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Foreword

The publication of this book, which includes the main aspects of human, animal and 
environmental virology in the Latin American and Caribbean region (LAC) in 2016, 
coincides with important achievements and challenges in public health in the region.

According to the Pan American Health Organization/World Health Organization, 
in September 27, 2016, “The Region of the Americas is the first to have eliminated 
measles in the world, a viral disease that can cause severe health problems, includ-
ing pneumonia, brain swelling and even death. This achievement culminates a 
22-year effort involving mass vaccination against measles, mumps and rubella 
throughout the Americas. Measles is the fifth vaccine-preventable disease to be 
eliminated from the Americas, after the regional eradication of smallpox in 1971, 
poliomyelitis in 1994, and rubella and congenital rubella syndrome in 2015”. 
Another important achievement and innovative action in LAC occurred from March 
2006, when rotavirus A vaccines were introduced in national immunization pro-
grammes, considerably reducing hospitalizations and mortality related to rotavirus 
A diarrhoea.

Despite these important achievements, new challenges have arisen in the region. 
Considering only arboviruses, the four dengue virus serotypes circulate here, and 
recently the introduction and the pandemic dispersion of the Chikungunya and Zika 
viruses were observed. In this context, both the original and scientifically robust 
contributions of virologists and the regional scientific community who generated 
knowledge of these viruses should be highlighted. Thus, considering the achieve-
ments and challenges, it is possible to state that virologists and virology in LAC 
followed an innovative course and contributed in expressive ways in the generation 
of scientific knowledge and to the understanding of different phenomena related to 
the existing “virosphere” in LAC.

This book, Human Virology in Latin America: From Biology to Control, edited 
by J. E. Ludert, F. H. Pujol, J. Arbiza, contains 22 chapters that have been contrib-
uted by expert virologists on topics of great relevance to Public Health in the LAC. 
Starting with the history of virology in the region that occurred between the six-
teenth and twenty-first centuries, Chap. 1 describes the scientific knowledge gener-
ated over time about the main viruses, and their impact on public health and 
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prevention actions relevant to the region. This volume covers five fields of virology: 
viral gastrointestinal diseases, including the unprecedented environmental virology 
(Chaps. 2, 3, 4, 5, 6 and 7); mosquito-borne viral diseases (Chaps. 8 and 9); hemor-
rhagic, skin and respiratory viral diseases (Chaps. 10, 11, 12, 13, 14 and 15); sexu-
ally and blood-borne transmitted diseases (Chaps. 16, 17, 18, 19 and 20); prevention 
and treatment (Chaps. 21 and 22). This book undoubtedly reflects the resizing of 
virology in LAC. We hope that this initiative will be the catalyst for the creation of 
a Latin American and Caribbean Society for Virology (LACSVI), similarly to the 
European Society for Virology.

The LAC countries bear a rich socio-biodiversity that concentrates the greatest 
extension of forests dedicated to biodiversity conservation (26%). In addition, out 
of the ten countries with the largest freshwater reserve on the planet, three are in 
LAC (Brazil, Colombia and Peru). The concept of One Health aims to reduce the 
risks of emergence and spread of infectious diseases resulting from the interface 
between animals, humans and ecosystems. In this context, viruses are important 
agents of emerging and re-emerging diseases, since they do not occupy any specific 
and permanent ecological niche in a conservative way. On the contrary, due to their 
intrinsic capacity for evolutionary mechanisms, they present potential to parasitize 
alternative host species.

Considering the infectious diseases of viral aetiology presented in this text, inte-
gration between human health, animal health and environment propels new chal-
lenges for LAC, mainly in qualified human resources that can generate new 
knowledge of new multidisciplinary approaches and translational researches with 
respect to socio-biodiversity and maintenance of healthy ecosystems for a most just, 
responsible and sustainable economic and social development.

José Paulo Gagliardi Leite, PhD
Senior Researcher Laboratory of Comparative and Environmental Virology
Oswaldo Cruz Institute/Fiocruz/Ministry of Health, Brazil
 Senior Researcher 1A – National Council for Scientific and Technological 
Development (CNPq)
 Designated Member of Scientific Commission of Parasitology and Microbiology, 
CNPq (10/2016–06/2019)
 Scientist of Our State, Carlos Chagas Filho Foundation for Research Support of 
Rio de Janeiro State (FAPERJ)
Temporary Advisor, Pan American Health Organization
Member, Rotavirus Technical Working Group, World Health Organization
President of Brazilian Society for Virology (1997–1998)
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Preface

Viruses were discovered at the very end of the ninetieth century, and although many 
known viruses to date cause no harm to humans, some of them, like Ebola virus, 
influenza or the human immunodeficiency virus (HIV) for example, are among the 
most fearful pathogens affecting humankind. Moreover, viruses have the ability to 
affect large areas or populations in short periods of time causing epidemic outbreaks 
that in occasions may become pandemic. Out of the 11 most important epidemics 
affecting the world in the last 14 years, 9 have been caused by viruses.

Latin America is an extensive region populated by more than 600 million inhab-
itants, containing an exuberant biological richness constituting one of the most 
diverse ecological regions on Earth. Since the 1980s the Latin America region has 
been affected, like the rest of the world, by the HIV, but also by the hemorrhagic 
manifestation of dengue. More recently the region was affected by a large outbreak 
of chikungunya and currently the region is battling to control the Zika epidemic. All 
these emerging viral diseases add to the more “classical” endemic viruses such as 
papilloma, viral hepatitis and those causing respiratory and gastrointestinal infec-
tions. Moreover, the region is under the constant threat of the emergence or reemer-
gence of highly pathogenic human viruses such as yellow fever or Mayaro, some of 
which are currently silent under well-established Amazonia sylvatic cycles. Another 
threat is the introduction of viruses from elsewhere such as the Middle East 
Respiratory Syndrome (MERS).

Through the 22 chapters of this book, some of the most respected virologists 
working in Latin America provide their views of the state-of-the-art of virology in 
the region. They address issues that range from history to biology, pathogenesis, 
epidemiology, prevention and treatment of the most important human viral diseases 
in the region. Almost in every case, the answer to an emerging disease in the region 
has been reactive, even though lessons from past epidemic experiences, in combina-
tion with the current epidemiological, medical and scientific knowledge, should 
allow for a more proactive, early and, therefore, more efficient reaction. It is the 
hope of the Latin American community of virologists to generate original and valu-
able scientific knowledge that will not only impact the universal knowledge, but that 
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will also provide effective tools to alleviate the current burden caused by viral dis-
eases in the region and to be better prepared for future contingencies.

We like to express our gratitude to all the authors who so generously and enthu-
siastically contributed their chapters. We hope that their work reaches and informs 
graduate students, scientists and public health authorities with updated, authorita-
tive and useful information about the virology endeavor in Latin America, and no 
less important, that they inspire a new generation of scientists to become 
virologists!

Mexico City, Mexico Juan Ernesto Ludert 
Caracas, Venezuela Flor H. Pujol
Montevideo, Uruguay Juan Arbiza
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Chapter 1
Viral Epidemics in Latin America 
from the Sixteenth to the Nineteenth Centuries 
and the Early Days of Virology in the Region

José Esparza

1  Introduction

The known epidemiological history of Latin America started with the encounter 
between American and European populations after the voyages of Christopher 
Columbus [24, 30]. In the sixteenth and seventeenth centuries, newly introduced 
viral epidemic diseases rapidly spread among the American aborigines, causing 
“virgin soil” epidemics and affecting populations without previous exposure to the 
new pathogens, causing high mortality rates and resulting in the decimation of the 
American aboriginal populations [9, 10, 42]. To some extent, those early American 
epidemics biologically resembled the more recent “virgin soil” epidemics of chi-
kungunya and Zika in the Americas [16].

By the second half of the nineteenth century, the concepts of epidemics and con-
tagion began to be understood more scientifically, especially after the germ theory 
of disease was formalized thanks to the work of Louis Pasteur (1822–1895) and 
Robert Koch (1843–1910). This new understanding of disease led to the discovery 
of many microorganisms that were found to be specifically associated with different 
diseases. Although a vaccine against smallpox was developed in 1796 by Edward 
Jenner (1749–1823) [26] and one against rabies was developed by Louis Pasteur in 
1885 [3], it was not until 1892 that the concept of filterable viruses was proposed by 
the Russian botanist Dmitri Ivanovsky (1864–1920) for the agent of the tobacco 
mosaic disease [25]. This discovery led to the identification of other filterable agents 
of disease (now known as viruses), which also resisted cultivation in standard bacte-
riological media. The first observation that an animal disease is caused by a filterable  

J. Esparza (*) 
Institute of Human Virology, University of Maryland School of Medicine,  
Baltimore, MD, USA
e-mail: Jose.Esparza5@live.com
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virus was that in Germany by Friedrich Loeffler (1852–1915) and Paul Frosch 
(1860–1928) in 1898 of food-and-mouth disease [28]. In 1901, Walter Reed (1851–
1902) and collaborators were the first to identify, in Cuba, a human filterable virus 
as the cause of yellow fever [34]. It was during this exciting time of the birth of 
virology that the first steps in this science were taken in Latin America.

2  Viral Epidemics in Latin America (Sixteenth to Nineteenth 
Centuries)

2.1  Influenza

The Spanish medical historian Francisco Guerra [23] proposed that the first viral 
epidemic introduced by the Spanish explorers in the Americas may have been swine 
influenza, which broke out in Santo Domingo (Hispaniola) during the second voy-
age of Columbus in 1493. The epidemic might have been originated from infected 
pigs brought from the Canary Islands. Guerra suggested that the influenza epidemic 
spread to a number of islands in the Caribbean, causing large mortality among the 
aboriginal population.

Since 1510 and until the end of the nineteenth century, there appeared to have been 
ten or more pandemics of influenza [32], with evidence that most of them reached 
Latin American countries where they received different popular names: zamparina 
(Brazil, 1771), pasa diez (Colombia, 1808), susto de la pinacata (Mexico, 1826), la 
corcunda (Brazil, 1826), la jardinera (Peru, 1875), emisión (Peru, 1878), etc.

During the last influenza pandemic of the nineteenth century in 1889–1890, 
researchers used the new methods of medical microbiology in an effort to identify 
the microbial cause of influenza. An apparent breakthrough came in 1892 when 
Richard Pfeiffer in Germany, a protégé of Robert Koch, announced that he had 
found a bacillus as the cause of influenza, known as Pfeiffer’s bacillus or Bacillus 
influenzae, which was probably Haemophilus influenzae. Moreover, bacterial vac-
cines were prepared and used at that time in an attempt to prevent influenza. Another 
30 years later, the British investigators Andrewes, Smith, and Laidlaw [1] isolated, 
in 1933, the virus that causes influenza in humans.

2.2  Smallpox

However, the major epidemic killer in the Americas was smallpox, first introduced 
from Africa to Santo Domingo in 1518. From there, the smallpox epidemic spread 
in 1519 to Puerto Rico and Cuba, reaching Mexico in 1520 [14]. It has been repeat-
edly proposed that this first smallpox epidemic in the Americas contributed to the 
fall of the Aztecs and, a few years later, to that of the Inca Empire, where the epi-
demic arrived in 1525–1527.

J. Esparza
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That first American smallpox epidemic was followed by other epidemics in 
different countries in Central and South America, caused by multiple reintroductions 
of the disease from slaves of African origin. One of the worst smallpox epidemics of 
the sixteenth century took place between 1585 and 1591, affecting the Andean 
region, from Colombia to Argentina, causing great mortality among aborigines and 
Spaniards. The Amazonian forest may have protected Brazil from these initial epi-
demics that ravaged the Spanish territories; however, an epidemic introduced directly 
from Portugal affected all the Brazilian coast in 1562–1563. It is believed that epi-
demic diseases, especially smallpox, were the major cause of the demographic catas-
trophe of the American Indian population in the sixteenth and seventeenth centuries. 
By 1650, when censuses became more accurate, the American indigenous population 
was estimated as 6 million, down from an estimated of 50 to 100 million in 1492.

Multiple epidemics of smallpox occurred in the Americas during the seventeenth 
to the twentieth century. The standard societal response to those early epidemics 
was based on the isolation of cases to prevent further spread of the disease. However, 
from the 1760s, variolation (the inoculation of smallpox) began to be used in Latin 
America, some 40 years after the procedure was first introduced in England by Lady 
Mary Wortley Montagu [44]. The beginning of the end of the smallpox epidemics in 
Latin America came in 1804 with the introduction of vaccination (inoculation of 
cowpox) by the Royal Philanthropic Expedition of the Vaccine [15, 33]; the last case 
of smallpox in the Americas occurred in Brazil in 1971.

2.3  Yellow Fever

Yellow fever was one of the most feared epidemic diseases in the Americas from the 
seventeenth to the end of the nineteenth century [7]. The origins of the disease most 
likely lie in Africa, and the virus and its mosquito vector were probably brought to 
the Caribbean and South America by ship after 1492 [4]. Although epidemics that 
resemble yellow fever had been described in the Caribbean and Mexico since 1527, 
one of the first well-described outbreaks, mentioned in the Chilam Balam de 
Chumayel, was in 1648 in Yucatan, Mexico. During the sixteenth and seventeenth 
centuries, yellow fever became endemo-epidemic in the Americas, causing numer-
ous outbreaks mostly in the Caribbean, Mexico, Venezuela, and Brazil. By the late 
seventeenth century, yellow fever had also reached ports in the United States, and in 
the nineteenth century, the epidemics also made inroads in European ports with 
commercial contacts with America. In 1871, a severe epidemic of yellow fever 
occurred in Buenos Aires, killing about 8% of the inhabitants of the city [37].

Today we know that yellow fever is caused by a virus and transmitted by mosqui-
toes, but that knowledge was only acquired at the very beginning of the twentieth 
century. In the urban cycle of yellow fever, the virus is transmitted from human to 
human by the Aedes aegypti mosquito. In the sylvatic or forest cycle, different spe-
cies of Aedes serve as a vector between nonhuman primates and humans. The 
 sylvatic cycle of yellow fever was described in Brazil in 1932 by the Rockefeller 
Foundation epidemiologist Fred Soper (1893–1977) [40].

1 Viral Epidemics in Latin America from the Sixteenth to the Nineteenth Centuries…
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2.4  Other Viral Epidemics

In addition to influenza, smallpox, and yellow fever, many other infectious diseases, 
bacterial and viral, affected colonial Latin America [24]. Their precise identification 
remains difficult because of the limited clinical information available and also 
because very often two or more epidemic diseases occurred at the same time.

What seems to be clear is that the third emerging viral infection in colonial Latin 
America was measles, which, similar to smallpox, was first introduced in the 
Caribbean around 1529 [9]. Measles arrived in Mexico in 1531, soon extending to 
all Mesoamerica and the Andes. Epidemics of a disease compatible with mumps 
were described in Mexico in 1550–1560, also extending to Mesoamerica. Both 
measles and mumps remained in Latin America as endemo-epidemic diseases. 
Dengue may have been introduced in the Caribbean as early as in 1635 [21]. 
However, cases compatible with poliomyelitis were only reported for the first time 
at the end of the nineteenth century, in Argentina (1860) and in Cuba (1879).

3  The Early Days of Virology in the Region

The Latin American society responded to those epidemic diseases with a number of 
activities that were pioneers in the field.

3.1  The Royal Philanthropic Expedition of the Vaccine

On May 14, 1796, Edward Jenner performed his best known experiment when he 
showed that the inoculation of an 8-year-old boy, James Phipps, with cowpox 
“material” protected him from developing disease after a smallpox challenge. This 
observation and others were privately published by Jenner in 1798 [26]. Information 
about Jenner’s experiments was initially known in Spain in 1799, and the vaccine 
itself (cowpox material) reached Spain in December 1800; by the end of 1801, sev-
eral thousand vaccinations had been performed in that country. At that time, dozens 
of booklets about vaccination were published in Spain and widely circulated in 
Spanish America. Moreover, several attempts were made to bring the vaccine to the 
New World using cowpox material in impregnated silk threads or sealed between 
small glass plates, but these methods proved unreliable on lengthy journeys and in 
warm climates.

In 1802, the Viceroy of New Granada (now Colombia) asked His Majesty the 
King of Spain for help after informing him of an epidemic of smallpox that had 
caused thousands of deaths. Consequently, on March 1803, King Charles IV 
instructed the Council of Indies to evaluate the means to introduce the vaccine to his 
American and Asian possessions. The process resulted in the selection of Francisco 

J. Esparza
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Xavier de Balmis (1753–1819) (Fig. 1.1) as director of an expedition that would 
take the vaccine to all corners of the Spanish colonies and around the world [12, 29, 
33, 41]. The expedition was carefully planned and executed with three objectives: 
(1) to provide cost-free vaccinations to the general population, (2) to train local 
physicians in correct vaccine administration, and (3) to establish central and regional 
vaccination boards to ensure the preservation and distribution of the vaccine. The 
expedition left the Spanish port of La Coruna on November 30, 1803, aboard the 
corvette María Pita. It was directed by Balmis with the assistance of Joseph Salvany 
as Vice Director, two physicians, two surgeons, and four male nurses. To transport 
the vaccine on the 1-month voyage to the Americas, 22 nonimmune orphan boys, 
aged 3–9, would be sequentially vaccinated during the crossing by serial arm-to-
arm inoculation. The expedition also included the rectoress of the La Coruna found-
ling house, Isabel Zendal Gómez, who took care of the children. The expedition 
lasted for 3 years, and new children were recruited along the way to maintain the 
arm-to-arm transfer of the vaccine.

The corvette María Pita made a first stop in the Canary Islands, and from there 
the expedition continued westbound to reach the island of Puerto Rico in February 
1804. In March, the expedition sailed to Caracas, Venezuela, where it was received 
with open arms and enthusiastic collaboration. In less than 1 month, more than 
12,000 people were vaccinated in Venezuela, where the first Central Vaccination 
Board was established on which other Spanish American boards were modeled. In 
Caracas, the expedition was divided into two groups. One group, led by Salvany, 
proceeded south to the Viceroyalty of Nueva Granada (Colombia) and Peru, with 
the final goal of reaching Rio de la Plata (Argentina). The other sub-expedition, 
directed by Balmis himself, sailed from Caracas to La Havana, Cuba, and from 
there to the Viceroyalty of New Spain (Mexico), where it arrived in June 1804. From 
there, the vaccine was taken to different places in Mexico and neighboring regions. 
In February 1805, Balmis sailed from Acapulco to the Philippines accompanied by 

Fig. 1.1 Francisco Xavier 
de Balmis, the director of 
the expedition that in 1804 
brought the smallpox 
vaccine from Spain to 
Latin America

1 Viral Epidemics in Latin America from the Sixteenth to the Nineteenth Centuries…
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26 Mexican children to serve as vaccine carriers. For health reasons, Balmis sailed 
to the Asian mainland in September 1805, reestablishing vaccination in the 
Portuguese colony of Macau. Balmis returned to Europe by sailing around the 
African continent, finally landing in Cadiz on September 7, 1806.

An estimated 250,000 people were directly vaccinated by the expedition, with 
many more reached by the programs they established in different countries. When 
Jenner learned of the expedition, he said that he does not imagine the annals of his-
tory furnish an example of philanthropy so noble, so extensive as this.

3.2  Discovering the Etiology and Mechanism of Transmission 
of Yellow Fever

The full emergence of the germ theory of disease during the 1880s gave impetus to 
the search for the “germ of yellow fever,” and many putative microorganisms were 
proposed at that time [11]. In Brazil, Domingos José Freire (1843–1899) reported 
that the pathogenic agent of yellow fever was Cryptococcus xantogenicus [6], 
whereas in the same country, João Baptista de Lacerda (1846–1915) proposed that 
the cause was the fungus Cogumelo. In Mexico, Manuel Carmona y Valle (1827–
1902) believed that the cause was the mold Peronospora lutea. And even Carlos 
Finlay (1833–1915) (Fig. 1.2) in Havana had a candidate that he called Micrococcus 
tetragenus febris flavae.

In view of those multiple claims, in 1887, the U.S. government commissioned 
George Miller Sternberg (1838–1915) to clarify the situation. Sternberg was an 
army physician who is considered to be the first U.S. bacteriologist. After traveling 
to two endemic countries, Brazil and Cuba, in 1890, he emitted the verdict stating 
that none of the proposed microorganisms was the cause of yellow fever. However, 
Sternberg himself suggested that perhaps a new germ that he identified, known as 
Bacillus x, could be the cause. After these very definite conclusions by Sternberg, it 
came rather as a surprise when in 1897 Dr. Giuseppe Sanarelli (1864–1940) 

Fig. 1.2 Carlos Finlay, the 
Cuban physician who in 
1881 formally proposed 
the mosquito transmission 
of yellow fever, 
information that was used 
in 1900–1901 by Walter 
Reed and collaborators to 
advance our knowledge 
regarding the etiology and 
transmission of the disease
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(Fig.  1.3), a distinguished Italian bacteriologist and professor of experimental 
hygiene in Montevideo, Uruguay, formerly from the Institut Pasteur in Paris where 
he was a disciple of Élie Metchnikoff (1845–1916), announced that he has discov-
ered the true cause of yellow fever, Bacillus icteroides [38]. This time some 
American experts believed Sanarelli to be right, and even Sternberg considered the 
possibility that Bacillus icteroides and Bacillus x were one and the same.

Consequently, in 1900, Sternberg, who by then was the U.S.  Army Surgeon 
General, sent to Cuba a new Yellow Fever Commission (the fourth one) with the 
main goal of confirming or refuting the claim that yellow fever was caused by 
Bacillus icteroides. It is important to remember that at that time Cuba was occupied 
by the United States as a consequence of the conflict known as the Spanish-American 
War that was initiated in 1898. The commission was led by Major Walter Reed; act-
ing Assistant Surgeon General, James Carroll (1854–1907); Aristides Agramonte 
(1868–1931); and Jesse Lazear (1866–1900). After conducting the necessary 
research, the conclusion of the Commission was that Bacillus icteroides was simply 
a contaminant. Walter Reed concluded that At this stage of our investigation… the 
time had arrived when the plan of our work should be radically changed. So, the 
Commission went through a major paradigm change and decided that rather than 
studying the causes of the disease, they would focus on what transmits it. At this 
point, in August 1900, the Commission decided to consult with Carlos Finlay and to 
test his mosquito theory in human volunteers [17].

Carlos Finlay, a Cuban physician trained in Europe and the United States, had 
sent in 1865 a paper to the Academy of Sciences of Havana outlining his theory on 
weather conditions and its relationship to yellow fever. However, after a more care-
ful study of the epidemics, he finally made the correct observation that the appear-
ance of epidemics in the hot and wet summer months was not caused by a worsening 
of some of the miasmatic conditions but rather by an increase in the population of a 

Fig. 1.3 Giuseppe 
Sanarelli, a distinguished 
Italian bacteriologist 
working in Uruguay, 
conducted pioneering work 
on the etiology of yellow 
fever and in 1898 
discovered the viral 
etiology of rabbit 
myxomatosis
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mosquito that Finlay referred to as the Culex mosquito, known at that time as 
Stegomyia fasciata and today as Aedes aegypti.

On August 14, 1881, Finlay read a paper before the Academy of Sciences of 
Havana, proposing that yellow fever was propagated by mosquitoes. He began by 
admitting that the cause of the disease was a material transportable cause which 
may be either an amorphous virus, an animal or vegetable germ, bacterium, etc., 
but which consists in all cases of a tangible something which has to be communi-
cated from the sick to the healthy in order that the disease may be propagated. By 
the 1880s, the germ theory of disease was gaining followers within the medical 
community, and it was clear that Finlay accepted that concept rather than the popu-
lar miasmatic theory (“something in the air”). Finlay continued his presentation to 
the Academy, proposing that it seems natural that the agent that transmits the patho-
genic material of yellow fever could be found in that class of insects which, by 
penetrating in the interior of the blood vessel, could suck up the blood together with 
any infecting particles contained therein, and carry the same from the diseased to 
the healthy. Through acute observation, Finlay correctly identified Aedes aegypti as 
the vector of the yellow fever virus [18, 19].

His presentation was received with total indifference, and for many years, Finlay 
was ridiculed because of his ideas. Nevertheless, that same year of 1881, Finlay com-
menced experimental inoculations on a series of 20 nonimmune Spanish soldiers, 
completing in 1900 a total of 102 cases. It has been argued that Finlay could have not 
convincingly transmitted the infection because his volunteers were not adequately 
isolated and the observed infections could have occurred by natural exposure to the 
infection rather than by the experimental mosquito transmission. Moreover, it has 
been argued that the experiments were not optimized for the “extrinsic” and “intrin-
sic” incubation periods of the virus. Transmission of yellow fever from human to 
human requires a competent mosquito to feed on an infected human and survive an 
extrinsic incubation period in which the virus replicates in the mosquito and dissemi-
nates to its salivary glands, whereupon it finally feeds on a susceptible human. 
Similarly, disease in humans occurs after an intrinsic incubation period in which the 
virus replicates and disseminates within the person. The extrinsic incubation period 
in Aedes aegypti has a median of 10 days at 25°C, and the intrinsic incubation period 
had a median of 4.3 days. Those concepts were unknown to Finlay, who did not con-
sider the mosquitoes as biological vectors of the yellow fever virus, but rather as only 
“flying pins” that mechanically carried the yellow fever agent from human to human.

In 1900, Carlos Finlay had an opportunity to have his mosquito theory tested by 
the American Commission, and he personally provided the eggs of the mosquitoes 
to be used in the experiments [8, 19]. This time, the Commission was careful in 
isolating the volunteers to ensure that any infection observed in the volunteers was 
indeed experimentally transmitted by the mosquitoes. After some initial failures, the 
Commission achieved positive results when the experiments were designed to allow 
for the appropriate extrinsic and intrinsic incubation periods. Significantly, the mos-
quitoes had fed on cases within the initial 3 days of the disease and had been allowed 
to ripen for at least 12 days before the transmission experiments were conducted. 
One of the volunteers was a member of the Commission, Jesse Lazear, who devel-
oped a severe infection and died of the disease.

J. Esparza
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With these initial results, Walter Reed rapidly prepared a preliminary note that he 
presented on October 23, 1900, at the annual meeting of the American Public Health 
Association in Indianapolis, Indiana (USA) [35]. Reed returned to Cuba where he 
conducted additional experiments in “Camp Lazear,” west of Havana near the adja-
cent suburban towns of Quemados and Marianao. Most of the volunteers were recent 
Spanish immigrants who were not immune to yellow fever (were not “acclimatized”) 
and who signed what are probably the first examples of informed consent. More than 
30 volunteers participated in the experiments, and 22 developed yellow fever.

On August 1, 1901, less than 1 year after the transmission experiments in Camp 
Lazear, James Carroll, from the Walter Reed Commission, who returned to Cuba 
and was aware of the foot-and-mouth experiments of Loeffler and Frosch, pro-
ceeded to demonstrate that filtered serum from one yellow fever patient can induce 
yellow fever when injected in a healthy volunteer. The subsequent filtration and 
passage of serum from the second subject to a third, with the same results, provided 
the evidence of a replicating infection agent rather than a toxin, and this was the 
demonstration that the yellow fever agent was a filterable virus [34].

Soon after the yellow fever work of Walter Reed and collaborators was publicized, 
there was a search in the literature for visionary individuals who have  previously sug-
gested a possible role of insects in the transmission of disease. Several such “prede-
cessors” were identified, but among those one remains apart, Louis Daniel Beauperthuy 
(1808–1871) [5, 13, 20, 27] (Fig.  1.4). Beauperthuy was born in the island of 
Guadalupe in the French Antilles and studied in Paris, graduating as physician and 
surgeon in 1837 with a thesis entitled “De la climatologie” in which he analyzed the 
environment and its relationship to diseases. In 1839, he moved to Venezuela where 
he worked for a brief period as a naturalist for the Musée d’Histoire Naturelle de 
Paris. During a yellow fever epidemic that occurred in 1853 in Cumaná, Venezuela, 
he made the connection between mosquitoes and the spread of the disease, pointing 
out that among the many species of mosquitoes he studied, the agents of this infection 
come in many varieties that are not all harmful to the same extent. The silly mosquito 

Fig. 1.4 Louis Daniel 
Beauperthuy, based on 
observations made in 
Venezuela, suggested in 
1853 that yellow fever is 
transmitted by mosquitoes
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variety, with white streaks on its legs, a somehow domestic variety, is the most com-
mon. Entomologists accept that Beauperthuy correctly identified the Aedes aegypti 
vector. In 1853, he published his observations locally in Cumaná, Venezuela, but also 
in the Comptes Rendus des Séances and in the L’Abeille Médicalle of Paris.

A major difference between the 1853 theory of Beauperthuy and the 1881 sug-
gestion of Finlay was that Beauperthuy believed that the mosquitoes mechanically 
carried the yellow fever agent from unhealthy swamps to humans, whereas Finlay 
correctly proposed the human-to-human transmission of the yellow fever virus by 
mosquitoes, although it took several years for virologists to fully understand the 
biological role of mosquitoes in the epidemiology of arboviruses.

3.3  Early Identification of Rabbit Myxomatosis as a Viral 
Disease by Sanarelli in Uruguay

Myxomatosis was first recognized when it killed European rabbits (Oryctolagus 
cuniculus) in Giuseppe Sanarelli’s laboratory in Montevideo, Uruguay, in 1896. After 
failing to detect bacteria in the lymph from the vesicles of diseased rabbits, Sanarelli 
described the myxomatosis agent as invisible. In 1898, Sanarelli reported his findings 
at the Ninth International Congress for Hygiene and Demography in Madrid, classi-
fying the myxomatosis agent as a virus on the basis of its submicroscopic size, even 
though its filterability was not reported for some years [39]. However, Sanarelli noted 
in 1898 that centrifugation produced an infectious serum that did not contain micro-
organisms. Sanarelli’s difficulties in demonstrating a filterable virus were probably 
the result of using a fine filter and the relatively large size of the myxomatosis virus 
(a poxvirus). It is noteworthy that the initial identification of the myxomatosis was 
made the same year that the German scientists Loeffler and Frosch reported the agent 
of foot-and-mouth disease as the first filterable animal virus [25, 43].

In 1911, workers in the Oswaldo Cruz Institute in Rio de Janeiro, Brazil, cor-
rectly further classified the agent of myxomatosis as a large virus, and Henrique de 
Beaurepaire Rohan Aragão (1879–1956) showed that it could be transmitted 
mechanically by insect bite.

3.4  Rabies Vaccination Arrives in Latin America as a Sign 
of Modernity

In 1880, Louis Pasteur began to work on rabies, a disease that plagued Europe in the 
nineteenth century. Starting in 1884, he presented the successful results of preven-
tive rabies vaccines in dogs, establishing the principle of vaccination before expo-
sure to rabies in animals. Pasteur then sought to improve his method and developed 
a means of attenuating the virulence of the rabies microorganism, which consisted 
in exposing the spinal cords of rabies-infected rabbits to the air in specially designed 
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flasks. Pasteur then had the idea of using this vaccine to create immunity after a dog 
bite and to give it to humans [3].

Pasteur took the next step in 1885 with the vaccination of a 9-year-old child, 
Joseph Meister, who was presented to Pasteur in his laboratory at the Ecole Normale 
in rue d’Ulm in Paris. The young boy arrived from Alsace presenting multiple deep 
dog bites, received 13 injections of rabbit medulla homogenate, 1 per day, and sur-
vived. Three months later, Pasteur repeated the experiment on a young shepherd, 
Jean-Baptiste Jupille, severely bitten by a dog. On October 26, 1885, Pasteur showed 
the promising results of his treatment against rabies in humans to the French 
Academy of Sciences. From then on, patients bitten by rabid animals flocked to 
Pasteur’s laboratory. On March 1, 1886, Pasteur presented a paper to the French 
Academy of Sciences with the results from the inoculation of 350 people, conclud-
ing that rabies prophylaxis after a bite is justified. There is a cause to create a rabies 
vaccine establishment. He immediately launched an international fund, and as a 
result, in November 1888, the Institut Pasteur was created, dedicated not only to 
rabies treatment but to Pasteur’s study of science.

News about Pasteur’s vaccination spread rapidly, and people from all over the 
world began to arrive in Paris to receive the rabies vaccine. Pasteur also opened 
several vaccination centers in Russia. In 1887, Dr. Valentine Mott (1852–1918) 
opened a center to administer the rabies vaccine in New York. That year, Dr. Mott 
went to Paris as the representative of the “American Pasteur Institute,” and when he 
returned to the United States, Pasteur permitted him to bring back a rabies- inoculated 
rabbit. In 1891, Albert Calmette (1863–1933) was sent to Saigon to administer the 
rabies vaccine, leading to the creation of the first overseas Pasteur Institute [22].

It appears, however, that the first vaccination against rabies in Latin America was 
done in Argentina on September of 1886, only 1 year after the vaccination of Joseph 
Meister in Paris. The vaccination was done by Dr. Desiderio Davel (1857–1943) 
using a strain provided by Pasteur which was maintained by repeated passages in 
rabbits during the steamship travel from Paris to Buenos Aires. Some claim that the 
Pasteur Laboratory of Buenos Aires, now the Institute of Zoonosis, was the first 
institution outside Europe that conducted rabies vaccination in humans [2].

Rabies vaccination was introduced in Mexico in 1888 by the eminent physician 
Eduardo Liceaga (1839–1922), the most distinguished hygienist of late nineteenth- 
century Mexico, who brought the vaccine in the brain of an inoculated rabbit main-
tained in glycerin during the travel from Paris [36].

The accounts presented here are interesting examples of the early transfer and 
adoption of vaccine technologies in Latin America.

4  Conclusions

The Latin American colonial society was exposed to numerous emerging viral 
infections that were imported from Europe or Africa during the process of conquest 
and colonization, resulting in significant cultural and demographic impact. Society 
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today is confronting some of the same diseases with vaccines that were mostly 
developed during the twentieth century. Smallpox was declared eradicated in 1980 
thanks to a vaccine first developed in 1796 by Edward Jenner. Poliomyelitis may be 
eradicated by 2018 using vaccines developed by Jonas Salk (1914–1995) in 1955 
and Albert Sabin (1906–1993) in 1961. Although a highly effective yellow fever 
vaccine was developed in 1937 by Max Theiler (1899–1972) [31], we are still expe-
riencing severe epidemics of yellow fever, especially in Africa. Similarly, rabies 
causes tens of thousands of deaths every year, mostly in Asia and Africa, and 15 
million people every year receive post-bite vaccination with new versions of the 
vaccine first developed by Louis Pasteur in 1885, thus preventing hundreds of thou-
sands of deaths.

The growth of the global population from 2 to 7.4 billion during the past century 
and the increased mobility of the population will surely allow new pathogens to 
emerge and spread locally, regionally, and globally. Vaccines will continue to have 
a role in the control of current and future epidemics and pandemics.

We reviewed how, at the beginning of the nineteenth century, it took only 7 years 
from the discovery of smallpox vaccination to the launching of the Balmis expedi-
tion, the first-ever global health campaign. We also reviewed how, soon after the 
germ theory of disease was formulated in Europe, scientists working in Latin 
America reported their experiences in identifying new viruses, specifically those 
causing yellow fever and rabbit myxomatosis. The rapid transfer of rabies vaccina-
tion from Paris to Argentina and Mexico was interpreted as a sign of progress and 
modernity and of the commitment of the new nations in Latin America to become 
an integral part of the civilized world.

The twentieth century continued producing examples of excellent virological 
work in Latin America. The younger generations of Latin American virologists, 
those who are working in the twenty-first century, should find encouragement in the 
successes of the past to address the challenges of the future.
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Chapter 2
Rotavirus Biology

Susana López and Carlos F. Arias

1  Introduction

Acute, infectious diarrhea is one of the most common causes of morbidity and mor-
tality among children living in developing countries. In 2010, 1.7 billion cases of 
diarrheal events were estimated to have occurred worldwide in children under 5 
years of age [123]. Diarrheal diseases are the third cause of death in this age range, 
after perinatal problems and respiratory infections [1]; however, it is complicated to 
calculate the number of deaths associated with a particular enteric pathogen [39, 
115]. Updated global estimates of rotavirus mortality in children less than 5 years of 
age indicate a decline from 296,000 deaths in 2008 to 215,000 in 2013, with a slight 
decrease in the proportion of diarrheal deaths caused by rotavirus, from 39% to 37% 
in this same period [115]. Developing countries bear the major burden of mortality 
from rotavirus, with about 85% of these cases occurring in six countries in Africa 
and Asia and very few in industrialized nations [39, 115].

Rotaviruses continue to be the leading etiological agent of severe diarrheal dis-
ease, even though two live attenuated vaccines have been licensed in more than 
100 countries since 2006,[115]. These live oral vaccines have shown a lower effi-
cacy in countries with a high burden of diarrheal disease [17, 39, 114], and the 
majority of those currently using rotavirus vaccines are low-mortality countries, so 
the impact of vaccine use on global estimates of rotavirus mortality has been lim-
ited [115]. Furthermore, the recent Global Enteric Multicenter Study showed that 
rotavirus was the leading cause of infant diarrhea among more than 20,000 chil-
dren studied in seven sites across Asia and Africa [60]; this study also reported that 
each episode of severe diarrhea in children increased the risk of delayed physical 
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and intellectual development as well as increased mortality by 8.5 fold [60, 114]. 
Thus, the  development of improved vaccines and therapeutic strategies is needed 
to efficiently control rotavirus infection, and in fact new rotavirus vaccines are 
under investigation or have recently been licensed in various parts of the world 
[121]. Fundamental to these developments is a basic understanding of the molecu-
lar mechanisms by which rotaviruses interact with their host cell.

Although rotavirus can infect older children and adults, severe diarrheal disease 
is primarily observed in children less than 2 years of age [37]. Rotavirus infection is 
primarily restricted to mature enterocytes located at the tip of intestinal villi. 
However, additional extraintestinal spread of rotavirus during infection of animals 
indicates a wider host tissue range than previously appreciated [88, 99]. In vitro, 
rotaviruses bind to a wide variety of cell lines, although only a subset of these, 
including cells of renal or intestinal origin and transformed cell lines derived from 
breast, stomach, bone, and lung, are productively infected [23]. The initial stages of 
rotavirus interactions with the host cell are complex and are the focus of intense 
current research. Most of these studies have been performed using model cell cul-
ture lines, the monkey kidney epithelial cell line MA104 and the human colon car-
cinoma cell line Caco-2, both of which are highly permissive to rotavirus infection 
and are the most commonly employed.

The mature rotavirus infectious particles are formed by a triple-layered protein 
capsid that encloses the genome, composed of 11 segments of double-stranded 
RNA (dsRNA). The innermost layer, formed by 120 dimers of VP2, contains the 
viral genome and 12 copies each of VP1, the virus RNA-dependent RNA poly-
merase (RdRP), and VP3, a protein with guanylyltransferase, methylase, and phos-
phodiesterase enzymatic activities; these viral elements constitute the core of the 
virus. The addition of 260 trimers of VP6 on top of the VP2 layer produces double- 
layered particles (DLPs). The outermost layer is made by 780 copies of the glyco-
protein VP7 arranged in trimers, which form a smooth surface layer from which 60 
spikes composed of trimers of VP4 protrude to form the characteristic, infectious, 
triple-layered particles (TLPs) [37].

During or shortly after cell entry, the infecting TLP loses the external protein 
layer and is converted to a DLP. Once in the cytoplasm, the DLP, which is transcrip-
tionally active, begins the synthesis of viral mRNAs that direct the synthesis of six 
structural proteins (VP1 to VP4, VP6, VP7) and six nonstructural proteins (NSP1 to 
NSP6). In addition to their function as mRNAs, the viral transcripts also serve as 
RNA templates for the synthesis of negative-strand RNAs to form the dsRNA 
genomic segments. The newly synthesized viral proteins are recruited to viroplasms, 
electrodense cytoplasmic structures, where the viral genome replicates and double- 
layered replication intermediate (RI) particles assemble. The DLPs newly formed in 
the viroplasms mature by budding into the lumen of the endoplasmic reticulum 
(ER) through the ER membrane, which is modified by the viral glycoproteins VP7 
and NSP4. During this process, mediated by the interaction of VP6 with NSP4, the 
DLPs acquire a transient lipid envelope that is subsequently lost to yield mature 
infectious TLPs. Finally, in MA104 cells, the virus is released into the medium by 
cell lysis, whereas in Caco-2 cells, the virus exits through a non-lytic mechanism 
that is not well characterized [37] (Fig. 2.1).
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Considering the purpose of this book, we describe in this chapter aspects of rota-
virus biology where significant contributions by researchers working in Latin 
America have been made, with emphasis in our own work. This manuscript does not 
pretend to be a comprehensive review of the area, and we apologize to the col-
leagues we do not cite because of length restrictions.

2  Rotavirus Cell Entry

Among our principal contributions to the field of rotavirus is the characterization of 
the early events of virus–cell infection. Our research group has described the exis-
tence of at least four distinct interactions between the virus and host cell-surface 
molecules that mediate the attachment of the virus particle to the cell membrane and 
its subsequent entry into the cell. We have identified cell receptors and co-receptors, 

Fig. 2.1 Rotavirus replicative cycle. The virus replication cycle starts with the binding of the virus 
to the cell surface A and its internalization by endocytosis  B. Inside the cell, the outer protein layer 
is shed C, and the double-layered particle becomes transcriptionally active D, giving rise to 11 
RNA transcripts that encode 12 viral proteins. E Once a critical mass of viral protein is accumu-
lated, the mRNA transcripts also serve as templates for the synthesis of the genomic double- 
stranded RNA (dsRNA), which occurs in replication intermediate particles within electrodense 
structures called viroplasms that are composed of viral proteins, viral RNA, and some cellular 
proteins F–H. Newly synthesized single- and double-layered particles assemble concurrently with 
genome replication, and I the double-layered particles then bud through a NSP4- and VP7- modified 
endoplasmic reticulum membrane into the lumen of the Rough Endoplasmic Reticulum (RER), 
where the final maturation of the virus particle takes place. J, K, Triple-layered, infectious particles 
exit the cell either by lysis or through a non-lytic process, depending on the cell line
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as well as the viral proteins that interact with these cell-surface molecules. The 
characterization of these interactions allowed us to propose a model for rotavirus 
cell entry based on the concept of multiple virus–cell-surface molecule interactions, 
at least some of which occur in a sequential and well-coordinated manner, from the 
initial contact of the virus with the cell surface to penetration of the virus particle 
into the cell cytoplasm. This model is now the paradigm followed by researchers in 
the field, conceptually different from the “one viral protein–one viral receptor” 
prevalent at that time. Our group has also described that the interactions described 
here induce the endocytosis of the virus particle to initiate an intracellular vesicular 
trafficking that ends with the uncoating of the viral particle in distinct endosomal 
compartments, which, in some cases, involves the participation of the acidic prote-
ases, cathepsins. In this section, we summarize our advances in this area.

2.1  Virus Attachment

The first step in the virus infectious cycle is the attachment of the virus particle to 
the cell surface, which is mediated by VP4 that has essential functions in the early 
interactions of the virus with the cell, including receptor binding and cell penetra-
tion [27, 64, 65, 79, 80, 84, 133]. The properties of this protein are therefore 
important determinants of host range, virulence, and induction of protective 
immunity. To be infectious, the virus depends on the specific trypsin cleavage of 
VP4, of 776 amino acids, to yield polypeptides VP8 (aa 1–231) and VP5 (aa 
248–776), both of which remain associated to the virion [11, 25, 35, 36, 64]. The 
cleavage of VP4 does not affect cell binding, but rather it seems to be required for 
virus entry. The VP8 domain of VP4 mediates the attachment of the virus to the 
cell, whereas VP5 and the surface glycoprotein VP7 interact with downstream 
post-attachment molecules [72].

Rotavirus strains were initially classified as neuraminidase (NA) sensitive or NA 
resistant, depending on their ability to infect cells that had been previously treated 
with NA. Most human rotaviruses are NA resistant, whereas animal rotaviruses can 
be either NA sensitive or NA resistant [24, 53, 72]. Rotaviruses whose infectivity is 
decreased by NA treatment bind to the cell surface through terminal sialic acids 
(SAs), which are susceptible to NA cleavage. On the other hand, some NA-resistant 
viruses bind to internal SAs, which are not cleaved by NA [49], while yet others 
bind to human blood group antigens (HBGAs) [51, 52].

In the case of NA-sensitive rotavirus strains, gangliosides have been associated 
with rotavirus cell attachment for some time [14, 31, 49, 55]. However, knocking 
down the expression of two key enzymes involved in ganglioside synthesis decreased 
ganglioside levels as well as the infectivity of both NA-resistant and NA-sensitive 
rotavirus strains, but did not affect their binding to the cells, suggesting that ganglio-
sides are not essential for cell-surface binding but rather they are needed during a 
later step of the entry process, regardless of the NA sensitivity of the virus [81].
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2.2  Post-attachment Interactions

After the initial attachment to glycans on the cell surface, rotaviruses interact with 
additional surface molecules to gain access into the cell. Among these molecules are 
some integrins (α2β1, αXβ2, αVβ3) and the heat shock cognate protein 70 (hsc70) 
[71, 72, 83, 85, 132, 134, 135]. Whether all these molecules are used by all rotavirus 
strains and whether the interactions of the virus with them are sequential or alterna-
tive is not known; however, in the particular case of the rhesus rotavirus strain 
(RRV), we showed that some of these interactions occur sequentially [71, 72, 83, 
85, 132, 134, 135]. Interestingly, not all rotavirus strains interact with integrins, 
although all the strains tested require hsc70 for efficient cell infection [42, 45, 46].

The interaction of rotavirus with integrin α2β1 is mediated by a DGE motif 
located toward the amino-terminal end of the VP5 domain of VP4 and the domain I 
of the integrin subunit α2 [42, 134]. On the other hand, integrin αVβ3 interacts with 
rotavirus through a linear sequence in VP7 [135]. The interaction between the viral 
particle and hsc70 is mediated by VP5 (amino acids 642 and 659) and the peptide- 
binding domain of hsc70, and it has been suggested that the ATPase domain of 
hsc70 could be involved in promoting conformational changes in the viral particle 
to facilitate virus entry or uncoating [96, 134]. Furthermore, it has been shown that 
gangliosides, as well as integrins α2β1, αVβ3, and hsc70, are associated with 
detergent- resistant membrane microdomains, where infectious viral particles are 
also present during cell entry [54], and we showed that the integrity of these micro-
domains is fundamental for viral infection [44, 46].

Integrins have a polarized distribution in epithelial cells, localizing primarily at 
the basolateral face of the plasma membrane. Therefore, rotaviruses reaching the 
intestinal epithelium would find the integrin receptors hidden beneath the tight junc-
tions (TJs). How might then rotavirus, with putative basolateral ligands, infect 
polarized epithelia? A possible explanation was offered when it was shown that a 
recombinant VP8 protein was able to decrease the trans-epithelial electrical resis-
tance of polarized Madin–Darby canine kidney (MDCK) cells [89]. The ability of 
VP8 to generate a leaky TJ could allow integrins to diffuse to the apical surface, so 
that the virus could bind and infect from the apical side. The ability of virus parti-
cles to disrupt TJs during their early interaction with polarized epithelia, however, 
remains to be shown. Furthermore, we have shown that rotavirus infects polarized 
cells more efficiently through the basolateral face in comparison to the apical sur-
face [22, 100]. In addition, we recently reported that the TJ protein JAM-A is impor-
tant for the entry of some rotavirus strains at a post-attachment step, and we also 
found that occludin and ZO-1 are relevant for virus entry [116, 117].

It is of note that the assays used to block the interaction of rotaviruses with each 
of these proposed receptors and co-receptors using different approaches, such as 
proteases, antibodies, peptides, sugar analogues, or siRNAs, only decrease viral 
infectivity by less than tenfold, suggesting that either a more relevant entry factor 
for rotavirus has yet to be found, the virus can use more than one route of entry, or 
the cellular factors that allow the entry of rotavirus are redundant.
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2.3  Virus Internalization

The cell entry of rotavirus by endocytosis is supported by several experimental 
approaches, including pharmacological inhibitors, overexpression of dominant- 
negative mutant proteins, and knocking down the expression of proteins implicated 
in different endocytic routes. In addition, actinin 4 and the activation of the small 
GTPase RhoA and Cdc42, as well as its activator CDGAP, which are involved in 
different types of endocytic processes, have been implicated in the entry of rotavirus 
[32, 46, 126]. Of interest, all tested rotavirus strains, with the exception of the RRV 
strain, enter cells through clathrin-mediated endocytosis [32, 46], whereas RRV 
uses an atypical endocytic pathway that is clathrin- and caveolin independent but 
depends on dynamin 2 and on the presence of cholesterol [107, 111]. The require-
ment for cholesterol and dynamin is also shared by those rotaviruses that are inter-
nalized by clathrin-dependent endocytosis [46], although contradictory results were 
recently reported in MDCK cells [126].

It is interesting to note that the interactions of the virus with the putative receptor 
and co-receptor molecules characterized so far do not seem to determine the endo-
cytic pathway used, because both NA-resistant and NA-sensitive strains, as well as 
rotaviruses that interact with HBGAs, can enter cells using a clathrin-dependent 
mechanism [32]. In addition, using reassortant viruses, our group recently reported 
that the outer layer protein VP4 determines the endocytic pathway used, and a single 
amino acid substitution in the VP8 domain of RRV can change its entry pathway 
from a clathrin-independent to a clathrin-dependent mechanism [32]. We also 
showed that the infectivity of rotavirus is enhanced by calcium and that internaliza-
tion of the virus induces an early permeabilization of cells [28, 92].

2.4  Intracellular Vesicular Traffic and the ESCRT Machinery

After internalization, rotavirus travels along the intracellular vesicular traffic mov-
ing from the cell periphery to the perinuclear space. During this traffic, the virus is 
transported by endocytic primary vesicles to early endosomes (EEs), then to matur-
ing endosomes (MEs) that contain intraluminal vesicles (ILVs), and finally to late 
endosomes (LEs) [33, 111] (Fig. 2.2). The formation of the characteristic ILVs pres-
ent in the ME is generated by the endosomal sorting complex required for transport 
(ESCRT) machinery [128]. Independent of the nature of the cell-surface receptor 
and the endocytic pathway used for cell internalization [32, 33, 46, 107, 111], all 
rotavirus strains tested converge in EEs during entry [32, 33, 46, 127] and depend 
on a functional ESCRT machinery, as knocking down the expression of components 
of the ESCRT complex by RNAi reduces virus infectivity [13, 111]. Why the entry 
of rotaviruses depends on the ESCRT machinery and what is the role of ILVs in this 
process has not been elucidated (discussed in [111]).
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Fig. 2.2 Working model for rotavirus (RV) cell entry pathway in MA104 cells. A RVs attach to 
the cell surface through different glycans, depending on the virus strain. After initial binding, the 
virus interacts with several co-receptors concentrated at lipid rafts. B RVs are internalized into 
cells by clathrin-dependent or clathrin-independent endocytic pathways, depending on the virus 
strain. C Regardless of the endocytic pathway used, all RV strains reach early endosomes (EEs) in 
a process that depends on RAB5 and EEA1 and probably on HRS and the v-ATPase. D At the EE, 
the virus probably begins to be internalized into the endosomal lumen through the action of 
VPS4A. E EEs progress to mature endosomes (MEs), with a progressive decrease in pH and 
intraendosomal calcium concentration through the function of the v-ATPase; during this process, 
the formation of intraluminal vesicles (ILVs) increases. F E-P rotaviruses RRV and SA11-4S reach 
the cytoplasm from MEs. G GTPase Rab7 participates in the formation of late endosome (LE) 
compartments; ILVs increase in number. H The stability and function of LEs depend on the arrival 
of cellular factors (e.g., cathepsins) from the trans-Golgi network, traffic that is mediated by 
mannose-6- phosphate receptors (M6PRs) and the GTPase Rab9, among other factors. I L-P RV 
strains reach late endosomes; RV nar3 exit from LEs requires the function of Rab9. J RV strains 
UK, Wa, WI61, DS-1, and YM require, in addition to Rab9, the function of the CD-M6PR and the 
activity of cathepsins to productively infect cells. F, I, J The cytosolic double-layered particles 
begin transcribing the RV genome to continue the replication cycle of the virus
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How far rotaviruses go into the different vesicular compartments depends on the 
virus strain. For rotaviruses RRV and SA11, the intracellular traffic comes to an end 
at MEs, and, based on this observation, these strains have been considered as early- 
penetrating viruses (Fig. 2.2). In contrast, all other rotavirus strains tested depend on 
the expression of Rab7 [33, 111], suggesting that these viruses continue their travel 
through the endosomal network to reach LEs [33]. In this regard, Rab7-dependent 
rotaviruses behave as late-penetrating viruses. Whether the virus travel to EE or 
reach LE is also determined by the spike protein VP4 [33].

2.5  M6PR and Cathepsins

The small GTPase Rab9 is a key component of LEs and orchestrates the transport 
of mannose-6-phosphate receptors (M6PRs) from LEs to the trans-Golgi network. 
Rotavirus strains that reach LEs depend on a functional Rab9 to infect the cell, and 
most of them also require the activity of the cation-dependent (CD) M6PR. Lysosomal 
acid hydrolases, such as cathepsins, are delivered from the trans-Golgi network to 
endosomes by M6PRs, and the recycling of these receptors to the Golgi depends on 
Rab9 [18]. We recently showed that the infectivity of rotavirus strains whose infec-
tivity depends on Rab9 and CDM6PR is inhibited by pharmacological inhibitors of 
cathepsins B and L or when the expression of cathepsins B, L, or S is knocked down 
by RNAi [33], suggesting that these rotavirus strains require the activity of these 
hydrolases for cell entry (Fig. 2.2).

3  Structural and Functional Characterization of Viral Genes 
and Cellular Proteins Required for Rotavirus Genome 
Replication and Virus Morphogenesis

Our group was involved from the dawn of rotavirus research in the characteriza-
tion of the proteins coded by each of the 11 segments of the viral genome [5, 6] 
and in determining the primary structure of the genes and their encoded protein 
products [2, 7, 64–69, 104]. This involvement allowed us to identify structural 
domains and predict potential antigenic and functional regions of the viral poly-
peptides [2, 7–10, 29, 38, 63–65, 67, 68, 70, 90]; however, the characterization of 
the role of the different proteins in the rotavirus life cycle was more difficult as it 
was limited by the technological tools available in the late 1990s. At the begin-
ning of the past decade, a breakthrough for the analysis of gene function of mam-
malian cells occurred with the adaptation of the RNA interference (RNAi) system 
to efficiently and specifically knock down the expression of cellular genes [34]. In 
2002, we reported that it was possible to inhibit the expression of rotaviral genes 
using this system: this represented one of the first reports in virology and the first 
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in the rotavirus field that demonstrated the feasibility of inhibiting the expression 
of animal virus genes by RNAi [12, 30]. Using this technology, we knocked down 
the expression of all rotavirus genes and characterized the function of the encoded 
proteins during different stages of the life cycle of the virus, including the replica-
tion of the viral genome [16, 76], the formation of viroplasms [75, 76], the assem-
bly of double-layered RI particles [16, 75, 76], and the morphogenesis of mature, 
infectious viruses [30, 75, 82]. We also characterized the role of viral proteins in 
the control of the unfolded protein response [119], the mechanism of inhibition of 
cellular protein synthesis [87, 102, 103, 108], and the control of formation of 
stress granules [87]. Others have used this technology to prove the role of NSP4 in 
altering the Ca2+ homeostasis in rotavirus- infected cells [130]. Some of these con-
tributions are briefly described following and in the next section.

Regarding the replication of the viral genome, it has been proposed that the syn-
thesis of the negative strand of each genome segment occurs in viroplasms, concur-
rently with packaging of the positive-stranded RNAs (equivalent to the mRNAs) 
into core RI particles [93]. The analysis of the kinetics of transcription and replica-
tion of the viral genome throughout the replication cycle of the virus allowed us to 
provide evidence for the existence of a second round of transcription originated 
from newly assembled, transcriptionally active, double-layered RI particles, result-
ing in a second wave of assembly of DLPs [16]. In agreement with earlier studies in 
rotavirus genome transcription and replication by Eugenio Spencer and colleagues 
[94], this analysis also showed that all the proteins that form the DLPs (VP1, VP2, 
VP3, VP6) are essential for replication of the dsRNA genome, because in their 
absence there was little synthesis of viral mRNA and dsRNA [16]. In a parallel 
study, we also showed that the efficient replication of the viral genome depends on 
the ubiquitin-proteasome system (see following).

Once DLPs assemble in viroplasms, they mature by budding into the adjacent 
ER membrane, which is modified by the viral glycoproteins VP7 and NSP4. During 
this process, mediated by the interaction of DLPs with NSP4, the particles acquire 
a transient membrane envelope that contains VP4, NSP4, and VP7, which is later 
removed to yield the mature TLPs [37]. The mechanism of removal of the transient 
lipid envelope is largely unknown, although we demonstrated that VP4 is not 
involved and VP7 is important for this step [30], suggesting that rather than the 
membrane-piercing activity of VP4, as had been previously suggested, the assembly 
of the VP7 trimers into DLPs is responsible to exclude the lipid membrane from the 
viral particles. We also showed that the correct assembly of mature, infectious rota-
virus particles is influenced by the two folding systems involved in the ER quality 
control. Grp78, protein disulfide isomerase (PDI), calnexin, and calreticulin were 
found to promote the timely trimming of the carbohydrate chains of VP7 and NSP4, 
the correct formation of VP7 disulfide bonds, and the incorporation of properly 
folded VP7 into TLPs to yield infectious virus, indicating that these chaperones are 
involved in the quality control of rotavirus morphogenesis [82]. On the other hand, 
Grp94 and Erp57 do not seem to be required for rotavirus morphogenesis [82]. PDI 
has also been suggested to be involved in rotavirus cell entry [20].
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To better understand the replication of the viral RNA and virus morphogenesis, 
we have also analyzed the composition, dynamics, and gene function requirements 
for viroplasm formation, underscoring the highly organized nature and complex 
regulation of this structure [21, 40, 41, 75–77, 118]. We are currently studying the 
highly organized nature of viroplasms by super-resolution confocal microscopy.

The approach of knocking down the expression of one-by-one cellular proteins 
to search for those relevant for virus replication was not practical, but the scenario 
changed when the RNAi system became amenable for genome-wide screening of 
cellular functions. Using this system, we identified more than 500 cellular genes 
involved in rotavirus replication [78, 111]. These genes clustered functionally into 
several biological processes potentially involved in various steps of the rotavirus life 
cycle. Among these functional clusters were endocytic processes, the tight junction 
protein network, and the ubiquitin-proteasome protein degradation system.

The endocytic process of the virus and the role of tight junction proteins in virus 
infection were described in the previous section. With regard to the proteasome- 
ubiquitin components, in silico proteomics showed a strong cluster of positive hits 
in our data set that included E3 ligases regulated by deubiquitinase PAN2, heat 
shock proteins, and components of the 26S proteasome subunits [111]. These find-
ings were supported by our demonstration, and that of a different group, of the 
requirement of the proteasome-ubiquitin pathway for rotavirus replication [26, 77]. 
We showed that both the proteolytic and ubiquitination activities of the ubiquitin- 
proteasome system were needed for the correct incorporation into viroplasms of the 
viral polymerase VP1 and the capsid proteins VP2 and VP6, as well as for the effi-
cient replication of the viral genome [77], suggesting that this system has a very 
complex interaction with the rotavirus life cycle.

4  Rotavirus Strategies to Control the Antiviral Response 
of the Host Cell

Stress and innate immune cell responses are closely linked and overlap at many 
levels. The outcomes of these responses serve to reprogram host expression patterns 
to prevent viral invasions. In turn, viruses fight back against these responses to 
ensure their replication through various mechanisms, depending on the virus. 
Interestingly, the first step to control the antiviral response of the cell, and a solution 
seen in several virus families, is to take over the translation machinery of the host, 
such that the translation of viral proteins is ensured while the expression of the 
stress and antiviral responses of the cell is blocked. In addition, immediately upon 
infection, the cellular RNA decay pathways and the innate immune responses are 
triggered. To guarantee their successful replication, viruses have evolved different 
tools to subvert these pathways. Our group has been interested in characterizing the 
interactions between rotavirus and its host cell to understand the mechanisms by 
which this virus is able to establish a productive infection based on controlling the 
antiviral response of the cell [73, 74] (Fig. 2.3).
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4.1  Protein Synthesis in Rotavirus-Infected Cells

As obligate intracellular parasites, viruses depend on the cell translation machinery 
for the production of their proteins. Although every step of the translation process is 
amenable to regulation, in general, mRNA translation is regulated mainly at the 
level of initiation [113], a process mediated by the eukaryotic initiation factors 
(eIFs). The main checkpoints for the control of polypeptide chain initiation are the 
formation of the eIF4F complex and the activity of eIF2, both of which are targets 
of control by viruses (reviewed in [124]). In eukaryotic cells, mRNA translation 
initiation begins with the recruitment of mRNAs by the eIF4F complex and the 
subsequent assembly of the 40S and 60S ribosomal subunits. The eIF4F complex is 
formed by several canonical eIFs; the cap-binding protein eIF4E recognizes the cap 
structure present at the 5′-end of mRNAs; eIF4A is an ATP-dependent RNA heli-
case that unfolds secondary structures of mRNAs and eIF4G, which functions as a 

Fig. 2.3 Rotavirus measures to counteract the host response. A During the infection, NSP1 inter-
acts with and causes the proteasome-dependent degradation of IRF3, IRF5, IRF7, and beta-TrCP, 
and also prevents the activation and translocation of ISGF3 in a proteasome-independent manner. 
B In the presence of dsRNA, 2′-5′-oligoadenylate synthetase (OAS) oligomerizes and synthesizes 
2′-5′-oligoadenylates (2-5A), which in turn interact with RNase L, causing its dimerization and 
activation. The phosphodiesterase activity of VP3 degrades the 2-5As, preventing RNase L activa-
tion. C NSP3 interacts specifically with eIF4G, displacing poly(A)-binding protein (PABP) and 
preventing the translation of poly(A)-containing mRNAs. Also in the infection, PABP and poly(A)-
containing mRNAs accumulate in the cell nucleus. 2-5A 2′-5′-Oligoadenylate, IRF interferon 
regulatory factor, ISRE interferon-stimulated response element, OAS 2′-5′-oligoadenylate synthe-
tase, dsRNA double-stranded RNA
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scaffolding protein where several eIFs bind; and eIF4F complex favors the interac-
tion of the mRNA with the 40S ribosomal subunit [56]. Once the 40S ribosomal 
subunit is bound to the mRNA, it is scanned in the 5′–3′ direction, until the first 
AUG codon is found, and it is selected for translation initiation [50]. A ternary com-
plex composed of eIF2-GTP-Met-tRNA charges the initiator Met-tRNA to begin 
translation, and the 60S ribosomal subunit is then joined to form an 80S initiation 
complex. The released binary complex formed by GDP-eIF2 is recycled by eIF2B, 
which exchanges GDP for GTP, and a new tRNA-Met is loaded to form a ternary 
complex, ensuing new rounds of initiation [50, 56].

Early in the infection, rotaviruses take over the host translation machinery, caus-
ing a severe shutoff of cell protein synthesis, whereas the synthesis of viral proteins 
proceeds very robustly. At least three different mechanisms have been found to be 
involved in the control of the host protein synthesis machinery (Fig. 2.3).

 (i) The poly(A)-binding protein (PABP) is displaced from its binding site in eIF4G. 
In general, all eukaryotic mRNAs contain a poly(A) tail at their 5′-end, which 
is recognized by PABP, which in turn binds to eIF4G, favoring the circulariza-
tion of the mRNAs that are also bound to eIF4G through the cap-binding pro-
tein. Rotavirus mRNAs contain 5′-methylated cap structures, and, instead of 
the poly(A) tails characteristic of most cellular mRNAs, they have at their 
3′-end a consensus sequence (GACC) that is conserved in all 11 viral genes [95, 
98]. The nonstructural protein NSP3 binds through its amino-terminal domain 
to this consensus sequence, and it also binds through its carboxy-terminal 
domain to eIF4G, at the same site where PABP binds. Thus, it was proposed 
that during infection, NSP3 evicts PABP from eIF4GI, impairing the translation 
of cellular mRNAs while leading to an enhanced translation of rotaviral mRNAs 
[97, 98]. However, despite the essential role proposed for NSP3  in infected 
cells, we found that silencing the expression of this protein by RNAi indeed 
blocks the translation of cellular mRNAs but the viral mRNAs were still effi-
ciently translated. We also found that the knockdown of NSP3 results in an 
increased production of viral progeny [86]. These findings were questioned 
with the argument that even small undetected amounts of NSP3 could be able 
to initiate the synthesis of viral proteins, at a time in the infection where there 
is little viral mRNA to compete with the cellular mRNAs [43]. Differences in 
the viral strains used and on the cell lines or experimental paradigms used may 
also account for these discrepancies.

 (ii) PABP is accumulated in the nucleus of the cell, and there is a block in the 
nucleocytoplasmic transport of polyadenylated cellular mRNAs. Interestingly, 
we and others have recently found that NSP3 has an additional mechanism to 
prevent the translation of cellular mRNAs: PABP is a protein that assists the 
transport of mRNAs from the nucleus to the cytoplasm, where they are avail-
able to the translation machinery; during rotavirus infection, PABP becomes 
accumulated in the nucleus of infected cells [15, 47, 87, 103], and it was shown 
that the eIF4G-binding domain of NSP3 is important for the nuclear localiza-
tion of PABP [47, 87], although the precise mechanism through which this 
occurs has not yet been determined [103].
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Furthermore, we found that the accumulation of PABP in the nucleus of rotavirus- 
infected cells also resulted in the accumulation and hyper-polyadenylation of 
poly(A)-containing mRNAs [97], suggesting that the shutoff of cell protein synthe-
sis during the infection might be caused by a blocking of the nucleocytoplasmic 
transport of polyadenylated mRNAs [103].

 (iii) Phosphorylation of the translation initiation factor eIF2. In rotavirus-infected 
cells, the inhibition of cell protein synthesis is also regulated by a third mech-
anism because the alpha-subunit of eIF2 becomes phosphorylated early in the 
infection and it is maintained in this state throughout the virus replication 
cycle [87]. When eIF2α is phosphorylated, the eIF2-GDP complex binds with 
higher affinity to eIF2B, preventing the exchange of GDP to GTP catalyzed 
by eIF2B, which reduces the formation of pre-initiation translation complexes 
and causes a severe reduction in global translation [56]. The phosphorylated 
status of eIF2α is beneficial for the virus, because under these conditions the 
viral mRNAs are efficiently translated but the synthesis of most cellular pro-
teins is prevented. We and others have found that the dsRNA-dependent pro-
tein kinase, PKR, is the enzyme responsible for the phosphorylation of this 
translation initiation factor in rotavirus-infected MA104 [102] and intestinal 
epithelial cells [122].

The precise mechanism involved in viral protein synthesis has not been identi-
fied. However, we have found that during the infection, the amount of viral tran-
scripts produced is in the range of tens of thousands of molecules per cell [103]. The 
huge number of viral mRNAs in a cell where the translation of poly(A)-containing 
mRNAs is inhibited by at least three different mechanisms [eIF2α, poly(A)-contain-
ing mRNAs sequestered in the nucleus, and eviction of PABP from eIF4G] leaves 
the translation of viral mRNAs with little competition for the protein synthesis 
machinery and explains the severe shutoff host translation caused by rotaviruses.

4.2  Stress Response of the Cell

Two of the most common stress responses of the cell are the formation of stress 
granules [3] and an integrated stress response known as the unfolded protein 
response [129]. These responses have been characterized in rotavirus-infected cells 
(Fig. 2.3).

 (i) Stress granules (SGs) are cytoplasmic aggregates of stalled translational pre- 
initiation complexes that accumulate during stress [59]. In addition to its direct 
effect on protein synthesis, the phosphorylation of eIF2α is one of the signals that 
induces the formation of SGs. It has been proposed that SGs are sites in which 
the integrity and composition of mRNAs are triaged and then mRNAs are sent 
either to translation, degradation, or storage (reviewed in [91]). Because the main 
function of SGs is to arrest protein synthesis until the stressful conditions are 
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resolved, viruses have to interact with these structures to ensure the translation of 
their mRNAs, and several different viral strategies have been developed to cope 
with their deleterious effect (reviewed in [125]).

Interestingly, we have found that even though eIF2α is phosphorylated in 
rotavirus- infected cells, SGs are not formed [87]. Furthermore, we found that rota-
viruses prevent the formation of SGs, because these structures are not formed in 
cells infected with rotavirus when induced to form SGs by treatment with arsenite, 
a well-characterized SG inducer. The mechanism by which the formation of these 
structures is prevented during the infection has not been determined.

 (ii) Unfolded protein response (UPR). The accumulation of misfolded proteins in 
the ER causes stress and leads to activation of a coordinated adaptive program 
called UPR (reviewed in [48, 57, 129]). The function of the UPR is to handle 
unfolded proteins by upregulating the expression of chaperone proteins and 
degradation factors to refold or eliminate misfolded proteins and to reduce the 
incoming protein traffic into the ER by attenuation of translation [106] 
(Fig. 2.4). Failure to alleviate ER stress leads to activation of apoptotic path-
ways and cell death [58]. Rotavirus infection induces the UPR; however, this 
response is modulated by the virus [119, 131]. At least two of the three arms of 
the UPR appear to be activated in rotavirus-infected cells; the mRNA of Xbp1 
was spliced by IRE1, and the transcription of GRP78 and CHOP is induced, 
indicating that the ATF6 pathway was activated. The UPR, however, is sup-
pressed at the translational level by NSP3 [119]. The consequences of suppress-
ing this response during rotavirus infection have not been addressed.

4.3  Antiviral Response of the Cell

Double-Stranded RNA Double-stranded RNA (dsRNA) is considered a key 
 mediator of interferon (IFN) induction in response to virus infection. When the cell 
sensors detect dsRNA, a cascade of events is activated that promote the shutoff of 
cell protein synthesis, the induction of transcription of genes encoding IFN and 
other cytokines, and finally cell death [101]. Several findings indicate that rotaviral 
dsRNA is exposed to cell sensors at some point during virus replication: (a) the 
kinase that phosphorylates eIF2α in rotavirus-infected cells is PKR, which is acti-
vated by dsRNA [25]; (b) RIG-I and MDA5 are active and mediate the IFN response 
in rotavirus-infected cells [19, 110]; and (c) viral dsRNA can be detected in the 
cytoplasm (outside viroplasms) of rotavirus-infected cells [102]. These observations 
suggest that during rotavirus infection, either naked viral dsRNA, or highly struc-
tured viral mRNA [62], or both are present in the cytoplasm where they are detected 
by RIG-I and MDA5 with the consequent activation of the IFN response and the 
PKR activity that leads to the phosphorylation of eIF2α and the modification of 
the cellular translation machinery. Another pathway that is activated by dsRNA is 
the 2′–5′-oligoadenylate synthetase (OAS)/RNase L pathway. OAS is activated by 
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Fig. 2.4 The unfolded protein response. Accumulation of misfolded proteins in the endoplasmic 
reticulum (ER) causes stress and leads to activation of a coordinated adaptive program called the 
unfolded protein response (UPR). Three ER-resident transmembrane proteins are activated in 
response to ER stress: the PKR-like ER kinase (PERK), the activating transcription factor 6 
(ATF6), and the inositol-requiring enzyme 1 (IRE1). Under normal conditions, the ER chaperone 
GRP78 is bound to the luminal domain of each sensor. When misfolded proteins accumulate in the 
ER, GRP78 binds these proteins and releases the sensors. Upon release, PERK and IRE1 homodi-
merize, causing autophosphorylation and activation, and released ATF6 relocalizes to the Golgi 
apparatus where it is cleaved and activated. Once activated, PERK phosphorylates the alpha- 
subunit of IF2 at Ser51. Phosphorylated eIF2a inhibits global translation and stimulates the transla-
tion of ATF4, which in turn transcriptionally activates UPR-responsive genes encoding proteins 
that ameliorate the ER stress. The gene encoding the CCAT/enhancer-binding protein (CHOP) is 
a target of ATF4, and this protein can function as a proapoptotic or prosurvival transcription factor, 
depending on the strength or duration of the stress. Both transcription factors, ATF4 and CHOP, 
can induce the transcription of the GADD34 gene, encoding a protein that interacts with protein 
phosphatase 1 (PP1) to dephosphorylate eIF2a, resulting in a negative feedback loop that recovers 
protein synthesis and allows the translation of stress-induced transcripts. When ATF6 is cleaved in 
the Golgi apparatus, one of its cleavage products becomes an active transcription factor that pro-
motes the transcription of chaperone genes. Finally, upon dimerization of IRE1, it autophosphory-
lates and mediates the removal of an intron from X-box-binding protein 1 (XBP1) mRNA. The 
spliced form of XBP1 encodes a transcription factor that activates the transcription of genes encod-
ing chaperones and proteins involved in the ER stress-associated protein degradation (ERAD) 
system. (Figure reproduced from Current Opinion in Virology 2012;2:1–10, with permission)
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dsRNA to produce 2′–5′-oligoadenylates, which are the activators of RNase L; this 
enzyme degrades viral and cellular RNAs restricting viral infection [112]. We 
recently demonstrated that after rotavirus infection the OAS/RNase L complex 
becomes activated; however, the virus is able to control its activity using at least two 
distinct mechanisms: a virus–cell interaction that occurs during or previous to rota-
virus endocytosis triggers a signal that prevents the early activation of RNase L, 
whereas later, once viral proteins are synthesized, the phosphoesterase activity of 
VP3 degrades the cellular 2′–5′-oligoadenylates, which are potent activators of 
RNase L, preventing its activation [108].

5  Rotavirus Pathogenesis and Adaptive Immunity

Rotavirus pathogenesis and immunity have not been areas of direct study by our 
group, but relevant work in the area regarding virus–cell interactions and the 
humoral and cellular immune response to natural infection or vaccination is briefly 
reviewed in this section.

Ionic calcium (Ca2+) is a crucial second messenger that controls many intracel-
lular processes in mammalian cells. Thus, intracellular [Ca2+] is finely regulated by 
a number of proteins that maintain Ca2+ intracellular homeostasis in different com-
partments to regulate spatiotemporal Ca2+ signaling. Pioneering work done in 
Venezuela demonstrated that rotavirus infection causes significant changes in the 
homeostasis of Ca2+ of the infected cell. These changes bring alterations in the cell 
cytoskeleton that may be related to pathogenesis but also help to create favorable 
intracellular conditions for virus maturation [105]. In addition, work from Venezuela 
also helped to firmly establish NSP4 as a key function in the Ca2+ alterations 
observed in infected cells.

Understanding the adaptive immune response to rotavirus infection is necessary 
if efficient preventive measurements are to be developed. Work carried out in 
Mexico and Colombia has helped greatly in understanding rotavirus immunity. A 
pioneering work by the Mexican Institute of Nutrition, where a cohort of more than 
200 rotavirus-infected children was followed from birth to 2 years of age, answered 
several of the key questions necessary to launch the development of an effective 
rotavirus vaccine: a primordial finding of that study was that a rotavirus infection, 
either symptomatic or asymptomatic, would protect against subsequent infections 
[120]. Also, work from Mexico has helped in the identification of T-cell epitopes on 
the main rotavirus structural protein VP6 and its use as a potential recombinant 
 vaccine for veterinary use [61]. Finally, work developed in Colombia has helped in 
the understanding of the B- and T-cell response to rotavirus infection and in the 
identification of correlates of protection for rotavirus vaccines [4].
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6  Future Challenges

The rhythm of research on fundamental aspects of rotavirus biology has slowed 
down in the past decade, probably because of the successful incorporation of two 
rotavirus vaccines in national immunization programs for children around the 
world. However, it is important to keep in mind that, so far, the impact of vaccine 
use on global estimates of rotavirus mortality has been limited [115], and in some 
regions of the world rotavirus infections still place an enormous burden on societies 
from both health and economic perspectives. There is need for a renovated effort to 
better understand the life cycle of rotavirus and to improve our knowledge about its 
epidemiology, evolution, ecology, and pathogenesis, as well as the immune response 
it elicits, all of which should facilitate the development of improved vaccines and 
therapeutic approaches.

Our knowledge about virus biology has advanced greatly during the past years; 
however, most stages of virus replication are incompletely understood, such as rota-
virus entry and vesicular traffic, translation of the viral polypeptides, replication of 
the virus genome, morphogenesis of the newly assembled viral particles, and the 
egress of the mature, infectious virus from cells. Most of what we know has been 
learned from studies using nonpolarized MA104 cells or differentiated cultures of 
intestinal cell lines, such as Caco-2. However, to better understand virus–cell inter-
actions in detail, it is important to incorporate methodological advances that make 
possible the analysis of the host cell response at a single-cell level instead of char-
acterizing the response of pooled and usually heterogeneous cell cultures.

Furthermore, it is of utmost importance to study the virus replication cycle and 
the virus–host interactions in the cells that the virus targets in a natural infection. 
Animal models have been very useful to characterize virus restriction factors that 
participate in defining host range, and virus pathogenesis, as well as the innate and 
acquired immune responses induced by rotavirus infection. However, these models 
represent a complicated system to characterize the different steps of virus replica-
tion. In this regard, the recent development of enteroids from human intestinal ori-
gin, which have been reported to mimic the complex cellular lineages and tissue 
architecture of the gut and to efficiently support the replication of rotavirus [109], 
represents an appealing alternative for these studies. This system, together with the 
possibility of using the CRISPR/Cas9 technology in these cells and the possibility 
of characterizing the interactions of the virus with the cell-surface cellular recep-
tors/co-receptors by live cell imaging systems, and the use of novel super-resolution 
microscopy techniques, are important tools for advances in this field.
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Chapter 3
Calicivirus Biology

Ana Lorena Gutierrez-Escolano

1  Introduction

Caliciviruses are a diverse family constituted of ubiquitous viruses that infect a 
variety of animals as well as humans. Five genera are classified within the 
Caliciviridae family—Lagovirus, Nebovirus, Norovirus, Sapovirus, and Vesivirus—
with two additional proposed genera, Recovirus and Valovirus [19, 36]; only noro-
viruses, sapoviruses, and recovirus [61] have been shown to infect humans [62].

Human noroviruses (HuNoV) can cause acute gastroenteritis in all age groups 
and represent an important public health problem worldwide; they are considered 
the leading cause of foodborne gastroenteritis outbreaks [52]. It is estimated that 
HuNoV are responsible for approximately 23 million total illnesses with a disease 
burden of 2 billion dollars in the United States alone each year and 200,000 annual 
deaths of children under the age of 5 years in developing countries [49]. Although 
the exact burden associated with calicivirus outbreaks in Latin America is hard to 
estimate, outbreaks in the region associated with health services, closed communi-
ties, restaurants, or social events have been well documented. In addition, calicivi-
ruses are a common cause of sporadic acute diarrhea in the region [43]. Finally, 
following the introduction of rotavirus vaccines, HuNoV have become the predomi-
nant gastrointestinal pathogen within pediatric populations in both developed and 
developing countries including Latin America [50]. In this chapter, research in noro-
virus and other calicivirus biology and vaccine development carried out in the 
region is covered. Epidemiological aspects are not covered because two excellent 
reviews on the subject recently appeared [16, 47].
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2  Calicivirus Genomic Organization

Members of the Caliciviridae family are non-enveloped icosahedral particles that 
are 27–40 nm in diameter. The genome consists of a linear, positive-sense, single- 
stranded RNA approximately 7.4–8.3 kb in length that is covalently linked to a 
viral-encoded protein (VPg) at the 5′-end [21, 27] and has a polyadenylated tail at 
the 3′-end. These viruses also produce a subgenomic (sg) RNA during infection that 
is identical to the 3′-end region of the genome.

The genome contains between two and as many as four open reading frames 
(ORFs), depending on the genus [6, 13, 23, 63]; the ORF1, located at the 5′-end, 
encodes for a large polyprotein that is processed by the only viral protease (NS6 or 
NS6/7) to produce the nonstructural (NS) proteins. Noroviruses and vesiviruses 
exhibit two additional ORFs, ORF2 and ORF3, that encode for the major (VP1) and 
minor (VP2) capsid proteins, respectively, although an additional fourth ORF, 
encoding for the virulence factor 1 (VF1), has been found in MNV [44]. On the 
other hand, sapoviruses, lagoviruses, and neboviruses contain a genome that is orga-
nized in two ORFs: ORF1 encodes for the NS proteins as well as VP1, and ORF2 
encodes VP2 [48]. In all cases, ORF1 encodes for a polyprotein, from which the NS 
proteins are processed, and both structural proteins as well as VF1 are translated 
from the subgenomic RNA.

Most of these NS proteins have been implicated in the replication complex for-
mation. NS3 is an NTPase; NS5 is the viral protein associated with the genome or 
VPg, which is involved in the initiation of translation [12, 17, 18, 22] and genome 
replication [21, 56]; NS6 or NS6/7, which is the only protease described, is respon-
sible for the autocatalytic processing of the ORF1 polyprotein [63]; and N6/7 or 
NS7 is an RNA-dependent RNA polymerase (RdRP) that synthesizes the plus- and 
minus-strand viral RNAs [46]. Based on the mature form of the NS7 protein, calici-
viruses can be separated into two distinctive groups: (1) the NS6/7 precursor syn-
thesized in cells infected with lagoviruses and noroviruses that suffers further 
cleavage to produce the fully processed NS6 and NS7 proteins [66] and (2) the 
NS6/7 precursor synthesized in vesivirus-infected cells, representing a mature and 
stable bifunctional enzyme that does not undergo additional processing during 
infection [65].

The major and minor structural proteins that constitute the virus capsid VP1 and 
VP2 are translated from the subgenomic RNA. The viral capsid is formed by 180 
copies of VP1, which spontaneously self-assemble [32]; even though VP2 is dis-
pensable for the self-assembly of empty viral capsids [37, 38], it participates in 
capsid stability [7, 64].

The additional fourth ORF from the MNV subgenomic RNA, overlapping the 
VP1 coding region, encodes for the VF1, implicated in the regulation of the immune 
response and the development of apoptosis [44, 76]. A similar alternative reading 
frame (ORF3) is found in human sapoviruses; however, the encoded proteins are yet 
of unknown function [11].
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3  Calicivirus Replicative Cycle

The calicivirus replicative cycle initiates with the interaction of the viral particles to 
the surface of permissive cells. The members of the Caliciviridae family recognize 
cell-surface carbohydrate ligands, glycolipids, and proteins for attachment and 
entry, including histo-blood group antigens (HBGA) for the HuNoVs [41, 73].

The calicivirus genome translation occurs when the viral RNA has been released 
into the cytoplasm of the infected cell. In contrast with the majority of positive- 
sense, single-stranded RNA animal viruses, calicivirus translation depends on the 
viral protein VPg, which is linked to the 5′-end of the genomic RNA. VPg interacts 
with some canonical initiation factors (eIFs), such as eIF3, eIF4G, eIF4A, and 
eIF4E, allowing the recruitment of the pre-initiation complex [12, 21, 22].

The translation of genomic RNA gives rise to a polyprotein that is co- and post- 
translationally cleaved by the viral protease to produce the NS proteins, which are 
essential for virus replication. During a calicivirus infection, the NS proteins can be 
located in the endoplasmic reticulum (ER), as during feline calcivirus (FCV) infec-
tion [4], or associated with components of the Golgi apparatus, as seen when HuNoV 
NS proteins are expressed in cells. During MNV infection, the NS proteins were 
observed to co-localize with the double-stranded RNA in virus-induced vesicle clus-
ters formed in the cytoplasm of infected cells originating from membranes derived 
from the secretory pathway [30]. Therefore, NS proteins are important in the induc-
tion of intracellular membrane rearrangements that lead to the replication complex 
formation, where the new genomic and subgenomic RNAs are produced. In these 
membrane complexes, the subgenomic RNAs, which are also covalently linked to 
the VPg protein, are also translated to produce the structural proteins VP1 and VP2.

The genomic RNA interacts with the viral replicase NS7 at its 3′-end to generate 
the negative RNA molecules that form a double-stranded RNA intermediate via a de 
novo mechanism. The structural proteins NS1/2, VP1, and VP2 can regulate the 
NS7 replicase activity; particularly, the VP1 produced early during infection pro-
motes the negative-strand RNA synthesis [33, 69]. The negative-stranded RNA also 
interacts with NS7 at its 3′-end, generating multiple copies of the genomic RNAs 
via a VPg-primed RNA synthesis at the 3′-end [56], whereas subgenomic RNA is 
produced by priming at a stem-loop element located near the start site of the subge-
nomic RNA [81].

Finally, once the subgenomic RNAs are translated to produce VP1 and VP2, 180 
copies of VP1 arranged in 90 homodimers form the viral capsid, which is assembled 
together with the genomic RNA to generate the infectious viral particles by an 
unknown mechanism. The release of the viral particles from infected cells occurs 
via a lytic mechanism that involves induction of intrinsic apoptosis, upregulation of 
caspases [8, 45, 55, 67], and survivin degradation [8, 29]. In this regard, we observed 
that heat shock treatment of infected cells resulted in delayed cytopathic effect and 
reduced virus yield, related to the inhibition on caspase 3 and the control of  apoptosis 
[3]. In the presence of caspase inhibitors, MNV infection proceeds via a distinct 
pathway of rapid cellular necrosis and reduced viral production [20].
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4  Virus–Cell Interactions

As in all virus infections, calicivirus protein austerity requires the participation of 
cellular factors during its replicative cycle. In addition to the eIFs associated with 
VPg protein, numerous proteinaceous host factors that interact with the genomic 
RNAs from the HuNoV, FCV, and MNV terminal ends have been identified [25, 26, 
78]. The roles of a few of these have been described, such as the polypyrimidine 
tract-binding (PTB) protein that binds to the 5′-terminal end of the FCV genomic 
and subgenomic RNAs and inhibits translation as a mechanism to stimulate the 
synthesis of viral RNA via clearance of ribosomes from viral RNA [34]. On the 
other hand, we have demonstrated that nucleolin, a phosphoprotein involved in ribo-
some biogenesis, is a positive regulator of FCV protein synthesis [9, 28]. Efficient 
viral genome replication of caliciviruses is thought to require the circularization of 
the RNA genome that occurs via the interaction of complementary sequences pres-
ent within the 5′- and 3′-ends of NV and MNV genomes that are further stabilized 
by cellular proteins [40, 57]. For the specific case of MNV, the circularization is 
promoted by the interaction of heterogeneous nuclear ribonucleoprotein (hnRNP) 
A1 and the poly(rC)-binding protein 2 (PCBP 2) with both ends of the genome. 
Another component of the ribonucleoprotein complex formed with the MNV 
genome is the molecular chaperone Hsp90, which has been described to have a 
pleiotropic role in the norovirus cell cycle. Both the HuNoV and the MNV capsid 
proteins require Hsp90 activity for their stability; moreover, targeting Hsp90 in vivo 
significantly reduces virus replication [79].

The interactions between different viral components and host cell factors are 
important in most steps of a viral infection. These interactions, which occur through-
out the entire viral life cycle, determine the virus–host range, tissue tropism, and 
viral pathogenesis and drive viral evolution. Therefore, the identification of these 
host cell factors has provided important information about the viral life cycle and 
constitutes targets for the development of control strategies [24]. To this regard, it is 
known that noroviruses bind to histo-blood group antigens (HBGAs; ABH and 
Lewis) that are complex carbohydrate moieties expressed on red blood cells; on 
gastrointestinal, genitourinary, and mucosal epithelial cells; and in biological fluids 
as free oligosaccharides [1, 51]. However, depending on the genotype, they show 
different binding patterns.

5  Importance of Caliciviruses in Animals

Caliciviruses are also important animal viruses affecting both wild and farm or 
domestic animals, showing a broad host range spectrum among marine and terres-
trial vertebrates, including cetaceans, dogs, cattle, pigs, lions, mink, and monkeys. 
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Animal caliciviruses can cause a wide spectrum of diseases and lesions such as 
enteric diseases in calves, pigs, and chicken [80], severe hemorrhagic diseases in 
rabbits and hares, and upper respiratory and vesicular diseases in felines. In the 
region nearly 20% of the fecal samples collected in farm pigs have been found posi-
tive for either porcine norovirus or sapoviruses, with seroprevalences as high as 
80% post weaning [2, 14, 42]. Even though caliciviruses infect a wide range of 
vertebrates, epidemiological evidence for zoonotic transmission is lacking.

6  Transmission

HuNoV are highly resistant in the environment and can be acquired throughout the 
fecal–oral route, by consumption of contaminated food or water, and by person-to- 
person contact. The resistance of the virus in the environment also allows indirect 
contamination by contact with contaminated surfaces or even via vomit-derived 
aerosols [43]. Whether transmission via food of animal origin or by contact with 
diseased animals is possible remains uncertain [5].

7  Clinical and Epidemiological Aspects

Norovirus and sapovirus clinical symptoms are indistinguishable; however, in gen-
eral, the severity of gastroenteritis is milder in sapovirus infections than that for noro-
virus and rotavirus infections [48]. Following HuNoV infection, the principal 
symptoms appear after 1 or 2 days of incubation and include vomiting; watery, non- 
bloody diarrhea; nausea; abdominal cramps; headache; chills; myalgia; and low- 
grade fever. HuNoV illness is usually short term and self-limiting; however, for 
young children, the elderly, and immunocompromised patients, this illness can be 
serious, leading to severe dehydration, hospitalization, and death. Complications 
associated with HuNoV infection include infantile convulsion [10] necrotizing 
enterocolitis (NEC) [68], and, rarely, disseminated disease including multiple organs.

8  Immunity

The relevance of the cellular immunity to protect or resolve HuNoV infections 
remains controversial; however, antibodies have been shown to be important in 
protection. Serum HBGA-blocking antibodies can protect norovirus-induced dis-
ease [15]; moreover, salivary and circulating memory B cells secreting IgA and 
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IgG antibodies that primarily recognize VP1 capsid protein correlate with a protec-
tive immunity against HuNoV [35, 53]. Duration of HuNoV gastroenteritis immu-
nity has been estimated to be on the scale of months; however, in a recent report 
based on mathematical studies, duration of immunity was predicted to be from 4.1 
to 8.7 years [60]. The seroprevalence for noroviruses is lower in developed than in 
developing countries, suggesting that the latter populations may be continuously 
exposed to norovirus from an early age [51]. In this regard, it has been observed 
that more than 80% of children in Latin America had norovirus antibodies by 2 
years of age [31].

9  Treatment, Prevention, and Vaccines

The lack of specific treatment for HuNoV infections limits treatment to supportive 
care consisting of fluid/electrolyte replenishment for patients with severe dehydra-
tion. In patients undergoing immunosuppressive therapy, a temporary hold in immu-
nosuppressive treatment is required to prevent persistent infection [59]. As in most 
infectious diseases, one of the best prevention strategies for HuNoV infection is 
hygiene, including frequent hand-washing.

Because HuNoV represent a global health problem with a high estimated mor-
bidity that affects millions of people worldwide, several antivirals and vaccines are 
under development. However, the lack of a validated cell culture system or small 
animal model has been a great obstacle for such development [35, 54]. Therefore, 
efforts on developing candidate vaccines have been based on the use of subviral 
particles or subunit vaccines, including virus-like particles (VLPs) and P domain 
complexes that have been shown to be immunogenic [75].

VLPs are advantageous, as they do not contain the viral genome but do contain 
the viral structural proteins responsible for inducing protective immunity [32, 59]. 
However, as HuNoV are genetically and antigenically diverse, it is presumed that to 
induce broad protection against multiple HuNoV strains will be necessary for effi-
cient protection. Moreover, these vaccines may require updating when new pan-
demic strains emerge [39]. Combination vaccines, including those for other common 
viral causes of childhood diarrhea, are also under consideration.

Although currently no licensed vaccine for human calicivirus exists, several vac-
cine candidates are under development, including transgenic plant-based norovirus 
vaccines [58, 71], norovirus P particles produced in Escherichia coli [74], a trivalent 
norovirus/rotavirus combination vaccine that includes GII.4 and GI.3 VLPs and 
rotavirus VP6 protein [72], and a bivalent (GI.1 + GII.4) intramuscular VLP vaccine 
[70, 77]. Another unresolved issue about human calicivirus vaccines is the defini-
tion of the vaccine target population, that is, who shall be vaccinated to diminish the 
risks of severe disease and death caused by HuNoV infections in children, the 
elderly, and the immunocompromised.
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10  Conclusions

Caliciviruses represent a public health problem worldwide. In addition, calicivirus 
infection affects several animals of veterinary and economic importance. After the 
introduction of the rotavirus vaccine in the expanded program of immunization in 
most Latin American countries, caliciviruses, namely, noroviruses, have also 
emerged as an important etiological agent associated with acute sporadic infantile 
diarrhea. Therefore, one of the challenges for the region is to understand the impor-
tance of caliciviruses as an etiological cause of diarrhea and to expand the local data 
that will facilitate difficult decisions about possible future vaccine implementation. 
In addition, basic research to better understand calicivirus biology and to identify 
host molecules involved in resistance and susceptibility to viral infection is also 
needed in the quest for strategies of control (Figs. 3.1 and 3.2).
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Fig. 3.1 Schematic representation of the genomic organization of three representative genera of 
the Caliciviridae family. The genomic organization of Norovirus/Vesivirus (a) and Lagvirus (b) 
genera contains open reading frame (ORF)1 at the 5′-ends of all the genomes that encode the non-
structural proteins. The structural protein VP1 is either encoded at the 3′-end of ORF1 (Lagovirus) 
or by ORF2 (Norovirus/Vesivirus), whereas VP2 is translated from its own ORF. ORF4 is unique 
to the murine norovirus (MNV). Both VP1 and VP2 structural proteins and VF1 are translated from 
the subgenomic RNA
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Chapter 4
Astroviruses Biology

Pavel Isa

1  Introduction

Human astroviruses (HAstV) have been found to be among the most important 
causes of viral diarrhea in children [10, 13, 26]. Epidemiological studies conducted 
in Argentina, Brazil, Colombia, Chile, Guatemala, Mexico, and Venezuela indicate 
that in these regions astroviruses are associated with nearly 4% to 7% of severe diar-
rhea cases in children under 5 years of age, with predominance of the HAstV sero-
type 1, although co-circulation of other serotypes has been observed [3, 6, 9, 27, 28, 
30]. Moreover, the association of turkey astroviruses with the so-called poult enteri-
tis complex has also been reported [4]. Astroviruses are small, non-enveloped 
viruses with a single-stranded positive-sense RNA genome, grouped into the family 
Astroviridae, which is divided into two genera: Mamastrovirus, including viruses 
infecting mammals, and Avastrovirus, including viruses that infect avian species. 
Human astroviruses (HAstV) are classified into four genotype species, and the clas-
sical eight original serotypes are classified now as Mamastrovirus genotype 1 [11]. 
The remaining genotypes are formed by the recently described HAstVs including 
the MLB, VA, and HMO virus lineages [11], and they are more closely related to 
animal astroviruses. Recent evidence indicated that these newly described astrovi-
rus serotypes also circulate in the region [16, 32]. Given the importance of astrovi-
ruses as a cause of infantile acute diarrhea and the burden caused by diarrheas in 
Latin America, several research groups in the region have devoted efforts to better 
understand the astrovirus biology and epidemiology. Herein, the results of some of 
those efforts are reviewed.
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2  Astrovirus Replication

As mentioned, the astrovirus genome is composed of a single-stranded positive- 
sense RNA molecule, which serves as messenger RNA and could be directly trans-
lated into the viral polyprotein. The genomic RNA (gRNA) ranges from 6.8 to 7.7 
kb in length, depending on the species of isolation [21]. It contains 5′- and 
3′-untranslated regions (UTRs) and three open reading frames (ORFs), named 
ORF1a, 1b, and 2 (Fig. 4.1). In addition, a short ORF X, present in human and some 
mammalian astrovirus strains and containing between 91 and 122 codons, is pre-
dicted [7] (Fig. 4.1). This ORF X is presumably translated in a +1 reading frame 
from ORF 2; however, there is no experimental evidence of protein synthesis. The 
astrovirus genome is polyadenylated at the 3′-end and at the 5′-end is linked cova-
lently to VPg, a viral protein that is essential for viral replication [8, 21].

No astrovirus receptors have been identified to date; however, it seems that dif-
ferent serotypes use different cell-surface molecules [2]. The half-time of virus 
binding to cell surface is about 10 min, and virus decapsidation (analyzed by mea-
surement of release of gRNA) takes place about 130 min later [20]. Astrovirus cell 
entry is by clathrin-mediated endocytosis and is dependent on the active actin net-
work, endosome acidification, and membrane cholesterol [5, 20]. Given that silenc-
ing expression of Rab7, a small GTPase involved in the early-to-late endosome 
traffic, reduces astrovirus infectivity, it seems that astroviruses need to arrive to late 
endosomes to enter the cytoplasm. In agreement with this, as mentioned earlier, 
gRNA is released from particles at about 130 min after infection [20].

ORF1a ORF1b ORF2

ORFX

1000          2000       3000      4000         5000       6000
5’ AAAn3’

AAAn3’

genomic RNA (+strand)

5000       6000

5’

subgenomic RNA (+ strand)

ORF2

Fig. 4.1 Human astrovirus genome organization. The positive-strand genomic RNA (approxi-
mately 6.8 kb) contains three verified open reading frames (ORF): ORF1a, ORF1b, and ORF2. 
The fourth short ORF (ORFX) has been postulated given its conservation among members of the 
family. The ORF1b is translated as part of ORF1ab by ribosomal frameshift; ORF2 is translated 
from subgenomic RNA produced during astrovirus replication cycle
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After entering the cells and releasing the gRNA, the protein synthesis starts, 
with all astrovirus ORFs producing polyproteins, which are proteolytically cleaved 
to produce the final viral proteins. The nonstructural proteins, nsp1a and nsp1ab, 
are translated from the 5′-most ORFs (ORF1a and ORF1b) of released gRNA 
(Fig. 4.2a). These viral proteins use the gRNA as template to synthesize a full-
length, negative- sense, antigenomic RNA (agRNA), which in turn is used as tem-
plate to produce more copies of the full-length gRNA and many copies of a 

a)

b)
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nsp1ab

nsp1a
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Fig. 4.2 Proteolytic processing of astrovirus proteins. Astrovirus proteins are obtained by proteo-
lytic cleavage of polyprotein precursors. Nonstructural proteins are translated from ORF1a and 
ORF1ab (a); structural proteins are generated from ORF2 (b). The polyprotein processing is per-
formed by viral and cellular proteases. In the structural proteins precursor (VP90), this polyprotein 
is cleaved by caspases to generate VP70, which is further processed by trypsin. Characterized final 
astrovirus proteins are shown at the bottom
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subgenomic RNA (sgRNA) of about 2.4 kDa [24]. The viral structural proteins 
(VPs) are synthesized as a polyprotein from ORF2, from sgRNA, which is  processed 
to produce viral structural proteins by cellular and viral proteases [19].

3  Processing of Astrovirus Capsid Polypeptides

As already mentioned, the two ORFs localized in the 5′-end of the genome (ORF1a 
and 1b) code for the nonstructural proteins nsp1a and nsp1ab, which are proteolyti-
cally processed by viral and cellular proteases [23] (Fig. 4.2a). ORF1a codes for 
nsp1a, and ORF1b is translated by a −1 ribosomal frameshift mechanism as fusion 
with ORF1a, to produce the nsp1ab protein [23]. The frameshift efficiency has been 
found to be between 6% and 7% by in vitro translation [14]; in cells using transient 
expression systems, frameshift was up to 25% to 28% [15]. The proteolytic process-
ing of the initial polyprotein into various nonstructural proteins is accomplished by 
both viral and cellular proteases. Interestingly, the expected full-length polyproteins 
nsp1a and nsp1ab are not found in infected cells, pointing to cotranslational pro-
cessing during their synthesis [23] (Fig. 4.2a). As a result of this cotranslational 
processing, a 20-kDa protein corresponding to the N-terminal of nsp1a and nsp1ab 
is produced [23]. Additionally, two 27-kDa proteins have been detected as a result 
of nsp1a processing [23]. These proteins contain a classic trypsin-like protease 
motif, and structural and biochemical data have confirmed the catalytic activity of 
the protein [29]. The following region contains the VPg protein, of 13–15 kDa [8], 
which is important for viral replication and infectivity. The remaining polypeptides 
derived from the carboxy-terminal region of nsp1a include a hypervariable region, 
which is proposed to be relevant for viral replication. These proteins are all phos-
phorylated and co-localize with the gRNA and the endoplasmic reticulum [12]. The 
second protein to be translated from the gRNA is nsp1ab, produced by a −1 trans-
lational frameshift mechanism. There is an overlap in the genome of mammalian 
and avian viruses between ORFs 1a and 1b, which contains a conserved heptameric 
sequence (AAAAAAC) followed by a potential stem-and-loop structure. Both these 
motifs are essential for the frameshift and synthesis of the viral polymerase encoded 
in ORF1b [17]. From this second polyprotein (nsp1ab) is generated the viral RNA- 
dependent RNA polymerase of 57–59 kDa [23, 31] (Fig. 4.2a).

The polypeptide from which structural proteins are generated is translated from 
a polyadenylated subgenomic RNA (sgRNA), produced during infection, which is 
3′ colinear with the genomic RNA [24]. This sgRNA codes ORF2, of approximately 
780 amino acids, with the first region of approximately 400 residues being con-
served among human astrovirus strains, and is predicted to form the capsid core, 
whereas the second half (corresponding to the carboxy end) is highly variable and 
is predicted to form viral spikes. Processing of the ORF2 translation product was 
studied in detail for human serotype 8 astrovirus YUC 8 [19].

Processing of the ORF2 protein product is schematically shown in Fig. 4.2b. The 
primary product of ORF2 translation, VP90, is initially cleaved at its  carboxy- terminal 
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region to yield the VP70 protein [19, 22]. The intracellular processing of VP90 is 
mediated by cellular caspases and is associated with the release of human astrovirus 
[22]. Treatment of purified viral particles with trypsin results in an ordered process-
ing of VP70, to final proteins VP34, VP27, and VP25, and the trypsin processing is 
associated with an increase in viral infectivity [19]. The trypsin processing respon-
sible for increase of infectivity of YUC8 strain seems to be sequential, with the first 
cut probably exposing new, trypsin-susceptible sites, suggesting conformational 
changes associated with trypsin activation.

Astroviruses, as other single-stranded RNA virus families, associate with mem-
branes during their replication. Both structural (VP90) and nonstructural (protease, 
polymerase) proteins were found to localize with intracellular membranes [18, 25]. 
The ultrastructural study of membrane rearrangement by electron microscopy 
showed large groups of viral particles around what appears to be double-membrane 
O-ring vesicles, inside of which structural proteins and the viral polymerase were 
detected by immunoelectron microscopy [12, 18].

4  Astrovirus Assembly

Astrovirus assembly has been studied in Caco-2 cells. It was observed that viral par-
ticles are formed by VP90, which is then processed by the aforementioned cellular 
enzymes (caspase 3 and caspase 9) to yield VP70 containing viral particles [22]. 
Caspase processing of VP90 is gradual, and several intermediate proteins (82, 75, 
and 72 kDa) are observed. Cleavage of VP90 to VP70 is associated with viral release, 
through a mechanism so far uncharacterized [1, 22]. Astroviruses need additional 
proteolytic cleavage to gain infectivity, as viruses grown in the absence of protease 
contain only VP70 protein, which needs to be processed as described to produce 
mature viral particles containing the final 25-, 27-, and 34-kDa proteins. This final 
proteolytic processing is expected to utilize proteases present in the intestinal lumen 
of the host, although no experimental evidence for this asseveration exists.

Despite progress in characterization of astrovirus biology, many points are still 
not clear or not well understood. Given the differences observed among serotypes 
belonging to “classical” Mamastrovirus genotype 1, and the recent description of 
three new astrovirus genotypes, much work still awaits to better understand astrovi-
rus biology.

5  Conclusions

Recent work demonstrates that astroviruses are important pathogens, causing dis-
ease in humans and animals. The discovery of new astroviruses from humans that 
show sequence similarities to strains isolated from other animal species indicates 
that interspecies transmission could occur. This observation, together with the fact 
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that in some animal species astroviruses cause other than gastrointestinal disease, 
strengthens the need to further study astrovirus–host cell interaction. It is expected 
that future characterization of viral particle structure will allow us to understand 
processes associated with the cell replication cycle, including viral entry, replica-
tion, assembly, and egress. It would be important to study and compare these pro-
cesses among distinct astrovirus groups as there may well be significant differences 
in replication cycle among them.
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Chapter 5
Molecular Epidemiology of Human 
Rotaviruses in Latin America

Juan I. Degiuseppe, Juan A. Stupka, and Gabriel I. Parra

1  Rotavirus Disease

Rotavirus is the leading cause of acute watery diarrhea in children under 5 years of 
age worldwide [30]. It causes 125 million cases every year, of which 2 million 
require hospitalization. It is estimated that 200,000–450,000 deaths annually are 
associated with rotavirus infections [46, 75, 101].

Rotavirus disease has high economic impact in terms of direct costs to the health 
system and indirect costs to society. Because the prevalence of rotavirus infection is 
similar in different countries, this infection is not an accurate indicator of the health 
status of a population [106]. However, it is associated with higher mortality rates in 
developing countries: about 90% of rotavirus diarrhea-related deaths occur in low- 
income and middle- to low-income countries [75].

In Latin America, the latest rotavirus estimates show that it is responsible for 10 
million cases of diarrhea, 2 million clinical visits, 75,000 hospitalizations, and 
between 15,000 and 45,000 deaths each year in children under 5 years [48, 107]. 
During the past decade most Latin American countries have implemented massive 
rotavirus vaccination programs, and, consequently, a sustained decline in these 
numbers has been documented [23, 24, 65, 71, 82, 88], mainly in rotavirus- 
associated hospitalizations and deaths. In this chapter we briefly describe the cur-
rent status of the molecular characterization of rotavirus strains circulating in Latin 
American countries during the past two decades.

J.I. Degiuseppe • J.A. Stupka 
Laboratorio Nacional de Referencia para Rotavirus y Norovirus, Instituto Nacional de 
Enfermedades Infecciosas ANLIS (“Dr. Carlos G. Malbrán”), Buenos Aires, Argentina 

G.I. Parra (*) 
Division of Viral Products, Food and Drug Administration, Silver Spring, MD, USA
e-mail: gabriel.parra@fda.hhs.gov

mailto:gabriel.parra@fda.hhs.gov


64

2  Rotavirus Characteristics

The rotavirus is a non-enveloped virus with a genome composed of 11 segments of 
double-stranded RNA.  These segments encode for six structural proteins (VP1, 
VP2, VP3, VP4, VP6, VP7) and six nonstructural proteins (NSP1, NSP2, NSP3, 
NSP4, NSP5, NSP6). During viral replication these 11 segments are packaged 
within a triple-layered capsid in the cytoplasm of the infected cell. The innermost 
layer (core) of the capsid consists of VP2 protein (Fig. 5.1a, blue); the intermediate 
layer is formed by VP6 protein; and the outermost layer of the capsid is composed 
of VP4 and VP7 proteins (Fig. 5.1a). Although VP6 constitutes about half the virion 
structure, VP4 and VP7 are the major targets for specific neutralizing antibodies.

Based on differences in the amino acid sequence of VP6 protein, rotaviruses can 
be classified into eight groups (A–H); of which only rotavirus group A (RVA), group 
B (RVB), and group C (RVC) are known to infect humans [30, 63]. RVA are the 
most predominant (>90% of total isolates worldwide), whereas RVB and RVC have 
been described to cause outbreaks in adults or are sporadically detected in children 
with diarrheic symptoms, respectively. In addition to major antigenic differences on 
VP6, the different rotavirus groups can be identified by the characteristic migration 
pattern (or electropherotype) of their segmented genome in polyacrylamide gel 
electrophoresis (Fig.  5.1b). Although minor differences may be detected in the 
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Fig. 5.1 Characterization of rotaviruses. a Representation of internal structure of the rotavirus 
virion. The three major antigenic proteins used for typing are indicated in red (VP4), green (VP6), 
and yellow (VP7). The current number of genotypes for rotavirus group A (RVA) are indicated on 
the right side. The rotavirus virion was modeled using crystal coordinates from VP2, VP6, VP7, 
and VP4 proteins (Protein Data Bank accession numbers: 3IYU and 3N09) and visualized in 
Chimera Software. b RVA electrophoresis migration patterns (electropherotypes). Strains present-
ing long and short electropherotypes are shown. In the short electropherotype the gene segment 11 
migrates more slowly than gene segment 10
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migration patterns of each group, RVA display three major electropherotypes (i.e., 
long, short, and super-short) depending on the differential migration of the smallest 
 segment. These differences are based on the variable genetic structure of segment 
11, where gene rearrangements or AT-rich sequences (of unknown origin) can be 
detected in the 3′-untranslated region of the segment [30, 34, 60].

Electropherotypes were widely used during the 1980s to distinguish the different 
rotaviruses in clinical samples; however, this technique was replaced by character-
ization of the two outermost capsid proteins, VP4 and VP7. These two viral proteins 
define the G (glycoprotein, VP7) and P (protease sensitive, VP4) serotypes, which 
serve as the basis of a binary classification system for RVA (Fig. 5.1a) [30]. Because 
antigenic characterization required specific reagents and a large collection of 
viruses, not always available in many laboratories, it was replaced by the genetic 
characterization of the segments encoding the VP7 and VP4 proteins (G and P geno-
types, respectively) [21, 33, 39, 43]. Currently, 32 G genotypes and 47 P genotypes 
of RVA are detected in different species of mammals and birds [85, 103]. Of these, 
11 G genotypes and 13 P genotypes have been described as infecting humans. G1, 
G2, G3, G4, G9, P[4], P[6], and P[8] are the most common genotypes in humans, 
and although 15 G and P combinations are possible, only 5 of these (G1P[8], 
G2P[4], G3P[8], G4P[8], and G9P[8]) are predominant in humans [30, 61, 91]. Less 
common genotypes (G5, G8, and G10) have been reported with high frequencies in 
certain geographic regions, but the reasons for these different epidemiological pat-
terns are poorly understood [64, 91].

Although it was initially thought that rotaviruses could freely assort their gene 
segments during coinfection with two strains, the application of genomics and bio-
chemistry to different groups has shown that there are restrictions to the reassort-
ment of genes, which is mostly regulated by interaction between different viral 
proteins and virus–host interactions [42, 64, 66–69]. Thus, for RVA three character-
istic groups of genes (gene constellations or genogroups) have been defined and 
named according to their reference strain, that is, Wa, DS-1, and AU-1 [74].

Recently, a new classification system including nucleotide sequence analyses of 
the 11 genomic groups has been implemented for RVA. Hence, in addition to G and 
P genotypes, genotypes of the other nine genes (Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx) 
are being utilized. In this system, the Wa strain is classified as genotype 1 (G1-P[8]-
I1-R1-C1-M1-A1-N1-T1-E1-H1), the DS-1 strain as genotype 2 (G2-P[4]-I2-R2- 
C2-M2-A2-N2-T2-E2-H2), and the AU-1 strain as genotype 3 (G3-P[9]-I3-R3- 
C3-M3-A3-N3-T3-E3-H3). The genome constellations of genotypes 1 and 2 are 
more fit than genotype 3 in the human population and are therefore prevalent. This 
system provides a universal framework for analyzing inter- and intraspecies evolu-
tionary relationships, genetic reassortment events, and characterization of new strains 
[61, 64]. In general, there is correlation between the different rotavirus classification 
systems. For example, RVA displaying a short electropherotype belong to the 
G2P[4] genotype, and the genotype 2 constellation is observed. However, RVA 
showing long electropherotypes usually associates with G1P[8], G3P[8], G4P[8], or 
G9P[8] genotypes, and the genotype 1 genomic constellation [42, 61].
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3  Molecular Epidemiology in Latin America

Because of the heavy burden of rotaviruses on the Latin American population, 
much effort has been dedicated to characterize circulating viruses, both to pre-
pare for introduction of vaccines and for post-vaccination surveillance. Although 
some countries have better information on the strains circulating in their popu-
lations, a search of the literature revealed that 24 Latin American countries have 
done some type of molecular characterization during the past two decades. Most 
of this characterization used clinical samples from children (under 5) presenting 
with gastroenteritis; however, characterization of older children, adults [1, 56, 
57], different animal species [5, 49, 69, 70, 79, 84, 96], and environmental 
samples [31, 73, 102] has also been done to improve understanding of the natu-
ral history of this disease. These studies revealed that the most common strains 
circulating in Latin America are G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and 
more recently, G12P[8] [48, 52, 98] (Fig. 5.2). Strains with unusual G and P 
associations can be detected sporadically in different countries, and some are 
detected at high levels in the human population, mostly linked to probable 

Fig. 5.2 G and P genotype 
association in rotavirus 
group A (RVA) detected in 
Latin America countries
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zoonotic events [40, 92]. In Latin America, the “unusual” strains detected in 
humans have been mostly GxP[6] or GxP[9]; e.g. G1P[9], G3P[9], G4P[6], 
G9P[6], G12P[6], G12P[9] [11, 19, 51, 56, 58, 90, 93, 97, 104, 105]. In contrast 
to developed countries, where the G1P[8] strain were the predominant strains 
each season in the pre-vaccination era, in Latin America the predominant strain 
changed season to season without any marked epidemiological pattern. 
Co-circulations and heterogeneous regional distributions were also observed 
(Fig. 5.3) [26, 76, 78, 91, 98]. For example, different strains predominated in 
different cities in the same country, thereby complicating our understanding of 
the epidemiological pattern of rotaviruses.

4  Predominant Genotypes of RVA in Latin America

4.1  G1

G1 is considered the most prevalent circulating RVA genotype worldwide, but its 
prevalence is significantly higher in developed countries [91]. Phylogenetic analy-
ses based on gene encoding of VP7 by G1 strains have demonstrated that at least six 
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Fig. 5.3 Graphical representation of the different rotavirus group A strains detected in five Latin 
American countries that have implemented rotavirus vaccination. Periods of surveillance are indi-
cated within brackets. Each G genotype is color coded, and the corresponding P genotype is indi-
cated on the left-hand side
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lineages circulate in humans worldwide [3, 81]. The continuous circulation and 
persistence of this genotype in the human population have been attributed to a 
greater genetic variability compared to other genotypes [3, 81]; however, the role of 
these lineages in immunity is not well understood. A recent meta-analysis evaluat-
ing the circulation of genotypes of RVA in Latin America and the Caribbean docu-
mented a high proportion (~35%) of G1 strains for this region [48]. Although G1 is 
usually associated with P[8], G1P[4] and G1P[6] strains were also sporadically 
detected in different countries (G1P[4]: Panama, Argentina, Colombia, Paraguay, 
Cuba, the Dominican Republic; G1P[6]: Costa Rica, Panama, Bolivia, Colombia, 
Ecuador, Cuba, and the Dominican Republic [12, 13, 17, 27, 29, 77, 86, 90]).

4.2  G2

The G2 genotype is the second most common genotype in Latin America, account-
ing for approximately 14% of all the characterized rotaviruses. The predominance 
of this genotype has been shown to fluctuate over time [47], and its increasing detec-
tion during the past decade raised controversy as it coincided with the `massive 
introduction of the monovalent rotavirus vaccine (G1P[8]) in Brazil [41]. 
Considering that the circulation of G2P[4] rotaviruses in Paraguay, Argentina, and 
Colombia increased during the pre-vaccination period, and the high presence of 
G2P[4] was not sustained in Brazil, this phenomenon seems to be the result of natu-
ral fluctuation rather than selective vaccine pressure [56, 76]. Unusual combinations 
with this G genotype detected in the region were the G2P[6] in Brazil, Colombia, 
and Argentina, and G2P[8] in Costa Rica, Panama, Argentina, Colombia, Paraguay, 
Cuba, and Haiti [12, 13, 17, 26, 28, 52, 55, 56, 87, 105].

4.3  G3

The G3 genotype is one of the most frequently detected. This genotype has the 
broadest host range (humans, pigs, horses, cows, rabbits, cats, dogs, etc.) and 
consequently the greatest number of combinations with different P-types (P[2], 
P[3], P[6], P[7], P[8], P[9], P[12], P[14], P[22], P[24]) [30, 91]. Despite its 
extreme diversity, G3P[8] association is the most prevalent in human infections. 
G3P[8] was described as circulating at low frequency during the 1990s worldwide, 
but its reemergence has been observed in the past decade. The increasing fre-
quency of this genotype seems to be associated with a decrease in the prevalence 
of G1P[8] and G9P[8], all of which present a similar genome constellation (gen-
otype 1). In Latin America, some sporadic detection of G3P[4], G3P[6], G3P[3], 
and G3P[9] was reported, the last two associated with zoonotic events (Fig. 5.2) 
[12, 26, 52, 53, 105].
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4.4  G4

Although a recent meta-analysis revealed an overall incidence of G4 strains less 
than 10% in Latin America (the fourth most prevalent genotype after G1, G2, 
and G9), this genotype has been studied extensively because of its increase in 
prevalence between the late 1990s and the early 2000s [9, 10, 48, 77, 79]. This 
increase in incidence, reaching 31% in Argentina, 44% in Paraguay, and 80% in 
Nicaragua, was attributed to the emergence of strains with two sublineages of 
VP7 (Ib and Ic). Interestingly, the strains of sublineage Ic presented a sole inser-
tion (Asp76) in the N-terminal portion of the VP7 protein, one of the few limited 
insertions reported for this protein. After its emergence in Argentina and 
Paraguay [9, 10, 77] G4 sublineage Ic strains spread to Uruguay, Brazil, 
Nicaragua, Italy, Ireland, and Japan [8, 14, 97]. G4 rotavirus are common in 
pigs, usually associated with P[6] and P[9]. Phylogenetic analyses of the VP7 
protein showed diversification of G4 into typical “human” and “porcine” strains, 
the “human” strains associated mostly with P[8] and “porcine” strains with P[6] 
[45, 79, 97]. G4P[6] strains have been detected in humans with diarrhea in 
Argentina, Brazil, Colombia, Mexico, Paraguay, Guatemala, Honduras, and 
Colombia, and showed porcine-like genomes.

4.5  G9

The G9 genotype was first detected in the United States in 1983, and since its 
detection this genotype has been reported associated with a wide variety of P 
genotypes [44]. Since the mid-1990s, a significant increase in the frequency of 
detection has been described globally, initially associated with P[6] and subse-
quently mostly associated with P[8] [62, 91]. In Latin America, G9P[6] was 
identified in Argentina and Brazil from 1996 to 1999; G9P[8] was initially identi-
fied in Brazil in 1996 [2, 11, 95], and spread throughout the continent. Currently, 
it is considered the second most prevalent genotype together with G2P[4] rotavi-
ruses. Similarly to G4 rotavirus, phylogenetic analyses of the VP7 encoding gene 
suggest divergence of G9 viruses into “human-like” and “porcine-like,” with the 
human-like viruses further divided into three lineages (I–III) [44, 94]. Lineage 
III, comprising more than 90% of all known G9 strains, was able to spread glob-
ally in just one decade [62]. Although, the predominant strain is G9P[8], many 
countries in Latin America have reported rotavirus with G9P[4] (Mexico, Costa 
Rica, Guatemala, Argentina, Honduras, Colombia, Paraguay, Cuba), G9P[6] 
(Argentina, Bolivia, Colombia, Ecuador, Peru, Cuba), and G9P[9] (Mexico and 
Argentina) (Fig. 5.2) [2, 7, 13, 18, 27, 56, 77, 83, 95, 99].
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5  Emerging Genotypes

5.1  G5

The G5 genotype is commonly found in pigs, but its circulation has been docu-
mented in horses and cattle as well [40]. The first cases of human infection were 
reported in Brazil, associated with P[8] as a result of zoonotic transmission events 
[38] that originated the human lineages circulating in Brazil (lineage I), Asia, and 
Africa (lineage II) [20].

This genotype has been identified in all Brazilian regions and was detected for 14 
years (1982–1996). Subsequently, its prevalence decreased sharply, losing its 
endemic nature, and was detected only sporadically [20, 47]. Although the G5 geno-
type had a wide dissemination in Brazil during the 1990s, is has not been found to 
circulate in Latin America since the 2000s [47, 48].

5.2  G8

The G8 genotype is considered a bovine genotype as early reports showed its pres-
ence in cattle. Beside cows, this genotype has been found in other species of the 
Artiodactyla order [50, 80, 91]. The G8 genotype is of great interest for the scien-
tific community as it is highly prevalent in different countries in Africa. In Latin 
America, it has been detected sporadically as G8P[8] in Central America countries, 
G8P[6] in Brazil, G8P[14] in Venezuela, and G8P[1] in Paraguay, the latter two 
associated with interspecies transmission (Fig. 5.2) [47, 59, 72].

5.3  G12

The G12 genotype is considered the latest emerging genotype in humans that has 
been able to spread worldwide [48, 62]. Its incidence has increased during the past 
decade, its spread associated with two main lineages of VP7 protein. Strains of lin-
eage II show the P[9] genotype, usually associated with feline strains, whereas lin-
eage III strains show the P[4], P[6], or P[8] genotype (Fig. 5.2). In South America, 
G12P[9] strains were initially detected in Argentina and Brazil, and later in Paraguay 
[19, 47, 52, 56, 98]. These strains were found to present a genome very similar to 
the AU-1 strain (genotype 3). G12P[8] strains were described as circulating in sev-
eral other regions, but were not detected in South America until 2008, when they 
were detected with high frequency in Argentina. Complete genome analyses of the 
Argentine G12P[8] strains demonstrated that they bore genotype 1 genes (i.e., 
Wa-like). Because the G12P[9] were the first to be introduced into Latin America 
(more specifically Argentina), it could initially be considered that G12P[8] was a 
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product of reassortment of the G12P[9] VP7 gene into the Wa-like strains circulating 
at high frequencies (i.e., G3P[8], G9P[8]) (Table 5.1). However, phylogenetic anal-
yses of the VP7 gene sequences revealed that emergence of G12P[8] strains was the 
result of the introduction of a new strain with a genome constellation well adapted 
to infect humans [98]. The “versatility” of G12 strains to associate with P[4], P[6], 
P[8], and P[9] genotypes resembles that of G8 and G9 strains, able to adapt and 
persist in the human population.

6  Whole-Genome Analyses in Rotaviruses Detected in Latin 
America

The use of genomic analyses in rotaviruses has become a powerful tool to improve 
understanding of rotavirus epidemiology and evolution. Although it is still expensive 
technology for routine use, several laboratories in Latin America have used it to 
understand the transmission and origin of different rotavirus strains (Table  5.1). 
Thus, zoonotic events have been documented for feline (G3P[9], G9P[9]), porcine 

Whole Genome in Latinoamerica
Country Genetic constellation Aim of the analysis References

Guatemala G8P[14] -I2-R2-C2-M2-A13-N2-T6-E2-H3 Test zoonotic event Gautam et al. (2015) Infect Genet Evol [32]

G1P[8] -I1-R1-C1-M1-A1-N2-T1-E1-H1 Vaccination pressure on viral population Bucardo et al. (2012) Infect Genet Evol [16]

G12P[8 ]-I1-R1-C1-M1-A1-N1-T1-E1-H1 Evolutionary origins Bucardo et al. (2015) Clin Microbiol Infect [15]
G3P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1
G3P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2

Evolutionary origins Degiuseppe et al. (2014) PloS One [26]

G4P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1
G4P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1

Test zoonotic event Degiuseppe et al. (2013) Clin Microbiol Infect [25]

G12P[8 ]-I1-R1-C1-M1-A1-N1-T1-E1-H1 Evolutionary origins Stupka et al. (2012) J Clin Virol [98]

G1P[8] -I1-R1-C1-M1-A1-N1-T1-E1-H1
G1P[ 8]-I1-R1-C1-M1-A1-N1-T3-E1-H1

Evolutionary origins
Vaccination pressure on viral population

Silva et al. (2015) Infect Genet Evol [96]

G3P[9]-I3-R3-C3-M3-A3-N3-T3-E3-H3
G9P[9]-I3-R3-C3-M3-A3-N1-T3-E3-H3
G9P[9]-I1-R1-C1-M1-A1-N1-T2-E1-H1
G1P[9] -I1-R1-C1-M3-A1-N1-T2-E1-H1
G1P[9] -I1-R1-C1-M2-A1-N2-T2-E1-H1
G3P[9]-I3-R3-C3-M3-A3-N3-T3-E3-H6
G12P[9 ]-I3-R3-C3-M3-A12-N3-T3-E3-H6

Evolutionary origins
Test zoonotic event

Tsugawa et al. (2015) J Gen Virol [104]

G2P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 Evolutionary origins Gómez et al. (2014) Infect Genet Evol [35]

G12P[8 ]-I1-R1-C1-M1-A1-N1-T1-E1-H1 
G12P[9 ]-I3-R3-C3-M3-A12-N3-T3-E3-H6

Evolutionary origins Gómez et al. (2014) Infect Genet Evol [36]

G1P[8] -I1-R1-C1-M1-A1-N1-T3-E1-H1 Vaccine-related reassortment Rose et al. (2013) Emerg Infect Dis [89] 
G1P[6] -I1-R1-C1-M1-A1-N1-T1-E1-H1 Evolutionary origins Gómez et al. (2013) Infect Genet Evol [37]

G2P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 
G1 /G4P[6]-I1-R1-C1-M1-A1-Nx-T1-E1-H1
G2P[6]-Ix-R2-C2-M2-A2-Nx-T2-E1-H2 
G4P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1
G4P[6]-Ix-R1-C1-M1-A1-N1-T1-E1-H1  
G3P[9]-Ix-R2-C2-M2-A3-N1-T3-E3-H3

Evolutionary origins
Test zoonotic event

Maestri (2012) J Med Virol [54]

Ecuador G11P[6]- I1-R1-C1-M1-A1-N1-T1-E1-H1 Test zoonotic event

Test zoonotic event
Test zoonotic event
Test zoonotic event

Bányai et al. (2009) Arch Virol [6]
G8P[1] -I2-R2-C2-M1-Ax-N2-T6-E12-H3 Martinez et al. (2014) Infect Genet Evol [59]
G4P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1 Martinez et al. (2014) Infect Genet Evol [58]

Barbados G4P[1 4]-I1-R1-C1-M1-A8-N1-T1-E1-H1 Tam et al. (2014) Infect Genet Evol [100]

Brazil

Paraguay

Nicaragua

Argentina

Table 5.1 Rotavirus full-genome analyses in Latin American countries
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(G4P[6], G4P[14]), and bovine (G8P[1], G8P[14], G11P[6]) strains [6, 25, 32, 54, 
58–59, 100, 104], and understanding has improved regarding the epidemiological 
origins of G1P[8], G2P[4], G3P[8], G12P[8], and G12P[9] strains [15, 26, 35–7, 54, 
96, 98, 104]. In the context of the introduction of massive vaccination, these analyses 
have also enabled discrimination of wild-type strains from vaccine strains [16, 89]. 
Several groups have implemented this new methodology in Latin America (Table 5.1).

7  Rotavirus Diversity and Vaccines

To date, two rotavirus vaccines have been licensed and included in national 
immunization programs in 17 Latin American countries (Fig. 5.4) [22, 23]. Rotarix 
(GlaxoSmithKline Biologicals, Rixensart, Belgium) is a monovalent vaccine 

Massive Vaccination Started

2006

2007

2008

2009

2010

2012

2014

2015

Fig. 5.4 Map showing the Latin American countries that have implemented massive rotavirus vac-
cination. The years when the vaccination programs started are indicated with different grey tones
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consisting of an attenuated human G1P[8] rotavirus strain and RotaTeq (Merck and 
Sanofi Pasteur MSD, NJ, USA) is an oral pentavalent vaccine composed of bovine- 
human reassortants, with VP7 and VP4 human specificities for genotypes G1–G4 
and P[8]. Rotavirus vaccine efficacy varies depending on the geographic region 
where data are collected. Particularly notorious is the low (<50%) efficacy reported 
in African and Asian countries [4, 108] where rotavirus diversity is greater com-
pared to developed countries [91]. Despite a large diversity in circulating rotavirus 
strains, Latin American countries have successfully implemented massive rotavirus 
vaccination that has reduced the burden of diarrheal disease in the region [23, 24, 
65, 71, 82, 88].

Regarding circulating genotypes in countries that have introduced the vaccine, 
an increase in the proportion of G2P[4] and G3P[8] has been observed in residual 
rotavirus diarrhea cases. This observation was reported in Bolivia, Brazil, and 
Colombia (Fig. 5.3). Specifically, an increase in the detection of G2P[4] was reported 
in countries where the monovalent G1P[8] vaccine was implemented, whereas an 
increase in G3P[8] was observed in countries where the pentavalent vaccine (G1–
G4, P[8]) was implemented. The emergence of unusual genotype combination 
G9P[4] has been reported in Mexico, Guatemala, and Honduras, which coincided 
with the decline of G1P[8] and G9P[8] (Fig. 5.3). Although these studies suggested 
possible genetic drift and selection mechanisms driven by vaccinated populations, 
studies conducted in the region are insufficient to document pre- and post- 
vaccination scenarios to determine the effect of the vaccine on viral ecology or 
whether genetic diversity is influenced by selection mechanisms or natural fluctua-
tion phenomena (Fig. 5.3).
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Chapter 6
Environmental Virology

Marize Pereira Miagostovich and Carmen Baur Vieira

1  Introduction

Environmental virology is an extensive area of research; the increasing number of 
studies in recent years reflects the need to develop more sensitive parameters that 
can meet the demands of a modern society with growing environmental concerns. 
Because of its interface with specific public policies such as water resources, sanita-
tion, epidemiological surveillance, and coastal management, this branch of research 
in virology represents an important tool for improving the quality of life as well as 
for strengthening environmental monitoring [140]. In 2011, advances were acknowl-
edged and climaxed with the International Society for Food and Environmental 
Virology foundation [119], whose main goal is to encourage researches associated 
with viruses transmitted via the environment (water, air, soil, etc.) and food.

Linked to health-environment and health-sanitation concerns, not by chance, 
progress in the field was achieved during the United Nations International Decade 
for Action “Water for Life,” 2005–2015, when efforts to fulfill international com-
mitments related to the issue of water were stimulated [263]. Despite the increase of 
knowledge generated worldwide, the overall impact of viral diseases transmitted by 
environmental routes is still hard to assess. Problems related to subclinical or 
asymptomatic infections, as well as the difficulties of recovering viruses from dif-
ferent environmental matrices, still influence epidemiological studies, especially 
when performed in developing countries. Despite all the difficulties and following 
the global trend, the number of studies in environmental virology in Latin America 
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increased tenfold compared to the previous decade. In this context, this chapter 
provides topics in the field focusing on studies of water and foodborne enteric 
viruses conducted in the region.

1.1  History

Environmental virology as an object of study began in the year 1940 with the recog-
nition of poliovirus (PV) as an enteric infection transmitted through the fecal–oral 
route and by the attempt to isolate virus by inoculation of sewage in monkeys [153]. 
In later years, PV was also associated with outbreaks that resulted from consump-
tion of contaminated drinking milk and was considered the main enteric viral agent 
surveyed in environmental matrices, particularly the result of the development of 
cell culture medium suitable for viral replication [88].

In the 1950s, a first waterborne outbreak of hepatitis was reported as a result of 
contamination by wastewater of the water treatment system in New Delhi (India). 
This outbreak affected about 230,000 people and was caused by the hepatitis E virus 
(HEV), and its etiological agent was identified years after the episode [24]. Hepatitis 
A virus (HAV) transmission by consumption of bivalve mollusks in Sweden and 
later in the United States of America was also described [88].

During the following decade, the improvement of methods for virus concentra-
tion from water, oysters, and sediments [92, 118, 155, 156, 222], as well as the 
association of gastroenteric viruses such as Norwalk (genus Norovirus), enteric 
human adenovirus (HAdV), rotavirus group A (RVA), and human astrovirus 
(HAstV) with nonbacterial gastroenteritis cases [3, 18, 123, 166, 193], enhanced 
the studies on environmental virology. However, the greatest impact came from 
the advent of a highly sensitive molecular tool, notably, the polymerase chain 
reaction (PCR), that allowed expansion of analysis for those groups of viruses 
considered fastidious and, especially, for those viruses that did not have cell cul-
tures for viral propagation used routinely in laboratories. Human norovirus (NoV) 
and HEV still need a three-dimensional (3D) cell culture system for their replica-
tion [16, 172].

In Latin America, a study conducted in Brazil was pioneer in demonstrating the 
contamination of recreational waters by isolating echovirus (E) in beaches located 
in Guanabara Bay, Rio de Janeiro [112]. Later on, viral contamination in drinking 
water was first documented in Guadalajara, Mexico, by the detection of RVA and 
coxsackievirus (CV) in treated drinking water [51]. In the 1990s, the distribution of 
RVA was demonstrated in raw sewage and creeks in São Paulo, Brazil [150], and in 
Argentina Caillou et al. [33] evaluated a methodology for enterovirus (EV) recovery 
from sludge.
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1.2  Global Burden of Diseases and Pathogens

Waterborne diseases and sanitation-related infections are among the most common 
causes of death in the world, especially affecting the poorest societies and children 
less than 5 years old in developing countries. According to the Pan American Health 
Organization (PAHO), about 4% of the global burden of the disease could be pre-
vented by improving water supply, sanitation, and hygiene. It is estimated that 884 
million people in the world—roughly an eighth of the global population—do not 
have access to safe water. Moreover, 2.6 billion people do not have access to ade-
quate sanitation, and 1.4 million children die every year as a result of waterborne 
diseases. In Latin American countries, despite improved access to drinking water 
and sanitation for 93% and 80% of the population, respectively, progress is still 
slow and is concentrated in urban areas [171].

According to the World Health Organization (WHO), a wide diversity of viruses 
belonging to different families and genera are well recognized, causing different 
infectious diseases in humans through exposure to contaminated environments, 
many of them associated with water- and foodborne outbreaks. HAdV, HAstV, 
HAV, HEV, RVA, NoV, and EV, including CV and PV, were classified as being of 
high or moderate importance to health. Viruses are responsible for serious diseases 
such as hepatitis, encephalitis, meningitis, myocarditis, and cancer, although most 
of them are associated with cases of acute gastroenteritis [262], the main cause of 
death in children around the world, second only to pneumonia and neonatal deaths. 
In 2013, diarrhea was responsible for the death of 578,000 (448,000–750,000) chil-
dren less than 5 years of age worldwide [137].

Emerging viruses such as aichivirus (AiV), bocavirus (BoV), klassevirus (KV), 
norovirus genogroup IV (NoV GIV), sapovirus (SAV), and gemycircularvirus 
(GemyCV) have increased the list of viruses associated with cases of gastroenteritis 
detected in sewage samples and water contaminated by sewage in Latin America 
[32, 34, 42, 45, 63, 111, 124, 177, 233, 270, 272]. For foodborne diseases, NoV and 
HAV are recognized as major etiological agents worldwide, representing a public 
health problem that is accompanied by considerable economic losses [105].

2  Enteric Viruses

Enteric viruses or viruses of enteric transmission are often the target of investigation 
in the environment, including all viral groups that are present in the human gastro-
intestinal tract and which, after fecal–oral transmission, may cause infections in 
susceptible individuals. These are viruses of icosahedral symmetry, non-enveloped, 
and highly resistant to unfavorable environmental conditions that share properties, 
particularly concerning the risk of diseases, as excretion in high concentrations even 
in asymptomatic cases, lower infectious dose, viral particle stability, and resistance 
to disinfection procedures [64, 91, 202, 235].
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2.1  Source, Route of Exposure, and Transmission

High concentrations of viruses are excreted in the feces and urine of individuals, 
turning untreated sewage into the largest carrier of those pathogens and the carrier 
of a wide variety of viruses unknown to us [6, 36].

During the peak of infection, individuals may excrete enteric viruses at high 
levels (1011 virus/g of feces), and according to studies conducted worldwide, they 
are present in raw and treated sewage samples in concentrations reaching 104–109 
and 102–107 viruses per liter, respectively [21, 38, 65, 76, 93, 132, 134, 203].

Enteric viruses can be transmitted by water, food, fomites, and human contact. 
The discharge of viral agents via sewage in natura represents a risk of infection for 
the population through several routes, including intake of contaminated drinking 
water and in recreational waters after direct skin contact or by accidental ingestion. 
They can also be acquired after consumption of shellfish harvested from contami-
nated waters or vegetables cultivated or irrigated with water contaminated by sew-
age [24, 202].

Another source of contamination is the transfer of infectious virus particles on 
animate or inanimate surfaces, such as hands or work surfaces used for food prepa-
ration or directly from the hand to the mouth [147, 208]. The surfaces can be con-
taminated directly by feces, urine, vomit, saliva, blood, and respiratory secretions 
and by settling of aerosols from infected persons or indirectly by transfer between 
different types of surfaces [211]. The transmission of NoV by asymptomatic food 
handlers is well known as an important cause of foodborne outbreaks, especially on 
cruise ships [15, 165, 249].

2.2  Methods for Viruses Recovered from Environmental 
Samples

Virus analysis in environmental samples requires several steps, including sampling 
collection, clarification, concentration, and decontamination/removal of inhibitors, 
followed by virus detection methods [25]. Natural inhibitors present in environmen-
tal samples, such as humic and fulvic acids, heavy metals, and polyphenols, are well 
recognized by interfering with enzyme amplification of nucleic acids affecting the 
efficiency of PCR. The use of a process control virus (PCV) before the viral concen-
tration step is an important tool to exclude false-negative reactions [113, 117, 146, 
199, 209, 225].

A genetically modified lineage of mengovirus has been proposed in ISO/TS 
15216 as PCV, although other viruses, such as feline calicivirus (FCV), murine 
norovirus 1 (MNV-1), and bacteriophages (MS2, PP7), have also been evaluated in 
food and water samples [8, 127, 143, 146, 214, 226, 227, 243, 264]. In Latin 
America, bacteriophage PP7 has been the most used for virus analysis, highlighting 
its easy propagation for virus stocks [27, 73, 83, 179, 182].
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Different methods based on virus properties as adsorption/elution (ionic charge 
of the viral particle), ultrafiltration (particle size), and ultracentrifugation (density 
and coefficient of sedimentation) associated with cell culture and molecular assays 
have been successfully used for recovering virus from environmental matrices [2, 
35, 64, 118, 125, 178, 269]. Although viral genome detection does not provide 
information on infectivity, PCR, for reasons of its high sensitivity, specificity, and 
speed, has been considered a good technique for environmental monitoring, espe-
cially for allowing the cumbersome detection of viruses that do not propagate in cell 
culture assays [93]. The low stability of RNA free in the environment suggests that 
molecular methods detect intact viral particles, not free viral genome [37, 94, 269]. 
However, because infectivity is directly related to human health risk, methodologies 
able to distinguish infectious and noninfectious particles such as the integrated cell 
culture–PCR assay (ICC-PCR), viral mRNA detection [41, 130, 194, 195], and 
enzymatic treatment protocols [133, 169, 237] have been selected for assessing 
environmental samples. More recently, fluorescent dyes such as ethidium monoaz-
ide (EMA) or propidium monoazide (PMA) have also been used to discriminate 
infectivity in food and water samples [54, 77, 161, 174, 184, 191].

Diverse protocols for detecting viruses in sediments, sewage sludge [13, 92, 100, 
101, 130, 136, 209], surfaces [79, 80], and food matrices [7, 26, 29, 70, 135, 141, 
160, 207, 226–229] have also been developed. For food matrices, the International 
Organization for Standardization (ISO) set up methods of elution concentration for 
recovering and detecting qualitatively and quantitatively NoV and HAV in four 
classes of food, including drinking water, fruits and vegetables, food surfaces, and 
bivalve mollusks [120, 121]. More recently, novel methods for molecular detection 
of viruses using a PCR digital and nanofluidic real-time PCR system have been suc-
cessfully used to quantify enteric viruses in water and food samples [44, 128, 189].

Studies conducted in Latin America have contributed to the establishment and 
evaluation of virus recovery methodologies in water matrices [73, 187, 251], sludge 
[182], and foods such as oysters, cheese, leafy vegetables, and fruits [28, 47, 74, 
152, 221] and on different surfaces such as rubber and porous and nonporous formic 
[83]. They have also demonstrated enteric virus infectivity in freshwater, groundwa-
ter, and drinking waters, sediments, swine manure, and biofertilized soil and sur-
faces [55, 66–69, 81, 82, 159, 250].

2.3  Persistence and Disinfection

Temperature, ultraviolet (UV) light, salts, organic matter, air–water interfaces, and 
biological factors such as aquatic microflora are important factors for controlling 
the survival of enteric viruses in water that usually remain stable for months or lon-
ger when associated with particulate matter in water and sediments [89].

Processes such as coagulation, flocculation, sedimentation, activated sludge, and 
filters applied in wastewater treatment plants (WWTPs) are able to remove around 
90–99% of the viral load present in wastewater [170, 242]. Further removal of 
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microbiological contaminants is dependent on subsequent disinfection with chlo-
rine tertiary treatment, UV, and ozone [157, 218–220, 234]. Viral load removal effi-
ciency in WWTP depends on the applied and combined processes. Dispersion to 
aquatic ecosystems in concentrations sufficient to threaten human health is consid-
ered an issue related to the difficulty of elimination of viruses [4, 25, 64, 71, 97].

Current studies have demonstrated that viral particles can persist for long periods 
on surfaces such as medical devices, fomites, and human skin [1, 212, 236], sug-
gesting that they have an important role in the spread of respiratory and enteric viral 
pathogens in hospitals and children’s daycare facilities [39, 78–80, 190, 213]. 
HAdV in fomites has been described as resistant to hospital disinfection proce-
dures, when recovered from inanimate surfaces from 7 to 90 days, whereas RVA 
remains viable on inanimate surfaces for periods between 6 and 60 days [131, 206].

In Latin America, a few studies on persistence and/or disinfection have been 
conducted, mainly to evaluate accumulation and persistence in shellfish, especially 
in depuration tanks. In Chile, HAV persistence was demonstrated in the mussel 
Mytilus chilensis for about 7 days [56]. Studies on mollusk depuration tanks cou-
pled with UV irradiation revealed the stability of HAdV2, MNV-1, and HAV in 
seawater samples [48] and demonstrated that 96 h of UV treatment could eliminate 
HAV and HAdV5 in oysters [43]. Recombinant AdV expressing green fluorescent 
protein as a model to evaluate disinfection was used to assess the efficiency of free 
chlorine disinfection in filtered water samples [168] and the effect of UV light in 
seawater and in shellfish depuration tanks [86].

2.4  Water Quality and Microbial Source Tracking Indicators

Bacterial indicators including Escherichia coli, Enterococcus sp., and Clostridium 
perfringens have been used for conventional microbiological monitoring of water 
quality. However, those indicators present some limitations such as sensitivity to 
inactivation methods when compared to other pathogens as well as the ability to 
multiply in some environments [23, 104, 122]. Viral water or foodborne diseases 
have also been reported when those matrices are compliant with the current bacte-
rial standards, generating a global consensus regarding the lack of correlation 
between bacterial contamination and viral presence [24, 71, 90, 106, 175, 186, 261]. 
Moreover, those bacteria are not of exclusive fecal origin, becoming unproductive 
when used to identify sources of contamination and to determine the real risk to 
public health by contact with these environments [22]. With this background, bacte-
riophages and human enteric viruses are emerging as alternative indicators for fecal 
contamination [85, 122, 196, 248], becoming the last one indicated as a promising 
tool for microbial source tracking (MST) analysis because of its host specificity [22, 
64, 116]. Viruses are easily distinguished based on differences in gene sequences 
common to different species of the same genus. For example, genes of the hexon 
and fiber of AdV have been used to detect different species [266].
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DNA genome viruses such as HAdV and JC polyomavirus (JCPyV) have been 
described as indicators of fecal contamination of human origin. Factors such as high 
prevalence, stability in the environment, association to persistent infections, and 
excretion throughout the year in different geographic regions have contributed to 
this distinction [21, 22, 91, 109, 149, 178]. For animal species, avian parvovirus, 
bovine AdV, EV, and PyV, goat and swine AdV, and PyV have been used as a MST 
tool [40, 114–116, 204, 265, 267, 268].

A few studies conducted in Brazil and Mexico have reported coliphages as good 
indicators of fecal pollution in seawater and water used for irrigation [12, 31, 57, 
95]. The high level of HAdV and JCPyV detection found by environmental surveil-
lance studies conducted in Argentina and Brazil supports the usefulness of viruses 
to monitor contamination [72, 76, 238, 257] and revealed the human source of con-
tamination in the waters of Negro River in the city of Manaus [205]. In Mexico, 
Bacteroidales 16S rRNA gene sequences were used to indicate fecal contamination 
in fresh produce [192].

2.5  Data on Environmental Occurrence in Latin America

Distribution and prevalence of viruses of human health concern in water resources 
is highly variable and dependent on the community’s epidemiological profile and 
geographic conditions, including seasonality, socioeconomic issues, and specific 
environmental conditions as well as the source of contamination [110].

2.5.1  Sewage, Sediment, and Sludge

Currently, the monitoring of wastewater is considered an important tool for under-
standing the incidence, distribution, and seasonality of viral agents circulating in 
certain geographic areas. In some regions, virus identification from raw sewage is a 
major source of data for epidemiological studies providing phylogenetic analyses 
[239, 255] and reports of the first description of viruses in the country, as observed 
for KV in Brazil [34] and for new astrovirus MLB1, canine NoV GVII, and AiV in 
Uruguay [32, 138, 139]. Table 6.1 summarizes virus data obtained from sewage 
samples in Latin America.

Environmental surveillance from raw sewage samples was also conducted to 
monitor the circulation of virus strains prevented by vaccines. For WHO, environ-
mental monitoring of PV is recommended as a complementary surveillance activity 
of cases of acute flaccid paralysis (AFP), which is currently recognized as one of the 
main activities included in poliomyelitis eradication efforts. Systematic monitoring 
of environmental samples aims to evaluate the effects of vaccination programs on 
the emergence of a vaccine-derived poliovirus (VDPV) as well as to detect the 
movement of PV through sewage sampling [49, 58, 96, 145, 232, 240, 241].

6 Environmental Virology
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Environmental monitoring for RVA strains was also carried out in countries that 
include the rotavirus vaccine for immunization schedules. In Brazil, RVA detection 
from sewage samples obtained in an urban area in Rio de Janeiro demonstrated 
fluctuation in the RVA genotypes after the introduction of RV1 vaccine in the 
National Immunization Program, in 2006 [75]. In Nicaragua, the impact of the pen-
tavalent RV5 vaccine was also evaluated by investigating RV dissemination in urban 
and hospital wastewaters of the city, demonstrating that RVA dissemination 
decreased in the community 2 years after the introduction of a vaccination program 
[30]. The importance for RV vaccine strain surveillance in the environment regard-
ing the potential occurrence of unexpected infections and virus genomic reassort-
ments was highlighted by the evidence of its infectivity and high stability in water 
samples [163].

Studies have also reported enteric viruses from sludge and sediments. HAdV, 
RVA, NoV, PV, and HAV were detected in sewage sludge samples from WTTPs 
using conventional activated sludge treatment after anaerobic digestion [181, 182, 
215]. HAdV and RVA were detected from sediment samples obtained in the catch-
ment area of Peri Lagoon, Santa Catarina State, Brazil [55].

2.5.2  Surface and Drinking Waters

Viral concentrations reaching levels of 108 genome copies/l in fresh and brackish 
waters indicate how the basic sanitation deficiency in Latin American countries 
threatens the health of the exposed population, mainly because of the use of these 
waters for recreational purposes (Table 6.2). For marine recreational waters, studies 
conducted in Brazil demonstrated RVA, NoV, JCPyV, HAV, and infectious HAdV in 
the beaches of Florianopolis [164, 198, 253] and Rio de Janeiro [258]. Investigation 
of enteric viruses during two rainfall events showed a greater permanence of viruses 
compared with bacterial indicators, highlighting their use as a parameter to deter-
mine the microbiological quality of recreational waters. Infectious HAdV, EV, HAV, 
and NoV were also detected in marine waters in Mexico [59, 210].

HAV outbreaks caused by consumption of drinking water have been described in 
the region based on epidemiological studies, bacteriological parameters [217, 230], 
and by direct detection of virus from tap-water samples [259]. Additional studies 
reported other enteric viruses such as NoV, RVA, EV, HAdV, and torque teno virus 
(TTV) in tap water [99, 129, 162, 198, 200, 216, 224, 246, 253] and demonstrated 
the infectivity of HAdV in waters for human consumption using plaque-forming 
assay and ICC-PCR [67, 69, 87, 159].

2.5.3  Shellfish, Crops, Irrigation Water, and Other Foodstuffs

During the past decades, enteric virus genomes have been detected in shellfish (oys-
ters, clams, and mussels) obtained directly from different aquatic environments 
such as marine farm crops and mangroves or commercial operations. RVA, HAV, 
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NoV, and HAdV have been detected in Crassostrea gigas cultivated in marine farms 
in Brazil [197, 198, 221, 223] and in samples obtained from the Central Food Supply 
Station of Mexico City (30%; 10/30) [188]. In Mexico, RVA, HAV, and NoV were 
also detected from fruits and vegetables in different supermarkets around the coun-
try [173, 188]. In Brazilian mangroves, HAdV and RVA genomes were detected by 
nRT-PCR in 100% of the mussels studied [126].

In Brazil, NoV GI and GII were identified in food samples (herbed butter, cheese, 
white sauce) served on a cruise ship, indicating these products as sources of the 
outbreak [165], and in cheeses acquired in markets in Rio de Janeiro [151]. 
Infectious HAdV was detected in strawberries and in organic products such as let-
tuce and green onions [142, 152]. HEV RNAs were detected in pork products such 
as flavored pâté (ham, meat, bacon) [107].

Concerning food safety, irrigation water should also be considered. In the south 
of Mexico City, RVA and HAstV were detected in approximately 10% of the water 
samples analyzed that were used for cultivation of flowers and vegetables [57]. In 
Brazil, HAdV and RVA were detected in groundwater used for irrigation and human 
consumption [69].

2.5.4  Surfaces

Brazil was the pioneer in Latin America for studying viral contamination on sur-
faces and fomites. In a hospital intensive care unit in Rio de Janeiro, RVA and 
HAdV detection and viability were demonstrated from surface samples [81, 82]. In 
monitoring of surfaces and fomites of two units of a public hospital, including a 
neonatal intensive care unit and a pediatric ward, the same group showed a signifi-
cant lower percentage of viruses in the intensive care unit, reflecting concerns for 
health professionals and families related to hygiene issues [84]. In another study 
conducted in Sinos Valley region, south of the country, HAdV contamination was 
observed in 62% (20/32) of samples from surfaces obtained in internship units and 
in emergency and operating rooms [244].

3  Future Challenges

Prevention of transmission of infectious diseases by exposure to contaminated 
water remains one of the main tasks for professionals of public healthcare and envi-
ronmental health and can be accomplished by associating risk analysis studies that 
estimate the risk and identify vulnerable individuals and its implications in health, 
places, and routes of exposure to effective management measures [102, 154]. In 
Latin America, two studies conducted in Argentina and Brazil are pioneers to assess 
the quantitative risk for RVA infection through contact with surface waters [185, 
256]. However, to overcome this challenge, Latin American countries should expand 
their regulatory actions and networks. The publication of new ordinances that 
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support viral diagnosis from environmental samples when epidemiological data 
suggest water or foodborne transmission, as well as the establishment of a low-cost 
method able to be used on a large scale, could accelerate advances in the region. 
However, it is worth remembering that basic sanitation interventions are the main 
preventive actions for reducing the diarrheal disease burden [231, 247].
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1  Introduction

Hepatitis A virus (HAV) and hepatitis E virus (HEV) infections are clinically and 
epidemiologically similar in many aspects. Both viruses are primarily transmitted 
by the fecal–oral route and are able to cause large outbreaks via contaminated water 
and food. HAV and HEV infections often follow a silent clinical course, and symp-
tomatic cases are usually self-limiting. Clinical features range from asymptomatic 
to acute hepatitis and even to acute liver failure (ALF).

The World Health Organization (WHO) estimates the occurrence of about 1.5 
million clinical cases of hepatitis A and 3.4 million symptomatic cases of hepatitis 
E worldwide every year. HEV genotypes 1 and 2, alone account for approximately 
20.1 million HEV infections, 70,000 deaths, and 3,000 stillbirths annually [1, 2].

Concerning HAV infection, improvement in hygiene, sanitation, and socioeco-
nomic conditions, as well as the implementation of universal hepatitis A vaccine 
programs, are of great impact in the epidemiological patterns of disease, with a shift 
from high to moderate in several South American countries, including Argentina, 
Brazil, Chile, and Uruguay. However, the infection rates may vary markedly from 
country to country or even within the same country [3–7].

HEV infection is now recognized as the major cause of acute viral hepatitis 
worldwide, mainly in endemic areas of Africa and Asia, where it is associated with 
large waterborne outbreaks. In the so-called developed world, the burden of 
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 autochthonous HEV infection has been long underestimated. Nevertheless, it is now 
clear that the epidemic HEV occurring in endemic regions differs markedly from 
HEV infection locally acquired in developed countries. The former is caused by 
genotypes 1 (HEV-1) and 2 (HEV-2), and the latter is caused by genotypes 3 (HEV-
3) and 4 (HEV-4). As previously reported, HEV-3 and HEV-4 are of zoonotic nature, 
and pigs are the major reservoir [8–10].

Finally, it is now accepted that HAV and HEV present considerable differences 
regarding their natural history and epidemiology. In contrast to HAV, HEV does not 
cause self-limiting acute hepatitis only. Recent studies have shown that HEV can 
cause persistent infection that may evolve to chronic hepatitis and fibrosis in immuno-
suppressed patients, mainly in solid organ transplant (SOT) recipients [11–13]. Still, 
our understanding of the clinical phenotype of HEV infection in humans is not clearly 
understood.

2  Hepatitis A Virus

Hepatitis A virus (HAV) is a small non-enveloped virus classified in the genus 
Picornavirus within the family Picornaviridae. The viral genome comprises a 
single- stranded RNA approximately 7.5 kilobases (kb) in length, containing a sin-
gle open reading frame (ORF) flanked by a short 3′-noncoding region of 40–80 
nucleotides followed by a poly-A tail and a typical 5′-noncoding region containing 
an internal ribosomal entry site (IRES) [14, 15]. The ORF is translated into one 
single polyprotein of 2225–2227 amino acids [14]. The ORF amino-terminus third 
(P1) encodes the structural capsid proteins VP2, VP3, and VP1. In contrast to other 
Picornaviridae, the VP4 polypeptide has not yet been demonstrated [16].

The genetic heterogeneity among HAV strains has allowed its classification into 
genotypes and sub-genotypes by using partial sequences corresponding to different 
genome regions. In 1992, Robertson and colleagues selected a short segment (168 
nucleotides) of the VP1/2A junction region to analyze 152 HAV isolates from the 
United States of America (U.S.) and Asia [17]. This pioneering study, which did not 
include samples from other regions of the world such as South America and Africa, 
resulted in the classification of the virus in seven genotypes (I to VII).

Further, an alternative method using the complete sequence of the VP1 region 
(900 nucleotides) classified HAV in five genetic groups [18]. This study had not 
included the JM-55 strain (genotype VI) nor those previously classified as genotype 
IIIB. Therefore, the compilation of these studies led to the current classification of 
HAV in six genotypes: three of human origin (I, II, III) and three of simian origin 
(IV, V, VI), the latter found in some species of Old World monkeys [18, 19].

The geographic distribution of HAV genotypes varies. Genotype I is of global 
distribution, with a predominance of sub-genotype IA [17, 20]. In North America, 
as well as in China, Japan, and several countries in Europe, sub-genotypes IA and 
IB are the most frequent. In South America (except Brazil), sub-genotype IA is of 
exclusive circulation. Co-circulation of several sub-genotypes has been reported in 
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some regions, such as the simultaneous occurrence of sub-genotypes IA and IB in 
France and IA and IIIA in India [20]. In Brazil, several studies analyzing sequences 
from VP1/2A junction revealed co-circulation of sub-genotypes IA and IB in Rio de 
Janeiro [21–24], Pernambuco [25], Amazonas [26], and Goiás [27].

Only a few complete nucleotide sequences of the HAV genome are currently 
available. The complete sequence of the HAF-203 strain, isolated in Brazil and 
adapted in cell culture [28, 29] was classified into the sub-genotype IB [30]. The high 
homology observed between the HAV strain HAF-203 and HM-175 (99.7%), attenu-
ated HM-175 (99.5%), and MBB (94.8%) is suggestive of a common ancestry [31].

HAV exhibits a considerable diversity of nucleotide sequences among isolates 
from different regions of the world [17, 18, 32]. However, in relationship to amino 
acid sequences, a high degree of conservation among samples of human origin is 
observed, explaining the low antigenic diversity of HAV and therefore the existence 
of one serotype. Phylogenetic studies using the complete sequence of HAF-203 
strain revealed ten nucleotide substitutions associated with amino acid changes, and 
three resulted in conservative substitutions within genes encoding proteins VP1, 2C, 
and 3D [30]. It is likely that such mutations have contributed to adaptation of the 
virus in cell cultures, however, not affecting its phenotype [30], remaining infec-
tious when transmitted experimentally to Callithrix jacchus (marmoset) and Saimiri 
sciureus (squirrel monkey) [33, 34].

A high degree of antigenic conservation was also observed among genetically 
divergent HAV strains, such as the human HM-175 (genotype I) and the simian 
PA-21 (Panama, genotype III, Panama), recovered from a naturally infected owl 
monkey (Aotus trivirgatus) [35]. Experimental infection in nonhuman primates also 
showed a high level of cross-protection between those strains [35]. On the other 
hand, isolates from Old World monkeys, belonging to genotypes IV, V, and VI, 
showed significant antigenic differences related to amino acid substitutions in regions 
coding VP3 and VP1 proteins containing the major neutralizing epitopes [36, 37]. In 
fact, “escape mutants” selected from the HM-175 adapted for cell culture were not 
neutralized by monoclonal antibodies specific for HAV of human origin [38–40].

3  Replicative Strategies of Hepatitis A Virus

The first step of HAV replication, after uncoating, is the synthesis of its single poly-
protein, which is directed by the IRES region, located in the last domain of the 
5′-non-coding region. Different from other picornaviruses, HAV displays poor 
growth in cell culture, which can be explained by its inefficient ribosome entry site 
(IRES) [41]. Differing from other genera of the Picornaviridae family, HAV does not 
code for the proteases 2A and L, the enzymes responsible for the cleavage of the cel-
lular translation initiation factor eIF4G, thus competing very poorly for the cellular 
translational machinery [42]. Another difference between HAV and other picornavi-
ruses is its unique codon usage, which has evolved to be complementary to that of 
human cells and thus results in an increment of rare codons used by HAV [43]. The 
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optimized HAV codon usage contributes to its slow replication and to its low yields, 
and consequently allows the virus to grow in a quiescent way. Such a unique strategy 
may also contribute to the modulation of the antiviral cell response [44].

4  Hepatitis E Virus

Hepatitis E virus (HEV) is a small, non-enveloped virus, with a single-stranded posi-
tive-sense RNA genome of approximately 7.2 kb organized in three open reading 
frames. ORF1, at the 5′-end of the genome, encodes nonstructural proteins, such as a 
methyltransferase (which caps the 5′-end of the genome), a papain-like cysteine pro-
tease, a hypervariable region (HVR), and a RNA-dependent RNA polymerase; ORF2, 
at the 3′-end of the genome, encodes the major viral capsid protein; ORF3, which 
partially overlaps ORF1 and ORF2, encodes a small regulatory phosphoprotein that is 
suggested to act as an adapter to link the intracellular transduction pathways [45, 46].

In the early 1980s, HEV was first identified as the etiological agent of enterically 
transmitted non-A and non-B hepatitis and associated with waterborne epidemics 
that occurred in New Delhi [47] and in the Kashmir valley [48, 49]. Virus particles 
were first visualized by immunoelectron microscopy in the feces of an experimen-
tally infected volunteer [50]. The virus was successfully transmitted to cynomolgus 
monkeys, and its genome was cloned and characterized in 1991 [51, 52]. Subsequent 
studies confirmed the existence of HEV variants genetically related although epide-
miologically distinct. The first HEV strain isolated from an animal host was recov-
ered from a pig in the United States [9]. The perception of pigs as potential reservoirs 
for HEV opened up a new perspective over its epidemiological pattern, especially in 
countries that previously reported imported cases only. A number of studies con-
ducted in endemic and nonendemic areas showed the enzootic pattern of HEV 
transmission among swine and wild animals. Recently, a meta-analysis study 
assessing HEV prevalence in Europe confirmed the link between exposition to 
swine and wild animals and higher seroprevalence rates of anti-HEV in comparison 
with those observed in the general population [10, 53, 54].

HEV was also detected and characterized from other mammals such as wild 
boar, deer [55–57], cattle [58], camel [59], rabbit [60], rodents [61, 62], ferret [63], 
mongoose [64], moose [65], minks [66], foxes [67] and bats [68]. Further, the 
complete genome of the cutthroat trout virus (CTV), isolated in 1988, was related 
to HEV [69]. Additionally, HEV-related virus has been isolated from chickens and 
turkeys [70, 71]. A significant prevalence has been observed in chicken flocks in 
Europe, the United States, and Asia. In chickens, HEV has been associated with 
big liver and spleen disease (BLS) or hepatitis-splenomegaly (HS) syndrome, ovar-
ian regression, diarrhea, and other pathogenesis [72]. Phylogenetic analysis has 
shown that avian HEV is genetically related to but distinct from other known HEV 
strains described. Indeed, avian HEV infection was not successfully reproduced in 
nonhuman primates [73, 74].
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The discovery of HEV-related viruses infecting rabbits [60] and wild boars [75], 
HEV-like viruses (described in rats, ferrets, and bats), and an even more divergent 
virus, such as the cutthroat trout virus, propitiated the proposal of a consensus clas-
sification. The proposed classification, which established genus and species, 
respects the different levels of divergence between the cutthroat trout virus and all 
other herpesviruses. According to the International Committee on Taxonomy of 
Viruses (ICTV) Hepeviridae Study Group, all HEV are classified in the Hepeviridae 
family with two genera: Orthohepevirus with four species (A–D) and Piscihepevirus 
with a single species (A). Strains found in humans, pigs, wild boars, rabbits, cer-
vids, mongooses, and camels are classified into the Orthohepevirus A; strains from 
chickens are classified into the Orthohepevirus B; Orthohepevirus C encompasses 
strains found in rats (HEV-C1) and ferrets (HEV-C2); and the bat strain is classified 
into Orthohepevirus D.  Also, Orthohepevirus A is divided into four genotypes, 
which are genotypes HEV-1 and HEV-2, including only strains identified in humans, 
and genotypes HEV-3 and HEV-4, that have been isolated both from humans and 
from different animal species, and are associated with zoonotic transmission. 
Genotypes HEV-5 and HEV-6 were found in wild boars in Japan and genotype 
HEV-7 in dromedary camels in Dubai. The new HEV strains, recently isolated from 
elks, foxes, and minks, may represent new members of the Hepeviridae family [76].

5  Replication of Hepatitis E Virus

Studies on HEV replication strategy are hampered by the limited efficiency of the 
cell culture models currently available. Besides the successful propagation of HEV 
in human liver cell lines, HepG2/C3A and PLC/PRF/5 and the human lung carci-
noma cell line, A549 [77, 78], knowledge of a replicative cycle is hampered by its 
inefficient and slow replication. Recently, the 47832c strain, which was isolated 
from a transplant patient chronically infected with HEV genotype 3, was improved 
by the generation of the clonal cell line A549/D3 [79]. Improvements in cell line 
susceptibility have been also described by other authors [80]. Even so, cellular tar-
gets to virus entry have already been identified, but a really efficient cell culture 
system has not yet been reached.

6  Hepatitis A Epidemiology in Argentina

In Argentina, a large nationwide outbreak of hepatitis A occurring in 2003–2004 
alerted the health authorities to the need of implementing the national immunization 
program to include the inactivated hepatitis A vaccine [81]. The outbreak affected 
mainly children aged 5 to 9 years old living in the northern and western regions of the 
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country. Of note, HAV-associated acute liver failure (ALF) was the major indication 
for liver transplantation in pediatric patients [82, 83]. Also, previous age- related prev-
alence studies [84], as well as age-related incidence data reported to the National 
Surveillance System, supported the implementation of a universal immunization pro-
gram targeting 12-month-old children.

Routine hepatitis A immunization in Argentina, based on a single-dose regimen 
of inactivated hepatitis A vaccine, started in June 2005 and reached a national cov-
erage of 95% in 2006. Since then, a very significant decline in the incidence rates 
has been observed in all age groups as well as in fulminant hepatic failure (FHF) 
and liver transplantation cases with reduction of 88.1% when compared with the 
pre- vaccination period [85]. Moreover, 5 years after vaccination, high seroprotec-
tion rates (99.7%) observed in children who received the first dose (without 
booster) confirmed the long-lasting sustained protection after a single-dose regi-
men [86], thus supporting recommendations in favor of such strategy long used in 
countries experiencing a shift from high to intermediate levels of HAV infection 
endemicity. The latest notification data showed a sharp decrease in the incidence of 
hepatitis A (number of cases per 100,000 inhabitants), ranging from 113.3 in 2004 
to 1.4 in 2011 and 0.5 in 2012 [87].

7  Hepatitis A Epidemiology in Brazil

The epidemiology of hepatitis A is changing in Brazil, particularly in urban areas 
where improved sanitation and living standards contributed to significantly reduce 
HAV exposition in childhood, with consequent increase of symptomatic disease in 
adolescents and young adults. In fact, HAV incidence rates have declined in Brazil 
since the end of the 1990s, according to the National Disease Notification System 
(SINAN). During the period from 1990 to 2010, nationwide incidence rates dropped 
from 5.6 to 3.1 cases per 100,000 inhabitants [88].

A Brazilian population-based study conducted in 2005–2009, in a pre- vaccination 
context, disclosed two epidemiological scenarios, with areas of low endemicity 
(South and Southeast regions) and intermediate endemicity (North, Northeast, 
Midwest, and Federal District). Areas of intermediate endemicity showed an anti- 
HAV prevalence of 68.8%, with higher infection force in subjects 10 to 19 years old, 
whereas in the South and Southeast regions, seroprevalence was 33.7%, with higher 
infection force in the 20- to 29-year-old cohort [89].

The national population-based data are consonant with a number of region-
wide studies pointing to an age-related increasing exposition to HAV and there-
after indicate that HAV epidemiology in Brazil is shifting from a high to 
intermediate and low endemicity levels [4, 89–92]. These studies were used as 
baseline data for implementation of the National Program of Immunizations 
(PNI) of the Brazilian Ministry of Health with the introduction of the single-
dose hepatitis A vaccine for universal immunization of children 12 to 23 months 
old in July 2014 [93].
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8  Hepatitis E Epidemiology in Brazil and in South America

In contrast with hepatitis A, the occurrence of waterborne/foodborne epidemics 
of HEV infection has not been detected in Brazil or in Argentina [94–96]. By 
using nucleic acid techniques as a means of identifying sources of virus trans-
mission, only a single locally acquired case of acute hepatitis E in an immuno-
competent patient was described in Rio de Janeiro, Brazil [97]. This autochthonous 
human HEV strain was isolated from a symptomatic patient who seroconverted 
to anti- HEV IgM and IgG, with HEV RNA detected by PCR, and subsequently 
classified into the subtype 3b. Phylogenetic and cause–effect analysis linked to 
zoonotic transmission by ingestion of undercooked pork meat, likely contami-
nated with HEV-3, which circulates widely among Brazilian pig herds [98–101]. 
HEV has also been detected in pigs of commercial farms in many provinces in 
Argentina [96, 102].

Several countries in South America, including Argentina, Brazil, Bolivia, 
Venezuela, and Uruguay, have reported the detection and characterization of HEV 
strains. Only three isolates were classified within genotype 1, two from Venezuela 
and one from Uruguay [103]; the remaining 70 published strains were indigenous 
isolates belonging to genotype 3 [94, 104–106].

A few sporadic cases of HEV infection have been identified (on the basis of HEV 
RNA and/or IgM and IgG antibody detection) in Brazilian immunosuppressed patients, 
such as in parenchymal organ transplant receptors [107–109], and in Argentinean chil-
dren with acute liver failure [110]. Therefore, acute sporadic cases of HEV infection 
seem to be infrequent in South America. However, recent studies have reported HEV 
detection in river water, in raw sewage, and in the effluent of slaughterhouses [96, 106].

9  Pathogenesis of Hepatitis A

Acute HEV infection is clinically indistinguishable from hepatitis A, showing a 
wide range of clinical manifestations that may vary from asymptomatic or subclini-
cal to a fulminant outcome. In contrast with hepatitis A, some patients become per-
sistently infected and develop chronic hepatitis, progressing to fibrosis and cirrhosis 
under immunosuppressive conditions [111, 112]. In general, both viruses cause 
self-limiting hepatitis.

After ingestion, viral particles cross the gut barrier, reaching the liver parenchyma 
by portal tract replicating in the hepatocytes before being excreted with bile to the 
intestine. The extrahepatic sites of replication are not well defined; however, HEV 
replication in the enteric tract and human placenta has been reported for HEV [113–
116]. HAV replication in the gastrointestinal tract has yet to be confirmed [117, 118], 
although it has already demonstrated in the polarized human intestinal epithelial cells 
[119], kidneys, spleen, and lymph nodes from experimentally infected primates, as 
well as in the epithelial cells of the intestinal crypts and in cells of the lamina propria in 
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the small intestine of orally inoculated owl monkeys and marmosets [120–123]. In the 
same study, HAV antigen (HAVAg), besides being detected in the liver, was also 
detected in the kidneys and spleen but not in pharyngeal tissues of owl monkey [124, 
125] that were correlated with the ubiquitous expression of huHAVcr-1-specific recep-
tor in different human cells, working as a functional cellular receptor to HAV [126].

Hepatitis A virus is classically described as a noncytopathic virus in cell line cul-
tures. It has been adapted to diverse primate and nonprimate cell lines [28, 127–130], 
although HAV does not seem to persist in  vivo after an acute HAV infection, as 
observed with other hepatotropic viruses, such as hepatitis E, B, and C viruses [131]. 
Recently, HAV cellular receptors, T-cell Ig and mucin domain 1 (TIM-1), were iden-
tified, thus clarifying how the HAV genome is released from the viral particle and 
initiates an infection. In addition, that the virus is released in a non-lytic manner 
within exosomes was recently reported. This fact has opened up a new paradigm on 
the transmission of infection mechanisms within infected individuals [132, 133].

The mechanism of HEV replication is not well understood because of the limita-
tions of the cell culture line systems; however, dose-dependent HEV infectivity was 
confirmed by experimental infection in animal models [134, 135]. The PLC/PRF/5 
cell line showed limited permissiveness during long-term culturing for HEV infec-
tion [136], and the A549-derived subclonal cell line supports more efficient HEV 
replication [79]. It was shown that HEV entry depends on endocytic processes asso-
ciated with dynamin-2, clathrin, membrane cholesterol, actin, and the 
phosphatidylinositol- 3-kinase/Akt pathway in an early post-entry step of viral repli-
cation [137]. The HEV-infected A549-derived subclonal cell line allowed under-
standing of the mechanism by which HEV inhibits interferon (IFN)-α signaling 
through regulation of STAT1 phosphorylation without showing detectable cytopathic 
effects [138] and that HEV-1, through ORF3, may transiently activate NF-κB through 
UPR in early stages and subsequently inhibit TNF-α-induced NF-κB signaling in the 
late phase so as to create a favorable virus replication environment [139].

10  Pathogenesis of Hepatitis E

Similar to HAV, the mechanism of HEV-induced liver injury is described as immu-
nomediated; however, the severity of HEV infection is dose dependent [135]. In 
human patients with acute hepatitis E, the characterization of liver-infiltrating lym-
phocytes pointed predominant CD 8+/CTLs in similarity with other noncytopathic 
hepatotropic virus (HAV, HBV, HCV). The virus itself is not cytopathic, but liver 
damage is caused by the host immune reaction [140].

Acute liver failure (ALF) is a clinical syndrome resulting from the massive death of 
liver cells induced by agents such as viruses, drugs, and autoimmune responses with a 
high mortality rate. ALF is associated with a critical degree of a liver  histological lesion 
not adequately balanced by a regenerative hepatocellular  activity. It is mainly charac-
terized by the abrupt appearance of encephalopathy and coagulation disturbances. 
Thus, ALF presents extremely high mortality rates, and liver transplantation is the cho-
sen treatment because it is the only promising therapeutic procedure available.
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Both HAV and HEV infections may induce ALF. In pregnant women infected 
with HEV in the first trimester, the elevated mortality rate (30%) was justified by 
illness progression to liver failure [132]; however, HEV-induced ALF was never 
confirmed in another country beyond India and Pakistan [133]. We have demon-
strated that NKT cells, activated lymphocytes, and an array of cytokines such as 
interleukin (IL)-10, interferon (IFN)-γ, (IL)-6, and tumor necrosis factor (TNF)-α 
are released in the liver injury [141]. We also demonstrated that mitochondrial prod-
ucts and ATP work as chemoattractants to granulocytes, contributing to an extensive 
liver lesion in HAV-induced ALF patients [142].

HEV-induced ALF during pregnancy is associated with high rates of preterm 
labor and mortality [143]. The precise reason for increased susceptibility to HEV 
infection during pregnancy is still an enigma [144, 145]. The role of both, mono-
nuclear cells and macrophages, are impaired in pregnant HEV-induced 
ALF. Reduced toll-like receptor (TLR3 and TLR7) expression and TLR down-
stream-signaling molecules in pregnant HEV-induced ALF suggest that inade-
quate triggers of the innate immune responses contribute to the development and 
severity of the illness [146]. Additionally, HEV ORF3 protein has inhibited the 
expression of proinflammatory cytokines [TNF-α, interleukin (IL)-1β, IL-6, 
IL-8, IL-12p40, and IL-18] and chemotactic factors [nitric oxide (NO), inter-
feron-inducible protein-10 (IP-10), macrophage inflammatory protein (MIP)-1α, 
monocyte chemoattractant protein-1 (MCP-1), granulocyte colony-stimulating 
factor (G-CSF), and granulocyte macrophage colony-stimulating factor 
(GM-CSF)] in lipopolysaccharide (LPS)-stimulated human PMA-THP1 cells. 
Moreover, the inhibition produced corresponding upregulation of IκBα and 
downregulation of phosphorylated IκB kinase IKKɛ (p-IKKɛ) and phosphory-
lated nuclear factor (NF)-κB (p-NF-κB). These antiinflammatory properties 
might be of great importance to clarify the role and mechanism of macrophages 
in chronic HEV infection and cirrhosis [147].

The potential for xenogeneic transmission of HEV from animals to humans via 
organ, tissue, or cellular transplantation or via ex vivo exposure of humans to bio-
logical porcine products for medical purposes should be a public health concern 
[129]. Furthermore, the use of immunosuppressive drugs may facilitate xenogeneic 
transmission of swine hepatitis E virus that does not cause detectable clinical symp-
toms in natural hosts but infects humans and causes hepatitis [130]. Additionally, 
immunocompromised patients bear the potential risk of developing chronic hepati-
tis E and short-term cirrhosis [100].

11  Prevention and Control

Socioeconomic development and further improvement in hygiene and sanitation are 
associated with decreasing infection rates and increasing adult susceptibility levels 
[4, 148]. The higher correlation between water and infection rate indicates that 
access to clean water may reduce waterborne outbreaks and direct transmission of 
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HAV and HEV (genotypes 1 and 2) [148]. Concerning hepatitis E transmission at 
the population level, prevention is the most effective approach in preventing the 
disease. Preventive measures to reduce the incidence of the disease include main-
taining quality standards for public water supplies and sanitation.

Effective and safe hepatitis A vaccines have been commercially available since 
1992 and have been applied either to protect risk groups or to control outbreaks. 
Groups at increased risk for hepatitis A include men who have sex with men, injec-
tion and non-injection drug users, chronic liver disease patients, persons with clot-
ting factor disorders, persons working with nonhuman primates, workers exposed to 
sewage, and food handlers. Regarding the use of hepatitis A vaccine to control 
community-wide outbreaks, a single-dose regimen has been successful, mostly in 
small self-contained communities, where high coverage of multiple age cohorts can 
be achieved by starting the vaccination early in the course of the outbreak [149].

Currently, WHO recommends that vaccination against HAV should be inte-
grated into the national immunization schedule for children aged 1 year or older if 
indicated on the basis of incidence of acute hepatitis A, change in endemicity from 
high to intermediate, and consideration of cost-effectiveness [1]. Ordinarily, long-
term protection is achieved after the complete two-dose schedule [149]. However, 
the inclusion of the single-dose immunization schedule with inactivated hepatitis 
A vaccine should be considered [1] because long-term immune response has been 
achieved after the first vaccination (without booster), as observed in Argentina [85, 
150], and recommended by the Indian Academy of Pediatrics since 2014 and Israel 
since 1999 [151, 152].

Moreover, results of a recent study of our research group confirmed that a single 
dose of inactivated hepatitis A vaccine promotes HAV-specific cellular memory 
response similar to that induced by a natural infection [153]. Additionally, all avail-
able data on monovalent or combined (hepatitis A and B) vaccines suggest that there 
is no support for a booster when a complete primary vaccination course is offered to 
immunocompetent subjects.

The role of HEV-related viruses of foodborne transmission by pork and other 
livestock products, such as game meat, cattle, sheep, and seafood, has also been well 
established by different reports [66, 154, 155]. Because HEV infection in pigs is 
subclinical, the diagnosis relies exclusively on laboratory tests, namely, on the detec-
tion of viral RNA or specific anti-HEV antibodies [156–158]. Until the present, there 
is not a well-established diagnostic criterion for HEV detection in livestock.

The hypothesis of massive human exposure to HEV has been raised by the high 
incidence of hepatitis E virus (HEV) among swine at slaughter age in farms that has 
been documented in several reports concerning zoonotic HEV genotypes. Thus, it is 
important to determine measures to reduce HEV spread and infection of slaughter- 
age pigs within the farms. However, available data about HEV epidemiology on pig 
farms in South America are poor. Studies about HEV transmission among pigs have 
suggested that the age in HEV infection is not strictly dependent upon the propor-
tion of piglets with colostrum intake, but is also linked to farm-specific husbandry 
[159]. In France, the risk of HEV-positive livers was increased by early slaughter, 
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genetic background, lack of hygiene measures and surfaces, and the source of 
 drinking water [160]. Besides hygienic measures, efforts to block HEV spread in 
the chain production of pork foods and herd vaccination against HEV have been 
recognized as an efficient method to reduce the proportion of infectious animals at 
slaughter age, the transmission rate parameter, the susceptibility, the average infec-
tious period, or the combination of these parameters [161].

Comparatively, whether hepatitis E vaccine is long-term protective against het-
erogeneous HEV infection is still an unsolved issue because of human cases of 
HEV reinfections in hyperendemic countries [162, 163]. However, a decrease of 
HEV IgG titers (acquired after natural HEV infection or vaccination) within time 
was reported in urban and rural children in North India [164]. Efforts to improve the 
immune response to HEV vaccination have been reported in capsid-designed vac-
cines. Tsarev and colleagues described a cross-protection between Pakistani and 
Mexican HEV strains in nonhuman primates vaccinated twice with a 50-μg dose of 
the recombinant capsid protein (ORF2) [165]. The animals were protected from 
hepatitis after heterologous genotype challenge with the Mexican strain. In fact, the 
major anti-HEV antibody response is against conformational epitopes located in 
a.a. 459–606 of HEV pORF2. All reported neutralization epitopes are present on the 
dimer domain constructed by this peptide. So far, two recombinant vaccines to HEV 
are available. The first one, rHEV, is based on a 56-kDa capsid protein and is experi-
mental whereas the other one, HEV 239 designed for humans, is licensed in China 
since December 2011. HEV 239 vaccine is described as highly immunogenic, but 
the seroconversion only occurred after the third dose (0, 1, and 6 months). A protec-
tive response to HEV infection was evaluated comparing seronegative placebo sub-
jects (evaded naturally acquired immunity) and HEV 239 vaccine-induced immunity 
and significantly reduced the risk of infection in the vaccinated group [166, 167]. 
The risk of reinfection observed in the placebo group, which evaded naturally 
acquired immunity (0.52%; 95% CI, 0.30–0.83), was similar to the risk of break-
through infection observed in the vaccinated group, which evaded vaccine-induced 
immunity (0.30%; 95% CI, 0.19–0.44), although GMC among the vaccinated group 
was substantially higher. Hepatitis E vaccine −239, commercially available in 
China, has shown high efficacy with sustained protection for more than 4 years 
[166]. Despite many reports targeting a commercial HEV vaccine applied to 
humans, there are poor descriptions targeting swine until date. Recently, one study 
on HEV vaccine evaluation showed rabbits vaccinated with 20 μg of the HEV p179 
produced anti-HEV with elevated titers (1:104–1:105), and the animals were com-
pletely protected from HEV infection. In this study, when rabbits were vaccinated 
with 10 μg, anti-HEV was produced with reduced titers (1:103–1:104) and  conferred 
protection against hepatitis E, but two of five rabbits showed fecal virus shedding 
[167]. Besides the cautions concerning the intake of potentially contaminated meat, 
antiviral therapy with ribavirin monotherapy or pegylated IFN, associated with a 
reduction of immunosuppression, has been indicated to reduce viremia in cases of 
chronic hepatitis, fibrosis, and cirrhosis in immunocompromised patients, and most 
patients cleared the virus in a few weeks.
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In summary, some efforts are key points to reduce the transmission of both HAV 
and HEV: first, improvement of the sanitary conditions of the human population 
living in peripheral regions of big cities and slums located in endemic countries; and 
second, the need for an effective implementation of an HEV vaccination program. 
Regarding HEV prevention, improvements in sanitary conditions of swine breeding 
farms and slaughterhouses, including wastewater and sewage treatment, are funda-
mental to the control of HEV contamination in the chain production of pork foods 
and HEV investigation in several different swine-derived products to discover the 
potential source of HEV contamination. In conclusion, the scientific community 
and public health authorities should consider implementing an effective HEV vac-
cine for swine.
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Chapter 8
Dengue Virus and Other Flaviviruses  
(Zika): Biology, Pathogenesis, Epidemiology, 
and Vaccine Development

Ada M.B. Alves and Rosa M. del Angel

1  Introduction

The Flaviviridae family includes a variety of viruses that are distributed worldwide, 
some of which are associated with high morbidity and mortality. Because there are 
neither vaccines nor antivirals for most of the Flavivirus infections, study of the 
viral replicative cycle is relevant.

The Flaviviridae family comprises three genera: (i) the Pestivirus, which infects 
mammals, including cows and pigs, such as the bovine diarrhea virus 1; (ii) the 
Hepacivirus, which includes only the hepatitis C virus (HCV), an important cause 
of hepatitis and hepatocellular carcinoma in humans; and (iii) the Flavivirus, which 
contains more than 80 members. A number of Flaviviruses are pathogenic to 
humans and are transmitted via the bite of an arthropod vector (tick or mosquito) to 
produce an acute cytolytic infection. Examples of flaviruses affecting humans are 
yellow fever virus (YFV), dengue virus (DENV), West Nile virus (WNV), Japanese 
encephalitis virus (JEV), Zika virus, and tick-borne encephalitis virus (TBEV). 
Most of them cause severe diseases in humans with complex pathologies that on 
occasions may have fatal results.

The first epidemic of DENV occurred in 1779–1780 in Asia, Africa, and North 
America. Initially, sporadic outbreaks of the disease were reported, only occurring in 
its benign form, known as dengue fever. However, after World War II, the infection 
with DENV spread to different parts of the world, and more than one serotype was 
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detected in the same population. This situation increased the number of cases of 
dengue fever and resulted in the appearance of the most severe form of the infection, 
known as dengue hemorrhagic fever or severe dengue. Nowadays, one-third of the 
world’s population lives in areas at risk for infection, and more than 100 countries are 
endemic for dengue, reporting annually more than 400 million cases.

Dengue is endemic in virtually all Latin America (with the exception of Chile and 
Uruguay). According to the Pan American Health Organization (PAHO) (www.paho.
org), in the year 2016, the region reported nearly 650,000 confirmed cases of dengue 
fever and more than 12,000 cases of severe dengue, with the circulation of all four 
serotypes. Given the importance of dengue and other Flavivirus diseases in the 
Americas, including the recent emergence of Zika virus, many researchers in the region 
have devoted their effort to the study and control of this disease. This chapter is aimed 
to review some of the most relevant findings and contribution made to the biology, 
epidemiology, and prevention of dengue and also that of Zika disease in the region.

2  Dengue Virus Replicative Cycle

2.1  Early Events

Because DENV is an arbovirus, it can replicate efficiently in mammalian and mos-
quito hosts. DENV is transmitted to humans by female mosquitoes of the genus Aedes 
during a blood meal. In this process, the virus is inoculated in the human skin where 
the virus comes in contact with several cell types, including skin-resident dendritic 
cells and macrophages. These cells are then transported to the regional lymph nodes 
where the virus infects other macrophages and monocytes, amplifying the infection. 
Different molecules have been described as DENV receptors in mammalian cells, 
among them, heparan sulfate [50] proteins associated with CD14 [51]; the lectin 
DC-SIGN [145, 203]; CLEC5A [49]; the heat shock proteins HSP70, HSP90, and 
GRP78 [101, 175]; cell receptors such as laminin [213] and mannose receptors; pro-
hibitin [106]; and molecules related to lipid detection such as nLc4, Cer L-3, and TIM 
and TAM receptors [125]. The variety of cell receptors reported suggest that different 
receptors are used in different cell types and receptor redundancy use or that DENV 
uses a receptor complex formed by more than one protein in different steps of viral 
infection, such as attachment, internalization, and signaling pathway triggering. Later, 
the virus can be detected in remote lymph nodes to finally induce viremia. Viremia 
precedes the onset of clinical symptoms, and during this phase, the virus is dissemi-
nated to other organs such as the liver, spleen, and kidney.

During the viremia stage, humans can transmit the virus to a healthy mosquito. 
After the blood meal, DENV can infect epithelial cells of the midgut of the insect. 
The migration of the virus to the hemocele allows it to reach different organs such 
as fat bodies, the Malpighian tubules, and finally the salivary glands, where it is 
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ready to be transmitted to humans. Again, glycoproteins of 40 and 45 kDa and 
polypeptides of 57, 67, and 80 kDa have been identified as DENV putative receptors 
in mosquito cells, although the final identity of those proteins has been elusive [106, 
129, 130, 185, 186, 215, 228].

DENV uses lipid rafts to enter into the host cell, and most of the receptors 
described for DENV to date are associated with lipid rafts or are recruited to these 
sections of the membrane at the time of infection [173]. Recent work highlighted 
the importance of cholesterol and specifically of lipid rafts in the entry and signaling 
[48, 49] process of DENV in vertebrate cells. The results suggest that the integrity 
of lipid rafts is required during the infectious process of DENV in monocytes/mac-
rophages in the absence or presence of facilitator antibodies, as well as in mouse 
neuroblastoma cells N18 [111, 173, 175]. Consistently, a significant reduction in 
DENV infection was detected in the liver cell line Huh-7 when cells were pretreated 
with drugs that prevent the formation of these membrane microdomains [199].

Virus attachment is followed by viral entry and decapsidation. Several studies 
indicate that viral entry occurs by a clathrin-mediated endocytosis [1–3, 138]. The 
low pH present in late endosomes induces the fusion between viral and endosomal 
membrane, inducing capsid release into the cytoplasm [33, 134]. Uncoating after 
viral entry is one of the least studied steps in the Flavivirus life cycle, but, recently, 
it has been described that the capsid is degraded after viral internalization by the host 
ubiquitin-proteasome system. However, neither the proteasome activity nor capsid 
degradation is necessary for viral genome release into the cytoplasm, suggesting that 
DENV capsid degradation is not responsible for genome uncoating. However, DENV 
genome release requires a non-degradative ubiquitination step [35].

2.2  Viral Replication

The dengue virus, as other RNA viruses, modifies the membranes of the endoplas-
mic reticulum to concentrate all the factors necessary for replication of the viral 
genome (replicative complex) [140, 166, 202]. The first step in DENV replication is 
translation of the viral genome, given that the positive polarity of the viral genome 
allows it to function as mRNA. This RNA contains a cap structure in the 5′-end and 
lacks a poly A tail in the 3′-end [118]. Translation of the viral genome occurs by a 
cap-dependent mechanism. However, in conditions where cap-dependent transla-
tion is inhibited, the DENV genome can still be translated. Because viral RNA is 
monocystronic, a polyprotein is synthesized that is cleaved by cellular and viral 
proteases to generate mature viral proteins. Next, the new synthesized nonstructural 
proteins initiate viral replication. RNA elements located within the 5′- and 
3′-untranslated regions (UTR) regulate translation and genome replication [8, 85]. 
It has been described that within the 5′-UTR of about 100 nucleotides (nt) there are 
three regulatory elements: the stem-loop A (SLA), which is the viral polymerase 
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promoter [77, 78, 114]; the stem-loop B (SLB), which contains the 5′ upstream of 
the AUG region (5′-UAR), complementary to the 3′-UTR (3′-UAR) that mediates 
viral RNA circularization [11]; and a U-rich spacer which enhances viral replication 
[114]. The 450-nucleotide-long 3′-UTR contains four domains: domain A1, con-
taining a variable region (VR) [196]; domains A2 and A3, with a dumbbell-like 
secondary structure functioning as enhancer for viral replication [10, 119]; and 
domain A4, containing the small hairpin (sHP) and the 3′-stem-loop (3′-SL), all 
necessary for viral replication [221]. It has been extensively described that long- 
range RNA–RNA interactions between the 5′-cyclization sequence (5′-CS) with the 
3′-CS and 5′-AUR (upstream AUG region) and 3′-UAR are necessary for efficient 
RNA replication [11]. To initiate viral replication, the viral polymerase NS5 inter-
acts with the 5′-end SLA promoter and then moves to the 3′-end initiation site, 
located very close because of viral genome cyclization [77]. Recently, specific RNA 
sequences have been identified in the viral 3′-UTR that are essential for viral repli-
cation in mosquito cells but dispensable for replication in mammalian cells [77]. 
These studies provided direct evidence for host-specific functions of viral RNA 
elements and raised the question whether viral RNA structures are under specific 
selective pressures during host adaptation [220].

The size limitations of the viral genome require viruses to depend heavily on host 
cell factors to complete their replicative cycle successfully. In this regard, a number 
of viral proteins, including La, PTB, and PABP among others, have been identified 
to bind specifically to the DENV genome UTRs to effectively modulate the replica-
tion process [5, 63, 229, 230].

Other important elements for viral replication are the membranes from the endo-
plasmic reticulum (ER). During DENV infection, extensive rearrangements of the 
endoplasmic reticulum occur. Three different substructures have been described: (1) 
invagination of the ER membrane known as vesicle packets involved in viral repli-
cation (VPs), (2) virus “bags” where viral progeny accumulate, and (3) convoluted 
membranes (CMs) with an unknown function [224]. The nonstructural proteins 
NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 are located in the invaginations 
induced in the endoplasmic reticulum.

In mosquito cells, significant differences were observed in the intracellular lipid 
profile of DENV-infected cells compared to uninfected cells. These new lipids have 
the ability to alter the structural and functional characteristics of membranes, con-
firming the idea that infection promotes important rearrangements in membranes 
through alteration in lipid metabolism [102, 166].

In addition, it has been observed for different Flavivirus that if the amount of 
cholesterol present in these complexes is reduced, the viral genome replication is 
affected [211]. Furthermore, it has been shown that if the biosynthetic pathway of 
cholesterol is inhibited (using statins or siRNA against pathway protein cholesterol 
synthesis), or if capture of cholesterol from the medium (delipidated) is prevented, 
viral replication in cell lines A549 (lung carcinoma) and K562 (hematopoietic) 
decreases considerably, showing that cholesterol has a major role in this process 
[181, 199]. The dependence of DENV replication on cholesterol and lipid  metabolism 
opens possibilities for antiviral treatments. Indeed, compounds that affect lipid 
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metabolism such as nordihydroguaiaretic acid (NDGA) are demonstrated to be an 
effective inhibitor of DENV replication in vitro [198].

2.3  Virus Morphogenesis

The DENV structural proteins C, prM, and E are synthesized in the ER; however, 
C protein accumulates progressively around cellular organelles named lipid drop-
lets (LDs) during infection [99]. LDs are formed by sphingolipids and cholesterol 
esters and are located close to the ER. These organelles have been involved in viral 
assembly. Interestingly, the number of lipid droplets per cell increases after infec-
tion, linking lipid droplet metabolism and viral replication. Specific hydrophobic 
amino acids, located in the center of the capsid protein, have been identified as key 
elements for lipid droplet association [188]. Surprisingly, the N-terminus of C is 
necessary for efficient particle formation in mosquito cells, but they are crucial for 
propagation in human cells, suggesting that this function of C is differentially 
modulated in different host cells [187].

These findings are consistent with the fact that the pharmacological inhibition of 
fatty acid synthase (FASN) mediated by C75 promotes a significant inhibition of 
DENV morphogenesis [170, 188].

Once viral RNA is associated with C, the nascent particle buds into the ER where 
it acquires the viral membrane containing the C and prM proteins. The immature 
virions traffic through the trans-Golgi secretory pathway and along this pathway; 
the prM protein is cleaved by host furin-like proteases to generate mature virions 
[112, 231]. Along the mature virions, soluble NS1 protein is also secreted to the 
extracellular milieu. Recently, it was reported that NS1 is secreted also from infected 
mosquito cells and not only by vertebrate cells, as previously supposed [7].

3  Virus–Host Interactions

As was described earlier, DENV infection can induce a mild disease or can cause a 
more severe form of the infection called severe dengue. Severe dengue is character-
ized by the rapid onset of capillary leakage and is accompanied by significant 
thrombocytopenia and mild-to-moderate liver injury. Hemorrhagic manifestations 
include bleeding in the skin and gastrointestinal tract. Although the pathogenesis of 
the severe forms of dengue infection has been broadly studied, the process is not yet 
fully understood [52, 121, 150]. Secondary infections are recognized as one of the 
most important risk factors for the development of severe dengue by a complex 
mechanism known as antibody-dependent enhancement (ADE) of viral infection. It 
has been postulated that during secondary infection, the antibodies generated during 
primary infection are able to form virus–antibody complexes that infect Fc-bearing 
cells such as human monocytic and dendritic cells, through the Fc receptor.  
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This mechanism is responsible for an increase in the proinflammatory cytokine 
response, which has the capacity to disturb the apical junction complex in vitro and 
to cause an increase in vascular permeability in vivo [174]. Indeed, the association 
between aberrant cytokine levels and dengue severity has long been apparent; past 
and recent work carried out in Brazil and other parts of the region has contributed 
greatly to understand the cytokine profiles in sera of patients with dengue and its 
association with disease severity [22, 76, 91].

Another key element of the antiviral response to DENV is type 1 interferon 
(IFNα/β). IFN type 1 is secreted very early after DENV infection by mammalian 
cells, and it has an important function in protection against viral infections [84, 
169]. It has been reported that DENV triggers but also counterattacks many of the 
signaling pathways involved in the induction of a robust IFNα/β response [5, 6, 137, 
141, 142, 160, 177, 178]. In concordance with the antiviral activity of IFN type 1, 
IFN-α levels in patient sera are rapidly modulated after fever onset, and a better 
clinical condition correlates with higher IFN-α levels, supporting the idea that IFN 
response has a role in the pathogenesis of DENV [62].

Special mention of the work in dengue conducted in Latin America shall be 
made to the dengue cohort study being carried out in Nicaragua to study the natural 
history and transmission of dengue in children. This ambitious study, carried out for 
more than 10 years, has enrolled thousands of children and has worked in 
 collaboration with public authorities. Among other findings, the Nicaraguan cohort 
study had provided evidence for the role of neutralizing antibodies in protection 
against dengue and the role of secondary infections as a risk factor to develop severe 
dengue [103, 222].

4  Epidemiology of Dengue in Latin America

Dengue reports in the Americas date back to the nineteenth century. In the first moi-
ety of the twentieth century, in Brazil as in other countries of Latin America, the 
mosquito Aedes (Ae.) aegypti was eradicated after a program of the PAHO to control 
yellow fever, another Flavivirus transmitted by the same vector [40]. Unfortunately, 
this program was discontinued, which led to reinfestation of Ae. aegypti, and dengue 
became one of the most important infectious diseases in Latin America.

As a consequence of this scenario, several efforts have been made to map the 
epidemiological situation of dengue in the different countries, improve diagnostic 
tests, identify the circulating serotypes, and better understand the disease with its 
different forms. The scientific community also focused on studies concerning virus 
biology, interaction between host and pathogen, and vaccine development. The con-
tribution of Latin America in dengue research was recently analyzed in a bibliomet-
ric study, revealing that Brazil was the highest contributor (31.2%), followed by 
Puerto Rico (12.9%) and Mexico (10.7%) [219].

Epidemiological inquiries have been performed in different regions in Latin 
America. In 1963 DENV3 was isolated in Jamaica and disseminated to other 
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Caribbean countries [27]. Later on, the emergence of DENV2 in Cuba in 1981 rep-
resented a mark in the epidemiology of dengue in America, with several reported 
cases of dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). 
Investigations revealed that most of the DHF cases presented antibodies against 
DENV1, which was responsible for the epidemic of 1977 [105]. Also in 1981, 
DENV4 was introduced in eastern Caribbean islands and spread to the rest of the 
Caribbean, Mexico, and Central and South America [167]. In 1989 a large dengue 
epidemic was reported in Venezuela with many cases of DHF [161]. In general, the 
epidemics of dengue in the Americas occur with recurring peaks of cases at 3- to 
5-year intervals. More upsetting is the fact that, over time, peaks become progres-
sively higher, with more cases of reported severe forms of the disease [189]. 
Nowadays, the four dengue serotypes circulate in several countries, which increases 
the risk of DHF.

The greatest epidemic in the Americas was in 2013, when almost 2.4 million 
dengue cases were notified, and approximately 1.6% of them evolved to severe 
forms of the disease [162]. In that year, Brazil, Mexico, Colombia, and Paraguay 
had the most important outbreaks, totalizing 83% of the dengue cases in America. 
Brazil leads the rank of dengue fever cases, with an incidence ranging from 313.8 
(in 1998) to 722.4 (in 2013) per 100,000 inhabitants [206].

In Brazil, the first outbreak of dengue with laboratory confirmation was in 
1981 in a city in the north of the country, Boa Vista, with simultaneous occurrence 
of DENV1 and DENV4. This episode was immediately controlled, and the virus did 
not spread to other regions [156]. Dengue only became a health problem after the 
epidemic of 1986, when serotype 1 was introduced in the state of Rio de Janeiro and 
spread to different regions [193]. Since then, dengue has become endemic in Brazil, 
with explosive epidemics marked by the introduction of DENV2 in 1990, DENV3 in 
2000, and DENV4 in 2010 [148, 149, 168, 208]. Epidemiological studies were per-
formed to investigate serotype prevalence and virus distribution, not only by regions 
but also according to age [29, 30, 95, 104, 204, 207]. These works revealed, for 
instance, a shift in the age pattern of DHF with more children younger than 15 years 
being affected [205, 207]. A similar scenario was also observed in Venezuela [210].

More recently, studies have been conducted in many countries in Latin America 
to map the dengue epidemiological situation in these areas and to access the efficacy 
of vaccines against it [60]. These studies revealed, for instance, that there is a sub-
stantial underreporting of dengue in the epidemiological surveillance systems from 
Brazil, Colombia, and Mexico [192]. Unapparent infections may also be important 
in the dengue epidemiology, and scientists have started to investigate this as a pos-
sible source for mosquito transmission, which would impact the disease burden 
[90]. Following the same line, other investigations have been performed to establish 
the burden of dengue and its economic cost in different countries such as Brazil, 
Colombia, Nicaragua, Mexico, and even Argentina, where dengue is present but at 
lower magnitude compared to other regions in America [44, 120, 212, 225, 226].

Other works focused on phylogeny studies, aiming to understand the dynamic of 
DENV population and the origin of the different virus isolates, by comparing 
sequences obtained from distinct countries in Latin America and all over the world 
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[9, 13, 43, 57, 70, 153, 227]. These investigations revealed, for example, that the 
DENV2 that emerged in Brazil in 1990 continued to circulate until 2003, whereas 
in 2007 a new DENV2 was isolated that belonged to a different genotype, thus sug-
gesting that this virus did not evolve locally but was rather caused by a new intro-
duction, probably coming from the Caribbean [74]. Similar observation occurred in 
Peru, also with DENV2 [57].

In parallel with these studies, much effort has been expended to improve the 
clinical and laboratory dengue diagnostic [4, 16, 34, 56, 59, 116, 157, 171]. Reports 
have shown, for instance, the incidence of dengue infection by blood transfusion 
and renal transplant [20, 53]. Recently, it was performed a prospective study with a 
large cohort of patients from several countries in Latin America and Asia, aiming to 
differentiate between dengue and other common febrile illness and to identify 
parameters associated with the progression to severe forms of the disease [100]. 
These works will certainly help to update guidelines for diagnostics and treatment 
of dengue all over the world.

Other investigations were performed with postmortem materials of suspected 
dengue cases to establish/improve diagnostics [19, 46]. Studies with samples from 
confirmed fatal dengue cases have also been reported [15, 147, 152, 158, 159, 172, 
176, 184, 209]. All these works provided important information about the 
 pathogenesis of the disease, especially regarding the severe forms of dengue, and 
helped to map the target organs/cells for virus replication. It showed, for instance, 
the commitment of some organs that are not commonly associated with dengue, 
such as the heart and kidney [159, 172, 209], as well as the reinforcement of the 
involvement of the central nervous system during the disease [15, 147].

5  Sylvatic Dengue Cycle

DENV exists as sylvatic and urban cycles in Africa and Asia [223]. Investigations to 
identify a sylvatic cycle for DENV in the Americas or to find evidence of infection 
in neotropical forest mammals have yielded contradictory results. Molecular and 
serological evidence for DENV infection in opossums and especially in several spe-
cies of bats has been reported in studies conducted in French Guiana and Mexico 
[64, 200]. Yet, other studies conducted with bats also collected in Mexico have 
failed to find evidence that bats can sustain DENV replication [36, 37].

6  Vaccines

The development of a vaccine against dengue has been pursued since the studies of 
Sabin in 1945 [183]. One of the major difficulties in this field is to achieve a vaccine 
against the four dengue serotypes. Studies all over the world showed that infection 
with one serotype promotes long-term immunity to this serotype, but protection to 
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heterologous infection is only transient. In fact, results revealed an increased risk 
for severe forms of dengue during a second infection with a heterologous serotype 
[80]. It seems that the immunity to a specific serotype may induce an uncontrolled 
immune response during a secondary infection, leading to the DHF/DSS.

One hypothesis to explain the role of immune response in the development of 
severe forms of the dengue disease is the antibody-dependent enhancement (ADE) 
of virus replication. In this phenomenon, antibodies generated by the first dengue 
infection, mainly against the E and prM proteins, bind to the heterologous virus 
serotype in the second infection but without neutralizing its ability. Instead, the 
antibody–virus complex can bind to Fc receptors present in monocytes/macro-
phages and dendritic cells, which are the primary target cells in dengue infection, 
facilitating, therefore, virus entrance and replication [93]. Another hypothesis, not 
necessarily exclusionary, is based on the cellular immune response, named original 
antigenic sin. In this case, cross-reactive memory T cells generated by the first 
infection are preferentially activated during the second dengue infection. However, 
these low-affinity T cells are unable to clear infection and can cause an uncontrolled 
cytokine production (the cytokine storm), which finally results in the plasma leakage 
that is characteristic of the DHF/DSS [124].

Consequently, it is a consensus that an effective dengue vaccine has to be 
 tetravalent; otherwise, immunization against one serotype could increase the risk for 
more severe forms of the disease in individuals infected with other serotypes. 
Different vaccines are now being tested in clinical trials in Latin America. One of 
these vaccines, produced by Sanofi Pasteur, is based on the recombinant life- 
attenuated yellow fever (YF)/dengue virus, in which the E and prM genes from YF 
are substituted by the genes from each DENV serotype. This tetravalent vaccine, 
CYD, was tested in Asia and Latin America. In Latin America, it was tested in Brazil, 
Colombia, Peru, Honduras, Mexico, and Puerto Rico [61, 68, 92, 107]. Unfortunately, 
the efficacy of this vaccine was below expectations, as protection against DENV2 
was not achieved in several children. In general, the efficacy of the vaccine was sig-
nificantly low in children 2 to 5 years of age, especially in individuals with no previ-
ous DENV infection. Also, the vaccination regimen involves three doses given with 
a 6-month interval, which can have logistical difficulties for its administration. This 
may be a problem in dengue endemic areas because it can leave the population more 
susceptible to the development of severe disease until the immunological protection 
is complete. In fact, a statistically significant increase of hospitalization among vac-
cinated children (2–5 years old) was observed [92]. Because of this, the Sanofi 
Pasteur vaccine against dengue was recently licensed for commercial use in Brazil 
and Mexico only in individuals aged from more than 9 years to 45 years, which does 
not include an important segment of the population at risk for the development of 
severe dengue [96]. Although results of the clinical trials with this vaccine were quite 
disappointing, these studies were the most robust performed to date, and they 
revealed, for instance, that only neutralizing antibodies seem to be not correlated to 
protection. In fact, vaccinated children presented high levels of neutralizing antibod-
ies to DENV2, but they were not protected against this virus serotype [182].

8 Dengue Virus and Other Flaviviruses (Zika)…



150

Another tetravalent vaccine, developed by the National Institute of Health (NIH), 
is also being tested in Latin America. This vaccine is composed of a mixture of 
attenuated recombinant virus, obtained by the deletion of 30 nucleotides in the 
3′-UTR of DENV1, DENV3, and DENV4 and by the substitution of prM and E 
genes from DENV4 to those genes from DENV2 [72–74]. This vaccine was tested 
first in clinical trials in the USA in Flavivirus-naïve healthy adults. It was well toler-
ated, although production of neutralizing antibodies seemed to be associated with 
the occurrence of rashes. Results suggested that this vaccine could be administered 
in one single dose, because antibody levels did not increase after the second dose 
[73]. This vaccine has recently entered in phase 3 clinical tests in some countries in 
Latin America, especially Brazil in a partnership with Butantan Institute, but results 
are not yet available.

The Takeda tetravalent dengue vaccine (TDV), in its turn, was constructed by 
using the life-attenuated DENV2 derived by serial passages of wild-type virus in 
primary dog kidney cells (PDK). The prM and E genes from this attenuated DENV2 
virus, D2 PDK-53, were substituted by those genes from the other virus serotypes 
[98]. The tetravalent vaccine is composed of the attenuated DENV2 and the three 
chimeric DENV1, 3, and 4. This vaccine was tested in Puerto Rico and Colombia, 
and it was well tolerated and immunogenic for all serotypes in volunteers from 1.5 
to 45 years of age [197]. In addition, one inactivated vaccine against dengue will 
soon be tested in Brazil in studies performed by the Institute of Technology in 
Immunobiologicals (BioManguinhos), from the Oswaldo Cruz Foundation 
(Fiocruz). This vaccine was developed by GSK, and it will be administered with 
adjuvants.

Besides the clinical trials of vaccines against dengue, several preclinical investi-
gations have been performed all over the world, including in Latin America. Studies 
using life-attenuated recombinant virus were also conducted in Brazil, by construct-
ing several chimeric YF/DENV [45, 81, 123]. This strategy was similar to that of the 
dengue vaccine developed by Sanofi Pasteur, although analyses were only focused 
on mice and nonhuman primates.

Other strategies used DNA vaccines encoding structural as well as nonstructural 
dengue proteins. Usually, the vaccines focused on the E protein together with the 
prM, which works as a chaperonin for the correct folding of the E protein [65, 113, 
167]. However, one study from Brazil showed that a DNA vaccine encoding the 
ectodomain (domains I, II, and III) of the DENV2 E protein, fused to a strong signal 
peptide, was able to induce high levels of protection in mice challenged with a lethal 
virus dose [24]. Furthermore, the authors showed that the combination of this DNA 
vaccine with a chimeric YF/DENV2, constructed in Brazil [45], generated 100% 
protection in mice with induction of a synergetic neutralizing antibody response 
[23]. This study also pointed that the cellular immune response elicited by the DNA 
vaccine was significantly higher when compared to immunization with the chimeric 
attenuated virus, which may be important for protection and can explain, in part, the 
low efficiency of the Sanofi Pasteur vaccine. Other investigations focused on DNA 
vaccines encoding the DENV NS1 or NS3 proteins [54, 55], which also elicited 

A.M.B. Alves and R.M. del Angel



151

protection. Interestingly, one of these studies showed that the cooperation between 
CD4+ T cells and antibodies, more than CD8+ T lymphocytes, was crucial for pro-
tection induced by a DNA vaccine containing the NS1 gene [89]. Reports of DNA 
vaccines using the entire E and NS1 gene together or only the domain III of the E 
protein have also been published [126, 127, 139].

Studies with subunit vaccines have been conducted in different countries in Latin 
America. Some work has been described in Cuba using the recombinant C protein 
expressed in Escherichia coli, which was tested in mice [86, 109, 115]. The impor-
tance of CD4+ and CD8+ T-cell response in the protection elicited by this vaccine 
was also reported [87]. Other research was based on tetravalent formulations, com-
bining the domain III of the envelope protein to the capsid protein, which similarly 
induced protection in mice and nonhuman primates [201]. Further, heterologous 
prime-boost protocols were tested using purified proteins and infective virus [214]. 
In Mexico, researchers tested the ability of different domains of the envelope pro-
tein to induce protection, alone or in combination with the NS1 [83]. Following the 
same line, studies in Brazil have shown that purified recombinant NS1 protein 
induced protection in mice in combination with detoxified heat-labile toxin from 
enterotoxigenic E. coli as adjuvant [12]. In Argentina, the E protein was expressed 
in a plant system to use it as a subunit vaccine or in a diagnostic kit [122]. Another 
report from Mexico explored the approach of expressing one peptide from the NS3 
protein on the surface of Salmonella and showed its ability to induce a strong 
 cytotoxic T-cell response [117].

Another difficulty in the development of an effective vaccine against dengue is 
the lack of an ideal experimental animal model that mimics the disease in all its 
forms, as we observed in humans. Several studies have been performed with immu-
nodeficient mice, which can develop clinical signs similar to those observed in 
humans [232, 233]. However, although these animal models are extremely valuable 
for studying the disease, their use for vaccine tests is controversial because the elic-
ited immune response can differ significantly from that observed in immunocompe-
tent individuals. The most traditional immunocompetent mouse model for testing 
vaccines against Flavivirus, including dengue, is the use of brain-adapted virus 
inoculated by the intracerebral (i.c.) route. Albeit this is not the natural route of 
infection in humans; studies with dengue patients have revealed more and more the 
commitment of the central nervous system during the disease [15, 147]. Also, this 
model provides a straightforward readout parameter for vaccine testing because 
virus inoculation is usually lethal. Moreover, recently a study in Brazil was pub-
lished showing the systemic effect of the virus infection by the i.c. route. Authors 
detected viremia in these animals, especially in late stages of infection, induction of 
T-cell responses, and tissue damages in peripheral organs, such as the liver [154]. In 
another work, researchers investigated the use of immunocompetent mice inocu-
lated with macrophages infected in  vitro with a DENV isolate, not laboratory 
adapted. They observed some aspects of the virus tropism described in humans, 
with detection of the DENV genome in the same organs [26].
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7  Studies with Zika Virus

Apart from the studies with dengue, much research has begun with the Zika virus 
(ZIKV) in some countries in Latin America, especially in Brazil. The interest toward 
ZIKV by the scientific community in Latin America is a consequence of the huge 
health problem we have been experiencing since the beginning of 2015.

This virus also belongs to the Flaviviridae family, genus Flavivirus. It has a typi-
cal Flavivirus organization: an enveloped virus with a single-stranded positive- 
sense RNA genome. The RNA is translated into a polyprotein that is cleaved, 
generating three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, 
NS2B, NS3, NS4A, NS4B, and NS5) proteins. The serological diagnosis for ZIKV 
is not fully conclusive because a significant proportion of tested samples showed 
cross-reactivity to other viruses, especially DENV. Because of this, laboratory test-
ing generally includes polymerase chain reaction (PCR) assays. Transmission of the 
ZIKV occurs predominantly via the bites of Aedes mosquitoes, mainly Aedes 
aegypti. Moreover, transmission from the mother to the fetus via the placenta was 
recently established [32, 133]. Sexual transmission has also been reported [69, 97]. 
More recently, Baca-Carrasco and Velasco Hernández [25] performed a  mathematical 
study to analyze the effects of sexual transmission and migration in the spread of the 
ZIKV. They concluded that transmission through sexual contact was insufficient to 
influence the spread of the disease as we observed in Latin America, although it may 
have affected the magnitude and duration of outbreaks. On the other hand, migra-
tion was decisive for the rapid spread of this virus. In addition, the viral RNA and 
infective particles have been detected in the saliva and urine of ZIKV- infected 
patients [28, 143] and are now being used as diagnostic tools.

The ZIKV was first isolated in 1947 in a sentinel monkey for monitoring yellow 
fever in a forest in Uganda named Zika. After the first isolation of the ZIKV, symp-
tomatic cases of infection with this virus were reported in some African and 
Southeast Asiatic countries. However, little attention was paid to these cases because 
infection with ZIKV was considered to lead to only mild symptoms. The situation 
changed after the first recognizable outbreak of ZIKV in Micronesia in 2007, char-
acterized as a DENV-like disease [71]. The second ZIKV outbreak occurred in 
French Polynesia, affecting approximately 28,000 individuals, in which an increase 
in the number of cases of Guillain–Barré syndrome (an immunomediated neuropa-
thy that can cause paralysis) was reported [42]. More dramatic was the outbreak of 
this virus in 2015  in Brazil, after which several cases of microcephaly (occipital 
frontal circumference below the mean for age and gender, related to serious devel-
opment problems in the children) was reported in babies whose mothers were 
infected during pregnancy [94, 132]. In adults, infection usually leads to symptoms 
as low-grade fever, arthralgia, rash, headache, and myalgia, although most infec-
tions are asymptomatic [31, 206].

The autochthonous transmission of ZIKV in Brazil was first reported in the 
northeast of the country in March 2015, almost simultaneously by two research 
groups [41, 222]. The first suspicion was that this virus was introduced in Brazil 

A.M.B. Alves and R.M. del Angel



153

during the World Cup soccer competition in 2014; however, no countries participat-
ing in this competition were endemic for ZIKV. Another possibility is that the ZIKV 
had entered Brazil during the Va’a World Spring Championship canoe in August 
2014, when four Pacific countries participated in this event, including French 
Polynesia [144]. Phylogenetic studies with samples of isolated virus from patients 
in Brazil also support this hypothesis. In fact, the ZIKV that is circulating in Brazil 
belongs to the Asian clade and shares 97–100% identity with the virus lineages 
isolated during the outbreak of 2013 in French Polynesia [38, 88].

After introduction of ZIKV in Brazil, it soon spread throughout Latin America. 
Colombia was the second country to report circulation of ZIKV in 2015 [21, 39, 
146, 191], followed by Mexico, Panama, Haiti, and Puerto Rico [18, 66, 67, 110]. 
In 2016 many other regions confirmed autochthonous cases of this virus, totalizing 
48 countries and territories in the Americas [163].

In Brazil, after the emergence of the ZIKV, it was observed that there was a 
20-fold annual increase in the number of microcephaly cases [155, 163, 194]. 
According to the Brazilian Ministry of Health, between October 2015 and May 
2016, a total of 7534 suspected cases of microcephaly and other congenital malfor-
mation of the central nervous system (CNS) have been reported [163]. Detection of 
the virus in pregnant women showing infection symptoms, as well as in amniotic 
fluid, placenta, and the brains of newborns, intensely reinforced the correlation 
between infection with ZIKV and malformations of the CNS in newborns,  including 
microcephaly [38, 133, 155]. Mlakar and collaborators [133] published the first data 
that indicated a strong relationship between ZIKV and microcephaly, describing the 
case of a Slovenian woman who lived temporarily in the Northeast of Brazil and 
presented symptoms of the virus infection (febrile illness with rash) at the end of the 
first trimester of pregnancy. Ultrasonography performed at 29 weeks of gestation 
revealed microcephaly with calcifications in the fetal brain. The ZIKV RNA was 
detected in the fetal brain tissue, thus confirming virus transmission from the mother 
to the fetus. One study with a Brazilian cohort of 88 pregnant women reported that 
72 were positive for ZIKV (82%), most of them showing fetal abnormalities [32]. 
Further, this investigation demonstrated that the fetal abnormalities can happen even 
when infection with ZIKV occurs after the first trimester of pregnancy. Several 
other studies also reported the association of ZIKV infection and microcephaly [14, 
47, 136, 217]. In one report, the transplacental transmission of ZIKV was evidenced 
not only by detection of the viral protein and RNA in placental tissues but also by 
its effects leading to placentitis [151]. The neurotropism of ZIKV was observed by 
the detection of viral proteins in glial cells and observation of scattered foci of 
microcalcifications in the fetal brain tissues.

More recently, the term congenital Zika syndrome (CZS) has been preferably 
used, because it was observed that microcephaly is only one of the clinical signs of 
this congenital malformation disorder. The clinical features of the CZS are a conse-
quence of direct neurological damages and severe intracranial volume loss. Although 
the cognitive, sensory, and motor disability components of this syndrome can be 
shared by other congenital infections, some features seemed to be characteristic: (1) 
severe microcephaly with partially collapsed skull, (2) thin cerebral cortices with 
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subcortical calcifications, (3) macular scarring and focal pigmentary retinal mot-
tling, (4) congenital contractures, and (5) marked early hypertonia with symptoms 
of extrapyramidal involvement [135]. Neurological examination of affected infants 
has shown hypertonia and spasticity, irritability manifested by excessive crying, 
dysphagia, and, less frequently, hypotonia [194]. A detailed study described the 
prenatal evolution and perinatal outcomes of 11 neonates who showed developmen-
tal abnormalities and neurological damage associated with ZIKV infection in Brazil 
[128]. The ZIKV was detected in the amniotic fluid, placenta, and cord blood for all 
patients, as well as from some neonatal tissues collected post mortem. Most of the 
infants presented with microcephaly, although the authors also found newborns pre-
senting with severe brain lesions with a normal cephalic perimeter. They observed 
variable injuries as the consequence of brain lesions related with the virus infection, 
with a common pattern of brain atrophy and changes associated with disturbances 
in neuronal migration. Some patients showed mild brain atrophy and calcifications, 
whereas others presented severe malformations, including the absence of the thala-
mus and lissencephaly [128]. Histopathological and immunohistochemical analysis 
of tissues from two postmortem babies revealed multiple small foci of calcification 
and degenerate nerve cells in the brainstem, histiocyte and microglial proliferation, 
and gliosis, as well as neuronal and axonal degeneration. Ocular abnormalities were 
also observed, mainly paresis of the oculomotor and abducens muscles with 
 convergent strabismus and loss of photomotor and consensual reflexes. In fact, dif-
ferent studies have been showing that the ZIKA can cause severe injury in the retina 
[216–218]. The retinal damages include mild to severe macular pigmentary changes 
and chorioretinal atrophy [216, 217]. Miranda and collaborators [131] described for 
the first time vascular changes and hemorrhagic retinopathy probably associated 
with the intrauterine infection with ZIKV. On the other hand, Ventura and collabora-
tors [218] have evaluated the eyes of eight infants whose mothers were infected with 
ZIKV during pregnancy. Optical coherence tomography technology showed severe 
involvement of the neurosensory retina, including the internal and external layers 
and the choroid in most eyes, indicating severe visual impairment in these 
newborns.

Besides the CZS, infection with the ZIKV is also associated with neurological 
disorders in adults. Several cases of Guillain–Barré syndrome (GBS) have been 
reported after infection with ZIKV in Brazil [17, 31, 79, 164, 179]. One study with 
two cases from Salvador, Bahia, reported the development of ascending paresis 
after an acute exanthematous illness, evolving later to tetraparesis and cranial nerve 
palsy, which resolved after intravenous administration of human immunoglobulin 
[180]. The studies in Brazil supported the association of GBS and ZIKV infection. 
Furthermore, they served as an alert to other countries in Latin America, where the 
virus spread recently, of the potential risk not only for CZS in babies but also for 
neurological commitments in adults and the need for timely detection, diagnosis, 
and treatment to prevent mortality and long-term sequelae. In fact, from April 2015 
to March 2016, a total of 164,237 confirmed or suspected cases of ZIKV disease 
and 1,474 cases of GBS were reported in Bahia-Brazil, Colombia, the Dominican 
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Republic, El Salvador, Honduras, Suriname, and Venezuela [190]. Unfortunately, 
part of these cases progressed to death, as was reported in one study in Colombia, in 
which 4% of patients with GBS died after respiratory failure and sepsis [165]. 
Moreover, although epidemiological studies revealed that females had a 75% higher 
incidence rate of ZIKV disease than males, the greater apparent risk for developing 
GBS is in males (28% more incidence of GBS among males than among females) 
[190]. The development of GBS after ZIKV infection probably involves an autoim-
mune process as described for other viral infections. However, some reports have 
showed that the development of GBZ after ZIKV infection may follow the pattern 
of a para-infectious disorder rather than the classic post-infection profile. Actually, 
a study in Colombia with 66 patients with GBZ revealed that 48% of these individu-
als had a rapid onset of neurological symptoms without an asymptomatic period 
after ZIKV infection symptoms (para-infectious) [165]. There are different hypoth-
eses to explain such a scenario. One of them is that the immune molecular mimicry 
process against the nervous system may initiate before clinical symptoms of the 
ZIKV infection appear [165]. Additionally, it has been speculated that simultaneous 
epidemics of DENV and ZIKV may predispose the development of GBS as a result 
of sequential virus infection and stimulation of the immune system, triggering to an 
immunopathogenic process [180]. If this is the case, one must pay attention in the 
developing of vaccines against both Flavivirus because exanthematous  immunization 
against one virus may impact in the development of disease caused by another virus.

In an attempt to understand the mechanism by which the ZIKV leads to micro-
cephaly and other malformations in the fetal brain, researchers started to investigate 
the effect of the virus infection in human neural stem cells, growing as neurospheres 
and brain organoids [82]. They showed that ZIKV targeted these cells, reducing 
their viability and growth, which suggests that the virus abrogates the neurogenesis 
during brain development. However, there are several gaps in this field, and many 
studies will probably be performed in the future to answer these questions.

In addition, efforts have been made to establish experimental animal models to 
study the effect of ZIKV infection in several aspects, including intrauterine infec-
tions. Most of these studies are based on immunodeficient mice, in particular those 
lacking type I and II interferon receptors [195]. Similar to the studies with DENV, 
such a model is useful for investigations concerning the pathogenesis of the Zika, 
but its use for vaccine tests is controversial. Another investigation was performed 
with newborn Swiss mice infected with a ZIKV isolated in Brazil [75]. Inoculation 
of these mice with ZIKV by the intracerebral route led to severe cerebral lesions, 
with neuronal death, presence of apoptotic bodies, and degeneration of white mat-
ter. When the animals were infected by the subcutaneous route, the authors observed 
moderate cerebral lesions, morphologically similar to those was found in the previ-
ous group and additional myelopathy, with architectural loss, marked by neuronal 
death and apoptotic bodies. In another study, Cugola and collaborators [58] have 
shown that the association of birth defects, also using a ZIKV isolated in Brazil, 
depends on the mouse strain. These authors demonstrated that the offspring of 
immunocompetent pregnant C57BL/6 mice injected intravenously with ZIKV were 
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not infected, indicating that the virus did not cross the placenta barrier. On the other 
hand, pups from SJL pregnant females infected with ZIKV presented severe intra-
uterine growth restriction, resembling that which we observed in humans, including 
signs of microcephaly.

The establishment of animal models for ZIKV infection has a direct impact in 
the development of vaccines against this virus. After the dramatic outbreak of such 
virus in Latin America, much effort has been done toward the development of a vac-
cine against ZIKV. Several investigations have been conducted by different groups 
all over the world. One study was performed by Brazilian researchers in collabora-
tion with groups in the U.S., using DNA vaccines or purified inactivated virus [108]. 
The DNA vaccine based on the full-length prM/E proteins conferred protection 
against ZIKV in the murine model of SJL mice previously described [58]. However, 
protection was only measured by absence of viremia and production of antibodies 
against the E protein in this animal. Other report of DNA vaccines against ZIKV 
encoding the prM/E proteins was also published [69]. The immunogenicity of such 
vaccines was tested in mice and nonhuman primates, and protection was evaluated 
by the lack of viremia in these animals. Clinical trials of some of these DNA vac-
cines, as well as a ZIKV purified inactivated vaccine, are already ongoing or are 
about to start in the U.S. [234]. The speed of which these researches have been 
conducted is a very positive point. However, many studies are still necessary to 
obtain an efficient and safe vaccine against ZIKV.

8  Conclusions and Future Challenges

Dengue continues to be a major public health problem in the Americas despite 
efforts and control actions carried out by public health authorities. Research and 
work carried out in the region have contributed significantly to the understanding of 
the virus biology, the pathogenesis, the epidemiology, and the diagnosis of this 
important and burdensome disease. Moreover, researchers in the region have helped 
in the development of the current licensed dengue vaccine and are also participating 
in the development of future vaccines and antiviral therapies. Challenges for the 
future include further understanding of the virus replicative cycle, the pathogenesis 
of severe dengue, and the immune response to infection to pave the way for effec-
tive patient intervention strategies and improved vaccines. Also, a better under-
standing of the virus–mosquito relationship is needed to implement effective and 
sustainable mosquito control measurements. Finally, the emergence of Zika virus in 
the continent, with its severe complications for adults but especially for infected 
newborns, poses formidable challenges for the region that require urgent attention. 
In particular, the extensive cross-reactivity between dengue and the Zika virus 
makes it important to investigate possible effects that vaccination against one 
Flavivirus may have upon the other, in terms of protection and/or pathogenesis, 
especially in a region where both viruses circulate concomitantly.
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Chapter 9
Alphaviruses in Latin America 
and the Introduction of Chikungunya Virus

Juan-Carlos Navarro, Jean-Paul Carrera, Jonathan Liria,  
Albert J. Auguste, and Scott C. Weaver

1  Introduction

The Togaviridae is a family of enveloped, single-stranded, plus-strand RNA viruses 
composed of the genera Alphavirus and Rubivirus. The rubella virus (the cause of 
German measles) is the only member of the latter genus [129]. The Alphaviruses are 
arthropod-borne viruses (mainly mosquitoes) with a nearly worldwide geographic 
distribution, having been reported from all continents except Antarctica and from 
many islands [16].

The genus Alphavirus includes 30 species grouped into 10 complexes based on 
antigenic and/or genetic similarities [75]. The Barmah Forest, Ndumu, Middelburg, 
and Semliki Forest complexes occur almost exclusively in the Old World. In the 
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New World, the first alphaviruses to be isolated were western equine encephalitis 
virus (WEEV) in 1930, eastern equine encephalitis virus (EEEV) in 1933, and 
Venezuelan equine encephalitis virus (VEEV) in 1938 [129]. Other Alphaviruses 
found in Latin America include Mayaro (MAYV), Aura (AURAV), Una (UNAV), 
Trocara virus (TROV), and the recently introduced chikungunya virus (CHIKV) 
(Table  9.1). Others found in North America belonging to the WEE complex, 
Highlands J (HJV), and Fort Morgan viruses (FMV) [129] are recombinants resem-
bling WEEV derived from ancestral EEEV and Sindbis (SINV) from the Old World.

Many of the New World alphaviruses are widely distributed throughout the 
Americas. WEEV is found from Canada to Argentina, and EEEV and VEEV occur 
in both North America and South America. Other viruses such as MAYV and 
AURAV have a more restricted neotropical distribution [106].

Recent phylogenetic analyses depict the evolution of the alphaviruses (Fig. 9.1) 
based on structural protein genes. Clades or branches are clearly correlated with the 
antigenic complexes, host/reservoirs, and disease syndromes: the Semliki Forest 
virus complex is associated with nonhuman primates and human fever/rash/arthral-
gia (including chikungunya, Mayaro, Ross River, Semliki Forest). The WEEV/
EEEV complexes associate with birds, and the VEEV complex is mostly related to 
rodents as reservoirs, and all three with human and equine encephalitis.

The most recently described alphavirus, Eilat (EILV), a “mosquito-specific” 
virus from Anopheles coustani mosquitoes in Israel [75], is a sister of the WEEV 
complex (see Fig. 9.1). In contrast to all other mosquito-borne viruses, it is unable 
to replicate in vertebrate cell lines. EILV has important implications for arbovirus 
evolution and may help elucidate the viral factors responsible for the virus–cell 
interactions of pathogenic alphaviruses, facilitate vaccine development, and help 
develop strategies to control or prevent alphavirus transmission [28, 74, 75, 138].

Figure 9.2 shows a cartoon of alphavirus transmission cycles. All alphaviruses 
except EILV are zoonotic: mosquitoes (family Culicidae) are the major vector 
group, especially the genera Aedes (chikungunya), Culex subgenus Melanoconion 
(VEEV, EEEV, WEEV), and Haemagogus and Sabethes for Mayaro [26, 72, 84, 
112]. In concordance with the phylogenetic tree, enzootic transmission cycles 
involve nonhuman primates (chikungunya, Mayaro, others that produce arthral-
gias), birds (EEEV, WEEV), and rodents (VEEV, possibly Madariaga virus). 
Spillover transmission to humans occurs mainly in rural areas but can become urban 
for CHIKV and potentially others.  Affected animals (including humans) usually 
generate insufficient viremia to participate in the transmission cycle (i.e., dead-end 
hosts). VEEV uses equids (horses, donkeys, mules) as amplification hosts (epizoot-
ics) to increase spillover to humans (epidemics) [126]. CHIKV is the only alphavi-
rus known to utilize humans as amplification hosts and the urban mosquitoes [Aedes 
(Stegomyia) aegypti or Aedes (Stegomyia) albopictus] for transmission, resulting in 
major epidemics [47, 129]. Mayaro, similar to CHIKV in Africa, uses nonhuman 
primates as enzootic hosts, but their role is still not well understood [72].

J.-C. Navarro et al.
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Fig. 9.1 Phylogenetic tree showing the evolutionary hypothesis of Alphaviruses. The viruses in 
bold are neotropical and New World viruses; those in gray are the Old World viruses (including the 
mosquito-specific virus Eilat). Lines on right delimit the clades of viruses associated with a sero-
group complex, vertebrate hosts, and symptoms (arthralgia and encephalomyelitis). (Modified 
from Weaver et al. [129])
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The majority of alphaviruses can cause at least mild febrile disease in humans, 
with several producing severe, life-threatening diseases; however, many remain 
poorly studied epidemiologically with unknown public health importance.

Recent studies in several Latin American locations of “dengue-like” illness 
revealed that alphaviruses such as VEEV, EEEV, MAYV, and CHIKV account for a 
significant number of cases misdiagnosed clinically as dengue. Moreover, with the 
recent introduction of the Zika virus, diagnosis based only on signs and symptoms 
is even more complicated in areas where these viruses are circulating 
simultaneously.

A better understanding of alphavirus transmission cycles, molecular evolution, 
vector biology, virus–vector–host coevolution, and rapid diagnostics is needed to 
prevent alphavirus diseases.

Brief descriptions of the most important alphaviruses in Latin America follow.

2  Alphavirus and Encephalitis

2.1  Venezuelan Equine Encephalitis Virus

The Venezuelan equine encephalitis (VEE) complex includes major human and 
equine pathogens and consequently is the most thoroughly studied in Latin America 
[126]. VEEV was recognized first in 1936 and isolated soon thereafter from the 
brains of fatal equids in Venezuela. This virus is transmitted enzootically between 
mosquitoes and rodents, and equine-amplified epizootic cycles cause large out-
breaks of encephalitis in humans and horses [49, 129]. Outbreaks in Mexico and 
South America (Colombia, Venezuela, and Peru) demonstrated that VEE is a 
reemerging disease [44] as a naturally emerging pathogen endemic to South and 
Central America, Mexico, and Florida [126] circulating among wild rodents and 
mosquitoes. The introduction of horses, a new and susceptible host, into the 
Americas during the colonial period triggered outbreaks in these animals and 
increased the exposure of humans.

Fig. 9.2 Transmission cycles and mechanisms of human infection by alphaviruses. At the center 
is an enzootic cycle, typically involving avian, rodent, or nonhuman primates as amplification or 
reservoir hosts and mosquito vectors. Humans become infected via direct spillover when they enter 
enzootic habitats or when amplification results in high levels of circulation. Transmission to 
humans may involve the enzootic vector or bridge vectors with broader host preferences. Right 
panel: Secondary amplification involving domestic animals can increase circulation around 
humans, increasing their chance of infection via spillover. In the case of VEEV, mutations that 
enhance equine viremia are needed for secondary equine amplification. Left panel: CHIKV can use 
humans for amplification, resulting in urban epidemic cycles and massive outbreaks. (Modified 
from Weaver et al. [129] and Muñoz and Navarro [73])

9 Alphaviruses in Latin America and the Introduction of Chikungunya Virus
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Systematics and Geographic Distribution
The VEE complex is a sister of the eastern equine encephalitis (EEE) complex [90] 
and includes six subtypes. Only subtypes IAB and IC are traditionally considered 
epizootic strains that use equids for amplification via high-titer viremias. Other 
VEEV subtypes (ID and IE) are considered equine-avirulent, enzootic strains, 
although IE strains from recent Mexican epizootics appear to be equine- neurovirulent 
but incapable of generating high-titer equine viremia [35]. The remaining subtypes 
(II–VI) are also enzootic strains that generally circulate in sylvatic or swamp habi-
tats and are considered incapable of equine amplification. In the United States, these 
include the Everglades virus in Florida and a variant of Tonate virus, Bijou Bridge, 
isolated in Colorado from cliff swallow bugs during the 1970s [17].

Geographic phylogenetic correlations of VEEV subtypes ID enzootic lineages or 
genotypes [1, 13, 93, 97, 124] suggest that geographic barriers explain their current 
distributions.

The major epidemic/epizootic subtype IAB and IC strains are highly pathogenic 
for horses, with case-fatality rates of 20% to 80%. The last major VEE outbreak 
occurred in 1995 in Venezuela and Colombia with 75,000 to 100,000 human cases, 
more than 300 of them fatal. In 1993, equine disease was associated with VEEV-IE 
in Mexico, and since 1993, human cases of VEEV ID-associated disease have 
occurred in Peru [33, 126].

VEEV infection usually causes flu-like symptoms, and encephalitis is rare in 
adults. Although the case-fatality rate is low (≤1%), neurological disease, including 
ataxia, disorientation, mental depression, and convulsions, can be detected in up to 
14% of infected individuals, mainly children. High seroprevalence has been detected 
in humans in interepidemic/epizootic periods in Argentina [87, 88]. Neurological 
sequelae in humans are also common [34, 49, 94].

Evolution of Epizootic Strains from Enzootic Ancestors
Phylogenetic analysis of the VEE complex shows a close evolutionary relationship 
among IAB, IC, and ID strains and delineates six major lineages of enzootic VEEV, 
including five ID-like lineages and the subtype IE lineage. All epizootic strains from 
major outbreaks fall into one of three clades nested within one of these lineages, 
which is otherwise composed of enzootic ID strains from western Venezuela, 
Colombia, and northern Peru. These phylogenetic data support the hypothesis that 
epizootic VEEV strains have arisen on at least four occasions by mutation of enzo-
otic ID strains and changes in host range. In further investigations, the occurrence 
of two mutations involving charge alterations on the surface of the E2 protein 
implies alterations in cellular receptor usage that influences pathogenesis as a mech-
anism of epizootic emergence [38, 91, 124–126].

Epizootic Transmission Cycle
The epizootic transmission cycle of VEEV is fairly well understood [91]. A feature 
common to all major outbreaks is the role of equids as highly efficient amplification 
hosts. Although the vertebrate host range of epizootic VEEV strains is wide and 
includes humans, rodents, bats, dogs, sheep, and some birds, major epidemics in the 
absence of equine cases have never occurred. Despite the repeated occurrence of 
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epizootics near major cities such as Maracaibo (1995), in western Venezuela, inter-
human mosquito-borne transmission has not been detected. However, the potential 
for urban transmission by a species such as Aedes aegypti, which is susceptible to 
infection after biting humans and exhibits behavioral traits such as multiple host 
feeding and peri-domesticity that augment its vector competence [43, 54, 80], or the 
continuous expansion of Aedes albopictus should be considered [12, 30, 68, 77], as 
human populations continue to expand and those of equines decline in rural areas in 
Latin America [85, 118]. Several small, atypical equine outbreaks were detected in 
Venezuela in the central llanos (2000–2003) with VEEV sequences showing high 
genomic stability 10 years after the 1995 outbreak. Cattle sero-surveys indicated the 
recent circulation of enzootic VEEV strains, and possibly of epizootic strains. 
Persistence of VEEV subtype IC strains and infection of horses at the end of the 
rainy season suggested the possibility of an alternative, cryptic transmission cycle 
involving survival through the dry season of infected vectors or persistently infected 
vertebrates [76].

Epizootic Vectors
Epizootic strains (subtype IAB and IC) of VEEV are opportunistic in their use of 
mosquito vectors during outbreaks. Field studies have indicated that more than one 
principal vector species can be involved in transmission [99, 122, 123, 136]. 
Although susceptibility to infection is a prerequisite for biological transmission, 
ecological and behavioral traits can be more important than susceptibility differ-
ences in vectorial capacity.

Although several mosquito species have been incriminated as VEEV vectors dur-
ing epizootics, Aedes (Ochlerotatus) taeniorhynchus, a salt-marsh mosquito, may 
be the most important epizootic vector. This species is abundant in coastal areas 
including the Guajira Peninsula (Colombia and Venezuela), where many of the 
 largest outbreaks have occurred, and virus isolations and susceptibility studies have 
documented its role in transmission [51, 107, 116, 136]. Culex (Deinocerites) spp. 
may also be VEEV vectors in coastal areas [37].

Psorophora confinnis and P. columbiae were probably important vectors during 
outbreaks in northern South America and in the 1971 epizootic/epidemic in north-
ern Mexico and Texas [136]. Aedes (Ochlerotatus) sollicitans also exhibited 
extremely high infection rates in the coastal areas of Mexico and Texas in 1971 
[136] and is capable of laboratory transmission following high-titer blood meals 
[116]. Non-mosquito arthropods (blackflies and ticks) have also been implicated as 
VEEV vectors but appear to be less important [55–57, 99].

Enzootic Transmission Cycle: Hosts and Vectors
Sylvatic rodents in the genera Sigmodon, Oryzomys, Zygodontomys, Heteromys, 
Peromyscus, and Proechimys are believed to be the principal reservoir hosts of most 
enzootic VEE complex viruses because they are frequently infected in nature, have 
high rates of immunity, and develop moderate- to high-titer viremia [23, 24, 126]. 
Spiny rats (Proechimys semispinosus) and cotton rats (Sigmodon hispidus) are the 
principal reservoir hosts of enzootic subtype ID viruses in Panama and also in 
Colombia and Venezuela [13, 14, 63, 79, 126]. Comparative studies in Venezuela 

9 Alphaviruses in Latin America and the Introduction of Chikungunya Virus



176

and Colombia demonstrated a strong correlation between spiny rat (Proechimys 
chrysaeolus in Colombia) populations and levels of VEEV circulation [13]. Other 
mammals such as opossums (Didelphis marsupialis) are also frequently infected, 
and bats and shorebirds may be involved in the dispersal of enzootic viruses.

The most important enzootic vectors are members of the genus Culex, subgenus 
Melanoconion, Spissipes section [9, 25, 31, 71, 78, 101, 123, 126, 134], a diverse 
and taxonomically difficult group [78, 83, 98, 112]. The Spissipes section [98, 104, 
112] includes most vectors of enzootic VEEV and EEEV in Latin America [18, 
126], and seven species are proven vectors of VEE complex viruses. Studies of 
enzootic VEEV ecology have incriminated a single species or multiple species as 
the principal vector in a given location [9, 13, 31, 69, 123, 134]. A combination of 
enzootic vectors (transmission within forests) and epizootic vectors (potential 
exporters of the virus to open agricultural areas) were also studied in enzootic areas 
of the Catatumbo region in Venezuela [5, 67].

The restriction of most Melanoconion arbovirus vectors to the Spissipes section 
raises the question of what genetic, physiological, or ecological characteristics are 
shared by the members of this section that predispose them to transmit arboviruses. 
Recently, the use of ribosomal DNA sequences and phylogenetic methods have 
revealed evolutionary relationships among the Vomerifer and Pedroi groups of 
Spissipes [78]. Navarro and Weaver also detected two cryptic potential vector spe-
cies under Culex pedroi supporting the hypothesis of differential vector capacity for 
VEEV and EEEV [31, 117].

Control and Prevention of VEE Outbreaks
Equine vaccination in enzootic countries, where progenitors of epizootic strains 
circulate and where recent outbreaks have been documented, can be effective if 
VEEV circulation is anticipated or recognized quickly during outbreaks. However, 
governmental responses to epizootics are often slow for reasons of veterinary and 
public heath surveillance deficiencies. The live-attenuated TC-83 vaccine is the 
most effective way to prevent and control epizootic VEEV transmission, and it is 
available throughout most of Latin America. However, some equids in South 
America are vaccinated with inactivated, multivalent alphavirus vaccines marketed 
in the United States. Immunity from these vaccines is slower to develop, is less 
durable, and requires frequent boosters. Therefore, public and veterinary health offi-
cials should strongly discourage the use of these inactivated vaccines in regions of 
Latin America with a history of VEE [126]. The protection of human populations 
relies principally on personal protection and avoidance of mosquito bites by limit-
ing physical exposure and applying repellants containing the active ingredient 
diethylmethylbenzamide (DEET). Applying permethrin to clothing to enhance pro-
tection of individuals who reside or work near equine herds during epizootics, who 
contact tropical forest or swamp habitats where enzootic VEEV circulates, or dur-
ing outbreaks is also effective. The rural–sylvan behavior of enzootic VEEV vectors 
renders the usual control based on ULV insecticide methods inappropriate and 
largely ineffective.
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2.2  Eastern and Western Equine Encephalitis Viruses

2.2.1  Eastern Equine Encephalitis

Eastern equine encephalitis virus (EEEV) (Alphavirus, Togaviridae) is an single-
stranded RNA mosquito-borne zoonotic pathogen transmitted throughout the 
Americas [105, 135]. In North America, EEEV circulates principally along the east 
cost of United States and Canada, and related strains have been also detected in 
northern Mexico and the Caribbean region. In North America, sporadic human 
cases averaging approximately five or six per year occur in swamp habitats where 
the enzootic cycle is involved mainly among birds of the Passeriformes order and 
the ornithophilic mosquito Culiseta melanura and Culex subgenus Melanoconion 
species in the southeast [105, 135]. EEEV infections in domestic animals are com-
mon; the case- fatality rates in both human and equine cases average about 50% to 
70% or more.

South American eastern equine encephalitis virus (EEEV/SA) was first charac-
terized in Argentina in 1933 [70]. New evidence shows that North American EEEV 
(EEEV/NA) and EEEV/SA variants have developed differences in the ecological, 
epidemiological, pathogenic, antigenic, and genetic profiles that allowed the clas-
sification of EEE/SA into a new species called Madariaga virus (MADV), named 
after the place of its first collection in Argentina. Consequently, MADV is com-
posed of three distinct genetic lineages: one that circulates in Guatemala, Brazil, 
and Peru; a second lineage in Argentina, Brazil, Colombia, Ecuador, Guyana, 
Panama, Peru, Venezuela, and Trinidad; and a third represented by a single location 
isolated in Brazil [8].

Early reports suggest that MADV virus was human avirulent and causes equine 
epizootics with high mortality averaging approximately 70%; despite human expo-
sure during epizootics, cases have never been detected in Panama and Argentina 
despite active surveillance [27, 70, 96]. Studies in Peru revealed that although the 
isolation of MADV in mosquitoes known to feed on humans was not uncommon, no 
MADV was isolated in acutely febrile patients [3]. Only three human cases of 
MADV infection had been recognized in Brazil (one) and in Trinidad (two) [21, 32] 
before the first documented epidemic was detected in Panama during 2010 [18].

Vector and Host
Culex (Melanoconion) taeniopus and Cx. (Mel.) pedroi are recognized as the main 
enzootic vectors of MADV in Central and South America, respectively [108, 117]. 
Forest-dwelling rodents and marsupials have been implicated as possible hosts 
based on serosurveys, although birds may also serve as hosts in the Amazon and 
southern regions of South America. Lizards have also been suggested as MADV 
hosts in Panama [22]. Recent serological studies in Panama suggest that the short- 
tailed cane mouse (Zygodontomys brevicauda) is a host for MADV, and humans 
active in pastures and farms where this rodent is abundant are at increased risk of 
infection [121].
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Epidemiology
Human MADV infections in Panama are recognized after equine cases have been 
detected early in the rainy season (May–June). The distribution of cases is typically 
clustered in the Province of Darien close to the Colombian border. Severe cases are 
observed principally in children with a median age of 5.1 years, with a case-fatality 
rate around 10% [18].

With the exception of Panama, there is no report of human disease outbreaks 
attributed to MADV, and the lack of human cases in the rest of Latin America may 
result from (a) cross-protective immunity by heterologous alphavirus antibodies 
such as VEEV or (b) intrinsic characteristics of MADV strains, such as the inability 
to evade the interferon response [2, 3]. In addition to previous studies, in Panama 
recent evidence supports the effect of cross-protective immunity, as areas of high 
VEEV transmission appear to have reduced MADV transmission [121].

Clinical Characteristics
Symptomatic MADV cases present a prodromal phase, principally with fever and 
headache; vomiting and diarrhea occur less frequently. A neurological stage follows 
accompanied by disorientation, somnolence, seizures, and coma. Patients typically 
show elevated white cell counts and protein elevation in the cerebrospinal fluid 
(CSF). Severe cases can develop long-term neurological sequelae including sei-
zures, hemiparesis, psychomotor retardation, and coma [18, 61].

Laboratory Diagnosis
Laboratory diagnosis is a challenge in endemic countries, where a high level of 
training to perform the viral isolation and serological assays is required. 
Co-circulation of multiple alphaviruses and antibody cross-reactions are common in 
Latin America. Furthermore, in endemic regions where multiple alphaviruses such 
as VEEV and EEEV (MADV) that cause similar clinical presentations are circulat-
ing, the interpretation of laboratory results is complex. The alphavirus IgM antibody 
response lasts around 2 to 3 months, and multiple diagnostic tools such as viral 
isolation, antibody tests, and viral RNA detection should be implemented [18, 62]. 
Although incidental laboratory infections with MADV have not been reported, 
diagnostic confirmation in endemic regions may require the use of live VEEV and 
EEEV in biosafety level 3 containment. In this case, neutralization tests for MADV 
and VEEV can be performed with EEEV chimeric viruses and TC-83 live-attenu-
ated vaccine VEEV strain in biosafety level 2 facilities with results similar to those 
obtained with the wild-type strains [48, 121].

2.2.2  Western Equine Encephalitis

Western equine encephalitis virus (WEEV) is a recombinant alphavirus descended 
from Sindbis- and EEEV-like ancestors [40]. WEEV causes sporadic epizootics in 
the western United States and Canada, associated with increased rainfall in early 
spring followed by warmer-than-normal temperatures. Culex tarsalis is recognized 
as the principal vector in North America, and Aedes albifasciatus has been  implicated 
in South America; passerine birds are the main enzootic hosts.
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Circulation of WEEV in Latin America has been recognized during epizootics in 
Argentina, Uruguay, and Cuba [128]. A human fatal case was reported in Uruguay 
during 2009. However, the available evidence suggests that WEEV circulation is 
declining, with the last human case in North America reported during 1994, and the 
last detection in mosquito pools in 2008 [15].

3  Alphavirus and Arthralgias

3.1  Mayaro Virus

Mayaro virus (MAYV) is a unique, exceptional New World alphavirus, and, before 
the introduction of chikungunya virus (CHIKV) in 2013, represented the sole arthral-
gic alphavirus endemic to the Western Hemisphere. MAYV was first detected in 
forest workers in the county of Mayaro, Trinidad, in 1954 [6]. Since then, there is 
evidence of MAYV infection, either by serological detection or virus isolation, in 
several regions of Latin America, including Brazil, Colombia, Ecuador, Peru, 
Surinam, Bolivia, French Guiana, Trinidad, and Venezuela [4, 10, 11, 33, 39, 46, 50, 
59, 66, 72, 81, 109–111, 113, 120, 137]. Although MAYV has not recently emerged 
sufficiently to result in major outbreaks, several acute undifferentiated febrile illness 
surveillance studies have clearly shown that the virus commonly infects humans, and 
that those infected most are infected as a result of occupational exposure [33, 120].

MAYV causes sporadic outbreaks, which have been localized primarily to regions of 
Brazil [11, 53, 64, 82, 120, 137], but has also been detected in Bolivia and Peru [33]. A 
pediatric infection was recently detected in Haiti, suggesting local enzootic (although no 
wild monkeys are present) or endemic circulation [139]. Typically, infection with 
MAYV is not fatal but cases usually present with fever, headache, retro-orbital pain, 
myalgia, vomiting, diarrhea, rash, and often persistent (<1 year) severe arthralgia [41, 
100]. In this regard, MAYV may be more incapacitating than other common arboviruses 
such as dengue virus (DENV). Given the low economic impact of MAYV, there is very 
little vaccine development effort, the exception being an IRES-based attenuated live-
attenuated vaccine [133]. The largest documented MAYV outbreak occurred in Belterra, 
Brazil, in 1978, with approximately 790 persons possibly affected and 55 confirmed 
cases: the virus was isolated from 43 cases [53, 86]. Since then, outbreaks have been 
very limited, until recently in Venezuela in 2010, where there was an outbreak of 77 
suspected cases, of which 6 were detected by virus isolation from acute-phase sera [10].

Given the extent of the most recent MAYV outbreak in Venezuela, it is important to 
consider the possibility that Aedes (Steg) aegypti was involved in virus transmission, in 
addition to its enzootic vectors. Ae. aegypti-vectored arboviruses are among the most 
important arboviral pathogens, and previous studies suggest this is a moderately com-
petent MAYV vector [60]. Ae. albopictus is a competent vector for several arboviruses 
[131], and in contrast to Ae. aegypti, it is found in periurban areas and more temperate 
regions. Ae. albopictus competency for MAYV has been examined experimentally, and 
results suggest it is not a competent vector unless bloodmeals are taken from highly 
viremic mice (>7 logs). If MAYV were to adapt for more efficient Ae. aegypti or 
Ae. albopictus transmission, it can present a significant global threat [140].
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Phylogenetic studies of MAYV sequences show that the viruses can be further 
delineated into three genotypes, designated genotype D, L, and N [10, 89]. Genotype 
D includes isolates from Trinidad, Brazil, French Guiana, Surinam, Peru, and 
Bolivia; genotype L contains isolates from Brazil, but it is unclear if this genotype 
is still in circulation because it has not been detected since 1991; and genotype N 
consists of a single strain isolated from Peru in 2010 [10]. The single genotype N 
sequence is intermediary in phylogeny between genotypes D and L.  It would be 
interesting to determine the prevalence of this strain in Peru and fully characterize 
its pathogenicity in mice relative to the other genotypes.

There is no evidence that the MAYV phylogeny is temporally structured, but it 
appears to be influenced to some extent by geography. Genotype D strains can be 
further delineated into smaller clades based on the geographic region of collection 
[10, 89]. Given this geographically structured phylogeny, we cannot exclude the pos-
sibility that there may be potential restrictions associated with vector competence, 
vector distributions, or alternative vertebrate amplification hosts that might affect this 
apparent population subdivision. However, sampling bias and the difficulty associ-
ated with isolating MAYV should be considered when proposing these conclusions. 
Additionally, recent studies provide evidence that MAYV strains concurrently circu-
lating within Venezuela are undergoing regionally independent evolution, suggesting 
the absence of a single panmictic viral population, at least in Venezuela [10].

The MAYV ecological niche model based on localities of virus isolations [10, 
89], vector distributions, and 19 climatic variables [58] predicts the suitable MAYV 
habitats in the following order of importance: eco-regions, followed by Haemagogus 
(Hg.) leucocelaenus, Hg. celeste, and Hg. clarki distributions. Figure 9.3 presents a 

Fig. 9.3 Ecological niche model for Mayaro viruses (MAYV) based on virus isolation localities, 
seropositivity records, primary vector distribution (Haemagogus spp.), and 19 climatic variables
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map of the predicted geographic distribution of the virus. MAYV presents six 
 distributional patterns across South America related to terrestrial eco-regions show-
ing the high and low probabilities of predicted areas.

Previous findings suggest that MAYV circulates between canopy-dwelling 
Haemagogus mosquitoes and nonhuman primates [45, 72, 89], but very little is 
known about the enzootic transmission cycles that perpetuate MAYV.

The MAYV genome is highly conserved (i.e., 96.4%–100% nucleotide sequence 
identities and 97.7%–100% amino acid sequence identities), across the complete 
genome, among genotype D strains [10]. Given this level of sequence conservation, it 
is unlikely that there may be significant phenotypic variation among strains, but recent 
work has shown the presence of five positively selected sites across the genome and 
nonsynonymous mutations that delineate various genotypes as well as the Venezuelan 
2010 outbreak strains [10]. Reverse genetic studies are necessary to determine if any 
of these substitutions can cause phenotypic alterations. These studies can also be used 
to compare virulence among historical and contemporaneous isolates.

3.2  Chikungunya Virus

Chikungunya virus (CHIKV) is an alphavirus in the family Togaviridae and a rela-
tive of other neotropical viruses such as Venezuelan, western, and eastern equine 
encephalitis (although most strains in Latin America are part of the species 
Madariaga virus) viruses, as well as Mayaro (MAYV) and Una viruses, its closest 
relatives in the New World [132].

As does MAYV, CHIKV causes an acute febrile disease typically accompanied 
by severe arthralgia that can persist for years [130]. However, differing from MAYV 
wherein human infections are thought to result mainly from direct spillover of enzo-
otic strains, CHIKV causes disease via direct spillover as well as by entering a 
human–mosquito–human cycle in urban areas, typically involving transmission by 
the anthropophilic mosquito Aedes ae. and recently also by Ae. albopictus; this 
leads to major epidemics involving millions of persons with efficient spread via 
infected air travelers during recent outbreaks. Although CHIKV is rarely fatal, new-
borns infected during birth, as well as the elderly, especially those with complicat-
ing, underlying medical conditions, can have severe neurological disease,. However, 
in addition to CHIKV being a direct cause of extensive morbidity in all age groups 
because of its typically high attack rates, the debilitating and often chronic arthral-
gia results in extensive economic impacts when infected persons cannot work or 
care for their families [102].

Chikungunya virus is believed to have originated in sub-Saharan Africa in enzo-
otic cycles involving nonhuman primates and sylvatic Aedes spp. mosquito vectors, 
and these cycles continue in many regions of that continent. The history of CHIKV 
in Latin America probably began centuries ago when sailing ships carried it from 
Africa to port cities around the world, including the Caribbean and Latin America 
[127]. In fact, the term “dengue” may have originally described CHIKV infections, 
with the terminology becoming confused over the centuries with what is now known 
as dengue fever [42]. During modern scientific history since CHIKV was first 
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 isolated and associated with febrile illness in 1952 [65, 95], CHIKV is believed to 
have emerged from the enzootic African cycle to initiate urban transmission on 
several occasions, beginning about a century ago when the Asian lineage was intro-
duced into South and Southeast Asia and caused outbreaks first recognized in 1958 
(Fig. 9.4) [127]. This Asian lineage, transmitted primarily by Ae. aegypti, has con-
tinued to cause sporadic outbreaks in Asia and Oceania ever since. The next major 
emergence of a strain into a stable urban cycle began in 2004 when an outbreak 
began in coastal Kenya [20] and spread into the Indian Ocean basin as well as into 
Asia to infect millions of persons. Following the importation of this Indian Ocean 
lineage (IOL) strain by tens of thousands of infected travelers, outbreaks were also 
detected in Italy [92] and France [36]. However, despite importations into permis-
sive (naïve human populations and abundant Ae. aegypti) dengue-endemic regions 
of the Americas, no local transmission was detected in the Western Hemisphere 
until late 2013, when an Asian lineage strain was implicated in human infections on 
the island of St. Martin in the Caribbean. Subsequently, this strain spread to nearly 
all Caribbean islands and throughout tropical and subtropical regions of Latin 
America during 2014, with continued circulation in many regions as of 2016. Then, 
in 2014, another CHIKV strain was introduced into northeastern Brazil directly 
from Africa (a member of the East/Central/South African, or ECSA, lineage). The 
distributions of the two CHIKV strains (Asian and ECSA lineages) are not com-
pletely known, but the Asian strain has been detected by sequencing in the Caribbean, 
Central America, Mexico, Florida in the United States (briefly following introduc-
tions in 2014), and northern South America, whereas the ECSA strain has not been 
reported outside Brazil. Determination of the geographic ranges of the two strains 
could be important because many ECSA strains have the ability to adapt for more 
efficient transmission by Ae. albopictus via mutations in the E1 and E2 envelope 
glycoprotein genes [114], although Asian lineages are epistatically constrained 
from such adaptation [115]. However, the ECSA strain circulating in Brazil and 
possibly beyond may have a different epistatic constraint based on a different E2 
residue (position 211) [115]. Reverse genetic studies are needed to more definitively 
assess this adaptive potential of the Brazilian ECSA strain because the ability to use 
Ae. albopictus as an efficient vector could allow CHIKV to extend its geographic 
range into rural and temperate regions of Latin America.

Control of CHIKV in Latin America represents the same challenges imposed by 
dengue and now Zika viruses. Until a vaccine can be licensed (and several promis-
ing candidates are in late preclinical or early clinical stages of testing), vector con-
trol represents the only means of preventing infection and limiting spread. Although 
CHIKV has already spread extensively to many regions of Latin America and the 
Caribbean, and high seroprevalence [52, 103] as well as a drop in reported cases 
since 2014 (PAHO data) suggest that the epidemic has peaked in many regions, 
CHIKV infections continue to occur and outbreaks have not been reported in some 
areas with a history of dengue, suggesting continued spread. Unfortunately, past 
failures with the control of Ae. aegypti because of the wide range of challenges 
posed by this species do not bode well for this approach to CHIKV control [29].  
The presence of MAYV in many parts of South America could also influence further 
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Fig. 9.4 Evolution of CHIKV. a Maximum-likelihood tree of major CHIKV lineages based on 
concatenated open reading frames (ORFs). Branch lengths reflect genetic distance. Bootstrap val-
ues are labeled for major lineages and clades. b Maximum clade credibility (MCC) tree of the 
Asian CHIKV lineage based on the Skyride population model using all Asian lineage strains. 
Branch length is scaled to the sampling and divergence time, and the branches are color coded for 
sample location. Node bars representing 95% highest probability density (HPD) value of the node 
height are shown only for those with a posterior probability of 90 or higher. (Modified from Chen 
et al. [19])
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CHIKV spread and possibly disease manifestations. These two alphaviruses exhibit 
some antigenic cross-reactivity [16] that could reduce viremia to affect pathogene-
sis and possibly vector transmission, which should be evaluated in the near future.

4  Challenges of Future Research

In VEEV, there are four major challenges that we believe can be solved using new 
approaches: (1) rapidly estimating the origin of a newly discovered VEEV strain; 
(2) estimating its equine and/or human amplification and thus epidemic potential; 
(3) predicting the human virulence phenotype of a newly discovered VEEV strain. 
Phylogenetic relationships of a diverse collection of VEEV strains have proved use-
ful for identification of the genetic features leading to epidemic spread to humans 
and livestock of this zoonotic pathogen. Also, (4) search for synapomorphic genetic, 
physiological, or ecological factors shared by Spissipes mosquitoes could explain 
their important role in transmitting arboviruses [34, 126].

Meanwhile, in EEEV several advances in the understanding of MADV patho-
genesis have been achieved in the recent year. However, the available evidence is 
limited to in vitro studies. Genetic determinants of virulence are still unclear: ani-
mal models have failed to reproduce the natural history of disease, although cotton 
rats seem to be a promising model for evaluation of this question [7]. Basic epide-
miological investigations are needed to understand the potential of MADV emer-
gence in other Latin American countries; evaluation of cross-protective immunity is 
also important for vaccine design.

For MAYV and CHIKV, the degree and longevity of such cross-protection 
between both viruses should be further assessed not only to assist with predicting 
interactions that might limit circulation and spread but also to determine if an effec-
tive CHIKV vaccine could also limit disease caused by MAYV, which is probably 
indistinguishable from CHIKV infection and appears to be grossly underreported in 
Latin America [119].

Further work is warranted to truly understand the ecology of MAYV as a poten-
tially emergent alphavirus. Of particular interest are (i) which vectors maintain 
enzootic transmission, (ii) what species are competent bridge vectors that facilitate 
transmission to humans, (iii) which nonhuman primate species serve as the primary 
amplification host, and last (iv) do other canopy-dwelling vertebrates, rodents, or 
birds have a role in transmission, or act as dead-end hosts only. These questions can 
be addressed through experimental infections in the laboratory or via field studies 
aimed at virus isolation and serological detection of MAYV among vectors and 
vertebrates in known endemic areas.
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Chapter 10
Arenaviruses and Hemorrhagic Fevers: 
From Virus Discovery to Molecular Biology, 
Therapeutics, and Prevention in Latin 
America

Víctor Romanowski, Matías L. Pidre, Mario E. Lozano, and Sandra E. Goñi

1  Introduction and New Arenavirus Taxonomy

This chapter focuses on arenavirus studies carried out in past decades in Latin 
America. Some information comes also from reports of international collaborative 
research and study groups in which scientists from this region have participated.

The Arenaviridae family presently includes more than 30 viral species. The num-
ber of new arenaviruses isolated and characterized in the past few years has grown 
dramatically and led to the establishment of two genera: Mammarenavirus (known to 
infect mammals) and Reptarenavirus (identified in snakes) [71] (Table 10.1).

The mammarenaviruses (referred to as “arenaviruses” in the literature before 
2016) are generally associated with infection in rodents and are divided into two 
major groups on the basis of serological cross-reactivity, phylogeny, and geographic 
site of isolation: the Old World (OW) complex (Africa, Europe, and Asia) and the 
larger New World (NW) complex (Americas), subdivided into clades. Lymphocytic 
choriomeningitis virus (LCMV), the type species, infects the common house mouse 
(Mus musculus), a fact that explains its global distribution. In contrast, all other 
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Fig. 10.1 New World arenaviruses that cause hemorrhagic fevers. Endemic areas for American 
human pathogenic arenaviruses. The year of isolation/description of these viruses is indicated in 
parentheses. WWAV* includes several different North American arenaviruses, some of which are 
associated with cases of hemorrhagic fever with liver failure and belong to the species Whitewater 
Arroyo mammarenavirus

arenaviruses show restricted geographic distribution coincident with the location of 
habitats of natural reservoir hosts. In rodents, arenaviruses usually establish an 
asymptomatic chronic infection. This fact has a correlation in vitro, where arenavi-
ruses can produce persistent infections without associated cytopathic effects. 
However, occasionally some arenaviruses may be transmitted to humans through 
contact with urine or blood-contaminated materials and produce severe hemor-
rhagic fever. Included are Lassa (LASV) and Lujo (LUJV) viruses, in West Africa, 
and Junín (JUNV), Machupo (MACV), Guanarito (GTOV), Sabiá (SABV), Chaparé 
(CHPV), and Whitewater Arroyo (WWAV) viruses, in the Americas (Fig. 10.1).

At present, arenaviruses cause as many as 500,000 zoonotic infections per year 
in endemic areas of Africa and South America that can lead to severe and lethal 
hemorrhagic fever symptoms. Human pathogenic arenaviruses are considered 
potential biological weapons.

Because of the number of cases of human disease in Latin America and the avail-
ability of locally and internationally published reports, this chapter discusses JUNV 
in more detail and refers to other arenaviruses when appropriate. By no means 
should this chapter be considered a thorough compilation of the research on arena-
viruses conducted in Latin America; it is rather an overview of the diverse published 
studies in this field and a short perspective on future developments.
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2  Virion Structure and Genome Organization

Members of the Mammarenavirus genus share the following features: virions are 
pleomorphic (mostly spherical), 50–300  nm in diameter (mean, ~120 nm); they 
contain several copies of circular nucleocapsids and include a variable number of 
ribosomes [74, 77]. They acquire a lipid envelope with club-shaped projections, 
8–10 nm in length (spikes), during the budding process from the host cell membrane 
at the end of the infectious cycle.

Their genome consists of two single-stranded RNA segments: small (S) and 
large (L), about 3.5 kb and 7.5 kb in length, respectively. Each segment has two 
nonoverlapping open reading frames (ORF) of opposite sense, which was the origin 
of the term ambisense to describe this type of coding strategy [9]. The sizes of the 
gene products indicated in the following text are those of JUNV.

The ORFs of opposite polarity are separated in both RNAs by a noncoding inter-
genic region predicted to fold into a stable secondary structure [31]. The L segment 
codes for both the 94 amino acid (aa) zinc-binding Z-matrix protein that drives virus 
budding (~11 kDa), as well as for the RNA-dependent RNA polymerase L (2210 aa; 
~250 kDa). The S RNA codes for both a nucleocapsid protein N (564 aa) as well as 
the glycoprotein precursor GPC (485 aa) [31, 77]. GPC is synthesized as a single 
polypeptide chain and is post-translationally cleaved to yield mature virion glyco-
proteins G1 (192 aa) and G2 (235 aa) and a stable signal peptide SSP (58 aa) [87]. 
G1/G2/SSP trimers form the spikes decorating the virus surface.

G1 is located at the top of the spike and mediates virus interaction with host cell- 
surface receptors, and G2 is similar to others class I viral fusion proteins [70]. SSP 
is generated by signal peptidase cleavage but, in contrast to conventional signal 
peptides, is stable, unusually long (58 aa vs. the usual 15–25 aa), and myristoylated; 
it contains two hydrophobic segments that span the lipid bilayer with both N- and 
C-termini residing in the cytosol; and contributes to G2 fusion activity through its 
C-terminal region [86, 87].

The nucleocapsid protein N is the most abundant virion protein, followed by G2, 
G1, Z, and L (~1500, 650, 650, 450, and 30 molecules per virion, respectively, as 
calculated per “old style” methods) [84]. The RNA–N interactions and zinc-binding 
capacity have been identified in computational and experimental studies [65, 80, 81].

3  Virus Entry and Cell Tropism

Specific virus interaction with receptor molecules on the cell membrane is a crucial 
step in the infectious process: it drives subsequent entry into the host cell, making 
cell receptors the major determinants of viral cell tropism, host range, and pathogen-
esis. Until 2005, little was known about the mechanism by which JUNV entered host 
cells. By using pseudo-typed retroviruses, several laboratories confirmed that JUNV, 
as well as other clade B NW arenaviruses, did not interact with α-dystroglycan, the 
known receptor for Old World (OW) arenaviruses, to enter the cells [72]. The next 
big breakthrough came 1 year later when using a proteomic pull-down approach, 
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applying a recombinant receptor-binding G1 moiety of Machupo virus (MACV) as 
bait, transferrin receptor 1 (TfR1) was identified as the first known JUNV, MACV, 
GTOV, and SABV cell receptor [70]. A recent study has shown that a neutralizing 
monoclonal antibody directed toward G1 maps to the same site that makes contact 
with hTRf1, suggesting that this is the basis for immune therapy success [50].

Although the hTfR1 is definitely a major receptor that allows JUNV infection, 
there is information on additional or alternative cell-surface molecules that seem to 
promote virus entry. Dendritic cell-specific intercellular adhesion molecule-3- 
grabbing nonintegrin (DC-SIGN) is a type II transmembrane lectin receptor. 
DC-SIGN is abundantly expressed on immature dendritic cells (iDCs), one of the 
principal targets of JUNV. Previous reports showed that nonpermissive cells lacking 
TfR1 became significantly more susceptible for JUNV infection when transfected 
with a plasmid DNA construct expressing DC-SIGN receptor. In addition, pretreat-
ment of these genetically modified cells with anti-DC-SIGN or mannan reduces the 
infection with JUNV. This work validates a direct cell-to-cell transmission of JUNV 
and supports the role of type C lectins in viral adsorption, internalization, and intra-
cellular transport [25, 38].

After binding to its receptor, a virus can resort to different internalization mecha-
nisms. Briefly, there are three general mechanisms for viral internalization: clathrin- 
mediated endocytosis, caveolar/raft pathway, and cholesterol-dependent 
endocytosis. It has been demonstrated in Vero cells that clathrin-mediated endocy-
tosis is the main route used by JUNV and involves the cytoskeleton and a host of 
cellular proteins [55–57]. Finally, direct evidence of JUNV cell entry was obtained 
using transmission electron microscopy [55]. Pichinde virus (PICV), another NW 
arenavirus, has also been shown to enter cells through a clathrin-dependent endo-
cytic pathway, trafficked through the dynamin 2 endocytic pathway in which the 
virus travels through Rab5-mediated early endosomes and Rab7-mediated late 
endosomes [83]. Similar results have been obtained for JUNV [57]. JUNV internal-
ization leads to PI3K/Akt signaling pathway activation [42], which requires both 
intact actin and a dynamic microtubule network [56]. An alternative virus internal-
ization pathway has been recently described for TCRV [73].

Later, the fusion of the viral envelope with the endosomal membrane is essential 
for the progression of the infection cycle. Although G1 interacts with the TfR1, G2 
is responsible for the fusion process. These studies revealed a crucial role of the SSP 
in pH-dependent membrane fusion [87]. It has been shown that sera from AHF 
patients inhibit fusion activity in an in vitro system [16].

4  RNA Transcription and Replication

The 3′- and 5′-terminal sequences of 19-nucleotide RNA segments are complemen-
tary and very well conserved in all arenaviruses. The base complementarity of these 
termini is probably the molecular basis for the circular conformation of the nucleo-
capsids that has been observed [29]. These termini are essential for replication and 
transcription and are believed to function as a binding site for viral polymerases 
(reviewed in [2]).
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Genome replication and transcription take place in the cytoplasm of infected cells 
and require that viral proteins combine with viral RNA to form ribonucleoprotein 
(RNP) complexes. The L protein mediates viral transcription and replication using 
RNPs as templates. In TCRV, N and L proteins together with virus RNA are the mini-
mal components of RNP complexes and are sufficient for genome replication and tran-
scription [44]. Both N and L proteins are necessary and sufficient for these early steps 
in vivo in reconstructed JUNV transcription-replication [2]. During genome replica-
tion, full-length copies of genomic S and L RNAs are synthesized, generating the cor-
responding antigenomic S and L RNAs. In response to the ambisense coding strategy, 
both genomic and antigenomic RNAs serve as template for viral mRNA transcription 
(Fig. 10.2). Transcripts contain a cap but are not polyadenylated. The 3′-end sequences 
of the subgenomic mRNAs fall within the intergenic, suggesting that the stem-loop 
structure is involved in transcription termination regulated by interaction with N [36, 
80]. However, elements regulating termination have not yet been well defined.

Fig. 10.2 Schematic of the JUNV infection cycle. Virion adsorption to the cell surface is mediated 
by G1 (head of trimeric GP complex) interaction with the hTfR1 cell receptor. After receptor- 
mediated endocytosis, the drop in pH triggers conformational changes in G2 that drive virion and 
endosome membrane fusion. Uncoating releases the viral nucleoprotein, which serves as template 
for transcription and replication of the ambisense genomic RNAs. Translation of GPC mRNA and 
processing of the precursor via the secretory pathway yields the GP complexes (trimers of G1 + G2 
+ SSP) inserted in the cell membrane. The Z protein drives the budding process by curving the 
GP-containing membrane GP patches and interacting with the newly formed nucleocapsids. No 
nuclear phase is required for arenavirus replication
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5  Glycoprotein Processing and Envelope Assembly

GPC is processed to yield SSP + G1 + G2 to form trimeric spikes protruding on the 
virus surface. SSP is required for transport of the G1–G2 precursor protein GPC 
from the endoplasmic reticulum (ER). After cleavage, JUNV SSP is retained and 
positioned in the GP complex through interaction with a zinc-binding domain in the 
cytoplasmic tail of G2. The G1–G2 precursor is cleaved by the cellular SKI-1/S1P 
protease in the Golgi compartment to form the mature G1 and G2 subunits. As with 
other class I viral fusion proteins, proteolytic cleavage of the GPC precursor is 
required to render the GP complex competent for membrane fusion [2, 87]. Other 
protein–protein interactions are necessary to package the genome and induce bud-
ding to generate virions. In addition, it has been shown that GP complexes become 
localized to cholesterol-rich lipid microdomains [18].

6  Z Protein at the Crossroads of the Infectious Cycle

López et al. (2001) initiated studies to establish a reverse genetic system for TCRV 
(a close nonpathogenic relative of JUNV) focused initially at the replication and 
encapsidation of minigenomes [44]. In cells expressing N and L proteins, the coex-
pression of the small Z protein proved to be highly inhibitory to both transcription 
and replication via interaction with the L protein [39]. It has been shown that interac-
tion between Z and N is required for assembly of both nucleocapsids and glycopro-
teins into infectious budding particles [15]. Z protein has been assigned a major role 
in virus particle budding. Later, the L-binding domain of Z protein and the structural 
requirements mediating Z homo-oligomerization were described for JUNV and 
TCRV [46]. N–N and N–L interactions are central during transcription and replica-
tion, and current evidence supports the notion that Z operates as a key modulator of 
viral RNA synthesis by directly interacting with L.  When N and GP accumulate 
above a certain threshold, Z becomes engaged in virion assembly via Z–N-mediated 
recruitment of nucleocapsids and targeting of the plasma membrane, where Z–Z 
oligomerization and Z–G2 interactions lead to budding of complete virus particles 
[45]. Additionally, Z function may be related to cell response to viral infection.

7  Arenaviruses and Hemorrhagic Fevers in Latin America

Five NW arenaviruses are known to naturally cause severe febrile disease in humans 
in Latin America: the Guanarito (GTOV), Junín (JUNV), Machupo (MACV), Sabiá 
(SABV), and Chaparé (CHPV) viruses [17, 20, 66, 79]. The diseases range from 
sporadic cases to small outbreaks to hyperendemic episodes. Humans usually 
become infected with arenaviruses by inhalation of virus in aerosolized droplets of 
rodent excreta.
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In contrast, other arenaviruses are not associated with human disease, such as 
Mopeia virus (MOPV) in West Africa or Tacaribe (TCRV), Pichinde (PICV), and 
Oliveros (OLVV), in the Americas.

Argentine hemorrhagic fever (AHF) is the best studied South American hemor-
rhagic fever (HF) and is similar to others in clinical presentation. It is a severe viral 
hemorrhagic syndrome endemic to the agricultural plains of central Argentina. Its 
incidence is mainly seasonal [24, 75].

The clinical symptoms of AHF include hematological, neurological, cardiovas-
cular, renal, and immunological alterations. This emerging disease was first recog-
nized in 1955, and its etiological agent was characterized and designated Junín virus 
(JUNV) for the geographic site where it was first isolated [66, 67]. JUNV is a 
rodent-borne virus and belongs to the clade B New World (NW) arenavirus within 
the Arenaviridae family [77].

The population of humans at risk is composed mainly of agricultural workers 
who become infected by inhaling aerosols of rodent excreta, although viral entry 
may occur by other routes, such as the conjunctival membranes, other mucous 
membranes, ingestion, and direct contact with damaged skin [60]. Transmission 
between humans has been reported even though AHF is usually not contagious from 
human to human. In patients with AHF, the viremia is present during the entire acute 
febrile period. Moreover, the virus was occasionally isolated from oral swabs, urine, 
and breast milk from infected subjects. Sexual transmission of JUNV was reported 
from convalescent men to women [13].

Since its emergence in the 1950s, annual epidemics of the disease have been 
recorded. The initially high case fatality rate of the disease was markedly reduced, 
first with adequate supportive measures and, more significantly, with the use of 
immune plasma [24].

Former endemic hotspots are currently cooling off; however, there is a steady 
and progressive geographic expansion of the endemic region into north-central 
Argentina, and currently almost 5 million people are considered to be at risk of 
contracting AHF [24].

A collaborative effort conducted by the U.S. and Argentine governments in the 
1980s led to the production of a live attenuated Junín virus vaccine [51]. The avail-
ability of the live attenuated vaccine has contributed to a substantial reduction in the 
number of AHF cases in recent years [24].

JUNV may enter the body through the skin, respiratory tract, or gastrointestinal 
mucosa. After replication, generalized dissemination occurs, but gross pathology 
changes are nonspecific [34]. Capillary dilatation ensues with perivascular erythro-
cyte diapedesis and bleeding; minor edema of the vascular wall has also been 
observed. Erythroblastopenia with morphologically abnormal erythroid and leuko-
poietic cell lines and normal megakaryocytes has been described in bone marrow, as 
well as severe meningeal edema and hemorrhages in Virchow–Robin spaces in the 
central nervous system (CNS) (reviewed in [54]).

Decreased T- and B-lymphocyte counts and a diminished response to mitogens 
are expressions of immunosuppression during the acute phase of the disease. Low 
numbers of null, B, and T cells, as well as a lower T4/T8 ratio, have been observed 
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during the acute phase of AHF. Null and T8 cell numbers improve after immune 
plasma infusion, and all cell subsets return to normal in early convalescence. It has 
been proposed that circulating monocytes (macrophages) are targets for JUNV rep-
lication, contributing to viral spread during the acute AHF [54]. However, at this 
stage as well as in early convalescence, patient peripheral-blood mononuclear cells 
may exert antibody-dependent cell cytotoxicity, suggesting JUNV replication in 
macrophages does not affect their killing capacity [54].

During the first week after symptom onset, AHF patients show very high serum 
interferon-alpha (IFN-α) titers. Even though these values slowly normalize during 
the second week of illness in survivors, they remain elevated in severe cases. 
Interferon levels at admission correlate with outcome and are significantly lower in 
patients who survive [41]. Other cytokines described as significantly elevated in the 
serum of acute AHF patients include tumor necrosis factor (TNF)-α, interleukin 
(IL)-6, IL-8, and IL-10 [53], although their individual function in disease pathogen-
esis has not been studied. For more details on human disease findings, readers 
should consult the review by Marta et al. [54].

Pathological lesions in fatal AHF include generalized vasocongestion with mul-
tiple hemorrhages in the gastrointestinal mucosa and different organs, such as the 
liver, kidney, and lungs, as well as in subcutaneous tissue. The highest virus titers 
are found in the spleen, lymph nodes, and lungs, and high levels of viral antigen are 
found in cells of the monocyte/macrophage lineage in peripheral blood, lymphatic 
tissue, lung, and liver [54].

8  Expansion of Agriculture and Emergence of AHF

This disease is endemic, with annual outbreaks from the end of summer until mid-
winter, coincident with the harvest of maize and with the increase in the population 
of the wild rodents Calomys musculinus, Calomys laucha, Akodon azarae, and 
Oryzomys flavescens [60]. It was assumed that appearance of AHF disease in the 
mid-1950s was caused by human changes made in natural habitats in relationship to 
agricultural practices. Those environmental modifications are thought to have 
favored the growth of the C. musculinus population and facilitated its contact with 
humans. The epidemiological features of AHF are determined by the natural cycle 
of JUNV and by the behavior of the rodent reservoirs [60]. AHF mainly affects rural 
workers from the agricultural region known as the humid pampa, in central-east 
Argentina [24]. There are, however, urban cases in which the origin of infection is 
not easy to establish.

9  Rodent Reservoirs

All arenaviruses pathogenic for humans are rodent viruses. Although each  arenavirus 
can infect many species of rodents, in every geographic site there is one species that 
is the principal reservoir because of higher population density and the prevalence 
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and characteristics of infection. Calomys musculinus (family Muridae, subfamily 
Sigmodontinae) has been identified as the principal reservoir of JUNV, although 
virus has also been isolated from the organs and body fluids of other rodents cap-
tured in the endemic area, including Calomys laucha and Akodon azarae, and occa-
sionally from Mus musculus, Necromys benefactus, and Oligoryzomys flavescens 
[76].

Some of these animals develop an acute disease with antibody response and 
clearance of the virus, whereas others develop a persistent infection, with low titers 
or absence of antibodies, chronic viremia, and shedding of virus in urine, feces, and 
saliva [85]. The chronically infected rodents are usually asymptomatic and exhibit 
normal behavior. Field studies of natural populations demonstrated that infection 
with JUNV among C. musculinus was more frequent among males than females and 
was positively correlated with age and the presence of wounds and scars [60]. JUNV 
among rodents may be transmitted via aerosols and bites, as well as sexually.

10  Screening and Discovery of Arenaviruses in the Americas

Serological screening for arenavirus infection in wild rodents and patients, com-
bined with reverse transcriptase (RT)-polymerase chain reaction (PCR), sequenc-
ing, and virus isolation, has been the basis for discovery and definition of new 
species or virus variants [33, 49, 59].

New monoclonal antibodies (mAbs) against JUNV N were obtained by Nakauchi 
et  al. [63]. Three epitopes comprising residues 12–17 (WTQSLR), 72–79 
(KEVDRLMS), and 551–558 (PPSLLFLP) are recognized by different mAbs with 
different degrees of specificity, that is, ranging from broadly reactive with South 
American arenaviruses to JUNV specific [63]. RT-PCR-based methods have been 
described using both Arenaviridae family-specific and species-specific methods 
that can be applied to detect arenaviruses in rodents captured in the field [37, 48].

Comparison of endpoint antibody titers to WWAV and AMAV in individual 
blood samples from nearly 5000 rodents indicated that the Tacaribe complex viruses 
that are enzootic in New Mexico, Texas, and Mexico are antigenically diverse [58]. 
In particular, the samples from Chiapas (Mexico) showed a strong reaction to 
AMAV antigen. Analyses of nucleotide and amino acid sequence data indicated that 
the deer mice were infected with a novel Tacaribe serocomplex virus (proposed 
name: Ocozocoautla de Espinosa virus, OCEV), which is phylogenetically closely 
related to Tacaribe serocomplex viruses that cause hemorrhagic fever in humans in 
South America (clade B) [14]. Hypothetically, OCEV or an arenavirus phylogeneti-
cally closely related to OCEV was the etiological agent in the hemorrhagic fever 
epidemic in Chiapas in 1967 and presently is the cause of a human disease that is 
clinically indistinct from dengue hemorrhagic fever and other severe febrile ill-
nesses endemic to Chiapas. Moreover, it has been speculated that these findings 
support the notion that epidemics of highly lethal hemorrhagic fever(s) in the high-
lands of Mexico in the sixteenth century were caused by arenavirus(es) native to 
Mesoamerica [1, 52].

10 Arenaviruses and Hemorrhagic Fevers…



206

More recently, aiming at the identification of the natural rodent reservoir for 
SABV, a broadly cross-reactive enzyme-linked immunosorbent assay (ELISA) was 
used to screen for antibody-positive animals. RT-PCR amplification provided evi-
dence of a new arenavirus (proposed name: Pinhal virus) of the lineage C and no 
evidence of involvement in human disease [11].

11  Clinical Presentation

The AHF incubation period ranges from 6 to 12 days, ending with the onset of fever, 
usually associated with a flu-like syndrome that may include myalgia, arthralgia, 
headache, relative bradycardia, conjunctivitis, nausea, vomiting, and diarrhea, with 
little central nervous system (CNS) or hematological involvement during the first 
week. The early symptoms of AHF differ from those of acute respiratory infections 
by an almost constant absence of sore throat, cough, or nasal congestion. At the end 
of the first week of evolution, oliguria and different degrees of dehydration are pres-
ent; neurological symptoms are common, and, in female patients, mild to moderate 
metrorrhagia is always present, being in some cases the first symptom of this dis-
ease [34].

In the second week of the disease, about 75% of infected individuals begin to 
improve, whereas the remaining 25% manifest neurological disorders or severe 
bleeding. Overlapping shock and bacterial infections appear 6 to 12 days after the 
onset of symptoms. Fever persists, and petechiae in the oral mucosa and the axillary 
region as well as gingival bleeding can be observed. Less common and more severe 
hemorrhagic signs may be present including hematemesis, melena, hemoptysis, epi-
staxis, hematomas, metrorrhagia, and hematuria. CNS involvement can also be 
present during the second week in the form of hyporeflexia and mental confusion. 
When severe, this phase can progress to include areflexia, muscular hypotonia, 
ataxia, increased irritability, and tremors, followed by delirium, generalized sei-
zures, and coma [34, 61].

Clinically apparent disease occurs in almost two thirds of infected subjects. The 
fatality rate is as high as 30% among untreated patients. Immune plasma therapy 
reduces mortality to less than 1%, although this specific therapy is effective only 
when started during the first week of illness.

In early convalescence, 10% of cases treated with immune plasma from conva-
lescent patients develop a late neurological syndrome (LNS). The LNS occurs after 
a period free of manifestations, differs from the neurological symptoms of the acute 
period of AHF, and is characterized by fever syndrome and manifestations from the 
cerebellar trunk [21]. Patients have a prolonged convalescence. Temporary loss of 
hair is common; many patients experience fatigue, irritability, and memory changes, 
but these symptoms are temporary and disappear gradually.

During the second week of illness, patients who are improving start to produce 
antibodies against JUNV as well as cellular immune response to clear up the virus. 
Moreover, robust titers of neutralizing antiviral antibodies can be detected in 
immune plasma from convalescent patients [reviewed in [24]].

V. Romanowski et al.



207

12  Diagnosis

Reporting of AHF disease is mandatory in Argentina. At present, the AHF diagnosis 
to establish specific therapy is based on clinical and laboratory data. During the 
early phase of the illness, the clinical manifestations of AHF are nonspecific and can 
be confused with several acute febrile conditions. Therefore, if platelet counts less 
than 100,000/mm3 in combination with white blood cell counts less than 2,500/mm3 
are detected, when screening patients in endemic areas these criteria can be consid-
ered potentially useful to identify individuals at risk [reviewed in [24]].

Seroconversion occurs only late in the course of infection; serological tests are 
not useful markers in the early stages of the disease. Neutralizing anti-JUNV 
 antibodies (Abs) consisting mainly of the IgG1 subtype are usually present from 
day 12 on (reviewed in [24]). Serological diagnosis can be done by complement 
fixation, indirect immunofluorescent antibody assays, neutralization tests, and 
ELISA.  The sensitivity and specificity of ELISA make it the routine method of 
choice for the etiological diagnosis of reported cases retrospectively and for the 
surveillance of the zoonosis [62]. More recently, a more accurate ELISA was devel-
oped employing recombinant JUNV N protein [82]. Immunohistochemistry is used 
to examine organ specimens from autopsy and confirm etiology.

During the acute phase of infection, virus titers in blood are low. Therefore, 
JUNV antigen detection is not a method of choice for early diagnosis until more 
sensitive techniques become available. During this phase, virus isolation can be 
performed from whole blood or peripheral blood mononuclear cells (PBMCs), a 
useful (reliable, but lengthy and cumbersome) tool to retrospectively confirm the 
clinical diagnosis in addition to serological tests [7].

Because immune plasma therapy is able to reduce mortality when introduced 
during the first 8 days of infection, the availability of rapid and early diagnostic tests 
is fundamental. In this context, a RT-PCR-based assay has been established for 
rapid diagnosis [47] and has also been successfully applied to establish an etiologi-
cal diagnostic in subjects who died before the appearance of the specific antibodies. 
At present, the RT-PCR analysis to detect JUNV genome seems to be the most 
sensitive, rapid, and early test for the specific diagnosis of the infection [40].

13  AHF Vaccine

A scientific collaboration between the U.S. and Argentine governments allowed the 
development of a live attenuated Junín virus vaccine, Candid#1 [51].

Nucleotide and amino acid sequence alignments, performed on Candid#1 and XJ 
ancestor strains, revealed several nucleotide substitutions throughout the GPC and 
L genes [5, 31, 32]. One of the changes proposed to affect infectivity was found in 
the G2 protein and later confirmed to be responsible for the attenuated phenotype by 
reverse genetics [3]. Candid#1 turned out to be safe, immunogenic, and effective in 
preventing AHF in preclinical studies in mice, guinea pigs, and rhesus monkeys. 
Guinea pigs and rhesus monkeys inoculated with increasing doses of Candid#1 
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developed neutralizing antibodies and became JUNV resistant if inoculated with 
highly virulent strains. Candid#1 also protected these animals against MACV, the 
etiological agent of Bolivian hemorrhagic fever [23]. These studies also showed 
the absence of neurovirulence, neurotropism, or hemorrhagic manifestations and 
the stability of the attenuated strain.

In phase III clinical trials conducted in the period 1988–1990, Candid#1 showed 
a protective efficacy ≥84% and no serious adverse effects. As expected, immune 
response to Candid#1 boosts preexisting immunity to JUNV but is not changed by 
previous exposure to Lymphocytic choriomeningitis virus (LCMV) [24].

The live attenuated JUNV vaccine, Candid#1, has proven effective during the past 
two decades in more than 100,000 persons [24]. The vaccine has been recently pro-
duced in Argentina and tested in a compatible clinical study with 946 healthy volun-
teers who participated to support the comparability of Candid#1 vaccine manufacturing 
in the U.S. and Argentina [6]. Results presented by Enria et al. (2010) showed that the 
vaccine produced in Argentina is equivalent to that manufactured in the U.S., both in 
ability to immunize against JUNV (immunogenicity ≥95.5%) and in the lack of pro-
moting any serious adverse effects [22]. Candid#1 is the first effective vaccine against 
arenaviruses; it is effective to protect against AHF, promoting humoral- and cell-medi-
ated responses, and, since January 2007, in Argentina, is part of the National 
Immunization Program in the AHF risk area. The availability of such live attenuated 
vaccine has led to a substantial reduction in the incidence of AHF disease [22, 23].

14  Prognosis and Treatment

Without treatment, more than 80% of patients improve after the second week, 
although bacterial infection is a frequent complication.

Significant improvement in clinical AHF management has been achieved using 
immune plasma from convalescents, with mortality rates dropping from almost 30% 
to less than 1%. Additional administration of ribavirin may enhance these results even 
further (reviewed in [24]). Approximately 10% of cases treated with immune plasma 
develop late neurological syndrome (LNS). After a symptom-free period, LNS onset 
is characterized by fever, cerebellar signs, and cranial nerve palsies. LNS has never 
been registered among AHF patients recovering without specific treatment.

Current anti-arenaviral therapy is limited to an off-label use of ribavirin (1-β-d- 
ribofuranosyl-1,2,4-triazole-3-carboxamide), which has had only mixed success in the 
treatment of severe infections and is associated with significant toxicity in humans [24].

15  Conclusions and Future Challenges

During the past years, impressive progress has been made in developing rapid diag-
nostic tools and preventive and therapeutic approaches supported by our increasing 
understanding of the basic molecular and cellular biology of JUNV.
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Rapid and specific diagnostic tools have been developed that can be applied both 
for early detection of JUNV in AHF suspected patients and in epidemiological sur-
veillance studies, including samples from field rodents.

A robust reverse genetic system for JUNV combined with new detailed knowl-
edge on virus–host interactions has the potential to be utilized in a rational design 
of novel live attenuated virus vaccines with precisely engineered disruptions of 
pathogenic properties. The genomic sequence of Candid #1 can be used as starting 
information to precisely engineer a prototypic live attenuated vaccine incorporating 
these and other attenuating features, thereby improving the vaccine identity, effi-
cacy, and safety [3]. Other approaches to safe and effective vaccines are being 
explored, including recombinant vectors expressing selected arenaviral proteins to 
generate immunogens based on live recombinant viruses, subunit vaccines, or virus- 
like particles (VLPs) [40].

The VLPs can be generated from cells transfected with a JUNV Z expression 
vector in the absence of any other viral protein. In view of the capacity of Z protein 
to support fusions at the C-terminus without compromising its membrane budding 
properties, Borio et al. speculated on the possibility of using it as a vehicle of spe-
cific antigens to be included in eVLPs [12].

In particular, the development of a reverse genetic system for JUNV represented 
an important breakthrough and provided a powerful tool to precisely address ques-
tions regarding the biology and pathogenicity of JUNV (and other NW arenavi-
ruses) [3, 4, 45].

Current studies are focused on the ability of arenaviruses to subvert the host cell 
innate antiviral defenses, the impact of arenavirus infection on the differentiation 
and function of cells targeted by hemorrhagic arenaviruses in vivo, including APCs 
such as macrophages and DCs, endothelial cells, and megakaryocytes involved in 
platelet formation [30, 64, 68, 69]. At the same time, novel animal models will pro-
vide important new information about the interaction of hemorrhagic arenaviruses 
with the host adaptive immune system, in particular, virus-induced immunosuppres-
sion, and understanding of the terminal hemorrhagic shock syndrome.

To study the direct effects of virus replication and gene expression that may be 
responsible for the perturbation of endothelial cell function, future research involv-
ing cell culture models for human endothelium that allow detailed analysis of virus- 
induced cell biological and biochemical alterations will have great importance.

Research on early molecular events of JUNV infection involving viral glycopro-
tein spikes and cell-surface receptors as well as virion and cell membrane fusion 
provided the basis for the development of novel therapeutic strategies [19, 35]. 
Other potential therapeutic targets being explored are specific steps for virus entry, 
processing, and replication [27, 78]. In particular, the multifunctional Z protein has 
been explored as target for antiviral compounds including siRNA [8, 26, 28]. Host 
cell factors have been also proposed as antiviral targets in arenavirus infection [43].

In addition to small antiviral molecules, immune therapy can be regarded as an 
alternative for AHF patients. Based on the success of immune therapy in controlling 
AHF mortality, it is possible to design a strategy replacing convalescent immune 
plasma, which is in short supply, with controlled humanized neutralizing monoclo-
nal antibodies appropriately tested for efficacy [50, 88].
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Further studies on new potential treatments are needed to block viral replication 
without causing toxicity and to prevent the increased vascular permeability that is 
responsible for hypotension and shock.
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Chapter 11
Hantavirus: General Features and Present 
Situation in Latin America

Adriana Delfraro, Sonia M. Raboni, and Claudia Nunes Duarte dos Santos

1  Introduction

Several factors have contributed to the emergence and reemergence of viruses of 
medical importance: the increase in displacement of individuals in all areas of the 
globe, demographic increase and geographic expansion, destruction of biodiversity, 
and global warming are some examples. Additionally, the genome of most of the 
roboviruses (rodent-borne viruses) consists of RNA molecule(s), which present 
high mutation and recombination rates. There is also the possibility of viral genomic 
segments reassortment between different viruses (in the case of segmented genomes) 
that are pivotal events for viral evolution but can also increase the risk of the emer-
gence of more adapted and virulent strains.

Hantaviruses are members of the genus Hantavirus, family Bunyaviridae [7], 
which contains more than 350 members and represents a major class of zoonotic 
pathogens that cause two severe diseases in humans: hemorrhagic fever with renal 
syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in 
the Americas. The name Hantavirus is after a river’s name in Korea where the 
Hantaan virus (HTNV) was first identified in a rodent by Ho-Wang Lee and 
colleagues in the 1970s [48].
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The transmission of hantavirus to humans occurs through inhalation of aerosols 
generated from feces, urine, and saliva of infected rodents, but other small mammals 
such as shrews, moles, and bats can also harbor the virus [30, 36, 98]. The rodent-
borne hantaviruses persistently infect rodents from the family Muridae and subfami-
lies Arvicolinae (Europe), Murinae (Europe and Asia), and Sigmodontinae/
Neotominae (America) [71]. In general, each hantavirus is predominantly associated 
with a rodent-host species in a given geographic region (reviewed in Plyusnin 2002), 
although few cases of interhuman transmission have been described [64, 78, 80, 81].

HCPS is an immunopathology of rapid progression that begins with a mild fever 
and can progress to noncardiogenic pulmonary edema and shock. HCPS was ini-
tially described in 1993 in a cluster of patients presenting an acute respiratory dis-
tress disorder in the southwestern region of the United States [76]. The hantavirus 
implicated in this outbreak was named Sin Nombre (SNV), harbored by the wild 
rodent reservoir Peromyscus maniculatus. In the Americas, hantaviruses are emer-
gent, and more than 40 genotypes have been described, indicating that these agents 
are widely dispersed, and nearly half of them are pathogenic to humans [31].

Mortality rates related to hantavirus infection vary from 0.1% to 40%, depending 
on the specific virus involved. The emergence of hantavirus in human populations is 
correlated with rodent population density, which depends on several environmental 
factors, such as precipitation, temperature, habitat quality, and food availability, or, 
alternatively, anthropogenic behavior in the rodent–host environment [93]. Although 
hantavirus disease has been recognized for more than four decades, there is still no 
specific therapy available, and medical treatment is mainly palliative. The Syrian 
golden hamster recapitulates the human clinical picture and is a valuable model to 
study vital pathogenesis, viral evolution, and antiviral strategies for prevention and 
prophylactics of HCPS [37].

2  Virion Structure and Replicative Cycle

The viral particles are spherical with a diameter of 80–120 nm, with an envelope 
(derived from Golgi membranes of the host cell) and containing equimolar amounts 
of three negative single-stranded RNA genome segments designated large (L), 
medium (M), and small (S) [74]. The three RNA segments are coated with the 
nucleoprotein (N), forming ribonucleoproteins (RNPs) [20, 45].

The L segment of approximately 6.6 kb encodes a 250-kDa RNA-dependent 
RNA polymerase (viral replicase) that is associated to each viral segment in the 
virions and is required to initiate viral replication in the host cell cytosol. Comparative 
analyses of nucleotide and amino acid sequences of the L segment of different 
hantaviruses showed a conserved primary structure, despite the marked variability 
of its nucleotide sequence.

The M segment, about 3.7 kb, has a single open reading frame and encodes a 
precursor glycoprotein (GPC) that is processed by a cellular protease into two enve-
lope glycoproteins, Gn and Gc (formerly named G1 and G2), 70 kDa and ~50 kDa, 
respectively. Gn and Gc glycosylation takes place in the Golgi complex during the 
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maturation process [21]. Structural studies have demonstrated that Gn and Gc 
 proteins form spikes protruding from the viral membrane and that these Gn/Gc 
glycoprotein heterodimers may interact with cellular receptors. Gn and Gc proteins 
present large globular and hydrophobic transmembrane domains and a C-terminal 
cytoplasmic tail. Because bunyaviruses lack a classical matrix protein, it is sug-
gested that the Gn/Gc tail would interact with the N protein [22, 24]. The hantavirus 
glycoproteins are involved in the modulation of host innate immune response and 
virulence [59, 66].

The S segment, approximately 1.09 kb, encodes the nucleoprotein (N) with a 
molecular mass of approximately 50 kDa, which associates with the viral RNA seg-
ments to form helicoidal filamentous structures called ribonucleocapsids (RNPs) 
[20, 98, 108]. Among the structural proteins, the nucleocapsid is the most abundant 
and antigenic protein in the virus particle and accumulates in the cytoplasm of 
infected cells early during infection. Immunodominant and cross-reactive epitopes 
at the N-terminal domain of the N protein make it suitable to be used as a recombi-
nant antigen for diagnosis purposes. Hantavirus-infected patients present a very 
short-term viremia and have detectable IgM and IgG antibodies against the nucleo-
capsid antigen at the onset of clinical symptoms [11, 79]; thus, serological tests are 
often used for the detection of these antibody classes [109].

N is a multifunctional protein involved in the initiation of transcription and trans-
lation of the viral genome, binding selectively viral RNA (vRNA) and viral positive 
sense antigenomic RNA (cRNA), leading to the encapsidation of newly synthesized 
vRNA and direct virus assembly, and interacts with the MxA proteins interfering 
with the host type I interferon response [74].

The 5′- and 3′-noncoding regions (NCRs) of the viral genomic segments present 
complementary sequences at their ends that are paired to form “panhandle”-like 
structures, which presumably account for the circular form of the RNAs observed 
by electron microscopy. These complementary regions are likely to have an impor-
tant role in replication, providing signals for recognition by RdRp synthesis or for 
the packaging of the viral genome [20] (Fig. 11.1).

The virus enters the host cell through interaction of viral glycoproteins with spe-
cific cell receptors and subsequent endocytosis. Gavrilovskaya et al. [28] described 
that the use of vitronectin, a protein that binds to β3 integrin, inhibits the entry of the 
Sin Nombre virus (SNV) and New York virus (NYV) in Vero E6 cells, indicating that 
this would be a receptor on the host cell involved in viral penetration [28]. Potential 
receptors for Old World hantaviruses also include β1, β2, and β3 integrins (reviewed 
in Albornoz et al. [2]). In the acidic compartment of the late endosomes, RNPs are 
released in the cytoplasm after viral glycoprotein and endosome membrane fusion. 
Subsequently, the virion supplied RNA-dependent RNA polymerase-mediated pri-
mary transcription of negative-strand RNA in the cytoplasm, following viral mRNA 
translation; transcription shifts from mRNA to positive-strand complementary RNA 
(cRNA) and de novo negative-strand viral RNA synthesis with the concomitant for-
mation of ribonucleoprotein structures. Transcription and translation can also take 
place in the endoplasmic reticulum–Golgi compartment. The RdRp possesses 
transcriptase, polymerase, and endonuclease activity [23]. Its endonuclease activity is 
involved in cap-snatching cytoplasmic cellular mRNAs to prime viral mRNA 

11 Hantavirus: General Features and Present Situation in Latin America



218

 synthesis. The GPC synthesis (derived from M segment mRNA) occurs on endoplasmic 
reticulum (ER) membrane-bound ribosomes, with the simultaneous primary glyco-
sylation of envelope proteins. Gn and Gc glycoproteins are translocated to the Golgi 
complex, and new virus particles are formed by a budding process at smooth- surface 
vesicles in the Golgi and are liberated from the cell by exocytosis [98].

3  Origin, Evolution, and Classification of Hantaviruses

For several years, hantaviruses were only associated with rodents (Murinae and 
Cricetidae), with the exception only of Thottapalayam virus, which was isolated in 
1964 from the Asian house shrew Suncus murinus [13]. From 2007 to present, more 
than 20 new hantaviruses were discovered in association with insectivore mammals 
such as shrews and moles (order Eulipotyphla; families Soricidae and Talpidae) [5, 29, 
30, 43, 52, 99]. To add more complexity to the picture, recent findings report new 
hantaviruses associated with bats (order Chiroptera; families Vespertilionidae, 
Rhinolophidae, Nycteridae, and Hipposideridae) in Asia and Africa [4, 102, 113, 114]. 
Up to now, no human disease has been associated with these newfound hantaviruses.

Evolutive studies on the origin of placental mammals propose that the superorder 
Laurasiatheria (which include bats, shrews, and moles) diverged from 
Euarchontoglires (where order Rodentia is placed) at 100 million years ago [8, 68]. 
The discovery of new hantaviruses in such divergent reservoir hosts leads to revising 
the origin of the Hantavirus genus and the main forces driving its evolution.

Early studies on hantaviruses and their rodent hosts showed a high degree of 
congruence in their respective phylogenies, reinforcing the idea that coevolution 
between hosts and viruses was the main force influencing hantavirus evolution. 

Fig. 11.1 Schematic representation of the hantavirus virion. The viral particles are spherical with 
a diameter of 80–120 nm, with an envelope derived from Golgi membranes of the host cell. The 
GPC glycoprotein forms spikes protruding from the envelope. The genome is composed of three 
segments of negative single-stranded RNA designated large (L), medium (M), and small (S). Each 
RNA segment is coated with the nucleoprotein (N) and is associated with RNA-dependent RNA 
polymerase (viral replicase)
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Basically, each hantavirus was carried by a unique rodent species, and in turn, 
genetically similar viruses were hosted by closely related rodents. Incongruent 
topologies in phylogenies were explained by the occurrence of sporadic host switch-
ing [38, 82]. From 2007 to present, the finding of a growing number of new hanta-
viruses harbored by insectivores questioned this paradigm. Co-phylogenetic 
reconciliation analyses and estimations on the evolutionary rates showed that diver-
gence times between hantavirus lineages from rodents, insectivores, and bats were 
far more recent than the divergence times between their respective hosts. Further, 
host switching events appeared more frequently than expected under a co- 
evolutionary theory. So, as a result of these approaches, the similarities between 
hantaviruses and their mammalian hosts phylogenies may be the result of preferen-
tial host switching followed by local adaptation instead of co-evolution [89, 90].

Nowadays the debate remains open. New phylogenetic approaches and more 
comprehensive analyses lead to reevaluating the role of co-divergence in hantavirus 
evolution. Sequence analyses of complete and partial L genes from all known rodent, 
insectivore, and bat hantaviruses together with phylogenetic fossil host hypothesis 
testing showed that mammals in the superorder Laurasiatheria could have been the 
potential hosts of ancestral hantaviruses at most basal tree nodes. According to these 
inferences, hantaviruses from Muridae and Cricetidae rodents appear as paraphyletic 
groups, originated by two independent host switches from hantaviruses carried by 
laurasiatherian mammals. Overall, the main hantavirus groups show typical system-
atics of co-speciation, where virus phylogeny primarily resembles the phylogeny of 
host mammals and only secondarily their geographic dispersion [83, 114, 116].

Another point of controversy is the criterion for species delimitation in hantavi-
ruses. According to the International Committee on Taxonomy of Viruses (ICTV), a 
hantavirus species should fulfill the following criteria: a hantavirus species should 
(i) occupy a unique ecological niche (i.e., a clear association of a new hantavirus 
with a different primary rodent reservoir species or subspecies), (ii) have at least a 
7% difference in the amino acid sequences of the complete nucleocapsid (N) and 
glycoprotein precursor (GPC) proteins to all known species, (iii) show an at least 
fourfold difference in a two-way cross-neutralization test, and (iv) show the absence 
of genetic reassortment with other species in nature [81, 82].

For the majority of known hantaviruses it has been difficult to fulfill the four 
criteria. Genetic reassortment of closely related hantaviruses has been reported 
in vitro, but also in nature [34, 46, 92, 117]. Additionally, several South American 
hantaviruses have been detected in more than one rodent species, and the species 
involved may vary according to the geographic areas studied. As an example, the 
genetically related Juquitiba, Araucaria, and Itapúa hantaviruses were found in five 
different species (Oligoryzomys nigripes, Oxymycterus judex, Oxymycterus nasu-
tus, Akodon montensis, and Akodon paranaensis) in South Brazil, Paraguay, and 
Uruguay [15, 19, 86]. This finding also raises difficulties in determining the primary 
reservoir host for a given hantavirus and the role of other sympatric rodents in 
maintaining the virus in the environment.

Another difficulty is the requirement to perform cross-neutralization test assays 
to define species, given that hantaviruses have proven to be very hard to isolate in 
tissue culture. The majority of the rodent- and insectivore-borne and all the 
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 bat- borne hantaviruses have not been isolated. In fact, most of them were identified 
through phylogenetic analyses on (mostly) partial sequences of the N, GPC, or L 
protein genes.

The last ICTV report for the Hantavirus genus recognizes only 24 species, 23 of 
which are rodent borne and 1 shrew borne, so the majority of the hantaviruses 
remain taxonomically unclassified [1]. Recently, another scheme for the demarca-
tion of hantavirus species has been suggested. Maes et al. propose an amino acidic 
sequence distance >10% for N protein or >12% for GPC to limit species and an 
amino acidic sequence distance >24% for N protein or >32% for GPC to delimitate 
hantavirus groups [62].

4  Hantavirus Studies in Latin America

HCPS is a serious health problem in Latin America. Growing urbanization, together 
with the expansion of agriculture and cattle-breeding areas into natural ecosystems, 
has increased the chances of close contact between infected rodents and humans. 
Several studies have pointed out that habitat fragmentation caused by human activi-
ties tends to reduce rodent diversity, which in turn results in an increase of hantavi-
rus prevalence in endemic areas [47, 58, 103, 104].

The rodent family Cricetidae is the second largest mammalian family (more than 
500 species), including all the New World mice, and it is divided into three subfamilies: 
Sigmodontinae (predominantly South American), Neotominae (almost exclusively 
North American), and the Arvicolinae. All these groups are morphologically and eco-
logically diverse. Sigmodontinae rodents of South America present high diversity 
because of recent invasion of the continent followed by a rapid adaptive radiation [101]. 
In accordance with this diversity, many different hantavirus lineages were character-
ized in Latin America (Fig. 11.2); most of them are associated with Sigmodontinae 
rodents and its three main tribes: Akodontini, Oryzomyini, and Phyllotini.

The first HCPS outbreak reported in Latin America occurred in 1993. The three 
cases were diagnosed in the rural locality of Juquitiba, São Paulo State, Brazil. 
Further molecular studies identified the virus responsible for the outbreak; this new 
hantavirus was named Juquitiba [41, 110].

In 1994–1995, several outbreaks of HCPS were reported in Central and Southern 
Argentina. Genome amplification, sequencing, and phylogenetic analyses allowed 
the identification of two novel hantaviruses: Andes and Lechiguanas. Soon after 
that, rodent trapping in the likely places of exposure for human cases led to the 
identification of the long-tailed rice rat and the yellow pigmy rice rat (Oligoryzomys 
longicaudatus and O. flavescens, respectively) as the primary reservoir hosts for 
Andes and Lechiguanas hantavirus [50, 51, 55]. Isolation of the aforementioned 
hantavirus from rodent tissues and the molecular cloning and protein expression of 
Araucaria and Araraquara N protein were of capital importance to locally develop 
diagnostic tools. These techniques allowed detecting antibodies to autochthonous 
hantavirus in human and rodent samples with better sensitivity and specificity [50, 
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57, 77, 87]. From 1996 and on, outbreaks were reported in Argentina, Chile, Brazil, 
Uruguay, and Paraguay, and numerous field studies were carried out to determine 
the reservoir hosts in each geographic area [25, 40, 86, 88, 106].

Currently, almost all Latin American countries have reported HCPS cases or 
outbreaks. Countries with no reports on HCPS cases or rodent survey are Ecuador, 
Guyana, Surinam, Cuba, Nicaragua, El Salvador, Guatemala, and Belize. Since 
1993, about 4000 accumulated cases have been reported in the Americas, and almost 
half of them occurred in Brazil [26].

Up to today, 28 hantavirus lineages are present in Latin America (Table 11.1). 
Most of them have been identified through genome amplification plus sequencing 
and phylogeny, based on viral S and/or M segments [10, 18, 27, 49, 69, 70, 85, 94, 
96]. In turn, field studies allowed the identification of 14 rodent-only viral lineages 
that still have not been associated with human disease [16, 44, 54, 65, 72, 75, 95, 107, 
112].

Except for Andes, Lechiguanas, and Maciel hantavirus, viral isolation was not 
achieved for these hantaviruses, hampering the determination of their taxonomic 
status according to the ICTV criteria. Despite this, availability of new sequence 
information on Latin American hantavirus lineages together with accurate rodent 

Fig. 11.2 Hantavirus lineages characterized in Latin America. Hantaviruses are transmitted directly 
to humans by small mammals, which are their natural reservoir. In general, each hantavirus has a 
unique rodent host. The majority of the Latin American hantaviruses are associated with rodents of 
the subfamily Sigmodontinae and its three main tribes: Akodontini, Oryzomyini, and Phyllotini
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identification will contribute to clarifying the virus reservoir–host relationships and 
the epidemiology of this relevant zoonosis.

5  Pathogenesis and Implication on Treatment

Hantavirus infection induces serious microvascular leakage, and clinically, patients 
present with hemorrhages, hemoconcentration, and hypotension [35]. Hantavirus 
infections are associated with two diseases: hemorrhagic fever with renal syndrome 
(HFRS) and hantavirus cardiopulmonary syndrome (HCPS), which present similar 
pathological findings, being the consequence of both innate and adaptive and 
humoral and cellular immune mechanisms, but the contribution of these factors to 
disease development remains indeterminate [60].

Previous studies showed that CD4+ and CD8+ T-cell responses to hantavirus 
infection in humans are associated with immunoprotection, including the magni-
tude of the cellular immune response and the frequency of the CD8+ T-cell response, 
which were much higher in patients with mild/moderate HFRS than in those with 
severe/critical disease at the acute stage of the disease [53, 105]. Moreover, 
Hantavirus glycoprotein produces a strong CD4+ T-cell response, which elicits 
greater defense against the infection and is inversely correlated with plasma viral 
load and disease outcome [56]. Conversely, a report has shown the importance of 
monocyte activation to hantavirus infection. Increased monocyte counts have been 
positively correlated with elevated plasma-soluble CD14 levels, as well as increased 
tumor necrosis factor (TNF)-α and soluble CD163 levels, which are associated with 
severe acute kidney injury in HFRS patients [105].

Primarily, it was supposed that the endothelial cell (EC) dysfunction demon-
strated in HFRS and HCPS patients was related to a strong cellular immune response, 
elicited by cytotoxic CD8+ T and NK cells, although no clear endothelial cell dam-
age has been clearly observed. Recent studies in ANDV-infected Syrian hamsters 
showed that depletion of T cells did not impact disease onset or outcome of HCPS 
[33, 84]. The infected EC is probably protected from cytotoxic lymphocyte- mediated 
killing through an inhibition of apoptosis induction in infected cells in combination 
with an increased expression of HLA class [12]. Contrasting with previous findings, 
in a recently reported macaque model for Sin Nombre hantavirus disease, an associa-
tion between the expansion of T-lymphocyte-activated and disease severity was 
observed [91]. The importance and function of T cells activated in human hantavirus 
infections are still poorly understood, and further studies are needed.

The increased vascular permeability occurs without any cytopathic evidence, 
suggesting that the pathogenesis is associated with immunopathological mecha-
nisms. It results from the interaction between EC surface-receptor and cytoplasmic 
signaling responses such as pro-inflammatory cytokine: interleukin (IL)-6, IL-8, 
IL-33, interferon (IFN)-γ, and tumor necrosis factor-α (TNF-α) secreted by acti-
vated innate immune cells, which are upregulated in hantavirus infections [9, 105, 
115], as well as EC interactions with immune cells [17].
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In hantavirus acute infection, a significant upregulation of cytokines has been 
shown, some associated with leukocyte migration and repair of lung tissue, and 
other factors linked to increasing the endothelial monolayer permeability that 
facilitates leukocyte transendothelial migration. In addition, a downregulation of 
cytokines also can be observed and has been associated with platelet numbers, 
reduction, and dysfunction [73].

Endothelial cells (ECs) are fundamental to preserve the fluid barrier and have a 
vital role in maintaining the balance between tissues and vascular compartments, 
through a complex system of surface–receptor interactions. Microvascular and lym-
phatic EC surface receptors and the endothelial glycocalyx are keys to fluid manage-
ment and vascular homeostasis [6]. Furthermore, lymphatic tissues and lymphatic 
endothelial cells (LECs) are exclusively regulated by cell-surface receptors and are 
responsible for edema regulation by clearing fluid from tissues, and LECs are senti-
nel antigen-presenting cells that determine tolerance and viral clearance [17]. Studies 
showed that hantavirus infection is associated with LEC dysfunction and, conse-
quently, alteration of liquid pulmonary clearance in patients with HCPS [61].

Nonpathogenic hantaviruses use αvβ1 integrin receptors, whereas pathogenic 
hantavirus binds and inactivates αvβ3 integrin conformers, which usually form 
complexes with VEGF receptors, leading to dysregulation of VEGF-induced per-
meability; this may lead to impairment of vascular endothelial cadherin expression 
and subsequent loss of endothelial barrier function [17, 63].

Currently, there are no antiviral drugs or immunotherapeutic or effective post- 
exposure prophylactics available for hantavirus infection [3, 32], and only supportive 
interventions, such as early diagnosis and aggressive support in a cardiac and pulmo-
nary intensive care unit, are recommended [42]. In vitro studies have demonstrated 
ribavirin as a drug capable of preventing hantavirus infection, including in vivo stud-
ies carried out in golden Syrian hamsters which showed that drug administration 
before or up to 3 days after infection was able to prevent infection in all animals [97]. 
However, despite randomized studies conducted in HRFS individuals who showed 
response to ribavirin when it was administrated up to 7 days of infection, in HCPS 
patients no benefit of treatment could be observed, probably in consequence of the 
long incubation period of the disease, which can last up to 5 weeks [63].

The use of molecules to block receptor- and pathway-specific regulation of 
VEGFR2 or downstream signaling pathway responses that control EC barrier func-
tions has also been evaluated as a therapeutic intervention. However, the effective-
ness of this approach in patients who are already symptomatic remains to be 
determined [63].

Based on the immune response exacerbation observed during the course of 
hantavirus infection, studies using corticosteroids to prevent severe HCPS in acute 
disease were performed, but no benefits were demonstrated and it has not been rec-
ommended [111]. An alternative approach to HCPS treatment was the passive 
administration of neutralizing antibodies by serum transfusion from convalescent 
patients. Preliminary results carried out in Chile have indicated a reduced mortality 
in the treated patients [111], although the final evaluation of this study is not yet 
available.
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In conclusion, during hantavirus infection, several factors contribute simultane-
ously, culminating with vascular leakage, and the underlying mechanisms associ-
ated with disease pathogenesis are not completely understood. Prospective studies 
with animal models are crucial to evaluate individual immune cell types involved in 
the disease process. Knowing their different mechanisms of action is fundamental 
to the development of drugs that will act on specific targets, seeking to reduce dis-
ease severity and, consequently, to reduce mortality rates.

6  Prevention

Small interfering RNA (siRNA) against Andes virus (ANDV) genes has been tested 
as a potential antiviral strategy [14]. Although with promising results, such therapy 
would take years to be available for human use.

A phase III inactivated viral vaccine against the Old World hantavirus Hantaan 
has been tested in healthy adults, but the results of the plaque reduction neutraliza-
tion test (PRNT) after a three-dose vaccination are modest [100]. Some DNA vac-
cines were developed and tested in animal models, but the effects are still pending 
[39, 67].

Despite the long time since the association of hantavirus infection and HFRS and 
HCPS in humans has been known, no specific treatment and prophylaxis have been 
obtained, although efforts have been committed. Several aspects of hantavirus  biology 
and pathogenesis remain unclear. As an example, it has been assumed that the primary 
target cells during HCPS infection were human alveolar macrophages. Recently, 
Hammerbeck and colleagues have demonstrated that depletion of alveolar macro-
phages in golden Syrian hamsters does not prevent hantavirus disease [32]. These 
findings open new perspectives on hantavirus infection strategies on human beings.
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Chapter 12
Human Respiratory Syncytial Virus: Biology, 
Epidemiology, and Control

Edison Luiz Durigon, Viviane Fongaro Botosso,  
and Danielle Bruna Leal de Oliveira

1  Introduction

Acute respiratory infections (ARIs) are the most frequent infectious disease in 
humans, and the great majority of respiratory infections observed in medical prac-
tice around the world are of viral etiology [3, 34, 80]. During the period of 2000 to 
2003, an estimate of 10,600,000 children under the age of 5 years died every year, 
and ARIs were responsible for nearly 19% of these deaths. Most of these fatalities 
were caused by bronchitis and pneumonia associated with viral infections [14, 57, 
106, 119]. Viral respiratory infections are also associated with high morbidity in this 
age group worldwide. For example, 35% of hospitalized children in Brazil, 35% in 
Belgium, 22% in Italy, and 59% in the UK attending pediatric services were the 
result of viral respiratory infections [78, 84, 85, 87, 98].

Currently, the following viruses shall be considered causes of acute respiratory 
illness in children: human respiratory syncytial virus (HRSV); parainfluenza virus 
types 1, 2, 3, and 4 (PIV1, PIV2, PIV3, PIV4); influenza virus types A, B, C (IA, IB, 
IC); adenoviruses (ADV); coronaviruses HCoV-OC43, HCoV-229E, HCoV-HKU1, 
and HCoV-NL64; human rhinovirus (HRV); some subtypes of enterovirus (HEV- 
68); human metapneumovirus (hMPV); human bocavirus (HBoV); and WU and KI 
polyomavirus (Fig. 12.1). However, some viruses present high rates of co-detection, 
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as is the case of rhinovirus, enterovirus, human coronavirus and bocavirus, and 
polyomavirus, being questioned for its significance in the etiology of these infec-
tions [10, 45, 49, 64, 89, 91, 96, 114].

The seasonality of respiratory viruses is described in several studies, with some 
viral infections taking place throughout the year, such as influenza virus, with a 
predominance in the winter months [96], and others occurring chiefly in the late fall, 
winter, or early spring, such as HPIV, hMPV, HCoV, and HRSV [85, 99, 105, 114]. 
Adenoviruses are found worldwide and can circulate sporadically, endemically, or 
epidemically in the winter, spring, and early summer [103, 105].

Despite the great number of viral agents involved in respiratory infections and 
their importance, the HRSV is the leading cause of acute respiratory infections and 
one of the leading causes of hospitalization and death among children under 5 years 
of age worldwide. Each year, respiratory syncytial virus (RSV) infections lead to 
2,100,000 outpatient attendances and 57,257 hospitalizations of children less than 5 
years of age in the U.S. Additionally, RSV is responsible for 177,000 hospitaliza-
tions with 14,000 deaths among adults over 65 years of age [24].

Newborns, premature infants, and those with chronic lung disease are at greater 
risk of developing severe disease by infection with HRSV [48]. Despite their impor-
tance, there is no vaccine prophylaxis against HRSV infection or effective antiviral 
therapy available. Currently, in Latin America, only palivizumab (Pz) (Synagis; 
MedImmune, Gaithersburg, MD, USA) is being used in the prophylaxis and therapy 
of these infections [68].
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Fig. 12.1 Clinical association with major symptoms of disease and respiratory viruses. In South 
America, studies conducted in different regions of the country indicate the importance of viruses 
as etiological agents of low respiratory infection (LRI). These studies revealed the presence of dif-
ferent respiratory viruses in children and adults, such as human respiratory syncytial virus (HRSV), 
influenza A and B, HPIV, HAdV, HRV, hMPV, hBoV, and HCoV; the percentage of cases among 
children for some type of respiratory viruses ranged between 28.75% and 75%, whereas positivity 
in adults was 61.8% for at least one of the viruses studied [11, 15, 35, 39, 40, 85, 105, 111, 116]
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2  History of the HRSV

In 1955, an outbreak of respiratory illness characterized by coughing, sneezing, and 
mucopurulent discharge was described in a colony of 20 chimpanzees at the Walter 
Reed Army Institute of Research (WRAIR) (Washington, DC, USA). During that 
episode, the RSV was isolated for the first time from a swab from the throat of a 
female chimpanzee and then called the chimpanzee coryza agent (CCA) [82]. Viral 
isolation was performed in liver cells, later being inoculated in various laboratory 
animals, mice, hamsters, rabbits, rats, and chimpanzees, the latter being the only 
ones to develop specific symptoms.

One of the attendants of the chimpanzees became sick and developed symptoms 
similar to those of the animals. Although the attempt at isolation of human respira-
tory syncytial virus was unsuccessful, an increase in antibody titer by complement 
fixation against CCA was detected. Parallel seroprevalence studies conducted in a 
human general population revealed the presence of antibodies to a new CCA agent 
in teenagers and adults.

The following year, Chanock and colleagues isolated a virus similar to the CCA 
of a child with pneumonia and another with croup, in Baltimore [25, 26]. The agent 
was named human respiratory syncytial virus, HRSV, to reflect its ability to form 
syncytia in cell culture and its tropism for the human respiratory tract.

Serological studies carried out at the time indicated that the majority of children 
in Baltimore had been infected with HRSV before 4 years of age. Similar investiga-
tions in diverse parts of the world indicated that the HRSV was associated with 
diseases of the lower respiratory tract [33]. Currently, HRSV is recognized as the 
viral agent more frequently related to cases of bronchiolitis and pneumonia during 
infancy and preschool age. About 95% of the children have the first HRSV infection 
in the first 2 years of life, and the peak incidence occurs in the first few months [3]. 
Approximately 40% of children develop symptoms of lower respiratory tract 
involvement during the first infection. Although reinfections are common during a 
lifetime, the clinical symptoms in older children and adults are less severe [55].

Some groups of patients are at risk of developing serious illness resulting from 
the lower respiratory tract infection by HRSV; these include children younger than 
6 months of age, premature infants, immunodeficient children, and children with 
chronic lung disease or congenital heart disease [33]. There are also studies relating 
the HRSV to severe infections in the elderly [44, 117].

3  Classification

The human respiratory syncytial virus (HRSV) is a member of the order 
Mononegavirales (mono, from Greek, meaning “single, simple”; nega, from Latin, 
meaning “RNA negative polarity”; virales, from Latin, meaning virus), classified 
within the Pneumoviridae family and the genus Orthopneumovirus. Other members 
of the Orthopneumovirus genus are the bovine respiratory syncytial virus (BRSV) 
and the pneumonia virus of mice (murine pneumonia virus) [125].
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4  Structure

The virion is pleomorphic with a diameter of 150–300 nm and is composed of an 
internal nucleocapsid of helical symmetry and an envelope derived from the host 
cytoplasmic membrane; viral glycoproteins that protrude from the envelope as 11- 
to 20-nm projections, separated by intervals of 6–10 nm, are involved in the pro-
cesses of adherence and penetration of the virus. The viral genome is composed of 
a single-stranded RNA molecule, not segmented, and with negative polarity. Each 
infectious particle contains only one functional copy of the genome (Fig. 12.2) [33].

5  Genomic Organization

The virus contains a single-stranded negative-sense RNA genome with 15,222 
nucleotides (nt), with molecular weight of 5 × 106 Da, which serves as a template 
for transcription of messenger RNAs (mRNAs), encoding for 11 proteins. The 
genome transcription takes place in the 5′ → 3′ direction. The 3′-region of the 
genomic RNA consists of a region of 44 nucleotides that presumably contains the 
viral promoter [81]. The first 30 nt in this region are highly susceptible to inactiva-
tion by the insertion or deletion of nucleotides. This region is followed by 10 genes 
that encode 11 proteins, in the following order: NS1, NS2, N, P, M, SH, G, F, M2, L. 
The last gene, L, is followed by a region that is more tolerant to the insertion or dele-
tion of nucleotides [81].

The first nine genes are separated by inter-gene regions ranging from 1 to 52 nt in size, 
which apparently do not have an important role in the modulation of gene expression and 
show little conservation among isolates [31, 71]. The beginning of each gene contains a 
conserved signal (gene start signal) composed of nine nucleotides, 3′-CCCCGUUUA, 

Fig. 12.2 Human respiratory syncytial virus (HRSV) virion structure
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except for the L gene, which presents the following differences as underlined: 
3′-CCCUGUUUUA. The genes end with a semi-conserved sign (gene end signal) com-
posed of 12 or 13 nucleotides whose sequence is 3′-UCAAUNAAAUUU, which drives 
the end of transcription and polyadenylation. The last two genes, M2 and L, have in com-
mon 68 nt. Consequently, the gene L has the initiation of the transcript inside the M2 gene 
[33]. The M2 has two ORFs (open reading frames), which give rise to proteins M2-1 and 
M2-2. The organization of the gene of HRSV is schematized in Fig. 12.3.

6  Proteins

In cells infected with HRSV, 11 proteins have been identified. Of these, 2 are nonstruc-
tural proteins, NS1 and NS2, present in abundance in the cells, but in small amounts in 
the virion. The others are structural proteins, M (matrix) and M2-1(transcriptiol elon-
gation factor) proteins, N (nucleoprotein), P (phosphoprotein), L (large polymerase), 
and M22 nucleocapsid viral proteins, and 3 are surface glycoproteins G (attachment), 
F (fusion), and SH (small hydrophobic) [33]. The glycoproteins F and G are highly 
accessible to neutralizing antibodies, resulting in numerous changes in response to the 
host immune pressure [34] and therefore are the most studied.

The NS1 (molecular weight PM, 15.5 kDa) and NS2 (PM, 27 kDa) proteins 
have, respectively, 139 and 124 amino acids, and the genes that encode these have 
532 and 503 nucleotides, respectively. Their functions are not well understood, but 
it is presumed that they are related to the structural regulation of RNA synthesis, the 
morphogenesis of the virion, or the interaction with the host cells [33].

The proteins P, L, and N are associated with genomic RNA and nucleocapsid, form-
ing the ribonucleoprotein complex, considered as the minimum unit necessary for tran-
scription and replication of the virus. The P protein is highly phosphorylated and acidic 
and has a key role in the regulation of the transcription and replication process. It has 
241 amino acids and a molecular weight of 35 kDa, and the gene that encodes it has 
914 nucleotides. The nucleoprotein N has 391 amino acids and a molecular weight of 
43.4 kDa, and the gene that encodes it has 1203 nucleotides and is the main structural 
protein of the nucleocapsid, closely associated with the genomic RNA. The L protein, 
consisting of 2165 amino acids with a molecular weight of 250 kDa, is the largest viral 
protein. The gene that encodes the L protein has 6578 nucleotides [33].

Fig. 12.3 Organization of the gene in the genome of HRSV. The genome is 15,225 nucleotides 
long, a single-stranded RNA with negative polarity. It has 10 genes encoding 11 proteins. The M2 
gene has two products: a nucleocapsid-associated transcription factor (M2-1) and another protein 
involved in genome replication (M2-2)
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The M proteins (PM, 27 kDa) and M2-1 (PM, 22 kDa) are internal and not gly-
cosylated, possessing, respectively, 194 and 256 amino acids, and the genes that 
encode them have 958 and 961 nucleotides, respectively. The M protein mediates 
the association of nucleocapsid with the viral envelope [33], and the M2-1 acts on 
the elongation during transcription [32].

The SH protein is a small molecule (amino acids and 64 PM, 7.5 kDa), which is 
inserted in the cytoplasmic membrane of the host cell via a hydrophobic sequence, 
ranging from 14 to 41 amino acids. The function of this protein has not yet been 
clarified; however, because it is integrated in the membrane, it is assumed to be 
involved in adsorption, penetration, and denudation of the virus [33].

The glycoprotein F has 574 amino acids with a molecular weight of 70 kDa, and 
the gene that encodes it has 1903 nucleotides. Identified as a fusion protein, it is 
responsible for the attachment of the viral envelope with the plasma membrane of 
the host cell, releasing nucleocapsid directly within the cytoplasm. Also, it is respon-
sible for the fusion of the cell infected with neighbor cells, favoring the formation 
of the syncytium [33].

The F protein is synthesized as an inactive precursor called F0, which consists of 
two domains, F2 (1–130 amino acids) and F1 (137–574 amino acids), and also has 
a cleaved peptide (131–136 amino acids). The F1 subunit is anchored to the mem-
brane. The F1 subunit is relatively well preserved and is greatly affected in its func-
tion by deletions or substitutions of amino acids [33].

The glycoprotein G is a type II protein, which is anchored to the membrane next 
to its amino-terminal portion by a hydrophobic domain, non-cleaved, signal anchor 
type, that extends from residues 38 to 66 [73]. The G protein is 289 to 342 amino 
acids in length, depending on the viral strain. The G gene is composed of 918 to 
1062 (group A) or 921 to 981 (group B) nucleotides [43, 102, 108].

The glycoprotein G is the viral attachment engaged in the adsorption of virus, 
and it has been shown that antibodies against the G glycoprotein inhibited the bind-
ing of virus to the cells [72]. The glycoprotein G is of special interest for showing 
the largest variability between the viral isolates [4, 52, 67] and can support large 
deletions or multiple amino acid substitutions without loss of function [43, 102]. 
This variability among strains of HRSV is a signature feature that can alter the 
pathogenicity and adaptation of the virus and contribute to the ability of the virus to 
cause repeated infections and outbreaks by escaping the immune system. The gly-
coproteins F and G are the most important proteins involved in a protective immune 
response [8, 66], and antibodies against them show strong neutralization activity 
in vitro [2, 123].

7  Replication

The cell receptor specific for the glycoprotein G was first identified by Krusat and 
Streckert [70], who showed that preincubation of the virus with heparin inhibited 
the infection in cell culture and that the G protein binds heparin. These results sug-
gest that heparin or other glycosaminoglycans (GAGs) similar to heparin, present 
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on the cell surface, are involved in the binding of the virus to the cell. The binding 
site of the glycoprotein G to the heparin (or another GAG) was mapped between the 
184 and 198 amino acids of the protein G for group A and among the 183 to 197 
amino acids for group B. Martinez et al. [77] confirmed that the presence of these 
receptors is critical for the binding of the virus.

The virus enters into the cell through fusion with the cell membrane. After pen-
etration, the viral envelope remains as part of the cell membrane. The nucleocapsid 
is released into the cytoplasm and begins the process of transcription of the viral 
genome by the viral polymerase. The genes are transcribed in sense 3′ → 5′ with a 
sign promoting to the 3′-side [33]. The peak of the synthesis of mRNAs occurs 16 
h after infection, and the peak of proteins occurs at 18–20 h [6, 33]. In addition to 
the transcription and translation of proteins, another important step is the replication 
of the viral genome, which produces an intermediate positive (+ ssRNA), which will 
serve as a template to generate more copies of the viral genome (ssRNA). All the 
replication process takes place in the cytoplasm [33].

The maturation of the virus occurs in the first instance, with the combination of 
proteins N and P to the genomic RNA and subsequent addition of other auxiliary 
proteins to the nucleocapsid. The surface glycoproteins are inserted into the cyto-
plasmic membrane of the host cell. In the next step the matrix protein interacts by 
noncovalent forces to the cytoplasmic tails of the surface glycoprotein. The assem-
bled internal structures of the virus interact with this surface and drive the budding, 
with the release of the virus, when the virus acquires the lipoprotein envelope [69].

8  Genetic Variability

The variability of the G protein is concentrated in the extracellular domain, where two 
variable regions have a high content of serine and threonine, between 69 to 164 and 
207 to 298 amino acids, with approximately 56% divergence between groups A and B 
[66, 67]. Interspersing this region of high variability, there is a conserved region with 
a small segment of 13 amino acids (164–176) and four cysteine residues (C173, C176, 
C182, C186), which are well preserved in all samples of HRSV [97, 118], suggesting 
that this region is responsible for binding the virus to a cell receptor. However, data 
about the region for genotypes that emerged after 2010 are currently lacking.

The genotyping of HRSV-A and HRSV-B is based on the variability of the 
G-protein gene. For HRSV A, 11 genotypes were reported and designated as GA1, 
GA2, GA3, GA4, GA5, GA6, and GA7 [92, 93], SAA1 (South Africa, A1) [115], 
and more recently, NA1, NA2, NA3, and NA4 [102]. For HRSV-B, 17 genotypes 
have been described and designated as GB1, GB2, GB3, and GB4 [93], SAB1, 
SAB3 [115], BA1–BA6 (Argentina) [109], BA7–BA10 (Japan) [38], and B11 
(Korea) [7]. Interestingly, strains belonging to genotype BA of HRSV-B exhibited 
duplication of 60 nucleotides (nt) in the second variable region protein gene G, but 
were not associated with more severe clinical manifestations [38, 108]. In Brazil, 
the only genotypes circulating currently from HRSV-A are NA2, NA3, and ON1 
and BA genotyping from HRSV-B.
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In 2012, Eshaghi et al. [43] detected in group A one repetition of 72 nucleotides 
(GTCAAGAGGAAACCCTCCACTCAACCACCTCCGAAG GCTATCTAAGCCCA 
TCACAAGTCTATACAACATCCG) in the C-terminal portion of the gene (G), 
being the largest duplication described in this group. This new genotype was called 
ON1 and was found in 10% of HRSV isolates. In 2013 this ON1 genotype was 
found in 75% of all isolates in Brazil [42, 80], and in 2015 the ON1 genotype had 
attained natural dominance and become the predominant genotype circulating in 
different areas of the world [107]. This area is specifically targeted for neutralizing 
antibodies, and these types of changes of structure can lead to changes in immuno-
genicity and pathogenicity of the virus. However, additional studies are still required 
to explore the pathogenicity, transmissibility, and replication of this new variant.

9  Epidemiology

In the 1990s several studies of molecular epidemiology were conducted based on 
partial sequences of genes G and SH and a restriction map of the N gene, enabling 
reaching some important conclusions about HRSV circulation:

 1. The existence of several genotypes circulating concurrently in a single outbreak, 
with a predominance of one or two genotypes which tend to decrease in subse-
quent outbreaks until its disappearance [17, 19, 20, 27, 28, 30, 65, 75, 92, 93].

 2. The genotypes of HRSV have worldwide distribution, and strains isolated in 
distinct communities and in different years may be more related to strains iso-
lated in the same locality in two consecutive days, demonstrating a pattern of 
temporal and not necessarily geographic circulation [18, 50].

 3. Within each strain (genotype) occurs a progressive buildup of amino acid 
changes [21].

 4. Antigenic changes detected with a panel of anti-G monoclonal antibodies can be 
correlated with the position of the viruses in the phylogenetic trees [50].

 5. The synonymous nucleotide substitutions have a uniform distribution over the G 
gene, and non-synonymous substitutions are accumulated in the two variable 
regions of the gene G [21, 50].

However, there are studies in which a minimal temporal variation in the gene 
encoding the G protein has been reported. A study performed in Cuba revealed the 
movement of extremely homogeneous samples during the 1994–1995 outbreaks, 
with a difference of just five nucleotides when compared to the sample long since 
isolated in 1956 [113].

The significance of the antigenic variation of HRSV groups in epidemiology is 
not yet clear. The antigenic dimorphism, although at modest rates, seems to contrib-
ute to the high incidence of reinfections during the first years of life. However, sev-
eral reinfections in children involving viruses of the same group have been reported 
[60, 83]. In addition, there is no indication that reinfection with a heterologous group 
induces more serious clinical signs than reinfection with homologous samples [110].
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The two groups (A and B) have been circulating concurrently in many epidemics 
for more than 20 years [12, 65], in diverse regions of the world, and with incidences 
that vary from year to year. Studies conducted in El Salvador, Santa Fe, and Buenos 
Aires in Argentina revealed the presence of both groups during outbreaks with prev-
alence of group A [23, 63, 121].

In some localities, such as Rochester and Boston in the U.S., Sapporo in Japan, 
and Rio de Janeiro, Porto Alegre, and Ribeirão Preto in Brazil, in addition to the 
co-circulation of the groups, the prevalence of groups A and B may switch over the 
years or show a balance of the frequencies of both groups [29, 56, 58, 104, 112].

Differences in pathogenicity between the two groups are not clear. Hall et al. [56] 
and Imaz et al. [63] verified increased severity in children infected with group A, 
although Zelaya et al. [121] found greater severity in children infected with group 
B. Other authors did not observe significant differences in pathogenicity between 
the groups [29, 104].

In a study carried out in Bogota, Colombia, a total of 13,488 samples of children 
hospitalized with a diagnosis of respiratory infection were tested for RSV during 5 
years and 4,559 (33.8%) were found positive. The average age of patients analyzed 
in the study was 9.2 ± 8.5 months, and 71.7% of cases of HRSV infection occurred 
in the period from March to May, whereas 50% of the bronchiolitis cases were diag-
nosed from April to June during the years of the study [47].

In Chile, HRSV are detected as a single pathogen at 74/124 (58.7%) samples of 
nasopharyngeal aspirate of patients, and 28/124 (22.6%) samples were co-detected 
with HRV. Hospitalization was necessary in 77% of positive cases of HRSV (57/74), 
and 44.6% of these cases were considered serious; 53.6% (15/28) of cases coin-
fected by both viruses were hospitalized, too, but this coinfection does not increase 
the severity of illness [74].

In Brazil, many studies have already been carried out to investigate the etiology 
of acute respiratory diseases [12]. During the period of 2003–2009, nasopharyngeal 
aspirates were examined in more than 2000 children less than 5 years old, and 
HRSV were found in at least 42% of positivity between respiratory viruses identi-
fied in children hospitalized with acute respiratory disease [85, 105].

In countries in southern Latin America such as Argentina and Uruguay, out-
breaks of HRSV occur predominantly during the winter months [22, 61]. In tropical 
and subtropical climates, the outbreaks are not always well defined, although in 
Ceara, located in the northeast of Brazil, HRSV caused yearly seasonal epidemics, 
generally from February until July (Moura et al. 2013). In Brazil, in the cities of Rio 
de Janeiro and São Paulo, HRSV outbreaks start in autumn (ranging from March to 
April) and extend until winter (July–August), with peak incidence occurring usually 
in May (Table 12.1) [85, 105].

Fortunately, fatalities from infection by HRSV are uncommon, and estimates 
indicate that the number of deaths is around 200–500 a year, 80% of which are of 
children under 1 year of age. However, mortality may increase significantly in chil-
dren who present some background that predisposes to more serious diseases, such 
as congenital heart diseases and lung diseases, and premature infants, in which mor-
tality by HRSV infection is around 10%, 5.5%, and 4.6%, respectively [41, 100]. 
High mortality rates may also be observed in individuals with immunodeficiency, 
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Table 12.1 Occurrence of positivity for human respiratory syncytial virus (HRSV) in different 
cities of Latin America at different times of the year

Country City Seasonality Average of HRSV positive (%)

Argentina Buenos Aires Autumn – winter 23–26
Brazil Tropical Summer – winter 21–4

Subtropical Autumn – winter 42
Chile Santiago Winter 22.6–52.7
Colombia Cali Throughout the year 33.8

Medellín Summer 41.7
Costa Rica San Jose Autumn 15–20
Mexico Mexico City Winter – spring 36–55

San Luis Potosí Autumn – winter 24.8–46.7
Venezuela Caracas Throughout the year 31.6–66
Uruguay Montevideo Winter 56
Guatemala Santa Rosa and 

Quetzaltenango
Autumn 24

congenital or induced by chemotherapy against cancer [54] or from organ trans-
plants, especially in the first 20 days after the transplant [94]. Among bone marrow 
transplant recipients, the mortality of those who become infected with HRSV can 
reach 45% [14, 57].

A study conducted in the U.S. revealed the occurrence of 14,000 to 62,000 
annual hospitalizations of the elderly with pneumonia associated with HRSV, at a 
cost of approximately 150,000,000–680,000,000 dollars to the health system and 
causing about 1,500–6,700 deaths per year (5–20 deaths/100,000) [124].

10  Laboratory Diagnosis

The laboratory diagnosis of HRSV can be carried out by the direct detection of 
viruses, viral antigens, or the viral genome or, indirectly, based on the detection of 
specific antibodies. For the routine clinical laboratory diagnosis using respiratory 
secretions as biological samples, the procedures may include viral isolation in cell 
culture, antigen detection by immunofluorescence or enzyme-linked immunosor-
bent assay, and viral RNA detection by reverse transcriptase (RT)-polymerase chain 
reaction (PCR). The best samples are those obtained by aspiration or washing naso-
pharyngeal secretions [76, 79]. The viral particle present in the secretions is highly 
labile, and the samples should be kept refrigerated during transportation to the labo-
ratory and processing before inoculation in cell cultures.

The isolation in cell culture, regarded as the gold standard, can be carried out in a 
wide variety of human and animal cell lines, but HEp-2 and HeLa cells are the most 
used [110; Perini et al. 2007]. The cytopathic effect usually appears within 3–7 days 
after inoculation and is characterized by the presence of large syncytia resulting from 
cell fusion (Fig. 12.4). Nevertheless, as viral isolation in cell culture is difficult, the 
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Fig. 12.4 Cytopathic effect of HRSV in HEp-2 cell line shows a large syncytium resulting from a 
fusion of the cells

Fig. 12.5 Results of the indirect immunofluorescence (IFI) assay for detection of HRSV in naso-
pharyngeal aspirates. Red, negative results; green, positive detection of HRSV in the cytoplasm 
and membrane of the cell

diagnosis of infection is most often accomplished by detection of HRSV antigens in 
nasopharyngeal epithelial cells by immunofluorescence (Fig. 12.5) or enzyme-linked 
immunosorbent assay, faster methods that do not require the presence of infectious 
viral particles. These last two methods require the adequate preparation of the speci-
mens by removing excess mucus. Finally, success of the immunofluorescence tech-
nique, aside from well-trained personnel and well- prepared samples, requires a 
minimum number of infected cells to enable a correct diagnosis [110].

Hughes et al. [62] compared the three diagnostic techniques for HRSV: isolation in 
cell culture, direct and indirect immunofluorescence (IFA), and enzyme-linked immu-
nosorbent assay (ELISA). Both immunofluorescence-based methods detected more 
positive samples (showed higher sensitivity) than viral isolation. However, 15% of the 
samples found positive by viral isolation were negative by immunofluorescence, dem-
onstrating the need for the use of at least two diagnostic methods.
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The RT-PCR technique has been used both for the diagnosis [51, 59, 117] and for 
typing a sample to group A or B [53, 122]. It is considered a highly sensitive tech-
nique, especially useful in the diagnosis of infections, in which both the sample 
amount and the viral load in the sample are small, as is the case of samples taken 
from the elderly [117]. In the past decade, the molecular methods were considered 
as a gold standard, because of their specificity and ability of simultaneous detection 
of different viruses [90]. The advances in real time-RT-PCR (quantitative (q)RT- 
PCR) specificity and sensitivity for the detection of HRSV in clinical samples 
became more suitable for diagnosis in clinical laboratories [46].

The rapid antigen detection tests (RADTs) are dipstick-based immunoassays that 
allow for the rapid, qualitative detection of RSV antigen (viral fusion protein) 
directly from nasopharyngeal swab, nasopharyngeal aspirate, or nasal/nasopharyn-
geal wash specimens from symptomatic pediatric patients. The RADTs provide a 
result in 15 min, compared to approximately 90 min for a conventional IFA test and 
2–3 h for ELISA [80]. Rapid tests may also be used as a point-of-care assay. These 
methods, although effective, may present several drawbacks, including price and 
skilled personnel. All these issues pose a challenge to hospitals and pediatric clinics 
to apply the best medical management for monitoring or treatment of children with 
suspected infection.

Serological diagnoses can be made through neutralization assays, complement 
fixation, or determination of class-specific immunoglobulins (IgG, IgM) by ELISA 
or immunofluorescence techniques. The diagnosis is based on the increase in anti-
body titer between acute and convalescent titers, performed in serum or saliva [110, 
120]. The serology offers limited value in the diagnosis of primary infection in 
children less than 6 months of age because 40% of these cases present no increase 
in antibody titer. However, in infants and adults, the serology is regarded as a good 
indicator of reinfections [55]. The serology, therefore, is not the most appropriate 
method for diagnosis of infection by HRSV, having, however, great importance in 
clinical and epidemiological studies [36].

11  Treatment and Prevention

Ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide), a nucleoside analogue of 
the guanosine, licensed since 1986, is the treatment of choice for RSV. Its use is indi-
cated in the form of aerosol for the treatment of serious diseases caused by 
HRSV.  Although several studies have demonstrated the effectiveness of ribavirin in 
inhibiting replication of the virus and the improvement of clinical conditions, resulting 
in a decrease in the need for supplemental oxygen and mechanical ventilation in chil-
dren with lower respiratory tract infection, chronic lung disease, and infection in immu-
nocompromised individuals, lately there has been controversy about the benefits of its 
use. Since 1989, several studies have appeared indicating that the use of ribavirin has 
minimal effect on disease outcome caused by HRSV, not showing evidence of decreased 
duration of hospitalization or the need of supporting therapy, in addition to the high cost 
and extended treatment (12 h or more of inhalation) [13, 37].
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Several drug candidates have been studied in the past decades, including several 
inhibitors, targeting different HRSV proteins. Despite these efforts, until the present 
time there has been no antiviral drug approved for treatment (Heylen et al. 2017).

Development of an RSV vaccine has been hampered by the incidence of enhanced 
respiratory disease (ERD) following vaccination with formalin-inactivated RSV in 
the 1960s. Since its failure, multiple live virus vaccines have been developed, as 
well as other vaccine platforms, including virus-like particles, peptide-based vac-
cines, protein subunit vaccines, and plasmid DNA-based vaccines. Many of these 
vaccines have been evaluated in animals, and a few have been studied in humans. 
None, however, has shown sufficient promise to move toward licensure. It is clear 
that a better understanding of virus and host factors that contribute to both disease 
and protective immunity is still necessary to develop safe and effective RSV 
vaccines.

Alternative approaches to identify vaccine-relevant epitopes include the identifi-
cation of neutralizing RSV protein epitopes to which a protective immune response 
can be safely generated and the development of modern pre- and post-RSV fusion 
(F) protein subunits. One obstacle to developing an RSV vaccine has been the dif-
ficulty in inducing long-term protective immunity, as evidenced by the repeated 
infections throughout life and the incomplete protection afforded to recipients of 
immune prophylaxis. In addition, an immunogenic approach targeted to a single 
neutralizing epitope mapped to the site A region may generate a focused immune 
response against RSV F, but in general, the polyclonal response generated by site 
A-based vaccines has been characterized by poor binding to intact RSV F protein, 
modest in vitro neutralization, and no evidence of protection to RSV challenges 
in vivo.

Palivizumab (Pz) (Synagis; MedImmune) is a humanized IgG monoclonal anti-
body that neutralizes HRSV through interaction with the HRSV F glycoprotein. Pz 
is the only FDA-approved prophylaxis against HRSV infection [5, 101]. Five 
monthly Pz injections spanning the annual HRSV epidemic period have been shown 
to reduce hospitalizations among high-risk children in the U.S. However, the quasi- 
species nature of RNA viruses allows rapid emergence of escape mutants to the 
immune pressure. The increasing use of Pz in high-risk children and immunocom-
promised patients provides opportunities for Pz-resistant mutants to arise and per-
sist among humans [1, 9, 86, 88, 123]. However, little is known of these mutations 
in patients who did not use Pz.
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Chapter 13
Influenza Viruses, Biology, Epidemiology, 
and Control

Elsa G. Baumeister and Andrea V. Pontoriero

1  Introduction

Influenza viruses are RNA viruses of negative polarity and segmented, belonging to 
the family Orthomyxoviridae. This family includes six genera: Influenzavirus A; 
Influenzavirus B; Influenzavirus C; Isavirus; Thogotovirus, which includes the 
Thogoto virus and Dhori virus including Infectious salmon anemia virus; and 
Quaranjavirus [17]. Influenza A viruses are classified into subtypes based on the 
antigenicity of the surface molecules hemagglutinin (H) and neuraminidase (N). 
Influenza A viruses infect a wide variety of birds and mammals. These viruses con-
tinually mutate, exhibiting well-studied patterns, such as antigenic drift and reas-
sortment of genomic segments. In the past century, influenza A viruses have caused 
three pandemics [14], as they are known to be epidemics that extend over more than 
one continent. Influenza B viruses infect humans, and there is only one subtype; 
they have a low potential to cause pandemics, although they can cause severe respi-
ratory illnesses. Influenza C viruses infect humans and pigs and in general cause 
mild respiratory illness.

Wild aquatic birds, such as ducks and gulls among others, are the most important 
natural reservoir of these viruses [33]. In this type of bird circulate all H and N sub-
types, and it is thought that wild birds are the source of the transmission of the virus 
to other animal species, including poultry. Many of the subtypes of influenza A viruses 
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infect birds asymptomatically, that is, without causing disease or causing mild 
symptoms; however, some virus infections, for example, H5 and H7 subtypes, can 
cause severe illness and death in some species of wild and domestic birds, such as 
chickens and turkeys [34]. Pigs are also natural reservoirs of influenza A viruses, from 
which a limited number of subtypes have been isolated.

Every year, around 500 million people worldwide fall ill because of influenza virus 
A infection, of which between 3 and 5 million become severe cases leading to about 
300,000 deaths. These cases of influenza occur regularly during the cold or rainy sea-
sons each year and are known as epidemics or outbreaks of seasonal influenza.

Since 1977, in the human population two influenza A virus subtypes, known as 
H1N1 and H3N2, circulate seasonally, taking into account the characteristics of the 
proteins present on the surface, along with influenza virus B. The frequency of these 
three groups of viruses varies temporarily and geographically. In 2009, a new sub-
type H1N1 emerged with great antigenic/genomic changes that allowed them to 
reach the pandemic state. This new virus emerged from a virus generated by reas-
sortment between a human virus, a porcine virus from North America, a porcine 
virus from Eurasian, and an avian virus [24].

2  Nomenclature

Influenza viruses belong to the Orthomyxoviridae family and consist of six genera:

 1. Influenzavirus A. Type species, Influenza A virus
 2. Influenzavirus B. Type species, Influenza B virus
 3. Influenzavirus C. Type species, Influenza C virus
 4. Isavirus. Type species, Infectious salmon anemia virus
 5. Quaranjavirus. Species, Johnston Atoll virus, and type species, Quaranfil virus
 6. Thogotovirus. Species, Dhori virus, and type species, Thogoto virus

The Influenzavirus A and Influenzavirus B genera cause epidemics every year. 
The emergence of a new and different virus in the human population can cause an 
influenza pandemic. Influenza C virus infections cause mild respiratory disease and 
are considered not to cause epidemics.

Influenza A viruses are divided into subtypes based on the two surface proteins 
of the virus: the hemagglutinin (H) and neuraminidase (N). In nature, there are at 
least 18 different subtypes of H and 11 different subtypes of N [31, 32]. In turn, 
within each subtype, influenza A viruses can be divided into different strains with 
different antigenic characteristics. Current influenza A virus subtypes detected in 
the human population are A(H1N1) and A(H3N2). In the spring of 2009, a new 
influenza virus A(H1N1) emerged and began to cause illness in people. This virus 
has major changes in comparison with seasonal influenza A(H1N1) virus and has 
caused an influenza pandemic after 40 years. The virus, known as A(H1N1)pdm09, 
has largely replaced the previously circulating H1N1 virus among humans. The 
influenza B viruses are not divided into subtypes, but different antigenic strain 
characteristics can be distinguished.
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The Centers for Disease Control and Prevention (CDC), located in Atlanta, GA 
(USA), follows an internationally accepted nomenclature convention for influenza 
virus. This convention was recommended by the World Health Organization (WHO) 
in 1979. This nomenclature establishes the use of the following components:

 1. The antigenic type (e.g., A, B, C).
 2. The host of origin, for example, pig, horse, chicken, or in the case of environ-

mental samples. It is not specified in the case of human viruses.

 a. Geographic origin (e.g., Denver, Taiwan).

 3. Number assigned by the laboratory of origin to the sample from which the virus 
was isolated (e.g., 15, 7).

 4. Year of isolation (e.g., 1957, 2009).
 5. For influenza virus A, the description of H and N antigens appears in brackets 

[e.g., (H1N1), (H5N1)].

For example:

• A/duck/Czechoslovakia/1956 (H4N6) for a virus originated in ducks
• A/Sydney/5/97 (H3N2) for a virus originated in human

3  Structure and Biology

Under the electron microscope, these viruses have a pleomorphic appearance, with an 
average diameter of 100 nm (one ten-thousandth of a millimeter). The viral particle has 
an envelope composed of a lipid bilayer in which the H glycoproteins and N and lesser 
amounts of M2 transmembrane protein are inserted (see Fig. 13.1). Lining the inside of 

Fig. 13.1 Influenza A virion structure
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the lipid membrane is a layer formed by the matrix protein M1. Inside the sheath is the 
viral genome. The genomic segments are covered with nucleoprotein NP and are also 
associated with viral RNA polymerase, which is a protein complex consisting of two 
basic subunits (PB1, PB2) and an acidic subunit (PA). The viral genome consists of 
eight segments of single-stranded RNA of negative polarity, ranging from 890 to 2,350 
nucleotides in size, with some variation depending on the virus strain. In total, the 
genome has approximately 13,600 nucleotides and encodes 11 viral proteins. All seg-
ments encode a protein, with the exception of the PB1 gene, which in some strains also 
encodes the PB1-F2 protein; the gene protein matrix, which encodes two proteins, M1 
and M2; and the smallest gene, NS, which codes for proteins NS1 and NS2.

3.1  Viral Tropism

In humans, the virus usually enters the body through the nose or mouth and infects the 
cells lining the respiratory tract, joining sialic acid (SA) molecules on the surface of the 
cells to start the infection. The SA is an abundant molecule in all cells, a part of sugar 
chains bound to proteins or lipids, and defines the influenza virus tropism. This binding 
occurs because of the specificity of different virus strains for different types of links of 
SA with sugar, the upstream carbohydrate, which is generally galactose. Thus, human 
viruses recognize the conformation of SA with galactose in the alpha 2–6 position, 
whereas avian viruses join SA with union 2.3 [30]. The affinity for SA partly explains 
the restriction host of influenza viruses. In the swine tracheal epithelial cells, both types 
of SA links exist, which allow the pig to be naturally infected by swine, avian, or human 
viruses. This mechanism enables genetic rearrangements among animal species origi-
nating influenza viruses with combinations of gene segments from different origins.

3.2  Molecular Determinants of Virulence: Viral Proteins 
and Pathogenesis

Several viral proteins have an important role in some aspects of pathogenesis and 
host restriction of influenza viruses, including the ability to modulate the host 
immune system and the ability to replicate efficiently at different temperatures, 
among others. The best characterized proteins in order of their pathogenic potential 
are H, PB1, and PB2. Furthermore, the N and M2 proteins have been widely studied 
because of their ability to confer resistance to approved antiviral drugs.

3.3  Role of Hemagglutinin in Virulence and Viral Tropism

This glycoprotein, along with N, is one of the major proteins of the viral particle. 
The most neutralizing antibodies are produced against this main antigen, and these 
are capable of neutralizing virus infectivity. The H, as its name suggests, is capable 
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of binding erythrocytes, a property that has been used in techniques for the 
classification of different subtypes. The H has a very important role in virus entry 
into the host cell, mediating the viral adsorption through its interaction with the 
SA. H is synthesized as a precursor protein called H0, which is cleaved at a specific 
site, resulting in the generation of the subunits HA1 and HA2. The cleavage site is 
characterized by being composed of basic amino acids. Proteolytic cleavage is 
essential for infectivity because it exposes a hydrophobic peptide at the amino ter-
minus of HA2, which is responsible for mediating the fusion of the viral membrane 
and endocytic vesicle formed when the particle is internalized into the cell.

With the purpose of describing the spatial dissemination dynamics of influenza 
A(H3N2) within South America, 316 HA1 sequences of A(H3N2) viruses from 
Argentina, Brazil, Chile, Paraguay, Uruguay, Bolivia, Colombia, French-Guyana, 
Peru, and Venezuela collected between 1999 and 2012 were analyzed together with 
153 available contemporary sequences from Australia, Hong Kong, the UK, and the 
U.S. Phylogenetic analyses revealed that influenza A(H3N2) sequences from South 
America were highly intermixed with sequences from other geographic regions, 
although a clear geographic virus population structure was detected globally. Fourteen 
clades mostly (≥80%) composed of influenza sequences from South American coun-
tries were identified. Bayesian phylogeographic analyses of those clades support a sig-
nificant role of both temperate and tropical regions in the introduction and dissemination 
of new influenza A(H3N2) strains within South America and identify an intensive bidi-
rectional viral exchange between different geographic areas. These findings indicated 
that seasonal influenza A(H3N2) epidemics in South America are seeded by both the 
continuous importation of viral variants from other geographic regions and the short-
term persistence of local lineages. These results support a complex meta-population 
model of influenza A(H3N2) dissemination in South America, with no preferential 
direction in viral movement between temperate and tropical regions [7].

3.4  Viral Replication and Protein PB2

Protein PB1 and PA form the viral replication complex. PB2 has been associ-
ated with the transmissibility of the virus through the air and also with the 
restriction host.

3.5  PB1-F2: A Cell Death Inductor Factor

Protein PB1-F2 is a small protein encoded by the gene that also encodes the subunit 
viral polymerase PB1. PB1-F2 is not expressed by all influenza strains. It has been 
found that this protein interacts with the mitochondria membrane, causing its per-
meation and cytochrome C release, which induces cell death. It has also been 
reported that PB1-F2 exacerbates inflammatory response during viral infection in 
mice and increases the frequency and severity of secondary bacterial pneumonias.
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3.6  NS1 and Control of the Innate Immune Response

During viral replication, transcriptional activation factors that stimulate the production of 
interferon are triggered; this is a strategy to prevent cell viral infections. The NS1 protein 
is a viral protein that antagonizes the interferon response of the cell. It was found that 
highly virulent strains, such as H5N1 avian, not only confer resistance to antiviral effects 
of interferon but also induce an exacerbated pro- inflammatory cytokine response. During 
pregnancy, immunological and hormonal alterations place women at increased risk for 
influenza-related severe illnesses, including hospitalization and death. Although A(H1N1)
pdm09 infection resulted in increased disease severity in pregnant women, the precise 
mechanisms responsible for this risk have yet to be established. The role of host chemo-
kines and cytokine profiles in A(H1N1)pdm09 infection regarding disease severity in 
pregnant women with confirmed influenza A(H1N1)pdm09 infection was investigated. 
Results revealed that pregnancy-related reductions in interferon (IFN)-β and transform-
ing (TGF)-β expression levels and elevated levels of pro-inflammatory cytokines could 
explain the increased severity of infection and death of pregnant women [26].

3.7  NS2

This protein is also encoded by the viral RNA segment 8, and it has been detected 
associated with M1 protein in the virion. It is possible to find it in the nucleus and 
cytoplasm. It possesses a nuclear export signal that would function to export the 
RNPs from the nucleus.

3.8  M2: A Viral Ion Channel

The M2 protein is the less abundant viral coat. This protein functions as an ion chan-
nel that allows the entry of protons into the viral particle, facilitating the release of 
the viral genome into the cytoplasm. Adamantanes selectively block the channel 
formed by M2, which inhibits the release and therefore the replication of the viral 
genome. These compounds have been used against influenza outbreaks for many 
years; however, it has been found that adamantane resistance appears rapidly and 
frequently in influenza wild strains. Most human and swine A(H3N2) strains cur-
rently circulating are resistant to these antivirals; moreover, the new A(H1N1)
pdm09 viruses are also resistant to these drugs.

3.9  Neuraminidase and Viral Dissemination

This glycoprotein, neuraminidase, is a sialidase whose function is to remove not 
only the SA of the viral glycoproteins of newly synthesized virus but also the SA 
present on the cell surface, allowing efficient release of virus from the infected cell 
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to infect new cells. Inhibition of this activity produces the de novo synthesized 
virions that remain attached to the cell surface, inhibiting their spread to other cells. 
The N is the target of oseltamivir and zanamivir antivirals. These molecules are 
specific inhibitors of the N-sialidase activity.

4  Genetic Drift and Shift

Influenza viruses are constantly changing, and they can change in two different ways. 
One way is called “antigenic drift,” which are small changes in the genes of influenza 
viruses that happen continually over time as the virus replicates. These small genetic 
changes usually produce viruses that are quite closely related to one another, which 
can be illustrated by their close location on a phylogenetic tree. Viruses that are closely 
related to each other usually share the same antigenic properties, and an immune sys-
tem exposed to a similar virus will usually recognize it and respond. However, these 
small genetic changes can accumulate over time and result in viruses that are antigeni-
cally different (further away on the phylogenetic tree). When this happens, the body’s 
immune system may not recognize those viruses. Genetic changes that result in a 
virus with different antigenic properties are the main reason why people can be 
infected by influenza virus more than once. This is also why the influenza vaccine 
composition must be reviewed each year and updated as needed to keep pace with 
evolving viruses [9]. In Mexico, whole-genome sequencing studies of human 
A(H3N2) isolates from 2003 to 2012 showed that different viral lineages co-circulate 
within the same season and can also persist locally in between different influenza 
seasons, increasing the chance for genetic reassortment events. A novel minor cluster 
was also identified, named here as Korea, that circulated worldwide during 2003 [11].

The other type of change is called “antigenic shift.” Antigenic shift is an abrupt, 
major change in the influenza A viruses, resulting in new H or new H and N proteins 
in influenza viruses that infect humans. Shift results in a new influenza A subtype or 
a virus with a H or a H and N combination that has emerged from an animal popula-
tion which is so different from the same subtype in humans that most people do not 
have immunity to the new (i.e., novel) virus. Such a “shift” occurred in the spring of 
2009, when an H1N1 virus with a new combination of genes emerged to infect 
people and quickly spread, causing a pandemic. When this shift happens, most peo-
ple have little or no protection against the new virus [9]. A(H1N1)pdm09 was origi-
nated from a quadruple viral reassortment: viral genes from North American swine, 
Eurasian swine, and avian and human populations.

On June 11, 2009, in acknowledgment of sustained global human-to-human 
transmission, the WHO declared that the novel influenza A(H1N1)pdm09 virus 
was pandemic. Although this virus has not been reported as more virulent than 
seasonal influenza A(H1N1), its high transmissibility in an immunologically 
naïve population implied the potential for substantial morbidity and mortality and 
mandated close surveillance for evolution toward increased virulence. Although 
worldwide the pandemic influenza A(H1N1) case fatality rate (CFR) was 0.4%, 
that rate in Argentina was 4.5%. After performing full-genome sequencing of 
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strains isolated from mild and severe cases, no evidence was observed that the 
high CFR can be attributed directly to viral changes. Further, no evidence of reas-
sortment with human or animal locally circulating strains, mutations associated 
with resistance to antiviral drugs, or genetic drift that might contribute to viru-
lence was documented [3].

Analysis of 13 samples of 2009 H1N1 pandemic virus circulating in Paraguay in 
2009 showed that these viruses clustered in a single genetic group. Neither the 
mutation related to exacerbation of disease (D239G in H) nor that related to antivi-
ral resistance (H275Y in neuraminidase), both detected in neighboring countries, 
was found [12].

To generate information about the disease burden caused by 2009 influenza 
A(H1N1)pdm09 in children in Argentina, a retrospective case series study was con-
ducted. The results obtained indicated that hospitalization rates were double in com-
parison with those for seasonal influenza in 2008. The overall rate of death was 1.1 
per 100,000 children, as compared with 0.1 per 100,000 children for seasonal 
 influenza in 2007. This investigation concluded that influenza A(H1N1)pdm09 was 
associated with pediatric death rates that were ten times the rates registered for sea-
sonal influenza in previous years in Argentina [18].

Molecular characterization of circulating influenza A viruses in all regions of 
the world is essential to detect mutations potentially involved in increased viru-
lence, antiviral resistance, and immune escape. To gain insight into these mat-
ters, a phylogenetic analysis of the N gene of 146 pandemic H1N1 (H1N1pdm) 
influenza A virus strains isolated in Argentina, Brazil, Chile, Paraguay, Peru, and 
Uruguay from 2009 to 2013 was performed. The comparison of vaccine strain A/
California/7/2009 was included in the influenza vaccine recommended for the 
Southern Hemisphere from 2010 through 2016. Strains differ from vaccine in 
two predicted B-cell epitope regions present at positions 102–103 and 351–352 
of the NA protein. Moreover, vaccine and strains isolated in Paraguay differ also 
in an epitope present at position 229. The analysis of the N gene of 2009 to 2013 
H1N1 South American strains revealed several genetic and antigenic differences 
in the N of influenza A(H1N1)pdm09 among vaccine and strains circulating in 
South America [10].

Influenza viruses are changing by antigenic drift all the time, but antigenic shift 
happens only occasionally. Type A viruses undergo both kinds of changes; influenza 
type B viruses change only by the more gradual process of antigenic drift.

In the past century, three antigenic shifts occurred in the influenza A virus circu-
lating in humans that were responsible for pandemics: in 1918, with the emergence 
of an A(H1N1) virus; in 1957, when the A(H1N1) virus was replaced by a virus 
subtype A(H2N2); and in 1968, when an A(H3N2) virus replaced the A(H2N2) viral 
subtype. In 1977, the A(H1N1) subtype was reintroduced in humans and did not 
replace the circulating subtype H3N2. The 1977 (H1N1) strain was replaced by the 
A(H1N1)pdm09 in 2009 and co-circulates together with A(H3N2) viral subtype up 
to the present worldwide, and they are responsible for the seasonal outbreaks that 
occur each year.
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5  Viral Entry, Release, and Transmission

The main targets of the influenza virus are the columnar epithelial cells of the 
respiratory tract. These cells may be susceptible to infection if the viral receptor is 
present and functional. Thus, viral receptors are determinants of tropism. Viruses 
replicate in the respiratory epithelium, causing a localized infection. The new viri-
ons are overturned in the inner portion of the respiratory tract, transported through 
secretions, and disseminated out of the body when the individual sneezes, coughs, 
talks, or laughs.

The disease caused by the influenza virus is highly contagious. Transmission 
occurs by air in most cases, by coughing, talking, or sneezing, but can also spread 
through contact with surfaces contaminated with the respiratory secretions of sick 
individuals. Adults eliminate the virus from 1 day before the onset of symptoms 
until 5–10 days later; in children, elimination can start several days before and 
 continue for 10 days or more after the onset of symptoms. Immunocompromised 
people can spread the virus for weeks.

6  Epidemiology and Local and Global Geographic 
Distribution

Human influenza viruses, including the new A(H1N1)pdm09 virus that has affected 
the human population since 2009, are distributed worldwide. This virus reaches 
peak prevalence in winter and rainy seasons. In Argentina particularly, although it is 
possible to detect viral circulation throughout the year, an increase of viral activity 
is observed between May and July, depending on the season. The number of posi-
tive cases detected and the types and viral subtypes circulating each year also vary 
by season. In 2012, the transmission pattern of influenza viruses was different in the 
four countries of the Southern Cone in South America. Surprisingly, peak activities 
were detected very late in this region. Increased viral circulation in the area was first 
noted at the end of April to early May in Chile and Paraguay; Argentina and Uruguay 
begun to report active transmission in early June. Particularly in Argentina, the peak 
was registered in August, 10 weeks later than in the past 9 years [6].

7  Ecology

Influenza A viruses can be found in various animals such as ducks, chickens, pigs, 
whales, horses, seals, and dogs. Influenza B viruses circulate only among humans. 
All known subtypes of influenza A virus were detected in birds, with the exception 
of H18N11 and H17N10 subtypes, which were only found in bats. Wild birds are 
the primary natural reservoir for all subtypes of influenza A viruses and are thought 
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to be the source of influenza A viruses in all other animals. Argentina had been 
searched for evidences of influenza A infection in Antarctica through antibody and 
genome detection in different migratory bird species. Between December 2001and 
May 2004, sera and cloacal swabs were collected in different locations. Antibody 
against the A(H3N2), A(H1N1), A(H9N2), A(H5N1), and A(H7N2) subtypes and 
sequences of the M gene was detected in migratory birds in Antarctica, showing that 
these species had been in contact with influenza A virus during their lifetime. These 
findings were obtained also in young birds, born in Antarctica, and would suggest 
the local acquisition of the infection [2, 4].

As part of the ongoing efforts on animal influenza surveillance in Argentina, Xu et al. 
[35] described the isolation of an H9N2 virus from a wild aquatic bird (Netta peposaca), 
named as A/rosy-billed pochard/Argentina/CIP051–559/2007 (H9N2). Phylogenetic 
analysis of the HA gene revealed that the 559/H9N2 virus maintained an independent 
evolutionary pathway and shared a sister-group relationship with North American 
viruses, suggesting a common ancestor. The rest of the genome segments are clustered 
with viruses from South America. Experimental inoculation of the 559/H9N2 in chick-
ens and quail revealed efficient replication and transmission only in quail. These viruses 
could easily jump to other bird species, thus highlighting the potential threat posed to 
local poultry. This study increases local understanding of H9N2 viruses in nature [35].

When a highly pathogenic virus (HPAI) appears, it produces severe symptoms 
and almost 100% mortality within 2 days. Since 2002, outbreaks of HPAI have 
occurred in the Americas: in Chile A(H7N3) 2002, U.S. (Texas) A(H5N2) 2004, 21 
U.S. states A(H5) 2014–2015, and Canada (H7N3) 2004 were identified. In each of 
these outbreaks, a precursor virus of low pathogenicity mutated to become highly 
pathogenic after circulating in poultry [29].

The understanding of the global ecology of avian influenza A viruses is impeded 
by historically low levels of viral surveillance in Latin America. Through sampling 
and whole-genome sequencing of 31 avian influenza viruses from wild birds in 
Peru, ten HA subtypes (H1–H4, H6–H7, H10–H13) and eight N subtypes (N1–N3, 
N5–N9) were identified. The majority of those Peruvian avian influenza viruses 
were closely related to avian influenza viruses found in North America. However, 
unusual reassortants, including a H13 virus containing a PA segment related to 
extremely divergent Argentinean viruses, suggest that substantial avian diversity 
circulates undetected throughout South America [23].

In recent years, there has been extensive surveillance of the virus in aquatic birds 
in the Northern Hemisphere; however, in contrast, only a few studies have been 
attempted to detect avian influenza viruses in wild birds in South America. There 
are major flyways connecting South America to Central and North America, whereas 
avian migration routes between South America and the remaining continents are 
uncommon. As a result, it has been hypothesized that South American avian influ-
enza strains would be more closely related to the strains from North America than 
to those from other regions in the world. The full genome of three avian influenza 
subtype H11N9 isolates obtained from ruddy turnstones (Arenaria interpres) on the 
Amazon coast of Brazil was studied. For all gene segments, all three strains consis-
tently clustered together within evolutionary lineages of avian influenza viruses that 
had been previously described from aquatic birds in North America. In particular, 
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the H11N9 isolates were remarkably closely related to avian influenza strains from 
shorebirds sampled at the Delaware Bay region, on the northeastern coast of the 
U.S. There was also evidence of genetic similarity to avian influenza strains from 
ducks and teals from the interior U.S. and Canada [16].

In 2002, the Chilean poultry industry was afflicted with a highly pathogenic avian 
influenza strain, which created economic loss and triggered the establishment of a sur-
veillance program in wild birds. This effort consisted of periodic samplings of sick or 
suspicious animals found along the coast and analyses with standardized techniques for 
the detection of influenza A virus. The detection of three avian influenza strains (H13N2, 
H5N9, H13N9) in gulls from Chile between 2007 and 2009 showed highest similarities 
to viruses detected in wild birds from North America. These results suggest a dissemina-
tion route for influenza viruses along the coasts of the Americas [20].

Swine influenza virus (SIV) is enzootic in most regions with dense porcine popu-
lations. This disease is common in North and South America, Europe, Asia, and also 
in Africa. Although the viral subtypes found in the U.S. and Europe are the same, 
they are actually different strains. In Argentina, swine origin viruses have been iden-
tified in producing farm populations. An Argentinean study demonstrated the circu-
lation of influenza A(H3N2) viruses in 19 pig farms between 2000 and 2002; the 
seroprevalence rate was 16.5% [5]. In sera collected in 2002, Piñeyro et al. [27] 
demonstrated the seroprevalence was 38.46% to 100% against H1N1 and 7.69% to 
100% for H3N2 in 13 Argentinean swine.

In November 2008, an outbreak of respiratory disease in pigs consistent with 
SIV infection was detected in Argentina. Phylogenetic analysis revealed that the 
virus isolated shared nucleotide identities of 96–98% with A(H3N2) viruses that 
circulated in humans from 2000 to 2003. Sera collected from experimental inocu-
lated animals mainly cross-reacted with noncontemporary human-origin H3N2 
influenza viruses [8].

In 2009, A(H1N1)pdm09 transmission from human to pig was confirmed. In 
Argentina, seroepidemiological analyses performed in 17 pig farms showed that 
≈41% of pigs had antibodies against A(H1N1) and A(H3N2) subtypes. Vaccines 
against swine influenza viruses were not licensed in Argentina in that period. In 
June–July 2009, an outbreak caused by influenza A(H1N1)pdm09 virus occurred on 
a pig farm. The virus was genetically related to the pandemic strain isolated in 
humans, and no evidence of further reassortment was confirmed [25]. Equine influ-
enza occurs in almost all countries with a significant number of horses.

In July 2006, horses from various regions of Chile presented with fever, serious 
nasal discharge, dry cough, anorexia, and depression. The virus was identified as 
equine influenza virus H3N8. After performing sequencing of the H, N, and NP 
genes, important differences with the Santiago/85 isolate was observed, with a 
closer relationship to North American isolates, especially to the Florida lineage, and 
to Argentinean isolates from the 1990s [22].

There is no evidence that canine influenza virus is currently circulating outside 
the U.S. However, occasional infections with equine influenza virus are seen among 
dogs in other regions. In the UK, an equine virus H3N8 was responsible for out-
breaks of respiratory disease in dog kennels in 2002 and 2003, and also in Australia 
in 2007. H3N2 viruses have been reported in dogs only in Korea.

13 Influenza Viruses, Biology, Epidemiology, and Control



266

8  Prophylaxis

In uncomplicated cases, bed rest with adequate hydration is the treatment of choice 
for most adolescents and young adult patients. Salicylates must be avoided in 
children of 18 years or younger because of the association to Reyes syndrome. 
Antibiotic treatment should be reserved for the treatment of secondary bacterial 
pneumonia. More severe cases or infections at high risk of complications can be 
treated with antiviral drugs. Two classes of antiviral drugs are available for the pre-
vention and treatment of influenza: (a) the neuraminidase inhibitors (NAIs) zanami-
vir, oseltamivir, peramivir, and laninamivir, which are active against both influenza 
A and influenza B, and (b) the adamantanes, amantadine, and rimantadine, which 
are only active against influenza A. Before licensing of the NAIs in 1999, the ada-
mantanes were the only drugs used for the treatment and prevention of influenza. 
These drugs target the virus M2 ion channel protein, involved in virus uncoating in 
the endosome. However, because of central nervous system complications in the 
elderly and lack of efficacy against influenza B, these agents were not widely 
employed. Additionally, since 2000, many viruses have acquired the substitutions 
L26F, L/V27A, A30T, S31 N, or G34E in the M2 gene conferring resistance, includ-
ing the current human A(H3N2) and A(H1N1)pdm09 viruses and avian influenza 
A(H5N1) and A(H7N9) viruses, which have caused sporadic human infections. 
Resistance initially emerged in China, possibly related to the ready availability of 
the adamantanes in over-the-counter medications and use in poultry feed.

The second group of antivirals described here is called “NA inhibitor” (NAI) 
because these antiviral drugs bind to NA influenza virus and inhibit the enzymatic 
activity of this protein [21].

Antiviral agents may be prescribed as treatment to potentially shorten the dura-
tion and decrease the severity of influenza infection. Antivirals may also be pre-
scribed for chemoprophylaxis to prevent/attenuate a potential influenza infection 
following contact with an infected individual or in vulnerable individuals during a 
community outbreak (e.g., nursing homes). When used as treatment, initiation of 
antiviral agents should not be delayed and ideally should be started within 48 h of 
the onset of symptoms.

When NA proteins change, the NAI can lose its ability to bind to and inhibit the 
function of the viral NA proteins, resulting in NAI resistance (non-susceptibility). A 
particular genetic change named the “H275Y” mutation is known to confer oselta-
mivir resistance in 2009 A(H1N1)pdm09 viruses. (The H275Y mutation is a substi-
tution of histidine for tyrosine at position 275 in the NA.) This substitution prevents 
oseltamivir from inhibiting NA activity and allows the mutated virus to spread to 
healthy cells, which results in the drug not working as well. Although instances of 
antiviral drug resistance among influenza viruses have occurred during antiviral 
therapy, resistant influenza strains have also spread widely in the absence of such 
drug pressure. Viruses resistant to oseltamivir could not disseminate properly in the 
human population, which could explain the low frequency of resistant virus detected 
in the entire world. In a study performed in Central and South America in  2005–2008, 
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the M2 and NA genes were sequenced, and resistance was inferred by comparison 
with published sequences and known resistant mutations. The results obtained 
indicated resistance to adamantanes in the majority of the A(H3N2) isolates, but in 
only one isolate of the influenza A(H1N1) viruses, and resistance to NAIs began to 
be detected in 2008 A(H1N1) isolates. Also, none of the influenza B viruses ana-
lyzed was resistant to NAIs. [13]. To spread in community settings, H275Y mutants 
must contain additional mutations. Oseltamivir-resistant  A(H1N1)pdm09 strains 
with compensatory mutations were identified in different states of Brazil and in dif-
ferent countries [19]. Most of the influenza viruses tested during past seasons (2014, 
2015) continued to be susceptible to the antiviral drugs recommended, although 
resistance to the adamantanes class of antiviral drugs among A/H3N2 and A/H1N1 
viruses remains widespread [15]. In Argentina, in 2009, the first A(H1N1)pdm09 
virus resistant to oseltamivir was detected in a 3-year-old child under treatment who 
had received an unrelated bone marrow transplantation and who had developed an 
upper respiratory tract infection with a long period of viral excretion. Between 2011 
and 2015, in Argentina, using two rapid genotypic screenings, the H275Y substitu-
tion was found in 25 of 2216 influenza A(H1N1)pdm09 viruses tested and the 
E119V change in 1 of 1515 A(H3N2) viruses studied. Most of the viruses carrying 
the substitutions were collected from patients at risk without oseltamivir therapy. 
The resistant A(H1N1)pdm09 viruses showed the compensatory changes V241I and 
N369K. Oseltamivir appears to increase the chance of survival in people infected 
with H5N1 Asian lineage. These viruses are resistant to adamantanes and rarely to 
oseltamivir and zanamivir.

9  Prevention

Currently, the influenza vaccine, annually revised, includes three influenza virus 
strains: influenza A(H1N1)pdm09, A(H3N2), and influenza B. The vaccine includes 
seasonal strains and does not protect against the virus influenza C. According to the 
Centers for Disease Control and Prevention (CDC), influenza vaccine is the best way 
to protect people against influenza and prevent its spread. This vaccine can also 
reduce the severity of the disease if a person contracts a strain of the influenza that is 
not perfectly antigenically matched with the strain included in the vaccine formula.

About 2 weeks following vaccination are needed for antibodies to protect against 
the virus. Influenza vaccine will not protect against infections and diseases caused 
by other viruses that can also cause symptoms similar to those of influenza. This 
vaccine is available in the Southern Hemisphere countries during the autumn months 
(March and April), before influenza season starts. It contains the H and N viral sur-
face proteins that have been previously grown in eggs, and it is administered subcu-
taneously. There are two different types of inactivated influenza vaccines, trivalent 
and quadruple. Trivalent vaccines protect against two influenza A viruses (H1N1 
and H3N2) and an influenza B virus. Quadruple vaccines protect against two 
influenza A viruses and two influenza B viruses (Yamagata and Victoria lineages). 
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Influenza vaccine has to be applied every season because the body’s immune 
response from vaccination declines over time, so an annual vaccine is needed for 
optimal protection and also because influenza viruses are constantly changing. The 
vaccine formula is reviewed each year and sometimes updated to keep up with 
changing influenza viruses. The selection of the strains included in the vaccine is 
based on the analysis of the strains circulating during the previous winter season in 
the countries of the Northern Hemisphere and the Southern Hemisphere carried out 
by an expert group coordinated by WHO.

Until 1998, for many years, WHO had held a consultation meeting once a year, 
in mid-February, to formulate a recommendation for the composition of inactivated 
influenza vaccines intended for the following winter. Epidemics of influenza occur 
at different times of the year in different parts of the world. Consequently, it was 
appropriate for WHO to review the recommendation twice a year. Since October 
1998, a recommendation every February continues, which relates to the composi-
tion of vaccines intended for use for the following winter in the Northern Hemisphere 
(November to April), and a second recommendation made each September was 
implemented that relates to vaccines which will be used for the following winter in 
the Southern Hemisphere (May to October) [1]. To determine if the locally circulat-
ing strains are antigenically closely related to the vaccine strains administered, 
Argentinean strains were compared with the reference influenza viruses isolated 
from May 1994 to December 1997. Nasopharyngeal aspirates and nasopharyngeal 
swabs collected from hospitalized children and adults, respectively, with acute 
lower respiratory tract infection were tested. In this study, it has been shown that 
influenza A(H3N2) circulating in Argentina during the past 4 years matched par-
tially with the antigens present in the vaccines administered during the 1994–1997 
period. These antigenic variants sometimes circulated late in the year (October 1994 
and 1997), initiating during the following influenza season and becoming prevalent: 
they were present in the vaccine formula administered in the Southern Hemisphere 
2 years later [28]. Influenza vaccines can be administered from 6 months of age and 
also to people considered to belong to at-risk groups, such as pregnant women in the 
second or third trimester and people suffering from chronic respiratory diseases; or 
those with cardiac, metabolic, and immune compromise; or those who are morbidly 
obese. Healthcare workers who provide community services should consider vac-
cination to minimize disruption of essential activities during influenza outbreaks.

In addition to the trivalent and quadruple inactivated vaccine, other vaccines are 
currently available. In 2003, a live attenuated influenza virus vaccine was approved 
for use in the U.S. This vaccine is approved only for healthy individuals from 5 to 49 
years old. In 2007, it was also approved for healthy children aged 24 to 59 months. It 
is administered nasally and provides mucosal, humoral, and cell- mediated immunity. 
The strain included, which is cold adapted, can grow in the upper respiratory tract 
where the temperature is lower than in the lower tract. It is attenuated by multiple 
changes in different segments of the genome. Because it is a live virus vaccine, when 
administered intranasally (as an aerosol) it generates a response in IgA and IgM/IgG.

Because the virus is grown in eggs, vaccine application is contraindicated in 
persons with hypersensitivity to any component thereof.
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1  Introduction

A few studies have been conducted by Latin American virologists on the role of 
 adenoviral oncogenes in the biology of the virus [1], on the use of adenoviruses 
(AdV) as vectors [2], or on oncolytic AdV [3], and also in areas such as epidemiol-
ogy of viral gastroenteritis and conjunctivitis. Without a doubt, the largest body of 
work representing AdV research in Latin American countries has focused on clini-
cal and epidemiological studies of acute respiratory infection/acute respiratory dis-
ease (ARI/ARD) or influenza-like illness (ILI), and on the description of viral 
strains associated with severe disease, thus supporting the better understanding of 
the contribution of AdV infections to the global burden of respiratory disease. ARIs 
are still the leading cause of pediatric morbidity and mortality worldwide, with a 
significantly higher impact in low-income countries where they are associated with 
a high proportion of all pediatric deaths [4].

2  Adenovirus Structure, Genome Organization, 
and Replication

AdVs are non-enveloped icosahedral particles with a linear dsDNA genome of 
approximately 36 kb. The capsid is composed of 240 capsomers of hexon trimers, 
12 pentameric penton capsomers, and 12 trimers of the fiber protein that project 
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from the pentons. The AdV genome is organized in early (E1A, E1B, E2, E3, E4), 
intermediate (IX, IVa2), and late (major late, ML) transcription units. As with other 
DNA viruses that replicate in the nucleus of the host cell, the AdV replication cycle 
is divided into an early and a late phase, separated by the initiation of viral DNA 
synthesis. The early viral genes encode proteins whose functions establish condi-
tions in the infected cell that are favorable for the synthesis of large quantities of 
viral macromolecules, whereas the late genes encode the viral structural proteins 
and other proteins that participate in the selective expression of viral genes, result-
ing in the production of progeny virions [5].

3  Human Adenoviruses: Classification and Association 
with Disease

Adenoviruses are classified in the family Adenoviridae and infect all major classes 
of vertebrates, from fish to mammals. The genus Mastadenovirus includes all 
human adenoviruses (HAdVs), which are classified into seven species designated 
human mastadenovirus A through G (HAdV-A–HAdV-G), based on biophysical, 
biochemical, and genetic criteria. Fifty-one serotypes and more than 70 human ade-
novirus genotypes have been recognized to date [5, 6]. Complete genomic sequences 
for these HAdVs are available in GenBank.

HAdVs circulate worldwide with no clear seasonality. They are transmitted 
through the oral–fecal route, by aerosols, and via fomites. Depending on the tropism 
of the virus, infection can result in respiratory disease (species HAdV-B, HAdV-C, 
HAdV-E, and occasionally HAdV-D), gastroenteritis (species HAdV-F and 
HAdv-G), or conjunctivitis (species HAdV-B, HAdV-D, and HAdV-E), accounting 
for an estimated 8% of all clinically relevant viral disease. It is estimated that world-
wide AdV infections are responsible for 5–10% and 1–7% of all respiratory infec-
tions in children and adults, respectively. Common symptoms are fever, pharyngitis, 
tonsillitis, cough, and sore throat. Although uncommon in healthy adults, lower 
respiratory tract infections leading to pneumonia occur in up to 20% of newborns 
and infants. Severe infections in immunocompromised adults and children have 
been reported to result in fatalities exceeding 50% of cases [7, 8].

4  Adenovirus Acute Respiratory Infections in Latin 
America: Epidemiology and Impact

Many of the studies yielding information on the incidence and molecular epidemi-
ology of HAdV respiratory infections in the past two decades resulted from senti-
nel surveillance efforts originally designed to determine the contribution of 
respiratory viruses to the burden of ARD, and more specifically ILI, and were 
funded by the local Ministries of Health, by the local research councils, and in 
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several cases by the U.S.  Department of Defense Global Emerging Infections 
Surveillance (GEIS)  program. Although the majority of the publications resulting 
from these studies have a focus on epidemiology, relatively few of them include 
virus typing data. Unfortunately a considerable proportion of the work conducted 
in Latin America including data on HAdV respiratory infections is published in 
Spanish or Portuguese in journals with limited distribution. In the following sec-
tions, we present an overview of the activities and findings by the leading research 
groups operating in different countries clustered by region.

Figure 14.1 provides a summary of the type of information available for indi-
vidual countries.

4.1  The Southern Cone

Building on a strong foundation of clinical reports and documenting the association 
of HAdV infection with pediatric severe ARD requiring hospitalization and result-
ing in pulmonary sequelae or death [9–17], numerous studies conducted since the 
1980s by investigators in Argentina, Chile, and Uruguay have described the burden 
of ARD associated with HAdV infection during the past three decades and have 

Fig. 14.1 Data available for Latin American countries regarding incidence and molecular epi-
demiology of adenovirus acute respiratory infections
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identified the most prevalent types and genomic variants circulating in the region. 
The analysis of typing data reported by various studies suggests that the HAdV 
strains associated with pediatric ARD may be common to the region.

4.1.1  Argentina

The group of investigators led by Mercedes Weissenbacher at the Department of 
Microbiology, School of Medicine, University of Buenos Aires (UBA), conducted 
the very first study on clinical, etiological, and epidemiological features of acute 
lower respiratory tract infection (ALRI)) in children in Argentina. In 1990, the 
group published data gathered during a 40-month period from a cohort of 1003 
children under 5 years of age (805 inpatients and 198 outpatients) [18, 19]. Viral 
etiology investigation performed on nasopharyngeal aspirates (NPAs) by indirect 
immunofluorescence (IF) and isolation in cell culture showed HAdV to be the sec-
ond most frequently detected virus after respiratory syncytial virus (RSV).

The identification of the most prevalent types and genomic variants circulating in 
Argentina was possible through various collaborative studies initiated by a member 
of this group, Adriana Kajon, while she was a graduate student at BIO-SIDUS. These 
studies demonstrated the high prevalence of infections by species HAdV-B among 
pediatric cases of ARI requiring hospitalization in the late 1980s and early 1990s 
and in particular by variants of type HAdV-B7. As a result of these efforts, a new 
genome type of HAdV-B7 designated 7h was first identified in association with 
many of the severe and fatal cases of respiratory disease identified in the cohort just 
described [20–24]. This genomic variant was later found to be an intertypic recom-
binant strain with a HAdV-B7-like hexon and a HAdV-B3-like fiber [25]. Genome 
type 7h was found in a high proportion of specimens obtained from children hospi-
talized for ARI during the 1990s [26, 27] and was also found to circulate in Chile, 
Uruguay, and Brazil in the same period, as described next. The genome of this virus 
was completely sequenced for the Argentine strain 87–922  in 2011 (GenBank 
accession number JN860676). The bioinformatics analysis of this genome resulted 
in the assignment of a new type designation, HAdV-B66 [28].

The group of virologists working at the Department of Virology, Instituto 
Nacional de Enfermedades Infecciosas, ANLIS, “Carlos G. Malbrán,” and led by 
Vilma Savy and Elsa Baumeister also contributed to the better understanding of the 
role of certain adenovirus infections in the etiology of pediatric ARD requiring 
 hospitalization with the isolation and identification of various genomic variants of 
HAdV-B7 [29, 30] and as collaborators to some of the studies already mentioned.

The research group based at Centro de Educación Médica e Investigaciones 
Clínicas (CEMIC) Norberto Quirno and led by Guadalupe Carballal and Marcela 
Echavarria has conducted studies that have investigated the viral etiology of ARI in 
children in Buenos Aires since 1990. In 2001, the group reported data from the first 
multicenter study of viral etiology in pediatric cases of ALRI in Argentina [31]. The 
study enrolled 1278 children under 5 years of age, hospitalized in primary care 
centers in Buenos Aires, Córdoba, Santa Fé, and Mar del Plata cities, during a 2-year 
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period (1993–1994). Cases of HAdV infection were identified in the four cities and 
represented 2.5% of all virus-positive cases. Work from this group using a poly-
merase chain reaction (PCR)-based approach to improve the sensitivity in the diag-
nosis of HAdV infections demonstrated a high incidence of HAdV coinfections and 
the presence of species HAdV-F in respiratory specimens of patients with ILI symp-
toms [32]. In collaboration with investigators at Facultad de Ciencias Exactas y 
Naturales, UBA, the CEMIC group developed a real-time PCR-based protocol to 
evaluate the susceptibility of HAdV to antiviral drugs [33]. The most recent study 
conducted by the CEMIC group enrolled 620 patients to investigate the viral etiol-
ogy of ARI in hospitalized and outpatient children between 2008 and 2010  in 
Buenos Aires. HAdV infections were detected in 15 patients (2.4%). HAdV infec-
tions were significantly more frequent in hospitalized patients. In the emergency 
room, the incidence of HAdV was found to be 73 per 1000 children-years [34, 35].

Collaborative efforts between Adriana Kajon and Marcela Echavarria to type 
HAdV strains isolated from pediatric cases of ARI identified two novel intertypic 
recombinants of species HAdV-B [36, 37].

In 2004, Mariana Viegas and colleagues from the group led by Alicia Mistchenko 
at the Virology Laboratory, Hospital de Niños Ricardo Gutierrez reported data from 
a 5-year retrospective study evaluating the seasonality of respiratory viral infections 
in children under 5 years of age in Buenos Aires [38]. In the examined collection of 
6083 virus-positive specimens, HAdV was found to be present in 473 (7.8%) and to 
circulate throughout the year.

The most comprehensive study reporting molecular typing data for Argentina in 
the past decade was conducted by Paola Barrero and colleagues from this group 
[39]. This study provided a thorough description of HAdV types detected in asso-
ciation with pediatric ALRI in Buenos Aires between 1999 and 2010. From a total 
of 743 HAdV-positive specimens, 654 (88%) represented cases of single infections 
and 89 (12%) were coinfections. From the 654 single HAdV infections, species 
HAdV-B was detected in 492 cases (75.23%), species HAdV-C in 138 cases 
(21.1%), species HAdV-E in 19 cases (2.91%), and species HAdV-D in 5 cases 
(0.76%). HAdV-B7 and HAdV-B3 were the most prevalent types (n = 308, 36.54%; 
n = 230, 27.28%, respectively), and HAdV-C1, HAdV-C2, HAdV-E4, HAdV-C5, 
HAdV-C6, HAdV-D8, HAdV-B11, HAdV-B14, and HAdV-B21 were also detected.

The group at Hospital de Niños Ricardo Gutierrez made other important contribu-
tions to the understanding of viral pathogenesis, including a seroepidemiology study 
[40], the characterization of cytokine responses in cases of severe  adenovirus- associated 
disease [41], the description of a new genomic variant associated with severe disease 
[42], and the analysis of host cell gene expression during HAdV-B7h infection [43].

4.1.2  Chile

As in Argentina, the earliest contributions to the knowledge about the etiology of 
lower respiratory tract infections in infants in Chile date back to the late 1980s with 
a focus on patients admitted to the hospital [44, 45].
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Manuela Vicente Suarez at the Instituto de Salud Pública de Chile (ISP) sup-
ported many of the early efforts of rapid viral diagnosis of adenovirus infections and 
of virus isolation in the country [46] that establish HAdV infections as the second 
most common cause of viral ALRI requiring hospitalization in Chile. A collection 
of 69 HAdV strains isolated by Manuela Vicente Suarez’s laboratory at ISP from 
pharyngeal secretions of young children hospitalized with severe ALRI in Santiago, 
Chile, between 1984 and 1986 provided the first data on the types and genomic vari-
ants circulating in the country [20].

Surveillance of HAdV infection in children under 2 years of age hospitalized for 
ALRI in Chile was embraced by the group led by Luis Fidel Avendaño and Carmen 
Larrañaga from Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad 
de Chile, Santiago, in the late 1980s. Work from this group on a cohort of 3097 
cases enrolled between 1988 and 1996 showed the HAdV isolation rate to be 12.6% 
and the most common admission diagnoses among HAdV-positive cases to be 
pneumonia and wheezing bronchitis (69.8%). The evaluation of the genetic vari-
ability of HAdV strains associated with infantile cases of ARD requiring hospital-
ization was conducted by restriction enzyme analysis (REA) in collaboration with 
Adriana Kajon [22, 23, 47, 48]. Genome typing of 221 HAdV isolates identified 87 
as species HAdV-C and 134 as species HAdV-B. Genomic variant 7h was identified 
in 123 cases. Children infected with HAdV-B7h had longer hospital stays (p < 
0.01), a higher frequency of rectal temperatures above 39°C (p < 0.01), and greater 
need for additional oxygen (p < 0.02) than those children infected with species 
HAdV-C. A paper published by this group in 2000 contributed to the better under-
standing of the clinical characteristics of respiratory infections by HAdV-B7h 
among Chilean children [49]. Using universal, species-specific, and 7h-specific 
PCR assays, Larrañaga and colleagues further established the contribution of 
HAdV-B7h infections to the etiology of severe ALRI requiring hospitalization [50].

Marisol Bruzzone from Eugenio Spencer’s group at Departamento de Ciencias 
Biológicas, Facultad de Química y Biología, Universidad de Santiago de Chile 
developed a PCR-based assay for the specific detection of HAdV-B and described 
the genetic variability of Chilean isolates of genome type 7h [51, 52].

The laboratory of Marcela Ferrés at Pontificia Universidad Católica de Chile 
(PUCC) contributed to the clinical and epidemiological characterization of respira-
tory virus infections among adults hospitalized during the 2004 influenza season 
[53]. Viral etiology was determined in 87 cases of adult ILI hospitalized at the 
PUCC hospital between May and July 2004. HAdV infection was diagnosed in 
1.2% of these cases by direct immunofluorescence assay (DFA).

4.1.3  Uruguay

Data on the incidence and impact of HAdV respiratory infections for Uruguay are 
significantly scarcer. The group led by Maria Hortal at Departamento de Laboratorios 
del Ministerio de Salud Pública in Montevideo had a leading role in the design and 
execution of the first studies conducted in the country to identify viral agents associ-
ated with ARI in children less than 5 years old [54–56]. Some of the HAdV isolates 
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collected through these efforts were characterized by Kajon and colleagues to 
describe regional HAdV activity between 1991 and 1994 [22, 23, 57]. A small col-
lection of 23 isolates from NPAs of children hospitalized for ARI in Uruguay 
between 1994 and 1998 was studied by the laboratory of Juan Ramon Arbiza at 
Facultad de Ciencias, Universidad de la República in Montevideo [58]. Fourteen of 
the examined isolates belonged to species HAdV-C and 9 to the species 
HAdV-B. Eight isolates were identified as corresponding to genome type 7h.

4.1.4  Brazil

A sentinel surveillance system for influenza and other respiratory viral infections 
was implemented by the Brazilian Ministry of Health in 2000 and now constitutes a 
network of outpatient clinics and emergency care departments in 26 of the 27 states. 
Respiratory specimens are tested in public health laboratories in each state for influ-
enza, parainfluenza, RSV, and HAdVs. All positive and inconclusive samples, and 
10% of the negative samples, are forwarded to one of the three reference laborato-
ries for respiratory viruses [Instituto Evandro Chagas (IEC) in Belem, Instituto 
Adolfo Lutz in Sao Paulo, and Fundaçao Oswaldo Cruz (FIOCRUZ) in Rio de 
Janeiro]. Data gathered by the Ministry of Health between 2000 and 2010 showed 
that of 6421 samples with positive results, 742 were positive for HAdV (12%) [59].

Several studies conducted at FIOCRUZ in the 1980s and 1990s provided instru-
mental foundational data and developed technical resources for determining viral 
etiology in pediatric ARD in Brazil. In 1983 Sutmoller and colleagues identified 
HAdV in 47% of the virus-positive specimens obtained from the child population of 
a shanty town in Rio de Janeiro [60]. In 1991 Jussara Pereira do Nascimento reported 
data from the investigation of viral etiology in children less than 5 years old from 
1982 to 1985 [61]. In her study, HAdV was found as the second most frequent virus 
isolated from nasopharyngeal secretions of symptomatic patients and serotypes 1, 2, 
and 7 as the most predominant. Nascimento and colleagues also described genomic 
variants identified among local strains of HAdV-B3 and HAdV-B7 [62, 63].

In collaboration with her colleagues at FIOCRUZ and IEC, Adriana Kajon iden-
tified genomic variants for a collection of HAdV strains of serotypes 1, 2, 3, 5, and 
7 collected between 1976 and 1995 in Belem and Rio de Janeiro. [64].

In 2003, Maria de Albuquerque from Universidade Federal do Rio de Janeiro 
reported the first data for Brazil on the impact of ARI in the county’s military popu-
lation. The presence of adenovirus was detected by isolation in cell culture in 3 of 
221 pharyngeal swabs obtained from military recruits in 2000 [65]. Only one of 
these 3 patients had symptoms of ARI.

In 2004 Selir Straliotto from Seção de Virologia do Laboratório Central de Saúde 
Pública in Porto Alegre, Rio Grande do Sul, in collaboration with Marilda Siqueira 
from FIOCRUZ, reported data for the South Region of Brazil [66]. In her study, the 
prevalence of viral respiratory infections was investigated among a cohort of 261 
children less than 7 years of age admitted to the pediatric intensive care unit from 
June to December 1996 with pneumonia or bronchiolitis. HAdV infections were 
diagnosed by indirect IF of NPAs in 20 of these patients (7.7%). The case fatality 
rate of HAdV infection was 25% (5/20). Viruses were not typed in this study.
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In collaboration with Marilda Siqueira’s group at FIOCRUZ, Fernanda Moura 
and colleagues [67] characterized the HAdV strains isolated from 11 cases of infec-
tion diagnosed by indirect IF and cell culture between January and December 1998 
at a pediatric clinic in Salvador, Northeast Brazil. HAdV infections represented 
7.14% of all viral infections detected at the clinic that year. The majority (7 of 11) 
were upper respiratory tract infections (URI). Of these 7 cases, HAdV-C1 was identi-
fied by sero-neutralization in 4 cases, HAdV-C2 was identified in 2 cases, HAdV-C5 
was identified in 1 case, and HAdV-B7 was identified in 4 cases. Later on, as the 
leader of her own group at Universidade Federal do Ceará, Moura conducted studies 
investigating the contribution of respiratory viral infections to childhood morbidity 
and mortality in the equatorial city of Fortaleza, Ceará. In a paper by Alonso and col-
leagues [68], this team of investigators reported data from the examination of cases 
of ARI seeking attention at a pediatric hospital between January 2001 and December 
2008. In this cohort of patients, HAdV infection was detected in 5.5% of all virus-
positive samples. In the recent publication by Pereira and colleagues [69], the group 
reported the results of a larger study conducted in Fortaleza between 2001 and 2013 
and specifically describing the clinical and epidemiological profile of HAdV-
associated pediatric ARI. HAdV infection was detected in 290 of the virus-positive 
samples and in only 15.86% of the children who required hospitalization. HAdV 
isolates were typed at Charlotte Harsi’s laboratory at University of Sao Paulo (USP) 
by amplification and sequencing of the hexon hypervariable regions 1–6 following 
established protocols [70]. Species and type were identified in 189 strains: the pre-
dominant types were HAdV-B3 and HAdV-B7, present in 128 (67.72%) and 34 
(18.00%) samples, respectively, followed by HAdV-C1 and HAdV-C,2 identified in 
8 samples (4.24%) each. HAdV-E4 was detected in 6 (3.17%) samples.

Charlotte Harsi’s group at USP characterized HAdV strains detected in NPAs of 
children hospitalized at USP’s Pediatric Clinic in 1995 and 2000 [71]. Viruses were 
serotyped by neutralization assays and subsequently genome typed by REA. Nineteen 
isolates were characterized as HAdV-B, genome types 3a, 7h, and 7h1, and 11 as 
HAdV-C, genome types 1D10, 2D25, 5D2, and 6D3. Species HAdV-B showed epi-
demic infection patterns, with shifts in the predominant genome type. Genome 
types 7h, or the variant 7h1, dominated over genome type 7b among the 1995 iso-
lates. In 2000, the variant 7h1 became predominant, and the emergence of type 3a 
was observed. The group also developed a PCR-based assay for the detection of 
HAdV in NPAS, and in collaboration with Dean Erdman and his team at the Centers 
for Disease Control and Prevention (CDC) [72] reported the identification of a novel 
genomic variant of HAdV-B7 with a unique deletion in the E3 region of the genome. 
The variant designated 7m was recovered from six epidemiologically unrelated 
cases of ARD with wheezing between September 1999 and March 2000 [73].

The USP group led by Edison Durigon reported the detection of HAdV in 6.8% 
of the children less than 5 years of age hospitalized for ALRI from January 1 to 
December 30, 2003 at the USP hospital [74].

In 2015 Giuliana Durigon and colleagues at USP reported the outcomes of pedi-
atric ARD resulting from viral infection in a cohort of children under 2 years of age 
admitted to an urban tertiary hospital in Sao Paulo from March 2008 through 
February 2010 [75]. Using PCR-based assays, her study identified HAdV infections 
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in 102 of 372 virus-positive specimens (27%). Descriptive analysis revealed a posi-
tive association between detection of HAdVs and the need of intensive care (20.6% 
HAdV positive vs. 13.1% HAdV negative; χ2 = 4.048; p = 0.044).

Sonia Raboni’s group at Universidade Federal do Paraná in Curitiba conducted a 
systematic screening for respiratory viruses in pediatric outpatients from an emer-
gency department in southern Brazil during two consecutive influenza seasons 
(2010 and 2011). A total of 492 children aged 24 to 59 months who presented with 
ARD symptoms and fever were enrolled in the study. HAdV infections were diag-
nosed in 18 cases in 2010 and in 19 cases in 2011 [76].

In 2013 the group led by Nancy Bellei at Departamento de Medicina, Universidade 
Federal de São Paulo, São Paulo compared the rates of detection of HAdV among 
immunocompetent and immunocompromised patients presenting with acute respira-
tory infection using two different methods, DFA and nested PCR [77]. HAdV was 
detected in 13.2% of the 643 patients tested by DFA or PCR: 6 of 139 (4.3%) adult 
emergency room patients, 7 of 205 (3.4%) healthcare workers, 4 of 69 (5.8%) renal 
transplant outpatients, and 68 of 230 (29.5%) hematopoietic stem cell transplant 
recipients. In 2012 Proenca-Modena and his colleagues from the School of Medicine 
of Ribeirao Preto of USP reported the results of their investigation of the role of 
respiratory viruses in chronic adenotonsillar diseases using TaqMan real- time PCR 
(qPCR) in nasopharyngeal secretions, tonsillar tissues, and peripheral blood from 
121 children with chronic tonsillar diseases, without symptoms of ARD. HAdV was 
the most frequently detected virus, identified in 47.1% of the patients [78].

4.1.5  Paraguay

Available data for Paraguay are the result of a recent study conducted by Emilio 
E.  Espínola and colleagues from Instituto de Investigaciones en Ciencias de la 
Salud, Universidad Nacional de Asunción. HAdV was detected in 9 of 50 (18%) 
NPAs obtained from children under 5 years of age with symptoms of severe ARI 
[79]. Viruses were typed by amplification and sequencing of a fragment of the 
hexon gene, allowing for the identification of HAdV-B16 in 1 specimen, HAdV-C1 in 
2 specimens, HAdV-C2 in 1 specimen, HAdV-C5 in 2 specimens, HAdV-C6 in 2 
specimens, and HAdV-D15 in 1 specimen.

4.2  The Andean Region

4.2.1  Peru

Available data on the incidence and molecular epidemiology of adenovirus infec-
tions in Peru became available as a result of two studies. The first one was led by 
Julia Ampuero from the U.S. Naval Medical Research Unit 6 (NAMRU-6) in Lima, 
and the other was conducted as a collaboration with Dirección Nacional de Salúd de 
Piura and Dirección General de Epidemiología, Ministry of Health, Lima. HAdV 
infections were detected in 2.5% of 26,375 participants visiting 38 health centers 
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with ILI or severe ARI between 2000 and 2010 [80]. Typing by amplification and 
sequencing of a portion of the hexon gene [70] was carried out in 226 randomly 
selected HAdV isolates (41% of all) obtained from 2006 to 2010. Species HAdV-C 
was identified in the majority of the isolates (75.7%), followed by species HAdV-B 
(17.3%) and species HAdV-E (7.1%).

An earlier study by Josefina Garcia and colleagues from the U.S. Naval Medical 
Research Center Detachment in Lima [81] reported molecular typing data for 153 
Peruvian strains isolated from respiratory specimens collected between 2006 and 
2008. Species HAdV-B was identified in 32 specimens, species HAdV-C was iden-
tified in 114 specimens, and species HAdV-E was identified in 7 specimens.

The RESPIRA-Peru Project led by investigators at Vanderbilt University School 
of Medicine in Tennessee (USA) conducted active household-based surveillance of 
ARI among children under 3 years of age in the rural highland communities of San 
Marcos, Cajamarca, between May 2009 and September 2011 [82–84]. In this high-
altitude rural setting with low population density, HAdV circulated year round with 
an incidence rate of 73 per 100 child-years.

4.2.2  Ecuador

NAMRU-6 established a collaborative network to determine the viral causes of ILI 
in Guayaquil and Quito. The study included 1702 participants, and 35% of oropha-
ryngeal swabs were positive for CPE and IF for at least one virus. The most com-
mon viral agent was influenza A virus (21.6%). HAdV was isolated from 2.1% of 
specimens, and influenza B and parainfluenza were isolated from 6.4% and 2.1%, 
respectively. RSV and enterovirus were positive in only 0.9% of samples [85].

4.2.3  Colombia

The Colombian National Institute of Health initiated laboratory-based surveillance 
for respiratory viruses in 1997 to identify the viral agents associated with pediatric 
ARD throughout the country. In a study led by Diana Herrera-Rodriguez [86], 1743 
children presenting with symptoms of ARD were examined from January 1997 to 
December 2003 at participating sentinel hospitals in Bogota and Manizales. A total 
of 610 patients (35%) were found to be positive for respiratory viruses. HAdV 
infection was diagnosed in 47 patients (2.6%). Most of the cases of HAdVs infec-
tion required hospitalization and oxygen support. The fatality/case ratio was 7%. A 
total of eight isolates were recovered and submitted to the CDC for molecular typ-
ing. Four isolates were identified as HAdV-B7, two as HAdV-C2, one as HAdV-C1, 
and one as HAdV-B3. In a similar study conducted by a group led by the same 
investigator [87] on a group of 138 children under 10 years of age seeking attention 
between March 2000 and September 2001 at the Central Military Hospital in 
Bogota, HAdV infection was diagnosed in only 4 patients under 3 years of age.

A large study was conducted by Arango and colleagues from Universidad de 
Antioquia and NAMRU-6 on 2039 participants reporting to one general hospital in 
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Medellin between 2007 and 2012 [88]. HAdV infections represented 14.9% of all 
viral infections and were more frequently detected among participants under the age 
of 4. HAdV infections were diagnosed exclusively by virus isolation and confirmed 
by DFA. HAdV isolates were not typed in any of these studies.

As part of an initiative to expand the knowledge of the molecular epidemiology 
of HAdV respiratory infections, a collaborative study between Universidad de Los 
Andes and Secretaria Distrital de Salud de Bogotá utilized a VA gene amplification 
and sequencing approach to identify strains detected in 48 NPAs collected between 
January and November 2008 from children under 5 years of age with ARD [89]. 
Species HAdV-B was identified in 41 respiratory specimens (85.42%), species 
HAdV-C was identified in 6 specimens (12.5%), and species HAdV-D was identi-
fied in 1 specimen (2.08%). HAdV-B3 was the best represented type in the sample 
(n = 22), followed by HAdV-B7 (n = 19).

A recent study conducted by investigators from the National University of Colombia 
in Bogota in collaboration with the District Health Department investigated the viral 
etiology of cases of severe ARI among adult patients admitted to seven sentinel surveil-
lance institutions in Bogota in 2012 [90]. A PCR-based  microarray diagnostic assay 
[91] was used to identify viruses present in NPAs or throat specimens. Viral identifica-
tion was achieved for 69% of the 91 patients included in the analysis. HAdV infection 
was detected in 17 cases (18.7%), all identified during the rainy seasons (April to May 
and August to November). In 10 of these cases, HAdV was present as a coinfection 
with one or more respiratory viruses. Molecular typing was not carried out in this study.

4.2.4  Venezuela

Information about the epidemiology of ARI for Venezuela is still limited. A 4-year 
study (2006–2010) was conducted in two hospitals in Maracay as part of a collab-
orative sentinel surveillance of influenza-like illness effort between the Instituto de 
Investigaciones Biomedicas de la Universidad de Carabobo, the Hospital Jose Maria 
Carabaño Tosta, Hospital Nacional Central, and Dirección Nacional de 
Epidemiología, in Maracay, NAMRU-6, Lima, Peru, and the Naval Medical 
Research Center, Maryland, USA. HAdV was detected as the second most common 
viral pathogen (5.6%) after influenza A among symptomatic outpatients under 4 
years of age using cell culture isolation and confirmation by DFA [92]. Virus iso-
lates were not characterized in this study.

4.3  Central America and the Caribbean

4.3.1  Costa Rica

A study of 1017 NPAs from children hospitalized between 1997 and 1999 at the 
National Children Hospital in San José, Costa Rica, was carried out by Salas- 
Chavez and colleagues from the Instituto de Investigaciones en Salud (INISA), 
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Universidad de Costa Rica, and Hospital Nacional de Niños “Dr. Carlos Sáenz 
Herrera.” IF was used to detect RSV, HAdV, influenza A and B, and parainfluenza 
1, 2, and 3. HAdVs were detected in 9% of the cases, and RSV was present in 73% 
of the samples [93].

4.3.2  Guatemala

A survey for ARI in 3,964 hospitalized patients was conducted by the CDC 
International Emerging Infections Program, in collaboration with the Guatemala 
Ministry of Public Health and Welfare and the Universidad del Valle de Guatemala. 
Between November 2007 and December 2011, nasopharyngeal/oropharyngeal 
swabs were tested by PCR for the major respiratory viruses: Chlamydia pneumoniae 
and Mycoplasma pneumoniae. The study included all age groups. Viruses were 
detected in 71.8% of infants under 1 year old and in 52.6% of all cases. Using popu-
lation denominators, the observed hospitalized ARI incidence was 128 cases per 
100,000, with the highest rates seen among infants under 1 year old (1,703 per 
100,000), followed by adults over 65 years old (292 per 100,000). HAdVs were 
found in 11.2% of all cases, second only to RSV (26.4%) [94].

4.3.3  El Salvador, Honduras, and Nicaragua

As part of a surveillance effort funded by the GEIS Program and designed to iden-
tify the viral agents associated with ILI in Nicaragua, Honduras, and El Salvador, 
Laguna-Torres from the U.S. Naval Medical Research Center Detachment in Lima 
and collaborators from the Ministries of Health of Nicaragua and El Salvador and 
the Instituto Hondureño de Seguridad Social [95] investigated the viral etiology in 
patients with symptoms of ILI, regardless of age and who sought attention or were 
hospitalized in participating health centers between August 2006 and April 2009. 
HAdV infection was diagnosed in 63 of the 1756 (3.6%) cases enrolled in the study. 
Among the 34 HAdVs isolates that were further processed for molecular typing, 
species HAdV-C clearly predominated (n = 31). The other 3 isolates belonged to 
species HAdV-B.

4.3.4  Cuba

The data available for Cuba are the result of studies carried out by investigators at 
Instituto de Medicina Tropical “Pedro Kourí” in Havana. In 2000 Tania Pumariega 
and colleagues reported the presence of HAdV in 8% of 128 nasopharyngeal swab 
specimens from infants and children under 5 years of age admitted with ARD in two 
pediatric hospitals in Havana between 1996 and 1997. Molecular typing by REA 
identified only species HAdV-C in these samples, with HAdV-1 and HAdV-6 each 
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isolated from 4 samples and HAdV-2 from 1 [96]. In 2009 Belsy Acosta and col-
leagues in collaboration with the Centro Nacional de Microbiología-Instituto de 
Salud Carlos III in Spain published the results of a study designed to identify HAdV 
species and correlate clinical syndromes using nasopharyngeal swabs and pharyn-
geal washes collected from 512 patients with ARD between 2002 and 2006. DFA, 
isolation in cell culture, and PCR assays identified HAdV in 45 specimens (8%). 
The majority of the sampled patients (53%) were children under 5 years of age. 
Molecular typing conducted by amplification and sequencing of a portion of the 
hexon gene identified HAdV-D as the major species (59%), followed by HAdV-C 
(36%) and HAdV-B (4%). HAdV-C5 was the predominant type associated with 
bronchiolitis (71%), followed by HAdV-C6 (14%), and HAdV-D17 was the most 
common type detected in patients with URI (77%). All the respiratory specimens 
obtained from an atypical outbreak of acute febrile syndrome were positive for 
HAdV-D [97].

4.4  Mexico

The earlier studies designed to determine the contribution of HAdV to the etiology 
of ARI in Mexico were carried out by the Instituto Nacional de Enfermedades 
Respiratorias (INER). In 2003 Manjarrez and colleagues determined the prevalence 
of viruses in children with or without ARI. The study included 179 children with 
ARI and 179 with normal airway functions. Viruses were isolated from 49% of 
children with ARI and in 27% of children without ARI. The highest frequencies of 
respiratory viruses were found in infants under 1 year (56%) and in children from 2 
to 3 years of age (54%). RSV was the most frequently isolated virus (38%), fol-
lowed by HAdV (19%) [98]. Around the same period, a study conducted by the 
School of Medicine of the Universidad Autónoma de Nuevo León found viral infec-
tion in 30.7% of cases in 101 children hospitalized with ALRI by indirect IF. HAdV 
was detected in 6.5% of the cases [99]. In a different study by INER, nasopharyn-
geal exudates from 300 children were processed for viral isolation and IF. Viral 
infection was detected in 65% of the samples; 13% were positive for HAdV [100]. 
A later study in collaboration with Instituto Politécnico Nacional was designed to 
identify HAdV species in nasopharyngeal specimens of nonhospitalized children 
with ARI using PCR/restriction fragment length polymorphism (RFLP) assays. The 
study cohort included 100 children attending the same school. HAdV-C was the 
only species identified in a total of 23 samples [101]. A parallel effort by the Instituto 
de Diagnóstico y Referencia Epidemiológicos in collaboration with Instituto de 
Oftalmología FAP Conde de Valenciana in Mexico City performed IF and REA on 
118 respiratory specimens from patients with ARI of all age groups in Mexico City 
and in the states of Nayarit, Michoacán, Hidalgo, and Tamaulipas. HAdVs were 
found in 22% of the samples. The most common type was HAdV-C5 (14%), fol-
lowed by HAdV-C2 (5%) and HAdV-C1 (3.3%) [102].
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As a result of the April 2009 outbreak of respiratory disease in Mexico City, the 
Ministry of Health of Mexico and the U.S.  National Institute of Allergy and 
Infectious Diseases (NIAID) joined efforts to establish a Mexican Emerging 
Infectious Diseases Clinical Research Network (La Red). A large collaborative 
effort involving several institutions studied the etiology of ILI in Mexico City, 
enrolling 1065 patients from 2010 to 2011. HAdV was found in approximately 9% 
of the cases [103].

Through a collaboration between Hospital Infantil de México “Federico Gómez,” 
Universidad Autónoma Metropolitana, Instituto Nacional de Enfermedades 
Respiratorias, Centro de Investigación y de Estudios Avanzados del Instituto 
Politécnico Nacional, Centro Médico Nacional Siglo XXI, and Instituto Mexicano del 
Seguro Social, the prevalence and genotype of HAdVs and coinfection with bocavirus 
were determined on a sample of 5185 nasopharyngeal swabs collected from 2005 to 
2010 from both nonimmunosuppressed and immunosuppressed children diagnosed 
with pneumonia. Samples were processed by IF and PCR. A low incidence of HAdV 
(0.71%) was found. Typing was accomplished in only 12 of the 37 positive samples 
by amplification and sequencing of the hexon gene. HAdV-B3 was identified in 9 
samples. HAdV-B55 (aka 11a) was identified in 1 sample, and HAdV-C2 and 
HAdV-C6 were identified in the remaining 2 samples, respectively [104].

In 2015 the group led by Carlos Arias from Instituto de Biotecnología, 
Universidad Nacional Autónoma de México, Cuernavaca, Morelos, and collabora-
tors from Colegio de Pediatría del Estado de Veracruz [105] reported data from a 
study that evaluated the diversity of respiratory viruses present in nasal swabs of 
children seeking care in private pediatric practice settings in Veracruz using a mul-
tiplex PCR for 15 different viruses. The study included 525 children sampled from 
2011 to 2012. HAdVs were the fourth most frequent virus detected (7.25%), after 
RSV (18.3%), rhinovirus (17.5%), and influenza A (9.1%).

5  Future Challenges

After more than three decades of surveillance efforts to describe the burden and 
etiology of ARD in Latin America, many issues remain to be addressed to gain a 
more panoramic understanding of the prevalence and impact of HAdV infections. 
Collaborative efforts using complementary expertise and resources should be 
encouraged. The use of standardized case definition criteria and diagnostic labora-
tory procedures will allow for the necessary comparison and integration of data sets. 
The wider implementation of PCR-based diagnostic methods should provide a 
higher sensitivity for the detection of HAdV in the context of disease and help fill 
the gap in knowledge regarding the identity of the most prevalent circulating types. 
Virus typing is critical to document evolving epidemiological patterns and for the 
detection of emerging HAdVs in the region. Larger surveillance networks are 
needed for more representative sampling in countries with climatic diversity that 
results from their great latitude coverage, such as Argentina and Chile.
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Chapter 15
Measles and Rubella in the Americas: 
The Path to Elimination

Marilda Mendonça Siqueira and David W.G. Brown

1  Introduction: Measles

Measles is one of the most infectious diseases known and was almost universal in 
the population before vaccination was introduced. The measles virus (MeV) spreads 
rapidly by airborne or droplet or by direct or indirect contact with the nasal and 
throat secretions of infected persons. The virus remains active and contagious in 
small airborne particles leading to direct aerosol transmission by inhalation and 
through indirect contamination of surfaces for up to 2 h. Once the virus is inhaled, 
the primary target cell is infected and systemic spread ensues. The incubation period 
ranges from 10 to 14 days before clinical signs appear. The prodromal phase is 
characterized by fever and malaise, associated with cough, coryza, and conjunctivi-
tis, and the maculopapular rash usually appears about 14 days after exposure. 
During this stage, Koplik’s spots can be observed on the buccal mucosa. Clinical 
complications of measles include pneumonia, gastroenteritis, otitis media, blind-
ness, measles inclusion body encephalitis (MIBE), and subacute sclerosing panen-
cephalitis (SSPE), a rare central nervous system disease. SSPE is characterized by 
a progressive functional degeneration that occurs several years after the primary 
measles infection. It is caused by a persistent infection and is estimated to occur in 
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4 to 11 patients per 100,000 cases. The main risk factor is infection at an early age. 
Measles also causes immunosuppression. MeV-infected individuals are contagious 
from 4 days before to 4 days after rash onset [8, 16, 35, 65]. The high infectivity of 
MeV implies that a high level of population immunity is required to interrupt trans-
mission. A live attenuated vaccine was developed in the 1960s, and most vaccines 
in current use derive from the prototype Edmonston strain (Moraten, Schwarz, and 
Edmonston-Zagreb). A few vaccines derive from other wild-type viruses (e.g., 
CAM-70). Measles vaccine is often delivered in combination with live attenuated 
vaccine for rubella (MR: measles-rubella vaccine) and mumps (MMR: measles, 
mumps, and rubella vaccine) [35, 65].

The MeV is a paramyxovirus, genus Morbillivirus. The virus particles are envel-
oped, 100–200  nm in diameter, with a single-stranded, nonsegmented negative- 
sense RNA genome that is 15,894 nucleotides in length. The genome contains six 
genes encoding nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), 
hemagglutinin (H), and polymerase (L). The two viral membrane glycoprotein 
spikes (hemagglutinin tetramers and fusion protein trimmers) have key roles in viral 
entry and are the main targets of the virus-neutralizing antibodies. The H binds to 
the cellular receptor, and the F protein causes the fusion of virus and host cell mem-
branes, viral penetration, and hemolysis. Although both the H and F proteins are the 
targets of neutralizing antibodies, the early humoral immune response is mainly 
directed against the N protein [25, 26, 35, 75].

2  Rubella

Rubella, also known as German measles, is less infectious than measles. It is a com-
mon mild self-limiting illness of children and young adults, and 50% of cases are 
asymptomatic or unrecognized. The illness is characterized by rash, lymphadenopa-
thy, and low-grade fever. Conjunctivitis, coryza, sore throat, cough, and occasional 
headache and malaise are seen. The rash is pink or red, begins on the face, and then 
spreads downward to the rest of the body. The disease is transmitted via direct drop-
let contact from nasopharyngeal secretions. Symptoms appear 14 to 21 days after 
exposure. Up to 70% of adult women with rubella experience arthritis, but arthritis is 
rarely seen in children and men. Rubella is a teratogenic virus, and infection in preg-
nancy may have potentially devastating effects on the developing fetus and cause a 
number of anomalies. The manifestations of congenital rubella infection (CRI) vary 
depending upon the timing of maternal infection. Congenital rubella syndrome 
(CRS) refers to a collection of birth defects (hearing impairment, congenital heart 
defects, cataracts/congenital glaucoma, pigmentary retinopathy, splenomegaly, 
microcephaly) resulting from infection in pregnancy [6, 29, 39, 46, 48].

Rubella virus (RubV) was isolated in the early 1960s, and live attenuated rubella 
vaccines became available by the end of the same decade [59]; it is generally given in 
combination as MR or as MMR vaccine. RubV is the single member of the Rubivirus 
genus of the Togaviridae family. The virion is a small lipid-enveloped spherical 
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particle 40–80 nm in size, containing a linear positive-sense  single- stranded RNA 
genome approximately 9700 nucleotides in length. Five protein products are encoded 
by the genome: two nonstructural proteins (P90 and P150) and three virion proteins, 
two in the envelope (E1 and E2) and one in the core (capsid or C protein) [39].

3  Laboratory Diagnosis of Measles and Rubella

Case confirmation, which depends on epidemiological data, clinical presentation, 
and results of laboratory tests, is necessary for public health and outbreak control. 
Laboratory confirmation is based on the detection of MeV-specific IgM in a serum 
sample or the detection of MeV RNA by reverse transcription-polymerase chain 
reaction (RT-PCR) in throat/nasal swab, oral fluid, or urine samples. Enzyme immu-
noassay (EIA) is the most commonly used method for detecting IgM and IgG. Serum 
samples should be collected at the first contact with a suspected case. Oral fluid and 
dried capillary blood are used as an alternative to serum in some surveillance sys-
tems. RT-PCR is most sensitive for diagnosis if samples (throat or nasal swabs, oral 
fluid, urine, peripheral blood mononuclear cells) are collected as early as possible 
after the onset of rash [6, 65].

4  Molecular Epidemiology of Measles and Rubella

Genetic characterization of both measles and rubella is a valuable tool for laboratory- 
based surveillance and molecular epidemiological studies. The genetic information 
obtained can be used to define the pattern of MeV and RubV circulation in the popu-
lation as endemic or imported. Genotyping results can confirm or disprove epide-
miological linkages between cases. Virological surveillance provides a sensitive 
method to describe the transmission patterns of the viruses, which is required to 
document the interruption of transmission of endemic measles or rubella. The 
absence of endemic genotypes is one of the criteria for verifying measles elimina-
tion in a country or region [65, 81].

MeVs can be grouped according to the World Health Organization (WHO) pro-
tocol into eight clades, A–H, subdivided into 24 genotypes based on the nucleotide 
sequencing of the 450 nucleotides at the carboxyl-terminal of the N gene. The com-
plete sequence of the H gene is also used for this purpose. A standardized methodol-
ogy and nomenclature are used to define and describe measles sequence and 
genotypes to enable international sharing [82]. More recently, the use of whole- 
genome measles sequencing has been investigated to see if it provides additional 
discrimination within the same genotype; this can help to define if a single genotype 
identified during large or long-lasting outbreaks is the result of single or multiple 
introductions of virus [33].
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For RubV, a 739 nucleotide genotyping region (nucleotides 8731–9469) has 
been designated by the WHO for molecular epidemiology studies. Analysis of this 
region describes a genetic variability of two clades, which include 13 distinct geno-
types: 9 genotypes (1B, 1C, 1D, 1E, 1F, 1G, 2A, 2B, 2C) are recognized, and 4 
genotypes (1a, 1h, 1i, 1j) are provisional [85]. Globally, only limited data have been 
collected for rubella.

5  Global Measles and Rubella Elimination

The measles and rubella vaccines are highly effective and have been available since 
1963 and 1969, respectively. They have an excellent safety profile. The feasibility of 
measles eradication has been discussed for more than 30 years. Measles and rubella 
meet all the biological criteria for disease eradication: (1) humans are the sole 
pathogen reservoir; (2) an accurate diagnostic test exists; and (3) an effective, prac-
tical intervention (vaccine) is available at reasonable cost. Interruption of transmis-
sion in large geographic areas for prolonged periods further supports the feasibility 
of eradication [22, 50].

6  Measles

In 1980, before measles vaccine was used globally, an estimated 2.6 million deaths 
from measles occurred worldwide [72]. In 1989, the WHO resolved to reduce mea-
sles morbidity by 90% and measles mortality by 95% compared with disease burden 
in the pre-vaccination era [86]. In 1990, the World Summit for Children set a target 
of 90% for measles vaccine coverage by 2000 and for other vaccines used in the 
Expanded Program on Immunization (EPI) [76]. By the end of 1997, global measles 
morbidity and mortality had decreased 74% and 85%, respectively. At that time, 
three of six WHO regions had established measles elimination targets: the Americas 
by 2000, the European Region by 2007 and the Eastern Mediterranean Region by 
2010. The WHO African, Southeast Asian, and Western Pacific regions retained the 
World Health Assembly morbidity and mortality reduction target [36]. Although 
there had been substantial progress in controlling measles worldwide, the WHO 
estimated that about 875,000 children died of measles in 1999. This estimate is 56% 
of all estimated deaths from vaccine-preventable diseases of childhood for that year, 
making measles the leading cause of vaccine-preventable child mortality, and in 
2000 measles remained the fifth leading cause of childhood mortality, accounting 
for 5% of all deaths among children aged less than 5 years [36, 71]. In 2001, the 
WHO and the United Nations Children’s Fund published a 5-year strategic plan to 
reduce measles mortality by half by 2005. Strategies include providing a second 
opportunity for measles immunization to all children through nationwide supple-
mentary immunization activities, increasing routine vaccination coverage, and 
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improving surveillance with laboratory confirmation of all suspected measles cases 
[87]. During the period 2000–2015, the annual reported measles incidence declined 
by 75% worldwide from 146 to 36 cases per million population, and annual esti-
mated measles deaths declined by 79%, from 651,600 to 134,200. Figure  15.1 
shows the estimated annual number of measles deaths with and without vaccination, 
worldwide, in 2000–2015 [58].

7  Measles Elimination in the Americas

In May 1985, after the successful eradication of smallpox in the Americas, the Pan 
American Health Organization (PAHO) proposed to eradicate polio from the region 
by 1990. This goal was achieved in 1991 and created a platform for building mea-
sles elimination strategies.

During 1971–1977, 28 countries in the Americas were reporting an average of 
258,634 measles cases per year and inter-epidemic periods of 2–3 years. With the 
widespread use of measles vaccine, the intervals between epidemics increased, and 
a reduction in measles cases was observed in many countries, including Canada, 
parts of Brazil, Chile, Costa Rica, Mexico, and the U.S. [12, 55].

Cuba was the first country in the region to use a strategy called “the catch-up 
campaign” in 1986 [31]. In 1988, the Ministers of Health in the English-speaking 
Caribbean countries and territories declared their commitment to eliminate endemic 
measles by 1995, and a measles catch-up campaign in 1991 achieved 90% vaccine 
coverage. The Caribbean was the first area of the world to eliminate measles [41]. 
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Fig. 15.1 Estimated annual number of measles deaths with and without vaccination, worldwide, 
2000–2015. Compared with no measles vaccination, measles vaccination prevented an estimated 
cumulative total of 20.3 million deaths during 2000–2015. (From [58])
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Brazil and Chile followed with catch-up campaigns in 1992. This strategy proved 
successful in interrupting viral transmission in these countries after the resurgence 
of measles in several countries in the Americas in 1988–1991, including Mexico 
and the USA, other countries in the region took up the challenge to eliminate mea-
sles [12, 66, 73].

In the early 1990s, several countries in the Americas adopted the measles elimi-
nation strategy recommended by PAHO, which has three components: (1) one-time 
mass vaccination of children and adolescents (catch-up), (2) routine immunization 
of successive birth cohorts (keep up), and (3) periodic mass vaccination of young 
children to prevent accumulation of susceptible populations (follow-up). In 2003, 
after the resolution to eliminate rubella and CRS from the Americas by 2010, a 
fourth strategy, referred to as “speed up,” called for one-time mass vaccination of 
older adolescents and adults with combined MR vaccine [14, 24].

In addition to vaccination strategies, PAHO emphasized the importance of sensi-
tive, case-based surveillance based on a capable diagnostic laboratory network. The 
vaccination and surveillance strategies were revised to include use of MMR or MR 
vaccines, to fully integrate measles and rubella surveillance, and to establish CRS 
surveillance [14]. A laboratory network was developed that comprises 1 global spe-
cialized (CDC/USA), 2 regional reference (NML/Canada and FIOCRUZ/Rio de 
Janeiro) laboratories, and 21 national and 141 subnational laboratories, with the 
objective of providing a timely diagnostic serological result, virus detection in clini-
cal samples, and phylogenetic analysis of virus strain diversity for molecular epide-
miology studies [77]. Figure  15.2 shows the impact of the measles and rubella 
control strategies used in Latin American countries (LAC) [54].

After the adoption of these elimination strategies, the number of confirmed mea-
sles cases declined from about 250,000 in 1990 to 2,109 in 1996 in the region of the 
Americas [37]. In 1997, there was a resurgence of MeV circulation, which began 
with a large urban outbreak in Sao Paulo and resulted in 52,284 confirmed cases in 
Brazil caused by measles genotype D6 [57]. The outbreak spread to Argentina and 
Bolivia, where a large number of measles cases occurred in the region during 1998 
and 1999, respectively. Uruguay, Dominican Republic, Chile, and Haiti also 
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reported outbreaks caused by D6 strains, and this became the endemic genotype in 
the Americas at that time [7, 9, 23, 68].

In Argentina, 10,673 confirmed cases were reported during the years 1997–2000. 
The majority were in unvaccinated infants and preschool children. Cases declined 
after a follow-up campaign, which achieved 98% coverage, among children aged 1 
to 4 years. The last cases were identified in February 2000 [23].

In 1999, to achieve the elimination goal, Brazil implemented a Supplementary 
Emergency Measles Action Plan, in which one measles surveillance technician was 
designated for each state. In 2000–2001, an MR campaign in women of childbearing 
age achieved 94% vaccine coverage. The number of cases declined, and only small 
outbreaks or single imported cases were detected; in 2001, only 1 of 5599 suspected 
cases was confirmed, and this was shown to be imported from Japan. These data sug-
gested that indigenous circulation of measles in Brazil had been interrupted [60].

In 1994, a national catch-up campaign was conducted in Bolivia, which achieved 
96% coverage. In 1998, after an importation of measles from Argentina, an epidemic 
started in the country that lasted until 2000, with 2567 cases reported, most of whom 
were unvaccinated. Fifty-five percent occurred in children less than 5 years old. A 
national house-to-house vaccination campaign for children aged 6 months to 4 years 
was implemented. The last endemic case occurred in October 2000 [61].

Costa Rica introduced the MMR vaccine in 1986, and this shifted susceptibility 
to older age groups, leading to the introduction of a second dose of MMR in 1992, 
administered at the age of 7 years. In 2000, the country set a goal of rubella and 
CRS elimination, and a national vaccination campaign targeting men and women 15 
to 19 years of age was implemented; this, together with the strengthening of routine 
vaccination, led to measles elimination. The last measles endemic case was con-
firmed in 1999 and the last rubella and CRS case in 2001 [49].

In 1994, Venezuela launched a catch-up campaign and in 1998 a follow-up cam-
paign that coincided with the introduction of MMR. In 2001, the country responded 
to an outbreak by vaccinating all children less than 15 years of age. With this strategy, 
endemic transmission of the MeV was interrupted in 2002. In February 2006, a mea-
sles outbreak began with a distinct clinical and epidemiological picture compared to 
classical outbreaks. The outbreak occurred in an older age group, and clinical disease 
was mild. Indigenous circulation of measles was interrupted in 2007, providing an 
opportunity to review the effectiveness of the classical control measures [67].

Mexico experienced a huge measles epidemic in 1989–1990, resulting in 5899 
deaths. Following this epidemic, measles elimination efforts were strengthened with 
the introduction of two doses of MMR vaccine with high coverage. Indigenous mea-
sles transmission was interrupted in 1999. Since then, occasional reintroduction of the 
measles virus leading to small outbreaks or sporadic cases has been reported [63, 66].

Many activities were established in LAC to demonstrate the absence of measles 
circulation in the region. One of these activities was the periodic case finding; for 
example, in Brazil, from July 2000 to March 2001, 917 active case searches were 
conducted in 25 states, which involved review of 2,581,542 charts and 18,118 inter-
views conducted with health professionals. Of the 180 suspected measles cases and 
1070 suspected rubella cases, 142 and 740 had been previously reported, respec-
tively. No new cases were confirmed [60].
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Another important strategy was the laboratory testing in each suspected mea-
sles or rubella case. It is recognized that when measles is well controlled, diag-
nosis based on clinical grounds alone is inaccurate and can be confused with 
other infectious exanthema. Studies in Brazil involving laboratory testing of 
febrile rash illnesses found that a variety of etiological agents were associated 
with clinical features similar to measles or rubella, and so cases suspected of 
measles or rubella should not be confirmed or discarded based only on clinical 
data [21, 52, 78].

Some challenges in case classification have been reported by the countries that 
have eliminated measles. Measles cases have been reported in vaccinated people, 
who presented with nonclassical signs and/or symptoms; their illness was of short 
duration. The virus was often detectible by RT-PCR, but the cases have low or unde-
tectable IgM antibodies in the presence of high IgG levels. This picture is typical of 
a secondary immune response suggesting a reinfection in a vaccinee with low anti-
body levels. Detailed epidemiological linkage data are important to identify these 
cases [4, 38, 51, 70].

Sero-surveys can provide important information on population immunity, to 
identify risk groups in the population and to guide immunization strategy. Such 
studies are usually conducted by random population sampling using sera, and stud-
ies have been conducted in LAC [53, 74]. Another approach has used convenience 
samples collected for other purposes, including the use of residual sera collected for 
patient investigations, plasma from blood donors, or just serological data generated 
by regular testing during pregnancy or clinical follow-up. This approach represents 
a trade-off between the representativeness of the samples and the practicalities of 
collection and costs as illustrated by some Brazilian studies [3, 15].

The countries of the Americas successfully interrupted endemic measles trans-
mission within 8 years of setting a regional elimination goal [2, 12]. Although the 
LAC has maintained measles elimination since 2002, measles outbreaks continue 
to occur globally, resulting in cases imported into the Americas with the risk of 
potential spread [64]. In 2003, 105 confirmed measles cases were reported in the 
Americas, the lowest number ever reported in the region. Of these, 1 occurred in 
Chile, 1 in Costa Rica, 2 in Brazil, 15 in Canada, 42 in the U.S., and 44 in Mexico 
[83]. During the period 2003–2010, low numbers of confirmed measles cases were 
reported in the Americas, with an annual mean of 155 confirmed cases, which rep-
resents a 99.9% decrease compared with the period 1987–1994. Three different 
genotypes were associated with imported cases in the LAC from 2007 to 2009 
(D4 in Peru and Chile, D8 in Argentina, B3 in Venezuela) [14, 64]. In the period 
2010–2016, a range of different genotypes was identified in sporadic cases or small 
outbreaks in various LAC; most were directly associated with imported cases. The 
most prolonged outbreak occurred in two states in Brazil (Pernambuco state from 
March 2013 to March 2014 and Ceara state from December 2013 to July 2015) 
with 1728 confirmed cases, and genotype D8 was identified throughout the out-
break [27, 45]. Surveillance data for measles, combined with these molecular epi-
demiology studies, indicate that the countries of the Americas are continually 
exposed to imported measles viruses from other regions of the world where mea-
sles continues to be endemic.
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8  Rubella

The primary goal of rubella vaccination is to prevent congenital rubella infection, 
including CRS. The burden of CRS is typically underestimated in routine surveil-
lance. Before the introduction of rubella vaccine, the incidence of CRS varied from 
0.1 to 0.2 cases per 1000 live births during endemic periods and from 0.8 to 4 cases 
per 1000 live births during rubella epidemics [18, 84]. A study modeling the inci-
dence of CRS in developing countries estimated that about 110,000 cases occurred 
in 1996, excluding the contribution of fetal loss from CRS [19].

Increasing numbers of countries and regions have developed rubella elimination 
goals, building on the progress of the measles elimination strategy (as described 
here), because rubella is one component of MMR or MR vaccines. The introduction 
of rubella vaccine is cost-effective and cost beneficial, but requires ongoing strength-
ening of routine immunization service and surveillance systems [62, 84].

Since 1996, when only 83 WHO Member States used rubella-containing vac-
cines (RCVs) in their national immunization schedules, there has been an important 
increase in the number of countries introducing rubella vaccine, which is delivered 
in most countries as MMR during the second year of life [84]. The level of introduc-
tion varies by WHO region, and Fig. 15.3 shows countries with and without rubella 

Introduced to date (149 countries or 76.8%)

Planned introductions in 2016 (9 countries or 4.6%) 

Not available, Not Introduced/No Plans (36 countries or 18.6%)

Not applicable

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion 
whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of 
its authorities, or concerning the delimitation of its frontiers or boundaries.  Dotted lines on maps represent approximate border 
lines for which there may not yet be full agreement. ©WHO 2016. All rights reserved.

Fig. 15.3 Countries with rubella vaccine in their national immunization programs and countries 
planning to introduce rubella vaccination in 2016–2017. (From [80]). The boundaries and names 
shown and the designations used on this map do not imply the expression of any opinion whatso-
ever on the part of the World Health Organization concerning the legal status of any country, terri-
tory, city, or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. 
Dotted lines on maps represent approximate border lines for which there may not yet be full agree-
ment. (©WHO 2016. All rights reserved)

15 Measles and Rubella in the Americas: The Path to Elimination



300

vaccine as part of their immunization programs [80]. The global burden of CRS has 
been estimated using seroprevalence and immunization coverage. This analysis 
indicated that CRS had decreased in the three WHO regions (America, Europe, 
Eastern Mediterranean) that had introduced widespread RCV by 2010, reaching 
fewer than 2 per 100,000 live births (the Americas and Europe) and 25 (95% CI, 
4–61) per 100,000 live births (the Eastern Mediterranean). The estimated incidence 
in 2010 ranged from 90 (95% CI, 46–195) in the Western Pacific, excluding China, 
to 116 (95% CI, 56–235), and 121 (95% CI, 31–238) cases per 100,000 live births 
in Africa and Southeast (SE) Asia, respectively, where the highest number of cases 
was predicted. The burden of CRS is still significant [79].

The Region of the Americas eliminated rubella in 2009 [11], and the European 
and Western Pacific regions have established rubella elimination goals. The 
Southeast Asia Region has a goal to control CRS, and the Eastern Mediterranean 
and African Regions have not yet established goals for rubella control [34, 43].

9  Rubella Elimination in the Americas

Data from the regional measles surveillance system documented the widespread cir-
culation of rubella virus in many countries in the Americas during the 1990s. In 1997, 
in response to the ongoing circulation and the potential for a major rubella epidemic 
in the region, the PAHO Technical Advisory Group on vaccine- preventable diseases 
recommended the implementation of a regional initiative to accelerate rubella and 
CRS control. To achieve this, PAHO developed a rubella and CRS control strategy 
that included the introduction of RCV into routine immunization, vaccination of 
women of childbearing age, integrated measles, and rubella surveillance including 
rubella virus detection and the implementation of a CRS surveillance system [10, 12]. 
Since 1998, all 35 countries and nine territories have reported rubella- suspected cases.

The implementation of robust CRS surveillance in LAC supported by timely 
clinical and laboratory diagnosis ensured the detection and classification of sus-
pected cases as imported or endemic. This distinction was critical for confirming 
CRS elimination, as is well illustrated by the data from Costa Rica [49]. A 
 complementary approach was to investigate, in the laboratory, suspect cases of CRS 
presenting with a single compatible manifestation [42].

The strategy of high coverage childhood immunization with MR proved success-
ful in controlling disease and in reducing the number of measles and rubella cases. 
However, it led to an upward age shift in susceptible groups to adolescents and the 
adult population, as documented in Brazil, Chile, and Costa Rica [32, 49, 60]. For 
rubella, this shift posed a potential risk, because it could have lead to rubella out-
breaks in young adult populations with an increased risk of CRS cases, as was docu-
mented in Brazil during a rubella outbreak in 2001 [44].

One important strategy used during the CRS elimination program was the vac-
cination of women of childbearing age and young adult men. Concern was raised 
about the use of this strategy during a mass vaccination campaign because it would 
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lead to some women being vaccinated without knowing if they were pregnant or to 
women receiving the vaccine in the month before conception. At the time, there was 
no evidence that the vaccine could adversely affect fetal development and lead to 
congenital malformation, but only a few studies with limited numbers of cases had 
been published addressing the safety of rubella vaccine in pregnancy. These studies 
did not provide support for indiscriminate vaccination of pregnant women. Studies 
were conducted during the mass campaign of women of childbearing age in 
Argentina, Brazil, Costa Rica, Ecuador, El Salvador, and Paraguay, which provided 
evidence of rubella vaccine safety in this group [5, 13, 20, 69]. In addition, the vac-
cination of young adult men proved to be essential for rubella and CRS control. 
Initially, Brazil and Chile did not use this strategy. They immunized only women 
during their first MR adult vaccination campaign and needed to conduct another 
campaign including both men and women [32, 47]. In 2003, during a meeting of the 
44th PAHO Directing Council, composed of the Ministers of Health of PAHO 
Members States, set the goal of eliminating rubella and CRS by 2010. In 2006, 
using these strategies, the incidence of rubella and CRS was substantially reduced 
across the Americas [11]. The inclusion of Guatemala in this initiative was delayed 
by the historically low investment in healthcare in the country. However, because of 
the country’s resource mobilization and advocacy efforts (economic analysis, poten-
tial donors, disseminating information, among others), a national MR vaccination 
campaign was implemented in 2007, covering 99% of the target population. Data 
from epidemiological surveillance over subsequent years revealed that the country 
had been free of endemic RubV circulation [30].

Molecular epidemiological data are an important tool for classifying cases as 
imported or endemic and for documenting measles and rubella virus elimination. 
Limited rubella genotype information is available for many countries [1]. In LAC, 
the scale of rubella molecular data has improved over the years. The geographic 
distribution of wild-type rubella genotypes in the Americas, interpreted in the con-
text of their global distribution, has contributed to the documentation of rubella 
elimination from some countries. During 1997–2007, genotype 1C was detected in 
Bolivia, Chile, Ecuador, El Salvador, Honduras, Mexico, Panama, Peru, and 
Venezuela. This genotype was restricted to the Americas; it was considered an 
endemic strain, and its disappearance was documented and provided evidence of the 
elimination of endemic rubella in these areas. Genotype 1E was reported in 
Bahamas, Guyana, and Suriname [40]. In Brazil, rubella virological surveillance 
before 2005 showed genotype 1B circulating in Rio de Janeiro state in 1997 and 
genotype 1G in 1996, 1997, 1999, 2000, and 2001, so this genotype was considered 
to be endemic in Brazil. A genotype 1J strain isolated in 2005 was considered an 
importation, although the index case was not identified. During 2006, a rubella out-
break that spread throughout the country until 2008 started in Brazil. All viruses 
detected from 14 states belonged to genotype 2B during this period. In addition, this 
genotype was found in outbreaks in Chile and Argentina and so was considered 
endemic in the Americas [1, 28, 40, 44]. A retrospective study from 1996 to 2009 in 
Sao Paulo, Brazil, identified four genotypes (1a, 1B, 1g, 2B) involved in congenital 
infections [17]. However, intense virological surveillance after 2006 provided 
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evidence for the elimination of endemic 2B strain from the Americas [1]. During the 
period 2010–2016, imported RubV from different genotypes has been identified in 
LAC. As rubella continues to circulate in many regions of the world, controlling 
spread from imported rubella cases will be a challenge for the Americas.

10  Declaration of Elimination

In 2011, PAHO published a “Recommendation for documentation and verification 
of measles, rubella and CRS elimination in the Americas” to be used for the coun-
tries to document the elimination [56]. The documentation is based on the epidemi-
ology of measles, rubella, and CRS, the quality of surveillance, molecular 
epidemiology, vaccinated population cohorts, and sustainability of measles, rubella, 
and CRS surveillance. At the same time, PAHO established an International Expert 
Committee (IEC) to verify the documents produced by the countries demonstrating 
elimination. Rubella was considered eliminated from the Americas in 2015 and 
measles in 2016.

11  Challenges and Perspectives

The demonstration by the Americas that measles and rubella elimination can be 
accomplished and maintained is a historic achievement and serves as an example for 
other regions. In the Americas, the challenge now is maintaining the high levels of 
vaccine coverage together with the comprehensive surveillance necessary to sustain 
elimination, in the face of competing priorities. Work is needed to produce a more 
heat-stable vaccine and easier modes of administration. Promising results have been 
achieved administering vaccines by aerosol and using micro-needles. Simplified 
diagnostic tests that can be used in the field or in the clinic are being evaluated and 
offer promise to enhance case-based surveillance.
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Chapter 16
Hepatitis B Viruses
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1  History

Epidemics of jaundice have been reported since before the Christian era [114]. 
However, the association of the clinical manifestation to a parenteral transmissible 
form of hepatitis did not occur until the late nineteenth century. Outbreaks of jaun-
dice accompanied by symptoms of hepatitis were observed after vaccination during 
the years 1930–1940, when using vaccines stabilized with human lymph. Blood 
transfusions and repeated use of nonsterile needles were also identified as causes of 
hepatitis outbreaks [43, 138]. In 1965, Blumberg and colleagues [18] published 
what would become one of the most important landmarks in the field of viral hepa-
titis. During extensive work seeking to characterize inherited polymorphic genetic 
traits, they found, in a serum sample of a native Australian, an antigen that reacted 
specifically with antibodies from the serum of a U.S. hemophiliac patient. This 
“Australia antigen (Au),” which was relatively rare in North America and Western 
Europe but prevalent in African and Asian populations, was not readily associated 
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with serum hepatitis. Purification of the Au antigen, now known as the hepatitis B 
virus surface antigen (HBsAg) from the serum of patients with hepatitis, enabled 
the identification of the complete viral particle of hepatitis B virus (HBV) by elec-
tron microscopy [15, 19]. The availability of assays to detect the Au antigen allowed 
researchers to confirm the long-held suspicion that HBV was a blood-borne virus 
responsible for acute and chronic hepatitis in different parts of the world [20, 124].

2  Classification and Virion Structure

HBV is the prototype of the Hepadnaviridae family, which is composed of DNA 
viruses with tropism for liver cells that share similarities in genome organization, 
intracellular life cycle, and a unique mechanism of replication. They are the only 
DNA viruses of animals that replicate their genome by reverse transcription. The 
family is further split into two recognized genera: Orthohepadnavirus and 
Avihepadnavirus, the latter representing viruses that infect birds (ducks, herons, 
cranes, geese, parrots) [93], and the former including viruses that infect mammals 
(e.g., humans and nonhuman primates, squirrels, woodchucks, bats) [101].

HBV produces three types of viral particles, which may be identified by electron 
microscopy of infected serum preparations. The infectious viral particle, also called 
the Dane particle, has an outer diameter of approximately 42 nm. Its nucleocapsid 
has an icosahedral symmetry made up of 120 dimers of the core protein (hepatitis B 
core antigen, HBcAg), which encloses a single copy of the genome. Capsids are 
surrounded by an outer lipoprotein envelope embedded with surface viral glycopro-
teins (HBsAg), which are present in three different forms: large (L), middle (M), 
and small (S), and at different amounts in the viral envelope (rate of 1:1:4) [50]. 
These infectious particles have a density of 1.22 g/cm3 in cesium chloride equilib-
rium gradients [29], and their concentration in the serum of infected individuals 
may be greater than 109 particles/ml. In addition, incomplete and noninfectious par-
ticles are found; these can have either a spherical or filamentous shape. These par-
ticles have an outer diameter of approximately 22 nm and a density of 1.18 g/cm3 in 
cesium chloride equilibrium gradients. They are composed exclusively of HBsAg 
and some lipids derived from the host cells. They are found at high levels in the 
serum of infected individuals (concentration about 1013 particles/ml). Although not 
infectious, these particles are highly immunogenic and effectively induce a neutral-
izing anti-HBs antibody response [122].

The HBV genome consists of a molecule of a partially double-stranded circular 
DNA (where both strands are not covalently closed) of approximately 3200 nucleo-
tides, one of the smallest genomes of the human viruses. Next to the 5′-ends of both 
DNA strands, there is a small sequence of 11 nucleotides that are directly repeated 
and so-called direct repeats (DR1 and DR2; Fig. 16.1). DR1 and DR2 are important 
sequences for the initiation of viral replication. The entire HBV genome is orga-
nized into four open reading frames (ORFs) known as pre-S/S, pre-C/C, P, and X 
[110]. All genes have regions of overlap with other genes and are encoded by the 
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complete strand (see Fig. 16.1). The partially overlapping arrangement of the differ-
ent ORFs allows the HBV to encode 50% more protein than would be expected by 
the size of its genome [42]. The ORF pre-S/S is responsible for the synthesis of the 
L, M, and S proteins which form HBsAg. The pre-C/C ORF is responsible for the 
synthesis of HBcAg and a secretable antigen found in sera of infected individuals, 
called HBeAg. The detection of this antigen is used in the clinical assessment of 
patients as it is indicative of active viral replication. The P ORF covers approxi-
mately three quarters of the genome and encodes the HBV DNA polymerase, a 
multifunctional protein with three functional domains: the terminal protein domain 
located at the N terminal portion of the protein, the reverse transcriptase domain, 
and an RNase H domain at the C-terminal portion of the protein. HBV polymerase 
is homologous to other reverse transcriptases [137]. The X ORF is responsible for 

Fig. 16.1 Hepatitis B (HBV) genome organization. The circular viral DNA with direct repeats 
DR1 and DR2 is represented by the inner circle. The dotted line indicates the single-stranded 
region of the genome. The length of the genome is 3221 bp, the size of HBV/A. Numbering start-
ing from a unique EcoRI site from most HBV/A isolates. The outer rows (in color) indicate the 
four open reading frames: pre-S/S, pre-C/C, P, and X. External lines indicate the viral RNAs with 
the location of the 5′-ends (triangles) and to the 3′-(polyadenylation site) common to all RNAs. 
(Scheme adapted from [42])
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the synthesis of HBxAg, a multifunctional viral regulatory protein that modulates 
the transcription process, signaling pathways, protein degradation, and cellular 
response to stresses. These tasks affect replication and viral proliferation; this pro-
tein is also involved in oncogenesis of the host cell [56, 111]. The pre-S/S gene 
includes the pre-S1, pre-S2, and S regions, with three in-frame initiation codons. 
The large protein composing the HBsAg is the L protein, whose initiation codon is 
located at the beginning of the pre-S1 region and is encoded by the pre-S1, pre-S2, 
and S regions. The M protein (intermediate size) is encoded by the pre-S2 and S 
regions. The small protein, which comprises the HBsAg, S protein, has the initiation 
codon located at the beginning of the S region. These proteins all have the same stop 
codon located at the end of the S region and are present in both glycosylated and 
non-glycosylated forms in the viral particle. The three types of protein are unevenly 
distributed among the different forms of viral particles. Subviral particles of 22 nm 
are predominantly composed of S protein, with varying amounts of M protein and 
little or no L protein. The infectious particles are enriched in L protein that contains 
the virus-binding site for specific receptors on hepatocytes. The M protein acts as 
connecting element for the adsorption of HBV, having a binding region to human 
serum albumin that enables the HBV particle to penetrate through albumin cellular 
receptors into the hepatocyte cytoplasm [110]. The S protein, the main protein of 
HBsAg, is capable of inducing a protective immune response (anti-HBs) against 
HBV and is the antigen used in the formulation of vaccines. Mutations in specific 
epitopes occurring within the S gene may interfere with vaccine protection and the 
interpretation of serological results as well as with therapies based on the use of 
specific antibodies to suppress infection in transplant recipients [106].

3  Replication

Hepatocytes are the primary site of HBV replication. In vitro HBV infection has 
been achieved only in human hepatocyte primary cell cultures [41]. Although HBV 
is not cultivable in cell lines, several human hepatoma-derived cell lines such as 
HepG2, HuH-6, and HuH-7 are able to support HBV replication by using an inte-
grated or transfected HBV genome as a template [112, 129]. The unavailability of a 
reproducible system for HBV cultivation hampers studies of viral replication and 
life cycle. The use of animal models in experimental infections is limited because 
HBV infects only humans and some nonhuman primates.

The HBV replication strategy is unique among DNA animal viruses by proceed-
ing through a step of reverse transcription of a pre-genomic RNA intermediate [80]. 
The initial stage of viral infection is the adsorption of the viral particle to susceptible 
hepatocytes (Fig. 16.2). Once in the cytoplasm of the hepatocyte, the virion loses its 
envelope, and the nucleocapsid is transported to the cell nucleus, where the relaxed 
circular DNA genome is released and then converted into a covalently closed circular 
DNA (cccDNA) form; this occurs after the repair of the incomplete positive strand of 
the viral genome by a cellular DNA polymerase. The cellular RNA polymerase II is 
responsible for transcribing cccDNA into genomic (longer than one unit of the 
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genome of about 3.5 kb) and subgenomic viral RNAs (sizes between 0.9 and 2.4 kb), 
specialized in translating different gene products. All transcripts are capped at the 
5′-end and share the same polyadenylation signal located in the pre-C/C gene (see 
Fig. 16.1). The four open reading frames of the HBV responsible for the synthesis of 
seven different products (HBeAg, HBcAg, P, HBx, and the envelope proteins L, M, 
and S) are controlled by four promoters (pre-S1, pre-S2/S, pre-C/C, and X). The 
subgenomic RNAs act exclusively as messenger RNAs for translation of the three 
envelope proteins (L, M, and S) and the X protein (see Fig. 16.2). The pre-S1 pro-
moter controls transcription of a 2.4-kb subgenomic RNA that is the sole messenger 
for the L protein. The pre-S2/S promoter controls transcription of a family of 2.1-kb 
RNAs with microheterogeneity at the 5′-end; one of the transcripts starts immedi-
ately before the pre-S2 region initiation codon and the other after this start codon. 
Therefore, one of the 2.1-kb transcripts gives rise to the M protein and the remaining 
2.1-kb RNAs originate the small S protein. The pre- C/C promoter controls transcrip-
tion of several RNA molecules of about 3.5 kb, which have heterogeneity at the 
5′-end. Among these RNAs, the pre-genomic RNA (pgRNA) is the template for the 
synthesis of genomic DNA using a complex reverse transcription process. The 
pgRNA also serves as the template for the synthesis of HBcAg protein and DNA 
polymerase protein. The 3.5-kb RNAs with 5′-ends located upstream of the start 

Fig. 16.2 Replicative cycle of HBV. (1) Penetration. (2) Uncoating. (3) The genomic DNA is 
converted to cccDNA from inside the nucleus. (4) Transcription of the viral RNAs. (5) Translation 
of the viral proteins. (6) Encapsidation of the pgRNA into core particles. (7) Synthesis of the nega-
tive strand of viral DNA. (8) Synthesis of the complementary strand and migration of the progeny 
core to the endoplasmic reticulum (ER), for the acquisition of envelope (HBsAg). (9) Release of 
enveloped virions and the other two forms of viral particles, spherical and filamentous. (Scheme 
adapted from [42])
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codon of the pre-C region encode the HBeAg. The pgRNA has a characteristic and 
well-conserved secondary structure in the pre-C/C region, called the encapsidation 
signal. A terminal region of 130 redundant nucleotides results in two copies of this 
structure at each end of the genome. The stem-loop structure present in the 5′-portion 
forms the encapsidation signal responsible for pgRNA packaging into immature cap-
sids during replication (Fig. 16.2). The P protein binds to the encapsidation signal in 
the pgRNA, and this complex is surrounded by the core protein to form the nucleo-
capsid. The synthesis of HBV DNA by reverse transcription of the genome occurs 
inside the capsid. At first, the pgRNA is transcribed into single-stranded DNA of 
negative polarity and is concomitantly degraded by the RNase H activity of the viral 
polymerase. This negative DNA strand then serves as a template for the synthesis of 
the DNA positive strand. During this process, the HBV genome is circularized with 
the peculiarity of the positive strand not being completely synthesized, resulting in a 
partially double-stranded genome. The nucleocapsid may then return to the nucleus, 
releasing the viral DNA (which can be converted back to cccDNA) for amplification 
of cccDNA pool, or follow the assembly pathway, being coated in the endoplasmic 
reticulum (ER) with a lipid–protein envelope containing the HBsAg, transported to 
the protein secretion pathway from ER to Golgi network, and released as viral prog-
eny into the extracellular space [110].

4  Transmission and Pathogenesis

Hepatitis B virus (HBV) transmission occurs primarily by parenteral exposure to 
blood, blood products, and organ tissue transplantation or through sexual and peri-
natal exposure [132]. HBV is mainly found in the blood of infected individuals, but 
can also be detected in bodily fluids such as urine, saliva, nasopharyngeal fluid, 
semen, and menstrual fluid [30].

HBV is highly resistant to environmental conditions; therefore, infection may 
occur through the use of dental instruments, syringes, needles, piercing tools used for 
acupuncture, tattooing instruments, and the sharing of needles and syringes among 
injectable drug users [1, 44]. Vertical transmission (mother to child) is often docu-
mented in populations living in highly endemic regions and is mostly caused by the 
exposure of the newborn to the mother’s blood during delivery (particularly when 
mothers are HBeAg positive). However, infections also happen after birth from the 
close mother–child contact [75]. In the U.S., sexual transmission is the most com-
mon route of HBV transmission [27]. Those who are at higher risk of infection are 
healthcare providers and emergency responders, sexually active heterosexuals, men 
who have sex with men, individuals diagnosed with a sexually transmitted disease, 
illicit drug users (injecting, inhaling, snorting, pill popping), sexual contacts or close 
household members of an infected person, and kidney dialysis patients [39].

In Latin American (LA), the routes of HBV transmission are highly variable and are 
associated with heterogeneous disease distribution among countries. The Amazon basin 
is the most affected region in LA [117] with the highest prevalence reported in older age 
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groups. In the Amazon horizontal transmission seems to be the most common route of 
infection, through either parenteral or sexual exposure. Cultural practices such as blood-
letting, scarification, and tattooing contribute to an increased risk of horizontal transmis-
sion in this region. Vertical transmission and childhood horizontal transmission seem to 
be important routes of transmission in isolated Indian tribes with a high prevalence of 
HBV, such as in the Yanomami communities of the Upper Orinoco Basin where the 
majority of the HBsAg carriers (75%) were women of childbearing age [127].

The pathogenesis of HBV is not associated with a direct cytopathic effect of 
HBV on hepatocytes. Thus, it is assumed that the hepatic damage is related to an 
immune-mediated host response targeted against specific viral antigens in the 
infected hepatocytes. The elimination of HBV appears to be associated with the 
combined action of immune cells, the humoral response, and intracellular virus 
inactivation induced by the action of cytokines.

HBV may cause acute, fulminant, chronic hepatitis. During chronic infection, 
the disease may progress to liver cirrhosis or hepatocellular carcinoma (HCC). Most 
symptoms of acute hepatitis appear between 45 and 180 days after infection and 
include fatigue, anorexia, nausea, abdominal discomfort, vomiting, and mild hepa-
tomegaly. During this period, there is an increase in serum transaminases and bili-
rubin levels, indicating liver cell damage with high levels of HBsAg and HBV 
DNA. In a few cases (<1%), acute infection may result in fulminant hepatic insuf-
ficiency, characterized by the development of hepatic encephalopathy a few weeks 
after the onset of symptoms of hepatitis, with consequent risk of death.

Chronic infection is defined as the persistence of HBsAg in the serum of an indi-
vidual for 6 months or more. The risk of developing chronic infection varies 
inversely with age. A high percentage (>90%) of infants less than 1 year old exposed 
to HBV develop chronic hepatitis B infections because of the immaturity of their 
immune system. In adults, approximately 5% of infected individuals develop 
chronic hepatitis that may progress to a serious liver disease with risk of cirrhosis or 
HCC. The great majority of patients with chronic hepatitis B remain asymptomatic 
for many years. The severity of liver damage over the course of chronic hepatitis can 
lead to the development of cirrhosis (approximately 20% of cases) or hepatocellular 
carcinoma. The natural history of chronic hepatitis B consists of four phases, which 
are not necessarily sequential: immune tolerance, immunoreactive HBeAg positive, 
immunoreactive anti-HBe positive, and inactive carrier (see following). In some 
cases (20–30%), those in the inactive carrier stage may undergo spontaneous reac-
tivation, usually in patients receiving immunosuppressive therapy.

5  Laboratory Diagnosis

Hepatitis B virus (HBV) diagnosis allows differentiating susceptible individuals 
and protected individuals (positive for anti-HBs antibodies) from those with an 
acute or a chronic infection, and between the latter, those who need to receive anti-
viral therapy.
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Primary infection is characterized by serological detection of HBsAg and HBeAg 
(a serological marker of active viral replication), the presence of anti-HBc antibod-
ies (total IgG and IgM), and high levels of HBV DNA (>106 IU/ml). In the blood of 
those individuals who resolve the infection, seroconversion to anti-HBs and anti- 
HBe antibody-positive status occurs, along with the maintenance of lifelong anti- 
HBc IgG antibodies. The presence of anti-HBs antibodies is pathognomonic of 
those who have resolved the infection or been vaccinated; those with a previous 
infection are distinguished by the presence of anti-HBc antibodies.

The persistence of HBsAg in the blood for more than 6 months is an indication 
of chronic infection. The immune tolerance phase of chronic infection is character-
ized by high levels of viral replication (>106 IU/ml) and positivity for HBsAg, 
HBeAg, anti-HBc IgG antibodies, and normal alanine aminotransferase (ALT) lev-
els. The immune activation phase is characterized by an HBeAg-positive stage, with 
elevated HBV DNA (>106 IU/ml) and elevated ALT levels (with or without flares). 
The HBsAg and anti-HBc antibodies remain detectable, as in all phases of chronic 
infection. In addition, anti-HBc IgM may be detectable at lower levels than in acute 
infection and is usually associated with ALT flares. The following phase of chronic 
infection is characterized by the HBeAg seroconversion to anti-HBe (immunoreac-
tive anti-HBe positive phase). In this phase, an abrupt reduction of HBV DNA (106–
103 IU/ml) is observed. The last phase is the inactive carrier state, which is 
characterized by low or undetectable viral loads (<2 × 103 IU/ml), detection of 
HBsAg, anti-HBc, anti-HBe, and normal ALT levels.

6  Treatment Prevention and Control

The treatment of chronic hepatitis B aims to reduce or suppress viral replication and 
prevent the progression of liver damage that may lead to cirrhosis and liver failure, as 
well as the development of hepatocellular carcinoma and subsequent death. Currently, 
two strategies are commonly used in the treatment of chronic hepatitis: (1) the use of 
alpha-interferon or pegylated alpha-interferon that have direct action against HBV 
and stimulate the immune response of the host and (2) nucleotide analogues (NAs). 
The NAs are oral antiviral agents that have a fast and powerful inhibitory effect on 
the reverse transcriptase activity of the HBV polymerase, are safe and effective in 
suppressing viral DNA, and promote the normalization of transaminase and histo-
logical improvement [136]. Interferon therapies have direct antiviral activity and 
immunostimulatory properties; their potential advantages compared to NAs include 
the lack of drug resistance, administration for a limited period of time, and a higher 
rate of HBeAg and HBsAg seroconversion. The disadvantages are mainly related to 
the parenteral route of administration, poor tolerance associated with important side 
effects, high cost, and its effectiveness limited to a small proportion of highly selected 
patients. Therefore, interferon therapy has currently been largely replaced by NAs.

The main goal of NA treatment is to control viral replication, to induce HBeAg 
to anti-HBeAg seroconversion, and to induce remission. It is important to note that 
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current NA treatments usually do not allow seroconversion to anti-HBsAg because 
of maintenance of cccDNA. As Na treatment do not affect the cccDNA, NA therapy 
does not eradicate HBV from the liver. Hence, the ultimate goal is to achieve sus-
tained suppression of viral replication, preventing progression to cirrhosis, liver 
failure, and terminal hepatocellular carcinoma. Accordingly, NA treatment is long 
term with the consequent risk of selection of resistant strains. It should be empha-
sized that individuals with chronic infections and evidence of liver injury (immune- 
activation phase, either HBeAg or anti-HBe positive) are the most suitable candidates 
for antiviral therapy [121].

Currently, five NA drugs are licensed for the treatment of HBV infection: lami-
vudine (LAM), adefovir (ADV), entecavir (ETV), telbivudine (LdT), and tenofovir 
(TDF). With the spontaneous variability of the viral genome, pharmacological pres-
sure may select viral species that exhibit enhanced replication ability in the new 
environment created by the use of antivirals. LAM was the first NA approved in the 
mid-1990s. Although LAM is well tolerated and low in cost, resistance may occur 
in up to 80% of patients after 5 years of therapy. Resistant variants to most of the 
currently available NAs have now been observed but with significantly different 
frequencies. Mutations that confer resistance to NAs are located in the reverse tran-
scriptase (rt) domain of the viral polymerase gene. LAM and TdT are no longer 
indicated as first-line treatments for HBV [40] because of the high rates of occur-
rence of resistance. ETV and TDF are currently considered the most potent antiviral 
agents and are low risk for inducing resistance.

On the other hand, an effective and efficient hepatitis B vaccine is currently avail-
able. The first vaccine prototype was obtained by heat inactivation of HBV from the 
plasma of chronically infected individuals; it was then replaced by a plasma-derived 
vaccine containing noninfectious HBV particles. Finally, in the mid-1980s, the cur-
rent vaccine was developed, which consists of a yeast-derived recombinant HBsAg 
protein and is effective at producing protection in up to 95% of immunocompetent 
recipients. Currently, 184 of the 194 WHO member states (94.8%) have nationwide 
vaccination programs, and global coverage with three doses is estimated at 82% [26].

Despite the high efficacy of the HBV vaccine, breakthrough infections from vac-
cine escape mutations have been reported in vaccinated individuals, which accentu-
ates the importance of the escape mutants. The neutralizing antibodies are primarily 
specific for the “a” determinant of the HBsAg. Mutations causing a conformational 
change within this epitope could affect HBsAg antigenicity and be responsible for 
the escape from vaccine-induced immunity. In addition, these variants may also 
provide false-negative results in serological tests, which are known as false occult 
hepatitis B infection (OBI) [106, 113].

The prevalence of chronic hepatitis B has declined dramatically worldwide since 
vaccination program implementation; however, the massive implementation of the 
vaccine has acted as a powerful selective force for vaccine escape mutants. For 
instance, HBV prevalence in Taiwan declined from 8.6% to 2.1% between 1984 and 
1999, whereas vaccine escape mutants increased from 7.8% to 28.1% during the same 
time period [52]. By using mathematical models, it was estimated that, in the coming 
decades, vaccine escape mutants will become the dominant HBV quasi- species glob-
ally; if this occurs, reformulation of the vaccine should be considered [133].
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7  Epidemiology

The World Health Organization estimated that, worldwide, about 2 billion people have 
been infected with HBV [132]. Among them, 240 million are chronic HBV carriers. 
Overall, almost half the global population lives in areas where HBV infection is highly 
endemic (HBsAg seroprevalence >8%). High endemicity is associated with densely 
populated locations, such as in Asia, and with poverty in regions lacking economic and 
hygienic resources including China, Indonesia, Nigeria, and many other regions in 
Asia and Africa. An intermediate level of HBV endemicity (HBsAg prevalence 
between 2% and 7%) is observed in southern Europe, the Middle East, South Asia, and 
in some LA countries including Guatemala, Belize, El Salvador, Honduras, Haiti, the 
Dominican Republic, Puerto Rico, Ecuador, Venezuela, Guyana, Surinam, and French 
Guyana. Many developed nations, including the U.S., fall into the low endemicity cat-
egory (<2%) [90, 103, 113]. In LA, most Central and South American countries are 
now considered to be low prevalence, including most regions of Brazil, Mexico, 
Honduras, Nicaragua, Costa Rica, Panama, Cuba, Paraguay, Uruguay, Chile, Argentina, 
Peru, and northern Colombia. However, even in countries with low prevalence, it is 
possible to find isolated areas of high prevalence, such as the western Amazon basin, 
including Brazil and Peru, with observed HBsAg seroprevalence rates greater than 
10%. A systematic review of studies reporting worldwide HBsAg seroprevalence, data 
collected over a 27-year period (1980–2007) determined that the prevalence of chronic 
HBV infection decreased in most regions: this was particularly evident in central sub-
Saharan Africa, tropical and central LA, Southeast Asia, and Central Europe. The 
decline in HBV prevalence may be associated with better hygiene and quality of life as 
well as expanded immunization [90]. A recent study conducted in Brazil [117] showed 
a reduction in HBV prevalence countrywide, classifying Brazil as a whole as a low 
endemicity country. However, isolated regions with high prevalence persist, particu-
larly the Amazon, as well as in specific groups such as homeless people in large cities 
and isolated Afro-descendant communities in the center of Brazil. The prevalence of 
anti-HBs antibodies alone (compatible with vaccine response) ranges from 50% to 
90%. However, isolated and distant localities still have low coverage rates of vaccina-
tion. There is a need to intensify vaccination strategies for young people and adults in 
specific regions with persistently high HBV infection prevalence [117].

8  Genetic Variability

8.1  Genotypes and Geographic Distribution

Human HBV isolates have been classified into eight genotypes, denoted A (HBV/A) 
to H (HBV/H) and two tentative (HBV/I and HBV/J) genotypes based on a sequence 
divergence greater than 7.5% in the entire genome [11, 85–87, 118, 120, 128]. The 
significant diversity within some HBV genotypes (A–D, F, and I) has led to division 
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into numerous sub-genotypes based on intergroup nucleotide divergence between 
4% and 7.5% over the full-length genome [97, 115]. Figure 16.3 shows HBV geno-
types and sub-genotypes. HBV genotypes have different genome lengths, ranging 
from 3182 nucleotides (nt) for HBV/D and HBV/J to 3248 nt for HBV/G.  The 

Fig. 16.3 Neighbor-joining phylogenetic tree based on HBV full-length genomes of all genotypes 
and sub-genotypes. HBV/A sub-genotypes before reclassification are shown in parentheses. After 
reclassification, HBV/A3 to HBV/A5 and HBV/A7 were grouped as quasi-sub-genotype A3 (QS- 
A3). HBV/A6 was renamed as HBV/A4. GenBank accession numbers of the sequences are listed 
here: A1, JN182318; A2, HE576989; A3, AB194951; A4, AY934764; A5, FJ692613; A6, 
GQ331047; A7, FN545833; B1, AB642091; B2, FJ899779; B3, GQ924617; B4, GQ924626; B5, 
GQ924640; B6, JN792893; B7, GQ358137; B8, GQ358147; B9, GQ358149; C1, AB697490; C2, 
GQ358158; C3, DQ089801; C4, HM011493; C5, EU410080; C6, EU670263; C7, GU721029; C8, 
AP011106; C9, AP011108; C10, AB540583; C11, AB554019; C12, AB554025; C13, AB644280; 
C14, AB644284; C15, AB644286; C16, AB644287; D1, GU456636; D2, GQ477452; D3, 
EU594434; D4, GQ922003; D5, GQ205377; D6, KF170740; D7, FJ904442; D8, FN594770; D9, 
JN664942; E, FN594748; F1a, AY090459; F1b, FJ709464; F2a, KC494405; F2b, DQ899146; F3, 
DQ899150; F4, AB166850; G, AB625342; H, AB516393; I1, FJ023659; I2, FJ023664; J, AB486012
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genome size is 3212 nt for HBV/E; 3215 nt for genotypes B, C, F, H, and I; and 
3221 nt for HBV/A. Compared to genotypes B, C, F, H, and I, HBV/A has 6 more 
nt in the polymerase gene, and HBV/D has a 33-nt deletion in the pre-S1 region. 
Both HBV/E and HBV/G have a deletion of 3 nt in the polymerase gene (codon 11). 
Finally, HBV/G has an insertion of 36 nt at the N-terminus of the core gene.

HBV genotypes have a distinct geographic distribution around the world and 
may be responsible for differences in the natural history and clinical outcome of the 
infection [10, 46, 58, 68]. HBV/A and HBV/D are distributed globally, with a high 
predominance of HBV/A in northwest Europe, North America, South Africa, and 
Brazil [58, 74, 83]. HBV/D is also found in the Mediterranean, India, and Russia 
[46, 134]. HBV/B and HBV/C are found mainly in Asia and the circumpolar north 
(HBV/B), as well as the Pacific Islands (HBV/C) [66, 83]. HBV/E is confined to 
West and Central Africa, being by far the most prevalent in these regions [4]. HBV/F 
and HBV/H probably originated in Amerindian populations, with localization of 
HBV/F in Alaska, Central America, and South America [12, 17, 32, 57, 126] and of 
HBV/H in Mexico, Central America, and the southern part of the U.S. [11, 91]. 
Despite a lower global prevalence, HBV/G is widespread in Europe [63, 131], the 
Americas [2, 8, 89], Asia [116, 123], and Africa [123]. Two novel genotypes, I and J, 
were recently proposed, but their designation remains controversial [62]. The single 
HBV isolate of HBV/J, which is closely related to gibbon/orangutan genotypes 
(polymerase and large S genes) and human HBV/C (C gene), has been identified in 
Japan [120]. HBV/I is a complex inter-genotypic recombinant between genotypes 
A, C, and G and was identified in isolates from Vietnam [48, 128], Laos [87], southern 
China [37, 119], and a primitive tribe in eastern India [6, 47].

Recombination events between HBV genotypes have been frequently described. 
Moreover, as a result of global human migration flows, a shift in the prevalence of 
HBV genotypes has been reported in different countries that will probably give rise to 
new recombinant forms. Among described HBV recombinants, about 60% are B/C 
and C/D hybrids [7]. Overall, recombinants display circulation patterns similar to 
those of their original genotypes. Recombinants of the globally widespread HBV/A 
and HBV/D are also found worldwide. On the other hand, hybrids of HBV genotypes 
B/C are limited to South and East Asia. Similarly, HBV/E hybrids are almost exclu-
sively found in African countries [7]. As expected, HBV/F hybrids have been identi-
fied in countries from South America, with no reports outside this continent [8, 13, 55, 
67]. Interestingly, A/C/G recombinants (HBV/I) have been identified in China, India, 
Laos, and Vietnam, although HBV/G has never been described in these countries.

8.2  Distribution of Genotypes and Sub-genotypes in Latin 
America

The distribution of HBV genotypes in LA can be traced from three main sources of 
ancestral populations: (1) Amerindians, who are mainly HBV/F carriers [25, 28] 
and may also have contributed HBV/H; (2) Europeans (colonizers and immigrants) 
responsible for the introduction of HBV/A (more specifically sub-genotype A2) and 
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HBV/D [16, 22, 45]; and (3) African slaves, who contributed to the introduction of 
HBV/A, sub-genotype A1 [59, 64]. HBV/E, restricted to West and Central Africa, 
has rarely been found in LA, suggesting that this genotype probably emerged only 
after the slave trade in the Americas [5]. The proportion of these three main ancestry 
populations (Africans, Amerindians, and Europeans) varies with the history of each 
country in LA.  Thus, the Mexican population has a high degree of Amerindian 
ancestry that ranges from 38% to 76% depending on geographic region, followed by 
European ancestry (8.5–50%) and African ancestry (9–18%) [103]. Similarly, most 
of the population of Central and South America has the same sociodemographic 
pattern with regard to source of ancestry [103]. However, dissimilar distribution of 
these admixtures may be observed in some LA countries. In Argentina and 
Colombia, European ancestry is predominant (more than 70%), followed by 
Amerindian (about 20%), and African ancestry (3%). In Brazil, a similar proportion 
of European ancestry (about 70%) is found in the country; however, the African 
proportion may range from 30% in northeast to 10% in the northern region. On the 
other hand, the Amerindian proportion is highest in the north (19.4%) yet relatively 
similar in the other three geographic regions [92].

8.3  The Unique Genotypes F and H in Latin America

HBV/F, the main genotype of Amerindians, has been described as the predominant 
genotype in many countries of Central and South America. The overall prevalence 
of HBV/F in these countries depends on the degree of admixture of the population 
with Amerindians. Outside LA, HBV/F is also found in native Alaskan populations. 
HBV/H is mainly confined to Mexico and is the major genotype of both Amerindians 
and mestizos [33, 91]. HBV/F and HBV/H isolates display a close phylogenetic 
relationship and are the most divergent compared to the other HBV genotypes. 
HBV/F is highly divergent and has been classified into four sub-genotypes (F1–F4) 
[34, 71]. Recently, a new sub-genotype, F5, has been proposed in Panamanian blood 
donors [69]. Sub-genotype F1 was further subdivided into two clusters, F1a and 
F1b; similarly, F2 was subdivided in F2a and F2b. Three HBV isolates identified 
recently seems to form a separate cluster inside sub-genotype F4 [76]. The genetic 
distance among F sub-genotypes ranges from 3.91% to 7.41%. In contrast, within 
HBV/H isolates, an intra-genotypic divergence of only 0.032–3.82% has been 
found. Consequently, no HBV/H subgenotypes have been described [69, 103].

Recent studies regarding the origin, emergence, and distribution of HBV/F sug-
gest that the ancestor was located in Central America or northern South America 
and subsequently spread in a north-to-south flow [69, 73, 126]. It has been proposed 
that the diversification and dissemination of HBV in the pre-Columbian Americas 
would be associated with two human migratory routes: one following the Pacific 
coastal route, leading to the spread of HBV/F1, and a separate, but contemporane-
ous, migration into the interior of South America leading to the diversification of 
sub-genotypes F2 to F4 [76, 103].
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The present distribution of HBV/H and HBV/F sub-genotypes in LA is shown in 
Fig.  16.4. Among HBV/F1, cluster F1a is found in Costa Rica and El Salvador, 
while F1b is mainly found in Argentina and Chile and also has been detected in 
Brazil. Outside LA, F1b has been found in Alaska [11, 65, 94]. Sub-genotypes F2 
and F3 both circulate in northern South America, with cluster F2a found mainly in 
Brazil and Venezuela and F2b restricted to Venezuela. Sub-genotype F3 is fre-
quently found in Colombia, Venezuela, and Panama [32, 69, 73, 74, 79], while F4 is 
prevalent in Bolivia and Northern Argentina and also has been reported in southern 
and central Brazil [55, 73, 95]. HBV/F has been associated with a higher risk of 
HCC development [65]. Moreover, liver-related mortality with HBV/F is higher 
when compared to that of HBV/A and HBV/D [108]. Conversely, HBV/H clinical 
outcome among the native or mestizo Mexican population has been mainly associ-
ated with OBI (see following) and low viral load, being uncommon in the presence 
of HCC related to chronic HBV infection [105].

Fig. 16.4 Distribution of HBV/H and HBV/F sub-genotypes in Latin America (LA)
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Finally, the geographic (sub)genotype distribution and the differential biological 
behaviors described for genotypes F and H justify deeper epidemiological studies of 
these HBV strains. These studies could contribute to the understanding of HBV 
features that may be relevant to clinical outcome, response to treatment, and immu-
nization strategies in the populations of Mexico and Central and South America.

8.4  Tracking the Origin of Genotype A in LA

HBV/A is a ubiquitous genotype and has been previously classified into seven sub- 
genotypes (HBV/A1–HBV/A7). Recently, it has been proposed that sub-genotypes 
HBV/A1, HBV/A2, and HBV/A6 (now renamed as HBV/A4) fit the rules for HBV 
division into sub-genotypes, while the others form a single clade called “quasi- 
subgenotype- A3” (QS-A3) [97]. HBV/A1 is highly prevalent [97]. HBV/A1 is 
highly prevalent in Southeast Africa [21, 60] and predominant among people of 
African ancestry living in LA [3, 5, 70, 77] suggesting that this sub-genotype origi-
nated in African populations. HBV/A2 is the most frequent sub-genotype in north-
west Europe and the U.S. [135] and has also been isolated in South Africa [21]. It 
has been suggested that HBV/A2 was introduced in Europe by Portuguese traders 
who traveled across southern Africa during the fifteenth century [49, 60]. HBV/A3 
(now QS-A3) was originally isolated in Cameroon [61] and has been also identified 
in Gambia [49] and Mali [88]. Other QS-A3, previously named as HBV/A4 and 
HBV/A5 (QS-A3), were identified in Mali and Nigeria, respectively [49, 88]. HBV/
A4 (previously named HBV/A6) was detected in Afro-Belgian patients [98]; HBV/
A7 (renamed as QS-A3) has appeared in some individuals from Cameroon [54].

Until 1994, only three HBV strains from South America, two from Colombia 
[84] and one from Brazil [81], had been sequenced. All were classified as HBV/F. It 
was then assumed that HBV/F would be the most common genotype in Brazil, as it 
is typical of South Americans and the indigenous people of LA. However, further 
studies have demonstrated that HBV isolates from Brazil are mostly HBV/A and 
closely related to those from South Africa, suggesting an African origin for many 
Brazilian HBV/A isolates [9, 82].

To understand the diversification of HBV/A in LA, isolates from Argentina, 
Brazil, Costa Rica, Mexico, Nicaragua, Venezuela, and Uruguay were compared 
[72]. European HBV/A2 prevailed in most countries except in Brazil, where African 
HBV/A1 predominated [72]. In Brazil, HBV/A1 was found at a frequency about ten 
times higher than HBV/A2 [14, 64, 74, 78, 109]. This difference between Brazil and 
other LA countries may be understood by considering the colonization process of 
these countries. Brazil, which is surrounded by countries of Spanish colonization, is 
the only country in LA that was colonized by Portugal. Moreover, Brazil received 
about half the 12 million African slaves and was the last country to ban the Atlantic 
slave trade in the second half of the nineteenth century. The hypothesis that HBV/A1 
was introduced into Brazil by the arrival of slaves [9, 64, 74] has been reinforced by 
the observations that HBV/A1 was almost the sole genotype found in semi- isolated 
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Afro-descendant communities [3, 70, 77]. In addition, people of African descent are 
more frequently infected with HBV/A1 than Caucasians, whereas the reverse is true 
for HBV/D [16]. Recently, using Bayesian analysis, the existence of an Asian-
American clade within HBV/A1 has been suggested [64]. The close degree of relat-
edness of the Brazilian, Asian, and Somalian isolates suggests that the HBV/A1 
strains predominant in Brazil did not originate from the 5 million slaves who were 
imported from Central and Western Africa from 1551 to 1840, but rather from the 
300,000 to 400,000 captives forcibly removed from Southeast Africa at the middle of 
the nineteenth century [64]. In Haiti, where more than 90% of the population are 
descendants of African slaves, HBV/A is found in more than 70% of the population, 
and HBV/A1 is the predominant sub-genotype. Interestingly, about 20% of HBV/A 
isolates from this country belong to the rare sub-genotype HBV/A5 (QS-A3), which 
has been found only in the Bight of Benin, a former primary slave trading post [5].

9  Occult Hepatitis B Infection (OBI) in Latin America

OBI is defined as the detection of HBV DNA in serum or liver with a negative 
HBsAg result [99]. Other distinctive clinical features are viral loads lower than 200 
IU/ml and the existence of two subtypes of OBI based on the seropositivity or the 
seronegativity of anti-HBc or anti-HB antibodies. This forthright definition is not 
free of debate because the accurate detection of OBI relies on the use of sensitive 
and specific diagnostic techniques for both HBsAg and HBV DNA.  HBV DNA 
detection in liver biopsy or serum using highly sensitive polymerase chain reaction 
(PCR) techniques to amplify two or more genomic regions of the virus is a recom-
mendation for OBI detection [99] that may be difficult to accomplish in many loca-
tions. Given the fact that most diagnostic techniques are standardized to cover the 
dynamic range of overt infection, the true prevalence of OBI may be underestimated 
by lack of sensitivity and overestimated if PCR cross-contamination is not 
controlled.

Despite these drawbacks, the prevalence of OBI tends to vary widely depending 
on the level of HBV endemicity in different geographic regions or clinical settings 
[100]. OBI is usually detected in high endemic regions or among several indigenous 
populations globally. In intermediate or low endemicity regions, it is observed in a 
number of high-risk groups, such as patients who are immunocompromised, have 
cancer, are coinfected with HCV or HIV, are organ transplant recipients, and are 
rheumatic or on hemodialysis. These high-risk patients have a common serological 
profile of apparently undetectable levels of HBsAg that may suddenly show up as 
flare episodes, that is, the sporadic and short-term appearance of HBsAg. Moreover, 
some may display a clinical feature denoted as “isolated anti-HBc” who are positive 
for anti-HBc antibody in the absence of HBsAg, in which serum HBV DNA may be 
positive in up to 50% of the cases [125]. Given these characteristics, it is recom-
mended that patients with risk factors should receive follow-up testing for HBsAg, 
anti-HBc antibody, and viral load because OBI is also associated with hepatocellu-
lar carcinoma [53, 96].
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On the other hand, transfusion-transmitted hepatitis from OBI is still of concern 
in many regions worldwide. Because HBsAg is the conventional serological marker 
for which blood banks screen, OBI in blood donors may be a risk factor [23]. The 
rate of OBI among blood donors in North America is estimated to be 1 in 350,000–
610,000 [51]. These frequencies are unknown in many low- and middle-income 
countries of LA, which have fewer diagnostic resources available to supply secure 
blood units by using nucleic acid testing (NAT) technology. Further studies are 
needed to evaluate the risk of OBI in these settings and provide surrogate algorithms 
to avoid an iatrogenic transmission of HBV.

In regard to LA, large-scale epidemiological studies of HBV infection are not 
available in most countries, thus hindering the estimation of overt and OBI infec-
tion. Nonetheless, this region contains a promising opportunity to study the natural 
history of HBV infection in native and admixed human populations which have not 
been vaccinated or treated with antiviral therapy. Regardless of the overall 
 endemicity, several studies carried out in indigenous populations in Argentina, 
Brazil, Colombia, Mexico, and Venezuela [24, 31, 35, 105, 130] have shown that 
HBV infections display low prevalence of HBsAg, high prevalence of anti-HBc 
antibody, and in some instances, a high prevalence of OBI. OBI is not restricted to 
one type of HBV; it prevails with nearly all genotypes reported worldwide. In this 
case, HBV/H in Mexico [36, 91, 105] and genotype F3 in Argentina [31] have been 
associated with this disease entity.

It has been proposed that one of the mechanisms of OBI may involve immuno-
regulatory factors that diminish the expression of HBsAg and genomic replication 
[100, 107]. In a recent study, a differential cytokine profile was detected between 
OBI with HBV/H compared to resolved infection in native Nahuas from Mexico 
[38]. On the other hand, from an evolutionary perspective, it has been proposed that 
OBI may be a biological adaptation among the indigenous groups in Mexico and 
perhaps in other groups in LA given the long-term and balanced host–virus relation-
ship [103]. Interestingly, neither liver damage nor hepatocellular carcinoma related 
to the endemic genotypes H and F has been reported in these groups, although other 
environmental factors may be involved [102, 104]. Further studies are required to 
assess the differential response to HBV infection among the LA population that 
may have an impact on regional guidelines for the management of this disease.
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Chapter 17
Molecular Evolution of Hepatitis C Virus: 
From Epidemiology to Antiviral Therapy 
(Current Research in Latin America)

Natalia Echeverría, Pilar Moreno, and Juan Cristina

1  Introduction

Hepatitis C infection is globally widespread, and to date, there is an estimate of 
130–150 million people worldwide living with chronic and progressive liver disease 
as a result of infection by hepatitis C virus (HCV) [196]. The development of cir-
rhosis and hepatocellular carcinoma (HCC)) are long-term complications in 15% to 
30% of chronically infected patients, which is the reason why HCV infection is one 
of the most common indications for liver transplantation [81, 143].

Despite the urgent need to prevent dissemination of its etiological agent, there is 
currently no prophylactic vaccine against HCV [93]. However, significant advances 
have been made in relation to drug development in the past decade, leading to the 
approval of many direct antiviral agents (DAAs), which have greatly contributed to 
achieve higher sustained virological response (SVR) rates [67, 92, 129, 182]. Until 
2010, the standard of care (SOC) therapy involved pegylated interferon-α (IFN-α-
PEG) and ribavirin (RBV) [35, 110], administered for 24 or 48 weeks depending on 
the infecting viral genotype. Yet, since 2011 a new standard of care (NSOC) therapy 
has been approved for patients infected with HCV genotype 1, by including one or 
more DAAs in combination with IFN-α-PEG and/or RBV [67, 92, 129, 182]. 
Unfortunately, therapies including interferon present several drawbacks resulting 
from IFN inaccessibility in some countries, its tolerability, and patient response to 
treatment (some genotypes of HCV respond better than others) [36]. In addition, 
adverse effects such as rash have also been associated with the NSOC [171], but 
even more worrying is the high cost of the newly approved DAAs, particularly for 
Latin American countries [140, 177].
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As a blood-borne pathogen, the main route of HCV transmission is direct or 
indirect exposure to any source of contaminated blood: transfusion of unscreened 
blood or blood products, intravenous drug use, use of poorly sterilized surgical aids, 
organ transplants, and work-related accidents in healthcare centers, as well as verti-
cal transmission from mother to child, although the latter is much less common 
[174, 195, 196].

HCV belongs to the family Flaviviridae and is classified as a member of the 
Hepacivirus genus, mainly because of specific genome features [174]. HCV is a 
single-stranded, positive-sense RNA virus with a genome approximately 9600 
nucleotides in length. Most of the genome is composed of a single open reading 
frame (ORF) that encodes three structural (core, E1, E2) and seven nonstructural 
(p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B) proteins (Fig.  17.1) [15, 52]. 
Functionally important short noncoding regions at each end of the genome (5′-NCR 
and 3′-NCR) are required for its translation and replication [62, 95]. Differing from 
the canonical eukaryotic mechanism of translation initiation (cap-dependent), this 
virus utilizes a different mechanism which is dependent on an internal ribosomal 
entry site (IRES) located within the 5′-untranslated region (5′-UTR), which inter-
acts directly with the 40S ribosomal subunit [148].

Because of the self-encoded and error-prone RNA-dependent RNA polymerase 
and to the selective pressure exerted by the host immune system, HCV has diversi-
fied into seven major genetic lineages (genotypes 1–7) (Fig. 17.2) [52, 176] which 
differ in 31–33% of nucleotide sites along the complete genome [174]. Genotypes 
1–6 of HCV contain a series of more closely related subtypes that typically differ 
from each other by at least 15% in nucleotide positions within the coding region 
[176]. Subtypes 1a, 1b, and 3a are widely distributed and account for most of the 
infections in Western countries, including in Latin America [195].

HCV genetic variability is not evenly distributed across the viral genome. The 
regions of the genome involved in translation and replication are the most con-
served. The 5′-NCR and the core region exhibit 90% and 81–88% sequence identity 
between distant strains, respectively [23, 149]. The regions coding for the mem-
brane glycoproteins E1 and E2 are the most variable [9]. The hypervariable regions 
1 and 2 (HVR1 and HVR2) of the E2 gene are the least conserved, with a sequence 

Fig. 17.1 Organization of hepatitis C virus (HCV) genome and hepatitis C virus polyprotein pro-
cessing. Schematic representation of the 9.6-kb positive-stranded RNA genome. The 5′- and 
3′-non- coding regions (NCRs) are shown as well as the internal ribosomal entry site (IRES)-driven 
translated polyprotein precursor, which is processed into the mature structural and nonstructural 
proteins. Nucleotide and amino acid positions are shown by numbers on the upper and lower part 
of the scheme, respectively. (Modified from Echeverría et al. 2015 [52])
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homology of only 50% between different isolates [75]. As many other RNA viruses, 
HCV has large population sizes, short generation times, and high replication rates 
[48], all well-known factors that contribute to its high genetic variability.

2  Prevalence of HCV Infection in Latin America

HCV prevalence data among the different countries in Latin America are difficult to 
gather. As the prevalence describes the proportion of a particular population that is 
infected with this virus at a certain time point, it is therefore needed to have precise 
data on the infected patients in each country to correctly assess this matter. Many 
efforts have been made to address this issue, in particular in risk populations as well 
as blood bank donors; however, quantifying HCV infection prevalence among the 
general population has proven to be the most difficult task. Nevertheless, the World 
Health Organization has been able to collect comprehensive information regarding 
HCV seroprevalence as well as viremic HCV prevalence in different regions [135, 
197] (Table 17.1); the former has been estimated around 1% and the latter around 
0.8%, with subtle variations depending on the specific region considered.

Specific information for each country has relied upon varied studies, all of which 
have their limitations, particularly regarding the population being recruited for the 
study and the methods used for screening HCV infections. Regarding HCV preva-
lence in the general population, there have only been a few complete studies in 
Argentina [151], Brazil [145], and Mexico [76, 108] reporting an overall lower 
prevalence than for Latin American regions together (0.32% between years 2000 

Fig. 17.2 Evolutionary tree of the seven genotypes and all known subtypes of the hepatitis C 
virus. The tree was constructed with the maximum-likelihood method using GTR + I + G based on 
a 307-nucleotide sequence from the NS5B-coding region. Sequences were extracted. (From Yusim 
et al. 2005 [204]; modified from Echeverría et al. 2015 [52])
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and 2007, 1.38% between years 2005 and 2009, 0.27–0.35% in 2012 and 2010, 
respectively), which may indicate an overestimation of the figures by the World 
Health Organization or an underestimation by these studies due to the selected pop-
ulation. Some other works report the HCV prevalence in specific locations within 
different countries, but this cannot be considered as the prevalence for the whole 
country as the population studied was restricted to a particular area, city, or charac-
teristics: 0.4% among the Belize Defence Force by 1993 [37], 0.8% in Amerindian 
populations in Venezuela in 2002 [120], 0.66–5.68% in different Colombian regions 
before 2011 [6], and to 5.8% in the Brazilian Eastern Amazonas Region in 2010 
[108]. Unexpectedly, a much higher seroprevalence (11.7%) was found in Lima, 
Peru, in 1994 [165].

Some countries have also attempted to report incidence rates or number of cases 
for a particular time period; for example, Brazil reported that of a total of 151,056 
hepatitis cases recorded between 2001 and 2012, 30.3% corresponded to hepatitis C 
infections [78]; in Uruguay, 904 new HCV infections were reported to the Ministry 
of Health between years 2009 and 2012 [10], accounting for 0.026% of the country 
population.

Exhaustive studies have been performed to address HCV seroprevalence in blood 
donor banks. These studies have shown lower prevalence rates in this group than in 
the general population [17, 30, 107, 127, 137, 165, 189]. The Pan-American Health 
Organization has, additionally, gathered data on anti-HCV screening in blood banks 
all over Latin America [135], and by 2011, the Latin American country with the 
highest HCV prevalence was Guatemala (0.65%) whereas the lowest, 0.03%, was 
registered in Chile.

In contrast, among high-risk populations such as multi-transfused patients, drug 
users, commercial sex workers, and HIV-coinfected patients, HCV prevalence rates 
tend to be higher (see Alonso et  al. 2015 for a detailed review); 12.7% of multi- 
transfused patients in Uruguay [106] and more than 50% of hemophiliacs and patients 
undergoing hemodialysis in Peru [165] exhibited HCV antibodies; despite these 
 intermediate prevalence rates, the lowest found in hemodialysis patients was reported 
in Argentina, 3.6% [112], and the highest in Chile, 83.9% [109]. Lower ranges in 
seroprevalence were reported for commercial sex workers, ranging from 0% to 8.2% 
in female sex workers from Panama [77] and Argentina [138],  respectively. HCV 

Table 17.1 Estimated prevalence of hepatitis C virus (HCV) infection by 2013 [74, 197] in 
different regions in Latin America

Region Anti-HCV prevalence (CI)a (%) Viremic HCV prevalence (CI)b (%)

Caribbean 0.8 (0.2–1.3) 0.6 (0.1–0.9)
Andean region 0.9 (0.4–1.3) 0.6 (0.3–0.9)
Central region 1.0 (0.8–1.4) 0.8 (0.6–1.1)
Southern region 1.2 (0.5–2.1) 0.9 (0.4–1.6)
Tropical region 1.2 (0.9–1.2) 1.0 (0.7–1.0)

CI confidence interval
aExposure to HCV indicated by the presence of antibodies against the virus
bChronic HCV infection indicated by the presence of viral RNA
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 prevalence among drug users seems to be higher in injection drug users (IDU) [5], as 
much as 95% in two cities in Mexico [63] and lower in non-injection drug users, being 
mostly in the range 0% to 14% [5]. For HIV-coinfected patients, most of the studies 
focus on genotyping HCV and analyzing response to treatment; however, one study in 
Venezuela reported a seemingly low prevalence of coinfection with HCV, 0.7% [87].

In summary, all these data suggest an estimate of 4.9 million persons infected 
with HCV in 2013 in all Latin America [197].

3  Molecular Epidemiology and Evolutionary History

Epidemiology is defined as the study of the distribution and determinants of health- 
related states and the application of this study to the control of diseases and other 
health problems. This field has been one of the most studied for hepatitis C infection 
in many countries in Latin America, and, therefore, there is a great deal of informa-
tion concerning HCV genotype distribution. In addition, bioinformatics has allowed 
researchers to investigate the evolutionary history of this virus in our region, being 
able to identify different introductions in different countries, the dynamics of the 
population dispersal, and the approximate time of the most recent common ancestor 
(MRCA).

Historically, 5′-NCR and NS5B regions have been those most frequently used to 
genotype and subtype HCV isolates, respectively. Until the early 2000s, the prefer-
ential genotyping method involved partially amplifying the 5′-NCR by polymerase 
chain reaction (PCR) and subsequently performing restriction fragment-length 
polymorphism analysis (RFLP), allowing us to determine mainly the genotypes 
(and for genotype 1 also the subtypes). However, researchers in Uruguay, Argentina, 
and Colombia started reporting a mutation within that region (G107A) that seems to 
incorporate a new restriction site for the RsaI enzyme and therefore prevents the 
correct subtyping of genotype 1 isolates bearing this change [31, 32, 58, 68, 70, 
122]. This finding was regarded as a regional diversification of HCV, although this 
specific mutation has also been found in isolates from other parts of the world [68]. 
These findings, together with the advent of affordable sequencing technologies, 
have caused a shift from this RFLP methodology, to direct sequencing of the regions 
of interest followed by phylogenetic studies to genotype (5′-NCR) and subtype 
(NS5B) HCV isolates.

Genotype distribution is similar for some neighboring countries; however, subtle 
differences can be found in subtype distribution.

In Chile, the most widespread subtype is 1b, accounting for at least 72.71% of 
the infections, followed by 3a (16.53%) and 1a (7.87%). In lesser proportion, minor 
lineages have also been detected (genotype 2, 1.98%; genotype 4, 0.6%; genotype 
5a, 0.28%; genotype 6, 0.06%) in a cohort of 1766 HCV-infected patients from dif-
ferent Chilean regions [191]. However, it is important to note that the genotyping 
method was PCR-RFLP of the 5′-NCR region. Another study, with fewer patients 
(n = 57) and genotyping by direct sequencing of the NS5B region, detected a higher 
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proportion of genotype 1b (82.4%) [103]. Although the difference can be attribut-
able to the method used, the sampling number may have also influenced these 
results. Subtype 1b also seems to be the most widespread in the Caribbean Island of 
Martinique in mono-infected patients (78.7%), followed by subtype 1a (18%) and 
genotype 2 (6.8%) [114]. Similar genotype distributions have been found in differ-
ent studies in Colombia and Cuba, indicating once again that the most widespread 
subtype is 1b, followed by 1a, and to a lesser extent 2, 3a, and 4 [58, 121, 164, 200]. 
In Mexico, different authors have found conflicting results concerning the most 
prevalent subtype, 1b [108] or 1a [139]. Although detection of genotype 3 seems to 
be increasing over time, there is no doubt that genotype 1 is predominant in the 
country [128], as it is also in Peru [165].

In contrast, most Brazilian and Uruguayan reports indicate 1a as the most preva-
lent subtype, followed by 3a, and then by 1b, which suggests a different evolution-
ary history of HCV in these countries [27, 31, 99, 105, 119, 173]. Also, few cases of 
genotype 2, 4, and 5a have been reported in Brazil [99, 119, 159, 205].

A different situation is seen in Venezuela, where subtypes 1a, 1b, and genotype 
2 are almost equally distributed [87, 154]; the rest of the genotypes are found in less 
than 5% of the infected patients.

Finally, Argentina reflects a distinct scenario, where the distribution of each gen-
otype varies significantly between different regions and provinces, 2c being as prev-
alent as genotype 1 in central Argentina [102, 158], 1a the most widespread subtype 
in the touristic city of Mar del Plata (76%) [44], or similar prevalence rates between 
1a, 1b, and 2c (25% each) when analyzing the general population from 12 provinces 
representing all Argentinean regions [151].

By means of phylogenetic analyses, the evolutionary history of HCV in different 
countries has been addressed. This approach has also allowed characterizing the 
variability of different strains and how related they are to each other. Integrating 
epidemiological to genetic models by employing coalescent methods has also been 
crucial to infer changes in population sizes (population dynamics) and to trace back 
the most recent common ancestor (MRCA). Not only the NS5B region has been 
widely used for evolutionary studies, but also the core, E2 and NS5A regions [27, 
33, 43, 45, 69, 73, 98, 99, 103, 122, 132, 167, 178].

Bayesian coalescent studies have shown rather complex evolutionary histories of 
HCV in Uruguay [27], Brazil [99], and Argentina [44, 45, 71, 102], where multiple 
introductions of a given subtype have been inferred. The epidemic history in 
Uruguay and Argentina suggests multiple introductions of subtypes 1a, 1b, and 3a 
(only for Uruguay), with a few country-specific strains being disseminated locally 
[27, 45]. Similar evolution patterns were observed in Brazil [99], but with the dis-
semination of a major clade for subtype 1a, whereas for 1b and 3a, the evidence 
indicates concurrent dissemination of multiple lineages.

In reference to the time of the MRCA (tMRCA) for subtypes 1b and 1a, these are 
surprisingly alike between different countries in our region. For Uruguay, Brazil, 
and Argentina, MRCA has been estimated around the 1920s for 1b and about 40 to 
60 years later for 1a [27, 44, 45, 71, 99, 102]. It seems that the 1b population is in a 
steady state nowadays, while 1a is still under expansion. In Colombia and Cuba, 
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subtype 1b appears to have been introduced at a later time point (1950s and 1970s, 
respectively); however, the rate of population growth reached a steady state soon 
after the 1990s [73, 121].

The demographic history of HCV in Chile seems a little different; despite mul-
tiple introductions of subtype 1b, the tMRCA appears to be earlier than in the neigh-
boring countries, dating between 1893 and 1901, indicating an earlier introduction 
of HCV in Chile. Venezuela appears to be one of the first countries in Latin America 
in which HCV seems to have spread, but opposed to the rest, the initial subtype was 
2j and its tMRCA was estimated around 1785, having been followed by 1b around a 
century later and by 1a around the 1920s [178].

It is clear that HCV spread has followed different pathways depending on the 
country, but it seems that neighboring countries tend to exhibit rather similar geno-
type distributions and epidemic histories. All these abundant data are undoubtedly 
relevant for epidemiological surveillance of HCV dispersal as well as for choosing 
therapeutic options, which, as is discussed in the next sections, is highly dependent 
upon the infecting genotype.

4  HCV Variability: Mutation, Quasispecies, 
and Recombination

HCV evolution is a dynamic process [38] driven by different mechanisms to gener-
ate genetic variation, among which nucleotide mutation seems to be the most impor-
tant, particularly in RNA viruses. These mutations are primarily the result of an 
error-prone replication cycle as a consequence of using an RNA-dependent RNA 
polymerase that lacks proofreading activity [174]. HCV high replication rate, large 
number of progeny and mutation rate (10−4 substitutions/site/round of replication 
[13, 41]) give rise to a large number of different but genetically related viral variants 
during infection, which circulate in vivo as a complex population commonly known 
as a quasispecies cloud [20, 47, 113]. At a particular point of infection, the quasispe-
cies distribution reflects the balance between the generation of new variants, the 
necessity to preserve crucial viral functions, and the positive selective pressure 
exerted by the environment. Quasispecies dynamics confers RNA viruses the ability 
to adapt easily to any changing environment. This fact represents one of the major 
complications for the control and prevention of RNA viral diseases [59] since, by 
means of generating and selecting fitter variants, viruses can escape control by anti-
viral drugs [141].

Although the analysis of quasispecies evolution is a complex task, several studies 
around the world have attempted to explore the genetic variability within  quasispecies 
level as a means to predict response to antiviral therapy [4, 39, 40, 42, 85, 153, 187]. 
However, results seem conflicting on whether a higher diversity indeed predicts 
non-response (NR) and a lower level predicts SVR. Cristina et al. [39] showed that 
response to antiviral therapy was independent from genetic variability within quasi-
species populations at the beginning of therapy. Opposite to these findings, Jardim 
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et al. [85] reported that low nucleotide diversity pre-therapy was associated with 
viral clearance. Dissimilar results were also found along treatment [4, 187]. These 
conflicting results could be explained by the use of different methodological 
approaches as well as the distinct genomic regions that were used to carry out these 
studies. The inconsistency in the results highlights the need for a deep analysis and 
comparison of different methods for studying quasispecies variability.

HCV also resorts to recombination, as well as mutation, to generate variability. 
Therefore, recombination is regarded as a key mechanism for the production of new 
genomes with selective growth advantage [198]. RNA recombination involves rep-
lication of genomic RNA, in the middle of which the viral RNA-dependent RNA 
polymerase complex switches from one parental strand to another. This template 
strand exchange mechanism is known as “copy choice” [34]. Recombination in 
HCV has been reported between different genotypes (inter-genotypic), between dif-
ferent subtypes (intra-genotypic), and even between different variants of the same 
quasispecies (intra-quasispecies) in different geographic locations. However, it has 
been rarely reported in Latin America [33, 126]. The first evidence for the possible 
existence of HCV recombination in our continent came from the analysis of a few 
HCV strains from Honduras in which partial sequences from different regions of the 
viral genome resulted in an HCV-discordant genotype [203]. However, no case of 
inter-genotypic recombination has been reported in Latin America, despite the exis-
tence of several from other regions [19, 46, 50, 82, 90, 91, 96, 100, 101, 123, 124, 
133, 180, 201]. Nevertheless, examples of intra-genotypic recombination (1a/1b) 
have been identified in Peru [33] as well as in Uruguay [126]. As for intra- 
quasispecies recombination, only three reports have been published worldwide 
[125, 136, 170], but none of them corresponds to HCV variants isolated from Latin 
American patients. However, given that one of the detections has been reported by 
Uruguayan authors [125], it is clear that Latin American researchers have the means 
to detect these recombination events within a host, and although it seems to be more 
difficult, it is an attainable aim provided that the variability of the region under study 
allows the differentiation of the parental genomes.

It is worth noting that recombination may impact how patients respond to antivi-
ral therapies as well as vaccine development, which makes it clearly important to 
determine the extent to which this mechanism plays a role in HCV evolution [126].

5  Antiviral Therapy and Predictors of Response 
to Treatment

5.1  Standard of Care: Pegylated Interferon-α and Ribavirin

As was mentioned earlier, the standard of care for HCV treatment has been facing 
numerous changes in the past 6 years. Historically (and up to 2010), the only avail-
able treatment was dual therapy, which involves the coadministration of pegylated 
interferon-α (IFN-α-PEG) and RBV for 24 or 48 weeks, depending mainly on the 
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infecting HCV genotype. Beginning in 1992, the first drug to be used was IFN-α in 
monotherapy, but the SVR rates were less than 20% in genotype 1 and 50% in geno-
types 2 and 3 [152]. The conjugation of a polyethylene glycol (PEG) residue to IFN 
and the coadministration of RBV, a nucleoside analogue, increased those rates to up 
to 50% in genotype 1 and to 70–80% in genotype 2 or 3 [66]. The PEG residue 
enables a longer IFN half-life, and RBV contributes to viral eradication by introduc-
ing mutations to an unbearable level into the viral genome. Although the addition of 
PEG and the coadministration of RBV improved the SVR rates, this is still insuffi-
cient for genotype 1-infected patients. This treatment has several secondary effects 
(flu-like symptoms, hemolytic anemia, and depression) and is contraindicated in 
patients with autoimmune or depressive disorders and in those with cerebrovascular 
diseases [14]. Moreover, adherence to treatment is low as a consequence of both 
secondary effects as well as the parenteral route of IFN administration (injection).

5.2  New Standard of Care: Direct Antiviral Agents

The reasons outlined earlier prompted the development of new therapeutic agents, 
mainly aiming at inhibiting viral proteins, the first being approved in 2011 [66].

These new antiviral agents, known as DAAs (direct antiviral agents), target three 
different viral proteins vital to the viral cycle: the protease NS3-4A, the polymerase 
NS5B, and the protein NS5A (involved in many different steps throughout the repli-
cation cycle). Their antiviral effectiveness has proven to be much higher (80% to 
almost 100% depending on patient characteristics) than dual therapy when combined 
with IFN-α-PEG/RBV or even in IFN-free regimens, combining two or three differ-
ent DAAs [142]. Furthermore, they exhibit fewer adverse effects, and because they 
are administered orally, compliance to treatment is higher [11]. Numerous DAAs 
have already been approved around the world [181]: telaprevir (TVR), boceprevir 
(BOC), simeprevir (SMV), asunaprevir (ASV), vaniprevir (VPV), and paritaprevir 
(PPV, PTV) (NS3-4A inhibitors); sofosbuvir (SOF) and dasabuvir (DBV, DSV) 
(NS5B inhibitors); and daclatasvir (DCV), ledipasvir (LDV), and ombitasvir (OBV) 
(NS5A inhibitors). Many of these are also available in Latin America.

5.3  Identification and Characterization of New Anti-HCV 
Drugs

Even though all these agents have been developed in industrialized countries, 
researchers in Latin America have done considerable work focused on the 
 identification or characterization of new anti-HCV drugs [16, 57, 86, 97, 111, 150, 
162, 185].
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In reference to the synthesis and characterization of novel inhibitor drugs against 
the polymerase, many compounds have been described in Latin America, including 
indol-based compounds [97] and isoflavonoids [57, 111]. As for potential NS3-4A 
inhibitors, many products from the Amazon region were evaluated by molecular 
dynamics simulation studies [150]. The results of this work showed that some of 
those compounds seem to be promising as novel anti-HCV therapies. On the other 
hand, caffeine [16], natural compounds isolated from Brazilian plants [86], and ace-
tylsalicylic acid [162, 185], also were shown to be efficient inhibitors of HCV rep-
lication and translation in cell culture-based assays.

5.4  Viral Genetic Factors Associated with Response 
to Treatment

Several factors have been associated with response to treatment in HCV-infected 
patients. Some have been essential to decide the length of dual therapy with IFN and 
RBV; others have become more important with the advent of direct antiviral drugs. 
These factors can be classified as virus- or host-related factors [160]. Among the 
pretreatment viral factors, it has been long recognized that the virus genotype is one 
of the strongest baseline predictors of dual therapy: genotype 1 has shown the low-
est SVR rates (around 50%) [66]. This factor remains important with the new stan-
dard of care therapies with protease inhibitors (PI) because these were designed in 
a genotype-specific manner. Furthermore, triple therapies including a PI in geno-
type 1-infected patients have shown that SVR rates are slightly higher in patients 
infected with genotype 1b because resistance-associated variants (RAVs) are more 
frequent in genotype 1a [84, 94, 166]. Another well-known pretreatment factor 
associated with response to dual therapy is low baseline HCV load, which has been 
shown to be a predictor of SVR [18, 207].

Additional viral factors include quasispecies complexity as well as mutations/
substitutions in different regions of the viral genome/proteins. The genetic hetero-
geneity of the ISDR domain of HCV NS5A (IFN sensitivity-determining region) 
showed a correlation to IFN response, meaning that in most cases a higher number 
of substitutions within the ISDR was observed in responding patients [55, 144, 
194]. Latin American studies have also found similar results [21, 22, 168].

Concomitant with the introduction of DAAs to treat HCV infections, the detec-
tion of RAVs has become of utmost importance all around the world. In our region 
substantial work has been done in Brazil to address this issue [25, 28, 79, 80, 104, 
131, 146, 206], but data on other countries are scarce, with only a few reports from 
elsewhere: Argentina [60, 88, 169], Venezuela [88], Mexico [60], and Uruguay [54].

The main role of the NS3-4A protease is to cleave the viral polyprotein to render 
individual proteins. Therefore, drugs that bind to its active site prevent the viral 
cycle from continuing by blocking replication by the lack of a cleaved polymerase. 
Because a more diverse choice of approved PIs has been available for a longer time 
than inhibitors of NS5A and NS5B, numerous data exist concerning RAVs in the 
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NS3 coding region. The vast majority of these RAVs map near the catalytic triad resi-
dues (His57, Asp81, Ser139) in the tertiary structure of the protease. Most substitu-
tions exhibit cross-resistance to more than one PI, such as V36A/G/L/M, F43I/L/S/V, 
T54A/S, V55A/I, Q80K/L/R, S122R, R155G/K/S/T, A156S/T/V, D168A/G/V, and V/
I170A/T [193, 199]. Others confer resistance to one drug only: Q41R (SMV), I132V 
(TVR), S138T (SMV), V158I (BOC), M175L (BOC) [193, 199].

In reference to RAV circulation in the Latin American region, the deep sequenc-
ing approach as well as the mismatch amplification mutation assay (MAMA) PCR 
method allowed detection of drug resistance variants present at very low frequen-
cies in both Mexico and Argentina (1–6%) [60, 169]. On the other hand, Brazil 
reported HCV isolates with baseline RAVs in 3.2% to 18.9% of DAA treatment- 
naïve patients [25, 104, 146, 206]. Surprisingly, a higher frequency of baseline 
RAVs has been found in Uruguayan patients infected with HCV genotype 1 (25%) 
[54].

With respect to Q80K, a mutation associated with resistance to SMV, it has been 
found at a high prevalence among treatment-naïve HCV carriers in the U.S. (46%) 
and in Europe (4–16%) [131, 193], whereas in Brazil it is less than 6% [79, 146]. In 
Uruguay, although the number of samples analyzed was small (n = 20), Q80K/L 
was found in three patients [54].

NS5A and NS5B proteins seem to have a higher resistance barrier, and therefore 
fewer positions have been described as RAVs [53, 130]. The most important substi-
tution conferring resistance to SOF (a nucleos(t)ide analogue, inhibitor of NS5B) is 
S282T, but others have been associated with treatment failure as well, such as 
L159F, C316N, and V321A. Substitutions in C316 are, together with S556G, impli-
cated in resistance to DSV (a non-nucleoside inhibitor of the polymerase). As for 
RAVs to NS5A inhibitors, the primary mutations are M28T, Q30E/H/R, L31F/M/V, 
P32L, and Y93C/H/N.

Only three studies have been undertaken in our region to gain insight into resis-
tance profiles against NS5A and NS5B inhibitors. The only study addressing NS5A 
RAVs documented several mutations in the consensus sequences, including M28T, 
Y93H, and L31M in at least 7% of the 107 treatment-naïve patients recruited [147]. 
NS5B S282T substitution was not found in Argentina [169], Brazil [28], or 
Venezuela [88]; however, C316N seems to be rather frequent in both Brazil and 
Venezuela, being present in 24% and 18% of genotype 1b-infected patients, 
respectively.

Other types of drugs are also under development, the most promising being mira-
virsen, a novel therapeutic agent targeting a host factor. Miravirsen is currently in 
phase 2 clinical trials [186], and it is aimed at inhibiting HCV in an indirect way by 
targeting miR-122, a liver-specific micro-RNA highly expressed in hepatocytes that 
is essential for HCV replication cycle [89]. Although results are promising given its 
broad antiviral activity and relatively high resistance barrier compared to DAAs 
[134], there are safety concerns because critical cellular functions are attributed to 
miR-122: maintenance of liver homeostasis as well as tumor-suppressor activity 
[83]. In light of these findings and bearing in mind the variety of RAVs already 
described, other alternatives to target HCV directly are being studied in Latin 
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America, such as RNA interference targeting five different regions of the genome 
[24] or the use of catalytically active DNA molecules capable of cleaving RNA 
upon binding to it [163].

As can be concluded from the studies already mentioned, there are as many inter-
esting ongoing studies as there is still much to be done in the remaining Latin 
American countries to provide useful information for physicians before assigning a 
particular treatment to a given patient or even developing newer therapeutic 
strategies.

5.5  Host Factors Associated with Response to Treatment

So far, we have addressed only viral genetic factors, but several host factors have 
also been shown to be involved in the development of HCV infection and the 
response to therapy [160], apart from miR-122, discussed earlier. African-American 
race and advanced fibrosis or cirrhosis are associated with lower response rates, 
when compared to other races and less liver damage. Furthermore, since 2009, sev-
eral single-nucleotide polymorphisms (SNP) near the interleukin-28B gene (IL28B), 
also known as interferon-lambda 3 (IFN-λ3), have been reported to influence 
response to dual antiviral therapy (IFN-α-PEG plus RBV) [65, 155, 179, 183, 188, 
202]. The SNPs identified through genome-wide association studies (GWAS) were 
mainly three: rs12979860, rs8099917, and rs12980275. For every SNP, risk or unfa-
vorable alleles have been determined: rs12979860, T; rs8099917, G; and rs12980275, 
G. When combined in homozygosis (TT, GG, or GG) or heterozygosis with the 
major allele (TC, GT, or GA), these genotypes are associated with non-response to 
treatment and to lower rates of viral clearance. As these results have been validated 
in numerous clinical studies, IL28B genotyping has become important to assist cli-
nicians with respect to the best therapeutic regimen to adopt for each patient; in 
particular, to decide the length of IFN-containing therapies or the implementation of 
a DAA-containing regimen.

Only a few countries in Latin America have investigated IL28B SNPs allelic and 
genotypic frequencies: Chile [8, 192], Mexico [61, 72, 118, 175], Argentina [64, 
161], Brazil [29, 56, 156, 157, 172, 190], and Uruguay (unpublished data). Despite 
some discordant results, most of these studies reflect an association between favor-
able IL28B genotypes and spontaneous or treatment-induced viral clearance. 
Therefore, they cannot be denied as important and useful factors to consider when 
deciding on a particular therapeutic strategy.

Another interesting finding is that the frequency of protective alleles seems to be 
significantly lower in Amerindian and admixed populations from Mexico [72] and 
Argentina [184]. Similarly, in Uruguay, preliminary studies indicate that the fre-
quency distribution for rs12979860 and rs8099917 genotypes among general popu-
lation resembles that of an admixed population, instead of that of European ancestry. 
As observed for most other countries, genotype distribution varies when comparing 
healthy individuals and infected patients, but these changes seem to be statistically 
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significant only when analyzing rs12979860 SNP (unpublished data). In Brazil, 
similar observations were made with respect to African descendants, who show a 
higher frequency of unfavorable genotypes [29]. Despite some discordant results, 
most of the studies do indeed reflect an association between favorable IL28B geno-
types and spontaneous or treatment-induced viral clearance. Therefore, these cannot 
be denied as important and useful factors to consider when deciding on a particular 
therapeutic strategy.

In fact, all the data mentioned throughout this section, if anything, highlight how 
imperative it is for the rest of the countries in our region to focus on characterizing 
and analyzing all the factors that influence a patient’s response to anti-HCV therapy, 
as a way of evolving to a more personalized and effective medicine.

6  Vaccine Candidates

Despite worldwide efforts to develop a prophylactic vaccine against HCV, it remains 
elusive. Nevertheless, several Cuban researchers have been actively working on vac-
cine candidates for the past 15 years [1–3, 7, 12, 26, 49, 51, 115–117]. Most of the 
work focused on the main HCV antigens: the core protein and the E2 glycoprotein. 
The successful heterologous expression of these proteins and chimeric ones in yeast 
(Pichia pastoris) [116] or bacteria (Escherichia coli) [3] indicated that it is feasible 
to generate HCV vaccine candidates that can elicit both humoral and cell- mediated 
immune responses in mice, sheep, and monkeys [1, 2, 115]. Besides protein- based 
candidates, DNA-based formulations have also been investigated. Vaccination of 
mice with a plasmid containing a truncated variant of the core was able to induce a 
slow but potent immune response [51]. Furthermore, coadministration of a combina-
tion of a plasmid encoding the first 650 amino acids of the polyprotein and a protein 
comprising the first 120 amino acids of the core also showed potent immune 
responses in rats [12] and in humans [26], with no observable toxicity or adverse 
local or systemic alterations. These results are promising because vaccination with 
this combination seems to be safe and well tolerated; however, further studies are 
needed to evaluate these features in a larger cohort of individuals.

7  Concluding Remarks and Future Challenges

As can be appreciated, a great amount of work has been pursued in Latin America 
on HCV molecular evolution, although there are still numerous countries for which 
data on HCV infection are scarce or not available, or even where studies are lacking. 
Additionally, mainly because of budget constraints, many studies have been ham-
pered or their development has been slow when compared to industrialized coun-
tries. These facts highlight the main problem that Latin America faces when coping 
with epidemics: the difficulty in keeping up with the most up-to-date findings and 
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techniques. Nevertheless, the work described in this chapter proves that the research 
in our region cannot be underestimated and that there are strong and well-prepared 
groups to face any necessary study to help in controlling and preventing HCV infec-
tion throughout Latin America.
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1  Introduction

The hepatitis D virus, also known as hepatitis delta virus (HDV), is the sole 
 representative of the Deltaviridae family, genus Deltavirus. The HDV was described 
in 1977 by Rizzetto et al. [37], and it is considered the most pathogenic among all 
hepatotropic viruses [20, 33, 38]. This defective virus depends on coinfection with 
hepatitis B virus (HBV) for its transmission, but its replicative cycle is independent. 
Remarkably, the HDV suppress other viral agent HBV replication and probably do so 
with hepatitis C virus (HCV) when the patient is infected by HBV/HDV/HCV [39].

Although the viral antigen particles serve as housing and protection for HDV 
[16], thus allowing transmission, infectivity, and de novo penetration in hepato-
cytes, the HDV replication is completely independent of HBV replication in hepa-
tocytes [24]. The HDV is still able to inhibit the synthesis of viral antigens during 
the superinfection in HBV carriers, particularly of the surface antigen (HBsAg) and 
core antigen (HBcAg) [26, 38].

The HDV genome sequence revealed a significant heterogeneity for this agent; 
the first three differentiated clones were identified and referred to as genotypes I and 
II (IIa, IIb) and III [18]. Later, other HDV genotypes had been described and named 
by Roman algorithms from I to VIII.  Each HDV genotype presents a unique 
 geographic distribution and different clinical course in terms of disease severity. 
Some data report that genotype I subtype Ia and genotype type III are the most 
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severe, and genotype II has been associated with less severe disease [24]. 
Nonetheless, in general, HDV causes severe forms of hepatitis, especially in hyper-
endemic areas, as in Africa and Western Brazilian Amazon [20, 22, 23] where cases 
of acute HDV infection frequently evolve toward fulminant hepatitis [19, 22, 23].

2  The Viral Agent

The HDV is biologically presented as a single satellite agent and human subviral 
particle that necessarily depends on the helping function promoted by the HBV, 
through its envelope protein (HBsAg), to complete its life cycle. HDV replication 
occurs exclusively in hepatocytes, yet no receptors for the HDV have been identified 
in these cells.

The HDV virion consists of a small spherical enveloped particle, ranging in 
diameter from 35 to 37 nm [30, 38] (Fig. 18.1). This particle is externally coated by 
the HBsAg and presents an internal ribonucleoprotein complex formed by the hepa-
titis D antigen (HDAg) and the circular genomic RNA.

The HDV is classified as an HBV satellite subvirus based on three biological 
properties: (1) the HDV is composed of small-size, single-stranded, circular, and 
faulty RNA; (2) it is unable to promote infection in the absence of HBV; and (3) it 
is dependent on the functional aid of a DNA virus [30, 38].

The HDV antigen (HDVAg) is composed of two proteins: a short one denomi-
nated HDAg-S, with a molecular weight of 24 kDa (195 amino acids), responsible 
for replication of viral genetic material (RNA), and the other called long HDAg-L, 
27 kDa (214 amino acids) used to inhibit RNA replication and to promote the RNA 
packaging of the virions [31, 38]. During viral replication, these two proteins are 
located in the nucleus of liver cells.

The HDV genome consists of a single RNA molecule with a length of 1.75 kb 
[30, 38]. After genomic denaturation, the RNA appears as a single, rolled, and 
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 circular particle containing 1676 to 1683 nucleotides. During HDV infection, HBV 
provides particles of HBsAg, which will work as actual envelopes for HDV, thus 
guaranteeing its integrity and the ability to become infective to humans [30, 38].

The genetic sequence of the HDV genome revealed a high level of heterogeneity. 
Three clones of the HDV were originally identified, differentiated, and referred to 
as types I, II (IIa and IIb), and III [11, 44]. However, recent studies analyzing the 
genome of the virus in Africa suggest the existence of three other HDV genotypes 
[11, 12, 18, 35, 41].

Several studies performed in the 1980s showed data on HDV infection in South 
America, but until that point there were no studies on the viral dynamics of this 
virus. Alvarado-Mora et al. [1] conducted an evolutionary analysis of hepatitis delta 
genotype 3 (HDV/3) prevalent in South America. The aim was to estimate the 
nucleotide substitution rate, to determine the time of most recent ancestor (TMRCA), 
and to characterize the epidemic history and evolutionary dynamics. Furthermore, 
they characterized the presence of HBV/HDV infection in seven samples collected 
from patients who died of fulminant hepatitis from the Colombian Amazon region 
and included them in the evolutionary analysis. This was the first study reporting 
HBV and HDV sequences from the Amazon region of Colombia. Of the seven 
Colombian patients, five were positive for HBV DNA and HDV RNA. Of these, two 
samples were successfully sequenced for HBV (sub-genotypes F3 and F1b), and the 
five samples that were HDV positive were classified as HDV/3. By using all HDV/3 
available reference sequences with sampling dates (n = 36), they estimated the 
HDV/3 substitution rate in 1.07 × 10−3 substitutions per site per year (s/s/y), which 
resulted in a time to the most recent common ancestor (TMRCA) of approximately 
85 years. Also, it was determined that HDV/3 spread exponentially from the early 
1950s to the 1970s in South America. This work discusses for the first time the viral 
dynamics for the HDV/3 circulating in South America. They suggest that the mea-
sures implemented to control HBV transmission resulted in the control of HDV/3 
spreading in South America, especially after the important rise in this infection 
associated with a huge mortality during the 1950s up to the 1970s. The differences 
found among HDV/3 and the other HDV genotypes concerning its diversity raised 
evidence of a different origin and/or transmission route [1].

There are few data regarding the biomolecular aspects of HBV/HDV coinfec-
tion. A cross-sectional study with 92 patients HBsAg(+)/anti-HDV IgG(+) followed 
at the Hepatitis Referral Centers of Porto Velho (RO), Rio Branco, and Cruzeiro do 
Sul (AC), Brazil, from March 2006 to March 2007 showed that in this area, HBV 
sub-genotype F2 is the most prevalent (40.2%), followed by the sub-genotypes A1 
(15.2%) and D3 (8.7%), 16.4% were other sub-genotypes or genotypes, 4.3% were 
discordant, and 15.2% were not amplifiable. HDV genotype 3 (HDV-3) was found 
in all the HBV/HDV-infected patients who could be genotyped for HDV, confirming 
that HDV-3 can associate with non-F HBV genotypes. However, HDV-3 mutant 
strains were found in 29.3% of patients and were more frequently associated with 
non-F HBV genotypes than were no mutant strains, suggesting that the mutation 
may facilitate association of HDV-3 with non-F HBV genotypes [4].
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More recently, a study was conducted to determine the serological prevalence 
and molecular features of HDV within an Amerindian community from Argentina 
exhibiting positivity for HBsAg and/or anti-HBc total Ig. Forty-six plasma samples 
were tested for the detection of total anti-HDV antibodies by enzyme-linked immu-
nosorbent assay (ELISA). Concomitantly, a partial RNA region coding for the delta 
antigen (HDAg) was amplified by RT-nested polymerase chain reaction (PCR) 
(RT-nPCR). In silico translation of DNA sequences into the amino acid (aa) 
sequence of HDAg-S (aa 110–195) and HDAg-L (aa 110–214) was performed. Of 
46 HDV nonreactive samples by ELISA, three were HDV RNA positive by 
RT-nPCR. These samples were anti-HBc-only positive, two of them identified as 
cases of occult hepatitis B infection (OBI). The three cases were HBeAg negative 
and showed normal ALT/AST levels. All sequences were ascribed to HDV genotype 
1, but exhibited nucleotide differences in HDAg-L coding region, among which 
mutations at codons 197 and 201, reportedly known to promote in vitro an unsuit-
able interaction with HBsAg, were observed [45].

3  Epidemiology

HDV infection occurs practically all over the world (Fig. 18.2), with highly endemic 
areas well documented in South America and sub-Saharan Africa [35].

The vaccination campaign against the hepatitis B virus (HBV) in the past 20 
years has decreased the HDV circulation in developed countries, but it is reentering 
Europe through immigration from Western countries. Currently, Mongolia and 
Pakistan have areas with the highest prevalence of the disease [36].

Fig. 18.2 Geographic distribution of infection by the hepatitis D virus (HDV)
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4  Epidemiology in Latin America

The highest prevalence of HDV in Latin America is found in the Western Amazon 
Basin region, including Brazil, Peru, Ecuador, Venezuela, and Colombia [5].

4.1  HDV in Brazil

In Brazil, the Jurua, the Solimões, and the Purus Rivers in the state of Amazonas are 
considered highly endemic regions for hepatitis B and D infections, including cases 
of fulminant hepatitis [5].

A recent study in Manaus City recruited 222 AgHBs individuals [130 blood 
donors and 60 outpatient subjects from an outpatient clinic; most of the participants 
(150) lived in Manaus City and the rest (63) in remote isolated communities]. The 
results showed that the HBV/HDV coinfection rate was 8.5% in blood donors and 
65% in outpatient subjects; of note, 47% of them were from the remote city 
Eirunepe, showing that the HDV is circulating in the remote cities of Amazonas 
State [13].

Most cases of hepatitis delta in Brazil are concentrated in the Western Amazon, 
a region highly impacted by this disease [12], affecting mainly children and young 
adults [35]. A study showed a prevalence of 20% HDV in VHB carriers in the 
Western Brazilian Amazon, and the infection spread to every population group, 
showing that this virus is disseminated throughout this region [25]. The HDV geno-
types found in the Western Brazilian Amazon were I and III, but genotype III carri-
ers were younger and showed more severe and symptomatic clinical presentations 
than the HDV genotype I carriers [32].

More recently, HDV infection has been also described among African-Brazilian 
isolated groups in northeastern Brazil [4]. A study evaluated the seroprevalence of 
HDV among HBsAg chronic carriers from Maranhão State, a region located in the 
northeast of Brazil. Among 133 patients, 5 had anti-HD, and 3 of them had also 
detectable HDV RNA. HDV genotypes were characterized using Bayesian phyloge-
netic analysis of nucleotide sequences from the HDAg coding region; HDV-3 was 
identified in 1 patient living in Maranhão State but born in the Amazonas State 
(Western Amazon Basin). Phylogenetic analysis shows that this HDV-3 sequence 
grouped with other HDV-3 sequences isolated in this state, which suggests that the 
patient probably contracted HDV infection there. Surprisingly, the other 2 patients 
were infected with HDV-8, an African genotype. These patients were born in and 
have always lived in Urbano Santos, a rural county of Maranhão State. Moreover, 
they had never gone to Africa and denied any contact with people from that 
 continent. This is the first description of the HDV-8 in nonnative African popula-
tions. Presumably, this genotype may have been introduced into Brazil through 
slave trade from West Africa during the sixteenth to eighteenth centuries. This result 
indicates that it is necessary to perform clinical and epidemiological studies to 
investigate the presence of this infection in other areas in Brazil [4].

18 Hepatitis D Virus



366

The existence of HDV superinfection in patients with chronic HBV infection 
shows that the Amazon basin offers environmental, social, cultural, and genetic 
characteristics that may contribute to HDV transmission [12]. In contrast, other 
regions of the country show very low HDV prevalence, either in risk groups or in the 
general population [24].

Severe cases of hepatitis caused by hepatitis B virus (HBV) or hepatitis D virus 
(HDV) are often seen in many Amazon countries, but there is a paucity of epidemio-
logical studies on viral hepatitis in this area. A cross-sectional study to investigate 
the prevalence of markers for HBV and HDV was performed around 2004 in the 
Brazilian Amazon. Of the 2656 analyzed samples, 89 (3.3%) were positive for 
HBsAg, and 1628 (61.5%) were positive for IgG antibody to HBcAg. Markers for 
HDV were found in 47 cases (1.7%). Antibodies to HDV were associated with an 
Amerindian ethnic origin, a lower educational level, a history of acute viral hepati-
tis, a history of malaria, male gender, tattooing, and older age. The most frequent 
HBV genotypes were A and F. This study showed a high prevalence of HBV and 
HDV in the Western Brazilian Amazon, as well as the predominance of HBV geno-
types A and F [27].

The HBV genotypes associated with HDV among Venezuelan Amerindian popula-
tions were genotypes I and III; only one HDV genotype I isolate was associated with 
HBV genotype D [42]. This coinfection triggered severe disease with acute liver fail-
ure and rapidly progressive chronic liver disease with a high mortality rate [37]. 
Although HBV and HDV share the same transmission routes, in certain northern areas 
of South America, such as the Brazilian and Venezuelan Amazon, HDV transmission 
seems to occur by inapparent exposure to probably related skin injuries [20, 34].

4.2  HDV in Colombia

In Colombia, cases of hepatitis D virus (HDV) infection have been officially 
described since 1985, mainly in the Amerindian population from Sierra Nevada de 
Santa Marta (North Caribbean Coast), Uraba (northwest), and Amazon (southeast) 
[15]. The incidence of HBV infection in Colombian Amazonas State in 2010 was 
7.7 times higher than the average of the country, and in 2011 the circulation of HDV 
genotype III in the Amerindian population was reported [1].

A recent study of serological prevalence of HBV and HDV and molecular biol-
ogy performed in 19 Amerindian communities with 861 individuals of Amazonas 
State in Colombia showed a prevalence of 43.5% of HDV infection with genotype 
III. A total of 23 of 861 individuals were positive for HBsAg detection by rapid test. 
Serological and/or molecular markers of HDV infection were demonstrated in 
43.5% (10 of 23) of samples from Amerindians. The phylogenetic analysis demon-
strated the exclusive circulation of HBV sub-genotype F1b of and HDV 3 in this 
population. Also a high frequency of HBV/HDV infection was found in the 
Amerindian (43.5%, 10 of 23). The circulation of HDV 3 and HBV sub-genotype 
F1b suggests a constant flow of these viral genotypes as a result of the interaction of 
the Amerindian populations from the Amazon basin [15].
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4.3  HDV in Argentina

A study conducted to determine the serological prevalence and molecular features 
of HDV within an Amerindian community in Argentina exhibiting positivity for 
HBsAg and/or anti-HBc total Ig analyzed 46 plasma samples for the detection of 
total anti-HDV antibodies by ELISA. Concomitantly, a partial RNA region coding 
for the delta antigen (HDAg) was amplified by RT-nested PCR (RT-nPCR). This 
study showed that 3 of 46 HDV nonreactive samples by ELISA were HDV RNA 
positive by RT-nPCR. These samples were anti-HBc positive only, and 2 of them 
were identified as cases of occult hepatitis B infection. These results provide evi-
dence of covert HDV infection even among occult hepatitis B infection, highlight-
ing the need to reevaluate the currently applied guidelines for HDV diagnostic 
algorithms [14]. The same study also analyzed the prevalence of HBV and HDV 
infection in 56,983 blood donors in Buenos Aires City and Misiones Province 
(Northeast Region) and found a prevalence of 0.12% for HBsAg and 1.68 for anti- 
HBc antibodies in Buenos Aires and 0.73% and 8.55 in Misiones, respectively, with 
1 case of HDV genotype I identified in Buenos Aires [14].

4.4  HDV in Peru

A cross-sectional study performed in 453 subjects (children and adults) living in 
three Apurimac region districts (Haquira, Challhuahuacho, Progreso) evaluated 
psychomotor development, intelligence coefficient, anxiety and depression levels, 
and the presence of communicable diseases (viral hepatitis B, C, and delta, syphilis, 
and HIV), heavy metals (lead in blood and cadmium, arsenic, and mercury in urine 
samples), and serum cholinesterase levels. The study aimed to determine the preva-
lence of communicable diseases, mental health, and environmental pollutant expo-
sure in populations living near the Las Bambas mining project before exploitation 
phase. However, no cases of HIV, HCV, or HDV were found [3].

5  HDV Transmission

Hepatitis D virus (HDV) perinatal transmission depends on the infectivity of HBV 
carriers, occurring in HBV carrier mothers with a high viral load [21, 38]. Risk fac-
tors for acute HBV/HDV coinfection and HDV superinfection in HBV carriers may 
differ (Table 18.1).

In a patient who is coinfected with HBV and HDV, clinical illness is usually 
moderate, but it can become severe with acute liver failure. Fulminant hepatitis 
from coinfections is more likely than with infection with HBV alone. Clinical ill-
ness may be biphasic, with two aminotransferase peaks, first from HBV and then 
from HDV, although a monophasic illness with a single peak of enzyme levels may 
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also be observed. Coinfection is usually self-limited, and clearance of HBV results 
in clearance of HDV.  Chronic HBV/HDV infection occurs in less than 5% of 
patients with coinfection.

The patient with previous chronic HBV infection provides a potential milieu for 
superinfection with HDV after exposure to someone infected with both HBV and 
HDV. This superinfection may be observed as an acute flare of hepatitis and some-
times leads to initial discovery of the underlying HBV infection, with misidentifica-
tion of the illness as acute HBV infection. Measurement of the IgM anti-HBc titer 
can assist in differentiating chronic from acute HBV disease; circulating titers are 
typically low (or negative) in chronic HBV carriers but high in patients with acute 
HBV infection. Testing for HDV should be considered in any patient with HBV 
who has an acute flare of hepatitis and risk factors for HDV infection.

Superinfection with HDV can be self-limited and result in clearance of both 
viruses, although this outcome is uncommon. Most patients with superinfection 
develop a progressive form of chronic hepatitis. Superinfection is often seen as a 
worsening clinical illness in a previously stable chronic carrier of HBV. Clinical 
illness with superinfection can be rapidly progressive, leading to cirrhosis within 2 
years in 10% to 15% of patients. The genotype of HBV may also have a function in 
the rapidity and severity of progressive disease. HDV will suppress HBV replication 
in simultaneously infected patients. Even HBV/HDV-infected patients with coexist-
ing hepatitis C virus (HCV) infection will have reduced HCV replication.

When the sequence of the HDV genome was analyzed in several studies, some 
authors reported evidences of HDV transmission between couples who have inter-
course. This finding suggests that sexual transmission of the HDV actually can 
occur. More recently, studies conducted in seven indigenous groups from the state 
of Amazonas suggest that sexual transmission is the most significant mechanism in 
the spread of HDV among this population [7]. Environmental and cultural factors 

Table 18.1 Risk factors for superinfection and coinfection of HBV/HDV

Risk factors for superinfection HDV acute in 
patients with HBsAg Risk factors for acute HBV/HDV coinfection

People who use injectable drugs People who have had blood transfusions
Prisoners (because of the vulnerability caused 
by sexual intercourse among interns or other 
practices, such as tattooing)

People who use injectable drugs

Hemophiliacs who have had blood transfusion 
(in case the blood is contaminated)

People who have tattoos

Hemodialysis patients (risk of contamination 
during the procedure)

People who have submitted to surgery in 
endemic areas

Institutionalized patients such as the elderly, or 
abandoned children who live in public housing

People who work in healthcare, such as 
doctors, nurses, pharmacists

People who work in healthcare, such as doctors, 
nurses, pharmacists

People who had engaged in sexual 
intercourse without male or female condoms

Homosexuals and prostitutes, because of the 
high number of sexual partners

Vertical transmission: the virus is transmitted 
from the mother to the child (always related 
to the infectivity of HBV)
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related to human behavior could also be implicated in the HDV transmission. On 
the other hand, the existence of HDV animal reservoirs or insect-related transmis-
sion, although suspected, has never been well documented [6, 20, 22, 38].

6  Clinical Aspects

The HDV incubation period ranges from 28 to 180 days; infection can occur at the 
same time (coinfection) or after HBV infection (superinfection). In most coinfection 
cases, no progress to chronicity is observed, and it is postulated that less than 10% of 
patients become HDV chronic [2]. In contrast, HDV superinfection, involving previ-
ously symptomatic or asymptomatic HBsAg carriers, has a poor prognosis [2, 8].

The role of the HDV in hepatocellular carcinoma (HCC) has been suggested, but 
the association of the HDV with hepatocellular carcinoma does not seem to be fre-
quent. However, superinfection with HDV in HBV carrier children can accelerate 
the progression to liver cirrhosis, and thus constitutes a risk for the development of 
hepatocellular carcinoma [7].

Peculiar fulminant HDV hepatitis occurred in tropical countries. The hallmarks 
of this disease in hepatic histology are mild to moderate eosinophilic necrosis, 
microvesicular steatosis (morula cells or spongiocytes), and the presence of HDAg 
at the core and cytoplasm of hepatocytes [18, 19].

Currently, it is suggested that the natural history of the disease and the prognosis 
of HDV infection are essentially related to the HBV genotypes [24].

7  Diagnosis

The laboratory diagnosis of HDV infection is complex for reasons of its own natural 
history (types of infection) and the use of several viral tests to identify both viruses. 
The clinical features alone have no specificity to define HDV diagnosis, so the serol-
ogy and molecular biology are important tools to establish the diagnosis of HBV/
HDV coinfection or superinfection.

The biochemical laboratory tests include the aminotransferases ALT and AST 
that announce the hepatic damage. The level of aminotransferases may be increased 
up to 25- to 100 fold; the bilirubin levels can also be high, and the prothrombin time 
can be prolonged in severe cases.

The serology is able to identify HBV markers such as HBsAg, anti-HBc, anti- 
HBc IgM, and HDV markers such as anti-HDV IgG and IgM. Table 18.2 shows the 
serological tests for hepatitis D and its clinical status.

The HDV is a pathogen that causes a severe and rapidly progressive disease of 
 hepatocytes. The measurement of viral load in the peripheral blood of patients with 
HDV infections is important for diagnosis, treatment monitoring,  and support for fol-
low-up studies of viral replication during the course of the disease. Botelho et al. [10] 
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have developed an assay capable of detecting and quantifying the abundance of HDV 
particles in serum samples, based on reverse-transcription quantitative PCR (RT-qPCR). 
Two standards for calibration were produced for determining the viral load of HDV: a 
cDNA cloned into a linear plasmid and a transcribed RNA. For validating this assay, 
140 clinical samples of sera were used, composed of 100 samples from patients who 
tested positive for anti-HDV and hepatitis B virus surface antigen (HBsAg) by ELISA, 
30 samples from blood donors, 5 samples monoinfected with hepatitis B virus (HBV), 
and 5 samples monoinfected with hepatitis C virus (HCV). The HDV RT-qPCR assay 
performed better when calibrated using the standard based on HDV cDNA cloned into 
a linear plasmid, yielding an efficiency of 99.8% and a specificity of 100% in the 
in vitro assays. This study represents the first HDV RT-qPCR assay developed with 
clinical samples from Brazil and offers great potential for new clinical efficacy studies 
of antiviral therapeutics for use in patients with hepatitis delta in the Western Amazon 
region [10].

8  Treatment and Prevention

Treatment of chronic HDV infection has as an endpoint the early elimination of 
both viruses, interruption of viral replication, reduction of aminotransferase levels, 
and control of the chronic inflammatory process to reduce the chances of progres-
sion to cirrhosis and HCC.  The treatment could include both viruses, HBV and 
HDV, depending on the viral load of each one of them.

In chronic HDV hepatitis, the only treatment so far available is interferon 
(INF)-α. Other antiviral drugs such as lamivudine, ribavirin, and adefovir dipivoxil 
have not exhibited a satisfactory therapeutic response [16, 29, 43]. In most studies, 
INF-2α at 9,000,000 IU or INF-2β at 10,000,000 IU subcutaneously, three times a 
week, was used, but without success. Although the therapeutic option available for 
patients with chronic HDV infection is limited to INF-α, with rare curative out-
come, a new drug, Myrcludex B, has appeared as the first-in-class entry inhibitor, 
inactivating the hepatitis B virus (HBV) and hepatitis D virus (HDV) receptor 
sodium taurocholate co-transporting polypeptide [9]. The interim results of a pilot 
trial on chronically infected HDV patients treated with Myrcludex B, or pegylated 
interferon-alpha (PegIFNα-2a) or their combination, indicated that Myrcludex B 
was well tolerated and no serious adverse event occurred [9]. Although HBsAg 
levels remained unchanged, HDV RNA significantly declined at week 24  in all 

Table 18.2 Interpretation of serological results for hepatitis D

Forms HBsAg Anti-HBc total Anti-HBc IgM Anti-HDV total Anti-HBs

Coinfection (+) (−) (+) (+)a (−)
Superinfection (+) (+) (−) (+)a (−)
Healing (−) (+) (−) (+)b (+)

aIgM and IgG anti-HDV in high titers
bIgM and IgG anti-HDV in low titers
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cohorts. HDV RNA became negative in two patients in the Myrcludex B and 
PegIFNα-2a cohorts and in five patients of the Myrcludex B + PegIFNα-2a cohort. 
ALT decreased significantly in the Myrcludex B cohort (six of eight patients), and 
HBV DNA was significantly reduced at week 24 in the Myrcludex B + PegIFNα-2a 
cohort. Virus kinetic modeling suggested a strong synergistic effect of Myrcludex B 
and PegIFNα-2a on both HDV and HBV [9]. Finally, in that study, Myrcludex B 
showed a strong effect on HDV RNA serum levels and induced ALT normalization 
under monotherapy. Synergistic antiviral effects on HDV RNA and HBV DNA in 
the Myr-IFN cohort indicated a benefit of the combination of entry inhibition with 
PegIFNα-2a to treat CHD patients [9].

More recently, PegIFN was evaluated alone or associated with nucleos(t)ide ana-
logues. This study has analyzed data from the Hep-Net-International Delta Hepatitis 
Intervention Trial on 50 patients with compensated liver disease who tested positive 
for anti-HDV and HDV RNA. Subjects received pegylated INF-α 2a, with adefovir 
or placebo, or only adefovir, for 48 weeks. Twenty-four weeks after treatment was 
finished, 41 patients were evaluated for blood levels of HDV RNA and DNA, liver 
enzymes, and HBsAg; liver biopsy specimens were analyzed for fibrosis. Response 
to therapy was defined as end-of-treatment response or post-treatment week 24 
virological response. In both cases, virological response was associated with unde-
tectable HDV RNA levels. Patients with less than a 1 log decrease in HDV RNA at 
the end of treatment were considered null responders [28].

Based on univariate and multivariate analysis, the level of HDV RNA at week 24 
of treatment was associated more strongly with response to therapy than other fac-
tors analyzed. The level of HBsAg at week 24 of treatment was associated with a 
response to therapy only in univariate analysis. Lack of HDV RNA at week 24 of 
treatment, or end of treatment, identified responders with positive predicted values 
of 71% and 100%, respectively. At 24 weeks after treatment, a decrease in HDV 
RNA level of less than 1 log, combined with no decrease in HBsAg level, identified 
null responders with a positive predictive value of 83%. A decrease in HDV RNA 
level of more than 2 log at week 24 of treatment identified null responders with a 
negative predictive value of 95%.

Based on an analysis of data from a large clinical trial, the level of HDV RNA at 
week 24 of treatment with pegylated interferon, with or without adefovir for 48 
weeks, can identify patients who test negative for HDV RNA 24 weeks after the end 
of treatment. This information can be useful to help physicians to manage patients 
receiving therapy for chronic hepatitis D [40].

The treatment time should be as long as possible, not less than 12 months, even 
though the HDV eradication rates are below 20% [9]. It is necessary to follow up the 
patient to evaluate the therapeutic efficacy, which includes evaluation of clinical 
symptoms and measurement of aminotransferase levels and serum markers [7].

Active immunization (vaccine) against HBV is the best procedure to reduce the 
prevalence and incidence of infection HDV [7, 21, 38]. Among HBV chronic carriers 
living in endemic areas of HDV infection, or belonging to risk groups, prophylaxis 
of HDV superinfection still represents a great challenge. The risk groups (men who 
have sex with men, people who inject illicit drugs, hemodialysis patients) need close 
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monitoring and advice about HDV transmission routes [20, 38]. In these areas, 
vaccination of all newborn children and children up to 9 years old has been suggested 
[13]. Passive immunization (anti-HBs immunoglobulin) against HBV has been used 
as a prophylactic action to prevent reinfection by HBV and hence reinfection with 
HDV in transplant patients because of chronic liver disease by D virus [17, 38].

9  Conclusions and Future Challenges

The mechanisms determining the persistence of HBV and HDV infection and long- 
term pathogenesis of HBV-associated liver disease appear to be multifactorial. 
Chronic HBV/HDV coinfection leads to the most severe form of chronic viral hepa-
titis, so it is important to elucidate the molecular mechanisms regulating virus–host 
interplay and pathogenesis.

New information on the molecular biology and life cycle of both viruses is allow-
ing the development of more efficacious drugs to treat the coinfection, but it is 
necessary to await the results of the new drug trials being developed using larger 
cohorts to define the best treatment for these patients. Finally, recent studies have 
demonstrated that HDV infection continues to be an important health issue in the 
Brazilian Amazon and that the implementation of the HBV vaccination in rural 
Lábrea had little or no impact on the spread of HDV. Thus, HDV has not yet disap-
peared from HBV hyperendemic areas, reminding us that it is far from being a 
vanishing disease in the Amazon basin [31].
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Chapter 19
HIV Epidemiology in Latin America

Horacio Salomón and María de los Ángeles Pando

1  The Beginning

The acquired immunodeficiency syndrome (AIDS) was recognized in 1981 as a 
new clinical entity when several cases of a rare lung infection (Pneumocystis carinii 
pneumonia) and of an unusual cancer named Kaposi’s sarcoma were reported 
among young, previously healthy, gay men from several cities of the United States 
of America (U.S.). Over the course of the following 2 years, similar cases were 
observed among injecting drug users, hemophiliacs, Haitians, female sex workers, 
and children born to women who presented with the same signs and symptoms. 
Then, it was evident that the infection was transmitted through unprotected sex with 
human immunodeficiency virus (HIV)-positive individuals, contact with infected 
blood, and from mother to child during pregnancy, at delivery, or through breast-
feeding. The first studies revealed a progressive decline in CD4 T-lymphocyte 
counts in HIV-infected individuals, and as a result of this immune damage, these 
individuals developed diseases that were normally controlled by the immune sys-
tem. In 1983, HIV was described as the causative agent of AIDS [1].

Since the identification of the etiological agent of AIDS, many efforts have been 
made around the world to prevent new transmissions and to improve the quality of 
life of those infected. A few years after the introduction of zidovudine (AZT) in 
1987, several options of antiretroviral therapy started to change the clinical course 
of the disease, making the HIV infection a treatable chronic disease with the advent 
of the highly active antiretroviral therapy (HAART) in 1996. During the past years, 
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several improvements on antiretroviral treatment (i.e., new targets, less toxicity, and 
combination of antiretrovirals) have simplified and enhanced treatment adherence, 
making great progress on the survival of HIV-infected individuals, thus decreasing 
viral replication and slowing down the weakness of the immune system [2].

2  The Virus and the Replication Cycle

HIV is a retrovirus that belongs to the genus Lentivirus. Viral particles have a diam-
eter of 120–150 nm and a lipid envelope with external glycoproteins (gp 120) and 
transmembrane proteins (gp 41). The matrix protein p17 is attached to the inside of 
the viral lipoprotein membrane. The capsid encloses the protein–nucleic acid com-
plex: two copies of the RNA genome, the nucleoprotein, and the reverse transcrip-
tase (RT). The viral particle contains, in addition, other enzymes necessary for 
replication: the integrase and the protease. The RNA genome contains three genes: 
gag, pol, and env flanked by two LTR (long terminal repeat) regions. The gag gene 
codes for the matrix (p17), the capsid (p24), and the nucleocapsid (p7); the pol gene 
for the reverse transcriptase (p66), the integrase (p32), and the protease (p11); and 
the env gene for the glycoproteins of the membrane (gp 120 and gp 41). In addition, 
the genome contains six regulatory genes (vif, vpu, vpr, tat, rev, and nef).

CD4 T lymphocytes are the main target of HIV, with CD4 and the chemokine 
receptors, CCR5 or CXCR4, being essential for the virus entry. Other cells bearing 
CD4 and chemokine receptors are also infected, including resting CD4 T cells, 
monocytes, macrophages, and dendritic cells. Following attachment and membrane 
fusion, the viral capsid is released into the cytoplasm. Then, conversion of viral 
RNA into proviral DNA occurs in the cytoplasm mediated by the viral enzyme 
RT. The replication of HIV is prone to error and characterized by a high spontane-
ous mutation rate. After transportation of the pre-integration complex into the 
nucleus, the integration of the proviral DNA into the host genome occurs with the 
viral enzyme integrase intervention. This integration of the proviral DNA into the 
host genome makes the infection exceedingly difficult to eradicate with the use of 
current therapies. With the intervention of host enzymes, HIV is transcribed, pro-
teins are produced and cleaved, and mature virions are released. During the budding 
process, the lipid membranes of the new virus may incorporate host cell proteins, 
such as HLA [3, 4].

3  Transmission Routes

When the first AIDS cases were reported, transmission routes were clearly estab-
lished. HIV can be spread in all the body secretions and fluids of an infected individual; 
thus unprotected sex with an infected individual, contact with blood or 
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blood-contaminated materials, and vertical transmission (from infected mother to 
newborn) are considered the main transmission routes. Sexual contact is the most 
important HIV transmission route from the epidemiological point of view, account-
able for most infections worldwide. Various factors have an influence on the transmis-
sion/infection risk regardless of the transmission route, such as the genetic background 
of the receptor, virus subtype, and levels of HIV viremia in the transmitter [3, 4].

Sexual contact as well as the presence of lesions in mucosa and specific inter-
course practices can predispose for higher HIV transmission. Several studies world-
wide demonstrated that individuals with ulcerative sexually transmitted infections 
have higher prevalence of HIV infection as the disruption of the mucosal/skin bar-
rier can facilitate exposure to the virus. Regarding sexual practices, anal intercourse 
has been considered the main transmission route, particularly for the receptive part-
ner, because of the anal mucosal trauma generated during the intercourse. Vaginal 
intercourse has a lower risk of HIV transmission, being higher for the female part-
ner because of the major mucosal exposure. Oral sex has been described as a prob-
able route of HIV acquisition if lesions are present in mucosa and the fluids 
exchanged contain blood; however, transmission is still controversial. The main 
prevention strategy against HIV transmission through sexual contact consists in the 
use of condoms for any kind of sexual contact. Nevertheless, over the past years, 
new prevention strategies have emerged. For example, male circumcision has been 
demonstrated to reduce the probability of HIV infection, and in consequence, it has 
been implemented as a prevention strategy in high prevalence settings. Multiple 
microbicide formulations (those providing a physical barrier or those based on anti-
retrovirals) and presentations (gels, creams, suppository) have been explored in 
clinical trials with promising results. However, an effective microbicide is not cur-
rently available for HIV prevention [5].

In relationship to vertical transmission (mother to child), it has been estimated 
that without intervention, approximately 40% of mothers transmit the virus to the 
newborns, either during pregnancy, at delivery, or during breastfeeding. Since anti-
retroviral therapy was implemented during pregnancy as well as elective cesarean, 
postexposure treatment of the newborn, and substitution of breastfeeding, vertical 
transmission has been almost eradicated in several countries and dramatically 
diminished in most of the world [6].

Contact with infected blood or blood products have a high probability of trans-
mission, especially during transfusions. The implementation of screening at blood 
banks has largely reduced the transmission of HIV through transfusions at the 
global level. However, among injecting drug users who share paraphernalia, blood 
transmission continues being an important route. Needle exchange programs, 
implemented in several countries, demonstrated to be effective in reducing HIV and 
also other blood-borne transmitted infections such as hepatitis C virus. Exposure to 
blood through accidental injuries in health practitioners has been extensively 
explored, and in addition to the implementation of barrier prevention measures 
(gloves, goggles), postexposure prophylaxis (PEP) has been implemented, showing 
excellent results [7].
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4  Global Epidemiology

The last UNAIDS report estimated that, by the end of 2014, a total of 36.9 million 
people were living with HIV worldwide, around 2 million people were infected, and 
1.2 million people had died of AIDS-related illnesses during the same year. The 
number of newly infected individuals in 2014 is 35% lower than in 2000. However, 
even when new infections declined, the number of people living with HIV continues 
to increase, in part because approximately 15 million people globally are on antiret-
roviral treatment and AIDS-related diseases have decreased. Sub-Saharan Africa 
remains the region mostly affected by the epidemic with 25.8 million (range, 24 to 
28.7 million) people living with HIV [8].

5  Latin American Epidemic

An estimated 1.7 million (1.4 to 2.0 million) people were living with HIV in Latin 
America by the end of 2014, including 87,000 (70,000–100,000) individuals newly 
infected during this year. Most of the cases are in adults, reaching 1.6 million 
(1.4–2.0). Approximately 60% of people living with HIV in the region were men, 
including heterosexual men and gay men and other men who have sex with men. 
Global HIV prevalence in adults in the region has been estimated in 0.4% 
(0.4–0.5). It has also been estimated that the number of new HIV infections in 
2014 was 17% lower than in 2000 in Latin America. Also, AIDS-related deaths 
have decreased by 31% since 2000 [8, 9].

The number of new HIV infections in children aged 0 to 14 years declined by 
73% between 2000 and 2014, that is, from 7400 to 2000 children recently infected 
with HIV.  The rate of mother-to-child transmission (MTCT) of HIV in Latin 
America and the Caribbean decreased between 2010 and 2014, that is, from 14% to 
7%. These data are in line with antiretroviral therapy (ART) coverage in HIV- 
positive pregnant women, which has increased significantly during the last decade. 
It was estimated that by 2014 96% of pregnant women from Latin America and the 
Caribbean received at least one prenatal care visit, 75% accessed HIV testing and 
counseling, and 81% of women who needed it received ART, a 43% increase over 5 
years. However, coverage of antiretroviral therapy to prevent MTCT varies across 
countries, with less than 30% coverage in some countries such as Guatemala and the 
Bolivarian Republic of Venezuela. Ninety-eight percent of the countries in the 
region have national plans to eliminate HIV-MTCT, and in most of these countries 
the plans are integrated with the elimination of congenital syphilis. HIV-MTCT is 
less than 4% in 75% of the countries. On the basis of the progress made in the last 
years, and the pending gaps, it appears that the elimination of HIV-MTCT in the 
short term could be possible [10].

Latin America presents a heterogeneous epidemic. HIV prevalence varies con-
siderably within and between countries in the region. The epidemic is mostly 
 concentrated in urban settings. Even when the average HIV prevalence in most 
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countries is much lower than in other regions, the numbers in some groups of the 
population are alarming. Most infections in Latin America are concentrated in the 
male-to- female transgender (MTFT) population, men who have sex with men 
(MSM), female sex workers (FSWs), and drug users (DUs). However, as the result 
of cultural, religious, regulatory, and socioeconomic differences, countries present 
several epidemiological differences [11]. Stigma and discrimination in some Latin 
American countries interfere with efforts to achieve universal access to HIV preven-
tion, diagnosis, treatment, and care.

5.1  Men Who Have Sex with Men (MSM)

Gay, bisexual, and other men who have sex with men (MSM) remain one of the 
groups more affected by the HIV epidemic worldwide and also in Latin America. A 
global review found a pooled HIV prevalence of 14.9% (95% CI, 14.1–15.7) for Latin 
American countries [12]. However, HIV prevalence among MSM ranges from 7% in 
Nicaragua to 20% in Chile and Panama [9]. This high prevalence can be explained by 
the very high transmission efficiency of HIV across the rectal mucosa, estimated at 
1.4% per act, being 18 fold higher than for vaginal intercourse [12, 13]. Data on HIV 
incidence are less available, but studies revealed consistently high rates of new infec-
tions among MSM (3.5% per 100 person-years in Peru) [13, 14] (Fig. 19.1).

Fig. 19.1 State of the human immunodeficiency virus (HIV) epidemic in Latin America
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Risk factor analyses revealed that unprotected anal intercourse (UAI) is the main 
transmission route for HIV in MSM in Latin America. Other studies also revealed a 
strong association between sexual role and HIV infection; those reporting a passive 
role are more likely to become HIV infected [15]. Non-injecting illegal drugs and 
alcohol use disorders are highly prevalent among MSM in some countries of the 
region and are associated with an increased risk of HIV infection and low ART 
adherence [16–19]. Another important risk factor for HIV infection is the presence 
of active sexually transmitted diseases (STD) [20] or a history of STD [21]. 
Transactional sex among MSM was also associated with a significant increase in 
HIV prevalence [22].

One international survey reported that criminalization of homosexuality through 
arrest and convictions was less common in Latin America than in other continents, 
which was reported by 9.7% among MSM in the region, as compared to 24% in 
sub-Saharan Africa. However, those suffering criminalization had lesser access to 
condoms, sexually transmitted infection (STI) treatment, and medical care [23]. In 
the same line, physical and psychological violence were also associated with higher 
risk exposure [24, 25]. Perception of stigma was also associated with lower testing 
frequency among MSM from El Salvador [26].

5.2  Transgender Women

Transgender women are individuals assigned male at birth but who identified them-
selves as female. They are exposed to stigma, discrimination, and familial/social 
exclusion from early childhood; in consequence, most of them are involved in sex 
work activities as one of the very few alternatives to earn a living and to pay for 
feminization procedures. Even when they represent a small number of individuals, 
a recent study revealed extremely elevated HIV prevalence rates with transgender 
women being the most affected group in the region. Seroprevalence studies revealed 
prevalence rates ranging from 19% in Uruguay to 34% in Argentina [27]. In most 
countries, sex work activity is the main economic activity for transgenders, expos-
ing them to several risk factors, particularly drug use, sexual or other physical vio-
lence, and unprotected sexual intercourse with male partners, including clients and 
noncommercial (stable or casual) partners. Similar to MSM, HIV transmission in 
this group occurs mainly because of unprotected receptive anal intercourse. 
However, transgenders are more exposed to practicing unprotected sex because cli-
ents offer to pay more money or in other cases they are forced to have sex without 
condoms. Another possible risk factor in this group is the parental transmission 
through hormone or silicone injections outside the health system. It has been shown 
the high rates of substance use observed in transgender women from several coun-
tries, where data were available, such as Argentina and Brazil [28].

The high HIV prevalence and incidence reported among transgenders in the 
region call for an urgent need of prevention, treatment, and care services targeted for 
this group. Additionally, transgenders need to be considered a separate category on 
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epidemiological studies. Until now, some countries often include transgenders as a 
subpopulation of MSM, hiding the HIV situation of this vulnerable group. During 
the last few years, most countries in the region have achieved innovative advances 
to guarantee the rights of lesbian, gay, bisexual, and transgender individuals, includ-
ing national laws that allow same-sex marriage and the change of the individual’s 
identity according to gender identification. However, at the beginning of 2016, 
approximately 73 countries in the world have laws criminalizing homosexuality, 
most of them located in Asia and Africa [29].

Because of the increasing number of countries in the region with regulations that 
allow genital surgery, HIV transmission through a neovagina should be considered 
in future studies. To date, there are no data on the likelihood of transgenders to 
become infected with HIV when they undergo these kinds of surgeries [30].

As well as in MSM, PrEP demonstrated to be effective in preventing HIV acqui-
sition. However, some researchers have found more barriers to adherence [31].

5.3  Female Sex Workers

Commercial sex has been identified as one of the riskiest practices driving the HIV 
epidemic in several countries. Most sex workers worldwide are women; however, as 
previously mentioned, in some Latin American countries, transgender women con-
stitute a growing portion of sex workers. HIV prevalence among FSWs in Latin 
America ranges from 0.0% in Chile to 9.7% in Honduras, with a pooled HIV preva-
lence of 6.1% [9, 32]. Data from Latin America evidence substantially higher levels 
of HIV infection among FSWs compared with women of reproductive age, although 
prevalence is much lower than that observed in sub-Saharan Africa, where HIV 
prevalence is higher than 35% [33]. The high HIV prevalence may be attributed to 
an increasing sexual exposure because of their activity. However, other factors such 
as poverty, discrimination, and gender disparity, as well as punitive laws, can remain 
barriers to the current prevention strategies. In several studies, FSWs reported the 
use of condoms more often with commercial partners than with noncommercial 
partners (either casual or steady) [34, 35].

Interventions to reduce HIV transmission in FSWs need to include behavioral 
individual interventions (e.g., condom use campaigns, FSW empowerment, and 
sexual health education) as well as political and legal changes that contribute to 
eliminating the penalization of sex work activity.

5.4  Drug Users

Individuals who use illegal drugs constitute a diversity group with different rates of 
risk for HIV transmission according to the route of administration. Even when 
injecting drug users (IDUs) have a higher risk for HIV acquisition if they share 
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paraphernalia, the use of other drugs was associated with HIV transmission, even by 
the direct administration (e.g., sharing inhalator elements) or by the behavioral 
changes resulting from consumption (e.g., condom-less) [7].

The frequency of illegal drug use has been estimated in 4.8% in the region, with 
marijuana and cocaine as the most common drugs [36]. Regarding the administra-
tion route, IDU is not a common practice nowadays in most of the countries, and 
data are scarce [37, 38]. Studies performed in the region several years ago account 
for HIV prevalence near 50% in IDUs from Argentina and Brazil and lower than 
15% in Peru and Paraguay [39]. However, some new studies revealed specific places 
and groups where IDU is still a problem. For example, 10.3% of female sex workers 
from several cities in Mexico reported injecting illegal drugs which were associated 
with client-perpetrated sexual violence. This association has significant implica-
tions for increasing FSW risk for HIV infection [40]. Another study performed in 
the same area reported a surprisingly high prevalence of the use of dead-space 
syringes among IDUs [41]. Efforts are needed to expand coverage of syringe 
exchange programs in these areas.

Studies among non-injecting drug users (NIDU) reveal that they have an 
increased sexual risk behavior, as can be seen in the high HIV prevalence. One 
review study from Peru revealed that drug use increases risky sexual behaviors, 
decreasing the use of condoms, and increasing the number of partners per year, the 
number of casual sex encounters, and the risk for sexually transmitted diseases 
(STDs) [42]. A high prevalence of HIV has been found among NIDU in Argentina, 
which was 6.3% [43]. In this study, the risk of being infected with HIV, HBV, and 
HCV was significantly associated with having had a sex partner who was either a 
IDU or who was known to be HIV positive. Because of the rising number of NIDU 
and the demonstrated risk for HIV and other STIs, it is essential to implement pre-
vention strategies focused on this population. Studies from Brazil reported an HIV 
prevalence of 23.1% among drug users, being significantly associated to injecting 
drug use and syringe/needle sharing [44].

Illegal substance use has also been associated with lower adherence to ART 
among people living with HIV in Latin America [45].

6  Other Sexually Transmitted Infections (STIs)

Individuals most affected by HIV in Latin America are also exposed to other STIs. 
Syphilis is one of the most prevalent infections (more than 20%) among at-risk 
groups with critical hotspot cities such as Sao Paulo and Buenos Aires [46]. Syphilis 
infection was also found to predict HIV incidence, being associated with HIV 
acquisition in follow-up studies [47]. Other curable STIs, including syphilis, gonor-
rhea, HPV, and Chlamydia, were demonstrated to have high prevalence in several 
countries [48–52]. Studies also demonstrated that ulcerative STIs (including syphi-
lis and herpes) could be important risk factors for HIV acquisition among MSM and 
transgenders [53, 54]. Previous hepatitis B virus infection is also common in older 
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individuals in the at-risk group [55]. Because HBV vaccination has been imple-
mented in most of the countries in the past decade, the decrease of this agent in the 
following years is expected.

7  HIV Molecular Epidemiology

Until now, two types of HIV have been described, HIV-1 and HIV-2. HIV-1 is 
responsible for the worldwide epidemic, and HIV-2 is much less common, less viru-
lent, and mostly confined to West Africa. HIV-1 is characterized by extensive 
genetic diversity because of its high replication rate, the error-prone reverse tran-
scriptase, and recombination events that may occur during virus replication. HIV-1 
includes four groups, M (main), O (outlier), N (non-M, non-O), and P, which have 
different geographic distributions. The M group includes nine subtypes (A, B, C, D, 
F, G, H, I, J), as well as at least 79 circulating recombinant forms (CRFs) and mul-
tiple unique recombinant forms (URFs), which together account for more than 90% 
of the infections worldwide [56].

The HIV epidemic in Latin America is dominated by subtype B, which accounts 
for nearly 70% of the infections in the region. However, the epidemic is more 
diverse in the Southern cone where subtypes B, C, and F as well as B/C and B/F 
recombinants are the most prevalent. Inter-subtype recombinants were first reported 
as a CRF12_BF in Argentina and Uruguay in 2001 followed by several BF CRFs in 
Brazil, Uruguay, and Chile. The analysis of the temporal distribution of HIV sub-
types and recombinants indicated an overall increase in the proportion of recombi-
nants [57].

8  New Prevention Agenda

Among the new prevention strategies targeting at-risk groups, oral preexposure pro-
phylaxis (PrEP) has been the best biomedical intervention to demonstrate efficacy 
in preventing HIV infection among MSM and transgenders, including studies per-
formed in Latin American countries that suggest high acceptability [57, 58]. Studies 
in the region also explored the efficacy of male circumcision on HIV acquisition and 
demonstrated the efficacy of this intervention only for MSM who are primarily 
insertive [59–61]. Microbicide acceptability was also explored among MSM; how-
ever, even though acceptability is high, it varied by city, suggesting the importance 
of regional studies [62].

New testing technologies, such as rapid HIV testing, have been included in most 
countries in the last years; however, over-the-counter test kits are not available yet, 
even when research studies suggested that self-testing may have the potential to 
increase testing frequency of high-risk groups [63–65].
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9  Ending the AIDS Epidemic by 2030: 90-90-90 UNAIDS 
Strategy

There is a strong global consensus that ending the AIDS epidemic is possible. This 
hope is based on scientific evidence and lessons learned during more than a decade 
of scaling up the AIDS response. HIV antiretroviral treatment can extend the life 
expectancy of people living with HIV and also prevent HIV transmission. Even 
when HIV infections may not disappear in the near future, the AIDS epidemic can 
be ended as a global health threat. UNAIDS has proposed that to achieve this by 
2030, 90% of the people living with HIV should be aware of the HIV status, 90% of 
the people who know their status should receive treatment, and 90% of people on 
HIV treatment should have a suppressed viral load. The HIV cascade of care consti-
tutes a useful epidemiological tool that allows monitoring HIV-positive individuals 
from diagnosis to viral suppression. Of the people estimated to be living with HIV 
in Latin America, only 70% have been diagnosed, 45% were on HAART, and an 
estimated 66% have become virally suppressed, achieving 28% of all the people 
living with HIV in the region. Latin America has a median of 80% retention on ART 
at 12 months after initiation.

However, some factors, such as psychological health problems or criminalization 
of homosexuality, can generate significantly lower access to prevention (condoms), 
STI treatment, and medical care [66, 67].

9.1  Pending Research

Most HIV prevalence studies focused on at-risk groups have taken place only in 
large metropolitan cities, obscuring the situation of small towns. One of the possible 
explanations about this limitation is the lower social tolerance of sexual diversity 
and/or sexual work in small cities that results in lower probability of sampling these 
groups for fear to being recognized. Future research studies and public health inter-
ventions need to implement new strategies to reach at-risk groups in all settings to 
diagnose and include all HIV-infected individuals in the healthcare system. 
Regarding methodology, only a few studies with probabilistic sampling methodolo-
gies have been performed in the region; the majority of the research studies were 
based on convenience sampling. In general, probabilistic methodologies are more 
difficult to implement and need more monetary resources [68]. To perform probabi-
listic methodologies, it is also necessary to know the number of individuals at each 
risk group. However, only small estimations have been performed in the region and 
mostly focused on specific cities [69, 70].

In Latin America, prevention efforts should continue to focus on reducing risk 
behavior among MTFTs, MSM, FSWs, and DUs as well as to ensure access to uni-
versal HIV testing and care. Even when governments from several countries have 
made many efforts to cover the cost of ART for all HIV patients, one of the challenges 
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in the region is to focus more on allocating monetary resources on prevention aimed 
at those key populations with the highest vulnerabilities.

In summary, the HIV epidemic in Latin America is concentrated in transgender 
women and men who have sex with men, who have an estimated prevalence higher 
than 10%, whereas the prevalence in the general population does not reach 1%. 
Because these two groups account for many of the new infections in the region, it is 
crucial to continuously update the HIV epidemiological situation, including HIV 
prevalence, incidence studies, risk factor analyses, as well as continuum of care of 
those infected individuals. Prevention efforts should continue to focus on reducing 
risky behavior but need also to include new prevention strategies and access to anti-
retroviral treatment to significantly reduce HIV transmission.
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1  Introduction

Papillomaviruses are 8000-base-pair (8000-bp), double-stranded, circular DNA 
viruses that can cause warty and neoplastic changes in epithelia from many host 
species. Their genome consists of double-stranded DNA and encodes sequences for 
six early (E1, E2, E4, E5, E6, E7) and two late (L1, L2) proteins involved in capsid 
formation [30, 79]. Viral types are defined as a viral genome with an L1 late gene 
sequence that is at least 10% different from that of any other type. Interestingly, dif-
fering from most other viruses, papillomavirus infection is determined by DNA 
detection and not viral isolation.

Of the nearly 200 human papillomavirus (HPV) types identified, approximately 
40 can infect human mucosa, particularly the anogenital and aerodigestive tracts [8], 
albeit cervical HPV infections are best understood.

The International Agency for Research on Cancer (IARC) has classified 12 HPV 
types as group 1 carcinogens; they are called “high-risk HPVs” (hr-HPVs) and 
include the following types: 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59 [12]. 
Among the hr-HPVs, HPV16 is by far the most carcinogenic in terms of numbers of 
cervical cancer (CC) cases and its precursors [11, 52]. HPV16 also causes most 
HPV-related cancers in other anogenital epithelia and the oropharynx. HPV18 is 
classified second in terms of etiological importance but accounts for a high propor-
tion of adenocarcinomas [52].
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The varying carcinogenicity of HPV types partly relates to the expression of two 
early genes, the E6 and E7 oncogenes. Among other functions, E6 and E7 oncopro-
teins interfere with the functions of tumor suppressor proteins p53 and pRb, respec-
tively. During the carcinogenic process, the HPV genome may integrate into the 
epithelial cell genome, and, during integration, parts of the HPV genome can be lost 
[76, 79]. However, the continued presence and expression of E6 and E7 gene regions 
are needed to sustain cancers and cancer cell lines.

Latin America (LA) has one of the highest incidence and mortality rates from CC in 
the world, with age-adjusted incidence rates ranging from 10 to 80 per 100,000 women/
year [26, 32]. Overall, mortality rates are extremely high despite cytological screening 
in place in several countries. On the other hand, little is known about the rates of other 
HPV-associated tumors such as vulvar, vaginal, anal, penile, and oropharyngeal can-
cers. HPV DNA prevalence and type distribution are well known in many LA countries 
[15]. Moreover, data on the natural history of HPV infections and risk of disease devel-
opment are available from large cohort studies and serve to propose new primary and 
secondary prevention modalities that include prophylactic HPV vaccination and HPV 
testing, respectively. The HPV vaccine was introduced in several LA national immuni-
zation programs, and multiple screening experiences using HPV testing were intro-
duced in the region [45, 77]. Although promising, challenges to control HPV-related 
tumors are significant, mainly because as a comprehensive strategy it should include 
both components: vaccination and virological screening. Furthermore, information on 
HPV prevalence and type distribution in several LA countries is key both to measure 
the impact of HPV prophylactic vaccines and to establish appropriate post-vaccine 
epidemiological surveillance, with virological and disease endpoints.

2  HPV Natural History and Cervical Carcinogenicity

The cervix provides the best model of HPV and anogenital neoplasia natural his-
tory. The major stages in cervical carcinogenesis include infection of the cervical 
transformation zone metaplastic epithelium with one or more hr-HPV types, viral 
persistence, clonal progression of the persistently infected epithelium to cervical 
pre-cancer, and invasion.

Several epidemiological studies conducted in LA have contributed to establish 
these fundamental stages and to shed light on the factors that influence each of these 
transitions. Table 20.1 summarizes the main LA studies, pointing out their most 
relevant findings. The following findings should be highlighted: the cohort studies 
of the case-control studies conducted by IARC in Colombia, Paraguay, Brazil, and 
Peru; the cohort studies of Proyecto Guanacaste (Costa Rica) and Ludwig-McGill 
cohort (Brazil); and the HPV prevalence studies by IARC in Colombia, Mexico, 
Argentina, and Chile.

The great majority of sexually active women and men have been infected with 
HPV at least once in their lifetime [16]. HPV is the most common sexually 

M.A. Picconi and L.L. Villa
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 transmitted infection; thus, HPV prevalence peaks around the sexual debut age, 
when exposure is high. Infections become undetectable within 2 years in more than 
90% of individuals. Approximately 60% of these infections will prompt type-spe-
cific seroconversion, and if cervical samples are collected during productive viral 
infection, they may be associated with mild cervical abnormalities [i.e., low-grade 
squamous intraepithelial lesions (LSILs) or cervical intraepithelial neoplasia 1 
(CIN1)]. Most of them are “transient” infections (cleared by the immune system) 
and do not result in clinical complications. Genital warts are other benign and com-
mon clinical sequelae in low-risk cases of HPV infection [66]. On the other hand, 
the hr-HPV infections that “persist” are more likely to progress to true cervical 
cancer (CC) precursor lesions, that is, high-grade squamous intraepithelial lesions 
(HSIL) or CIN3; progression to cervical cancer may take several years if left 
untreated.

It is well known that cervical HPV infection is age dependent; an inverse rela-
tionship between age and HPV prevalence has been reported. HPV prevalence 
peaks below age 25 and declines with age. Using data from the Guanacaste cohort 
[39] and the TATI project (that only tested for 13 hr-HPVs) [2], the overall HPV 
prevalence was 26% in women younger than 25, dropping to 12% in those aged 
35–44 and climbing again to 22% in those older than 54 (Table 20.1) [20]. This 
U-shaped age-specific curve of hr-HPV prevalence was previously shown by inde-
pendent reports in Costa Rica [41], Mexico [49], Chile [34], Brazil (see r29, 
Table 20.1), and Colombia [57]. In Argentina, the curve peaked below age 25 and 
then dropped and plateaued around 30 to 35 years, reaching its minimum at 65 years 
of age or older [55]; this pattern resembles more those of Europe and North America.

CC risk is largely, and almost exclusively, defined by HPV natural history. 
Among HPV-infected women, the most important determinants of carcinogenic risk 
are persistence of infection and viral genotype, HPV16 being the most prominently 
carcinogenic [67].

Although hr-HPV DNA is detected in almost all CC cases, HPV infection alone 
is not sufficient to drive full carcinogenesis. A substantial part of the evidence of 
risk factors for HPV infection and progression to cervical cancer comes from stud-
ies conducted in LA. The lifetime number of male sexual partners and their sexual 
behavior are associated with an increased risk of HPV infection. High parity, long- 
term oral contraceptive use, and smoking are associated with an increased risk of 
HPV infection progression to CC; the role of chronic inflammation, especially from 
coinfection with Chlamydia trachomatis, and certain dietary deficiencies have also 
been reported [1, 29].

Immunity is obviously an important risk factor; an effective cell-mediated 
response to the early proteins is necessary for lesion regression. Host genetics and 
other influences on host immunity might affect the immune response to HPV infec-
tion; weak associations of HLA with risk of CIN3+ have been noted [31, 54]. 
Coinfection with HIV is important because HIV-induced immunosuppression 
impairs cell-mediated immune control of HPV infections [1].
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3  HPV Prevalence and Type Distribution in Normal 
Cytology and Cervical Lesions in LA

The genotype distribution in normal cytology and LSIL reveals a wide spectrum of 
HPV types, both low- and high-risk types; as the severity of the cervical lesion 
increases, hr-HPVs become the most frequent types, being the only types in CC, 
with HPV16 and HPV18 accounting for about 70% of cases.

In one of the largest meta-analyses, including 48,171 women with normal cytol-
ogy from studies in Trinidad and Tobago, Costa Rica, Honduras, Guatemala, Belize, 
Mexico, Argentina, Brazil, Chile, Colombia, Paraguay, and Peru, the prevalence of 
HPV (any type) was 16.1%. The vaccine-targeted HPV types (16 and/or 18) were 
identified in 4.3% of normal samples [15].

In LSIL, the most common viral types identified in samples from the LA region 
were HPV16 (26%), HPV33 (13%), HPV6 (11%), HPV58 (8%), and HPV31 (7%) 
[24].

In the regional meta-analyses including 2446 cases of HSIL and 5540 of CC, 
46.5% of HSIL cases harbored HPV16 and 8.9% HPV18; in CC, 53.2% of cases 
harbored HPV16 and 13.2% HPV18, the next five most common types, in decreas-
ing frequency, being HPV31, HPV58, HPV33, HPV45, and HPV52 [23].

The more recent worldwide meta-analysis of cross-sectional HPV-type distribu-
tion in HPV-positive women of all types of clinical status (from normal cytology to 
CC) included 35,895 samples from South and Central America studies, in which 
genotyping was performed by polymerase chain reaction (PCR)-based methods 
[36]. Overall HPV prevalence increased with growing severity of cervical disease 
from 24% in normal cytology (substantially higher than worldwide prevalence esti-
mates) up to 90% in CC. HPV16 was the most frequently detected type in every 
grade. HPV16 positivity varied slightly across normal cytology (16.1%) and LSIL 
(25.1%), but increased substantially in HSIL (53.5%), to reach 59.5% in CC.

4  HPV Genetic Variability

Comparative nucleotide sequence analysis of these viruses has elucidated some fea-
tures of their phylogenetic relationship and pathogenesis implications.

HPV genomes have been classified into molecular variants when they present 
more than 98% similarity to the prototype in the L1 gene sequence [27]. Nevertheless, 
more recently, the comparison of the complete nucleotide sequence of HPV16 iso-
lates from different phylogenetic branches showed that 4% of the full genome may 
vary in the eight genes and that 9.9% of amino acid positions are variable [22].

The most extensive worldwide studies concerning HPV intratypic nucleotide 
heterogeneity by far have been conducted for HPV16 because of its global predomi-
nance, followed by HPV18 and HPV45, HPV6 and HPV11, HPV5 and HPV8, and, 
more recently, HPV58, HPV31, HPV33, HPV35, and HPV52 [17]. Table  20.2 
presents a selection of the main studies on HPV variability performed in LA.

M.A. Picconi and L.L. Villa
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Investigations of HPV type diversity have identified different phylogenetic 
branches (variants); particularly for HPV16, there are six branches: European (E), 
Asian (As), African-1 (Af-1), African-2 (Af-2), Asian-American (AA), and North 
American (NA) [17]. Different HPV16 variants exhibit differences in their biologi-
cal and biochemical properties.

The prevalence of HPV variants and their association with cervical cancer has 
been reported in three case-control studies [9, 42, 69] and five cross-sectional 
 studies in LA women with different grades of cervical lesions [18, 47, 56, 62, 78]. 
Follow-up studies have reported the role of HPV variants in the persistence of infec-
tion and disease progression [69, 74]. Overall, studies conducted in Argentina, 
Brazil, Costa Rica, Honduras, Mexico, and Paraguay have shown a large diversity 
of variants, with a higher frequency of E variants compared to other phylogenetic 
branches (Table 20.2). Interestingly, a high prevalence (>80%) of E variants was 
also observed in indigenous groups from Argentina [28, 62, 71]. These studies also 
suggested that the colonization of the American continent by Europeans and 
Africans is reflected in the composition of its variants.

Studies carried out in Mexico, Costa Rica, and Brazil have shown that non-E 
HPV16 variants, mostly AA variants, are associated with a higher risk of viral per-
sistence and/or HSIL and CC [9, 18, 42, 68, 69, 74]. These studies with a large 
number of samples provide enough study power to detect associations between low- 
prevalence variants and persistent infections or disease risk [1].

In vitro functional assays show that several HPV variants differ in their ability to 
induce p53 degradation, Bax degradation, activation of mitogen-activated protein 
kinase (MAPK) signaling, E2-related transcription, and immortalization activity. 
Specific studies with non-E variants have shown enhanced transcription and replica-
tion efficiency in HPV16 and HPV18 AA variants compared to E variants [17]. This 
information may explain the increased oncogenic potential reported for these vari-
ants and their contribution for the high incidence of CC.

HPV vaccines are based on virus-like particles (VLPs) composed of L1 protein, 
the viral capsid main component. So far, serological studies of different HPV16 
variants have shown that the humoral immune response to HPV16 does not seem to 
discriminate between different molecular variants [60]. The cross-protection 
between variants was confirmed by the near 100% prophylactic efficacy of vaccines 
in multicenter studies [1].

Although the coevolution of human populations and HPV16 and HPV18 variants 
is well supported, the geographic association for variants of other types remains 
unresolved. Global studies of HPV variant lineages from worldwide populations are 
needed to better understand the relationship between HPV and the recent and past 
evolution and dispersion of their human hosts, as well as the genetic basis of the 
pathogenesis of specific HPVs, viral–host interactions, and host evolution, among 
other applications and scientific inquiries. Multicenter studies and/or meta-analyses 
will be useful to validate the nucleotide level of pathogenesis and provide insights 
into the molecular basis of HPV-associated disease [17].
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5  Epidemiology of HPV-Related Neoplasias

About 1.1 million new cancer cases and 600,000 cancer deaths per year are estimated in 
Latin America and the Caribbean [32]. Estimates indicate a 72% increase in the incidence 
of cancer and 78% increase in mortality between 2012 and 2030 [26]. Cancer rates vary 
considerably within LA: although breast cancer remains the leading cause of death for 
women worldwide, CC is the main cause of death from cancer in Bolivia, Honduras, and 
Nicaragua. Also, cervical cancer incidence rates vary considerably in the region, ranging 
from 11.4 cases per 100,000 in Costa Rica to 47.7 cases per 100,000 in Bolivia [59].

Decades of Papanicolaou-based screening to detect precancerous cervical lesions 
have not had a major impact in reducing CC incidence and mortality rates, which 
are still high in the region (Fig. 20.1). Despite efforts to reorganize screening pro-
grams in a few countries of the region, only a slight reduction in cervical cancer 
mortality has been noted [59]. Among the difficulties to control the burden of cancer 
in the region are the uneven allocation of resources, variable infrastructure and ser-
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vice availability, limited number of population-based cancer registries, and scarce 
distribution of public health posts, which is more evident in rural areas, distant from 
the large urban centers. These difficulties result in a scenario of disproportionate 
care provided to individuals affected by cancer.

The global burden of HPV infections and related diseases is significant [35]. 
HPV was associated with 83,195 new cases of cervical cancer and 35,673 associ-
ated CC deaths in LA in 2012 [14]. Most of the cases are associated with HPV16 
and HPV18, followed by five additional hr types (HPVs 31, 33, 45, 52, 58), which 
together account for about 90% of CC cases worldwide.

Information concerning HPV-related tumors outside the uterine cervix in LA 
countries is scarce [14, 32]. A recent systematic review of the presence of HPV in 
noncervical sites suggests a high HPV prevalence and higher clearance rates than in 
the uterine cervix [70]. Anal cancer incidence rates vary from as low as 0.2 × 
100,000/year to 1.4 × 100,000/year in the northeast of Brazil and some areas of 
Argentina [26]. Estimates for other LA are limited or nonexistent. Similarly to high- 
income countries, anal cancer incidence is increasing with time in both women and 
men. This neoplasia is associated with hr-HPV types, particularly HPV16. In fact, 
most HPV-positive neoplasias outside the cervix are related to HPV16 [70].

Vulvar and vaginal cancers are relatively rare tumors with incidence rates less 
than 1 × 100,000/year [59]. Information is very limited in LA. Regional data show 
that HPV16 is the most prevalent type and is found in 75% to 100% of the basaloid/
warty vulvar cancers that are more common in young women. About two thirds of 
vaginal cancers are linked to HPV, in particular HPV16 [14].

In some LA countries, the incidence of penile cancer is significantly higher than 
in more developed parts of the world: the central region of Brazil and some areas in 
Colombia and Paraguay account for about 2.0 × 100,000/year as compared to other 
countries with incidence rates around 0.4 × 100,000/year [26, 73]. Studies  performed 
in LA show HPV DNA positivity in 30% and 50% of penile cancers [10, 70].

In the head and neck anatomical sites, some cancers are linked to HPV, although in 
variable frequencies, being more HPV associated in the base of the tongue and tonsils 
[19]. The most common HPV type found is HPV16 worldwide and in series of cases 
from LA [19, 46, 64, 70]. Notwithstanding, there have been reports of lower HPV posi-
tivity in oropharyngeal cancers from LA countries as compared to other countries in 
the Northern Hemisphere [37, 53, 65]. Further studies are warranted to better under-
stand the basis for such differences and the impact on cancer patient management.

6  Control of HPV Infections and Related Diseases

6.1  Primary Prevention: HPV Vaccines

Since 2006, two vaccines composed of HPV L1 proteins self-assembled into virus- 
like particles (VLP) have been approved in LA: one containing VLPs of HPV types 
6, 11, 16, and 18 (Merck & Co.) and one composed of HPV 16 and 18 VLPs 
(GlaxoSmithKline). Large phase II and III clinical trials to assess prophylactic 
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efficacy have been conducted in which both HPV infection and cervical disease end-
points were evaluated, particularly HSIL (CIN2 or CIN3) as well as vulvar and vagi-
nal intraepithelial neoplasias (VIN and VaIN, respectively) and genital warts for the 
quadrivalent vaccine [75]. Very high efficacy rates were noted in different popula-
tions that included young women between 16 and 26 years and older (up to 55 years). 
The quadrivalent HPV vaccine has also proven to be efficacious in men to prevent 
genital and anal infection and disease caused by the types included in the vaccine 
[13, 40]. Importantly, several clinical trials of HPV prophylactic vaccines conducted 
in LA clearly demonstrated the safety, immunogenicity, and efficacy of such recom-
binant vaccines among Latin Americans [61]. Furthermore, data collected in these 
clinical trials concerning the incidence and prevalence of genital HPV-associated 
infection and disease have provided important insights on the burden of genital HPV 
in the region [40, 61]. Moreover, seminal demonstration studies and surveys have 
shown that the HPV vaccine acceptability is very high in the region [3, 6, 50].

Most LA countries have a well-developed public immunization infrastructure 
including adolescent vaccination, which has facilitated the introduction of national 
immunization programs in the region (Fig. 20.2). Organizations such as the United 
Nations Children’s Emergency Fund (UNICEF), Global Alliance for Vaccines and 
Immunization (GAVI), and the PAHO revolving fund have enhanced HPV vaccine 
introduction in LA. After an initial phase, most countries are adopting the two-dose 
program supported by WHO [77] and are vaccinating girls aged 9 to 13 years at 0 
and 6 months. Moreover, in several countries of the region, the HPV vaccine is 
offered to HIV-positive women up to 26 years of age.

Interestingly, a broad evaluation of the programs is driving a revision of the entire 
CC control strategies adopted by each country, which includes HPV vaccination for 
female adolescents and cytology/HPV testing for adult women [72]. Implementation 
of effective vaccine programs might seem straightforward and obvious in light of the 
vaccine efficacy and lack of serious adverse events to date; nonetheless, significant 
challenges remain. These problems include the cost of the program, covering two 
doses of vaccine and extending the vaccination to boys and other populations at risk 
including HIV-positive individuals. Equally important is to monitor the impact of 
this intervention that requires tools and strategies unavailable in many countries of 
the region. Introduction of cost-effective measures such as HPV vaccination only or 
vaccination supplemented with screening, with good coverage rates, will reduce 
HPV-related tumors in LA, as is happening in several countries of the world [13].

6.2  Secondary Prevention: HPV Testing as Primary Screening

For more than 50 years, cervical cytology [the Papanicolaou (Pap) smear) has been 
the standard of care for CC screening. Cytology-based mass screening programs have 
been successful in reducing incidence and mortality in developed countries (such as 
the U.S. and European countries). Unfortunately, most LA countries tried unsuccess-
fully to replicate these results, evidencing, however, after decades of efforts, high inci-
dence and mortality rates, with little impact on the disease burden [58].

M.A. Picconi and L.L. Villa



403

The limitations inherent in cervical cytology prompted the development of new 
screening technologies: tests to detect the presence of hr-HPV DNA, which should 
be clinically validated for this purpose. HPV testing offers numerous potential advan-
tages compared to cytology-based screening, such as greater sensitivity, high nega-
tive predictive value (which allows to extend the screening intervals in HPV- negative 
women), and automation [21]. However, even among women over 30 years of age, 
the cancer to transient infection ratio is low, and HPV assays must overcome the 
intrinsic problem of low positive predictive value. This lower specificity of HPV test-
ing requires an additional test (“triage”) in women who are HPV DNA positive in the 
primary screening to identify those who are at risk of having a cervical cancer pre-
cursor and to reassure those who only have transient or low-risk infections. Triage 
includes visual inspection methods, cytology, and molecular biomarkers (high-risk 
HPV E6/E7 mRNA, high-risk HPV E6 proteins, p16, among others). Locally adapted 
algorithms employing primary screening with HPV testing are being developed in 
different settings [63]. The initial HPV tests were very expensive and unaffordable 
for several LA countries, but in recent years, more HPV tests became available and 
the prices have started to drop, making them more affordable.

During the past decade, there have been multiple experiences with HPV testing 
in LA, some as part of research studies and others to pilot the implementation of 
HPV tests in the public system and, more recently, the implementation of HPV test-
ing as part of the public programs provided by the ministries of health [45]. Pilot 
studies that took place in Argentina [4, 5], Chile [33, 51], Colombia [58], El Salvador 
[25], Mexico [38, 48], and Nicaragua [7, 44] were highly efficacious to detect pre-
cancerous cervical lesions and good feasibility and acceptance of self-sampling. 

Fig. 20.2 Countries with prophylactic HPV vaccine in their immunization programs, 2016. 
Countries with partial introduction are not included. (Adapted from a WHO Immunization, 
Vaccines and Biologicals image 61, using data from the WHO Immunization, Vaccines and 
Biologicals database (accessed May 2016))
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Similarly, in 2011 Argentina was the first country in the region to implement HPV 
DNA testing for primary screening within its public system for all women aged 30 
or older. In recent years, Mexico has expanded the implementation of HPV DNA 
testing to 17 sites across the country, applying its extensive knowledge in this field. 
El Salvador, Guatemala, Honduras, and Nicaragua are beginning to institutionalize 
HPV testing at population level [45].

The need to develop a comprehensive quality assurance program associated with 
the specific HPV test to be implemented should also be considered to guarantee 
reliable test results in real-world settings. Despite the fact that most tests have their 
own internal quality control, quality control procedures should be put in place to 
ensure proper transportation and storage of reagents and samples, correct sample 
labeling and processing, suitable monitoring of positivity rates, and other test char-
acteristics to rule out contamination [45, 63].

LA is slowly shifting toward HPV testing for cervical cancer screening, with the 
endorsement of several regional experiences that have resulted in increased coverage 
and better detection of pre-cancer lesions using HPV tests. In line with this, the 
ESTAMPA study, recently launched in LA countries by the International Agency for 
Cancer Research, will contribute valuable information about the performance of 
emerging CC screening and triage techniques and the feasibility of different approaches 
to implement organized HPV-based screening programs in the region [43].

Finally, it is important to emphasize that the screening test is important, but it is 
only one component of many other aspects of population-based programs that 
should be implemented to effectively impact CC cancer incidence and mortality.

7  Conclusions and Perspectives

The prevalence and incidence of HPV-related infection and disease in LA under-
score the importance of supporting CC prevention strategies in the region. CC is one 
of the leading killers among women in LA, a region where many countries have not 
been successful in implementing population-level cytology-based screening pro-
grams. Hence, a more comprehensive CC control approach is required, wherein 
primary and secondary prevention strategies are implemented with both high cover-
age and sustainability.

Although regional data seem to indicate a favorable trend in prevention, signifi-
cant challenges still remain. In primary prevention these include the cost of the 
program, covering two doses of vaccine, and extending the vaccination to boys and 
other populations at risk, including HIV-positive individuals. Equally important is 
to monitor the impact of this intervention that requires tools and strategies unavail-
able in many countries of the region.

In secondary prevention, it is crucial to change the paradigm by implementing 
HPV testing as primary screening in the most appropriate way. Among several chal-
lenges for its implementation, it should take into account the need to update screen-
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ing guidelines, strengthen treatment capacity, and develop a comprehensive quality 
assurance plan for HPV testing.

Finally, gaps still exist in the knowledge and the future lines of research, policy, 
and advocacy for noncervical HPV cancer prevention, mainly anal and oropharyn-
geal cancers and precancers; further studies are warranted to better understand their 
pathogenesis and the impact on cancer patient management. Public health commit-
ment and research to implement HPV-based preventive strategies, together with 
stronger and common advocacy to counter barriers affecting the adoption of these 
strategies, are likely to yield major benefits in reducing the burden of HPV-associated 
diseases in LA.
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Chapter 21
Rotavirus Vaccines: A Review of the Work, 
Progress, and Contributions Made in Latin 
America

Irene Pérez-Schael and Alexandre C. Linhares

1  Introduction

Rotavirus (RV) diarrhea is a public health problem, particularly in very poor coun-
tries. By the age of 5 years, almost every child around the world is infected by RV 
because this virus cannot be controlled by hygiene and sanitation conditions. In 
Latin America, RV causes 6,302 deaths and 229,656 hospitalizations every year [33].

Two World Health Organization (WHO) prequalified oral RV vaccines, Rotarix® 
and RotaTeq®, have been licensed worldwide. By now, more than 80 countries have 
introduced RV vaccines into their National Immunization Programs (NIPs), world-
wide, of which 19 are in Latin America [103].

RV vaccine represents an example of changing paradigms in the process of 
development, licensure, and introduction into immunization programs. The first 
commercialized RV vaccine (Rotashield) was withdrawn from the market 9 months 
after its approval by the Food and Drug Administration (FDA) in the U.S. because 
of an association with intussusception. This severe and rare pathology is now recog-
nized to be associated at a very low level to RV infection and new RV vaccines [84, 
102]. This was terrible news for the scientific community, which had to develop a 
new vaccine promptly to recover lost time.

In consequence, by 2000, a global agenda was implemented with the participa-
tion of both public and private sectors, for the development of new RV vaccines. 
Clinical trials for vaccine evaluation were simultaneously performed in developed 
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and developing countries, and a process to warrant the rapid introduction of RV vac-
cines into developing nations was considered.

In 2006, two new RV vaccines were ready for marketing. During this process, 
Latin America had a very significant role, as well as continuing to be critical in post- 
licensure studies [26, 92].

However, more than 94 million children in the world do not yet have access to 
RV vaccination [103], a situation that need to be improved to make the RV vaccine 
of imminent issue.

2  Rotavirus Vaccines: Latin America Participation

Although this section covers all RV vaccines, a special emphasis is given to the 
participation of Latin America (Table 21.1).

In 1979, the magnitude of rotavirus as a cause of diarrhea was established by 
WHO; hence, the development of a vaccine was justified and necessary. Because 
RV replicates in the intestine and being that local immunity is the main immune 
response for providing protection, particularly IgA, it was thought that the vaccine 
should be oral. Nevertheless, recently when more data have become available, 
serum secretory SIgA was suggested as a possible surrogate marker of vaccine pro-
tection [1, 38, 51].

2.1  Brief History of the First-Generation Rotavirus Vaccines

The first RV vaccine candidates were strains of animal origin, chosen as the base of 
vaccine development, because they embrace three important issues: (i) animal 
strains could be grown in cell culture, (ii) animal and human strains share antigens 
inducing immune response, and (iii) animal strains are usually naturally attenuated 
for humans and do not cause diarrhea in humans [57].

Three strains were available at that moment for being selected as vaccine candi-
dates: RIT 4237 (bovine), WC3 (bovine), and MMU 186006 (RRV rhesus strain). 
This strategy was named the “Jennerian approach,” in which a heterologous strain 
that mimics natural infection is used for immunization [57, 59]. These are live, oral, 
and attenuated RV vaccines.

Various studies in the early 1980s were fundamental to support this strategy. 
Foremost, a study showed protection induced by a bovine virus against a human 
virulent strain [57]. Moreover, a critical study was carried out by Dr. Ruth Bishop, 
discoverer of RV in Australia, where it was shown that RV neonatal infection 
induces protection during the first 3 years of life [13].

The first RV vaccine candidate proved in clinical trials was the bovine strain 
NCDV (RIT 4237) and it also was the first RV strain grown in cell culture. It was 
developed by Smith Kline Laboratories, in Rixensart, Belgium [31]. After being 
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Table 21.1 Efficacy of rotavirus (RV) vaccine against severe RV episodes

Vaccine
Country/region 
(study location)

Efficacy 
(95% CI) Outcome Reference

RRV/G3P5B [5] Venezuela 85 Severe RVGE [93]
Finland 75 (−120–97) Severe RVGE [113]

RRV-TV/G1-G4 USA 82 (−9–97) Very severe RVGE [6]
Arizona, USA 69 (29–88) Severe RVGE [109]
Peru 24 Any RVGE [63]
Brazil 35 Any RVGE [67]
Venezuela 87 (43–97) Severe RVGE [94]

70 (40–85) RV hospitalization
Finland 91 (82–96) Severe RVGE [114]
Ghana/South 
Africa

63 (27–82) Any RVGE [2]

WC3/G6P7 [5] USA 82–100 Any RVGE [20]
89–12/G1P1A[8] USA 89 (65–95) Any RVGE [7]

78 (14–94) Severe RVGE
RIX 4414/G1P1A [8] Brazil, Mexico, 

Venezuela
86 (63–96) Severe RVGE [107]
79 (48–92) RV hospitalization
77 (18–96) G9 RV 

hospitalization
Finland 85 (42–97) Severe RVGE [121]
Singapore, Hong 97 (88–97) Severe RVGE [97]
Kong, Taiwan 95 (80–99) Non-G1 severe 

RVGE
Rotarix®/G1P1A [8] Latin America, 

Finland
85 (72–92) Severe RVGE [104]
85 (70–94) RV hospitalization
87 (64–97) Non-G1 RV 

(G3,G4,G9)
41 (−79–82) G2 RV

Latin America  
(11 countries)

81 (71–87) Severe RVGE [70]
80 (67–88) Non-G1 

(G2,G3,G4,G9)
Europe (6 
countries)

90 (85–94) Severe RVGE [120]
96 (84–100) RV hospitalization
86 (24–99) G2 RV

South Africa 72 (40–88) Severe RVGE [73]
86 (55–97) Non-G1 RV

Malawi/Africa 49 (11–72) Severe RVGE [73]
50 (17–70) Non-G1 RV [73]

Rotavac®/G9P8 [11] India/South Asia 55 (40–66) Severe RVGE [11]
RotaTeq®/
G1-G4,P8

USA, Finland, 
Latin America

98 (88–100)
95 (91–97)

Severe RVGE
RV hospitalization

[123]

USA 95 (84–99) RV hospitalization [118]
Europe 95 (91–97) RV hospitalization [118]

(continued)
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Vaccine
Country/region 
(study location)

Efficacy 
(95% CI) Outcome Reference

Latin America 90 (29–100) RV hospitalization [118]
Finland 94 (91–96) RV hospitalization [119]
Bangladesh/Asia 43 (10–64) Severe RVGE [132]
Vietnam/Asia 64 (8–91) Severe RVGE [132]
Ghana/Africa 56 (28–73) Severe RVGE [3]
Kenya/Africa 64 (−6–90) Severe RVGE [3]
Mali/Africa 18 (−23–45) Severe RVGE [3]

Rotarix® two doses, RotaTeq® three doses, RV rotavirus, RVGE rotavirus gastroenteritis

Table 21.1 (continued)

tested in pigs, the RIT 4237 vaccine was evaluated in humans. In Finland, the vac-
cine was safe and provided an efficacy of 23–100% against severe episodes [113, 
115–117]. However, this vaccine did not succeed in Africa and Peru, nor in Native 
American infants in Arizona (0–75%) [49, 62, 108]. Thus, its development was 
discontinued.

Another bovine RV vaccine candidate, the WC3 strain, was developed by Fred 
Clark and Paul Offit at the Wistar Institute in Philadelphia, PA (USA). Similarly, 
initial results from WC3 studies were promising; however, its efficacy was 
 inconsistent (0% in Africa–76% in the U.S.), and the process was discontinued [8, 
18–20, 41].

The third vaccine of this group was the rhesus RRV strain developed by Albert 
Kapikian and collaborators at the National Institute of Allergy and Infectious 
Diseases, NIAID, National Institutes of Health (NIH), USA. The efficacy of this 
vaccine against severe diarrhea was variable in the U.S., Sweden, Finland, and 
Peru (0–80%) [59]. Nevertheless, a clinical trial phase II conducted in Venezuela 
showed that this vaccine was highly efficacious (85%) against severe gastroenteri-
tis (GE) and induced fundamentally homotypic protection [93], as in Venezuela 
circulated the same serotype G3 of the RRV strain. In general, these monovalent 
vaccines showed poorest efficacy in developing countries in comparison with 
developed nations.

2.2  Second-Generation Rotavirus Vaccines

In view of the former disappointing results, the “modified Jennerian approach” was 
implemented, wherein single-gene substitution reassortants for human G1, G2, G3, 
and G4 serotypes were generated from RRV and WC3 RV strains to construct polyva-
lent vaccines. This methodology was created by Karen Midthun and collaborators at 
NIAID [76]. The reassortant viruses retained the attenuation of the animal strains but 
also express proteins responsible for inducing protective immune response in humans.
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2.2.1  Polyvalent Reassortant Vaccines

RRV Reassortant Vaccines
From the RRV strain, three reassortants with specificity for G1, G2, and G4 were 

developed; the G3 serotype was covered by the RRV strain. Afterward, each indi-
vidual reassortant in monovalent and later in bivalent, trivalent, and quadrivalent 
combinations was evaluated for safety, immunogenicity, and efficacy studies [59, 
77]; this was a long process in which Finland, Venezuela, Brazil, and Peru had sig-
nificant roles. Six important studies were carried out in Venezuela to decide on titer 
concentration and the number of doses for the quadrivalent vaccine (RRV-TV) for 
later evaluation in phase II and III trials [92].

Phase III clinical trials, administering three doses of RRV-TV vaccine, were con-
ducted in the U.S., Finland, Venezuela, Peru, and Brazil. Efficacy was higher  
(82–91%) against severe diarrhea episodes in the U.S., Finland, and Venezuela 
(Table 21.1), but was lower in Native American infants in Arizona (69%), Peru (24%), 
and Brazil (35%) [6, 63, 67, 94, 109, 113, 122]. In Venezuela, in a large catchment 
study including 2480 infants, RRV-TV vaccine showed 88% protection against severe 
RV episodes and 70% reduction in hospital admissions by RV diarrhea [94].

On additional analysis of the Venezuelan clinical trials, the vaccine was effica-
cious despite socioeconomic conditions and seasonality, protection was sustained 
through the second year of life, and, moreover, vaccine strain transmission was 
observed in 13% of nonvaccinated infants [52, 91]. Thus, the vaccine could produce 
herd immunity, which is the induction of protection in the unvaccinated population. 
This effect has been demonstrated in various post-commercialization studies on 
impact RV vaccines in use [98].

The disappointing results of Peru and Brazil were probably, among other facts, 
associated with titer vaccine concentration but mostly with methodological issues, 
as the study design was focused not on efficacy determination for severe or moder-
ate RV diarrhea but on efficacy against any RV diarrhea. This focus was confirmed 
by a reappraisal of data by pulling together both studies, in which efficacy was then 
comparable to the studies done in Venezuela and Finland [66, 69].

The Venezuelan pivotal catchment study was a great achievement because the 
rotavirus vaccine was successful for the first time in a developing country [94]. This 
study by Pérez-Schael and collaborators was commented on, in an editorial of the 
New England Journal of Medicine, as “the culmination of a long and highly creative 
process of research and development at the National Institutes of Health” [61].

In August 31, 1998, the U.S. Food and Drug Administration (FDA) granted a 
Biologic License for the RRV-TV vaccine under the trade name Rotashield® to 
Wyeth-Lederle Vaccines. Twenty-five years after the discovery of RV, Rotashield 
became the first RV vaccine licensed and marketed, following the recommendation 
of the Advisory Committee on Immunization Practices (ACIP-USA). However, 9 
months later and after 1 million doses had been administered in the U.S., the 
Rotashield recommendation from ACIP was withdrawn, and the company removed 
the vaccine from market, because it was associated with intussusception, a rare but 
severe pathology that can cause intestinal obstruction if not treated in time.
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Because RRV-TV vaccine preserved its license, later on it was acquired first by 
Biovir Laboratories and subsequently by International Medical Foundation (IMF), 
a nonprofit organization [58]. Under IMF auspices and with the collaboration of 
NIH, the vaccine was reformulated to obtain a product that does not need refrigera-
tion. A phase II clinical trial with the RV vaccine RRV-TV carried out in Ghana, 
administering two doses in neonates, showed 63% efficacy against rotavirus epi-
sodes of any severity [2]. The advantage of this schedule, the first dose given at 0–4 
weeks of age and the second dose at 4–8 weeks, is that vaccines are given at an age 
of less risk of intussusception and provide protection in early life.

The decision for the withdrawal of the Rotashield vaccine from the market has 
been under intense discussion including the magnitude of risk of intussusceptions 
associated with actual RV vaccines, the role of age at the time of vaccination, and 
the cost–benefit analysis of using the vaccine in countries with a high burden of 
rotavirus diseases [80, 102, 110, 126].

WC3 and UK Reassortant Vaccines

WC3 monovalent reassortants including VP7 specificities for G1–G4 and P [8], 
maintaining the bovine background, were developed and proved to be safe, immu-
nogenic, and efficacious (69–100%) in clinical trials. Afterward, they were com-
bined for constructing a quadrivalent and, subsequently, a pentavalent vaccine. Both 
vaccines were equally safe and efficacious [17, 20, 21, 50]. The RV pentavalent 
vaccine, manufactured by Merck in the U.S., is commercialized as RotaTeq.

On the other hand, human-bovine rotavirus (UK) reassortants were developed 
from the UK strain and were tested in monovalent and tetravalent combinations, 
containing serotypes G1, G2, G3, and G4, which were safe, immunogenic, and 
efficacious [60, 122]. Furthermore, it was planned to construct a hexavalent human- 
bovine rotavirus (UK) reassortant vaccine, including G8 and G9, to be administered 
in neonates [60]. Nonexclusive licenses of these vaccine strains were transferred by 
the NIH to vaccine manufacturers in Brazil, China, and India in 2005.

Subsequently, the Serum Institute of India Ltd developed a live attenuated RV 
pentavalent vaccine (BRV-PV) containing five RV human-bovine (UK) reassortant 
strains of serotypes G1, G2, G3, G4, and G9. After preclinical and clinical phase I 
and II studies with three doses of the vaccine in adults, toddlers, and infants, 
BRV-PV was found safe and immunogenic [131]. Results of two large phase III 
efficacy studies against severe RVGE, which are under way in India and Niger, will 
be available in 2017. These results will be used to achieve licensure in India and the 
prequalification from WHO.

2.2.2  Rotavirus Vaccines of Human Origin

There are two types of human RV vaccines: strains of neonatal origin (M37, RV3, 
and 116E) and a strain isolated from a child with RV diarrhea (89–12).
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The neonatal strain 116E, isolated in India, is a natural and unique reassortant 
containing a bovine VP4 and a G9 human VP7. This live oral attenuated vaccine 
(116E) is the one in most advanced stages in this group and was investigated, devel-
oped, licensed, and marketed in India under the name Rotavac [42]; this is the first 
vaccine that entirely completed all process stages in a developing country as a result 
of team science work based in India [10]. Human 116E vaccine, administered in 
three doses, was safe and 55% efficacious in a phase III trial in India [11]. This 
efficacy, comparable to that of other vaccines when tested in low-income settings, 
was sustained through the first 2 years of life and provided protection against a wide 
variety of strains. The vaccine is manufactured by Bharat Biotech International with 
the financial support of the Indian government, Bill & Melinda Gates Foundation, 
and PATH, an example of changes in the RV vaccine paradigm.

The strain M37 (G1P2A [10]) was isolated in Venezuela by a scientific team at 
Instituto de Biomedicina, Universidad Central de Venezuela, and developed as vaccine 
candidate at NIAID.  Strain M37 was safe and induced a good immune response 
against itself, but it was not efficacious in a phase II study in Finland [124]; thus, M37 
vaccine development was abandoned. The human RV3 vaccine candidate was discov-
ered by Ruth Bishop in Australia and is in phase I and II stages of development [4, 12].

Originally, the strain 89–12 was isolated from a child with diarrhea in the 
Cincinnati Children’s Hospital Medical Center (U.S.), being developed as a candi-
date vaccine by David Bernstein and Richard Ward [7, 9]. Its development was 
based in the Mexican study, which provided the evidence for protection induced by 
natural RV infection against moderate or severe RVGE [112].

The 89–12 strain, which contains the most common human G serotype and P geno-
type, was initially attenuated by cell passages and, last, after it was acquired by 
GlaxoSmithKline (GSK), was cloned, further attenuated, and named RIX4414 [30]. 
This vaccine was tested in Finland, Singapore, Brazil, Mexico, and Venezuela [30, 107, 
121]. Two doses of the vaccine were well tolerated and highly efficacious (85–97%) and 
did not interfere with the co-administered routine pediatric vaccines (Table 21.1). In 
Latin America, the vaccine reduced hospitalization by 79% and showed significant effi-
cacy (86%) against severe RVGE and against non-G1 RV serotypes (77%) [107]. In 
addition, in Venezuela, it was found that the vaccine reduced significantly severe RV 
episodes regardless of nutritional status of vaccines [96]. This monovalent vaccine is 
manufactured in Belgium by GSK and commercialized as Rotarix.

2.2.3  Novel Strategy for Rotarix® and RotaTeq® Vaccine Development, 
Licensure, and Introduction into National Immunization Programs

After the withdrawal of Rotashield, there was an urgent need to accelerate the devel-
opment of new RV vaccines, mainly for those countries where it was most needed. 
This situation led WHO and the scientific community to formulate some recom-
mendations for the implementation of this novel strategy. Among those, the most 
important was to carry out a parallel testing of candidate vaccines in both develop-
ing and developed countries, given the differences in RV epidemiology and national 
regulatory norms [92, 95].
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In view of the association of Rotashield with intussusception, it was necessary 
furthermore to conduct phase III clinical studies involving more than 60,000 infants 
for any vaccine to establish their safety against this infrequent pathology.

In consequence, Rotarix and RotaTeq were evaluated in phase III clinical trials. 
GSK undertook a large, multicenter, safety and efficacy trial in 63,225 infants from 
Finland and 11 Latin American countries (Argentina, Brazil, Chile, Colombia, the 
Dominican Republic, Honduras, Mexico, Nicaragua, Panamá, Peru, and Venezuela) 
[104]. Meanwhile, Merck carried out the study in 68,038 infants, mainly from the 
U.S. and Finland, but also including infants from Costa Rica, Guatemala, Jamaica, 
and Mexico [123]. Two doses of Rotarix were administered at 2–4 months of age, 
and three doses of RotaTeq were given at the ages of 2, 4, and 6 months.

Both vaccines were safe and not associated with an increased risk of intussuscep-
tion. Rotarix provided high protection (85%) against severe RV diarrhea, reduced 
RV diarrheal hospitalization by 85%, and was highly efficacious (87%) against G3, 
G4, and G9 strains but less so against the G2 serotype (41%) [104]. Vaccine protec-
tion (79%) was sustained during the second year of life [70]. In Europe, Rotarix 
efficacy was 90% against severe episodes and 86% against G2 serotype [120]; the 
RotaTeq vaccine showed 98% of efficacy against severe RVGE and 95% against RV 
hospitalizations [123]. Reduction of hospitalization by this vaccine in the U.S., 
Europe, and Latin America was 95%, 95%, and 90%, respectively [118].

Both vaccines demonstrated good protection in America and Europe, but its effi-
cacy was variable when tested in Africa and Asia. Rotarix was highly efficacious 
against severe RV episodes (97%) in Hong Kong, Singapore, and Taiwan, but pro-
vided less protection in South Africa (72%) and Malawi (49%) [73, 97]. Similarly, 
the efficacy of RotaTeq was 64% in Kenya and Vietnam, 56% in Ghana, 43% in 
Bangladesh, and 18% in Mali [3, 132].

Both vaccines presented an analogous efficacy gradient, being the lowest in poor 
socioeconomic settings and the highest in countries with higher socioeconomic con-
ditions. Reduction of severe RV by region was similar for both vaccines: 90–95% in 
the U.S. and Europe, 81–90% in Latin America, 18–64% in Africa, and 43–64% in 
Asia, with the exception of Singapore, Hong Kong, and Taiwan, where efficacy was 
97% (Table 21.1).

Generally, RV vaccines present variable levels of protection in distinct settings, 
as has been seen with other vaccines; differences that are probably associated with 
viral, environmental, and host factors among which low uptake caused by maternal 
antibodies, interference with other pathogens of the gastrointestinal tract or with 
other oral vaccines, microbiota, and nutritional deficiencies of infants may be 
involved [22, 114].

On the other hand, to understand better the reduced RV vaccine efficacy in low 
socioeconomic settings, it was compared with the protection conferred by natural 
RV infection with vaccination [71]. In this study, it was demonstrated that the 
reduced vaccine efficacy in low socioeconomic settings can be explained by intrin-
sic immunological and epidemiological factors of these populations, which need 
further evaluation. The authors suggested that modifying immunogenicity of vac-
cine or vaccination programs may improve the performance of RV vaccines in poor 
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socioeconomic countries. Nevertheless, it is necessary to have in mind that many 
vaccines would have low performance in some low socioeconomic settings, as 
occurred with polio vaccine.

For the first time in vaccine history, a vaccine was first licensed in another coun-
try distinct from the U.S. and was introduced at the same time in Latin America and 
the U.S., in 2006 [92, 95]. Rotarix and RotaTeq have been incorporated into NIPs 
from 80 countries, of which 18 are from Latin America Fig. 21.1) [103]. On the 
other hand, clinical trials conducted in Latin America facilitated licensure and uni-
versal introduction of RV vaccine in the region [95].

3  Other RV Vaccines

Because oral RV vaccine performance is diminished in low socioeconomic settings 
and has a low association with intussusception, the development of nonreplicating 
RV vaccines (inactivated/parenteral) has become an indispensable issue [54], and 
various nonreplicating RV vaccines that will be administered by intramuscular 
injection are in the development process [130].

4  Rotavirus Vaccine Post-licensure Studies

In 2009, WHO recommended that all countries should introduce Rotarix and 
RotaTeq vaccines into NIPs, particularly those countries where mortality rates 
among children aged less than 5 years were 10% or more [127]. As a result of the 

Fig. 21.1 Map shows the 80 countries that had introduced RV vaccine into their immunization 
programs by December 2015. (Adapted from [103])
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adoption of one of these vaccines into their public sectors, since 2006 a dramatic 
and progressive decline in RV infection rates, illnesses, and deaths has been 
observed in several countries throughout the world.

In the developing world, Latin American countries have pioneered the introduc-
tion of RV vaccination into NIPs, and this allowed the conduct of several post- 
licensure studies to assess its efficacy under real conditions (effectiveness) and its 
public health impact in terms of morbidity and mortality associated with all-cause 
GE and RV disease in the region. In addition, several studies in Latin America have 
also evaluated the potential effect of RV vaccination on the distribution of RV strains 
[68, 82, 95]. The most relevant findings from post-licensure studies conducted in 
Latin America are summarized next.

4.1  Vaccine Effectiveness

With the broad and progressive universal utilization of RV vaccines across Latin 
American countries, there was a need to evaluate effectiveness. In general, these stud-
ies have reassured the significant vaccine efficacy levels against severe RVGE that 
were achieved during the extensive phase III trials in Latin America. Overall, six case-
control studies with Rotarix were conducted in Brazil (three studies), Bolivia (one 
study), Colombia (one study), and El Salvador (one study), whereas the effectiveness 
of RotaTeq was assessed in Nicaragua. The most relevant findings from these studies 
are detailed in Table 21.2. In addition to case-control studies, two cross-sectional stud-
ies and one cohort study were conducted in Brazil to assess vaccine effectiveness.

4.1.1  Case-Control Studies

In Bolivia, the first low-income country to adopt Rotarix into the public sector, vac-
cine effectiveness yielded rates as high as 80% [88]. Of note, the vaccine provided 
significant protection against either partially (G9P[8]) or fully (G2P[4]) heterotypic 
strains. In Brazil, at least three case-control studies were conducted, showing vac-
cine effectiveness rates as high as 85% depending on the characteristics of control 
groups used [23, 53, 56, 68]. A major finding from the Brazilian studies was that the 
RV vaccine provided significant protection against the G2P[4] strain, which was 
predominant all over the country and is known to be fully heterotypic as compared 
to that of the G1P[8] vaccine strain. Additional case-control studies have assessed 
the vaccine effectiveness in Colombia and El Salvador, yielding vaccine effective-
ness rates as high as 79% and 76%, respectively [25, 28]. Of interest, predominant 
RV strains in Colombia and El Salvador were G2P[4] and G1P[8], respectively. 
Nicaragua was the first low-income country to introduce RotaTeq into its 
NIP. Overall, the effectiveness of three doses of the vaccine against RVGE requiring 
hospitalization or treatment with intravenous hydration yielded 46%; much higher 
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protection (77%) was achieved if severe RVGE cases only were included in the 
analysis [86]. In this study, G2P[4] strains accounted for almost 90% of isolates.

In addition to the case-control studies, cross-sectional and cohort studies have 
also assessed effectiveness after RV vaccine introduction in Latin America, although 
in general small sample sizes used do not allow drawing firm conclusions [14, 45, 
125]. Two cross-sectional studies in Brazil showed a remarkable decrease in both 
RV and all-cause GE-related hospitalization and treatment at emergency depart-
ments in the North-Eastern and Central-Western regions [14, 45].

In a longitudinal cohort study in North-Eastern Brazil, all-cause GE episodes 
were found to be more severe among unvaccinated children, as compared to vacci-
nated children (P < 0.05) [125].

4.2  Public Health Impact of Rotavirus Vaccine

To date, approximately 41% of the countries around the world have introduced RV 
vaccines into their NIPs. Following vaccine introduction, numerous observational 
studies conducted in Latin America have documented significant reductions in the 
frequency of hospitalizations related to GE of any cause, as well as in the amount of 
GE-associated mortality among children younger than 5 years of age (Fig. 21.2 [32]).

At least five ecological studies in Brazil have evaluated the changes in the pro-
portions or trends of either all-cause or RV-related GE, as well as in GE-related 
childhood deaths before and after the introduction of Rotarix into the country NIP. 
do Carmo et al. [34] estimated the rates GE-related hospitalizations and deaths dur-
ing the post-vaccination period, showing reductions as high as 25% and 22% in all 
causes of GE and GE-related deaths, respectively. In additional nationwide studies, 
Lanzieri et al. [64, 65] have reported decreasing trends as high as 48% and 39% in 
all-cause GE hospitalizations and childhood GE-related deaths, respectively. A sim-
ilar, substantial nationwide reduction (as high as 36%) in the rates of childhood 
hospitalizations caused by GE of any cause was reported by Gurgel et  al. [48]. 
Furthermore, recent country-level data demonstrated sustained significant decreases 
in GE-related hospital deaths and hospitalizations, yielding rates as high as 60% and 
31%, respectively, among children less than 5 years of age [24]. The impact of RV 
vaccine in São Paulo, South-Eastern Brazil, translated into a reduction in RV-related 
hospitalizations in the range of 59% to 82% across age groups, with the highest 
decrease among infants aged 0–11 months [106].

At least two observational studies conducted in Mexico have reported major 
declines in GE-related deaths among children younger than 5 years of age, follow-
ing rotavirus vaccine introduction in 2007. In an earlier study by Richardson et al. 
[101], a drastic reduction (29–41%) of child deaths was seen in 2008. In a subse-
quent analysis, a significant sustained decrease (43–55%) was observed in 
GE-related deaths during the 4 years after vaccine introduction [39]. Also, in Mexico 
a sharp decline in hospitalizations for GE was reported by Quintanar-Solares et al. 
[99], with rates ranging from 40% to 52% across age groups.
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Studies in Panama showed that GE-related hospitalizations decreased at rates as 
high as 30% [5] and 40% [78] across age groups. Furthermore, a substantial decline 
(up to 45%) in GE-related mortality was reported by Bayard et al. [5].

An apparent, relatively low impact of RV vaccination was reported in Nicaragua, 
translated into a reduction rate of only 12% in all-cause hospitalizations for GE 
among infants, probably resulting from the yet suboptimal vaccine coverage during 
the first year after introduction [83].

A recent multinational analysis was performed to assess the temporal trends in 
all-cause GE-related hospitalizations and deaths among children under 5 years of 
age, before and after introduction of RV vaccination in Bolivia, El Salvador, 
Honduras, and Venezuela [27]. Mortality reduction rates ranged from 14% 
(Honduras) to 60% (Venezuela) among children 0–1 year in age (Fig.  21.2). 

do Carmo et al., 2011
Hospitalizations: 17-25%

Deaths: 4-22%

Lanzieri et al., 2010, 2011
Hospitalizations: 19-48%

Deaths: 33-39%

Sáfadi et al., 2010
Hospitalizations: 59-82%*

Deaths: NA

* RVGE; ** Ranges may include results obtained across different age groups (not specified in the 
figure) throughout the study period; NA: Not available 

Costa et al., 2016
Hospitalizations: 22-31%

Deaths: 55-60%

Brazil

México

Richardson et al., 2010
Hospitalizations: NA

Deaths: 29-41%

Quintanar-Solares et al. 2011
Hospitalizations: 40-52%

Deaths: NA

Gastanaduy  et al.,2013
Hospitalizations: NA

Deaths: 43-55% Nicaragua

Orozco et al., 2009
Hospitalizations: 5-12%

Deaths: NA

Panama

Molto et al., 2011
Hospitalizations: 31-40%

Deaths: NA

Bayard et al., 2012
Hospitalizations: 4-30%

Deaths: 45-54%

Honduras

de Oliveira et al., 2013
Hospitalizations: 11-18%**

Deaths: 14-16%

El Salvador

Yen al., 2011
Hospitalizations: 69-79%*

Deaths: NA

de Oliveira et al., 2013
Hospitalizations: 6-8%

Deaths: -5- -6%

Venezuela

de Oliveira et al., 2013
Hospitalizations: 15-26%

Deaths: 57-60%

Bolívia

de Oliveira et al., 2013
Hospitalizations: 9-13%

Deaths: 30-36%

Gurgel et al., 2011
Hospitalizations: 12-36%

Deaths: 33-54%

Fig. 21.2 Rotavirus vaccination impact on the reductions of acute gastroenteritis-associated hos-
pitalizations and deaths in Latin America
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Furthermore, the highest reduction rates in hospitalizations for all causes of GE 
were seen in Honduras, yielding 27% for children 0–1 year in age. An additional 
study conducted in El Salvador [129] showed that universal use of RV vaccination 
in the country NIP has reduced the prevalence of hospitalization from RV by as 
much as 79% among children younger than 1 year.

4.2.1  Strong Evidence for Herd Immunity

Similar to findings from studies in other regions worldwide, the remarkable public 
health impact of RV vaccine in Latin America appeared to not be restricted only to 
infants with less than 1 year of life, the age-eligible group for vaccination, but it was 
also evident among older, not age-eligible children [68, 82]. Indeed, such indirect 
benefits, known as the herd immunity effect, suggest that vaccination of a large 
proportion of the targeted population also translates into protection for those indi-
viduals who either were not vaccinated or had not developed immunity. This effect 
has been attributed to vaccination in reducing the rates of transmission among a 
diminished population of infants susceptible to RV infection [43]. In Brazil and El 
Salvador, for example, the rates of RV-related hospitalizations among children not 
vaccinated decreased by 41–81% and 24%, respectively [106, 129].

4.3  Effect on Circulating RV Strains

Following the implementation of universal RV vaccination in Latin America, a con-
cern was raised as to whether the currently available vaccines would confer suffi-
cient protection against strains not included in their composition. Moreover, it had 
been postulated that an evolutionary pressure exerted by the vaccines might poten-
tially lead to strain replacement during the post-vaccination era, even resulting in 
the emergence of either unusual RV strains or strains that would escape vaccine 
protection [68, 74, 82, 89].

It has been extensively documented that circulating RV strain diversity and geo-
graphic distribution vary considerably throughout the world, and periodically 
emerging novel strains were identified in the pre-vaccine era, such as those bearing 
G9- and G12-type specificities [40]. Although more than 60 rotavirus strains are 
known to occur naturally in human beings, only 5 strains (G1P[8], G2P[4], G3P[8], 
and G9P[8]) are associated with 80–90% of childhood GE globally. Data from sev-
eral clinical studies and post-licensure research have demonstrated that the two vac-
cines available today (Rotarix and RotaTeq) convincingly provide protection against 
a broad variety of circulating strains, including strains not incorporated in their 
composition [29, 56, 86, 87, 89], suggesting that immunity to RV is mostly hetero-
typic [1].
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In certain countries in Latin America (e.g., Brazil), a marked increase in the 
prevalence of the fully heterotypic G2P[4] RV was particularly evident just follow-
ing the implementation of the monovalent (G1P[8]) human rotavirus vaccine 
Rotarix. These findings raised the hypothesis that a serotype replacement was likely 
to be occurring as a result of vaccine-induced selective pressure [16, 47, 68, 82]. 
This high predominance of G2P[4] strains could also be seen in Nicaragua, where 
the use of the pentavalent (G1, G2, G3, G4, and P[8]) bovine-human reassortant 
vaccine RotaTeq was fully in place [85]. Notably, a sharp increase in the relative 
prevalence of G2P[4] was also concurrently observed in countries where RV vac-
cination had not even been implemented into the public sector, such as Argentina 
and Paraguay [36, 89].

Of interest, several further surveillance studies have shown a substantial decline 
in the occurrence of G2P[4] in more recent years, with an increase in prevalence of 
G1P[8] and several other non-G2 types [16, 35, 44, 46, 75, 79, 90]. Taking collec-
tively with the already well-established good homotypic and heterotypic efficacy 
and effectiveness of available RV vaccines, these post-licensure surveillance data 
strongly strengthen the hypothesis of a natural secular strain fluctuation, rather than 
a potentially vaccine-driven effect on circulating RV strains. Nonetheless, the 
robustness of such an assumption will only be increased through the conduct of a 
continuous, long-term monitoring of circulating RV strains throughout Latin 
America countries and other settings.

5  Benefits Outweigh Potential Risks: The Issue 
of Intussusception

Several pre- and post-licensure studies conducted in every region of the world have 
convincingly demonstrated that both Rotarix and RotaTeq have strong safety 
records, albeit a slight increase in the risk of developing intussusception has been 
reported [15]. Nevertheless, it is currently well established that estimates for any 
potential risk are several times lower than the risk reported for RotaShield [81].

Intussusception represents an extremely rare condition in which the intestine 
folds on itself, occurring naturally (in the absence of vaccination) in infants between 
2 and 9 months of age, at rates that vary considerably (9 to 328 per 100,000) from 
region to region around the world [55]. Similarly, in a prospective surveillance study 
conducted in Latin America before the introduction of universal RV vaccination, 
incidence rates of intussusception were found to vary widely across 11 countries, in 
the range between 3.8 and 105.3 per 100,000 children under 1 year of age [105].

At least two large post-marketing surveillance studies have assessed the risk of 
intussusception in real clinical practice in Latin America, both of which clearly 
show that benefits of vaccination far outweigh any potential risk of intussusception 
[85, 111].
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In one study performed in parallel in Mexico and Brazil, a small transient 
increase in the occurrence of intussusception was detected within 7 days after the 
administration of the first vaccine dose among Mexican infants [incidence rate of 
5.3 (95% CI, 3.0–9.3)], whereas in Brazil an even smaller proportion [2.6 (95% CI, 
1.3–5.2)] was identified only after the second dose [85]. These data translate into the 
prevention by the vaccine of 11,551 RV-related hospitalizations and 663 deaths 
annually in Mexico, compared to an estimated 41 excess intussusceptions cases and 
2 deaths attributable to the implementation of RV vaccination. In Brazil, the vaccine 
would prevent an estimated 69,572 hospitalizations and 640 deaths, compared to a 
predicted 55 excess intussusception cases and 3 deaths.

An additional large prospective, post-marketing active surveillance study for 
intussusception was conducted in Mexico, involving 66 hospitals and 1.5 million 
vaccinated infants [111]. The relative risk of intussusception during the 7-day period 
following the administration of the first RV vaccine dose [6.5 (95% CI, 4.2–10.1)] 
was comparable to that of previous studies in Mexico, with an estimated attributable 
risk of 3 or 4 additional cases per 100,000 vaccinated infants [85, 102].

In summary, taking all available data into account, studies in Latin America (and 
elsewhere) have shown a small increased risk of intussusception within the 7 days 
following administration of first vaccine dose and, to a lesser extent, second dose. 
Although it is recommended that monitoring for intussusception should continue in 
countries where RV vaccines are in use, it is currently well established that accumu-
lating available evidence strongly supports the notion that benefits of vaccination far 
outweigh the risk [128].

6  Challenges and Recommendations for the Future

In contrast to the 18 Latin-American countries mentioned, 7 countries (Argentina, 
Chile, Costa Rica, Cuba, French Guiana, Suriname, and Uruguay) have not incor-
porated vaccination into their NIPs (Fig.  21.1). Taking into account the robust, 
aforementioned data available on the vaccine-derived health benefits in Latin 
America, decision makers and healthcare providers in these latter countries should 
urgently recognize that strong reasons exist to support introduction of RV vaccina-
tion into their NIPs [103]. In addition to this, it has been largely demonstrated that 
universal vaccination of infants is cost-effective for middle- and low-income set-
tings in Latin America [100].

A number of general issues and recommendations remain to be addressed in the 
coming years toward an improved performance of RV vaccination, not only for 
Latin America but also for other regions throughout the world:

• In countries where RV vaccines have already been introduced, vaccination sus-
tainability must be ensured through the support from national governments, 
funding agencies, and global health entities.

21 Rotavirus Vaccines…



430

• Countries are strongly encouraged to gather continuously high-quality data on 
GE hospitalizations and GE-related deaths. There is also a need for continuous 
vaccine safety monitoring, particularly with respect to the occurrence of 
intussusception.

• A long-term monitoring of circulating RV strains is recommended following 
introduction.

• The adoption of strategies should address the issue of the yet great disparities in 
vaccination coverage rates across Latin-American countries. A delayed immuni-
zation, for instance, may have resulted in suboptimal coverage [37].

• It is recommended to build a broad scientific-based advocacy initiative for RV 
vaccination, stressing the overwhelming benefits over any risk of vaccination.

In the context of a proposed research agenda, the following specific aspects 
might also be put into perspective:

• Examine the potential effect of universal vaccination on the epidemiology, par-
ticularly in regard to seasonality and age distribution of RV.

• Assess the potential for vaccine-derived indirect benefits (herd immunity) among 
children not vaccinated.

• Undertake long-term monitoring for circulating RV strains to see whether 
changes in the ecology may result from universal vaccine use.

• Investigate whether factors such as oral polio vaccine, breastfeeding, and gut 
microbiome/intestinal enteropathy may interfere with vaccine effectiveness.

• Analyze the sustained effectiveness of RV vaccines to determine whether possi-
ble waning immunity occurs after the first year of life, particularly in regard to 
G2P[4] and a broad range of circulating RV strains.

• Improve the efficacy of vaccines by making adjustments to vaccine schedule, 
such as a birth dose, two versus three doses for Rotarix, timing and spacing of 
doses, and a booster dose at a later age.

A promising prospect for Latin America is the fact that Brazil is on its way 
toward fully developing the capacity to produce two RV vaccines through partner-
ships for technology transfer, as previously mentioned: first, a vaccine based on a 
UK bovine-human reassortant developed by the US National Institutes of Health 
and, second, a human-derived vaccine through an agreement with GSK [72, 95].

7  Conclusions

The RV vaccines currently licensed, monovalent Rotarix and pentavalent RotaTeq, 
have provided a long and broad protection against a range of RV strains in distinct 
settings. Additionally, these vaccines have been effective, and no increased risk of 
intussusception has been demonstrated in post-licensure studies up to the present. 
Research and clinical trials conducted in Latin America have in part made this real-
ity possible. However, RV vaccines need further attention to broaden their use in 
NIPs in most countries.
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Chapter 22
Progress for Antiviral Development  
in Latin America

Viviana Castilla, Claudia S. Sepúlveda, Cybele C. García, 
and Elsa B. Damonte

1  Introduction

The search of novel effective antiviral agents for treatment of viral infections is a 
constant challenge for human health. Even when successful drugs have been devel-
oped and employed to combat well-known human pathogens, many current thera-
pies face the difficulty of a high rate of genetic change exhibited by viruses, enabling 
the selection of drug-resistant mutants. This shift adds to the increasing periodic 
emergence of new viral pathogens or the reemergence of old ones lacking a reliable 
drug therapy. Therefore, the finding of new antiviral approaches is a continuously 
demanding effort.

In Latin America, antiviral research has been mainly focused on herpes simplex 
virus (HSV) as a global model system of antiviral studies because resistance to 
acyclovir, the currently standard antiherpetic agent, is still a therapeutic challenge, 
particularly for immunocompromised patients requiring prolonged treatment [110]. 
Viruses causing neglected diseases that represent a serious threat for public health 
in the region, such as dengue virus (DENV) [72]. Junín virus (JUNV), the agent of 
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Argentine hemorrhagic fever [64], and Mayaro virus (MAYV), an emerging 
 arbovirus causing outbreaks of a debilitating febrile illness in many regions of South 
America [59], among other ones, were also tested in several studies intending to 
solve local health problems.

Much investigation has been performed with crude extracts and pure compounds 
derived from the very abundant American natural sources (such as plants, sea algae, 
marine invertebrates). These products present interesting characteristics such as 
high chemical diversity, mild undesirable side effects, and, very important for our 
region, low cost. The collaboration of organic chemical and virological teams has 
also allowed the finding of synthetic compounds with promising antiviral proper-
ties. To complement traditional virus-targeted inhibitors, agents that act via host 
factors required for the virus life cycle have attracted increasing interest in recent 
years based on the possibility of obtaining a wide antiviral spectrum because differ-
ent viruses may share a host factor.

This chapter summarizes the main contributions in different experimental 
approaches for antiviral development from scientists in Latin America in the last 
decade and the challenges and perspectives for the near future.

2  Natural Antiviral Compounds

2.1  Plant Products

Plants have been widely used to alleviate diverse human diseases, and they consti-
tute an important source of novel antiviral molecules. Based on their ethnomedici-
nal use, numerous plants in South America have been selected to investigate the 
ability of derived extracts or essential oils to affect virus infectivity. Essential oils 
from different plant species displayed virucidal action against HSV-1 and HSV-2, 
yellow fever virus (YFV), DENV, and JUNV [60, 66, 92]. On the other hand, 
extracts derived from different plant families—Asteraceae [141, 150], Euphorbiaceae 
[17], Fabaceae [74], Phyllanthaceae [9, 58], Aquifoliaceae [81], Meliaceae [54], 
and Verbenaceae [122]—exhibited antiviral activity against different viruses includ-
ing HSV-1, HSV-2, rotavirus (RV), astrovirus, poliovirus (PV), and influenza A 
virus (IAV).

An extract of Achyrocline satureioides showed anti-HSV-1 activity mainly 
related to the presence of flavonoid aglycones [18]. Moreover, the extract included 
in nanoemulsions proved to be an efficient delivery system for anti-HSV-1 topical 
application, improving the retention and accessibility of the active flavonoids in an 
animal model [10]. Other studies showed that soybean (Glycine max) isoflavonoids 
as well as C-glycosylflavonoids from Cecropia glaziovii exhibited antiviral action 
against HSV-1 and HSV-2 [10, 29]. Interestingly, antiviral activity against MAYV 
was described for flavonoids obtained from extracts of Cassia australis and Bauhinia 
longifolia [51, 137].

V. Castilla et al.



441

A partially purified extract (MA) from the leaves of Melia azedarach L. exhib-
ited a potent antiviral effect against several RNA and DNA viruses. MA impaired 
DNA synthesis and virus assembly in HSV-1-infected cultures, whereas in  vivo 
studies demonstrated that this active principle prevented the development of her-
petic stromal keratitis (HSK) in mice and exhibited protective effect in a mouse 
model of genital HSV-2 infection [7, 104]. The tetranortriterpenoid 1-cinnamoyl- 
3,11-dihydroxymeliacarpin (CDM) was then identified as the molecule responsible 
for the broad spectrum of MA action. CDM blocked intracellular transport of viral 
HSV-1 glycoproteins and altered cytokine production in infected conjunctival and 
corneal cells by blocking NF-κB pathway activation [14, 23] and in HSV-stimulated 
macrophages by an NF-κB independent pathway [105].

Remarkably, diterpenes isolated from Euphorbia laurifolia and E. lacteal were 
able to induce human immunodeficiency virus (HIV) reactivation in an in  vitro 
latency system, suggesting that these molecules would be useful, in combination 
with highly active antiretroviral therapy, to eradicate the pool of latently HIV- 
infected CD4+ T cells [13].

On the other hand, nordihydroguaiaretic acid (NDGA), the main metabolite of 
the creosote bush (Larrea tridentata), inhibited DENV infection by reduction of 
viral genome replication and inhibition of virion assembly by its ability to reduce 
the levels of cell lipid droplets, structures where virus assembly takes place [132].

Table 22.1 summarizes the antiviral spectrum of main plant-derived compounds 
studied by Latin American researchers and includes information about other mole-
cules of plant origin such as polysaccharides that were chemically sulfated [49, 98], 
alkaloids [39, 76], cardenolides [16], and the antioxidant compound gallic acid [67].

2.2  Marine Products

Marine organisms also represent a formidable source of natural products with biologi-
cal activities. In particular, in past decades, great interest has been placed in the search 
of antiviral compounds from marine macroalgae or seaweeds. Latin America has an 
important and diverse group of seaweed species, and the main algal-derived com-
pounds studied in the region comprise sulfated polysaccharides (SP) and terpenoids.

SP can be obtained from the three main classes of seaweed: fucans and alginates 
from brown algae; agaroids, galactans, and carrageenans from red seaweeds; and 
heteropolysaccharides and ulvans from green seaweeds. The collaborative work of 
chemists and virologists from Argentina, Brazil, and Chile allowed the finding of 
potent antiviral SP from various American-located red, brown, and green seaweeds, 
as summarized in Table 22.1. Both purified SP and crude extracts were similarly 
able to block HSV and DENV replication in cell culture at concentrations as low as 
about 0.1–1 μg/ml without cell toxicity. Sulfated galactans and carrageenans (CGN), 
derived from red seaweeds, were the most effective in  vitro viral inhibitors. 
Additionally, a significant protective effect of unformulated CGN against HSV-2 
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Table 22.1 Studies on antiviral activity of natural compounds

Compound Source Virus References

Plants

Flavonoid aglycones Achyrocline satureioides HSV-1 [18, 19]
Isoflavonoids Glycine max HSV-1 

HSV-2
[10]

C-Glycosylflavonoids Cecropia glaziovii HSV-1 
HSV-2

[129]

Flavonoids Cassia australis MAYV [51, 137]
Tetranortriterpenoid Melia azedarach L. HSV-1 

HSV-2
[14, 23, 105]

Diterpenes Euphorbia laurifolia HIV [13]
Galactomannans (chemically 
sulfated)

Mimosa scabrella
Leucaena leucocephala

YFV
DENV-1

[98]

Seed polysaccharide 
(chemically sulfated)

Adenanthera pavonina HSV-1 PV-1 [49]

Emetine (alkaloid) Psychotria ipecacuanha HIV-1 [39]
Alkaloid Maytenus ilicifolia HCV [76]
Cardenolide Digitalis lanata HSV-1 

HSV-2
[16]

Gallic acid Various land and aquatic 
plants

HCV [67]

Seaweeds

Sulfated agarans Acanthophora spicifera HSV-1 
HSV-2

[53]

Sulfated galactans Bostrychia montagnei, 
Schizymenia binderi, 
Cryptonemia seminervis

HSV-1 
HSV-2
HMPV

[52, 87]
[91]

Sulfated hybrid d-l galactan Gymnogongrus torulosus, 
Cryptonemia crenulata

HSV-1 
HSV-2 
DENV-2 
DENV-3

[115, 138]

λ-, μ/ν, κ/ι-, κ-,ι-carrageenan Gigartina skottsbergii
Hypnea musciformis

HSV-1 
HSV-2

[29, 42]

λ-, ι-carrageenan Gigartina spp., Eucheuma 
spinosa

DENV-2 
DENV-3 
DENV-4

[139]

Hybrid carrageenan Gymnogongrus griffithsiae, 
Meristiella gelidium, 
Callophyllis variegata, 
Stenogramme interrupta

HSV-1 
HSV-2
DENV-2 
DENV-3

[26, 119, 138, 
142]

Fucoidans Leathesia difformis
Adenocystis utricularis

HSV-1 
HSV-2
HIV-1

[57, 112, 147]

Sulfated fucan Laminaria abyssalis HTLV-1 [120]
Sulfated heterorhamnan Gayralia oxysperma HSV-1 

HSV-2
[34]

(continued)
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Compound Source Virus References

Dolabellane diterpenes Dictyota pfaffii, D. 
menstrualis

HSV-1 
HIV-1

[1, 40, 93, 
101, 103, 149]

Meroditerpenes Stypopodium zonale HSV-1
HMPV

[90, 130]

Glycolipid SQDG Osmundaria obtusiloba, 
Sargassum vulgare

HSV-1 
HSV-2

[50, 111]

Sponges

Alkaloid Aaptos aaptos HSV-1 [133]
Halistanol fraction Petromica citrina HSV-1 [70]
Miscellaneous

Sulfated glucomannan Agaricus brasiliensis HSV-1 
HSV-2

[27, 28]

Aureonitol Chaetomium coarctatum IAV IBV [123]
Protein-based metabolites Lactobacillus casei 

Bifidobacterium 
adolescentis

RV [97]

S-layer protein Lactobacillus acidophilus JUNV [84]
Subtilosin Bacillus amyloliquefaciens HSV-1 

HSV-2
[116, 146]

Phospholipases A2 Bothrops leucurus
Crotalus durissus terrificus

DENV
Wide 
spectrum

[38]
[96]

Protein Lonomia obliqua Wide 
spectrum

[31, 69]

Lactoferrin Bovine secretions MAYV [33]

DENV dengue virus, HCV hepatitis C virus, HIV human immunodeficiency virus, HMPV human 
metapneumovirus, HSV herpes simplex virus, HTLV human T-cell lymphotropic virus, IAV influ-
enza A virus, IBV influenza B virus, JUNV Junín virus, MAYV Mayaro virus, RV rotavirus, YFV 
yellow fever virus

Table 22.1 (continued)

infection was demonstrated in a murine genital model [30], a property that may be 
improved by an adequate formulation or a chemical modification to meliorate the 
pharmacokinetics.

Mechanistic studies demonstrated that the main target of CGN is virion adsorp-
tion to the host cell for HSV infection [29] together with a post-adsorption event 
blocking the viral nucleocapsid penetration into the cytoplasm for DENV [139]. 
These findings are consistent with the fact that SP structure resembles heparan sulfate 
chains present in proteoglycans of mammalian cells acting as the initial cell receptor 
for HSV [128] and DENV [36]. The specific mode of action of CGN was confirmed 
by the isolation of HSV- and DENV-resistant variants that showed phenotypic, 
genomic, and virulence alterations in comparison to the original virus [86, 140].

With DENV in particular, the antiviral studies with SP also provided new infor-
mation about the mode of entry of DENV into the host cell. In fact, a variable level 
of anti-DENV effectiveness was reported according to the compound, the virus 
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serotype, the host cell, and the source of virus [5, 138, 139]. This differential sus-
ceptibility led to pioneer studies that demonstrated for the first time the existence of 
alternative endocytic and cell trafficking pathways for the infective entry of DENV- 
1, DENV-2, and DENV-3 into mammalian cells [3, 4, 107], a phenomenon that must 
be considered for the development and evaluation of safe entry-targeted antiviral 
agents effective against all DENV serotypes.

Interestingly, effective antiviral activity in seaweed-derived SP was also reported 
against other human pathogenic viruses, such as HIV-1, human T-lymphotropic 
virus (HTLV), and human metapneumovirus (HMPV) (Table 22.1).

Brown seaweeds are one of the richest sources of diterpenes, a group of mole-
cules widely used in medicine. Several dollabelane diterpenes isolated from the 
Brazilian brown algae Dictyota pfaffii and D. menstrualis showed antiviral activity 
against HSV-1 and HIV-1 (Table 22.1), by decreasing some early HSV-1 proteins 
[1] and affecting proviral DNA in primary HIV-1-infected cells [103], respectively. 
Enzymatic studies demonstrated that the diterpene dolabelladienetriol (THD) iso-
lated from D. pfaffii was a typical noncompetitive inhibitor of HIV-1 reverse tran-
scriptase (RT), blocking synthesis and integration of provirus. It was additive with 
AZT, synergistic with protease inhibitors, and did not exhibit crossed resistance 
with clinical available nonnucleoside RT inhibitors [40]. Molecular docking studies 
confirmed the interactions of THD with important residues in RT [93]. More 
recently, two new dolabelladienols were isolated with even more potent anti-HIV-1 
activity than THD [101], indicating the excellent perspectives of these molecules as 
antiretroviral agents. Meroditerpenes, a class of polycyclic diterpenes obtained from 
Stypopodium zonale, were also strong inhibitors of HSV-1 and HMPV [90, 130].

Finally, glycolipids are a less studied class of antiviral seaweed secondary 
metabolites inspiring increasing interest in past years. Recent investigation has 
found promising anti-HSV activity in sulfoquinovosyldiacylglycerols (SQDG) iso-
lated from the Brazilian seaweeds Osmundaria obtusiloba and Sargassum vulgare 
[50, 111].

Other marine organisms investigated for antiviral agents include sponges from 
the Brazilian coast. The alkaloid 4-methylaaptamine from the sponge Aaptos aaptos 
impaired HSV-1 penetration and immediate early protein synthesis [133], whereas 
the halistanol-enriched fraction from extract of Petromica citrina affected adsorp-
tion and penetration [70].

2.3  Other Miscellaneous Natural Products

Microorganisms are also an interesting source of antiviral agents. An SP obtained by 
sulfation of the glucomannan extracted from the mycelia of Agaricus brasiliensis, a 
basidiomycete fungus native to the Atlantic forest in Brazil, was a selective inhibitor 
of HSV-1 and HSV-2 and showed synergistic effect with acyclovir [27]. The antiher-
petic efficacy of this SP was assessed in murine models of HSV as an oral agent and 
as a topical microbicide [28]. Aureonitol, a tetrahydrofuran derivative isolated from 
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the fungus Chaetomium coarctatum, was an inhibitor of IAV and IBV by impair-
ment of virus adsorption. Molecular modeling studies showed that this compound 
docked in the sialic acid-binding site of surface hemagglutinin (HA) [123].

In the search of treatment alternatives for viral diseases, the use of probiotic 
bacteria that provide a beneficial effect against multiple pathological agents has also 
been tested. Clinical trials have shown a significant reduction in duration of acute 
RV diarrhea when oral doses of Saccharomyces boulardii preparations were given 
to hospitalized children in Cochabamba, Bolivia [68], or Goiás, Brazil [41]. A 
recent in vitro study reported that protein-based metabolites of Lactobacillus casei 
and Bifidobacterium adolescentis were able to interfere with the intracellular 
amount of NSP4, a known RV enterotoxin, and Ca2+ liberation from the cells, sug-
gesting a novel mechanism exerted by probiotics to reduce the impact of RV infec-
tion by preventing electrolyte loss [97]. The surface (S)-layer protein of Lactobacillus 
acidophilus was inhibitor of JUNV [84]. The inhibition was caused by the interac-
tion between S-layer and DC-SIGN, a cell-surface adhesion factor that enhances 
entry of several viruses, indicating the potential wide-spectrum activity for this 
microbial protein. Other microbial peptides were also inhibitors of HSV-1 and 
HSV-2 by affecting late events of the viral cycle [116, 146].

Among natural products, venoms are complex mixtures that can provide clues 
for designing therapeutic molecules. This strategy has been used for the isolation of 
antiviral proteins from snakes and insects. Anti-DENV activity was reported for 
phospholipase A2 isolated from Bothrops leucurus [38] and Crotalus durissus ter-
rificus [96] venoms by virucidal effect, probably the result of glycerophospholipid 
cleavage and disruption of the lipid envelope. In addition, phospholipase A2 inacti-
vated other enveloped viruses, highlighting its potential as a natural leader for 
developing broad-spectrum antivirals. On the other hand, an antiviral protein effec-
tive against several human viruses was identified in the hemolymph of Lonomia 
obliqua caterpillars [69]. The protein did not display virucidal activity but probably 
acts by an intracellular mechanism that affects the innate antiviral immune response. 
The caterpillar Lonomia obliqua gained prominence in biotechnology in Brazil 
because of the various active properties identified in its venom and hemolymph, and 
a recombinant version of this protein was very effective to reduce HSV and rubella 
virus replication [31].

Bovine lactoferrin, a natural iron-binding glycoprotein found in various mucosal 
secretions important in the primary defense against diverse microorganisms, was 
another natural product with reported antiviral activity against MAYV by impair-
ment of virus entry [33].

3  Synthetic Compounds

Several Latin American researcher groups have studied the antiviral activity of a 
great variety of synthetic molecules. Here we comment on the main findings of the 
past 10 years.
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3.1  Steroids

Various studies have demonstrated the ability of steroids to inhibit in  vitro and 
in vivo viral multiplication. Earlier reports described the antiviral activity of syn-
thetic derivatives of brassinosteroids, plant steroids involved in growth and develop-
ment, against arenaviruses, measles virus (MV), and HSV [35]. Synthetic analogues 
of the natural brassinosteroid 24(S) ethylbrassinone exerted a potent in vitro antivi-
ral activity against arenaviruses, and studies about the mode of action of the most 
active derivative revealed that it would affect JUNV RNA synthesis [35]. This com-
pound was also an inhibitor of HSV-1 replication (TK+ and TK− strains) that 
mainly prevented late viral protein [151]. Other antiherpetic brassinosteroid deriva-
tives were able to ameliorate the signs of HSK in mice. Because no inhibition of 
virus titers in animal eyes was observed, the derivatives may play a role in immune- 
mediated stromal inflammation rather than an antiviral action [94]. According with 
these observations, two of the anti-HSV derivatives exhibited in vitro immunomod-
ulatory activity modifying cytokine production in HSV-1-infected corneal, conjunc-
tival, and nervous cells [95, 106]. Another set of synthetic sterol analogues with a 
diamide side chain also exhibited anti-HSV-1 activity [46].

Dehydroepiandrosterone (DHEA), one of the most abundant circulating steroid 
hormones in humans, displays a great variety of biological properties [35]; however, 
prolonged treatment with DHEA may cause masculinization in women, whereas 
epiandrosterone (EA), a DHEA metabolite, lacks androgenic activity. DHEA, EA, 
and their synthetic derivatives exhibited antiviral activity against JUNV, adenovirus 
type 5 (ADV5), and HSV-1 by preventing viral protein synthesis. However, it should 
be noted that natural compounds were more selective than the synthetic analogues 
assayed so far [2, 121, 145].

On the other hand, azasteroids derived from pregnenolone, an important endog-
enous steroid in mammals, showed antiviral activity against HSV-1, impairing the 
maturation of viral glycoproteins [47].

3.2  Acridone Derivatives

N-Substituted acridones exhibited selective antiviral activity against different 
arenaviruses and the four DENV serotypes. Mechanistic analysis of the most 
effective derivatives indicated that they caused a strong inhibition of viral RNA 
synthesis. The addition of exogenous guanosine partially reversed inhibition, 
suggesting that the reduction of the GTP pool contributed to acridone antiviral 
activity [88, 126].

On the other hand, structure–activity relationship studies on 1-hydroxyacridone 
derivatives with proved antiherpetic activity allowed the design and synthesis of 
new naphthyridine derivatives with promissory anti-HSV activity [12].
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3.3  Quinolinic Acid Derivatives

An oxoquinolinic acid derivative with antiherpetic activity inhibited viral adsorp-
tion by impairing viral binding to HSV entry mediator (HVEM) receptor [134]. As 
this compound is a novel oxoquinolinic ribonucleoside, and taking into account the 
inhibitory effect of quinolone acyclonucleoside derivatives on HSV DNA poly-
merase [80], the inhibitory effect of the derivative on post-adsorption steps was 
analyzed. The results obtained indicated that the compound inhibited HSV DNA 
polymerase activity in a noncompetitive way [135]. In addition, this derivative was 
also active against HIV-1, and kinetic studies revealed that it inhibited HIV-1 RT in 
a dose-dependent manner and was additive with other RT inhibitors [136]. 
Interestingly, it has been demonstrated that new synthetic 1,2,3-triazolyl-4- 
oxoquinolines inhibited the multiplication of IAV and IBV, including those strains 
resistant to oseltamivir, the most used anti-influenza drug [20].

3.4  Zinc-Finger Active Compounds

Zinc-binding proteins with cysteine-rich Zn-finger motifs represent a potential tar-
get for antiviral chemotherapy. For example, the arenavirus Z protein, involved in 
the regulation of viral RNA synthesis and viral budding, possesses a Cys3HisCys4 
RING-finger motif that coordinates two zinc ions. Evaluation of the antiviral action 
of a group of antiretroviral Zn-finger active compounds revealed that disulfides, as 
well as azoic and hydrazide derivatives, exhibited a broad range of antiviral activity 
against arenaviruses [125]. One of the active aromatic disulfides also displayed 
virucidal activity, and inactivated JUNV particles were unable to uncoat and per-
form viral RNA replication. Z protein appeared to be the inactivation target because 
treatment of viral particles with the compound induced Z-protein unfolding and 
oligomerization [61, 62]. In addition, this active compound affected the interaction 
of Z protein with host cell factors [63]. Another potent virucidal aromatic disulfide 
impaired JUNV RNA replication. Moreover, a virus-like particle (VLP) assay dem-
onstrated that even though this compound caused the formation of high molecular 
weight multimers of Z protein, this alteration did not affect the ability of Z to drive 
budding of VLPs [127].

3.5  Naphthoquinone Derivatives

Nonstructural DENV proteins with enzymatic activities are promising targets to the 
development of anti-DENV compounds. In particular, the nonstructural protein 3 
(NS3) has essential activities for viral replication such as protease, ATPase, and 
helicase activities. The evaluation of the anti-DENV activity of a library of synthetic 
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naphthoquinones revealed that 1,4-pyran naphthoquinones are potent inhibitors of 
DENV-2 replication in cells and impact the in  vitro NS3 ATPase activity [43]. 
Moreover, other naphthoquinone derivatives, aminomethylnaphthoquinones, were 
able to inhibit in vitro HSV-1 multiplication [109].

3.6  Acetylsalicylic Acid

Because salicylates, nonsteroidal antiinflammatory drugs that inhibit cellular cyclo-
oxygenase (COX) activity, hinder the replication of several flaviviruses, the antiviral 
action of acetylsalicylic acid (ASA) on hepatitis C virus (HCV) replication was 
explored using an HCV subgenomic replicon system. This study showed that the 
reduction of viral RNA and protein levels after ASA treatment were related to the 
inhibitory effect on COX-2 expression [148]. The activation of inducible nitric 
oxide synthase (iNOS) by core and NS3 viral proteins has a major role in cell dam-
age during chronic HCV infection. Remarkably, another study demonstrated that 
the modulation by iNOS partially mediated the antiviral activity of ASA [117].

The antiviral activity of porphyrins [12], terpenes [24], and 1α,25-dihydroxy- 
vitamin D3 [114] has also been studied. Major findings are summarized in Table 22.2.

4  Host–Target Antivirals

Licensed antiviral drugs in current use usually target viral proteins and are virus 
specific. However, a number of processes for virus multiplication within the infected 
cell that involve cellular pathways and enzymes also have proven to be attractive for 
chemotherapeutic intervention against several unrelated viruses. Besides the chance 
of a wide antiviral spectrum, this strategy offers the advantage of a significantly 
higher barrier to the emergence of drug resistance. Figure 22.1 illustrates host fac-
tors involved in virus multiplication analyzed as potential antiviral targets.

Several cellular proteins that promote viral infection have been evaluated as anti-
viral candidates. Such is the case of the heterogeneous nuclear ribonucleoproteins 
(hnRNPs) that participate in splicing, trafficking, translation, and turnover of 
mRNAs and participate in the life cycle of several cytoplasmic RNA viruses. Studies 
have confirmed the interaction between hnRNP A1 protein and the JUNV nucleo-
protein N during acute and persistent infection [82]. Moreover, JUNV and DENV-2 
infections induced the hnRNP K cytoplasmic translocation to improve viral multi-
plication. It is worth noting that the knockdown of these cellular proteins signifi-
cantly reduced virus extracellular production [22]. Furthermore, molecular docking 
studies revealed that DENV NS1 protein interacts with glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), promoting its relocalization to the perinuclear region 
and its glycolytic activity [8]. Altogether, these interesting results show some per-
spectives to consider these proviral proteins as possible antiviral targets.
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Fig. 22.1 Host factors involved in virus multiplication analyzed as potential antiviral targets. 
DENV dengue virus, HSV herpes simplex virus, JUNV Junín virus, PICV Pichindé virus, SLEV 
Saint Louis encephalitis virus, TCRV Tacaribe virus, VACV vaccinia virus, YFV yellow fever virus, 
ER endoplasmic reticulum, ERK extracellular signal-regulated kinases, GAPDH glyceraldehyde- 
3- phosphate dehydrogenase, hnRNPs heterogeneous nuclear ribonucleoproteins, JNK c-Jun 
N-terminal kinases, MAPKs mitogen-activated protein kinases, PI3K/Akt phosphatidylinositol- 3- 
kinase/protein kinase B, PML promyelocytic leukemia protein

The antimalarial agent chloroquine, an amine acidotropic drug known to affect 
intracellular endocytic pathways by increasing endosomal pH, significantly reduced 
virus production and pro-inflammatory cytokine expression in DENV-2-infected 
cells [55]. Interestingly, the treatment of infected Aotus monkeys reduced the levels 
of viremia, pro-inflammatory cytokines tumor necrosis factor (TNF)-α and inter-
feron (IFN)-γ, and systemic liver aspartate aminotransferase, suggesting that chlo-
roquine effectively interferes with DENV-2 replication in this monkey model [56]. 
More importantly, it was detected that DENV-infected patients treated with chloro-
quine had an improvement in their quality of life, but there were no alterations in the 
length of the disease or degree and days of fever [21].

Other groups have focused their studies on the cell membranes and their compo-
nents. Evaluation of the subcellular localization of the DENV capsid protein C 
showed that the cytoplasmic C protein accumulates around endoplasmic reticulum 
(ER)-derived structures called lipid droplets (LDs), which increase in number in 
DENV-infected cells, suggesting a link between lipid metabolism and viral replica-
tion [124]. The pharmacological manipulation of the amount of LDs in the cell to 
control DENV replication was postulated [75]. Also, cholesterol and lipid rafts 
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present on the plasma membrane are important during DENV infection. Statins or 
other drugs that affect cholesterol biosynthesis can modulate DENV infection. The 
treatment of differentiated U937 cells with nystatin, filipin, or β-methyl cyclodex-
trin significantly reduced the antibody-dependent enhancement (ADE) of DENV-4 
infection in vitro without any effect on viability [113]. Lovastatin (LOV) affected 
several cellular mechanisms, resulting in a moderate inhibition of DENV productive 
infection. When LOV was added before virus inoculation, virus entry was altered by 
a reduction in membrane cholesterol, and the addition of LOV after infection 
affected the transport from the ER to the Golgi apparatus and thus prevented the 
budding of viral progeny [85].

Another approach to be considered is the modulation of survival signaling path-
ways as a critical event in the viral replication cycle. Pharmacological and genetic 
inhibition of PI3K/Akt resulted in a significant decline of vaccinia virus (VACV) 
yields as well as in the apoptosis of infected cells, because viral receptor-mediated 
signals transmitted via this pathway are required for the expression of viral anti- 
apoptotic genes [131]. In line with these findings, the inhibition of the PI3K/Akt 
signaling pathway impaired JUNV protein synthesis and expression, leading to virus 
yield reduction without blocking the onset of the persistent stage of infection [77]. 
Furthermore, cell pretreatment with SP600125, a pharmacological inhibitor of c-JUN 
N-terminal kinase (JNK1/2), prevented poxvirus replication by blockade of virus-
stimulated JNK phosphorylation and through another unknown mechanism [102]. 
Additionally, inhibition of JNK and p38 MAPK pathways in DENV-infected macro-
phages resulted in a significant reduction in viral yield and protein synthesis [37].

The Raf/MEK/ERK signaling pathway was also subject of study as an antiviral 
target. Pharmacological inhibition of MEK1/2 through U0126 cell treatment or 
pathway silencing by small interfering RNAs (siRNAs) blocked YFV- and JUNV- 
stimulated ERK1/2 phosphorylation [6, 118] and also inhibited the replication of 
DENV, Saint Louis encephalitis virus (SLEV), Tacaribe virus (TCRV), and Pichindé 
virus (PICV) [6, 118]. Nevertheless, DHEA, a known Raf/MEK/ERK activator, 
showed anti-HSV properties [145] that were not dependent in its ability to modulate 
ERK phosphorylation.

Another potential antiviral strategy is the manipulation of viral restriction fac-
tors, proteins constitutively expressed in the cells that viruses must block to enhance 
further replication. Galectin 1 (Gal-1) is a widely expressed mammalian lectin with 
several functions in cell–pathogen interactions and immunoregulatory mechanisms. 
DENV-1 infection inhibited the expression of Gal-1, and the overexpression of 
human recombinant Gal-1 (hrGal-1) inhibited DENV-1 production in different 
human cell lines [143]. Furthermore, the promyelocytic leukemia (PML) nuclear 
bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved 
in intrinsic antiviral responses against several viruses. The JUNV and DENV-2 
yields observed in PML-silenced cell cultures were significantly higher. However, 
the PML overexpression induced partial resistance to JUNV multiplication, but sig-
nificantly reduced DENV-2 production [65, 78].
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5  Novel Antiviral Strategies

Other experimental approaches aimed at unconventional targets or strategies for 
antiviral chemotherapy and represent new points for the development of novel 
effective therapies.

Many RNA and DNA viral pathogens, such as JUNV [11], YFV [100], HCV 
[32], HTLV-1 [73], and HSV-1 [45], have shown in vitro susceptibility to silencing 
with specific siRNAs. Only YFV and HSV-1 siRNAs were in vivo evaluated: two 
constructions protected the adult Balb/c mice against YFV challenge [100], whereas 
one against HSV UL-39 region reduced the herpetic encephalitis signs [45].

The use of bioinformatics tools, molecular modeling programs, and high- 
performance computing has been leading the process of design and in silico search 
of therapeutically useful molecules, an approach also applied by Latin American 
investigators. One of the strategies at the forefront of drug discovery is the virtual 
screening of databases. Molecular dynamics (MD) simulations were performed to 
explore the DENV-3 NS2B/NS3 protein binding-site flexibility, achieving identifi-
cation of conformations of potential importance for virtual screening studies [48, 
108]. Computer-based methods also allowed the design of peptides derived from 
IAV HA with high affinity for the target protein that were effective against several 
virus strains in cell culture [144]. Docking studies provided evidence that the active 
peptides bound to the HA suggesting that they might impair its fusion activity [79]. 
Besides HCV NS3 serine protease [44], thymidylate kinase from variola virus 
(VARV) [71], HSV-1 protease [89], and respiratory syncytial virus (RSV) proteins 
[149] were targets for the search of new inhibitory molecules using algorithms and 
computational methods.

On the other hand, plants provide a convenient system for peptide production, 
being cost-effective and easier to scale up to an industrial level than other platforms. 
RhoA, a small host GTPase located on the cell membrane that controls multiple cell 
functions, bound RSV-F protein mediating the virus-induced syncytium formation. 
A RhoA-derived peptide fused to carrier molecules from plants showed enhanced 
anti-RSV activity compared to the RhoA peptide alone [99]. Although additional 
evaluation in animal models is required, this study is relevant because carrier mol-
ecules would be important to facilitate in vivo peptide delivery and bioavailability. 
Another recent example of engineering production of antiviral peptides in plants is 
the HRA2pl peptide expressed in Nicotiana tabacum plants that inhibited the bind-
ing of HMPV to HEp-2 cells at the fusion stage [83].

The inhibition of viral proteases is a well-established way for preventing viral 
infection. By using the structural information on DENV NS2B/NS3 protein, a vir-
tual screening was performed to find low molecular weight molecules that could be 
potentially employed in the treatment of DENV infection. This approach allowed 
the identification of three compounds that inhibited DENV protease activity and 
significantly reduced virus production [25]. This study constitutes one example of 
the use of bioinformatics methods, molecular modeling programs, and high- 
performance computing in the search for new specific therapeutic molecules.
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6  Conclusions and Future Perspectives

As illustrated in this chapter, efforts in the search for new antiviral candidates in 
Latin America have increased significantly in the past decade. Given the continued 
emergence of new pathogenic agents, accessible antiviral therapy remains an urgent 
need, and, consequently, antiviral research has gained predominance in the Latin 
American scientific community. The extensive investigations carried out have led to 
the discovery of diverse products derived from natural sources or programmed syn-
thesis with promising antiviral activity against several human pathogens relevant to 
regional public health.

However, there will be still a significant delay before drugs manufactured at low 
cost, as required in our countries, may be available for patient treatment. Particularly, 
most of the developed inhibitors await in vivo experimentation. To overcome the 
current limitations for in vivo validation of promising in vitro inhibitors, first in 
animal models and later in clinical trials, is a hard challenge to exploit the real 
potential that these agents may possess to be developed as chemotherapeutic drugs.

Noticeably, new structural insight into viral components and their interactions 
with cellular molecules during infection together with the recent progress in virtual 
screening and docking techniques in the region have opened a new avenue for 
structure- based design of viral inhibitors, a tendency with increasing perspectives to 
change the strategy for antiviral development in the near future.
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