr n
. (8)

For a longitudinal Pockels cell, the field is in the form E = V/L, and the half-
wave tension, which is commonly denoted l

P,V , becomes:

l 0
P, 3V

r n
. (9)

For a transversal cell, we thus can write Eq. (6) in the form:

 = 0 - 
V
V

. (6’)

For a longitudinal cell, we can write:

 = 0 - l
P,

V

V
. (6’’)
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The dephasing thus evolves linearly with the applied tension (Figure 6.6), so 
that effective control over the modulation of an optical wave traversing the cell can
be made. The value of  is of the order of 1 to several kV for longitudinal
modulators. The transversal modulators make it possible to reduce V

l
P,V

 by varying the

ratio
d
L

(d  several microns, L  1 cm), so that V  1 to 100 volt.

6.4.2. Amplitude modulator
The dephasing does not affect the intensity of an optical wave. Nevertheless, the
insertion of a phase modulator into the arm of an interferometer, for example, of the
Mach Zehnder type, can be used to give an intensity modulator, as shown in Figure
6.7.

If Ii is the amplitude of the incident optical wave, split equally into two waves,

then each has an intensity 
1
2

Ii  in each of the arms, which are not subject to E.

electrodes  cos 

Figure 6.7. Schematization of a Mach Zehnder amplitude modulator. 

The application of E to the arms modifies the transmitted intensity which then

takes on the form i
1

I cos
2

, where is the dephasing induced by E in the

“modulated” arm with respect to the arm not subject to E. The exit intensity thus is

0 i i i
1 1

I I I cos I cos ²
2 2 2

(10)

where 0
V
V

 [from Eq. (6) of Section 3.4.1].
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As
1 cos 2x

cos ²x
2

and
4x²

cos 2x 1
2

, we have:

1 4x²
cos ²x 1 1 - 1 - x²

2 2
. (11)

By introducing x = 
2

 into Eq. (11) and substituting into Eq. (10), we have:

0 i i 2
² ²

I I 1 I 1 V²
4 4V

i iI KI V² , (12)

so that in addition

0

i

I
1 KV²

I
. (12’)

If V = V0 cos t , we have V²  cos² t  cos 2 t,  so that:

0
1 2

i

I
C C cos 2

I
t .

The intensity I0 is modulated by the frequency 2 .

6.4.3. The merit factor

As indicated in Section 6.4.1, the half-wave tension takes on the form 0
3

d
V

Lr n
(transversal polarization modulator) and should be as low as possible (around 1 volt
in principle). The value of V is often taken as a reference as to the performance of a 
modulator.

Taking the expression for V  into account, in order to make it smaller, it is of

interest to decrease the coefficient 
d
L

, which means increasing the length within

all reason of the arm length. A value of L 3 cm can be considered normal (with d 
of the order of several microns).
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In addition, the factor r n3 should be as large as possible so as to decrease the value
of V . This factor also can be considered one of technical specification; M = r n3 is
expressed in pm V-1.

We thus have (at  1000 nm) FM  104 pm V-1 in BaTiO3, and FM  7 x 102

pm V-1 in LiNbO3. In optimized organic materials, we can reach FM  103 pm V-1.

6.5. Problems
6.5.1. Problem 1. Second-order susceptibility and molecular centrosymmetry
Show that the second-order susceptibility ( 2) is nonzero uniquely for noncentro-
symmetric molecules.

Answer

If a molecule is symmetric, then changing E  to E  is the same as moving the
charges in exactly the same way symmetrically, so that:

2 2P E P E . (1)

In addition and by definition for 2P  we have 

P(2)( E ) = a2 .E E

 P(2)( E ) = P(2)( E ) (2)

P(2)( ) = E a2 ( ).( EE )

This finally gives:

from Eq. (1) a2 E . E  = a2 ( E ).( E )

a2 = a2 , so that a2 = 0 

from Eq. (2) a2 .E E  = a2 ( E ).( E )

The conclusion therefore is that the second-order dielectric susceptibility is 
zero for symmetrical molecules. As a consequence, for this susceptibility to be
nonzero, the molecules need to be noncentrosymmetric.
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6.5.2. Problem 2. Phenomenological study of the Pockels effect 
This problem considers a material in which the displacement of electrons is 
particularly facile (for example, systems with delocalized electrons such as in 
conjugated organic materials). In addition, the system is noncentrosymmetric and 
has a center of gravity for positive charges (GA  O) which does not coincide with
the center of gravity of negative charges (GE) which is such that OGE = x, and x > 0.

Such a situation can be obtained by a method called “poling” which involves
applying in a controlled manner an electric field ( PE ) directed along Ox at a 
temperature in the neighborhood of the glass transition temperature (Tg) of the 
material to an ambient temperature (Ta). This is because there is an orientation of 
orbitals that takes place at the Tg which then becomes stuck at Ta. The consequence 
of this is that the localization of the center of gravity of the electronic charges at GE

is such that OGE = x, where x > 0 if PE  is antiparallel to Ox , as shown in Figure a. 

(b)

 -

 + 
sE

 x

y

z

 O  GA

 x 

 GB
p-orbital

deformed by PE
 - 

 +

(a)

An optical wave (E ) is polarized along Ox and propagates along Oz. The 
above-described active material is placed between two electrodes placed as detailed 
in Figure b. These permit the application of a tension to the material and thus a 
signal characterized as a static field ( sE ) that is directed along –Ox.

Overall, we take into account the effect of the optical field E  by the
intermediate and only coulombic force given by fC = q E  which it generates. The
effect of the signal generated by the signal characterized by the field Es is only taken
into account by the recalling force fr which is overall expressed in the form

n makingrf kx D .x O 2
0kx m x , the component Dx due to Es is written

. Physically speaking, this term introduces a variation in harmonicity
with respect to the classic case where f
Dx m ²x

r is taken in its simple form fr =  k x. Then 
given that ² is physically much greater than Es is high, it is possible to write ² in 
the form .s² a E
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1. Under a permanent regime, we neglect the frictional forces  ft = m  by
assuming that  <<  |

x
0| [far from the resonance, ( 0) is large and 0].

a.  Give the dynamic fundamental relationship with respect to Ox. 

b. With , the solution for a forced regime is in the form

. From this deduce the expression for x
0E E cos t

j t
0 0x x cos t ( x e ) 0 (and hence for x). 

2.

a.  Here 2
p

0

Nq²
m

, where N is the electronic density. Determine the 

polarization P  produced by the displacement by x of the electronic charges along 
Ox, which is written in the form 0P E .

b.  Assuming that is small with respect to 0 , then we are once again 

considering a domain outside that of the zone of resonance (where 0  is 
large). Express for this case the susceptibility  calculated above as a function of a 

classic value as in 
2
p

2 2
0

.

3.
a.  With r = nx² = 1+ , determine the form of the index nx following the

direction Ox in the presence of Es (nx = f( , 0, , ).

b. By introducing n 1 , the index with respect to Ox in the absence
of ES, express nx as a function of n .

4.
a.  Give the value of n = nx  n . Eliminate  so that n can be expressed as 

a function of n  (index in the absence of Es).

b.  By using the fact that we have made ² = a Es, and assuming that n 2 >> 1 
(for a medium consisting of -conjugated polar chromophores of high dielectric
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permittivity), show that we once again find the expression characteristic of the

Pockels effect, 3
s

1
n r n E

2
.

Answers
1.

a.  Taking the hypotheses into account, and for an electron with a charge q
(=  e), the dynamic fundamental relation with respect to Ox can be written as:

m = m(x 0²- ²)x +qE . (1)

b.  With E  = E0 cos t, the solution for the forced regime x = x0 cos t ( = 
xoei t, hence ds to:x ²x ) lea

([ 0²- ²] - ²)x = 
eE
m

.

2.

a.  If  N is the electronic density, the polarization P  produced by the
displacement x of the electronic charges along Ox is P  = Ne x xu , so that with

2
p

0

Nq²
m

, we have

2
p

0 02 2 2
0

P E E .               (2) 

Typically, we make
2
p

2 2
0

.             (3) 

This is the term for the linear polarization of the same system but not subjected
to a supplementary static signal (ES). In effect, the term ² no longer appears in fr, so 
that the corresponding polarization P( ) is in the form:

2
p

0 02 2
0

P E E .

b.  It is assumed that  is small with respect to 0 , which means working
outside of the resonance zones.  We therefore use Eq. (2) and introduce Eq. (3):
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2 2 2
p p

2 2 2 2 22
0 02 2

0 2 2
0

1

1

.

3.
a.  With r = nx² = 1+ , we have for the index with respect to the direction Ox 

and in the presence of ES:
1/ 2

1/ 22 2

x 2 2 2 2
0 0

n 1 1 1 1
1

               = 

1/ 2
2

1/ 2
2 2
0

1 1
1

.

b.  By introducing n 1 , the index with respect to Ox in the absence
of ES is given by:

2 2

x 2 2 2 2
0 0

1
n n 1 n

2 1 2n
.   (5) 

4.
a.  Finally, we have:

n = nx - n  =
2

2 2
02n

.            (6) 

With
2
p

2 2
0

, so that 2 2 2
0 p

1
, we obtain:

n = nx - n  = 
2 2

2
p2n

.

As n 1 1, and hence 2n , as a definitive equation we have:
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2 22

p

n 1
n

2n
  .        (7) 

b. As indicated above, it is possible to set ² = aES, even though in the first
approximation 1 is neglected with respect to n ² (with chromophores in the medium,
the medium is intrinsically well polar, so that its permittivity r = n ² can be quite
high at least to an order of three or four places). This means that we have

4

s2
p

n
n a

2n
E ,

so that n is in the form:

3
s

1
n r n E

2
, (8)

where r  rp 2
p

a
and is the electrooptical coefficient and n  n by notation. This

is an index for the direction along the polarization of the optical wave, and is
measured in the absence of the polarization field ES.

Finally, n is proportional to ES  and Eq. (8) is identical to Eq. (4) in Section
3.3.3. and well characterizes the Pockels effect. 

Comment.  Alternative form for representation of the Pockels effect

As in general terms 31
d 2x

x²
dx , we can go on to write that

3
3

1 1
d 2n n 2

n² n² n

n
,

so that by using Eq. (8), we have 

s
1

rE
n²

.       (9) 
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This is the classic and defining equation for the electrooptical effect, developed
from the deformation of an ellipsoid of indices by a low-frequency electric field. 

This gives rise to a linear variation of coefficients 2
i

1

n
 in the ellipsoid of indices

as a function of the electric field.



Chapter 7 

Electromagnetic Cavities 

This chapter details the effect of the form of the material environment on the 
electromagnetic field. It is more specifically concerned with three directions, limited 
dimension guides (cavities) which can be around a micron in size, hence the name 
microcavities. Particular attention is paid to the evolution of an electromagnetic field 
in a confined volume. 

7.1. Definition 
An electromagnetic cavity is a volume, which is empty or filled with a dielectric, 
and is limited in three directions by walls. When these walls are metallic, we have a 
metallic cavity, and when they are made from a dielectric, we have a dielectric 
resonator.

Typically, metallic cavities are obtained by closing a metallic waveguide with 
two metallic plates perpendicular to the axis Oy, which is longitudinal along the 
guide. If the guide section is rectangular, the cavity is a parallelepiped; however, if 
the section is circular, then the cavity is cylindrical.  

7.2. Resonance conditions for a cavity and proper resonance modes
Figure 7.1 shows a rectangular guide closed at y = 0 and y = d by metallic plates 
perpendicular to the axis Oy. The metallic cavity thus is defined as a parallelepiped 
of volume V = a b d.  

As detailed in Section 12.4.4.1 of Volume 1 “Basic Electromagnetism and 
Materials”, a wave TEmn  can propagate within a guide (or rather a cavity without 
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the plates at y = 0 and y = d). For this there is a dispersion equation, given in that
same Section as Eq. (15’), and detailed again here:

2
g

² m² ² n² ²
= k +

c² a² b²
. (1)

y

                    z 

                            a 

       b 
 x 

O
d

kgE

Figure 7.1. Parallelepiped cavity.

In the metallic cavity and following reflections of the wave on the metallic
planes at y = 0 and y = d, a system of stationary waves is established. The resultant
field thus varies with sin kgy. This result was elaborated in Section 5.3.2 of this
volume and obtained for a wave propagating along Oz. The limiting conditions 
imposed by the perpendicular planes at y = 0 and y = d in the y direction result in the
formation of a node in the electric field at these planes. This can be represented by
the equation , so that it is also possible to state: g y d

sin k y 0

kgd = p . (2)

The resonance modes, which are possible in the cavity, are termed the proper 
modes and denoted TEmnp.

By substituting Eq. (2) into Eq. (1), we obtain the proper angular frequencies 
for the cavity, which are such that: 

2
m,n,p 0 0

m² ² n² ² p² ²
µ

a² b² d²
.   (3) 
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So, the number of stationary waves is infinitely high, but the corresponding
frequencies form a discontinuous group. 

Comment. Equation (3) is a simple generalization in three dimensions of the result
obtained for one dimension in Section 6.2.5 of Volume 1. When the cavity is excited
by a wave, which has a frequency that verifies Eq. (3), the oscillation amplitudes
become increasingly large, up to a maximum, just as in an oscillating circuit with a 
resonance frequency. The calculation thus shows how the overtension coefficient
(Q) for the cavity at resonance is such that:

a² b²
Q

²
,

where 2 / µ   and is the depth to which the wave penetrates the metal.

7.3. Fabry Perot-type optical cavities
7.3.1. Generalities and the Fabry Perot resonator 

z

m
irr

or

O L

2
c
L

m
irr

or

p p+1

Figure 7. 2. (a) A Fabry Perot resonator (with flat mirrors) and

(b) a system of resonance frequencies. 

Beyond those cavities with a classic geometry, there are other forms, such as those 
shown in Figure 7.1. Optical cavities have been widely studied, as they are one of
the principal elements in lasers. In effect, a laser is essentially made up of three
elements:

 an active medium capable of amplifying an incident signal by stimulated
emission;
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a pumping system which permits a population inversion in the active
medium; and 

an optical resonator into which is introduced the active medium. In effect it 
increases the amplification and sets the frequency and spatial distribution of
the laser beam.

The most widely used resonator is a one-dimensional resonator termed a
Fabry Perot standard. It is made up of two plane parallel mirrors, which are highly
reflective and separated by a distance L, as shown in Figure 7.2a. 

7.3.2. Form of stationary wave system:  resonance modes 
The stationary wave system varies with sin kz. The condition for cancellation at z =
0 and z = L means that we also have k L = p , where k is limited to values defined
by:

p
p

k
L

. (4)

The negative values of p leave the (amplitude) form of the stationary waves 
invariant, as . Whenpsin k z sin k zp p 0 , then the corresponding wave is

, which does not transport energy. The solutions for p thus are positive
integers, i.e., p = 1, 2, 3, 4... and define the number of modes (see also Section 6.2.5, 
Volume 1). 

0sin k z 0

The frequencies associated with Eq. (4) are such that  = ck/2 , and it is this
that defines the resonance frequencies of the resonator:

p
p

ck c
p

2 2L
, where p = 1,2... (5)

Two successive frequencies thus are separated by a constant separation, as indicated
in Figure 7.2b, and defined by:

c
2L

. (6)

The resonance wavelengths are of the form:
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p
p

c 2L
p

,

and at resonance, the length of the resonator is such that

pL p
2

, (7)

and is equal to an integer multiple of half-wavelengths.

7.3.3. An alternative point of view and the Fabry  Perot interferometer
The resonance modes also can be determined by using an interferometer (with a 
laser), which passes the light through a multiple system of mirrors, as shown in 
Figure 7.3a. Each mode results from a wave, which has traveled back and forth
across the length (L) twice (2L). The corresponding dephasing thus is in part given
by = k2L, the other part being associated with the reflections at the two mirrors
which each give rise to a dephasing of . We can deduce from this that:

k2L p2 , where p is an integer. (8)

Once again we find , an equation resembling Eq. (4). kL p

Equation (8) can be thought of as a condition for a constructive counterreaction, 
where the waves are in phase (system exit and entering waves). The resultant of the
constructive waves is given by V = V0 + V1 + V2 + .... 

z

  V2

V1

V0

m
irr

or

O L

m
irr

or

V1 e – j

V1
e – j 

Figure 7.3. (a) Back and forth pathway of waves in between mirrors in a resonator
and (b) a diagram of the counterreaction optical system. 
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7.4. The Airy laser formula 
It is possible to determine the structure of a wave that leaves a laser quite rapidly. 
First we consider the simple example of an interferometer with an optical
wavelength L, which is empty and externally lit by a monochromatic field given by 

i t
ex oexE E e .

z

m
irr

or

m
irr

or

E0

O L

E0ex

Figure 7.4. Field modulus of following a single cycle. 

In order to find the field of the general form i t
0E E e  in a cavity, the

preceding back and forth method (Figure 7.4) is used. If E0(t) represents the modulus
of the field at an instant t for a point M in the cavity, then after one return passage
the field is given by:

E0(t+ t) = E0(t) r1r2
ik2Le  + T E0ex = E0(t) r1r2 +i 2L / ce T E0ex , 

where r1 and r2 are the reflection coefficients for the mirrors, T  is the
transmission for the field given by Eex , and  = k2L 2L / c  is the dephasing in E 
following its return journey.

On making t = 2L/c, we can suppose that the source term for E0 is E0ex T .

When the stationary regime is established, we find E(t) = E(t + t), from which

ex
i

1 2

TE
E

1 r r e
.

Passing to the signal intensity, which is the same as taking the square of the
modulus given in the preceding expression, we obtain (with I = E0 E*

0 and
Iex = E0ex E*0ex) the Airy equation that is characteristic of interferometers:

ex
2 2

1 2 1 2

TI
I

1 r r 4r r sin / 2
. (9)
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According to Eq. (8), 
4 L

k2L
c

, and from Eq. (6) 
c

2L
, so we 

have:

2
.

This makes it possible to write Eq. (9) in the form:

ex
2 2

1 2 1 2

TI
I

1 r r 4r r sin
 . (9’)

By making

ex
max 2

1 2

TI
I

1 r r
 and 

1/ 2
1 2

1 2

r r
F

1 r r
(smoothness of the resonator),

Eq. (9’) can be written in the “spectral response” form of the resonator:

max
2

2

I
I

2F
1 sin

 . (10)

The maximum intensity (I = Imax) thus is obtained for the resonance frequency:
 = p     (where p = 1,2....), as indicated in Figure 7.5. 

Figure 7.5. Emission at the frequency p for a loss-free resonator. 
p + 1p

 = c/2L 

I
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For resonators that have losses, then we can use r1r2 = e – L  where L represents
the losses. When F >> 1, it is found that the resonance peaks exhibit a half-height
width given by  = /F. The generated intensity is not totally zero outside of the
resonance peaks, but there is a rapid decrease close to the maximum. It is
comparable to the change in intensity with respect to the distance between two
mirrors.

The emission spectrum of a laser therefore takes on the form given in Figure 7.6.
It is constituted of a series of fine and equidistant peaks situated at the Fabry Perot
transmission maximal. They have as an envelope the emission curve of the active 
medium.

c/2L

active medium
emission

lines selected by the 
cavity

in
te

ns
ity

 o
f t

ra
ns

m
is

si
on

 

Figure 7.6. Laser emission spectrum.

7.5. Modification of spontaneous emission in a planar cavity and the angular
diagram

When a source is placed in a planar cavity formed from two parallel mirrors
(Fabry Perot cavity), the emission modes are controlled by the limiting factors of
the mirrors. These are the Fabry Perot modes. They accord to the quantification 
defined by the wave vector  in the direction z perpendicular to the mirrors deduced 
from Eq. (4):

k

kz = p
L

. (4’)

If  represents the angle between the axis Oz and the vector k , we have

kz = k cos , where 
2

k .
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The upshot is that condition (4’) can be written as 

k cos  = p
L

 , (11)

which shows that the field resonance occurs along directions that are selected at the
angle p which is such that 

p
p

arccos
kL

. (12)

Therefore, emission cones with an angle at their peak of p can be found. The 
cones are only ideal when the mirrors themselves have perfect surfaces and
reflection coefficients of 1. When this is not the case, the cones become more like 
cornets revolved around p.

ky

kz

/L

 Airy function

4

3

1

2

Figure 7.7. Representation of the quantification of kz . Each Airy function maximum 
corresponds to the direction of an emission from the cavity.

The maximal of the emissions are separated by /L.

Within the k space (Figure 7.7), the extreme point of k describes a circle of 
radius /c, and the emission of the cavity evolves as a function of kz , just as the
Airy function studied in the preceding paragraph. 

Figure 7.8 represents a Fabry Perot cavity with the source S along with the 
system of stationary waves for four proper modes (pc = 4) for a cavity of length L 
and such that [Eq. (7)]:

L  pc
2

. (13)
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source
L  pc

2

y

z

Figure 7.8. Representation of four modes and the emitted rays for a planar cavity of 

width L  pc
2

(and pc = 4), with the source in the cavity.

Comment.  In effect, the coupling of the emitter with the modes of resonance of the
cavity depends on the position of the source. For a source placed at the center of a 
symmetric cavity (r1 = r2), the coupling only occurs with impaired modes that exhibit
a maximum in the same region.  Pair modes, however, are not coupled.

7.6. Microcavities and photonic forbidden band (PFB) structures 
7.6.1. Exampled scale effects
From the preceding results, it is possible to consider the effects of reducing the size
of the cavity. Taking Eq. (13) into account, if L decreases, then pc becomes small so 
that the emitter is now coupled to a reduced number of resonant modes. At the
limiting case, where pc = 1, the emission is coupled to a single mode, and the
initially isotropic source becomes a directional source. Indeed, the finer the
resonance peak, the more selective in direction the source becomes.

We also can state that for a cavity with a given length (L), the direction of the
emission is dependent on the frequency. In effect, for a given mode, the product of k
cos  should remain constant, as indicated by Eq. (11). The result is that if the system
is blue-shifted ( decreases and k increases), then cos  must decrease, which means
that  increases. This means that the emission spreads out from the normal.
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7.6.2. PFB structures
7.6.2.1. Origin of PFBs
The propagation of a wave in a vacuum with the form (see also Section 4.1, Chapter
4, this volume) s = i t i2 tA(x, y, z)e A(x, y, z)e   has a propagation equation that
can be written as:

²
A A

c²
0 . (14)

This takes on the form
2m

(E V) 0
²

,   (15) 

for a Broglie wave associated with a wavelength given by the equation:
h h

mv 2m E V
. (16)

This relation is for a crystal where the potential V is periodic and there are solutions
for the energy that arise as permitted (valence and conduction) and forbidden (the 
“gap” for semiconductors) bands. 

The wave equation written in Eq. (14) for a vacuum needs to be rewritten for a
medium with a given permittivity ( r) in accordance with Eqs. (7’) or (7”) from
Section 7.1.3, Volume 1.

r
²

A A
c²

0 . (17)

Intuitively, it seems logical that if r exhibits periodic values as does V in Eq. (15), 
then the photons must exhibit forbidden energies. They can be rigorously
characterized, for example, by replacing A by a vector such as that of the electric 
field. As E , this forbidden property of the energy is represented here by the
presence of forbidden domains of angular frequencies, or rather, frequencies.

Materials that exhibit a periodicity defined by r and from which are produced 
photons exhibiting forbidden frequencies are called photonic forbidden band (PFB) 
materials. The term “photonic crystal” also is used for systems made up of 
dielectrics or periodic metals.

7.6.2.2. Basic structures
In general terms and in one dimension, the basic structure is made up of a periodic
column of thin dielectric layers, generally called Bragg mirrors, and shown in Figure 
7.9a.
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In two dimensions, an example of photonic crystals is that of a square
latticework of pores or branches as shown in Figure 7.9b.

In three dimensions, an example is that of the structure which looks rather like a
pile of criss-cross sticks shown in Figure 7.9c. In practical terms, this sort of 
structure can be obtained by drilling a cube in two, orthogonal directions.

(b)

(c)

(a)

Figure 7.9. Some basic structures of photonic crystals: (a) one-dimensional Bragg 
mirror,  (b) two-dimensional square pore lattice, and

(c) three-dimensional “pile of sticks” also termed “yablonovite”.

In the optical domain, the one-dimensional photonic crystals can be considered
Bragg mirrors. They reflect the waves due to the interfaces between different layers 
in the material. Each layer has an optical thickness equivalent to a quarter of the
wavelength of a given central wave ( 0) which is termed the Bragg wavelength
(Figure 7.10a). 

The efficiency of these mirrors always depends on the incidence angle ( ) with
respect to the dielectric layers. The existence of an omnidirectional forbidden band
is impossible in these one-dimensional structures, as the reflectivity decreases on
going further from the normal incidence (a classic study can be carried out on the
processes involved in multiple interferences). 

In addition, a wave also may be guided by a forbidden photonic band in a 
periodic medium, such as a photonic crystal fiber. Similar to refractive guides, the
region, which effects the guiding, is called the gain and provides the forbidden
photonic band (Figure 7.10b). 
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Figure 7.10. (a) Structure of a Bragg mirror (  0) and (b) wave-guide through 
forbidden photonic bands, where the interferences produced by the periodic motifs 

 generate reflections. 

7.7. Microcavities using whispering gallery modes 

7.7.1. Generalities
To end this chapter, we look at the symmetrical cavities developed at the end of the 
20th century. It also should be noted that there are asymmetric cavities that were 
developed to favor signal extraction.

With microdisk or microsphere cavities made using only slightly absorbing
dielectrics, the gallery modes correspond to a guided propagation by total internal
reflection at the peripheral of the cavity. Thus, the energy is spread only at the edges
of the resonator.



Applied electromagnetism and materials220

The glancing propagation of the ray around the walls of the cavity results in a 
strong confinement of the field to the periphery of the structure. The more glancing
the incident ray is, the greater the confinement. This effect was observed by Lord 
Rayleigh while studying the propagation of sound waves in the whispering gallery
of the dome of St Paul’s Cathedral in London, hence the term “whispering gallery
modes”. Indeed, this phenomenon was probably known by the Romans, as exampled
by the arena walls in Nimes where the effect seems to have been used by various
“actors” to communicate between each other.

7.7.2. Principle

R sin 

R sin 

Figure 7.11. (a) Propagation of whispering gallery modes at the periphery and

with respect to the azimuth direction and

(b) schematization of the localization of energy at the edges of the cavities. 

This study is limited to that of cylindrical cavities of a known radius (R) and termed
‘microdisks’. Typically, the dimension of the cavities is such that R is equal to 10 to
200 µm, a large dimension with respect to the optical wavelengths. As a first
approximation, the optical function of the system can be made using the principles
of geometrical optics. These cavities are made from a material with an index (n)
higher than that of the surrounding medium, for example, air which is the simplest
and has an index close to unity.

There are two groups of rays, depending on the angle of incidence ( ) shown in
Figure 7.11. They are:
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  when  < 
l
 where 

l
 is the limiting angle (here defined as n sin 

l
= 1) 

beyond which total reflection is obtained, then following several successive 
reflections the rays are completely refracted and leave the cavity. This corresponds 
to the radiation mode; and 

  when  > 
l
, then the condition of total internal reflection applies, and by 

symmetry the angle is conserved throughout the successive glancing (for which 
/2) reflections around the cavity. This is in effect the system’s guided mode. 

The successive rays thus describe a polygon (as each of the reflections is in the 
same plane as the initial incidence, according to optical laws) of which the internal 
circle that is tangent to the sides of the polygon describe a radius  = R sin .

For rays of the second group, which describe several turns inside the cavity, it is 
those which have a phase varying on each turn by an integer of 2  which will give 
rise to constructive interferences characteristic of whispering gallery modes. 

7.7.3. Basic equations for whispering gallery modes 
7.7.3.1. Resonance condition leading to a determination of the gallery modes within 

an approximation of the optical geometry
If the polygon described by the rays has a number (C) of length 2R sin  (Figure 
7.11a), the angle at the center through which the sides are seen is given by             
2  = 2 /C, hence  = /C.

The condition that a ray returns to its original phase after a turn inside the cavity 
is equal to a whole number of wavelengths, so that 

n C 2R sin  = m  ,   (18) 

where m is a whole number at least equal to C so that each side of the polygon has a 
length (2R sin ) at least equal to /n, the limit of the use of optical geometry. 

In terms of geometry, if C increases, then m also increases, and the radius                 
 = R sin  does likewise (as  tends toward /2 and  toward R). The result is that 

the confinement also increases. 

With an approximation based on circular trajectories, for which  tends toward zero 
where sin  while C becomes infinitely large, the resonance condition can be 
written simply as: 

n 2  R = m  .  (19) 
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This is a resonance condition equivalent to that of a Fabry Perot cavity where a 
return journey (2L) taken by the ray is now replaced by an effective length for the
gallery mode, as in 2 R.

The approximation for circular trajectories is justified by the fact that C is
generally very large, so that for example with R = 30 µm and  = 610 nm, Eq. (18) 
gives        C = 433. 

Comment. Just as in a Fabry Perot cavity, the whispering gallery modes depend on
the direction of the polarization of the light because the Fresnel reflection 
coefficients also depend on this. Thus, the resonance condition (of in-phase return)
is sensitive to any dephasing introduced at each reflection. A generality that arises 
from this is that there are two resonance conditions:  one is termed TE designating a 
field (E) normal to the plane of incidence (these waves are also termed “s” type for 
“senkrecht” which translates as “perpendicular” in German); while the other is for 
“TM” type waves where E is parallel to the plane of incidence (these waves also are 
termed polarized or “p” type waves). 

7.7.3.2. Free spectral interval
If D denotes the diameter of the microdisk, then Eq. (19) yields  n  D = m m , 
where m is the wavelength associated with the   m   mode.

Therefore,
1 m

nD
, which on differentiating gives:

1 d
d

²
  and

m d
d

nD nD
m

.

By going into absolute values,
m

² nD
, and hence:

²
m

nD
.

Thus for two neighboring modes m and m+1 there is a separation equal to a 
spectral distance (also called the free spectral interval, or FSI) which is of the form:

²
nD

.

In numerical terms, when D = 68 µm, n = 1.49, and = 617 nm, we find
 1.2 nm.
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7.7.4.  Photon lifetimes and extraction of the radiation
7.7.4.1. Symmetric cavities
Even in a perfect, symmetric cavity, with a homogeneous medium and a perfectly
transparent isotropy, the lifetime of photons trapped in a gallery mode by internal
total reflection is in fact finite. This is due to the presence of an evanescent wave
which exponentially decreases in intensity on going from the interface of the cavity. 
Additionally, because of a curve in the wall of the cavity, the evanescent wave once 
again becomes propagating beyond a certain distance. An optical tunneling effect
thus is generated with a propagation tangential to the cavity wall. The losses
resulting from this are called diffraction losses.

A second type of loss, also called diffusion losses, results either from localized
variations in the refraction index, or surface asperities at the dielectric  surface. 

Therefore radiation trapped in microdisk systems essentially is extracted
through localized defaults around the cavity, including variations in the verticality of
the lateral walls, and most of all roughness of the lateral walls.

7.7.4.2. Asymmetric cavities
In order to extract the light from a cavity, other than by diffusion through increasing 
wall roughness, it is possible to use asymmetric cavities so that the light is extracted 
at the point of the dissymmetry.

Classically, cavities with spiral forms or even deformed circles are used in
which the extraction of the radiation at the level of the dissymmetry is all the more
intense when the excitation of the cavity is adapted to the dissymmetry (“ring
pumping”), as detailed in the following exercise.

7.8. Problem
Simplified study of an asymmetric cavity

This questions turns around the problem of an asymmetric cavity for which the 
circular section of a symmetrical microdisk is replaced with a section that has a
spiral form.
1.  The section of the cavity is described by a system of cylindrical coordinates (r, ,

z) where  r( ) = r0(1+
2

)  is for a given side z.

Determine the value DA of the large axis, as well as the dimension e of the flat part.
Use  = 0.1 and r0 = 90 µm. Calculate DA and e. 
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2.  The cavity is excited from above with a uniformly pumped beam.

 = 180 ° 

 = 270 °  = 90 ° 

 = 0 

The spatial radiation diagram (radiation intensity) of the cavity has a form that is 
shown above. There are two principal lobes of emission that have been shown by
experiment to be centered about the directions  5 ° and 275 °. A smaller lobe also
appears at  240 °. Give a qualitative explanation for this distribution. 

3.   Which excitation geometry might reinforce the emission lobe at  5 °; reduce 
that at  275 °?

Answer

r( ) r(2 )

r0

e

1. We have (see figure):

DA = r( ) + r(2 ) = r0(1+
2

) + r0(1+
2
2

) = r0(2+
3
2

)

e = r(2 ) – r(0) = r0 (1 + ) – r0 =  r0 . 

In numerical terms, we obtain DA  195 µm and e  9 µm.
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2. The appearance of an intensity peak in a certain direction indicates that the cavity
acts more strongly in that direction. It is possible to imagine that rays propagating in
an anticlockwise direction (termed “propagative” and thus follow the trigonometric
sense) will meet the flat surface of the spiral, and on doing so will have an incidence 
close to the normal and thus below the limiting angle . The result according to 
Fresnel’s law, and shown in Figure a, is that a part of this radiation will be refracted
through a small angle in the neighborhood of that observed at 5 °. It equally can
be supposed that a small contribution in the direction  5 ° could arise from losses
due to optical tunneling effects due to rays generating an evanescent wave tangential
to the wall of the cavity just before the flat part (as a drawn by the ray). 

In addition, a part of the radiation incident to the flat surface is reflected. This 
gives rise to counterpropagative rays. When these come onto the wall of the cavity at
an angle below the limiting angle, they can contribute to the small lobe at

 240° indicated in Figure b. 

 5° 

(b)
 240 °

A275°

(c)

(a)

Now consider rays that are diffracted by the geometrical default, which makes
up the angular corner of the cavity and is situated at the intersection of the flat
surface and the beginning of the spiral (point A in Figure c).

The rays are diffracted in all directions. Those rays that hit the walls at angles
greater than the limiting angle ( ) are trapped in the cavity and then can go on to
contribute to other emission lobes (depending on their angle and ulterior incidences).
In contrast, rays that are refracted such that  leave the cavity by refraction.
As they traverse the central zone, which is illuminated by the excitation beam, they
can be amplified by this pumping beam to give a sizable lobe in the direction

 275°.
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3.

If an excitation is performed with a ring shaped beam, such as that represented 
in the above figure, then only the gallery modes confined to the periphery of the
cavity are excited. The upshot is that the lobe at 5˚ is reinforced. The center of the 
cavity is no longer excited and the radiation at  275° is well reduced. 



Chapter 8 

Particles in Electromagnetic Fields:
Ionic and Electronic Optics 

8.1. Mechanics of particles in an electromagnetic field 
8.1.1. Introduction to mechanics: an aide-memoire
8.1.1.1. Forces acting on charged particles

In general terms, gravitational forces ( P mg ) are assumed to be negligible with
respect to the forces generated by the fields E and B . Respectively, these forces 
produce a coulombic force as in qE and a Laplace force given by qv B . Under the

action of these forces, a particle of charge q is subject to an acceleration 
dv
dt

which is such that:

dv
F m qE qv B q E v B

dt
. (1)

As detailed in the preceding chapters, the magnetic force is often negligible with 
respect to the coulombic force. 

8.1.1.2. Energy and the quantities of movement 

For the elementary displacement denoted dl and of the form dl v dt , the 
elementary work dW of the electromagnetic force F  given by Eq. (1), is found in
the form:
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dW=
dv

F.dl m v dt qE.vdt
dt

, (2)

so that : 

dW mv dv qE.vdt .

From this it can be said that the work done by the magnetic force is zero, and it
is only the electric force that intervenes. 

Taking the limits on the speed to be:
 initial speed at O is given by v = v0; and 

 a speed v at point M, then:

the integration of Eq. (2) along the trajectory OM, as in
M M M

O O O
W dW m v dv q E.dl q dV ,

yields (denoting the electrical potentials at O and M, respectively): 0V  and VM

2
0 0

1
W m(v² v ) q V V

2 M

0

. (3) 

If at O we have  and with0v 0 MV V V , the preceding equation can 
be simply written as (with V > 0 if q > 0, or V < 0 if q =  e < 0) 

1
W mv² q

2
V . (4) 

Considering the problem in numerical terms, we find that for an electron, where
q = e), we have:

2e
v V

m
,

to give 5v 5.93 x 10 V .

This means that when |V| = 10 kV = 104 V, we have v = 5.93 x 107 m s-1, which is a 
nonnegligible with respect to the speed of light. This explains the necessity of using 
relativistic masses for electron particles.

The speed of ions is approximately 40 to 600 times less than that of electrons

due to the variation in 1/ m . The correction to account for relativistic effects is
only necessary for tensions above 106 V. In addition, this simplifies the work here,
which will be performed only using nonrelativistic mechanics.
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8.1.2. Movement of a charged particle in an electric or magnetic field
8.1.2.1. Deviation of a particle by an electric field

(screen)

 x 

Y

0v

h -
E

+

 y 

 x2

 y2

D

Figure 8.1. Deviation of a particle (q) by a E. 

There is an incident, monokinetic flux of particles (each of charge q+) with uniform
speed ( ) with respect to the x axis. From O onward, the particles are subject to an 

electric field ( ), which is directed along Oy and acts over a length  in the x axis,
as shown in Figure 8.1. With respect to this, we have , and the equations

for movement (which rest in the plane of the above figure) are:

0v

E
yF qE

  along Ox,
d²x

m 0
dt²

;

  along Oy,
d²y

m q
dt²

E .

With time and space having origins given by the particle’s position at O (i.e., t0 = 0, 
x0 = 0, y0 = 0), we obtain by integration:

 along Ox we have
dx
dt

v0 , so that x v0t ; (5)

 and with respect to Oy, we have:

2dy q q
Et, so that y Et

dt m 2m
. (6)
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From Eq. (5) we can pull out that
0

x
t

v
, which when placed into Eq. (6) gives the 

equation for the trajectory:

2
0

q x²
y E

2m v
.          (7) 

Each particle undergoes a parabolic trajectory between the arms of the

condenser (which produces E ) from which they leave after a time given by 
0

t
v

.

Setting 2
0

q E
a

2m v
 makes it possible to write, according to Eq. (7), that:

y = a x², so that
dy

2ax
dx

.

In addition, the angle  at which the particles emerge is defined by (see Figure 8.1),

x

dy
tan 2a

dx
.       (8) 

As we also have 
2

2

2 2

y a
tan

x x
, (9) 

then given that equations (8) and (9) are equal, then:

2x
2

 . (10)

This indicates therefore that the exit tangent goes through the center of the
condenser.

With the notations given in Figure 8.1, we also have
Y

tan
D

, which with

Eq. (8) can give:

2
0

q E
Y 2a  D  D

m v
.

If the uniform speed ( ) is produced by an accelerating tension V0v 0, such that 

2
0

1
mv qV

2 0 , then we also have: 
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0

E  D
Y

2V
.

By taking E in the form
V

E
h

, we finally have

0

D V
Y

2h V
.            (11) 

The deflection (Y) is proportional to the potential (V) of the condenser, and the

proportionality coefficient (fs) is given by fs = 
0

D
2hV

.

8.1.2.2. Deviation of a particle by a magnetic field
8.1.2.2.1. The trajectory
Once again we can use a similar layout to that in the previous figure where there is a 
beam of monokinetic particles that has a uniform speed ( 0v ) along Ox. At the point

O they penetrate a uniform magnetic induction ( B ) normal to the plane of
Figure 8.2. The force applied to the particles, given by qv B , is normal to ; that
is to say it is in the plane Oxy.

B

The resulting acceleration, collinear with the force therefore also is in the plane 
of the figure.

  q    v0
           O 

N
B

A

R

Y

z

D

y

x

Figure 8.2. Deviation of a particle (q) by B. 
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In addition, this force is normal to the velocity ( v ) of the particles and
therefore does not have a component tangential to the trajectory. The tangential
acceleration therefore is also zero. There is only a normal acceleration. 

Using a Frenet triad, we find that:

t 0

2

n

dv
0 v constant as a modulus = v

dt
v

0.
R

With respect to the normal to the trajectory, we thus can write that
, from which N 0F qv B m n

0mv
R

qB
, (12)

where R is the radius of the trajectory curve and is independent of the point along
the trajectory, which therefore is a circle (i.e., R = constant). For a given frequency
fc (which gives the number of cycles per unit time) and in one second, a particle will
cover a length l = v0 while the length of one turn is 2 R. From this we have 

0
c

v
f

2 R
.

Taking Eq. (12) into account, we can deduce that:

c
qB

f
2 m

, (13)

where fc, to give it its full name, is the cyclotron frequency. It is independent of v0.

8.1.2.2.2. Magnetic deflection
Denoting the range of application of the magnetic field as  (see Figure 8.2) and N 
the point at which a particle leaves this field, there is only one tangential component
to the speed of the particle. In effect, the particle follows a tangent to the circular
trajectory on its exit. If R is sufficiently high, then the angular deviation  is such
that:

(12)

0

ON OA q  B
R R R mv

. (14)

In addition, again from Figure 8.2, we have:
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Y
tan

D
. (15)

From Eq. (14) and (15), it is possible therefore to deduce that

0

q  DB
Y

m v
. (16)

If the uniform speed (v0) here is again the result of an accelerating tension V0,

then it is such that 2
0

1
mv qV

2 0 .  On taking v0 from this last equation, then from

Eq. (16) we have:

0

q  DB
Y

m 2V
 , (17)

(from the equation for Y, we can see that we now have access to characterizations in
terms of q m-1).

8.1.2.3. Crossed fields: the magnetron effect and ionic pumpingE B
8.1.2.3.1. Basic setup for the analytical study

q > 0

B

x
z

y

q < 0

E

Figure 8.3. Cycloid trajectory of a charge (q) subject to a field E  B. 

The study detailed in problem 2 of this chapter shows that a charge q subject to a
pair of crossed fields given by E B  (where E , for example, is directed along Ox 
and along Oz) has a resultant trajectory which is a cycloid in the plane Oxy. By
making

B
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qB
m
qE

a
m ²

the coordinates of a current point M (x,y,z) are (parametric equations):

x a(1 cos t)
y a( t sin t
z 0.

)

It is worth noting that for a charge q > 0, we have x > 0, while for a negative charge 
we have x < 0, which gives the behavior shown in Figure 8.3.

In qualitative terms, the sense of the cycloid can be determined from the
Laplace force  applied at O. The axis of the arch depends on the

product of 

F q(E v B)

E B , so that the displacement along Ox is parallel to E  if q > 0 and 
antiparallel to  if  q < 0.E

On the cycloid, for its part, the speed of the particle is given by
E

v 2 sin
B

t .

The analytical study also shows that the equation for the trajectory is that of a 
cycloid generated by a circle of radius a so that the length of the arch is given by L =
2 a in the plane Oxy. 

8.1.2.3.1. Application to the structure of a magnetron

The structure of this apparatus is such that the field E  is radial ( ), and 

therefore with  normal to
rE E

B E  as laid out in Figure 8.4. Figure 8.4a gives a 
segmental view.

If the field is applied simply along Ox, the trajectory of the particle (with
charge q > 0, i.e., an ion) can be represented as in Figure 8.4b. In effect, the electric 
field displays a rotational symmetry as shown in Figure 8.4c, and the axis of the
trajectory at each point (A) must be normal to Er (and to B). The axis of the
trajectory at each point is no longer parallel to Oy as indicated in Figure 8.4b, but 
deformed to a circle (shown as a dotted line in Figure 8.4d) and takes on the
trajectory shown in Figure 8.4d. 
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The result is that the amplitude of the oscillations (related to the height 2a of

the arch and in the form
2mE

2a
qB²

) is sufficiently small so that the ion does not

reach the cathode. The ions remain trapped within the structure. This happens when 
the B field is sufficiently large so that the parameter a is sufficiently small. This
configuration is in fact often used with electrons where the length of the trajectory
is considerably increased. As an example, this also can be used to increase their 
likelihood of colliding with gas atoms in order to yield ions. 

(c)

 z

B

Er
   A 

z

A
no

de
+

Er
A

C-
B

C-

(a)

 z 

(b)
 x 

 y 

Er
 B 

      Trajectory
if E // Ox, 
without
rotational
symmetry

A

(d)

Trajectory
with rotational 
symmetry
for E 

Figure 8.4. Trajectories in an E  B field, when E is radial (see text for further details).

Inversely, for sufficiently weak fields, 2a will be great enough to allow the 
collection of ions at the cathode. If the latter is capable of absorbing the ions, by
chemisorptions, for example, then we obtain what is in effect an ion pump. This
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process is widely used for making ultrahigh vacuums (10-7 to 10-10 mm Hg) with
pumps made out of titanium.

8.2. Ionic or electronic optics: the electrostatic lens
8.2.1. The analogue to the refractive index: trajectorial refraction of a charged

particle placed in a succession of equipotential zones 
An electron (or ion) is moving through space and meets a sudden change in an
electric potential localized on an otherwise equipotential surface; as shown in Figure 
8.5 the curves denoted Ci show a range of changes in the trajectories.

If the equipotential surfaces are sufficiently close to one another to assume that 
each makes a division of space into equipotential zones, then it is possible to state 
that for this succession of equipotential domains denoted V1, V2, …Vi, each 
separated by the curves C1, C2, …Ci , that there is a variation in the potential which
is effected in small steps between the surfaces of the equipotential surfaces. To these 
jumps in potential there is a corresponding potential gradient that is normal to the
equipotentials. This means that there is an electric field E that generates an electric 
force, which is also perpendicular to the equipotential surfaces. 

Figure 8.5. Refraction of the trajectory of an electron (moving in an acceleration field)
over equipotential surfaces.

With respect to the normal of the equipotentials, the particle is submitted to an
electric force given by 
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FN = m
N

dv
dt

= qE. 

However, along the tangent the field and therefore the electric force also are zero, so
that:

Ft = m
t

dv
dt

= 0. 

Finally, the speed varies with respect to the normal (N) of the equipotentials (as
dvN  0), but remains constant along the tangent (as dvt = 0). 

For example, at the interface of C1 (in Figure 8.6), the conservation of the
tangential component of the speed makes it possible to state that v1t = v2t, so that:

v1 sin i1 = v2 sin i2.

v1     i1    v1N
V1 v1t C1

v2t
V2 v2N i2

  v2

v1 sin i1 = v2 sin i2
(v1t= v2t)

Figure 8.6. Refraction of trajectories along the equipotential curve C1.

In addition, the speed vi  of the particle of charge q and mass m placed in a 

potential denoted Vi is such that 2
i

1
mv qV

2 i , so that by making K =
q

2
m

 , we

have:

vi = K iV .
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On substituting v1 = K 1V and v2 = K 2V  into v1 sin i1 = v2 sin i2, we obtain:

1V sin i1 = 2V sin i2 . (1)

This is a Snell Descartes-type law, where here V plays the role of the
refractive index.

Finally, the trajectory of a particle placed in a varying electric field (associated 
with the successive equipotential zones V1, V2, …Vi) also can be constructed as if it
were a ray of light passing through materials with successive indices given by
n1 = 1V , n2 = 2V ,... ni = iV , as in Figure 8.5. 

Comment. The law of similar trajectories
It is notable that the refraction of the trajectory lines is independent of the value of 
the q and m of the particles. In effect, the geometric path followed does not depend 
on the type of charge (vis-à-vis its mass or charge). Only the kinetics (speed along
the trajectory and thus time required for the passage) depend on the type of particle.

8.2.2. Practical determination of equipotential surfaces (and thus field lines) 
8.2.2.1. Equivalence between the spread of equipotential lines produced by

electrodes in a vacuum and in a weakly conducting medium (such as an 
electrolytic bath or a conducting “paper” such as “Teledeltos”)

Under the effect of a system of polarized electrodes, the distribution of the electric 
potential in an empty volume (for which we can substitute air) is governed by the 
Laplace law, where V = 0 when dealing with real charge volume densities ( )
equal to zero. The integration of the system requires a knowledge of the limiting
conditions of the problem and it has to be said some quite complicated calculations.

An alternative to trying to theoretically resolve the problem is by empirical
determination of the equipotential lines. In order to do this, a weakly conducting
medium (of conductivity ) is used which can support the passage of current lines
between the electrodes. It thus can be seen that the field lines and the equipotentials 
exhibit the same distribution in a vacuum.

The law of charge conservation under a permanent regime (where
t

= 0) for a 

weakly conducting medium gives: div j = 0, and with j E , we have

 div = 0, so that div = 0. E E
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As there is no voltage or field generated by induction, then A
t

= 0  and 

, so that in a weakly conducting medium we find that V = 0 

remains true (as 0 = div  =  div

E gradV

E gradV = V) when we have the same limiting
conditions given the geometric similarity of the two systems (electrodes in a vacuum
or in a weak conductor). The distribution of the potential, measured with the help of 
a probe moved around the weak conductor, makes it possible to determine the
equipotential lines (and therefore also the field) between the electrodes as if they 
were placed in a vacuum.

8.2.2.2. Symmetrical systems
For an example of cylindrical electrodes (although this remains valid for all systems
presenting a symmetry), the electric field has no components outside of those in the
plane of symmetry that passes through the coaxial axis and the normal to the
electrodes. The field does not give rise to any components perpendicular to the plane
of symmetry, just as the electric current (i =  E) is zero in the plane of symmetry.
The plane of symmetry is that of the “Teledeltos” paper onto which are traced the 
electrodes (Figure 8.5). The equipotential surfaces in the space then can determined
from these equipotential lines through a rotation about the axis of symmetry.

Figure 8.7. Schematic view in the plane of symmetry of a paper-based conductor where 
the equipotentials are generated by a system of coaxial electrodes. 
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8.2.3. Focusing trajectories with an electrostatic lens of axial symmetry
(generating a radial field)

8.2.3.1. Principle of an electrostatic lens
The lens focuses the various trajectories that pass through A1 onto a given point A2.
This happens whatever the angle of incidence ( 1) of the trajectories at A1 (although
in order to remain within the Gauss or “small angle” approximation, 1 should be 
relatively small). The result is that A2 thus appears as the image of A1 through the
lens.

1 2

O

I

A1 A2

Er

y

1

2

1 2

Figure 8.8. Representation of a convergent electrostatic lens. 

In practical terms, this means using a system that has a localized electrostatic 
field between two planes denoted 1 and 2 which are perpendicular to the axis Oz 
and close to one another (thin lens), as indicated in Figure 8.8. A ray coming from
A1 is focused at A2 as long as all the trajectories of the type A1I are bent easily
enough by the radial field (Er); I is the displacement through Oy which can be
located by OI = r. The curvature thus is correct when for a given A1 (or rather a 
given p1 = 1A O ) the convergence point A2 (located by p2 = 2OA ) is the same for 

whatever value of 1, and therefore also whatever value of OI = r. In other words, 

for a given p1,  p2 must remain independent of r as well as 
1 2

1 1
p p

.

In the Gauss approximation, the angle of deviation is such that:

 = 1 + 2  tg 1 + tg 2 =
1

r
p

+
2

r
p

= r 
1 2

1 1
p p

.
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With
1 2

1 1
p p

independent of r, the deviation ( ) produced by the radial field of 

the electrostatic lenses must be proportional to r.

By making

1
f

 = 
1 2

1 1
p p

, (2)

we therefore must have 

 = r
f

. (2’)

The 1
f

 is given by Eq. (2) and represents the convergence of the electrostatic lens.

In effect we have an equation bringing together the terms analogous to those found
in classic optics. 

8.2.3.2. Form of the radial field to ensure the convergence condition r
f

To obtain a convergence at A2, we have seen that Er must give a deviation ( ) of the 
trajectories that is proportional to r (as the convergence condition, given by
[1/p1 + 1/p2], is independent of r). We now will look for a satisfactory form of Er.

For a beam of particles each of mass m0 coming from infinity (A1 ) to be 
converged by the lens on its focal point at A2 under the effect of Er, the radial 
component of the speed vr will be modified at the level of the thin lens.

Along the radial direction, the law governing the movement of an electron is
given by:

m0
r

r
dv

e E
dt

.

In the thickness ( ) traveled during an interval of time ( t) the radial speed (vr)
undergoes a variation ( vr) which is such that:

r
r

t t 0

dv ev dt E
dt m rdt = vr(L2)  vr(L1) = vr(L2),
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where it is supposed that vr(L1) = 0 as the speed v of the particle presents a single 
component (v0z) along Oz before going into the lens system (so that in the space 
z’L1, vr is zero as indicated in Figure 8.9). 

v0z K    H
   S 

z’ L1    L2

z

OA1 A2

Er

y
1 2

I

Figure 8.9. Representation of focusing a parallel beam of particles using a
radial field (Er).

The axial speed with respect to Oz, vz = dz
dt

, as a first approximation can be 

assumed to be constant to a high degree and equal to an average value v0z. The latter 

is such that 2
0z

1 mv  eV
2

, where V represents the potential at which the particle

beam is extracted.
With A1 having been moved to infinity and within Gauss’s approximation we

have (Figure 8.9):

 tg  = HS
KH

= r

0z t

v t
v

= r

0z

v
v

= r
0 0z t

e 1 E dt
m v

.

With vz = dz
dt

(instantaneous speed with respect to Oz between 1 and 2), we can 

definitively write:

2

1

L
r

0 0z L z

Ee 1 dz
m v v

. (3)
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So that  is proportional to r, Er needs to be of the form Er = E. r; that is to say that
Er is itself also proportional to r. From this we obtain:

2

1

L

0z L z

e r E dz
m v v

 . (4)

So that the focalization condition is true, the intensity of the radial field therefore
must increase with the distance r from the axis. This would allow a greater folding
of the more external trajectories so that all particles would converge on the same
point A2.

8.2.4. Electrostatic lens with a rotational symmetry (generating an electrical field
consisting of radial and longitudinal components)

8.2.4.1. Effect of a rotational electrostatic field around the z’Oz axis

Figure 8.10. Trajectory of an electron in a system of coaxial electrodes, with 
schematization of the electric force (FE) at various points.

An electrostatic lens can be made up of two disks each pierced in the middle, or 
rather two cylinders hollowed out along the same axis (for the same or different
rays) as shown in Figure 8.10. Once again we look at the trajectory of a charged
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particle, initially rectilinear along z’z, penetrating the internal space of the electrodes
(defined by 1 2).

At each point along its trajectory, a particle is submitted to the action of a force 
that is perpendicular to the equipotentials (collinear with the lines of the field, as

 for electrons with charge –e). As in Figure 8.10, if V2 > V1, the 
component along Oz for the V potential gradient is orientated toward the right and 
the component Ez for the electric field (E =  grad V) is directed toward the left so
that the electrical force (FE) exerted on the electrons has a component Oz directed
toward the right.

EF eE

It is assumed that the electric field between the electrodes has a cylindrical 
symmetry (shown in the central box of Figure 8.10). This is to say that E is
independent of , and therefore, E  = constant. This component is taken to be zero to
simplify the calculations.

The only components of the electric field with cylindrical coordinates are thus
given by: Er = Er(r,z) and Ez = Ez(r,z), and as a consequence:

E Er(r,z) re  + Ez(r,z) ze . (5)

If we neglect the low charge density associated with beam particles ( real  0), then
Gauss’s theorem can be reduced to div E = 0, so that:

z
r

E1 rE 0
r r z

We thus have:
z

r
E

rE r
r z

.        (6) 

In addition, it is possible to remark that:

 Ez(r,z) = Ez(r=0,z) + r z

(r 0,z)

E
r

and for trajectories close to the axis, (r is small) we therefore can take:

Ez(r,z)  Ez(r=0,z) = Ez(z). (7)

For reasons of symmetry, along the axis Oz the radial field is zero and 
Er(r=0,z) = 0, so that in the neighborhood of the axis, for a small r we have:

Er(r,z) = Er(r=0,z) + r r

(r 0,z)

E
r

= r r

(r 0,z)

E
r

. (8) 
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In Eq. (6), zE
z

does not depend on r [according to Eq. (7)], so that the 

integration of Eq. (6) gives:

r Er = zdE (z)r²
2 dz

+ (z).

From this we can see that when r = 0, then (z) = 0, and therefore we finally have:

Er(r,z) = z

r 0, z

dE (z)r
2 dz

. (9) 

In this configuration based on cylinders, the radial field (Er), which is
proportional to r, fulfills the convergence conditions; E, introduced in Section
5.2.3.2, takes on the form:

E = zdE (z)1
2 dz

,          (10) 

which makes E a function of z. In addition, Ez is not zero in this configuration where 
the two components Er and Ez are not independent from each other, but tied by
Eq. (9). 

As

Ez(r=0,z) = 
r 0

V
z

= - V’ 

and that
z

r 0r 0

E ²V
z z²

= - V’’ 

we also can write Eq. (9) in the form:

Er(r,z) = r V ''
2

.      (11) 

This equality shows again that the radial component of the electric field, and
therefore the force that moves the particle to the axis, increases linearly with
distance from the axis. So that the radial force is well directed toward the axis (as a 
focalizing action) then V” must be positive for electrons (if V” > 0, fr =  e Er < 0 is 
thus directed toward the axis). 



    Applied electromagnetism and materials 246

In can be seen in Figure 8.10 that during the first half of the incident particle’s
pathway (from left to right), the action of the radial component of the electric force 
is to focus the beam toward the axis. The particle moves progressively closer to the
axis. However, in the second part of the trajectory, the radial force tends to move the
particle away from the axis and has a defocalizing effect.

Nevertheless, in the first part of the trajectory the particle moves more slowly
than in the second. The upshot is that the focusing of the particle is the stronger of
the two effects as it lasts for the longer period of time.

8.2.4.2. Expression for the focal length as a function of potentials
By substituting Eq. (10) into Eq. (4), we obtain:

 = 
2

1

L

0z L z

e r E dz
m v v

= 1
2

2

1

L
z

0z L z

dEe r 1 dz
m v v dz

,

so that 
1
f

 = 
r

= 1
2

2

1

L
z

0z L z

dEe 1 1 dz
m v v dz

.

If V0 represents the extraction potential of a particle, then we have
2

0 0z
1 m v
2

= eV0, so that

0zv  = 0
0

e2 V
m

.

Similarly, if V(z) represents the potential on the axis of the lens where the
radial field is produced, then we have:

zv (z) =
0

e2 V(z)
m

.

Using Eq. (11) makes it possible to definitively state that

1
f

 = 
2

1

L

L0

1 V ''(z) dz
4 V V(z)

. (12)

We therefore can remark that if V0 increases, then f increases as well. 
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8.2.5. Equation for the trajectory in the electrostatic lens
The equation for the movement of a particle (of mass m0 and charge e) is given by
the fundamental dynamic equation, as in 0m eE , so that in terms of
cylindrical coordinates:

r =  = r  r ² r
0

e E (r, z)
m

(13)

 = 1 d r²
r dt

 = 0 

z = z
0

e E (r, z)
m

.

As E  is zero, there is no drive to move the particle along e , and we can neglect
the movement associated with a variation in  (we can note mathematically that the
second equation leads to r² = constant, which is zero when there is no initial
rotation, as assumed).

Therefore, when  0, Eq. (13) can be reduced to r
0

e
m

Er(r,z), so that 

with Eq. (11) we have:

r
0

e
2m

rV’’. (14)

For trajectories at small inclinations, and using the small-angle approximation
for para-axial rays where 0 and cos 1, the axial component vz of the speed 
can be approximated to the total speed (v) of the electron, as in 

vz = dz
dt

= v cos  v. (15)

We also can say that  as vr = r z zv = v + v  v dr dr dz
dt dz dt

 0, because 

dr tan 0
dz

 from the approximation made for small angles.

If the particles are subject to a potential given by V(r,z), which brings the
particles into a small angle approximation, then it is possible to state that
V(r,z)  V(r = 0,z). If the extraction is performed with an initial speed equal to zero
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(which is the case for ions extracted from a source), then we have 1 mv²
2

 = e V(r,z), 

so that:

v = 
0

e2 V(r, z)
m 0

e2 V(r 0, z)
m

 . (16)

From Eq. (15) v  vz, and therefore:

vz = dz
dt 0

e2 V(z
m

) . (17)

In addition, we can state that: 

r =
d dr
dt dt

 = 
d dr dz
dz dt dt

=
d dr
dz dt

.vz = vz
d dr dz
dz dz dt

 = vz z
d dr

v
dz dz

,

so that with Eq. (17)

r  2 
0

e
m

V(z) d dV(z)
dz dz

r . (18)

By substituting Eq. (18) into Eq. (14), then the Eq. (13) finally gives:

V(z) d dV(z)
dz dz

r  = r
4

V’’. (19)

This last equation also can be written in another form:

d dV(z)
dz dz

r  = r
4

V''
V(z)

,          (20) 

and hence 

d²r
dz²

+ V '
2V

dr
dz

+ V ''
4V

r = 0 . (21)

Equation (21) is the differential equation for the trajectory. By integrating between
two points on the axis s’Oz (points A1 and A2, for example) where the form of V(z) 
is known, we can obtain the trajectory of a particle within a given field.
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The classic case study of the three electrode lens which corresponds to the
generation of a field containing uniquely radial and longitudinal components
(E  = 0) is described in the following section.

8.2.6. Focal length of a three- electrode lens
Figure 8.11 shows a lens made of two identical electrodes placed at the same
potential (V0) and symmetrically surrounding another electrode at a potential VL.
The electric field is most effective in the neighborhood of the central electrode, as at
the exterior of the lens the potential is practically constant.

As outside the lens the field is zero, the trajectory of an emitted particle
(without initial speed) from A1 onward is rectilinear. The speed is given by Eq. (16)

and can be written: v = 0
0

e2 V
m

.

This particle meets the lens at a distance r0 from the axis, is deviated by the lens, and 
exits through a new rectilinear trajectory that cuts the z’Oz axis at A2.

Integrating the differential equation [Eq. (20)] between A1 and A2 with the
potentials distributed as shown in Figure 8.11 gives Eq. (22) shown after the figure.

E  0 

    VL
V0 = Constant               V0 = Constant

                 E = 0                    E = 0 

        r0

z’          A1    O                  A2            z 
       p1 -L/2 +L/2        p2

           L1 L2

Figure 8.11. Schematization of a three- electrode symmetrical lens, with the 
corresponding potential distribution. 



    Applied electromagnetism and materials 250

2A

drV
dz

1A

drV
dz

= 1
4

2

1

A

A

V''r dz
V

. (22) 

Once again using the small-angle approximation, we can assume that in the
central zone around the lens the distance of the particle from the axis varies
negligibly, and therefore:

2A

dr
dz

= 0

2

r
p

 and 
1A

dr
dz

= 0

1

r
p

.

Thus Eq. (22) gives:

0

2

r
p 0V 0

1

r
p 0V 1

4
2

1

A

A

V''r d
V

z .

As V = V0 = constant outside of the lens, then V’’ is nonzero only in the zone
L1L2 of the lens where r  r0. This gives

0

2

r
p 0V 0

1

r
p 0V 0r

4

+L/2

-L/2

V'' dz
V

,

so that:

1

1
p

+
2

1
p 0

1
4 V

+L/2

-L/2

V'' dz
V

. (23)

The focal length can be calculated by moving A1 toward infinity on the left 
hand side, so that the beam is parallel to the axis denoted z’Oz, so then p1  and 
p2  f, which then gives from Eq. (23):

1
f

=
0

1
4 V

+L/2

-L/2

V'' dz
V

. (24)

This is in a form identical to that seen for Eq. (12) above. 

Equations (23) and (24) then can be used to find the more well-known Eq. (2), 
as in:



         Chapter 8. Particles in electromagnetic fields:  ionic and electronic optics 251

1

1
p

+
2

1
p

= 1
f

.

Equation (24) shows that if V0 or V (governed by the tension VL of the central lens) 
increases, then the f also increases. The variation in V”, however, is harder to define.

8.3. Problems
8.3.1. Problem 1.  Mathematical study of a cycloid
By definition, the trajectory of a point M is a cycloid if the movement of the point is
that of a fixed point in a circle with center C which itself is rolling along a given
straight line D. If after a roll along the line, I denotes the point at which the circle is
in contact with the straight line D and we can make CM,CI .

In this problem, establish the parametric equations for the cycloid so that you
have the x and y coordinates for the point M following a roll of the circle given in
terms of  and the radius of the circle.

Answer

x

y

C
M

O I A(D)

The figure shown above can be traced from the details of the question. The condition 
of rolling without slipping can be mathematically expressed as:

OI MI ,
(to have a simple demonstration of this, it would suffice to roll a circle along a line
as shown in the figure).

With , IC = a,  we have CM,CI OI MI a .

To determine the x and y coordinates of M as a function of , we can use the 
relation: .OM OI IC CM
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By projection on Ox, we have:

x a 0 a cos Ox,CM .

However, Ox,CM = Ox,CI CI,CM 3
2

and as cos 3 sin
2

, we finally obtain:

x a sin .
Similarly we obtain:

y a a cos Oy,CM ,

from which with =Oy,CM Oy,CI CI,CM , we find 

y a 1 cos .

We conclude with the parametric equations of the cycloid:

x a sin

y a 1 cos .

For a value of  increasing by 2 , x increases by 2 a, while y remains unchanged. 
The cycloid is composed of a succession of arcs, such that each arc , with each 
being deduced from the others by a translation parallel to Ox. 

OMA

8.3.2. Problem 2. The effect of a crossed field E B on a charged particle q
A charged particle q is initially placed at O, the defining origin, and has a velocity v 
with respect to the fields  and E B which have the components given by:

x

y

z

E E
E E 0

E 0

  and
x

y

z

B 0
B E 0

B B
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for which the velocity components are  :

dx
dt
dyv
dt
dz
dt

1. From the dynamic fundamental equation projected on the axes, deduce the
equation for the movement of the particle with respect to the axes x, y, and z (where
the initial velocity is assumed in the first instance to be zero).
2. Show that for a system of axes to be defined, we can once again for the equation

for a cycloid described by a circle of radius qEa
m ²

, where qB
m

.

3. Study in more detailed terms the movement as a function of the sign of q. 
4. Study the speed of the particle on its trajectory. At what point is the speed at its 
greatest.
5. How does the particle move if it has an initial velocity v0 which is parallel to the
axis Oz?

Answer
1.  The dynamic fundamental equation can be written: 

F m q E v B .

Projected onto the axes, it gives: 

d²x dym qE qB
dt² dt
d²y dxm 0 qB
dt² dt

d²zm 0
dt²

(1)

(2)

(3)

The integration of Eq. (3) with respect to time gives rise to:
dz
dt

constant

The initial speed along Oz being zero, this constant is also equal to zero. From this 
we deduce that z is constant, and with the particle initially placed at O (z0 = 0), then 
the new constant is equal to zero and  z = 0. 



    Applied electromagnetism and materials 254

The integration of Eq. (2) gives: dym q
dt

Bx + constant.

When t = 0, then x = x0 = 0 and vy = vy0 = 0, from which is deduced that the 
constant is zero, and from which:

dym q
dt

Bx .

Making qB
m

, then we can write that dy x
dt

. By taking this expression into

Eq. (1), we find that 
d²x qE²x
dt² m

.

The characteristic equation of this differential equation is r² + ² = 0, and the 
solutions of the equation without a second member are x cos t µsin t .

Evidently, a particular solution to the equation with a second member is given

by qEx
m ²

, so that the general solution is of the form:

qEx cos t µsin t
m ²

.

The initial condition, that t = 0, x = x0 = 0, gives qE0
m ²

, from which 

qE
m ²

.

Similarly, the initial condition  t = 0, 0dxdx 0
dt dt

, gives  µ = 0. 

Finally
qEx 1 cos

m ²
t .

By moving this expression into dy x
dt

, we obtain:

dy qE 1 cos t
dt m

.

With y = 0 when t = 0, we find that following integration, we have
qEy sin t

m ²
t .
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2. Ultimately, by making qEa
m ²

  we obtain:

qEx 1 cos t a(1 cos t)
m ²
qEy t sin t a( t si

m ²
z 0.

n t)

Within the system of axes ( y, x) we once again find the equation for a cycloid

generated by a circle of radius qEa
m ²

. The length of the arc is given by

and is situated in the plane y0x. 

2 a

3.

q < 0 

q > 0 
  z 

 y 

E

  x 

B

Noting that y has the same sign as q  , we can go on to write that in effect, 

qE q E sin ty t sin t t 1
m ² m t

.

As sin 1 , the bracketed term is always positive, and with E t
m

 also being

positive (E is positive and the time t increases from t = 0 onward where t > 0), y is 

also the same sign as q .  As qB
m

, we have q m
B

. Thus, for a given

positive value of B, the latter term is always negative, along  with y. 

As , the side1 cos t 0 x a 1 cos t  takes on the sign of qEa
m ²

,

which means the sign of the charge q under consideration. Finally, we therefore 
have:
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 when q > 0, we have x > 0 and y < 0; and 
 when q < 0, we have x < 0 and y < 0. 

From this we have the behavior schematized in the preceding figure. 

In practical terms, the movement along Ox is that indicated by the contribution
from the electric force, namely EF qE . With E > 0, x > 0 when q > 0 and x < 0 
when q < 0. 

4.  The equations, which describe the coordinates of the particle, thus are given by:

x a(1 cos t)
y a( t sin t

z 0
)

where qEa
m ²

, and qB
m

.

From this can be deduced (for an initial velocity equal to zero), that:

x

y

z

dx a sin t v
dt

dy a a cos t v
dt

v 0

from which

v² = vx² + vy² = , so that2 2a sin ² t 1 cos ² t 2cos t 2 a 1 cos t

tv 2 a sin
2

.

With qE qE m Ea
m m qB B

, we finally reach: 

E tv 2 sin
B 2

.
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The speed is at a maximum when tsin 1
2

, i.e. t .

This plugged into v gives:

Max
Ev = v 2
B

,

as a maximum velocity independent of q
m

.

The complete arc of the cycloid corresponds to t = 2 , and the value of t = 
(associated with the maximum speed) corresponds to half the arc. Thus, the summit
of the arc is the point at which the speed is at a maximum.

5. The integration of the starting Eq. (3) thus gives us  vz = v0z = v0 . In addition,
keeping the same limiting conditions (z = z0 = 0 when t = 0), we obtain:

0z v t .

With the other limiting conditions being retained (zero velocity with respect to Ox
and Oy, for a particle at O at an origin instant t = 0), the x and y coordinates remain
unchanged.

Finally, the projection of the movement in the plane Oxy is the same as the
cycloid defined above. The only additional movement (derived) is that along Oz 
defined by 0z v t .

8.3.3. Problem 3. Movement of a particle in a uniform B field
A particle of charge q and mass m placed at an instant t = 0 at the origin O of a 
reference trihedral penetrates at the instant t = 0 a magnetic field B directed along

Oz, as in . Here we setzB Be qB
m

.

1. The initial speed of the particle is assumed to be of the form: 0 0xv v ex .

Determine the components of the speed and the position of the particle at any 
given instant t. Show that the trajectory is a circle, for which the center and radius
are denoted C and r, respectively. 

2. Calculate the kinetic ( ) and the magnetic (L M ) moments associated with the 
movement of a particle of charge q in the field B. Give the relations that exist
between and the kinetic energy (EC) and betweenM M and L . Also show that the
normal of the magnetic moment is proportional to the flux of the magnetic field that
traverses the surface of the orbit of the particle. 
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3. The initial speed of the particle is assumed to be of the form: 0 0x x 0zv v e v ez .

Velocities perpendicular and parallel to the field ( B ) are, respectively, denoted 
 and . Show that the normals to the velocity components are conserved. v v

Give the expressions for v  and v  and show that the projection on the plane
Oxy of the trajectory of the particle is a circle of radius R described for an angular
velocity .

Answers
1.

B
x

y

0v

The fundamental dynamic equation makes it possible to state that:
dv q v B
dt m

,

of which the projection on the axes gives:

x
y

y
x

z

dv q q dyv B B
dt m m dt

dv q qv B B
dt m m dt

dv
0.

dt

dx

(1)

(2)

(3)

The first integration of Eq. (3) gives, with v0z = 0 , that vz = 0. The second 
integration gives z = 0 (as z0 = 0), and thus the movement is in the plane Oxy.
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For its part, the first integration of Eq. (2) gives vy = q Bx cte
m

. The initial

condition, vy = v0y = 0 when x = 0 gives cte 0 , from which by making qB
m

we have 

vy = q Bx x
m

.  ( 4) 

By plugging this into Eq. (1), we obtain:

2
xdv q B x

dt m
, so that

2d²x q B x 0
dt² m

.

With qB
m

, we have d²x ²x 0
dt²

, from which x cos t µsin t .

The initial condition, x = x0 = 0 when t = 0 gives  = 0, from which:
. From this can be deduced that:x µsin t

xv µcos t .

The initial condition vx = v0x when t = 0 give: 0xv µcos 0 , from which we have 

0xv
µ . Finally, we reach: 

vx = 0xv cos t  and 0xv
x sin t .

By substituting this into Eq. (4), we obtain:

0x
dy v sin t
dt

,

from which: 0xv
y cos t + constant .

When t = 0, y = 0, from which constant = 0xv
 and then,

0xv
y 1 cos t .
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To summarize, we have:

0x

x 0x

vx sin

v = v cos t

t 0x

y 0x

v
y 1 cos t

and v x v sin t.

The equation for the trajectory is obtained through:

2 2
0x 0xv v

x² y ,

which is the equation for a circle:

  with a center C (0, 0xv
,0)

  and a radius R:  R = 0x 0xv mv
qB

.

0x 0xv mv
qB

 is positive if q < 0 (C above Ox) and negative if q > 0 (C below Ox).

The movement of the particle is a rotation defined by the rotation vector ( ),
which is such that:

dv v
dt

.

This vector can be directly deduced from the fundamental dynamic equation which 
gives:

dv q qv B B v
dt m m

,

from which, by identification:

z
q B e
m

and here qB
m

.

Depending on the sign of q, the rotation vector  is parallel to B (q < 0) or 
antiparallel to  (q > 0) (see the figure below).B
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y

x

B

 O;

C

v0x

v

v

q > 

q < 

C
0

0

sens du courant associé

urant associé

Direction of the associated current 

sens du coDirection of the associated current 

2. The kinetic moment with respect to C of a particle is, by definition,
L CM mv R mv .  It is such that (kinetic moment theory):

dL R F
dt

 (moments of the forces). 

As  is parallel to , then nF F r dL 0
dt

 and L constant (independently of the

position of the point M on the trajectory).

We can take M  O, and we therefore have:

L CM mv = CO mv = constant.

With ox
y

v
CO e , we obtain

2
0x 0x

y 0x x
v m

L e mv e z
v

e ,

so that with qB
m

 we have:

2 2
0x

z
m v

L e
qB

For its part, the magnetic moment is given by M I dS I S n  where the

intensity I is of the form I = q  = q
2

 (  being the rotational frequency of the

particle).
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The direction of the current associated with the rotation of the particle is the
same whether the particle has a charge q > 0 or q < 0, and in accordance with the
right-hand rule corresponds to the vector - ze . We thus have:

z
q

M I S n R²e
2

Taking the value R= 0xv
 into account, the above equation also can be written as 

2
0x

z
v qM

2
e , so that with B

q m
 = constant, we have 

2
0x

z
mv

M e
2B

.

As  = constant, we have:2 2 2 2 2
x y z 0x 0v² v v v v cos ² t sin ² t v x

EC = 2 2
0x

1 1mv mv
2 2

.

By plugging EC into M , we can write that:
2
0x C

z z
mv E

M e
2B B

e

Given the expression of 
2 2

0x
z

m v
L

qB
e , we also have:

qM L
2m

.

The preceding expression z
q

M R
2

²e  makes it equally possible to write:

q q²BM R²
2 2 m

R² .

By introducing the term for the flux ( ) of the magnetic field which traverses the 
orbit of the particle, given by R²B , we also have:

q²M
2 m

.



         Chapter 8. Particles in electromagnetic fields:  ionic and electronic optics 263

3.  We now have . For their part, the velocities0 0x x 0zv v e v ez v  and  are 
such that:

v

z z

x x y y

v v e

v v e +v e

According to the fundamental dynamic equation, we still have zdv
0

dt
 [Eq. 

(3) from question 1] but here, given the limiting conditions, we have:

z 0z zv v e v constant.

With respect to  and the conditions do not change and the movement

therefore still is described by the same values of
xe ye

xv , yv ,  x,  and y. 

We therefore have: 

x x y y 0x x 0x yv v e + v e v cos t e + v sin t e .

The equation of the trajectory therefore is 

0v
x sin tx

0v
y 1 cosx t

 z = .0zv t

The trajectory is helical over a circular base. Its projection on the plane Oxy is a
circle with a radius given by

R = 0x 0xv mv
qB

,

and covered at an angular velocity given by qB
m

.



Chapter 9 

Electromagnetic Processes 
Applied to a Large-Scale Apparatus: 

The Ion Accelerator 

9.1. Introduction: general principles and overall design of a machine for 
implanting ions 

On designing such a machine, the first question asked is what type of ions we would 
like to deposit and what energies they will need to carry out the physical study in 
question. The energy of the ions should be of the order of a GeV to study the 
elementary particles in a material. To introduce ions (which will end up in the 
atomic state) into a material, to obtain electronic or optical doping, the energy 
necessitated for the ions is of the order of keV or MeV. In effect, to minimize the 
faults that can be formed during the process of ion implantation, lower energies are 
solicited. These can be around several tens of keV and are now widely used. Lower 
energy ions also resolve the problem of X-ray protection, which otherwise is 
necessary when using energies higher than 100 keV. If surface treatments are 
planned, such as cleaning by ionic pulverization or densification by ion-assisted 
deposition, then the energy levels used are more of the order of 100 eV to tens of 
keV.

Therefore, machines that operate over a range of 100 eV to 100 keV (while 
benefiting from the use of multicharged ions) now can be used for a wide range of 
physical treatments. It is this apparatus that this chapter describes. 
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The nature of ions and the required density of their ion current determines the 
choice of the source. In practical terms, electronic cyclotron resonance (ECR) 
sources make it possible to reach high current densities (10 µA cm-2) while 
delivering large numbers of multicharged ions. As at a given acceleration potential 
triple-charged ions exhibit thrice the energy of monocharged ions, the operating 
energy range can be increased considerably. In addition, ECR sources permit 
continuous, long durations of irradiation with reactive ions. This is not often found 
with other sources, which often use filaments. This chapter therefore will be limited 
also to an ECR source. 

The primary ion beam, direct from the ECR ion source, needs to be well 
defined with respect to the mass, charge states, energy, and the dimensions of the 
beam spot. The first three conditions can be fulfilled by using a mass filter, a 
suppression of neutral particles resulting from collisions between the ions and any 
residual gases, and choosing the potential between the source and the target, 
respectively. These techniques are schematized in Figure 9.1. The last 
parameter the spot size is controlled mainly by the ionic optics of the machine, 
using lenses and diaphragms detailed in Chapter 8. 

In addition, the quality of a beam of low energy ions depends heavily on any 
space charge effects that may result in a dispersion of the low-energy beam. The 
ions move through a region of high energy that must include a large number of 
elements that shape the beam. This is done with the help of a tube in which the ions 
have a kinetic energy equal to that of their extraction. The tube contains a series of 
focalizing lenses, diaphragms, a mass filter (circular section filter or rectilinear filter 
otherwise known as a Wien filter), a neutral trap, and a sweeping zone that permits 
the equal distribution of ions on the beam. This zone is followed by one containing 
the acceleration and deceleration lenses, which is adjacent to the implantation 
chamber. The latter is earthed for experimental simplicity and security (the link 
between the chamber and the targets has a resistance of the order of 4 ohms). 

Finally, experiments involving the treatment of materials are extremely 
sensitive to residual gas pressures. A good vacuum therefore is obligatory. At the 
source, a pressure associated with plasma conditions (  10–5 mbar) is necessary. At 
the level of the target chamber, a pressure between 10–6 and 10–5 mbar is common. 
In order to reach these levels, the apparatus should be capable of delivering a 
pressure of the order of 10–7 mbar when there is no inlet gas. 

9.2. Setup of an ion beam 
9.2.1. Overall description 
The above-described accelerator has three sections, each set out in Figure 9.1.  
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ECR
source

or

Figure 9.1. Schematization of the different stages required in an ion accelerator (low
energies from 100 eV to 70 keV), where qV1 is the energy of the ions, qV2 is the energy of the 

ions following a selection by mass and the shape of the beam, and V2-V1 is the
deceleration voltage. 

The first stage corresponds to that of a cyclotronic resonance source working
with gases under classic conditions. A turbomolecular pump directly connected at 
this level gives a pressure of the order of 10-5 mbar during plasma formation and 10-7

mbar at rest. The resolution of the various electromagnetic problems encountered
during the design of such a device is detailed in Section 9.3. 

The second stage consists of the acceleration deceleration tube which has one 
end placed at the source exit. At this point, there also is a single lens a so-called 
Einzel lens and the beam thus is introduced into the mass filter. The latter in this
case is of the Wien type (by rectilinear mass filtering). Neutral and as yet unfiltered
particles are removed by a double deviation, of around 3 ˚ of the beam. The ions are 
then doubly swept in the x and y directions before reaching the postacceleration or 
postdeceleration zone. 

The third stage consists of an earthed irradiation chamber. The spot of the beam
thus is “swept” across the target (a surface typically around 5 x 5 cm) and a Faraday 
cage connected to a current integrator makes it possible to control the density of the
ion current deposited on the target.
9.2.2. Use and distribution of high tensions within the apparatus
Two high tensions are applied:

  one (denoted the potential V1) is between the high potential of the ion source
and the true mass (in the irradiation chamber). This can be denoted as 
VSource – 0 = V1;
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 the other, denoted V2, is that between the high potential (V1) of the source 
and the accelerator tube, so that VSource – V Tube = V2.

The conservation of the ion energy (of charge +q) between the exit of the source and 
their entrance into the tube is written as: 

[qV1 + Ec(S) = q(V1 – V2) + Ec(Tube)] ,      (1) 

where Ec(S) represents the initial kinetic energy of the ions at the source exit. On
assuming that the ions initially have zero kinetic energy at the level of the source,
we can state that

1
2

mv22 = Ec(Tube) = qV2, (2)

where v2 is the velocity of the ions in the tube.

With the exception of the variations in the electric potential energies associated 
with effective zones for beam control (lenses at potentials given by the general terms
VL and applied between the central electrode and the symmetrical electrodes at the 
floating tension of the tube), the ions display the same velocity along the tube, such 
that

2 2
2q

v  = V
m

. (3)

This velocity will be increased or decreased only at the lenses (situated post-
acceleration of postdeceleration) placed in the neighborhood of the implantation
chamber.

Writing down the conservation of energy between two extremities of the
machine,

[qV1 + Ec(S) = qV(chamber) + Ec(target)]

makes it possible to write [with Ec(S) = 0 and V(chamber) = 0 ] that: 

Ec(target) = qV1. (4)

With the potential energy of ions arriving at the target being equal to zero by
construction (as the implantation chamber is earthed) then the total energy of the 
implanted ions thus is also equal to qV1.
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To conclude, given the scheme of potentials involved, it is the potential
difference applied between the source and the implantation chamber (V1) that 
determines the implantation energy of the ions (equal to qV1). It is by the use of V2
that the transport energy of the ions down the tube is controlled [which are therefore
at a floating potential along with the lenses, the Wien filter, the system
for the deviation of neutral species, and the sweep].

1 2V V

For an accelerator that delivers monocharged ions going from 100 eV or so up 
to 30 keV (which can be used to reach 90 keV with triply charged ions), the 
potentials used are for V1 = 0.40 keV and for V2 = 10 or 20 keV (the kinetic energy
for ion transport in the tube, which makes it possible to guide the beam without
risking its dispersion by space charges). 

9.2.3. The Wien filter 
9.2.3.1. How it works
This type of filter has the advantage of selecting along the axis of the accelerator, 
thus limiting its geometric dimensions. Only ions selected from the given values of

 and , which insure an equilibrium between electrical and magnetic forces
(Figure 9.2), will follow their initial trajectory without deviation. However, this type 
of filter has the disadvantage of creating localized strong space charges associated 
with nonselected ions. These are deviated toward a zone where their confinement
can result in perturbation fields (of the applied field

E B

E ) which then can influence the 
required effect of separation.

These filters are in principle limited to machines dealing with quite low
currents, or the order of less than 100 A, so as to limit the aforementioned space 
charge. Nevertheless, by locally generating electrons (by the thermoelectronic
effect) in the space charge zone, the positive ions can be neutralized. In practical
terms, this means placing a filament that generates electrons that will go toward an
electrode connected to a plate of the Wien filter, on which the nonselected positive 
ions accumulate. The magnetic force generated by permanent magnets in the Wien
filter dominates (at the beginning where E  0) over the weak electrostatic force 
applied, and the ions thus accumulate on the positive plate (weakly so at the start). A
manual adjustment of the intensity of the current in the filament controls the supply
to the filter plates so that a permanent flow is not brought about. In effect, an 
equilibrium is brought about between the current of ions associated with the space 
charge and the electronic current produced by the heated filaments (Figure 9.2). 
9.2.3.2. Velocity filter and its configuration
Given the following experimental conditions (and when q > 0):

 velocity of the ions in the tube along Oz is denoted v2,
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 there is a magnetic field (B) directed along –Ox, of a fixed value, and
produced by permanent magnets of several hundred Gauss, and 

 electric field directed along Oy,

then the magnetic forces [ m 2F = q(v ×B) ] and the electric forces [ eF = qE ] are anti-
parallel. Their effect cancels out (so that the initial trajectory of the ion is not
changed) when either  |Fe| = |Fm|, or when qE = qv2B, which is the same as when

2
E

v  =
B

. (5) 

This is the condition for a rectilinear trajectory.

Figure 9.2. Direction of electric (Fe) and magnetic (Fm) forces in a Wien filter. 

At this level of reasoning, we can consider that the filter acts like a velocity
filter. In effect, the velocity (v2) of the ion at the point of the Wien filter is 
determined by the extraction potential (V2), which has a value given by Eq. (3). 

Numerically speaking, for example, using potassium where m = A uma = 38/N,
gives m = 6.31 x 10-23 g, we find that v2 = 2.25 103 m s-1.

9.2.3.2. Selection by mass 
For a given extraction tension (V2), the velocity indicated by Eq. (3) thus is of the
form:
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1/2(3)
2 2

q q
v  = 2V =K

m m
, (6)

where 2K 2V is a constant at the given extraction tension.

It thus appears that for ions of the same charge, the velocity filter acts as a mass
filter. For multicharged ions (with n charges), nq is substituted for q into Eq. (6).
The corresponding particle is selected as if it had a mass given by m/n. The doubly
charged ions appear as if they have half their mass, and similarly triply charged ions
appear to have one third of their mass.

By writing the equality between the squared Eqs. (3) and (5), we obtain:
(E/B)2 = 2qV2/m, so that

2

2
B

m = 2qV
E

. (7)

For given vales of B, E, and V2, Eq. (7) gives the value of the selected mass (in a 
rectilinear trajectory). As B and V2 are determined by the initial experimental
conditions, the control of m is made simply by varying the tension applied to the
Wien filter which in turn forms the field E. 

In practical terms, if the experimental controls remain unchanged (i.e., V2 and 
B remain untouched), we can state that for ions of the same charge that

m E2 = constant.

On using this equation for two elements of given masses m1 and m2, we can 
determine the field (E2) necessary to select m2 when the standard field (E1)
determined for the standard mass (m1) is known. This is done using:

1/2
1

2 1
2

m
E = E

m
. (8)

9.2.3.3. Separating power
A simple calculation (using the results from Section 8.1.2.1) shows that for a 
distance  from the middle of a filter of length a, the deviation denoted by Y of the
particles of mass m + m with respect to an axis along which nondeviated particles
of mass m travel is equal to:
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2

a E m
Y = 

4 mV
. (9)

v2 = E/B 

 Y 

a/2

Figure 9.3. Deviation (D) of ions of mass m + m with respect to the trajectory of non-
deviated ions with mass m and velocity v2 = E/B (Wien filter).

Therefore, the separation and hence the resolution power of the filter can be
modified by modifying the electric (E) or the magnetic (B) field (as 

).2
2 2V = mv /2q = mE²/2qB²

We can note that Y decreases if m increases (from which the difficulty of 
separating high-mass ions).

We also can state that two ion beams will be resolved if the separation of the
beams is greater than or equal to the sum of the diameter of the beams (2r) and the 
slit width (F), i.e., when Y F + 2r. In concrete terms, F is controlled by the
diaphragm diameter at the exit point of the Wien filter. In , the equal sign
is obtained at the separation limit where Y is given by Y = C m/m [C is the
constant determined in Eq. (9) preceding that for Y]. 

Y = F+2r

9.2.4. The neutrals’ trap
Any neutral particles need to be eliminated as they are not compatible with the
Faraday cage (which counts the number of charged ions), and because they create
implantation inhomogeneities as they cannot be spread about the target by the sweep 
system.
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    + 3500 V

- 3500 V

- 3500 V

+3500 V

Figure 9.4. Electrostatic double deflection making up the neutral trap. 

The trap thus works by two electrostatic deflections of the ion beam which retains
its parallel nature, as shown in Figure 9.4. 

9.2.5. Sweeping
With the help of diaphragms and electrostatic lenses we can produce a focused 
implantation “spot” (image of the source). It is this spot that is swept across the
target describing its outline. If the spot is out of focus, then the spot is larger and less 
able to define the target, but can yield a more homogeneous implantation.

The sweep is controlled through electrostatic deviations. For a given tension
(Vd) applied between the two parallel sweep plates of length and separated by a 
distance h, then the deviation (Y) at a distance (D) from the middle of each plate 
(Section 8.1.2.1) can be given by:

d

2

D V
Y = 

2h V
. (10)

To obtain a sweep in X and Y directions, two parallel pairs of plates are used, 
one operating in one direction, the other in a perpendicular direction (Figure 9.1). 
The two systems are set up in parallel with the potentials of the plates being crossed
so that the deviations each compensate one another (as for the neutral deviation 
plates).

The tensions used in the deflection process are typically of a triangular form,
with a frequency of between 10 and 200 Hz. Lissajous curves (where the frequencies
are in a simple integer ratio) should not be generated as they would otherwise lead to
an inhomogeneous implantation, and means that the frequencies used are near (for
example 10 and 11 Hz) or far apart (for example 10 and 200 Hz). 
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9.2.6. Determination of the number of implanted ions and the Faraday cage 
With the neutral particles eliminated, it is necessary to limit recombination of the
remaining ions. To do this, a pumping system based on primary and secondary
pumps is installed close to the Faraday cage (or Faraday cup) in order to limit the
number of collisions with any residual gas molecules that might otherwise favor
recombination processes. 

The measurement of the flux of ions implanted per unit surface of the target is 
carried out using a current integrator connected to the Faraday cage. This acts as a 
collector and compatibilizer of incident ions. If the integrator has a high entrance
resistance (which opposes the flow of charges), then the cage becomes positively 
charged and attracts secondary electrons that result in a current that tends to
diminish the real current of positive ions. This is the reason why integrators with
low entrance resistances are generally used. 

In practical terms, a current density of 1 A cm-2 on the cage is equivalent to it 
receiving 6.26 x 1018 monocharged ion cm2 s-1 (as 1 A = 1C/1s and 1C = Ne, where 
N = 1/e =  6.25 x 1018 when e = 1.6 x 10-19 C). Finally, if:

I is the current (in amps) arriving on the Faraday cage;
t is the irradiation time in seconds;
S is the surface of the Faraday cage in cm2; and
n is the state of the implanted ions,

then the Faraday cage which receives a charge given by Q = It actually has per cm2 a 
charge of Q/S. This quantity of charge corresponds to a number of monocharged
ions N (Q/S). If the ions carry n charges the flux (D) that by definition represents the
number of received ions per cm² thus is given by: 

N Q
D =

n S
, (11) 

so that numerically speaking (with S in cm2):

D (ions/cm2) = (6.2  x 1018 I t)/(S n).

In practical terms, the Faraday cage is exchanged for the target to be treated
with the ion beam. Any measure of the flux thus is performed prior to and following
the ion treatment so as to insure a stable ion beam. A more stable and elegant 
solution is found in using a Faraday cage with a hole in the middle for the target.
This insures a stable beam during the exposure of the target to the beam.
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9.2.7. General remarks on the mechanism used to produce ions
9.2.7.1. Ion formation
Positive ions generally are formed from electric discharges from a chamber
containing, either wholly or partly, the gas to be ionized. Classically, the ions are 
produced following a bombardment of the gas by electrons accelerated between the 
source cathode and anode, with the level of ionization being determined by several
factors.
9.2.7.1.1. Ionization potential of the atoms present as a gas or vapor 

Figure 9.5. Atom ionization. 

The ionization potential of an electron is equal to its bonding energy (Ip), which is
the difference between its energy at the level of a vacuum (taken as the origin for 
energies) and the original level of the electron. Metals with a single valence (column
1A of the periodic table) typically exhibit low ionization potentials (Ip = 5.4, 5,1
and 3.9 eV for Li, Na, and Cs, respectively) and are ionized by low tensions.
Atoms with more saturated outer layers have high bonding energies (24.6 eV for 
He, – 21.6 eV for Ne, – 13.6 eV for O, and – 17.4 eV for F). 

9.2.7.1.2. The electronic current
The current of electrons controls the ionization of the atoms or molecules with
which it comes into contact. At different pressures, the gases or vaporized atoms are
ionized on impact with electrons. The latter are generated by cold or hot cathodes or
directly by an inductive or capacitive coupling between the gas itself and a 
radiofrequency field due to the high number of collisions in the volume caused by
the high-frequency electrons generated by the field at a frequency  10 MHz. The
density of the ions depends, in the absence of a discharge, on the electronic current
between the cathode and the anode. 

Emission of electrons from electrodes can be obtained by thermoionic
emission, photoelectric emission, electronic impact (electrons at 100 eV to 1 keV
being the most efficient to yield secondary electrons), or by ionic emission using a 
field effect (due to a tunneling effect with fields of the order of 106 V cm-1).
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9.2.7.1.3. Collision efficiency and elastic and inelastic collisions 
Rather than considering an individual electron atom collision, it is the statistical 
result of the collisions that should be studied. In order to do this, we have to look at 
the effective surface (or efficient surface) for the collisions, which corresponds to an 
efficient section. The latter can be used just as well for elastic or inelastic collisions. 

The efficient elastic collision section for an atom (with a diameter denoted as d) 
with an electron (which is assumed to be a point with a practically negligible 
diameter) is given by   =  d2/4 . With an atomic density given in terms of n atoms 
cm-3, the total surface is given by n . Taking into account the low mass of an 
electron with respect to that of an atom, the energy transferred in elastic collisions is 
nevertheless small. 

  In order to study the ionization process, we really need to look at inelastic 
collisions to which the concept of an efficient section also can be applied. In an 
inelastic collision, there is a change in the internal excitation of the atom, which 
follows the collision. While the total energy of the system is conserved, the ratio 
between the potential and kinetic energy is altered. Either totally or partially,  the 
kinetic energy of the incident electron is used to modify the potential energy of the 
valence electron of the atom. 

Two types of collisions thus can come about: 

the first type where the kinetic energy of the incident electron is transferred to 
the valence electrons and increases their potential energy. The atom thus carries 
an excited state for which the limiting state is the ionized state; and 

the second type where the atom is already in an excited state and on meeting an 
electron the atom transfers its excitation energy (thus reducing its potential 
energy) to the incident electron, which sees its own kinetic energy increase. 
This type of collision also can come about between atoms or ions. A collision at 
an atom (A) with an atom (B) in a metastable state gives:  if eV meta B > eVi 
(where Vi is the ionization potential of A) then A is ionized. This process is that 
of the Penning effect which is applied to the ionization of mixtures of rare 
gases. Molecular gases with ionization potentials of the order of 15 eV are 
easily ionized by this method, notably through an intermediate such as neon 
which exhibits a metastable state with a long lifetime at 16.5 eV. In addition, 
this type of collision involves a large efficiency section, and as a consequence 
shows a high ionization yield, greater than that of electron atom collisions (for 
which the efficiency section is small given the relatively small size of the 
electrons with respect to atoms). 
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9.2.7.1.4. Effects caused by the pressure and geometry of the discharge chamber on
the ionization

The breakdown voltage for a gas depends on a large number of parameters, such as
the type of gas, its purity, the space between the electrodes, and the nature of the
materials making up the electrodes and the enclosure.

The Paschen law takes into account the combined effects of the breakdown
voltage (Vc), the pressure (P) of the gas, and the distance (d) between the electrodes. 
The law indicates that Vc depends on the product of P and d for a given electrode
system, so that Vc P d. A plot of Vc as a function of the product (P d) shows a 
minimum which signifies that there is for a certain value (P d) = (P d)min a minimum
breakdown voltage. Finally, for a given separation d between the electrodes, this law
implies that the breakdown is least easy at both low and high pressures. The 
minimum is due to the frequency at which the collisions occur and the effect of the
energy acquired on each collision.

9.2.7.1.5. Effect of the form of the magnetic field lines on the pathway and
confinement of the electrons: increasing the ionization yield

This effect, and most notably that of a magnetic bottle, is dealt with in a problem at
the end of this chapter.

9.2.8. Nature of the electric discharge 
Naturally occurring ionization, due to cosmic rays, UV radiation, and radioactivity
and under normal condition of temperature and pressure, can be found in the 
atmosphere at levels of around 1000 positive and negative charge per cm3. At 
equilibrium, the generation and recombination of charges is equal.

Under such conditions, two electrodes carrying a low electric field can circulate
a small current with a density given by Jsat = e d (dn/dt). Here, the equilibrium
conditions remain unmodified so that the total number of charges which arrive at
each electrode as dn/dt per cm3 and per second is equal to the number of charges 
produced. The value of the current density, under normal conditions, is Jsat  10–9 A 
cm-2 and thus insufficient to produce a visible discharge.

If, however, the tension between the electrodes is increased, then the current
increases as a function of the gas pressure. A rapid increase in current with tension is
due to:

a volume effect where collision with rapid primary electrons with atoms in
the volume generate ions and hence an internal ionization of the gas. The 
electrons are those that are accelerated by the electric field applied between 
the cathode and the anode. Following this ionization there is a 



Applied electromagnetism and materials 278

multiplication of electron ion pairs, resulting in an avalanche toward an 
eventual discharge; 
a surface effect where the collision of ions with the cathode surface 
generates secondary electrons which result in a high increase in the 
intensity. A steady luminescent discharge thus appears when there is a 
sufficient number of ions to generate enough electrons at the cathode. 

Electric discharges thus can be obtained by: 
application of a continuous tension with the pressure playing an essential 
role for the luminescent discharge which appears at low pressures. At 
equilibrium, the discharge is maintained by electrons coming from the 
cathode, bombarded with positive ions, and absorbed by the anode. At 
sufficiently high pressures (  10 Torr), a very high current discharge arc 
can appear (of a density reaching 106 A cm-2 at the cathode) making the 
positive column appear very luminescent; 
by using tensions at various frequencies: 

o up to 10 MHz, while the frequencies remain low (less than 1 kHz) the 
period associated with a cycle (  1 ms) is generally higher than the 
transit time of the ions and the breakdown tension is of the same order 
as the continuous current. When the frequency increase, the value of 
the breakdown voltage (Vc) can increase and then decrease for the 
following reasons: 

- at low frequencies and with an increase in the frequency an 
increasing number of ions see their direction inversed, and the 
actual number of ions reaching the cathode diminishes just as does 
the number of secondary electrons emitted by the cathode. Thus 
the breakdown voltage increases; 

- at higher frequencies, the efficiency of oscillating electrons in 
ionizing collisions increases. The length of the oscillations at these 
high frequencies become very small, the electrodes are no longer 
reached, and phenomena at the electrodes become negligible with 
respect to the high number of collisions in the volume. Finally, the 
important contribution of ionizing collisions makes it possible to 
decrease the breakdown voltage for frequencies higher than 
several MHz. 

o At frequencies greater than 10 MHz, when discharges occur at these 
frequencies, the current is maintained without resorting to electrodes. 
In effect, a high number of collisions occur in the volume due to the 
high-frequency, and the electrodes become unnecessary to produce 
electrons. Generally, a high-frequency field is produced using a 
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simple capacitive coupling (with electrodes being outside the 
enclosure). The devices are termed radiofrequency (RF) sources. 

o Above 1 GHz and with a low gas pressure (from 10–4 to 10–5 Torr), 
the application of a high-frequency field is capable of generating 
several oscillations for an electron between two consecutive collisions
with gas atoms. At what is a cyclotronic frequency, the electrons
continuously gain energy from the electric field and develop a high
electronic temperature.

One of the benefits of using such sources is the high production of
multicharged ions. Multi-ions can be produced from single-impact
events with energetic electrons and also through step-by-step
ionizations (equivalent to multiple impacts) with lower-energy
electrons. High current densities of monocharged ions can be equally
obtained. In general, the system is used outside of resonance 
conditions and the discharges thus are produced using a high-pressure
medium which increases the energy of the ionizing electrons and
results essentially in the production of monocharged ions. Microwaves 
at 10 GHz often are used, but nowadays the ready availability of 
magnetron oscillators at 2.45 Ghz (microwave ovens) has permitted
the development of sources close to this high frequency. We now will 
present in more detail these types of sources, commonly referred to as 
ECR sources. 

9.3. ECR-type source of ions (“cyclotronic resonance”)
9.3.1. Principles of an ECR source
An ECR source (schematized in Figure 9.6) functions by the ionization of a gas (or
vapors) through the collisions of gas atoms and highly energetic electrons (high
ionization yield). A magnetic field (B), such that its field lines confine the electrons,
produces a helical trajectory of the electrons, with a rotational frequency
corresponding to the cyclotronic frequency given by . The application of 
an electromagnetic field (EM) makes it possible to transfer from the EM field the 
energy of the electrons. The resonance condition for this energy transfer is that the
pulsation of the EM field is equal to the cyclotronic pulsation (

c = eB/m

c ). For an electric 
field at a frequency of 2.45 GHz, the necessary magnetic field is 875 Gauss. The
radius of the trajectory is given by rc = u/ c where u is the component of the
electron velocity perpendicular to the direction of B. For a frequency of 2.45 GHz
and electrons with energies ( cE ) typically between 5 and 10 eV, the circular
orbitals have a radius of around 0.01 cm, which is considerably smaller than most
chambers associated with ion sources. 
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The density of the plasma is given by the equation Np = (m 0 p2/e2), and 
therefore the frequency of the microwave field is higher than the plasma frequency
(so that the field propagates). Figure 9.7 recalls the propagation condition detailed in
Chapter 8, Volume 1, Basic Electromagnetism. When  ( c) is too small or when 

p is too large (meaning that in practical terms Np is too large), the EM wave cannot
penetrate the plasma. For a frequency of 2.45 GHz, the critical density (Np) is thus 7 
x 1010 ions cm-3.

Figure 9.6. Schematization of the workings of an ECR source.

As the external flux of ions coming from the plasma is directly proportional to 
the plasma density, a dense plasma is necessary to obtain an elevated ion current
(beam current). Using the preceding value for Np, a saturation current of the order of 
10 mA cm-2 can be obtained.

A powerful EM field is injected into the source through a quartz, ceramic, or
mylar window, as shown in Figure 9.6. 

B can be produced from two electromagnetic reels that surround the external
sides of the source so that the field is axial.
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The gas is directly introduced into the upper part of the source at the level of the 
sample. The source unit is cooled using a circulation of water, as the level of power 
used to drive the source develops a considerable amount of heat.

r

1

0          1 
/ p

propagation

     damping

Figure 9.7. Propagation of an EM wave in a plasma. 

9.3.2. Magnetic field effects on the pathway and confinement of electrons:
increasing the ionization yield 

9.3.2.1. Trajectory in the presence of a uniform magnetic field (B)

A particle of a given charge (q) and velocity ( v ) placed in a magnetic field ( )
undergoes a force given by

B
F q v B  which results in a circular movement if

has a component (u) perpendicular to

v

B . The corresponding angular velocity is:

c
qB
m

for a cyclotronic angular frequency for a particle of mass m (if q < 0, c // B ). The 
curvature radius (R) of the trajectory is given by R = u/ c, so that  (we 

also can say that F = q u B, as 

R = mu/qB

u B , so that q u B = m v2/R, from which
).R = mu/qB

If in addition the particle is subject to a velocity that has a component

parallel to
//v

B [and therefore the magnetic force is zero as //q v B = 0], then the

translation effect in the direction of this component superimposes itself on the
preceding circular rotation. The resultant movement therefore is that of a helical 
movement with a constant helical step parallel to B  (see problem 3). 
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If a continuous electric field ( E ) is applied perpendicularly to B , the resulting
movement is that of a cycloid directed in the direction normal to E  and . When

 exhibits an additional component in the direction of B
B

E , then there is a deviation
in this direction.

The movement of the electrons between the anode and cathode is increased on
application of , and therefore the probability of collision and hence ionization is
increased.

B

If in addition the applied electric field is alternating (rotating field as shown in
Figure 9.8), then the rotational component of E  (for example, E  denoting an 

angular frequency + ) for frequencies close to that of c (+  = c) will produce a 
resonance effect driven by the magnetic field. The electrons quickly will take on the
energy coming from the electric field and the ionization yield will be strongly 
increased.

 ( B // Oz) 

y

 O z
   B 

xE  + t
- txE

E

E

E( )x

Figure 9.8. Rotating  field ( E ) such that

Ex
+ = Oxproj E = E cos t, Ex

- = Oxproj E = E cos( - t),

from which

x x xE( ) E E E E e E( )ex  with E( ) = Ex
+ + Ex

- = 2E cos t.

9.3.2.2. Confinement of electrons with the help of a magnetic bottle
The discharge electronic current density between an anode and a cathode depends on 
the respective values of the creation and annihilation of electrons. The electrons can 
be localized by using a magnetic mirror formed by an ad hoc distribution of 
magnetic field lines. To further understand this, it is of interest to study the helical
trajectory of a charged particle placed in a convergent field (such that B crosses 
from point P1 toward another point P2), and such that B  has a cylindrical symmetry
(that is to say that B is independent of ), so that B  = 0, and thus also:

r r z zB B e B e .
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As divB 0 , so that B.dS 0 , the flux of B  is constant through a tubular

section of the field. As the section (S) decreases on going from P1 toward P2,
increases in the same direction and B(P

B
2) > B(P1).

From , we can deduce that: divB 0

1
r r

(rBr )
dBz
dz

0 , so that rBr
r2

2
dBz
dz

(z) .

As when r = 0 we have r Br = 0 and a result that gives

(z) = 0 , from which Br (r, z)
r
2

dB(z)
dz

.

The radial component (Br) of B is directed toward the center of the helice. We
denote  as the component of the velocity normal to B (and therefore to Bv u r).

The corresponding magnetic field rq v B  works as a decelerating force that 

reduces the derived velocity in the direction P1P2.

In effect, we can show that not only the movement of the particle is slowed, but
even zeroed and inversed in direction. This is as if the system is working as a 
magnetic mirror, which can be used to form a magnetic bottle of charged particles
(Figure 9.9). 

P1 P2
B

v (if q > 0) 
(in the opposite direction if q < 0)

 Br
B

qv Br
  Direction independent

 of the sign of q

Bz vz

z

The rotational movement is produced by the magnetic force 
 q v zB , with an acceleration directed toward the center of 
the circle. Thus a centripetal acceleration imposes the direction 
of v  as a function of q > 0 or q < 0 

Figure 9.9. Confinement of charged particles. 
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We can show, by projection of the dynamic fundamental equation on the co-
ordinate axes of the cylinder that, as demonstrated in the problem at the end of this
chapter:

z
r

dv q
r B

dt m
,

so that by taking into account the preceding expression for Br:

2
z z

z

dv q r dB v dB
r

dt m 2 dz 2B dz
z .

This equation shows that vz decreases when in a region where Bz increases with z. 
Similarly, the analytical expressions in cylindrical coordinates (r, ,z) show that v
increases in modulus while Bz increases with z. 

Comment. This latter result can be confirmed by the following method. Denoting
the magnetic force as F q v B normal to the velocity of the particle, this force

does not produce any work. Thus, dW = 0 = d(mv2/2) = mvdv, so that dv = 0 and
finally, .  The total velocity remains constant, that is to say that the velocity
with respect to P1P2 (vz) being diminished; the velocity normal to this direction is 
increased. If we assume that 

v = Cte

rv 0 , then with vr = r’ supposes that r  constant,
which is to say that the trajectory is a circle. This is turn means that B only changes
very slightly with z (as the trajectory of an electron is that of a circle in a uniform
field). Even if the illustrations given here magnify the variations, we will assume
that this is the case. 

 B

M’ M 

c

Figure 9.10. Magnetic bottle. 
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With the formation of these field lines in the ion source, we can make
considerable gains in the ionization efficiency. In fact, for a magnetic bottle, there is
a double convergence of field lines in space. The field tubes exhibit the form
described in Figure 9.10, and the trajectories follow circles as the orbits of the
particles are rolled up on the tubes of the field. On moving toward the points M or
M’, the intensity of B reaches a maximum, and the decelerating force

increases up to a point where movement toward M and M’ is cancelled. The
electronic charges thus are confined between these points.

rq v B

Such a magnetic field configuration can be produced by two reels carrying
current in the same sense. As indicated above, the angular frequency associated with
the rotation produced by B gives c = eB/m. If an alternating field (rotating field) 
at a frequency  also is applied perpendicularly to B , then a resonance rotation of 
the electrons is produced when c takes on a value ( c0) such that  = c0 = eB0/m.
For an electric field with a given frequency , the resonance occurs at a point in
space where the field (B) takes on the precise value B0 (which insures that  = c0).
In the case of the magnetic bottle, the two points P and P’ correspond to this value 
and it is in the neighborhood of these points that the ionization yield is at a 
maximum (the rotation of the electrons is in phase with the rotating electric field
which concedes its energy to the electrons, which in turn use the energy to increase 
the degree of ionization).

9.4. Problem
Charged particle (q) in a slightly nonuniform magnetic field: the magnetic mirror

Here a charged particle (q) is subject to a magnetic field ( B ) of which the
component (Bz) along Oz varies only slightly with z. In addition, it is supposed that 
B exhibits a cylindrical symmetry, that is to say that B has the same value at
whatever value of . As a consequence, B( ) = constant, and to simplify, the
component B  of B with respect to  is taken to be equal to zero. As B  is zero, in
cylindrical coordinates, we thus suppose that B  has the form:

r r zB B (r, z)e B (z)ez .

1. Calculate Br that is expressed as a function of r and of zB
z

.

2. Show that the kinetic energy of the particle is retained.

3. Here we introduce: zqB
m

.
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From the components vr, v , and vz of the velocity, give in cylindrical
coordinates the differential equations associated with the movement of the particle

(expressions for rdv
dt

,
dv
dt

, and zdv
dt

as a function of vr, v , vz, , , Bz, and zdB
dz

).

4. It also is supposed that B varies slightly with z, so that it can be assumed that
locally B is uniform. Locally, the trajectory is considered a circle, for which:

rv r 0 , and rdv
0

dt
.

Give the angular velocity ( ) and give an expression for the radius of gyration
( ) as a function of  and of v .

Express
dv
dt

 and zdv
dt

as a function of v , vz, Bz and zdB
dz

.

5. Show that Mz is a constant of the movement.

6. Calculate the magnetic field flux through the orbit described by the particle. It is
supposed that the particle moves in a tubular field.

7. Study the directions in the variations of the components vz and v  of the velocity
of the particles when Bz is crossed with z. Show that a reflection effect (magnetic
mirror) can result. 

8. It is supposed that the initial velocity ( 0v ) of the particles is at an angle  to the
Oz axis and that the particle moves in a region where the field Bz goes from a value
B1 to a value B2 (where B2 > B1). Establish the condition that must be verified by
so that the particles are reflected on traversing this region.

Give the size of R for the reflected particles when they are emitted isotropically
in a half-space. 

Carry out a numerical appreciation of the calculation using the values of 
B1 = 10–4 T and B2 = 5 x 10–4 T. 

Answers

1. As  verifies div = 0, we have in terms of cylindrical coordinates:B B

div =B z
r

1 B
(rB ) 0

r r z
.
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from which we have 

z
r

B
(rB ) r

r z
,

so that

z
r

r² B
rB K(z)

2 z
.

When r = 0, we have  from which K(z) = 0, and we thus can deduce, that:rrB 0

z
r

r B
B

2 z
.

2. The theory for kinetic energy is written as dEC = F.dl , from which 

dEC = ,q(v B)v dt 0

so that

EC = 
1

m v²
2

= constant,

and also v = constant.

3. In cylindrical coordinates, we have:

r z

r z r r

r z

OM re ze

dOM
v re r e ze v e v e

dt
dv

r r ² e 2r r e ze .
dt

z zv e

The relation
q

v B
m

 (coming from the fundamental dynamic equation) thus

gives:
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r z

r z

z r

r r ² r B r B
q q

2r r r 0 zB rB
m mz z B r B

.

From this can be deduced that:

r
z

z
z

z z

dv q
r r ² r B

dt m
d rdv q r dB q

r r r z rB
dt dt m 2 dz m

dv q r dB
r .

dt m 2 dz

By making zqB
m

, we finally obtain:

r

z z
r

z
2

z z

z

dv
v

dt
dv v v dB

v
dt 2 B dz

dv v dB
.

dt 2 ²B dz

0

(1)

(2)

(3)

4.

magnetic field line
( B  tangential to these lines)

  y 

 x 

z

As constant (circle), we have r rv r .

Therefore, by assuming that 
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rdv
0

dt

we thus have from Eq. (1)  and v r r . This equation gives a good
estimation of the radius of gyration ( ) (which becomes the radius r of the circle 
when B is uniform) as a function of  and of v , so that

v
.

With , the preceding Eqs. (2) and (3) become:

z z

z
2

z z

z

dv v v dB
dt 2B dz

dv v dB
dt 2B dz

(2 ')

(3')

5. With (see question 2, from problem 3 of Chapter 8, this volume):

z z
q q²

M ²
2 2m

²B ,

and
v

, we have:

2

z z
q² v

M B
2m ²

,

so that in addition (using zqB
m

) we have :

2

z
z

mv
M

2B
.

For the calculation of 
2 2

z

z z

dM m dv mv d 1
dt 2B dt 2 dt B

, by writing



Applied electromagnetism and materials 290

z
z z z

d 1 d 1 dz d 1
v

dt B dz B dt dz B
,

we have :

2 2z z
z z 2

z z z z

dM m 2v dv d 1 m 2v dv 1 dB
v v v v

dt 2 B dt dz B 2 B dt dzB
.

By plugging Eq. (2’) into this last equation, it now becomes:

2 2
z z z z z

2 2
z z

dM m v v dB v v dB
0

dt 2 dz dzB B

from which = constant; Mz is the first integral of the movement.zM

6. The flux of the magnetic field through the orbit of the particle is given by
.  With (see question 5)z²B

z z
q²

M ²
2m

B

and hence z
2m

²B M
q² z , we have (as = constant), then:zM

z z
2 m

²B M
q²

= constant

The flux of the Bz field being constant through the section of a tube of the field
(general property of vectors of which the divergence is zero, for example, that given
in Section 1.3.3.2 of Volume 1), the section 2 of radius  through which the flux
of Bz remains exactly constant must correspond to the section of the tube. The result
is that the orbit (circle of radius ) encloses (rolls around) the tube of the field.

It is worth noting that if Bz increases, we should have a value of  which
decreases (the section of the field tube will thus decrease). See also the preceding 
figure where Bz increases toward the right-hand side while the section
simultaneously decreases. 
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7.  According to Eq. (3’), we have 

2
z z

z

dv v dB
dt 2B dz

so that with zdB
0

dz
and Bz > 0 (positive Bz field  increasing with z) 

zdv
0

dt
,

and vz decreases when z is increasing in a region where Bz increases with z. 

In order to study the variation of v , we can write that:

2dv dv
2v

dt dt
.

With (2’), we thus have:

2 2
z z

z

dv v v dB
2

dt 2B dz

from which when zdB
0

dz
 and Bz > 0, we have

d v
0

dt
;

v increases with z in a region where Bz increases with z (a variation of this

demonstration is given in Section 9.3.2.2. 

To conclude, the velocity vz of the particles of charge q decreases as the field 
Bz increases. If the field Bz increases sufficiently, then a moment can arrive when 
the velocity vz cancels out and then changes sign. The particles return in the inverse
direction, undergoing the effect of a “magnetic mirror”.

8. As we assume that vr 0, the velocity essentially has two components, one 
denoted vz and the other v  (normal to vz). At the initial time t = 0 where ,
we thus have v0z = v0 cos  and v0 = v0 sin .

0v v
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We therefore have v20z + v20  = v20 . The conservation of kinetic energy, which can 
be written as 

EC = 2
0

1 1
mv² mv

2 2

shows that v2 = v20 = v20z + v20  = constant.

For its part, the invariance of 
2

z
z

mv
M

2B
 implies (as Bz = B1 at t = 0 and 

z = 0 where v  = v0 ) that

2

z

v
B

constant =
2
0

1

v
B

.

With v0  = v0 sin , this law of invariance can be written as

2

z

v
B

=
2
0

1

v sin ²
B

.

For particles to be reflected in the zone where Bz varies from B1 to B2, the velocity
vz needs to be cancelled out before the particles reach the maximum of the field at
B2. When vz is cancelled out by a field Bd (of value B1 < Bd  B2) we simply have 
v2 = v2  (= v20 by conservation of kinetic energy). This condition, v2  = v20
substituted into the law for the invariance of Mz results in there being a condition of
the angle  which must have a value d  such that:

d

1

sin ²
B

 =
d

1
B

so that 

1
d

d

B
arcsin

B
.

As we must have Bd  B2, we also can state that for particles to be reflected
between B1 and B2, we should find that the following relation is true

1
d 2

d

B
B B

sin ²
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so that 1
d

2

B
sin ² sin ²

B
. This condition is written as 

1
d

2

B
arcsin

B
.

All the particles emitted with an angle 1
d

2

B
arcsin

B
can be reflected 

within the field between B1 and B2.

Thus, particles emitted isotropically within the solid angle 2 1 cos
cannot be reflected. If we consider that the particles are only emitted within the half-
space given by the solid angle of 2  steradians, the corresponding NR of non-
reflected (unreflected) particles is given by

NR =
2

.

The level R of particles reflected being such that R + NR = 1, we have 

R = 1-
2

=1- .1 cos cos

With 2

2

B B
cos ² 1 sin ²

B
1 , we finally have:

R = 2 1

2

B B
B

.

In numerical terms, with B1 = 10–4 T and B2 = 5 x 10–4 T , we obtain:

 and  R = 26
4
5

 90 %. 



Chapter 10 

Electromagnetic
Ion Material Interactions 

This chapter describes the interactions of a charged particle (an ionized atom) with a 
target material. For the most part, the application of these interactions is in the field 
of ion implantation, widely used in material physics to obtain electric doping of 
semiconductors. This chapter is limited to the basic theories, with some results being 
established by way of problems and exercises and others being given directly 
without going into the details which can be found in specialist books such as, for 
example, M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion Solid Interactions,
Cambridge University Press (1996). Material surface treatments using ion beams 
and the various configurations applied also are detailed. Finally, it is shown how 
basic electromagnetism can be used when realizing ion sources.  

10.1. High-energy collisions between atoms and ions: the nature of the 
interaction potentials 

10.1.1.  General form of interaction potentials 
Here we consider the collisions of high-energy atoms or ions with a target (generally 
a solid material). It is assumed that the incident particles have energies and 
velocities well beyond those acquired by thermal excitation (thermal vibration of 
atoms in equilibrium in a solid). The interatomic forces now are exerted over a 
distance less than the equilibrium distance (r0) in the solid. The interaction distance 
(r) during a collision thus depends on the relative energies of the particles during the 
collision. As a consequence, there arises an interpenetration of the electronic orbitals 
that eventually overlap to generate a modification of the wave functions of the 
systems. 
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In order to resolve such a problem (ion solid interactions and radiation
damage of solids), the interatomic potential should be known to the highest possible
degree of accuracy. This is because the potential permits a determination of the 
energy loss of ions as they penetrate the solid.
10.1.1.1. General analytical form of the interatomic potential: Lennard Jones

potentials
The schematic form of this potential that presides between two atoms is represented
in Figure 10.1. It describes the potential, or more precisely the Lennard Jones
potential energy, given by W = Wr + Wa , where Wr  is the repulsive potential that
varies with A / r12, while Wa is the attractive potential that follows the law of
proportionality of (  B / r6).

Taking the analytical form into account, we can state that the attractive energy
has a radius of action greater than that of the repulsive force. When r >> r0, only the
attractive force intervenes. However, when r << r0, the repulsive force dominates.

 r0

repulsive
energy

energy
attractive

resultant
potential

energy

potential
energy

r

Figure 10.1. Form of the Lennard Jones potentials.

10.1.1.2.  Ion atom interactions: study of the limiting case
To model the interaction of an energetic ion with the atoms in a solid, we can study
the limiting scenario for a collision between two atoms separated by a distance r of
masses M1 and M2 and atomic numbers Z1 and Z2, respectively. The force is best 
described by a potential energy [V(r)] resulting from the interaction of several 
bodies combining electrons and nuclei.

Two constants can be introduced to give an idea of the scale of dealing with
separations between particles:

the Bohr radius (a0) for a hydrogen atom which gives an indication of the
extension of hydrogen atoms (a0 = 0.0529 nm = h²/me2); and 
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the lattice constant (r0) which defines the distance between two nearest atoms 
in a crystal (typically of the order of 0.2 to 0.3 nm). 

10.1.1.2.1.  Under extreme conditions (r >> r0), the electrons are distributed 
throughout the levels of individual atoms in accordance with Pauli’s principle. Here, 
the lowest levels correspond to the internal layers which are totally occupied, while 
the external levels are orbitals which give rise to relatively weak attractive 
interactions, namely Van de Walls forces. 

10.1.1.2.2. For the opposing extreme case, when r << a0, the two nuclei become the 
closest particles of the system and their repulsive coulombic interaction dominates 
any other possible interactions. The corresponding (positive) potential energy thus is 
given by (to within the MKS coefficient, often omitted in the physics of interactions) 

V(r) = Z1 Z2 e² / r . (1) 

10.1.1.2.3.  For intermediate distance, a0 < r  r0 , a positive interaction potential 
energy comes from a repulsive force between the two atoms. It is worth noting that 
in general terms, a repulsive force always is associated with a positive potential 
energy.

 The two principal contributions to this potential are: 
electrostatic repulsion (Vnn > 0) between positively charged nuclei; and 
an increase in the energy necessary to maintain the electrons of the closest 
atoms in the same spatial region while respecting the Pauli principal. As two 
electrons cannot occupy the same position, the orbital overlapping of the two 
atoms (which generates a positive repulsion between the electrons of the two 
atoms, Vee > 0) is accompanied by the displacement of a certain number of 
electrons to empty or even higher-energy atomic levels. The latter can 
correspond to antibonding functions with an increase in the potential energy 
of these electrons to Va > 0 along with a modification of their kinetic energy). 
The energy necessary for these processes increases with the closeness of the 
atoms, as the number of electronic orbitals involved also increases.  

For these intermediate distances, the coulombic potential generated by the nuclei is 
reduced by a screening effect due to internal layer electrons. The effective and 
screened potential thus is written in the form: 

V(r) = (Z1 Z2 e² / r) (r) ,  (2) 
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where (r) is the screening coefficient defined as being the ratio between the 
effective potential at a distance r and the coulombic potential of the unscreened 
nuclei.

Under ideal conditions, (r) cooperatively modulates the coulombic potential to
give a description of the ion atom interaction over all distances. For long distances
(positively charged nuclei totally screened by negative electronic charges) (r)
should tend to zero, while for short distances (r) should go toward unity (no more
screening of the nuclei by the electrons). Hence, a single potential energy function is
introduced and Eq. (2) describes the totality of collision processes:

V(r) = (Z1 Z2 e² / r) (r).
The estimation of the function (r) in effect depends on the hypotheses used to 
model the interactions.

10.1.2.  The Thomas Fermi model

In this case we consider a regime of collisions at relatively low velocities (generally
used for implantation and surface treatments). The closest distance used respects the 
general condition a0 < r < r0. The nuclear charge is in effect screened by electrons. 
All the electrons follow Fermi-Dirac statistics and behave as if an ideal gas of
particles filling potential wells distributed around a nucleus. In turn, the electronic
filling of levels is characterized by the function denoted N(EF). This gives the total
number of electrons (given by the number of spin-orbitals meaning the number of 
orbitals, spins included) per unit volume with an energy lower than EF , as in

N(EF) = 
3 / 2

F1 2mE
2 ²

. (3)

This equation is established from the ideas developed in Chapter 5, where 

simply writing that
F FE E

F
0 0

N(E ) Z(E).F(E)dE Z(E)dE (as at T = 0 K the Fermi-

Dirac function verifies that F(E) = 1 when E  EF).

10.1.2.1. For a single atom

We introduce the screened atomic potential (see, for example, Nastasi et al.,
Ion solid interactions, Cambridge University Press (1996) in the form:

V(r) Ze
(x)

e r
, (4)
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where
TF

r
x

a
 and 0

TF 1/3
0,885 a

a
Z

 (aTF is termed the Thomas Fermi screening 

length). We can note that this potential is of a form resembling that coming from Eq.
(2).

The Poisson equation which must verify this potential, [V(r)/(- e)] + / 0 = 0, 
with  = FN(E ) e, makes it possible to establish an equation without dimensions
and which the function should also verify. Thus the Thomas Fermi (TF) equation
is obtained:

1/2 3/2d²
x

dx²
. (4)

Various approximate forms of the function  have been determined, notably that
called Moliere’s form:

0.35exp( 0.3x) 0.55exp( 1.2x) 0.10exp( 6.0x) . (5)

10.1.2.2. Approximation for the screening function using inverse powers
It has been mathematically shown that an inverse power law is acceptable as a
solution to the Thomas Fermi equation. It is written as: 

s 1
s TF

TF

r k a
(x) ( )

a s r
, where s = 1, 2,... and ks is a constant.

It is this form of the equation that is most often used to calculate the nuclear
stopping power (SN) as it provides the most effective route to obtaining SN.

10.1.2.3 For an interaction between two atoms with atomic numbers Z1 and Z2

For this interaction we have

1 2

V(r)
(x)

Z Z e²/r
,  (6) 

and here aTF
0.885 a0

Zeff
1/3

, where Zeff is the number of effective charges and has

been approximated in a number of different forms (the simplest being the average
value given by Zeff = (Z1

1/2 + Z2
1/2)2.
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It is this form of (x) which is used to model the electronic stopping power under a 
regime of not too high velocities (outside of the Bethe region where the energies of 
the electrons are high). 

10.1.3. The universal interatomic potential 
The preceding potentials come from a simple statistical distribution of charges (the 
Fermi Dirac distribution) and do not include any information about the internal 
distribution of the charges, which notably can occur when the two electronic clouds 
of the atoms interpenetrate (for nuclear atomic collisions which are predominant at 
low energies, as will be detailed below). 

Ziegler, Biersack, and Littmark (ZBL) performed a more precise determination 
of the interatomic potential in their model. They supposed that each atom presents a 
spherical charge distribution, and the total energy of the interaction can be written in 
the form:  

V = Vnm + Ven + Vee + Vk + Va ,   (7) 
where: 

 Vnm  is the electrostatic potential energy between nuclei (repulsive so          
Vnm > 0); 

 Ven is the energy of interaction between each nucleus and other electrons in 
the distribution (attractive and thus negative); 

 Vee is the electrostatic potential energy between the two electron distributions 
(so is > 0 as is repulsive); 

 Vk is the increase in the kinetic energy of the electrons following their 
movement to the excited orbitals (in accordance with the Pauli principle); and 

 Va   is the increase in the potential energy of these electrons. 

The resulting coulombic interaction thus is given by 

VC(r) = Vnm + Ven + Vee.

 Ziegler’s calculation [J.F. Ziegler et al., The Stopping and Range of Ions in 
Solids, Pergamon Press (1985)] to determine the universal screen function uses the 
total interaction potential (V) and is based on an approximation for localized 
densities. Each volume element and the corresponding electron densities of the two 
atoms colliding are considered. It is supposed that the electronic density of the 
volume elements of the two overlapping atoms does not change. In this case, the 
mixture is treated as a gas of free electrons. For volume elements where there is an 
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overlap, the attractive potential diminishes as electrons “hop” to higher energy
states, in accordance with the Pauli principle. Thus the screening function is 
obtained as a potential that is the sum of two terms:

a term for the coulombic interaction between electrons and nuclei (Ven)
which is attractive and therefore negative; and
a term for the exchange of electrons between the two atoms (Vee, Va, Vk)
which tend to increase the repulsion between the atoms (hence is positive).

A universal screen potential thus can be calculated:

u (x) 0.1818e 3.2x 0.5099e 0.9423x 0.2802e 0.4028x 0.02817e 0.2016x ,   (8) 

with
u

r
x

a
,  where 0

u 2/3 2/3
1 2

0.8854a
a

Z Z
is the universal screening length; u is the

screen function, such that the interatomic potential (V) can be given by

2
1 2

u
u

e r
V(r)

r a
. (9)

10.2. Hypotheses for the dynamics of inelastic and elastic collisions between two
bodies and various energy losses and electron and nuclear stopping powers 

10.2.1. Introduction

ion

nuclear collisions 

atoms

ion

lattice

electrons

Figure 10.2. Schematization of ion material interactions. 
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When an ion penetrates a solid, it undergoes collisions with the atoms of the target 
and its initial trajectory is modified. The ion also collides with electrons in the solid 
and loses energy during these collisions. Nevertheless, the major changes in the 
trajectory are due to collisions with the atoms met in the target. These collisions are 
termed “two-body collisions”. 
In general terms, the simplest collision is that between a charged particle and a 
resting atom. The collision then can be inelastic or elastic, as detailed below. 

10.2.2. Various hypotheses and assumptions concerning classic (Rutherford) 
diffusion theory 

1.  Only two bodies are considered. This situation arises when the collisions are 
sufficiently violent so that the two particles are very close to one another, to the 
point of excluding interactions with other particles. It is only at lower energies 
(below 1 keV) that collective effects can be introduced (problems involving three or 
more bodies). 
2. The excitation or ionization of electrons simply results in a loss of energy, but 
without a modification in the collision dynamics.  
3. It is assumed that the target atom is at rest (this approximation comes under doubt 
when particularly dense cascades of collisions are generated). 

10.2.3. Elastic and inelastic collisions 
Elastic collisions are those where there is a conservation of kinetic energy and of 
momentum in the system. In contrast, an inelastic collision does not retain the same 
momentum; for example, when overlapping of K orbitals occurs, the electrons are 
displaced toward higher energy levels. The energy used to promote an electron to a 
higher level is energy that is not used in the postcollision kinetics of the 
particle atom pair. The energy is simply absorbed by the target atom and no longer 
participates in its kinetics of momentum. The velocity of the target atom, its kinetics, 
is not modified as opposed to its internal energy which is changed. 

In other terms, during an inelastic collision, there is no transfer of momentum 
from the incident particle to the target. The result is that for the pair of particles 
there is no conservation of kinetic energy, but rather a transformation of the kinetic 
energy of the incident particle to potential energy in the target particle (following 
excitation or ionisation of the target atom). 

10.2.4. Origin of electronic and nuclear energy losses  
Generally speaking, we can distinguish the following: 

the loss of electronic energy due to inelastic collisions by interactions
between an incident ion and electrons bound to or free of target atoms. 
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The incident ion transfer energy to the target so that the atoms are excited 
and electrons move through the effect of, for example, Ven, or by an 
overlapping of K orbitals (from the most external layers); and 
the loss of nuclear energy due to elastic coulombic interactions between 
screened nuclear charges (by escorting electrons) of the incident ion 
particle and atoms in the target. The energy is transferred by the incident 
ion to the target nuclei. 

The energy losses due to nuclear and electronic interactions are correlated, as 
both are present in short-distance collisions. In effect, and in general terms, we tend 
to ignore these correlations and assume that the electronic breaking acts as a 
continuous phenomenon. For their part, nuclear collisions are quite rare, being more 
related to short distance collisions that produce a high number of recoiling nuclei. 
The exchange of electrons between incident ions and target atoms at their closest 
points of interception can also contribute to energy losses.  

Finally, it is the velocity of the incident ions and the target atoms that controls 
the relative importance of each of the different interaction processes between the 
participants. 

10.2.5. Electronic stopping power 
10.2.5.1. High-energy collisions (incident ion at high velocity) 
When an incident ion moves at a velocity (v) higher than v1 = Z1e²/ h, that is to say 
at a velocity greater than that of the electrons in the K layer, then there is a very high 
probability that all its electrons will be “stripped”. Here, Z1 is the atomic number of 
the ion. The Bohr velocity, denoted v0 and relative to the hydrogen atom (for which 
Z1 = 1), is such that v1 = Z1v0, where  v0 = h /ma0 = e²/ h  2 x 108 cm s-1.

In this case, the influence of an incident particle on the target atom can be 
thought of as a very abrupt and weak external perturbation. The collision results in a 
sudden transfer of energy of the projectile toward a stationary particle. The loss in 
energy from a rapidly moving particle to a stationary target particle (here the 
electron exhibits an electronic stopping power) can be calculated from the diffusion 
in a central force field. The effective stopping section ( ) decreases with the 
increasing velocity of the incident particle that spends less and less time in the 
neighborhoods of the target atom. We can show that in this case the electronic 
stopping power is proportional to (Z1 / v)². With M1 and M2 being the masses of the 
incident and target particles, and Z1 and Z2 being their atomic numbers, respectively, 
then with v denoting the velocity of the incident particle, we obtain (in the MKS 
system) 
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22
1 2

2 4
0 1

Z Z e 1
( )

8 M v sin
, (10)

and the law of variation in (Z1/v)2 clearly can be seen. 

The expression for energy loss was obtained by Bohr (1913) via a classical
calculation. In this hypothesis, the incident ion is thought of as a “naked” nucleus so 
that its interactions with the target electrons are purely coulombic. This interaction is
between the incident particle (here a charge Z1 e of nucleus of the ion from which
the electrons have been completely removed at the high velocity) and the Z2
electrons of the target atom by which the incident particle passes. We thus have:

4
1 2 max

min

dE 4 Z ² Z e b
ln

dx mv² b
,

where bmin and bmax are the inferior and superior limits of the approach distance
between the ion and the electron (b is an impact parameter).

This equation (then modified by Bethe to introduce a relativistic correction)

shows that the loss in energy varies as 
1
v²

, which is to say with
1
E

, as in

dE
dx

 = kE-1. (11)

This loss in energy, as low as the energy (or velocity) is high, corresponds to
velocities (v) of incident particles such that v >> v0.

10.2.5.2. Incident ions with low or medium velocities
Three models have been developed up until now for this regime. Each leads to a
proportionality between the effective stopping section and the velocity of the 
projectile.

For projectiles with velocities lower than v1 = v0Z1, the majority of the
electrons in the target move faster than the incident ions. For ions to move under this
velocity regime, the target electrons cannot take energy from direct collisions with 
the ions, as otherwise found when using high velocity ions (greater than v0Z1).

Firsov introduced in 1959 (Sov. Phys. JETP 36, 1076) a model  for which each 
ion atom collision is thought of as leading to an overlapping of electronic orbitals. 
The transfers of electrons, be they temporary or permanent from the ion to the atom
or vice versa, give rise to a transfer of momentum that leads to a slowing down of
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the ion. The transfer of momentum happens when the target electrons are captured 
by the incident ion, as the electrons must be accelerated up to a velocity c (which is
a vector) of the incident ion. This results in the ion losing a small part of its 
momentum proportional to mev. Inversely, when it is the electrons of the projectile
that are transferred to the target atom, then momentum is transferred to the target
atom but does not result in a slowing down in the projectile.

moving ion

SF

velocity of the incident ion

the interaction is localized in this
overlapping zone 

 target atom

Figure 10.3. Schematization of the interaction of slow or medium velocity incident ion 
with the electrons surrounding the target atom, according to Firsov.

To understand the problem, Firsov proposed a geometric model. He supposed 
that the incident ion and the target atom formed a quasimolecule during the
collision, given the low velocity of the ion. He assumed that the electronic spheres
of the two elements were to all practical purposes not deformed during the collision.
The energy loss from the incident particle, during the formation of the
quasimolecule, is via the transfer of velocity and energy to the electrons of the atoms
in the target. The energy lost by the ion finally results in the ionization of target
atoms at the end of the collision.

This is why in this model we are first of all interested in the relative velocity (v)
of the ion with respect to the electrons bound to the solid target (the Fermi velocity
vF is taken as a reasonable approximation for the value of v). An arbitrary plane is
defined between the nuclei of the ion and the target atom. Hence the loss of 
electrons and energy is defined as a flux through this plane (Figure 10.3). So that an 
electron of the target atom is captured by the incident ion (or vice versa) and 
traverses the plane, the electron must take on a velocity higher than v. This exchange
of electrons thus is characteristic of the energy loss of an ion in an electronic
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collision. The relative velocity is required knowledge and we can intuitively 
understand the conclusion that Firsov made in stating that the energy loss of a slow 
ion is proportional to its relative velocity (v). This is itself proportional to the square 
root of the energy, of kinetic origin, of the incident ion. We thus have: 

Se(E) = KE1/2 .  (12) 

More detailed calculations, proposed by Lindhard, Scharff, and Schiott [Range
Concepts and Heavy Ion Range, (Notes on Atomic Collisions II), Mat. Fys. Dan Vid. 
Selsk. 33 (n°14), 3, (1963)], finish at the same conclusion. 

10.2.6. Nuclear stopping power 
This corresponds to elastic collisions between an incident ion and the atomic 

nuclei of the target. The problem is treated as one of two bodies as the mean free 
pathway between two collisions is well above the interatomic distances. The 
correlation effect with neighboring atoms also subject to recoiling is extremely 
small. The momentum of the recoiling atom (belonging to the target) is the 
parameter that determines the amount of damage in the target solid. The momentum 
transferred to the recoiling atom also is responsible for a large part of the energy loss 
of the incident ion. 

It is the observation of this type of behavior with incident -particles that gives 
rise to a recoil phenomenon at large angles, which led Rutherford to an atomic 
model based on nuclei. However, the value of the field created by the nucleus is 
limited for heavy ions by the existence of an important number of electrons that 
form a partial screen. The “screening” comes from the fact that the positive charge 
of the nucleus is surrounded by a cloud of electrons in their orbits. As the incident 
ion penetrates this cloud, it senses an increasing electrostatic repulsion that deviates 
its trajectory. 

In the following Section 10.3, we will look at the principal steps in calculating 
the stopping powers. 

10.3.  The principal stages in calculating stopping powers 
In this section the main ideas for the theoretical calculations of stopping powers are 
described. These analyses are classically used to theoretically describe the 
distribution of ions implanted in a material. 

10.3.1. Rutherford-type diffusion for a particle of charge + Z1 e   and mass M1, by 
a particle of charge + Z2e   and mass M2
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Here M2 is assumed to be immobile (application of the power of nuclear stopping)
through a sudden interaction (velocity of the particle is very high and is the
application of electronic stopping power in a region of very high velocities). The 
interaction potential is strictly coulombic, without screening effects, and the results
can be applied only in the high-velocity regime (theorems presented in Section
10.2.5.1) for the stopping powers or nuclei or electrons.

10.3.1.1.  Experimental localizations

incident particle (energy E)          distance of closest approach (bc)
(M1, +Z1e, v )

  b impact parameter                                         target particle
                                              (M2, +Z2e, v2ini  0) 

v2 : vitesse de recul de M2

(E – T)

(T)

b

Figure 10.4. Schematization of a collision at experimentally located positions.

Figure 10.4 specifies the parameters of the impact against laboratory reference 
marks.

In the particular case of a frontal shock, as shown in Figure 10.5, the closest
distance of approach is denoted bc, and is such that if E denotes the energy of the
incident particle, then (by the law of conservation of energy):

E = 
2

2 1 2
1

c

1 Z  Z
 M V  =

2 b
e

(cgs system).          (13) 

p

M1
                       bc       M2

Figure 10.5. head-on collision with an indicated closest distance bc.
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The law of the conservation of energy written for diffusion in the general case
shown in Figure 10.4 makes it possible to relate b, bc, and the diffusion angle , as 
in:

b = cb
2

 cotg 
2

.                    (14) 

This formula is uniquely variable when the incident particle is very rapid and 
deviated by through coulombic effects alone [as in Eq. (13)]. If the potential is
screened, then we should return to the potentials described in Section 10.1. The
energy transferred to particle M2 is kinetic in origin. If v2 is the velocity following
the impact, the transferred energy is of the form:

T = 2
2 2

1
M v

2
.         (15) 

If M2 is not fixed, then we need to reason using mass center references (RG) as 
detailed in the following section.

Equation (13) finally gives

bc = 1 2Z Z e²
E

,         (16) 

while from Eq. (14) it can be deduced that:

tg
2

 = cb
2b

.          (17) 

10.3.1.2. Locating the center of mass 

The rigorous calculation (see problem at end of chapter) necessitates the use of a 
located mass center with which the trajectories can be schematized, as shown in 
Figure 10.6. 

For values of b between infinity and 0 inclusive (0 corresponding to the frontal
impact described above), we find for the transferred energy (T) values between 0 
and TMax, which are such that: 

TMax = 4 1 2
2

1 2

M  M
E

M  + M
. (18)
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M1,Z1

                   G 

                                   M2,Z2

  r1

  r2

Figure 10.6. Schematization of the trajectories 

with respect to located mass centers.

The general expression for T is obtained by writing the conservation of 

momentum and kinetic energy. With
2

 (relationship between laboratory

and barycentric coordinates) we obtain (see also problem):

21 2 1 2
2 2

1 2 1 2

4 M  M 4 M  M
T E cos ²  =  E s

2M  + M M  + M
in  ,                (19) 

where   is the angle of reflection in the reference given by the center of mass. Its
expression is:

 =  2 b 
maxu

1/ 2
0 2 2

r

du

V(u)
1 b u

E

 .               (20) 

where

u = r
1 ,  r = r1 + r2  is the distance between the particles in the center of mass

reference;
V(u) is the interaction potential;
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Er = 2 2

1 2

1 E
 M *  V  =

2 M  +
M

M
       (21),   gives the energy of the incident

particle in the system with mass center, where M* represents the effective 
mass; and 

umax is the inverse value of the minimum distance between the particles.

10.3.1.3. Simplification using a particle with a mass much greater than the other (or
for a sudden interaction where M2 remains immobile)

10.3.1.3.1. Form of the equations
In these calculations we assume that M2 >> M1, so that 

 M* = 1 2 1 2
1

1 2 2

M  M M M
 ~  = M

M  + M M
and

OG = 1 1 2 2 2 2
2 2

1 2 2

M  r  + M  r M  r
 ~ ~ r G  A .

M  + M M

The result is that the reference given by the center of mass is identical to that of the
particle M2 situated at A2.

Within this reference, corresponding to the equations of Section 10.3.1.1, we
have

from Eqs. (18) and (19) that T = TMax sin2
2

, so that with our hypotheses

(location G  point tied to the M2) we have  T = TMax sin2
2

.

(We can demonstrate that in this case, T = TMaxcos² , where  is the angle 
of deviation of M2 cf. Figure 10.3.) 

2

1

sin
2

 = 1 + cotg² 2  = 1 + 
2

c

2b
b

     [via Eq. (14)], 

from which finally: 

T = MAX
2

c

T

2b
1 +

b

 .          (22) 
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10.3.1.3.2. Calculation of energy loss

                                db 

M1

 M2
            (radius b) 

Figure 10.7. Schematization of the interaction of an incident particle 

with the surface s = .ds = 2  b db

Figure 10.7 shows a particle (M1) interacting with a surface (s) that takes up the 
form s = . The energy loss of Mds = 2  b db 1 is given by S Tds , so that:

max

min

b
Max b 2

c

b db
S T ds = 2  T

2b
1 + 

b

 .          (23)

By differentiating Eq. (22) under the form 2 Max

c

2b T
1 b =

b T
, we obtain

Max
M 2 2

c c c

2b 2 dT 4 T dT
2  db = T 2b db

b b TT b T
 , from which 

2
c

Max
b 1 dT

b db T =  T .
4 2 T

By replacing T by its expression given in the left-hand side of Eq. (22), we then
have for S:

Max

min

2 2
Tc c

Max MaxT
min

b dT b T
S T = T ln .

2 T 2 T
Max
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1 2
Max 2

1 2
2

21 2
1

c

M  M
From Eq. (18) T  = 4  E

M  M

Z  Z  e 1
and from Eq. (13)   E =  =  M v

b 2

222 2 2 41 2c 1 2 1 2 1
Max 2 2 2 21 2 1 2 1

Z  Z  e
2b M  M 1 M  M Z Z  e

T  = 4 E  =
12 4 EM + M M + M  M  V
2

.

From this can be deduced that

2 2 4
1 2 1 2 Max

2
min1 2

M  M Z Z e T
S ln

E TM  M
.         (24)

If M2 >> M1 (M2 is immobile or the incident atom is light), we have:

2 2
2 2

221 2

M M
=

MMM  + M

1
  , and finally:

2 2 4
1 2 Max

2
min2

2  Z  Z  e T
S l

TM  v
n  ,             (25) 

which gives the form of the stopping power for two interacting nuclei Z1 and Z2
where the potential is strictly coulombic, with M2 >> M1.

10.3.1.4.  One of the interacting particles is an electron (M2 = melectron): electronic 
stopping power in a regime of high energies (high velocities)

Here the trajectory takes on the form shown in Figure 10.8. The mass M2 must be
replaced by the mass m of the electron and Z2e by e. The stopping power for an 
electron is thus

Se (1 electron) = 
2 4
1 M
2

min

2 Z e T
ln .

Tm v
ax
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(M1, Z1e)

          b 
                                     pc

                               (e, m)

Figure 10.8. Interaction between an incident ion and an electron target

As there are Z2 electrons to each target atom, the loss in energy (said to be of 
electronic origin as the incident particle interacts with the electrons of the target) is 
thus:

2 4
1 2 max

e 2
min

2 Z  Z e T
S  ln

Tmv
.

10.3.1.5. Order of scale of the stopping powers 

If we compare the equations in Sections 10.3.1.3 and 10.3.1.4 concerning
stopping powers, those in Section 10.3.1.3 correspond to interactions between
nuclei, i.e., S = SN, which in fact is not a nuclear stopping power as the
coulombic potential for the nuclear stopping power is screened (see Section
10.1). As remarked above, Section 10.3.1.4 corresponds to the losses termed
electronic (Se) for projectiles at very high velocities (under the Bethe regime
when relativity also is brought into play, while here it remains strictly
coulombic).

With M2  Z2  (proton mass + neutron mass)   2 Z2  proton mass, the ratio

e 2

N 2

S M proton mass
 =  ~2  4000 .

S Z  m electron mass

The equation for the electronic stopping power under a regime of high
velocity are such that:

2 2 inc1

1 1 1 1
S  =  .

1 E Ev  M v
2
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From this can be deduced that 1
i

dE
= S N kE ,

dx
where Ni  is the concentration of

i electron particles in the target.

To conclude, with these hypotheses (notably that for the high velocity of the
incident particle), the loss in energy is reduced as the energy of the incident particle
is increased. 

10.3.2. Low-velocity incident particle (inferior to the velocity of electrons in the K 
layer): expression for the electronic stopping power Se

In the scenario given in Section 10.3.1.1, Eq. (20) for  brings in the interaction
potential [V(u)] which we took in the form

2
1 21 Z  Z e

V u =  = 
r r

.  [see Eq. (13)] 

The velocity of the projectile is sufficiently high to assume that it has been
“stripped” and that the Rutherford theorem developed for the particular case of 
particles can be applied.

However, if the projectile has a velocity that is sufficiently low so that it is not
completely “stripped” of electrons (see the nuclear state given in Section 10.1), then
the strictly coulombic potential must be modified so as to bring in the screening
effect of electrons that are in the occupied electronic levels of the incident ion. This
representation of a unstripped ion, with practically all of its surrounding electrons,
brings into play an interaction potential (between the surrounded ion and the target
electrons) of the form:

2
1 2

TF

Z  Z  q r
V(r) ,

r a

where
TF

r
a

 is the screening function which has the form detailed in Section

10.1.2.3 to determine Se.

This electronic stopping power (in a regime of low enough velocities) was
established with the help of an equation in the form S Tds , as already used in 
Eq. (23). The transferred energy T = Te (lost through collision) can be obtained 
using Firsov’s model where it is supposed that the force exerted on the projectile 
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(incident ion) is due to the transfer of momentum (mev) by movement of an electron
from the target to the incident ion, which has a velocity v1. This gives

dF = (mev)d F , 

where d F is the electron flux (number of electrons per unit time traversing the
Firsov surface element; see Figure 10.2). This flux is expressed as a function of the 
electronic density, which in turn is expressed in the Thomas Fermi theory as a 
function of the screening potential. A similar form to that of Section 10.1.1.3 has
been proposed by Lindhard and Scharff, and it brings in a term (Z1

2/3 + Z2
2/3)1/2 as 

the authors suppose that the average coulombic field of interaction of the quasi-
molecule is well represented by twice the average geometry of the individual 
coulombic fields. From this, they deduced the electronic stopping power (Se) given
in the following expression:

2 7/6
0 1 2

e 13/22/3 2/3
1 2 0

8 e  a  Z  Z
S (E)  v ,

Z  + Z  v

where v1 is the velocity of the incident particle which is such that E = 2
1 1

1
 M v

2
, so 

that  v1  E1/2 .

 Finally, we obtain the law also observed by Firsov, as in  Se(E) = k E1/2.

It is worth understanding that this mechanism corresponds to a loss of energy of
the incident ion following a transfer of velocity and energy to the electrons of the 
target atoms. An ionization (or excitation) of the target atoms thus is produced by an 
incident particle. This transfer of velocity that occurs during the formation of the
quasi-molecule (which corresponds to the fusion of the incident ion and the target
atom during which time their electrons may be exchanged) is equivalent to loss of 
momentum (mev1) by the incident ion, and thus contributes to the process of 
breaking the ion’s path.

The interaction potential is given by the electrostatic interaction between the
electrons of the target atoms and the screened nuclei of the incident particle. The

screened nucleus gives rise to a (positive) potential V = 1

TF

Z  e r
r a

 where 

TF

r
a

 represents the screening effect. The resultant potential energy is given by

W =  e V which is negative (due to the attractive effect of the target electrons to the 
incident particle). The final result is that the target electrons either can be stripped
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(and captured by the incident particle), thus giving rise to an ionization effect, or 
carried by the upper electronic layers in an electronic excitation of the target.

10.3.3.  Nuclear stopping power
In this interaction, the electronic “displacements” are no longer of importance
(attractive potential between the incident ion and the electron). What is of concern, 
however, is the repulsion between the incident ion and the target atom which
undergoes a recoil (repulsive potential). When the incident ion, screened by its own 
electron cloud, penetrates the target, a Rutherford-type electrostatic (repulsive)
diffusion between the nuclei of the incident particle and the target atoms is modified
by the intervention of screen potentials. These modify the interaction potential
energy [V(u)], which intervenes in Eq. (20), which gives the deviation angle for the
two particles (incident and target) within the barycentric reference coordinates.

The analytical solution for the screening function can be taken in the form
already described above in Section 10.1.1.2, as in:

s 1
s TF

TF

r k a
= ,

a s r

where the function is such that ks is a constant and s varies:
 s = 1 is the collisions involve the transfer of high amounts of energy; and 
 s = 2 if the collisions involve transfer of low amounts of energy. 

We thus can write:

V(r) = Cs r –s  where Cs = 1 2 s
1 s
TF

Z Z e² k
.

s a

The determination of the energy transferred in an elastic collision (which
uses an approximation of impulsion) makes it possible to determine in turn the
nuclear stopping power through the same method previously described, i.e., the
equation    SN =  is used. See also Figure 10.7 and Eq. (23). Td

The use of reduced coordinates (by way of the Lindhart formalism) gives the

equation:
N

d
 = f( )

d
 where  and  are specified in the following section. 

The shape of this curve is independent of the incident particle and the target. Only
depends on these parameters.
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10.3.4.  Total energy loss

If N denotes the atomic density of the target, the energy loss by nuclear collisions is 

given by N
N

dE
NS (E)

dx
, while the energy loss through electronic collisions is 

e
e

dE
NS (E)

dx
. The processes of energy loss by nuclei and electrons are 

independent and additive. The total loss in energy thus is of the form:

N e
total N e

dE dE dE
N S (E) S (E)

dx dx dx
.

By using Lindhart, Scharff, and Schiott (LSS)-type reduced coordinates, we 
then make:

2
E 2

1 2 1 2

M a
C E E

M  + M Z  Z e
     (  is the reduced energy)

1 2
R2

1 2

M  M
xN4 a² = C  x

M  + M
(  is the reduced length)

a = 0
1

2 2
3 3

1 2

0.88 a

Z  + Z
2

    (  a  0.1 to  0.2 Å) . 

We thus obtain:

d
d N

1.7 1/2  ln (  + e)

1 + 6.8  + 3.4 3/2

1/2

e

d
= k 

d
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with k e
0.08 Z1

1/2  Z2
1/2  M1 + M2

3/2

Z1
2/3  + Z2

2/3 3/4
 M1

3/2  M2
1/2

, where e is a dimensionless constant of 

amplitude 1/ 6
1Z .

 Finally:

total e N

d d d
 =  +

d d d

A graphic representation, covering a wide energy range up to more than several
MeV, is shown below in Figures 10.9 and 10.10. 

d /d

(d /d )N

(d /d )e = K 1/2

d /d )e =f( -1 )

   Ar  200 keV 

Figure 10.9. Representation of  d /d  over a wide energy range.

In the region of the lowest energies up to 100 keV, the evolution of stopping
powers can be schematized as in Figure 10.10. 
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  d /d
       k=10          k=2 

                                    k = 0.5

k= 0.2

         k= 0.1 
(d /d )N

(d /d )e = k 1/2

0.2

0.3

0.4

0.1

Figure 10.10. Representation of d /d  in a range of energies [0  100 keV].

10.4. The various phenomena of ion material interactions and their 
applications

10.4.1. The various phenomena 

Depending on the energy range of the incident ion, the result of an ion material
interaction will be (see also Figure 10.11):

1.  for ions with energies typically above 20 or so keV, the ion implantation is 
poor;

2.  for ions with energies of the order of ten to several tens of keV, the result
can be an amorphism of the target and an eventual displacement (insertion) 
in the volume of atoms deposited on the surface of the target; 

3.  when the energies of the ions are low, or the order of several keV, a
pulverization of the target can give rise to graving of the target or a 
deposition of a thick layer of a targeted substrate; and 

4.   when the incident ions have a very low energy, then there can be a growth
of the target using an assisted deposition of atoms through their
densification.
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Figure 10.11. Various mechanisms in ion material interactions. 

10.4.2. Ion implantation
Ion implantation is used in a large number of electronic applications where it is
necessary to have ions that are stopped at an atomic state in a target. These include
the use of atoms from column III (B or P, for example) or from column V (As) that 
are used to dope target atoms from column IV (such as Si). The doping occurs
because the projected ions are arrested in an atomic state by their trapping an 
electron liberating a hole in the semiconductor latter, hence, the term n doping.

The profile of the doping corresponds to that of the implantation, obtained by
numerical simulation with the help of the equation of the electronic and nuclear
stopping powers established in the above text. See also Figure 10.12 which describes
implantation in a polyimide. It shows that the nuclear stopping power predominates
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at lower energies (E < 10 to 20 keV), while at higher energies it is the electronic
stopping power that is the dominant mechanism. The average depth of the
implantation corresponds to a value RP which indicates the average projectile
pathway; from which the difference, Rp, gives the average thickness of the 
implanted layer. In order to attain sufficiently deep implantations of an acceptable
thickness, the projected ions generally have energies of the order of 100 keV. 

0

5

10

15

20

25

30

35

0 50

Energy  (keV)
100

Electronic stopping

Nuclear stopping

Energy Loss (eV/Angströms)

10 or 20keV

Figure 10.12. Example of a theoretical implantation profile for a polyimide.

An experimental determination of these profiles can be obtained by
secondary ion mass spectroscopy (SIMS). Following the pulverization of atoms
implanted by assistance from an ion beam (typically Cs+ or O+), the characterization 
of the mass of the pulverized atoms as a function of the erosion depth makes it
possible to determine the distribution by depth of the atoms contained in the target.

10.4.3. Target amorphism and “mixing” in the volume of initially surface-
deposited atoms (“ion beam mixing”)

In order to obtain an important degree of amorphization of a layer, the target atoms
need to be displaced. This is obtained by incident ions colliding with the atoms in 
the target. These collisions mostly occur in the energy range where the nuclear
stopping power dominates, i.e., around 10 keV. At this level:
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either the incident ions arrive at such a value at the end of their pathway
and have an initial energy of the order of 100 or more keV (see Figure 
10.11); or 
they have such an energy at the beginning of their interaction with the
target if their energy is of the order of 10 keV.

In the latter case, if we have already deposited on the target a layer of atoms that we
wish to insert into the target, then the incident ions will collide with them and
project them into the target. The result is one of mixing of the surface atoms with the 
target atoms. An example of this is the production of an alloy from appropriately
chosen target material and surface atoms. This technique is called “ion beam
mixing”.

10.4.4. Mechanism of physical pulverization (sputtering)
The pulverization is characterized by the level of sputtering (Y) which is defined by
the equation

Y = Y
average number of atoms ejected from target

number of incident ions for a given t
,

so that Y = f(E, J, , M1, M2), with E, J, (see Figure 10.13a) being the energy of 
the incident ions, the density of the incident ion current, and the angle of incidence
of the ion beam to the normal of the target, respectively.

The condition for ejecting an atom (B) from the target is given by TB  Eb
where

TB is the energy transmitted to atom B during its sequence of collisions; and
Eb is the bonding energy of the surface (reasonably estimated to be equal to 
the energy of sublimation of the target, typically from 5 to 10 eV).

(I)

Es E

(III)

(II)

Y (pulverized atoms/ incident ions)

M2

E, J
Y

M1

Figure 10.13. (a) Pulverization of a target atom of mass M2 by an incident atom of mass M1

and  (b) pulverization curve.
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In general, the pulverization curve presents three zones (Figure 10.13b):
zone I. below the threshold (TB  Eb);
zone II. E  Es where this threshold energy is set by the type of collision
sequences encountered, which can be of two types depending on  = 0 or 
M1  M2;  and 
zone III.  when E > Es there is a rapid increase in Y which then reaches a 
saturation stage [rapidly reached if the masses M1 (incident ion) and M2
(target atom) are very different].

The analytical forms of the levels of pulverization were established by
Thomson and Sigmund who, respectively, obtained (N is the atomic density of the
target):

2 / 3

2b

1

N 1 1
Y

ME c1
M

os
     and   Y(E, Eb) N

b

S (E)
E

, so that : 

n
1

Y( )
cos

.

The result is that if M1 increases, then Y also increases. Similarly, if  increases, Y 
also increases. This law remains true for  < 60 ° (see Figure 10.14). 

level of pulverization Yphysical

1
cos

90 °50 °

(atoms/ions)

Y(0)

Figure 10.14. Variation in the level of pulverization

with the angle of incidence ( ).
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Finally, pulverization can be used in lithography to engrave the target. This is a 
widely used technique in microelectronics. In this case, the target is covered with a 
resin and then a mask is duplicated on the resin by insolation. The pulverization of 
the target results in an engraving of the target that follows the motif of the mask, as 
shown in Figure 10.14, which shows an engraved polyimide used for an optical 
guide.

Figure 10.14. Ion engraving to produce an optical guide

It is equally possible to pulverize a target to generate a deposition of atoms,
which make up the target, on a substrate to cover it with a thin layer. This technique
is an alternative method to that of evaporation under vacuum.

10.4.5. Ion-beam  assisted deposition
The densification of deposited materials in thin layers, assisted by ion beams, gives
rise to materials with specific physical properties, namely:

mechanical properties such as compressive resistance (a result of the “stuffing”
of ions), with an improved adhesion;
optical properties, such as an increase in optical stability due to an increase in
the density of the film (elimination of water vapor); and
electrical properties that generally are an increase in the resistivity. This can be
attributed to a decrease in the size of the grains and an increase in inert atoms
(due to the assistance flux) in the film. In fact, the composition (type of ion) and
the density of the defaults in the film influence the electrical properties.
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In general terms, ion bombardment (with energies of the order of 100 eV) 
during a deposition can lead to an increase in the spatial density of growing islets
that form on the surface of the layer. This is simultaneous to a decrease in the size of 
the deposited grains that tends to favor a contact between the increasing small-
deposed domains and induce a densification of the layer. One of the consequences of 
the decrease in grain size while using beam assistance is a decrease in the roughness 
of the surface, which can be beneficial to the quality of interfaces in components
based on multilayers. The smoothing of the surface thus can result in the increase in 
the mobility of adatoms (added atoms) that are under the effect of the energy of an 
ion bombardment. The local rearrangement of atoms is favored so that atoms relax
into minimum energy sites. Dynamic molecular simulations can be used to model
such arrangements. There are two main types of geometrical configurations:

ion beam assisted deposition (IBAD) shown in Figure 10.15. Here a 
conventional deposition obtained by evaporation under vacuum or by the Joule 
effect (heating a crucible containing the atoms to be deposited) is assisted by an
ion beam effect. Typically argon ions are used with energies of the order of 100 
eV or a keV; or 

substrate

evaporation crucible

ion source 

Figure 10.15. The IBAD setup.

the dual ion beam sputtering (DIBS) configuration which is setup in a similar
manner to the IBAD system with an assisting ion beam, but here the material is
not generated by a Joule effect but rather by pulverization of a target containing
the atoms to be deposited in a thin layer (Figure 10.16). 
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Figure 10.16. The DIBS layout.

ion source 1 

substrate

target

ion source 2 

Figure 10.17 shows the various energies of atoms and ions used in the
different deposition methods under vacuum to give layers for applications in
electronics and optics. For DIBS it should be noted that the energy of the ions used 
to obtain a layer by pulverization is lower than that used to assist the deposition.
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Figure 10.17. Energies of ions and atoms used in IBAD and DIBS
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10.5.  Additional information on various ion sources and their functioning 
This section details the main types of ion sources that use an electromagnetic source,
the setup of which varies with the source type.
10.5.1. The electron cyclotron resonance (ECR) source 
Sources without filaments (used to generate electrons by thermoelectronic effects),
such as the ECR, are used to generate ions from corrosive elements such as oxygen 
which would otherwise considerably reduce the lifetime of the filament and thus the
source. Chapter 9 gives details on this type of source. In addition, we can state that
the source shown in Figure 10.18 is based on a combination of the production of
plasma by cyclotronic resonance (also detailed in Chapter 9, but without the
divergent magnetic field produced by an electromagnet) with a magnetic
confinement constructed with permanent magnets. The advantage of such a
configuration is the separation of regions generating the plasma from multipolar
regions. The multipolar region limits radial losses of plasma at the walls, while the
interior region is not influenced by the magnetic field. A source of small dimensions
with respect to the plasma in multipolar zones permits a uniform distribution. The
inconvenience is that the density of the plasma is reduced to the confines of the 
multipolar zone. 

plasma
zone

gas injection

evacuation

permanent
magnets

microwave
excitation

Figure 10.18. ECR source with confinement due to permanent magnets.

10.5.2. Basic elements in an ion source: the Penning source 
The arc chamber shown in Figure 10.19 is limited by a cylindrical anode and two 
disks at the extremities which act as cathodes. The gas flux traverses the chamber
and a low-voltage discharge results in the formation of a plasma in the chamber. An 
axial magnetic field imposes helical trajectories on the electrons, which undergo 
increased pathways so as to induce a more efficient ionization. The ions generated in
the cathode then hit the cathode to produce secondary electrons (which also can be 
obtained by heating the cathode to yield a thermoelectronic emission). The addition 
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of a heating filament makes it possible to more finely control the level of ionization.
The ions then are extracted through the opening in the cathode with an energy
closely matched to that of the discharge voltage.

           PLASMA 

anode

anode

cathode

opening

discharge
voltage

 +
 - 

axial
magnetic
field

   cathode

Figure 10.19. Schematic of a Penning-type source. 

10.5.3.  The hollow cathode source 
This type of source, shown in Figure 10.20, is used to produce ions from elements
that are more easily used as solids than as gases (for example, cesium which can be
facilely obtained as a solid halide, for example, as CsI). 

gas injection cathode

anode

oven heating
element

solid source

ionisation chamber filament

Figure 10.20. The hollow cathode source.

A vector gas, which carries the furnace-vaporized solid, is introduced into the 
ionization chamber. The cathode, made from tungsten with 2% rhenium, produces
electrons by the thermoelectronic effect. The filament is encapsulated between two
tantalum capsules that make up the cathode and are separated by an insulator. The 
tungsten exhibits a high mechanical rigidity up to 2000˚C, while the rhenium
increases the filament lifetime by improving its resistance to corrosion. The anode 
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(the other discharge electrode) makes up the body of the ionization chamber. The arc 
is generally set off with a voltage of around 250 V, although this value can be 
reduced once the arc is obtained. The oven is made from a cylinder of boron nitride 
around which is wound a tantalum wire. Once the plasma is formed, the ions are 
extracted through a circular opening by way of an electrode at a negative potential   
( 10, 20, 30 kV) with respect to the plasma. 

Outside of the internal anode cathode zone and in a concentric manner, a 
solenoid can be used to produce a magnetic field which generates a helical trajectory 
for electrons leaving the filament, which then go on to collide with and ionize the 
vaporized solid.  

10.5.4. Grid sources and broad beams 
These apparatuses use a continuous current discharge in an initially neutral gas such 
as argon. The discharge chamber and the ion optics make up two essential elements 
in this source, as shown in Figure 10.21. These setups are used largely for assisted 
depositions or as ion sources for cleaning surface substrates. 

10.5.4.1. Discharge chamber 
The primary electrons are emitted from a hot cathode (thermoelectric emission) 
placed at the center of the chamber.   

An axial magnetic field (also divergent is possible so as to increase the electron 
pathway and the generation of ions through atom electron collisions) was used in 
the original setups. Permanent magnets distributed in a multipolar configuration 
make possible a more homogeneous ion density around the ion optics. 

A coaxial cylindrical anode within the chamber is used to precisely fix the 
potential of the formed ions (beam current denoted Ib) that are practically 
accelerated with the potential of the anode (Vb) towards the extraction point (grid).

The discharge produced between the cathode and the anode depends on the 
pressure of the introduced gases. At low pressures, the ion current (Ib) decreases 
with respect to the given discharge current (Ib) and voltage (Vd). Below a minimum 
pressure the ion current tends to zero. Also, this current increases slowly with 
increasing pressures. 

The ion current (Ib) appears at an optimal pressure for the given discharge 
conditions (Id, Vd), as shown in Figure 10.22. 

The ratio between Id and Ib typically is of the order of 10 to 20. 
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Figure 20.21. Schematization of a Kaufman-type grid source. 

The discharge voltage must be of the order (and just below) of the sum of the
first and second ionization potentials of the atoms to be ionized when looking to
prepare doubly charged ions. For argon, these are 15.8 and 27.6 eV, respectively,
their sum being around 43 eV. To limit secondary effects (doubly charged ions with
energies twice that of the monocharged ions), a discharge tension of between 35 to
40 eV is used. Helium has a first ionization potential at 24.6 eV and a second around 
55 eV, so the discharge tension should be around 80 eV. 
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Figure 10.22. Ion current as a function of the pressure in the chamber.

10.5.4.2. Ion optics and the neutralizer
Ions that approach the ion optics (through being driven back by the positive tension
of the anode) are accelerated by a grid carrying a negative potential Va of the order 
of 1000 V. To limit the premature degradation of the grid and the consequent
contamination of the beam, a protection grid is placed in front. This is made from a 
material with a low pulverization level such as carbon.

In addition, a neutralization of the ion beam is required given the high levels of 
currents generated using this type of source. The main energy in the beam is carried 
by the ions, whereas the electrons in the ion beam can be used to facilitate the
transport by neutralization of both the charge and the current. Thus:

 charge neutralization which involves the compensation of the positive charge 
of the ion beam by the electrons. If this does not happen, then the source will work
badly giving rise to a dispersed beam due to the mutual electrostatic repulsion of the
ions. The neutralization simply signifies that an elementary volume contains a 
closely equivalent number of positive and negative charges. It does not mean that
the electrons recombine with the source ions to form neutral atoms or molecules. In 
principle, the level of recombinations is low under usual functioning conditions due
to the differing velocities of the electrons and the ions. If the electrons are not
produced by a filament neutralizer, they can come from discharges or arcs with 
earthed parts of the apparatus.

 neutralizing current; if the neutralization electrons have a velocity which
approaches that of the ions, then the ion current can be neutralized. If there are 
excess electrons, then they will run off easily to earth.

A neutralization current is only really necessary if the target is an insulator 
(whether earthed or not), which would otherwise become positively charged and risk 
electrical breakdown. In practical terms, a hot neutralizer filament (tantalum or 
tungsten) is placed in the zone of maximum ion current density, resulting in the 
maximum possible coupling between electrons and ions.
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Given its relatively low price, at least with respect to ECR systems, for
example, this type of source is at present widely used for surface treatments.

10. 6. Problem
Detailed study of nuclear collisions and the determination of the energy
transferred by a projectile to a target atom 
A particle (P1) of mass denoted M1 collides with a stationary particle (P2) of mass
M2. Following the collision, P2 recoils and absorbs some of the energy of P1. The
latter sees its velocity fall and its trajectory modified. At any instant t, the velocities
of P1 and P2 are denoted and1v(P ) 2v(P ) , respectively.

At any instant (t) the velocities of P1 and P2 are denoted 1v(P )  and ,
respectively. The coordinates also are given; for example, if we use laboratory co-
ordinates (R

2v(P )

L), the velocities are denoted by 1 Lv(P / R )  and 2 Lv(P / R ) such that

1
1 L

dOP
v(P / R )

dt
, 2

2 L
dOP

v(P / R )
dt

,

where O is the origin of RL.
In addition, the superscript ’ indicated that the velocity is at an initial moment in

time before the collision and in an asymptotic position. Similarly, the superscript ’’ 
indicates a final state following the collision at an asymptotic position.
1. Study the movement within laboratory coordinates. Using the notations given in

Figure 10.23, determine the final velocities and directions of the particles.

v(P2/RL)’’

v(P1/RL)’’

P1, M1

P2,M2

v(P1/RL)’

b

Figure 10.23. Deviation of particles within laboratory coordinates, where   is the angle of 
deviation of the projectile and  is the angle of deviation of the target particle. 
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2. Study the movement within barycentric coordinates using the notations given in
Figure 10.24. 

P1, M1
v(P1/RG)’

v(P1/RG)’’

v(P2/RG)’

v(P2/RG)’’

Gb1
b2

b1

p2

G=  - 

b

Figure 10.24. Deviation of particles with barycentric coordinates

In particular, show that given the definition of G that the total momentum within 
barycentric coordinates is zero. 

3. Establish the relationships for the particles pathways for velocities using co-
ordinates of the centers of mass of the particles (RG) and RL . 

4.  Establish the following equations (noting the conservation of the normal
velocities):

1 G 1 L G

2 G G

v(P / R ) '' v(P / R ) ' v
v(P / R ) '' v .

Also show that with 1 2

1 2

M M
M*

M M
, we have G 1

2

M *
v v(P / RL )

M
' .

5. Geometrically represent the pathway of the center of mass of P2 with respect to
RL. In particular, show that G = 2 .
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6. Show that the energy transferred from the projectile to the target particle can be 

written as 20 1 2
2

1 2

4E M M
T s

2M M
in .

Answers
1. To determine the final velocities and directions of the particle, we can start with
the equations for the conservation of kinetic energy and momentum.

 Conservation of kinetic energy

2 2
0 1 1 L 1 1 L 2 2 L

1 1 1
E M v(P / R ) ' M v(P / R ) '' M v(P / R ) ''

2 2 2
2 ,         (1) 

where E0 is the initial kinetic energy of the system and thus of the incident ion, as 
v(P2/RL)’= 0 ;   v(P2)’’ is the recoil velocity. 

 Conservation of momentum, where  is the deviation between the final and 
initial directions of the ion measured against laboratory coordinates and  is the
angle between  and2 Lv(P / R ) '' 1 Lv(P / R ) '  as indicated in the figure. 

By projection on the horizontal axis,
; (2)1 1 L 1 1 L 2 2 LM v(P / R ) ' M v(P / R ) ''cos M v(P / R ) ''cos

by projection along the vertical axis,

1 1 L 2 2 L0 M v(P / R ) ''sin M v(P / R ) ''sin . (3)

2. The force that exists between two particles during the collision depends only on
the direction of the line between the two particles. There are in effect no transversal 
forces. The movement of the two particles thus is reduced to that of the movement
of a single particle in a central potential. Here this is the interatomic potential at the
center on the origin G of the coordinates of RG. The origin, the center of mass, is the
barycenter for the point P1 and P2. It is defined in RL by

1 1 2 2

1 2

M OP M OP
OG

M M
 .

By derivation we obtain:
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1 2
1 2

1 2

dOP dOP
M MdOG dt dt

dt M M
1 1 L 2 2 L

G
1 2

M v(P / R ) M v(P / R )
v

M M
,

as the numerator is a constant taking into account the conservation of 
momentum in an elastic shock. The 

ste
Gv C

Gv  is the velocity vector of the point G in RL

and it is constant which indicates that the coordinates of RG move uniformly within
RL.

This is true at all instants and in particular those prior to the collision. We can
thus write:

ste 1 1 L
G

1 2

M v(P / R ) '
v C

M M
t ;

Gv is collinear to , and the vector 1 Lv(P / R ) ' Gv  thus is horizontal (see figure).

In the coordinates of the center of mass, the barycentric equation also can be
written as: 

1 1 2 2 1 2M GP M GP (M M )GG 0 .

By derivation we obtain:

1 2
1 2

dGP dGP
M M

dt dt
0 ,

or again 1 1 G 2 2 GM v P / R M v P / R 0 , (4)

where  and  are the velocities of the particles P1 Gv P / R 2 Gv P / R 1 and P2 in the
center mass system.

The amount 1 1 G 2 2 GM v P / R M v P / R represents the total momentum of
the system. To conclude, the total momentum in the barycentric coordinate is zero,
taking into account the definition of G. 

3. For the equation of the change in coordinates of the center of mass (RG) with
respect to the laboratory coordinates (RL), we have 

1 1GP OP OG , (5)
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1 1dGP dOP dOG
dt dt dt

1 G 1 L Gv(P / R ) v(P / R ) v

(5 bis)1 G 1 L G

1 G 1 L G

v(P / R ) ' v(P / R ) ' v
v(P / R ) '' v(P / R ) '' v

and

2 2GP OP OG (6)

2 2dGP dOP dOG
dt dt dt

2 G 2 L Gv(P / R ) v(P / R ) v

(6 bis)2 G G

2 G 2 L G

v(P / R ) ' v
v(P / R ) '' v(P / R ) '' v .

4. The velocities of the two particles, with respect to the center of mass, conserve
their normals prior to and after the reaction.

Equation (4) derived from the equation defining the barycenter is written prior
to the collision (within the center of mass coordinates) in the form:

1 1 G 2 2 GM v(P / R ) ' M v(P / R ) ' 0 .

With Eqs. (5 bis) and (6 bis), we can determine that:

1 1 L G 2 GM v(P / R ) ' v M v 0 .

By projecting along the horizontal axis, we obtain:

1 1 L G 2 GM v(P / R ) ' v M v 0 . (7)

Following the collision, the same Eq. (4) gives 1 1 G 2 2 GM v(P / R ) '' M v(P / R ) '' 0 ,

from which by projecting on the final asymptotic direction we have 

. (8)1 1 G 2 2 GM v(P / R ) '' M v(P / R ) '' 0

By identification of Eqs. (7) and (8) we obtain:
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(9)1 G 1 L G

2 G G

v(P / R ) '' v(P / R ) ' v
v(P / R ) '' v .

In fact this result can be generalized to all instants. By using an appropriate axis for
each instant it is possible to show that the normal of the velocity vectors is constant 
at all times.

A consequence of Eq. (7) is that it is possible to write:

,1 1 L 1 2 GM v(P / R ) ' (M M )v

so that:

1 2

1 2

M M
M*

M M
1

G 1 L 1
1 2 2

M M
v v(P / R ) ' v(P

M M M L
*

/ R ) ' .       (10) 

5. Geometric representation and angular relations

Before calculating the transferred energy (T), we will give the equations that make it 
possible to go from diffusion angles (defined in the laboratory system RL) to 
diffusion angles defined within a system of the mass center RG (see figures). 

Following Eqs. (5 bis) and (6 bis), we can go from one system to the other by a
simple vector translation ( , so that, for example):Gv

 ; 2 L G 2 Gv(P / R ) '' v v(P / R ) ''

We thus can construct Figure 10.25 that defines an isosceles triangle as, 
according to Eq. (9): 2 G G Gv(P / R ) '' v v

v(P2/RG)’’

vG

v(P2/RL)’’

G

2 G Gv(P / R ) ' v M2

Figure 10. 25. Change from center of mass to laboratory coordinates.
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We can see that G and  are bound by the equation

G = 2 . (11)

We also have 2 L

G

v(P / R ) ''/ 2
cos

v
, so that

2 L Gv(P / R ) '' 2v cos . (12)

6. Calculation of the energy transferred (T) to a target atom
During the collision, the energy transferred to the target can be written as: 

2
2 2 L

1
T M v(P / R ) ''

2
, from which with Eq. (12) :

22
G

M
T 2v cos

2
.

By substituting Eq. (10), we obtain:
2

2 1 L

2

M 2v(P / R ) 'M * cos
T

2 M
, so that 

also:

2
1 L

2

2
T v(P / R ) 'M * cos

M
. (13)

We can see in the above figure that G , so that with Eq. (11), 

G 2 .

Equation (13) thus becomes:
2

1 L
2

2
T M * v(P / R ) 'sin

M 2

2 2
1 L

2

2
T M * v(P / R ) ' sin

M 2
2 ,

and thus
22

2 20 0 1 2

1 2 1 2 1 2

4E M * 4E M M
T sin s

M M 2 M M M M 2
in ,
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where 2
0 1 1 L

1
E M v(P / R )

2
'  and is the kinetic energy of the incident ion defined

in Eq. (1). 

Finally:

20 1 2
2

1 2

4E M M
T

2M M
sin . (14)

This equation is particularly fundamental to calculations for nuclear stopping
powers. It represents, in effect, the energy lost by the projectile during the collision. 
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