
UseR !

Jérôme Sueur

Sound
Analysis and
Synthesis
with R

Use R!

Series editors

Robert Gentleman Kurt Hornik Giovanni Parmigiani

More information about this series at http://www.springer.com/series/6991

http://www.springer.com/series/6991

Jérôme Sueur

Sound Analysis
and Synthesis with R

123

Jérôme Sueur
Muséum National d’Histoire naturelle
Paris, France

Electronic Supplementary Material The online version of this article (https://doi.org/10.
1007/978-3-319-77647-7) contains supplementary material, which is available to authorized
users.

ISSN 2197-5736 ISSN 2197-5744 (electronic)
Use R!
ISBN 978-3-319-77645-3 ISBN 978-3-319-77647-7 (eBook)
https://doi.org/10.1007/978-3-319-77647-7

Library of Congress Control Number: 2018939906

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-77647-7
https://doi.org/10.1007/978-3-319-77647-7
https://doi.org/10.1007/978-3-319-77647-7

Un livre sans histoires ni paroles
mais écrit avec passion pour

C h l o é
J u l i a

r
o
l
i
n
e

Preface

Sound is virtually always around us, everywhere, all the time. This morning, my day
started on a rather unpleasant one: that of the repeated buzzing of my alarm clock.
The night had been quiet despite the purr of the central heating, some motorbikes
racing down the street, and blackbirds singing in one of our garden’s trees at dawn.
Now that I go down to the kitchen I can hear my clothes rub against my body and the
wooden steps crack under my feet. As soon as I move, I realize that I myself generate
sound. Quickly the house wakes up in an explosion of surrounding sounds seeping
from the flush, the kettle, the toaster, the fridge, ventilation, and other domestic
appliances. Music plays on the radio, but it does not cover the call of a hungry cat
and family voices that soon invest and dominate in the acoustic space. My working
day is a long, and sometimes exhausting, suite of sounds: metallic train screeches,
mobile phone ringtones, office babbles, siren blares, street work roar, and radio tunes
but also some amazing tropical sounds I recorded in a remote forest that I play back
on my computer to escape that city soundscape. Sound is ubiquitous. It constantly
reaches my body, being absorbed or bounced back, received and processed through
my ears. But my body is also a sound source. My heart, my blood, my breath, my
bones, and my vocal chords generate sound. I am sound in a world of sounds. No
air, no life, no sound.

The soundscape I go through any given workday is mainly a city soundscape with
very little enjoyable sound. Most of this sound can be considered as noise, which is
actually sound conveying no information or overlapping other meaningful sounds.
Nice soundscapes are certainly to be found in nature, in the middle of a dark forest or
in the depth of an even darker ocean. Wildlife sound can be a bird song, a frog call,
an insect hummer, a deer grunting, the exploding sound of a small pistol shrimp, or
the amazing whistle of a giant whale. We often refer to the extraordinary diversity of
life forms and colours, but life diversity is also to be found in animal vocalizations.
Animals can produce rhythmic or continuous, pure-tone or polyphonic, harmonic
or dysharmornic, synchronized or cacophonic sounds. Animals can almost play any
instrument in any orchestra. Whatever their properties, the sounds emanating from
animals are never exactly the same from one song bout to another one, from one
individual to another one, and from one species to another one. The variety of animal

vii

viii Preface

sound is so high that audio robots that can identify and interpret a human voice and
chat with you on the phone can hardly discriminate the sound of a dolphin from a
whale’s. This animal acoustic diversity may be a challenge for sound analysis and
synthesis, but more importantly, they are a living treasure that has to be enjoyed and
preserved.

Animal sound variety is the matter of bioacoustics and ecoacoustics, two closely
related life sciences disciplines. As a bioacoustician or ecoacoustician I often have to
face the naive but essential question about my research: “Come on, Jérôme, what’s
your job all about? Is there really a point in listening to cicadas?”. Addressing
this question is almost the same issue as wondering why we need to name insects
and flowers, scrutinize the sky to discover new stars, analyse the old century
playwrights style, or understand the physics of a golf ball. Such fundamental
research participates in the world’s knowledge and bioacoustics. Ecoacoustics are no
exception. It is essential to describe and to understand the patterns and processing
that determine natural acoustic environments. To me, it is as important a thing to
know how a pigeon call is produced as it is to know how a financial index is
computed. However, it would be unfair to say that bioacoustics and ecoacoustics
have no application in our daily lives. Next time you fly, think that the engines of
the plane you are comfortably seated in will not fail after sucking up flying birds
owing to the loudspeakers at the end of the runway that play specific alarm sounds
and scare them away. These specific sounds were designed by Thierry Aubin, a
renowned bioacoustician.

One of the most important soundmark of my city working day is the subtle noise
of my fingers on the computer keyboard. As soon as I have settled administration,
teaching, curation, and supervision duties I open R and play with. But why does R
has such an important role in my professional life?

I have been reluctant to programming for ages. As a schoolboy and later as a
university student I always disliked programming courses as I was confused with
FOR, WHILE, IF, THEN, DO, and other mysterious instructions. I surely have
always been a software user for work, but I never thought that one day, I would
have written a command rather than just clicked on a mouse. It actually took me
a long time to get into R and, eventually, to love R. I was introduced to R by a
colleague of mine, Michel Baylac, who is an expert in morphometrics. This was at
a morning lab coffee break and here follows the discussion we had some ten years
ago. Consider that the original dialogue was in French:

Jérôme: Michel, how did you do your elliptic Fourier analysis in your last paper?
I could not find any statistical software that does it.

Michel: I used R.

Jérôme: Sorry?

Michel: I programmed the EFA with R.

Preface ix

Jérôme: Air? I do not know this software. What is it?

Michel: Well it is a programming language deriving from S.

Jérôme: Ace? I do not know that one either. So you can do your own analysis.
Sounds great!

Michel: It is. And it is free. No licence to purchase.

A few coffee breaks and some explanations about software names later, I
successfully installed R and got started with it but I quickly gave up so used I was
to graphical user interface. Fortunately, Michel gave an R-based statistics Master
course a few weeks later so I went back to school and followed his instructions
to run R multivariate analysis. But I had no data to analyse at that time and a few
months later I had forgotten almost everything. A year after, I joined my future wife
Caroline Simonis, who is a co-author of seewave, for a second session of Michel’s
course and I joined her again for a course on linear models with R organized by
Emmanuel Paradis, who wrote the best-seller R for beginners and the wonderful
phylogenetics ape package. I was probably more motivated to be with Caroline
than to learn R, but Caroline understood the interest of R much faster than I did and
she talked me into starting to write more code rather than simply lm(y~x). This
time I had data to look into at hand and free time to play with R. I can still remember
that winter evening when I could plot my very first pure-tone spectrogram. The
image was incomplete and inaccurate, but to me it was a wonderful and shiny
plot that motivated me to keep on with R. I was so amazed at being able to run
such an analysis by myself knowing all the production steps perfectly that in the
following weeks I could not stop writing basic sound-analysis dedicated functions. I
was lucky to be greatly helped by Caroline and also by Thierry Aubin, my mentor in
bioacoustics and the author of the Syntana sofware that inspired the main seewave
functions.

R definitely changed my research. I was no more limited to the utilities provided
by prohibitive closed source softwares that my department could not afford. I could
do almost everything by myself: I could draw fieldwork observation maps, read,
analyse, and change my sound samples. I could collect qualitative and quantitative
data, run batch processes, apply multivariate analysis, plot high-quality graphics,
and eventually produce a paper combining R and LATEX in a nice layout. The most
important thing was that I was not only a user but also a designer. I was able to
create, imagine, and share new tools with others.

I’m telling this very personal story as I think this could be the future of anyone
who is a bit afraid of software programming. Learning R is not that difficult with
a little help—which a nice woman like Caroline can do but this is not absolutely
necessary. Just keep in mind that it is worth an effort and that the reward will be
tremendous.

This book was written for students who are interested in bioacoustics and
ecoacoustics, but I really hope that it can help anyone who is willing to dive into

x Preface

the fantastic area of acoustics and into the endless land of R. A book and a cake
are not that different: they both require time and energy to be made, but they are
consumed apace. I really hope this book has a nice taste, and I wish you very nice
reading and programming nights!

Paris, France Jérôme Sueur

Acknowledgements

I would like first to thank Andreas Wessel who, some years ago, initiated this book
by whispering my name in Lars Koerner’s ear.

I am deeply indebted to Michel Baylac and Emmanuel Paradis for having taught
me R at several occasions. Without their help, I would still be using spreadsheet
applications to compute an arithmetic mean.

I was extremely lucky to be supervised during my research training by Thierry
Aubin and Daniel Robert, my mentors for ever in bioacoustics.

The core of this book is the seewave package which was initiated with Thierry
Aubin and Caroline Simonis. seewave has been growing up during the last 11
years thanks to the contribution of Ethan C. Brown, Marion Depraetere, Camille
Desjonquères, François Fabianek, Amandine Gasc, Eric Kasten, Stefanie LaZerte,
Laurent Lellouch, Jonathan Lees, Jean Marchal, Sandrine Pavoine, David Pinaud,
Alicia Stotz, Luis J. Villanueva-Rivera, Zev Ross, Carl G. Witthoft, and Hristo
Zhivomirov. seewave and related analyses have been improving thanks to ideas,
comments, checks, or bug reports by Andrey Anikin, Charlotte Curé, Stéphane
Dray, Denis Dupeyron, Almo Farina, Arnold Fertin, Kurt Hornik, Emiliano A. Laca,
Nadia Pieretti, Daniel Ridley-Ellis, Jesse Ross, Pavel Senin, and Arvind Sowmyan.
seewave has been maintained on CRAN thanks to the crucial help of Kurt Hornik,
Uwe Ligges, Brian Ripley, and Simon Urbanek, all members of the R core team.

My motivation to complete this book mostly came from the imaginary students
I had in mind when coding and writing. I also receive significant support from the
students or junior researchers I was lucky to supervise their research in bioacoustics
or ecoacoustics: Pablo Bolaños, Marion Depraetere, Camille Desjonquères, Manon
Ducrettet, Amandine Gasc, Alexandre Kempf, Laurent Lellouch, Diego Llusia,
Felipe Moreno, Alexandra Rodriguez, Alexandra Stotz, and Juan Sebastian Ulloa.

This book is acoustically and visually illustrated thanks to several people who
shared sounds and/or images: Laurent Arthur, Thierry Aubin, Renaud Boistel, David
Cartmell, Emmanuel Delfosse, Amandine Gasc, Joël Gilbert, Jean-François Julien,
Diego Llusia, Ladislav Nagy, Christian Roesti, Frédéric Sèbe, and Andreas Trepte.

xi

xii Acknowledgements

Readers of beta versions of the manuscript kindly took their precious time
to check and improve the text: Andrey Anikin, Thierry Aubin, Stéphane Dray,
Amandine Gasc, Jonathan Katz, Laurent Lellouch, Nathan Merchant, Benoît Obled,
and Loïc Ponger.

Contents

1 Introduction . 1
1.1 Sound as a Science Material. 1
1.2 Layout . 2
1.3 Convention for Notation and Code . 5
1.4 Book Compilation . 6

2 What Is Sound? . 7
2.1 A Debate Under a Dangerous Tree. 7
2.2 Sound as a Mechanical Wave. 9

2.2.1 Air Particle Motion .. 9
2.2.2 Air Pressure Variation .. 10
2.2.3 Amplitude . 12
2.2.4 Phase . 20
2.2.5 Duration . 20
2.2.6 Frequency .. 21
2.2.7 Writing Sound with a Simple Equation 25
2.2.8 Amplitude and Frequency Modulations 26

2.3 Sound as a Time Series . 29
2.4 Sound as a Digital Object. 30

2.4.1 Sampling .. 30
2.4.2 Quantization . 30
2.4.3 Issues in Sampling and Quantization .. 32
2.4.4 File Format . 33

2.5 Sound as a Support of Information.. 34

3 What Is R? . 37
3.1 A Brief Introduction to an Ocean of Tools . 37
3.2 How to Get R . 39
3.3 Do You Speak R? . 40

3.3.1 Where Am I? . 40
3.3.2 Objects . 41
3.3.3 Operators . 46

xiii

xiv Contents

3.3.4 Functions . 47
3.3.5 Controlling Flow . 50
3.3.6 Manipulating Objects . 54
3.3.7 Vectorization and Recycling . 62
3.3.8 Handling Character Strings . 64
3.3.9 Drawing a Graphic . 65
3.3.10 Scripting . 73
3.3.11 Calling External Software . 74

3.4 R and Sound .. 75
3.4.1 To Use or Not to Use R for Sound Analysis? 75
3.4.2 Main Packages . 76
3.4.3 How to Install seewave . 79

4 Playing with Sound . 81
4.1 Object Classes. 81

4.1.1 vector, matrix, data.frame Classes 81
4.1.2 ts and mts Classes. 82
4.1.3 audioSample Class of the Package audio 85
4.1.4 sound Class of the Package phonTools 86
4.1.5 Wave Class of the Package tuneR . 87

4.2 How to Read (Load) a Sound . 90
4.2.1 .wav Files. 90
4.2.2 .mp3 Files. 92
4.2.3 From .mp3 to .wav Files . 93
4.2.4 .flac Files . 94
4.2.5 Local Files . 94
4.2.6 Online Files . 95
4.2.7 Song Meter© Files . 99

4.3 How to Listen to a Sound . 100
4.3.1 With the Package audio . 101
4.3.2 With the Package phonTools . 105
4.3.3 With the Package tuneR . 105
4.3.4 With the Package seewave . 106

4.4 How to Record a Sound . 107
4.5 How to Write (Save) a Sound . 108
4.6 Tuning R . 110

5 Display of the Wave . 111
5.1 Oscillogram . 112

5.1.1 Simple Oscillogram . 112
5.1.2 Axes . 114
5.1.3 Colors . 116
5.1.4 Decoration and Annotation . 119
5.1.5 Zoom In . 121
5.1.6 A Bit of Interactivity . 123
5.1.7 Multiple Oscillogram . 123

Contents xv

5.2 Amplitude Envelope . 125
5.2.1 Principle . 125
5.2.2 In Practice with seewave . 128
5.2.3 Smoothing . 129
5.2.4 In Practice with phonTools . 136

5.3 Combining Oscillogram and Envelope . 138

6 Edition . 139
6.1 Resampling .. 139
6.2 Channels Managing .. 142
6.3 Manipulating Sound Sections . 146

6.3.1 Extract . 146
6.3.2 Delete . 149
6.3.3 Paste . 150
6.3.4 Repeat. 154
6.3.5 Reverse . 155

6.4 Removing and Inserting Silence Sections . 155
6.5 Changing Amplitude .. 159

6.5.1 Offset . 159
6.5.2 Amplitude Level. 161
6.5.3 Fade-In and Fade-Out . 163

7 Amplitude Parametrization . 167
7.1 Linear Relative Scale . 167
7.2 Logarithm Relative Scale . 173

7.2.1 Signal-to-Noise Ratio . 173
7.2.2 dB Weightings . 174
7.2.3 dB Arithmetic . 175
7.2.4 Sound Attenuation Through Spreading Losses 177

7.3 Absolute Scale . 181

8 Time-Amplitude Parametrization . 185
8.1 What and How to Measure? . 185
8.2 Manual Measurements . 186
8.3 Automatic Measurements . 191

8.3.1 The Cicada Case. 193
8.3.2 The Frog Case . 198

8.4 Amplitude Modulation Analysis . 205
8.4.1 The Cicada Case. 205
8.4.2 The Frog Case . 209

9 Introduction to Frequency Analysis: The Fourier Transformation . . . 213
9.1 From Time to Frequency and Back . 213
9.2 Fourier Series . 214

9.2.1 Periodicity . 214
9.2.2 Trigonometric Fourier Series . 217

xvi Contents

9.2.3 Compact Fourier Series . 219
9.2.4 Exponential Fourier Series . 222

9.3 Fourier Transform.. 224
9.4 Frequency Scales. 229

9.4.1 Bark and Mel Scales . 229
9.4.2 Musical Scale . 231

9.5 Amplitude Scales . 235
9.6 Fourier Windows .. 236
9.7 Inverse Fourier Transform .. 240
9.8 Cepstrum . 241

10 Frequency, Quefrency, and Phase in Practice . 247
10.1 Frequency Spectrum . 247

10.1.1 Functions of the Package tuneR . 248
10.1.2 Functions of the Package seewave . 249
10.1.3 Identification of Peaks . 265
10.1.4 Profile Analysis . 275
10.1.5 Symbolic Analysis . 286
10.1.6 Parametrization .. 293

10.2 Quefrency Cepstrum .. 302
10.3 Phase Portrait. 303

11 Spectrographic Visualization . 309
11.1 Short-Time Fourier Transform . 309

11.1.1 Principle . 309
11.1.2 The Uncertainty Principle. 312

11.2 Computation and Display of the Spectrogram.. 315
11.3 Function of the Package signal . 319
11.4 Functions of the Package tuneR . 320
11.5 Function of the Package phonTools. 324
11.6 Function of the Package soundgen . 325
11.7 Functions of the Package seewave . 326

11.7.1 2D Spectrogram . 326
11.7.2 External Computing of the Short-Time Fourier

Transform .. 349
11.7.3 Inverse Short-Time Fourier Transform 351

11.8 Measurements and Annotations on the Spectrogram.. 353
11.8.1 Simple Measure . 353
11.8.2 Fancy Measure and Annotation.. 353
11.8.3 Automatic Parametrization . 358

11.9 Complex Display and Printing . 362
11.9.1 Multi-Spectrogram Graphic . 362
11.9.2 Printing in a File. 364
11.9.3 Long Spectrogram Graphic . 365

11.10 Dynamic Spectrogram . 366
11.11 Movie .. 368

Contents xvii

11.12 Waterfall Display . 370
11.13 3D Spectrogram .. 372
11.14 Mean Spectrum . 375
11.15 Soundscape Spectrum . 377

12 Mel-Frequency Cepstral and Linear Predictive Coefficients 381
12.1 Mel-Frequency Cepstral Coefficients (MFCCs) 381

12.1.1 Theory . 381
12.1.2 Practice . 385

12.2 Linear Predictive Coefficients (LPCs) . 394
12.2.1 Theory . 394
12.2.2 Practice . 395

13 Frequency and Energy Tracking . 399
13.1 Frequency Tracking .. 400

13.1.1 Dominant Frequency .. 400
13.1.2 Fundamental Frequency . 405
13.1.3 Formants . 416
13.1.4 Instantaneous Frequency .. 418

13.2 Energy Tracking . 427

14 Frequency Filters . 435
14.1 Preemphasis Filter . 440
14.2 Comb Filter . 443
14.3 Butterworth Filter . 445
14.4 Wave Smoothing Filter . 449
14.5 DFT and STDFT Filter . 451

14.5.1 Principle . 451
14.5.2 ffilter() Function . 451
14.5.3 Examples . 452

14.6 FIR Filter . 455
14.6.1 Principle . 455
14.6.2 fir() Function . 455
14.6.3 Examples . 456
14.6.4 Setting the Transfer Function .. 459

15 Other Modifications . 465
15.1 Setting the Amplitude Envelope . 465
15.2 Echoes and Reverberation . 467
15.3 Amplitude Filtering . 468
15.4 Modifications Using the ISTDFT . 470
15.5 Modifications Using the Hilbert Transform . 474

16 Indices for Ecoacoustics . 479
16.1 α Indices. 482

16.1.1 Functions . 482
16.1.2 Batch Processing: How to Obtain a List of α

Indices for a Set of Sounds . 492

xviii Contents

16.2 β Indices. 494
16.2.1 Functions . 494
16.2.2 Batch Processing: How to Obtain and Analyze a

Matrix of β Indices. 505

17 Comparison and Automatic Detection . 521
17.1 Cross-Correlation . 521
17.2 Frequency Coherence .. 528
17.3 Dynamic Time Warping . 530
17.4 Automatic Identification .. 534

17.4.1 Principle . 534
17.4.2 In Practice with the Package monitoR 538

18 Synthesis . 555
18.1 Silence . 555
18.2 Noise. 557
18.3 Non-sinusoidal Sound . 558

18.3.1 Pulse Wave . 558
18.3.2 Square Wave . 560
18.3.3 Triangle and Sawtooth Waves . 561

18.4 Sinusoidal Sound: Additive Synthesis . 564
18.4.1 Principle . 564
18.4.2 In Practice with tuneR . 566
18.4.3 In Practice with seewave . 569

18.5 Sinusoidal Sound: Modulation Synthesis . 574
18.5.1 Principle . 574
18.5.2 In Practice with signal . 574
18.5.3 In Practice with seewave . 574
18.5.4 Examples . 578

18.6 Tonal Synthesis . 598
18.6.1 Principle . 598
18.6.2 In Practice with seewave . 598
18.6.3 Examples . 600

18.7 Speech . 604
18.7.1 Solution with the Package phonTools 604
18.7.2 Solution with the Package soundgen 605

A List of R Functions . 611

B Sound Samples . 619

References . 627

Index . 633

Acronyms

A Maximum amplitude
AM Amplitude modulation
DC Direct current voltage
DFT Discrete Fourier transform
E Energy (J)
F Force (N)
FFT Fast Fourier transform
FM Frequency modulation (Hz)
FT Fourier transform
I Intensity (W m−2)
IDFT Inverse discrete Fourier transform
IFT Inverse Fourier transform
ISTDFT Inverse discrete short-time Fourier transform
ISTFT Inverse short-time Fourier transform
P Power (W)
Q Quality factor
RMS Root-mean-square
S Area (m2)
SIL Sound intensity level (dB)
SPL Sound pressure level (dB)
STDFT Short-time discrete Fourier transform
STFT Short-time Fourier transform
SVL Sound velocity level (dB)
T Period (s)
TKEO Teager-Kaiser energy operator
Z Acoustic impedance (N s m−3)
ZCR Zero crossing rate
a Instantaneous amplitude
a Acceleration (m s−2)
c Sound celerity (m s−1)
d Duration (s)

xix

xx Acronyms

f Ordinary frequency (Hz)
fc Carrier frequency (Hz)
fd Dominant frequency (Hz)
fr Resonant frequency (Hz)
fs Sampling frequency (Hz)
fN Nyquist frequency (Hz)
p Pressure (Pa)
p0 Reference air pressure at 0 s.l.m (1.1013 × 105 Pa)
pref Human auditory threshold in air (2 × 10−5 Pa = 20µPa = 0 dB)
v Particle velocity (m s−1)
t Time (s)
ω Angular frequency (rad)
λ Wavelength (m)
ρ Volumetric mass density (kg m−3)
ϕ Angular phase (rad)

List of Figures

Fig. 2.1 Sound emanating from a tuning fork. The two tuning
fork hinges are represented from above with two blue
squares. Their vibrations generate a sound that propagates
as a longitudinal wave in air. Sound is represented along
a single direction with an alternation of air rarefaction
(r) and compression (c) with a wavelength λ. A simple
framed elastic membrane at a fixed position in the (x, y)

space vibrates sympathetically with sound. This is an
oversimplified representation of sound propagation around
a tuning fork; see Russell et al. (2013) and Russell (2000)
for a complete description . 8

Fig. 2.2 Sound pressure (p) and amplitude variations. The sound
was recorded at time t = 0 and at distance d1 from
the source with a −π ÷ 4 rad or −45◦phase shift ϕ.
The bottom x-axis shows the time t in seconds, the top
x-axis shows the distance in meter and the y-axis is the
instantaneous pressure p in Pascal. In this ideal case,
air pressure oscillates cyclically as a sinusoidal function
around p0. The gray rectangle delimits one cycle. In the
time domain, the interval between two compression peaks
is the period (T). In the space dimension, the distance
between two compression peaks is the wavelength (λ). The
red vertical bars on the top x-axis represent the density of
air particles. Low and high air particle density corresponds
to air rarefaction (r) and compression (c), respectively 11

Fig. 2.3 Amplitude (A). The three main amplitude quantities of a
sound: the instantaneous, the maximum, the peak-to-peak,
and the average (root-mean-square, rms) amplitude 13

Fig. 2.4 dB scale. Top: relation between the ratio of two pressures
and the corresponding dB value. Doubling the pressure is
equivalent to an addition of 6 dB. Bottom: from pressure in

xxi

xxii List of Figures

Pa to sound pressure level (SPL) in dB. Values are given
for every 10 dB . 15

Fig. 2.5 dB weighting curves. The weightings curves of dB(A),
dB(B), dB(C), and dB(D) according to frequency. The
code used to produce this figure is given in Sect. 7.2.2 17

Fig. 2.6 Sound attenuation for a spherical source. Curves of dB
attenuation with distance due to spreading losses in a free
and unbounded medium (model) and of what could be
measured in the medium (measurements). The difference
between the two curves due to medium absorption and
scattering is named excess of attenuation (EA). The
measurement curve is here still idealized as scattering
effects will produce an irregular curve . 19

Fig. 2.7 Phase (ϕ). Two sounds with similar amplitude and
frequency but different phase. There is a π ÷ 4 rad or 45◦
shift between the two waves . 20

Fig. 2.8 Duration (d). Two sounds of different duration, the
red sound being a third shorter than the blue one
(d1 = 2 ÷ 3 × d2). The amplitudes of the two sounds were
set to different values to allow comparison . 21

Fig. 2.9 Frequency (f). Two sounds with different frequencies: the
red sound has a frequency four times higher than the blue
one. In other words, there are three blue cycles and twelve
red cycles, or there are four red cycles for a single blue
cycle. If t = 1 s, then the frequency of the blue wave is
3 Hz, and the frequency of the blue wave is 12 Hz. 22

Fig. 2.10 Harmonics. Sound made of three tones with a harmonic
ratio: the fundamental (f0), the first harmonic (f1), and the
second harmonic (f2). The light gray lines correspond to
these three tones isolated . 23

Fig. 2.11 Square (top), triangle (middle), and sawtooth (bottom)
waves. These periodic functions consist of harmonics series 24

Fig. 2.12 Noise (top) and Dirac pulse (bottom) waves. These
functions do not produce either harmonics or inharmonics
overtones .. 25

Fig. 2.13 Amplitude and frequency modulations (AM, FM). The
instantaneous amplitude (blue plain line) is modulated
according to an amplitude exponential decay a(t) (black
dashed line) (top) or according to a frequency exponential
increase f (t) (bottom) . 27

Fig. 2.14 Sinusoidal amplitude modulation. Two examples of
instantaneous amplitude (blue plain line) modulated
according to a sinusoidal amplitude modulation a(t) (black
dashed line). The frequency of the amplitude modulation
fam of the above example is half the one in the example

List of Figures xxiii

below. The amplitude depth m is 1 (or 100%) in the
example above and 0.5 (or 50%) in the example below 27

Fig. 2.15 Sinusoidal frequency modulation. Three examples of
sinusoidal frequency modulations f (t): a frequency
modulation with a frequency of 2 and a modulation
index of 50 (top), a frequency modulation of 4 with a
similar modulation index of 50 (middle), and a frequency
modulation of 2 with a modulation index of 100 28

Fig. 2.16 Example of a time series. The atmospheric concentrations
of CO2 expressed in parts per million (ppm) from 1960 to
1997. This dataset could be transformed into a sound. Data
from the package datasets . 29

Fig. 2.17 Sampling. Digital sound is a discrete process along the
time scale. The same wave is sampled at two different
rates: the wave above is sampled four times more than the
bottom wave. Each point is a sample; the line is original
continuous sound .. 31

Fig. 2.18 Quantization. Digital sound is a discrete process along the
amplitude scale: a 3 bit (= 23 = 8) quantization (gray bars)
gives a rough representation of a continuous sine wave
(blue line) . 31

Fig. 2.19 Aliasing on a sine wave. In blue, the original sine wave was
sampled at an appropriate rate representing well the cycle
period or frequency. In red, the same sine wave sampled at
a too low rate generating aliasing at a lower wrong frequency . . . 32

Fig. 2.20 Aliasing on a complex wave. The original blue wave is a
complex wave including several frequency components.
When sampled at an appropriate rate, the wave can be
properly represented with all small amplitude changes.
However, when sampled at a low rate, the main amplitude
features are lost (red dots and red segments) . 33

Fig. 2.21 Clipping. This wave was not properly acquired. The
amplitude exceeds the limits of the quantization scale
leading to a squared or flat waveform (arrow). Such
waveform cannot be studied properly as amplitude, time,
and frequency features are distorted .. 34

Fig. 2.22 Shannon diagram of a communication as published in
Shannon (1949) and Shannon and Weaver (1949) 35

Fig. 2.23 Shannon diagram adapted to animal communication
system. Drawn with the package diagram (Soetaert 2014) 35

Fig. 3.1 Vectorization and recycling. This graphic uses data
recycling (argument color) and vectorization (argument
cex). 63

xxiv List of Figures

Fig. 3.2 Scatter plot. A simple X–Y scatter plot with the
Sepal.Length and Sepal.Width variables of the
dataset iris . 65

Fig. 3.3 Graphic tuning. A meaningless example
of graphic changes using low-level plot
functions . 69

Fig. 3.4 Layout plate scheme by a 5-year-old hand. The first step of
composing an R graphic plate is to take a pen and piece of
paper and to draw it! Colors are not necessary. 70

Fig. 3.5 Layout plate scheme with layout(). We first prepare the
layout by generating an appropriate matrix. The size of the
graphic numbers is increased with the function par() 71

Fig. 3.6 Directed network of CRAN packages dedicated to sound.
The network was constructed based on the main directed
relationships between CRAN packages dedicated to
sound. The size, or degree, of each node corresponds to
the number of connections. This highlights the central
position of tuneR and seewave. Built with the package
network (Butts 2008) and drawn with the package
GGally (Schloerke et al. 2017). 77

Fig. 3.7 Flowchart of seewave dependencies. R packages are
in rounded boxes. External tools are in framed rounded
boxes. Mandatory items are labeled with a star (*). Drawn
with the package diagram (Soetaert 2014) . 79

Fig. 4.1 Sound as a time series. This is a 0.05 s sound with a carrier
frequency of 440 Hz and a sampling frequency of 8000 Hz.
The plot was created with the function plot() applied to
a ts object . 84

Fig. 4.2 Geographical map of Xeno-Canto recordings. The function
xcmaps() of warbleR can return a map of a species
recordings, here for the rufous-collared sparrow, or
tico-tico, Zonotrichia capensis, recorded in Brazil 98

Fig. 5.1 The rufous-collared sparrow Zonotrichia capensis also
named tico-tico in Portuguese. Reproduced with the kind
permission of Ladislav Nagy . 112

Fig. 5.2 A simple oscillogram. The waveform of the tico sound
obtained with oscillo(tico) . 113

Fig. 5.3 Oscillogram with a calibrated amplitude. The default blank
y-axis is tuned to display absolute values, here along a
Pascal scale . 115

Fig. 5.4 Oscillogram axes. The axes were removed, and a time
scale bar was added . 116

Fig. 5.5 Oscillogram colors. The colors of most graphical items can
be changed to tune the oscillogram plot . 117

List of Figures xxv

Fig. 5.6 Oscillogram decoration. Example of necessary and useless
annotations on an oscillogram . 119

Fig. 5.7 Oscillogram highlight with a rectangle. The yellow
background was added, thanks to the function polygon() 121

Fig. 5.8 Oscillogram time zoom in. The plate was built with four
calls to the function oscillo() using different values
for the arguments from and to . 122

Fig. 5.9 Multi-line oscillogram. Using the argument k, the
oscillogram is split in four sections of equal duration over
four lines. The argument j can also be used to divide the
oscillogram in columns . 124

Fig. 5.10 Overplotting oscillograms. This figure demonstrates the
overplot of two oscillograms, a noisy and a clean version
of the dataset tico . 125

Fig. 5.11 Absolute and analytic (or Hilbert) amplitude envelope.
The figure shows a 0.05 s signal with a triangular shape
sampled at 22,050 Hz. Both absolute and analytic (or
Hilbert) envelopes are overplotted to show their different
behavior in the following amplitude modulations 127

Fig. 5.12 Analytic envelope of tico. The envelope was obtained
with the simple command env(tico) . 129

Fig. 5.13 Tuning of an amplitude envelope. The envelope of tico
was zoomed in on the second syllable, the color of the
envelope was changed, and a title was added . 130

Fig. 5.14 Sliding window. Graphical representation of a window
sliding along the time axis. The sound is sampled at
22,050 Hz; the window length is made of 512 samples
which is equivalent to 0.0232 s. The overlap is 0% (top),
50% (middle), and 75% (bottom). The height of the
window was artificially increased for a sake of clarity 131

Fig. 5.15 Amplitude envelope smoothing. Example of the tico
amplitude analytic envelope smoothed with different
sliding window lengths and overlaps .. 133

Fig. 5.16 Amplitude envelope types and smoothing with a sliding
average. The plate shows the shape of the tico envelope
either as an absolute amplitude envelope (envt=’abs’)
or as an analytic envelope (envt=’hil’) for different
average sliding window lengths. The difference by
subtraction between the two envelopes is also shown 134

Fig. 5.17 Amplitude envelope smoothing by moving sum. The
envelope is smoothed by computing the sum of neighbor
values within a window containing 8, 512, or 1024 samples 135

Fig. 5.18 Amplitude envelope smoothing with a kernel function.
The envelope is smoothed by applying a kernel function
parametrized with a smoothing parameter m . 136

xxvi List of Figures

Fig. 5.19 Envelope following powertrack() function. The
envelope of tico was obtained with the function
powertrack() of phonTools. The envelope is
obtained through a smoothing average on the square of the
sound .. 137

Fig. 5.20 Oscillogram and envelope. The analytic amplitude (or
Hilbert) envelope is plotted in red over the oscillogram 137

Fig. 6.1 Aliasing and downsampling. The original file (top) is
a 5000 Hz pure tone sampled at 22,050 Hz. The same
sound downsampled at 11,025 Hz clearly shows time and
frequency artifacts (bottom) . 141

Fig. 6.2 Oscillogram of a stereo Wave object. The object
tico was converted into a stereo Wave object with
stereo() and plotted as an oscillogram with the function
oscilloST(). The left channel is on the top and the
right channel is at the bottom of the plot . 143

Fig. 6.3 Clicks when concatenating (pasting) waves. The
concatenation of two waves with different phases might
generate unwanted clicks. There is a 3π ÷ 2 rad or 270◦
shift between the two waves . 151

Fig. 6.4 Click removing by prepComb(). The click at the
junction between wave1 and wave2 was removed thanks
to the function prepComb() of the package tuneR 151

Fig. 6.5 Pasting sounds with pastew(). The second syllable is
pasted (inserted) into tico at 0.6 sand the result is plotted 153

Fig. 6.6 Click removing by pastew(). The click at the junction
between wave1 and wave2 was removed thanks to the
function argument tjunction of pastew() of the
package seewave . 154

Fig. 6.7 Histogram of tico absolute amplitude envelope.
Distribution of the absolute values (absolute amplitude
envelope) of the tico samples. The first cell counts the
numbers of samples between 0 and 1000, the vertical red
bar indicates the center of the first cell at 500. 156

Fig. 6.8 Removing silence. The figure shows the results of both
noSilence() and zapsilw() functions. The first
function works at start and end of the signal operating as
a trim function when the second function removes every
silence sections. Sections modified are highlighted with
red arrows drawn with arrows() . 158

Fig. 6.9 Muting. The second syllable of tico, which starts at
0.6 sand stops at 0.87 s is muted by replacing original
samples values with 0 values. The new silence section is
highlighted with a red arrow drawn arrows() 159

List of Figures xxvii

Fig. 6.10 Adding silence. Silence sections can be added with the
function addwilw() as demonstrated here by adding
0.2 s bouts at both start and end of tico. The new silence
sections are highlighted with red arrows drawn with
arrows() . 160

Fig. 6.11 Amplitude offset. This wave is shifted toward high
amplitude values, departing from the p0 reference value 160

Fig. 6.12 Fade-in and fade-out. Fade-in and fade-out are applied
to the tuning fork sound with three different amplitude
shapes: linear, exponential and cosine . 165

Fig. 7.1 Attenuation due to spreading losses. The curve of
attenuation due to spreading losses for a sound source of
80 dB measured at 1 m is shown up to 150 m. This curve
was obtained using the function attenuation() 178

Fig. 7.2 Signal path and calibration sequence. The recording chain
goes through several stages from the initial sound source
to the terminal digital file passing through processes of
transduction (microphone, hydrophone, accelerometer,
or other), amplification (pre-amplifier), digitization
(analogue-digital converter), and file conversion (computer
algorithm). The arguments of the function PAMGuide()
are indicated below the process they are related to. The
argument Si covers the chain from transduction to
digitization. Modified from Merchant et al. (2015) 181

Fig. 8.1 Pictures of soniferous animals: the Mediterranean cicada
Cicada orni (Jérôme Sueur) and the Martinique Robber
frog Eleutherodactylus martinicensis (reproduced with the
kind permission of Renaud Boistel) . 186

Fig. 8.2 Calling song of Cicada orni saved in the dataset orni.
The song is made by the regular repetition of five syllables
or echemes (e-i) (first panel). Each echeme is made of
about ten pulses (p-i) as shown here by zooming in on the
third echeme (e-3) (second panel). The start of echeme 3
(e-3) can be identified clearly (third and fourth panels).
The end of the echeme 3 (e-3) is more difficult to localize
due to echoes (bottom, upward arrows with question marks) 187

Fig. 8.3 Automatic time measurement of the orni sound. The
five echemes (signal) and the inter-echeme (pause)
separating them are automatically detected with the
function timer(). The Hilbert amplitude envelope
(envt="hil") was smoothed with a moving average
(msmooth=c(50,0)) .. 194

Fig. 8.4 Automatic measurement of the orni sound with
amplitude and time thresholds. The figure is the graphical

xxviii List of Figures

output of timer() with a smoothing parameter
(msmooth=c(30,0)), an amplitude threshold
(threshold=5), and a time threshold (dmin=0.04) 196

Fig. 8.5 Automatic measurement of the orni sound with a moving
sum. The figure is the graphical output of timer() with a
smoothing parameter using sum (ssmooth=100) and an
amplitude threshold (threshold=6).. 198

Fig. 8.6 Oscillogram of the frog Eleutherodactylus martinicensis.
The recording made Renaud Boistel is a succession of 17
two-note calls of a focal recorded male, with important
background sound due to other vocalizing males 200

Fig. 8.7 Automatic time measurement of the frog Eleutherodactylus
martinicensis. The 17 two-note vocalizations (signals) and
the pauses separating them are automatically detected with
the function timer(). The Hilbert amplitude envelope
(envt="hil") was squared (power=2) and smoothed
with a moving average (msmooth=c(100,90)). The
results were filtered with a 0.2 s time threshold (dmin=0.2) 201

Fig. 8.8 Graphical use of timer() results. The results returned by
timer() are used to zoom on the first four vocalizations,
to label and to frame these vocalizations . 202

Fig. 8.9 Comparison of manual and automatic measurements. The
plot shows against time the duration the 17 vocalizations
(signal) and pauses of the calling sequence of the frog
E. martinicensis obtained manually using the argument
identify of oscillo() (manual) and the estimation
returned by the function timer() (automatic) 203

Fig. 8.10 Distribution of the automatic measurements according
to different timer() settings on the 17 vocalizations
(signal) and pauses of the calling sequence of the frog
Eleutherodactylus martinicensis . 204

Fig. 8.11 Amplitude modulation analysis of the orni sound: fast
amplitude modulations. The function ama() shows
two peaks corresponding to the pulse repetition rate
(0.237 kHz) and the carrier frequency (2.347 kHz) 206

Fig. 8.12 Amplitude modulation analysis of the orni sound: slow
amplitude modulations. The function ama() set with a
large window shows a dominant peak corresponding to the
echeme repetition rate (0.007 kHz) . 207

Fig. 8.13 Amplitude modulation analysis of the frog
Eleutherodactylus martinicensis: fast amplitude
modulations. The function ama() shows three peaks
corresponding to the fundamental frequency of the first
note (1.938 kHz), the fundamental frequency (3.141 kHz)
and the beating between these two frequencies (1.219 kHz) 210

List of Figures xxix

Fig. 8.14 Amplitude modulation analysis of the frog
Eleutherodactylus martinicensis: slow amplitude
modulation. The function ama() set with a large window
shows a dominant peak corresponding to the vocalization
repetition rate (0.001 kHz) . 211

Fig. 9.1 Jean-Baptiste Joseph Fourier (1768–1830). Engraving by
Jules Boilly, around 1823 (Public Domain) . 214

Fig. 9.2 Fourier transformation principle. Any complex waveform
can be decomposed into a sum of simple waveforms. Here
the top waveform with a period T is decomposed into the
addition of three simple waveforms (n = 3) related by a
fundamental frequency f0 . 215

Fig. 9.3 A periodic waveform. The waveform, possibly a sound, is
made of five repetitions of the same pattern. The waveform
follows the equation s(t + mT) = s(t), with T the period
and m = {1, 2, 3, 4, 5} . 216

Fig. 9.4 Frequency decomposition and signal reconstruction. The
original signal (O) is decomposed into a series of ten
functions written as [An cos(ωnt) + Bn sin(ωnt)] with
n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The last signal (R) is
the reconstruction of the original signal (O) using the
coefficients An and Bn and the angular frequencies ωn 220

Fig. 9.5 Frequency spectrum. The frequency spectrum is a barplot
of the Fourier coefficients Cn against the n angular
frequency indices. The top frequency scale in Hz was
manually added with the graphical function axis() and
mtext() . 222

Fig. 9.6 Phase spectrum. The phase spectrum is a barplot of the
phase coefficients ϕn against the n angular frequencies 223

Fig. 9.7 Mirrored frequency spectrum of the FFT. The modulus of
the FFT is a symmetric (mirrored) function of the angular
(or regular) frequency around the Nyquist frequency fN 227

Fig. 9.8 Frequency spectrum of the FFT. This spectrum includes all
the Fourier coefficients from C0 to the Nyquist frequency fN 228

Fig. 9.9 Hertz (x-axis), mel (left y-axis), and Bark (right y-axis)
scales. Bark and mel scale are closely related even if
defined differently and evolving on different ranges 230

Fig. 9.10 Frequency of Western musical notes. The frequency
in Hertz and mel of the 12 Western musical notes is
plotted over the first 6 octaves. The mel scale, through its
logarithm properties, spaces more equally the notes than
the Hertz scale along the octaves . 233

Fig. 9.11 Amplitude scale of the frequency spectrum. Seven
examples of amplitude scales used to show a frequency

xxx List of Figures

spectrum, from raw data directly returned by the FFT to
linear and scaled scales and logarithmic scales based on
the dB unit. A zoom between 0 and 5000 Hz was operated
on the frequency axis . 236

Fig. 9.12 FFT window shape. Shapes of the six FFT windows
implemented in seewave. The windows includes here
N = 512 samples. 237

Fig. 9.13 FFT window effects on the frequency spectrum. A 2 kHz
sound lasting 0.02 s is windowed (syn. tapered) with a
function that reduces errors in the frequency spectrum.
Basically the rectangular window (first line of graphics)
has no effect when the remaining (Bartlett, Blackman,
flattop, Hamming, and Hanning) changes the shape of the
spectrum. The effects are less visible on a spectrum with a
linear amplitude scale (second column) than on a spectrum
with a dB amplitude scale (third column) .. 239

Fig. 9.14 Cepstrum: echo detection. The original signal is a 45 Hz
signal affected by an echo arriving with a delay of 0.2 s and
an increase of 50% of amplitude (upper panel). Applying
the complex cepstral transform returns a graphic with a
quefrency x-axis and an amplitude y-axis. A peak appears
at 0.2 s (bottom x-axis scale) corresponding to 5 Hz (top
x-axis scale) (bottom panel) corresponding to the echo delay. 243

Fig. 9.15 Cepstrum of a harmonic series. The original signal is a
0.1 s harmonic series with a 440 Hz fundamental frequency
and nine harmonics regularly and linearly decreasing
in amplitude. The 440 Hz fundamental frequency can
be seen as a regular amplitude modulation (gray area)
(first panel). The spectrum is therefore made of ten
frequency peaks spaced by 440 Hz (gray area) (second
panel). The logarithm of the frequency spectrum shows
the same profile with the same distance between peaks,
but frequency peaks are compressed (third panel). The
cepstrum shows a peak at a quefrency of 0.002 s equivalent
to 440 Hz (fourth panel) . 244

Fig. 9.16 Cepstrum of an amplitude modulated signal. The original
signal is a 2500 Hz pure tone signal with an amplitude
modulation of 440 Hz (gray area) lasting 0.1 s (first panel).
The spectrum is made of three frequency peaks, a dominant
frequency peak at 2500 Hz and two lateral frequency peaks
at 2500 − 440 = 2060 Hz and 2500 + 440 = 2990 Hz
(gray area) (second panel). The logarithm of the frequency
spectrum shows the same profile with the same distance
between peaks, but frequency peaks are compressed (third
panel). The cepstrum shows a peak at a quefrency of

List of Figures xxxi

0.0024 s equivalent to 417 Hz, slightly departing from the
440 Hz modulation frequency (fourth panel). 245

Fig. 10.1 Pictures of soniferous animals: the northern lapwing
Vanellus vanellus (reproduced with the kind permission of
Andreas Trepte, http://www.photo-natur.de) and the Italian
tree cricket Oecanthus pellucens (reproduced with the kind
permission of Christian Roesti, http://www.orthoptera.ch).. 248

Fig. 10.2 Frequency spectrum with periodogram() of tuneR.
The frequency spectrum returned by periodogram()
is a power spectral density, that is, a frequency spectrum
squared and scaled by its sum . 249

Fig. 10.3 Frequency spectrum with spec() of seewave 250
Fig. 10.4 Size of the frequency spectrum—1. The frequency

spectrum is computed with spec() over the complete
peewit dataset (top), on a section between 0.3 and 0.4 s
(middle) and on a 512 sample window selected in the
middle of the sound (bottom) .. 253

Fig. 10.5 Size of the frequency spectrum—2. The frequency
spectrum is computed with spec() at the center of
peewit dataset with different DFT sizes (128, 256, 512,
1024). The spectrum is displayed with a line and points to
highlight the frequency resolution .. 255

Fig. 10.6 dB frequency spectrum. Frequency spectrum computed
at the center of peewit with a window of 512 samples.
The amplitude scale is expressed in dB in reference to a
maximum value set to 0 . 258

Fig. 10.7 High-level plot modifications of the frequency spectrum.
The main graphical parameters of spec() were used
to change the appearance of the frequency spectrum,
including its orientation .. 259

Fig. 10.8 Decoration of the frequency spectrum. This plot results
from the use of low-level plot functions—par(),
polygon(), axis(), grid(), title(),
points(), rect(), rect(), box()—to change the
visual output of spec() . 259

Fig. 10.9 Multifrequency spectrum plot. Thirteen frequency spectra
computed regularly along peewit are plotted on a single
graph . 261

Fig. 10.10 Frequency band plot. Four displays of the function
fbands(): ten regular frequency bands in a usual vertical
orientation (top-left), ten regular frequency bands with
color and orientation modifications (top-right), eight
regular frequency bands defined by hand (bottom-left), and

xxxii List of Figures

eight frequency bands defined following music octaves
(bottom-right).. 264

Fig. 10.11 Peak detection of frequency spectrum. Plot output of the
basic use of the function fpeaks: all peaks, here 56, even
if tenuous, are detected . 267

Fig. 10.12 Parameters for frequency spectrum peak detection. The
function fpeaks() has four arguments to help in
selecting the peaks of a frequency spectrum. The argument
amp is an amplitude threshold working on the slopes of the
peaks (top-left), the argument freq acts as a frequency
threshold (top-right), the argument threshold is an
overall amplitude threshold (bottom-left), and the argument
nmax selects the most prominent n peaks (bottom-right).
The illustration is based on schematized frequency spectra
with frequency resolution of Δf = 43 Hz. S selected peak,
NS nonselected peak . 268

Fig. 10.13 Example of frequency spectrum peak detection. Frequency
peak detection is here tested on the a frequency spectrum
computed at the center of the dataset peewit. Each
setting (arguments amp, freq, threshold, and nmax)
returns a different number of peaks detected. 269

Fig. 10.14 Example of frequency spectrum peak detection with
combined parameters. The figure shows peak detection
on a spectrum computed for the second note of tico
without any selection (circle), using the argument amp
only (triangle), and the arguments amp and freq together
(disk). A frequency zoom in was operated between 3.5 and
5.5 kHz .. 270

Fig. 10.15 Local peak detection on the frequency spectrum. The peak
of maximum energy is identified for specific frequency
regions defined with the argument bands of the function
localpeaks(). Detection over ten regular frequency
regions (top-left), over 500 Hz wide regions (top-right),
seven irregular regions (bottom-left), and octave-based
regions (bottom-right) .. 272

Fig. 10.16 Frequency spectrum and quefrency cepstrum of a sheep
bleat. The plots were obtained with spec() and ceps(),
respectively . 275

Fig. 10.17 Frequency spectrum of periodic signals—part 1. Pure
harmonic series with a dominant fundamental frequency
(top-left), harmonic series with a dominant frequency
different from the fundamental frequency (top-right),
inharmonic series (bottom-left) and two harmonics series
mixed (bottom-right). fd : dominant frequency. f0 and g0:
fundamental frequencies . 277

List of Figures xxxiii

Fig. 10.18 Frequency spectrum of periodic signals—part 2. Pure sine
wave with a DC component (top-left), pure sine wave with
a sinusoidal amplitude modulation beating at fam and with
low (m=10%) modulation index (top-right), pure sine wave
with a sinusoidal amplitude modulation beating at fam with
a maximum (m=100%) modulation index (middle-left), a
harmonic series with a sinusoidal amplitude modulation
beating at fam with a maximum (100%) modulation index
(middle-right), squared pure sine wave repeated at the
frequency fam (bottom-left), spectrum of orni which can
be considered as a AM signal with periodic pauses. DC:
direct current. fc: carrier frequency. f0: fundamental
frequency . 279

Fig. 10.19 Frequency spectrum of periodic signals—part 3. 5 kHz
pure sine wave linearly increasing in frequency up to
7 kHz (top-left), 5 kHz pure sine wave affected by a
sinusoidal frequency modulation with ff m = 0.5 kHz and
β = 1 (top-right), 5 kHz pure sine wave affected by a
sinusoidal frequency modulation with ff m = 0.5 kHz and
β = 2 (middle-left), 5 kHz pure sine wave affected by a
sinusoidal frequency modulation with ff m = 0.5 kHz and
β = 4 (middle-right), 0.44 kHz pure sine wave affected by
a sinusoidal frequency modulation with ff m = 0.2 kHz
and β = 8 generating sidebands reflected around 0
(bottom-left), 5 kHz pure sine wave increasing in frequency
from 5 to 5.5 kHz affected by an additional sinusoidal
frequency modulation with ff m = 0.5 kHz and β = 1
(bottom-right).. 282

Fig. 10.20 Theoretical frequency spectrum of a FM signal. The
spectrum is obtained by applying Carson’s rule and Bessel
functions to estimate the number, the frequency position,
and the relative amplitude of a pure tone sound with a
carrier frequency at 5000 Hz and a frequency modulation
with a frequency of 500 Hz and a frequency peak deviation
of 500 Hz equivalent to a modulation index β = 1 284

Fig. 10.21 Frequency spectrum shape of brief signals. Frequency
spectrum of a pure sine wave with a duration of 0.1, 0.01,
0.001, and 0.0001 s showing the appearance of side lobes
that increase in importance up to a totally flat spectrum profile. . . 286

Fig. 10.22 Symbolic analysis. The symbolic analysis consists in
translating each amplitude values into a letter according to
the shape of the numeric series, here a frequency spectrum
of peewit . 289

xxxiv List of Figures

Fig. 10.23 SAX principle. The figure shows how the Z-transformed
data are converted into letters in reference to a Gaussian
distribution. The data come from the example given in the
DIY box 10.2. The SAX series of symbols, or word, would
be here eecbaabc. They correspond to monthly number of
sun spots from 1750 to 1760. Inspired from Lin et al. (2003). 292

Fig. 10.24 Resonance quality factor Q. The Q−6 dB factor of
pellucens was computed with a dB frequency spectrum
over 1024 samples at the position 1s. Specifying axis limits
allows to zoom in around the frequency peak where Q is
computed . 296

Fig. 10.25 Statistic parameters of the frequency spectrum. The
frequency spectrum of a segment of orni is here displayed
as cumulative distribution function by setting plot=2 301

Fig. 10.26 Quefrency cepstrum. The first rahmonic, or quefrency
peak, was estimated by using the argument tidentify
and then highlighted with points. The graph has two x
scale, one at the bottom expressed in time (s) and the other
(top) expressed in Hz . 302

Fig. 10.27 Phase-space plots of pure tone and noise. The figure shows
the phase-space plots obtained with phaseplot() (top)
and phaseplot2() (bottom) applied to a pure tone (left)
and to noise (right). Pure tone has a periodic shape when
noise has an unstructured an aperiodic shape . 304

Fig. 10.28 Phase portrait of pipe and elephant sounds. Oscillogram,
frequency spectrum, and phase portrait of (from top to
bottom) a pipe sound (line 1), a “brassy” pipe sound
(line 2), an elephant trumpet call (line 3), and a “brassy”
elephant trumpet call (line 4) . 306

Fig. 11.1 Illustration of the short-time discrete Fourier transform.
The function dynspec() can be used to better understand
the principle of the short-time discrete Fourier transform. A
series of frequency spectra are computed along the signal,
here the dataset sheep, for a given Fourier window. The
screenshot here shows the frequency spectrum computed
for the eleventh window located at 0.672 s along the sound.
The Fourier window has a length of 512 samples and
is tapered by a Hanning window (default values of the
arguments wl and wn respectively). Moving along the
signal is made possible, thanks to the small control pop-up
window entitled “Position.” Operating system: Ubuntu 310

Fig. 11.2 Heisenberg box. The principle of the short-time
discrete Fourier transform is based on a division of the
time-frequency plane into an array of atoms. A unity atom

List of Figures xxxv

is named a Heisenberg box represented as a quadrilateral
with a width σt and a height σf . The window function
applied on the frequency domain applies as well on the
frequency domain. Inspired from Mallat (2009) 312

Fig. 11.3 Short-time discrete Fourier transform: atom shape. The
figure shows the shape of the atoms (or Heisenberg
boxes) for different window sizes. Four time width σt are
considered: 128, 256, 512 and 1024 samples for a 0.2 s
sound sampled at 44,100 Hz. A zoom is operated along
the frequency y-axis from 0 to 2000 Hz. To facilitate the
comparison, one central atom is highlighted in blue. 313

Fig. 11.4 Short-time Fourier discrete transform: atom shape with
overlapping. The figure shows the shape of the atoms
(or Heisenberg boxes) obtained with a window made of
512 samples. Four overlaps between successive windows
are considered: 0%, 50%, 75%, and 87.5% for a 0.2 s
sound sampled at 44,100 Hz. A zoom is operated along
the frequency y-axis from 0 to 2000 Hz. To facilitate the
comparison, one central atom is highlighted in blue. 314

Fig. 11.5 Short-time Fourier transform: atom shape with
zero-padding. The figure shows the shape of the atoms (or
Heisenberg boxes) obtained with a window made of 512
samples. Four zero-padding settings are considered: 0,
32, 64, and 128 for a 0.2 s sound sampled at 44,100 Hz.
A zoom is operated along the frequency y-axis from 0 to
2000 Hz. To facilitate the comparison, one central atom is
highlighted in blue . 316

Fig. 11.6 Spectrogram with specgram() of signal. The
spectrogram is computed and displayed with the function
specgram() of the package signal. Fourier window
size = 512 samples, overlap = 75% = 383 samples, Hanning
window.. 320

Fig. 11.7 Spectrogram with periodogram() of tuneR.
The spectrogram is computed with the function
periodogram() of the package tuneR and displayed
with the function image(). Fourier window size = 512
samples, overlap = 75%, split cosine bell window.. 322

Fig. 11.8 Spectrogram with powspec() of tuneR. The
spectrogram is computed with the function powspec()
of the package tuneR and displayed with the function
image(). Fourier window size = 512 samples, overlap =
75%, Hamming window . 323

Fig. 11.9 Spectrogram with spectrogram() of phonTools.
Fourier window size = 512 samples, overlap = 75%,
Hamming window .. 324

xxxvi List of Figures

Fig. 11.10 Spectrogram with spectrogram() of soundgen.
Fourier window size = 512 samples, overlap = 75%,
Hamming window .. 325

Fig. 11.11 Spectrogram with spectro() of seewave. Fourier
window size = 512 samples, overlap = 75%, Hanning window .. . 326

Fig. 11.12 Pictures of soniferous animals: the hissing cockroach of
Madagascar Elliptorhina chopardi (reproduced with the
kind permission of Emmanuel Delfosse) and the Kuhl’s
pipistrelle Pipistrellus kuhlii, a bat commonly found in
Europe (reproduced with the kind permission of Laurent
Arthur) . 329

Fig. 11.13 Different Fourier window length with spectro(). The
spectrogram of cockroach was obtained with wl =
{128, 256, 512, 1024} samples. Other STDFT
parameters: Hanning window, 0% of overlap, no
zero-padding .. 330

Fig. 11.14 Different Fourier window overlaps with spectro(). The
spectrogram of cockroach was obtained with ovlp
= {25, 50, 75, 87.5} samples. Other STDFT
parameters: Hanning window, 512 samples, no zero-padding 331

Fig. 11.15 The spectrogram is computed with the function
spectro() of the package seewave and displayed
with the function image(). Fourier window size = 512
samples, overlap = 75%, Hanning window . 335

Fig. 11.16 Spectrogram, oscillogram and amplitude scale display with
spectro(). STDFT parameters: Hanning window, 512
samples, 87.5% of overlap, no zero-padding.. 336

Fig. 11.17 Contour plot with spectro(). The contours shows
iso-dB lines from −30 to 0 dB regularly spaced by 4 dB.
STDFT parameters: Hanning window, 512 samples, 87.5%
of overlap, no zero-padding .. 339

Fig. 11.18 Spectrogram with a logarithmic frequency scale. The
logarithmic scale obtained the argument flog=TRUE 340

Fig. 11.19 Different color levels with spectro(). The spectrogram
of cockroach was obtained with four different
series of color levels: a linear series going from −30
to 0 by step of 1 (collevels=seq(-30,0,1)),
a linear series going from −60 to 0 by step of 4
collevels=seq(-60,0,4), a linear series
going from −30 to 0 by step of 15 creating a
two-color scale (collevels=seq(-30,0,15)),
and a logarithmic series from −30 to 0
(collevels=c(-exp(seq(log(30), 0,
length=30)))). Other STDFT parameters: Hanning
window, 512 samples, 87.5% of overlap, no zero-padding 341

List of Figures xxxvii

Fig. 11.20 Color palettes to be used with spectro(). Examples
of different colour palettes for the amplitude scale of a
spectrogram. The jet.colors and green.colors
palettes were obtained with colorRampPalette().
See text for details . 342

Fig. 11.21 Change of colour palette with the function
choose_palette() of the package colorspace.
This screenshot shows the interactive tool to select a colour
palette according to several parameters and the result on
the face spectrogram. Operating system: Ubuntu 342

Fig. 11.22 Different colur palettes with spectro(). The
spectrogram of cockroach was obtained with
the palettes temp.colors, jet.colors,
green.colors, and reverse.gray.colors.
STDFT parameters: Hanning window, 512 samples, 87.5%
of overlap, no zero-padding .. 343

Fig. 11.23 Color changes with spectro(). The colors of the grid,
the axes, the labels, and oscillogram are set to white when
the background is turned to black. The palette was also
changed for a better contrast with the background 344

Fig. 11.24 Zoom-in and axes changes with spectro(). The
spectrogram of cockroach is zoomed in in time and
frequency, and changes are applied to the axes: the size
of the labels and values are changed, and the unit of the
frequency axis is changed to Hz . 347

Fig. 11.25 Spectrogram decoration. The spectrogram of cockroach
obtained with spectro() is decorated with the low level
plot functions arrows, text, points, and rect 349

Fig. 11.26 Spectrogram selections with manualoc(). Manual
annotations were added by clicking on the spectrographic
display. Here eight regions of interest were delimited 355

Fig. 11.27 Spectrogram annotations with viewSpec(). Three
regions of interest were delimited, saved, and read back
with viewSpec() . 358

Fig. 11.28 The main principle of acoustat. One of the most important
stages in the process is to estimate a time and a frequency
contour through an aggregation of the columns and
rows of the STDFT matrix. The example, here based on
cockroach, shows the spectrogram and the contours.
The contours are drawn with a line and points to show
the discretization due to the STDFT. STDFT parameters:
Hanning window, 512 samples, 87.5% of overlap, no
zero-padding .. 360

Fig. 11.29 Parametrization of the spectrogram with acoustat().
Visual display of the function acoustat() with the time

xxxviii List of Figures

envelope (top) and the frequency contour (bottom). The
median and quartiles are indicated with vertical red segments 361

Fig. 11.30 Several spectrograms in a single graphic display. The
spectrogram of tico, orni, peewit, and cockroach
are arranged to be all plotted in a single graphic display.
The amplitude color scale is added with the function
dBscale() . 363

Fig. 11.31 Saving a spectrogram in a raster file. This image
was produced using the function png() to print the
spectrogram of forest into a .png file. The settings
of png() and spectro() were adjusted to widen the
spectrogram .. 365

Fig. 11.32 Saving a long spectrogram in a series of raster files. These
two images saved into two separated jpeg files were
produced using the function lspec() of warbleR to
split and print the 60 s spectrogram
of forest . 367

Fig. 11.33 Dynamic spectrogram. The function dynspectro()
can be used to navigate along a long sound. A series of
STDFT are computed along the signal, here the sound
forest, for a given number of frames set with the
argument slidframe. The screenshot here shows the
STDFT computed for the frame between 11.05 and
20.04 s. Moving along the signal is made possible, thanks
to the small control pop-up window entitled “Position.”
Operating system: Ubuntu . 368

Fig. 11.34 Waterfall display. The figure shows four examples of
waterfall display obtained by applying the function wf()
on cockroach. STDFT parameters: Hanning window,
512 samples, 50% of overlap, no zero-padding 371

Fig. 11.35 3D animation of the cockroach spectrogram. Animation
around the 3D spectrogram of cockroach based on a
series of 100 .png images. Animated on electronic version
only . 373

Fig. 11.36 Mean frequency spectrum with meanspec().The plot
shows the mean frequency spectrum of peewit, a sound
with few frequency modulations. STFT parameters:
Hanning window, 512 samples, 87.5% of overlap, no
zero-padding .. 376

Fig. 11.37 Issues with the mean spectrum. The mean spectrum can
returned counterintuitive results as illustrated with three
synthetic samples (top-left, top-right, bottom-left) and
the natural cockroach whistle (bottom-right). For each
case the spectrogram is shown on the left and the mean
spectrum on the right . 378

List of Figures xxxix

Fig. 11.38 Soundscape frequency spectrum. The soundscape
frequency spectrum, here computed and displayed for the
recording forest consists in a Welch frequency spectrum
binned into 1 kHz frequency bands. The graphic is based
on the high-level plot graphic function barplot() 379

Fig. 12.1 Mel-frequency filter bank. A bank of mel-frequency
triangular filters is generated and displayed with the
seewave function melfilterbank(). The bank
includes 26 filters starting from 0.3 to 22.05 kHz 383

Fig. 12.2 Auditory spectrum. The result of the function audspec()
is displayed with the function image(). The left y-axis
refers to frequency expressed in mel and the right y-axis
indicates the index of the 26 mel-frequency filters used.
Time was divided into 74 windows by the STDFT 387

Fig. 12.3 Lifters on 13 MFCCs that are all equal to 1. The blue and
dashed line displays the 13 MFCCs. The plain black lines
show the weighting function of seven lifters differing in
their length, from 9 to 15. The lifter of length 12, that is,
the number of MFCCs-1, applies a perfect sine function
between 0 and π . 389

Fig. 12.4 Display of the MFCCs. The 13 MFCCs selected are
displayed according to time that was divided into 74
windows by the STDFT . 393

Fig. 12.5 Filter frequency response deriving from LPC. The function
lpc() returns the LPC coefficients of a sound, here
hello, and plots the resulting filter frequency response
(black line). The original frequency spectrum obtained
after a pre-emphasis filter is also shown (blue line) 396

Fig. 12.6 Formant analysis based on LPC. The function
findformants() can estimate the resonant frequency
fr and −3 dB bandwidth Δ−3 dBf of each formant. A
pole-zero diagram (right) completes the spectral display
(left) to show the position of the formants in the complex
unit circle . 397

Fig. 13.1 Dominant frequency tracking with dfreq(). The
dominant frequency of sheep is tracked along time
calling the function dfreq() which computes in
background a STDFT, here with a Fourier window
length of 512 samples (wl=512) and an overlap between
successive Fourier windows of 87.5% (wl=87.5) 401

Fig. 13.2 Dominant frequency tracking with different settings of
dfreq(). The graphic displays the results obtained with
the function dfreq() using five different settings 402

xl List of Figures

Fig. 13.3 Fundamental frequency tracking with autoc(). The
graphic displays the results obtained with the function
autoc() on sheep using four different settings. The
figure was manually obtained with plot(), points(),
and legend() . 406

Fig. 13.4 Fundamental frequency tracking with fund(). The
graphic displays the results obtained with the function
fund() on sheep using four different settings. The
figure was manually obtained with plot(), points(),
and legend() . 409

Fig. 13.5 Fundamental frequency tracking with FF(). The graphic
displays the results obtained with the function FF() on
sheep using default and tuned settings. The figure was
manually obtained with plot(), points(), and
legend() . 410

Fig. 13.6 Melody plot. The tuneR function melodyplot()
displays the notes estimated from the fundamental
frequency, here the fundamental frequency of the
theremin sound .. 412

Fig. 13.7 Melody quantization plot. The tuneR function
quantplot() displays the notes estimated from the
fundamental frequency after having binned the time scale,
here for the theremin sound . 413

Fig. 13.8 Fundamental frequency tracking with pitchtrack().
The fundamental frequency of the voice data hello is
detected and tracked with the function pitchtrack()
of phonTools. The result is plotted over a spectrogram
obtained with spectro() of seewave . 414

Fig. 13.9 Fundamental frequency tracking with analyze().
The fundamental frequency of the voice data hello is
detected and tracked with the function analyze() of
soundgen following four methods which, here, return the
same results. The legend was added manually with
legend() . 415

Fig. 13.10 Formant tracking with formanttrack(). The formants
of the voice data hello are detected and tracked with
the function formanttrack() of phonTools.
The results, here for three formants, are plotted over a
spectrogram obtained with spectro() of seewave 417

Fig. 13.11 Instantaneous frequency tracking with ifreq(). The
instantaneous frequency is computed and plotted with the
function ifreq() on tico. An amplitude threshold of
6% was applied to select the notes . 419

Fig. 13.12 Artifact of instantaneous frequency tracking. The
instantaneous frequency is computed and plotted with the

List of Figures xli

function ifreq() on bat. An amplitude threshold of 5%
was applied to select the call. The function can properly
estimate the instantaneous frequency when the sound is
monotonal but not when an harmonic appears making the
sound bitonal . 421

Fig. 13.13 Frequency modulation analysis of the theremin sound.
The function fma() shows a first peak at 0.006 kHz. This
peak was here identified using identify=TRUE and
then added on the graphic with the low-level plot functions
points() and text() as in Fig. 8.11. Note that the
peak can also be automatically identified using fpeaks() 422

Fig. 13.14 Zero-crossing principle. Positions where the signal crosses
the zero line are identified (red points) and used to
estimate the instantaneous period Tzc and therefore the
instantaneous frequency fzc . 422

Fig. 13.15 Zero-crossing with a multi-tonal sound. A sound made
of different frequencies, here a fundamental and its first
harmonic, crosses the zero line several times such that the
instantaneous frequency varies around four values 423

Fig. 13.16 Zero-crossing limitation and interpolation solution. The
figure is based on the analysis of a 0.1 s sound sampled
at 44,100 Hz with a linear frequency increasing from 0 to
22,050 Hz. Without interpolation the ZC is very inaccurate
when getting close to the Nyquist frequency (top). This
error can be reduced by interpolating the original signal,
here with a ×10 factor (bottom) . 424

Fig. 13.17 Instantaneous frequency tracking with zc(). The
instantaneous frequency of the bat call is estimated using
the zero-crossing principle without (top) and with a tenfold
interpolation (bottom) .. 425

Fig. 13.18 Zero-crossing rate. The zero-crossing rate method is used
on bat sound by dividing the signal in 53 successive
windows by setting the arguments wl=512 and wl=87.5 426

Fig. 13.19 Teager-Kaiser energy operator. Examples of TKEO applied
to amplitude modulated (AM) and/or frequency modulated
(FM) sounds . 429

Fig. 13.20 Teager-Kaiser energy operator with multi-tonal sound.
The TKEO does not return appropriate results with a
multi-tonal sound, as illustrated here with a sound with
a carrier frequency at 2000 Hz and four harmonics.
Spectrogram (top) and TKEO (bottom) . 430

Fig. 13.21 Teager-Kaiser energy operator with high-frequency
content. The TKEO does not return appropriate results
for frequencies above fs ÷ 4, as illustrated here with a
frequency modulated sound starting at 0 Hz and ending at

xlii List of Figures

fs ÷ 2 = 22,050 Hz. The vertical (frequency) or horizontal
(vertical) blue line indicates where the TKEO is no more
operational. Spectrogram (top) and TKEO (bottom) 431

Fig. 13.22 Teager-Kaiser energy operator with noise. The TKEO
does not return appropriate results when the system, that
is the recording, includes noise as illustrated here with a
frequency modulated sound starting at 0 Hz and ending at
fs ÷ 2 = 22,050 Hz mixed with white noise. Spectrogram
(top) and TKEO (bottom) .. 432

Fig. 13.23 Teager-Kaiser applied on tico and sheep. The TKEO
can be applied directly on tico as the conditions of
application are met (top). However, the TKEO does not
return relevant results if applied on sheep that does not
meet all conditions of application (middle). A band-pass
filter between 500 and 700 Hz can solve the problem by
focusing on a single and low-frequency band (bottom) 433

Fig. 14.1 Pictures of soniferous animals: the South-American poison
frog Allobates femoralis and the European midwife toad
Alytes obstetricans (Reproduced with the kind permission
of pictures by Andrius Pasukonis and Diego Llusia) 436

Fig. 14.2 Spectrogram and oscillogram of the vocalization of the dart
poison frog Allobates femoralis. The recording includes
two sequences of four notes and background noise due to
wind, distant individuals, and insects. Fourier window size
= 512 samples, overlap = 0%, Hanning window 437

Fig. 14.3 Spectrogram and oscillogram of the vocalization of the
European midwife toad Alytes obstetricans. The recording
includes three notes, wind, and insects. Fourier window
size = 512 samples, 0% of overlap, Hanning window 438

Fig. 14.4 Principle of a frequency filter. The figure sketches how
a frequency filter can change the frequency content of
a sound. The input sound is a white noise with a flat
frequency spectrum (left), the filter is characterized by a
transfer function H(f) with a bell-like shape (middle), and
the output has a frequency spectrum with a shape similar to
the filter transfer function (right). Note that the frequency
x-axis follows a logarithmic scale. Inspired from
Speaks (1999).. 439

Fig. 14.5 Transfer function of preemphasis filter. The figure shows
the Bode plot of the transfer function of preemphasis filters
with values of α varying between 0 and 1. 441

Fig. 14.6 Example of a preemphasis filter. Graphical display of
the seewave function preemphasis() showing
side-by-side the spectrogram of the filtered signal, here

List of Figures xliii

hello, and the frequency response of the filter along a
linear amplitude scale . 442

Fig. 14.7 Effect of varying the α time constant of the
preemphasis filter. The mean spectra of the
original signal (α = 0) and filtered signals
(α = {0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0})
using the seewave function preemphasis are
plotted on the same graph. This illustrates how much
high-frequency content is enhanced depending on the value
of α. Mean spectra parameters: Hanning window, 1024
samples, 87.5% of overlap, no zero-padding.. 443

Fig. 14.8 Transfer function of comb filter. The top graphic shows the
transfer function H of five comb filters differing in α but
not in K (K = 0.001). The sharpness of the peak increases
with α. The bottom graphic shows the transfer function
H of four comb filters differing in K but not in α. The
number and position of peaks changes with K . 444

Fig. 14.9 Example of a comb filter. Graphical display of the
seewave function comb showing side-by-side the
spectrogram of the filtered signal, here hello, and the
frequency response of the filter along a linear amplitude scale . . . 445

Fig. 14.10 Transfer function of Butterworth filter. The figure shows
the Bode plot of the transfer function of a 100 Hz
high-pass, a 1000 Hz low-pass, a 100–1000Hz band-pass,
and a 100–1000 Hz band-stop of a 1–5th Butterworth
filter. The vertical black dashed-line show the cutoff
frequency(ies) and the gray grid underlines the −20 dB
roll-off per decade .. 446

Fig. 14.11 Filter through wave smoothing with smoothw(). The
original femo recording (left) is passed through a wave
smoothing a first time (middle) and a second time (right). 450

Fig. 14.12 Filter through wave smoothing with rmnoise(). The
original femo recording (left) is passed through a cubic
smoothing spline with a smoothing parameter spar=0.4
(middle) and spar=0.6 (right) . 451

Fig. 14.13 Principle of DFT filter. A DFT filter is based on a return
travel between the time and frequency domains: the
frequency signal spectrum F [n] of the original signal s[n]
is multiplied by the transfer function of the filter H [n],
here a low-pass filter, and the filtered signal is obtained
through the inverse Fourier transform. Each function is
made of n samples. 452

Fig. 14.14 Example of STDFT filter. Two examples of DFT filter
based on the function istft(). The second harmonic
of the first harmonic of the fourth note of femo was

xliv List of Figures

removed with a band-stop filter (top) or selected with
band-pass filter (bottom). The red square was added using
the low-level plot function rect() . 454

Fig. 14.15 Principle of FIR filter. A FIR filter is based on a
convolution (∗ sign) between the original signal s[n] and
the transfer function of the filter H [n] expressed in the
time domain. This latter can be obtained from the transfer
function in the frequency domain using the inverse of the
Fourier transform (IDFT) . 456

Fig. 14.16 Mean frequency spectrum of toad. The recording not
only includes vocalizations produced by a male of Alytes
obstetricans but also wind and nocturnal insect stridulations 457

Fig. 14.17 Oscillogram of toad before and after FIR filtration.
The oscillogram of toad, a recording including three
vocalizations of Alytes obstetricans, wind, and stridulation
of nocturnal insects, is shown before (top) and after
filtration (bottom) . 458

Fig. 14.18 Antialiasing FIR filter. The figure shows the original signal
peewit, the downsampled and distorted version without
any filter process, and the downsampled version with a
low-pass FIR filter . 460

Fig. 14.19 Band-pass frequency transfer functions. Five band-pass
transfer functions are displayed on a plot with linear
scales. These functions were built manually with basic
numeric vectors or with the help of the functions
squarefilter() and drawfilter() . 461

Fig. 14.20 Correction FIR filter for a loudspeaker. Plot of the
frequency filter of the original noise (input) given to the
loudspeaker, of the noise as recorded after being broadcast
by the loudspeaker, and of the noise corrected by the FIR
filter . 464

Fig. 15.1 Changing the amplitude envelope with setenv().
The amplitude envelope of tico was applied to
tuningfork. Fourier window size = 512 samples,
overlap = 0%, Hanning window . 466

Fig. 15.2 Changing the amplitude envelope with drawenv(). The
amplitude envelope of tico was modified graphically
using the mouse cursor . 467

Fig. 15.3 Amplitude filter with afilter(). The original femo
recording (left) was passed through an amplitude filter with
a threshold of 3% (middle) and 5% (right). Fourier window
size = 512 samples, overlap = 0%, Hanning windows. 469

Fig. 15.4 Use of afilter() on dominant frequency tracking.
The graphic shows the results of tracking the dominant

List of Figures xlv

frequency of femo after having filtered the sound using
afilter() with different settings. 470

Fig. 15.5 Modifications using the ISTDFT. Four examples of sound
modifications on femo based on the function istft().
The second harmonic of the first harmonic of the fourth
note was amplified (top-left), reversed in frequency
(top-right), replaced by a pure tone (bottom-left), and
replaced by noise (bottom-right). Fourier window size =
512 samples, overlap = 0%, Hanning windows 471

Fig. 15.6 Linear frequency shift using the ISTDFT. The song of
orni was shifted toward low or high frequencies with
the function lfs() that uses the ISTDFT in background.
Fourier window size = 512 samples, overlap = 0%,
Hanning window . 475

Fig. 15.7 Modifications using the Hilbert transform. Three examples
of sound modifications on tico based on the function
synth2(). The frequency modulation was inverted
according to time (left), the frequencies were multiplied by
2 (middle), and the frequency modulation was replaced
by 4000 Hz pure tone (right). Fourier window size = 512
samples, overlap = 0%, Hanning window .. 477

Fig. 16.1 Recording the French Guiana tropical acoustic
communities. Twelve autonomous recorder SM2 of
the company Wildlife Acoustics© were settled in the
Nouragues reserve in French Guiana to record both
understory and canopy acoustic communities. For
each recorder, one microphone was installed at 1.5 m
(understory recording), and another one was set at a height
of 20 m (canopy recording). The hanging microphone on
the right of the picture is ready to be sent up to the canopy.
Picture by Jérôme Sueur and Amandine Gasc . 480

Fig. 16.2 Barplot of the values used by the acoustic diversity index
(ADI). The relative amplitude values of the frequency bins
used to compute ADI are plotted as a barplot. The values
were obtained with a maximum frequency of 22,050 Hz
and a frequency step of 500 Hz . 488

Fig. 16.3 Visualization of three β indices. Graphical output of
the function diffspec() (top), diffcumspec()
(middle), and ks.dist() (bottom) for the indices Df ,
Dcf , and DKS , respectively. In each case the mean spectra
of the two sounds night and day were provided to the
functions. The gray area or the segment indicates the
dissimilarity index .. 498

xlvi List of Figures

Fig. 16.4 Comparison between spectral dissimilarity index and
cumulative spectral dissimilarity index. The indices Df

and Dcf return different values for spectra of similar
shapes but with different frequency. The examples are here
for pure-tone theoretic sounds. The index Df returns the
same value in the two cases (probability mass functions
of two frequency spectra, top-left and top-right) when
Dcf returns expected low and high values (cumulated
probability mass functions of two frequency spectra,
bottom-left and bottom-right) .. 499

Fig. 16.5 Visualization of a β index matrix with a heatmap. The
dissimilarity matrix obtained with the cumulative spectral
difference Dcf index was plotted as a heatmap using the
function image(). The scale on the left was produced
by taking advantage of the function dBscale() used to
add a dB scale to a spectrogram. Gray lines were added
manually with abline(). 510

Fig. 16.6 Visualization of a β index matrix with a hierarchical cluster
analysis dendrogram. The dissimilarity matrix obtained
with the cumulative spectral difference Dcf was treated
with hierarchical cluster analysis, the result being plotted
as a dendrogram. The color rectangles show how to cut the
dendrogram in 2, 3, or 4 clusters . 512

Fig. 16.7 Visualization of a β index matrix with a db-RDA projection
according to hour. The β index matrix was treated with a
distance-based redundancy analysis, and the observations
were projected with s.class() in the space defined
by the two first axes of the ordination process. Each
observation is one factor level, i.e., there is a single
observation per factor level . 516

Fig. 16.8 Visualization of a β index matrix with a db-RDA
projection according to time periods. The β index matrix
was treated with a distance-based redundancy analysis,
and the observations were projected with s.class() in
the space defined by the two first axes of the ordination
process. Each observation is grouped according to a factor
with the three levels: morning, day, and night. Ellipses
would include 67.5% of the observations . 517

Fig. 16.9 Tuned visualization of the β index matrix with a db-RDA
projection according to time periods. This is another
version of the graphic displayed in Fig. 16.8 but tuned by
modifying some arguments of s.class(). In particular
the ellipses would here cover 95% of the observations 518

Fig. 16.10 Visualization of the db-RDA permutation test. The
histogram shows the distribution of the statistic obtained

List of Figures xlvii

by permutation when H0 is true. The statistic observed for
the data tested is depicted as a diamond placed on the top
of a segment. The p-value of the test is the probability to
obtain a statistic greater than the statistic observed, that is,
the surface of the histogram on the right of the diamond,
here p ≈ 0.0009 .. 519

Fig. 17.1 Cross-correlation principle. Cross-correlation mainly
consists in moving forward and backward a series along
another series and in computing a correlation coefficient at
each m lag step. In this graphic, the blue x series is moved
forward (m > 0) along the red series y (top) generating
a time series of the correlation coefficient rxy (bottom).
The correlation time series shows a peak for a lag of 0.1 s
indicating that the two series are shifted by 0.1 s. The
backward movement (m < 0) is not shown for a sake
of clarity . 522

Fig. 17.2 Waveform cross-correlation. The waveform of the second
and third notes of tico was cross-correlated with the base
function ccf(). The figure shows the oscillogram of the
two notes and the time series of the correlation coefficient
rxy(m), where m is the lag in s . 525

Fig. 17.3 Hilbert amplitude envelope cross-correlation. The Hilbert
amplitude envelopes of the second and third note of tico
were cross-correlated with the function corenv(). The
cross-correlation indicates a frequency shift, or offset,
of 0.014 s . 526

Fig. 17.4 Frequency spectrum cross-correlation. The mean frequency
spectra of the second and third note of tico were
cross-correlated with the function corspec(). The
cross-correlation indicates a frequency shift, or offset, of
0.26 kHz . 527

Fig. 17.5 STDFT cross-correlation of STDFT matrices. The STDFT
matrices of the second and third note of tico were
cross-correlated with the function covspectro(). The
cross-correlation indicates a time shift, or offset, of 0.02 s 528

Fig. 17.6 Frequency coherence. Frequency coherence between the
left and right channel of a recording achieved at tea time
in French Guiana. A value of 1 indicates a pure coherence.
Here the coherence is maximum between 10 and 15 kHz 530

Fig. 17.7 Continuous frequency coherence. The frequency coherence
is computed along time using ccoh(), a short-term
version of coh(). Here the function is applied between
the left and right channel of the a recording achieved at tea
time in French Guiana. 531

xlviii List of Figures

Fig. 17.8 Dynamic time warping on Hilbert amplitude envelope.
The smoothed Hilbert amplitude envelopes of note2
and note3 of tico are compared using dynamic time
warping alignment. Note that the envelopes here have
the same length (176 samples) but that their length could
differ. The dotted gray lines connect the samples that match
following the best alignment found by the algorithm.. 532

Fig. 17.9 Dynamic time warping on frequency spectra. The mean
frequency spectra of note2 and note3 of tico are
compared using dynamic time warping alignment. Note
that the frequency spectra have here the same length (256
bins) but that their length could differ. The dotted gray
lines connect the frequency bins that match following the
best alignment found by the algorithm . 533

Fig. 17.10 Dynamic time warping on dominant frequency tracking.
The dominant frequency of note2 and note3 of tico
was obtained with dfreq() and then compared using
dynamic time warping alignment. Note that the frequency
tracks have not the same length (11 and 14 measurements,
respectively). The dotted gray lines connect the dominant
frequency measurements that match following the best
alignment found by the algorithm . 534

Fig. 17.11 Automatic identification system workflow. An automatic
identification system can be divided into two major
components: a first phase of development where the system
is built and trained based on one or several templates,
one or several training datasets, and a second phase of
application on one or several test datasets. The plain arrows
indicate the basic way of the workflow, and the dashed
arrows indicate feedback to optimize the system. See text
for further details . 535

Fig. 17.12 Receiver operating characteristic (ROC). The false positive
rate (FPR) and the true positive rate (TPR) define the ROC
space. The plain curves indicate the ROC curves for an
efficient system (blue), a non-efficient system (red), and a
system returning random predictions (pink). Areas under
the curve (AUC) are colored accordingly and specified in
the legend . 537

Fig. 17.13 Visualization of manual annotations with viewSpec().
The 28 SOI of the Allobates_femoralis.wav
recording were delimited and overlaid on a spectrographic
display with viewSpec() . 541

Fig. 17.14 Cross-correlation with the package monitoR. The
time series of the correlation coefficient as stored in
the result of the function corMatch(). The function

List of Figures xlix

was applied between four templates and a training file
Allobates_femoralis.wav. Only the score for the
template t1 is here displayed.. 544

Fig. 17.15 Automatic detection with the package monitoR. The
two-panel figure obtained with plot() on an object
obtained with findPeaks() on the template 1. The top
panel is a spectrogram with detections indicated with red
rectangles. The bottom panel shows the time series of the
correlation coefficient, here named Score. In this case,
no selection (threshold θ = −0.1) was applied so that all
peaks were considered as positive or true detections 546

Fig. 17.16 ROC curve for Allobates femoralis vocalization
identification. The curve was built by varying the output
threshold θ from 0 to 1 by step of 0.01. The size of the
points is relative to θ . The point 67 was chosen as the best
output threshold θ with a good TPR and a null FPR 550

Fig. 17.17 Variation of the area under the curve (AUC) according to
time tolerance (τ). The AUC was computed for a series
of time tolerances between 0 and 0.2. The area reaches a
maximum when τ = 0.09 .. 552

Fig. 17.18 Automatic detection with the package monitoR: final
check. The final results of the automatic detection system
applied on the training dataset, here a single file containing
28 vocalizations of Allobates femoralis. The plot shows the
detections of all four templates. Only the sixth vocalization
is missed . 554

Fig. 18.1 Frequency spectrum of white and colored noises. The
noises were obtained with the function noise() of
tuneR. The frequency spectra were built calling spec()
with a log frequency x-axis and a dB y-axis . 557

Fig. 18.2 Synthesis of pulse waves. Four series of pulses were
generated with pulsew() of seewave and pulse() of
tuneR. The waveforms were plot with oscillo() 559

Fig. 18.3 Synthesis of square waves. Four series of squares were
generated with square() of tuneR. The waveforms
were plot with oscillo() . 561

Fig. 18.4 Synthesis of sawtooth waves. Four series of sawtooth were
generated with sawtooth() of tuneR. The waveforms
were plot with oscillo() . 562

Fig. 18.5 Frequency beating. Beating can arise when adding pure
tones closely related in frequency. The addition of two pure
tones with carrier frequencies of 50 and 55 Hz generates a
sound with an amplitude modulation of 5 Hz . 565

l List of Figures

Fig. 18.6 Constructive and destructive interference. The pure tones
s1 and s2 have a similar frequency of 3 Hz and are in phase,
whereas s1 and s3 have also a frequency of 3 Hz but are out
of phase that is an absolute phase shift of π rad. The sum
of s1 and s2 returns a reinforced sound due to constructive
interference. The sum of s1 and s3 leads to a null sound due
to destructive interference .. 566

Fig. 18.7 Synthesis of an harmonic series. This series leads to
a waveform with a square-like shape. The figure was
produced calling spectro() using the arguments tlim
and flim to zoom in time and frequency. Fourier window
size = 512 samples, overlap = 0%, Hanning window 569

Fig. 18.8 Synthesis of a sine wave with amplitude envelop changes.
A 440 Hz sine sound was synthesized using sine() and
multiplied with an amplitude envelope following a linear
(top), exponential (middle) and sinusoid (bottom) increase 570

Fig. 18.9 Synthesis of harmonic series. Four examples of use of the
argument harmonics of synth(). See text for details.
Fourier window size = 1024 samples, overlap = 0%,
Hanning window, frequency zooming between 0 and 5 kHz 572

Fig. 18.10 Synthesis of chirps. Linear, quadratic and logarithmic
chirps were synthesized with chirp() and visualized
with spectro(). Fourier window size = 1024 samples,
overlap = 87.5%, Hanning window . 575

Fig. 18.11 Modulation synthesis: parameters of synth(). The
arguments am and fm control the amplitude modulation
(AM) and frequency modulation (FM) parameters. Each
parameter is labeled according to the element position
in the argument. For instance, fm[2] indicates the
second element of the argument fm, that is, the frequency
deviation of the sinusoid FM. The sound used as an
example combines a sinusoid AM, a positive linear FM,
and a sinusoid FM. The sound was synthesized with
synth(f=44100, d=1, cf=5000, fm=c(2000,
10, 10000, pi/2), am=c(80, 5, pi/2)).
Fourier window size = 1024 samples, overlap = 87.5%,
Hanning window . 576

Fig. 18.12 Modulation synthesis full example with synth().
The sound was generated using most of the arguments
of synth(). The display was directly produced with
plot=TRUE. Fourier window size = 1024 samples,
overlap = 87.5%, Hanning window . 578

Fig. 18.13 Synthesis of an exponential chirp with harmonics.
The sound was generated using the arguments fm and

List of Figures li

harmonics of synth(). Fourier window size = 1024
samples, overlap = 87.5%, Hanning window .. 579

Fig. 18.14 Synthesis of a combination of exponential chirps. The
sound was generated using the argument fm of synth()
and the addition of two synthetic sounds. Fourier window
size = 512 samples, overlap = 0%, Hanning window 580

Fig. 18.15 Synthesis of AM waves. Four AM waves differing in the
depth (m) and frequency (fam) of the AM. These AM
waves are characterized by frequency sidebands. Fourier
window size = 512 samples, overlap = 0%, Hanning
window, dynamic range = 60 dB . 581

Fig. 18.16 Synthesis of FM waves. Four FM waves differing in their
modulation index β = Δfc ÷ ffm where Δfc is the carrier
frequency and (ffm) is the frequency of the FM. These FM
waves are characterized by complex frequency sidebands.
Fourier window size = 512 samples, overlap = 0%,
Hanning window . 583

Fig. 18.17 Synthetic sound based on a numeric vector. The sound was
generated using the handmade function numsound().
Fourier window size = 512 samples, overlap = 0%,
Hanning window . 586

Fig. 18.18 Synthesis of C major scale notes. Synthesis of the 12 notes
of the C major scale following Western music. Fourier
window size = 4096 samples, overlap = 87.5%, Hanning
window.. 588

Fig. 18.19 Frequency spectrum of a Shepard scale tone. The bands are
equally spaced along a log frequency scale . 591

Fig. 18.20 Synthesis of a Shepard scale. Six tones, or notes,
composed, ordered to create an illusion of endlessly
ascending pitch when repeated. Frequency zoom in
between 0 and 5 kHz. Fourier window size = 4096
samples, overlap = 87.5%, Hanning window .. 592

Fig. 18.21 Synthesis of a Risset glissando. Fourier window size
= 4096 samples, overlap = 87.5%, Hanning window,
dynamic range = 60 dB . 595

Fig. 18.22 Synthesis of the call of the tree cricket Oecanthus
pellucens. Original (left) and synthesis (right) of one
stridulation of the Italian tree cricket Oecanthus pellucens.
Fourier window size = 512 samples, overlap = 87.5%,
Hanning window . 596

Fig. 18.23 Synthesis of the call of the frog Eleutherodactylus
martinicensis. Original (left) and synthesis (right) of four
two-note vocalizations of the Martinique Robber frog
Eleutherodactylus martinicensis. Fourier window size =
512 samples, overlap = 0%, Hanning window . 597

lii List of Figures

Fig. 18.24 Synthetic sound with AM and FM following a normal
density function. The sound was generated using tonal
principle with the function synth2(). Fourier window
size = 1024 samples, overlap = 87.5%, Hanning window.. 600

Fig. 18.25 Tonal synthesis based on a pre-existing sound. The
pre-existing sound of peewit (left) was used to synthesize
a new sound (right) with several frequency bands of equal
energy. Fourier window size = 512 samples, overlap =
0%, Hanning window . 601

Fig. 18.26 Synthesis of a face-like sound. This smiling face was
synthesized using additive synthesis with synth() and
tonal synthesis synth2(). Fourier window size = 512
samples, overlap = 75%, Hanning window .. 603

Fig. 18.27 Synthesis of an English speaker vowels with phonTools.
The five vowels were synthesized with vowelsynth()
of the package phonTools. Fourier window size = 512
samples, overlap = 87.5%, Hanning window, dynamic
range = 60 dB . 606

Fig. 18.28 Synthesis of an English speaker vowels with
soundgen. The five vowels were synthesized with
generateBout(). Fourier window size = 512 samples,
overlap = 87.5%, Hanning window, dynamic range = 60 dB 607

Fig. 18.29 soundgen Shiny application. A web Shiny application
linked to the package soundgen . 608

List of Tables

Table 2.1 dB ratios . 14

Table 3.1 Type, mode, class and, dimensions of R objects 44
Table 3.2 R operators . 46
Table 3.3 Fundamental R arithmetic and statistic functions 49
Table 3.4 Import and export of R data . 61

Table 4.1 Equivalence between audio, phonTools, and tuneR
functions dedicated to sound import and export 101

Table 5.1 Time resolution of a sliding window . 132

Table 7.1 Main calibration arguments of PAMGuide() function 183

Table 8.1 Precision of manual time measurements on the orni sound 190
Table 8.2 Comparison of automatic time measurements on the orni

sound . 198

Table 9.1 The Fourier transformation family . 216
Table 9.2 Spectral-cepstral dictionary . 242

Table 10.1 Frequency and time resolution . 254

Table 11.1 Time and frequency resolution of the STFT . 317
Table 11.2 Correspondence between the main arguments of

spectrographic functions found in several packages 318
Table 11.3 Default values of the arguments of the seewave function

spectro() . 328

Table 14.1 Types of frequency filters: short description of the
frequency filters found in seewave, sorted by alphabetic
order . 439

Table 16.1 α acoustic indices: name, function, package, and main
literature reference . 483

liii

liv List of Tables

Table 16.2 β acoustic indices: name, function, package, and main
literature reference . 495

Table 17.1 Confusion matrix in automatic identification process 536

List of DIY Boxes

DIY 4.1 How to read a single channel of a stereo file. 92

DIY 5.1 How to draw your own oscillogram .. 114
DIY 5.2 How to highlight a part of an oscillogram with a different color . . 118
DIY 5.3 How to compute and draw the absolute amplitude envelope 126

DIY 6.1 How to apply mono conversion and to mix channels. 145
DIY 6.2 How to split a sound into several sound bouts . 147

DIY 7.1 How to estimate a distance of attenuation . 179

DIY 8.1 How to take manually time measurements on a group of
.wav files . 191

DIY 10.1 How to plot two frequency spectra with the ggplot2 style 262
DIY 10.2 How to code the piecewise aggregate approximation (PAA) 291
DIY 10.3 How to compute several spectral features on several sounds 298

DIY 11.1 How to change the position of the amplitude scale and
plot a spectrum on the side of the spectrogram .. 336

DIY 11.2 How to print in 3D a spectrogram .. 374

DIY 12.1 How to obtain MFCCs step by step . 390

DIY 13.1 How to plot the dominant frequency and fundamental
frequency tracks on a single spectrogram .. 407

DIY 13.2 How to derive the instantaneous frequency using
zero-crossing rate . 426

DIY 14.1 How to produce the Bode plot of a Butterworth low-pass
or high-pass filter . 447

DIY 15.1 How to generate a series of sounds with different linear
frequency shifts . 473

DIY 16.1 How to tune the visualization of a db-RDA projection 515

DIY 18.1 How to a generate a symmetric triangle wave . 563

lv

Chapter 1
Introduction

1.1 Sound as a Science Material

This book is dedicated to the analysis, and marginally to the synthesis, of sound
using the software R. The functions and scripts introduced in the next pages were
essentially designed to achieve scientific tasks—even if, interestingly, R appears to
be used as a tool for the arts as well.

Sound is the raw material of a long list of scientific disciplines from nano-
sciences to astronomy. Sound can be found indeed at the atom level with phonons
which are quanta of vibration (Gustafsson et al. 2014) or at the microscale level with
the detection of viruses with a microphone-like device (Cooper et al. 2001). The
sound of a vast quantity of animal species have been recorded and studied, from
the 2 mm aquatic bug Micronecta scholtzi (Sueur et al. 2011) to the about 25 m
blue whale Balaenoptera musculus (Mellinger and Clark 2003). Plants have also
drawn the attention of acousticians as plants might use sound for their own needs
(Gagliano et al. 2012) or the sound they produce incidentally might be exploited
for monitoring purposes (Felisberto et al. 2015). The analysis and use of sound
by human is obviously multiple and multi-scale as sound is almost everywhere, in
speech, music, engineering, industry, and medicine. Probably less known is the use
of sound at a large scale for the monitoring of earthquakes (Sylvander et al. 2007),
icequakes (Royer et al. 2015), or volcanic activity (Dziak et al. 2015). Sound does
not exist in the vacuum of space, but the feet sensors of the European Space Agency
Philae lander recorded vibrations when touching down the comet 67P/Churyumov-
Gerasimenko.1 Later, the European robot recorded the large-amplitude oscillations

Electronic supplementary material: The online version of this chapter
(doi:10.1007/978-3-319-77647-7_1) contains supplementary material, which is available to
authorized users.
1https://soundcloud.com/esa

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_1&domain=pdf
http://10.1007/978-3-319-77647-7_1
https://soundcloud.com/esa
https://doi.org/10.1007/978-3-319-77647-7_1

2 1 Introduction

of a magnetic field around the comet which could be translated into sound (Richter
et al. 2015).

The reason of the importance of sound in science is probably found in the
omnipresence of sound—signals and noises—in our everyday life. We each live in a
specific audio environment, or niche, made of speech, music, and artificial or natural
sounds. The content of this book is significantly biased by my own audio niche and
by my experience in science linked to bioacoustics and ecoacoustics. Bioacoustics
is a life science discipline that has been working on animal sound communication
for more than 70 years. Bioacoustics mainly aims at explaining the neurology and
mechanics of animal singing and hearing, at deciphering the nature and quantity of
the information shared between communicating individuals, and at the evolution
of animal sound through evolutionary time (Fletcher 1992). Ecoacoustics is a
more recent discipline which is currently building a bridge between acoustics and
ecology (Sueur and Farina 2015). Among others, ecoacoustics tackles ecology
questions related to the monitoring of animal populations, animal communities, and
landscapes.

The feedback I could receive from seewave users showed me that R could
be used in many other disciplines than bioacoustics and ecoacoustics. I learned
that R was part of studies related to noise assessment in the city, the detection
and prediction of Alzheimer diseases, emotion regulation, space shuttle vibrations,
animal monitoring through telemetry, brain speech processing in neurosciences,
neurophysiological activation during music listening, and in timber analysis in
musical acoustics.

1.2 Layout

The book is organized in 17 chapters and two appendices. The chapters were written
one after the other one so that their reading is probably more comfortable in a
sequential order. However, cross-references between chapters and sections should
help the navigation across pages. Here follows a short overview of each chapter:

Chapter 2 What Is Sound? is a short introduction to sound, without any reference
to R. This chapter can be skipped if the reader knows already the basis of acoustics.
Note that this introduction is extremely brief covering a tiny part of acoustics so
that readers might like to consult Speaks (1999), Hartmann (1998) and Larsen
and Wahlberg (2017) for theory, Rumsey and McCormick (2002) for recording
techniques, Fletcher (1992), Bradbury and Vehrencamp (1998), Hopp et al. (1998)
for animal acoustics, and Rossing (2007) for almost everything about acoustics.

Chapter 3 What Is R? is a welcome talk to R, without any reference to sound.
This chapter does not cover all topics of R, but it should contain enough information
to understand the R code included in the following chapters. The literature about
R has exploded in the last years: there are now hundreds of blogs and websites,
and dozens of books have been published in several languages. Quick-R (Kabacoff
2013) and the R cookbook (Teetor 2011) are excellent references to supplement this
short invitation to use R.

1.2 Layout 3

Chapter 4 Playing with Sound is a first contact with sound within R. The objective
of this section is to get familiar with sound-specific classes and to learn how to
import, to play, and to export sounds.

Chapter 5 Display of the Wave shows how to display sound in a time × amplitude
plot. It mainly describes how to produce an oscillogram and how to compute and
display an amplitude envelope. The important principle of a window sliding along
the sound used for smoothing or discretisation is also explained.

Chapter 6 Edition shows how R can be used for sound manipulations, such as
resampling, channels management, time edition, or amplitude changes. However,
note that these changes are in most cases operated without graphical control so that
other software could be preferred for full visual sound edition, such as the free and
multi-platform solution Audacity.2

Chapter 7 Amplitude Parametrization lists the options to assess the amplitude
features of a sound. This, in particular, includes details about signal-to-noise ratio,
dB scales, and calibration.

Chapter 8 Time-Amplitude Parametrization reviews the techniques than can be
invoked to take time measurements, that is, basically signal and pause duration,
either through a manual process or with the help of an automatic process. Because
time variations are tidily linked to amplitude variations, the chapter also describes
how to assess amplitude modulations properties through a Fourier analysis.

Chapter 9 Introduction to Frequency Analysis: The Fourier Transformation is a
modest introduction to the theory of the Fourier transformation that connects the
time and frequency domains. The different transforms are quickly presented so that
the next chapters can be read. Each equation is supported with raw R code to show
that the Fourier transformation and its derivatives can be easily obtained. Much
more details about Fourier mathematics can be found in Hartmann (1998) and Das
(2012).

Chapter 10 Frequency, Quefrency, and Phase in Practice is a direct application
of the preceding chapter as it mainly consists in explaining how to obtain,
display, and describe the frequency spectrum of the Fourier transformation. The
chapter also goes through the quefrency cepstrum and phase portrait. These sound
transformation and visualization processes can be used to describe sound in the
frequency domain, for instance, to estimate the dominant, the fundamental, and the
harmonic frequency bands.

Chapter 11 Spectrographic Visualization is fully dedicated to the visualization
of sound through the short-time discrete Fourier transform. The chapter details
the different options to obtain, tune, and print a spectrogram, including a 2D
spectrogram, a 3D spectrogram, and a waterfall display. The realization of a mean
spectrum and a soundscape spectrum, which are computed on the short-time Fourier
transform, is also introduced.

Chapter 12 Mel-Frequency Cepstral and Linear Predictive Coefficients deals
with two features, mel frequency cepstral coefficients and linear predictive coef-

2http://www.audacityteam.org/

http://www.audacityteam.org/

4 1 Introduction

ficients that are mainly used in speech analysis. The first coefficients operate a sort
of data compression when the second is used to separate the source from the filter of
speech production. A thorough review of speech analysis can be found in Quatieri
(2002).

Chapter 13 Frequency and Energy Tracking shows how to follow the time
variation of particular frequency bands, such as the dominant frequency, the
fundamental frequency, or the speech formants. This chapter also refers to the
Hilbert analytic signal and the zero-crossing method that can be used to estimate
the instantaneous frequency.

Chapter 14 Frequency Filters indicates how to apply frequency filters to remove
unwanted sounds. The chapter covers filters with predefined frequency transfer
functions, as the preemphasis and Butterworth filters, and filters which cut off
frequencies can be defined by the user as FIR filters.

Chapter 15 Other Modifications adds options for modifying sound not only in
the frequency domain but also in the time and amplitude domains. Solutions are, for
instance, given to add echoes, to change the frequency content without altering the
time content, or to change the time × frequency features of a sound section.

Chapter 16 Indices for Ecoacoustics is a chapter for those who are interested
in the acoustic indices developed for ecoacoustics. The main α and β indices
are reviewed one by one, and statistic solutions are provided to treat dissimilarity
matrices built with β indices.

Chapter 17 Comparison and Automatic Detection is dedicated to the methods that
compare two sounds. Cross-correlation of amplitude envelopes, frequency spectra,
and spectrograms are evoked together with the computation of the frequency coher-
ence. The dynamic time warping technique, which seeks for the best alignments
of time series of unequal length, is also covered. Finally, the main functions of
the package monitoR are arranged in a recipe so that a supervised automatic
identification can be proceed.

Chapter 18 Synthesis quits the domain of sound analysis to get into sound
synthesis. Sound synthesis in R is not highly developed, and sound designers might
be a bit frustrated by the options currently offered. Nonetheless, the chapter shows
that it is possible to generate de novo different types of noises, pulses, square signals,
sawtooth signals, triangle signals, pure tones, chirps, harmonics sounds, amplitude,
and/or frequency-modulated sounds. Associated with edition functions seen in
Chap. 6, the additive and modulation synthesis functions of R are undoubtedly useful
to forge animal vocalizations, musical instrument notes, and human voice.

Appendix A List of R Functions contains a table of the functions cited in the
book. The functions are grouped by themes, and a reference to related chapter is
provided.

Appendix B Sound Samples lists the sounds used as examples. The sounds are
stored in a directory named sample that can be downloaded as supplementary
material at the following address: https://doi.org/10.1007/978-3-319-77647-7_1.

https://doi.org/10.1007/978-3-319-77647-7_1

1.3 Convention for Notation and Code 5

1.3 Convention for Notation and Code

Notations for continuous and discrete mathematical objects differ. Continuous
objects are written with brackets. For instance, a time series will be written x(t).
Discrete objects, that is, objects that are made of separated values or samples, are
written with square brackets or with subscripts. Discrete objects are defined with an
index, either i or n. A time series could be then written x[i] or xi (x[n] or xn).

Operations follow similar rules. For instance, the sum is written in its continuous
form following:

S =
∫ ∞

−∞
x(t)

and its discrete form as:

n∑
i=1

xi =
n∑

i=1

x[i]

or with an index n:

N∑
n=1

xn =
N∑

n=1

x[n]

A derivative according to time will be written in its continuous form according
to:

ẋ(t) = ∂x

∂t

and in its discrete form as:

x = x[i + 1] − x[i] = xi+1 − xi

or with an index n:

x = x[n + 1] − x[n] = xn+1 − xn

By convention R code is formatted following. Note that the prompt sign > has
been intentionally removed to facilitate copying and pasting code:

input code
output (results)

6 1 Introduction

Pseudo-code and terminal commands (shell) are formatted following:

peudo-code
or
shell command

In text, R functions are referred with parentheses with a type writer style
following foo(). Packages, objects, arguments, and attributes are also written with
typewriter style as in MASS, wave, or plot. Character strings are double quoted
as "hello moon"

Boxes tagged with the acronym DIY3 detail how the reader could have written
already existing functions or could develop new tasks by himself/herself.

1.4 Book Compilation

The book was generated using free and open-source tools only published under the
GNU licence. The manuscript was built with knitr (Xie 2013), an R package that
allows to interlace instructions written in R and in the typesetting system LATEX.4

The manuscript was written with the text editor emacs5 working with the modes
ESS6 and AucTeX.7 The literature references were managed with BibTeX.8 All
illustration, except one handmade drawing, a few diagrams, and the photographies,
was generated with R without any image post-processing.

The book was compiled on January 10, 2018 with R version 3.4.3 Kite-Eating
Tree so that any changes appearing in the packages after this date and this version
may affect the repeatability of the codes provided.

3Do it yourself!
4http://www.latex-project.org/
5http://www.gnu.org/software/emacs/
6http://ess.r-project.org/
7http://www.gnu.org/software/auctex/
8http://www.bibtex.org/

http://www.latex-project.org/
http://www.gnu.org/software/emacs/
http://ess.r-project.org/
http://www.gnu.org/software/auctex/
http://www.bibtex.org/

Chapter 2
What Is Sound?

2.1 A Debate Under a Dangerous Tree

Starting with a definition is never straightforward, and the easiest solution is
probably to open a dictionary, or to be even more lazy, to visit an online dictionary,
in order to check what official linguists say. If we consult the entry “sound” of the
Oxford Dictionary,1 we find a definition referring indirectly to the main three steps
of information theory, that is, emission, propagation and reception of sound (see
Sect. 2.5). Oxford Dictionary says:

vibrations that travel through the air or another medium and can be heard when they reach
a person’s or animal’s ear.

But would this definition be unclear if we would remove the last part dedicated
to hearing? Oxford Dictionary makes also the distinction between a person and an
animal, a discrimination that is difficult to admit when working with evolution—but
this is another matter of discussion.

For Collins Dictionary2 it seems that there is no need to refer to hearing as for
Collins dictionary sound is:

a periodic disturbance in the pressure or density of a fluid or in the elastic strain of a solid,
produced by a vibrating object. It has a velocity in air at sea level at 0◦C of 331 metres per
second (741 miles per hour) and travels as longitudinal waves.

Collins definition is therefore close to the definition to be found in a physics
textbook when Oxford definition focuses on perception. In other terms, these two
dictionaries answer differently to the question debated for a long time, and that is
difficult to avoid here, regarding the reality of sound:

If a tree falls in a forest and no one is around to hear it, does it make a sound?

1http://www.oxforddictionaries.com/
2http://www.collinsdictionary.com/

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_2&domain=pdf
http://www.oxforddictionaries.com/
http://www.collinsdictionary.com/
https://doi.org/10.1007/978-3-319-77647-7_2

8 2 What Is Sound?

Collins answers no very clearly, Oxford answers yes by omission.
The falling tree sound question opens essential thoughts in metaphysics, but

we will introduce sound mainly in terms of physics, statistics, and electronics,
neglecting philosophical questions. We will also refer to sound as a solution to
transfer information between animals including human mammals.

A falling tree in a forest does not produce a single sound but rather a complex
mix of frightening sounds that may be very difficult to describe either literally or
mathematically. It is probably easier to start with a simple sound like the pure
musical tone emanating from an A-flat tuning fork used to tune a guitar. A tuning
fork is a two-pronged metal fork that vibrates at a specific resonating frequency,
here generating a A-flat musical note. The tuning fork is a sound source. When
stroked, each tine oscillates symmetrically in the plane of the fork inducing air
particle, that was in an equilibrium state, to move. The oscillations of the tuning
fork are transduced into air oscillations. The oscillation of air particles induces
cyclic compressions and rarefactions of air. These variations of air particle motion
and air pressure are in essence sound (Fig. 2.1). The air is the medium where sound
propagates. No air, no sound. However, the tuning fork can be also plunged into the
water or can be in contact with a wooden box. The tuning fork will make the water
or the wood vibrate and, therefore, produce sound. Any gas, liquid, or solid can be
a medium for sound, but sound properties will differ significantly depending on the
medium.

If we now place an elastic membrane maintained within a rigid frame at a certain
distance from the tuning work, the membrane will move sympathetically with air
and vibrate at the same rate as the tuning fork. This simple membrane is a receiver;

tuning fork
(sound source)

(_
_

elastic membrane
(receiver)

air
(medium)

λ

c r c

x

y

Fig. 2.1 Sound emanating from a tuning fork. The two tuning fork hinges are represented from
above with two blue squares. Their vibrations generate a sound that propagates as a longitudinal
wave in air. Sound is represented along a single direction with an alternation of air rarefaction (r)
and compression (c) with a wavelength λ. A simple framed elastic membrane at a fixed position
in the (x, y) space vibrates sympathetically with sound. This is an oversimplified representation of
sound propagation around a tuning fork; see Russell et al. (2013) and Russell (2000) for a complete
description

2.2 Sound as a Mechanical Wave 9

it transduces air vibrations into solid vibrations. Such a simple receiver is actually
the main first step of animal hearing and microphone systems.

Sound radiation around a tuning fork is actually more complex (Russell et al.
2013; Russell 2000), but the essential is here. To have sound, we need a source, a
medium, and, optionally, a receiver.

2.2 Sound as a Mechanical Wave

2.2.1 Air Particle Motion

When a sound is produced in air by a driven tuning fork, air particles move.
This motion is an oscillation around a resting position, something similar to the
oscillations of a pendulum oscillation around a position of equilibrium. Particles do
not travel; they just move around their initial position. There are three main derived
quantities to describe air particle motion:

1. Displacement (x): this is the distance in meters a particle moves away from its
resting position.

2. Velocity (v): this is the amount of displacement (x) per unit time (t) or the
time rate of displacement. Velocity includes both magnitude and direction of the
displacement. Velocity is the first derivative of x with respect to t , expressed, for
instance, in m s−1:

v(t) = δx

δt

3. Acceleration (a): this is the change of velocity (v) per unit time (t) or the time
rate of speed. Acceleration is the first derivative of v with respect to t and the
second derivative of x with respect to t , expressed, for instance, in m s−2:

a(t) = δv

δt
= δ2x

δt2

These derived quantities do not vary in phase: when displacement is maximum,
velocity is null, and acceleration is minimum (i.e., deceleration is maximum). In
other words, there is a +π ÷ 2 rad or +90◦ phase shift between displacement and
velocity and +π rad or +180◦ phase shift between displacement and acceleration.
However, it is important to note that these phase shifts are true only in the near-field
of the source. In the far-field, the pressure and the particle velocity vary in phase.
The transition between the near- and far-field occurs at a specific distance, known
as the Fraunhofer distance, r = 0.16 × λ, where λ is the wavelength of the sound
(see Sect. 2.2.2 for a definition of wavelength).

10 2 What Is Sound?

These derived quantities are rarely considered, but they explain air pressure, one
of the most important quantities used in acoustics.

2.2.2 Air Pressure Variation

Force (F) is a quantity that we refer almost every day but that we may not understand
so well. We apply a force on a static object when we try to change its position
by pushing or pulling it. For instance, we apply a positive force on a door when
opening it and a negative force when closing it. Pushing or pulling a door is a way
to change the velocity (v) of the door in respect to time. We saw that a change of
velocity with time is the derived quantity acceleration (a). It is also quite intuitive to
understand that a metallic door will be more difficult to open than a wood door: the
force depends on the mass (m) of the door. Hence, a force F results of the product
between mass and acceleration as given by the Newton’s second law of motion:

F = m × a

with F in newtons (N).
For sound, the force of one moving particle on another depends on particle

acceleration and particle mass. However, we almost never measure this tiny force
but the sum of many particle forces acting perpendicularly on a surface, like on the
small elastic membrane we placed away from the vibrating tuning fork. This sum is
the pressure (p), and sound is usually described by the pressure variations that occur
in the medium. A pressure is simply the amount of force per unit area (S) obtained
by computing the following ratio:

p = F

S

with p in newtons per square meters (N m−2) or Pascals (Pa)
This means that a force F applied on a small area will generate a greater pressure

than when applied on a large area.
Knowing that F is the product of mass and acceleration and that acceleration is

the second derivative of displacement with respect to time, the pressure can also be
written with respect to displacement:

p = m

S
× δ2x

δt2

This means that pressure does not vary in phase with displacement but in phase
with acceleration, i.e., with a phase shift of +π rad or +180◦ with displacement.

Air pressure at sea level is p0 = 1.1013 × 105 Pa. A sound will then change p0
to lower and higher values. These changes are in the range of 10−3 and 10 Pa.

2.2 Sound as a Mechanical Wave 11

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

a

T

λ

ϕ

Distance (m)
c r c

0 t

−

p0

+

d1 d2

Fig. 2.2 Sound pressure (p) and amplitude variations. The sound was recorded at time t = 0 and
at distance d1 from the source with a −π ÷ 4 rad or −45◦phase shift ϕ. The bottom x-axis shows
the time t in seconds, the top x-axis shows the distance in meter and the y-axis is the instantaneous
pressure p in Pascal. In this ideal case, air pressure oscillates cyclically as a sinusoidal function
around p0. The gray rectangle delimits one cycle. In the time domain, the interval between two
compression peaks is the period (T). In the space dimension, the distance between two compression
peaks is the wavelength (λ). The red vertical bars on the top x-axis represent the density of air
particles. Low and high air particle density corresponds to air rarefaction (r) and compression (c),
respectively

Sound can be considered as a longitudinal pressure wave (or transversal pressure
wave in solids) (Fig. 2.2). We saw that air particles do not travel, but the pressure
wave does. The wave starts at the surface of the source and propagates through the
medium. The distance between two maximal compressions is the wavelength (λ).

The small membrane that has a fixed position in the space will receive a
succession of sound waves as long as the tuning fork vibrates. This means that the
membrane will be pushed forward when the air will be compressed (high pressure)
and pulled backward when the air will be rarefied (low pressure). If we measure the
displacement of the membrane around its resting position, we will observe a cyclic
displacement repeated 440 times per second corresponding to the pitch of an A-flat
musical note.

As the membrane displacement is related to air pressure, it can be used to
measure air pressure fluctuations. This is how sound is the most often visualized.
We will now see how to describe this wave.

Sound can be described in two reference frames. The first reference frame is
made of two dimensions (t, a), time and amplitude. This reference frame is used
when the sound is observed—recorded—at a fixed position in the space. This is
the case of the small membrane recording the tuning fork. In this case, the main
parameters are the time, or duration, (t), the instantaneous amplitude (a), and the
cycle period (T) which is the time taken by the wave to return to its initial state and
to complete a cycle.

12 2 What Is Sound?

The second reference frame is more complex as it is made of five dimensions
(x, y, z, t, a), with (x, y, z) a three-dimensional frame defining space, t time, and
a amplitude. This reference frame is often used to map sound propagation in the
medium. The distance between peaks of pressure or amplitude in this reference
frame is the wavelength (λ). This wavelength depends on the period (T) and sound
celerity (c), following:

λ = c × T = c

f

with λ in m. Sound celerity greatly varies from one medium to another one and with
medium properties. Celerity of a 1000 Hz sound is 337 m s−1 in air and 1447 m s−1

in freshwater at 10 ◦C.
The A-flat tuning fork produces at 20 ◦C a sound with wavelength of 0.777 m.
It is important not to mistake wavelength (λ) for particle displacement (x) and

particle velocity (v) for sound celerity (c), respectively.
To better visualize sound, wonderful animations are available at the websites of

Daniel Russell (Pennsylvania State University, USA)3 and of the Institute of Sound
and Vibration Research (University of Southampton, UK).4

2.2.3 Amplitude

The amplitude can be measured in four different main ways (Fig. 2.3):

1. Instantaneous amplitude (a): amplitude measured at a time t ,
2. Maximum amplitude (A): the maximum of the absolute value of the amplitude,
3. Peak-to-peak amplitude (pk-pk): the range of amplitude between the minimum

and maximum values,
4. Root-mean-square amplitude (rms, RMS): the root-mean-square or quadratic

mean is the square root of the mean of the squares. In other words, the sound
wave is first squared, then the mean of the squared values is computed, and finally
the square root of this mean is computed:

rms =
√√√√1

n
×

n∑
i=1

xi
2

The rms is commonly used as it provides an estimation of the amplitude average.

3http://www.acs.psu.edu/drussell/demos.html
4http://resource.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-basics.htm, accessed on
2017-02-06.

http://www.acs.psu.edu/drussell/demos.html
http://resource.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-basics.htm

2.2 Sound as a Mechanical Wave 13

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

l instantaneous

l
maximum

rms

peak−to−peak

0 t

−

p0

+

Fig. 2.3 Amplitude (A). The three main amplitude quantities of a sound: the instantaneous, the
maximum, the peak-to-peak, and the average (root-mean-square, rms) amplitude

Sounds transfer energy to the medium. The amount of energy carried by the
sound wave per unit time is the sound power. Power is therefore obtained by:

P = E

t

with E the energy in Joule and t time in seconds and P in J s−1 or Watts (W).
However, it is almost impossible to measure sound power at every point in space;

it is therefore more convenient and usual to measure power only at the location
of the receiver, here the small vibrating membrane. This leads to the definition of
sound intensity (I) that is sound power that interacts with the area (S) of the receiver
perpendicular to sound:

I = P

S

with I in W m−2.
Displacement, pressure, energy, power, and intensity measure amplitude varia-

tions varying along an absolute scale. However, sound amplitude is often expressed
along a relative scale. A relative scale is a scale built in reference to one or more
specific values. For instance, the Celsius degree used to measure temperature is
a relative scale with two references: 0 ◦C for water freezing point and 100 ◦C for
water boiling point.

The sound pressure that can be received by a human ear extends from 2×10−5 Pa
to about 200 Pa covering a range of 2 × 108 Pa. This hearing range is so large that

14 2 What Is Sound?

it was thought that a logarithm scale would be more adapted to measure sound
amplitude, in particular sound pressure. The logarithm function to the base 10 has
the main properties to enhance low values and to reduce high values, compressing
the dynamic range of data. Combining relative measure and logarithm to the base
10, a relative unit, named Bel (B) after the name of Alexander Graham Bell, was
coined by computing a ratio between an observed value x and a reference value
xref :

B = log10

(
x

xref

)

A deciBel or dB is ten times a B:

dB = 10 × log10

(
x1

x2

)

Applying this expression to sound pressure, we can define sound pressure level
(SPL) in dB as:

SPL = 20 × log10

(
p1

p2

)

If the pressure of the first sound p1 is twice higher than the pressure of the second
sound (p2), we then have a ≈6 dB ratio between the two sounds:

dB = 20 × log10

(
2

1

)

= 6.02

Table 2.1 provides some usual dB ratios, and Fig. 2.4 shows the dB function with
respect to the linear ratio of two pressures.

However, such a measure is relative and difficult to use in most cases. It is better
to refer to a reference pressure pref to obtain values that can be compared across

Table 2.1 dB ratios dB Linear ratio

0 1

+3
√

2

+6 2

+20 10

+40 100

+60 1000

Equivalent between
dB and linear multi-
plication ratios

2.2 Sound as a Mechanical Wave 15

0 200 400 600 800 1000

0

10

20

30

40

50

60

Pressure ratio

dB

+ 6
× 2

0.0 0.5 1.0 1.5 2.0

0

20

40

60

80

100

Pressure (Pa)

dB
 S

PL

l

l

l

l

l

l

l

l

l

l

l

l

(1e−05 , −10)
(2e−05 , 0)
(6e−05 , 10)
(2e−04 , 20)
(0.00063 , 30)
(0.002 , 40)
(0.00632 , 50)
(0.02 , 60)

(0.06325 , 70)
(0.2 , 80) (0.63246 , 90)

(2 , 100)

Fig. 2.4 dB scale. Top: relation between the ratio of two pressures and the corresponding dB
value. Doubling the pressure is equivalent to an addition of 6 dB. Bottom: from pressure in Pa to
sound pressure level (SPL) in dB. Values are given for every 10 dB

studies. We can then adapt the formula following:

SPL = 20 × log10

(
p

pref

)

For sound in air, the reference pressure is pref = 2 × 10−5 Pa corresponding to
the human hearing threshold at 1000 Hz. In water, the reference is pref = 10−6 Pa.
The reference pressure can change; it is thus absolutely necessary to specify it with
the distance of measure when reporting SPL values. For instance, we should say “a
440 Hz tuning fork produces a sound with a pressure level of 60 dB re 2 × 10−5 Pa
at a distance of 1 m” and not only “a 440 Hz tuning fork produces a sound with a
pressure level of 60 dB.” SPL is not an easy scale as it is based on a ratio and on
a logarithmic function. The most important thing to remember is that the scale is
not linear and that doubling the pressure anywhere along the pressure scale always
results in adding +6 dB (Fig. 2.4).

16 2 What Is Sound?

In the same way, the intensity can be expressed along a dB level scale leading to
sound intensity level (SIL). Intensity is linearly proportional to pressure following
the relation:

I = p2

Z

= p2

ρc

with Z the acoustic impedance of the medium that is obtained by multiplying the
volumetric mass density (ρ) by sound celerity (c). The acoustic impedance is a
concept that allows to measure the resistance of the medium to sound propagation.
A high impedance indicates that sound will be highly damped. Knowing this, we
can write a relation between sound pressure level and sound intensity level:

SPL = 20 × log10

(
p

pref

)

= 20 × log10

(
IZ

Iref Z

) 1
2

= 10 × log10

(
I

Iref

)

= SIL

with Iref = 10−12 W m−2 in air, and Iref = 6.7 · 10−19 W m−2 in water.
This means that SPL and SIL measure the same quantity. They are equivalent.
There is also another sound level measure, less commonly used, that estimates

the level of particle velocity level or sound velocity level (SVL):

SVL = 20 × log10

(
v

vref

)

with vref = 5 × 10−8 m s−1 for air.
The dB is a logarithm unit that follows specific arithmetic laws making it difficult

to compute a mean, a standard deviation, or any statistical parameter. It is therefore
often necessary to convert back dB values to linear values. Absolute sound pressure
p, sound intensity I , and particle velocity v can be recovered from a dB value by
applying the following equations:

p = pref × 10
SPL
20

I = Iref × 10
SIL
10

v = vref × 10
SVL
20

2.2 Sound as a Mechanical Wave 17

For instance, a 60 dB value corresponds to:

p = 2 × 10−5 × 10
60
20

= 0.02 Pa

I = 10−12 × 10
60
10

= 10−6 W m−2

v = 5 × 10−8 × 10
60
20

= 5 × 10−5 m s−1

The dB is a unit based on human hearing threshold, but it is not totally adapted
to human frequency sensitivity. The human ear does not perceive frequency in a
linear way: a sound produced at 1000 Hz at 80 dB SPL will appear louder than a
440 Hz sound produced at exactly the same level. A solution to take into account
this nonlinearity is to apply a weight to the dB in relation to frequency. There are
four main dB weightings named dB(A), dB(B), dB(C), and dB(D) which curves
slightly differ according to frequency (Fig. 2.5). These particular dB are commonly
used in sound level meters for noise measurement.

Sound energy, and therefore sound amplitude measured in dB, decreases when
sound propagates through the medium. Sound attenuation is due to three main
factors: (1) spreading losses, (2) medium absorption (heat conduction, shear
viscosity, molecular relaxation losses), and (3) scattering (reflection, refraction,
diffraction, and absorption of the wave due to impedance changes in the medium).

10 50 100 500 1000 5000

−80

−60

−40

−20

0

20

Frequency (Hz)

dB

A

B

D

C

Fig. 2.5 dB weighting curves. The weightings curves of dB(A), dB(B), dB(C), and dB(D)
according to frequency. The code used to produce this figure is given in Sect. 7.2.2

18 2 What Is Sound?

Medium absorption and scattering are rather difficult to modelize as they depend on
several parameters such as frequency, humidity, temperature, and pressure and by
the physical properties of the obstacles generating scattering. Spreading losses are
more easy to predict in particular in the case of a spherical sound source propagating
through a free and unbounded medium. In these conditions, the intensity I at a
distance d from the source of power P is given by:

I = P

4πd2

This equation is obtained as the surface area of the sound sphere has an area of
4πd2. This means that the intensity decreases with the inverse square of the distance
from the source; this is known as the inverse square law.

If the intensity of a spherical sound can be measured at a certain distance, we
can refer to a reference intensity Iref and a reference distance dref . This measure,
obtained, for instance, with a sound level meter, can be used to predict what would
be the intensity I further away, at a distance d from the source. We have:

Iref = P

4πd2
ref

such that the ratio of the intensities is:

I

Iref

=
(

dref

d

)2

giving:

I = Iref ×
(

dref

d

)2

that can also be written:

I = Iref

D2

with

D = d

dref

.

2.2 Sound as a Mechanical Wave 19

0 2 4 6 8 10

−20

−15

−10

−5

0

Distance (m)

dB

EA

Spreading losses (model)

Measurements

−
6

dB
d × 2

Fig. 2.6 Sound attenuation for a spherical source. Curves of dB attenuation with distance due to
spreading losses in a free and unbounded medium (model) and of what could be measured in the
medium (measurements). The difference between the two curves due to medium absorption and
scattering is named excess of attenuation (EA). The measurement curve is here still idealized as
scattering effects will produce an irregular curve

If the intensity is expressed as a sound intensity level, the equation becomes:

SIL = 10 × log10

(
Iref

D2

)

= 10 × log10(Iref) − 20 × log10(D)

= SILref − 20 × log10

(
d

dref

)

This equation stands as well for sound pressure as we have seen above that SIL
and SPL level are equivalent. This equation tells us that when doubling the distance
between a reference and a measure, that is when D = 2 the attenuation is ≈−6 dB
as:

−20 × log10(2) = −6.0206

Figure 2.6 is a graphical display of this spreading losses model. The residuals
between the observed values obtained with direct measures achieved in the medium
and the values expected by the model are known as the excess of attenuation (EA)
and are due to medium absorption and scattering.

20 2 What Is Sound?

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

|ϕ| =
π

4
 rad = 45°

0 t

−

p0

+

Fig. 2.7 Phase (ϕ). Two sounds with similar amplitude and frequency but different phase. There
is a π ÷ 4 rad or 45◦ shift between the two waves

2.2.4 Phase

The phase (ϕ) is the horizontal translation of a cyclic function with respect to time.
For a sine sound, phase is therefore a temporal translation of sin(t) with respect to
t . Two sine sounds with different phases will not start with the same instantaneous
amplitude. For instance, a sound with a phase ϕ = 0 starts with an instantaneous
amplitude at=0 = sin(0) = 0 when a similar sound with a phase ϕ = π ÷ 4 rad =
45◦ starts with an instantaneous amplitude at=0 = sin(0+π÷4) = √

2÷2 � 0.707
(Fig. 2.7). The sign of the phase shift between two sounds depends on the sound used
as a reference. In Fig. 2.7, the blue wave is delayed with respect to the red wave; the
phase shift is negative. Respectively, the red wave is forward the blue one; the phase
shift is in that case positive. The absolute value of the phase shift, as indicated on
Fig. 2.7, does not indicate any phase direction but just phase shift magnitude. Phase
might appear not crucial; nonetheless it is actually one of the quantities that is used
by hearing systems to localize a sound source, and phase can be very important
when synthesizing a sound (see Sect. 18.4).

2.2.5 Duration

Sound duration is rather simple to understand: this is the time interval between the
start and end of a sound. Figure 2.8 shows two sine waves of different duration. The
duration is in that case easy to extract, but measuring the exact duration of a sound

2.2 Sound as a Mechanical Wave 21

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

d1
d2

0 t

−

p0

+

Fig. 2.8 Duration (d). Two sounds of different duration, the red sound being a third shorter than
the blue one (d1 = 2 ÷ 3 × d2). The amplitudes of the two sounds were set to different values to
allow comparison

recorded outdoor might that be arduous as it is not always clear when a sound begins
and ceases due to background noise and echoes (see Sect. 8.1).

2.2.6 Frequency

In a broad sense, frequency, or rate, is a quantity that measures the number of time
an event (n) occurs during a specific time interval (Δt). Frequency can be then
written as:

f = n

Δt
.

For a sine wave, frequency is the number of time an amplitude cycle is repeated
during 1 s. The A-flat tuning forks generate a sine wave with 440 cycles/s. The
frequency is then 440 cycle s−1 or, more commonly, 440 Hz. When we refer to the
sine function within the unit circle, the frequency of a cycle is named the angular
frequency (ω). When considering a wave along the time axis, the frequency is named
the ordinary frequency or, more simply, the frequency (f). Rather than counting the
number of cycles produced by second, it is usual to measure the duration of one
cycle and to compute the inverse of this duration, that is, the reverse of the period
(T). The period of the A-flat tuning fork is about 0.00227 s, multiplying this value

22 2 What Is Sound?

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

1 2 3

1 2 3 4 5 6 7 8 9 10 11 12

0 t

−

p0

+

Fig. 2.9 Frequency (f). Two sounds with different frequencies: the red sound has a frequency
four times higher than the blue one. In other words, there are three blue cycles and twelve red
cycles, or there are four red cycles for a single blue cycle. If t = 1 s, then the frequency of the blue
wave is 3 Hz, and the frequency of the blue wave is 12 Hz

by 440 returns 1. We then end up with the following basic formulae:

f = 1

T

= ω

2 × π

Even if time and frequency are very often considered as separate domains, it
is absolutely clear that frequency is just another way to measure a time quantity.
This time-frequency tight connection is at the origin of most of the difficulties in
time-frequency representation and analysis (see Chaps. 11 and 13). The shorter the
cycle period is, the higher the frequency is (Fig. 2.9). In theory, there are neither
lower nor upper limits for frequency ranging from a few Hz (low-frequency sound or
infrasound) to several kHz or MHz frequency (high-frequency sound or ultrasound).

All the sounds we have looked at so far were simple sound waves or pure tones,
that is, they were made of single pure frequency following a sine or cosine function.
However, sound is, in most cases, complex being made of a combination of several
tones, i.e., made of an addition of several sine or cosine functions. There is a specific
terminology for the complex sine waves:

fundamental f0, the greatest common divisor of the set of frequencies composing
the sound wave, this is the sine wave with the lowest frequency. The fundamental
is sometimes considered as the first harmonic or first partial.

2.2 Sound as a Mechanical Wave 23

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

0 t

−

p0

+

f0

f1
f2

Fig. 2.10 Harmonics. Sound made of three tones with a harmonic ratio: the fundamental (f0), the
first harmonic (f1), and the second harmonic (f2). The light gray lines correspond to these three
tones isolated

overtone, any sine wave with a frequency higher than the fundamental. Synonym:
partial.

harmonic fi , an overtone that is a perfect integer multiple of the fundamental. fi

is the ith harmonic.
inharmonic, an overtone that is not a perfect integer multiple of the fundamental

frequency.
resonant frequency, frequency of a resonator.
formant, a group of frequencies amplified by a resonator.
dominant frequency, the frequency of highest amplitude. This can be the funda-

mental or an overtone.
instantaneous frequency, the frequency evaluated at a specific time t of the time

wave; this is the time derivative of the instantaneous phase.
carrier frequency, a term initially used in telecommunications for the frequency

of the main sinusoidal waveform (carrier wave or signal wave) used to convey
information.

A harmonic series results from the addition of a fundamental and several
harmonics. The amplitude, or importance, of each harmonic can be set by a
multiplying factor or weight Ai (Fig. 2.10). The following harmonic series sound
is the result of a fundamental and the addition of three harmonics:

s(t) = (A0 × f0) + (A1 × f1) + (A2 × f2) + (A3 × f3)

= (A0 × f0) + (A1 × 2 × f0) + (A2 × 3 × f0) + (A3 × 4 × f0)

24 2 What Is Sound?

A harmonic cannot appear if it has a null amplitude; for instance, the harmonic
f2 is no more produced in the following sound wave:

s(t) = (A0 × f0) + (A1 × f1) + (A3 × f3)

Similarly, the fundamental frequency cannot be apparent resulting in sound made
of a series of harmonics only:

s(t) = (A1 × f1) + (A2 × f2) + (A3 × f3)

In that case, the fundamental can be determined by finding the greatest common
divisor of fi or by simply computing the difference between fi+1 and fi . A sound
made of two harmonics f1 = 400 Hz and f2 = 600 Hz has a fundamental frequency
f0 = f2 − f1 = 600 − 400 = 200 Hz.

Any combination of harmonics and inharmonics can be recorded or synthesized,
but the sound sources of animals and instruments usually produce typical harmonics
series.

So far, we considered only sine wave, but waves might follow a square, triangle,
or sawtooth periodic function as shown in Fig. 2.11. These waves are actually not
seen in animal vocalizations, but they still can be useful for synthesis purposes
(see Sect. 18.3). As they are not sine waves, these functions do not consist of a
single frequency component but of a series of harmonics. The sawtooth function

−

p0

p0

p0

+

−

+

−

+

0 t
Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 2.11 Square (top), triangle (middle), and sawtooth (bottom) waves. These periodic functions
consist of harmonics series

2.2 Sound as a Mechanical Wave 25

−

p0

+

−

p0

+

0 t
Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 2.12 Noise (top) and Dirac pulse (bottom) waves. These functions do not produce either
harmonics or inharmonics overtones

is, for instance, made of a harmonic series with amplitudes steadily decreasing.
Some sounds are not built with periodic functions. This is particularly the case of a
random wave, or noise sensu stricto, and Dirac pulse (Fig. 2.12). These sounds do
not contain any frequency-structured components.

2.2.7 Writing Sound with a Simple Equation

Sounds are nice to hear and to visualize as waves, but they are also wonderful when
written with maths. Now that we know all parameters describing a simple sine sound
wave, we can write the pressure equation to generate it. It is an elegant sine formula:

p(t) = A × sin(ωt + ϕ)

= A × sin

(
2π

T
x + ϕ

)

= A × sin(2πf t + ϕ)

The sound produced by the 440 Hz tuning work with a peak amplitude of 2 ×
10−2 Pa with a π ÷ 4 rad phase is written as follows:

p(t) = 2 × 10−2 × sin
(

2π × 440 × t + π

4

)
.

26 2 What Is Sound?

If we wish to add an H1 harmonic to this sound with an amplitude half of the
fundamental of first harmonic H0, we could simply apply the following addition:

p(t) = 2 × 10−2 × sin
(

2π × 440 × t + π

4

)

+10−2 × sin
(

2π × 880 × t + π

4

)

2.2.8 Amplitude and Frequency Modulations

The amplitude and the frequency of a sound wave can vary with time. The
instantaneous amplitude can increase and decrease following any pattern, periodic
or not. Similarly, the instantaneous frequency can change over time, in a regular
pattern or not. These variations are defined as amplitude and frequency modulations,
abbreviated AM and FM. AM and FM can covary or follow independent patterns.

To apply an amplitude modulation to a wave, the maximum amplitude value A

has to be replaced or multiplied with a function a(t), the instantaneous amplitude,
describing the evolution of the instantaneous amplitude a with respect to time t .
For instance, a sound wave with an exponential decrease with a −0.4 factor can be
written as (Fig. 2.13 top):

p(t) = A × e−0.4×t × sin
(

2π × 440 × t + π

4

)

When the amplitude modulation is sinusoidal, that is, when A is replaced or
multiplied by a cosine or sine function, the amplitude modulation is then defined
by its rate or frequency fam, its phase ϕam, and its depth m also called modulation
rate that varies between 0 (no modulation) to 1 (or 100 if expressed in percentage)
(Fig. 2.14):

p(t) = A × cos(1 + m × 2π × fam × t + ϕam) × sin
(

2π × 440 × t + π

4

)

To generate a frequency modulation, a function f (t) that sets the changes of the
instantaneous frequency f with respect to time has to be added in the sine function.
For instance, an exponential frequency increase is obtained with (Fig. 2.13 bottom):

p(t) = A × sin
(
et + 2π × 440 × t + π

4

)

When the frequency modulation is sinusoidal, a cosine or sine function is added.
The frequency modulation is then defined by its own frequency ff m, its phase ϕfm,
and its modulation index β (also named I). The modulation index β is the ratio of

2.2 Sound as a Mechanical Wave 27

a(t)

p(t)
−

p0

+

0 t

−

p0

+

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 2.13 Amplitude and frequency modulations (AM, FM). The instantaneous amplitude (blue
plain line) is modulated according to an amplitude exponential decay a(t) (black dashed line) (top)
or according to a frequency exponential increase f (t) (bottom)

a(t)

p(t)

fam = 1 Tam m

−

p0

+

a(t)

p(t)

fam = 1 Tam m

0 t

−

p0

+

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 2.14 Sinusoidal amplitude modulation. Two examples of instantaneous amplitude (blue plain
line) modulated according to a sinusoidal amplitude modulation a(t) (black dashed line). The
frequency of the amplitude modulation fam of the above example is half the one in the example
below. The amplitude depth m is 1 (or 100%) in the example above and 0.5 (or 50%) in the example
below

28 2 What Is Sound?

−

p0

p0

p0

+

−

+

−

+

0 t
Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 2.15 Sinusoidal frequency modulation. Three examples of sinusoidal frequency modulations
f (t): a frequency modulation with a frequency of 2 and a modulation index of 50 (top), a frequency
modulation of 4 with a similar modulation index of 50 (middle), and a frequency modulation of 2
with a modulation index of 100

the peak frequency deviation δf to the frequency of the FM (Fig. 2.15):

β = δf

ff m

The equation of the sound becomes:

p(t) = A × sin
(
β × sin(2π × ff m × t + ϕf m) + 2π × 440 × t + π

4

)

Finally, both amplitude and frequency modulations can combine in a single wave,
as in:

p(t) = A × e−0.4×t × sin
(
β × sin(2π × ff m × t + ϕfm) + 2π × 440 × t + π

4

)

2.3 Sound as a Time Series 29

2.3 Sound as a Time Series

A time series is a collection of data that have been observed at different points
in time. For instance, monthly measurements of ambient carbon dioxide CO2
concentration constitute a time series (Fig. 2.16). Looking at this famous time series
suggests immediately a homology with sound. The CO2 concentration could be
replaced by air pressure, and the time series would be a (nice) sound. Indeed, when
recording sound, we observe the pressure of the medium at regular time intervals
just like measuring the CO2 concentration monthly.

Sound is fundamentally a time series, and many time series could be converted
into sound. A nice example of this property of sound is to be found in neurophysi-
ology. The electrical activity of a nerve or a single neuron can be recorded with an
adapted electrode and voltage amplifier. The action potential of the cell or the group
of cells generates a time series with voltage as the measured data. This time series is
often converted live during experimentation such that the experimenter can monitor
the electrical activity by literally hearing the neuron or nerve. When working on
animal hearing, you can even listen what the auditory nerves or neurons “hear.”
Time series are extremely common so that the statistics behind are important.

One of the main properties of time series is the autocorrelation of the data;
the value measured at the time point t + 1 depends on the value observed at the
previous time point t . Time series analysis uses a few tools shared with acoustics, in
particular (auto)correlation, filtering, and spectral analysis that consist in identifying
the periodicity (frequency) of the time series. However, the fundamental concepts of
time series are rarely found in acoustics like the study of stochastic and stationary
processes or the prediction of time series through statistics models. Getting into

Time (years)

[C
O

2]

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0

Fig. 2.16 Example of a time series. The atmospheric concentrations of CO2 expressed in parts per
million (ppm) from 1960 to 1997. This dataset could be transformed into a sound. Data from the
package datasets

30 2 What Is Sound?

the details of time series may help to understand and, more importantly, to analyze
the time series obtained when parametrizing a series of recordings achieved along
time. It could be therefore useful to consult books dedicated to time series with R as
Shumway and Stoffer (2006) and Cryer and Chan (2008).

2.4 Sound as a Digital Object

To analyze sound we need first to record it and to save it as a digital object. Sound
pressure fluctuations have to be converted into binary items that could be saved,
analyzed, and potentially modified. The conversion of the sound into a digital file
is achieved through a recording chain that involves (1) a sensor—a microphone
when recording in the air, a hydrophone when recording in water, a vibrometer
when recording on a solid—and (2) a digital recorder with an amplifier and a digital
storage unit. We will not detail the electronics behind the digital recording chain
or digitization, but we will review the main principles of sound digital sampling
and quantization that are quite important for avoiding errors when analyzing digital
sound. We will also introduce the main audio file formats.

2.4.1 Sampling

Digital recording is a discrete process of data acquisition. The process of converting
an analogue signal into serial binary data is called pulse code modulation (PCM).
Sound is recorded through regular samples. These samples are taken at a specified
rate, named the sampling frequency or sampling rate fs given in Hz or kHz. The
most common rate is 44,100 Hz (or 44.1 kHz), but lower rate can be used for low-
frequency sound (e.g. 22.05 kHz), or higher rate can be used for high-frequency
sound (up to 192 kHz or even higher).

Figure 2.17 shows 5 ms of a pure tone sound at 440 Hz sampled at two different
sampling frequencies.

2.4.2 Quantization

Another important parameter of digitization is the process of quantization, or digiti-
zation depth, that consists in assigning a numerical value to each sample according
to its amplitude (Fig. 2.18). These numerical values are attributed according to a bit
scale. A quantization of 8 bit assigns amplitude values along a scale of 28 = 256
states around 0 (zero). Most recording systems use a 216 = 65,536 bit scale.

Quantization can be seen as a rounding process. A high-bit quantization will
produce values close to reality, i.e., values rounded to a high number of significant

2.4 Sound as a Digital Object 31

l
l
l
l
l
l
l
l
ll
llllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllllll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
lll
llllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
lll
llllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
lllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllllll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
lllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllllll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
llllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllllll

ll
l
l
l
l
l
l
l
l

−

0

+

l

l

l
l

l

l

l

l

l
ll

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

ll
l

l

l

l

l
l
l

l

l

l

l
l
l

l

l

l

l
ll

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

ll
l

l

l

l

l
l
l

l

l

0
−

0

+

Time (s)

D
ig

iti
zi

ng
 s

ca
le

Fig. 2.17 Sampling. Digital sound is a discrete process along the time scale. The same wave is
sampled at two different rates: the wave above is sampled four times more than the bottom wave.
Each point is a sample; the line is original continuous sound

100

101

110

111

000

001

010

011

Fig. 2.18 Quantization. Digital sound is a discrete process along the amplitude scale: a 3 bit (=
23 = 8) quantization (gray bars) gives a rough representation of a continuous sine wave (blue line)

32 2 What Is Sound?

l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
lll
llllllllllllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllllll

lll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
lll
lllllllllllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllllll

ll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
lll
lllllllllllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllllll

ll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
llll
llllllllllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllllll

ll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
llll
llllllllllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllllll

ll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
lll
lllllllllllllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllllll

lll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
ll

l

l

l

l

l

−

0

+

Time (s)

Q
ua

nt
iz

at
io

n
sc

al
e

Fig. 2.19 Aliasing on a sine wave. In blue, the original sine wave was sampled at an appropriate
rate representing well the cycle period or frequency. In red, the same sine wave sampled at a too
low rate generating aliasing at a lower wrong frequency

digits, when a low-bit quantization will produce values far from reality, i.e., values
rounded a low number of significant digits. Low quantization can impair the quality
of the wave.

2.4.3 Issues in Sampling and Quantization

In order to represent properly the wave, it is advised to follow the Nyquist-Shannon
sampling theorem which stipulates that at least two samples must be taken per audio
cycle (Shannon 1949). This means that the sampling frequency fs should be at
least twice as high as the highest frequency of the wave also known as the Nyquist
frequency fN . Departing from this rule may induce frequency artifacts known as
aliasing. If there are components in the wave at frequencies higher than the Nyquist
frequency, then they appear at wrong frequencies. Figure 2.19 illustrates this issue
with a sine wave sampled at an inadequate rate. The frequency of the original wave
is corrupted into a lower frequency.

Figure 2.20 depicts another side effect of aliasing on a complex wave. The digi-
tized wave can be quite different from the original wave, such that an inappropriate
sampling might lead to biased results (see Sect. 6.1).

The two previous examples show how undersampling may affect the quality of
a sound. However, oversampling during digitization may also generate important

2.4 Sound as a Digital Object 33

l

l

l
l

l

l

l

l
l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−

0

+

Time (s)

Q
ua

nt
iz

at
io

n
sc

al
e

Fig. 2.20 Aliasing on a complex wave. The original blue wave is a complex wave including
several frequency components. When sampled at an appropriate rate, the wave can be properly
represented with all small amplitude changes. However, when sampled at a low rate, the main
amplitude features are lost (red dots and red segments)

frequency artifacts. Oversampling indicates that sound was digitalized at a rate well
above the Nyquist frequency, as sampling at 192 kHz when no frequency occur
above 22 kHz. In the frequency domain, oversampling generates artificial copies of
the frequency content of the sound. These frequency bands may be misinterpreted as
high-frequency sound production. However, simple filtering processes can remove
these unwanted frequencies and clean the oversampled sound.

Distortion can occur as well when the digitized wave is clipped with values
outside the quantization scale (Fig. 2.21). Clipping can occur during recording due
to a too high recording level and/or when digitizing at an incorrect level. Such bad
sound acquisition conditions obviously induce errors when describing the amplitude
and temporal features of the wave, but clipping also generates false harmonics and
therefore can lead to wrong sound interpretation. As clipping cannot be removed,
squared waves should be considered very carefully before undertaking any analysis.

2.4.4 File Format

There are multiple file formats to save sound. R can handle three categories of audio
files:

.wav uncompressed format, the full information is stored in a heavy file. The
format can be either PCM with data scaled along a 2n scale with integer values
or along an IEEE floating scale, i.e., along a [−1, 1] scale with numeric values,

34 2 What Is Sound?

−

0

+

Time (s)

Q
ua

nt
iz

at
io

n
sc

al
e

clipped region

Fig. 2.21 Clipping. This wave was not properly acquired. The amplitude exceeds the limits of the
quantization scale leading to a squared or flat waveform (arrow). Such waveform cannot be studied
properly as amplitude, time, and frequency features are distorted

.mp3 lossy compressed format, the information is reduced. Time, amplitude,
and frequency parameters can be impaired. This format should be avoided for
scientific studies which require full acoustic information,

.flac losslessly compressed format, the full information is stored in a reduced
size file.

All these formats generate binary files, sound being encoded into a succession of
0 and 1. When importing these formats into R, the data can be transformed into a
decimal format inducing an important increase in data size.

2.5 Sound as a Support of Information

So far, we described sound only in terms of shape but not in terms of content or
meaning. Sound can be a signal embedding a certain amount of information, or
sound can be noise that does not convey any information. Sound can be therefore
the main material of a communication system between a transmitter and a receiver.
These elements draw the diagram of communication as proposed by Shannon and
Weaver (1949) shortly after the second world war (Fig. 2.22). Basically, the story
is always the same: a transmitter emits a signal that encodes some information
and that is transported by a medium or channel. The signal full of information
reaches an aware receiver that decodes the information. This scheme is true for any
communication system and is therefore used repeatedly for animal communication
(Fig. 2.23). In this case, the emitter is a singing animal, like a bird tweeting or

2.5 Sound as a Support of Information 35

INFORMATION
SOURCE TRANSMITTER

MESSAGE MESSAGE

SIGNAL

RECEIVER DESTINATION

NOISE
SOURCE

RECEIVED
SIGNAL

Fig. 2.22 Shannon diagram of a communication as published in Shannon (1949) and Shannon and
Weaver (1949)

emitter(s)
[encoder(s)]

channel
[habitat]

receiver(s)
[decoder(s)]

noise

feedback
[behaviour]

Fig. 2.23 Shannon diagram adapted to animal communication system. Drawn with the package
diagram (Soetaert 2014)

an insect stridulating, the channel can be air, water, soil, or plant tissues, and the
receiver is a hearing animal ready to react. Noise coming from the environment—the
wind in the forest, the noise of boat in the ocean, the rain dropping a plant leaves—
can impair the transfer of information and degrade or even cancel the information
process between animals. When the connection is successful, the receiver may show
a response or feedback to the emitter. This response can be obvious and fast as a
movement toward or away from the emitter, or it can be conspicuous and delayed as
a physiological state change (Fig. 2.23).

The nature and the amount of the information conveyed by a signal are highly
variable. It depends on the nature of the dyad emitter-receiver and of the context
of the communication act. Hence, information quantity, measured in bits along a
logarithmic scale, can vary considerably whether you consider the introductory talk
of a Nobel prize or the buzz of a flying mosquito.

The story schematized by Shannon sheds light on a third story character: noise.
Noise can degrade the signal during its travel in the channel from the emitter to

36 2 What Is Sound?

the receiver reducing the information amount. Noise is often viewed as a random
event producing a stochastic wave. However, if we refer to Shannon, noise is not
necessarily random; it is a source of perturbation. This means that a pure tone can be
noise if it scrambles the signal that aims at connecting an emitter and a receiver. The
most satisfactory definition of noise could be any unwanted sound, as defended by
Schafer (1977). The definition of noise should be a relative definition, in reference to
the receiver hearing and decoding process, not in reference to the emitter encoding
and producing system. Noise can be a signal for a receiver and noise for another
one. The siren of an ambulance is usually perceived as a relief signal of an arriving
aid for a victim but could be considered at the same time as noise by local residents.

The diagram of Shannon is extremely constructive as it builds a simple linear
chain of events that are clearly identified and delimited (emission, propagation,
noise, reception). This clarity explains why numerous studies in animal behavior
refer, directly or indirectly, to the emitter-receiver paradigm. However, this scheme
could also be viewed as a rather narrow concept as it suggests that communication
simply works as a closed system between two individuals that share an encoding-
decoding process. Several studies clearly revealed that animal communication
is structured in a network rather than in a one-to-one communication relation
(McGregor 2005). The emitter and the receiver rarely form an isolated pair,
but rather they combine into a piece of a communication web spun by several
individuals. These individuals can alternatively play the roles of emitter and receiver
and thus generate signal and noise, depending on the receiver point of view, or better
said point of listening.

Chapter 3
What Is R?

3.1 A Brief Introduction to an Ocean of Tools

Here are some important historical and technical facts about R for the reader who
has never used R before.

R Is Not That New R was born in 1996 in New Zealand. The fathers of R, Ross
Ihaka and Robert Gentleman, were both working at the University of Auckland. As
described in their seminal paper (Ihaka and Gentleman 1996), Ihaka and Gentleman
conceptualized a computer language for statistical data analysis influenced by two
existing languages, namely, S and scheme. If R has the main appearance of S and
is therefore often considered as a dialect of S, it has the implementation and the
semantics of scheme. Ihaka and Gentleman aimed at coining a new language that
“provides advantages in the areas of portability, computational efficiency, memory
management, and scoping.”

R Is a Language for Statistics and Related Disciplines R was originally con-
sidered as a language for statistical computing and graphics. However, R is much
more than that as it now covers the needs of almost all scientific disciplines of
mathematics, physic, computer, life, medical, and linguistic sciences. The use of R
exponentially increased during the last 10 years, in both academic and commercial
worlds with R examples found in almost all sorts of data analyses. The success
of R mainly comes from its free access, from modularity, and, above all, from
the coaction of users who permanently and all around the world participate to its
development creating an ocean of tools.

R Is Free and Open-Source R is free to download and to install being declared
under the terms of the Free Software Foundation’s GNU General Public License in
source code form. The main term of this license is “to guarantee your freedom to
share and change free software—to make sure the software is free for all its users.”
R can be therefore installed on any computer, and most of its functionalities can

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_3&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_3

38 3 What Is R?

be inspected, modified, and redistributed. The source program is maintained by a
core team, but any user can freely contribute to R by submitting accessory tools or
packages. This way to contribute to R is experimenting a tremendous success with
thousands of contributions available. These tools open the possibility to the user
to customize R to his/her own needs. R can therefore work in very different ways
in neighboring laboratories or offices. The dark side of R contribution process is
that there is only a form check but not a content control. This means that a user
contribution should run and comply with the last version of R but that the actions
of the new functions are not peer-reviewed. This makes sailing in R ocean rather
dangerous even if the risk of error is counterbalanced by user feedback following
the main principle of collaborative projects. The plethora of packages also induces
a redundancy and some inconsistency in R methods so that users can get lost in the
middle of the ocean.

R Is an Object-Oriented Language Like many other programming languages
(C++, Java, Javascript, Python, Perl), R paradigm is based on the concept of objects
that have specific features or attributes. These objects are associated with methods,
or functions, that can act on the objects. The concept of object is rather simple
to understand as it more or less consists of data placed in a box with information
(attributes) written on the box. The box can be combined or changed with functions.
This way of programming has some constraints as the objects have to be clearly
defined or typed, but this also ensures to properly apply methods to right objects
preventing data corruption or unsuited analyses.

R Is a High-Level Interpreted Language Instructions are directly executed
without the need of a program compilation. The instructions are given with written
commands in a prompt console. This implies that R can be invoked from a command
terminal without any graphical interface. This way to give instructions to a program
might appear antiquated in these times of smartphones and tablets controlled with
the tip of an index. However, writing commands is much more efficient than mouse
clicking or screen touching. There is a single main reason for this efficiency:
commands can be repeated. When using a graphical interface that drives the user
from a menu to a sub-menu to another sub-sub-menu with a dozen of options, it
is almost impossible to reproduce exactly the same procedure. There is no way
to save all the instructions given through ticking and option selection. However, a
command, and better a list of commands building up a script, can be saved in a
few kilooctet file. This file can be tested several times, used at different times of a
project, and shared with colleagues for collaborative work without any confusion.
R scripts written several years ago still work and can be repeated without any issue
ensuring an ascending compatibility. R ensures therefore a perfect reproducibility
of data analysis, one of the mainstays—with refutability—of science. For those
who might still be reluctant to written commands, just think that R language is the
solution to translate a long series of fastidious mouse clicks into a simple series
of clear commands. An R command can be seen as a shortcut of long series of
visual operations. As an example, plotting an histogram of a dataset named x with a
spreadsheet software takes about seven mouse clicks difficult to remember, whereas

3.2 How to Get R 39

it requires an easy stand-alone command (hist(x)) with R. This command will
not change when the route to the histogram within the graphical interface of the
spreadsheet will probably differ with software version.

R Is an Easy Language to Learn Learning R is not that difficult; it is like learning
a foreign language that would include a dozen of words and a few syntax rules
only. When it is necessary to stay abroad to properly learn a foreign language,
learning R does not need any travel as there are R speakers all around the world
communicating in hundreds of blogs, mail discussion lists, and local user groups.
Help is everywhere.

R Is Not Perfect R is often introduced as a perfect tool. However, the main
weakness of R is to be found in memory management as already mentioned by Ross
and Ihaka at the very early stages of R (Ihaka and Gentleman 1996). All R objects are
stored on the random-access memory (RAM) that can be quickly full when handling
large datasets making R very slow. In a very interesting self-criticism exercise, Ihaka
confirmed this memory problem and also pointed out that R interpreter was not fast
enough and that vectorization (one of the main paradigm of R, see Sect. 3.3.7) can
introduce computational overheads when scalar processes would be more efficient.
It seems that these problems might be difficult to solve in a short time (Ihaka 2010).

3.2 How to Get R

R is composed of a core program or base system and additional accessory programs
or contributed packages that can be installed on a wide range of operating systems
including Windows, Mac, and Linux as soon as the user has the administration
rights on his/her machine. All installation instructions of the base are available on
R web site.1 R base is available online at the Comprehensive R Archive Network or
CRAN2 with different geographical mirrors such that download time is optimized.
The installation is straightforward so that there is no counterargument to install R
on a computer!

R base comes with numerous functions and embedded packages, but specific
analyses quickly requires the installation of additional packages. Packages are also
stored at CRAN and can be downloaded and installed manually, but R offers the
possibility to install the packages directly from the console with the following
command:

install.packages("MASS")

1http://www.r-project.org/
2http://cran.r-project.org/

http://www.r-project.org/
http://cran.r-project.org/

40 3 What Is R?

This command will download from CRAN the compressed folder or package
MASS (Modern Applied Statistics with S) (Venables and Ripley 2002), uncompress,
and install it on your computer. Once uncompressed the package becomes a library
that can be made available locally with:

library(MASS)

Main R graphical user interface (GUI) is not very friendly. It might be useful to
install other GUIs that will make the use of R more fancy. Several GUIs have been
developed but RStudio3 has a nice and complete design and is easy to handle. The
open-source version of RStudio can be freely installed.

So the complete process to have a nice R version on your system is to (1) install
R [necessary], (2) install a GUI-like RStudio [optional], and (3) install packages
[optional].

3.3 Do You Speak R?

3.3.1 Where Am I?

When starting a session, R sets automatically a default working directory. A working
directory is a folder where R will either read or write files if no other file localization
instructions are given. The function (see Sect. 3.3.4) getwd() returns the complete
path to the working directory:

getwd()

In most cases, this default directory is not very convenient so that a new default
directory should be set. This can be done with the function setwd(). The path to
give to setwd() will change according to the operating system:

setwd("complete-path/to-directory")

The function dir() returns the list of the files saved in the working directory.

3http://www.rstudio.com/

http://www.rstudio.com/

3.3 Do You Speak R? 41

dir()

3.3.2 Objects

An object is a structure with a name that contains data, which is either imported into
R or generated within an R session. For instance, the following commands generate
and print (display) an object named num containing the numeric values 10, 11, 12,
and 13:

num <- 10:13
num
[1] 10 11 12 13

This is one of the most simple objects, but there are numerous objects differing
by their format and content. To avoid error by applying a function to a wrong object,
it is crucial to know the identity of the object. The identity is defined by the class
and the attributes of the object.

3.3.2.1 Classes

There are six major classes of objects:

numeric vector is a one-dimensional object consisting in a succession of
items or cells containing numbers. The object num created just above is a
vector:

num
[1] 10 11 12 13

character vector is a one-dimensional object consisting in a succession of
items or cells containing characters. Here is a character vector with the first three
letters of the alphabet:

42 3 What Is R?

char <- c("a", "b", "c")
char
[1] "a" "b" "c"

factor is a one-dimensional object consisting in a succession of items or cells
with nominal or ordered categories. Here is a factor with two categories or levels:

fact <- factor(c("Male","Female", "Female"))
fact
[1] Male Female Female
Levels: Female Male

matrix is a two-dimensional object with rows and columns. A matrix can
contain numeric values only. Here is a matrix with 2 rows and 2 columns:

mat <- matrix(10:13, nrow=2)
mat

[,1] [,2]
[1,] 10 12
[2,] 11 13

array is a (p, q, n) dimension object. An array can vary from a one-dimensional
object (vector like) to a collection of n matrices of dimension (p, q). Here is an
array consisting of 3 matrices with 2 rows and 2 columns each:

ary <- array(10:21, dim=c(2,2,3))
ary
, , 1

[,1] [,2]
[1,] 10 12
[2,] 11 13

, , 2

[,1] [,2]
[1,] 14 16
[2,] 15 17

, , 3

(continued)

3.3 Do You Speak R? 43

[,1] [,2]
[1,] 18 20
[2,] 19 21

list is an object consisting of an ordered collection of objects known as its
components. A list can be viewed as a bag where any items can be placed in.
Here is a list containing three items, two objects previously generated (num and
mat) and an additional one containing the sentence "Bye bye moon":

lst <- list(x=num, y=mat, z="Bye bye moon")
lst
$x
[1] 10 11 12 13

$y
[,1] [,2]

[1,] 10 12
[2,] 11 13

$z
[1] "Bye bye moon"

data.frame is a special list in which all elements are vectors of equal length.
It is basically a table with variables as columns and observations as rows. Here
is a table with 3 columns and 4 lines:

df <- data.frame(x=10:13,
y=c("A", "B", "C", "D"),
z=c(TRUE, FALSE, FALSE, TRUE))

df
x y z

1 10 A TRUE
2 11 B FALSE
3 12 C FALSE
4 13 D TRUE

3.3.2.2 Attributes

Each object has one or more attributes, or metadata, that define data features:

names are labels of the different elements of an object. These names can be used
to extract the elements. See Sect. 3.3.6.1,

44 3 What Is R?

Table 3.1 Type, mode, class and, dimensions of R objects

Object Type Mode Class Dimensions

vector num integer numeric integer NULL

vector char character character character NULL

factor fact integer numeric factor NULL

matrix mat integer numeric matrix (2, 2)

array ary integer numeric array (2, 2, 3)

list lst list list list NULL

data.frame df list list data.frame (4, 3)

Type, mode, class and dimensions of the R objects generated so far. See text for details

mode is the nature of the data stored in the object. It can be numeric (num-
bers: 12, 0, -4.1, 3.14), complex (complex numbers: 3 + 2i), logical
(TRUE/FALSE), character (text: "hello"), or raw (bytes: 001011),

type is very similar to mode except that a numeric is splitted into integer
and double,

class for simple vectors is just the mode (numeric, complex, logical, character,
raw); for other objects it can be matrix, array, factor, or data.frame,

dimension integers specify the respective extents of the object. They are NULL
for one-dimensional objects.

It is not always easy to guess the properties of an object. There are a few functions
that can help: typeof() to know the type, names() to get the names of the
different components, mode() to know the mode, class() to identify the class,
and dim() to obtain the dimensions (Table 3.1). The function attributes()
provides the main attributes. There are no attributes for a vector:

attributes(num)
NULL
attributes(char)
NULL

The attributes of a factor provide the class and the different levels (or states)
of the factor; here the gender states:

attributes(fact)
$levels
[1] "Female" "Male"

$class
[1] "factor"

3.3 Do You Speak R? 45

The attributes of a matrix and of an array are the object dimensions:

attributes(mat)
$dim
[1] 2 2

attributes(ary)
$dim
[1] 2 2 3

The attributes of a list are the names of the list items:

attributes(lst)
$names
[1] "x" "y" "z"

The attributes of a data.frame are the names of the columns (corresponding
to the names the items of a list), the names of the rows, and the class of the object:

attributes(df)
$names
[1] "x" "y" "z"

$row.names
[1] 1 2 3 4

$class
[1] "data.frame"

The function str() is a very helpful tool that details the structure of the object
providing several information, for instance:

str(df)
’data.frame’: 4 obs. of 3 variables:
$ x: int 10 11 12 13
$ y: Factor w/ 4 levels "A","B","C","D": 1 2 3 4
$ z: logi TRUE FALSE FALSE TRUE

46 3 What Is R?

This indicates that the object df is a data.frame with 4 rows (observations)
and 3 columns (variables). The first column is named x and contains integers, the
second column is named y and is a factor with four categories or levels, and the last
column named z contains logical data.

3.3.3 Operators

The arrow <- is an R operator to place, or to assign, values into an object.
There are many other operators in R that can be classified in three main classes:

indexing operators that are used to select a specific part or item of an object (see
Sect. 3.3.6.1), arithmetic operators for common operations, and logical operators to
compare values or assess conditions. R operators are summarized in Table 3.2.

Table 3.2 R operators Operator Description

Arithmetic

+ Addition

- Subtraction

* Multiplication

/ Division

ˆ Exponentiation

Logical

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equal to

!= Not equal to

!x Not x

x | y x or y

x & y x and y

Indexing

[1- or 2-dimension index

[[List index

$ Component selection

@ Slot selection

:: Access variable in a name space

Main R operators to be used for arithmetic
operations, logical conditions, and object
indexing. See text for details

3.3 Do You Speak R? 47

3.3.4 Functions

A function is an R instruction to be applied to an object. The behavior of the function
may differ according to the attributes of the object. The function mean() computes
and returns the arithmetic mean:

mean(num)
[1] 11.5

A function has a name (mean), is delimited with brackets (()), and has
arguments. The arguments can be viewed as the options of a function. For instance,
the function mean() has three arguments as detailed by the mean documentation:

x an R object, the data to be averaged.
trim an argument (option) to remove outliers in x that may bias the arithmetic

mean. This argument has to be set with a numeric value between 0 and 0.5
na.rm an argument (option) to indicate whether non-available or missing data

(NA) should be removed. This argument has to be set with a logical value; it can
be set to TRUE to remove the NA from x.

The name of a function can be very short as it is the case of one of the most used
function named c(). This single letter function concatenates objects or values (see
Sect. 3.3.6.3 for more concatenating functions). To update num by concatenating it
with an outlier value of 50 and missing data, we run:

num <- c(num, 50, NA)
num
[1] 10 11 12 13 50 NA

Now, we can play with the arguments of mean() to trim the data to get rid of
the value 50 and to exclude missing data:

mean(num)
[1] NA
mean(num, na.rm=TRUE)
[1] 19.2
mean(num, trim=0.5, na.rm=TRUE)
[1] 12

48 3 What Is R?

All function arguments and other details including examples are provided in a
help page that can be obtained with a question mark immediately placed before the
name of the function which is a shortcut for the function help():

?mean
help(mean)

When encountering a new function, particularly in this book, it is highly
recommended to consult the corresponding help page and to run the examples.

The function args() can also be handy as it returns the arguments and the
default settings of a function. For instance, for the function sd(), which returns the
standard deviation, we have:

args(sd)
function (x, na.rm = FALSE)
NULL

Several lines but several commands can be placed on a single line as soon as the
commands are separated with a semicolon “;”. This can be used to shorten a script:

num <- 10:13 ; mat <- matrix(10:13, nrow=2)

R has thousands of functions spread out in the base (Table 3.3) and packages.
This ocean of tools has, nonetheless, limits, and users quickly need to write their
own function for their specific needs. This is when R is beautiful, the magic time
when a user turns into a designer. To write a function is extremely simple: choose a
name, a list of arguments, and cook it! Let’s start with an extremely simple function:
compute the multiplicative inverse or reciprocal of a numeric value, that is, compute
and return 1 ÷ x. We name the new function inverse. The function, which has a
single argument x, is written with a single line command:

inverse <- function(x) 1/x

3.3 Do You Speak R? 49

Table 3.3 Fundamental R
arithmetic and statistic
functions

Function Description

min() Minimum

max() Maximum

sqrt() Square-root

sum() Sum

median() Median

quantile() Distribution quantiles

mean() Arithmetic mean

var() Variance

sd() Standard deviation

log() Natural logarithm

log10() Base 10 logarithm

sin() Sinus

cos() Cosinus

tan() Tangent

We can use it immediately:

inverse(4)
[1] 0.25

It works! We can now try to design a function, a slightly more complex, that
converts degrees Celsius in degrees Fahrenheit. The conversion follows:

◦C = (◦F − 32) × 5

9

◦F =
(

◦C × 9

5

)
+ 32

We can write a function named f2c taking two arguments. The first argument x
is the temperature in ◦F, and the second argument is logical to optionally compute
the reciprocal function, that is, to convert ◦C in ◦F. Because the function will include
more than one line of code, we need to frame it with curly brackets {}. Here is the
function:

f2c <- function(x, reciprocal=FALSE){
if(reciprocal == FALSE) {res <- (x-32)*5/9}
else {res <- (x*9/5)+32}
return(res)

}

50 3 What Is R?

and a test:

f2c(70)
[1] 21.11111
f2c(21.11111, reciprocal=TRUE)
[1] 70

In this function we used a condition with the controls if() and else and the
function return() to display or store the result in a new object. Actually any
command can be included in a function living the opportunity to write shortcuts for
long series of commands and to build up your own reproducible tools. It is now time
to see these controls.

3.3.5 Controlling Flow

3.3.5.1 Conditioning

There are several R instructions to control the flow of the statements of a script. The
controls if() and else are used to apply a condition. The syntax is:

if(condition) {evaluation 1} then {evaluation 2}

This means that if the condition is true, then the evaluation 1 is applied;
otherwise the evaluation 2 is applied. Note the use of curly brackets {} to frame
the evaluations. For instance:

if(is.vector(num)) {print(num)} else {cat("This is not a vector")}
[1] 10 11 12 13

Another way to use a if/else condition is to call the function ifelse() in
which the first argument is the condition or test, the second argument yes is the
evaluation 1, and the third argument no is the second evaluation. For instance, this
can be used to replace values according to a threshold. In the following example, all
values strictly above 2 are replaced by the word "white," and the values under
or equal to 2 are replaced by the word "black":

num.color <- ifelse(num>11, yes="white", no="black")
num.color
[1] "black" "black" "white" "white"

3.3 Do You Speak R? 51

switch() is another function that compacts the if/else control. This
function takes as a first argument a numeric value or a character string that is
evaluated and used to choose one of the further arguments. In the following example,
the first argument is the numeric value k followed by 4 character strings (sound file
formats), each character string being an argument. Setting k = 3 returns the third
further argument, that is, the character string ".ogg":

k <- 3
switch(k, ".wav", ".mp3", ".ogg", ".flac")
[1] ".ogg"

The first argument can be a character string. The following lines allow to use
between different functions to be applied on an object, here the object num:

estimator <- "mean"
switch(estimator,

median=median(num), mean=mean(num), sd=sd(num))
[1] 11.5

3.3.5.2 Looping

A loop is a repetitive task applied to a series of indexed items, either objects or object
components. Writing a program loop might sound as dangerous as maneuvering
a plane loop for someone who is not used to script writing. But this is not that
complex. R provides two types of loop maneuvers, a classical for semantic and
an idiosyncratic function named apply() that is based on vectorization. The for
loop is quite easy to understand but is in certain cases slower than the apply()
solution.

There are three main recommendations to successfully build a for loop: (1) to
prepare an empty object with the right class, the right attributes, the right length,
and/or the right dimensions, this object will be used to store the results of each loop
iteration, (2) carefully set the iteration index, (3) run a test with a single iteration,
and (4) check the results.

The syntax of a for loop is as follows:

for (variable initialization-condition-variable update){
code to execute if the condition is true

}

In the following example, we first create a vector res containing only missing
values encoded as NA. The same number of items or cells than num is obtained by
using the function rep() that repeat n times the same value:

52 3 What Is R?

res <- rep(NA, times=length(num))
res
[1] NA NA NA NA

Then we compute the logarithm of each num item, and we store the result in the
corresponding res item. The variable initialization is i=1; the condition is that i
belongs to 1:length(num), and the update is made at each iteration :

for(i in 1:length(num)) {res[i] <- log(num[i])}

We eventually check the result by printing the object res:

res
[1] 2.302585 2.397895 2.484907 2.564949

Another way to loop is to use the facility repeat that will execute repetitively
instructions stated between curly brackets {}. This repetitive behavior can last
indefinitely if no instructions are given to get out of the loop. The exit door is
found by combining an if condition and a statement break, without any type of
parentheses. The following instructions create an increment i, print this increment,
and test afterward whether this increment is higher than 5. This results in a 5 time
repeat loop printing value from 1 to 5:

i <- 0
repeat{

print(i)
i <- i+1
if(i > 5) break
}

[1] 0
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

The same behavior can be obtained with the control flow function while(). In
that case the condition is tested before the code execution:

3.3 Do You Speak R? 53

i <- 0
while(i<6) {

print(i)
i <- i+1

}
[1] 0
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

apply() is a loop compacted in a single function.4 The principle is to apply a
function to the rows and/or to the columns of an array or a matrix. apply has three
arguments:X is an array or a matrix object, MARGIN indicates whether the operation
should apply on the rows (MARGIN=1) or on columns (MARGIN=2), and FUN is the
function to apply. This function can be any function, either already implemented,
designed previously, or even written directly in the FUN argument.

Here is a way to compute the sum of each row of the matrix mat, thus applying
the function sum in a row loop:

apply(X=mat, MARGIN=1, FUN=sum)
[1] 22 24

The same can be achieved on the columns with:

apply(X=mat, MARGIN=2, FUN=sum)
[1] 21 25

The argument FUN can also accept a new function written within the frame of
the function apply. Here we design a new function that computes the square of the
sum on both rows and columns:

apply(X=mat, MARGIN=c(1,2), FUN=function(x) {sum(x)^2})
[,1] [,2]

(continued)

4The function apply is the member of a family of functions, sapply, lapply, vapply,
mapply, that slightly differs depending on the class of the input and output objects.

54 3 What Is R?

[1,] 100 144
[2,] 121 169

When consulting the help of apply(), we discover mysterious points of ellipsis
after the argument FUN. These three dots mean that the arguments of the function
declared in FUN can be embedded in apply(). In the following example, we
compute the mean of the rows of the matrix mat, and we use the argument na.rm
to remove NA if any:

apply(X=mat, MARGIN=1, FUN=mean, na.rm=TRUE)
[1] 11 12

The function replicate() can be used to repeat n times the action of a
function. For instance, we repeat 5 times a random sample of 10 values taken in a
numeric vector containing integers from 1 to 100. The sampling is operated thanks
to the function sample():

replicate(n=5, sample(1:10, size=10))
[,1] [,2] [,3] [,4] [,5]

[1,] 6 1 6 10 6
[2,] 7 9 8 6 10
[3,] 5 7 10 9 3
[4,] 8 4 7 5 4
[5,] 2 2 5 4 1
[6,] 10 8 1 3 7
[7,] 1 3 2 8 5
[8,] 3 10 9 2 9
[9,] 4 5 3 7 2

[10,] 9 6 4 1 8

3.3.6 Manipulating Objects

3.3.6.1 Indexing Operators

Part of R objects can be extracted through operators (Table 3.2) and specific
functions. As defined above, a vector is made of a series of items or cells. Each
cell has a specific position along the vector. For instance, in the object num, the
value 10 has the position 1, and the value 11 has the position 2. We can select these

3.3 Do You Speak R? 55

values individually by using their position or index within num. This is achieved by
employing square brackets [] following the simple syntax:

objectname[index]

We can then extract a single or several cells of num combining this syntax with
the function c() and by using the negative sign to obtain the complement selection:

num[2] # item 2
[1] 11
num[2:4] # items 2 to 4
[1] 11 12 13
num[-(2:4)] # item 1
[1] 10
num[c(1,3)] # items 1 and 3
[1] 10 12

This syntax applies to the matrix and data.frame objects by indicating the
row and/or the column index following the syntax:

objectname[row index, column index]

Therefore, we can extract unique cells, columns, or rows as demonstrated here
for a matrix:

mat[1,1] # first cell
[1] 10
mat[1,] # first row
[1] 10 12
mat[,1] # first column
[1] 10 11

and a data.frame:

df[,1:2]
x y

1 10 A
2 11 B
3 12 C
4 13 D
df[-(1:2),]

x y z

(continued)

56 3 What Is R?

3 12 C FALSE
4 13 D TRUE
df[,c(1,3)]

x z
1 10 TRUE
2 11 FALSE
3 12 FALSE
4 13 TRUE

The array objects are defined with n dimensions that are each indexed leading
to the syntax

objectname[index, index, ..., index]

The object ary has three dimensions; we therefore need to set three indices
separated with two commas. To get the single first value, we need to provide three
dimensions:

ary[1, 1, 1]
[1] 10

But if we wanted to get the first matrix, we leave the two first indices blank:

ary[, , 1]
[,1] [,2]

[1,] 10 12
[2,] 11 13

The list objects are indexed by using double square brackets [[]] following:

objectname[[index]]

For instance, to get the second component of the list lst, we run:

lst[[3]]
[1] "Bye bye moon"

3.3 Do You Speak R? 57

However, this third component was named z that we can use with a $ to extract
it:

lst$z
[1] "Bye bye moon"

As a data.frame is a special case of a list with columns being components,
we can apply the same syntax and extract data.frame columns by their name:

df$z
[1] TRUE FALSE FALSE TRUE

Eventually, there is special case with the particular s4 objects. This objects are
a bit particular, their components are termed slots, and they are identified with an @
replacing the $. Here is the syntax:

objectname@component

To conclude, try to remember that (1) square brackets [], either simple or
double, have to be used with objects, (2) normal brackets () with functions, (3)
curly brackets{} with control flow and function writing, and (4) named components
can be called with either a $ or a @ symbol.

3.3.6.2 Finding an Item Position

To find visually the position of an item or several indices in a long vector or large
matrix is not possible. The solution is to ask the position to R with the function
which() that follows the syntax:

which(objectname logical-operator value)

For instance, the following command returns that the value 11 is in second
position in the vector num:

which(num==11)
[1] 2

58 3 What Is R?

If we had to ask to R where the females in the factor fact are, we should write:

which(fact=="Female")
[1] 2 3

We can apply which() to a matrix. Setting the argument arr.ind to TRUE
returns the row and column numbers of the positions searched for, something like
in a Battleship game. In the following, we look for the value 11 in mat:

which(mat==11)
[1] 2
which(mat==11, arr.ind=TRUE)

row col
[1,] 2 1

Similarly for an array, we obtain:

which(ary==11)
[1] 2
which(ary==11, arr.ind=TRUE)

dim1 dim2 dim3
[1,] 2 1 1

But this action is not possible in a heterogeneous list as the object lst; we need
to run which() on each component of the list:

which(lst$x==11)
[1] 2
which(lst$y==11, arr.ind=TRUE)

row col
[1,] 2 1

Eventually, it is often necessary, in particular in sound analysis, to localize the
minimum and/or the maximum of an object. This can be obtained with the function
which.min() and which.max(), respectively:

3.3 Do You Speak R? 59

which.min(num)
[1] 1
which.max(num)
[1] 4

The results returned by which() can be used to obtain the values of the items
searched for. If we want to know which values of num are superior or equal to 11,
we should run:

pos <- which(num >= 11)
num[pos]
[1] 11 12 13

or more simply:

num[num>=11]
[1] 11 12 13

3.3.6.3 Concatenating Objects

R includes a series of fundamental functions to concatenate or bind values and/or
objects. We already met one of the most used function c() to combine values in a
vector or to combine vectors. We can concatenate values:

c(1.618, 3.14)
[1] 1.618 3.140
c("hello", "moon")
[1] "hello" "moon"

values and vectors:

num2 <- c(num, 1.62, 3.14)
num2
[1] 10.00 11.00 12.00 13.00 1.62 3.14

60 3 What Is R?

or vectors:

c(num, num2)
[1] 10.00 11.00 12.00 13.00 10.00 11.00 12.00 13.00 1.62

[10] 3.14

Rows and columns of matrix and data.frame can be combined with the
functions rbind() and cbind() to bind rows and columns, respectively:

rbind(mat, 15:16)
[,1] [,2]

[1,] 10 12
[2,] 11 13
[3,] 15 16
rbind(df, c(5, "D", FALSE))

x y z
1 10 A TRUE
2 11 B FALSE
3 12 C FALSE
4 13 D TRUE
5 5 D FALSE

cbind(mat, 15:16)
[,1] [,2] [,3]

[1,] 10 12 15
[2,] 11 13 16
cbind(w=c(0,0,1,0), df)

w x y z
1 0 10 A TRUE
2 0 11 B FALSE
3 1 12 C FALSE
4 0 13 D TRUE

The insertion of rows and columns is intuitively achieved by using indexing. So
to insert a row:

rbind(mat[1,], 15:16, mat[2,])
[,1] [,2]

[1,] 10 12
[2,] 15 16
[3,] 11 13

(continued)

3.3 Do You Speak R? 61

rbind(df[1,], c(5, "D", FALSE), df[2:4,])
x y z

1 10 A TRUE
2 5 D FALSE
21 11 B FALSE
3 12 C FALSE
4 13 D TRUE

and to insert a column:

cbind(mat[,1], 15:16, mat[,2])
[,1] [,2] [,3]

[1,] 10 15 12
[2,] 11 16 13
cbind(x=df[,1], w=c(0,0,1,0), df[,2:3])

x w y z
1 10 0 A TRUE
2 11 0 B FALSE
3 12 1 C FALSE
4 13 0 D TRUE

3.3.6.4 Reading and Saving Objects

Objects can be imported or exported through specific functions that are summarized
in Table 3.4. Each function has specific arguments to tune the import or the export
like the cell separator format, the decimal format, and the occurrence of row names.
These arguments will not be detailed here, but it is essential to understand their use
to avoid data corruption.

Table 3.4 Import and export of R data

File format File extension In Out

ASCII file No specific extension scan() write()

Text file .txt, .dat read.table() write.table()

Tab-formatted file .csv file read.csv() write.csv()

Binary file No specific extension readBin() writeBin()

R compressed file format .Rdata load() save()

Main functions to import and export data of different formats into and out of R

62 3 What Is R?

3.3.7 Vectorization and Recycling

Most of R operations are vectorized. This means that an operation does not only
perform on the first item of an object but on all of them. Vectorization is a kind of
implicit loop making programming much easier than with other languages.

The addition of a single value to a vector is achieved with:

num + 3
[1] 13 14 15 16

The multiplication of two vectors of same length is obtained as:

num * num
[1] 100 121 144 169

The natural logarithm of a matrix is simply returned with:

log(mat)
[,1] [,2]

[1,] 2.302585 2.484907
[2,] 2.397895 2.564949

Another nice side of vectorization is the replacement of items through indexing
without a loop:

num[num > 11] <- "white"
num[num <= 11] <- "black"
num
[1] "black" "black" "white" "white"

We previously solved this problem (see Sect. 3.3.5.1) with an even more compact
solution generating a new object:

num.color <- ifelse(num>11, yes="white", no="black")
num.color
[1] "white" "white" "white" "white"

3.3 Do You Speak R? 63

l

l

l

l

5 10 15 20

5
10

15
20

Index

va
r

Fig. 3.1 Vectorization and recycling. This graphic uses data recycling (argument color) and
vectorization (argument cex)

In addition, R can recycle the items of an object when vectorization operations
are requested on objects of dissimilar length. This can be very useful in particular
for graphics as in the following example the recycles color and point size (Fig. 3.1):

var <- 1:20
plot(var, col=1:4, pch=var, cex=var/4)

However recycling can be quite dangerous. For instance, it is possible to add two
vectors of different length or two matrices of different dimensions as the missing
items are replaced by the first items adjusting artificially the size of the objects.
Here is an example of a dangerous recycling:

The addition of the two vectors of different length:

1:3 + 1:5
[1] 2 4 6 5 7

is equivalent to:

c(1,2,3,1,2) + 1:5
[1] 2 4 6 5 7

Vectorization and recycling are such common and intuitive that it is necessary
to carefully check the length and dimensions of the objects in case of doubt. This

64 3 What Is R?

should allow to avoid important mistakes in particular in scripts with loops and
conditions.

3.3.8 Handling Character Strings

Even if sound analysis and synthesis have nothing to deal with text and linguistics, it
is often necessary to manipulate character chains for manipulating factors or plotting
text on graphics. There are a few basic functions to write text properly with R. The
concatenating function c() can generate vectors of several character strings:

c("My", "first", "spectrogram", "with R")
[1] "My" "first" "spectrogram" "with R"

However, this does not make a sentence, only a vector made of four items or cells.
To obtain a sentence, we need to paste the four items with the function paste():

paste("My", "first", "spectrogram", "with R")
[1] "My first spectrogram with R"

By default the function paste() introduces a white space between the terms,
but this can be changed with the argument sep:

paste("My", "first", "sound", "analysis", "with", "R", sep="-")
[1] "My-first-sound-analysis-with-R"
paste("My", "first", "sound", "analysis", "with", "R", sep="/")
[1] "My/first/sound/analysis/with/R"
paste("My", "first", "sound", "analysis", "with", "R", sep="")
[1] "MyfirstsoundanalysiswithR"

It may be necessary to extract or to split a character string. The function
substr() extracts the characters between the position start and end when
the function strsplit() splits the character string following a pattern specified
in the argument split:

substr("sound.wav", start=1, stop=5)
[1] "sound"

(continued)

3.3 Do You Speak R? 65

strsplit("sound_analysis_with_R", split="_")
[[1]]
[1] "sound" "analysis" "with" "R"

3.3.9 Drawing a Graphic

R is a splendid tool to produce high-quality, simple, or intricate graphics that exactly
meets your need. There is almost no limitation to visualize your data converting
again a software user into a designer. The graphical power of R is mainly due to the
organization of graphical functions into four main groups of functions:

• high-level functions that produce a complete graphic,
• parametrization functions that control the general appearance of the graphic,
• low-level functions that complete or decorate a high-level function plot by adding

text, arrows, rectangle, etc.,
• plate organization functions that organize several graphics into a single plate.

3.3.9.1 High-Level Plot Functions

R has several functions that draw a complete plot. The main high-level plot function
is plot(). This function draws a classical X–Y plot as shown in Fig. 3.2 that maps

l

l

l
l

l

l

l l

l

l

l

l

ll

l

l

l

l

ll

l

l
l

l
l

l

l
l
l

l
l

l

l
l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
ll

l

l

ll

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l

ll

l l

l

l

l

l

l

l
l

l

l

l

l

l
l l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l
l

l

l

l

l

l

l

ll

l

l

l

l
l

ll l

l

l
l

l

l

l

l

l

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

iris$Sepal.Length

iri
s$

Se
pa

l.W
id

th

Fig. 3.2 Scatter plot. A simple X–Y scatter plot with the Sepal.Length and Sepal.Width
variables of the dataset iris

66 3 What Is R?

the length and the width of the sepal of four species of iris included in the dataset
iris. This is a classic dataset used that includes morphometric variables of three
iris species, namely, Iris setosa, Iris versicolor, and Iris virginica (Fisher 1936):

data(iris)
plot(iris$Sepal.Length, iris$Sepal.Width)

The behavior of the plot() may change according to the attributes of the
objects to be visualized. For instance, the function hclust() runs a hierarchical
cluster analysis on a dissimilarity matrix that can be plot as a classification tree with
plot(). The following lines, slightly modified from the help page of hclust(),
run a cluster analysis and draw the decision tree on the dataset USArrests:

hc <- hclust(dist(USArrests))
plot(hc)

The function plot() can even accept a function as an input. The next command
draws the sinus function between −π and +π :

plot(sin, -pi, pi)

There are also specific high-level functions, somehow classical plot functions, to
plot a histogram (hist()), a barplot (barplot()), a boxplot (boxplot()), a
pie chart (pie()), and a dot chart (dotchart()). This short list of plot functions
is not exhaustive as hundreds of graphical functions are implemented in packages.

Most of the high-level plot functions have the following fundamental arguments
that can be used to change the main graphical parameters:

main main title (above the graphic)

sub subtitle (under the graphic)

xlab label of the x axis

ylab label of the y axis

ylim limits of the y axis

xlim limits of the x axis

3.3 Do You Speak R? 67

3.3.9.2 Parametrization

The general appearance of an R plot can be completely modified with a long list of
parameters that are available in the function par():

bg background color

cex, cex.axis, etc character and symbol sizes

col, col.axis, etc colour

fg foreground color

font, font.axis, etc font of the text

las style (orientation) of axis labels

lty line type

lwd line width

pch point symbol

xaxt, yaxt axis type

xlog, ylog logarithm scale

...

These options can be either set with the function par() or with high-level plot
functions that redirect to par(). However, the effects might slightly differ. For
instance, setting character size to 2 with par() increases the size of all characters
and symbols when setting it within plot() affects the size of the symbol only. The
following instructions are not equivalent:

par(cex=2)
plot(Sepal.Length, Sepal.Width)

plot(Sepal.Length, Sepal.Width, cex=2)

So remember to check the help of par() function when you need to change a
graphical parameter rather than searching in the plot function help.

3.3.9.3 Low-Level Plot Functions

It is often required to add items to an existing plot. This is achieved with low-level
functions that can help in marking a graph. The functions can be classified in three
main categories:

68 3 What Is R?

• functions to add text,

– text() to add text within the plot region, i.e., within the region delimited by
the axes,

– mtext() to add text in the margins of the graphic,
– plotmath() to write symbols and mathematical expressions,
– title() to add main and subtitles,

• functions to add a geometric shape,

– points() to add points,
– abline() to add a y = ax + b line,
– lines() to add lines,
– segments() to add segments,
– arrows() to add arrows,
– rect() to draw a rectangle,
– polygon() to draw a polygon,
– box() to add a frame around the plot,

• functions to add graphic items,

– axis() to add an axis including ticks and labels on any side of the plot,
– legend() to add a legend specifying the symbols, lines, or colors used to

discriminate groups of data,
– grid() to add a line grid within the frame.

All these parameters can be used successively in a script as in the following code
that was used to produce Fig. 3.3:

data(iris)
par(las=1)
plot(iris$Sepal.Length, iris$Sepal.Width,

pch=20, cex=1.5, col=as.numeric(iris$Species),
main="Iris sepal size",
xlab="Sepal length", ylab="Sepal width")

grid(col="lightgrey")
axis(side=4)
legend("topright",

legend=c("setosa", "versicolor", "virginica"),
col=1:3, pch=19, bg="white", text.font=3)

points(mean(iris$Sepal.Length), mean(iris$Sepal.Width),
pch="+", col=4, font=2, cex=2)

arrows(x0=6.25, y0=4, y1=4, x1=5.9, length=0.1)
text(x=6.75, y=4, labels="Important point")
box(lwd=3)

However, it is not possible to undo a change. A modification of a command
implied to run another time all the script to get an updated graphic.

3.3 Do You Speak R? 69

ll

l

l
l

l

l

l l

l

l

l

l

ll

l

l

l

l

ll

l

l
l

l
l

l

l
l
l

l
l

l

l
l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
ll

l

l

ll

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l

ll

l l

l

l

l

l

l

l
l

l

l

l

l

l
l l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l
l

l

l

l

l

l

l

ll

l

l

l

l
l

ll l

l

l
l

l

l

l

l

l

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

4.0

Iris sepal size

Sepal length

Se
pa

l w
id

th

2.0

2.5

3.0

3.5

4.0

l

l

l

setosa
versicolor
virginica

+

Important point

Fig. 3.3 Graphic tuning. A meaningless example of graphic changes using low-level plot
functions

3.3.9.4 Organizing a Plate of Graphics

Plotting a single graphic is, in most case, not enough in particular when publishing in
scientific journals that struggle against white space. Most of scientific illustrations
are based on several graphics combined in a single plate. Combining graphics in
drawing or illustrating software can be turned to a nightmare due to sources that may
have different resolutions, sizes, color encodings, fonts, and file formats. Updating
such a plate can also be very time consuming as sources can be not linked to the plate
file and can be lost. layout() is a fancy function that can do all the job without
quitting R. Thanks to this function you can prepare the layout of your plate and
include graphics generated within R or out of R by importing drawings or pictures
in usual graphics file formats like .png or .jpg. The principle of layout() is
simple and brilliant. The first thing is to draw on a piece of paper the layout of your
plate with each graphic numbered. This can look like the drawing of a 5-year-old
child shown in Fig. 3.4.

You then only need to convert your work of art into a numeric matrix with the
following simple rules: divide your drawing in a regular number of cells which
dimensions should fit with the smallest graphic, number these cells with the number
of each graphic so that several cells covered by a graphic have the same number, and
give the number 0 to white cells. For the sketch shown in Fig. 3.4, this should give
the following matrix that is filled by rows by setting the logical argument byrow to
TRUE:

70 3 What Is R?

Fig. 3.4 Layout plate
scheme by a 5-year-old hand.
The first step of composing
an R graphic plate is to take a
pen and piece of paper and to
draw it! Colors are not
necessary. . .

drawing <- matrix(c(1,1,3,2,0,3), nrow=2, byrow=TRUE)
drawing

[,1] [,2] [,3]
[1,] 1 1 3
[2,] 2 0 3

We now can feed the function layout() with this matrix. However, our sketch
shows that the graphic 1 is about three times larger than the graphic 3 and that the
height of the graphic 1 is roughly half the height of the graphic 2. This information
has to be provided to layout() with the arguments width and height.
Both argument work with relative values such that setting height=c(1,2) is
equivalent to height=c(0.5,1). The last step is to see the layout we prepared;
this is achieved with the function layout.show() (Fig. 3.5).

layout(drawing, width=c(3,1), height=c(1,2))
par(cex=3)
layout.show(3)

All we have to do now is to fill in the sections of the plate with graphics. The
graphics are added in the numbered order so that the flow of the script should follow
plate numbering.

3.3 Do You Speak R? 71

Fig. 3.5 Layout plate
scheme with layout(). We
first prepare the layout by
generating an appropriate
matrix. The size of the
graphic numbers is increased
with the function par()

1

2

3

3.3.9.5 ggplot2 Alternative

Another family of R plots was introduced with the package ggplot2 written by
Wickham (2009). These graphics are of high quality and offer new possibilities to
display data in a very efficient and elegant way. The success of ggplot2 among
the R community is tremendous such that there is no way to escape it. However
ggplot2 graphic production is based on a particular code grammar that cannot
be detailed here and the packages dealing with sound (see Sect. 3.4.2) do not
use ggplot2 except the function ggspectro() of seewave. ggplot2 will
therefore not be considered here.

3.3.9.6 Saving Graphics

R can save graphics in a long list of graphic formats. For sound analysis and
synthesis, it seems that only two file formats are necessary. The .pdf format
produces high-quality vector files that is recommended in almost all cases, including
writing reports, thesis, or scientific articles. This format is of high interest because
graphics can be resized without resolution loss.

However, if a graphic contains a high number of points—as it is the case of
spectrograms (see Chap. 11)—the size of the .pdf file may increase significantly
reaching several Mo that may be difficult to open or to handle with word processors.
The solution is to switch to a raster or bitmap file composed with pixels. Among the
several raster formats available, the format .png ensures a good resolution with
lossless compression and has the main advantage to be an open format.

Graphical user interfaces, as RStudio, may provide interactive options to save
graphics, but these are only graphical wrappers of R functions, and the best solution
is certainly to use directly these functions in scripts.

There are different ways to save plots in .pdf or .png, but the most convenient
and efficient solution is (1) to open an external graphic file, (2) to write the graphical
R instructions, and (3) to close the file. These three stages lead to the following
pseudo-code:

72 3 What Is R?

open file
code to generate a graphic
close file

The R open file instruction is pdf() or png() and the instruction to close the
file, or device, is dev.off(). If we wish to save a simple plot in a .pdf file
named my_first_plot.pdf, we have to run the following commands:

pdf("my_first_plot.pdf")
plot(1)
dev.off()

or for .png:

png("my_first_plot.png")
plot(1)
dev.off()

The plot is saved in the R working directory. The complete path to a specific
directory where graphics are saved can be specified in the file name argument. The
path depends on the operating system in use. The code to produce the graphics can
be as long as needed. This code can include analyses, not only plotting instructions.

The functions pdf() and png() have several arguments to control the size
and the properties of the file. Usually there are few modifications to apply to the
default values of the pdf() arguments, but it may be required to increase the size
of the graphics device. This is mainly achieved with four arguments that have to be
changed in conjunction: width and height of the device that are given in either
pixels, inches, cm, or mm as specified in the argument units and pointsize
that sets up the default point size of the plotted text. Increasing the width and height
should be accompanied with an increase of point size, or puzzling graphics may
pop up. For instance, the following instructions produces a large graphic with tiny
labels:

png("plot.png", width=1200, height=1200)
plot(1)
dev.off()

3.3 Do You Speak R? 73

It is necessary to increase the point size from the default value 12 to a new value
24 to obtain regular text size:

png("plot.png", width=1200, height=1200, pointsize=24)
plot(1)
dev.off()

The R graphical window display may slightly differ from the content of the
graphics file. It is often safe to open the saved file to check the graphical output.

3.3.10 Scripting

An R user ends up very quickly with a long series of commands that constitute a
script. Such script should be saved in .r (alternatively.R) file that can be opened by
any code or text editor. Here follow some counsels to write repeatable and efficient
scripts5:

• use an adapted R editor or GUI which offers at least syntax coloration, parenthe-
sis matching, and auto-completion,

• include all the steps necessary to repeat the script without requiring the use of a
mouse. This includes, for instance, code to load necessary packages, to change
the working directory, to import data, to export graphics, and to save data,

• choose simple and short names for external files and internal objects. Avoid
special characters and white space that might be complex to handle,

• comment your scripts by placing a hash symbol (#) before your comments so
that you can understand what you have done a few days or years later,

• try to avoid to place several commands on the same script line,
• indent your code on the right with tabulations so that start and end of loops or

long new functions can be easily determined,
• comment the script lines that seem to be useless but do not delete them; they

might be useful later,
• replace when possible for loops by apply() and apply-like functions to

speed up the computing process,
• avoid importing heavy files which may saturate the RAM,
• clean the RAM by removing unnecessary objects with rm(),
• call print(i) in loops to display the current iteration,
• save regularly your script on your local computer and on external backup devices,
• go out and run some kilometers in the forest if too many bugs invade your script.

5See Wickham (2014) for a complete description of efficient R programming.

74 3 What Is R?

Once properly written a script can be called with a single line of code by taking
advantage of the function source(). This function just runs the code saved in an
.r file. Its use is trivial:

source("myscript.r")

Another solution is to run a script without opening the graphical interface of R.
This can be useful to gain memory access or to include an R application in a shell
program. This is achieved by running in the Unix terminal (MaxOS, Linux):

R CMD BATCH myscript.r

Windows make things more complex as it is necessary to find the path to the
executable. Here is an example with a 64 bit Windows system and R version 3.3.4;
this command line should be adjusted to your configuration:

"C:\Program Files\R\R-3.3.4\bin\x64\R.exe" CMD BATCH
"myscript.r"

In each case, it might be necessary to specify the path to the .r file,
like "home/username/Desktop/myscript.r" for Unix system or
"C:\analysis\myscript.r" for a Windows system.

3.3.11 Calling External Software

Some functionalities might not be available in R, and it may be hence required to call
external software (see Sect. 3.4.1). For instance, R might not be interactive enough
for some users, as users wish to quickly explore through time navigation long sound
files. In that case, external software can be launched from R with the command
system(). In Unix system the function is easy to use; it only requires to include
between quotes the command that would be written in the shell terminal. Audacity
is a free and nice interactive and graphical audio editor that can be very useful. The
following Unix command open with Audacity the file theremin.wav stored in a
directory named sample:

system("audacity sample/theremin.wav")

On a PC running with 64 bit Windows system, the same command is consider-
ably more complex to write. We need to find the full paths to the .exe program
and to the .wav file. We also need to make use of the function shQuote so that
the command is correctly quoted for Windows command line:

3.4 R and Sound 75

exename <- "C:/Program Files (x86)/Audacity/audacity.exe"
filename <- paste(getwd(), "/sample/theremin.wav", sep="")
system(paste(shQuote(exename), shQuote(filename, type="cmd")))

The path to the .exe file would probably need to be adapted to your Windows
version and configuration. The system() function is probably even more use-
ful when invoking command line-driven software as SoX (see Sect. 3.4.1). SoX
includes a very long list of capabilities that might be worth to invoke from R.
As a simple example, the following Unix instruction generates a new file named
theremin-slow.wav slowed down in time by a factor of 2 without modifying
the pitch of the sound6:

system("sox sample/theremin.wav sample/theremin-slow.wav
tempo 0.5")

3.4 R and Sound

3.4.1 To Use or Not to Use R for Sound Analysis?

Before going deep into the details of how R manages sound, it is legitimate to
wonder whether R can behave as a good audio software when there is an army
of other softwares. We can try to list in an objective way the pros and cons to use R
mainly based on the properties of R as introduced above (see Sect. 3.1).

We vote for R to analyze and synthesize sound because:

• R is free and open,
• R ensures reproductibility of work,
• R is a collaborative project,
• R can be tuned to specific needs,
• R can run batch work,
• R is an integrative tool that can run upstream (data management, protocol

sampling, etc.) and downstream (statistics, data visualization, etc.) analyses,
• R produces high-quality graphics.

We may denigrate R to analyze and synthesize sound because:

• R memory management is not optimized,
• R graphic device is slow,

6Note that the seewave package has a function sox() that can help in parsing SoX from R.

76 3 What Is R?

• R is not interactive.

To conclude, R seems to be a pertinent solution for sound analysis and synthesis
but not for aural and visual inspection of sounds. This preliminary, but imperative,
step of acoustic studies can be achieved with recording and editing software. There
are actually free alternatives to R listed here by alphabetic order:

Audacity is a free, easy-to-use, multitrack audio editor and recorder for Windows,
Mac OS X, Linux, and other operating systems. The interface is translated into
many languages,
http://audacity.sourceforge.net

Praat is a command-driven software dedicated to the analysis of speech in
phonetics. It includes several analysis functions that can be run on a wide
range of operating systems, including various versions of Unix, Linux, Mac, and
Microsoft Windows,
http://www.fon.hum.uva.nl/praat/

Raven is a software program for the acquisition, visualization, measurement, and
analysis of sounds,
http://www.birds.cornell.edu/brp/raven/ravenoverview.html

Sonic Visualizer provides waveform and spectrogram audio visualizations for use
with files of music audio data,
http://www.sonicvisualiser.org/

Syrinx is a Windows sound recording/editing/playback program including visual
analysis, printing, and illustration of spectrographs, time/frequency measure-
ments, and real-time automated sound event recording,
http://www.syrinxpc.com/

WaveSurfer is an open-source tool for sound visualization and manipulation. Typ-
ical applications are speech/sound analysis and sound annotation/transcription.
WaveSurfer may be extended by plug-ins as well as embedded in other applica-
tions,
http://www.speech.kth.se/wavesurfer/

3.4.2 Main Packages

Here is the official description of the main R packages we may need to run sound
analysis and synthesis. The main author/maintainer with his/her affiliation and the
first date of publication are given between square brackets. Packages considered in
this book are marked with a {*}; packages removed from CRAN are indicated with
a {†}. The list, which can be converted as a network (Fig. 3.6), follows a historical
order:

sound† basic functions for dealing with .wav files and sound samples [Matthias
Heymann, Germany, 31 August 2002]

http://audacity.sourceforge.net
http://www.fon.hum.uva.nl/praat/
http://www.birds.cornell.edu/brp/raven/ravenoverview.html
http://www.sonicvisualiser.org/
http://www.syrinxpc.com/
http://www.speech.kth.se/wavesurfer/

3.4 R and Sound 77

l

l

l

l

l

l

l

l

audio

beepr

dtw

fftw

monitoR

phonTools

ProTrackR

seewave

signal

soundgen

tuneR

warbleR

soundecology

degree

l

l
1

2

3

4

6

Fig. 3.6 Directed network of CRAN packages dedicated to sound. The network was constructed
based on the main directed relationships between CRAN packages dedicated to sound. The size,
or degree, of each node corresponds to the number of connections. This highlights the central
position of tuneR and seewave. Built with the package network (Butts 2008) and drawn with
the package GGally (Schloerke et al. 2017)

tuneR* collection of tools to analyze music, extract features like MFCCs, handle
wave files, read mp3, transcription, . . . Also contains functions ported from
the rastamat Matlab package [Uwe Ligges, Technical University of Dordmund,
Germany, 11 September 2004]

seewave* functions for analyzing, manipulating, displaying, editing, and syn-
thesizing time waves (particularly sound). This package processes time analysis
(oscillograms and envelopes), spectral content, resonance quality factor, entropy,
cross correlation and autocorrelation, zero-crossing, dominant frequency, ana-
lytic signal, frequency coherence, 2D and 3D spectrograms, and many other
analyses [Jérôme Sueur, Muséum national d’Histoire naturelle, France, 10 March
2006]

signal* a set of signal processing R functions originally written for Mat-
lab/Octave. Includes filter generation utilities, filtering functions, resampling
routines, and visualization of filter models. It also includes interpolation func-
tions [Uwe Ligges, Technical University of Dordmund, Germany, 10 December
2006]

78 3 What Is R?

audio* interfaces to audio devices (mainly sample-based) from R to allow
recording and playback of audio. Built-in devices include Windows MM, Mac
OS X AudioUnits, and PortAudio (the last one is very experimental) [Simon
Urbanek, AT&T Research Labs, USA, 29 September 2008].

playitbyr† a flexible toolkit for data sonification, with syntax modeled after
the ggplot2 package. The functions allow the user to map data onto sonic
parameters like pitch, tempo, and rhythm and output sound and sound files [Ethan
Brown, 19 December 2011]

csound† provides basic access in an R session to Csound http://www.csounds.
com, a powerful free and open-source software sound synthesizer. The package
functionality is largely geared toward supporting the needs of the playitbyr
package for sonification and is not particularly mature on its own. But it
certainly can be used without knowing anything about playitbyr [Ethan Brown,
19 December 2011]

phonTools* contains tools for the organization, display, and analysis of the
sorts of data frequently encountered in phonetics research and experimentation,
including the easy creation of IPA vowel plots and the creation and manipulation
of WAVE audio files [Santiago Barreda, University of California Davis, USA, 24
July 2012]

audiolyzR creates audio representations of common plots in R [Eric Stone,
AT&T Research Labs, 17 February 2013]

soundecology* functions to calculate indices for soundscape ecology and
other ecology research that uses audio recordings [Luis J. Villanueva-Rivera,
USA, University of Purdue, USA, 10 November 2013]

monitoR* acoustic template detection and monitoring database interface [Sasha
D. Hafner and Jon Katz, The University of Vermont, USA, 31 March 2014]

beepr Easily plays notification sounds on any platform [Rasmus Bååth, Lund
University, Sweeden, 26 June 2014]

warbleR* a tool to streamline the analysis of animal acoustic signal structure.
The package offers functions for downloading avian vocalizations from the
open-access online repository xeno-canto, displaying the geographic extent of
the recordings, manipulating sound files, detecting acoustic signals or import-
ing detected signals from other software, assessing performance of methods
that measure acoustic similarity, conducting cross-correlations, dynamic time
warping, measuring acoustic parameters, and analyzing interactive vocal sig-
nals, among others. Most functions working iteratively allow parallelization
to improve computational efficiency [Marcelo Araya-Salas and Grace Smith
Vidaurre, Cornell University, USA, 24 July 2015]

ProTrackR “ProTracker” is a popular music tracker to sequence music on a
Commodore Amiga machine. This package offers the opportunity to import,
export, manipulate, and play “ProTracker” module files. Even though the file
format could be considered archaic, it still remains popular to this date. This
package intends to contribute to this popularity and therewith keeping the legacy
of “ProTracker” and the Commodore Amiga alive [Pepijn de Vries, 26 September
2015]

http://www.csounds.com

3.4 R and Sound 79

soundgen tools for sound synthesis and acoustic analysis. Performs parametric
synthesis of sounds with harmonic and noise components such as animal
vocalizations or human voice. Also includes tools for spectral analysis, pitch
tracking, audio segmentation, self-similarity matrices, and morphing [Andrey
Anikin, 4 September 2017].

3.4.3 How to Install seewave

This book is mainly dedicated to the package seewave. seewave is linked
to other R packages and requires some external tools (Fig. 3.7). seewave is
principally linked to tuneR which is itself linked to signal. To increase the
speed of Fourier transform computation (see Chap. 10), some seewave functions
also refer to the package fftw written by Uwe Ligges. This package is a wrapper
around the Fast Fourier Transform in the West (FFTW v.3.3), a C subroutine
library for computing the discrete Fourier transform. In a similar effort to reduce
computation time, a seewave function uses LIBSNDFILE, a widely used C
library written by Erik de Castro Lopo for reading and writing audio files. These
necessary dependencies imply that these packages and C libraries should be install

libsndfile* fftw3

signal*

tuneR* fftw ggplot2

seewave

rgl rpanel

OpenGL Bwidget SoX flac

Fig. 3.7 Flowchart of seewave dependencies. R packages are in rounded boxes. External tools
are in framed rounded boxes. Mandatory items are labeled with a star (*). Drawn with the package
diagram (Soetaert 2014)

80 3 What Is R?

upstream before to try to install seewave. Both FFTW and LIBSNDFILE are
usually installed by default on Windows systems. On Mac OS, the Mac package
manager brew can be used to install the desired libraries.

brew install libsndfile
brew install fftw

On Ubuntu-like systems the external libraries can be installed with the following
shell commands:

sudo apt-get install libfftw3-3 libfftw3-dev
sudo apt-get install libsndfile1 libsndfile1-dev

When everything is properly installed, the following instruction should finish the
process:

install.packages(c("signal", "tuneR", "seewave"))
library(tuneR)
library(seewave)

However, there are three additional suggested packages. These packages are not
necessary to install seewave, but they are required to run some specific functions.
Among these three packages, the package rpanel, which produces graphical user
interfaces, works with Tcl/Tk language and the external library BWidget. This
library is installed by default on almost all operating systems, but it might be
necessary to run the following command under Ubuntu-like systems:

sudo apt-get install bwidget

The package rgl is used to generate 3D dynamics graphics. rgl package is
based on the external library OpenGL. The installation of rgl is straightforward
on Windows, but there might be some issues with Linux so the package should
be downloaded and installed directly from the terminal with the following shell
command:

sudo apt-get install r-cran-rgl

We should then be ready to start with R and sound!

Chapter 4
Playing with Sound

We have seen in the previous chapter general facts about R objects and functions.
Here we will see the peculiarities of R objects that contain sound and how to handle
them.

4.1 Object Classes

Classes of objects that can contain sound can be grouped into three main groups:

1. Usual numeric classes: vector, matrix, and data.frame
2. Time series classes: ts and mts
3. Sound-specific classes: audioSample, sound, and Wave

4.1.1 vector, matrix, data.frame Classes

Any numeric vector can be considered as a sound as soon as the sampling frequency
fs is known. A 440 Hz tuning fork sine sound sampled at fs = 8000 Hz during 1 s
can be generated as a vector with the following code:

v.sound <- sin(2*pi*440*seq(0,1,length.out=8000))

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_4&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_4

82 4 Playing with Sound

We can check the properties of the object:

is.vector(v.sound) # class
[1] TRUE
mode(v.sound) # mode
[1] "numeric"
length(v.sound) # number of samples
[1] 8000

Similarly, any one-column matrix, or any column of a matrix or any column
of a data.frame, can be considered as sound as soon as the sampling frequency
fs is known and could be used later in specific sound functions. For a one-column
matrix, we would have:

m.sound <- as.matrix(v.sound)
is.matrix(m.sound) # class
[1] TRUE
mode(m.sound) # mode
[1] "numeric"
dim(m.sound) # dimensions
[1] 8000 1

For one-column data frame, this would be:

df.sound <- data.frame(v.sound)
is.data.frame(df.sound) # class
[1] TRUE
mode(df.sound) # mode
[1] "list"
dim(df.sound) # dimensions
[1] 8000 1

4.1.2 ts and mts Classes

Time series analysis is an important topic in statistics mainly because time series
are the focus of econometry and finance. As detailed by the CRAN Task View
dedicated to time series analysis,1 there are more than 220 packages related to time

1https://cran.r-project.org/web/views/TimeSeries.html

https://cran.r-project.org/web/views/TimeSeries.html

4.1 Object Classes 83

series. These packages cover, among others, time and date formatting, forecasting,
frequency analysis, decomposition and filtering, seasonality, models, and nonlinear
time series. Most of these utilities are not relevant for sound analysis and synthesis,
but, as mentioned in Sect. 2.3, sound being a time series, it is relevant to know how
time series are treated by R.

The fundamental time series class is ts that can represent regularly spaced
time series using numeric time stamps. The class ts is particularly well-suited for
annual, monthly, and other calendar periods. If we come back to the monthly mea-
surements of ambient carbon dioxide CO2 concentration (see Sect. 2.3), the dataset
co2 is a time series including 468 observations taken every month from 1959 to
1998. This information can be retrieved with a set of functions as shown here:

data(co2)
is.ts(co2) # class
[1] TRUE
length(co2) # number of observations
[1] 468
start(co2) # date of start
[1] 1959 1
end(co2) # date of end
[1] 1997 12
deltat(co2) # time resolution, here 1/12 of a year
[1] 0.08333333
frequency(co2) # sampling frequency, here 12 times / year
[1] 12

These data can be visualized with the function plot.ts() or directly with
plot() as shown in Fig. 2.16.

Therefore to generate the 440 Hz sound sampled at 8000 Hz, we can use the func-
tion ts and specify that time starts at 0 and ends at 1 and that the frequency of obser-
vation is 8000. In that case, the sampling frequency fs is embedded in the ts object:

ts.sound <- ts(v.sound, start=0, end=1, frequency=8000)
is.ts(ts.sound) # class
[1] TRUE
length(ts.sound) # number of samples
[1] 8001
start(ts.sound) # start of recording
[1] 0 1
end(ts.sound) # end of recording
[1] 1 1
deltat(ts.sound) # time resolution, here 125 ms
[1] 0.000125
frequency(ts.sound) # sampling frequency, here 8000 Hz
[1] 8000

84 4 Playing with Sound

Time (s)

Am
pl

itu
de

0.25 0.26 0.27 0.28 0.29 0.30

−1
.0

−0
.5

0.
0

0.
5

1.
0

Fig. 4.1 Sound as a time series. This is a 0.05 s sound with a carrier frequency of 440 Hz and a
sampling frequency of 8000 Hz. The plot was created with the function plot() applied to a ts
object

Note that the length of ts.sound is not 8000 but 8001. Data of ts objects are
actually recycled: the last value, ts.sound[8001], is the same as the first value,
ts.sound[1].

Such ts object can be manipulated. For instance, a part of the sound can be
extracted, or cut, with the function window(), and later plot to visualize a section
of the time series (Fig. 4.1):

ts.sound.sel <- window(ts.sound, start=0.25, end=0.30)
plot(ts.sound.sel, xlab="Time (s)", ylab="Amplitude", col="blue")

Multiple time series, i.e., a time series made of several time series sampled
together, can be stored in ts objects as several columns of a single matrix. Such
objects are defined by two classes, ts and mts. Each column can describe a sound
such that a two-column matrix could include the two channels of a stereo sound.
Here we build a mts object with a pair of columns, each column containing the
same v.sound vector:

mts.sound <- ts(cbind(v.sound, v.sound),
start=0, end=1, frequency=8000)

is.mts(mts.sound) # class
[1] TRUE

(continued)

4.1 Object Classes 85

dim(mts.sound) # dimensions
[1] 8001 2
start(mts.sound) # start of recording
[1] 0 1
end(mts.sound) # end of recording
[1] 1 1
deltat(mts.sound) # time resolution, here 125 ms
[1] 0.000125
frequency(mts.sound) # sampling frequency, here 8000 Hz
[1] 8000

4.1.3 audioSample Class of the Package audio

The package audio has a specific class of object, the class audioSample, that
facilitates the generation, import, and export of .wav sound samples. This sound-
specific class is essentially a numeric vector for mono audio samples and a numeric
matrix with two rows for stereo audio samples. The functionaudioSample() and
as.audioSample() can be used respectively to generate an audioSample
object and to coerce the class of an object into the audioSample class. The
following command creates a new audioSample object based on the vector
v.sound generated previously. The sampling frequency fs is specified with the
argument rate and the quantization with the argument bits:

sample.sound <- audioSample(v.sound, rate=8000, bits=16)

It is not a good idea to print an audioSample object as the console will return
all the numeric values, or audio samples, of the object. It is therefore advised to
use either the function str() that returns the structure of an object or the function
head() that prints only the six first items of an object. The sampling frequency
fs can be accessed with objectname$rate. Quantization can be obtained with
objectname$bits. The generic function summary() can also be called to get
the main statistics of the sample values:

86 4 Playing with Sound

str(sample.sound)
Class ’audioSample’ atomic [1:8000] 0 0.339 0.637 0.861 0.982 ...

..- attr(*, "rate")= num 8000

..- attr(*, "bits")= int 16
head(sample.sound)
sample rate: 8000Hz, mono, 16-bits
[1] 0.0000000 0.3387786 0.6374906 0.8608080 0.9823196
[6] 0.9876545
sample.sound$rate
[1] 8000
sample.sound$bits
[1] 16
summary(sample.sound)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.000 -0.707 0.000 0.000 0.707 1.000

The duration in s of the file is not provided but can be easily obtained by dividing
the number of samples per the sampling frequency fs :

length(sample.sound)/sample.sound$rate
[1] 1

The duration can be reached in a more convenient way with the seewave
function duration():

library(seewave)
duration(sample.sound)
[1] 1

4.1.4 sound Class of the Package phonTools

The package phonTools, which is dedicated to phonetics, has a specific class
named sound. An object of class sound can be generated with the function
makesound() as in:

sound.sound <- makesound(v.sound, fs=8000)

4.1 Object Classes 87

where fs is the sampling frequency fs . The object is a list with a print method
associated:

sound.sound

Sound Object

Read from file: v.sound.wav
Sampling frequency: 8000 Hz
Duration: 1000 ms
Number of Samples: 8000

str(sound.sound)
List of 5
$ filename : chr "v.sound.wav"
$ fs : num 8000
$ numSamples: int 8000
$ duration : num 1000
$ sound : Time-Series [1:8000] from 0 to 1: 0 0.339 0.637
0.861 0.982 ...
- attr(*, "class")= chr "sound"

The list is made of five items: $filename is a predefined name for a .wav file
if the sound is exported or the name of the .wav file if the sound was imported
into R, $fs the sampling frequency fs , $duration the duration in ms, and
$sound.sound the data. The duration can also be obtained with duration()
of seewave:

duration(sound.sound)
[1] 1

4.1.5 Wave Class of the Package tuneR

The class Wave of the package tuneR can also handle sound samples by reading
.wav files. Wave objects can be directly generated with the function Wave()
specifying the sampling frequency and the number of bits (quantization):

wave.sound <- Wave(v.sound, samp.rate=8000, bit=16)

88 4 Playing with Sound

Wave is a S4 class that includes six slots that can be listed with str():

str(wave.sound)
Formal class ’Wave’ [package "tuneR"] with 6 slots

..@ left : num [1:8000] 0 0.339 0.637 0.861 0.982 ...

..@ right : num(0)

..@ stereo : logi FALSE

..@ samp.rate: num 8000

..@ bit : num 16

..@ pcm : logi TRUE

The data are stored in @left for mono audio samples and in @left and
@right slots for stereo audio samples. The slot @stereo is a logical that indicates
whether the audio sample is mono or stereo. The slot @samp.rate is the sampling
frequency fs , and @bit is the quantization ranging from 8 to 64 by power of 2. The
last slot, named @pcm, is a logical that specifies the format of the audio sample,
either PCM or IEEE. To get all of this information separately, it is necessary to use
the @ indexing of S4 object class:

wave.sound@samp.rate # sampling frequency
[1] 8000
wave.sound@stereo # stereo or mono
[1] FALSE
wave.sound@bit # digitization depth
[1] 16
wave.sound@pcm # PCM or IEEE format
[1] TRUE
length(wave.sound) # number of samples
[1] 8000

There are print and summary methods for Wave objects making the access to the
attributes easy:

summary(wave.sound)

Wave Object
Number of Samples: 8000
Duration (seconds): 1
Samplingrate (Hertz): 8000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

(continued)

4.1 Object Classes 89

Summary statistics for channel(s):

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.000 -0.707 0.000 0.000 0.707 1.000

As for audioSample objects, the duration in seconds of the file is not provided
but can be obtained with:

length(wave.sound)/wave.sound@samp.rate
[1] 1

or with duration() of seewave:

duration(wave.sound)
[1] 1

Since tuneR version 1.0-0, the Wave class definition has been extended to the
class WaveMC to take into account sounds generated or recorded on more than two
channels. In WaveMC, the different channels are placed in a single slot, named
@.Data. This slot is a numeric matrix where each column is representing one
channel. In the following example, we generate a five-channel object:

data <- matrix(rep(v.sound,5), ncol=5)
head(data)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0.3387786 0.3387786 0.3387786 0.3387786 0.3387786
[3,] 0.6374906 0.6374906 0.6374906 0.6374906 0.6374906
[4,] 0.8608080 0.8608080 0.8608080 0.8608080 0.8608080
[5,] 0.9823196 0.9823196 0.9823196 0.9823196 0.9823196
[6,] 0.9876545 0.9876545 0.9876545 0.9876545 0.9876545
waveMC.sound <- WaveMC(data, samp.rate=8000, bit=16)
str(waveMC.sound)
Formal class ’WaveMC’ [package "tuneR"] with 4 slots

..@ .Data : num [1:8000, 1:5] 0 0.339 0.637 0.861 0.982 ...

..@ samp.rate: num 8000

..@ bit : num 16

..@ pcm : logi TRUE

90 4 Playing with Sound

The number of channels can be obtained with the function nchannel():

nchannel(waveMC.sound)
[1] 5

Objects of class Wave generated with previous versions of tuneR can be
updated with the functionupdateWave() to match the new definition. Eventually,
the function equalWave() checks whether two Wave objects are compatibles for
edition, i.e., whether the two objects are of the same class (Wave / WaveMC) and
have the sample sampling frequency, the same quantization, and the same number
of channels.

4.2 How to Read (Load) a Sound

4.2.1 .wav Files

External .wav files can be imported into an R session using either the function
load.wave() of the package audio, the function loadsound() of the
package phonTools, or the function readWave() of the package tuneR.
For instance, a file named tuning-fork.wav stored in a subdirectory named
sample can be loaded with the following command:

sound <- load.wave("sample/tuning-fork.wav") # audio solution
sound <- loadsound("sample/tuning-fork.wav") # phonTools solution
sound <- readWave("sample/tuning-fork.wav") # tuneR solution

If all three functions do the same, which one then to prefer? The function
readWave() has several options that makes it more fancy.

First, readWave() can read a section of a .wav file. This can be extremely
useful when only a part of a long file should be treated. Such a selection can save a
lot of memory. This selective loading is achieved by using the arguments from and
to in conjunction with the argumentunits that specifies the sampling units, either
"samples", "minutes", or "hours". For instance, the following instruction
read the file from the 1000th to the 2000th sample:

4.2 How to Read (Load) a Sound 91

selection <- readWave("sample/tuning-fork.wav",
from=1000, to=2000,
units="samples")

Reading a selection from 0.25 to 0.75 s would be:

selection <- readWave("sample/tuning-fork.wav",
from=0.25, to=0.75,
units="seconds")

Second, the function readWave() can have access to the metadata of a .wav
file without reading the data. This means that the file is not really loaded, occupying
memory space, but that information on its sampling frequency, quantization, number
of samples, or length can be obtained. This is achieved by turning the argument
header to TRUE:

hdr <- readWave("sample/tuning-fork.wav", header=TRUE)
hdr
$sample.rate
[1] 44100

$channels
[1] 1

$bits
[1] 16

$samples
[1] 44100

Third, readWave() import the data as they are without trying to scale values
between −1 and +1. This has two main advantages: (1) this saves memory as
decimal number as those found between −1 and +1 take more memory than
integers, and (2) the raw amplitude of the file can be estimated (see Chap. 7).

Fourth, readWave() can read multichannel files just by setting the argument
toWaveMC to TRUE.

92 4 Playing with Sound

DIY 4.1 — How to read a single channel of a stereo file

How can we import only the left (respectively right) channel of a stereo .wav file with
tuneR? The idea is to import as a numeric vector the left channel using the S4 @left
slot of the Wave object, to read the header of the .wav stereo file, and to combine these
data to create a new mono Wave object:

left <- readWave("sample/tuning-fork-stereo.wav")@left
hdr <- readWave("sample/tuning-fork-stereo.wav",

header=TRUE)
left <- Wave(left, samp.rate=hdr$sample.rate, bit=hdr$bits)
left

Wave Object
Number of Samples: 33408
Duration (seconds): 1.04
Samplingrate (Hertz): 32000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Eventually, the function checkwavs() of the package warbleR offers the
possibility to test whether one or several .wav files can be read a priori by
readWave(). The function has no specific arguments and works directly with the
files found in the working directory. It is therefore mandatory to first use setwd()
to select the directory where the .wav files are stored, in our case, the directory
sample:

library(warbleR)
setwd("sample") # change the working directory
checkwavs() # check
setwd("../") # change back the working directory

To conclude, it seems that readWave() has more options than load.wave()
loadsound() and should be preferred in most cases. This implies that the Wave
class should also be preferred in most cases.

4.2.2 .mp3 Files

Accompanying the function readWave(), the function readMP3() of tuneR
can decode and import .mp3 files into a Wave object:

4.2 How to Read (Load) a Sound 93

mp3 <- readMP3("sample/tuning-fork.mp3")
mp3

Wave Object
Number of Samples: 33408
Duration (seconds): 1.04
Samplingrate (Hertz): 32000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

The package monitoR includes as well a function named readMP3() based
on the eponymous function of tuneR but that has the advantage to have two
arguments, from and to, that let the user specifying a time selection for the import.
The function works only if the third-party software mp3splt is installed.2 In the
following example that fetched an .mp3 file localized in the directory sample, we
specify that we call the monitoR function with the :: operator that specifies the
use of monitoR:

mp3sel <- monitoR::readMP3("sample/tuning-fork.mp3",
from=0.5, to=1)

mp3sel

Wave Object
Number of Samples: 18432
Duration (seconds): 0.58
Samplingrate (Hertz): 32000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

The returning object does not last 0.5 s as expected because the function cuts the
.mp3 file at frame boundaries and not at exact samples.

4.2.3 From .mp3 to .wav Files

The function mp32wav() of the package warbleR uses readMP3() of tuneR
to convert a batch of files stored in the working directory:

2http://mp3splt.sourceforge.net/

http://mp3splt.sourceforge.net/

94 4 Playing with Sound

setwd("sample") # change the working directory
mp32wav() # conversion of all .mp3 files into .wav files
setwd("../") # change back the working directory

4.2.4 .flac Files

R cannot manage .flac files, but a wrapper of the external software flac3 can
be used to convert flac files into .wav files and vice versa. This opens the
opportunity to save files in flac format and therefore to gain hard drive space:

conversion ’tuning-fork.wav’ into ’tuning-fork.flac’
wav2flac(file="sample/tuning-fork.wav")
conversion ’tuning-fork.flac’ into ’tuning-fork.wav’
wav2flac(file="sample/tuning-fork.flac", reverse=TRUE)

4.2.5 Local Files

Now that we know how to read the two most common sound file formats, we should
be able to import a long list of files. Rather than to identify these files with a
graphical file manager and to load them one by one, R provides functions to manage
directories and files that can be very useful to import and work with a group of
files. Imagine that we have a bundle of .wav files stored, here in a directory named
sample, we would like to import successively. The first thing to do is to list the files
of interest with the function dir(). This function has a very interesting argument
pattern that can be used to filter the results. With this argument accepting regular
expressions, we just need to run the following commands to select .wav and/or
.mp3 files:

dir("sample", pattern="wav$") # .wav files
dir("sample", pattern="mp3$") # .mp3 files
dir("sample", pattern="wav$|mp3$") # .wav and .mp3 files
dir("sample", pattern="^synth.*wav$") # .wav starting with ’synth’

3http://flac.sourceforge.net/

http://flac.sourceforge.net/

4.2 How to Read (Load) a Sound 95

The result of the dir() function is a character vector in which each item is
a file name. We can save this vector in an object and use it into a loop to import
successively the files. Here is an example that lists the .wav files of the sample
directory which name starts with "synth",4 imports them temporarily, and stores
their duration in a second vector named duration. We use paste() with the
sep argument set to "/" to generate the right path to the working directory
sample:

files starting with ’synth’ and ending with ’wav’
file.names <- dir("sample", pattern="^synth.*wav$")
check file names
head(file.names)
[1] "synth-am-fm-1.wav" "synth-am-fm-2.wav"
[3] "synth-am-fm-3.wav" "synth-am-fm-4.wav"
[5] "synth-am-fm-5.wav" "synth-am-fm-6.wav"
prepare a numeric vector to store the results
duration <- rep(NA, length(file.names))
for loop around file.names
for (i in 1:length(file.names))

{
read the ith file
tmp <- readWave(paste("sample", file.names[i], sep="/"))
get the duration of the ith file
duration[i] <- duration(tmp)

}
results rounded to 1 digit
round(duration, 1)
[1] 1.0 1.0 1.0 1.0 1.0 3.0 3.0 1.0 3.0 1.0 1.0

[12] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 6.0 3.9 1.0 1.0
[23] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.4 1.4
[34] 7.9 1.1 0.7 0.1 1.0 0.1 0.1 56.0 0.2 0.2 0.2
[45] 5.8 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[56] 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 2.8 1.0 1.0
[67] 1.0 1.0 1.0 1.0 1.5 2.1 0.5

4.2.6 Online Files

download.file() is a generic function to retrieve online files. This function
opens the possibility to load the millions of audio files available on the internet,
in particular those from the Xeno-Canto website5 that provides more than 340,000
.mp3 files of about 9700 species bird songs. Here is a short code to import a nice
recording of the Tawny Owl Strix aluco deposited by Fernand Deroussen on Xeno-
Canto website:

4These .wav files are those synthesized in Chap. 18.
5http://www.xeno-canto.org

http://www.xeno-canto.org

96 4 Playing with Sound

url <- "http://www.xeno-canto.org/161948/download"
file <- "sample/161948.mp3"
download.file(url, destfile=file, quiet=TRUE)
owl <- readMP3(file)

We now print owl to see what it contains:

> owl

Wave Object
Number of Samples: 2549376
Duration (seconds): 57.81
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Stereo
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

The package warbleR offers nice facilities to handle more directly Xeno-Canto
files. The function querxc() sends a keyword request to Xeno-Canto database
and then returns a data.frame containing all the metadata associated with files
containing the keyword. This keyword should be either a species or a genus name.
Here is a query with Zonotrichia capensis, the Latin name of the rufous-collared
sparrow or tico-tico (Fig. 5.1):

qw <- querxc("Zonotrichia capensis", download=FALSE)
|
| | 0%
|
|+++++++++++++++++++++++++ | 50%
|
|++| 100%

dim(qw)
[1] 515 17

We can have a look at the metadata of the first recording found:

qw[1,]
Recording_ID Genus Specific_epithet Subspecies

1 349321 Zonotrichia capensis costaricensis
English_name Recordist Country

(continued)

4.2 How to Read (Load) a Sound 97

1 Rufous-collared Sparrow Ed Hutchings Ecuador
Locality Latitude

1 Distrito Metropolitano de Quito, Pichincha 0.1038
Longitude Vocalization_type

1 -78.6027 call, male, song
Audio_file

1 http://www.xeno-canto.org/349321/download
License

1 http://creativecommons.org/licenses/by-nc-sa/4.0/
Url Quality Time

1 http://www.xeno-canto.org/349321 no score 12:00
Date

1 2016-09-25

The .mp3 files can be downloaded into the working directory by setting the
argument download to TRUE. Here downloading hundreds of files might take a
while. We could then wish to download only a selection of files, for instance, only
the recordings from Brazil. We first build a new data.frame with the data we wish to
select. The country of recording is specified in the column "Country":

colnames(qw)
[1] "Recording_ID" "Genus"
[3] "Specific_epithet" "Subspecies"
[5] "English_name" "Recordist"
[7] "Country" "Locality"
[9] "Latitude" "Longitude"

[11] "Vocalization_type" "Audio_file"
[13] "License" "Url"
[15] "Quality" "Time"
[17] "Date"

so that Brazil can be selected with conditional indexing:

qw.brazil <- qw[qw$Country=="Brazil",]
dim(qw.brazil)
[1] 109 17

98 4 Playing with Sound

The Brazilian .mp3 files can then be downloaded using the argument X of
querxc

querxc(X=qw.brazil, download=TRUE)

A fancy way to visualize the localization of these files is to use the function
xcmaps() that uses the function map() of the package maps (Fig. 4.2):

Longitude (DD)

La
tit

ud
e

(D
D

)

Zonotrichia capensis

−60 −50 −40 −30

−4
0

−3
0

−2
0

−1
0

0
10

ll

llllll

llllll llllllll ll
ll

llll

ll

ll

ll

ll

ll

ll

llll

llll

ll

ll

ll

ll
ll

ll

ll

ll

ll

ll

llll

ll

ll
ll

ll

ll

ll
ll

ll

ll
ll

llll

ll

ll

ll

ll
ll

ll
ll llll

ll

ll

ll

ll

ll

ll

ll
ll

ll

ll

ll

ll

ll

ll

ll
ll

llll

ll

ll

ll

ll

ll
ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll llllll ll

ll

ll
ll

ll

ll

ll

0 1000 2000 km

Fig. 4.2 Geographical map of Xeno-Canto recordings. The function xcmaps() of warbleR can
return a map of a species recordings, here for the rufous-collared sparrow, or tico-tico, Zonotrichia
capensis, recorded in Brazil

4.2 How to Read (Load) a Sound 99

xcmaps(qw.brazil, img=FALSE)

The process works as well for a genus search: xcmaps() produces then a map
for each species found in the genus. The maps can be saved externally in .jpeg
files with img=TRUE.

qw.genus <- querxc("Zonotrichia", download = FALSE)
xcmaps(qw, img=TRUE)

The above instructions produce five image files each containing the map of one
Zonotrichia species. The files are named according to species names, here: Map of
Zonotrichia albicollis recordings.jpeg,
Map of Zonotrichia atricapilla recordings.jpeg,
Map of Zonotrichia capensis recordings.jpeg,
Map of Zonotrichia leucophrys recordings.jpeg,
and Map of Zonotrichia querula recordings.jpeg.

4.2.7 Song Meter© Files

The company Wildlife Acoustics© has developed autonomous digital recorders,
the Song Meters SM2, SM3, and SM4, that are widely used in bioacoustics and
ecoacoustics.6 These devices generate audio files with specific names that include
useful information related to the date and main features of the recording. This
information is sometimes not straightforward to read as files look like they are
written in a cryptic code, such as "CNRS_0+1_20130824_153000.wav".

The function songmeter() of seewave can decompose these file names and
return the information into a readable data.frame that details the prefix used
to identify the recording unit, the microphones plugged in (character), the year
(numeric), the month (numeric), the day (numeric), the hour (numeric), the
minute (numeric), the second (numeric), the POSIX time of recording (POSIX
format), and the occurrence of a geolocalization system:

6http://www.wildlifeacoustics.com/

http://www.wildlifeacoustics.com/

100 4 Playing with Sound

We first create artificial file names:

file1 <- "MNHN_20141225_234500.wav" # SM2 or SM4
file2 <- "CNRS_0+1_20130824_153000.wav" # SM3 without geoloc.
file3 <- "PARIS_-0-_20150410$195550.wav" # SM3 with geoloc.
files <- c(file1, file2, file3)

that we submit to songmeter():

songmeter(files)
model prefix mic year month day hour min sec

1 SM2/SM4 MNHN <NA> 2014 12 25 23 45 0
2 SM3 CNRS stereo 2013 8 24 15 30 0
3 SM3 PARIS monoL 2015 4 10 19 55 50

time geo
1 2014-12-25 23:45:00 NA
2 2013-08-24 15:30:00 FALSE
3 2015-04-10 19:55:50 TRUE

4.3 How to Listen to a Sound

R is not a music player; it does not include a sound file reader. The trick to listen to a
sound from R is to call an external player or audio driver. This external tool depends
on the operating system. For Windows system, Windows Media Player7 might be
the most appropriate tool. For Mac OS the most common player is AudioUnits.8

For Linux systems, the best solution is certainly to install SoX9 that embeds a
player named play. A free tool to all operating systems could be the well-known
player VLC.10 VLC has the advantage to be executable either with or without a
graphical interface (through the terminal command cvlc); however it seems that
VLC cannot handle sound with exotic sampling rates. As an example, a sound
sampled at 2000 Hz could not be listened.

There are different ways to declare the default audio player and to play sound
depending on the use of audio or tuneR packages. We will consider each package
solution separately with functions summarized in Table 4.1.

7http://windows.microsoft.com/en-us/windows/windows-media
8https://developer.apple.com/library/content/documentation/MusicAudio/Conceptual/ AudioUnit-
ProgrammingGuide/Introduction/Introduction.html
9http://sox.sourceforge.net/
10http://www.videolan.org/vlc/

http://windows.microsoft.com/en-us/windows/windows-media
https://developer.apple.com/library/content/documentation/MusicAudio/Conceptual/AudioUnitProgrammingGuide/Introduction/Introduction.html
http://sox.sourceforge.net/
http://www.videolan.org/vlc/

4.3 How to Listen to a Sound 101

Table 4.1 Equivalence between audio, phonTools, and tuneR functions dedicated to sound
import and export

Description audio phonTools tuneR

List of currently
loaded and
available audio
drivers/players

audio.drivers() – –

Load a modular
audio
driver/player

load.audio.driver() – –

Name of the
currently active
audio
driver/player

current.audio.driver() – getWavPlayer()

Set the default
audio
driver/player

set.audio.driver() – setWavPlayer()

Record a sound record() – –

Read/load a
.wav file

load.wave() loadsound() readWave()

Read/load a
.mp3 file

– – readMP3()

Play a .wav file play() playsound() play()

Save into a
.wav file

save.wave() writesound() writeWave()

4.3.1 With the Package audio

The package audio comes with predefined external players, named audio drivers.
These are Windows Media Player for Windows, AudioUnits for Mac OS, and
PortAudio for Unix. There are four functions to manage the audio drivers:

audio.drivers() lists all available audio drivers
current.audio.driver() returns the active audio driver
set.audio.driver(name) selects an audio driver to make it active
load.audio.driver(path) attempts to load a modular audio driver to

make it active

With Windows 7, the two first commands return the following results:

> audio.drivers()
name description current
1 wmm Windows MultiMedia audio driver TRUE
> current.audio.driver()
[1] "wmm"

102 4 Playing with Sound

With Mac OS X (10.7.5), we obtain:

> audio.drivers()
name description current 1 macosx AudioUnits (Mac OS X) driver
TRUE
> current.audio.driver()
[1] "macosx"

With Ubuntu 14.04 LTS, it is first necessary to install PortAudio with the
following shell command (in the terminal) before to install audio. If this was not
the case, it is necessary to install again the package for a right compilation and
interaction with PortAudio11:

sudo apt-get install portaudio19-dev

Then we obtain:

audio.drivers()
name description current

1 portaudio PortAudio driver TRUE
current.audio.driver()
[1] "portaudio"

Once the audio driver is loaded, the function play() can be used for play-
back action of audioSample objects. The following command broadcasts the
sample.sound object we generated previously. The sound will be played in the
background, which means without popping up the audio driver graphical interface:

play(sample.sound)

As soon as play() is called, the default audio driver opens and starts a session
or sound instance. This sound instance can be controlled with a few functions that
would correspond to the basic buttons of the player if it were open with a graphical
interface:

pause() stops the playback
rewind() rewinds audio recording to start position
resume() resumes previously paused playback

11Note that the audio driver used with Ubuntu may change rapidly questioning the use of these
audio functions with Ubuntu.

4.3 How to Listen to a Sound 103

These functions can be used to program a playback session as in the following
example where the playback is stopped, resumed, and restarted at its beginning:

generates a 60 s sound with a carrier frequency at 440 Hz
long.sample <- sin(2*pi*440*seq(0, 60, length.out=8000*60))
long.sample <- audioSample(long.sample, 8000)
starts playback and save the audio instance
in an object named ’a’
a <- play(long.sample)
pauses the playback
pause(a)
resumes the playback where it was stopped
resume(a)
pauses the playback again
pause(a)
rewinds and resumes the playback at start position (restart)
rewind(a)
resume(a)

The package audio also includes a function wait() that asks the console to
wait for either a certain amount of time in seconds or for a specific event like the
playback of an object. The combination of these four functions opens the possibility
to manage quite precisely a playback session as usually requested in playback
experiments involving the broadcast of different stimuli following a predefined
timing protocol.

The following exercise consists in playing back a control signal (object
control), stopping the playback for a duration equal to duration of the control,
and then playing back the test signal (object test). We first create artificial control
and test objects:

control <- sin(2*pi*440*seq(0,1,length.out=8000))
control <- audioSample(control, 8000)
test <- sin(2*pi*880*seq(0,1,length.out=8000))
test <- audioSample(test, 8000)

We then include play() and pause() actions in a repeat loop (see
Sect. 3.3.5.2) with five iterations. To run properly, this code should be executed at
once, either by sending all the functions together to the console or by sourcing with
source() an .r file containing the code (see Sect. 3.3.10):

104 4 Playing with Sound

i <- 1
repeat{

wait(play(control)) # plays the control signal
wait(duration(control)) # pause as long as control duration
wait(play(test)) # plays the test signal
wait(duration(test)) # pause as long as control duration
i <- i+1 # iteration increment
if(i>5) break # breaks the loop after 5 iterations
}

In some dynamic playback experiments, the user may have to interact with the
playback process. We can imagine, for instance, that the user plays a first test (object
test). Then if the animal reacts, the test is stopped; if the animal does not show
any reaction, the test is repeated. The idea is therefore to ask the user if the test
should be played back another time or stopped. We first write a new function, named
read.answer(), which displays a question message in the console with the
function cat() and stores the user response in a vector with the function scan():

read.answer <- function(){
cat("\n","Do you wish to play the sound again?",

"\n", "Enter your choice ’y’ [yes] or ’n’ [no])",
"\n")

letter <- scan(what="character", n=1)
}

We then play the sound with play(), and we enter into a repeat loop. The
loop uses the function read.answer() to check the user decision. If the user
decides to play back another time, we use another time play(); otherwise we
leave the loop with break:

first play back with audio play() function
a <- play(test)
repeat the action until the answer is no
repeat{

answer <- read.answer()
if(answer=="y") a <- play(test)
if(answer=="n") break

}

Similarly to the previous case, this code should be placed in a .r file and
executed with the function source() (see Sect. 3.3.10).

4.3 How to Listen to a Sound 105

4.3.2 With the Package phonTools

The function playsound() of the package phonTools uses VLC as a back-
ground player. The path to VLC executable should be specified in the argument
path. Here is the solution for Unix systems:

playsound(tico@left, fs=tico@samp.rate, path="/usr/bin/vlc")

4.3.3 With the Package tuneR

With tuneR, the setting of the default audio player is achieved with the function
setWavPlayer() by providing the path to the executable file of the audio player
chosen.

With a Windows system, the selection of Window Media Player could look like
the following code, but note that the path will differ according to Windows version
and that the path should be framed with simple quotes (’’) and double quotes (""):

setWavPlayer(
’ "C:/Program Files/Windows Media Player/wmplayer.exe" ’

)

The following command selects the application play on a Mac OS X:

setWavPlayer(’/applications/play’)

With a Linux (Ubuntu) system, setting the player play of SoX is rather simple:

setWavPlayer("play")

The function getWavPlayer() returns the default player. Think that the
functions setWavPlayer() and getWavPlayer() work like default working
directory functions setwd() and getwd(), respectively (see Sect. 3.3.1).

tuneR has a single function named play() to play back Wave objects. The
following code plays the sound wave.sound. We have to multiply the object by

106 4 Playing with Sound

an arbitrary value of 32,000 to increase the amplitude that is originally between −1
and +1. Without this change, the sound would be inaudible:

play(32000*wave.sound)

If both packages are loaded in a single R session, a conflict will occur between
both play() functions. To avoid such synonym issue, R has an operator to
specify the package to use (Table 3.2). The command tuneR::play() will
play the sound x using the function play(x) of tuneR, whereas the command
audio::play(x)will use play() of audio. We could then use both play()
with the following lines:

audio::play(sample.sound)
tuneR::play(wave.sound)

4.3.4 With the Package seewave

The play() functions of audio and tuneR have one main restriction: they
work only with a single class object, audioSample or Wave class, respectively.
However, we saw that a sound could also be written as a vector, a matrix, a
data.frame, a ts, a mts, or a sound class object. The function listen() of
seewave takes the best of tuneR::play() and accepts different object classes
as input. The sampling frequency fs should be specified in the argument f if the
input object does not include the sampling frequency:

f <- 8000
listen(v.sound, f=f)
listen(m.sound, f=f)
listen(df.sound, f=f)
listen(ts.sound)
listen(sample.sound)
listen(sound.sound)
listen(wave.sound)
listen(waveMC.sound)

4.4 How to Record a Sound 107

In addition, listen() has two arguments, from and to, to specify the time
start and time end in seconds of the playback:

listen(wave.sound, from=0.25)
listen(wave.sound, from=0.25, to=0.75)
listen(wave.sound, to=0.75)

It is also possible to change the speed of playback by modifying the sampling
frequency. Increasing artificially the sampling frequency implies that the player will
read more samples per second than normally; the playback speed is faster. Reversely,
decreasing the sampling frequency means that less samples will be read per second;
the playback speed is slower. Note that the pitch of the sound will be modified
accordingly, higher at a higher speed, lower at a lower speed:

f <- 8000 # sampling frequency
listen(wave.sound, f=f) # normal speed and pitch
listen(wave.sound, f=f/2) # twice slower and lower in frequency
listen(wave.sound, f=f*2) # twice faster and higher in frequency

This frequency change can be used to slow down a high-frequency sound, as
those produced by some insects and bats, or reversely to fasten some low-frequency
signals, as those recorded in seismology.

Eventually, seewave has a function playlist() that can handle a list of
sound files stored in a directory. The order of files playback can be shuffled, and
the list can be played back in a specific number of loops. The function is based on
play() of tuneR and is optimized to work with play player of SoX. File music
files stored in the directory "sample" could be listened in a randomized order and
twice with (be aware that this can take a while. . .):

playlist("sample/", sample = TRUE, loop=2)

This playlist facility can be used when programming playback experiments, for
instance, playback used to test the frequency sensitivity of a hearing system.

4.4 How to Record a Sound

The main advantage of the package audio is that sound can be directly acquired
within an R session. This is achieved by first preparing a vector full of NA values.
The number of NAs should exactly fit with the numbers of desired samples; this

108 4 Playing with Sound

means that the length of the vector should result from the multiplication of the time
of recording in s per the sampling frequency fs in Hz. Then the call of the function
record() starts the recording session by replacing the NA values of the vector
with sound samples. For instance, to get a mono sound of 5 s sampled at 22,050 Hz,
we have to write:

d <- 5
f <- 22050
rec <- rep(NA_real_, d*f)
record(where=rec, rate=f, channels=1)
play(rec)

This function will work only if you have declared an audio driver (see Sect. 4.3).
A recording session can be controlled with pause(), rewind(), resume(),
and wait(). This function works properly with Windows and Mac Os but is highly
experimental with Linux systems.

4.5 How to Write (Save) a Sound

Now that we have imported and listened to sounds, it might be necessary to
save them out of R for another use. As for importing a .wav file, each package
has a solution to export R objects as .wav files. The function of audio is
save.wave(), the one of phonTools is writesound(), and the one of
tuneR is writeWave().

The three functions work the same way, the object to be saved is the first
argument, and the file name with optionally a path is the second argument. The
following instruction saves an audioSample object in sample-test.wav file
in directory named sample:

save.wave(what=sample.sound, where="sample/sample-test.wav")

This will be translated with phonTools with:

writesound(samples=sound.sound, filename="sample/sample-test.wav")

The same can be achieved with tuneR but requires, in this case, an additional
step. The object wave.sound is a Wave object with values between −1 and
+1. It is necessary to convert these values on an appropriate bit scale, i.e., to

4.5 How to Write (Save) a Sound 109

obtain values varying within a 2n range. This conversion is ensured by the function
normalize() of tuneR; the argument unit waits for the value n as a character,
here "16" for a 16 bit quantization:

writeWave(object=normalize(wave.sound, unit="16"),
filename="sample/wave-test.wav")

As neither save.wave() nor writeWave() does not return anything in the
console, it might be worth to check whether the new files were created indeed. This
is easily done with the function dir() with an appropriate regular expression given
to the pattern argument:

dir("sample", pattern="*test*")

The files can be removed with the function file.remove() using the results
of the previous dir() and pasting the character chain "sample" to complete the
path:

file.remove(paste("sample",
dir("sample", pattern="*test*"), sep="/"))

seewave has a function namedsavew() that takes the best of writeWave()
but has additional facilities. savewav() accepts all object classes used for sound
and can generate a file name based on object name (the file name argument
is not mandatory), and the sample values can be rescaled in any range. The
wave.sound object can be therefore saved quickly with:

savewav(wave.sound)

The sampling frequency can be changed so to have a saved sound either slower
or faster:

savewav(wave=wave.sound, f=44100) # twice faster

110 4 Playing with Sound

The values of the sound can also be rescaled with the argument rescale. In the
following command, the sound is rescaled between −1500 and +1500:

savewav(wave=wave.sound, f=44100, rescale=c(-1500,1500))

This argument can be used to change the “volume” of the saved .wav file.

4.6 Tuning R

We have seen already a few instructions that we will need to call each time that we
open an R session. Rather than repeating these actions every day, it is possible to
declare them in the setting file of R. This file is a hidden file with no name, only the
extension .Rprofile. The localization of this file depends on the OS and should
be found with a file search. Once identified, the file can be edited with a text editor,
including R GUIs, and all required instructions can be written. For instance, I have
in my current .RProfile:

welcome message
cat("Hello, it’s time to have a strong coffee

and to work hard on the book!\n")
preferred packages
library(tuneR)
library(seewave)
set ’play’ of SoX as default player
setWavPlayer("play")
set default working directory
here a folder named ’R’ on a computer named ’jerome’
operated with a Linux system
setwd("~/jerome/R/")

To play with sound is not satisfactory, it is now time to get information from
them. This is the matter of the next chapter that details the visualization and analysis
processes.

Chapter 5
Display of the Wave

A challenge in sound description is to turn sound into an image. The most common
way to visualize a sound is to show the variations of the instantaneous amplitude
a against time t . We already used this display when introducing sound in Chap. 2
where almost all waves were depicted in a (a, t) frame. This 2D graphic is known
as an oscillogram, the main visual output of an oscilloscope. The oscillogram is
therefore a way to see the waveform. It is also possible to track the amplitude
variations by plotting the envelope of the sound, that is, the shape of the sound
along time. We will detail hereafter both options mainly exploring the song of a
tropical bird, the rufous-collared sparrow Zonotrichia capensis (Fig. 5.1). The song
was recorded by Thierry Aubin in Brazil where the bird is also known as tico-tico.
The song, which is a nice pure and modulated sound made of four distinct notes, is
included in an object named tico coming with seewave. It is available with the
function data:

data(tico)

We can explore quickly what tico contains with:

tico

Wave Object
Number of Samples: 39578
Duration (seconds): 1.79
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE

(continued)

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_5

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_5&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_5

112 5 Display of the Wave

Fig. 5.1 The rufous-collared sparrow Zonotrichia capensis also named tico-tico in Portuguese.
Reproduced with the kind permission of Ladislav Nagy

Bit (8/16/24/32/64): 16
summary(tico@left)

Min. 1st Qu. Median Mean 3rd Qu.
-18596.000 -583.750 0.000 0.495 585.750

Max.
19125.000

So tico is a mono PCM Sample object that was sampled at 22,050 Hz with
a 16 bit depth during 1.79 s. The values of the recorded samples vary between
−18,596 and +19,125.

5.1 Oscillogram

5.1.1 Simple Oscillogram

In seewave, the function to draw an oscillogram is oscillo(). The most
elementary use of oscillo() is (Fig. 5.2):

oscillo(tico)

5.1 Oscillogram 113

Fig. 5.2 A simple oscillogram. The waveform of the tico sound obtained with
oscillo(tico)

oscillo() is a high-level plot function that comes with a long list of
arguments that can be grouped according to the following topics:

input data wave, f, from, to
output data identify,
interactivity zoom, scroll,
general parameters k, j, byrow, type, cex, bty,
wave parameters coly0, colwave,
title parameters title, coltitle, cextitle, fonttitle,
axis parameters labels, cexlab,fontlab,collab, colline,colaxis,

cexaxis, fontaxis, tcl, xaxt, yaxt.

Remember that you can display the arguments of a function using args():

args(oscillo)
function (wave, f, from = NULL, to = NULL, scroll = NULL, zoom = FALSE,

k = 1, j = 1, cex = NULL, labels = TRUE, tlab = "Time (s)",
alab = "Amplitude", byrow = TRUE, identify = FALSE, nidentify = NULL,
plot = TRUE, colwave = "black", coltitle = "black", cextitle = 1.2,
fonttitle = 2, collab = "black", cexlab = 1, fontlab = 1,
colline = "black", colaxis = "black", cexaxis = 1, fontaxis = 1,
coly0 = "lightgrey", tcl = 0.5, title = FALSE, xaxt = "s",
yaxt = "n", type = "l", bty = "l")

NULL

114 5 Display of the Wave

Like all seewave functions dealing directly with a wave, the first argument
wave is an R object that includes the data, or samples. This object can be of
various formats from a numeric vector to an audio or Sample object (see
Sect. 4.1). The second argument, f, is the sampling frequency in Hz. This argument
is mandatory only for objects that do not embed the sampling frequency, i.e.,
for vector, matrix, or data.frame objects. In the previous example, the
argument f is not provided as tico includes the sampling frequency f in the S4
slot @samp.rate. If tico were a vector, we should have written:

oscillo(tico, f=22050)

The oscillogram is a very simple plot; it only consists in plotting a X–Y plot with
a line joining the successive sample values (see DIY box 5.1).

DIY 5.1 — How to draw your own oscillogram

A simple oscillogram can be achieved with base functions. The following code produces
exactly the same output than Fig. 5.2 by simply combining the high-level plot()
function and the low-level function axis():

wave <- tico@left # samples
time <- seq(0, 1.5, by=0.5) # time
plot(wave,

type="l", # line type plot
xaxs="i", yaxs="i", # format of the axis
xaxt="n", yaxt="n", # no axis drawn
xlab="Time (s)", # x axis label
ylab="Amplitude") # y axis label

axis(side=1, # time axis built by hand
at=time*tico@samp.rate+1,
labels=time)

5.1.2 Axes

One of the most puzzling feature of seewave oscillogram is that the y-axis has
neither scale nor unit. As we saw in Chap. 2, the amplitude of a sound can refer to
different quantities, displacement, velocity, acceleration, pressure, or even voltage,
and each quantity can be measured on a different scale (m, mm s−1, cm s−2, Pa,
mV, etc.). In addition, referring to a scale requires that the sound was recorded and
digitalized with a fully calibrated acquisition system, something that is rarely met.

5.1 Oscillogram 115

All these constraints explain why the y-axis is left blank and why the scale should
be considered without unit. However, if data were calibrated, it is still possible to
change the y-axis. It is quite easy to display the y-axis with the low-level graphic
function axis():

oscillo(tico)
axis(side=2)

Now, imagine that we know that a sample value of 19,000 equals to 1.5 Pa,
we can convert the data in Pa, change the axis label with the argument alab of
oscillo(), and redraw the y-axis with axis() (Fig. 5.3):

tico.calibrated <- tico@left*1.5/19000
oscillo(tico.calibrated, f=tico@samp.rate, alab="Amplitude (Pa)")
axis(side=2, las=2)

It is also possible to remove the axes and to add a time scale bar with the functions
arrows() and text() (Fig. 5.4):

Fig. 5.3 Oscillogram with a calibrated amplitude. The default blank y-axis is tuned to display
absolute values, here along a Pascal scale

116 5 Display of the Wave

Fig. 5.4 Oscillogram axes. The axes were removed, and a time scale bar was added

oscillo(tico,
colline="white", # white lines
colaxis="white", # white axes
xaxt="n", labels=FALSE) # no axis labels

y <- min(tico@left) # minimum of tico sample values
arrows(x0=0.1, y0=y, # scale bar

x1=0.35, y1=y,
length=0.1, angle=90, code=3)

text(x=0.23, y=y+2000, # legend of the scale bar
labels="0.25 s")

5.1.3 Colors

oscillo() contains several parameters to change the color of the different items
of the plot as exemplified in Fig. 5.5 obtained with the following instructions:

cex <- 1.25 # main character size
col1 <- "brown4" # first color
col2 <- "darkgreen" # second color
oscillo(tico, title = TRUE, # add a title

colwave = col1, # color of the wave
collab = col2, # color of the axis labels

(continued)

5.1 Oscillogram 117

Fig. 5.5 Oscillogram colors. The colors of most graphical items can be changed to tune the
oscillogram plot

colline = col2, # color of the axis lines
colaxis = col2, # color of the axis annotations
cexlab = cex, # size of the axis labels
cexaxis = cex, # size of the axis annotations
fontaxis=2, # font (bold) of the axis annotations
tcl = 1, # length of axis tick marks
coltitle = col2, # color of the title
bty = "o" # framed box around the oscillogram
)

The function oscillo() does not provide a way to change the color of the
wave against time, i.e., plotting the wave between t1 and t2 in one color and the
wave outside t1 and t2 in another color. However, we saw that it was easy to draw an
oscillogram with the function plot() (see DIY box 5.1). It is then possible, with
a few tricks, to highlight a part of a wave with a different color as explained in the
DIY box 5.2.

118 5 Display of the Wave

DIY 5.2 — How to highlight a part of an oscillogram with a different
color

Here is the way to change the color of the wave against time. The example does not call
oscillo() but the high-level graphical function plot() and the low-level functions
lines() and axis().

f <- tico@samp.rate # sampling frequency
s <- tico@left # audio data
l <- length(s) # number of samples
t <- 1:l # time axis preparation
labels <- seq(0, 1.5, length=4) # time axis labels
from <- 0.6*22050 # highlight start (time*f)
to <- 0.87*22050 # highlight end (time*f)
sel <- round(from):round(to) # signal highlighted
outsel <- s[-sel] # signal not highlighted
plot(x=t, y=s, type="n", # blank plot

xaxt="n", xaxs="i", # x axis settings
xlab="Time (s)", # x axis label
yaxt="n", # y axis settings
ylab="Amplitude") # y axis label

lines(x=t[-sel], y=outsel) # signal unselected in black
lines(x=sel, y=s[sel], col=4) # signal selected in blue
axis(side=1, at=labels*f, # add time axis

labels=labels)

5.1 Oscillogram 119

Fig. 5.6 Oscillogram decoration. Example of necessary and useless annotations on an oscillogram

5.1.4 Decoration and Annotation

An oscillogram needs sometimes to be annotated with text and/or geometric shapes.
This can be achieved with low-level plot functions as for any R plot. Figure 5.6
shows the addition of labels, symbols, lines, a grid, and an inset with a picture.

Plotting a .png picture requires the installation and the call of the package png
that provides an easy and simple way to read, write, and display bitmap .png
images:

install.packages(png)
library(png)

The bitmap image, named Zonotrichia_capensis_LNagy.png and
stored in a directory named image, is read with the function readPNG():

img <- readPNG("image/Zonotrichia_capensis_LNagy.png")

Note that .jpg files can be similarly read with the function readJPEG() of
the package jpeg.

120 5 Display of the Wave

The title of the oscillogram is prepared with the following character vector that
uses the functions expression() and italic() to italicize the species name:

title <- expression(paste(
"The song of ",
italic(Zonotrichia), " ", italic(capensis),
sep=" "))

The final plot is obtained with the following code that uses the function
rasterImage() to display the picture (Fig. 5.6):

oscillo(tico, title=title) # oscillogram with title
col <- "red" # color for annotations
pos <- c(0.2, 0.7, 1.1, 1.6) # text position
points(x=pos, y=rep(0,4), # white and red circles

pch=21, cex=5,
bg="white", col=col)

text(x=pos, y=0, cex=2, # numbers inside circles
labels=as.character(1:4), col=col)

arrows(x0=0.5, y0=4700, x1=0.6, y1=600, # arrow
length=0.1, col=col, lwd=2)

text(x=0.4, y=6500, # text for the arrow
labels="fast amplitude \n increase",
col=col)

text(x=1.6, y=9500, # symbol above
expression(symbol("\304")), # the last syllable
cex=2, col=col)

segments(x0=0.6, y0=17000, x1=0.8, # segment above
col=col) # the second syllable

text(x=0.7, y=18000, # text accompanying
labels="note duration", col=col) # the segment

grid() # axis grid
rasterImage(img, # image

xleft=0, ybottom=min(tico@left),
xright=0.5, ytop=-8000)

box() # frame

We have seen how to change the color of a wave section (see Sect. 5.1.3), but
highlighting a wave section—another kind of decoration—can also be achieved by
drawing a rectangle behind the selection as proved by the following code (Fig. 5.7):

5.1 Oscillogram 121

0.0 0.5 1.0 1.5
Time (s)

Am
pl

itu
de

Fig. 5.7 Oscillogram highlight with a rectangle. The yellow background was added, thanks to the
function polygon()

s <- tico@left # audio data
y <- max(abs(s)) # rectangle upper limit
oscillo(tico, type="n") # blank plot
polygon(x=c(0.6,0.87,0.87,0.6), # rectangle time limits

y=c(-y, -y, y, y), # rectangle amplitude limits
col="yellow2", border="NA") # decoration parameters

par(new=TRUE) # new plot layer
oscillo(tico) # oscillo over the rectangle

5.1.5 Zoom In

We already went through the main input data arguments, except from and to.
These two arguments can be set in s to display an oscillogram section. A succession
of zooms arranged in a four-row plate can be built with the following code (Fig. 5.8):

layout(matrix(1:4, nrow=4)) # plate layout with 4 lines
par(mar=c(4.5,4,2,2)) # internal margins slightly changed
cex <- 0.75 # axis label size
oscillo(tico, cexlab=cex) # complete wave
oscillo(tico, from=0.5, to=0.9, cexlab=cex) # zoom 1
oscillo(tico, from=0.65, to=0.75, cexlab=cex) # zoom 2
oscillo(tico, from=0.68, to=0.70, cexlab=cex) # zoom 3

122 5 Display of the Wave

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

0.680 0.685 0.690 0.695 0.700

0.66 0.68 0.70 0.72 0.74

0.5 0.6 0.7 0.8 0.9

0.0 0.5 1.0 1.5

Time (s)

Time (s)

Time (s)

Time (s)

Fig. 5.8 Oscillogram time zoom in. The plate was built with four calls to the function
oscillo() using different values for the arguments from and to

Note that another solution to produce such a plate of oscillograms could be to
write a for loop along the rows of a matrix named zoom that embeds the from
and to values. We first prepare the zoom matrix:

zoom <- matrix(c(NA, NA, 0.5, 0.9, 0.65, 0.75, 0.68, 0.70),
byrow=TRUE,
ncol=2)

zoom
[,1] [,2]

[1,] NA NA
[2,] 0.50 0.90
[3,] 0.65 0.75
[4,] 0.68 0.70
n <- nrow(zoom)

5.1 Oscillogram 123

and we then produce the plate of oscillograms with a loop:

layout(matrix(1:n, nrow=n))
par(mar=c(4.5,4,2,2))
cex <- 0.75
for(i in 1:n) {

oscillo(tico,
from=zoom[i,1], to=zoom[i,2],
cexlab=cex)

}

The code can appear a bit more complex, but it is more universal as it can work
for any zoom matrix.

5.1.6 A Bit of Interactivity

The from and to values can be fetched graphically by setting the argument zoom
of oscillo() to TRUE. This interactive zoom works in a three-step process: (1)
the complete wave is displayed, (2) the user chooses with the mouse two positions
on the complete wave, and (3) these positions are used to display the wave selected.
This zooming action works only once: it is not possible to zoom repeatedly.

The argument scroll is another way to interact a bit with the oscillogram
display. This argument divides the complete wave in n sections or windows of equal
length. A pop-up tool, generated with the package rpanel, allows to jump from
one section to another one moving along the signal. The function dynoscillo()
does the same with some more options regarding the section length and display.
However, as pointed out in Sect. 3.4.1, the interactive exploration of sound, in
particular long sound, is not optimized with R, and other tools, as Audacity, might
be preferred.

5.1.7 Multiple Oscillogram

seewave offers a way to display a long wave by splitting it in several horizontal
and/or vertical cells. The arguments k and j of oscillo() specify the number
of line(s) and column(s) that defines these cells. The argument byrow sets whether
the cells should be filled in by rows or by columns. The following code splits the
signal into four lines (Fig. 5.9):

124 5 Display of the Wave

0.0

0.9 1.0 1.1 1.2 1.3

0.1

0.5

1.4 1.5 1.6 1.7

Time (s)

A
m

pl
itu

de

0.6 0.7 0.8

0.2 0.3 0.4

Fig. 5.9 Multi-line oscillogram. Using the argument k, the oscillogram is split in four sections
of equal duration over four lines. The argument j can also be used to divide the oscillogram in
columns

oscillo(tico, k=4)

A 2 × 2 matrix of oscillograms can be obtained with the following instruction:

oscillo(tico, k=2, j=2)

We just saw how to organize different oscillograms into a single plate, but it is
also possible to overlay several oscillograms, thanks to the argument new of the
graphical parametrization function par(). The following code demonstrates the
plot of a tico sound that would have been recorded in noise and saved in a Wave
object named tico.noise overplotted with the original tico sound (Fig. 5.10):

oscillo(tico.noise) # plot the noisy recording in black
par(new=T) # open a new graphical layer
oscillo(tico,colwave="red") # visualize the clean recording in red

5.2 Amplitude Envelope 125

Fig. 5.10 Overplotting oscillograms. This figure demonstrates the overplot of two oscillograms, a
noisy and a clean version of the dataset tico

oscillo() can manage mono files only, but the function oscilloST() can
display stereo objects or two mono objects with almost the same list of graphical
arguments.

5.2 Amplitude Envelope

5.2.1 Principle

The amplitude envelope is a time function that shows the amplitude modulations
of the signal along time. The envelope is therefore the profile of sound energy over
time. There are two different types of amplitude envelope.

The absolute amplitude envelope is the absolute value of the wave |s(t)|. All
negative values of the wave are turned into positive values. This envelope is fast and
easy to compute and to display (see DIY box 5.3).

126 5 Display of the Wave

DIY 5.3 — How to compute and draw the absolute amplitude envelope

The absolute envelope of tico can be computed with a single line of code. This is simply
the absolute value of the sample values:

envelope <- abs(tico@left)

It is then quite easy to plot the envelope as already done when plotting manually the
oscillogram in the DIY box 5.1:

time <- seq(0, 1.5, by=0.5) # time
max <- max(envelope) # envelope maximum
plot(envelope,

type="l", # line type plot
xaxs="i", yaxs="i", # format of the axis
xaxt="n", yaxt="n", # no axis drawn
xlab="Time (s)", # x axis label
ylab="Amplitude", # y axis label
ylim=c(-max, max)) # y axis limits

axis(side=1, # time axis built by hand
at=time*tico@samp.rate+1,
labels=time)

However, the absolute envelope does not perfectly track the amplitude modula-
tions as demonstrated on a signal with a triangular shape in Fig. 5.11.

5.2 Amplitude Envelope 127

0.00 0.01 0.02 0.03 0.04

Time (s)

Am
pl

itu
de

Signal
Absolute amplitude envelope
Analytic amplitude envelope

Fig. 5.11 Absolute and analytic (or Hilbert) amplitude envelope. The figure shows a 0.05 s signal
with a triangular shape sampled at 22,050 Hz. Both absolute and analytic (or Hilbert) envelopes
are overplotted to show their different behavior in the following amplitude modulations

The second type of amplitude envelope is the analytic amplitude envelope
deriving from the analytic signal. It is behind the scope of this book to get into
the complex details of the analytic signal, but following Mbu Nyamsi et al. (1994),
we can try to understand where the analytic envelop comes from. The analytic
signal, noted ξ(t), is a complex-value signal which real part is the signal s(t) and
the imaginary part is the Hilbert transform H(t). It is written as:

ξ(t) = s(t) + iH (t)

where i2 = −1.
This is the rectangular version of the analytic signal. However, complex numbers

can also be expressed in a trigonometric from, i.e., referring to the angle ϕ of ξ(t)

in the complex plane. The trigonometric form of ξ(t) is:

ξ(t) = a(t)(cos(ϕ(t)) + i sin(ϕ(t)))

Knowing that a trigonometric form can be expressed with the base of the natural
logarithm e (Euler’s formula) following:

eix = cos(x) + i sin(x)

the analytic signal can be written in a more compact expression:

ξ(t) = a(t)eiϕ(t)

128 5 Display of the Wave

where a(t) is the instantaneous amplitude and the angle ϕ(t) is the instantaneous
phase.

Then, the square modulus of the analytic signal can be obtained using these two
expressions of the analytic signal. First we have:

|ξ(t)|2 = (s(t) + iH (t)) × (s(t) − iH (t))

= s2(t) + H 2(t)

and, second, we have:

|ξ(t)|2 = a(t)eiϕ(t) × a(t)e−iϕ(t)

= a2(t)

Combining these two equations, we obtain the relation:

a2(t) = s2(t) + H 2(t)

and thus:

a(t) =
√

s2(t) + H 2(t)

The amplitude envelope can therefore be obtained by computing the modulus
of the analytic signal. As shown in Fig. 5.11, the analytic or Hilbert envelope
returns the true amplitude profile. However, the analytic amplitude takes time to
be computed and can be difficult to obtain for long waves.

5.2.2 In Practice with seewave

How can we get these envelopes with R? The function env() of seewave
computes and plots either the absolute or the analytic (Hilbert) envelope by setting
the argument envt to either "abs" or "hil". The default value is turned to
"hil" (Fig. 5.12):

env(tico)

Computing the Hilbert transform may take some time for long files; turning
the argument fftw to TRUE can divide by 2 the computing time. This argument
requires loading the package fftw (see Sect. 3.4.3).

5.2 Amplitude Envelope 129

0.0 0.5 1.0 1.5

Time (s)

Am
pl

itu
de

Fig. 5.12 Analytic envelope of tico. The envelope was obtained with the simple command
env(tico)

The absolute amplitude envelope is obtained by using the argument envt:

env(tico, envt="abs")

The “. . . ” at the end of env() indicates that all the arguments of oscillo()
can be invoked from env(). This means that all the graphical arguments of
oscillo() detailed above can be used. For instance, the following code zooms
in time on the second syllable, changes the envelope color and adds a default title
(Fig. 5.13):

env(tico, from=0.6, to=0.87, colwave="blue", title=TRUE)

5.2.3 Smoothing

Sometimes fast and/or unstable amplitude modulation waves return noisy amplitude
envelopes that are difficult to display and to treat. In these cases, the amplitude
envelope needs to be smoothed, or filtered, to remove non-informative data.
Before to develop the three ways to smooth an envelope, the concept of the sliding
window will be detailed as we will refer to it several times in the next chapters.

130 5 Display of the Wave

0.60 0.65 0.70 0.75 0.80 0.85

Time (s)

Am
pl

itu
de

Total time = 0.27 s − f = 22050 Hz

Fig. 5.13 Tuning of an amplitude envelope. The envelope of tico was zoomed in on the second
syllable, the color of the envelope was changed, and a title was added

5.2.3.1 Sliding Window Process

The idea of the sliding window is rather simple: the input signal s(t) is segmented
in subsets that are delimited by a time window w(t). This window has a fixed size
or length characterized by a number of samples n or by a duration in s. The window
is first positioned at the start of the signal from sample 1 to sample n. Then the
window slides forward and frames the signal from sample n + 1 to sample 2n

(Fig. 5.14, top panel). The sliding motion is repeated such as the window travels up
to the end of the input signal. At each sliding step, any operation can be processed
and saved. The output signal is a new time series smaller in length than the input
signal. The sliding window process can be therefore viewed as data transformation
and undersampling at the same time.

Undersampling means that the sampling rate is changed or in other words that the
time resolution is lowered. If we start with an input signal digitalized at 22,050 Hz
during 1 s and that we apply a sliding window including 512 samples, then the
output signal will be made of �22,050 ÷ 512	 = 43 values. The output signal still
represents 1 s of observation but with a time resolution of Δt = 1 ÷ 43 = 0.0232 s.
Such a rough time resolution might not be acceptable. A direct way to increase the
time resolution is to shorten the window length but averaging few samples might
not have important smoothing effect. An indirect solution consists in increasing the
number of windows used along the signal. This can be achieved by overlapping
successive windows. For example, if successive windows overlap by 50%, then the
number of windows and so the time resolution doubles. Examples of overlapping
windows are shown in Fig. 5.14 (middle and bottom panels) and a few examples of

5.2 Amplitude Envelope 131

ovlp = 0%

ovlp = 50%

0.00 0.02 0.04 0.06 0.08

ovlp = 75%

Time (s)

Am
pl

itu
de

Fig. 5.14 Sliding window. Graphical representation of a window sliding along the time axis. The
sound is sampled at 22,050 Hz; the window length is made of 512 samples which is equivalent to
0.0232 s. The overlap is 0% (top), 50% (middle), and 75% (bottom). The height of the window was
artificially increased for a sake of clarity

time resolution depending on sampling rate, window length and overlap are given
in Table 5.1.

5.2.3.2 Moving Average

The first possibility to clean a noisy amplitude envelope is to apply a moving or
rolling average. The moving average principle relies on the sliding window concept
detailed above. The values of samples framed by the window w(t) are averaged.
This leads to an averaged value per window slide and to an output time series made
of successive averages. In R, the moving average option is set up with the argument
msmooth of the function env(). This argument requires a numeric vector of
length 2 with the first element specifying the window length in number of samples
and the second element the window overlap in percentage (%). Setting msmooth to
c(512, 50) slides a window of 512 samples jumping every 256 samples (50%
of 512):

env(tico, msmooth=c(512,50))

132 5 Display of the Wave

Table 5.1 Time resolution of
a sliding window

f wl ovlp Δt

22,050 512 0 0.0232

22,050 512 50 0.0116

22,050 512 75 0.0058

22,050 512 95 0.0012

22,050 1024 0 0.0464

22,050 1024 50 0.0232

22,050 1024 75 0.0116

22,050 1024 95 0.0023

44,100 512 0 0.0116

44,100 512 50 0.0058

44,100 512 75 0.0029

44,100 512 95 0.0006

44,100 1024 0 0.0232

44,100 1024 50 0.0116

44,100 1024 75 0.0058

44,100 1024 95 0.0012

The table shows different time res-
olutions (Δt in s) in respect to sam-
pling frequency (f in Hz), sliding
window length (wl in number of
samples), and sliding window over-
lap (ovlp in %)

The tico dataset was sampled at 22,050 Hz and includes 39,578 samples. If we
apply a 128 sample window with an overlap of 75%, we obtain an envelope made
of (39,578 ÷ 128) × 4 = 1233 windows with a time resolution of 128 ÷ 22,050 =
0.0058 s. Figure 5.15 shows the results of different window lengths and overlaps
on tico analytic amplitude envelope. Smoothing can have a strong impact on the
amplitude profile and should therefore be used with caution.

If absolute and analytic amplitude envelopes show quite important differences
(Fig. 5.11), they tend to look very similar when applying a sliding average as shown
in Fig. 5.16.

5.2.3.3 Moving Sum

Another way to smooth an envelope is to compute the sum of neighbor values. This
method relies on a sliding window as well, but the window is slided sample by
sample so that the smoothed output wave has the same number of samples than the
input wave. The only parameter to provide is the length in number of samples of
the sliding window. This is achieved with the argument ssmooth of the function
env(). For instance, the following code computes the sum of envelope samples 1
to 512 (window 1), then 2 to 513 (window 2), and so on until the end of the wave:

5.2 Amplitude Envelope 133

w
l =

 1
02

4
sa

m
pl

es
w

l =
 5

12
 s

am
pl

es
w

l =
 8

 s
am

pl
es

ovlp = 0% ovlp = 50% ovlp = 95%

Fig. 5.15 Amplitude envelope smoothing. Example of the tico amplitude analytic envelope
smoothed with different sliding window lengths and overlaps

env(tico, ssmooth=512)

Figure 5.17 shows the smoothed envelope of tico with different window
lengths.

5.2.3.4 Moving Kernel

Smoothing kernel is a smoother that uses a weight function to average the observa-
tions, i.e., the sample values. There are different weights or kernel functions K(x)

available in R, namely, “daniell,” “dirichlet,” “fejer,” and “modified.daniell.” These
functions are parametrized with a single parameter m called either the bandwidth,
the spread, or the smoothing parameter. Increasing the value of m increases the
smoothing. In R, kernel smoothing is available in the function kernel() with the
first argument being the kernel function and the second argument the parameter m,
so that a Daniell kernel function with m = 8 is created with:

134 5 Display of the Wave

w
l =

 1
02

4
sa

m
pl

es
w

l =
 5

12
 s

am
pl

es
w

l =
 8

 s
am

pl
es

envt = 'hil' envt = 'abs' difference

Fig. 5.16 Amplitude envelope types and smoothing with a sliding average. The plate shows the
shape of the tico envelope either as an absolute amplitude envelope (envt=’abs’) or as an
analytic envelope (envt=’hil’) for different average sliding window lengths. The difference by
subtraction between the two envelopes is also shown

K <- kernel("daniell", 8)

This function is reused with the argument ksmooth of the function env() to
apply a kernel smoothing to the envelope:

env(tico, ksmooth=kernel("daniell",8))

Figure 5.18 shows the smoothed envelope of tico with the same Daniell kernel
but with different smoothing parameters m. It is important to note that smoothing
with a kernel function changes the length of the object. For instance, the smoothed
envelope of Fig. 5.18 contains 39,562, 38,554, and 37,530 samples for m = 8, m =
512, and m = 1024, respectively, when the original signal has 39,578 samples. This
induces a subsampling process that needs to be controlled for further analyses. The
use of the kernel smoothing can be accelerated with the use of the argument fftw.

5.2 Amplitude Envelope 135

ssmooth = 8 samples

ssmooth = 512 samples

ssmooth = 1024 samples

Fig. 5.17 Amplitude envelope smoothing by moving sum. The envelope is smoothed by comput-
ing the sum of neighbor values within a window containing 8, 512, or 1024 samples

5.2.3.5 Which Smoothing Method Should I Use?

To summarize there are three options to smooth an envelope: average (msmooth),
sum (ssmooth), or kernel (ksmooth). The results do not differ so much, but the
three possibilities mainly differ in the time they take to return the result (process
time) and in the length of the vector returned (sampling). The fastest option is
msmooth, followed by ksmooth and then ssmooth. The factor of process time
varies with the length (duration) of the input wave. For instance, the process time
ratio between ssmooth and msmooth was, respectively, 2.4 and 5.2 for a 18 s and
a 180 s sound, and the ratio between ssmooth and ksmooth was 2.4 and 2.16
for the same objects. Regarding sampling, ssmooth has the great advantage not to
change the number of samples when ksmooth slightly downsample and msmooth
downsample quite drastically the wave. Therefore a trade-off arises between process
and sampling. If the analysis requires to keep strictly the original number of samples,
then ssmooth has to be used. If not, then the msmooth option might be preferred
for its speed, in particular on short (<60 s) sounds.

136 5 Display of the Wave

ksmooth = c('daniell', 8)

ksmooth = c('daniell', 512)

ksmooth = c('daniell', 1024)

Fig. 5.18 Amplitude envelope smoothing with a kernel function. The envelope is smoothed by
applying a kernel function parametrized with a smoothing parameter m

5.2.4 In Practice with phonTools

The packagephonTools has a function named powertrack()which computes
and displays another profile of the amplitude changes. The function operates a
moving average on the square of the signal s(t) weighted by a window function
w(t). This operation is quite similar to applying a moving average on the absolute
amplitude envelope. The values returned by powertrack(), named “power,”
are converted into dB with a maximum value of 0 dB. The length and the overlap
between the successive windows are set in ms with the argumentswindowlength
and timestep, respectively. We can apply powertrack() on tico with a
window of 10 ms and an overlap of 5 ms = 50% (Fig. 5.19). We need to call directly
the S4 slots of tico as powertrack() does not handle Wave objects:

powertrack(tico@left, timestep=5, windowlength=10,
fs=tico@samp.rate)

5.2 Amplitude Envelope 137

0 500 1000 1500

−8
0

−6
0

−4
0

−2
0

0

Time (ms)

Po
w

er
 (d

B)

Fig. 5.19 Envelope following powertrack() function. The envelope of tico was obtained
with the function powertrack() of phonTools. The envelope is obtained through a smooth-
ing average on the square of the sound

Fig. 5.20 Oscillogram and envelope. The analytic amplitude (or Hilbert) envelope is plotted in
red over the oscillogram

138 5 Display of the Wave

5.3 Combining Oscillogram and Envelope

The oscillogram and the amplitude envelope are two important representations of
sound that can be overlaid as shown in Fig. 5.20. This superposition is obtained by
adding a layer to an oscillo() plot with par(new=TRUE):

oscillo(tico)
par(new=TRUE)
env(tico, colwave=2)

Chapter 6
Edition

Sounds we recorded are not always exactly as we wished them to be. It may be
necessary to edit them to get the best of them. In this chapter we will see how
to change the sampling frequency, to control the channels and to manipulate sound
according to time. Sound modifications involving amplitude and frequency analyses
are detailed in Chaps. 14 and 15.

6.1 Resampling

We have seen in Chap. 2 that digital sound is sampled at a specific rate or
sampling frequency fs . The higher the sampling frequency is, the higher the time
resolution is. However, a high fs increases the amount of data to store so that
sound management and analysis can be difficult. A high fs also implies that the
resolution of a frequency decomposition can be reduced (see Sect. 10.1.2.1). A
solution to relax these constraints is to downsample the sound, that is to decrease
fs . Both tuneR and seewave provide solutions for downsampling. The function
downsample() of tuneR is straightforward to use; it only requires the sound
to be downsampled (input) and the sampling frequency of the downsampled sound
(output). The following code downsamples tico from 22,050 to 11,025 Hz in a
new object named tico.downsampled:

tico.downsampled <- downsample(tico, samp.rate=11025)
tico.downsampled@samp.rate
[1] 11025

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_6

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_6&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_6

140 6 Edition

Downsampling can also be processed with the function resamp() of
seewave. The advantage of this function is that it can accept not only Wave
objects but all other sound classes. The first argument of resamp() is similarly
the input sound, the second argument f is the optional sampling frequency of
the input sound, and the third argument g is the sampling frequency of the
output sound. The function resamp() has an extra argument, output, that
can be found in several other seewave functions (see Chap. 18). This argument
allows the user to control the class of the returned value. The argument Output
is a character vector that can take the following values: “matrix" (default),
“wave", “audioSample", or “ts." Here is the code to downsample
tico from 22,050 to 11,025 Hz and save the output into a matrix named
tico.downsampled.m:

tico.downsampled.m <- resamp(tico, g=11025)

In this case the sampling frequency of the output information is lost. To keep
it as an attribute, it is necessary to change the output to a class embedding the
sampling frequency as Wave does:

tico.downsampled.wave <- resamp(tico, g=11025, output="Wave")
tico.downsampled.wave@samp.rate
[1] 11025

Downsampling can be a risky process leading to a well-known phenomenon
in acoustics, aliasing, as already detailed in Sect. 2.4.3. A usual mistake is to
downsample a sound such that the new Nyquist frequency fN —half the new
sampling frequency—is too close from the highest frequency of the sound. For
instance, imagine that a 5000 Hz sound was recorded with a sampling frequency
of fs = 22,050 Hz. Everything is fine at this stage: the 5000 Hz frequency band
is far away from the Nyquist frequency fN = fs ÷ 2 = 11,025 Hz. However, if
we downsample the sound to a new sampling frequency of 11,025 Hz, the 5000 Hz
frequency band gets then very close the new Nyquist frequency fN = 11,025÷2 =
5512,5 Hz. This induces time and frequency artifacts as shown in Fig. 6.1. A
solution to avoid such issue is to apply a band-pass filter before to undersample
as explained in Sect. 14.6.3.3.

It may also be necessary to oversample, that is, to increase the sampling
frequency fs . This can happen when several sounds have been sampled at different
rates and that oversampling is required to have a similar sampling frequency for all
sounds. Oversampling can be processed with resamp() by setting g > f. The

6.1 Resampling 141

0.000 0.002 0.004 0.006 0.008 0.010

Time (s)

Am
pl

itu
de

O
rig

in
al

D
ow

ns
am

pl
ed

Fig. 6.1 Aliasing and downsampling. The original file (top) is a 5000 Hz pure tone sampled at
22,050 Hz. The same sound downsampled at 11,025 Hz clearly shows time and frequency artifacts
(bottom)

following example is an oversampling of tico by a factor of 2:

tico.oversampled <- resamp(tico, g=tico@samp.rate*2,
output="Wave")

tico.oversampled@samp.rate
[1] 44100

Oversampling means that samples not existing in the input sound are artificially
created in the output sound. The generation of new samples is achieved through a
linear or constant interpolation process between existing samples. A linear process
might not always be adapted to a sound wave. Oversampling should therefore be
used with caution.

The sampling frequency fs can be also changed to slow down or speed up the
sound by using the function Wave of tuneR:

tico.fast <- Wave(left=tico@left, bit=tico@bit,
samp.rate=tico@samp.rate*2)

tico.slow <- Wave(left=tico@left, bit=tico@bit,
samp.rate=tico@samp.rate/2)

142 6 Edition

The result can be listened and saved in an external .wav file with:

listen(tico.slow) ; savewav(tico.slow)
listen(tico.fast) ; savewav(tico.fast)

6.2 Channels Managing

Sound can be recorded in mono (a single channel usually recorded on the left
channel of the recorder device), in stereo (two channels, usually left and right
channels), or in multichannel format that is on more than two channels. The number
of channels of a Wave object can be accessed with the function nchannel() of
tuneR. The order and the name of channels of multichannel objects are predefined
by the position of the speakers. This information is stored in the dataset MCnames
coming with tuneR:

MCnames
id label name

1 1 Front Left FL
2 2 Front Right FR
3 3 Front Center FC
4 4 Low Frequency LF
5 5 Back Left BL
6 6 Back Right BR
7 7 Front Left of Center FLC
8 8 Front Right of Center FRC
9 9 Back Center BC
10 10 Side Left SL
11 11 Side Right SR
12 12 Top Center TC
13 13 Top Front Left TFL
14 14 Top Front Center TFC
15 15 Top Front Right TFR
16 16 Top Back Left TBL
17 17 Top Back Center TBC
18 18 Top Back Right TBR

As detailed in Chap. 4, the number of channels is stored in the audioSample
and Wave objects. There are no specific channel functions in audio, but tuneR
includes three functions for managing mono and stereo sounds. The function
stereo() is used to generate a stereo file. We can then convert tico, which

6.2 Channels Managing 143

is a mono sound, into a stereo sound with:

tico.stereo <- stereo(left=tico, right=tico)

and check if tico.stereo is indeed a stereo object:

tico.stereo@stereo
[1] TRUE

and even plot it with oscilloST() of seewave (Fig. 6.2):

oscilloST(tico.stereo)

Fig. 6.2 Oscillogram of a stereo Wave object. The object tico was converted into a stereo Wave
object with stereo() and plotted as an oscillogram with the function oscilloST(). The left
channel is on the top and the right channel is at the bottom of the plot

144 6 Edition

The function mono() can convert a stereo sound into a mono sound, either by
extracting a single channel or by averaging both channels into a single one:

tico.left <- mono(tico.stereo, "left") # left channel
tico.right <- mono(tico.stereo, "right") # right channel
tico.both <- mono(tico.stereo, "both") # left+right channels

All the objects returned by mono() are Wave objects. Remember that the data
or samples of the channels can be accessed directly with the S4 syntax @ (see DIY
box 6.1).

The function channel() can also manage channels. In particular, this function
can mirror the left and right channel, that is, replace the left channel by the right
channel and vice versa:

tico.mirror <- channel(tico.stereo, which="mirror")

The relative amplitudes of left and right channels can be balanced changing
the stereo effect with panorama(), another function of tuneR. The function
works with only two arguments: the input sound (either a stereo Wave object or
a WaveMC object which only the two first channels will be considered) and a value,
pan, varying between −1 and +1 that controls the mixture of the channels and
therefore the virtual distance between the two loudspeakers. If pan=1, nothing is
changed; if pan=0, the channels have the same amplitude and therefore are both
centered. If pan=-1, the channels are mirrored. If -1<pan<0, the amplitude of
the left channel is decreased so that the stereo effect seems to come from the right.
Reversely, if 0<pan<1, the amplitude of the left channel is increased so that the
stereo effect is on the left. The following use of panorama() balances positively
the stereo version of tico on the left:

pan <- panorama(tico.stereo, pan=0.5)

Mono and stereo sounds can be created from WaveMC objects through simple
matrix indexing. The returned objects will be of class WaveMC. For instance,
if we convert tico into WaveMC objects with three channels with the function
WaveMC():

tico.mc <- WaveMC(data=cbind(tico@left, tico@left, tico@left))
nchannel(tico.mc)
[1] 3

6.2 Channels Managing 145

we then can extract any channel into a single channel WaveMC object, in other words
a mono sound:

tico.mc.mono <- tico.mc[,2]
nchannel(tico.mc.mono)
[1] 1

or any pairs of channels into a WaveMC object with two channels, that is, a stereo
sound:

tico.mc.stereo <- tico.mc[,c(2,3)]
nchannel(tico.mc.stereo)
[1] 2

DIY 6.1 — How to apply mono conversion and to mix channels

It is possible to have access manually to the two channels of a stereo sound by extracting
the slots of the Wave objects. The following code extracts and converts the left and right
channels into Wave mono objects as does mono():

tico.left <- Wave(tico.stereo@left,
samp.rate=tico.stereo@samp.rate,
bit=tico.stereo@bit)

tico.right <- Wave(tico.stereo@right,
samp.rate=tico.stereo@samp.rate,
bit=tico.stereo@bit)

We have also seen that mono() can average the left and right channels to produce a new
mixed mono object. This can be achieved by associating the channel slots into a single
matrix with rbind() and then by computing the column means with colMeans():

tico.both <- colMeans(rbind(tico.stereo@left,
tico.stereo@right))

tico.both <- Wave(tico.both,
samp.rate=tico.stereo@samp.rate,
bit=tico.stereo@bit)

This opens the possibility to mix the channels with different weights. If we want to mix
the left and right channels with twice more weight to the left channel than to the right
channel, we just multiply the left channel by a factor of 2:

(continued)

146 6 Edition

DIY 6.1 (continued)

tico.mix <- colMeans(rbind(2*tico.stereo@left,
tico.stereo@right))

tico.mix <- Wave(tico.mix,
samp.rate=tico.stereo@samp.rate,
bit=tico.stereo@bit)

6.3 Manipulating Sound Sections

Deleting, moving, and repeating sentence sections are basic operations of digital
writing. It is also often necessary to apply such actions with sound to change the
order of sound events, to remove unwanted sounds, and to copy or to repeat a
section of interest. Both tuneR and seewave provide solutions to manipulate
sound sections.

6.3.1 Extract

The extraction, or cut, of a sound section consists in selecting a section of an
input sound and storing it in a new object without changing the input sound.
extractWave() of tuneR and cutw() of seewave process such a job in a
rather similar way. Both functions require an input object, a start position (argument
from in both functions), and an end position of the section to extract (argument to
in both functions). The main difference lays in that cutw() can accept different
object classes as input and can return the output section in different object classes.
extractWave() has also an argument xunit, that cutw does not have, to
specify the unit of time. This can be either sample for the sample position (not
value) or time for seconds. To extract the second syllable of tico which is
localized between 0.6 and 0.87 s, we can call either extractWave() or cutw()
to reach the same result:

syllable2 <- extractWave(tico, from=0.6, to=0.87, xunit="time")

6.3 Manipulating Sound Sections 147

is equivalent to:

syllable2 <- cutw(tico, from=0.6, to=0.87, output="Wave")
syllable2

Wave Object
Number of Samples: 5955
Duration (seconds): 0.27
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

It is not mandatory to provide values for both from and to arguments. With
cutw() if only one argument is provided, then the section extracted will either
start at the beginning of the sound or stop at its end. The following code extracts the
first and second syllables of tico that are included between 0 and 0.87 s.

sylabbles1and2 <- cutw(tico, to=0.87, output="Wave")

and the following code extracts the third and fourth syllables of tico that occur
between 0.87 s and the end of the sound.

sylabbles3and4 <- cutw(tico, from=0.87, output="Wave")

If from and/or to of extractWave() are omitted, then the oscillogram
of the input sound pops up in a new graphical device, and the console waits for
clicking on it to choose the missing value(s). Actually, the argument interact of
extractWave() and choose of cutw() allows to choose visually the limits
of the section to be extracted. cutw() has an extra logical argument, plot, that
plots the oscillograms of the input and output sounds.

The functions extractWave() and cutw() can be included in a loop so that
different sections of a single input sound can be extracted sequentially. Such sound
splitting requires some tricks that are detailed in the DIY box 6.2.

DIY 6.2 — How to split a sound into several sound bouts

The idea is to split tico into four Wave objects each containing one of the four syllables
of tico. The from and to positions are first stored in a matrix named positions so
that the first row of the matrix corresponds to the time start and end of the first syllable, the
second row to the time start and end of the second syllable, and so on. Here the positions

(continued)

148 6 Edition

DIY 6.2 (continued)

were identified visually with the oscillogram, but solutions for time measurements are
suggested in Chap. 8:

positions <- matrix(data=c(0, 0.6, 0.6, 0.87,
0.87, 1.42, 1.42, 1.79),

byrow=TRUE, ncol=2)
colnames(positions) <- c("from", "to")
positions

from to
[1,] 0.00 0.60
[2,] 0.60 0.87
[3,] 0.87 1.42
[4,] 1.42 1.79

The loop consists in using successively each row of the matrix positions to create a
new object named syllable1, syllable2, and so on. There is however a trick to do
so. It is not possible to write code on the left of the assign arrow (<-). For instance, using
the function paste() to generate an object name does not work:

paste("object", 1, sep="") <- 1:10

The arrow <- can be replaced by the function assign() that takes two main arguments.
The first argument x is the code that would be written on the left of the arrow, and the
second argument value corresponds to the code on the right of the arrow. The above
issue can be fixed with:

assign(paste("object", 1, sep=""), 1:10)
object1
[1] 1 2 3 4 5 6 7 8 9 10

So the solution for splitting tico into four Wave objects is a for loop using
assign():

(continued)

6.3 Manipulating Sound Sections 149

DIY 6.2 (continued)

for(i in 1:nrow(positions))
{

assign(paste("syllable", i, sep = ""),
cutw(tico, from = positions[i,1],

to = positions[i,2],
output = "Wave"))

}

We can check the first object:

syllable1

Wave Object
Number of Samples: 13230
Duration (seconds): 0.6
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

6.3.2 Delete

Deleting is a kind of extraction process as a section of a sound is extracted and
removed from the input sound. This can be achieved with the function deletew()
of seewave. Removing the second syllable of tico is rather easy as the syntax is
the same as for cutw():

tico.nosyllable2 <- deletew(tico, from=0.6, to=0.87, output="Wave")

The duration of the output object is 1.79 − (0.87 − 0.6) = 1.52 s:

duration(tico.nosyllable2)
[1] 1.524853

150 6 Edition

6.3.3 Paste

Both tuneR and seewave provide solutions to paste or concatenate sound objects.
The bind() function of tuneR can concatenate Wave objects in a very simple
way as the generic function c() does. The only requirement is that the objects
should have the same properties, that is, the same sampling frequency (fs), the
same digitization depth (bit), and the same number of channels, something that
can be checked with the function checkwavs() of the package warbleR (see
Sect. 4.2.1). We can, for instance, build a new sound using the objects we have
generated above by concatenating tico, the second syllable of tico which is
stored in syllable2 and tico without the second syllable which is saved in
the object tico.nosyllable2. All these objects are Wave objects and have the
same sampling features so that binding same together does not return any error:

b <- bind(tico, syllable2, tico.nosyllable2)
b

Wave Object
Number of Samples: 79156
Duration (seconds): 3.59
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Binding two sounds may generate clicks at the junction of the waves. These
clicks are mainly due to a break in the phase of the waves. Figure 6.3 shows
two waves out of phase, wave1 and wave2, that generate a click when they are
concatenated.

The function prepComb() of tuneR offers a solution to try to avoid such
clicks. The function removes some amounts of the waves to be pasted, either at their
start or end, or at both extremities. To remove the click at the junction of the wave1
and wave2, it is necessary to apply prepComb() at the end of wave1 and at the
start of wave2, respectively:

wave1 <- prepComb(wave1, where="end")
wave2 <- prepComb(wave2, where="start")
wave <- bind(wave1, wave2)

Figure 6.4 clearly proves that the click disappeared.
However, if this procedure is very efficient, it also reduces the length of the

concatenated objects. Here wave1 and wave2 were made of 300 samples each

6.3 Manipulating Sound Sections 151

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

wave1 wave2

click!

Fig. 6.3 Clicks when concatenating (pasting) waves. The concatenation of two waves with
different phases might generate unwanted clicks. There is a 3π ÷ 2 rad or 270◦ shift between
the two waves

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 6.4 Click removing by prepComb(). The click at the junction between wave1 and wave2
was removed thanks to the function prepComb() of the package tuneR

so that the concatenated objects should be made of 600 samples, but the use of the
prepComb() truncated the length of the original objects to 200 and 275 so that
the final object has a reduced length of 475:

length(wave1)
[1] 200

(continued)

152 6 Edition

length(wave2)
[1] 275
length(wave)
[1] 475

This may have important consequences as neither the sampling frequency nor
the duration of the bound object is changed. This may induce artifacts in terms of
frequency, here a negative frequency shift.

seewave also includes a function that concatenates or pastes sound. This
function, pastew(), is more limited than bind() as it accepts only two objects
to be pasted so that we need two lines of codes to do the same as bind():

b <- pastew(syllable2, tico, output="Wave")
b <- pastew(tico.nosyllable2, b,output="Wave")
b

Wave Object
Number of Samples: 79156
Duration (seconds): 3.59
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Note that the default orders of the objects is reversed compared to bind()
as the first argument of pastew() is the object to be pasted and the second
argument is the object to be completed (input). However, the function pastew()
offers the possibility to paste the second object anywhere in the first object with
the argument at. By default at is set up to “end". The default value can be
changed to “start" so that the order of pasting is similar to bind(). The value
of at can also be “middle" to paste the second object in the middle of the input
object. The same argument can also accept a numeric value in s specifying where
the object should be pasted. The result can be plotted with the argument plot. In
the following example, the second syllable is pasted at the position 0.6 s so that the
second syllable is repeated once and the result is displayed in the graphics device
with plot=TRUE (Fig. 6.5):

pastew(syllable2, tico, at=0.6, output="Wave", plot=TRUE)

6.3 Manipulating Sound Sections 153

signal to be pasted

signal to be completed

resulting signal

0.00

0.0 0.5 1.0 1.5

0.0 0.5 1.0 1.5 2.0

Time (s)

Time (s)

Time (s)

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

0.05 0.10 0.15 0.20 0.25

Fig. 6.5 Pasting sounds with pastew(). The second syllable is pasted (inserted) into tico at
0.6 sand the result is plotted

This results in inserting a sound into another one. The position of insertion can
also be chosen interactively by turning the argument choose to TRUE:

pastew(syllable2, tico, choose=TRUE, output="Wave")

The management of clicks due to phase shifts can be managed with two
arguments of pastew(). When set up to TRUE, the argument join removes the

154 6 Edition

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 6.6 Click removing by pastew(). The click at the junction between wave1 and wave2
was removed thanks to the function argument tjunction of pastew() of the package
seewave

first sample of the object to be pasted. This can limit the occurrence of some clicks
but this will not work in all cases. The argument tjunction does a bit more as it
replaces original values at the junction of the two objects by new values generated
through a linear interpolation. This procedure applies to a certain amount of time
that is specified with a numeric value in s. For instance, setting tjunction to
0.001 will apply the linear interpolation on a 1 ms section. The result might not
be always as good as the one obtained with prepComb(), but it has the great
advantage to preserve the number of samples and therefore the main properties of
the output object (Fig. 6.6):

wave <- pastew(wave2, wave1, tjunction=0.001, output="Wave")
length(wave)
[1] 600

Clicks can also be avoided by applying a fade effect as explained in Sect. 6.5.3.

6.3.4 Repeat

The function repw() of seewave is an iterative copy-and-paste action of the
input object by itself. The main argument is times that sets up the number of
times the object has to be repeated. The following code repeats tico three times:

6.4 Removing and Inserting Silence Sections 155

tico3 <- repw(tico, times=3, output="Wave")
tico3

Wave Object
Number of Samples: 118734
Duration (seconds): 5.38
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

6.3.5 Reverse

The function revw() of seewave can “reverse" the sound so that the last sample
of the original sound becomes the first sample of the modified sound:

tico4 <- revw(tico, output="Wave")

Note that both amplitude and frequency modulations are reversed with this
action. See Sect. 15.5 to reverse independently the amplitude and frequency modu-
lations.

6.4 Removing and Inserting Silence Sections

Sections of low amplitude or silence are sometimes unnecessary as they might
contain no relevant information. The functions noSilence() of tuneR and
zapsilw() of seewave both intend to remove quiet sound sections.

noSilence() cuts off silence that can occur at the start and/or end of a
sound; in other words noSilence() is a trim function. It requires to set up an
amplitude level under which samples will be removed. It is therefore necessary to
get information on the distribution of the samples values. This can be obtained by
drawing a histogram of the absolute value of the instantaneous amplitude a, i.e., a
histogram of the absolute amplitude envelope (Fig. 6.7):

tico.h <- hist(abs(tico@left)) # histogram plotted and saved
first.cell <- tico.h$mids[1] # center of histogram cell 1
abline(v=first.cell, col="red") # vertical line at cell 1 center

156 6 Edition

Histogram of abs(tico@left)

abs(tico@left)

Fr
eq

ue
nc

y

0 5000 10000 15000 20000

0
50

00
10

00
0

15
00

0
20

00
0

Fig. 6.7 Histogram of tico absolute amplitude envelope. Distribution of the absolute values
(absolute amplitude envelope) of the tico samples. The first cell counts the numbers of samples
between 0 and 1000, the vertical red bar indicates the center of the first cell at 500

The first cell is mainly due to low values varying between 0 and 1000, that is, to
quiet sections of the sound. The middle of this cell (500) can be therefore used for
setting the argument level of noSilence() (Fig. 6.8):

tico.nosilence <- noSilence(tico, level=first.cell/2)

The function zapsilw() does not do exactly the same as noSilence():
zapsilw() removes every samples that are below a defined amplitude thresh-
old anywhere, not only at the start or at the end of the sound. The argu-
ment threshold of zapsilw() is homologous of the argument level of
noSilence(), but it is defined along a relative scale in percentage. Setting a
threshold of 5% means that values lower than 5 of the absolute amplitude envelope
rescaled between 0 and 100 will be removed. Applying a threshold of 1% to tico
removes the silent parts around the four syllables (Fig. 6.8):

tico.zapsilw <- zapsilw(tico, threshold=1, output="Wave")

6.4 Removing and Inserting Silence Sections 157

A
m

pl
itu

de
A

m
pl

itu
de

original

0.0 0.5 1.0 1.5

Time (s)

silence removed

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Both operations change the duration or length of the input sound but other
properties are not altered:

length(tico)
[1] 39578
length(tico.nosilence)
[1] 36861
length(tico.zapsilw)
[1] 23352

seewave includes two functions that operate an opposite action by inserting or
adding silence sections. The function mutew() replace sampled values by 0 values
between two time limits set with the arguments from and to. This can be used
to replace a section by silence without changing the duration of the original sound.
For instance, the following code replaces the second syllable of tico by silence
(Fig. 6.9):

mutew(tico, from=0.6, to=0.87, output="Wave")

The function addsilw() can be used to insert silence bouts. The duration of
the inserted silence bout is set in s with the argument d, and the position within the
original sound is specified with the argument at in s as well. This latter argument
is similar to the argument at of pastew(). It can be either a character string—
(“start", “middle", or “end")—or a time position expressed in s. It is often

158 6 Edition

Fig. 6.8 Removing silence. The figure shows the results of both noSilence() and
zapsilw() functions. The first function works at start and end of the signal operating as a
trim function when the second function removes every silence sections. Sections modified are
highlighted with red arrows drawn with arrows()

6.5 Changing Amplitude 159

Am
pl

itu
de

0.0 0.5 1.0 1.5

Time (s)

Fig. 6.9 Muting. The second syllable of tico, which starts at 0.6 sand stops at 0.87 s is muted by
replacing original samples values with 0 values. The new silence section is highlighted with a red
arrow drawn arrows()

useful to add some silence at both start and end of a sound to zoom out or to improve
automatic temporal measurements (see Chap. 8). Such action can be operated with
two lines of code (Fig. 6.10):

tico.start <- addsilw(tico, d=0.2,
at="start", output="Wave")

tico.start.end <- addsilw(tico.start, d=0.2,
at="end", output="Wave")

6.5 Changing Amplitude

6.5.1 Offset

An amplitude offset occurs when sample values do not equally vary around the
reference value (for instance, p0) but are all shifted toward low or high amplitude
values (Fig. 6.11).

Such amplitude shift can be removed by a simple correction consisting in
subtracting all samples values by either the mean, the median, or any other
position statistical parameter of the wave. By default, the function rmoffset()
of seewave uses the mean, but other function can be called with the argument

160 6 Edition

Am
pl

itu
de

0.0 0.5 1.0 1.5 2.0

Time (s)

Fig. 6.10 Adding silence. Silence sections can be added with the function addwilw() as
demonstrated here by adding 0.2 s bouts at both start and end of tico. The new silence sections
are highlighted with red arrows drawn with arrows()

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

offset

0 t

−

p0

+

Fig. 6.11 Amplitude offset. This wave is shifted toward high amplitude values, departing from the
p0 reference value

FUN. For a hypothetical sound wave affected by an offset, the code to correct this
amplitude shift would be:

nooffset.mean <- rmoffset(wave) # offset remove with mean
nooffset.median <- rmoffset(wave,

FUN=median) # offset remove with median

6.5 Changing Amplitude 161

6.5.2 Amplitude Level

There is no dedicated function to apply a change of the amplitude level. However,
arithmetic operations work on the objects of class Wave such that a multiplication
or a division can be directly applied. Here, two new objects are derived from tico
through a division and a multiplication by 2 to produce a “quiet" and a “loud" object,
respectively. The changes are checked by computing the root-mean-square (RMS)
of the amplitude envelope with the function rms() (see Sect. 7.1):

rms(env(tico, plot=FALSE)) # rms of the original object
[1] 5554.346
tico.quiet <- tico/2
rms(env(tico.quiet, plot=FALSE)) # rms of the ’quiet’ object
[1] 2777.173
tico.loud <- 2*tico
rms(env(tico.loud, plot=FALSE)) # rms of the ’loud’ object
[1] 11108.69

These changes are not kept when saving the objects in a .wav file with the
function savewav() because savewav() applies by default a 16 bit normaliza-
tion. The trick is to call the argument rescale of savewav() for rescaling the
amplitude between a lower and an upper limit. The argument rescale waits then
a numeric vector of length 2. We can here use the range of the left channel to apply
the rescaling:

savewav(tico.quiet, rescale=range(tico.quiet@left))
savewav(tico.loud, rescale=range(tico.loud@left))

The argument rescale can be actually used with any value such that any
change of the amplitude level can be applied when exporting in .wav. Here is an
example ranging the values of the output file along a 12 bit scale:

savewav(tico, file="tico-12bit.wav", rescale=c(-2^11, 2^11))

The function normalize() of tuneR can also proceed global amplitude
changes. The function can first change the scale of the sample values. The argument
unit can be used to rescale the samples values between [−1, 1] or along a 8, 16,
32, or 64 bit scales.

162 6 Edition

tico is a 16-bit sound with sample values varying between −18,596 and
19,125:

summary(tico)

Wave Object
Number of Samples: 39578
Duration (seconds): 1.79
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Summary statistics for channel(s):

Min. 1st Qu. Median Mean 3rd Qu.
-18596.000 -583.750 0.000 0.495 585.750

Max.
19125.000

The 16-bit scale can be switched to a 32-bit scale with normalize() such
that sample values ai ∈ [−232−1, 232−1] = [−2.147 ·109, 2.147 ·109] by setting
the argument unit to "32", the value being quoted as unit waits for a character
string and not a numeric vector:

tico.32 <- normalize(tico, unit="32")
summary(tico.32)

Wave Object
Number of Samples: 39578
Duration (seconds): 1.79
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 32

Summary statistics for channel(s):

Min. 1st Qu. Median Mean 3rd Qu.
-2.088e+09 -6.560e+07 -5.554e+04 0.000e+00 6.572e+07

Max.
2.147e+09

It is important to note that this rescaling is somehow artificial: the quantization
has changed but the accuracy of the sampling has not.

6.5 Changing Amplitude 163

The argument level can be used to rescale the sample values between any
limits. This argument is defined as the maximal percentage of the amplitude.
Keeping with tico.32, setting level to 0.75 will rescale the values ai ∈
[−0.75 × 232−1, 0.75 × 232−1] = [−1.61 ·109, 1.61 ·109] :

tico.32b <- normalize(tico, unit="32", level=0.75)
summary(tico.32b@left)

Min. 1st Qu. Median Mean 3rd Qu.
-1.566e+09 -4.920e+07 -4.166e+04 0.000e+00 4.929e+07

Max.
1.611e+09

Therefore normalize() can be used to change the amplitude of a sound,
and this modification can be saved in an external .wav file. Here tico is
first normalized at 100% and saved in a file named tico-loud.wav and then
normalized at 50% and written in another file named tico-soft.wav:

writeWave(normalize(tico, unit="16"),# maximal loudness
filename="tico-loud.wav")

writeWave(normalize(tico, unit="16", # loudness divided by 2
level=0.5),
filename="tico-soft.wav")

In all cases, sample values are by default recentered around 0 by normalize()
so that any offset is removed. Centering can be turned off by setting the argument
center to FALSE.

6.5.3 Fade-In and Fade-Out

A usual edit action is to increase gradually the amplitude of the beginning of the
recording and to decrease it in a similar way at the end of the recording. Such
amplitude effect, known as fade-in and fade-out, respectively, is available in the
seewave function fadew(). The argument shape gives the choice between
three fade shapes, namely, a linear, an exponential, and a cosine shape, and the
arguments din and dout specify the duration of the effect at the beginning and
at the end of the sound, respectively. To illustrate this function, we will refer to the
synthetic sound mimicking an A vibrating tuning fork, as already used in Sect. 4.2.1.
The sound is enclosed in the file tuning-fork.wav:

164 6 Edition

tuningfork <- readWave("sample/tuning-fork.wav")
tuningfork

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

The following code exemplify three fade-in and fade-out examples with linear,
exponential, and cosine attack and tail (Fig. 6.12):

layout(matrix(1:4, nrow=4))
par(mar=rep(2,4), oma=c(3,2,0,0))
din <- 0.1 ; dout=0.3
oscillo(tuningfork,

alab="", tlab="", xaxt="n",
title="Original")

fadew(tuningfork, din=din, dout=dout, shape="linear",
alab="", tlab="", xaxt="n", plot=TRUE,
title="Linear fade in/out with shape=’linear’")

fadew(tuningfork, din=din, dout=dout, shape="exp",
alab="", tlab="", xaxt="n", plot=TRUE,
title="Exponential fade in/out with shape=’exp’")

fadew(tuningfork, din=din, dout=dout, shape="cos",
alab="", tlab="", plot=TRUE,
title="Cosine fade in/out with shape=’cos’")

mtext("Times (s)", side=1, line=1, outer=TRUE)
mtext("Amplitude", side=2, outer=TRUE)

The function crossFade() of the package soundgen can paste two sounds
and apply at the same time a fade-out effect on the first sound and a fade-in effect
at the start of the second sound so that that the transition between the two sounds is
smoothed.

6.5 Changing Amplitude 165

Fig. 6.12 Fade-in and fade-out. Fade-in and fade-out are applied to the tuning fork sound with
three different amplitude shapes: linear, exponential and cosine

Chapter 7
Amplitude Parametrization

The amplitude is one of the first parameter that needs to be reported when describing
a sound. It is important to know how much energy contains a sound and how
the amplitude is distributed along time. As we have seen in Sect. 2.2.3, amplitude
can be measured along a linear scale or along the logarithmic dB scale that was
designed to comply with main human audition properties. Amplitude can also be
expressed along a relative or absolute scale, the latter requiring a calibration of the
full recording chain. We will first see what R can do in terms of relative linear and
dB measurements and then in terms of absolute measurements.

7.1 Linear Relative Scale

The amplitude of a wave can be characterized by (1) the instantaneous amplitude
a(t), (2) the maximum amplitude A = max a(t), (3) the peak-to-peak amplitude
pk-pk(a(t)), or (4) the root-mean-square amplitude RMS(a(t)) (Fig. 2.3).

The instantaneous amplitude is the value of any sample along the digitization
scale. A sample value can be returned by indexing the raw data. For instance, the
value of the 1234th sample of tico is obtained by using the [] index syntax on
the S4 slot @left:

tico@left[1234]
[1] 412

The value returned will of course depends on the scale used. Here tico has
been digitized on a 16 bit scale, but sample values could have been scaled within
[−1,+1] and [−100,+100] or within any other limits. It is therefore crucial to

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_7

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_7&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_7

168 7 Amplitude Parametrization

check the range of values with the function range() before interpreting or using
sample values:

range(tico@left)
[1] -18596 19125

The maximum amplitude can be directly obtained with the function max():

max(tico@left)
[1] 19125

However, this action returns a single value when a wave can reach a maximum
several times. The seewave function crest() provides the values and the
positions of the wave maxima also named crests. This function computes as well
the crest factor according to:

crest(a(t)) = max |a(t)|
RMS(a(t))

where RMS is the root-mean-square as defined below. The highest is the crest factor,
the more pronounced is the amplitude peak around the maximum values. For tico,
crest() returns:

crest(tico)
$C
[1] 4.86949

$val
[1] 19125

$loc
[1] 1.072653

The item $C is the crest factor, the item $val is the sample value, and $loc is
the position of the maximum expressed in s.

The peak-to-peak amplitude is the difference between the maximum and the
minimum and is obtained with:

max(tico@left) - min(tico@left)
[1] 37721

7.1 Linear Relative Scale 169

The root-mean-square RMS derives from the computation of the energy E and
the average power P̄ . The energy is simply the sum of the squared sample values:

E =
n∑

i=1

x2
i

obtained with:

E <- sum(tico@left^2)
E
[1] 610505784856

The average power is the energy per unit of time, here the number of samples n:

P̄ = E

n
= 1

n

n∑
i=1

x2
i

so that P̄ of tico is:

n <- length(tico@left)
P <- E/n
P
[1] 15425382

Eventually, the root-mean-square is the square-root of the average power P̄ :

RMS =
√

P̄ =
√

E

n
=
√√√√ 1

n

n∑
i=1

x2
i

So that in R the root-mean-square is returned with:

RMS <- sqrt(P)
RMS
[1] 3927.516

170 7 Amplitude Parametrization

or by calling directly the function rms() of seewave:

RMS <- rms(tico@left)
RMS
[1] 3927.516

So to summarize we have for tico:

data.frame(E,P,RMS)
E P RMS

1 610505784856 15425382 3927.516

Several other parameters can be computed on the wave as the classical statistical
measurements of position and dispersion:

min(tico@left) # minimum
[1] -18596
max(tico@left) # maximum
[1] 19125
mean(tico@left) # mean
[1] 0.4946182
var(tico@left) # variance
[1] 15425772
sd(tico@left) # standard deviation
[1] 3927.566
median(tico@left) # median
[1] 0
mad(tico@left) # median absolute deviation
[1] 865.8384

Some of these measurements can be returned at once with summary():

summary(tico@left)
Min. 1st Qu. Median Mean 3rd Qu.

-18596.000 -583.750 0.000 0.495 585.750
Max.

19125.000

7.1 Linear Relative Scale 171

Higher-order measurements can be computed to provide information on the data
shape. For instance, a moment of order k is defined in the following:

μk = 1

n

n∑
i=1

xk
i

such that the first moment is the arithmetic mean and the second moment is the
average power P̄ . We can write a function to compute the kth moment, but, as it
often happens with R, there is almost always someone from the R community who
thought about it before and shared a useful function. This is here the case with the
function moment() of the package moments:

library(moments)
moment(tico@left, order=1) # 1st moment, or mean
[1] 0.4946182
moment(tico@left, order=2) # 2nd moment, or average power
[1] 15425382
moment(tico@left, order=3) # 3rd moment
[1] -36610586
moment(tico@left, order=4) # 4th moment
[1] 1.675247e+15

Similarly, the kth central moment is written as:

μk = 1

n

n∑
i=1

(xi − x̄)k

Such that the central moment of order 2 is the uncorrected variance:

moment(tico@left, order=2, central=TRUE)
[1] 15425382

which is equivalent to:

(n-1)/(n)*var(tico@left)
[1] 15425382

The third and fourth normalized central moments are called the skewness and
kurtosis. Skewness is a measure of symmetry, while kurtosis is a way to estimate

172 7 Amplitude Parametrization

the degree of “peakedness" of a statistical distribution. Skewness and kurtosis can
be therefore used to quantify the global shape of the amplitude envelope.

Skewness is written according to:

γ1 = μ3

μ
3/2
2

where μ2 and μ3 are, respectively, the second and the third central moment. A
negative (resp. positive) skewness indicates that the distribution is skewed to the left
(resp. right). The skewness can be computed with the eponymous function of the
package moments:

skewness(tico@left)
[1] -0.0009821102

which is equivalent to:

moment(tico@left, order=3, central=TRUE)/
moment(tico@left, order=2)^(3/2)

[1] -0.0009821102

The kurtosis is written according to:

β2 = μ4

μ2
2

where μ2 and μ4 are, respectively, the second and the fourth central moment. If
β2 < 3, the distribution is said platikurtic, i.e., it has fewer items at the center and
at the tails but has more items in the shoulders; if β2 = 3, the distribution shows a
normal shape; and when β2 > 3, the distribution is qualified as leptokurtic, having
more items near the center and at the tails, with fewer items in the shoulders. The
function kurtosis() of the package moments computes β2:

kurtosis(tico@left)
[1] 7.040555

7.2 Logarithm Relative Scale 173

which is equivalent to:

moment(tico@left, order=4, central=TRUE)/
moment(tico@left, order=2)^2

[1] 7.040555

All the amplitude measures that we have seen above were applied on the wave
through the call of the raw data tico@left, but the same computations can also
be applied to the Hilbert envelope, like:

summary(env(tico, plot=FALSE))
V1

Min. : 0.006
1st Qu.: 68.788
Median : 1548.144
Mean : 3391.518
3rd Qu.: 4850.072
Max. :19254.481

We can refer to the same functions to characterize a frequency spectrum (see
Sect. 10.1.6.4).

7.2 Logarithm Relative Scale

7.2.1 Signal-to-Noise Ratio

The dB unit can be used to compute the signal-to-noise ratio, or SNR, which
quantifies the relative importance of a signal over the background noise. The SNR
formula consists in computing the ratio of the signal amplitude over the background
noise amplitude. These amplitudes can be estimated with the RMS, and the ratio
can be expressed in dB, following:

SNR = 20 × log10

(
RMSsignal

RMSnoise

)

If we had to estimate the SNR of the second syllable of tico, we should
estimate the RMS of this syllable and the RMS of the background noise for a
similar duration. To do this, we first cut the second syllable with cutw(), cut a
section of background noise following the second syllable with a similar duration,

174 7 Amplitude Parametrization

and compute the SNR:

signal <- cutw(tico, from=0.62, to=0.80)
length(signal)
[1] 3970
noise <- cutw(tico, from=0.82, to=1)
length(noise)
[1] 3970
SNR <- 20*log10(rms(signal)/rms(noise))
SNR
[1] 15.93484

If the noise does not stop when the signal is produced, another expression of SNR
could be:

SNR = 20 × log10

(|RMSsignal − RMSnoise|
RMSnoise

)

which is translated in R language in:

SNR <- 20*log10(abs(rms(signal)-rms(noise))/rms(noise))
SNR
[1] 14.42371

7.2.2 dBWeightings

We have seen in Sect. 2.2.3 the occurrence of dB weightings to take into account the
nonlinearity in frequency sensitivity of the human ear. The conversion from dB SPL
to weighted dB is ensured by the function dBweight() that waits a frequency in
Hz as a first argument, here 440 Hz:

dBweight(440)
$A
[1] -4.095091

$B
[1] -0.3901849

$C
[1] 0.02969125

(continued)

7.2 Logarithm Relative Scale 175

$D
[1] -0.288377

The function returns by default the dB(A), dB(B), dB(C), and dB(D) values
for a sound produced at 0 dB. It therefore provides the values for corrections. The
corrections can be applied directly on any dB measure by using the argument dB,
as exemplified here with an 80 dB sound:

dBweight(440, dB=80)
$A
[1] 75.90491

$B
[1] 79.60982

$C
[1] 80.02969

$D
[1] 79.71162

A quick way to reconstruct the dB weighting curves is to generate a vector of
frequencies and to plot the result of dBweight() with the function matplot()
that plots the column of a matrix or a data.frame (Fig. 2.5):

freq <- seq(10, 20000, by=10)
head(freq)
[1] 10 20 30 40 50 60
tail(freq)
[1] 19950 19960 19970 19980 19990 20000
res <- dBweight(freq)
matplot(x=freq, y=as.data.frame(res),

xlim=c(10,21000), ylim=c(-80,20),
type="l", lty=1, log="x",
xlab="Frequency (Hz)", ylab="dB")

7.2.3 dB Arithmetic

dB is a logarithm scale unit that should be manipulated carefully when running
arithmetic operations. Logarithms have their own rules (log(a × b) = log(a) +

176 7 Amplitude Parametrization

log(b), log(a ÷ b) = log(a) − log(b), log(ab) = b × log(a)) that prevent the use
of basic arithmetic functions such as sum(), mean(), or sd(). For instance, the
sum of 60 and 70 dB is not 130 dB but ≈70.41 dB. seewave offers three functions
to deal with dB operations: moredB() for the sum, meandB() for the average,
and sddB() for the standard deviation:

data <- seq(50,100, by=10)
data
[1] 50 60 70 80 90 100
moredB(data)
[1] 100.4576
meandB(data)
[1] 92.67606
sddB(data)
[1] 9.406182

These functions mainly convert the dB values to pressure values along the
linear Pa scale, run the linear arithmetic operation, and apply the conversion back
to dB. The conversion of dB into linear units can be processed by the function
convSPL() that ensures the switch from dB to power P in W, intensity I in
W m−2, and pressure p in Pa. By default the function refers to airborne sound. Here
are the results for a 80 dB sound:

convSPL(80)
$P
[1] 0.001256637

$I
[1] 1e-04

$p
[1] 0.2

The reference intensity Iref and the reference pressure pref can be changed to
fit, for instance, with water references:

convSPL(80, Iref=6.7*10^-19, pref=10^-6)
$P
[1] 8.419468e-10

$I
[1] 6.7e-11

(continued)

7.2 Logarithm Relative Scale 177

$p
[1] 0.01

The functionconvSPL() also includes an argumentd expressed in m to change
the distance from the source that is used in the computation of the power P :

convSPL(80, d=2)
$P
[1] 0.005026548

$I
[1] 1e-04

$p
[1] 0.2

7.2.4 Sound Attenuation Through Spreading Losses

The distance from the source is an important factor of sound attenuation. As detailed
in Sect. 2.2.3, spreading losses are the part of sound attenuation due to the dispersion
of the energy. This decrease of amplitude can be modelized for a spherical point
source with the following equation:

l = lref − 20 × log10

(
d

dref

)

where l is a either the sound intensity level (SIL) or the sound pressure level (SPL),
d the distance from the source, and dref the distance from the source where an
amplitude level, lref , has been measured. The function attenuation() is an
implementation of this equation to get the amplitude level in dB at a distance d .
The following code plots 200 points (argument n) spreading losses curve starting
at 80 dB (argument lref) measured at 1 m (argument dref) up to a distance of
150 m (argument dstop) (Fig. 7.1):

attenuation(lref=80, dref=1, dstop=150, n=200)

178 7 Amplitude Parametrization

0 50 100 150

40
50

60
70

80

Distance (m)

dB

Fig. 7.1 Attenuation due to spreading losses. The curve of attenuation due to spreading losses for
a sound source of 80 dB measured at 1 m is shown up to 150 m. This curve was obtained using the
function attenuation()

The function attenuation() is not only a plot function; it can be used to
know a specific dB value at a specific distance. The trick is to turn off the graphical
display (plot=FALSE), to set the number of points to 2 (n=2), and to use the
indexing syntax ([]) to extract the right value from the result vector:

attenuation(lref=80, dref=1, dstop=16, n=2, plot=FALSE)[2]
[1] 55.9176

It is of course possible to get the values for a series of distances. It is often advised
when running propagation experiments to choose powers of 2 distances following:

d <- 2^(1:8)
d
[1] 2 4 8 16 32 64 128 256

What would be then the dB values expected at the distances d due to
spreading losses only for a sound played back at 80 dB at 1 m? The function
attenuation() cannot answer directly; it is necessary to include the precedent
code for a single value into a loop. A for loop could be written, but the functions

7.2 Logarithm Relative Scale 179

of the family apply can do the job in a condensed form:

res <- sapply(X=d, FUN=function(x)
attenuation(lref=80, dstop=x, plot=FALSE, n=2)[2])

res
[1] 73.9794 67.9588 61.9382 55.9176 49.8970 43.8764 37.8558
[8] 31.8352

The vector d consists of distances that are doubled at each step. We know that
doubling the distance result in decreasing the amplitude by a factor of ≈6 dB. The
difference between successive cells of the vector res should then equal to ≈6 dB.
We can check this with the base function diff() that computes lagged differences
or the first derivative:

diff(res)
[1] -6.0206 -6.0206 -6.0206 -6.0206 -6.0206 -6.0206 -6.0206

Another question could be to find the distance of propagation knowing an
amplitude level in dB. For instance, one would like to know at which distance a
sound produced at 80 dB at 1 m reaches 63 dB. There is no such function, but writing
it should not be a problem as shown in the box DIY 7.1.

DIY 7.1 — How to estimate a distance of attenuation

To estimate the distance of propagation for a specific dB level, we first need to write the
function of attenuation in respect with l rather than in respect with d. Therefore:

l = lref − 20 × log10

(
d

dref

)

becomes

d = dref × 10
lref −l

20

We can then translate this equation into R language and design a new function named
distance():

distance <- function(dref=1, lref, l){
dref*10^((lref-l)/20)

}

(continued)

180 7 Amplitude Parametrization

DIY 7.1 (continued)

What would be then the distance attained by a sound emanating from a point source
recorded at 80 dB at 1 m? The new function distance() answers:

d63 <- distance(lref=80, d=1, l=63)
d63
[1] 7.079458

We can check if the result is correct by plotting the attenuation curve and adding the
values as a singular point:

par(las=1) # horizontal axis labels
col <- "blue" # color
attenuation(lref=80, dref=1, # attenuation curve

dstop=80, n=200)
points(x=d63, y=63, pch=19, # add point

col=col,cex=1.5)
segments(x0=0, x1=d63, y0=63, y1=63,# add point coordinates

lty=2, col=col)
segments(x0=d63, x1=d63, y0=0, y1=63,

lty=2, col=col)
text(x=d63, y=63, # add text close to point

labels=paste("(",round(d63,2) ," m, 63 dB)", sep=""),
pos=4, col=col)

0 20 40 60 80

50

60

70

80

Distance (m)

dB

l (7.08 m, 63 dB)

7.3 Absolute Scale 181

7.3 Absolute Scale

Most sound analyses involve amplitude data that vary along a relative scale, that
is along a scale with units but without absolute reference. The amplitude envelope
can for instance be limited between ±1 or, if digitized with a 16 bit depth, between
±216−1. The information regarding absolute sound pressure or intensity level are
therefore lacking limiting the description of the sound sources and the interpretation
of the observations. Absolute measurements of sound level demand to use a fully
calibrated recording chain. The recording chain, schematized in Fig. 7.2, involves
having information on the sensitivity of the sensor (microphone, hydrophone,
accelerometer, or any other transducer), the gain of the preamplifier, the quantization
and filter properties of the analogue-digital converter, and finally the conversion into
a digital file (.wav or other).

A calibration of the recording chain can be achieved with the help of a calibrator
that produces a sound at a known frequency and sound pressure level (usually
a 1 kHz pure tone produced at 94 dB SPL at source). The sound emitted by the
calibrator is recorded and generates a reference digital file. The RMS of the absolute
envelope of the reference file can be then used as a reference to estimate the
absolute SPL of files obtained during recording sessions. This process assumes that
the frequency responses of all the items of the chain are all linear. Another way
to obtain calibrated data is to have access to the frequency-dependent properties
of the successive stages of the recording chain, that is, the sensor sensitivity, the
preamplifier gain, and the digitizer voltage, or to use a calibrator at several different
frequencies.

Fig. 7.2 Signal path and calibration sequence. The recording chain goes through several stages
from the initial sound source to the terminal digital file passing through processes of transduction
(microphone, hydrophone, accelerometer, or other), amplification (pre-amplifier), digitization
(analogue-digital converter), and file conversion (computer algorithm). The arguments of the
function PAMGuide() are indicated below the process they are related to. The argument Si
covers the chain from transduction to digitization. Modified from Merchant et al. (2015)

182 7 Amplitude Parametrization

The PAMGuide R code provides functions to calibrate sound data. PAMGuide
source and complete documentation can be downloaded as an appendix of Merchant
et al. (2015) or on sourceforge.1

As PAMGuide is not an R package but a script saved into an .r file, we load
PAMGuide with the function source() that reads at once an R script, here saved
in a subdirectory named pamguide:

source("pamguide/PAMGuide.R")

We then call the eponymous function PAMGuide() to get calibrated infor-
mation on a sound. The sound to be treated is not an R object but an external
.wav file that has to be localized interactively excluding the possibility to include
PAMGuide() in scripts. The function has several arguments to specify where and
how the recording chain was calibrated and to run as well some spectral analysis
(see Chaps. 10 and 11).

To get calibrated data, it is first necessary to set the argument calib to 1. Then,
the transmission medium should be specified with the argument envi that has two
options, either "Air" for airborne sound or "Wat" for waterborne sound. The
next argument, ctype, is the type of calibration with three possibilities: (1) "EE"
to use the end-to-end sensitivity of the entire recording system, (2) "RC" to use
the sensitivity of the microphone/hydrophone and the sensitivity of the recording
device separately, and (3) "TS" to use the technical specifications of the recorder
and transducer as provided by the manufacturer.

There are then four arguments to provide the sensitivity of the entire device
(argument Si), the sensitivity of the sensor (argument Mh), the gain of the
preamplifier (argument G), and the ADC zero-to-peak voltage (argument vADC).
If the sensitivity of the sensor is known in mV Pa−1, it can be converted into
dB with the seewave function micsens(). For instance, if the sensitivity of a
microphone is 10 mV Pa−1 with a reference of 1 V Pa−1 at 1 kHz, then the sensitivity
in dB re 1 V Pa−1 will be:

micsens(10)
[1] -40

The arguments that need to be set according to the ctype argument are detailed
in Table 7.1 and indicated on the calibration sequence of Fig. 7.2.

The output of PAMGuide() depends on the type of frequency analysis chosen
with the argument atype. To get SPL values of the file, it is necessary to set

1http://sourceforge.net/projects/pamguide/.

http://sourceforge.net/projects/pamguide/

7.3 Absolute Scale 183

Table 7.1 Main calibration
arguments of PAMGuide()
function

ctype Arguments to set

"EE" Si

"RC" Mh, G

"TS" Mh, G, vADC

atype="Broadband". By default, the function plots results as time or frequency
plots. This graphical can be turned off with plottype="None".

The following call of PAMGuide() specifies that the recording was achieved in
the air that we refer to the manufacturer calibration specifications with a microphone
sensitivity of −36 dB, a preamplifier gain set by the user to +24 dB and zero-to-
peak voltage of 1.414. These parameters correspond actually to the specifications of
a Wildlife Acoutics© SongMeter SM2+ recorder with built-in microphones:

PAMGuide(calib = 1, # get calibrated data
atype="Broadband", # type of analysis
plottype="None", # no plot
envi = "Air", # air medium
ctype = "TS", # manufacturer specifications
Mh = -36, # microphone sensitivity
G = 24, # pre-amplifier gain
vADC = 1.414, # ADC voltage parameter
)

The code would be as follows for the SongMeter SM2+ associated to a HTI-96©

hydrophone with a gain of +12 dB:

PAMGuide(calib = 1, # get calibrated data
atype="Broadband", # broadband analysis
plottype="None", # no plot
envi = "Wat", # water medium
ctype = "TS", # manufacturer specifications
Mh = -165, # HTI-96 hydrophone sensitivity
G = 12, # pre-amplifier gain
vADC = 1.414 # ADC voltage parameter

)

The results of the function PAMGuide() are not returned as R objects but are
directly printed in the console.

Chapter 8
Time-Amplitude Parametrization

Now that we know how much relative or absolute energy is produced by a sound,
we need to get into other details. The first challenge is to estimate the duration of a
sound. An endless sound does not exist; there is always a time when a sound starts
and another time when it stops. Basic sound description includes the manual or
automatic identification of these particular time boundaries that frame out a sound
event as described in Sects. 8.2 and 8.3, respectively. The last Sect. 8.4 deals with the
estimation of the regular amplitude modulations (AMs) that may occur in a sound.

8.1 What and How to Measure?

Measuring the duration of a signal consists in identifying, either manually or
automatically, the start, or attack, and the end, or tail, of a sound. This identification
should lead to the delimitation of sound events or signal sections (a note, a syllable,
a pulse, etc.) and, indirectly, in delimiting the intervals between these events or
pause sections (an inter-note interval, an inter-syllable interval, an inter-pulse
interval, etc.). The sum of a signal section and its following pause section constitutes
a period (a note period, a syllable period, a pulse period, etc.), and the number of
events produced per s is expressed as a rate (a note rate, a syllable rate, a pulse rate,
etc.). Duration is expressed in s and rate in s−1.

Taking time measurements is more difficult than one believes. There are several
factors that make the task demanding: (1) the sound can be of poor quality due to
low-quality recording, (2) the occurrence of interfering sounds can blur the start
and end of the sound, (3) a complex medium of propagation with several objects
can induce echoes and artificially extends sound duration, (4) the number of sounds
to treat can be so important that manual measurements are impossible and automatic
measurements cannot be checked, and (5) the architecture of the sound can be

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_8

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_8&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_8

186 8 Time-Amplitude Parametrization

intricate with nested items such as phrases, words, syllables, and phonemes for
speech or songs, bouts, phrases, syllables, notes, and pulses for animal vocalizations.

8.2 Manual Measurements

To introduce manual time measurements, we will first refer to the calling song of
the Mediterranean cicada Cicada orni (Fig. 8.1). This sound, which constitutes the
soundmark of the Mediterranean landscape, is a regular repetition of items, also
named echemes by experts in insect acoustics. A sample of this cicada sound comes
with seewave as R data under the name orni:

data(orni)
orni

Wave Object
Number of Samples: 15842
Duration (seconds): 0.72
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

This brief recording lasting only 0.72 s was achieved in the south of France at
a short distance from an isolated male so that the signal-to-noise ratio is high. As
shown in Fig. 8.2, the orni waveform is made of five items or echemes. Cicadas
produce sound by rapid buckling of a pair of domed tymbals situated on the sides
of the first abdominal segment. Each echeme results of the buckling of a single

Fig. 8.1 Pictures of soniferous animals: the Mediterranean cicada Cicada orni (Jérôme Sueur) and
the Martinique Robber frog Eleutherodactylus martinicensis (reproduced with the kind permission
of Renaud Boistel)

8.2 Manual Measurements 187

Fig. 8.2 Calling song of Cicada orni saved in the dataset orni. The song is made by the regular
repetition of five syllables or echemes (e-i) (first panel). Each echeme is made of about ten pulses
(p-i) as shown here by zooming in on the third echeme (e-3) (second panel). The start of echeme
3 (e-3) can be identified clearly (third and fourth panels). The end of the echeme 3 (e-3) is more
difficult to localize due to echoes (bottom, upward arrows with question marks)

188 8 Time-Amplitude Parametrization

tymbal. If we detail a single echeme, we can see that each echeme is made of about
ten pulses that are generated by the successive buckling of stiff ribs that are localized
on the surface of each tymbal. It is rather easy to identify the start of each echeme,
but there is more confusion regarding the end probably due to some environmental
echoes (Fig. 8.2, fourth panel). We will try in the following sections to measure
manually and automatically these five echemes and to get an estimation of the pulse
repetition rate.

Manual measurement consists in displaying a time × amplitude representation
of the sound and to localize visually with mouse clicks time regions of interest
(i.e., signal and pause sections). A first direct way to achieve this is to use the
function oscillo() that was previously detailed in Sect. 5.1, with the argument
identify turned to TRUE:

res <- oscillo(orni, identify=TRUE)

The oscillogram is then displayed, and the console invites the user with the
message “choose points on the wave” to click on the graphical device
to identify points of interest. The coordinates of the wave’s closest point are then
displayed in red on the device and saved into the object where the values of
oscillo() were assigned to, here the object res. A try returns the following
ten values framing out the five echemes:

time amp
[1,] 0.02204221 90
[2,] 0.08290773 278
[3,] 0.18286869 277
[4,] 0.24160255 583
[5,] 0.32455563 157
[6,] 0.37580604 693
[7,] 0.46225140 49
[8,] 0.51581487 910
[9,] 0.60135315 471

[10,] 0.65845426 333

The results are saved into a two-column matrix. The first column includes the
time position in s, and the second column returns the amplitude value of the
corresponding sample. Here, the first echeme starts at res[1,] and stops at
res[2,]. The first pause between res[2,] and res[3,] follows.

The argumentidentify of oscillo() calls the base functionidentify()
that has the great advantage to return the exact values of the plotted object but not
the position of the mouse icon on the screen as several other softwares do.

8.2 Manual Measurements 189

This means that the precision of the measurement is the inverse of the sampling
frequency, here 1 ÷ fs = 0.000454 s.

However, the precision of the measurement still depends on the mouse position
and so on the size of the graphical display and on the size of the computer screen.
This precision can potentially be increased by displaying the amplitude envelope
obtained through the Hilbert transform rather than the oscillogram. The Hilbert
amplitude envelope better follows the amplitude variations and returns only positive
values facilitating the mouse localization.

The precision of the measurements can be assessed empirically by repeating
the same measurement on the graphical display. In the following example, we
measure 15 times the echeme duration of orni. This is obtained by first preparing
a matrix made of 15 lines corresponding to the n = 15 repetitions and of 10
columns corresponding to the p = 5 × 2 = 10 time measurements. Then, the
repetitions are processed through a for loop involving oscillo() with the
argument identify turned to TRUE, the argument nidentify set to 10 to limit
the number of measurements to 10 for each repetition, and by indexing the first
column of the value where time is stored:

n <- 15
p <- 10
res.osc <- matrix(numeric(n*p), nrow=n, ncol=p)
for(i in 1:n){

res.osc[i,] <- oscillo(orni,
identify=TRUE, nidentify=p)[,1]

}

We can achieve exactly the same process focusing on a single echeme such that
the resolution of the display is increased. Here for the echeme found between 0.32
and 0.39 s, we run:

n <- 15
p <- 2
res.osc.single <- matrix(numeric(n*p), nrow=n, ncol=p)
for(i in 1:n){

res.osc.single[i,] <- oscillo(orni, from=0.32, to=0.39,
identify=TRUE, nidentify=p)[,1]

}

We can also run an identical procedure on the Hilbert envelope. In that case,
it is first necessary to use env() to compute the envelope and then to use the
results with oscillo() to display the envelope and use the identify argument.
When calling oscillo() it is here necessary to specify the sampling frequency
fs as the value returned by env() is a matrix without information on the sampling
frequency:

190 8 Time-Amplitude Parametrization

n <- 15
p <- 10
res.env <- matrix(numeric(n*p), nrow=n, ncol=p)
envlpe <- env(orni, plot=FALSE)
for(i in 1:n){

res.env[i,] <- oscillo(envlpe, f=orni@samp.rate,
identify=TRUE, nidentify=p)[,1]

}

and for the single echeme:

n <- 15
p <- 2
res.env.single <- matrix(numeric(n*p), nrow=n, ncol=p)
for(i in 1:n){res.env.single[i,] <-

oscillo(envlpe, f=orni@samp.rate,
from=0.32, to=0.39,
identify=TRUE, nidentify=p)[,1]

}

Eventually, the standard deviation of the results can be computed for each case
(all echemes/single echeme; oscillogram/envelope). The results for a trial achieved
on 24 inch wide screen (= 60.96 cm) are provided in Table 8.1. As expected, the
test shows that measuring on the envelope increases measurement precision and
that zooming, through the focus of a single echeme, also enhances the measurement
precision.

The DIY box 8.1 provides a solution for manual measurements on a bundle of
files; however, automatic measurements might be preferred when handling many
files.

Table 8.1 Precision of manual time measurements on the orni sound

Start (5 echemes) End (5 echemes) Start (1 echeme) End (1 echeme)

Oscillogram 0.00067 0.00079 0.00007 0.00093

Envelope 0.00028 0.00041 0.00005 0.00002

The standard deviation of the repeated measurements are shown for the start and end of the
echemes, either measured with a complete display (“five-echeme” columns) or with a display
focusing on a single echeme (“one-echeme” columns) on the oscillogram or on the amplitude
envelope

8.3 Automatic Measurements 191

DIY 8.1 — How to take manually time measurements on a group of
.wav files

How should we do it when we have a series of .wav files to inspect and take time
measurements on them? The idea, as usual with batch processing, is to write a loop which
each iteration corresponds to a file.
Imagine that we have a series of n .wav files named rec_1.wav, rec_2.wav, . . . ,
rec_n.wav in a directory named sample. The first step consists in listing the files
and to store their names in a character vector. This vector is used in a second step to read
successively in a for loop the files, to plot the oscillogram, and to save the measurements
in a list:

setwd("sample") # working directory
files <- dir(pattern="^rec.*wav$") # files selection
n <- length(files) # number of files
res <- vector("list", n) # empty list of n items
for(i in 1:n) { # loop with n iterations

res[[i]] <- oscillo(readWave(files[i]), identify=TRUE)
}

8.3 Automatic Measurements

The automatization of time measurements relies on the detection of signal and
pause events occurring in a recording. The detection of signal events is slightly
different from the detection of particular sound patterns, such as a specific bird
song or a specific frog call. Here, there is no attempt to identify any peculiar sound
but just to infer when there is interesting sound (signal) and when there is nothing
interesting to consider (pause). The identification of target sounds is the play game
of automatic identification through, for instance, template matching, a question
treated in Chap. 17.

A classical and simple solution to detect signal and pause events is to track
the amplitude variations along time in reference to a certain amplitude threshold.
Anything below a fixed threshold is considered as a pause event and anything above
as a signal event. The amplitude variations are estimated through the amplitude
envelope, usually the Hilbert amplitude envelope, and the threshold is expressed as
a ratio in relation with the maximum of the amplitude envelope. For instance, the
maximum value of the Hilbert amplitude envelope of orni is 1.7491854 × 104 as
obtained with:

192 8 Time-Amplitude Parametrization

envlpe <- env(orni, plot=FALSE)
max.env <- max(envlpe)
max.env
[1] 17491.85

An amplitude threshold of 5% corresponds to an amplitude value of 874.593
acting as a barrier for a signal/pause decision. A way to refine the method is to apply
a duration threshold. The latter, set in s, allows to eliminate signal events that would
be too short. For instance, if we know that cicadas usually do not produce sound
briefer than 0.025 s, a time threshold set to this value can be applied to remove any
signal event shorter than 0.025 s.

The function timer() of seewave applies both amplitude and time thresholds
on the amplitude envelope, either absolute or Hilbert.1 The functions return
graphically and/or numerically the position, the duration of the sound, and pause
events. The functiontimer() has several arguments that can be grouped according
to their main roles:

input : wave, f
envelope properties : envt, power, msmooth, ksmooth, ssmooth, tlim,
detection thresholds : threshold, dmin,
graphical options : plot, plotthreshold, col, colval, xlab, ylab.

The values returned by timer() are organized in a list containing six items:

s duration of signal event(s) in seconds,
p duration of pause event(s) in seconds,
r ratio between the signal and silence events(s),
s.start start position(s) of signal event(s),
s.end end position(s) of signal event(s),
first whether the first event detected is a signal or a pause.

Setting the parameters of timer() can be rather tricky and, in some way,
empiric. There are two important facts to take into account. First, the precision of the
measurement should be lower than the differences that the user needs to highlight.
For instance, it would be nonsense to try to find time differences about 10−3 s with
a sound sampled at fs = 44,100 Hz averaged with a moving average with a 200
sample window dropping down to fs = 44,100÷200 = 220.5 Hz that is equivalent
to 0.00454 s. Second, it is absolutely mandatory to keep always the same argument
settings for all the sounds processed. Departing from this rule may induce artificial
time differences due to the use of different methods rather than to true acoustic
differences.

1The package soundgen embeds an alternative to timer() named segment() which is
particularly adapted to voice analysis.

8.3 Automatic Measurements 193

8.3.1 The Cicada Case

What does return timer() on orni sound? We can start with an amplitude
threshold of 5% applied on the Hilbert amplitude envelope:

res <- timer(orni, threshold=5, envt="hil", plot=FALSE)

To check if the function returned expected results, we can count the number of
sound events detected that should equal to five:

length(res$s)
[1] 85

This is obviously all wrong. The amplitude threshold did not work properly
because the amplitude variations of orni are rather important, rising and declining
strongly. A way to improve the results is to smooth the envelope to reduce these
amplitude modulations. We have seen in Sect. 5.2.3 that the envelope can be
smoothed calling different techniques, namely, with a moving average, a moving
sum, or a moving kernel. The arguments msmooth, ssmooth, and ksmooth of
the function env() are parsed by the function timer() so that we can use them
directly with timer(). For instance, if we apply a simple moving average with a
30 sample non-overlapping sliding window, we get:

res <- timer(orni, threshold=5, msmooth=c(30,0),
envt="hil", plot=FALSE)

length(res$s)
[1] 8

The function detected eight events; this is more reasonable but still wrong. We
can increase the size of the smoothing average window to 50:

res <- timer(orni, threshold=5, msmooth=c(50,0), envt="hil")

194 8 Time-Amplitude Parametrization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

Am
pl

itu
de

5 % 0.02 0.1 0.08 0.09 0.08 0.06

0.06 0.06 0.05 0.06 0.06

Fig. 8.3 Automatic time measurement of the orni sound. The five echemes (signal) and the
inter-echeme (pause) separating them are automatically detected with the function timer().
The Hilbert amplitude envelope (envt="hil") was smoothed with a moving average
(msmooth=c(50,0))

and check the results similarly:

length(res$s)
[1] 5

The number of echemes is in that case correct, as testified by the plot returned by
timer() (Fig. 8.3).

We can have a closer look at the results by printing them:

res
$s
[1] 0.05930130 0.05930130 0.05245884 0.05702048 0.05702048

$p
[1] 0.02280819 0.10263686 0.08210949 0.08667113 0.08210949
[6] 0.05702048

$r
[1] 0.6578947

$s.start

(continued)

8.3 Automatic Measurements 195

[1] 0.02280819 0.18474636 0.32615715 0.46528712 0.60441709

$s.end
[1] 0.08210949 0.24404766 0.37861599 0.52230760 0.66143757

$first
[1] "pause"

We can get the mean and standard deviation of the echeme (signal) duration and
echeme interval (pause) duration:

mean(res$s) # mean of signal duration
[1] 0.05702048
sd(res$s) # standard-deviation of signal duration
[1] 0.002793422
mean(res$p) # mean of pause duration
[1] 0.07222594
sd(res$p) # standard-deviation of signal duration
[1] 0.02829197

To get the mean echeme duration, we first have to know if the recording starts
with a pause or not. If it does, as it is the case here, we need to remove the first value
of res$p to get the correct correspondence between a signal and its following
pause:

res$first=="pause" # is first event a pause?
[1] TRUE
period <- res$s+res$p[-1] # period
mean(period) # mean of the period
[1] 0.13913
sd(period) # standard-deviation of the period
[1] 0.01699172

The ratio between signal and pause duration can be directly printed with:

res$r
[1] 0.6578947

196 8 Time-Amplitude Parametrization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

Am
pl

itu
de

5 % 0.02 0.1 0.08 0.09 0.09 0.06

0.06 0.06 0.05 0.06 0.05

Fig. 8.4 Automatic measurement of the orni sound with amplitude and time thresholds. The
figure is the graphical output of timer() with a smoothing parameter (msmooth=c(30,0)),
an amplitude threshold (threshold=5), and a time threshold (dmin=0.04)

We can therefore write that the calling song of the male of C. orni saved in the
recording orni is made of five echemes with a duration of 0.057±0.003 s (mean ±
s.d.) separated by pauses of 0.072±0.028 s, equivalent to a period of 0.139±0.017 s.
The ratio between the echeme and the pause duration is 0.658.

We found a solution with the argument msmooth, but the problem of detecting
the right numbers of echemes could have been solved with other options. We could
also have used the time threshold set with the argument dmin. If, by chance, we had
an a priori knowledge on the duration of the echemes of orni, we could stipulate
that the duration of the signal events could not be shorter than 0.04 s. We would
have done (Fig. 8.4):

res <- timer(orni, threshold=5, msmooth=c(30,0),
dmin=0.04, envt="hil")

and we would have obtained:

length(res$s)
[1] 5

8.3 Automatic Measurements 197

In both case, the use of a smoothing filter seems to be mandatory to get
appropriate results. However, this smoothing step has consequences on the precision
of the measurements as it corresponds to a downsampling process, as detailed in
Chap. 5. Averaging the envelope with a 50 sample sliding window means that the
original sampling frequency fs that was 22,050 Hz corresponding to 0.0000454s
is changed in a new sampling frequency of 22,050 ÷ 50 = 441 Hz, equivalent
to 0.00227 s. This can induce undesired results. A solution to this, as explained in
Sects. 5.2.3.1 and 5.2.3, is to use overlapping windows. Using an overlap of 75% for
the moving average will reduce the sampling frequency to (22,050×4)÷50 = 1764,
equivalent to 0.00131 s. The results are obtained with the following code:

res <- timer(orni, threshold=5, msmooth=c(50,75),
envt="hil", plot=FALSE)

length(res$s)
[1] 6

This causes another error with one false positive. This can be corrected by
increasing slightly the amplitude threshold to 6:

res <- timer(orni, threshold=6, msmooth=c(50,75),
envt="hil", plot=FALSE)

length(res$s)
[1] 5

We can also try to smooth the envelope with a moving sum set up with the
argument ssmooth of timer(). The results with the moving sum seems to be
correct with a window of 110 samples, that is, with a rather large window (Fig. 8.5):

res <- timer(orni, threshold=5, ssmooth=110, envt="hil")

length(res$s)
[1] 5

We can now compare the results obtained with each method, including a manual
measurement done as accurately as possible zooming successively on each echeme.
This manual measurement can be considered as a reference.

The results that are summarized in Table 8.2 show that the measurements are
quite close to each other and that the results obtained with msmooth=c(50,75)

198 8 Time-Amplitude Parametrization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

Am
pl

itu
de

5 % 0.02 0.1 0.08 0.08 0.08 0.06

0.06 0.06 0.06 0.06 0.06

Fig. 8.5 Automatic measurement of the orni sound with a moving sum. The figure is the
graphical output of timer() with a smoothing parameter using sum (ssmooth=100) and an
amplitude threshold (threshold=6)

Table 8.2 Comparison of automatic time measurements on the orni sound

Manual Automatic 1 Automatic 2 Automatic 3

Automatic 1 0.0022

Automatic 2 0.0187 0.0188

Automatic 3 0.0090 0.0082 0.0116

Automatic 4 0.0143 0.0149 0.0089 0.0096

The comparison is made between a manual accurate measurement and four automatic trials
with the function timer(). Signal duration is compared by computing an Euclidian distance
matrix. The lower is the value, the closest are the methods. Automatic 1: threshold=5 and
msmooth=c(50,0); automatic 2: threshold=5 and msmooth=c(30,0); automatic 3:
threshold=6 and msmooth=c(50,75); automatic 4: threshold=5 and ssmooth=110

are the closest from those obtained manually with a high precision. Running
timer() with a moving average and good window overlap seems therefore to be
the best option in terms of precision. However, such process can be quite demanding
in terms of computing and then difficult to undertake. There is therefore a trade-off
between precision and time process.

8.3.2 The Frog Case

The orni sound is a rather nice recording with some echoes but with a good signal-
to-noise ratio. However, recordings made outdoor are often filled with background
sound (or noise) that can make the detection of the sounds of interest difficult. In

8.3 Automatic Measurements 199

the following example, the automatic detection of the vocalizations of a frog is
more challenging. This small frog, the Martinique robber frog Eleutherodactylus
martinicensis commonly found in forested areas of the Martinique island in
the Lesser Antilles (Fig. 8.1), produces a loud call that is easy to localize and
identify (Lemon 1971). However, the frog is not alone; it is accompanied by
numerous congeners which generate an important background sound reducing the
signal-to-noise ratio and therefore challenging the automatic measurements of the
vocalizations of the focal male.

This recording, which does not come with any package, is stored in a directory
sample and can be loaded with the function readWave():

frog <- readWave("sample/Eleutherodactylus_martinicensis.wav")

The resulting Wave object has the following main properties:

frog

Wave Object
Number of Samples: 316602
Duration (seconds): 19.79
Samplingrate (Hertz): 16000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

The waveform of wave is obtained with (Fig. 8.6):

oscillo(frog)

The recording is a succession of 17 vocalizations produced by a territorial male.
Each vocalization can be divided into two notes with different frequencies. In terms
of frequency, the first note can be described as a linear frequency modulation
sound starting at 1850 Hz and stopping at 2100 Hz, and the second note as a
linear frequency modulation sound beginning as well at 2800 Hz and ending at
3750 Hz (Fig. 18.23). We wish to know the duration of the two-note vocalizations
and the duration of the pauses in between. We run a first try with timer() set with
a moving average with a 90% overlapping window made of 100 samples (msmooth
= c(100,90)) and with an amplitude threshold set to 5% (threshold =5):

200 8 Time-Amplitude Parametrization

Fig. 8.6 Oscillogram of the frog Eleutherodactylus martinicensis. The recording made Renaud
Boistel is a succession of 17 two-note calls of a focal recorded male, with important background
sound due to other vocalizing males

res <- timer(frog, msmooth=c(100,90), threshold=5,
env="hil", plot=FALSE)

As for the case of orni, the results could be visualized with plot=TRUE but to
facilitate the process we control the output of timer() by numbering the number
of sound events detected with:

length(res$s)
[1] 204

It clearly appears that the detection took a bad direction. The main issue comes
from the low signal-to-noise ratio of the recording. A solution is to apply a power
function to the amplitude envelope increasing artificially the difference between the
amplitude values of the close-up male and the amplitude values of the background
congeners. This can be processed with the help of the argument power, here set
to 2 meaning that the smoothed amplitude envelope is squared before to apply the
amplitude threshold:

8.3 Automatic Measurements 201

res <- timer(frog, msmooth=c(100,90), threshold=5, power=2,
envt="hil", plot=FALSE)

length(res$s)
[1] 34

The result improved but is still far away from reality. To tune the detection, we
specify that there should not be sound events shorter than 0.2 s with the argument
dmin:

res <- timer(frog, msmooth=c(100,90), threshold=5,
power=2, envt="hil", dmin=0.2)

length(res$s)
[1] 17

This time, the detection seemed to have worked properly as shown in Fig. 8.7.
The temporal features of the recording can be then calculated with:

0 5 10 15

Time (s)

Am
pl

itu
de

5 % 2.03 0.6 0.590.510.520.590.55 0.6 0.68 0.790.490.590.590.580.67 0.67 0.86 2.09

0.350.36 0.350.340.35 0.350.340.330.34 0.34 0.32 0.33 0.330.33 0.350.35 0.36

Fig. 8.7 Automatic time measurement of the frog Eleutherodactylus martinicensis. The 17 two-
note vocalizations (signals) and the pauses separating them are automatically detected with the
function timer(). The Hilbert amplitude envelope (envt="hil") was squared (power=2)
and smoothed with a moving average (msmooth=c(100,90)). The results were filtered with a
0.2 s time threshold (dmin=0.2)

202 8 Time-Amplitude Parametrization

mean(res$s) # mean of signal duration
[1] 0.3409554
sd(res$s) # standard deviation of signal duration
[1] 0.01032279
mean(res$p) # mean of the pause duration
[1] 0.777299
sd(res$p) # signal/pause ratio
[1] 0.4757469
res$r
[1] 0.4142723
res$first=="pause" # is first event a pause?
[1] TRUE
period <- res$s+res$p[-1] # calculation of the period
mean(period) # mean of the period
[1] 1.044564
sd(period) # standard-deviation of the period
[1] 0.3734283

We can therefore describe the vocalization of this peculiar male of E. martinicen-
sis as a sequence of 17 vocalizations lasting 0.341 ± 0.01 s (mean ± s.d.) separated
by pauses of 0.777 ± 0.476 s, equivalent to a period of 1.045 ± 0.373 s. The ratio
between the vocalization and the pause duration is 0.414.

We can also use the time localization of the signals for zooming and annotating
the oscillogram of the four first vocalizations. This is achieved by using the
arguments from and to of oscillo() with a short delay of 0.1 s before and
after the zoom limits to add some time around the selection (Fig. 8.8):

Fig. 8.8 Graphical use of timer() results. The results returned by timer() are used to zoom
on the first four vocalizations, to label and to frame these vocalizations

8.3 Automatic Measurements 203

oscillo(frog,
from=res$s.start[1]-0.1, # zoom lower limit
to=res$s.end[4]+0.1) # zoom upper limit

x <- res$s.start+
(res$s.end-res$s.start)/2 # vocalization center

text(x=x, y=0, # label positions
labels=paste("note", 1:4, sep="-"), # label texts
col="white", srt=45) # label decoration

abline(v=c(res$s.start, res$s.end), # vertical lines
col="red", lwd=3) # to frame out each call

The results provided by timer() can be compared with the manual mea-
surements obtained by zooming on each vocalization (Fig. 8.9). The manual and
the automatic processes returned similar values, but the automatic option clearly
returned shorter vocalization and longer pause than the manual options. This
suggests that timer() framed the vocalizations more sharply. This difference

l l l l l l l l l

l

l l l l l l

l

0.5

1.0

1.5

2.0

Time (s)

D
ur

at
io

n
(s

)

l l l l l l l l l l l l l l
l l l

l

l l

l l

l
l

l

l l

l

l l l

l l

l

l

l

l l

l l

l
l

l

l

l

l

l l l

l l

l

l

1 2 3 4 5 6 7 8 9 10 12 14 15 16 17

Vocalization #

signal (manual)
signal (automatic)

pause (manual)
pause (automatic)

Fig. 8.9 Comparison of manual and automatic measurements. The plot shows against time
the duration the 17 vocalizations (signal) and pauses of the calling sequence of the frog E.
martinicensis obtained manually using the argument identify of oscillo() (manual) and
the estimation returned by the function timer() (automatic)

204 8 Time-Amplitude Parametrization

is even more apparent for the tenth vocalization where the manual measurement
was 0.469 s and the automatic one was estimated to be only 0.341 s. The start of
this vocalization is actually very difficult to assess. This is mainly due to another
male producing an almost synchronized vocalization in the vicinity of the focal
male. The manual measurement seems to have overestimated the duration of the
vocalization giving a duration out of the range of the duration obtained for the 16
other vocalizations.

This raises the question of the check of the results. How to detect if there was any
mistake in the automatic process? How to be confident with the results? A solution
is to look for any strange features in the distribution of the results according to the
different settings of timer(). This can be realized with a boxplot as illustrated in
Fig. 8.10. The first box has many outliers, the second box shows a wide and highly
skewed distribution, and the third box looks symmetric, sharp, and without outliers
suggesting relevant results.

There is no ideal method to take time measurements; a mistake can always be
introduced either by the observer or by the automatic system. It is therefore of prime
importance to always check the results visually, either directly on the waveform
(oscillogram, amplitude envelope) or on a plot displaying the distribution of the
results.

l

l
l

l

l
l

lll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

ll

0.0

0.1

0.2

0.3

0.4

0.5

msmooth=c(100,90)
threshold=5

msmooth=c(100,90)
threshold=5
power=2

msmooth=c(100,90)
threshold=5
power=2
dmin=0.2

Fig. 8.10 Distribution of the automatic measurements according to different timer() settings
on the 17 vocalizations (signal) and pauses of the calling sequence of the frog Eleutherodactylus
martinicensis

8.4 Amplitude Modulation Analysis 205

8.4 Amplitude Modulation Analysis

Sound may show regular amplitude variations. These variations, or amplitude
modulations (AMs), can be related to the start and stop of the sound production,
to regular increases and decreases of the sound due to the mechanism of the sound
apparatus. These amplitude modulations can be measured manually like any other
time parameter, but they can also be obtained by a frequency analysis of the Hilbert
amplitude envelope.

Sound frequency decomposition will not be detailed here as it constitutes the aim
of the next chapters (Chaps. 9–11), but the idea is not that difficult to understand.
Any pattern repeated regularly follows more or less a sinusoidal function with a
peculiar frequency. This frequency, expressed in Hz, is an estimation of the number
of times the event occurs per second. If we can get the frequency of the amplitude
modulation due to the repetition of a syllable, a note, or a pulse, we can then know
how many times this sound event was produced per second. This opens, for instance,
the possibility to estimate the pulse repetition rate of C. orni, something which is
fairly difficult to assess with the time methods introduced in the above sections.

The amplitude modulation analysis is divided into three steps: (1) computation
of the Hilbert amplitude envelope, (2) decomposition in frequency of the envelope
using a short-time Fourier transform (STFT) (see Chap. 11), and (3) identification
of the resulting mean frequency spectrum of the main peaks that correspond to the
repetition rate of each amplitude modulations occurring in the signal.

This amplitude modulation analysis is implemented in the function ama()
of seewave. By default ama() computes the Hilbert envelope, the STFT, and
returns the mean frequency spectrum. We already got through the Hilbert transform,
but the short-time Fourier transform sounds more mysterious. Briefly, the STFT
consists in decomposing the song with a window that slides along the sound. The
largest the sliding is the finest is the frequency decomposition but the crudest is
the time resolution. A way to reduce this uncertainty between frequency and time
is to overlap successive windows as we already did when averaging the amplitude
envelope with timer(). The window length and the window overlap are controlled
with the arguments wl and ovlp of ama().

8.4.1 The Cicada Case

Following this short introduction to frequency analysis, we first try ama() on the
cicada song with a window length of 1024 samples (wl=1024) to test whether we
can find the repetition rate of the echemes and of the pulses (Fig. 8.2). The function
returns a line plot with frequency on the x-axis and relative amplitude without unit
on the y-axis.

206 8 Time-Amplitude Parametrization

0 2 4 6 8 10

Frequency (kHz)

Am
pl

itu
de

l

l

0.
23

7

2.
34

7

Fig. 8.11 Amplitude modulation analysis of the orni sound: fast amplitude modulations. The
function ama() shows two peaks corresponding to the pulse repetition rate (0.237 kHz) and the
carrier frequency (2.347 kHz)

ama(orni, wl=1024)

We can see two peaks that can be identified by turning to TRUE the argument
identify in the same way we did with the oscillogram and the envelope2:

res <- ama(orni, wl=1024, identify=TRUE)

Once the peak coordinates have been caught, we add them on the graphic with
the low-level plot functions points() and text() (Fig. 8.11):

ama(orni, f=22050, wl=1024)
points(x=res$freq, y=res$amp, pch=19, col=2) # peak point
text(x=res$freq, y=res$amp, # peak label

labels=as.character(round(freq,3)),
col=2, adj=-0.2, srt=90)

2Frequency peaks can also be identified automatically with the function fpeaks(), see
Sect. 10.1.3.1.

8.4 Amplitude Modulation Analysis 207

The first 0.237 kHz frequency peak corresponds to the repetition rate of the
pulses. The second frequency peak, found at 2.347 kHz, is the fundamental fre-
quency of pulses, that is, the frequency of the elementary oscillations found in
the pulses. It seems that we here miss a frequency peak for the repetition rate
of the echemes. The window of the STFT was set to 1024 samples, that is, to
wl ÷ fs = 1024 ÷ 22,050 = 0.0464 s. This window is actually not wide enough to
include the amplitude modulation due to the echemes that have a period of 0.14 s.
We therefore drastically increase the window length to embrace all modulations. In
the following, the window length is set to 15,000 samples, slightly less than the total
number of samples of orni (15,842). We also need to zoom in on low frequencies
using the argument flim that works as the argument xlim of plot(). flim
requires frequency in kHz, so that a zoom between 0 and 100 Hz is coded with
flim=c(0,0.1):

res <- ama(orni, wl=15000, flim=c(0,0.1), identify=TRUE)

And the plot is obtained with (Fig. 8.12):

0.00 0.02 0.04 0.06 0.08 0.10

Frequency (kHz)

Am
pl

itu
de

l

0.
00

7

Fig. 8.12 Amplitude modulation analysis of the orni sound: slow amplitude modulations. The
function ama() set with a large window shows a dominant peak corresponding to the echeme
repetition rate (0.007 kHz)

208 8 Time-Amplitude Parametrization

ama(orni, wl=15000, flim=c(0,0.1))
points(x=res$freq, y=res$amp, pch=19, col=2) # peak point
text(x=res$freq, y=res$amp, # peak label

labels=as.character(round(res$freq,3)),
col=2, adj=-0.2, srt=90)

In that case, a new frequency peak appears at 0.00735 kHz which gives an
echeme repetition rate of 7.35 Hz. This information could also be extrapolated from
the timer() result by dividing the number of signals found by the duration of the
recording obtained with duration():

res <- timer(orni, threshold=5, msmooth=c(50,0),
envt="hil", plot=FALSE)

length(res$s)/duration(orni)
[1] 6.959349

This estimation is rather good because there is no long pause neither at the
start nor at the end of the recording. What would happen if we would artificially
make the recording longer by adding 2 s of pause? Here is first the code to do this
manipulation (see Sect. 6.4):

orni.with.silence <- addsilw(orni, d=2,
at="start", out="Wave")

orni.with.silence <- addsilw(orni.with.silence, d=2,
at="end", out="Wave")

We now run timer() so that we would obtain a similar number of signals (5):

res <- timer(orni.with.silence, threshold=5, msmooth=c(50,0),
envt="hil", plot=FALSE)

length(res$s)
[1] 5

The repetition rate has changed and is manifestly not correct:

length(res$s)/duration(orni.with.silence)
[1] 1.059668

8.4 Amplitude Modulation Analysis 209

If timer() does not seem to properly do the job, ama() is not sensitive to such
long period of silence surrounding the sequence of echemes as it returns exactly the
same result as with the original data orni:

ama(orni.with.silence, wl=15000, flim=c(0,0.1), identify=TRUE)

Choose points on the spectrum
$freq
[1] 0.00735

$amp
[1] 0.7550001

In that case ama() should be then preferred to timer().

8.4.2 The Frog Case

What does ama() return with the vocalization of E. martinencis? We here also use
the argument ovlp to slightly increase the time resolution of the STFT, and we
also zoom in amplitude with the argument alim because peaks above 300 Hz are
flattened by an important amount of energy below 300 Hz:

res <- ama(frog, wl=1024, ovlp=85, alim=c(0,0.02), identify=TRUE)

The visual display is returned thanks to (Fig. 8.13):

ama(frog, wl=1024, ovlp=85, alim=c(0,0.02))
points(x=res$freq, y=res$amp, pch=19, col=2) # peak point
text(x=res$freq, y=res$amp, # peak label

labels=as.character(round(res$freq,3)), col=2, pos=3)

We observe three peaks; the second peak is the fundamental frequency of the
first note at f2 = 1.938 kHz; the third peak is the fundamental frequency of the
second note at f3 = 3.141 kHz. The first peak is at f1 = 1.219 kHz: it corresponds
to f1 = f3 − f2 = 3.141 − 1.938 = 1.203 kHz, a signature of an interference or
beating between f2 and f3 (see Sects. 10.1.4.2 and 18.4.1).

210 8 Time-Amplitude Parametrization

0 2 4 6
Frequency (kHz)

Am
pl

itu
de

l

l

l

1.219

1.938
3.141

Fig. 8.13 Amplitude modulation analysis of the frog Eleutherodactylus martinicensis: fast ampli-
tude modulations. The function ama() shows three peaks corresponding to the fundamental
frequency of the first note (1.938 kHz), the fundamental frequency (3.141 kHz) and the beating
between these two frequencies (1.219 kHz)

As it was the case for cicada sound orni, it seems that there is no peak dedicated
to the vocalization repetition rate. We need to increase the resolution of the analysis
by drastically increasing the window length so that the Fourier analysis get enough
signal to detect slow AMs. This is obtained by setting wl = 218 = 262,144 and by
zooming this time along the frequency axis:

res <- ama(frog, wl=2^18, flim=c(0,0.010), ovlp=85, identify=TRUE)

The code for the plot is (Fig. 8.14):

ama(frog, wl=2^18, flim=c(0,0.010), ovlp=85)
points(x=res$freq, y=res$amp, pch=19, col=2) # peak point
text(x=res$freq, y=res$amp, # peak label

labels=as.character(round(res$freq,3)), col=2, pos=3)

We find a repetition rate of 1.04 Hz that is a bit more than one vocalization per s.

8.4 Amplitude Modulation Analysis 211

0.000 0.002 0.004 0.006 0.008 0.010

Frequency (kHz)

Am
pl

itu
de

l

0.001

Fig. 8.14 Amplitude modulation analysis of the frog Eleutherodactylus martinicensis: slow
amplitude modulation. The function ama() set with a large window shows a dominant peak
corresponding to the vocalization repetition rate (0.001 kHz)

Chapter 9
Introduction to Frequency Analysis:
The Fourier Transformation

The previous chapters were dedicated to amplitude and time; it is now time to
explore the third dimension of sound: frequency. Frequency plays an important
role in speech, music, and animal acoustic communication. It is therefore crucial
to describe properly the frequency features of the studied sound. To measure the
frequency of a pure tone is made possible by directly scrutating the waveform and
by estimating the time period T . However, this measurement is arduous when the
sound to analyze is made of several frequencies possibly changing with time. It
is then necessary to find a way to travel back and forth between the time domain
and the frequency domain. The wonderful adventure of time-frequency travel has
been made possible thanks to the Fourier transformation and its inverse version, a
mathematical vehicle which is almost systematically used in linear acoustics.

9.1 From Time to Frequency and Back

The Fourier transformation, or Fourier analysis, is due to the French mathematician
Jean-Baptiste Joseph Fourier (1768–1830) (Fig. 9.1) who had the idea that a
complex waveform can be expressed into an infinite sum of simple waveforms each
with its own frequency, amplitude, and phase (Fig. 9.2).1 The Fourier transformation
operates like a triangular prism that separates white light into different color lights.
The Fourier transformation is extremely popular as it can be used to analyze a
majority of time data. Applications of the Fourier transform can be found in almost
all scientific and engineering disciplines, including medicine, astronomy, optics,
thermodynamics, statistics, economy, communication, and even imaging sciences.
In acoustics, the Fourier transformation appears almost everywhere. It is commonly

1For a complete description of the Fourier analysis, see Hartmann (1998, Chapters 5 and 8) and
Das (2012, Chapters 2 and 3).

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_9

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_9&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_9

214 9 Introduction to Frequency Analysis: The Fourier Transformation

Fig. 9.1 Jean-Baptiste
Joseph Fourier (1768–1830).
Engraving by Jules Boilly,
around 1823 (Public Domain)

used to identify the individual frequency components of a sound (Fig. 9.2), whatever
the nature of the sound: speech, music, animal vocalization, environmental sound,
or others.

However, the Fourier transformation is not a magic tool that works in all
situations. The Fourier transformation is adapted to the frequency decomposition
of periodic signals or aperiodic but continuous signals. Other solutions, such as the
wavelet transform, should be called to analyze transient signals.2 The analytic signal
and the zero-crossing method can also provide very valuable frequency information
(see Chap. 13).

In the next section, we will discover the two main types of the Fourier
transformation, namely, the Fourier series (FS) which works for periodic signals
only and the Fourier transform (FT) which can treat any type of signal, periodic or
aperiodic but continuous (see Table 9.1 for a list of Fourier family members).

9.2 Fourier Series

9.2.1 Periodicity

The Fourier series is a special case of the Fourier transformation for periodic
functions. A sound s(t) with a fundamental period T follows the rule:

s(t + mT) = s(t)

2The wavelet transforms are treated in other books, such as Nason (2008) that is accompanied by
the package wavethresh, Percival and Walden (2000) by the package wmtsa, and Gençay et al.
(2001) by the package waveslim.

9.2 Fourier Series 215

T

=
f0

+
2f0

+
3f0

Time (s)

Fig. 9.2 Fourier transformation principle. Any complex waveform can be decomposed into a sum
of simple waveforms. Here the top waveform with a period T is decomposed into the addition of
three simple waveforms (n = 3) related by a fundamental frequency f0

where m is an integer. This means that the sound s(t) has the same value after having
travelled along time during T s. A 440 Hz pure tone produced by a tuning fork, as
introduced in Chap. 2, is a periodic function of time with a period T = 1 ÷ 440 =
0.00227 s.

However periodicity does not mean simplicity as periodic sound can have
complex patterns due to the addition of several waves that cannot be identified
manually (Fig. 9.3). The Fourier series operates a decomposition such that the
amplitude, frequency, and phase of these primary waves can be estimated separately.

216 9 Introduction to Frequency Analysis: The Fourier Transformation

Table 9.1 The Fourier transformation family: acronyms, complete name, and short definition of
the different Fourier transformations

FS Fourier series Decomposition of a periodic signal
into an infinite sum of harmonics

FT Fourier transform Transformation of an infinite signal
from the time (or spatial) domain to
the frequency domain

DFT Discrete Fourier transform Transformation of a discrete
time-limited signal to a discrete
frequency spectrum

FFT Fast Fourier transform Mathematical tool and algorithm to
compute the DFT

STFT Short-time Fourier transform Sliding FT along an infinite signal, see
Chap. 11

STDFT Short-time discrete Fourier transform Sliding DFT along a time-limited
signal, see Chap. 11

Time (s)

Am
pl

itu
de

T, m=3

Fig. 9.3 A periodic waveform. The waveform, possibly a sound, is made of five repetitions of
the same pattern. The waveform follows the equation s(t + mT) = s(t), with T the period and
m = {1, 2, 3, 4, 5}

The Fourier series can be written in different ways, either with developed
trigonometric equations, compact trigonometric equations, or with the help of
complex numbers.

9.2 Fourier Series 217

9.2.2 Trigonometric Fourier Series

The Fourier transformation says that a periodic signal s(t) can be written as a sum
of a constant and an infinite series of sine and cosine functions:

s(t) = A0 +
∞∑

n=1

[An cos(ωnt) + Bn sin(ωnt)]

The constant A0 corresponds to the average amplitude of the signal s(t) or direct
current (DC) in the electricity domain, written as:

A0 = 1

T

∫ T
2

− T
2

s(t) dt

The cosine and sine functions are time functions with a specific angular
frequency ωn, with ω0 the fundamental frequency and ωn>1 the harmonics such
that:

ωn = nω0 = 2πn

T

where n is an integer.
Each cosine and each sine function are weighted by a Fourier coefficient, An and

Bn, respectively. These coefficients can be obtained with:

An = 2

T

∫ T
2

− T
2

s(t) cos(ωnt) dt

Bn = 2

T

∫ T
2

− T
2

s(t) sin(ωnt) dt

The symmetrical limits of the integral [− T
2 , T

2] can be changed to any limits that
differ by one period T , such as [0, T] or [T , 2T].

The waveform shown in Fig. 9.3 obeys to the following equation:

s(t) = 0.5 + 0.3 cos(t) + 2 sin(2t) + 3 sin(3t) − 4 cos(4t) + sin(10t)

Imagine that this waveform is a sound sampled at a frequency fs = 44,100
during 1 s with a fundamental frequency f0 = 440 Hz. The waveform is therefore
made of 44,100 samples with a period 44,100 ÷ 440 = 100.2273 samples that can
be approximated to 100 samples. We can try to find the coefficients (An,Bn) with

218 9 Introduction to Frequency Analysis: The Fourier Transformation

the formula above. We start by generating the 440 Hz sound with:

f <- 44100 # sampling frequency
t <- seq(1/f, 1, length.out=f) # time
T <- 1/440 # 440 Hz period
w0 <- 2*pi/T # 440 Hz angular frequency
h0 <- 0.3*cos(w0*t) # 440 Hz fundamental frequency
h1 <- 2*cos(2*w0*t) # 880 Hz harmonic
h2 <- 3*sin(3*w0*t) # 1320 Hz harmonic
h3 <- -4*cos(4*w0*t) # 1760 Hz harmonic
h10 <- 10*sin(10*w0*t) # 4400 Hz harmonic
s <- 0.5 + h0 + h1 + h2 + h3 + h10 # final signal

First, the constant A0 is directly obtained by computing the average of the
original sound, returning the expected value of 0.5:

A0 <- mean(s)
A0
[1] 0.5

We then write a function to compute each series of coefficients, An and Bn. We
need to convert the period T which was in s in number of samples by applying
Tsamp = T × fs , and we calculate the angular frequencies ωn with ωn = 2πn ÷ T .
We also change the limits of the sum from [−T/2, T /2] to [0, T] to make the code
more convenient:

Tsamp <- round(T*f) # T in number of samples
dt <- 1:Tsamp # time of integration
coeffA <- function(n) { # function to compute A_n

2/Tsamp * sum(s[dt] * cos((2*pi*n/Tsamp)*dt))
}
coeffB <- function(n) { # function to compute B_n

2/Tsamp * sum(s[dt] * sin((2*pi*n/Tsamp)*dt))
}

We apply straightforward the new functions to obtain An and Bn with n varying
from 1 to 10. This operation is facilitated with the help of the base built-in loop
function sapply():

9.2 Fourier Series 219

A <- sapply(1:10, FUN=coeffA)
B <- sapply(1:10, FUN=coeffB)
data.frame(A=round(A,1), B=round(B,1))

A B
1 0.3 0.0
2 2.0 0.0
3 0.0 3.0
4 -4.0 -0.1
5 0.0 0.0
6 0.0 0.0
7 0.0 -0.1
8 0.0 -0.1
9 0.0 -0.2
10 -0.7 10.0

We can now use these coefficients to reconstruct the original signal with
(Fig. 9.4):

res <- matrix(rep(NA, f*10), nrow=10)
for(n in 1:10){

res[n,] <- A[n]*cos(2*pi*n*t/T) +
B[n]*sin(2*pi*n*t/T)

}
s.synth <- A0 + colSums(res)

9.2.3 Compact Fourier Series

There is a more direct way to write the Fourier series using an amplitude-phase form
with a single series of cosine functions. This is also known as the compact Fourier
series:

s(t) = C0 +
∞∑

n=1

Cn cos(ωnt + ϕn)

where C0 = A0, Cn is the amplitude of the cosine, ωn is the angular frequency, and
ϕn is the phase.

Cn is computed with:

Cn =
√

A2
n + A2

n

220 9 Introduction to Frequency Analysis: The Fourier Transformation

O

n= 1

n= 2

n= 3

n= 4

n= 5

n= 7

n= 8

n= 9

0 0.0025 0.005 0.0075 0.01

R

Time (s)

Am
pl

itu
de

n= 10

n= 6

Fig. 9.4 Frequency decomposition and signal reconstruction. The original signal (O) is decom-
posed into a series of ten functions written as [An cos(ωnt) + Bn sin(ωnt)] with n =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The last signal (R) is the reconstruction of the original signal (O) using
the coefficients An and Bn and the angular frequencies ωn

9.2 Fourier Series 221

and ϕn in rad with:

ϕn = tan−1(Bn/An)

These new coefficients are easy to obtain. First the Cn coefficients:

C <- sqrt(A^2 + B^2)
C
[1] 0.29497901 2.01045814 2.98819655 4.00392798
[5] 0.04592934 0.04252931 0.05955912 0.09815747
[9] 0.21598397 10.00671597

and then ϕn:

Phi <- atan(B/A)
Phi
[1] -0.026059958 0.001309576 -1.561783883 0.028252904
[5] 0.438390038 0.974051388 1.277216809 1.448149174
[9] 1.560308390 -1.497873889

The coefficients Cn can be considered as the weights of each harmonic angular
frequency ωn. It could be a good idea to visualize them as a barplot. This graph
constitutes the well-known frequency spectrum which is the visual output of a
transformation from the time to the frequency domain (Fig. 9.5):

plot(C, type="h", lwd=2, las=1, col="blue",
xlab="Index (n) of the angular frequency of
successive Fourier harmonics",

ylab=expression(paste("Amplitude ", C[n])))
points(C, col="blue")
abline(h=0, col="grey")
axis(side=3, at=1:10, labels=as.character(440*(1:10)))
mtext("Frequency (Hz)", line=3)

Similarly, the phase spectrum, more commonly used in image than in sound
analysis, can be produced with the following code (Fig. 9.6):

222 9 Introduction to Frequency Analysis: The Fourier Transformation

2 4 6 8 10

0

2

4

6

8

10

Index (n) of the angular frequency of
 successive Fourier harmonics

Am
pl

itu
de

C
n

l

l

l

l

l l l l l

l

440 880 1320 1760 2200 2640 3080 3520 3960 4400

Frequency (Hz)

Fig. 9.5 Frequency spectrum. The frequency spectrum is a barplot of the Fourier coefficients Cn

against the n angular frequency indices. The top frequency scale in Hz was manually added with
the graphical function axis() and mtext()

plot(Phi, type="h", lwd=2, col="blue", las=1,
xlab="Frequency index (n)",
ylab=expression(paste("Phase ", varphi[n], " (rad)")),
ylim=c(-pi, pi))

points(Phi, col="blue")
abline(h=0, col="grey")

9.2.4 Exponential Fourier Series

Another way to write the Fourier series is to involve complex numbers and more
specifically their exponential form with, this time, limits between −∞ and +∞:

s(t) =
∞∑

−∞
Dne

iωnt

where i2 = −1, eix = cos x + i sin x (Euler’s formula), and e is the base of the
natural logarithm.

9.2 Fourier Series 223

2 4 6 8 10

−3

−2

−1

0

1

2

3

Frequency index (n)

Ph
as

e
ϕ n

 (r
ad

)

l l

l

l

l

l

l
l

l

l

Fig. 9.6 Phase spectrum. The phase spectrum is a barplot of the phase coefficients ϕn against the
n angular frequencies

The Fourier coefficients, now named Dn, are obtained with:

Dn = 1

T

∫ T
2

− T
2

s(t)e−iωnt dt

We can compute the indices Dn by writing the following new function and
applying it directly to the first ten harmonics:

coeffD <- function(n) {
wnt <- n*2*pi/Tsamp*dt
res <- 1/Tsamp*sum(s[dt]*exp(complex(imaginary=-wnt)))
return(res)

}
D <- sapply(1:10, FUN=coeffD)
D
[1] 0.14743943+0.00384314i 1.00522821-0.00131642i
[3] -0.01346529-1.49403760i -2.00116503+0.05655377i
[5] -0.02079304+0.00974810i -0.01194973+0.01758947i
[7] -0.00861762+0.02850542i -0.00600429+0.04871007i
[9] -0.00113259+0.10798605i -0.36453378-4.99006074i

224 9 Introduction to Frequency Analysis: The Fourier Transformation

Plotting the modulus of D returns a similar plot to the one shown in Fig. 9.5:

plot(Mod(D), type="h", col="blue")

9.3 Fourier Transform

The next step in the Fourier transformation is the Fourier transform (FT) which
is an extension of the Fourier series (FS) to periodic and aperiodic signals. The
Fourier transform is therefore a more general formulation as it can describe an
important variety of time functions. The Fourier transform is commonly used in
sound analysis to produce the frequency spectrum, less often the phase spectrum.
The Fourier transform is therefore a bridge built between the time and frequency
domains.

The continuous FT of a function of time, here s(t), is a function of angular
frequency ω. We therefore switch from time t to frequency ω as shown in the
following general equation with a function of frequency ω on the left and a function
of time t on the right:

F(ω) =
∫ ∞

−∞
s(t)e−iωt dt

The frequency spectrum is obtained by computing the modulus of the Fourier
transform |F(ω)| and the phase spectrum by calculating the argument of the Fourier
transform arg F(ω).

How can we process the Fourier transform of a digitized time-limited sound?
As we have seen in Sect. 2.4, the process of digital recording is based on regular
sampling—sound pressure variations are measured following a specified sampling
frequency fs—and this during a limited time interval, the recording starts and stops
at specific time. This means that a digitized sound is a discrete and finite object.
Such mathematical object is treated with a specific kind of Fourier transform, the so-
called discrete Fourier transform (DFT). The DFT can produce a discrete frequency
spectrum (sampled spectrum) from a discrete time signal (sampled signal) over a
limited time interval.

The general Fourier transform equation can be written for a finite sound made of
N samples taking successive values s[n] (s[10] being, for instance, the 10th sample):

F [ω] =
∞∑

n=0

s[n]e−iωkn

9.3 Fourier Transform 225

Knowing that we should obtain F(ω) values for ωk = 2π
N

k, with k =
{0, 1, 2, . . . , (N − 1)}, the discrete Fourier transform (DFT) can be written as a
function of k with a sum limited between 0 and N − 1:

F [k] =
N−1∑
n=0

s[n]e−i 2π
N kn

The computational complexity of the DFT is very important and can be dramat-
ically time-consuming. Using data parallelization, the fast Fourier transform (FFT)
can reduce considerably the computing time of the DFT. The FFT is not another
kind of Fourier transformation but a tool in mathematics, or algorithm in computer
sciences, that can process the DFT very efficiently. Coined by Cooley and Tukey
(1965), the FFT decreases the number of operations to compute the DFT from N2

to N × log2(N) for a sound made of N samples. This reduction is significant, a 1 s
sound sampled at 44,100 Hz would require 44,1002 = 1,944,810,000 operations
without the FFT and only 44,100 × log2(44,100) = 680,397 with the FFT, that is,
a reduction of N ÷ log2(N) = 44,100 ÷ log2(44,100) = 2858.

In R, the FFT is implemented in the function fft(). The use of this function is
rather simple; we just need to provide the signal as an input:

fft <- fft(s)

The object returned by fft() is a vector made of 44,100 complex numbers:

is.vector(fft)
[1] TRUE
class(fft)
[1] "complex"
length(fft)
[1] 44100

The input and output of fft() have always the same size. Here the original
signal s[n] was a succession of 44,100 samples leading to a FFT of similar length.
To produce the discrete frequency spectrum, we have to compute the complex
modulus of the FFT, directly obtained with the function Mod():

fspec <- Mod(fft)

226 9 Introduction to Frequency Analysis: The Fourier Transformation

The class and the length of the object fspec are the same as those of the object
fft. However fspec does not contain complex numbers anymore but numeric
numbers:

is.vector(fspec)
[1] TRUE
class(fspec)
[1] "numeric"
length(fspec)
[1] 44100

The FFT transformed the N time samples into N frequency samples. The values
of the original signal and of the frequency spectrum may appear to vary over
different ranges:

range(s)
[1] -17.45387 16.88494
range(fspec)
[1] 1.860777e-12 2.205000e+05

However the total energy of the time and frequency signals are preserved as stated
by Parseval’s theorem which stipulates that the sum of the square of a function is
equal to the sum of the square of its transform. Applied to the Fourier transform,
Parseval’s theorem can be written as:

N−1∑
n=0

s[n]2 = 1

N

N−1∑
k=0

|F [k]|2

We can check the equality here with:

sum(s^2)
[1] 2857459
N <- length(fspec)
1/N*sum(fspec^2)
[1] 2857459

The frequency spectrum can be visualized by calling plot() with type="h"
to draw a vertical line corresponding to the amplitude of each angular frequency.
The frequency resolution is here 1 Hz because the sound analyzed lasts 1 s. The

9.3 Fourier Transform 227

0 10000 20000 30000 40000

0
50

00
0

10
00

00
15

00
00

20
00

00

Frequency (Hz)

Am
pl

itu
de

 (n
o

un
it)

N
yq

ui
st

 fr
eq

ue
nc

y

Fig. 9.7 Mirrored frequency spectrum of the FFT. The modulus of the FFT is a symmetric
(mirrored) function of the angular (or regular) frequency around the Nyquist frequency fN

amplitude varies along a scale without unit (Fig. 9.7):

plot(fspec, type="h", col="blue",
xlab="Frequency (Hz)",
ylab="Amplitude (no unit)")

Figure 9.7 shows that the modulus of the Fourier transform is a symmetric, or
mirrored, function around half the sampling frequency or Nyquist frequency fN ,
here fN = fs ÷ 2 = 22,050 Hz. This symmetry is one of the main properties of the
Fourier transform due to the symmetric properties of the cosine and sine functions.

We zoom in on the left half of the spectrum, and we multiply the amplitude values
by 2 to keep the total amount of energy (Fig. 9.8):

fspec.left <- 2*fspec[1:(f/2)]
length(fspec.left)
[1] 22050
plot(fspec.left, type="h", las=1, col="blue",

xlab="Frequency (Hz)",
ylab="Amplitude (no unit)")

228 9 Introduction to Frequency Analysis: The Fourier Transformation

0 5000 10000 15000 20000

0e+00

1e+05

2e+05

3e+05

4e+05

Frequency (Hz)

Am
pl

itu
de

 (n
o

un
it)

Fig. 9.8 Frequency spectrum of the FFT. This spectrum includes all the Fourier coefficients from
C0 to the Nyquist frequency fN

We then look more precisely to the peaks of the spectrum and identify them with
the function identify():

peaks <- identify(fspec.left)

The peaks are found at the following index values, that is, the positions along the
vector fspec.left:

peaks
[1] 1 441 881 1321 1761 4401

To convert these values in Hz, we just need to subtract 1, the first value
corresponding to C0 or 0 Hz frequency:

peaks <- peaks-1
peaks
[1] 0 440 880 1320 1760 4400

9.4 Frequency Scales 229

Do these frequencies match with the frequencies we used to build the signal
s[n]? Remember that the original signal obeys to the following equation, here in its
continuous form, with a fundamental frequency of 440 Hz:

s(t) = 0.5 + 0.3 cos(t) + 2 sin(2t) + 3 sin(3t) − 4 cos(4t) + sin(10t)

so that it is made of the following harmonics:

h <- c(0,1,2,3,4,10) # harmonics numbers
freq <- 440*h # linear frequency
freq
[1] 0 440 880 1320 1760 4400

The FFT did properly the frequency decomposition and found the right harmon-
ics.

9.4 Frequency Scales

9.4.1 Bark and Mel Scales

We have already seen that the radian is the unit of angular frequency and the Hertz
the unit of regular frequency. These two units vary along a linear scale. However,
the perception of frequency by humans is nonlinear due to nonlinear neural and
psychological auditory mechanisms. The basilar membrane of the human cochlea
discriminates frequency as a bank of frequency filters would do. However, these
set of filters are not symmetric and do not have all the same width. The system is
therefore not totally linear and motivated the definition of 24 critical bands along
the cochlea corresponding more or less to 24 different filters (Zwicker 1961). The
Bark scale is defined so that one unit (1 Bark) corresponds to the width of one
critical band. The Bark scale is therefore limited between 1 and 24 (Fig. 9.9). A
mathematical way to convert Hz and Bark is to apply the following equation:

fHz = 600 × sinh

(
fbark

6

)

where sinh is the hyperbolic sine function.
The inverse equation is:

fbark = 6 × sinh−1
(

fHz

600

)

230 9 Introduction to Frequency Analysis: The Fourier Transformation

0 5000 10000 15000 20000

0

1000

2000

3000

4000

Hertz

m
el

0

5

10

15

20

25

ba
rk

mel
bark

Fig. 9.9 Hertz (x-axis), mel (left y-axis), and Bark (right y-axis) scales. Bark and mel scale are
closely related even if defined differently and evolving on different ranges

The functions bark2hz() and hz2bark() of the package tuneR perform
this two-way conversion:

bark2hz(1:24) # the 24 Bark units converted to Hertz
[1] 100.4636 203.7243 312.6572 430.2951 559.9133
[6] 705.1207 869.9602 1059.0212 1277.5677 1531.6843

[11] 1828.4464 2176.1162 2584.3739 3064.5860 3630.1227
[16] 4296.7298 5082.9670 6010.7250 7105.8343 8398.7853
[21] 9925.5764 11728.7167 13858.4097 16373.9503
hz2bark(440) # 440 Hz converted into Bark
[1] 4.078563

The mel(ody) scale is a subjective and logarithmic frequency scale established on
the results obtained with human perception tests related to frequency and loudness.
There are actually several mel scales that can differ significantly. Historically,
the first, and most used, mel scale was due to Stevens et al. (1937) (Fig. 9.9).
Mathematical equations to convert Hz into mel were provided later. One of these
equations is:

fmel = 1127.01048 × log

(
1 +

(
fHz

700

))

9.4 Frequency Scales 231

with the inverse equation:

fHz = 700 ×
(
e

fmel
1127.01048 − 1

)

These formulae are coded in the function mel() of seewave:

mel(440) # 440 Hz converted into mel
[1] 549.6466
mel(10, inverse=TRUE) # 10 mel converted into Hertz
[1] 6.23876

A similar conversion can be processed with the tuneR functions hz2mel()
and mel2hz(). In this case the argument htk, which refers to the C program
Hidden Markov Model Toolkit (HTK)3, should be set to TRUE:

hz2mel(440, htk=TRUE) # 440 Hz converted into mel
[1] 549.6387
mel2hz(10, htk=TRUE) # 10 mel converted into Hertz
[1] 6.23885

9.4.2 Musical Scale

Western music uses its own frequency scale based on note intervals. An octave is an
interval corresponding to a 2:1 ratio, such that a note vibrating at a frequency f1 and
a second note vibrating at f2 = 2 × f1 are separated by one octave. The function
octaves() of seewave returns the frequency values of the octaves below and
above a specific frequency. For instance, the following call of octaves() provides
the different frequencies of a A note over seven octaves:

octaves(440)
[1] 55 110 220 440 880 1760 3520

Tones are frequency intervals defining the frequency position of Western musical
notes. There are 12 tones related to 7 notes (Latin letters C, D, E, F, G, A, B in
English and Dutch notation) that can be raised (accidental �) or lowered (accidental

3http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/

232 9 Introduction to Frequency Analysis: The Fourier Transformation

�) by halftones giving 5 additional notes (C� = D�, D� = E�, F� = G�, G� = A�,
A� = B�). Each Western note has a peculiar frequency, usually expressed in Hz.
The conversion from a note to its corresponding frequency can be achieved with the
function notefreq() of seewave, here for the A note:

notefreq("A")
[1] 440

This result can be extended over several octaves with the argument octaves,
here for the octaves 1 to 3:

notefreq("A", octave=1:3)
[1] 110 220 440

We can therefore obtain quite simply the frequency of the 12 notes over the first
6 octaves with the following code (Fig. 9.10):

notes <- c("C","C#","D","D#","E","F","F#","G","G#","A","A#","B")
freq <- sapply(X=notes, FUN=notefreq, octave=1:6)
freq

C C# D D# E
[1,] 65.40639 69.29566 73.41619 77.78175 82.40689
[2,] 130.81278 138.59132 146.83238 155.56349 164.81378
[3,] 261.62557 277.18263 293.66477 311.12698 329.62756
[4,] 523.25113 554.36526 587.32954 622.25397 659.25511
[5,] 1046.50226 1108.73052 1174.65907 1244.50793 1318.51023
[6,] 2093.00452 2217.46105 2349.31814 2489.01587 2637.02046

F F# G G# A
[1,] 87.30706 92.49861 97.99886 103.8262 110
[2,] 174.61412 184.99721 195.99772 207.6523 220
[3,] 349.22823 369.99442 391.99544 415.3047 440
[4,] 698.45646 739.98885 783.99087 830.6094 880
[5,] 1396.91293 1479.97769 1567.98174 1661.2188 1760
[6,] 2793.82585 2959.95538 3135.96349 3322.4376 3520

A# B
[1,] 116.5409 123.4708
[2,] 233.0819 246.9417
[3,] 466.1638 493.8833
[4,] 932.3275 987.7666
[5,] 1864.6550 1975.5332
[6,] 3729.3101 3951.0664

The inverse action, that is, the identification of a note given a frequency, can be
processed with the function noteFromFF() of tuneR. The function returns the
difference in position of the tone in reference to the A note, that is, the A of the third
octave also written a’:

9.4 Frequency Scales 233

0

1000

2000

3000

4000
Fr

eq
ue

nc
y

(H
z)

C
C#
D

D#
E
F

F#
G
G#

A

A#

B

1 2 3 4 5 6

500

1000

1500

2000

Octave

Fr
eq

ue
nc

y
(m

el
) C
C#
D

D#
E
F

F#
G
G#
A
A#
B

Fig. 9.10 Frequency of Western musical notes. The frequency in Hertz and mel of the 12 Western
musical notes is plotted over the first 6 octaves. The mel scale, through its logarithm properties,
spaces more equally the notes than the Hertz scale along the octaves

noteFromFF(440) # returns 0 = reference = A third octave
[1] 0
noteFromFF(493) # returns 2 = 2nd note = B third octave
[1] 2
noteFromFF(622) # returns 6 = 6th note = D# third octave
[1] 6

(continued)

234 9 Introduction to Frequency Analysis: The Fourier Transformation

noteFromFF(880) # returns 12 = 12th note = A fourth octave
[1] 12

The function notenames() of tuneR can return the name of notes according
to this numeric difference:

notenames(0) # A third octave
[1] "a’"
notenames(2) # B third octave
[1] "b’"
notenames(6) # D third octave
[1] "d#’’"
notenames(12) # A fourth octave
[1] "a’’"

We can of course combine notenames() and notefromFF() to derive the
note names directly from a frequency:

notenames(noteFromFF(440)) # A third octave
[1] "a’"

The packagesoundgen proposes also a pair of functions,HzToSemitones()
and semitonesToHz(), that convert a frequency in Hz into a halftone position
and vice versa along a full scale of musical notes, that is, a scale starting with a C
note at 16.4 Hz in the infrasound domain and ending with a B note at 31,608.5 Hz
in the ultrasound domain.

HzToSemitones(c(440, 493, 622, 880))
[1] 56.9999977038643 58.9690071781033 62.9929303831356
[4] 68.9999977038643

This value can be used with the accompanying dataset notesDict which is a
data.frame making the link between position and note:

head(notesDict)
note freq

(continued)

9.5 Amplitude Scales 235

1 C0 16.4
2 C0 17.3
3 D0 18.4
4 D0 19.4
5 E0 20.6
6 F0 21.8
tail(notesDict)

note freq
127 F10 23679.6
128 G10 25087.7
129 G10 26579.5
130 A10 28160.0
131 B10 29834.5
132 B10 31608.5

The function and the dataset can also be combined to get the notes corresponding
to a specific frequency:

notesDict[1+round(HzToSemitones(c(440, 493, 622, 880))),1]
[1] "A4" "B4" "D5" "A5"

9.5 Amplitude Scales

The FT attributes to each frequency an amplitude coefficient. All the possible
options of expressing amplitude in the time domain can be transferred to the
frequency domain. Therefore, and as detailed in Chap. 2, the frequency amplitudes
can be expressed along an absolute scale related to the measure of medium pressure
variations or along a relative scale without any calibrated reference. The amplitude
values can follow a linear or a logarithm scale, typically a dB scale.

On a linear scale, the raw values obtained by the FFT can be kept, or they can
be scaled in three different ways: (1) division of the mirrored FFT by the length of
the FFT (N), (2) division by the maximum of the FFT to get values scaled between
0 and 1 such that spectra deriving from sounds recorded with different recording
levels could be contrasted, and (3) division by the sum of the FFT values so that the
resulting frequency spectrum can be regarded as a probability mass function (PMF)
(Fig. 9.11).

On a dB scale, the values can be scaled to vary between a maximum of 0 and
negative values such that the amplitude scale is a relative and comparable scale.
If the recording chain is fully calibrated (see Sect. 7.3), then the spectrum can be
expressed with absolute dB values. The dB weightings (dB(A), dB(B), dB(C), and
dB(D)) can also be used either with relative or absolute scale (Fig. 9.11).

236 9 Introduction to Frequency Analysis: The Fourier Transformation

0 2000 4000

0

1

2

3

4

5

scaled by length(fft)

[0
,5

]

0 2000 4000

0.0

0.2

0.4

0.6

0.8

1.0

scaled by max(fft)

[0
, 1

]
0 2000 4000

0.0

0.1

0.2

0.3

0.4

0.5

scaled by sum(fft)

Pr
ob

ab
ilit

y

0 2000 4000

0e+00

1e+05

2e+05

3e+05

4e+05

raw

0 2000 4000

−350

−300

−250

−200

−150

−100

−50

0

rel. dB
 scaled by max(fft)

dB

0 2000 4000

−400

−300

−200

−100

0

rel. dB(A)
 scaled by max(fft)

dB
(A

)

0 2000 4000

−250

−200

−150

−100

−50

0

50

100

absolute dB

dB

linear ⇒

logarithmic ⇒

Frequency (Hz)

A
m

pl
itu

de

Fig. 9.11 Amplitude scale of the frequency spectrum. Seven examples of amplitude scales used to
show a frequency spectrum, from raw data directly returned by the FFT to linear and scaled scales
and logarithmic scales based on the dB unit. A zoom between 0 and 5000 Hz was operated on the
frequency axis

9.6 Fourier Windows

The computation of the DFT through the FFT is operated over a limited number
of samples. The DFT and of course the FFT make the tacit assumption that data
constitutes a periodic time series, that is, the data are repeated over and over again.
However, the signal of interest is not always periodic, and this induces artifacts in
the frequency spectrum, as changes in amplitude, modifications in the overall shape,

9.6 Fourier Windows 237

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Sample index

Am
pl

itu
de

bartlett
blackman
flattop
hamming
hanning
rectangle

Fig. 9.12 FFT window shape. Shapes of the six FFT windows implemented in seewave. The
windows includes here N = 512 samples

and generation of undesirable sine lobes. This phenomenon, known as spectral
leakage, can be reduced—but not eliminated—by multiplying the time series s[n]
by a window function w[n] or taper:

sw[n] = s[n] × w[n]

There is an important choice of window functions w[n], but most of them have
a bell shape decreasing smoothly to zero or near zero at the beginning and end
(Fig. 9.12). The shape of six windows can be viewed with the function ftwindow
of seewave. For instance, the following code plots the Hanning window for N =
512 samples:

plot(ftwindow(wl=512, wn="hanning"), type="l", col="blue",
xlab="Sample", ylab="Amplitude")

Follow the equations of the most popular windows for N samples. The rectangu-
lar or Dirichlet window is the simplest window basically keeping the signal intact
and considering the rest of data as zero values:

wrectangle[n] =
{

1 if n ∈ [0, N]

0 elsewhere

238 9 Introduction to Frequency Analysis: The Fourier Transformation

The Bartlett window is a triangular window:

wbartlett[n] =

⎧⎪⎪⎨
⎪⎪⎩

2n
N

if n ∈ [
0, N

2

[
2(N−n)

N
if n ∈ [

N
2 , N

]
0 elsewhere

The Blackman window is a cosine function:

wblackman[n] =
⎧⎨
⎩

0.42 − 0.5 × cos
(

2πn
N−1

)
+ 0.08 × cos

(
4πn
N−1

)
if n ∈ [0, N]

0 elsewhere

The flattop window has negative values:

wflattop[n]

=

⎧⎪⎪⎨
⎪⎪⎩

0.2156 − 0.416 × cos
(

2πn
N−1

)
+ 0.2781 × cos

(
4πn
N−1

)

−0.0836 × cos
(

6πn
N−1

)
+ 0.0069 × cos

(
8πn
N−1

)
if n ∈ [0, N]

0 elsewhere

The Hanning, or Hann window, is a raised cosine function:

whanning[n] =
⎧⎨
⎩

0.5 − 0.5 × cos
(

2πn
N−1

)
if n ∈ [0, N]

0 elsewhere

The Hamming window is closely related to the Hanning (Hann) window but with
slightly modified coefficients:

whamming[n] =
⎧⎨
⎩

0.54 − 0.46 × cos
(

2πn
N−1

)
if n ∈ [0, N]

0 elsewhere

As illustrated in Fig. 9.13, the effects on the frequency spectrum of these window
functions can differ markedly in particular when using a dB scale so that their
selection should be considered carefully in regard with the nature of the signal
(sinusoidal or not), the frequency resolution, the reduction of the side lobes, and
the amplitude accuracy. It seems that in most cases, at least for continuous animal
or environmental sounds, the Hanning (Hann) window is the best choice so that it
has been selected as the default window for most seewave spectral functions.

9.6 Fourier Windows 239

−1.0

−0.5

0.0

0.5

1.0
rectangle rectangle

0.0
0.2
0.4
0.6
0.8
1.0

−250

−200

−150

−100

−50

0
rectangle

−1.0

−0.5

0.0

0.5

1.0
bartlett bartlett

0.0
0.2
0.4
0.6
0.8
1.0

−250

−200

−150

−100

−50

0
bartlett

−1.0

−0.5

0.0

0.5

1.0
blackman blackman

0.0
0.2
0.4
0.6
0.8
1.0

−250

−200

−150

−100

−50

0
blackman

−0.5

0.0

0.5

flattop flattop

0.0
0.2
0.4
0.6
0.8
1.0

−250

−200

−150

−100

−50

0
flattop

−1.0

−0.5

0.0

0.5

1.0
hamming hamming

0.0
0.2
0.4
0.6
0.8
1.0

−250

−200

−150

−100

−50

0
hamming

−1.0

−0.5

0.0

0.5

1.0
hanning

0.00 0.02 0.04 0.06

hanning

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
−250

−200

−150

−100

−50

0
hanning

0 1 2 3 4

Time (s) Frequency (kHz) Frequency (kHz)

Am
pl

itu
de

Fig. 9.13 FFT window effects on the frequency spectrum. A 2 kHz sound lasting 0.02 s is
windowed (syn. tapered) with a function that reduces errors in the frequency spectrum. Basically
the rectangular window (first line of graphics) has no effect when the remaining (Bartlett,
Blackman, flattop, Hamming, and Hanning) changes the shape of the spectrum. The effects are
less visible on a spectrum with a linear amplitude scale (second column) than on a spectrum with
a dB amplitude scale (third column)

240 9 Introduction to Frequency Analysis: The Fourier Transformation

9.7 Inverse Fourier Transform

The inverse Fourier transform is the way to travel back from the frequency domain
to the time domain. The inverse Fourier transform is therefore a way to recover
the original time signal s(t) from its transformation into the frequency domain.
Changes of the frequency domain, as filtering, can be applied before to process the
inverse transform such that the original time signal can be modified using frequency
parameters. This opens important possibilities for sound design (see Sect. 15.4).

Each member of the transformation Fourier family (Table 9.1) has a corre-
sponding inverse member: the inverse Fourier series (IFS), the inverse Fourier
transform (IFT), the inverse discrete Fourier transform (IDFT), the inverse fast
Fourier transform (IFFT), the inverse short-time Fourier transform (ISTFT), and
the inverse short-time discrete Fourier transform (ISTDFT).

The inverse Fourier transform (IFT) for an infinite signal is:

s(t) = 1

2π

∫ ∞

−∞
F(ω)eiωt dω

The discrete form of the inverse Fourier transform (IDFT), that is the inverse
Fourier transform of a time-limited signal, is written according to:

s[n] = 1

N

N−1∑
k=0

F [k]ei 2π
N kn

In R, the inverse Fourier transform is computed by using the argumentinverse
of the function fft(). Remembering that:

fft <- fft(s)

The inverse Fourier transform is computed with:

fft(fft, inverse=TRUE)

To recover the original signal s(t), we need to scale by the length of the FFT and
keep only the real part of the inverse Fourier transform:

s.recovered <- Re(fft(fft, inverse=TRUE)/length(fft))

9.8 Cepstrum 241

We check that the differences between the original and the recovered signals are
negligible:

sum(s-s.recovered)
[1] -1.540001e-15

9.8 Cepstrum

The cepstrum, an anagram of spectrum that should be pronounced ["kEpstô@m], is
an innovation of Bogert et al. (1963) to identify and potentially remove an echo
appearing after a delay τ in a time signal.4 The first definition given by Bogert et al.
(1963) is “the power spectrum of the logarithm of the power spectrum.” In a less
concise style, the cepstrum can be described as a three-step process: (1) computation
of the square of the Fourier frequency spectrum, (2) computation of the logarithm of
this spectrum, and (3) computation of the square of the Fourier frequency spectrum
of the log spectrum. The cepstrum function C(τ) can be therefore written as:

C(τ) = |F(log(|F(ω)|2))|2

This would be translated in R with:

Mod(fft(log(Mod(fft(s))^2)))^2

However, this transformation was not reversible to the time domain limiting the
action of lifters (i.e. filters) to remove, for instance, an echo. A few years later,
Oppenheim and Schafer (1975) defined a new type of cepstrum, named the complex
cepstrum, by using the inverse of the Fourier transform. The “complex cepstrum” is
the inverse Fourier transform of the logarithm of the complex spectrum and can be
written as:

C(τ) = F−1(log(|F(ω)|))
which would give in R:

fft(log(abs(fft(s))), inverse=TRUE)

4See Oppenheim and Schafer (2004) for a brilliant story of the cepstrum.

242 9 Introduction to Frequency Analysis: The Fourier Transformation

Table 9.2 Spectral-cepstral
dictionary

Spectrum language Cepstrum language

Frequency Quefrency

Period Repiod

Harmonic Rahmonic

Phase Saphe

Filter Lifter

Magnitude Gamnitude

Bogert et al. (1963) played with letters to
create a terminology associated with their
new “spectral” transformation

This transform has the great advantage to be reversible to the time domain.
Changes can be applied on the cepstrum and applied back to the time series.

The domain of the cepstral transformation is neither conventional time nor
conventional frequency; it was therefore named quefrency, an anagram of frequency.
Actually, Bogert et al. (1963) coined several cepstral terms all based on puzzling
anagrams (Table 9.2).

We have seen that the independent variable of a cepstrum is the quefrency τ .
The quefrency is a measure of time, though not in the sense of a signal in the
time domain. A correspondence with the frequency domain is, however, obtained
by simply computing the inverse of τ . For instance, if a cepstral peak appears at
0.005, this reveals a frequency peak at (τ = 1 ÷ 0.005 = 200) that can be converted
in 200 Hz in the classical spectral domain.

Figure 9.14 shows a basic use of the cepstrum for a signal with an echo. The
delay of the echo is seen as a peak on the cepstrum.

The cepstrum is actually used in many more applications than the sole detection
of echoes. The cepstrum has been repeatedly employed in industry, communi-
cations, seismology, speech analysis, and life sciences. In particular, the cepstral
transform can help in determining the fundamental frequency of a harmonic series
(see Sect. 10.1.3.4). An echo with a delay τ in s generates an amplitude modulation
with a frequency fam = 1 ÷ τ in Hz that can be viewed as the lowest frequency or
fundamental frequency of a harmonic series. By definition, the frequency spectrum
of a harmonic series shows frequency lobes regularly. For instance, the frequency
spectrum of a harmonic series with a fundamental frequency f0 = 440 Hz will
show regular lobes spaced by 440 Hz. The cepstral transform first compresses the
amplitude range of the frequency lobes by computing the logarithm of the frequency
spectrum and, second, considers this log spectrum as a time series with a regular
amplitude variation that can be detected with a FFT and that corresponds to the
fundamental frequency, in our example 440 Hz (Fig. 9.15).

Similarly, the cepstrum can be used to detect the frequency of an amplitude
modulation. Indeed, the frequency spectrum of a signal with a regular amplitude
modulation shows frequency lobes or sidebands spaced by the frequency of the
amplitude modulation (see Sect. 10.1.4.2). For instance, the frequency spectrum of
a sine wave with a 100 Hz amplitude modulation will show regular lobes spaced by

9.8 Cepstrum 243

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time (s)

Am
pl

itu
de

0.2 s echo

Quefrency (bottom: s, up: Hz)

Am
pl

itu
de

0 0.107 0.213 0.32 0.427 0.533 0.64

Inf 9.375 4.688 3.125 2.344 1.875 1.562

l

0.2

Fig. 9.14 Cepstrum: echo detection. The original signal is a 45 Hz signal affected by an echo
arriving with a delay of 0.2 s and an increase of 50% of amplitude (upper panel). Applying the
complex cepstral transform returns a graphic with a quefrency x-axis and an amplitude y-axis. A
peak appears at 0.2 s (bottom x-axis scale) corresponding to 5 Hz (top x-axis scale) (bottom panel)
corresponding to the echo delay

100 Hz. The cepstrum will then have a peak at 100 Hz. However, the result might
be less accurate as the spectrum includes less frequency lobes to be analyzed by the
FFT (Fig. 9.16).

244 9 Introduction to Frequency Analysis: The Fourier Transformation

0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

Am
pl

itu
de

0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

0 1 2 3 4 5

Frequency (kHz)

Am
pl

itu
de

0 1 2 3 4 5

−1
5

−1
0

−5
0

Frequency (kHz)

lo
g

Am
pl

itu
de

Quefrency (bottom: s, up: Hz)

Am
pl

itu
de

0 0.002 0.004 0.006 0.008 0.01 0.012

Inf 516.797 258.398 172.266 129.199 103.359 86.133

l

0.002 s = 440 Hz

Fig. 9.15 Cepstrum of a harmonic series. The original signal is a 0.1 s harmonic series with a
440 Hz fundamental frequency and nine harmonics regularly and linearly decreasing in amplitude.
The 440 Hz fundamental frequency can be seen as a regular amplitude modulation (gray area)
(first panel). The spectrum is therefore made of ten frequency peaks spaced by 440 Hz (gray area)
(second panel). The logarithm of the frequency spectrum shows the same profile with the same
distance between peaks, but frequency peaks are compressed (third panel). The cepstrum shows a
peak at a quefrency of 0.002 s equivalent to 440 Hz (fourth panel)

9.8 Cepstrum 245

0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

Am
pl

itu
de

0 1 2 3 4 5

Frequency (kHz)

Am
pl

itu
de

0 1 2 3 4 5

−1
5

−1
0

−5
0

Frequency (kHz)

lo
g

Am
pl

itu
de

Quefrency (bottom: s, up: Hz)

Am
pl

itu
de

0 0.002 0.004 0.006 0.008 0.01 0.012

Inf 516.797 258.398 172.266 129.199 103.359 86.133

l

417 Hz = 0.0024 s

Fig. 9.16 Cepstrum of an amplitude modulated signal. The original signal is a 2500 Hz pure tone
signal with an amplitude modulation of 440 Hz (gray area) lasting 0.1 s (first panel). The spectrum
is made of three frequency peaks, a dominant frequency peak at 2500 Hz and two lateral frequency
peaks at 2500 − 440 = 2060 Hz and 2500 + 440 = 2990 Hz (gray area) (second panel). The
logarithm of the frequency spectrum shows the same profile with the same distance between peaks,
but frequency peaks are compressed (third panel). The cepstrum shows a peak at a quefrency of
0.0024 s equivalent to 417 Hz, slightly departing from the 440 Hz modulation frequency (fourth
panel)

Chapter 10
Frequency, Quefrency, and Phase
in Practice

Now that we know a little bit about the Fourier transform (see Chap. 9), we can
explore and describe sound in the frequency domain using R functions dedicated to
the frequency spectrum but also to the quefrency cepstrum and the phase portrait.

10.1 Frequency Spectrum

To introduce the frequency spectrum, we will mainly refer to the sound produced
by the northern lapwing Vanellus vanellus, a bird commonly found in Eurasia that
produces a short and loud contact call that can be translated into the onomatopoeia
“peewit” (Fig. 10.1). The sample is included in the data peewit of seewave:

data(peewit)
peewit

Wave Object
Number of Samples: 15561
Duration (seconds): 0.71
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_10

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_10&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_10

248 10 Frequency, Quefrency, and Phase in Practice

Fig. 10.1 Pictures of soniferous animals: the northern lapwing Vanellus vanellus (repro-
duced with the kind permission of Andreas Trepte, http://www.photo-natur.de) and the Italian
tree cricket Oecanthus pellucens (reproduced with the kind permission of Christian Roesti,
http://www.orthoptera.ch)

10.1.1 Functions of the Package tuneR

The function periodogram() of tuneR, which is based on spec.pgram()
from the R base, computes the power spectral density (PSD) which is the square of
the frequency spectrum of the DFT. The frequency spectrum is scaled by the sum
of the DFT values returning therefore a probability mass function. The function
accepts Wave and WaveMC objects and returns an object of class Wspec() that
is plotted as a barplot by the generic function plot(). We can then compute the
power spectrum of peewit

p <- periodogram(peewit)
p
Wspec Object (use summary() for more details)

Number of Periodograms: 1
Estimated at 8192 Frequencies: 1.345825 ... 11025

Further parameters:
width: 16384
overlap: 0
normal.: TRUE

and plot it with (Fig. 10.2):

plot(p)

http://www.photo-natur.de
http://www.orthoptera.ch

10.1 Frequency Spectrum 249

0 2000 4000 6000 8000 10000

0.
00

0.
02

0.
04

0.
06

Frequency

no
rm

al
iz

ed
 p

er
io

do
gr

am

Fig. 10.2 Frequency spectrum with periodogram() of tuneR. The frequency spectrum
returned by periodogram() is a power spectral density, that is, a frequency spectrum squared
and scaled by its sum

The data of the spectrum are saved in the two first slots of the S4 object returned
so that the plot can be reconstructed manually with this code that uses the function
unlist() to convert the S4 slot which is a list into a vector:

plot(p@freq, unlist(p@spec), type="h")

10.1.2 Functions of the Package seewave

The main function of seewave to compute and draw a frequency spectrum is the
function spec(). The simplest way to use it is (Fig. 10.3):

fspec <- spec(peewit)

By default, the function spec() takes the complete data series as input, which
can be of almost any numeric and audio format, and plots it with a frequency kHz
scale on the x-axis and an relative amplitude scale scaled between 0 and 1 on the y-
axis. The frequency scales range from 0, meaning that the spectrum includes the DC
component, to the N − 1 frequency, which is the frequency preceding the Nyquist

250 10 Frequency, Quefrency, and Phase in Practice

0 2 4 6 8 10

Frequency (kHz)

Am
pl

itu
de

Fig. 10.3 Frequency spectrum with spec() of seewave

frequency fN . The type of plot used by default is a line (type="l") to follow most
common way to publish frequency spectra. However, as we have seen in Sect. 9, the
frequency spectrum is by essence a discrete function such that the most correct way
to plot a spectrum is a barplot (Fig. 9.5). This can be changed easily with:

spec(peewit, type="h")

To even better visualize the discrete properties of the frequency spectrum, one
can use the option type="o" that combines a line and points:

spec(peewit, type="o")

The spectrum can be plotted and saved into an object at the same time. The value
returned is a numeric matrix with two columns, the first column being the frequency
in kHz and the second column being the amplitude. The number of rows is the length
of the input data N divided by 2 due to the symmetry of the DFT:

class(fspec)
[1] "matrix"

(continued)

10.1 Frequency Spectrum 251

dim(fspec)
[1] 7780 2
head(fspec)

x y
[1,] 0.000000000 2.458994e-04
[2,] 0.001417095 8.840225e-05
[3,] 0.002834190 1.444195e-04
[4,] 0.004251285 1.197009e-04
[5,] 0.005668381 2.190808e-05
[6,] 0.007085476 9.511212e-05
tail(fspec)

x y
[7775,] 11.01650 8.806292e-05
[7776,] 11.01791 2.343500e-05
[7777,] 11.01933 1.086190e-04
[7778,] 11.02075 4.949982e-05
[7779,] 11.02217 7.759361e-05
[7780,] 11.02358 6.917961e-05

The numeric output of spec() can be used to build manually the graphical
output:

plot(fspec, type="l", xlab="Frequency (kHz)", ylab="Amplitude")

The function cutspec() offers a facility to manipulate the object returned by
spec() such that we can apply a selection of the spectrum according to frequency.
The following action cuts the frequency spectrum fspec between 2 and 4 kHz:

fspec.cut <- cutspec(fspec, flim=c(2,4))
dim(fspec.cut)
[1] 1412 2
head(fspec.cut)

x y
[1,] 2.000938 0.0015616509
[2,] 2.002355 0.0012655268
[3,] 2.003773 0.0004317273
[4,] 2.005190 0.0008492436
[5,] 2.006607 0.0011620947
[6,] 2.008024 0.0007394728
tail(fspec.cut)

x y
[1407,] 3.993374 0.014846632
[1408,] 3.994791 0.009850293
[1409,] 3.996208 0.005660242

(continued)

252 10 Frequency, Quefrency, and Phase in Practice

[1410,] 3.997625 0.008755836
[1411,] 3.999042 0.011353654
[1412,] 4.000460 0.011816028

The function spec() includes a long list of arguments that can be divided in
two broad categories: (1) the arguments to control the analysis (Fourier arguments)
and (2) the arguments to manipulate the graphical output (graphical arguments). We
detail these categories successively in the two next sections.

10.1.2.1 Fourier Arguments

We have seen that the format of the input is rather easy to manage as spec()
handles most of audio-related R object classes. However, spec() takes by default
the complete input object leading to a very high-frequency resolution; here for the
case of peewit, which is made of 15561 samples, we end up with a resolution
Δf = 22050 ÷ 15561 = 1.4 Hz. Such a high-frequency resolution is often not
required, if not irrelevant. In addition, computing the DFT of the whole sound might
be time consuming and not be appropriate if there is frequency modulation. It can
be therefore useful to compute the DFT for a section of the data only, something that
the argumentsfrom and to allow by specifying where the analysis should start and
end. They must be provided in s, such that the following code computes the DFT of
peewit between the time positions 0.3 and 0.4 s:

spec(peewit, from=0.3, to=0.4)

Another way is to compute the DFT locally using a so-called window that selects
a specific number of samples at a particular time position (Fig. 10.4). For instance,
we could wish to get the frequency spectrum of peewit in the middle of the signal.
To do so, we use the argument at to specify the time position and the argument
wl (for window length) to set the length of the window in number of samples.
This argument, which we will often encounter with frequency related functions, is
usually set with a power of 2 value facilitating the computation of the DFT. Classical
values are 27 = 128, 28 = 256, 29 = 512, 210 = 1024. Table 10.1 provides
the frequency resolution in relation with window length and sampling frequency,
and Fig. 10.5 illustrates the effect of DFT size on the shape and resolution of the
frequency spectrum.

10.1 Frequency Spectrum 253

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

0 2 4 6 8 10

Frequency (kHz)

Am
pl

itu
de

Am
pl

itu
de

Fig. 10.4 Size of the frequency spectrum—1. The frequency spectrum is computed with spec()
over the complete peewit dataset (top), on a section between 0.3 and 0.4 s (middle) and on a 512
sample window selected in the middle of the sound (bottom)

254 10 Frequency, Quefrency, and Phase in Practice

Table 10.1 Frequency and time resolution

Sampling frequency fs (Hz)
11,025 22,050 44,100 98,000

D
FT

si
ze

w
l

(s
am

pl
es

) 128 Δf (Hz) 86.13 172.27 344.53 750

Δt (ms) 11.61 5.8 2.9 1.33

256 Δf (Hz) 43.07 86.13 172.27 375

Δt (ms) 23.22 11.61 5.8 2.67

512 Δf (Hz) 21.53 43.07 86.13 187.5

Δt (ms) 46.44 23.22 11.61 5.33

1024 Δf (Hz) 10.77 21.53 43.07 93.75

Δt (ms) 92.88 46.44 23.22 10.67

The time and frequency resolution, respectively, Δf and Δt , are given in relation with the sampling
frequency (fs) and the size of the DFT wl. One of the most common settings is highlighted with a
gray background

In the following code, we find the time center of peewit:

center <- round(duration(peewit)/2, 2)
center
[1] 0.35

and we compute the frequency spectrum for a 29 = 512 sample window around the
central position of peewit with:

spec(peewit, wl=512, at=center)

The frequency resolution steps down to Δf = 22050÷512 = 43.06 Hz. Increas-
ing the window size increases the frequency resolution, but the decomposition is
less accurate in terms of time as more signal is selected. Inversely, reducing the
window size is more specific in terms of time (position) but the frequency resolution
decreases. This trade-off is an example of the uncertainty or Heisenberg principle
that stipulates that there is a limit in the precision of pairs of parameters, here the
time and frequency parameters (see Sect. 11.1.2). This issue can be partly solved
by computing a mean spectrum through the use of a sliding window. This solution,
available with the function meanspec(), is detailed in Chap. 11.

We have seen that frequency leakage can be limited by multiplying the data by a
window function or taper w[n] (see Sect. 9.6). This operation is achieved by default
by spec() with a Hanning window, but the type of the window can be changed
with the argument wn (for window name), here with a Bartlett window:

10.1 Frequency Spectrum 255

l l l l l
l

l

l

l

l

l l l l

l

l

l

l l l l

l

l

l

l l l l
l

l l

l l l l l
l

l

l
l l l l

l
l

l
l l l l l l l l l l l l l l l l l l

wl = 128

llllllllllll
l

l

l

l

l

l
llllllllll

l

l
l

llllllllllll

l

l

l

llllllllllll

ll

l
lllllllllll

l

l
l

llllllllllll
l
l
l
lllllllllllllllllllllllllll

lllllllllll

wl = 256

lllllllllllllllllllllllllll
l

l

l

l

l

lllllllllllllllllllllllll
l

ll

l
llllllllllllllllllllllllll

l

l

l

llllllllllllllllllllllllll

l

l

l

llllllllllllllllllllllllll
l

l
l
lllllllllllllllllllllllllll

ll
lll

llllllllllllllllllllll

wl = 512

ll
l

l

l

l

l

l
ll

l

l

l

lll

l

l

l

l
lll

l
l

l
lll

l

l
l
ll

ll
l
ll

ll
lll

wl = 1024

0 2 4 6 8 10
Frequency (kHz)

Am
pl

itu
de

Fig. 10.5 Size of the frequency spectrum—2. The frequency spectrum is computed with spec()
at the center of peewit dataset with different DFT sizes (128, 256, 512, 1024). The spectrum is
displayed with a line and points to highlight the frequency resolution

256 10 Frequency, Quefrency, and Phase in Practice

spec(peewit, wn="bartlett")

The power spectral density can also be computed by turning the argument PSD
to TRUE:

spec(peewit, PSD=TRUE)

The different scaling and normalization of the frequency spectrum data are
available with the following arguments:

• scaled=TRUE: returns a spectrum scaled to the length of the DFT,
• norm=TRUE: returns a spectrum normalized between 0 and 1,
• PMF=TRUE: returns a probability mass function, that is, a spectrum normalized

by the sum of the frequency amplitude.

If norm=FALSE, scaled=FALSE (default), and PMF=FALSE (default),
spec() returns the raw data of the DFT. In this case, the function used to taper
the window changes the overall amplitude of the signal. It is necessary to apply
a correction factor to obtain values in the frequency domain that fits with values
in time domain (see the Parseval’s theorem in Sect. 9.3). There are two possible
corrections, the amplitude and energy correction defined as:

Amplitude correction = 1

w̄

and

Energy correction =
√

1

w̄2

where w̄ is the mean of the window function. These corrections can be applied with
the argument correction set to either "none" (default), "amplitude", or
"energy".

Here is a test of these different options without plotting the results
(plot=FALSE) and by checking the ranges of the amplitude values extracted
from the second column of each returned object:

fspec.norm <- spec(peewit, norm=TRUE, plot=FALSE)
range(fspec.norm[,2]) # normalised in [0,1]
[1] 2.103256e-06 1.000000e+00
fspec.pmf <- spec(peewit, PMF=TRUE, plot=FALSE)
range(fspec.pmf[,2]) # probability mass function

(continued)

10.1 Frequency Spectrum 257

[1] 2.922088e-08 1.389317e-02
fspec.scaled <- spec(peewit, scaled=TRUE, norm=FALSE,

plot=FALSE)
range(fspec.scaled[,2]) # scaled by DFT length
[1] 4.952858e-03 2.354853e+03
fspec.raw <- spec(peewit, norm=FALSE, plot=FALSE)
range(fspec.raw[,2]) # raw data without correction
[1] 7.707142e+01 3.664386e+07
fspec.raw.a <- spec(peewit, norm=FALSE,

correction="amplitude", plot=FALSE)
range(fspec.raw.a[,2]) # raw data with amplitude correction
[1] 1.541527e+02 7.329244e+07
fspec.raw.e <- spec(peewit, norm=FALSE,

correction="energy", plot=FALSE)
range(fspec.raw.e[,2]) # raw data with energy correction
[1] 9.849008e+01 4.682744e+07

Knowing how to use all these arguments, the results of periodogram() can
be reproduced with the following spec() options:

spec <- spec(peewit, PSD=TRUE, type="h", PMF=TRUE, las=0)

We have so far dealt with linear amplitude spectra but spec() can produce dB
spectra as periodogram() thanks to the argument dB. This argument can take
five different values: "max0" for regular dB maximized to 0 and "A", "B", "C",
and "D" for dB(A), dB(B), dB(C), and dB(D), respectively. For example, to plot a
frequency spectrum with a dB scale maximized to 0 (Fig. 10.6):

spec(peewit, at=center, dB="max0")

10.1.2.2 Graphical Arguments

The argument plot of spec() can accept different values: a FALSE logical value
to cancel plotting but to print values, a numeric value of 1 to have a vertical plot
(frequency as x-axis, amplitude as y-axis), or a numeric value of 2 to have an
horizontal plot (amplitude as x-axis, frequency as y-axis).

There are classical graphical arguments, namely, col to control for the color
of the spectrum line, cex for the size of points if type="p" or type="o", and
flab and alab to change the labels of the amplitude and frequency labels. The
arguments flim and alim can be used to change the amplitude and frequency
limits to zoom in. In addition, because the function is built on plot(), most of

258 10 Frequency, Quefrency, and Phase in Practice

0 2 4 6 8 10

−80

−60

−40

−20

0

20

Frequency (kHz)

Am
pl

itu
de

Fig. 10.6 dB frequency spectrum. Frequency spectrum computed at the center of peewit with a
window of 512 samples. The amplitude scale is expressed in dB in reference to a maximum value
set to 0

usual graphical parameters of the function par() can be used. In the following
example, color, graphic orientation, labels, and axes limits are changed as well as
line type (lty), line thickness (lwd), axis tick length (tcl), y axis scale (turned to
log with log="y"), and title (main) (Fig. 10.7):

spec(peewit,
plot=2, # plot orientation
flab="Frequency [kHz]", # frequency axis label
alab="Amplitude [no unit]", # amplitude axis label
flim=c(2, 8), alim=c(0, 0.3), # x-y zoom in
col="blue", lty=2, lwd=0.75, # line color, type and width
tcl=0.5, # internal axis ticks
log="y", # y-axis scale
main="Frequency spectra") # main title

10.1.2.3 Decoration

The function spec() can be considered as a high-level plot function such that
any low-level graphical function can be used to decorate or annotate a frequency
spectrum (see Sect. 3.3.9.3). The next code changes a lot of graphical parameters,
not in an optimal visual aspect, but shows how much the appearance can be changed.
A part of the code used the function fpeaks() that detects frequency peaks as
explained in Sect. 10.1.6 (Fig. 10.8):

10.1 Frequency Spectrum 259

2

3

4

5

6

7

8
Frequency spectra

Amplitude [no unit]

Fr
eq

ue
nc

y
[k

H
z]

Fig. 10.7 High-level plot modifications of the frequency spectrum. The main graphical parameters
of spec() were used to change the appearance of the frequency spectrum, including its
orientation

0.0

0.2

0.4

0.6

0.8

1.0

Frequency [Hz]

Am
pl

itu
de

 [r
el

.]

0 2000 4000 6000 8000 10000

Frequency spectrum of Vanellus vanellus

1f0

2f0

3f0

4f0 5f0 6f0 7f0 8f0

l
fs = 22050 Hz

wl = 512 samples
Δf = 43.07 Hz

Fig. 10.8 Decoration of the frequency spectrum. This plot results from the use of low-level
plot functions—par(), polygon(), axis(), grid(), title(), points(), rect(),
rect(), box()—to change the visual output of spec()

260 10 Frequency, Quefrency, and Phase in Practice

change the main colors and text size
par(bg="grey", fg="white", cex.lab=1.25, cex.axis=1.1, tck=0)
plot the frequency spectrum (center of peewit)
center <- round(duration(peewit)/2, 2)
fspec <- spec(peewit, at=center, col="blue",

xaxt="n", flab="Frequency [Hz]",
yaxt="s", alab="Amplitude [rel.]")

add a color surface under the spectrum line
polygon(x=c(fspec[,1], rev(fspec[,1])),

y=c(fspec[,2], rep(0, nrow(fspec))),
col=colours()[600], border="blue")

add a frequency axis in Hz (not in kHz)
freq.axis <- seq(0,10,by=2)
axis(side=1, at=freq.axis, labels=freq.axis*1000)
add x-y white grid
grid(col="white")
add a title
title(main=expression(paste("Frequency spectrum of ",

italic("Vanellus vanellus"))))
get the x-y coordinates of the main frequency peaks
freq.peaks <- fpeaks(fspec, amp=c(0.01,0.01), plot=FALSE)
plot a label over each main frequency peak
for(i in 1:nrow(freq.peaks)) {

text(freq.peaks[i,1], freq.peaks[i,2],
labels=substitute(i*f[0], list(i=i)),
col=2, pos=3)
}

add a point on the dominant frequency
points(x=freq.peaks[1,1],

y=freq.peaks[1,2], pch=19, cex=1.5, col="red")
add a white rectangle for text inset
rect(xleft=6, ybottom=0.8,

xright=10, ytop=1, col="white", border="black")
text inset
text(x=8, y=0.95,

labels=expression(paste(f[s] == 22050, " Hz")), col="black")
text(x=8, y=0.90,

labels="wl = 512 samples", col="black")
text(x=8, y=0.85,

labels=expression(paste(Delta[italic(f)]==43.07, " Hz")),
col="black")

draw a complete bow around the graph
box(lwd=2)

10.1.2.4 Multifrequency Spectrum Plot

It may be necessary to compute the DFT at different positions along the signal
and to plot all the resulting frequency spectra on a single plot. This task can be
accomplished by first preparing an empty plot with type="n" and then adding
with a for loop the results of successive frequency spectra (Fig. 10.9):

10.1 Frequency Spectrum 261

0 2 4 6 8 10

−100

−80

−60

−40

−20

0

20

Frequency (kHz)

Am
pl

itu
de

Fig. 10.9 Multifrequency spectrum plot. Thirteen frequency spectra computed regularly along
peewit are plotted on a single graph

time positions of the spectra
pos <- seq(from=0.05, to=duration(peewit)-0.05, by=0.05)
pos
[1] 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

[12] 0.60 0.65
number of spectra
l <- length(pos)
l
[1] 13
empty plot
spec(peewit, dB="max0", type="n")
for loop around l to plot all the spectra
for(i in 1:l) {

lines(spec(peewit, at=pos[i], dB="max0", plot=FALSE))
}

The box DIY 10.1 details another option with the package ggplot2.

262 10 Frequency, Quefrency, and Phase in Practice

DIY 10.1 — How to plot two frequency spectra with the ggplot2 style

Here is a solution to plot two frequency spectra on the same plot with ggplot2
functions. We first need to load ggplot2:

library(ggplot2)

The two spectra are computed in the middle of the first and second notes of tico. The
values of spec() need to be coerced into a data.frame to comply with ggplot2
rules, and then the spectra are simply plotted as line geoms using the columns x and y as
aesthetics.

spectrum at the start of the second tico note
fspec.start <- as.data.frame(spec(tico, at=0.63, plot=FALSE))
spectrum at the end of the second tico note
fspec.end <- as.data.frame(spec(tico, at=0.77, plot=FALSE))
first layer of geoms to the projection of fspec.note1
p <- ggplot(data=fspec.start, mapping=aes(x,y)) +

geom_line(col="red")
second layer of geoms to add fspec.end

p <- p + geom_line(mapping=aes(x,y), data=fspec.end,
col="blue")

axes labels
p <- p + xlab("Frequency(kHz)") + ylab("Amplitude")
annotations
p <- p + annotate("text", x = 8, y = 0.75,

label = "Start of\nthe second note",
col="red")

p <- p + annotate("text", x = 1.5, y = 0.75,
label = "End of\nthe second note",
col="blue")

final display
p

(continued)

10.1 Frequency Spectrum 263

DIY 10.1 (continued)

Start of
the second note

End of
the second note

0.00

0.25

0.50

0.75

1.00

0 3 6 9

Frequency(kHz)

Am
pl

itu
de

See Wickham (2009) for more details regarding ggplot2 coding.

10.1.2.5 Binned Frequency Spectrum

We have seen that the frequency resolution of the DFT (Δf) is set by the sampling
frequency fs and the number of samples of the signal to be decomposed (N for a
complete sound, or wl for a section of sound specified by a DFT window), such that
Δf = fs ÷ N (Table 10.1). This resolution can be lowered after the computation
of the DFT by defining new frequency intervals. Such data binning leads to a
frequency spectrum having the shape of a barplot showing variation of amplitude
over predefined frequency bands. Such modifications and graphical output can be
run with the seewave function fbands(). The function does not take a sound as
an input but a two-column matrix describing a frequency spectrum, that is, the value
of the function spec() (or meanspec(); see Sect. 11.14). The properties of the
frequency intervals, or bands, can be set using one of the two following options
(Fig. 10.10):

1. a number of bands with equal size can be set by giving a single numeric value
to the argument bands. For instance, choosing bands=10 slices the spectrum
into 10 equal bands,

264 10 Frequency, Quefrency, and Phase in Practice

[0−1.1[[3.3−4.4[[6.6−7.7[[9.9−11]

Frequency (kHz)

R
el

at
iv

e
am

pl
itu

de

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

[0
−1

.1
[

[4
.4

−5
.5

[
[8

.8
−9

.9
[

Frequency (kHz)

R
el

at
iv

e
am

pl
itu

de

0.0 0.1 0.2 0.3 0.4 0.5

[0−0.5[[1−1.5[[2−2.5[[3−3.5[

Frequency (kHz)

R
el

at
iv

e
am

pl
itu

de

0.
0

0.
2

0.
4

0.
6

[0.1−0.1[[0.9−1.8[[3.5−7]

Frequency (kHz)

R
el

at
iv

e
am

pl
itu

de

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fig. 10.10 Frequency band plot. Four displays of the function fbands(): ten regular frequency
bands in a usual vertical orientation (top-left), ten regular frequency bands with color and
orientation modifications (top-right), eight regular frequency bands defined by hand (bottom-left),
and eight frequency bands defined following music octaves (bottom-right)

2. the frequency limits of the bands can be specified manually by feeding the
argument bands with a numeric vector of length superior to 1. The limits,
expressed in kHz, can follow a regular or an irregular numeric series. For
instance, attributing the vector c(0,2,4,11) generates the bands [0, 2[, [2, 4[,
[4, 11] kHz. The last frequency limit should not exceed half the sampling
frequency used to obtain the spectrum.

The examples of the Fig. 10.10 are obtained with the following script:

data
center <- round(duration(peewit)/2, 2)
fspec <- spec(peewit, at=center, plot=FALSE)
plot top-left with 10 regular frequency bands
fbands(fspec, bands=10)
plot top-right with 10 regular frequency bands
and some graphical modifications

(continued)

10.1 Frequency Spectrum 265

col <- rep("black", 10)
col[c(2,4,6)] <- "orange"
fbands(fspec, bands=10,plot=2, horiz=TRUE, col=col)
plot bottom-left with regular manually set frequency bands
fbands(fspec, bands=seq(0, 4, by=0.5))
plot bottom-right with 7 octave frequency bands
and adapted bar width
oct <- round(octaves(x=440, below=3, above=4)/1000, 1)
fbands(fspec, bands=oct, width=TRUE)

The frequency spectrum is a cardinal tool of data visualization. It is of prime
interest to understand and explore the frequency content of a sound. However, it is
obviously necessary to go a step beyond to extract qualitative and quantitative data.
In the next sections, we will discover how to describe a frequency spectrum by (1)
measuring the peaks, (2) interpreting the profile or shape, and (3) measuring several
features using descriptive statistics.

10.1.3 Identification of Peaks

10.1.3.1 Major Peaks

The frequency spectrum is used to assess the frequency content of a time series; it
is therefore crucial to be able to identify the peaks of the spectrum, that is, what are
the frequencies where most of the sound energy lies in? Peak measurements can be
taken either manually or automatically with the same advantages and disadvantages
listed when considering the manual and automatic measurement of time features
(see Chap. 8).

Manual measurements can be processed by setting the argument identify of
spec() to TRUE. The frequency spectrum is then displayed and the console prints
the following message ’Choose points on the spectrum’ to invite the
user to identify any points, and in particular peaks, of the frequency spectrum. The
coordinates of the chosen points can be saved in a new object, here named res.
In the following code, we facilitate the measurements by setting the type of plot to
"o" to more accurately visualize the frequency samples:

res <- spec(peewit, at=center, identify=TRUE, type="o")

The object is structured as a list of two items, the first item $freq contains the
frequency coordinates and the second item $amp stores the amplitude coordinates.

266 10 Frequency, Quefrency, and Phase in Practice

Using this manual procedure, we found the following eight frequency peaks for the
frequency spectrum computed in the middle of peewit:

res
$freq
[1] 1.248926 2.540918 3.789844 5.038770 6.287695
[6] 7.579688 8.828613 10.077539

$amp
[1] 1.00000000 0.15982195 0.26507001 0.11569401 0.06619829
[6] 0.05161196 0.01628750 0.02295913

The consideration of hundreds, even thousands, of sounds makes the automatic
measurement of peaks inescapable. The function fpeaks() of seewave can
estimate the localization of spectrum peaks and return both frequency and relative
amplitude coordinates of these peaks. The basic use of fpeaks() is to give the
value of the function spec() (or meanspec(), see Sect. 11.14) and to let the
function find, plot, and return the peaks:

fp <- fpeaks(fspec)

The value of fpeaks() is a two-column numeric matrix with the first column
being the frequency coordinates and the second column the amplitude coordinates.
In this case, fpeaks() find all the peaks, that is, all the frequency samples that are
preceded and followed by a smaller value. For peewit, we end up with a total of
56 peaks (Fig. 10.11):

class(fp)
[1] "matrix"
dim(fp)
[1] 56 2
head(fp)

freq amp
[1,] 0.08613281 3.045488e-04
[2,] 0.17226563 1.093189e-04
[3,] 0.34453125 8.897070e-05
[4,] 0.43066406 9.301099e-05
[5,] 0.64599609 2.639685e-04
[6,] 0.86132812 4.936136e-04
tail(fp)

freq amp
[51,] 9.905273 1.883691e-04
[52,] 10.077539 2.295913e-02

(continued)

10.1 Frequency Spectrum 267

0 2 4 6 8 10
Frequency (kHz)

Am
pl

itu
de

56 peaks detected

llll l ll

l

lllll

l

l l ll

l

ll l l

l

lll lll

l

lll lll

l

l llllll l lllll
l
ll l l

.090.170.340.430.650.860.95

1.25

1.721.892.072.22.33

2.54

2.83.013.273.45

3.79

4.134.264.574.82

5.04

5.255.345.515.735.815.99
6.29

6.556.636.766.987.067.24
7.58

7.888.18.238.358.488.668.839.099.39.479.69.789.9110.0810.2510.3810.5910.8

amp=−/−
freq=−
threshold=−

Fig. 10.11 Peak detection of frequency spectrum. Plot output of the basic use of the function
fpeaks: all peaks, here 56, even if tenuous, are detected

[53,] 10.249805 1.639613e-04
[54,] 10.379004 9.483274e-05
[55,] 10.594336 8.213308e-05
[56,] 10.852734 5.814204e-04

There are four arguments in fpeaks() to apply a selection on this raw, and
meaningless, peak detection: amp, freq, nmax, and threshold (Fig. 10.12).

The argument amp considers the difference between the amplitude of a peak
with the amplitude of the frequency samples just before and after the peak. In other
words, the argumentamp considers the amplitude of the left and right slopes of each
detected peak. Peaks with important slopes can be selected using two thresholds, one
for the left slope and another one for the right slope. The argument amp requires a
numeric vector of length 2, such that for a spectrum computed on a linear amplitude
scale normalized to 1, specifying amp=c(0.01, 0.01) removes all peaks with
left and right slope amplitudes lower than 0.01. Peaks are often asymmetric such
that different values can be set for left and right slopes, such as amp=c(0.01,
0.2) for peaks with a more pronounced slope on the left than on the right. A value
of 0 means that no threshold is applied: amp=c(0,0.01) selects peaks based
on right slopes only. The values given to amp should be in agreement with the
amplitude scale. For instance, amp should receive negative values when handling a
spectrum computed with the option dB="max0": amp=c(-20,20) selects peaks
with slopes higher than −20 dB.

268 10 Frequency, Quefrency, and Phase in Practice

0.0

0.2

0.4

0.6

0.8

1.0

l l l l l l l
l

l

l

l

l

l

l

l

l

l

l
l l

S NS

amp=c(0.8,0.7)

0.0

0.2

0.4

0.6

0.8

1.0

l l l l l l
l l

l

l

l

l

l

l

l

l l l l l

NS S

freq=86

0.0

0.2

0.4

0.6

0.8

1.0

l l l l l l
l l

l

l

l

l

l

l

l
l

l

l l l

S S S NS

threshold=0.4

0.0

0.2

0.4

0.6

0.8

1.0

l l l l l l
l l

l

l

l

l

l

l

l
l

l

l l l

nmax=2

S S NS NS

Frequency

Am
pl

itu
de

Fig. 10.12 Parameters for frequency spectrum peak detection. The function fpeaks() has four
arguments to help in selecting the peaks of a frequency spectrum. The argument amp is an
amplitude threshold working on the slopes of the peaks (top-left), the argument freq acts as
a frequency threshold (top-right), the argument threshold is an overall amplitude threshold
(bottom-left), and the argument nmax selects the most prominent n peaks (bottom-right). The
illustration is based on schematized frequency spectra with frequency resolution of Δf = 43 Hz.
S selected peak, NS nonselected peak

The argument freq is a frequency threshold parameter set in Hz. If the
frequency difference of two successive peaks is less than this threshold, then only
the peak of highest amplitude is kept. Successive peaks with a small frequency
differences can be then eliminated. As an example, if we have two successive peaks
at 1200 and 1210 Hz and with an amplitude of 0.5 and 0.25, respectively (linear
amplitude normalized to 1), setting freq=50 results in selecting the first peak only.

The argument threshold works a simple amplitude threshold that retains
all the peaks that have an amplitude above a reference value and discards all the
peaks that have an amplitude below this reference. This argument can be useful
when low-amplitude peaks due to background noise need to be removed. The use
is straightforward as the argument threshold requires a single numeric value
chosen within the limits of the amplitude scale.

The argument nmax looks for the n most prominent peaks, that is, the n peaks
with the most important slopes, which are not necessarily the peaks of highest
energy. The use of this argument is trivial: nmax=4 returns the coordinates of the
most significant 4 peaks. This argument overrides the arguments amp and freq.

We can try these arguments on peewit frequency spectrum (Fig. 10.13):

10.1 Frequency Spectrum 269

0 2 4 6 8 10

8 peaks detected

l

l

l

l

l l
l l

1.25

2.54

3.79

5.04
6.29 7.58 8.83 10.08

amp=0.01/0.01
freq=−
threshold=−

0 2 4 6 8 10

21 peaks detected

l

l

l

l

l

l

l

l

ll

l

ll

l

l l ll
l
l l

09

1.25

2.07

2.54

3.01

3.79

4.57

5.04

5.515.81
6.29

6.767.06
7.58

8.358.839.39.610.0810.3810.8

amp=−/−
freq=0.5
threshold=−

0 2 4 6 8 10

3 peaks detected

l

l

l

1.25

2.54

3.79

0.15

amp=−/−
freq=−
threshold=0.15

0 2 4 6 8 10

4 peaks detected

l

l

l

l

1.25

2.54

3.79

5.04

nmax=4

Frequency (kHz)

Am
pl

itu
de

Fig. 10.13 Example of frequency spectrum peak detection. Frequency peak detection is here
tested on the a frequency spectrum computed at the center of the dataset peewit. Each setting
(arguments amp, freq, threshold, and nmax) returns a different number of peaks detected

270 10 Frequency, Quefrency, and Phase in Practice

fpeaks(fspec, amp=c(0.01,0.01))
fpeaks(fspec, freq=500)
fpeaks(fspec, threshold=0.15)
fpeaks(fspec, nmax=4)

Similar results can be obtained with a dB amplitude scale by preliminary
computing the spectrum in dB with a 0 value as a maximum:

fspec.dB <- spec(peewit, at=center, dB="max0")

and then apply fpeaks():

fpeaks(fspec.dB, amp=c(-40,40))
fpeaks(fspec.dB, threshold=-16)
fpeaks(fspec.dB, freq=500)
fpeaks(fspec.dB, nmax=4)

Some arguments can be used together sharping the selection of the peaks. The
following is an example with a spectrum computed on tico (Fig. 10.14):

3.5 4.0 4.5 5.0 5.5

Frequency (kHz)

Am
pl

itu
de

llll
lll

l

l
l

ll

l

l

l

l

l

l

ll

l

l

l
lll

l

l

ll

l
l
ll

l
l

l

l

llll
ll

lll

lll
l
lllll

lllllll
llllllllll

l l

l

l

l

l

l

l

l
l

l

l

l

l
l l

ll
l

l

l

all peaks

amp=c(0.02,0.02)
amp=c(0.02,0.02)
freq=200

Fig. 10.14 Example of frequency spectrum peak detection with combined parameters. The figure
shows peak detection on a spectrum computed for the second note of tico without any selection
(circle), using the argument amp only (triangle), and the arguments amp and freq together (disk).
A frequency zoom in was operated between 3.5 and 5.5 kHz

10.1 Frequency Spectrum 271

fspec.note2 <- spec(tico, # data
from=0.6, to=0.8, # time selection
flim=c(3.5,5.5), # frequency zoom in
col="grey") # color of the line

res1 <- fpeaks(fspec.note2, plot=FALSE) # full peak detection
res2 <- fpeaks(fspec.note2, # detection with ’amp’

amp=c(0.02,0.02),
plot=FALSE)

res3 <- fpeaks(fspec.note2, # detection
amp=c(0.02,0.02), # with ’amp’ and ’freq’
freq=200, plot=FALSE)

points(res1, pch=1, col=2, cex=2) # results as a circle
points(res2, pch=17, col=2, cex=1.25) # results as a triangle
points(res3, pch=19, col=2, cex=1.5) # results as a disc
legend("topright", # legend

legend=c("all peaks",
"amp=c(0.02,0.02)",
"amp=c(0.02,0.02)\nfreq=200"),

pch=c(1,17,19), col=2,
pt.cex=c(1.4,1,1.3), bty="n")

10.1.3.2 Local Peaks

The main goal of the function fpeaks() is to retrieve peaks of important
amplitude wherever they are along the frequency scale. However, it can be
interesting to identify the peaks over specific frequency bands. This corresponds
to the identification of local or regional peaks, a region being defined by lower
and upper frequency limits. The function localpeaks() of seewave looks
for such local peaks by dividing the frequency spectrum in bands defined by the
user and by looking for the major—or dominant—peak within each band or region.
The function localpeaks() uses the function fbands() (see Sect. 10.1.2.5)
to split the frequency spectrum in successive region. By default, localpeaks()
divides the frequency bands in ten equal regions, but the band limits can be specified
manually with the argument bands. The following code was used to produce the
Fig. 10.15:

layout(matrix(1:4, nc=2, byrow=TRUE))
par(oma=c(3,2.5,0,0), mar=c(2,2,1,1), las=1)
localpeaks(fspec)
localpeaks(fspec.dB, bands=seq(0,11.025,by=0.5))
localpeaks(fspec.dB, bands=c(0,0.5,1,1.5,3,4,11.025))
localpeaks(fspec.dB, bands=octaves(440, below=1, above=5)/1000)
legend
mtext("Frequency", side=1, outer=TRUE, line=1.5)
mtext("Amplitude", side=2, outer=TRUE, line=1, las=0)

272 10 Frequency, Quefrency, and Phase in Practice

0 2 4 6 8 10

l

l

l

l

l
l l

l l l
0.95

2.54
3.79

5.04 6.29 7.588.35 9.610.08

0 2 4 6 8 10

l
l

l

l
l

l

090.86

2.54 3.79
5.04

0 2 4 6 8 10

l
l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l090.86
1.72

2.33

2.83.45

3.79

4.26
4.825.345.81

6.29

6.76

7.24
7.88

8.35

8.83

9.39.6

10.25
10.8

0 2 4 6 8 10

l

l

l

l
l

l

0.34
0.65

2.54 3.79
7.58

Frequency

Am
pl

itu
de

Fig. 10.15 Local peak detection on the frequency spectrum. The peak of maximum energy
is identified for specific frequency regions defined with the argument bands of the function
localpeaks(). Detection over ten regular frequency regions (top-left), over 500 Hz wide
regions (top-right), seven irregular regions (bottom-left), and octave-based regions (bottom-right)

10.1.3.3 Dominant Frequency

The frequency of the highest energy, that is, the peak of the frequency spectrum with
the highest amplitude value, is the dominant frequency. The dominant frequency is
one of the most important features of sound. This feature is rather easy to identify
as it corresponds to the maximum value of the frequency spectrum. If we consider
the frequency spectrum as a statistical distribution, then the dominant frequency is
the mode. It could be returned by hand in kHz with:

fspec[which.max(fspec[,2]),]
x y

1.248926 1.000000

We can also use the function fpeaks() with nmax=1:

10.1 Frequency Spectrum 273

fpeaks(fspec, nmax=1, plot=FALSE)
[,1] [,2]

[1,] 1.248926 1

dfreq() is another seewave function that directly returns the dominant
frequency. It is nonetheless mandatory to be precise where to compute the frequency
spectrum (argument at) and to specify the properties the analysis windows
(arguments wl and wn). These two latter arguments have the usual default values of
512 and "hanning" such we only need to set at:

res <- dfreq(peewit, at=center, plot=FALSE)
res

x y
[1,] 0.0000000 NA
[2,] 0.3500000 1.248926
[3,] 0.7057143 NA

In this case, the value returned is a numeric matrix with three lines, the single line
of interest is the second one. This specific format is due to the fact that dfreq()
was initially developed to compute the dominant frequency at different time step
using a sliding window. This process and all other arguments of dfreq() are
introduced in Sect. 13.1.1.

10.1.3.4 Fundamental Frequency

If the dominant frequency is easy to identify, the fundamental frequency is much
more difficult to determine because its amplitude can be low due to the action of
one or several resonators that amplify overtones. The detection of the fundamental
frequency cannot therefore be based on a simple analysis of the frequency spectrum.
A solution is to identify the first rahmonic peak of the cepstrum (see Sect. 9.8).

The seewave function fund() can estimate the fundamental frequency based
on the detection of the cepstrum peak with the lowest quefrency. The use of fund()
is similar to the one of dfreq() as it is also primarily based on short-time
function with a sliding window. There is, however, one more argument to consider:
fmax expressed in Hz is the upper limit where the function should look for the
fundamental frequency. This mandatory argument greatly helps in finding the right
peak. For instance, in the following, we estimate the fundamental frequency in the
middle of peewit, and we stipulate that the fundamental frequency cannot have a
value higher than 2000 Hz:

274 10 Frequency, Quefrency, and Phase in Practice

fund(peewit, at=center, fmax=2000, plot=FALSE)
x y

[1,] 0.35 1.297059

The result is based on the analysis of the cepstrum of peewit depicted in
Fig. 10.26.

In this case, as clearly shown in Fig. 10.3, the fundamental frequency is also
the dominant frequency. However this is not the case when resonating systems
amplify overtones (see Sect. 10.1.4). This is particularly the case of the sheep
(Ovis aries) that produces an harmonic series where the third harmonic is the
dominant frequency. A typical sheep bleat is available in the seewave dataset
sheep sampled at fs = 8000 Hz:

data(sheep)
sheep

Wave Object
Number of Samples: 19764
Duration (seconds): 2.47
Samplingrate (Hertz): 8000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

We can have a look at both spectrum and cepstrum of sheep computed over the
same time window localized at 1 s and made of 512 samples (default value of wl)
(Fig. 10.16):

par(mfrow=c(2,1))
spec(sheep, at=1)
ceps(sheep, at=1)

fund(sheep, f=8000, fmax=300, at=1, plot=FALSE)
x y

[1,] 1 0.1538462

However, it is important to note that detection of the fundamentalfund() works
only for an harmonic series, following the definition of the fundamental frequency
which can be viewed as the first harmonic of an harmonic series.

10.1 Frequency Spectrum 275

0 1 2 3
Frequency (kHz)

Am
pl

itu
de

Quefrency (bottom: s, up: Hz)

Am
pl

itu
de

0 0.005 0.011 0.016 0.021 0.027 0.032

Inf 187.5 93.75 62.5 46.875 37.5 31.25

Fig. 10.16 Frequency spectrum and quefrency cepstrum of a sheep bleat. The plots were obtained
with spec() and ceps(), respectively

10.1.4 Profile Analysis

The shape of the frequency spectrum embeds important information that should
be scrutinized carefully for an appropriate sound description of sound frequency
content. Different factors, such as resonance, amplitude modulations, frequency
modulations, or two-voice systems, can make the interpretation of the peaks of a
frequency spectrum risky.

It is important to remember that the value of the Fourier coefficients, that
is, the energy of each component of the frequency spectra, increases when the
signal deviates from that of a single sinusoidal wave of infinite duration (Bradbury
and Vehrencamp 1998). Non-sinusoidal amplitude or frequency modulations and
aperiodicity increase the number of significant frequency components. For instance,
an infinite pure tone is characterized by a single frequency component when an
instantaneous pulse is represented by a complete set of frequency components with
equal energy drawing a flat frequency spectrum.

276 10 Frequency, Quefrency, and Phase in Practice

There is no R function to give a diagnostic on the spectrum shape and composi-
tion but the following sections try to illustrate cases of frequency spectrum shapes
commonly encountered.

10.1.4.1 Harmonic Series

When the frequency spectrum shows a series of P frequency peaks, it is necessary to
identify if the series follows an harmonic series and to localize the fundamental and
dominant frequency. Figure 10.17 shows an harmonic series with the fundamental
frequency being the dominant frequency as well (Fig. 10.17, top-left) and the same
harmonics series filtered with a resonating system that changes the profile of the
spectrum by enhancing the energy of harmonics and reducing the energy of the
fundamental frequency such that the fundamental and the dominant frequency peaks
are clearly distinct (Fig. 10.17, top-right). In some cases, the fundamental frequency
may totally vanish due to the action of a resonator.

Inharmonicity might be obvious with clear unrelated frequency peaks
(Fig. 10.17, bottom-left); however, it is not always trivial to diagnose harmonicity
(resp. inharmonicity). A first solution could be to check that the ratios between the
overtones and the lowest frequency band follow an integer series that is as follows:

fi−1 = i × f0

with i = {1, 2, . . . , P }.
However, this suggests that the lowest frequency band is the fundamental

frequency, a requirement not always met as just mentioned. Another solution could
be to estimate the difference between successive frequency bands, in other words
the first derivative of the frequency of the frequency peaks (in Hz). These successive
differences should be similar so that the sum of the differences of these differences
should be null. This means that the sum D of the second derivative of the frequency
fi of the P frequency peaks should be null, something that can be written as:

D

{
= 0 if the frequency of the frequency peaks follows an harmonic series

�= 0 if the frequency of the frequency peaks does not follow an harmonic series

with:

D =
P−2∑
i=1

(fi+2 − fi+1) − (fi+1 − fi)

=
P−2∑
i=1

(fi+2 + fi − 2fi+1)

10.1 Frequency Spectrum 277

0 2 4 6 8 10

f0 = fd

0 2 4 6 8 10

f 0

f d

0 2 4 6 8 10

f 0

2.
23

f 0

3.
73

f 0

4.
81

f 0
5.

43
f 0

6.
24

f 0

7.
35

f 0

8.
12

f 0

9.
7f

0

10
.3

f 0

0 2 4 6 8 10

f 0

2f
0

3f
0

4f
0

5 f
0

6f
0

7f
0

8f
0

9f
0

10
f 0

g 0

2g
0 3g

0

4g
0

5g
0

6g
0

7g
0 8g

0

9g
0

10
g 0

11
g 0

12
g 0

Frequency

Am
pl

itu
de

Fig. 10.17 Frequency spectrum of periodic signals—part 1. Pure harmonic series with a dominant
fundamental frequency (top-left), harmonic series with a dominant frequency different from the
fundamental frequency (top-right), inharmonic series (bottom-left) and two harmonics series mixed
(bottom-right). fd : dominant frequency. f0 and g0: fundamental frequencies

278 10 Frequency, Quefrency, and Phase in Practice

This test that can be run quite easily with the functionsfpeaks() and diff(),
the latter computing the nth derivative of a numeric vector. The following examples
constitute a test for peewit and sheep. For peewit:

fspec <- spec(peewit, at=0.4, plot=FALSE) # frequency spectrum
p <- fpeaks(fspec, nmax=8, plot=FALSE) # frequency peaks
d <- diff(p[,1], differences=2) # second derivative
sum(d) # = 0 harmonic series
[1] -4.440892e-16

and for sheep:

fspec <- spec(sheep, at=1.25, plot=FALSE) # frequency spectrum
p <- fpeaks(fspec, threshold=0.02, # frequency peaks

plot=FALSE)
d <- diff(p[,1], differences=2) # second derivative
sum(d) # = 0 harmonic series
[1] 0

Note that the test is valid only if all the harmonics are all apparent in the
frequency spectrum and properly detected by fpeaks().

Eventually, the occurrence of a two-voice system as observed in humans, birds,
fish, or some insects can produce very complex spectra (Fig. 10.17, bottom-left). It
is in that case very important to identify independently these two series, harmonic
series or not, and to estimate how much they overlap.

10.1.4.2 Sideband Series Due to Amplitude Modulations

The amplitude of the signal has an important effect on the frequency spectrum.
First, the DC component of the signal, that is, the average of the amplitude signal,
corresponds to the first Fourier coefficient, that is, to the angular frequency ω0.
A signal with a non-null DC component shows a non-null 0 frequency peak
(Fig. 10.18, top-left). Such frequency component can be discarded by removing the
offset of the original signal, before the computation of the Fourier transform, using
the function rmoffset() of seewave following the syntax (see Sect. 6.5.1):

tico <- rmoffset(tico, output="Wave")

The frequency spectrum of a pure tone signal affected by a sinusoidal amplitude
modulation (AM) shows sidebands around the carrier frequency (Fig. 10.18, top-
right, middle left). The frequency and the amplitude of these sidebands are
determined by the frequency fam and the depth m, also called the modulation

10.1 Frequency Spectrum 279

0 2 4 6 8 10

D
C

f c

0 2 4 6 8 10

f c
−

f a
m

f c

f c
+

f a
m

0 2 4 6 8 10

f c
−

f a
m

f c

f c
+

f a
m

0 2 4 6 8 10

f 0

2f
0

3f
0

=
F d

4f
0

5 f
0

f 0
−

f a
m

f 0
+

f a
m 2 f

0
−

f a
m

2f
0

+
f a

m 3f
0

−
f a

m
3 f

0
+

f a
m

4f
0

−
f a

m
4f

0
+

f a
m

5f
0

−
f a

m
5f

0
+

f a
m

0 2 4 6 8 10

f c
−

10
f a

m
f c

−
9f

am
f c

−
8f

am
f c

−
7f

am
f c

−
6f

am
f c

−
5 f

am
f c

−
4 f

am
f c

−
4f

am f c
−

2f
am

f c f c
+

2f
am

f c
+

3f
am

f c
+

4f
am

f c
+

5f
am

f c
+

6f
am

f c
+

7f
am

f c
+

8 f
am

f c
+

9 f
am

f c
+

10
f a

m
f c

+
11

f a
m

0 2 4 6 8 10

f 0

2f
0

−
4f

a m
2 f

0
−

3 f
am

2f
0

−
2f

am
2f

0
=

F d
2f

0
+

2 f
am

2f
0

+
3f

am
2 f

0
+

4 f
am

Frequency

Am
pl

itu
de

Fig. 10.18 Frequency spectrum of periodic signals—part 2. Pure sine wave with a DC component
(top-left), pure sine wave with a sinusoidal amplitude modulation beating at fam and with low
(m=10%) modulation index (top-right), pure sine wave with a sinusoidal amplitude modulation
beating at fam with a maximum (m=100%) modulation index (middle-left), a harmonic series
with a sinusoidal amplitude modulation beating at fam with a maximum (100%) modulation index
(middle-right), squared pure sine wave repeated at the frequency fam (bottom-left), spectrum of
orni which can be considered as a AM signal with periodic pauses. DC: direct current. fc: carrier
frequency. f0: fundamental frequency

280 10 Frequency, Quefrency, and Phase in Practice

index, of the amplitude modulation (see Sect. 2.2.8). The frequency of the lower
sideband is fc − fam, and the frequency of the upper sideband is fc + fam such
that the bandwidth delimited by the two sidebands is B = 2fam. The amplitude
of each sideband is acm ÷ 2 where ac is the amplitude of the carrier frequency.
If the signal is not a pure tone but is made of several frequencies, following or
not a harmonic series, then the sidebands will pop up around each frequency peak
(Fig. 10.18, middle right).

However, sound emanating from natural systems is rarely modulated by a perfect
sinusoidal function but is more commonly made of the succession of short items that
do not have a sine shape and that might be spaced by a short silence or pause. Such
amplitude modulated signals with periodic pauses have singular frequency spectra
with a series of sidebands around the carrier frequency (Fig. 10.18, bottom left).
The frequency distance between the sidebands corresponds to the inverse of the
time period of the items, that is, the inverse of the sum of the item duration and the
following pause duration. In the case depicted in Fig. 10.18 (bottom left), the items
last 0.001 s and are followed by a 0.001 s of pause, that is, a period of 0.002 s. The
space between the sidebands is therefore 1 ÷ 0.002 = 500 Hz.

Knowing this, we can try to interpret to frequency spectrum of the cicada
Cicada orni. The analysis of the amplitude modulations revealed that the sound
is modulated in amplitude by a slow modulation beating at around 237 Hz and a fast
modulation beating at approximately 2347 Hz corresponding to the fundamental
frequency (see Sect. 8.4). The dominant frequency, not yet estimated, can be
assessed by focusing, for instance, on the second echeme and by using fpeaks():

fspec <- spec(orni, from=0.1826, to=0.2421, plot=FALSE)
fdom <- fpeaks(fspec, nmax=1, plot=FALSE)[,1]
fdom
[1] 4.890669

This dominant frequency at 4.89 Hz seems to be related to the fundamental
frequency by a factor of 2 such that it can be interpreted as the first harmonic of the
fundamental frequency. The dominant frequency is the first harmonic suggesting
the action of a resonator, most probably the thin and hollow abdomen of the
calling male. The slow amplitude modulation is made by the more or less regular
repetition of pulses. This amplitude modulation is not exactly sinusoidal but should
be regarded as a waveform repeated with a period of approximately 0.0042 s. This
generates sidebands around the dominant frequency spaced by 1÷0.0042 ≈ 238 Hz.
To summarize, the song of Cicada orni is a harmonic series with a resonance around
the first harmonic modulated by a slow non-sinusoidal amplitude modulation.

10.1 Frequency Spectrum 281

10.1.4.3 Sideband Series Due to Frequency Modulations

Frequency modulation (FM) can drastically change the shape of a frequency
spectrum. A pure tone signal with a carrier frequency fc shows a single sharp
frequency peak at fc. If this carrier frequency increases or decreases over a range of
frequency, that is, if the pure tone is linearly modulated by a frequency deviation or
excursion Δfc, then the frequency spectrum will still show a single frequency peak
but over a frequency bandwidth B = Δfc. For instance, the frequency spectrum
computed over a pure tone increasing from 5000 to 7000 Hz has a peak starting at
5000 Hz, maximizing at 6000 Hz and ending at 7000 Hz, that is, with a frequency
bandwidth Δf = 2000 Hz (Fig. 10.19, top-left).

The frequency spectrum of a pure tone signal modulated in frequency following
a regular sinusoidal way shows sidebands around the carrier frequency (Fig. 10.19,
top-right, middle) (Chowning 1973). The frequency and the amplitude of these
sidebands are determined by the frequency ff m and the modulation index β (also
named I) of the FM (see Sect. 2.2.8). The modulation index is the ratio of the peak
frequency deviation Δfc, to the frequency of the FM ff m:

β = Δfc

ff m

For β > 0, sidebands occur above and below the carrier frequency fc. The
frequency of the lower sidebands is fc − kff m and the frequency of the upper
sidebands is fc + kff m, where k is a positive integer. The number of sidebands
on each side of the carrier frequency, k, and the amplitude of these sidebands are
related to the modulation index β. The number of sidebands k increases with β as
energy of the carrier frequency is transferred to the sidebands.

Following Carson’s rule, the maximum number of sidebands on each side of the
carrier frequency can be roughly estimated as max k = β + 2 for β ≥ 1 and the
bandwidth can be estimated using the following empirical formulae (Carson 1922):

Δf

⎧⎪⎪⎨
⎪⎪⎩

= 2 × ff m for 0 < β < 0.5

= 2 × (2Δfc + ff m) for 0.5 ≤ β ≤ 100

= 2 × (Δfc + ff m) for β > 100

The amplitude of FM sidebands can be computed by invoking Bessel function
of the first kind. The Bessel function of nth-order Jn(β) is applied to the FM
modulation index β (Chowning 1973) following:

Jn(β) =
∞∑

p=0

(−1)p

p!(n + p)!
(

β

2

)2p+n

282 10 Frequency, Quefrency, and Phase in Practice

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10

Frequency

Am
pl

itu
de

Fig. 10.19 Frequency spectrum of periodic signals—part 3. 5 kHz pure sine wave linearly
increasing in frequency up to 7 kHz (top-left), 5 kHz pure sine wave affected by a sinusoidal
frequency modulation with ff m = 0.5 kHz and β = 1 (top-right), 5 kHz pure sine wave affected
by a sinusoidal frequency modulation with ff m = 0.5 kHz and β = 2 (middle-left), 5 kHz pure
sine wave affected by a sinusoidal frequency modulation with ff m = 0.5 kHz and β = 4 (middle-
right), 0.44 kHz pure sine wave affected by a sinusoidal frequency modulation with ff m = 0.2 kHz
and β = 8 generating sidebands reflected around 0 (bottom-left), 5 kHz pure sine wave increasing
in frequency from 5 to 5.5 kHz affected by an additional sinusoidal frequency modulation with
ff m = 0.5 kHz and β = 1 (bottom-right)

10.1 Frequency Spectrum 283

where n is a null or positive integer. J0(β) is the amplitude of the carrier frequency,
J1(β) is the amplitude of the first sidebands just above and below the carrier
frequency, J2(β) is the amplitude of the second sidebands around the carrier
frequency, and so forth.

We can now try to estimate the sidebands of a given pure tone. Imagine that we
have a 5000 Hz pure tone modulated by a FM with a frequency of ff m = 500 Hz
over a peak frequency deviation of Δfc = 500 Hz. The modulation index is:

β = 500

500
= 1

We can estimate that there will be β + 2 = 3 sidebands on each side of the
carrier frequency, that is, a total of 6 sidebands over a frequency bandwidth of Δf =
2×(2×500+500) = 3000 Hz. These sidebands will appear at an interval of 500 Hz
around the carrier frequency, that is, at 3500, 4000, 4500, 5500, 6000, and 6500 Hz.
The amplitude of these sidebands are obtained by computing the first three Bessel
function J0≤n≤3(β) of β with the R base function besselJ():

beta <- 1
n <- 0:(beta+2)
amp <- besselJ(beta, n)
amp
[1] 0.76519769 0.44005059 0.11490348 0.01956335

The amplitude of all frequency peaks and the upper and lower sidebands together
with the carrier frequency are simply obtained with:

amp <- c(rev(amp), amp[-1])
amp
[1] 0.01956335 0.11490348 0.44005059 0.76519769 0.44005059
[6] 0.11490348 0.01956335

The expected frequency spectrum can be plot easily with (Fig. 10.20):

freq <- seq(3500 ,6500, by=500)
plot(freq, amp, type="h", col="blue",

xlab="Frequency", ylab="Amplitude")

For values of β > 2.5, the Bessel function can return negative values that would
not correspond to positive frequency coefficients returned by the DFT:

284 10 Frequency, Quefrency, and Phase in Practice

3500 4000 4500 5000 5500 6000 6500

0.
0

0.
2

0.
4

0.
6

Frequency

Am
pl

itu
de

Fig. 10.20 Theoretical frequency spectrum of a FM signal. The spectrum is obtained by applying
Carson’s rule and Bessel functions to estimate the number, the frequency position, and the relative
amplitude of a pure tone sound with a carrier frequency at 5000 Hz and a frequency modulation
with a frequency of 500 Hz and a frequency peak deviation of 500 Hz equivalent to a modulation
index β = 1

beta <- 4
n <- 0:(beta+2)
amp <- besselJ(beta, n)
amp <- c(rev(amp), amp[-1])
amp
[1] 0.04908758 0.13208666 0.28112906 0.43017147
[5] 0.36412815 -0.06604333 -0.39714981 -0.06604333
[9] 0.36412815 0.43017147 0.28112906 0.13208666

[13] 0.04908758

When the frequency bandwidth of the FM is large and/or when the carrier
frequency is low, the frequency of the sidebands can be either null or negative. For
instance, a 440 Hz pure-tone sound with a FM with ff m = 200 and Δfc = 1600,
that is, β = 1600 ÷ 200 = 8, will have 8 + 2 = 10 lower sidebands at the following
frequencies in Hz:

fc <- 440
f.fm <- 200
delta.fm <- 1600

(continued)

10.1 Frequency Spectrum 285

beta <- delta.fm / f.fm
lower.sidebands <- fc-(1:round(beta+2))*f.fm
lower.sidebands
[1] 240 40 -160 -360 -560 -760 -960 -1160 -1360

[10] -1560
upper.sidebands <- fc+(1:round(beta+2))*f.fm
upper.sidebands
[1] 640 840 1040 1240 1440 1640 1840 2040 2240 2440

The negative sidebands reflect around the 0 Hz value and are combined with
the sidebands on the positive side of the frequency axis. In the above example, the
frequency spectrum shows peaks at the following positions:

sort(c(abs(lower.sidebands), fc, upper.sidebands))
[1] 40 160 240 360 440 560 640 760 840 960 1040

[12] 1160 1240 1360 1440 1560 1640 1840 2040 2240 2440

This generates a frequency spectrum with harmonics and inharmonics combined
(Fig. 10.19, bottom-left).

Linear and sinusoidal FMs can be combined giving a frequency spectrum with
sidebands along a large peak due to the carrier frequency (Fig. 10.19, bottom-right).

10.1.4.4 Aperiodic or Brief Signals

The sounds we explored in the previous sections were all periodics or long
requesting, in most cases, few frequency components to be described properly by
the Fourier transform. However, aperiodic or brief sounds need more frequency
components for a correct description. Figure 10.21 shows that the frequency
spectrum widens for a sound with a duration from 0.1 to 0.001 s. An instantaneous
sound of 0.0001 s is transferred in the frequency domain by a totally flat spectrum
(Fig. 10.21, bottom-right). It is therefore essential to consider the duration of the
sound to be studied. Computing a frequency spectrum on a too short sound is
meaningless and should be avoided. Other solutions, such as zero crossing (see
Sect. 13.1.4.2), should be considered.

286 10 Frequency, Quefrency, and Phase in Practice

0 2 4 6 8 10

d=0.1 s

0 2 4 6 8 10

d=0.01 s

0 2 4 6 8 10

d=0.001 s

0 2 4 6 8 10

d=1e−04 s

Frequency

Am
pl

itu
de

Fig. 10.21 Frequency spectrum shape of brief signals. Frequency spectrum of a pure sine wave
with a duration of 0.1, 0.01, 0.001, and 0.0001 s showing the appearance of side lobes that increase
in importance up to a totally flat spectrum profile

10.1.5 Symbolic Analysis

10.1.5.1 Symbolic Discretization

A solution to qualify a numeric series x(n) is to translate it into a symbolic series
S(n) by converting the numeric values into a finite number of symbols through a
discretization process (Cazelles 2004). The idea is to assess the state of the numeric
series by classifying each sample value as depending on the shape of the series
profile. This assessment can follow three or five predefined states. In the three-state
option, each sample value can be considered as an increase (I), a decrease (D), or a
flatness (F) state in the series.

The translation from numbers to symbols is ruled out by the following conditions:

xn < xn+1 ⇒ increase ⇒ Sn+1 = I

xn > xn+1 ⇒ decrease ⇒ Sn+1 = D

xn = xn+1 ⇒ flat ⇒ Sn+1 = F

where {xn, xn+1} are two consecutive sample values of the numeric series x(n) of
length N and Sn+1 is the n + 1 symbol of the symbol series S(n) of length N − 1.

10.1 Frequency Spectrum 287

In the five-state option, the rules are longer (Cazelles 2004):

xn < xn+1 < xn+2 ⇒ increase ⇒ Sn+1 = I

xn < xn+2 ≤ xn+1 ⇒ peak ⇒ Sn+1 = P

xn+1 < xn ≤ xn+2 ⇒ trough ⇒ Sn+1 = T

xn+1 < xn+2 ≤ xn ⇒ trough ⇒ Sn+1 = T

xn+2 < xn ≤ xn+1 ⇒ peak ⇒ Sn+1 = P

xn+2 < xn+1 ≤ xn ⇒ decrease ⇒ Sn+1 = D

xn = xn+1 = xn+2 ⇒ flat ⇒ Sn+1 = F

where {xn, xn+1, xn+2} are three consecutive sample values of the numeric series
x(n) of length N and Sn+1 is the n + 1 symbol of the symbol series S(n). The
length of S(n) is N − 2 because the first and the last sample values have a single
neighbor so that no state can be assessed for these values. In this case, a plateau—
that is, an elevated flat region such as {0, 1, 1, 1, 0}—is considered as a “flat peak”
symbolized with the succession {P,F, P } with possibly several F framed by a pair
of P . However, a plateau could also be seen as an increase, a flat region, and a
decrease and therefore encoded as {I, F,D}. In that case, the set of rules changes
to:

xn < xn+2 < xn+1 ⇒ peak ⇒ Sn+1 = P

xn+1 < xn < xn+2 ⇒ trough ⇒ Sn+1 = T

xn ≤ xn+1 ≤ xn+2 ⇒ increase ⇒ Sn+1 = I

xn+2 ≤ xn+1 ≤ xn ⇒ decrease ⇒ Sn+1 = D

xn = xn+1 = xn+2 ⇒ flat ⇒ Sn+1 = F

As an example, the following numeric series of length 14:

x(n) = {0, 1, 2, 1, 0, 1, 1, 1, 0.5, 0, 0, 0, 1, 0}

is translated into the three-state symbol series of length 13:

S(n) = {I, I,D,D, I, F, F,D,D,F, F, I, D}

or into the five-state symbol series of length 12 for a plateau encoded as {P,F, P }:

S(n) = {I, P,D, T ,P,F,P,D,D,F, I, P }

or into the five-state symbol series of length 12 for a plateau encoded as {I, F,D}:

S(n) = {I, P,D, T , I,F,D,D,D,F, I, P }

This symbolic discretization is available in the function discrets() of
seewave where the argument symb controls the number of symbols to use, either

288 10 Frequency, Quefrency, and Phase in Practice

3 or 5 (default), and the argumentplateau sets the way a plateau is encoded (1 for
the {P,F, P } option and 2 for {I, F,D} option). Here, the following code repeats
the example given just above:

x <- c(0, 1, 2, 1, 0, 1, 1, 1, 0.5, 0, 0, 0, 1, 0)
discrets(x, symb=3)
[1] "IIDDIFFDDFFID"
discrets(x, symb=5)
[1] "IPDTPFPDDFIP"
discrets(x, symb=5, plateau=2)
[1] "IPDTIFDDDFIP"

Turning the argument collapse to FALSE separates the symbols of the
returned character vector:

discrets(x, symb=3, collapse=FALSE)
[1] "I" "I" "D" "D" "I" "F" "F" "D" "D" "F" "F" "I" "D"

The frequency spectrum is a numeric series that can be transformed into a
symbolic series using the discretization introduced just above. For instance, the
five-state discretization of the frequency spectrum of peewit is obtained with
discrets() and displayed over the spectrum with the low-level plot function
text(). The first and last frequencies are discarded for the plotting operation to
align the numeric and symbolic series (Fig. 10.22):

center <- round(duration(peewit)/2,2)
fspec <- spec(peewit, at=center)
res <- discrets(fspec[,2], collapse=FALSE)
head(res)
[1] "I" "P" "T" "P" "D" "T"
text(fspec[-c(1,nrow(fspec)),], labels=res, col="red")

This symbolic analysis can help in understanding, describing, and comparing
frequency spectra. It also can be useful to compute the entropy of the symbol series
using the classical definition of Shannon-Wiener entropy H :

H = −
N−2∑
i=1

(pi log pi)

where pi are the elements of the probability mass function (PMF) of the symbolic
series S(n).

10.1 Frequency Spectrum 289

0 2 4 6 8 10
Frequency (kHz)

Am
pl

itu
de

IPTPDTIPTPDTIIPDDTIPTPTIIII

I

P

D

D
DDDDDDTIPDDTPTIIPDTPTIPTII

IP

DDDDTPDTIIPDDTIIPDTIPDTIIII

I
P

D
DDDDDTPTIPDDTIIIPDDDDTPDDT

I
P
D
DTIPTPDTIPDDTIPTPDTIPTIIIII

PD
DDDTPTPTIPDDTIPTPDDTPTIIIII

IP
DDDDTIPDDDTPDTPTIPTIPDTIPTIIPDDDDTPDDTIPDDTPTIPDDTPDTPDTIPDTIPDTPDTIIPDTIIIPDT

Fig. 10.22 Symbolic analysis. The symbolic analysis consists in translating each amplitude values
into a letter according to the shape of the numeric series, here a frequency spectrum of peewit

The function symba() uses the function discrets() and returns the sym-
bolic series ($s1) of an object with as well the relative frequency (proportion) of
each symbol ($freq) and the entropy of the series ($h1):

symba(fspec[,2], collapse=FALSE)
$s1

[1] "I" "P" "T" "P" "D" "T" "I" "P" "T" "P" "D" "T" "I"
[14] "I" "P" "D" "D" "T" "I" "P" "T" "P" "T" "I" "I" "I"
[27] "I" "I" "P" "D" "D" "D" "D" "D" "D" "D" "D" "T" "I"
[40] "P" "D" "D" "T" "P" "T" "I" "I" "P" "D" "T" "P" "T"
[53] "I" "P" "T" "I" "I" "I" "P" "D" "D" "D" "D" "T" "P"
[66] "D" "T" "I" "I" "P" "D" "D" "T" "I" "I" "P" "D" "T"
[79] "I" "P" "D" "T" "I" "I" "I" "I" "I" "P" "D" "D" "D"
[92] "D" "D" "D" "T" "P" "T" "I" "P" "D" "D" "T" "I" "I"

[105] "I" "P" "D" "D" "D" "D" "T" "P" "D" "D" "T" "I" "P"
[118] "D" "D" "T" "I" "P" "T" "P" "D" "T" "I" "P" "D" "D"
[131] "T" "I" "P" "T" "P" "D" "T" "I" "P" "T" "I" "I" "I"
[144] "I" "I" "P" "D" "D" "D" "D" "T" "P" "T" "P" "T" "I"
[157] "P" "D" "D" "T" "I" "P" "T" "P" "D" "D" "T" "P" "T"
[170] "I" "I" "I" "I" "I" "I" "P" "D" "D" "D" "D" "T" "I"
[183] "P" "D" "D" "D" "T" "P" "D" "T" "P" "T" "I" "P" "T"
[196] "I" "P" "D" "T" "I" "P" "T" "I" "I" "P" "D" "D" "D"
[209] "D" "T" "P" "D" "D" "T" "I" "P" "D" "D" "T" "P" "T"
[222] "I" "P" "D" "D" "T" "P" "D" "T" "P" "D" "T" "I" "P"
[235] "D" "T" "I" "P" "D" "T" "P" "D" "T" "I" "I" "P" "D"
[248] "T" "I" "I" "I" "P" "D" "T"

(continued)

290 10 Frequency, Quefrency, and Phase in Practice

$freq1
s1

D I P T
0.3070866 0.2519685 0.2204724 0.2204724

$h1
[1] 1.376582

Rounding the values of the frequency spectrum can change importantly the
results as the number of flat parts (F) may increase significantly:

symba(round(fspec[,2],2), collapse=FALSE)
$s1

[1] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[14] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "I" "I"
[27] "I" "I" "P" "D" "D" "D" "P" "D" "F" "F" "F" "F" "F"
[40] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[53] "F" "F" "F" "I" "I" "P" "P" "D" "D" "F" "F" "F" "F"
[66] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[79] "F" "F" "F" "F" "F" "F" "I" "I" "I" "P" "D" "D" "D"
[92] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"

[105] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "I" "I" "P"
[118] "D" "D" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[131] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[144] "I" "I" "P" "D" "D" "F" "F" "F" "F" "F" "F" "F" "F"
[157] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[170] "F" "F" "F" "I" "I" "P" "P" "D" "D" "F" "F" "F" "F"
[183] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[196] "F" "F" "F" "F" "F" "F" "F" "I" "I" "P" "D" "D" "F"
[209] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[222] "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "I" "I" "P"
[235] "D" "D" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F" "F"
[248] "F" "F" "F" "F" "F" "F" "F"

$freq1
s1

D F I P
0.07480315 0.80708661 0.07480315 0.04330709

$h1
[1] 0.6968517

10.1 Frequency Spectrum 291

10.1.5.2 Symbolic Aggregate Approximation

Symbolic aggregate approximation, abbreviated SAX, is another mean to convert
a numerical series into a symbolic series (Lin et al. 2003). SAX has been used
for search of similarity in animal behavior for insect duet analysis (Aldersley
et al. 2016) and in soundscape ecology (Kasten et al. 2012). SAX proceeds to a
reduction of dimensionality through another process named piecewise aggregate
approximation (PAA) so that a long numeric series can be translated into a short
series of symbols also known as SAX word. PAA mainly consists in a normalization
and in a reduction of dimension by defining segments (syn. frames, windows). The
three main steps of PAA are (see DIY box 10.2 for a manual encoding):

1. The original numeric series s[n] of length N is Z-normalized, so that each
numeric value is transformed into the following:

z[n] = s[n] − μ

σ

with μ is the arithmetic mean, and σ the standard deviation of the original
numeric series s[n],

2. The numeric series z[n] is segmented into w ≤ N equal sized segments,
3. The mean of each segment is computed.

DIY 10.2 — How to code the piecewise aggregate approximation (PAA)

Here is a way to encode the PAA with a test on a numeric series of length N = 120
extracted from the time series sunspots of the package datasets that provides
the monthly mean relative sunspot numbers from 1749 to 1983. This numeric series,
corresponding to 10 years of observations, is divided in w = 8 segments of length
N ÷ w = 16:

N <- 120 # length of the numeric series
s <- sunspots[1:N] # first 120 data from ’sunspots’
z <- (s-mean(s))/sd(s) # step 1: Z normalisation
w <- 8 # step 2: length of the segments
pos <- seq(0, N, by=N/w) # position limits of each segment
pos
[1] 0 15 30 45 60 75 90 105 120
PAA <- numeric(w) # step 3
for(i in 1:w){ # computation of segment average

PAA[i] <- mean(z[(pos[i]+1):pos[i+1]])
}
PAA # result
[1] 1.3936404 1.1162006 0.2093451 -0.2558151 -0.9866827
[6] -1.0520168 -0.6505802 0.2259087

The next procedure, which is the core of SAX, is to translate the averaged values
obtained with the PAA into a finite number of symbols (letters). This conversion is
achieved by attributing with equiprobability each value of the PAA sequence to a

292 10 Frequency, Quefrency, and Phase in Practice

letter in reference to a Gaussian distribution of mean 0 and standard deviation 1.
The process assumes that the distribution of PAA follows a Gaussian distribution,
a condition usually met as normalized time series tends to a Gaussian distribution.
The Gaussian distribution is divided into α quantiles, where α is the number of
symbols, or PAA alphabet size, set by the user (Fig. 10.23).

The package jmotif is dedicated to SAX (Senin 2015); however, seewave
contains also a function, named SAX(), that can transform any numeric series into
a letter series given a certain alphabet size (argument alphabet_size) and a
PAA number of segments (argument PAA_number).

A basic example of SAX() is given here for a simple numeric series:

x <- c(-1, 0, 1, 2, 1, 2, 3, 4,
2, 1, 0, -1, -1, -1, 0, 0)

SAX(x, alphabet_size=3, PAA_number=4)
[1] "b" "c" "b" "a"

20 40 60 80 100 120
−3

−2

−1

0

1

2

3

Sample index

N
um

be
r o

f s
un

sp
ot

s
z−

tra
ns

fo
rm

ed

1.39
1.12

0.21

−0.26

−0.99 −1.05
−0.65

0.23

a
b
c
d
e

Fig. 10.23 SAX principle. The figure shows how the Z-transformed data are converted into letters
in reference to a Gaussian distribution. The data come from the example given in the DIY box 10.2.
The SAX series of symbols, or word, would be here eecbaabc. They correspond to monthly number
of sun spots from 1750 to 1760. Inspired from Lin et al. (2003)

10.1 Frequency Spectrum 293

SAX() therefore returns a series of letters that can be collapsed into different
formats using the argument collapse:

SAX(x, alphabet_size=3, PAA_number=4, collapse="")
[1] "bcba"
SAX(x, alphabet_size=3, PAA_number=4, collapse="-")
[1] "b-c-b-a"

SAX() can be used to characterize a spectrum. The five-letter SAX code of the
frequency spectrum of peewit divided in ten segments by the PAA is:

fspec <- spec(peewit, at=duration(peewit)/2, plot=FALSE)
SAX(fspec[,2], alphabet_size=5, PAA_number=10)
[1] "c" "e" "c" "c" "c" "c" "c" "c" "c" "c"

To relax the constraints of normality, the function SAX() offers the possibility
to directly work on the quantiles or any particular breakpoints of the original data
distribution rather than on the quantiles of a Gaussian distribution. This is achieved
with the argument breakpoints:

SAX(fspec[,2], alphabet_size=5, PAA_number=10,
breakpoints="quantiles")

[1] "c" "e" "e" "e" "e" "e" "e" "d" "d" "e"
SAX(fspec[,2], alphabet_size=5, PAA_number=10,

breakpoints=c(0, 0.1, 0.9, 1))
[1] "b" "b" "b" "b" "b" "b" "b" "b" "b" "b"

If the input is a Wave object, then SAX() computes a soundscape spectrum
(see Sect. 11.15) and applies the SAX transformation to this spectrum following the
procedure described in Kasten et al. (2012).

10.1.6 Parametrization

We have seen that the frequency spectrum can be parametrized by determining the
frequency and the relative amplitude of the profile peaks. However other features can
be obtained to characterize the frequency spectrum. In the two following sections,
we detail quality and statistical parameters.

294 10 Frequency, Quefrency, and Phase in Practice

10.1.6.1 Quality Factor Q

As detailed in Bennet-Clark (1999), the quality factor, Q, describes the properties
of damped resonant or oscillatory systems. In other words, the Q factor is a
dimensionless measurement of tuning sharpness or of the sharpness of a resonant
frequency fr . The measurement can be processed either in the time or in the
frequency domain after a DFT computation. In the latter case, the computation
consists in dividing the resonant frequency fr by the frequency bandwidth found
at x dB below the same resonant frequency fr :

Q−x dB = fr

Δ−x dBf

Usually, the frequency bandwidth is set at x = −3 dB, but other dB levels, like
−10 dB, can be used depending on the application. Because sharpness increases
as Δ−x dBf decreases, the factor Q increases with sharpness. When reporting Q

values, it is of course necessary to keep the same −xdB value for each computation
but it is also essential to specify the value of the resonant frequency because the
Q of resonating systems with similar sharpness but different frequencies differ. For
instance, different Q values are obtained for systems resonating, respectively, at
4000 and 5000 Hz with a similar bandwidth of 300 Hz:

fr <- c(4000, 5000) # resonant frequency
bandwidth <- 300 # frequency bandwidth
Q <- fr/bandwidth # Q
Q
[1] 13.33333 16.66667

At the opposite, two resonating systems with different resonant frequency and
different sharpness might return similar Q values. In the following, the systems
have, respectively, a resonant frequency of 4000 and 5000 Hz with a frequency
bandwidth of 300 and 375 Hz.

fr <- c(4000,5000) # resonant frequency
bandwidth <- c(300,375) # frequency bandwidth
Q <- fr/bandwidth # Q
Q
[1] 13.33333 13.33333

10.1 Frequency Spectrum 295

It is therefore highly advised to undertake a comparison between Q factors
only for systems resonating within the same frequency range. If a system res-
onates at different frequencies, due to the combined action of different resonators,
the Q factor can be computed for each resonant frequency. However, in most
cases, only the resonating frequency with the maximal amplitude is consid-
ered.

The function Q() of seewave computes and displays the resonance quality
factor of a frequency spectrum considering the dominant frequency only. In other
words, this function estimates the frequency sharpness by (1) determining the
dominant frequency of a dB frequency spectrum, (2) estimating the frequencies
found at a lower fixed dB level (by default −3 dB), and (3) computing the ratio
between fr and the difference between the −x dB frequencies. As the function Q()
requires a frequency spectrum computed along a dB scale, the computation of Q

requires two lines of code.
To test the function Q(), we need to refer to a sound driven by a resonator.

The Italian tree cricket, Oecanthus pellucens, produces sound by wing stridula-
tion, that is, by rubbing the plectrum of one wing against the file of the other
(Fig. 10.1). A peculiar area of the wing, named the “harp”, acts as a resonator
amplifying the carrier frequency generated by the plectrum and the file. The energy
of the Italian tree cricket stridulation is mainly concentrated around 2000 Hz.
The data pellucens attached to seewave is made of the stridulations of
an individual recorded in the west of France with a sampling frequency fs of
11,025 Hz:

data(pellucens)
pellucens

Wave Object
Number of Samples: 36476
Duration (seconds): 3.31
Samplingrate (Hertz): 11025
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

The following code estimates and plots the Q factor for a 1024 sample frequency
spectrum computed at 1 s of pellucens, in the middle of the first stridulation
(Fig. 10.24):

296 10 Frequency, Quefrency, and Phase in Practice

1.0 1.5 2.0 2.5 3.0

−2
0

−1
5

−1
0

−5
0

Frequency (kHz)

R
el

at
iv

e
am

pl
itu

de
 (d

B)

Q = 29.07

Fig. 10.24 Resonance quality factor Q. The Q−6 dB factor of pellucens was computed with a
dB frequency spectrum over 1024 samples at the position 1s. Specifying axis limits allows to zoom
in around the frequency peak where Q is computed

fspec <- spec(pellucens, at=1, wl=1024, dB="max0", plot=FALSE)
Q(fspec, level=-6, xlim=c(1, 3), ylim=c(-20,0))

$Q
x

29.0701

$dfreq
x

2.121026

$fmin
x

2.084448

$fmax
x

2.15741

$bdw
x

0.07296244

10.1 Frequency Spectrum 297

The value of Q() returns not only the quality factor ($Q) but as well the dominant
frequency ($dfreq), the minimum frequency ($fmin), the maximum frequency
($fmax), and the frequency bandwidth ($bdw) at the −x dB level.

The size of the DFT can modify the Q values as increasing the DFT increases
the frequency resolution of the spectrum and may therefore widen the spectrum if
there are amplitude and/or frequency modulations occurring within the length of the
DFT. The following code proves that varying DFT length from 64 to 1024 samples
changes the Q value of the pellucens frequency spectrum:

wl <- 2^(6:10)
wl
[1] 64 128 256 512 1024
n <- length(wl)
res <- numeric(n)
for(i in 1:n) {

fspec <- spec(pellucens, at=1, wl=wl[i],
plot=FALSE, dB="max0")

res[i] <- Q(fspec, plot=FALSE)$Q
}
res
[1] 8.893406 15.818978 28.741961 38.074497 43.003486

Eventually, the window function applied to the DFT can also change the shape
of the frequency spectrum and hence the value of the Q factor. The next test returns
the value of Q with six different Fourier windows:

wn <- c("bartlett", "blackman", "flattop",
"hamming", "hanning", "rectangle")

n <- length(wn)
res <- numeric(n)
for(i in 1:n) {

fspec <- spec(pellucens, at=1, wl=512, wn=wn[i],
plot=FALSE, dB="max0")

res[i] <- Q(fspec, plot=FALSE)$Q
}
res
[1] 39.03372 36.40836 30.46242 38.45022 38.07450 44.69399

The description of the shape of the spectrum is as well crucial to understand if
the dominant frequency results or not of a resonating system. As detailed above
(see Sect. 10.1.4), the width of a frequency band can result of other processes than
resonance as of FM or aperiodic signals.

298 10 Frequency, Quefrency, and Phase in Practice

10.1.6.2 Roughness and Rugosity

The roughness and rugosity can be both considered as a measure of the noise
occurring in the frequency spectrum. The roughness, obtained with the function
roughness() of seewave, corresponds to the total curvature of a curve. The
spectral roughness is the integrated squared second derivative of the spectrum s(f)

(Ramsay and Silverman 2005):

roughness =
n∑

i=1

s̈(f)2

Closely related, the rugosity defined in seewave under the function rugo()
is based on the first derivative. The formula used was taken from Mezquida (2009,
p.826) slightly modified to fit with the classical definition of the root-mean-square:

rugosity =
√√√√
(

1

n

n∑
i=1

ṡ(f)2

)

An example of the use of roughness() and rugo() is given in the DIY
box 10.3.

DIY 10.3—How to compute several spectral features on several sounds

The following code shows how to compute six spectral features on four sounds (tico,
orni, peewit, and sheep). The main trick consists first in assigning the four
frequency spectra to a single R list:

data <- list(tico.s=spec(tico, at=1.1, plot=FALSE),
orni.s=spec(orni, at=0.36, plot=FALSE),
peewit.s=spec(peewit, at=0.35, plot=FALSE),
sheep.s=spec(sheep, at=1.25, plot=FALSE))

l <- length(data)

Then a homemade function is created to compute successively six features (roughness,
rugosity, spectral flatness, spectral entropy or evenness, (Gini-)Simpson entropy, and
Rényi entropy of order 2):

parameters <- function(x){
return(c(roughness(x), rugo(x), sfm(x),

sh(x), sh(x, alpha="simpson"),
sh(x, alpha=2)))

}

(continued)

10.1 Frequency Spectrum 299

DIY 10.3 (continued)

Eventually, the results are obtained by writing a for loop:

preparation of the data.frame
where the results will be stored
num <- numeric(l)
res <- data.frame(roughness=num, rugo=num,

sfm=num, shannon=num,
simpson=num, renyi=num,
row.names=names(data))

use of the new function on each spectrum
for(i in 1:l) res[i,] <- parameters(data[[i]])
res

roughness rugo sfm shannon
tico.s 0.6010492 0.4880328 0.005607601 0.4696611
orni.s 3.6233291 0.4900904 0.293239059 0.8433729
peewit.s 1.8082739 0.4891119 0.036838594 0.4962191
sheep.s 2.3560042 0.1816416 0.244637921 0.7565844

simpson renyi
tico.s 0.8734768 0.3728157
orni.s 0.9844235 0.7505607
peewit.s 0.8742644 0.3739418
sheep.s 0.9650854 0.6050030

10.1.6.3 Flatness and Evenness (Entropy)

The spectral flatness measure, also known as the Wiener entropy, is calculated by
the function sfm() of seewave as the ratio between the geometric mean and the
arithmetic mean of the n frequency bins fi of the frequency spectrum:

sfm = n ×
n

√∏n
i=1 fi∑n

i=1 fi

Evenness, or equitability, is the entropy divided by its maximum entropy.
Spectral evenness is computed with the seewave function sh(). This function
computes by default the Shannon evenness but can also return the (Gini-)Simpson
and the Rényi entropies by setting adequately the argument alpha. The Shannon
spectral evenness obeys to the following equation:

Sf = −
∑n

i=1 fi log fi

log(n)

S corresponds to the acoustic index Hf (see Sect. 16.1).

300 10 Frequency, Quefrency, and Phase in Practice

The Simpson, or Gini-Simpson, spectral entropy is computed according to:

GS = 1 −
n∑

i=1

f 2
i

The Rényi spectral entropy of order alpha is obtained with:

R = 1

1 − α
× log

(
n∑

i=1

f α
i

)

with α >= 0 and α �= 1.
Examples of sfm() and sh() are provided in the DIY box 10.3.

10.1.6.4 Statistic Parameters

The frequency spectrum is a histogram in which cell breakpoints are determined
by the sampling frequency of the original sound and the frequency resolution of the
Fourier transform (Δf = fs ÷wl). The frequency spectrum can be therefore consid-
ered as a probability function that can be parametrized with usual summary statistics
of central tendency (mean, median, mode, centroid), dispersion (standard deviation,
standard error, quartiles), and shape (skewness, kurtosis, flatness, entropy). These
parameters can be obtained with the function specprop() of seewave.1 The
values returned by specprop() are:

• $mean: mean frequency
• $sd: standard deviation of the mean
• $sem: standard error of the mean
• $median: median frequency
• $mode: mode frequency corresponding to the dominant frequency
• $Q25: first quartile
• $Q75: third quartile
• $IQR: interquartile range, with IQR = Q75 − Q25
• $cent: centroid, computed according to C = ∑N

i=1(fi ×ai) with ai the relative
amplitude of the N frequency fi .

• $skewness: skewness, as defined in Sect. 7.1, is a measure of asymmetry
computed with γ1 = μ3 ÷ μ

3/2
2 where μ2 and μ3 are, respectively, the second

and the third central moments. A value of γ1 < 0 indicates that the spectrum
is skewed to left, γ1 = 0 indicates that the spectrum is symmetric, and γ1 > 0
indicates that the spectrum is skewed to right. The asymmetry increases with |γ1|.

1A derived version of specprop() is available in the package warbleR under the name
specan().

10.1 Frequency Spectrum 301

• $kurtosis: kurtosis, as defined in Sect. 7.1, is a measure of peakedness
computed with β2 = μ4 ÷ μ2

2 where μ2 and μ4 are, respectively, the second and
the fourth central moments. A value of β2 < 3 is obtained when the spectrum
is platykurtic, meaning that it has fewer items at the center and at the tails than
the normal curve but has more items in the shoulders; β2 = 3 is obtained when
the spectrum shows a normal shape; β2 > 3 is obtained when the frequency
spectrum is leptokurtic, meaning that it has more items near the center and at the
tails, with fewer items in the shoulders relative to normal distribution with the
same mean and variance.

• $sfm: spectral flatness measure, as computed by the function sfm()
• $sh: spectral evenness as computed by the function sh()
• $prec: frequency precision or resolution Δf of the spectrum

Some of these parameters can be visualized using the argument plot. Unusu-
ally, this argument waits either a logical value (TRUE or FALSE) or a numeric value
(1 or 2). A value of 1 returns a usual frequency spectrum and a value of 2 returns
the cumulative distribution function of the frequency spectrum. The function has
to be fed with a frequency spectrum, not with a sound. Here is an example with a
frequency spectrum computed for a segment of orni (Fig. 10.25):

fspec <- spec(orni, at=0.36, wl=512, plot=FALSE)
specprop(fspec, plot=2)

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Frequency (kHz)

C
um

ul
at

ed
 p

ro
ba

bi
lit

y

Q25
median
Q75
mode

Fig. 10.25 Statistic parameters of the frequency spectrum. The frequency spectrum of a segment
of orni is here displayed as cumulative distribution function by setting plot=2

302 10 Frequency, Quefrency, and Phase in Practice

10.2 Quefrency Cepstrum

In seewave, the function ceps() computes and optionally plots the quefrency
cepstrum. The function works basically as spec() does with arguments at and
wl to compute the cepstrum at a particular time position over a specific width. The
arguments from and to can also be called to limit the analysis between two time
limits. By default, the cepstrum is computed discarding the phase component of
the original wave; however, this can be changed by setting the argument phase
to TRUE. The following code computes and displays the cepstrum in the middle of
peewit over 512 samples (default value of wl) (Fig. 10.26):

center <- round(duration(peewit)/2, 2)

Particular points of the cepstrum can be manually identified with either the
argument tidentify or the argument fidentify set to TRUE to get results in
the time or frequency domain, respectively. In addition, the function fpeaks()
dedicated to frequency peaks of a spectrum can be recycled to determine the
quefrency peaks of a cepstrum in a similar way than with a frequency spectrum.
It is first necessary to compute the cepstrum and then to give it as an input to
fpeaks(). In the following case, the number of decimal places is increased to

Quefrency (bottom: s, up: Hz)

Am
pl

itu
de

0 0.002 0.004 0.006 0.008 0.01 0.012

Inf 516.797 258.398 172.266 129.199 103.359 86.133

l

0.00082 s
 = 1219.512 Hz

Fig. 10.26 Quefrency cepstrum. The first rahmonic, or quefrency peak, was estimated by using
the argument tidentify and then highlighted with points. The graph has two x scale, one at
the bottom expressed in time (s) and the other (top) expressed in Hz

10.3 Phase Portrait 303

4, the default value being 2, to see relevant values on the graphic (Fig. 10.26). Then,
the first column of the result should be interpreted as quefrency in s so that an
estimation of the peak in Hz is obtained by computing the inverse of the result:

qceps <- ceps(peewit, at=center, # cepstrum
plot=FALSE)

res <- fpeaks(qceps, nmax=1, # peaks detection
plot=FALSE)

res # results in quefrency in s
[,1] [,2]

[1,] 0.0008195278 116.3069
res[,1] <- 1/res[,1] # results in quefrency in Hz
res

[,1] [,2]
[1,] 1220.215 116.3069

Both methods indicate that the fundamental frequency at the center of peewit
is at 1220 Hz.

Finally, the function ceps() includes a list of basic graphic arguments to
control for the color (col), size (cex), labels (qlab, alab), and axis limits
(qlim, alim).

10.3 Phase Portrait

As defined in Sect. 2.2.4, phase (ϕ) is the horizontal translation of a cyclic function
in respect with time. For a sine sound, phase is therefore a temporal translation
of sin(t) in respect with t . Phase is often used to diagnose the state of an active
system, in particular to assess whether the output of the system shows irregularity
and unpredictability suggesting nonlinear phenomenon due to either random input
or deterministic chaos (Lauterborn and Parlitz 1988; Kantz and Schreiber 2003).
Nonlinearity has been reported several times in animal sounds, such as fish and
mammal vocalizations (Tokuda 2017).

The detection of nonlinear acoustics can be conducted by producing phase-space
graphics. A first solution consists in displaying the progression of the signal s(t)

through time in a (x, y) or (x, y, z) space as a function of its first, second, and
possibly third derivatives (see examples in Rice et al. (2011)). A second solution,
more classical and known under the name of so-called phase portrait, consists in
displaying the original signal with a delayed version of itself, that is, to compare
each state of s(t) and s(t + τ) with τ a fixed delay (see examples in Fitch et al.
(2002)). Both types of graphics show a periodic structure for linear signals and an
aperiodic structure for nonlinear signals as illustrated in Fig. 10.27. These graphics
are available with the seewave functions phaseplot() and phaseplot2(),
respectively.

304 10 Frequency, Quefrency, and Phase in Practice

−0.06 −0.02 0.02 0.04 0.06

−0
.0

04
0.

00
0

0.
00

2
0.

00
4

1st derivative

2n
d

de
riv

at
iv

e

−2 −1 0 1 2

−3
−2

−1
0

1
2

3

1st derivative

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x(t)

x(
t+

1)

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x(t)

Fig. 10.27 Phase-space plots of pure tone and noise. The figure shows the phase-space plots
obtained with phaseplot() (top) and phaseplot2() (bottom) applied to a pure tone (left)
and to noise (right). Pure tone has a periodic shape when noise has an unstructured an aperiodic
shape

Gilbert et al. (2014) drew a parallel between the production of brassy sounds
in musical instruments and the sound emitted by African elephants (Loxodonta
africana). The authors recorded the sound produced by a 3 m hose pipe fitted with
a trombone mouthpiece and compared it with the trumpet calls of a 20-year-old
female elephant. The sound of the hose pipe could be significantly distorted when
produced at high amplitude. This generated a “brassy” sound which properties were
mainly due to nonlinear propagation of the wave in the pipe. Similarly, the elephant
female was able to produce “brassy” trumpet calls probably involving nonlinear
propagation as well. Samples of these sounds (see Gilbert et al. 2014, figures 2 and
3) are available in the file "Loxodonta_africana.wav" imported into R with:

10.3 Phase Portrait 305

elephant <- readWave("sample/Loxodonta_africana.wav")
elephant

Wave Object
Number of Samples: 366706
Duration (seconds): 8.32
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

We need to edit the file by selecting the frequencies between 0 and 6000 Hz
where most of the sound energy lays. To achieved this selection, we use the function
fir(), a frequency filter which principle and use are detailed in Sect. 14.6.

output <- "Wave"
elephant <- fir(elephant, from=0, to=6000, output=output)

We then select the sounds of interest using the edition function cutw(). Each
sound lasts 0.3 s to make the phase plots comparable.

x <- 0.3
linear pipe sound
pipe1 <- cutw(elephant, from=0.30, to=0.30+x, output=output)
non linear pipe sound
pipe2 <- cutw(elephant, from=4.55, to=4.55+x, output=output)
linear elephant call
elephant1 <- cutw(elephant, from=6.20, to=6.20+x, output=output)
non linear elephant call
elephant2 <- cutw(elephant, from=7.80, to=7.80+x, output=output)

The four sounds are then stored in a single list:

sounds <- list(pipe1, pipe2, elephant1, elephant2)

The function phaseplot() of seewave displays either a 2D or 3D phase
portrait. Its use is rather easy, the most important argument being the input
(first argument wave) and the third argument (dim) that controls the number of
derivatives to compute and to plot (either 2 or 3). The 3D plot is produced thanks to
the library rgl (Adler and Murdoch 2016). The following code was used to produce
the Fig. 10.28:

306 10 Frequency, Quefrency, and Phase in Practice

0.00 0.10 0.20 0.30

Time (s)

Am
pl

itu
de

0 1 2 3 4 5 6

Frequency (kHz)
Am

pl
itu

de

−0.04 0.00 0.04 0.08−0
.0

10
0.

00
0

0.
00

5

1st derivative

2n
d

de
riv

at
iv

e

0.00 0.10 0.20 0.30

Time (s)

Am
pl

itu
de

0 1 2 3 4 5 6

Frequency (kHz)

Am
pl

itu
de

−0.2 0.0 0.1 0.2 0.3

−0
.1

5
−0

.0
5

0.
05

0.
15

1st derivative

2n
d

de
riv

at
iv

e

0.00 0.10 0.20 0.30

Time (s)

Am
pl

itu
de

0 1 2 3 4 5 6

Frequency (kHz)

Am
pl

itu
de

−0.10 0.00 0.05 0.10

−0
.0

3
−0

.0
1

0.
01

0.
03

1st derivative

2n
d

de
riv

at
iv

e

0.00 0.10 0.20 0.30

Time (s)

Am
pl

itu
de

0 1 2 3 4 5 6

Frequency (kHz)

Am
pl

itu
de

−0.2 −0.1 0.0 0.1 0.2

−0
.1

0
0.

00
0.

05
0.

10

1st derivative

2n
d

de
riv

at
iv

e

Fig. 10.28 Phase portrait of pipe and elephant sounds. Oscillogram, frequency spectrum, and
phase portrait of (from top to bottom) a pipe sound (line 1), a “brassy” pipe sound (line 2), an
elephant trumpet call (line 3), and a “brassy” elephant trumpet call (line 4)

10.3 Phase Portrait 307

flim <- c(0,6) # 0-6 kHz frequency selection
col <- "blue" # color line
par(mfrow=c(4,3), # 4*3 figure plate organisation

mar=c(4.5,4,1,1), # margins
lwd=0.5) # line width for all graphics

’for’ loop to plot successively
the oscillogram, the frequency spectrum and the phase portrait
of each sound stored in the list ’sounds’
for(i in 1:length(sounds)){

oscillo(sounds[[i]], colwave=col, cexlab=0.7)
spec(sounds[[i]], flim=flim, col=col)
phaseplot(sounds[[i]], dim=2, col=col)

}

The complexity of the phase portrait, that is, the nonlinearity of the sound,
increases from the non-“brassy” pipe sound to the “brassy” elephant trumpet call.

Chapter 11
Spectrographic Visualization

So far, we considered separately the three main dimensions of sound, namely,
amplitude (see Chap. 7), time (see Chap. 8), and frequency (see Chap. 10). However,
amplitude and frequency are rarely invariant with time: sound can be affected by
independent amplitude and/or frequency modulations. The time dynamics of sound
are neither accessible on an oscillogram nor on a frequency spectrum or a cepstrum
such that a new representation of sound should be used to visualize the variations of
amplitude and frequency according to time. In this chapter, we will discover a first
time × frequency × amplitude solution, the short-time Fourier transform, used to
produce the spectrogram.

11.1 Short-Time Fourier Transform

11.1.1 Principle

The principle of the short-time Fourier transform (or short-term Fourier transform,
abbreviated STFT or STDFT for its discrete version) is rather simple: instead of
computing the discrete Fourier transform (DFT) on the complete sound, the DFT
is computed on successive sections or windows of the sound. The windows all
have the same duration so that the process can also be viewed as sliding a single
window along the sound. The DFT is computed through the FFT algorithm at each
slide or jump. The short-time Fourier transform operates therefore a kind of time
discretization.

A good way to understand how STDFT works is to use the interactive function
dynspec(). The function computes a STDFT and displays the successive DFTs.
The user can navigate from the beginning to the end of the signal with a sliding
control button. At each jump of the Fourier window, the frequency spectrum is
plotted enlightening the spectral dynamics of the sound. An example with the dataset

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_11

309

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_11&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_11

310 11 Spectrographic Visualization

Fig. 11.1 Illustration of the short-time discrete Fourier transform. The function dynspec() can
be used to better understand the principle of the short-time discrete Fourier transform. A series
of frequency spectra are computed along the signal, here the dataset sheep, for a given Fourier
window. The screenshot here shows the frequency spectrum computed for the eleventh window
located at 0.672 s along the sound. The Fourier window has a length of 512 samples and is tapered
by a Hanning window (default values of the arguments wl and wn respectively). Moving along the
signal is made possible, thanks to the small control pop-up window entitled “Position.” Operating
system: Ubuntu

sheep is provided with the following code which starts by the loading of the library
rpanel used to build the control button (Fig. 11.1):

library(rpanel)
dynspec(sheep, osc=TRUE)

11.1 Short-Time Fourier Transform 311

Mathematically, the STFT consists in multiplying the signal s(t) with a function
w(t) which is not null for only a short period of time, a process that we already
described when introducing the window functions that limit spectral leakage (see
Sect. 9.6). The multiplication is applied for each sliding step or jump of the window.
The window function can be a rectangle, a Bartlett, a blackman, a flattop, a
Hanning(Hann), or a Hamming window.

Knowing that the Fourier transform is written as:

F(ω) =
∫ ∞

−∞
s(t)e−iωt dt

the equation of the STFT is:

ST FT {s(t)} = F(τ, ω) =
∫ ∞

−∞
s(t)w(t − τ)e−iωt dt

where τ is the time index used to slide the function window w(t) along the signal.
For a finite sound made of N samples taking successive values s[n], the time index
is m, and the discrete Fourier transform (DFT) is obtained with:

F(ω) =
∞∑

n=0

s[n]e−iωkn

such that the short-time discrete Fourier transform (STDFT) is expressed as:

ST DFT {s[n]} = F(m,ω) =
∞∑
0

s[n]w[n − m]e−iωkn

The STDFT is by essence a collection of successive frequency spectra that are
grouped into a single matrix which dimensions are determined by the length N of
the sound and the time index m that corresponds to the size of the sliding window.
The matrix can be expressed by referring to the Fourier coefficients akj , with K the
number of frequencies ω and J the number of Fourier windows computed along the
signal:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1 . . . nj . . . nJ

ω1 a11 . . . a1j . . . a1J

...
...

. . .
...

. . .
...

ωk ak1 . . . akj . . . akJ

...
...

. . .
...

. . .
...

ωK aK1 . . . aKj . . . aKJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

312 11 Spectrographic Visualization

Because of the mirror property of the Fourier transform, K is simply obtained by
dividing the size of the window m by 2. J is the floor of the ratio of signal size N

over window size m in number of samples. For instance, a STDFT computed with a
window of 512 samples for a signal lasting 1.5 s sampled at fs = 44,100 Hz returns
a matrix containing J = �N ÷ m	 = �(44,100 × 1.5) ÷ 512	 = 129 columns and
K = m ÷ 2 = 512 ÷ 2 = 256 lines.

11.1.2 The Uncertainty Principle

11.1.2.1 Time and Frequency Resolutions

The STDFT produces a two-dimensional object based on a time and frequency
discretization through windowing. The returned object is hence made of atoms
or cells. Each atom of the STDFT has a time-frequency localization represented
as a “Heisenberg box” located in the time-frequency plane (Mallat 2009). The
Heisenberg box is a rectangle with a time width (σt) and a frequency height (σf)
where the signal is assumed to be locally stationary, that is, where amplitude and
frequency modulations are considered to be null (Fig. 11.2). If the assumptions
are not met, other solutions should be investigated as the wavelet transform
(Staszewski and Robertson 2007). The size and the shape of the Heisenberg box are
heavily constrained by a trade-off between the time resolution and the frequency

Time (s)

Fr
eq

ue
nc

y
(H

z)

+

0 t

0

f

σt

σf

Fig. 11.2 Heisenberg box. The principle of the short-time discrete Fourier transform is based on
a division of the time-frequency plane into an array of atoms. A unity atom is named a Heisenberg
box represented as a quadrilateral with a width σt and a height σf . The window function applied
on the frequency domain applies as well on the frequency domain. Inspired from Mallat (2009)

11.1 Short-Time Fourier Transform 313

0

500

1000

1500

2000

wl = 128 wl = 256

0.00 0.05 0.10 0.15 0.20

0

500

1000

1500

2000

wl = 512

0.00 0.05 0.10 0.15 0.20

wl = 1024

Time (s)

Fr
eq

ue
nc

y
(H

z)

Fig. 11.3 Short-time discrete Fourier transform: atom shape. The figure shows the shape of the
atoms (or Heisenberg boxes) for different window sizes. Four time width σt are considered: 128,
256, 512 and 1024 samples for a 0.2 s sound sampled at 44,100 Hz. A zoom is operated along the
frequency y-axis from 0 to 2000 Hz. To facilitate the comparison, one central atom is highlighted
in blue

resolution in relation with the Heisenberg uncertainty principle already evoked in
Sect. 10.1.2.1.

Figure 11.3 illustrates the time-frequency discretization operated by the STDFT
on a signal sampled at fs = 44,100 with four different DFT windows. The choice
of the window length (or duration) σt is crucial: a DFT window made of σt = 128
samples corresponding to a duration of 0.0029 s returns a STDFT with a good time
resolution but a poor frequency resolution when a long DFT window made of σt =
1024 samples corresponding to a duration of 0.0232 s returns a STDFT with a poor
time resolution but a good frequency resolution. In the specific case of the Fig. 11.3,
the choice of an intermediate window length (σt = 512 samples = 0.00116 s) seems
to provide a good compromise between time and frequency resolutions.

The time and frequency resolutions both depends on the sampling frequency fs

and are related following:

Δt = 1

Δf

= σt

fs

314 11 Spectrographic Visualization

11.1.2.2 Increasing the Time Resolution with Window Overlap

A first way to reduce the effects of the uncertainty principle is to try to increase the
time resolution without reducing the frequency resolution. This is be achieved by
applying an overlap over the successive windows (see Sect. 5.2.3.1). The time and
frequency resolutions are now obtained with:

Δt = 1

Δf

= σt

fs

× 100 − overlap

100

where overlap is the window overlap expressed in percentage (%).
Figure 11.4 illustrates the Heisenberg box grid obtained for a fixed time window

width (σt = 512 samples) but with different degrees of overlap. The box width σt

remains the same, but the time resolution Δt increases from Δt = 512 ÷ 44,100 =
0.0116 s for a null overlap to Δt = 512 ÷ (8 × 44,100) = (512 ÷ 44,100) ×
((100 − 87.25) ÷ 100) = 0.00145 s for a 87.5% overlap. The overlap solution is
quite attractive; however, it increases the number of DFT to compute by a factor
of 100 ÷ (100 − overlap). For instance, setting an overlap of 87.5% induces the

0

500

1000

1500

2000

wl = 512 wl = 512
ovlp = 50 %

0.00 0.05 0.10 0.15 0.20

0

500

1000

1500

2000

wl = 512
ovlp = 75 %

0.00 0.05 0.10 0.15 0.20

wl = 512
ovlp = 87.5 %

Time (s)

Fr
eq

ue
nc

y
(H

z)

Fig. 11.4 Short-time Fourier discrete transform: atom shape with overlapping. The figure shows
the shape of the atoms (or Heisenberg boxes) obtained with a window made of 512 samples.
Four overlaps between successive windows are considered: 0%, 50%, 75%, and 87.5% for a 0.2 s
sound sampled at 44,100 Hz. A zoom is operated along the frequency y-axis from 0 to 2000 Hz. To
facilitate the comparison, one central atom is highlighted in blue

11.2 Computation and Display of the Spectrogram 315

computation of eight times more DFTs:

ovlp <- c(25, 50, 75, 87.5) # overlap in %
100/(100-ovlp) # number of FTs scaling factor
[1] 1.333333 2.000000 4.000000 8.000000

11.1.2.3 Increasing the Frequency Resolution with Zero-Padding

A second trick to cope with the uncertainty principle is to increase the frequency
resolution without losing time resolution. The idea is to artificially widen the
Heisenberg box by adding P zeros after the box, a process named zero-padding,
but keeping constant the time resolution of the original box, such that we have:

Δf = fs

σt + P

and yet:

Δt = σt

fs

Figure 11.5 illustrates the Heisenberg box grid obtained for a fixed time window
width (σt = 512 samples) but with the different zero-paddings. The box width σt

remains the same, but the frequency resolution Δf increases from Δf = 44,100 ÷
512 = 86.13 Hz for no zero-padding to Δf = 44,100 ÷ (512 + 128) = 68.90 Hz
for a zero-padding with P = 128.

11.2 Computation and Display of the Spectrogram

The spectrogram is the square of the STDFT, it is therefore made of a collection of
power spectra densities (PSD). The equation of the STDFT is:

spectrogram{s[n]} = |F(m,ω)|2

The spectrogram (sometimes named sonagram) is a visualization tool which is
commonly used, in particular in bioacoustics. The matrix of the Fourier coefficients
is displayed as an image with time along the x-axis, frequency along the y- axis, and
amplitude encoded as a gradient of gray or color levels. The spectrogram can also
be projected as a waterfall display or a 3D object.

316 11 Spectrographic Visualization

0

500

1000

1500

2000

wl = 512 wl = 512
zp = 32

0.00 0.05 0.10 0.15 0.20

0

500

1000

1500

2000

wl = 512
zp = 64

0.00 0.05 0.10 0.15 0.20

wl = 512
zp = 128

Time (s)

Fr
eq

ue
nc

y
(H

z)

Fig. 11.5 Short-time Fourier transform: atom shape with zero-padding. The figure shows the
shape of the atoms (or Heisenberg boxes) obtained with a window made of 512 samples. Four
zero-padding settings are considered: 0, 32, 64, and 128 for a 0.2 s sound sampled at 44,100 Hz. A
zoom is operated along the frequency y-axis from 0 to 2000 Hz. To facilitate the comparison, one
central atom is highlighted in blue

The spectrogram can be obtained with functions of the packages signal,
tuneR, seewave, phonTools, monitoR, and warbleR. The visual aspect
of the spectrogram depends on mathematical settings that are common to all
spectrographic functions and on graphical settings, such as the control of the colors,
which are specific to each spectrographic function. A correspondence between the
mathematical and graphical settings (arguments) of the different spectrographic
functions is given in Table 11.2.

The mathematical settings of the spectrogram refer to the computation of the
STDFT in link with the uncertainty principle detailed just above. We can list five
main parameters that influence the spectrogram:

1. the sampling frequency, fs , expressed in Hz,
2. the Fourier window function or taper, labeled with a name (“rectangle,” “bartlett,”

“blackman,” etc.),
3. the Fourier window length (or width or duration) σt , expressed either in number

of samples or in s,
4. the amount of overlap (or hopp) between successive Fourier windows, expressed

either in number of samples or percentage,
5. the zero-padding, expressed in number of zeros added.

11.2 Computation and Display of the Spectrogram 317

Each parameter has an impact on the spectrogram. A high sampling frequency
is the requirement for a good sound digitization but also implies to use a wide
Fourier window to reach an acceptable frequency resolution. A STDFT processed
on two sounds sampled, respectively, at 96,000 and 44,100 Hz with a similar Fourier
window length σt = 512 has a frequency resolution Δf = 96,000 ÷ 512 = 187.5
and Δf = 44,100 ÷ 512 = 86.13 Hz. Downsampling the original sound may then
be a solution to increase Δf .

The Fourier window function has important effects on the shape of the frequency
spectra and so on the STDFT has illustrated in Fig. 9.13.

As we have seen in the previous section, the Fourier window length, overlap, and
zero-padding can also change the time-frequency resolution of the spectrogram.
The choice of these parameters is therefore not straightforward and should be
carefully considered. Table 11.1 provides a few examples of time and frequency
resolution obtained for different combinations of fs , σt , and overlap. As an example,
the spectrogram of a few seconds sound sampled at 44,100 Hz is usually well
constructed with a Hanning (Hann) window of 512 samples with an overlap of 75%.

For the following sections, we will use a synthetic signal with amplitude and
frequency modulations. The sound, which has a duration of 1 s with a sampling
frequency of 44,100 Hz, was generated as described in Sect. 18.6.3.2 and saved in a
file named synth-face.wav:

Table 11.1 Time and
frequency resolution of the
STFT

fs σt ovlp Δt Δf

22,050 512 0 0.0232 43.07

22,050 512 50 0.0116 43.07

22,050 512 75 0.0058 43.07

22,050 512 88 0.0029 43.07

22,050 1024 0 0.0464 21.53

22,050 1024 50 0.0232 21.53

22,050 1024 75 0.0116 21.53

22,050 1024 88 0.0058 21.53
44,100 512 0 0.0116 86.13

44,100 512 50 0.0058 86.13

44,100 512 75 0.0029 86.13

44,100 512 88 0.0015 86.13

44,100 1024 0 0.0232 43.07

44,100 1024 50 0.0116 43.07

44,100 1024 75 0.0058 43.07

44,100 1024 88 0.0029 43.07

The table shows different time (Δt in s) and
frequency (Δf in Hz) resolutions in respect
to sampling frequency (fs in Hz), Fourier
window length (wl in number of samples), and
Fourier window overlap (ovlp in %)

318 11 Spectrographic Visualization

T
ab

le
11
.2

C
or

re
sp

on
de

nc
e

be
tw

ee
n

th
e

m
ai

n
ar

gu
m

en
ts

of
sp

ec
tr

og
ra

ph
ic

fu
nc

ti
on

s
fo

un
d

in
se

ve
ra

lp
ac

ka
ge

s

Pa
ck

ag
e

s
i
g
n
a
l

t
u
n
e
R

t
u
n
e
R

s
e
e
w
a
v
e

p
h
o
n
T
o
o
l
s

m
o
n
i
t
o
R

w
a
r
b
l
e
R

s
o
u
n
d
g
e
n

Fu
nc

ti
on

s
p
e
c
g
r
a
m
(
)

,
p
l
o
t
(
)

p
e
r
i
o
d
o
g
r
a
m
(
)

p
o
w
s
p
e
c
(
)

s
p
e
c
t
r
o
(
)

s
p
e
c
t
r
o
g
r
a
m
(
)

v
i
e
w
S
p
e
c
(
)

l
s
p
e
c
(
)

s
p
e
c
t
r
o
g
r
a
m
(
)

In
pu

t
x

o
b
j
e
c
t

x
w
a
v
e

s
o
u
n
d

c
l
i
p

X
x

Sa
m

pl
in

g
fr

eq
ue

nc
y

F
s

–
s
r

f
f
s

s
a
m
p
.
r
a
t
e

–
s
a
m
p
l
i
n
g
R
a
t
e

W
in

do
w

fu
nc

ti
on

w
i
n
d
o
w

–
–

w
n

w
i
n
d
o
w

w
n

–
w
n

W
in

do
w

si
ze

n
w
i
d
t
h

w
i
n
t
i
m
e

w
l

w
i
n
d
o
w
l
e
n
g
t
h

w
l

w
l

w
i
n
d
o
w
L
e
n
g
t
h

O
ve

rl
ap

o
v
e
r
l
a
p

o
v
e
r
l
a
p

s
t
e
p
t
i
m
e

o
v
l
p

t
i
m
e
s
t
o
p

o
v
l
p

o
v
l
p

o
v
e
r
l
a
p

Z
er

o-
pa

dd
in

g
–

–
–

z
p

p
a
d
d
i
n
g

z
p

–
z
p

C
ol

or
c
o
l

–
–

p
a
l
e
t
t
e

c
o
l
o
r
s

s
p
e
c
.
c
o
l

p
a
l

c
o
l
o
r
T
h
e
m
e

T
im

e
li

m
it

s
x
l
i
m

f
r
o
m

,t
o

,u
n
i
t
s

–
t
l
i
m

–
s
t
a
r
t
.
t
i
m
e

,
u
n
i
t
s

–
–

Fr
eq

ue
nc

y
li

m
it

s
y
l
i
m

–
–

f
l
i
m

m
a
x
f
r
e
q

f
r
q
.
l
i
m

f
l
i
m

–

A
m

pl
it

ud
e

li
m

it
s

–
–

–
c
o
l
l
e
v
e
l
s

n
l
e
v
e
l
s

c
o
l
l
e
v
e
l
s

c
o
l
l
e
v
e
l
s

–

11.3 Function of the Package signal 319

face <- readWave("sample/synth-face.wav")
face

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 32

11.3 Function of the Package signal

The package signal, which we have not met yet, includes a function named
specgram() to compute and plot the spectrogram of a numeric vector x. The
function, the size, and the overlap of the Fourier window are set with the arguments
window, n, and overlap, respectively. The plot is based on a call of the high-
level plot function image(). To obtain a spectrogram of face, we first need to
call the library signal:

library(signal)

We then apply specgram() on the left channel of face which is a Wave
object. We also specify the sampling frequency, the size of the window, and the
overlap between successive windows in number of samples. The overlap is here set
to 75% of the window size, that is, in number of samples overlap = 512×0.75 =
384:

f <- face@samp.rate
spg <- specgram(face@left, Fs=f,

n=512, overlap=512*0.75)

The object returned by specgram() is an object of class specgram which
consists of a list containing three items: $S a (256, 341) matrix with the FFT results
as complex numbers, $f the frequencies, and $t the time:

320 11 Spectrographic Visualization

0.0 0.2 0.4 0.6 0.8

0
50

00
10

00
0

15
00

0
20

00
0

time

fre
qu

en
cy

Fig. 11.6 Spectrogram with specgram() of signal. The spectrogram is computed and
displayed with the function specgram() of the package signal. Fourier window size = 512
samples, overlap = 75% = 383 samples, Hanning window

str(spg)
List of 3
$ S: cplx [1:256, 1:341] 120.13+0i -67.21-2.4i -9.66+1.3i ...
$ f: num [1:256] 0 86.1 172.3 258.4 344.5 ...
$ t: num [1:341] 2.27e-05 2.93e-03 5.83e-03 8.73e-03 1.16e-02 ...
- attr(*, "class")= chr "specgram"

The matrix, which is the spectrogram, can be plotted directly with specgram()
or by calling the generic function plot(). The matrix of the STDFT results stored
in $S are converted into dB. The main arguments of plot(), such as col, xlim,
or ylim, can be used to tune the graphical output (Fig. 11.6):

plot(spg, col=gray((512:0)/512))

11.4 Functions of the Package tuneR

The function periodogram() of tuneR, which was already mentioned when
treating the frequency spectrum (see Sect. 10.1.1), can be used to compute the
spectrogram. The function can calculate a series of power spectrum densities using

11.4 Functions of the Package tuneR 321

the arguments width and overlap which correspond to the size and the overlap
of the Fourier window. The spectrogram of face is obtained with:

p <- periodogram(face, width=512, overlap=512*0.75)

The function does not display anything but returns a Wspec object. The object
is quite large, and printing it in the console could take a lot of space. We can first
get the name of the different slots with:

slotNames(p)
[1] "freq" "spec" "kernel" "df"
[5] "taper" "width" "overlap" "normalize"
[9] "starts" "stereo" "samp.rate" "variance"

[13] "energy"

There are slots informing about the properties of the spectrogram (freq, spec,
kernel, df, variance), the settings used to compute it (taper, width,
overlap, normalize), and the sound used as an input (starts, stereo,
samp.rate). The most important slot is the slot spec which contains the
successive power spectrum densities (PSDs) organized in a list. Here p@spec
contains 342 PSDs:

length(p@spec)
[1] 342

The plot function associated to periodogram() plots one of the frequency
spectra of the spectrogram. For instance, the following code plots the first PSD
only:

plot(p)

and the next code plots the 10th PSD:

plot(p, which=10)

322 11 Spectrographic Visualization

Time (s)

Fr
eq

ue
nc

y
(H

z)

0 0.2 0.5 0.7 1

86
55

12
11

02
5

16
53

8
22

05
0

Fig. 11.7 Spectrogram with periodogram() of tuneR. The spectrogram is computed with
the function periodogram() of the package tuneR and displayed with the function image().
Fourier window size = 512 samples, overlap = 75%, split cosine bell window

To get a display of the spectrogram, we need to extract the slot spec, to convert
it into a matrix, to scale the data in [0, 1], to convert the data in dB, and to use the
function 2D-plot function image() to plot the transpose of the matrix. Labeling
the axes is a bit tricky, in particular for the time axis (Fig. 11.7):

f <- face@samp.rate
p.data <- matrix(unlist(p@spec), nc=length(p@spec)) # data
p.data <- p.data/max(p.data) # scaling
p.data <- 10*log10(p.data) # dB scale
image(t(p.data), col=gray((512:0)/512), # image plot

xlab = "Time (s)", ylab = "Frequency (Hz)", # axes labels
axes=FALSE) # no units

manual construction of the axes
frequency <- round(p@freq[seq(1, length(p@freq), length=5)])
time <- round(p@starts[seq(1, length(p@starts), length=5)]/f, 1)
axis(side=1, at=seq(0, 1,length=5), labels=time)
axis(side=2, at=seq(0, 1,length=5), labels=frequency)

tuneR has another function, powspec() based on specgram() of signal,
that can compute the spectrogram as well. The function can take any numeric vector
as input, and the Fourier window parameters, the length and the overlap, are encoded
in the arguments wintime and steptime expressed in s such that a window of

11.4 Functions of the Package tuneR 323

512 samples should be set to 512÷fs and a steptime for a 75% overlapping window
to 0.25 × 512 ÷ fs :

f <- face@samp.rate
pspectrum <- powspec(face@left, sr=f,

wintime=512/f, steptime=0.25*512/f)

The data are returned in a numeric (256, 341) matrix containing linear values:

str(pspectrum)
num [1:256, 1:341] 5.06e+10 5.05e+10 5.05e+10 5.05e+10 5.05e+10 ...

The value of powspec() is therefore on a linear scale without information on
neither the frequency nor the time scale. A dB display can be manually obtained
with the following code (Fig. 11.8):

pspectrum <- pspectrum/max(pspectrum) # scaling
pspectrum <- 10*log10(pspectrum) # dB scale
image(t(pspectrum), col=gray((512:0)/512), # plot

(continued)

Time (s)

Fr
eq

ue
nc

y
(H

z)

0 0.2 0.5 0.8 1

86
55

77
11

06
8

16
55

9
22

05
0

Fig. 11.8 Spectrogram with powspec() of tuneR. The spectrogram is computed with the
function powspec() of the package tuneR and displayed with the function image(). Fourier
window size = 512 samples, overlap = 75%, Hamming window

324 11 Spectrographic Visualization

xlab = "Time (s)", ylab = "Frequency (Hz)", # axes labels
axes=FALSE) # no units

manual display of the axes
time <- round(seq(0, duration(face), length=5), 1)
frequency <- round(seq(f/512, f/2, length=5))
axis(side=1, at=seq(0, 1,length=5), labels=time)
axis(side=2, at=seq(0, 1,length=5), labels=frequency)

11.5 Function of the Package phonTools

phonTools has its own spectrographic function as well, named spectrogram
(). The function is tuned to speech with time expressed in ms, frequency in Hz,
a default value of the upper frequency limit set to 5000 Hz, and a preemphasis
filter (see Sect. 14.1). We can adapt it to show the face sound as we do with
other spectrographic functions. The window length is set in ms with the argument
windowlength and the overlap is set in ms as well with timestep (Fig. 11.9).
We specifically refer to the package phonTools with the syntax :: following:

200 400 600 800

0
50

00
10

00
0

15
00

0
20

00
0

Time (ms)

Fr
eq

ue
nc

y
(H

z)

Fig. 11.9 Spectrogram with spectrogram() of phonTools. Fourier window size = 512
samples, overlap = 75%, Hamming window

11.6 Function of the Package soundgen 325

f <- face@samp.rate
phonTools::spectrogram(face@left, fs=f,

windowlength=1000*512/f,
timestep=0.25*(512/f)*1000,
maxfreq=f/2,
window="hamming")

11.6 Function of the Package soundgen

The package soundgen includes as well function to plot a spectogram. This
function, named spectrogram() as the one of phonTools, mainly derives
from the function spectro() of seewave (see Sect. 11.7), with a few different
graphical parameters as the control of contrast and brightness. Here is a basic use of
this function; we refer to the package soundgen with ::, and we coerce the sound
data into a numeric object with as.numeric(). The window length is given in
ms and the overlap in % (Fig. 11.10):

f <- face@samp.rate
soundgen::spectrogram(as.numeric(face@left), samplingRate=f,

windowLength=1000*512/f,
overlap=75, wn="hamming")

0 200 400 600 800 1000

0
5

10
15

20

Fig. 11.10 Spectrogram with spectrogram() of soundgen. Fourier window size = 512
samples, overlap = 75%, Hamming window

326 11 Spectrographic Visualization

11.7 Functions of the Package seewave

The package seewave includes three main functions related to the spectrogram:
(1) the function spectro() that computes and display the spectrogram, (2) the
function stft.ext() that computes the short-time discrete Fourier transform out
of R by calling .C programs, and (3) the function istft() that computes the
inverse short-time discrete Fourier transform.

11.7.1 2D Spectrogram

11.7.1.1 Setting the Scene

The main graphical output of spectro() is based on the base function
filled.contour() and operates a [−30, 0] selection along the dB scale
enhancing the visual quality as testified by the Fig. 11.11.

spectro(face, ovlp=75)

Amplitude
(dB)

−30

−25

−20

−15

−10

−5

0

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

Fig. 11.11 Spectrogram with spectro() of seewave. Fourier window size = 512 samples,
overlap = 75%, Hanning window

11.7 Functions of the Package seewave 327

The function spectro() works with an long list of arguments which default
values are summarized in Table 11.3 and that can be grouped in seven categories:

1. Input arguments
2. Fourier related arguments
3. Output arguments
4. High-level plot arguments
5. Color arguments
6. Axes arguments
7. Layout arguments

To explore this long list of arguments, we will refer to the strange sound produced
by a male hissing cockroach from Madagascar, Elliptorhina chopardi (Fig. 11.12).
The sound is brief and complex: it is made of two independent voices modulating in
frequency. The two voices are due air expelled through a pair of modified abdominal
spiracle (Sueur and Aubin 2006). The sound, recorded during a courtship sequence,
is stored in the file Elliptorhina_chopardi.wav:

cockroach <- readWave("sample/Elliptorhina_chopardi.wav")
cockroach

Wave Object
Number of Samples: 19137
Duration (seconds): 0.43
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

11.7.1.2 Input Arguments

The arguments to control the sound input are:

wave R object, typically a Wave object as tico but could also be a vector,
one-columnmatrix, ts, mts, Sample, audioSample,sound, or WaveMC
object.

f sampling frequency of the object wave expressed in Hz. This argument is
optional if the sampling frequency is embedded in wave, for instance, if wave
is a Wave object. If, for any reason, the sampling frequency should be changed,
then the raw data of the sound should be used. For instance, the spectrogram of
face with a modified sampling frequency should call face@left as an input.

328 11 Spectrographic Visualization

Table 11.3 Default values of the arguments
of the seewave function spectro()

INPUT
wave

f

FOURIER
wl = 512

wn = "hanning"

ovlp = 0

zp = 0

fftw = FALSE

OUTPUT
complex = FALSE

norm = TRUE

dB = "max0"

dBref = NULL

listen = FALSE

PLOT
plot = TRUE

osc = FALSE

scale = TRUE

cont = FALSE

contlevels = NULL

grid = TRUE

COLOURS
collevels = NULL

palette = spectro.colors

colcont = "black"

colbg = "white"

colgrid = "black"

colaxis = "black"

collab = "black"

AXES
cexlab = 1

cexaxis = 1

tlab = “Time (s)”

flab = “Frequency (kHz)”

alab = “Amplitude”

(continued)

11.7 Functions of the Package seewave 329

Table 11.3 (continued)

scalelab = “Amplitude\n(dB)”

main = NULL

scalefontlab = 1

scalecexlab = 0.75

axisX = TRUE

axisY = TRUE

tlim = NULL

trel = TRUE

flim = NULL

flimd = NULL

LAYOUT
widths = c(6, 1)

heights = c(3,1)

oma = rep(0,4)

Fig. 11.12 Pictures of soniferous animals: the hissing cockroach of Madagascar Elliptorhina
chopardi (reproduced with the kind permission of Emmanuel Delfosse) and the Kuhl’s pipistrelle
Pipistrellus kuhlii, a bat commonly found in Europe (reproduced with the kind permission of
Laurent Arthur)

11.7.1.3 Fourier-Related Arguments

The arguments used to control and compute the short-time Fourier transform are:

wl Fourier window length corresponding to σt of the Heisenberg box width,
expressed in number of samples, preferably as a power of 2. The default value is
set to 29 = 512 (Fig. 11.13).

wn name of the Fourier window or taper specified as a character string.
The available functions are “rectangle”, “bartlett”, “blackman”,
“flatto”, “hamming”, and “hanning” (default).

ovlp percentage of overlap between two successive windows (in %). This
value is by default set to 0 and should not be set to 100 (stationary window)
(Fig. 11.14).

330 11 Spectrographic Visualization

Fig. 11.13 Different Fourier window length with spectro(). The spectrogram of cockroach
was obtained with wl = {128, 256, 512, 1024} samples. Other STDFT parameters:
Hanning window, 0% of overlap, no zero-padding

11.7 Functions of the Package seewave 331

Fig. 11.14 Different Fourier window overlaps with spectro(). The spectrogram of
cockroach was obtained with ovlp = {25, 50, 75, 87.5} samples. Other STDFT
parameters: Hanning window, 512 samples, no zero-padding

332 11 Spectrographic Visualization

zp zero-padding expressed as a numeric vector of length 1. The default value is
0, that is, no zero-padding is applied.

fftw this logical argument can be turned to TRUE to call the function FFT of the
library fftw instead of the function fft of the base to compute the DFTs. This
can speed up the time of process. The time saved increases with the duration of
the sound to be analyzed and/or with the numbers of sound successively analyzed
in a loop.

11.7.1.4 Output Arguments

The arguments that control the type of data returned are:

complex a logical which returns the raw data of the STDFT as complex
numbers, that is, with real and imaginary parts. In that case, no plot is returned.
This argument should be used when applying time-frequency modifications with
the help of the inverse short-time Fourier transform as explained in Sect. 15.4.

norm if TRUE the matrix of the STDFT is normalized by its maximum. If a linear
scale is used, then all values of the STDFT matrix ranges in [0, 1],

correction this argument can be used to apply an amplitude correction to
take into account the amplitude changes induced by the Fourier window function
(e.g., Hanning window). This argument is by default set to “none”, that is,
no correction is applied, but can be changed to “amplitude” or “energy”
to apply an amplitude or energy correction as detailed in Sect. 10.1.2.1. This
correction has meaning only when complex=FALSE, norm=FALSE, and
dB=NULL,

dB this argument is similar to the eponymous argument of the function spec()
(see Sect. 10.1.2.1). The argument waits therefore a character string, either
“max0” (default), “A”, “B”, “C”, or “D”. If set to NULL, then a linear scale is
used,

dBref a single dB reference value. The default setting is NULL so that dB values
vary along a relative scale. However, this can be changed to any value.

listen a logical. If TRUE, then the input sound wave is played back using the
default player that should be previously appropriately chosen (see Sect. 4.3).

The function spectro() returns a list of three items if plot=FALSE.
The numeric results can also be invisibly returned and saved in an object when
plot=TRUE. For instance, the following line plots the spectrogram and saves the
value in the object res:

res <- spectro(face)

11.7 Functions of the Package seewave 333

The three items of the list are:

$time : a numeric vector corresponding to the time x-axis expressed in s. The
length of this vector corresponds to the number of DFTs computed. This length
therefore depends on the sampling frequency fs , the Heisenberg box width σt ,
the overlap, and the zero padding,

$freq : a numeric vector corresponding to the frequency y-axis expressed in
kHz. The length of this vector equals to σt ÷ 2, that is, wl ÷ 2,

$amp : a complex or a numeric matrix containing the Fourier coefficients of the
successive DFTs corresponding to the amplitude z-axis. The number of columns
of the matrix is the length of $time and the number of lines is the length of
$freq.

The results can be obtained in different formats combining the arguments
detailed just above:

• spectro(..., norm=FALSE, dB=NULL, complex=TRUE, ...):
complex values,

• spectro(..., norm=FALSE, dB=NULL, ...): linear real values not
normalized, not squared, not corrected,

• spectro(..., norm=FALSE, dB=NULL, correction="amplit-
ude", ...): linear real values not normalized, not squared, with an amplitude
correction applied to the Fourier window function (e.g. Hanning window),

• spectro(..., norm=FALSE, dB=NULL, correction="energy",
...): linear real values not normalized, not squared, with an energy correction
applied to the Fourier window function (e.g. Hanning window),

• spectro(..., dB=NULL, ...): linear real values normalized to 1, not
squared,

• spectro(...): dB real values normalized to 0,
• spectro(..., norm=FALSE, ...): dB real values not normalized,
• spectro(..., dB="A"): dB A weighted real values with a prior normal-

ization to 0,
• spectro(..., norm=FALSE, dB="A"): dB A weighted real values

without a prior normalization to 0,
• spectro(..., dBref=2*10e-5): dB real values according to a reference

value.

The application of these argument combinations is illustrated with the following
code:

complex values
res <- spectro(cockroach, norm=FALSE, dB=NULL,

complex=TRUE, plot=FALSE)
res$amp[1:10,1]
[1] 0.06228362+0.00000000i -0.07776031+0.13572916i

(continued)

334 11 Spectrographic Visualization

[3] 0.03860612-0.05658345i 0.00618337-0.01581956i
[5] 0.00713985+0.01096740i -0.01882588-0.01681960i
[7] 0.04505415+0.00916466i -0.05292096+0.00477137i
[9] 0.02918675-0.00081825i -0.01117293-0.00877874i

real raw values
res <- spectro(cockroach, norm=FALSE, dB=NULL, plot=FALSE)
range(res$amp)
[1] 2.258614e-03 3.299268e+02
real raw values with amplitude correction
res <- spectro(cockroach, norm=FALSE, dB=NULL,

correction="amplitude", plot=FALSE)
range(res$amp)
[1] 4.526068e-03 6.611449e+02
real raw values with energy correction
res <- spectro(cockroach, norm=FALSE, dB=NULL,

correction="energy", plot=FALSE)
range(res$amp)
[1] 2.887663e-03 4.218151e+02
real [0,1] values
res <- spectro(cockroach, dB=NULL, plot=FALSE)
range(res$amp)
[1] 6.845803e-06 1.000000e+00
dB values maximized to 0
res <- spectro(cockroach, plot=FALSE)
range(res$amp)
[1] -103.2915 0.0000
dB values not maximized
res <- spectro(cockroach, norm=FALSE, plot=FALSE)
range(res$amp)
[1] -52.92316 50.36835
dB A after maximization to 0
res <- spectro(cockroach, norm=TRUE, dB="A", plot=FALSE)
range(na.omit(res$amp)) # includes NA
[1] -105.729333 -0.303597
dB A without prior maximization to 0
res <- spectro(cockroach, norm=FALSE, dB="A", plot=FALSE)
range(na.omit(res$amp)) # includes NA
[1] -55.36098 50.06476
dB ref
res <- spectro(cockroach, dBref=2*10e-5, plot=FALSE)
range(res)
[1] -29.31211 73.97940

The value of spectro() can be used to plot manually the spectrogram using
the function image() as previously done with the function periodogramn()
and powerspec() (Fig. 11.15):

11.7 Functions of the Package seewave 335

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Time (s)

Fr
eq

ue
nc

y
(K

H
z)

Fig. 11.15 The spectrogram is computed with the function spectro() of the package
seewave and displayed with the function image(). Fourier window size = 512 samples, overlap
= 75%, Hanning window

res <- spectro(face, ovlp=75, plot=FALSE)
str(res)
List of 3
$ time: num [1:341] 0 0.00294 0.00588 0.00882 0.01176 ...
$ freq: num [1:256] 0 0.0861 0.1723 0.2584 0.3445 ...
$ amp : num [1:256, 1:341] -178 -183 -200 -205 -204 ...

image(x=res$time, y=res$freq, z=t(res$amp),
xlab="Time (s)", ylab="Frequency (KHz)",
col=gray((512:0)/512))

11.7.1.5 High-Level Plot Arguments

The arguments to control the overall organization of the spectrographic display are:

plot a logical, to plot the spectrogram.
osc a logical, to plot an oscillogram beneath the spectrogram (Fig. 11.16).
scale a logical, to plot an amplitude scale on the right side of the spectrogram

(Fig. 11.16 and DIY box 11.1).

spectro(cockroach, ovlp=87.5, osc=TRUE, scale=TRUE)

336 11 Spectrographic Visualization

Fig. 11.16 Spectrogram, oscillogram and amplitude scale display with spectro(). STDFT
parameters: Hanning window, 512 samples, 87.5% of overlap, no zero-padding

DIY 11.1 — How to change the position of the amplitude scale and
plot a spectrum on the side of the spectrogram

The idea is to plot a spectrogram and a frequency spectrum aside. The default display
of the spectrogram places the dB amplitude scale on the right. This scale needs them
to be moved to another part of the graphic. Here the choice is to flip horizontally and to
position the scale above the spectrogram. To do so, we need to manually set a proper
layout (see Sect. 3.3.9.4) with one cell empty on the top-right section of the plate:

m <- matrix(c(1,0,2,3), nc=2, byrow=TRUE)
layout(m, widths=c(2,1), heights=(c(1,5.5)))

(continued)

11.7 Functions of the Package seewave 337

DIY 11.1 (continued)

Then, we need to set the inner margins and to plot the dB amplitude scale with the
help of the seewave function dBscale. This function plots a dB scale to be placed
either below (side=1), on the left (side=2), on the top (side=3), or on the right
(side=4) of the spectrogram:

par(mar=c(0.5,5,4,0))
dBscale(collevels=seq(-30,0,1), side=3,

textlab="Amplitude (dB)\n")

We then fill in the second cell of the layout with new inner margins, and we add
a vertical dashed line with abline() to highlight the position of the frequency
spectrum that we will plot on the right side:

par(mar=c(5,4,0.5,0))
spectro(cockroach, ovlp=87.5, scale=FALSE)
abline(v=0.2, lty=2)

The last step consists in plotting the frequency spectrum obtained with spec(). We
carefully specify that the graphic should be oriented horizontally with plot=2 and
that the frequency x-axis label and the axes values should not be displayed. The inner
margins are chosen to join the frequency spectrum to the right side of the spectrogram:

par(mar=c(5,0,0.5,2))
spec(cockroach, at=0.2, plot=2,

flab="", xaxt="n", yaxt="n")

(continued)

338 11 Spectrographic Visualization

DIY 11.1 (continued)

cont a logical, to overplot contour lines (i.e., iso-dB lines) on the spectrogram.
contlevels a numeric series specifying the set of levels which are used to

partition the dB amplitude range for contour overplot. This argument works
only if cont=TRUE. Usually the series is defined using the function seq()
following the form seq(from, to, by), with from the lower amplitude
limit, to the upper amplitude unit and by the distance between two suc-
cessive iso-dB lines. For instance, setting contlevels = seq(-30, 0,
5) draws iso-dB lines from −30 to 0 by step of 5, that is, iso-dB lines
in {−30,−25,−20,−15,−10,−5, 0}. The following code shows how to plot
exclusively the contours, the arguments palette and colcont being detailed
below (Fig. 11.17):

blanc <- colorRampPalette("white")
spectro(cockroach, contlevels=seq(-30, 0, 4),

cont=TRUE, colcont=temp.colors(8),
palette=blanc, scale=FALSE)

11.7 Functions of the Package seewave 339

Fig. 11.17 Contour plot with spectro(). The contours shows iso-dB lines from −30 to 0 dB
regularly spaced by 4 dB. STDFT parameters: Hanning window, 512 samples, 87.5% of overlap,
no zero-padding

flog a logical, to plot the frequency y-axis on a logarithmic scale (Fig. 11.18):

spectro(cockroach, ovlp=87.5, flog=TRUE)

grid a logical, to plot a frequency y-axis grid made with dashed black lines.
... these three dots indicate that the arguments of the functions contour()

and oscillo() can be parsed from spectro(). The most interesting
arguments of contour() are probably drawlabels a logical to control
whether the labels of the contour lines should be drawn or not, method to choose
where the labels should be positioned (default "flattest"), and labcex
to control their size. The numerous arguments of oscillo() are detailed in
Sect. 5.1.

340 11 Spectrographic Visualization

Fig. 11.18 Spectrogram with a logarithmic frequency scale. The logarithmic scale obtained the
argument flog=TRUE

11.7.1.6 Colour Arguments

The arguments to control the color of the lines, surfaces, and annotations of
spectro() are:

collevels a numeric series specifying the set of levels to partition the dB
amplitude range for the spectrogram. Usually the series is defined using the
function seq() following the form seq(from, to, by), from the lower
amplitude limit to the upper amplitude unit and by the number of dB per color.
The default value contlevels=seq(-30, 0, 1) builds a spectrogram
with 36 colors along a dynamic ranging from −30 to 0 dB. Setting a value of
contlevels=seq(-60, 0, 2) produces a spectrogram with 60 ÷ 2 = 30
colors over a range of 60 dB (Fig. 11.19).

palette a color palette function to be used to assign colors to the
spectrogram (Figs. 11.20, 11.21, 11.22, and 11.23). The number of colors
is set by collevels. The default palette is the seewave palette
named spectro.colors. Any other palette can be used including
reverse.heat.colors,

11.7 Functions of the Package seewave 341

Fig. 11.19 Different color levels with spectro(). The spectrogram of cockroach was
obtained with four different series of color levels: a linear series going from −30 to 0 by
step of 1 (collevels=seq(-30,0,1)), a linear series going from −60 to 0 by step of 4
collevels=seq(-60,0,4), a linear series going from −30 to 0 by step of 15 creating
a two-color scale (collevels=seq(-30,0,15)), and a logarithmic series from −30 to 0
(collevels=c(-exp(seq(log(30), 0, length=30)))). Other STDFT parameters:
Hanning window, 512 samples, 87.5% of overlap, no zero-padding

342 11 Spectrographic Visualization

spectro.colors

reverse.heat.colors

reverse.terrain.colors

reverse.topo.colors

reverse.cm.colors

temp.colors

reverse.gray.colors.1

reverse.gray.colors.2

jet.colors

green.colors

Fig. 11.20 Color palettes to be used with spectro(). Examples of different colour palettes
for the amplitude scale of a spectrogram. The jet.colors and green.colors palettes were
obtained with colorRampPalette(). See text for details

Fig. 11.21 Change of colour palette with the function choose_palette() of the package
colorspace. This screenshot shows the interactive tool to select a colour palette according to
several parameters and the result on the face spectrogram. Operating system: Ubuntu

11.7 Functions of the Package seewave 343

Fig. 11.22 Different colur palettes with spectro(). The spectrogram of cockroach
was obtained with the palettes temp.colors, jet.colors, green.colors, and
reverse.gray.colors. STDFT parameters: Hanning window, 512 samples, 87.5% of
overlap, no zero-padding

344 11 Spectrographic Visualization

Fig. 11.23 Color changes with spectro(). The colors of the grid, the axes, the labels, and
oscillogram are set to white when the background is turned to black. The palette was also changed
for a better contrast with the background

reverse.terrain.colors, reverse.topo.colors,
reverse.cm.colors corresponding to the reverse of heat.colors,
terrain.colors, topo.colors, cm.colors (Fig. 11.20). The palette
temp.colors is a palette joining “cold” and “hot” colors. The palettes
reverse.gray.colors.1 and reverse.gray.colors.2 can be used
for a gray level plot. The base function colorRampPalette() greatly
facilitates the creation of new palettes. The following examples show how to
generate two new palettes, one varying from white to green through blue and
another one going from yellow to dark green:

11.7 Functions of the Package seewave 345

jet.colors <- colorRampPalette(c("white", "blue", "green"))
green.colors <- colorRampPalette(c("yellow", "darkgreen"))

Another possibility is to take advantage of the package colorspace that pro-
poses a wonderful interactive tool to choose and test a color palette (Fig. 11.21)
with, for instance,:

library(colorspace)
pal <- choose_palette()
spectro(face, palette=pal)

The Fig. 11.22, which was obtained with the following code, shows four
examples of palettes on cockroach:

colcont a vector of length 1 to define the color for the contour lines. This
argument works only if cont=TRUE (Fig. 11.17).

colbg a vector of length 1 to define the background color of the complete plot,
including the margins (Fig. 11.23).

colgrid a vector of length 1 to define the color of the grid. This argument
works only if grid=TRUE (Fig. 11.23).

colaxis a vector of length 1 to define the color of time and frequency axes and
amplitude scale (lines and labels) (See Fig. 11.23).

collab a vector of length 1 to define the color of time, frequency, and amplitude
labels, that is, the colour of tlab, flab and alab (Fig. 11.23).

Figure 11.23 was obtained with:

col <- "white"
spectro(cockroach, ovlp=87.5, osc=TRUE,

palette=reverse.heat.colors,
colgrid=col, colaxis=col, collab=col,
colwave=col,
colbg="black")

11.7.1.7 Axes Arguments

The arguments to control the axes labels and values are:

cexlab the size of both time and frequency axis labels.
cexaxis the size of both time and frequency axis values.
tlab the label of the time axis.
flab the label of the frequency axis.

346 11 Spectrographic Visualization

alab the label of the amplitude axis of the oscillogram. This argument works
only if osc=TRUE.

scalelab the label of the amplitude scale.
main the label of the main title.
scalefontlab the font of the amplitude scale label.
scalecexlab the size of the amplitude scale label.
axisX a logical, to plot the time x-axis.
axisY a logical, to plot frequency y-axis.
tlim a numeric vector of length 2 to specify the lower and upper limits of

the time x-axis. This argument works as the argument xlim of plot(). The
two values should be expressed in s, such that tlim=c(1,2) displays the
spectrogram between the positions 1 and 2 s.

trel a logical argument to control whether the values of the time x-axis vary
along a relative scale (TRUE) or not (FALSE). This argument works only when
tlim is not null. For instance, if tlim=c(1,2) the time x-axis shows values
between 0 and 1 if trel=FALSE and values between 1 and 2 if trel=TRUE.

flim a numeric vector of length 2 to specify the lower and upper limits of the
frequency y-axis limits. This argument works as the argumentylim of plot().
The two values should be expressed in kHz, such that flim=c(2,6) displays
the spectrogram between 2 and 6 kHz.

flimd a numeric vector of length 2, this argument works in all points as
flim but also tries to adapt automatically the values of wl (σt) and ovlp
for an optimal time-frequency resolution. The new values are corrected by first
computing the following factor:

β = fs

2000 × (fupper − flower)

with fs , fupper , and flower the sampling frequency frequency, the upper limit and
the lower limit of the frequency limits expressed in Hz. This factor is then used
to obtain the new wl’ (σt ′) and ovlp’:

σt ′ = β × σt

ovlp′ = 100 − ovlp

β

Figure 11.24, which shows axes changes, was obtained with:

spectro(cockroach, ovlp = 87.5,
osc=TRUE, # layout including the
oscillogram # a
cexlab=1.3, # size of axes labels and

(continued)

11.7 Functions of the Package seewave 347

Fig. 11.24 Zoom-in and axes changes with spectro(). The spectrogram of cockroach is
zoomed in in time and frequency, and changes are applied to the axes: the size of the labels and
values are changed, and the unit of the frequency axis is changed to Hz

values # a
cexaxis=1.2, # size of axes values
tlab="Time [s]", # new time label
flab="Frequency [Hz]", # new frequency label
scalelab="", # no label for dB scale
axisY=FALSE, # no frequency y-axis
tlim=c(0.1, 0.3), # time zoom in
trel=TRUE, # relative time
flim=c(5,15), # frequency zoom in
oma=rep(2,4)) # add outer margins

lab <- seq(6,14,length=5) # new Hz frequency axis
values # a
axis(side=2, at=lab, labels=lab*1000, cex.axis=1.2, las=0)

348 11 Spectrographic Visualization

11.7.1.8 Layout Arguments

The spectrogram display calls the function layout() when osc=TRUE and/or
scale=TRUE. It can be then necessary to control some parameters setting the
organization of the three plots (spectrogram, oscillogram, amplitude scale).

widths a numeric vector of length 2 to control the relative width of the layout
columns. When scale=TRUE, the spectrogram figure is structured by two
columns: one with the spectrogram and optionally the oscillogram beneath if
osc=TRUE and a second column with the scale. By default the first column is
six times larger than the second column such that widths=c(6,1). However,
these relative dimensions can be changed to give more or less space to the
spectrogram. For instance, setting widths=c(8,1) widens the spectrogram
and compresses the scale. Playing with this argument can be useful when printing
long spectrogram into an image file (see Sects. 11.9.2 and 11.9.3).

heights a numeric vector of length 2 to control the relative heights of the
layout rows. When osc=TRUE the spectrogram figure is structured by two lines:
one with the spectrogram and optionally the scale on the side if scale=TRUE
and a second row including the oscillogram. By default the first row is three
times higher than the second row such that heights=c(3,1). However, these
relative dimensions can be changed to give more or less space to the spectrogram.
For instance, setting heights=c(5,1) increases the space allocated to the
spectrogram and reduces the space for the oscillogram.

oma a numeric vector of length 4 to control the size of outer margins when
either scale=TRUE or osc=TRUE. This argument corresponds to the argument
oma of the base function par(). By default, there are no outer margins
(oma=rep(0,4)), but it can be useful to add margins around the figure to add
annotations with mtext().

11.7.1.9 Graphical Adding

We have just explored how to change several graphical parameters, including how
to modify the default axes. In the following example, we illustrate with one example
the use of low-level plot functions to decorate a spectrogram by adding some
graphical elements (see Sect. 3.3.9.3). The spectrogram is first plotted, and then
additional points, arrows, and rectangles are used to highlight specific features of
the sound. The positions of the different elements were defined using the function
locator() (see Sect. 11.8.1) (Fig. 11.25):

spectro(cockroach, ovlp=87.5)
arrows(x0=0.18, y0=21, x1=0.18, y1=20, len=0.1, lwd=2)
text(0.2, 21.25, "FM inflection point")

(continued)

11.7 Functions of the Package seewave 349

Amplitude
(dB)

−30

−25

−20

−15

−10

−5

0

0 0.1 0.2 0.3 0.4

0

5

10

15

20

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

FM inflection point

Voice 1
Voice 2

ll

ll

ll

l

l

l

Fig. 11.25 Spectrogram decoration. The spectrogram of cockroach obtained with
spectro() is decorated with the low level plot functions arrows, text, points, and
rect

text(0.05, 1.25, "Voice 1", col=2)
text(0.05, 2, "Voice 2")
points(x=c(0.075, 0.17, 0.31), y=c(3.22, 6.57, 4.76), pch=19)
points(x=c(0.1, 0.23, 0.33), y=c(3.66, 6.18, 3.38), pch=19, col=2)
rect(xleft=0.13, ybottom=1.5,

xright=0.27, ytop=2.2, col=rgb(1,1,0,0.25))

11.7.2 External Computing of the Short-Time Fourier
Transform

The computation of the spectrogram, which is of the short-time discrete Fourier
transform, can be quite time-consuming, in particular for a long sound.

The computation process can be speed up by avoiding the import of the .wav
file(s) and by computing externally the short-time discrete Fourier transform using
external tools that run faster than R. The function stft.ext() does this task by

350 11 Spectrographic Visualization

reading externally the sound file with the C library libsndfile1 and applying
the C library fftw32 to compute the successive DFTs. All the process is therefore
achieved externally, but the process and the results are controlled from R. Gain
in process time is significant when analyzing a file longer than 10 min and when
handling a group of more than 1000 files.

The function stft.ext() has less arguments than her sister function
spectro(). The input and analysis arguments are file to specify the .wav
file to treat, wl and ovlp for the Fourier parameters, norm to normalize the
STDFT matrix to a maximal value of 1, dB to obtain values dB with a maximum
value set to 0. There is no argument for zero-padding and no argument to specify
the Fourier window shape, a Hanning window being used by default. The function
includes an additional argument, named mean, to compute the average spectrum,
that this the mean of the STDFT matrix according to the columns (see Sect. 11.14).
The logical argument verbose can be set to TRUE to print some information
on the file processed and on the computation. The value returns either a matrix
corresponding to the STDFT matrix or a list containing the matrix ($amp) and the
mean spectrum ($mean). The following examples show the use of stft.ext()
with different argument combinations on the file containing a sound that was
acquired in the tropical forest of the Kaw mountain in French Guiana. The sound,
which was sampled at 44,100 Hz during 60 s, is stored in the file forest.wav:

forest <- readWave("sample/forest.wav")
forest

Wave Object
Number of Samples: 2646000
Duration (seconds): 60
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

The results of stft.ext() on “forest.wav” are quickly explored with
str() and range(). Note that the function does not apply any correction on
the data, that is, the raw values used are the values directly obtained by the DFT
with neither multiplying the values by 2 to take into account the mirror property of
the DFT nor by applying an amplitude or energy correction to the Fourier window
function (e.g., Hanning window):

1http://www.mega-nerd.com/libsndfile/
2http://www.fftw.org/

http://www.mega-nerd.com/libsndfile/
http://www.fftw.org/

11.7 Functions of the Package seewave 351

file <- "sample/forest.wav"
no normalization, linear scale, meta-information file printed
res <- stft.ext(file=file, verbose=TRUE)
File name = ’sample/forest.wav’
Number of samples = 2646000
Sampling rate (Hertz) = 44100
Duration (seconds) = 60.000000
Window length (number of samples)= 512
Window overlap (percentage) = 0.000000
str(res)
num [1:256, 1:5167] 0.057 0.0606 0.0522 0.0262 0.0131 ...

range(res)
[1] 8.900688e-06 7.153301e+00
normalization, linear scale
res <- stft.ext(file=file, norm=TRUE)
str(res)
num [1:256, 1:5167] 0.00796 0.00848 0.0073 0.00366 0.00183 ...

normalization, dB scale
res <- stft.ext(file=file, dB=TRUE)
range(res)
[1] -118.1017 0.0000
STDFT and mean spectrum, normalization, linear scale
res <- stft.ext(file=file, norm = TRUE, mean = TRUE)
str(res)
List of 2
$ mean: num [1:256] 0.1043 0.0986 0.0595 0.0378 0.0292 ...
$ amp : num [1:256, 1:5167] 0.00796 0.00848 0.0073 0.00366 0.00183 ...

range(res$mean)
[1] 0.003821462 1.000000000
range(res$amp)
[1] 1.244277e-06 1.000000e+00

11.7.3 Inverse Short-Time Fourier Transform

The basic process of the inverse short-time Fourier transform (ISTFT, ISTDFT)
is to compute the inverse Fourier transform (IFT, IDFT) of the frequency function
obtained for each window of the STDFT. The IFT is divided by the window function
(e.g., Hanning window). However, such raw operation often leads to distorted
signals in the time domain.

The overlap-add (OLA) method consists in adding overlapping windows such
that the window function has no effect on the process (Quatieri 2002). The OLA
method can be expressed as:

x(t) = 1

2πw(0)

∫ ∞

−∞
F(τ, ω)eiωmdω

where w(0) = ∑∞
n=−∞ w(n) and where x(t) is the recovered signal that can be

different or not from the original signal s(t) if modifications were or were not
applied on the STDFT matrix.

352 11 Spectrographic Visualization

The discrete form of the OLA equation is:

x[n] = 1

w(0)

∞∑
−∞

[
1

N

N−1∑
k=0

F [m, k]ei
2pi
N

kn

]

The OLA operation is implemented in the function istft() of seewave. The
function waits the complex form of the STDFT, that is, the complex values of the
Fourier transform computed for each window. In addition, to avoid any distortion in
the reconstructed signal, the STDFT and ISTDFT should be computed such that the
window overlap parameters should be:

ovlp = 100 ×
(

1 − 1

4n

)

with n being a positive integer. The argumentovlp of istft() has a default value
of 75% that works in most cases. To avoid any issue, the arguments wl, ovlp, and
wn should be similar when calling spectro() and istft(). The following is a
reconstruction of tico:

parameters
wl <- 1024
ovlp <- 75
wn <- "hanning"
STDFT = getting the amplitude complex values
data <- spectro(tico, wl=wl, ovlp=ovlp, wn=wn,

plot=FALSE,
norm=FALSE, dB=NULL, complex=TRUE)$amp

ISTFT = reconstruction of the original signal
recons <- istft(data, f=22050, ovlp=ovlp, wl=wl, wn=wn,

out="Wave")

Note that the function istft() does not preserve the energy of the signal so
that the RMS of the original and reconstructed signals differ:

rms(tico@left)
[1] 3927.516
rms(recons@left)
[1] 3.842945

11.8 Measurements and Annotations on the Spectrogram 353

11.8 Measurements and Annotations on the Spectrogram

To take measurements on a spectrogram is not a good idea as the time and frequency
precision of the measurements are severely constrained by the STDFT parameters
and the Heisenberg uncertainty principle. However, if necessary, some options, from
very rough to more fancy, are available to take time and frequency features and
annotate spectrograms.

11.8.1 Simple Measure

The function locator() can be used to fetch the coordinates of points of interest:

spectro(cockroach, ovlp=87.5)
res <- locator()

Here three points where localized. The function locator() returns the coor-
dinates in a two-item list, $x being the time coordinates in s and $y the frequency
coordinates in kHz:

res
$x
[1] 0.07542123 0.19255667 0.32542672

$y
[1] 3.460243 6.690117 3.972296

11.8.2 Fancy Measure and Annotation

11.8.2.1 Function of the Package warbleR

The package warbleR offers an option for time measurements and annotations
on the spectrogram. The dedicated function, named manualoc(), generates an
interactive spectrogram based on spectro().

There are two main actions. The user can first zoom in time by clicking on two
time positions t1 and t2 with t1 < t2. The view is then refreshed and the new
spectrogram is displayed. The user can also add selections on the spectrogram by
clicking on two time positions t1 and t2 with t1 > t2. This action adds vertical dotted

354 11 Spectrographic Visualization

red lines at t1 and t2 and a series number in between. This action can be repeated ad
libitum to select as many as desired selections.

The function manualoc() has been clearly developed for the batch processing
of several sound files. This explains why the function does not wait for a single
R object as an input but directly works on all the .wav (not .mp3) files stored
in the working directory. This implies to use setwd() to select the appropriate
directory where the files of interest are grouped. The treatment of several files in
series motivated as well the creation of fancy-colored buttons overlaid on the top-
right area of the spectrogram. These buttons facilitate the navigation within and
between files. The buttons allow the following actions:

• Full view: to operate a complete zoom out so that the spectrogram of the complete
sound is displayed.

• Previous view: to display the previous view.
• Stop: to get out of the interactive session and go back to the console.
• Next rec: to jump to the next recording stored in the working directory.
• Play: to listen to the current sound displayed.
• Del-sel: to delete the selections.

After, having selected the appropriate directory with setwd(), manualoc()
can be run directly with no arguments:

manualoc()

The function displays then the first sound file, and zoom and time segments
selections can be operated. The function has several arguments to tune the display:
the Fourier window length (wl), the Fourier window function (wn), the frequency
limits that are set by default for bird vocalizations between 0 and 12 kHz (flim),
and the duration of the section displayed (tdisp). We can then tune the display
with the following code:

manualoc(wl=256, wn="hamming", flim=c(0,22.05), tdisp=20)

The Fig. 11.26 shows the display obtained for the sound sample forest and
eight selections around sound of interests.

These eight selections were saved automatically in a .csv file named
manualoc_output.csv stored in the working directory. The file contains a
line for each time selection and seven columns. The definition of the columns is
sound.files for the names of the files analyzed, selec for the series number
of selections, start for the start time in second of the selection, end for the end
time in s of the selection , sel.comment for the optional comment attributed

11.8 Measurements and Annotations on the Spectrogram 355

Fig. 11.26 Spectrogram selections with manualoc(). Manual annotations were added by
clicking on the spectrographic display. Here eight regions of interest were delimited

to the selection, and rec.comment for the optional comment attributed to the
recording (argument reccomm=TRUE).

The data can be imported into R with read.csv(), here saved in a directory
data:

meas <- read.csv("data/manualoc_output.csv")
head(meas)

sound.files selec start end sel.comment
1 forest.wav 1 6.121480 6.736457 NA
2 forest.wav 2 7.098208 7.532310 NA
3 forest.wav 3 7.966411 8.364337 NA
4 forest.wav 4 8.798439 9.196365 NA
5 forest.wav 5 9.594291 10.100743 NA
6 forest.wav 6 10.571020 11.005121 NA

rec.comment
1 NA
2 NA

(continued)

356 11 Spectrographic Visualization

3 NA
4 NA
5 NA
6 NA

11.8.2.2 Function of the Package monitoR

monitoR is a package primary dedicated to the automatic detection and identi-
fication of template sounds in recordings (Katz et al. 2016b). The main utilities
of monitoR are considered in Sect. 17.4, but the package embeds a nice spec-
trogram function to explore long sound. viewSpec() uses spectro() but
plots the results using image() with the argument useRaster to TRUE when
spectro() calls filled.contour() that smooths the image. This has the
inconvenient to produce quite rough images but the great advantage to be very fast
and so to opens the opportunity to explore quickly a long sound with time navigation
tools. We first load the package:

library(monitoR)

and then do an elementary test with forest:

viewSpec(forest)

viewSpec() plots the first 30 s of the sound from 0 to 12 kHz, but this can
changed with the arguments start.time, page.length, and freq.lim.
Here we display a 20 s spectrogram starting at 10 s over a [0, 22.05]kHz frequency
range:

viewSpec(forest, start.time=10, page.length=20,
frq.lim=c(0,22.05))

The beauty of viewSpec() is the navigation tool offered by the argument
interactive. Turning this argument to TRUE enables the options to page
through spectrograms, play, zoom in and out in time, extract segment of interests
and save them as .wav files, and change the STDFT parameters. If we call:

11.8 Measurements and Annotations on the Spectrogram 357

viewSpec(forest, start.time=10, page.length=20,
frq.lim=c(0,22.05), interactive=TRUE)

then the console prints the following intuitive commands to be run with the
keyboard:

Reading file...
Enter:

n(m) for next page,
b(v) for previous page,
p to play,
z to zoom in,
x to zoom out,
s to save page as wave file,
c to change spectrogram parameters,
q to exit

The function is even more fancy with the use of the annotate argument. This
option allows manual annotations of specific sound events by drawing and labeling
a rectangle around a region of interest.

viewSpec(forest, start.time=10, page.length=20,
frq.lim=c(0,22.05), interactive=TRUE, annotate=TRUE)

The console prints the same message as with interactive=TRUE but this
time with two additional options: a to add annotations, and d to delete annotations.

The process is again very intuitive, the user just needs to follow the instructions
provided in the console. Figure 11.27 was obtained by selecting and labeling three
regions of interest.

The results can be saved in a .csv file that can be then read back by giving the
file path in the argument anno.

The annotations can be read in R with the function read.csv() for further
statistical analysis. The annotations were here saved in a directory data:

annotations <- read.csv("data/forest_annotations.csv")
annotations

start.time end.time min.frq max.frq name
1 16.157 20.369 1.4862 2.4967 unidentified
2 20.408 22.378 16.9071 20.9930 bats
3 21.258 26.745 3.4193 3.9905 Lerneca_fuscipennis

358 11 Spectrographic Visualization

forest

Time

Fr
eq

ue
nc

y
(k

H
z)

5

10

15

20

00:00:12 00:00:16 00:00:20 00:00:24 00:00:28

unidentified

Lerneca_fuscipennis

bats

Fig. 11.27 Spectrogram annotations with viewSpec(). Three regions of interest were delim-
ited, saved, and read back with viewSpec()

or can be used directly with viewSpec() to read them back and display them
on the spectrogram and then to carry on the process of annotation:

viewSpec(forest, start.time=10, page.length=20,
frq.lim=c(0,22.05), annotate=TRUE,
anno=’data/forest_annotations.csv’)

11.8.3 Automatic Parametrization

The functions locator(), manualoc(), and viewSpec() all rely on manual
measurements, a process that is not always possible when handling numerous files.
Another option is to try to parametrize automatically the spectrogram along both

11.8 Measurements and Annotations on the Spectrogram 359

time and frequency dimensions. The principle of “acoustat”, which was developed
by Fristrup and Watkins (1992), consists in describing the time and frequency
profiles of the STDFT matrix with summary statistics of central tendency (median,
percentile) and dispersion (interpercentile range).

The following workflow of “acoustat” is:

1. computes the STDFT matrix;
2. computes an aggregation function such as the sum, the variance, or the standard-

deviation across rows and columns of STDFT matrix. This aggregation process
results in two components: (1) the time contour which is a kind of time envelope
and (2) the frequency contour (Fig. 11.28);

3. transforms each contour into a probability mass function (PMF) and then into a
cumulative distribution function (CDF);

4. computes the following features for each CDF: the median (M), the initial
percentile (P1), the terminal percentile (P2), and the interpercentile range (IPR).
P1, P2, and IPR are defined using a fraction parameter (fraction) that sets the
percent of the contour amplitude to be captured by the initial and terminal
percentile values. A fraction of 50% would result in the familiar quartiles and
interquartile range. An energy fraction of 80% would return the 10th and 90th
percentile values, and the width of the range in between.

The eponymous function acoustat() computes these parameters and plots
optionally the contours and the statistics in a two-frame graphic. The following
example uses most of default parameters except the ovlp argument that set, as
usually, the percentage of overlap between successive Fourier windows (Fig. 11.29):

res <- acoustat(cockroach, ovlp=87.5)

Both contours and all statistics are returned in a list made of 10 items

str(res)

List of 10

$ time.contour: num [1:292, 1:2] 0 0.00149 0.00298 0.00447 0.00596 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:2] "time" "contour"

$ freq.contour: num [1:256, 1:2] 0 0.0861 0.1723 0.2584 0.3445 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:2] "frequency" "contour"

$ time.P1 : num 0.0775

$ time.M : num 0.215

$ time.P2 : num 0.353

(continued)

360 11 Spectrographic Visualization

Fig. 11.28 The main principle of acoustat. One of the most important stages in the process is
to estimate a time and a frequency contour through an aggregation of the columns and rows of
the STDFT matrix. The example, here based on cockroach, shows the spectrogram and the
contours. The contours are drawn with a line and points to show the discretization due to the
STDFT. STDFT parameters: Hanning window, 512 samples, 87.5% of overlap, no zero-padding

11.8 Measurements and Annotations on the Spectrogram 361

0.0 0.1 0.2 0.3 0.4

0.
00

1
0.

00
3

0.
00

5

Time envelope

Time (s)

Pr
ob

ab
ilit

y

0 5 10 15 20

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Frequency spectrum

Frequency (kHz)

Pr
ob

ab
ilit

y

Fig. 11.29 Parametrization of the spectrogram with acoustat(). Visual display of the function
acoustat() with the time envelope (top) and the frequency contour (bottom). The median and
quartiles are indicated with vertical red segments

$ time.IPR : num 0.276

$ freq.P1 : num 3.96

$ freq.M : num 10.4

$ freq.P2 : num 16.6

$ freq.IPR : num 12.7

The function acoustat() gives access to two other STDFT parameters (wl
and wn) and also opens the possibility to apply a time and/or a frequency selection

362 11 Spectrographic Visualization

with the argumentstlim and flim.The aggregation function can be tuned with the
argument aggregate which is set to the sum by default and with the argument
fraction to set the percentiles. Here is a tuned example with the standard
deviation instead of the sum, and quartiles instead of 10th and 90th percentiles:

res <- acoustat(cockroach,

wl=1024, ovlp=87.5, # STDFT parameters

tlim=c(0.1,0.3), flim=c(5,15), # zoom

aggregate=sd, fraction=50, # acoustat parameters

plot=FALSE) # no plot

11.9 Complex Display and Printing

11.9.1 Multi-Spectrogram Graphic

For comparison purposes, it might be useful to plot several spectrograms combined
in a single graphic display. This can be achieved using layout(). However, the
function spectro() uses by default layout() to display the amplitude scale
color and/or the oscillogram. Because, it is not possible to embed two layout()
calls, it is not possible to build a plate of spectrograms with the amplitude scales
and/or the oscillogram. Nonetheless, it is still possible to combine different “naked”
spectrograms, as illustrated in Figs. 11.13, 11.14, 11.19, and 11.22, and then to add
manually a shared amplitude scale as exemplified here with the spectrograms of four
sounds (Fig. 11.30):

overvall parameters
cex <- 1.75
m <- matrix(c(1,0,2:5), byrow=TRUE, ncol=2)
layout(m, heights=c(0.3,1,1))
par(oma=c(2,2,1,0))
plot 1: shared amplitude colour scale
par(mar=c(1,2,4,1))
dBscale(side=3, collevels=seq(-30,0,1), textlab="")
plot 2: tico
par(mar=c(3,2,0,1))
spectro(tico, scale=FALSE, tlab="", flab="")
text(x=0.15,y=10.4, label="(A)", cex=cex)
plot 3: orni
spectro(orni, scale=FALSE, tlab="", flab="")
text(x=0.06,y=10.4, label="(B)", cex=cex)

(continued)

11.9 Complex Display and Printing 363

Fig. 11.30 Several spectrograms in a single graphic display. The spectrogram of tico, orni,
peewit, and cockroach are arranged to be all plotted in a single graphic display. The amplitude
color scale is added with the function dBscale()

364 11 Spectrographic Visualization

plot 4: peewit
spectro(peewit, scale=FALSE, tlab="", flab="")
text(x=0.06,y=10.4, label="(C)", cex=cex)
plot 5: cockroach
spectro(cockroach, scale=FALSE, tlab="", flab="")
text(x=0.035,y=20.75, label="(D)", cex=cex)
axes labels in the outer margins
mtext(side=1, text="Time (s)", out=TRUE)
mtext(side=2, text="Frequency (kHz)", out=TRUE, line=0.5, las=0)
mtext(side=3, text="Amplitude (dB)", out=TRUE, at=0.11, line=-1)

11.9.2 Printing in a File

As seen in Sect. 3.3.9.6, R offers several options to print a graphic in a file, either
a vectorial or a raster format. The vectorial format, such as the .pdf format, is
often preferred for its high quality. However, this format might not be adapted to
spectrograms which may contain numerous points and therefore may generate very
heavy files. The most convenient solution seems to use the loesless raster format
.png with a high resolution. Usually setting the function png() as in the following
example returns an appropriate graphic with a square shape:

png("cockroach.png", width=1200, height=1200, point=24)
spectro(cockroach, ovlp=87.5)
dev.off()

If the sound is particularly long, it might be necessary to change the dimensions
of the spectrogram to make it wider as in the following test with the sound forest.
Here the relative width of the spectrogram and of the amplitude color scale needs
to be adjusted with the argument widths of spectro(), and the levels of the
colors are also changed to make apparent distant (Fig. 11.31):

png("forest.png", width=2000, height=1200, point=24)
spectro(forest, collevels=seq(-40,0,1), widths=c(8,1))
dev.off()

11.9 Complex Display and Printing 365

Fig. 11.31 Saving a spectrogram in a raster file. This image was produced using the function
png() to print the spectrogram of forest into a .png file. The settings of png() and
spectro() were adjusted to widen the spectrogram

11.9.3 Long Spectrogram Graphic

When a sound sample is particularly long, lasting more than 60 s, it might be more
efficient to print and save the result in a file rather than to display it on the graphic
device. The process is indeed faster. This idea is behind the principle of the function
lspec() of the package warbleR. This fancy and very useful function generates
long spectrograms, produced by spectro(), expanded over several lines and
potentially over several raster .jpeg files, named pages. The function can handle
a single or a series of files all stored in default working directory. The file names,
potential selections determined with manualoc (see Sect. 11.8.1), the start and end
times of the display, and the optional selection comments and recording comments
can be specified in a data frame with the respective following column names:
sound.files, selec, start, end, sel.comment, and rec.comment.

For a basic use with a single .wav file, here with forest.wav file, the data
frame is simple with only four columns:

X <- data.frame(sound.files="forest.wav", selec=NA,
start=0, end=duration(forest))

X
sound.files selec start end

1 forest.wav NA 0 60

366 11 Spectrographic Visualization

This information is then used to generate a long spectrogram divided in 6 rows
(argument rows) with each row lasting 5 s (argument sxrow):

setwd("sample")
lspec(X=X, rows=6, sxrow=5)

It was first necessary to change the working directory with setwd() so
that lspec() can find the .wav file. The function has generated two files,
named forest-p1.jpeg and forest-p2.jpeg containing each 6 rows of
spectrograms (Fig. 11.32).

Additional information provided in the data frame can be used to overlay on the
spectrogram the selection limits, selection comments, and the recording comments.
This process can be applied to a batch of files such that several long-annotated
spectrograms can be generated with two lines of code only.

A more direct way, but without control on annotations, to produce the same
images is to use the argument flist where the file(s) name(s) can be provided:

lspec(flist="forest.wav", rows=6, sxrow=5)

The main other arguments of lspec() are given in Table 11.2.

11.10 Dynamic Spectrogram

The function dynspectro() of seewave opens the possiblity to navigate
along a sound in a similar way as the dynamic spectrum does (Sect. 11.1.1). Here
successive STDFTs, or spectrograms, are computed and are plotted successively,
thanks to a position control button created with the library rpanel. In the
following example, we apply the function spectro() on forest. The size of
the spectrograms is controlled in percentage of the total duration with the argument
slidframe (Fig. 11.33):

library(rpanel)
dynspectro(forest, slidframe=15, osc=TRUE)

11.10 Dynamic Spectrogram 367

F
ig
.1

1.
32

Sa
vi

ng
a

lo
ng

sp
ec

tr
og

ra
m

in
a

se
ri

es
of

ra
st

er
fil

es
.T

he
se

tw
o

im
ag

es
w

er
e

pr
od

uc
ed

us
in

g
th

e
fu

nc
ti

on
l
s
p
e
c
(
)

of
w
a
r
b
l
e
R

to
sp

li
ta

nd
pr

in
t

th
e

60
s

sp
ec

tr
og

ra
m

of
f
o
r
e
s
t

368 11 Spectrographic Visualization

Fig. 11.33 Dynamic spectrogram. The function dynspectro() can be used to navigate along a
long sound. A series of STDFT are computed along the signal, here the sound forest, for a given
number of frames set with the argument slidframe. The screenshot here shows the STDFT
computed for the frame between 11.05 and 20.04 s. Moving along the signal is made possible,
thanks to the small control pop-up window entitled “Position.” Operating system: Ubuntu

11.11 Movie

There are no way to create a movie directly within R. However, Marcelo Araya-
Salas, the maintainer of warbleR, shared in his blog a very nice solution to produce
an .mp4 file of a spectrogram moving in phase in sound.3

3https://marce10.github.io/2016/12/12/Create_dynamic_spectro_in_R.html

https://marce10.github.io/2016/12/12/Create_dynamic_spectro_in_R.html

11.11 Movie 369

The solution consists in saving a series of spectrograms as image files and
associating afterward these files as a movie with the UNIX utility ffmpeg.4 Here
we adapt this brilliant idea to create an image with a static spectrogram but with a
vertical cursor moving with sound.

The first step consists in creating a series of images that build the movie. The
images contain the same “background,” which is the spectrogram, and the cursor
is added at successive positions related to the frame rate or frame per second fps

parameter. To generate this series of images, we can use a repeat loop taking
advantage that the function jpeg() can increment automatically the name of the
output file:

set the working directory
where images and movie will be stored
setwd("image/movie")
frame per second rate
fps <- 75
repeat loop
jpeg("cockroach-movie-%02d.jpg",

width=1100, height=1100, pointsize=20)
x <- 0
repeat{

spectrogram
spectro(cockroach, scale=FALSE, osc=TRUE)
cursor
abline(v=x, lty=2, col=2, lwd=2)
x <- x + 1/fps
exit loop when exceeding the duration of the sound
if(x > duration(cockroach)) break
}

dev.off()

Once the images are generated, we call ffmpeg through the system()
function (see Sect. 3.3.11) to first create the video file cockroach_movie.mp4:

system("ffmpeg -loglevel quiet -framerate 75
-i cockroach-movie-%02d.jpg -c:v libx264
-profile:v high -crf 2 -pix_fmt yuv420p
cockroach_movie.mp4")

We then associate the audio file Elliptorhina_chopardi.wav and gen-
erate a new and ultimate .mp4 file named cockroach_movie_with_sound.
mp4:

4https://ffmpeg.org/

https://ffmpeg.org/

370 11 Spectrographic Visualization

system("ffmpeg -loglevel quiet -i cockroach_movie.mp4
-i ../../sample/Elliptorhina_chopardi.wav
-vcodec libx264 -acodec libmp3lame
-shortest cockroach_movie_with_sound.mp4")

As we are tidy people, we clean up the directory by removing unnecessary files,
and we reset the working directory:

file.remove(c("cockroach_movie.mp4", dir(pattern="*.jpg")))
[1] FALSE
setwd("../../")

11.12 Waterfall Display

The waterfall display is another solution to plot in two dimensions a three-
dimensional object. The waterfall is a perspective plot that shows each frequency
spectrum of the STDFT slightly offset from its neighbor on a diagonally oriented
time axis. Frequency is represented along the x-axis, amplitude along the y-axis,
and time along a diagonal. The function wf() of seewave can produce such a
graphic with different options to control STDFT parameters (arguments wl, ovlp,
zp, wn, dB, dBref, and fftw similar to those of spectro()), the orientation
or perspective (arguments hoff and voff), and the global appearance (arguments
col, density, border, lines, and lwd). The input is, as usual, an object
describing a sound (argument wave), but it can also be any matrix (argument x).
Figure 11.34 groups four examples of waterfalls produced with the following code:

layout
par(mfrow=c(2,2), mar=c(4.5,4.5,1,1))
wl <- 512 ; ovlp <- 50 # STDFT parameters
hoff <- 1; voff <- 5 # perspective parameters
plot 1: default display
wf(cockroach, wl=wl, ovlp=ovlp)
plot 2: changes in the orientation of the waterfall
wf(cockroach, wl=wl, ovlp=ovlp,

hoff=hoff, voff=voff)
plot 3: lines plot
wf(cockroach, wl=wl, ovlp=ovlp,

hoff=hoff, voff=voff,
lines=TRUE, col=1)

plot 4: surface plot with home-made palette

(continued)

11.12 Waterfall Display 371

Fig. 11.34 Waterfall display. The figure shows four examples of waterfall display obtained by
applying the function wf() on cockroach. STDFT parameters: Hanning window, 512 samples,
50% of overlap, no zero-padding

372 11 Spectrographic Visualization

jet.colors.2 <- colorRampPalette(c("blue", "green", "blue"))
wf(cockroach, wl=wl, ovlp=ovlp,

hoff=hoff, voff=voff,
col=jet.colors.2, border = NA)

The waterfall display is not commonly used because as in any perspective plot,
the information placed in the rear of the plot, here the first frequency spectra, can
be hidden by the information in the front of the plot, here the last frequency spectra.
However, this plot can still be used as a nice illustration of frequency modulations.

11.13 3D Spectrogram

The last solution to plot a spectrogram is to make use of a true 3D tool that allows
the user to turn around the object in all directions. The wonderful package rgl
opens the possibility to manipulate a 3D visualization device system (Adler and
Murdoch 2016). The package is an interface with the external library Open Graphics
Library (OpenGL), an application for 2D and 3D graphics rendering that can be
found on any operating system. The seewave function spectro3D() computes
the STDFT as spectro() and displays it in 3D using the main functionalities of
rgl. A simple example can be run with:

spectro3D(cockroach, ovlp=87.5)

R opens a 3D device. The user can navigate around, in, and out the spectrogram.
The length of the time and frequency axes is under the control of the STDFT
parameters. Increasing the length and the overlap of the successive DFTs increases
the size of the spectrogram in the 3D space. The axes can be compressed or
stretched out using the magnification arguments named magt, magf, and maga for
the time, frequency, and amplitude axes, respectively. Colors can also be changed
using the argument col. The following example increases the amplitude axis by a
magnification factor of 4 and chooses the spectro.colors palette as a reference
color system:

spectro3D(cockroach, ovlp=87.5, maga=4, palette=spectro.colors)

The interaction provided by the rgl 3D device is quite fancy but is not that
useful when writing a report or a paper. By chance, the package rgl has a function,
rgl.snapshot(), that can save the current view into a .png file. By changing
regularly the perspective, or point of view, we can imagine quickly a way to produce

11.13 3D Spectrogram 373

a kind of movie by taking a snapshot at each change of point of view. Setting the
perspective is achieved thanks to the function rgl.viewpoint(). This function
waits the coordinates of the object in reference to a spherical coordinate system. The
coordinates are the radial distance ρ from the origin (argument zoom), the polar
angle θ (argument theta), and azimuthal angle φ (argument phi). The following
script is an example of animation around the spectrogram of cockroach. The
spectrogram is first displayed with spectro3D(). The successive coordinates
(ρ, θ, φ) are generated in three vectors that are then used in a for loop. This loop
calls the function rgl.viewpoint(), generates an appropriate file name in the
format ’cockroach-3D-XX’ where XX is the number of the perspective, and
saves the image with rgl.snapshot():

angle parameters
n <- 100
theta <- seq(-90, 270, length.out=n)
phi <- theta/4.5 + 30
zoom <- seq(0.2, 1.5, length.out=n)
open rgl device
spectro3D(cockroach, ovlp=87.5, maga=4, palette=spectro.colors)
animation
for (i in 1:n){
rgl.viewpoint(theta[i], phi[i], zoom=zoom[i])
filename <- paste("image/animation/cockroach-3D-",

formatC(i, digits=2, flag="0"),".png",sep="")
rgl.snapshot(filename)
}

The script generates a total of 100 images numbered from 001 to 100 that can be
grouped in a numbered series to produce an animated image as shown in Fig. 11.35.

Fig. 11.35 3D animation of
the cockroach
spectrogram. Animation
around the 3D spectrogram of
cockroach based on a
series of 100 .png images.
Animated on electronic
version only

374 11 Spectrographic Visualization

Eventually, because a spectrogram is fundamentally a 3D object, it can be
transferred from the digital to the real world through a 3D printer. The recipe for
real 3D printing is given in the DIY box 11.2.

DIY 11.2 — How to print in 3D a spectrogram

The spectrogram is a three-dimensional object usually projected on a two-dimensional
plan. However, 3D printers open the possibility to use the output of spectro() as a 3D
model. A 3D printer requires the model to be of the format .stl [stereolithography]. The
trick to print a spectrogram as a three-dimensional object is to convert the amplitude data
saved as a numeric matrix into a .stl files. To do so, we need first to use the package
r2stl:

library(r2stl)

Then it is necessary to get the data of a spectrogram and to convert the negative dB values
into positive values:

z <- spectro(tico, plot=FALSE)$amp
z <- z + abs(min(z))

Eventually, the function r2stl() ensures the export to a .stl file:

r2stl(x=1:nrow(z), y=1:ncol(z), z=z,
filename="tico.stl")

The image below shows an example of a 3D printing produced by David Cartmell. The
object is based on a spectrogram of a phrase of the hermit thrush (Catharus guttatus) from
North America. It represents a segment of sound frozen in plastic allowing one to feel,
scrutinize, rotate, and handle in what ever manner a piece of sound. The dimensions of

(continued)

11.14 Mean Spectrum 375

DIY 11.2 (continued)

the model are: X length = 12.7 cm (1.46 s), Y width = 5.1 cm (2.70–6.00 kHz), Z height
= 7.6 cm (61–96 dB amplitude):

Object design and picture reproduced with the kind permission of David Cartmell.

11.14 Mean Spectrum

The mean frequency spectrum, or average frequency spectrum, is obtained by
computing the STDFT matrix and then the mean of the matrix rows. If we refer to
the mathematical writing of the STDFT (see Sect. 11.1.1), then the mean frequency
spectrum can be written as:

mean.spectrum = 1

J

J∑
j=1

akj

where J is the number of Fourier windows computed along the signal, that is, the
number of columns of STDFT matrix.

In terms of R code, the function meanspec(), which computes the mean fre-
quency spectrum, can be seen as a combination of both spectro() and spec().
As such, the arguments used in meanspec() can be found in the two other
functions. The arguments related to spectro() are wl for the window length,
ovlp for the window overlap, and wn for the window function (see Sect. 11.7 for
details regarding these arguments). The arguments in link with spec() are norm,
PSD, PMF, dB, dBref, from, to, identify, and several additional graphical
parameters (see Sect. 10.1.2 for details regarding these arguments). The average

376 11 Spectrographic Visualization

0 2 4 6 8 10

Frequency (kHz)

Am
pl

itu
de

Fig. 11.36 Mean frequency spectrum with meanspec().The plot shows the mean frequency
spectrum of peewit, a sound with few frequency modulations. STFT parameters: Hanning
window, 512 samples, 87.5% of overlap, no zero-padding

spectrum of peewit with a 512 sample window (default) and 87.5% overlap can
be obtained with (Fig. 11.36):

res <- meanspec(peewit, ovlp=87.5)

The values can be explored in the object res:

dim(res)
[1] 256 2
head(res)

x y
[1,] 0.00000000 0.0004504876
[2,] 0.04306641 0.0004752211
[3,] 0.08613281 0.0004834852
[4,] 0.12919922 0.0003740508
[5,] 0.17226563 0.0004068626
[6,] 0.21533203 0.0003694860

res is a two-column matrix, the first column x corresponds to the frequency
values and the second y refers to the amplitude, such that the frequency spectrum

11.15 Soundscape Spectrum 377

could be visually reconstructed with:

plot(res, type="l", xlab="Frequency (kHz)", ylab="Amplitude")

The mean frequency spectrum is supposed to summarize the frequency content of
a sound over a certain duration. However, the results should be inspected and treated
carefully because frequency modulations and irregular temporal patterns may return
unexpected profiles.

Audio samples including sounds with frequency modulations can produce
meaningless flat frequency spectra (Fig. 11.37, top-left and top-right).

When an audio sample is composed of several sounds that markedly differ in
their frequency and duration features, the mean spectrum can give more weight
to long sounds than to brief ones. If we have, for instance, a continuous sound
produced at a specific frequency and that at the same time we have a brief sound
produced only once at another frequency, then the mean frequency spectrum will
show a significantly higher frequency peak corresponding to the long pure tone. This
discrepancy between the two tones can stand even if the short tone is produced with
a higher energy than the long one (Fig. 11.37, bottom-left). This phenomenon can be
easily explained by the averaging process: each row of the STDFT matrix is summed
and divided by the same number, that is, by the number of the STDFT columns. If
a lot of energy is found at a particular frequency, then the sum of the corresponding
STDFT matrix row, and so its mean, will be high. The mean spectrum should be
then carefully interpreted. For instance, the mean spectrum of cockroach does
not provide relevant information (Fig. 11.37, bottom-right).

11.15 Soundscape Spectrum

A particular case of a frequency spectrum is the spectrum computed for soundscape
ecology studies (see Chap. 16). Following Kasten et al. (2012), the seewave
function soundscapespec() computes the soundscape frequency spectrum
applying Welch method (Welch 1967): (1) computation of the STDFT matrix; (2)
calculation of the square of the STDFT matrix; (3) computation of the sum of the
matrix rows, that is,

∑J
j=1 akj where J is the number of DFTs; (4) normalization of

the resulting vector with a division by J × fs ; and (v) multiplying the vector by 2.
This Welch’s frequency spectrum is then binned (discretized) into 1 kHz frequency
bands.

Parameters used in Kasten et al. (2012) were a Hamming window of 1024
samples with 50% of overlap and are used as default values (wl=512, ovlp=50,
wn=“hamming”). A test on the data forest() is run hereafter (Fig. 11.38). The
value of the function is a two-dimensional matrix with kHz frequency given in the

378 11 Spectrographic Visualization

Fig. 11.37 Issues with the mean spectrum. The mean spectrum can returned counterintuitive
results as illustrated with three synthetic samples (top-left, top-right, bottom-left) and the natural
cockroach whistle (bottom-right). For each case the spectrogram is shown on the left and the
mean spectrum on the right

first column and the power according to Welch’s definition in the second column
(Fig. 11.38).

11.15 Soundscape Spectrum 379

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

Frequency (kHz)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 11.38 Soundscape frequency spectrum. The soundscape frequency spectrum, here computed
and displayed for the recording forest consists in a Welch frequency spectrum binned into 1 kHz
frequency bands. The graphic is based on the high-level plot graphic function barplot()

res <- soundscapespec(forest)

Here is the content and structure of the object returned by soundspec():

dim(res)
[1] 21 2
head(res)

frequency amplitude
[1,] 1 0.05286976
[2,] 2 0.13343057
[3,] 3 0.00672790
[4,] 4 0.04949914
[5,] 5 0.41266958
[6,] 6 0.68500654

Chapter 12
Mel-Frequency Cepstral and Linear
Predictive Coefficients

Chapter 11 was an exploration of time-frequency analysis based on the frequency
spectrum obtained with the Fourier transform. This chapter introduces two other fea-
tures of time-frequency variations: the Mel-frequency cepstral coefficients (MFCCs)
and the linear predictive coefficients (LPC).

12.1 Mel-Frequency Cepstral Coefficients (MFCCs)

Sections 9.8 and 10.2 introduced the theory and the practice of the quefrency
cepstrum, a curious derivation of the frequency spectrum that can provide useful
information about echoes or fundamental frequency. Here we will discover the mel-
frequency cepstral coefficients, abbreviated MFCCs, which are used in automatic
recognition processes, mostly in speech analysis but also occasionally in music,
bioacoustics, and ecoacoustics.

12.1.1 Theory

Mel-frequency cepstral coefficients were developed in the context of word recog-
nition in spoken language (Davis and Mermelstein 1980). The central idea is to
compress speech data by keeping only relevant information for the detection of pho-
netic differences. The principle refers to human audition by using the logarithmic
mel(ody) scale which definition is based on how the human ear perceives frequency
and loudness (see Sect. 9.4.1).

MFCCs are literally defined as “the result of a cosine transform of the real
logarithm of the short-term energy spectrum expressed on a mel-frequency scale”

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_12

381

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_12&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_12

382 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

(Davis and Mermelstein 1980). This definition hides several computing steps that
are enumerated hereafter:

1. Input: MFFCs can be computed for any sound. Nonetheless, these coefficients
have been developed and tuned to process an automatic classification of speech
signals.

2. Preemphasis filter: a high-pass frequency filter is applied to the signal in
order to reduce the importance of low-frequency components and increase
the importance of high-frequency components. This frequency filter, which is
adapted to speech, is parametrized by a time constant α as detailed in Sect. 14.1.

3. Short-time Fourier discrete transform (STDFT) computation: the signal is
divided into successive windows of duration σt , and the FFT is computed for
each window (see Sect. 11.1). For each frame, a tapering window is previously
applied, usually a Hamming window (see Sect. 9.6).

4. Mel conversion of the STDFT matrix: the frequency scale of the STDFT matrix
is converted from Hz to mel. The mel scale is a subjective and logarithmic
frequency scale related to human audition (see Sect. 9.4.1).

5. Generation of a bank of mel-frequency filters: this step does not consist in any
filtering process but in preparing the mel-frequency response of a series, or
bank, of filters. The filters can cover the full bandwidth of the spectrum, that
is, from 0 to fs/2, or they can expand over a selected bandwidth delimited by
a pair of lower and upper cutoff frequencies, denoted fl and fu, respectively.
Each filter has a typical triangular shape. The central frequency, that is, the
frequency at the top of the triangle, is obtained with (Sharan and Moir 2016):

fcm = fl + k(fu − fl)

m + 1

In the following, the central frequencies of a bank of 40 mel-frequency filters
expanding from fl = 300 Hz to fu = 8000 Hz are manually computed:

fl <- mel(300) # lower frequency in mel
fu <- mel(8000) # upper frequency in mel
m <- 40 # number of filters
k <- 1:m # i^th filter
fcm <- fl + k*(fu-fl)/(m+1) # central frequency in mel
fcm
[1] 461.4420 520.9075 580.3731 639.8386 699.3042
[6] 758.7697 818.2353 877.7008 937.1664 996.6319

[11] 1056.0975 1115.5630 1175.0286 1234.4942 1293.9597
[16] 1353.4253 1412.8908 1472.3564 1531.8219 1591.2875
[21] 1650.7530 1710.2186 1769.6841 1829.1497 1888.6153
[26] 1948.0808 2007.5464 2067.0119 2126.4775 2185.9430
[31] 2245.4086 2304.8741 2364.3397 2423.8052 2483.2708
[36] 2542.7364 2602.2019 2661.6675 2721.1330 2780.5986
fcm.hz <- mel(fcm, inverse=TRUE) # central frequency in Hz

(continued)

12.1 Mel-Frequency Cepstral Coefficients (MFCCs) 383

fcm.hz
[1] 354.1808 411.2972 471.5081 534.9814 601.8937
[6] 672.4313 746.7908 825.1790 907.8145 994.9272

[11] 1086.7597 1183.5677 1285.6210 1393.2035 1506.6149
[16] 1626.1711 1752.2049 1885.0674 2025.1284 2172.7781
[21] 2328.4275 2492.5101 2665.4829 2847.8274 3040.0516
[26] 3242.6906 3456.3087 3681.5009 3918.8941 4169.1495
[31] 4432.9640 4711.0721 5004.2483 5313.3091 5639.1150
[36] 5982.5733 6344.6405 6726.3248 7128.6891 7552.8537

The successive filters are arranged such that they overlap by a factor of 50%.
The function melfilterbank() of seewave can be used to generate and
visualize these filters according to five main arguments: the sampling frequency
fs (f), the Fourier window length σt (wl), the lower frequency of the filter
bank fl (minfreq), the upper frequency of the filter bank fu (maxfreq), and
the total number of filters m (m). The following use of melfilterbank()
generates a bank of 26 filters starting at 0 Hz and ending at half the sampling
frequency fs = 44,100 ÷ 2 = 22,050 Hz. The filters, actually their frequency
response, can be displayed on a single graph with a palette of colors determined
with the graphical argument palette (Fig. 12.1):

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Frequency (kHz)

Am
pl

itu
de

Fig. 12.1 Mel-frequency filter bank. A bank of mel-frequency triangular filters is generated and
displayed with the seewave function melfilterbank(). The bank includes 26 filters starting
from 0.3 to 22.05 kHz

384 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

res <- melfilterbank(f=44100, wl=1024, minfreq=300, m=26,
palette=cm.colors, plot=TRUE)

The object returned is a list containing a matrix with all filters ($amp) and
a numeric vector with the central frequencies of the filters expressed in kHz
($central.freq):

head(res$central.freq)
[1] 0.4226867 0.5604254 0.7150628 0.8886721 1.0835811
[6] 1.3024027
tail(res$central.freq)
[1] 10.66135 12.05524 13.62014 15.37703 17.34946 19.56389

6. Application of the mel-frequency filters to each STDFT window: each mel-
frequency spectrum obtained for each time window of the STDFT is squared
and multiplied by each mel-frequency filter. If 26 filters were used, then 26
multiplications are processed for each window, leading to a series of 26 vectors
for each window.

7. Estimation of the energy for each mel-frequency filtered spectrum: the values
of each vector obtained after the filtering process are summed up. This reduces
considerably the dimension of the data. If the STDFT is computed with a
512 sample Fourier window, then each FFT has a length of 256 samples. The
filtering increases the dimension by returning 26 vectors of length 256, but the
sum summarizes the 256 values of each vector into a single value and hence
reduces the dimension to 26 filter bank energies only.

8. Logarithmic transformation: the filter bank energy values are log transformed.
9. Discrete cosine transform: a type III discrete cosine transform (DCT) is applied

on the log filter energies. The DCT is a kind of Fourier transform but using only
real coefficients when the discrete Fourier transform (DFT) returns complex
coefficients. There are different types of DCTs, the type II is the most common
type, and the type III corresponds to the inverse of the type II, also named the
inverse discrete cosine transform (IDCT). Applying the type III DCT at this
stage of the MFCC process is therefore similar to use of the inverse Fourier
transform on the logarithm of the Fourier transform when computing the
cepstrum (see Sect. 9.8). Having transformed and filtered the data in reference
to the mel scale, the DCT operates a travel from the mel-frequency domain to
the mel-quefrency domain.

10. Selection of relevant MFCCs: a second reduction of data dimension is operated
by discarding the first coefficient and keeping the next n coefficients, with
usually n = 13. This selection can be done because the DCT compressed the
relevant information on the speech properties in the first coefficients.

12.1 Mel-Frequency Cepstral Coefficients (MFCCs) 385

11. Application of a lifter on MFCCs: a lifter is a kind of filter applied to cepstral
coefficients (see Table 9.2). A lifter can be seen as a weighting function that
gives more importance to midrange coefficients, here to midrange MFCCs.

To summarize, the MFCCs are obtained at the end of the following transform
chain:

input signal → preemphasis → STDFT → mel scale → mel filtering

→ compression by sum → log → DCT → selection → liftering

The resulting data, or features, are the mel-frequency cepstral coefficients, or
MFCCs. This abbreviation summarizes the different operations described above
(frequency spectrum, mel conversion and filtering, cepstral transform through the
DCT). The operation consists, among others, in an important data compression:
the process starts with a time signal lasting d s sampled at fs Hz, travels to a
time×frequency matrix of dimension (σt ÷2, d×fs ÷σt) due to a STDFT computed
with a non-overlapping window lasting σt , goes through a time × quefrency filter
bank energy matrix of dimension (26, d × fs ÷ σt), and arrives at a MFCC matrix
of dimension (13, d × fs ÷ σt).

In some cases, the first and second time derivatives of the MFCCs, that is, the
speed and acceleration of MFCC changes over time, are used as additional sound
features in particular for automatic speech classification. The speed of MFCCs is
known as the delta coefficients and the acceleration as delta-delta coefficients. If
the number of MFCCs was 13, then the number of features increases to 26 if delta
coefficients are included (13 MFCCs + 13 delta coefficients) and 39 if delta and
delta-delta coefficients are included (13 MFCCs + 13 delta coefficients + 13 delta-
delta coefficients).

12.1.2 Practice

The function melfcc() from the package tuneR is the only R solution to
compute MFCCs. melfcc() can be seen as master function that calls several
other functions to proceed the different steps of the MFCC computation. The
preemphasis filter is achieved with the functionfilter() of the package signal
(see Sect. 14.1); the STDFT is computed with powspec() (see Sect. 11.4); the mel
conversion and mel-frequency filtering are applied with audspec(); the logarithm
conversion, the DCT, and the selection of the coefficients refer to spec2cep();
and the liftering calls lifter(). The functions audspec(), spec2cep(), and
lifter() are introduced in the next two sections before to get into the details of
melfcc().

386 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

The file hello.wav, including a 48,000 Hz recording of the English word
“hello” pronounced by a 7-year-old French native girl, will be used to test these
functions:

hello <- readWave("sample/hello.wav")
hello

Wave Object
Number of Samples: 38400
Duration (seconds): 0.8
Samplingrate (Hertz): 48000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

12.1.2.1 Mel-Frequency Conversion and Filtering

The tuneR function audspec() does the conversion from Hertz to mel and
proceeds the mel-frequency filtering in reference to a mel-frequency filter bank
leading to a reduction of dimensionality. The result can be named an auditory
spectrogram. The function waits a STDFT (spectrogram) matrix as input, obtained
for instance with powspec(), and the sampling frequency fs of the original
signal. It is necessary to specify the properties of the mel-frequency filter bank
by informing its lower and upper frequency limits (arguments minfreq usually
set to 0, maxfreq usually set to fs ÷ 2), the total number of mel-frequency
filters (argument nfilts usually set to 26), and the scale used (argument fbtype
commonly set to “htkmel” for standard mel scale):

spectrogram matrix
f <- hello@samp.rate
wl <- 512
p.hello <- powspec(hello@left, sr=f,

wintime=wl/f, steptime=wl/f)
mel conversion and filtering
a.hello <- audspec(p.hello, sr=f,

minfreq=0, maxfreq=f/2,
nfilts=26, fbtype="htkmel")

The result is stored in the list item $aspectrum as a (frequency, time) matrix.
There are here 26 rows corresponding to the number of filters and 74 columns
corresponding to a STDFT with a 512 sample Fourier window:

12.1 Mel-Frequency Cepstral Coefficients (MFCCs) 387

str(a.hello$aspectrum)
num [1:26, 1:74] 2351014 12989 153933 213479 38594 ...

audspec() is not a graphical function and has no plot method associated to.
The following code offers a solution to display the auditory spectrogram saved in
the matrix a.hello by calling the function image() (Fig. 12.2):

Time (s)

Fr
eq

ue
nc

y
(m

el
)

0 0.2 0.4 0.6 0.8

142

2557

3271

3704

4016

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

M
el

−f
re

qu
en

cy
 fi

lte
r #

Fig. 12.2 Auditory spectrum. The result of the function audspec() is displayed with the
function image(). The left y-axis refers to frequency expressed in mel and the right y-axis
indicates the index of the 26 mel-frequency filters used. Time was divided into 74 windows by
the STDFT

388 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

time scale
at <- seq(0, 1, length=5)
time <- round(seq(0, duration(hello), length=5), 1)
Hz frequency scale
hz <- round(seq(f/512, f/2, length=5))
mel frequency scale
mel <- round(hz2mel(hz, htk=TRUE))
plot
par(mar=c(5.1, 4.1, 4.1, 4.1), las=1)
col <- gray((512:0)/512)
image(t(a.hello$aspectrum), col=col,

axes=FALSE, xlab="Time (s)", ylab="Frequency (mel)")
axis(side=1, at=at, labels=time)
axis(side=2, at=at, labels=mel)
axis(side=4, at=0:25/25, labels=1:26,)
mtext("Mel-frequency filter #", side=4, las=0, line=2.5)
abline(h=(0:25/25)+1/(25*2), col="lightgray")
abline(v=(0:73/73)+1/(73*2), col="lightgray")
box()

12.1.2.2 Cepstral Coefficients

The tuneR function spec2cep() does the logarithm transform, the DCT
computation, and the selection of n preferred coefficients. spec2cep() needs to
be fed with a (mel-frequency, time) matrix returned by audspec(). The number of
coefficients kept is given by the argument ncep and the DCT type by the argument
type. To proceed a classical MFCC computation, we set up the function as:

cep.hello <- spec2cep(a.hello$aspectrum, ncep=13, type="t3")

The object returned by spec2cep() is a two-item list. The first item $cep
includes the cepstral coefficients, and the second item $dctm gives the DCT matrix
used to obtain $cep. The most important item, which will be used in the next steps,
is therefore $cep:

str(cep.hello)
List of 2
$ cep : num [1:13, 1:74] 76.94 0.233 3.885 0.457 1.934 ...
$ dctm: num [1:13, 1:26] 0.277 0.277 0.275 0.273 0.269 ...

12.1 Mel-Frequency Cepstral Coefficients (MFCCs) 389

12.1.2.3 Lifter

A lifter, that is, a filter in the cepstral language, is optionally applied to the
MFCCs as an ultimate step to emphasize peculiar coefficients. The tuneR function
lifter() does such changes by applying a [0, π] sine function on htk-mel
coefficients. The length of the lifter, and therefore its shape, can be controlled with
the argument lift. Setting lift=1 does not induce any change when setting
lift=ncep-1, here lift=12, applies a sine [0, π] weight function as shown in:

lifter.hello <- lifter(cep.hello$cep, lift=13-1, htk=TRUE)
str(lifter.hello)
num [1:13, 1:74] 76.94 0.596 15.541 2.397 11.98 ...

Figure 12.3 illustrates the shape of seven lifters differing in their length.

12.1.2.4 Complete MFCC Computation

Considering the previous sections, the MFCCs can be obtained by using a series of
tuneR functions (see DIY box 12.1) or more simply with the function melfcc().

l l l l l l l l l l l l l

−2

0

2

4

6

8

MFCC #

Li
fte

r w
ei

gh
t

l

l

l

l

l l

l

l

l

l

l

l

l 9

l

l

l

l

l
l

l

l

l

l

l

l

l 10

l

l

l

l

l
l l

l

l

l

l

l

l 11

l

l

l

l

l

l l l

l

l

l

l

l 12l

l

l

l

l

l
l l

l

l

l

l

l 13

l

l

l

l

l

l

l l l

l

l

l

l 14

l

l

l

l

l

l

l
l l

l

l

l

l 15

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 12.3 Lifters on 13 MFCCs that are all equal to 1. The blue and dashed line displays the 13
MFCCs. The plain black lines show the weighting function of seven lifters differing in their length,
from 9 to 15. The lifter of length 12, that is, the number of MFCCs-1, applies a perfect sine function
between 0 and π

390 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

DIY 12.1 — How to obtain MFCCs step by step

The MFCCs can be obtained by hand following a five-step process involving
preemphasis() (replacing here the function filter() of the package signal for
a sake of simplification), powspec(), audspec(), spec2cep(), and lifter():

f <- hello@samp.rate # sampling frequency
wl <- 512 # STDFT window size
ncep <- 13 # final number of MFCCs
f.hello <- preemphasis(hello, alpha=0.97, output="Wave")
p.hello <- powspec(f.hello@left, sr=f,

wintime=wl/f, steptime=wl/f)
a.hello <- audspec(p.hello, sr=f,

nfilts=ncep*2, fbtype="htkmel")
cep.hello <- spec2cep(a.hello$aspectrum,

ncep=ncep, type="t3")$cep
mfccs <- lifter(cep.hello, lift=ncep-1, htk=TRUE)
str(mfccs)
num [1:13, 1:74] 62.51 -30.92 8.57 -5.56 8.7 ...

The function melfcc() contains a long list of arguments that can be related to
the successive steps of the MFCC computation described in Sect. 12.1.1:

1. Input: the argument samples waits a Wave object, and the argument sr
can be used to specify the sampling rate or sampling frequency fs . This latter
argument is fed by default by the sampling frequency of the Wave object.

2. Preemphasis filter: the time constant α is set with the argument preemph. The
default value is the standard value 0.97, and choosing a value of 0 removes the
filter.

3. Short-time Fourier transform (STDFT) computation: the duration in s of the
FFT window σt has to be provided with the argument wintime, and the
hop between adjacent windows in s should be specified with the argument
hoptime. These two arguments correspond to the arguments wl and ovlp
of spectro() but differ from them in the time unit used (second vs samples).

4. Mel conversion of the STDFT matrix: different logarithmic scales can be
selected with the argument fbtype, in particular the mel and the HTK-mel
scales. A Bark scale can also be used (see Sect. 9.4.1 for details on these scales).

5. Generation of a bank of mel-frequency filters: we have seen that the definition
of the limits of the mel-frequency depends on a lower frequency, an upper
frequency, and the total number of filters. These parameters can be set up with
the arguments minfreq, maxfreq, and nbands, respectively.

6. Application of the mel-frequency filters to each STDFT window: this process
is based on squaring the STDFT results. This square operation is actually
applied by default by melfcc() which works directly on the spectrogram,
the spectrogram being the square of the STDFT as defined in Sect. 11.2. This
can be canceled by turning sumpower to FALSE.

12.1 Mel-Frequency Cepstral Coefficients (MFCCs) 391

7. Logarithmic transformation: there is no specific argument for this step.
8. Discrete cosine transform: the type of the DCT, I, II, III, or IV, can be chosen

here. For a usual MFCC computation, the DCT should be set to type III with
dcttype=“t3.”

9. Selection of relevant MFCCs: the number of cepstral coefficients to keep can
be fixed with the argument numcep.

10. Application of a lifter on MFCCs: the lifter is controlled with the argument
htklifter that should be set to TRUE for HTK-mel and with the argument
lifterexp that matches with the argument lift of lifter() and that
should be then fed with an integer number, usually the number of MFCCs-1.

By default, the value of melfcc() is the matrix of the MFCCs with each
column corresponding to a time window of the original signal. The number
of rows equals to the number of MFFCs kept, that is, the value given to the
argument numcep. If the argument frames_in_rows is TRUE, then the matrix
is transposed with time windows in rows.

If the argument spec_out is TRUE, melfcc() returns a list of four items:

1. $cepstra containing the matrix of the MFCCs as just described above,
2. $aspectrum the auditory spectrogram of the signal as obtained with

audspec(),
3. $pspectrum the spectrogram of the signal, as obtained with powspec(),
4. $lpcas the linear predictive coefficients if the argument modelorder > 0

(see Sect. 12.2 for details regarding the LPCs).

We here compute the MFCCs based on a STDFT with a sliding window
made of 512 samples expressed here in s (argument wintime) and no overlap
between adjacent windows meaning a hop parameter similar to the window
length of spectro() (argument hoptime). The number of mel-frequency
filters is set to 26 (argument nbands), and the number of MFCCs kept at
the end of the process is 13 (argument numcep). The most common mel
scale is used with fbtype=“htkmel”, and the type III DCT transform
is selected with dcttype=“t3.” Complete results are saved in an object
res by the call of spec_out=TRUE, and the matrices are transposed with
frames_in_rows=FALSE to have a classical organization of time windows in
columns. The default value sumpower=TRUE, preemph=0.97, minfreq=0,
and maxfreq=sr/2 are not modified:

wl <- 512
ncep <- 13
mfcc.hello <- melfcc(hello, sr=f,

wintime=wl/f, hoptime=wl/f,
numcep=ncep, nbands=ncep*2,
fbtype="htkmel", dcttype="t3",
htklifter=TRUE, lifterexp=ncep-1,

(continued)

392 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

frames_in_rows=FALSE,
spec_out=TRUE)

We can now explore the data, in particular their dimensions:

str(mfcc.hello)
List of 4
$ cepstra : num [1:13, 1:74] 62.5 -30.94 8.53 -5.61 8.65 ...
$ aspectrum: num [1:26, 1:74] 2197.4 26.1 500 856.7 334.8 ...
$ pspectrum: num [1:256, 1:74] 5658.2 2303.3 11.4 38 519.7 ...
$ lpcas : NULL

The STDFT (spectrogram) is a matrix with 512 ÷ 2 = 256 lines and 74
columns corresponding to 74 time windows (item res$psectrum). The auditory
spectrum has the same number of columns as the time resolution is the same but
has a reduced number of rows corresponding to the 26 mel-frequency filters (item
res$aspectrum). The MFCCs are stored in a matrix with a similar number of
columns as the time resolution is still unchanged but with a reduced number of 13
rows corresponding to the number of coefficients kept (item res$cepstra).

The MFCCs can be visualized using image() as previously tested with the
output of audspec() (Fig. 12.4):

time scale
at <- seq(0, 1, length=5)
time <- round(seq(0, duration(hello), length=5), 1)
plot
col <- gray((512:0)/512)
par(las=1)
image(t(mfcc.hello$cepstra), col=col,

axes=FALSE, xlab="Time (s)", ylab="MFCC #")
axis(side=1, at=at, labels=time)
axis(side=2, at=0:12/12, labels=1:13,)
abline(h=(0:12/12)+1/(12*2), col="lightgray")
abline(v=(0:73/73)+1/(73*2), col="lightgray")
box()

The delta coefficients can be obtained with the tuneR function deltas(); the
use is rather simple:

d <- deltas(mfcc.hello$cepstra)
str(d)
num [1:13, 1:74] -1.77 -2.66 32.28 36.17 47.36 ...

12.1 Mel-Frequency Cepstral Coefficients (MFCCs) 393

Time (s)

M
FC

C
 #

0 0.2 0.4 0.6 0.8

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 12.4 Display of the MFCCs. The 13 MFCCs selected are displayed according to time that
was divided into 74 windows by the STDFT

An so the delta-delta coefficients are obtained with:

dd <- deltas(d)
str(dd)
num [1:13, 1:74] 3648 1857 -1617 -1255 -943 ...

which is of course equivalent to:

dd <- deltas(deltas(mfcc.hello$cepstra))

394 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

12.2 Linear Predictive Coefficients (LPCs)

12.2.1 Theory

Linear predictive coding (LPC), leading to linear predictive coefficients (LPCs),
is another technique similarly developed for speech analysis. The stem idea is to
modelize speech production as an additive model composed of a source and a filter
with one or more resonant frequencies fr . The source corresponds to the primary
vibrations of the vocal folds, and the filter is due to the shape and movement of
the vocal tract, that is, of the throat, the tongue, and the lips. LPC technique aims
at separating the source from the filter by estimating the transfer function, and
therefore the frequency response, of the vocal tract filter (see Chap. 14).

In terms of signal analysis, the LPC is an autoregressive (AR) model (Cryer and
Chan 2008). A pth-order AR consists in predicting the current sample s[n] through a
linear polynomial expression that includes the p previous samples. If the prediction
is noted ŝ[n], the AR model equation is written:

ŝ[n] = a1s[n − 1] + a2a[n − 2] + · · · + aps[n − p]

=
p∑

k=1

aks[n − k]

The ak coefficients are the linear predictive coefficients. These coefficients can be
estimated minimizing the difference between the true value s[n] and the predicted
value ŝ[n], so that we have an error or residual term, e[n], which satisfies:

e[n] = s[n] − ŝ[n] = s[n] −
p∑

k=1

aks[n − k]

The total prediction error E for the complete signal is then the sum of the squared
errors for each sample:

E =
∑
n

e2[n] =
∑
n

(
s[n] −

p∑
k=1

aks[n − k]
)2

The ak coefficients, which can be estimated through an autocorrelation process,
are the coefficients of the vocal tract filter transfer function which is defined as:

H(z) = 1

A(z)

= 1

1 −∑p
k=1 akz−k

with z a complex variable z = x + iy = r(cos θ + i sin θ) = reiθ , and i2 = −1.

12.2 Linear Predictive Coefficients (LPCs) 395

This transfer function is used to get the frequency response of the vocal tract.
This can be viewed as a spectral envelope of the frequency spectrum. The frequency
response can be used to localize and describe speech formants.

12.2.2 Practice

The LPC method is encoded in the function lpc() of the package phonTools.
The function returns the ak coefficients linear predictive coefficients of an input
sound by (1) applying a preemphasis filter (argument preemph) (see Sect. 14.1),
(2) removing any potential DC offset, (3) multiplying the sound by a Hanning
window, and (4) estimating the coefficients ak with an autocorrelation method. The
number of coefficients, k, can be set with the argument order. The function can
also go a step further by using the coefficients ak to obtain the frequency response
of the associated filter.

We can test the function on hello speech dataset. The LPC is usually applied on
a 10–20 ms section of sound where the signal is supposed to be stationary. We then
first select 10 ms of hello, and we downsample it to 12,000 Hz to keep relevant
frequencies for speech:

sel.hello <- cutw(hello, from=0.07, to=0.17, output="Wave")
sel.hello <- resamp(sel.hello, g=12000, output="Wave")

We then apply the function lpc() by seeting the number of LPC coefficients
with the argument order. The function plots at the same time the result of the
transfer function with show=TRUE (Fig. 12.5):

coeffs <- lpc(sel.hello@left, fs=sel.hello@samp.rate, order=16, show=TRUE)

The coefficients are:

coeffs
[1] 1.00000000 -0.85082213 0.98910359 -0.84965549
[5] 0.60744100 -0.56381546 0.56646631 0.11406063
[9] -0.07487837 0.44027795 -0.30491669 0.15437669

[13] -0.13023889 0.21344999 -0.13889342 -0.01019266
[17] -0.06004648

396 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

0 1000 2000 3000 4000 5000

−8
0

−6
0

−4
0

−2
0

0

Frequency (Hz)

Po
w

er
 (d

B)

Fig. 12.5 Filter frequency response deriving from LPC. The function lpc() returns the LPC
coefficients of a sound, here hello, and plots the resulting filter frequency response (black line).
The original frequency spectrum obtained after a pre-emphasis filter is also shown (blue line)

This code could also be written in two steps by using the function
freqresponse() on phonTools that finds the frequency response of any
filter defined by a transfer function H(z) = b ÷ a. Here with b = 1 with a = ak ,
we have:

coeffs <- lpc(sel.hello@left, fs=sel.hello@samp.rate, order=16, show=FALSE)
freqresponse(b=1, a=coeffs, fs=sel.hello@samp.rate)

The next step is to identify the resonant frequency fr and −3 dB band-
width Δ−3 dBf of each formant. This estimation is achieved with the function
findformants() that uses the following expression (Snell and Milinazzo 1993):

fr = fs

2π
θ0

and

Δ−3 dBf = −fs

π
log(r0)

with fs the sampling frequency and z0 = r0e
iθ0 the complex root pairs of A(z), that

is, the complex solutions of A(z) = 0.

12.2 Linear Predictive Coefficients (LPCs) 397

0 1000 2000 3000 4000 5000 6000

−4
0

−3
0

−2
0

−1
0

0

Hz

Po
w

er
 (d

B)

−1.0 0.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Real

Im
ag

in
ar

y

Fig. 12.6 Formant analysis based on LPC. The function findformants() can estimate the
resonant frequency fr and −3 dB bandwidth Δ−3 dBf of each formant. A pole-zero diagram (right)
completes the spectral display (left) to show the position of the formants in the complex unit circle

The function uses the coefficients ak as data (Fig. 12.6):

formants <- findformants(coeffs=coeffs, fs=sel.hello@samp.rate,
showbws=TRUE)

formants
formant bandwidth

1 771.25 21.61550
2 2378.54 98.45518
3 3056.91 189.28495
4 4328.59 300.44634

or can accept directly the sound as input. In that case the argument coeffs waits
the number of LPC coefficients to be used, here 16:

398 12 Mel-Frequency Cepstral and Linear Predictive Coefficients

formants <- findformants(sound=sel.hello@left, fs=sel.hello@samp.rate,
coeffs=16)

formants
formant bandwidth

1 771.25 21.61550
2 2378.54 98.45518
3 3056.91 189.28495
4 4328.59 300.44634

The results are plotted with the formants highlighted on the filter frequency
response and with the positions of the complex roots pairs inside the complex unit
circle (Fig. 12.6), a plot known as the pole-zero diagram.

Chapter 13
Frequency and Energy Tracking

With similar efforts developed in Chaps. 11 and 12 to characterize the time-
frequency properties of sound, we will here detail ways to estimate frequency
changes along time by tracking (1) the dominant frequency, (2) the fundamental
frequency, (3) the formants, and (4) the instantaneous frequency. We will also
introduce a technique, known as Teager-Kaiser energy operator (TKEO), that can
evaluate both instantaneous frequency and instantaneous amplitude.

To illustrate frequency and energy tracking, we will use a new sound
that consists into a brief and high-frequency call emitted by a common
European bat, Pipistrellus kuhlii (Fig. 11.12). The sound, included in the file
Pipistrellus_kuhlii.wav, was sampled at 192,000 Hz:

bat <- readWave("sample/Pipistrellus_kuhlii.wav")
bat

Wave Object
Number of Samples: 3841
Duration (seconds): 0.02
Samplingrate (Hertz): 192000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

We will also refer to a sound produced by a theremin, a wonderful electronic
instrument which is played without physical contact by acting on two “antennas”

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_13

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_13&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_13

400 13 Frequency and Energy Tracking

which control the amplitude and the frequency of the output sound. The sound here
used is saved in the file theremin.wav:

theremin <- readWave("sample/theremin.wav")
theremin

Wave Object
Number of Samples: 626176
Duration (seconds): 14.2
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

13.1 Frequency Tracking

13.1.1 Dominant Frequency

The dominant frequency, that is the frequency of highest energy, can be tracked
using the seewave function dfreq(). This function operates a short-time Fourier
transform in the same way as spectro() does and then looks for the maximum
of the frequency spectrum obtained for each Fourier window. The principle is
then rather simple: (1) obtain the STDFT matrix and (2) identify the maximum
of each STDFT matrix column. The parameters of the STDFT can be accessed with
the arguments wl for the Fourier window length, ovlp for the overlap between
adjacent Fourier windows, and wn for the Fourier tapering window as detailed in
Sect. 11.7.1.3. By default, the function returns a plot displaying the estimation of
the dominant frequency against time. We can run a first direct test on sheep taking
the precaution to increase the time and frequency resolutions with appropriate wl
and ovlp value (Fig. 13.1):

data(sheep)
wl <- 1024 ; ovlp <- 87.5
df <- dfreq(sheep, wl=wl, ovlp=ovlp)

The result of the analysis is saved in a two-column matrix which first column
corresponds to time in s and the second column to frequency in kHz. The number
of lines is the number of Fourier windows used:

13.1 Frequency Tracking 401

lllllllllllllll

ll

l

llllll
l

llllllllllllll

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

Times (s)

Fr
eq

ue
nc

y
(k

H
z)

Fig. 13.1 Dominant frequency tracking with dfreq(). The dominant frequency of sheep is
tracked along time calling the function dfreq() which computes in background a STDFT, here
with a Fourier window length of 512 samples (wl=512) and an overlap between successive Fourier
windows of 87.5% (wl=87.5)

class(df)
[1] "matrix"
dim(df)
[1] 147 2
head(df)

x y
[1,] 0.00000000 0
[2,] 0.01692123 0
[3,] 0.03384247 0
[4,] 0.05076370 0
[5,] 0.06768493 0
[6,] 0.08460616 0

The dominant frequency at the start and at end of the sound was estimated to 0
corresponding to a period of silence. These values are of no meaning and should be
not considered for a proper description. There are four ways to keep only relevant
results calling the following arguments:

tlim selection of a time section of interest. Using this argument is similar to cut
the original wave with either cutw() of seewave or extractWave() of
tuneR.

402 13 Frequency and Energy Tracking

threshold amplitude threshold on the signal. This argument is a shortcut to the
function afilter(). This function, which is described in Sect. 15.3, simply
replaces every amplitude value below a specific threshold by a 0 value. This
amplitude threshold is expressed as a percentage in relation with the maximum
of the absolute amplitude envelope. A threshold of 5% means that every value
falling below 5% of the maximum of the absolute amplitude envelope is replaced
by a 0. This operation may induce different degrees of artifacts as shown in
Figs. 13.2 and 15.4.

clip amplitude threshold on the STDFT matrix with the argument clip. This
second threshold is applied on the STDFT matrix scaled between 0 and 1. Setting
clip=0.1 discards all value of the STDFT below 0.1.

bandpass band-pass frequency filter with the argument bandpass to keep
only relevant frequencies. This argument can be thought as a frequency win-
dow where to look for the dominant frequency. As an example, specifying
bandpass=c(2000,4000) constraints the search of the dominant frequency
within the [2000, 4000]Hz frequency band.

Figure 13.2, which is based on the code below, illustrates the effects of these
arguments, applied independently or jointly:

lllllllll
l
ll

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

l

l

lll

lll

ll

lll

ll

lllllllll

l

ll
lll

l

lllllllll

l

ll

l

llllll
llllllll

ll

l
l
l
l

l

bandpass=c(500,1000)
threshold=5
clip=0.1
tlim=c(0.23,2.26)
clip=0.1, bandpass=c(500,1000)

Fig. 13.2 Dominant frequency tracking with different settings of dfreq(). The graphic displays
the results obtained with the function dfreq() using five different settings

13.1 Frequency Tracking 403

wl <- 1024 ; ovlp <- 87.5
df1 <- dfreq(sheep, wl=wl, ovlp=ovlp,

bandpass=c(500,1000), plot=FALSE)
df2 <- dfreq(sheep, wl=wl, ovlp=ovlp,

threshold=5, plot=FALSE)
df3 <- dfreq(sheep, wl=wl, ovlp=ovlp,

clip=0.1, plot=FALSE)
df4 <- dfreq(sheep, wl=wl, ovlp=ovlp,

tlim=c(0.23,2.26), plot=FALSE)
df5 <- dfreq(sheep, wl=wl, ovlp=ovlp, clip=0.1,

bandpass=c(500,1000), plot=FALSE)

We have seen in Sect. 10 a simple use of dfreq() with the arguments wl
and at. The argument at can accept any numeric vector such that we can use it
in a rather fancy way to estimate dominant frequency at several successive time
positions. For instance, one could wish to get the dominant frequency every 0.1 s all
along the recording:

df <- dfreq(sheep, at=seq(0, duration(sheep), by=0.1), plot=FALSE)

In that case the object returned includes NA values at the beginning and end of
the recording where no measurements were taken:

head(df)
x y

[1,] 0.0 NA
[2,] 0.0 0.00000
[3,] 0.1 0.00000
[4,] 0.2 0.00000
[5,] 0.3 0.62500
[6,] 0.4 0.65625
tail(df)

x y
[22,] 2.0000 0.562500
[23,] 2.1000 0.546875
[24,] 2.2000 0.000000
[25,] 2.3000 0.000000
[26,] 2.4000 0.000000
[27,] 2.4705 NA

404 13 Frequency and Energy Tracking

These NA values can be removed by using the base function na.omit():

na.omit(df)

We can do the same for a section of the recording beginning at 0.5 s and ending
at 2 s:

df <- dfreq(sheep, at=seq(0.5, 2, by=0.1), plot=FALSE)
head(df)

x y
[1,] 0.0 NA
[2,] 0.5 0.656250
[3,] 0.6 0.656250
[4,] 0.7 0.656250
[5,] 0.8 0.640625
[6,] 0.9 0.625000

Another option could be to return a fixed number of measurements, here 25
measurements regularly spaced between the beginning and end of the recording.
This is obtained by using the argument length.out of seq():

df <- dfreq(sheep,
at=seq(0, duration(sheep), length.out=25), plot=FALSE)

head(df)
x y

[1,] 0.0000000 NA
[2,] 0.0000000 0.00000
[3,] 0.1029375 0.00000
[4,] 0.2058750 0.00000
[5,] 0.3088125 0.62500
[6,] 0.4117500 0.65625

A last idea could be to take a measurement at the start, in the middle, and at
the end of the sound of interest. The trick is first to use the function timer() as
detailed in Sect. 8.3 to obtain the start and end time positions:

pos <- timer(sheep, threshold=5, msmooth=c(75,0), plot=FALSE)

13.1 Frequency Tracking 405

and afterward to use these time coordinates to specify where the dominant frequency
has to be estimated:

start <- pos$s.start
end <- pos$s.end
middle <- start+(end-start)/2
df <- dfreq(sheep, at=c(start, middle, end), plot=FALSE)
head(df)

x y
[1,] 0.0000000 NA
[2,] 0.2734523 0.609375
[3,] 1.2541088 0.625000
[4,] 2.2347653 0.000000
[5,] 2.4705000 NA

13.1.2 Fundamental Frequency

13.1.2.1 seewave Solutions

The fundamental frequency can be assessed through (1) an autocorrelation process
with the function autoc() or (2) a cepstral transform with the function fund().

The autocorrelation consists in a cross-correlation of the signal against itself after
a certain time lag (see Sect. 17.1). In other words the successive correlations are
computed between s[n] and s[n + m], where m is the time lag, usually set to one
audio sample. It is expected that correlation returns a maximal value when m =
Tfund where Tf und is the period of the fundamental frequency.

The autoc() function applies this principle on successive windows operating
a kind of short-time autocorrelation: the autocorrelation is processed for each
window. There are four important arguments that can help autoc() in finding
the fundamental frequency:

wl the window length expressed in number of samples, by default wl=512,
fmin the minimum expected value of the fundamental frequency expressed in

Hz, this means that autoc() will not look for a fundamental frequency below
this limit,

fmax similarly, the maximum fundamental frequency expected expressed in Hz,
this means that autoc() will not look for a fundamental frequency above
this limit; the main motivation of this argument is to accelerate the function.
However, setting a low value of fmax, that is a value close to the expected
fundamental frequency, drastically reduces the resolution of the autocorrelation
and then might return inaccurate results and even NA values,

threshold an amplitude threshold expressed in % as in dfreq().

406 13 Frequency and Energy Tracking

llllll

ll
llllllllllllllllllllllllll

llll

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

llllllllllllllllllllllllllllllllllllll

l l

l l

l

l
l

l l

l

l
l
l

l

no settings
fmin=100
threshold=5
fmin=100, threshold=5

Fig. 13.3 Fundamental frequency tracking with autoc(). The graphic displays the results
obtained with the function autoc() on sheep using four different settings. The figure was
manually obtained with plot(), points(), and legend()

Here are successive uses of autoc() on sheep (Fig. 13.3):

ff1 <- autoc(sheep, plot=FALSE)
ff2 <- autoc(sheep, fmin=100, plot=FALSE)
ff3 <- autoc(sheep, threshold=5, plot=FALSE)
ff4 <- autoc(sheep, fmin=100, threshold=5, plot=FALSE)

As mentioned above, the argument fmax can be used to reduce the time of
process. However, it should be used with caution as it reduces the resolution of
the analysis. For instance, applying the following code on hello speech dataset
returns NA only:

hello <- readWave("sample/hello.wav")
ff <- autoc(hello, fmax=500, threshold=5, plot=FALSE)
head(ff)

x y
[1,] 0.00000000 NA
[2,] 0.01111111 NA
[3,] 0.02222222 NA
[4,] 0.03333333 NA
[5,] 0.04444444 NA
[6,] 0.05555556 NA

13.1 Frequency Tracking 407

A solution is to downsample the wave with the function resamp() (see
Sect. 6.1) so that the frequency resolution is increased:

hello.r <- resamp(hello, g=hello@samp.rate/4, output="Wave")
ff1 <- autoc(hello.r, fmax=500, threshold=5, plot=FALSE)
head(ff1)

x y
[1,] 0.00 NA
[2,] 0.05 0.3529412
[3,] 0.10 0.3636364
[4,] 0.15 0.3750000
[5,] 0.20 0.4285714
[6,] 0.25 0.4137931

DIY 13.1 — How to plot the dominant frequency and fundamental
frequency tracks on a single spectrogram

Overlaying the dominant and fundamental frequency tracks on a spectrogram can help
in understanding the frequency dynamics. The use of spectro() as a high-level plot
function and points() as a low-level plot function make the overplot of the frequency
tracks rather easy. Here we first store the results of dfreq() and dfund() on sheep
in dedicated objects:

df <- dfreq(sheep, ovlp=75, threshold=5, plot=FALSE)
ff <- fund(sheep, fmax=300, threshold=5, plot=FALSE)

We then use successively spectro(), points(), and legend() to produce a
complete graphic:

col <- c(rgb(1,0,0,0.5), rgb(0,0,1,0.5))
spectro(sheep, ovlp=87.5,

palette=reverse.gray.colors.2)
points(ff, pch=15, col=col[1])
points(df, pch=19, col=col[2])
legend("topleft",

legend=c("Fundamental frequency",
"Dominant frequency"),

pch=c(15,19), col=col, bty="n")

(continued)

408 13 Frequency and Energy Tracking

DIY 13.1 (continued)

The other option is to run a cepstral analysis with the function fund()
already introduced in Sect. 10.1.3.4. The function estimates the first rhamonic of the
cepstrum that corresponds to the fundamental frequency. As dfreq(), fund()
can be used for a single time position or for a series of time positions such that
variations of the fundamental frequency can be estimated along time. The main
arguments of the function fund() are:

wl the window length expressed in number of samples, by default wl=512,
ovlp the overlap between successive windows, as explained in Sect. 11.1.2.2, by

default ovlp=0,
fmax the maximum expected value of the fundamental frequency expressed in

Hz, this means that fund() will not look for a fundamental frequency above
this limit,

threshold an amplitude threshold expressed in % as in dfreq().

13.1 Frequency Tracking 409

ll

l

llllllllllllllllllllllllllllll

lll

l

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

lllllllllllllllllllllllllllllllll
l
l

lll l l l
l

l l

l

l
l l l

l
l l

l l l
l

l

l
l
l

l

no settings
fmax=600
threshold=5
fmax=600, threshold=5

Fig. 13.4 Fundamental frequency tracking with fund(). The graphic displays the results
obtained with the function fund() on sheep using four different settings. The figure was
manually obtained with plot(), points(), and legend()

Here are successive uses of fund() on sheep (Fig. 13.4 and DIY box 13.1):

ff1 <- fund(sheep, plot=FALSE)
ff2 <- fund(sheep, fmax=600, plot=FALSE)
ff3 <- fund(sheep, threshold=5, plot=FALSE)
ff4 <- fund(sheep, fmax=600, threshold=5, plot=FALSE)

13.1.2.2 tuneR Solutions

The package tuneR includes the function FF(), which is a wrapper of another
function FFpure(), to identify the fundamental frequency of a sound based on
analysis of the STDFT matrix.

We can first try the function FF() on sheep as we did with the seewave
functions in Sect. 13.1.2.1. The functionFF() requires a periodogram as an input so
that we obtain the results in a two-step process: (1) computation of the periodogram,
that is the STDFT, with a Fourier window of 512 samples, and (2) extraction of the
fundamental frequency FF() from the periodogram (Fig. 13.5):

410 13 Frequency and Energy Tracking

ll llllll
l
l

l

llllllllllllllllllllll l

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

l l

l
l

default settings
peakheight=0.015, interest.frqs='bass', silence=0

Fig. 13.5 Fundamental frequency tracking with FF(). The graphic displays the results obtained
with the function FF() on sheep using default and tuned settings. The figure was manually
obtained with plot(), points(), and legend()

p <- periodogram(sheep, width=512)
ff1 <- FF(p)
ff1
[1] 84.01657 NA NA NA 113.26127
[6] 132.88944 159.16253 165.45161 161.00843 164.11472

[11] 327.36702 153.00641 640.99107 155.16750 155.01134
[16] 158.00507 154.30934 154.71226 154.48895 155.20370
[21] 157.48849 154.35723 154.37106 149.96773 149.43067
[26] 153.39314 152.11066 152.36927 151.24859 146.49484
[31] 141.59863 140.87896 140.97265 132.18679 89.64569
[36] NA NA NA 17.82383

The function FF() has arguments to improve the fundamental frequency
detection. Most of these arguments are related to Western music and even more
particularly to singing:

peakheight an amplitude threshold for the frequency peak height of the
fundamental frequency,

silence a time threshold expressed in proportion specifying the proportion of
silence or noise,

diapason the diapason frequency (440 Hz),
notes a vector of integers indicating the notes (in halftones from diapason A,

that is from 440 Hz) that are expected (see Sect. 9.4.2),

13.1 Frequency Tracking 411

interest.frqs a frequency filter to indicate where the fundamental fre-
quency is expected, specifying “bass” will for instance force the function to
look into low frequency.

Here is an example of the use of these arguments applied on sheep (Fig. 13.5):

ff2 <- FF(p, peakheight=0.015, interest.frqs="bass", silence=0)

Now, we can play with the music of the theremin and try to go from
fundamental frequency estimation toward musical notation:

p <- periodogram(theremin, width=512)
ff <- FF(p)

The fundamental frequency stored in ff can be changed in note numbers using
the function noteFromFF(), as introduced in Sect. 9.4.2:

notes <- noteFromFF(ff, 440)
head(notes)
[1] NA NA -24 -24 NA -22

If we wish to convert these quite mysterious numbers into English musical
notation, we could use the function notenames() taking care of removing NA
values:

head(notenames(na.omit(notes)))
[1] "A" "A" "B" "A#" "a" "a"

The functionmelodyplot() can display these notes in a nice time × note plot.
The function needs the periodogram and the note numbers as inputs (Fig. 13.6):

melodyplot(p, notes)

At this step, we follow the changes of notes at a time resolution corresponding to
the parameters of the STDFT computed with periodogram(). This resolution is
too high if one wish to translate the sound into a musical notation. It is necessary to

412 13 Frequency and Energy Tracking

time

no
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14

silence
F#G
G#A
A#B

cc#d
d#e

ff#g
g#a
a#b
c'c#'d'd#'e'f'

f#'g'g#'a'a#'b'c''c#''d''d#''e''f''
f#''g''g#''

en
er

gy

−7.1

49.1

Fig. 13.6 Melody plot. The tuneR function melodyplot() displays the notes estimated from
the fundamental frequency, here the fundamental frequency of the theremin sound

reduce the time resolution such that we end up with a few notes only. The function
quantize() can apply such time binning, its argumentparts setting the number
of notes. The following codes ensure a reduction from more than 1000 notes to only
16 notes:

length(notes)
[1] 1223
qnotes <- quantize(notes, p@energy, parts=16)
length(qnotes$notes)
[1] 16

We can now plot these notes in a sort of sheet music with the graphical function
quantnote(). The number of bars is specified with the argument bars. We
place the 16 notes into four bars with a 4/4 time (Fig. 13.7):

quantplot(qnotes, bars=4)

13.1 Frequency Tracking 413

bar

no
te

1 2 3 4

silence
A

A#
B
c

c#
d

d#
e
f

f#
g

g#
a

a#
b
c'

c#'
d'

d#'
e'
f'

f#'
g'

g#'
a'

a#'
b'
c''

c#''
d''

d#''
e''
f''

f#''
g''

l

l l l l l l l
l l l l l l l

l en
er

gy

1.5

48.9

Fig. 13.7 Melody quantization plot. The tuneR function quantplot() displays the notes
estimated from the fundamental frequency after having binned the time scale, here for the
theremin sound

13.1.2.3 phonTools Solutions

The package phonTools provides a function, pitchtrack(), to detect the
fundamental frequency of voice. The process relies on an algorithm which is based,
among others, on the autocorrelation (Boersma 1993). The fundamental frequency
is estimated over a time delimited window that slides along the signal, making
pitchtrack() a short-time function. The parameters of the sliding window are
set with the arguments windowlength and timestep, both expressed in ms.
These two arguments correspond to wl and ovlp found in short-time functions
of seewave, as spectro(). The track of the fundamental frequency can be
limited between two frequency limits with the arguments f0range. The function
has also an argument, periodicity, to select the autocorrelations which have a
coefficient above a specified value. This threshold can be used to exclude voiceless
sections from the analysis.

In the following example, we use the default values that are well adapted
to the voice data hello, that is windowlength=50, timestep=2,
f0range=c(60, 400), and minacf=0.5. We only set show=FALSE to
save the results in an object:

414 13 Frequency and Energy Tracking

res <- pitchtrack(hello@left, fs=hello@samp.rate, show=FALSE)

The object returned is a data.framewith three columns, the time expressed in
ms ($time), the estimation of the fundamental frequency expressed in Hz ($f0),
and the correlation coefficient of the autocorrelation in [0, 1] ($acf):

str(res)
’data.frame’: 248 obs. of 3 variables:
$ time: num 61 63 65 67 69 71 73 75 77 79 ...
$ f0 : num 387 384 378 375 375 ...
$ acf : num 0.525 0.617 0.687 0.744 0.79 ...

We can use these data to plot the results on a spectrogram obtained with
spectro() (Fig. 13.8):

Amplitude
(dB)

−40

−30

−20

−10

0

0.0 0.2 0.4 0.6 0.8

Time (s)

Am
pl

itu
de 0

1

2

3

4

Fr
eq

ue
nc

y
(k

H
z)

lll lllllllllllllllllllllllllll

l

lllllllllllllllllllllllllll

lll

llllllllllllllllllllllllll

llllll

lllllllllllll

l

llllllllll

llllllllllllllllllll

llllllll

ll

Fig. 13.8 Fundamental frequency tracking with pitchtrack(). The fundamental frequency of
the voice data hello is detected and tracked with the function pitchtrack() of phonTools.
The result is plotted over a spectrogram obtained with spectro() of seewave

13.1 Frequency Tracking 415

spectro(hello, flim=c(0,4), ovlp=87.5,
palette=reverse.gray.colors.2, collevels=seq(-48,0,1),
osc=TRUE)

points(res$time/1000, res$f0/1000, col="red", pch=19, cex=0.75)

13.1.2.4 soundgen Solutions

The package soundgen combines four solutions to track the fundamental fre-
quency into a single function, analyze(). This function uses the autocorrelation
and the cepstrum as previously introduced but also two other methods based on an
analysis of the peaks of the frequency spectrum (detection of the lowest-frequency
peak and computation of harmonics ratio). The function is rather simple to use, we
just need to coerce the data into a numeric vector with as.numeric() and store
the results in an object (Fig. 13.9):

res <- analyze(as.numeric(hello@left), hello@samp.rate)
legend("topright",

legend=c("autocorrelation", "lowest frequency peak",
"ratio of harmonics", "cepstrum", "interpolation"),

pch=c(16,2,3,7,NA), lty=c(rep(NA,4),1),
col=c("green", "red", "orange", "violet", "blue"),
bg="white")

0 200 400 600 800

0
1

2
3

4
5

l l l l l l l l l l llllllllllllllllllllllllll lll lll lll lll lll lll lll lll lll llllllllllllllllll lll lllllllllllllllll lllllll

l autocorrelation
lowest frequency peak
ratio of harmonics
cepstrum
interpolation

Fig. 13.9 Fundamental frequency tracking with analyze(). The fundamental frequency of the
voice data hello is detected and tracked with the function analyze() of soundgen following
four methods which, here, return almost the same results. The legend was added manually with
legend()

416 13 Frequency and Energy Tracking

The function offers several options to control for the parameters of STDFT, the
parameters of the four methods used, amplitude frequency, and time thresholds. It
also processes an interpolation between the tracks that can also be controlled. A
full explanation of analyze() is provided in the vignette “Acoustic analysis with
soundgen”:

vignette("acoustic_analysis", package="soundgen")

13.1.3 Formants

We have seen in Sect. 12.2.2 how to localize and describe voice formants with
the function findformants() of phonTools. It is easy to imagine that the
function can be used with a window sliding along the sound, in the same way
as fund() and pitchtrack(), such that the formants can be tracked along
time. This short-time version of findformants() is available in the function
formanttrack() of the same package phonTools. The function has the
same arguments windowlength and timestep than pitchtrack() and
additional arguments specific to the detection of the formants: minformant the
minimum frequency expressed in Hz, cutoff the maximum frequency expressed
in Hz, maxbw the maximum formant bandwidth expressed in Hz, formants the
maximum number of formants to detect, and periodicity which is a threshold
level related to the autocorrelation. We also can choose not to plot the results but to
store them in an object by specifying show=FALSE and returnbw=TRUE:

fs <- hello@samp.rate
wl <- 512
res <- formanttrack(hello@left, fs=fs,

windowlength=1000*wl/fs,
timestep=1000*wl/fs/2,
minformant=250, cutoff=4000, maxbw=300,
formants=3, periodicity=0.95,
show=FALSE, returnbw=TRUE)

The value of formanttrack() is a data.frame, the first column is time
in ms ($time), the next ith columns are the frequency of the ith formants ($f#),
and the last ith columns are the bandwidth of the ith formants ($b#). As we set
formants=3, we end here with 1 + 3 + 3 = 7 columns:

13.1 Frequency Tracking 417

str(res)
’data.frame’: 115 obs. of 7 variables:
$ time: num 5.5 32.4 53.9 70 80.8 ...
$ f1 : num 0 0 1670 2683 745 ...
$ f2 : num 0 0 2692 0 2554 ...
$ f3 : num 0 0 0 0 0 ...
$ b1 : num 0 0 241.7 276.8 61.2 ...
$ b2 : num 0 0 89.9 0 261.4 ...
$ b3 : num 0 0 0 0 0 ...

The 0 values in res, which indicates that the analysis was not run, can be
replaced by NA:

res[res==0] <- NA

so that these values are not used when overlaying the formant frequencies on the
spectrogram (Fig. 13.10):

Amplitude
(dB)

−40

−30

−20

−10

0

0.0 0.2 0.4 0.6 0.8

Time (s)

Am
pl

itu
de 0

1

2

3

4

Fr
eq

ue
nc

y
(k

H
z)

ll

l

lllllllll
llllllll

l

l
l

llllll lllllllll
ll

ll

lll
llll

lllll
l

l

l
llll l

llll
ll

ll l

l

ll

l

llll
llll

lllllll
llllll ll

ll

lll
ll

l
ll
lll

l

l
llll

llllll

llll

llllll
l

llll

l

llllllllll

l

ll

l
l

l

l

l

l

l

l
lll

ll

lll
lll ll

l

l
l l

l
l

l

l

l

f#1
f#2
f#3

Fig. 13.10 Formant tracking with formanttrack(). The formants of the voice data hello
are detected and tracked with the function formanttrack() of phonTools. The results, here
for three formants, are plotted over a spectrogram obtained with spectro() of seewave

418 13 Frequency and Energy Tracking

spectro(hello, flim=c(0,4), ovlp=87.5,
palette=reverse.gray.colors.2, collevels=seq(-48,0,1),
osc=TRUE)

points(res$time/1000, res$f1/1000, pch=19, col=2)
points(res$time/1000, res$f2/1000, pch=19, col=3)
points(res$time/1000, res$f3/1000, pch=19, col=4)
legend("topleft", legend=paste("f", 1:3, sep="#"),

col=2:4, pch=19, bty="n")

13.1.4 Instantaneous Frequency

13.1.4.1 Hilbert Transform

The analytic signal through the Hilbert transform can give access to both instanta-
neous amplitude envelope and instantaneous frequency. The Hilbert transform has
the great advantage to return a time series for the instantaneous frequency f (t)

that has the same sampling rate than the original time signal s(t) such that time
resolution is kept. The Hilbert transform provides nice results for monotonal sounds
but may go wrong with multi-tonal sounds.

We have seen in Sect. 5.2.1 that the analytic signal ξ(t) can be written as:

ξ(t) = s(t) + iH (t)

where s(t) is the signal, H(t) is the Hilbert transform, and i2 = −1.
We have also seen that this expression can be written under the following form:

ξ(t) = a(t)eiϕ(t)

where a(t) is the instantaneous amplitude and the ϕ(t) is the instantaneous phase.
ϕ(t) can be therefore obtained by computing the argument of ξ(t):

ϕ(t) = arg(ξ(t))

= arctan

(
H(t)

s(t)

)

13.1 Frequency Tracking 419

and the instantaneous frequency can be derived from the instantaneous phase by
computing its time derivative according to:

f (t) = 1

2π

δϕ(t)

δt

= 1

2π

δ arctan
(

H(t)
s(t)

)

δt

= 1

2π

s(t)Ḣ (t) − H(t)ṡ(t)

s2(t) + H 2(t)

where ṡ(t) and Ḣ (t) are the time derivatives of s(t) and H(t).
The function ifreq(), which calls the function hilbert() that returns

the analytic signal ξ(t), computes and plots the instantaneous phase and the
instantaneous frequency. The argumentphase allows to choose between phase and
frequency, and the argumentthreshold is an amplitude threshold expressed in %
as in dfreq() and fund(). Here is an example of the use of ifreq() on tico
(Fig. 13.11):

ifr <- ifreq(tico, threshold=6, col="blue")

0.0 0.5 1.0 1.5

0
2

4
6

8
10

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

Fig. 13.11 Instantaneous frequency tracking with ifreq(). The instantaneous frequency is
computed and plotted with the function ifreq() on tico. An amplitude threshold of 6% was
applied to select the notes

420 13 Frequency and Energy Tracking

The value of ifreq() is a two-item list, each item being a two-column
matrix. The item $p contains the instantaneous phase in rad and $f contains the
instantaneous frequency in kHz as illustrated for six samples taken into the first
note:

ifr$p[2000:2005,]
time phi

[1,] 0.09065989 0.12905733
[2,] 0.09070524 1.36408262
[3,] 0.09075059 2.59947283
[4,] 0.09079594 -2.44545131
[5,] 0.09084130 -1.20550973
[6,] 0.09088665 0.03293986
ifr$f[2000:2005,]

time ifreq
[1,] 0.09065989 4.334156
[2,] 0.09070524 4.335437
[3,] 0.09075059 4.345512
[4,] 0.09079594 4.351409
[5,] 0.09084130 4.346173
[6,] 0.09088665 4.339165

Tracking the instantaneous frequency using the Hilbert transform works very
well for monotonal sounds but might be altered for multi-tonal sounds. For instance,
the bat call stored in bat is monotonal in its first parts and then bitonal in its second
part. The instantaneous frequency is properly estimated for the first but not second
part as illustrated in the following plot that combines the use of spectro() and
ifreq() (Fig. 13.12):

spectro(bat, wl=256, ovlp=87.5,
palette=reverse.gray.colors.2)

ifr <- ifreq(bat, threshold=5, plot=FALSE)
lines(ifr$f, col=rgb(1,0,0,0.75))

The function fma() opens the possibility to look for periodic frequency
modulations by applying the Fourier transform on the instantaneous frequency as
we applied the Fourier transform on the Hilbert amplitude envelope to seek for peri-
odicity in the amplitude modulations with the function ama() (see Sect. 8.4). The
theremin sound is regularly modulated in frequency at a rate of approximately of
6 Hz as returned by fma() applied on a 2 s section (Fig. 13.13):

13.1 Frequency Tracking 421

Fig. 13.12 Artifact of instantaneous frequency tracking. The instantaneous frequency is computed
and plotted with the function ifreq() on bat. An amplitude threshold of 5% was applied to
select the call. The function can properly estimate the instantaneous frequency when the sound is
monotonal but not when an harmonic appears making the sound bitonal

theremin.sel <- cutw(theremin, from=10, to=12, output="Wave")
fma(theremin.sel, flim=c(0,0.1))

13.1.4.2 Zero-Crossing

The zero-crossing (ZC) is a simple and intuitive method to measure the instanta-
neous frequency (Mbu Nyamsi et al. 1994). As defined in Sect. 2.2.2, the frequency
of a sine wave is the inverse of the period, that is the inverse of the duration of
a complete cycle. A cycle can be delimited by successive maxima (or minima) as
illustrated in Fig. 2.2 or by positions where the wave crosses the zero line, that is
the line where the pressure is null (p0). The ZC seeks where the wave crosses the
zero line and measures the interval Tzc between the ith and (i + 2)th zero-crossings
(Fig. 13.14).

422 13 Frequency and Energy Tracking

0.00 0.02 0.04 0.06 0.08 0.10

Frequency (kHz)

Am
pl

itu
de l

0.
00

6

Fig. 13.13 Frequency modulation analysis of the theremin sound. The function fma() shows a
first peak at 0.006 kHz. This peak was here identified using identify=TRUE and then added on
the graphic with the low-level plot functions points() and text() as in Fig. 8.11. Note that
the peak can also be automatically identified using fpeaks()

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
lll

llllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllllllllllll

ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
lll

llllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllllllllllll

ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
lll

llllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllllllllllll

ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll l l l l l l

Tzc

0 t

−

p0

+

Fig. 13.14 Zero-crossing principle. Positions where the signal crosses the zero line are identified
(red points) and used to estimate the instantaneous period Tzc and therefore the instantaneous
frequency fzc

The ZC method is simple to implement and to use but has some limitations. First,
it only works for monotonal sounds. The introduction of overtones can change the
shape of the wave so that the positions of the zero-crossings do not correspond to
the instantaneous frequency (Fig. 13.15). Second, the accuracy of the ZC method

13.1 Frequency Tracking 423

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

l

l

l

l

l

l

l
l
l
l
l
l
ll
lllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllll

ll
ll
l
l
l
ll
ll
lllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllll

l
l
l
l
l
l
l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l
l
ll
lllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllll

ll
ll
l
l
l
ll
ll
lllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllll

l
l
l
l
l
l
l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l
l
ll
lllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllll

ll
ll
l
l
l
ll
ll
lllllllll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllll

l
l
l
l
l
l
l

l

l

l

l

l

ll l l l l l l l l l l l l

Tzc1
Tzc2

Tzc3
Tzc4

0 t

−

p0

+

Fig. 13.15 Zero-crossing with a multi-tonal sound. A sound made of different frequencies, here a
fundamental and its first harmonic, crosses the zero line several times such that the instantaneous
frequency varies around four values

decreases significantly when approaching the Nyquist frequency, the sampling rate
being too low to measure correctly the distance between consecutive zero-crossing
(Fig. 13.16). A possible solution to reduce errors in ZC method when approaching
the Nyquist frequency is to artificially increase the number of samples through an
interpolation process as illustrated in the bottom graphic of Fig. 13.16.

The function zc() of seewave implements the zero-crossing principle with
an interpol argument to increase the number of samples and hence to increase
the accuracy of the results and a threshold argument to selection signal section
through an amplitude threshold expressed in %. The following code gives an
example of zc() on the bat sound without and with interpolation (Fig. 13.17):

par(mfrow=c(2,1))
zc(bat, threshold=7, col="blue", main="no interpolation")
zc(bat, threshold=7, col="blue", interpol=10,

main=expression(paste("with a ",
symbol("\264"), " 10 interpolation")))

Deriving from the ZC method, the zero-crossing rate (ZCR) consists in counting
the number of times the wave crosses the zero line. The ZCR is often used in speech
analysis. For a signal s[n] made of N samples, the ZCR is computed according to:

zcr = 1

2 × N

N−1∑
n=0

|sgn(s[n + 1]) − sgn(s[n])|

424 13 Frequency and Energy Tracking

llllll
lllllllllll

lllllllllllllllll
llllllllllllllllllll

llllllllllllllllll
llllllllllllllllllll

llllllllllllllllll
llllllllllllllllllllllllllllllllllll

ll
lll
ll
lll
ll
l
ll
l
ll
l
ll
l
llllllll
l
lll
l
llllllll
l
ll
l
ll
l
ll
l
ll
l
ll
ll
ll
ll
ll
lll
ll
llll
ll
lllllll
ll
lllllllllllllllllllllll
ll
llllllll
ll
lllll
ll
lll
ll
lll
ll
ll
ll
ll
ll
ll
ll
ll
ll
l
ll
l
ll
l
ll
l
ll
l
ll
l
ll
l
llll
l
llll
l
llllll
l
lllllllllllllllllllllllllllll

l

llllllll

l

llll

l

llll

l

llll

l

ll

l

ll

l

llll

l

ll

l

ll

ll

ll

l

ll

l

ll

l

ll

ll

ll

l

ll

ll

ll

ll

ll

ll

ll

ll

ll

lll

ll

ll

ll

lll

ll

llll

ll

lll

ll

llll

ll

lllll

ll

llllll

ll

llllll

ll

lllllllll

ll

llllllllllll

ll

ll

ll

lllllllllllll

ll

lllllllll

ll

llllllll

ll

lllllll

ll

lllll

ll

lllll

ll

lllll

ll

llll

ll

llll

ll

llll

ll

lll

ll

llll

ll

lll

ll

lll

ll

ll

ll

lll

ll

ll

ll

lll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

l

ll

ll

ll

ll

ll

l

ll

ll

ll

l

ll

l

ll

ll

ll

l

ll

l

ll

l

ll

ll

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

llll

l

ll

l

ll

l

llll

l

ll

l

llll

l

ll

l

llll

l

ll

l

llll

l

llll

l

llll

l

llll

l

llll

l

llllll

l

llll

l

llllll

l

llllll

l

llllllll

l

llllllll

l

llllllll

l

llllllllllllll

l

llllllllllllllllllll

l

lllllllllllllllllllllllllllllllllllll

l

llllllllllllllllllll

l

llllllllllllll

l

llllllllll

l

llllllll

l

llllllll

l

llllllll

l

llllll

l

llllll

l

llll

l

llllll

l

llll

l

llllll

l

llll

l

llll

l

llll

l

llll

l

llll

l

llll

l

ll

l

llll

l

llll

l

ll

l

llll

l

ll

l

llll

l

ll

l

llll

l

ll

l

ll

l

llll

l

ll

l

ll

l

llll

l

ll

l

ll

l

ll

l

ll

l

ll

l

llll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

ll

ll

l

ll

l

ll

l

ll

l

ll

l

ll

ll

ll

l

ll

l

ll

l

ll

ll

ll

l

ll

l

ll

ll

ll

l

ll

l

ll

ll

ll

l

ll

ll

ll

l

ll

l

ll

ll

ll

l

ll

ll

ll

ll

ll

l

ll

ll

ll

l

ll

ll

ll

ll

ll

l

ll

ll

ll

ll

ll

ll

ll

l

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

lll

ll

ll

ll

ll

ll

ll

ll

lll

ll

ll

ll

lll

ll

ll

ll

lll

ll

ll

ll

lll

ll

ll

ll

lll

ll

lll

ll

lll

ll

ll

ll

lll

ll

lll

ll

lll

ll

lll

ll

lll

ll

lll

ll

lll

ll

llll

ll

lll

ll

lll

ll

llll

ll

lll

ll

llll

ll

lll

ll

llll

ll

lll

ll

llll

ll

llll

ll

llll

ll

llll

ll

llll

ll

llll

ll

llll

ll

lllll

ll

llll

ll

llll

ll

lllll

ll

lllll

ll

lllll

ll

llll

ll

lllll

ll

llllll

ll

lllll

ll

lllll

ll

llllll

ll

lllll

ll

llllll

ll

llllll

ll

llllll

ll

lllllll

ll

llllll

ll

lllllll

ll

lllllll

ll

lllllll

ll

lllllll

ll

llllllll

ll

llllllll

ll

llllllll

ll

lllllllll

ll

lllllllll

ll

lllllllll

ll

llllllllll

ll

lllllllllll

ll

lllllllllll

ll

lllllllllll

ll

lllllllllllll

ll

lllllllllllll

ll

llllllllllllll

ll

llllllllllllllll

ll

llllllllllllllllll

ll

lllllllllllllllllll

ll

lllllllllllllllllllllll

ll

llllllllllllllllllllllllllll

ll

lllllllllllllllllllllllllllllllllllllll

ll

lll

0

5

10

15

20

no interpolation

llllllll
llllllllllllll

lllllllllllllllllll
lllllllllllllllllllllllll

llllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllll

ll
lll

lll
lll

lll
ll

llllllllllllllllllllllllllllllllll
lll

lll
ll

llllllllllllllllllll
llllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllll
ll
ll
lllllllllllll
llllllllllll
l
ll
llll
llll
lllllllllllllllllllllllllllllllllllllll
llllllllll
l
ll
l
ll
l
llll
lll
ll
l
lll
lllll
ll
l
ll
l
lllll
ll
l
llllllll
llll
l
ll
l
lllll
l
ll
l
l
llll
l
lllll
lllll
lllllll
lllll
lllllllllllllllllllllll
lllllllll
lllllllllll
lll

lllllllllllllllllllllllllllllllll
lllllllllllll
l
lll
l
llllllll
lllllll
lllllllll
lllllllllllll
lll
l
l
lllll
l
l
l
ll
ll
l
llllll
l
llll
l
llll
lllllll
l
llll
l
llll
l
llll
l
ll
l
l
l
ll
lllll
l
l
lll
l
ll
l
l
l
ll
l
l
lll

l
ll
l
l
lll

l
ll
l
l
ll
l
l
ll
l

ll
l
llll

l
ll
l

ll
l
llll
l
ll

l
ll

l

ll
l

ll
l
ll
l
l
lll
l
l
l

l
l
l

l
ll
l
ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll
l
ll

l

l
l

l
l
l
ll
l
ll
ll

l

ll

l

ll

l

ll

l
l
l
ll
l
l
l

ll

l

ll

l

ll

ll

ll

l

ll

l

ll

ll
l
l
l

ll

l

ll

ll

ll

l

ll

l
l
l
l
l

ll

l
l
l
l
l

ll

l

l
l
l
l

ll

ll
ll

l

ll

l
l

ll

l

l
l

l
l

ll

l

l
l
l

l

l
l

l
l

ll

l
l

l
l

l

ll
l
l

l
l

l
l

ll

ll

ll

l
l

l
l

l
l

ll

l
l

ll

l
l

ll

l
l
l
l

l

l
l
l

l
l

ll

l
l

ll

ll

ll

ll

ll

l
l

ll

l
l

ll

l
l

l
l

l
l
l

ll

ll

ll

l
l

ll

l
l

l
l
l

l
l

ll

l
l

ll

l
l
l

ll

l
l

ll

l
l
l

ll

l
l

ll

l
l
l

ll

ll

l
l
l

l
l

ll

l
l
l

ll

ll
l

ll

l
l

l
l
l

l
l

ll

l
ll

ll

l
ll

ll

l
ll

ll

l
ll

ll

l
ll

l
l

l

ll

l
l
l

ll

l

ll

l
l
l

ll

lll

ll

l
ll

l

l
l

ll
l

ll

ll
l

l

l
l

ll
l

ll

ll
l
l

ll

l
l
l

l
l

l

ll
l

ll

l
ll
l

ll

ll
l
l

ll

ll
l
l

ll

ll
l
l

ll

ll
l
l

ll

l
ll
l

ll

l
ll
l
l

l
l

lll
l

ll

l
ll
l

l
l

l

lll
l

ll

l
ll
l
l

ll

llll

l

l
l

llll

l
l

l

llll

l
l

l

llll

l

l
l

llll
l

ll

l

l
lll

ll

l
llll
l

ll

l
l
lll

l
l

l

lll
l
l

ll

l
lll
l
l

ll

l
lll
l
l

ll

l
lll
l
l
l

ll

l
l
ll
l
l

ll

l
lll
l
l
l

ll

l

l
ll
l
l
l

ll

l

l
ll
l
l
l

ll

l
lll
ll
l

l
l

l

l
l
ll
l
l
l

ll

l
lll
ll
l
l

ll

l
lll
ll
ll

l

l

l

l
l
ll
ll
l
l

ll

l

l
ll
lll
l
l

ll

l

l
ll
lll
ll

l

l

l

l
l
ll
lll
l
l

ll

l
lll
llll
ll
l

ll

l
l
ll
llll
ll
l

ll

l
l
ll
llll
lll

ll

l
lll
llllll
ll
l

ll

l
l
ll
llllll
lll

ll

l

l
ll
lllllll
lll

l
l
l

lll
llllllll
ll
l
l

ll

l

l
ll
lllllllll
ll
l
l
l

ll

lll
lllllllllll
ll
ll
l

ll

l
ll
llllllllllllll
ll
lll
l

ll

l
ll
llllllllllllllllll
ll
llll
l

ll

l
ll
llllllllllllllllllllllllll
ll
lllllll
l

ll

l
ll
ll

0.00 0.02 0.04 0.06 0.08 0.10

0

5

10

15

20

with a × 10 interpolation

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

Fig. 13.16 Zero-crossing limitation and interpolation solution. The figure is based on the analysis
of a 0.1 s sound sampled at 44,100 Hz with a linear frequency increasing from 0 to 22,050 Hz.
Without interpolation the ZC is very inaccurate when getting close to the Nyquist frequency (top).
This error can be reduced by interpolating the original signal, here with a ×10 factor (bottom)

where sgn is the signum function defined as follows:

sgn(x[n]) =
{

1 if x[n] ≥ 0

−1 if x[n] < 0

The seewave function zcr() can return a single ZCR value for a complete
object:

zcr(bat, wl=NULL)
[1] 0.4548295

13.1 Frequency Tracking 425

l

l

ll

l

llllllll

l

ll

l

llll

l

ll

l

ll

l

ll

l

ll

l

ll

ll

ll

ll

ll

lll

ll

llll

ll

llllll

ll

llllllllllll

l

llll

l

l

l

llllllllll

l

llllllllllll

ll

llllllll

ll

llllll

ll

llll

ll

llll

ll

ll

ll

llll

ll

ll

ll

lll

ll

ll

ll

ll

ll

ll

ll

ll

ll

l

ll

ll

ll

ll

ll

l

ll

l

ll

ll

ll

l

ll

l

ll

ll

llll

ll

llll

ll

llll

l

ll

l

ll

l

ll

l

llll

l

ll

l

ll

l

ll

l

llll

l

llll

l

ll

l

llll

l

ll

l

llllll

l

ll

l

llllll

l

llll

l

llllll

l

llll

l

llllllll

l

llll

l

llllllllll

l

llllll

l

llllllllllllll

l

llllllll

l

llllllllllllllllllllllllllll

l

llllllllllllllllllllll

l

ll

l

llllllllllllllllllllllllllllllll

ll

llll

l

ll

l

llll

l

lllll

0.000 0.005 0.010 0.015 0.020

0

20

40

60

80

no interpolation

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

llll

l

l
l
ll
ll
l
llllllllll
ll
lllllll
ll
lllllllll
lllll
llllllllll
ll
ll

lllllllllllllllllllllllllll
lllllllllllllllll
llllllllllllllllllllllllllllllllll

ll
lll

l
l
ll

l

ll
l
l
l
ll

l

lllll

0.000 0.005 0.010 0.015 0.020

0

20

40

60

80

with a × 10 interpolation

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

Fig. 13.17 Instantaneous frequency tracking with zc(). The instantaneous frequency of the bat
call is estimated using the zero-crossing principle without (top) and with a tenfold interpolation
(bottom)

or can compute successive ZCR values through a short-time process. The usual wl
and ovlp arguments can be used to tune the process (Fig. 13.18):

zcr(bat, wl=512, ovlp=87.5)

426 13 Frequency and Energy Tracking

l

l

l
lll

l

l

l

ll

l

l

l

l

l

l

l
l
l
ll

lllllll
ll

l

l

l
ll

lll

l

ll
l
ll

lll

l
l

l
ll

0.000 0.005 0.010 0.015 0.020

0.
40

0.
44

0.
48

0.
52

Time (s)

Ze
ro

 c
ro

ss
in

g
ra

te

Fig. 13.18 Zero-crossing rate. The zero-crossing rate method is used on bat sound by dividing
the signal in 53 successive windows by setting the arguments wl=512 and wl=87.5

The zero-crossing rate can also be used to estimate the instantaneous frequency
of the sound as demonstrated in DIY box 13.2.

DIY 13.2 — How to derive the instantaneous frequency using zero-
crossing rate

The ZCR is another way, probably faster, to estimate the instantaneous frequency as
exemplified here on the hello recording. The trick is simply to multiply the frequency
results of the function zcr by half the sampling frequency.

zcr(hello)*hello@samp.rate/2

It is then possible to overlay the results on the spectrogram with this simple code. Note
that the sampling frequency is here divided by 2000 to get results in Hz rather than in
kHz:

spectro(hello, flim=c(0,4), ovlp=87.5,
palette=reverse.gray.colors.2)

res <- zcr(hello, ovlp=87.5, plot=FALSE)
lines(res[,1], res[,2]*hello@samp.rate/2000, col="red")

(continued)

13.2 Energy Tracking 427

DIY 13.2 (continued)

13.2 Energy Tracking

The Teager-Kaiser energy operator, abbreviated TKEO, is a transform of the signal
that estimates the energy that would be required to a mechanical process—a spring-
mass system—to generate a signal made of a single frequency. The idea comes
from the fact that the energy E of a mass m suspended by a spring oscillating with
an amplitude A and a frequency ω can be written (Kaiser 1990):

E = 1

2
mA2ω2

so that E is proportional to the square of both amplitude and frequency:

E ∝ A2ω2

428 13 Frequency and Energy Tracking

The energy of a time series, noted Ω , can be measured by using only three
adjacent samples using the following equation (Kaiser 1990):

Ω(t) = ẋ2(t) − x(t) × ¨x(t)

which is written in its discrete version as:

Ω[n] = x[n]2 − x[n − 1] × x[n + 1]

The equations can be generalized referring to a lag parameter M and an exponent
parameter m (Kvedalen 2003):

Ω[n] = x[n] 2
m − (x[n − M] × x[n + M]) 1

m

This equation is fast to compute and returns a time series with a similar sampling
frequency than the original signal. The Teaser-Kaiser operator (TKEO) can be then
used to track amplitude modulations (AM) and/or frequency modulations (FM) as
illustrated in Fig. 13.19.

The TKEO suffers, however, some limitations. As it is based on the energy
equation of a simple mass-spring system oscillating at a single frequency, it can
be used for monotonal sounds only (Fig. 13.20). In addition, the expression used
is based on the second derivative of the time series such that the TKEO can give
an appropriate measurement of the energy only if the sampling frequency fs is four
times the frequency of oscillation, that is four times the main frequency of the sound
(Fig. 13.21). The TKEO is also sensitive to noise (Fig. 13.22).

The TKEO is implemented in the seewave function TKEO(). As usual the
data have to be provided in the first argument wave, and the lag and exponent
parameters can be specified in the argumentsM and m arguments, respectively. These
two arguments have a default value of 1 for the computation of a conventional
TKEO. By default the function plots the energy against time and saves the results in
a two-column matrix which first column is time in s and second column is energy.
m ÷ 2 NA values are added at the start and end to keep a similar number of samples
as in the original input object wave. A straight use of TKEO, here on tico, is
therefore:

res <- TKEO(tico)

The function TKEO() should be employed carefully due to the limitations of the
TKEO exposed above. For instance, the TKEO properly works on tico because
the sound is monotonal and the maximum frequency, around 5500 Hz, is just below

13.2 Energy Tracking 429

Fig. 13.19 Teager-Kaiser energy operator. Examples of TKEO applied to amplitude modulated
(AM) and/or frequency modulated (FM) sounds

430 13 Frequency and Energy Tracking

Fig. 13.20 Teager-Kaiser energy operator with multi-tonal sound. The TKEO does not return
appropriate results with a multi-tonal sound, as illustrated here with a sound with a carrier
frequency at 2000 Hz and four harmonics. Spectrogram (top) and TKEO (bottom)

one fourth of the sampling frequency 22,050 ÷ 4 = 5512.5 Hz (Fig. 13.23, top).
However, the TKEO returns useless results if applied on sheep because the bleat
sound is a series of harmonics going up 2800 Hz, significantly above one fourth of
the sampling frequency 8000÷4 = 2000 Hz (Fig. 13.23, middle). A simple solution
to reach this condition is to filter out unwanted frequency bands to focus on a single
frequency band of interest. This frequency selection can be processed by employing
a band-pass frequency filter as detailed in Chap. 14. If we keep on the sheep case,

13.2 Energy Tracking 431

Fig. 13.21 Teager-Kaiser energy operator with high-frequency content. The TKEO does not
return appropriate results for frequencies above fs ÷ 4, as illustrated here with a frequency
modulated sound starting at 0 Hz and ending at fs ÷ 2 = 22,050 Hz. The vertical (frequency)
or horizontal (vertical) blue line indicates where the TKEO is no more operational. Spectrogram
(top) and TKEO (bottom)

we can greatly improve the quality of the results by applying a band-pass filter
between 500 and 700 Hz with the function fir() which functionality is explained
in Sect. 14.6:

sheep.f <- fir(sheep, from=500, to=700, output="Wave")

432 13 Frequency and Energy Tracking

Fig. 13.22 Teager-Kaiser energy operator with noise. The TKEO does not return appropriate
results when the system, that is the recording, includes noise as illustrated here with a frequency
modulated sound starting at 0 Hz and ending at fs ÷ 2 = 22,050 Hz mixed with white noise.
Spectrogram (top) and TKEO (bottom)

The use of TKEO on this filtered signal returns expected results (Fig. 13.23,
bottom):

par(mfrow=c(3,1))
TKEO(tico, main="tico")
TKEO(sheep, main="sheep")
TKEO(sheep.f, main="sheep with a [500, 700] Hz band-pass filter")

13.2 Energy Tracking 433

Fig. 13.23 Teager-Kaiser applied on tico and sheep. The TKEO can be applied directly on
tico as the conditions of application are met (top). However, the TKEO does not return relevant
results if applied on sheep that does not meet all conditions of application (middle). A band-pass
filter between 500 and 700 Hz can solve the problem by focusing on a single and low-frequency
band (bottom)

Chapter 14
Frequency Filters

Audio recordings are far to be perfect, in particular those achieved outdoor
where several unwanted sounds may interfere with the sound of interest. It is
therefore often necessary to clean up the recordings by removing a part of the
frequency spectrum. A section of the frequency content might also be discarded for
experimental purposes as in psychoacoustic tests or animal playback experiments
where only a part of the signal has to be tested. It is therefore often required to
apply a frequency filter on an input signal to produce an output signal with some
frequencies removed.

To introduce the functions developed for frequency filtering, we will refer to the
vocalizations of two amphibian species. The first species is the South-American dart
poison frog Allobates femoralis (Fig. 14.1) which male produces during the day a
sequence of four frequency-modulated notes. A recording made in French Guiana
is available in the file Allobates_femoralis.wav:

femo <- readWave("sample/Allobates_femoralis.wav")
femo

Wave Object
Number of Samples: 61740
Duration (seconds): 1.4
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_14

435

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_14&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_14

436 14 Frequency Filters

Fig. 14.1 Pictures of soniferous animals: the South-American poison frog Allobates femoralis and
the European midwife toad Alytes obstetricans (Reproduced with the kind permission of pictures
by Andrius Pasukonis and Diego Llusia)

The sound includes two sequences of four notes. The recording is of rather
good quality, but there is some low-frequency background noise below 500 Hz
due to wind, a frequency band at around 3.5 kHz due to distant A. femoralis
individuals singing in the background, and a frequency band of 8.2 Hz due to an
insect stridulation (Fig. 14.2).

The second species is the European midwife toad Alytes obstetricans which male
produces during the night a delicate, soft, and short call regularly repeated. The
file Alytes_obstetricans.wav includes three calls or notes with background
noise mainly due to wind below 500 Hz and insect stridulation between 9 and 19 kHz
(Fig. 14.3):

toad <- readWave("sample/Alytes_obstetricans.wav")
toad

Wave Object
Number of samples: 264000
Duration (seconds): 5.5
Sampling rate (hertz): 48000
Channels (mono/stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

A frequency filter is either an electronic device or a digital tool that deletes
a specific frequency band. A frequency filter is defined by a transfer function.
This transfer function is a frequency function, noted H(ω) when referring to the
angular frequency or H(f) when referring to ordinary frequency, that shows how
the filter acts on the input signal to produce an output signal (Fig. 14.4). The transfer
function is usually visualized as a Bode magnitude plot which is a log–log plot with
frequency placed on the x-axis and dB relative amplitude on the y-axis.

14 Frequency Filters 437

Fig. 14.2 Spectrogram and oscillogram of the vocalization of the dart poison frog Allobates
femoralis. The recording includes two sequences of four notes and background noise due to
wind, distant individuals, and insects. Fourier window size = 512 samples, overlap = 0%, Hanning
window

The shape of the transfer function H(f) indicates the frequencies attenuated and
unchanged by the filter. There are four main types of frequency filters:

low-pass filter allowing the passage of frequencies lower than a cutoff frequency
fc and attenuating the frequencies higher than fc.

high-pass filter allowing the passage of frequencies higher than a cutoff frequency
fc and attenuating the frequencies lower than fc.

band-pass filter allowing the passage of frequencies between a lower cutoff
frequency fl and a upper cutoff frequency fu and attenuating frequencies lower
than fl and higher than fu.

438 14 Frequency Filters

Fig. 14.3 Spectrogram and oscillogram of the vocalization of the European midwife toad Alytes
obstetricans. The recording includes three notes, wind, and insects. Fourier window size = 512
samples, 0% of overlap, Hanning window

band-stop filter attenuating the passage of frequencies between a lower cutoff
frequency fl and a upper cutoff frequency fu and allowing the passage of
frequencies lower than fl and higher than fu.

The attenuation slope(s) of the transfer function can be more or less accentuated.
This degree in attenuation is named the roll-off rate or rejection rate. This rate,
which estimates how sharp the filter is, is measured in dB per octave or in dB per
decade where an octave corresponds to a multiplication of the frequency by 2 and a
decade to a multiplication of the frequency by 10.

By definition, a filter operates changes in amplitude as some frequencies are
attenuated, and other not but a filter may also introduce a delay in the phase. This
delay is frequency-dependent and can then introduce some distortion in the output
signal.

14 Frequency Filters 439

−50

−40

−30

−20

−10

0

INPUT TRANSFER FUNCTION OUTPUT

Frequency (log Hz)

R
el

at
iv

e
am

pl
itu

de
 (d

B)

Fig. 14.4 Principle of a frequency filter. The figure sketches how a frequency filter can change
the frequency content of a sound. The input sound is a white noise with a flat frequency spectrum
(left), the filter is characterized by a transfer function H(f) with a bell-like shape (middle), and
the output has a frequency spectrum with a shape similar to the filter transfer function (right). Note
that the frequency x-axis follows a logarithmic scale. Inspired from Speaks (1999)

There are seven seewave functions to apply a frequency filter as summarized
in Table 14.1. These filters will be introduced one after the other one in the next
sections.

Table 14.1 Types of frequency filters: short description of the frequency filters found in
seewave, sorted by alphabetic order

Name Function Description Main use

Butterworth filter bwfilter() Polynomial coefficients Enhancement

Comb filter combfilter() Time derivative Voice enhancement

DFT/STDFT filter ffilter() Frequency multiplication Cleaning

Finite impulse
response filter

fir() Time convolution Cleaning

Preemphasis filter preemphasis() Time derivative Voice enhancement

Smoothing spline
filter

rmnoise() Cubic smoothing spline High-frequency cleaning

Smoothing sum filter smoothw() Sum sliding window High-frequency cleaning

440 14 Frequency Filters

14.1 Preemphasis Filter

A preemphasis filter is a high-pass filter often used in speech analysis to reinforce
the high-frequency part naturally reduced by the voice-system resonators. The
preemphasis filter is the first step of the computation of mel-frequency cepstral
coefficients (see Sect. 12.1.1). The signal filtered is obtained by a simple time
derivative operation which removes through a weighted subtraction small amplitude
changes between adjacent samples due to low-frequency components:

sf iltered [n] = s[n] − αs[n − 1]
where s[n] is the original signal and α is a constant determining the cutoff frequency
fc of the filter. Increasing α increases the cutoff frequency, hence the attenuation of
low frequencies.

The constant α varies usually between 0.9 and 1, with a standard value of 0.97 for
speech signals. α can be determined in relation with fc using the following equation:

α = e
− 2πfc

fs

where fs is the sampling frequency.
The transfer function of the filter is obtained with (Fig. 14.5):

H [f] = 1 + α2 − 2α cos

(
2πf

fs

)

A preemphasis filter is available in the seewave function preemphasis().1

To test this function, we first load the data hello introduced in Chap. 11:

hello <- readWave("sample/hello.wav")

We then estimate the time constant α for the cutting frequency fc = 150 Hz:

f <- hello@samp.rate
fc <- 150
alpha <- exp(-2*pi*fc/f)
alpha
[1] 0.9805566

1A preemphasis filter can also be built with the function filter() of the package signal
as implemented in the function melfcc(): filter(x, filter = c(1, -alpha),
method = “convolution,” sides = 1, circular = FALSE).

14.1 Preemphasis Filter 441

1 10 100 1000 10000

−150

−100

−50

0

Frequency (Hz)

R
el

at
iv

e
am

pl
itu

de
 (d

B)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Fig. 14.5 Transfer function of preemphasis filter. The figure shows the Bode plot of the transfer
function of preemphasis filters with values of α varying between 0 and 1

We apply the preemphasis filter and save the result in a new Wave object with:

hello.filt <- preemphasis(hello, alpha=alpha,
output="Wave", plot=TRUE)

Choosing plot=TRUE produces a graphical display where the spectrogram of
the new signal and the frequency response of the filter are plotted side-by-side
(Fig. 14.6). The result of the filter with different values of α could also be viewed
by overlaying the mean spectra of the original (α = 0) and filtered signals (α > 0)
as illustrated in the following code (Fig. 14.7):

alpha values
alpha <- seq(0, 1, by=0.1)
n <- length(alpha)
mean spectra parameters
wl <- 1024
ovlp <- 87.5
palette <- colorRampPalette(c("blue", "red"))(length(alpha))
mean spectrum of original signal
meanspec(hello, wl=wl, ovlp=ovlp, dB="max0")
loop for mean spectra of filtered signals
for(i in 1:n){

(continued)

442 14 Frequency Filters

lines(
meanspec(

preemphasis(hello, alpha=alpha[i], output="Wave"),
wl=wl, ovlp=ovlp, dB="max0", plot=FALSE),

col=palette[i]
)

}
legend
legend("topright",

legend=alpha, title=expression(alpha), ncol=2,
col=palette[1:n], lty=1, bty="n")

Fig. 14.6 Example of a preemphasis filter. Graphical display of the seewave function
preemphasis() showing side-by-side the spectrogram of the filtered signal, here hello, and
the frequency response of the filter along a linear amplitude scale

14.2 Comb Filter 443

0 5 10 15 20

−60

−40

−20

0

20

Frequency (kHz)

Am
pl

itu
de

α
0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9
1

Fig. 14.7 Effect of varying the α time constant of the preemphasis filter. The mean spectra of the
original signal (α = 0) and filtered signals (α = {0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0})
using the seewave function preemphasis are plotted on the same graph. This illustrates how
much high-frequency content is enhanced depending on the value of α. Mean spectra parameters:
Hanning window, 1024 samples, 87.5% of overlap, no zero-padding

14.2 Comb Filter

A comb filter is a frequency filter which transfer function shows a series of periodic
peaks and notches that can remind the shape of a comb. Such filter is quite close to
the preemphasis filter (see Sect. 14.1) and is similarly used for speech enhancement.
A comb filter is also a particular type of FIR filter (see Sect. 14.6). A comb filter
consists in adding a delayed version of a signal to itself resulting in constructive
and destructive interference. A feedforward version of a comb filter can be written
following:

sf iltered[n] = s[n] − αs(n − K)

where s[n] is the original signal, α is the scaling factor, and K is the delay length.
The periodic transfer function is obtained with:

H [f] =
√

1 + α2 + 2 cos

(
πf K

fs

)

444 14 Frequency Filters

0.0

0.5

1.0

1.5

2.0

α with K=0.001 s
0.2
0.4
0.6

0.8
1

1 10 100 1000 10000

0.0

0.5

1.0

1.5

2.0

Frequency (Hz)

K (s) with α=0.8

0.001
0.002

0.003
0.004

R
el

at
iv

e
am

pl
itu

de
 (d

B)

Fig. 14.8 Transfer function of comb filter. The top graphic shows the transfer function H of five
comb filters differing in α but not in K (K = 0.001). The sharpness of the peak increases with α.
The bottom graphic shows the transfer function H of four comb filters differing in K but not in α.
The number and position of peaks changes with K

The parameter K controls the number and position of peaks (respectively

notches), the peaks being found at
{

2
K

, 4
K

, 6
K

, . . .
}

and the notches being found

at
{

1
2K

, 3
2K

, 5
2K

, . . .
}

when α > 0. Increasing the value α toward 1 increases the

sharpness of the peaks (Fig. 14.8).
A comb filter is implemented in the seewave function combfilter(), the

parameters α and K being controlled with the argumentsalpha and K, respectively.
Here we apply a comb filter on the dataset hello with α = 0.9 and K = 0.001 s
(Fig. 14.9):

hello.filt <- combfilter(hello, alpha=0.9, K=0.001, units="seconds",
plot=TRUE, output="Wave")

14.3 Butterworth Filter 445

Fig. 14.9 Example of a comb filter. Graphical display of the seewave function comb showing
side-by-side the spectrogram of the filtered signal, here hello, and the frequency response of the
filter along a linear amplitude scale

14.3 Butterworth Filter

Butterworth filter is a popular frequency filter named after its creator Stephen But-
terworth (1885–1958), a British physicist (Butterworth 1930). The main properties
of this filter is a roll-off rate of 6 dB per octave, or 20 dB per decade, for a first-
order filter. A nth-order filter has a roll-off rate of n6 dB per octave, such that an
8th-order filter produces an attenuation effect of 8 × 6 = 48 dB per octave. The
transfer function being asymmetric, a high-pass and low-pass with the same cutoff
frequency do not attenuate in a similar way.

The general transfer function of a Butterworth filter is:

H(ω) = 1√
1 + x2n

446 14 Frequency Filters

−1
00

−8
0

−6
0

−4
0

−2
0

0
100 Hz high−pass

nth order
1
2
3
4
5

−1
00

−8
0

−6
0

−4
0

−2
0

0

1000 Hz low−pass

−1
00

−8
0

−6
0

−4
0

−2
0

0

100−1000 Hz band−pass

1 10 100 1000 10000

−1
00

−8
0

−6
0

−4
0

−2
0

0

100−1000 Hz band−stop

Frequency (Hz)

R
el

at
iv

e
am

pl
itu

de
 (d

B)

Fig. 14.10 Transfer function of Butterworth filter. The figure shows the Bode plot of the transfer
function of a 100 Hz high-pass, a 1000 Hz low-pass, a 100–1000 Hz band-pass, and a 100–
1000 Hz band-stop of a 1–5th Butterworth filter. The vertical black dashed-line show the cutoff
frequency(ies) and the gray grid underlines the −20 dB roll-off per decade

14.3 Butterworth Filter 447

with:

x =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω
ωc

for a low-pass filter
ωc

ω
for a high-pass filter

ω2+ωlωu

ω(ωu−ωl)
for a band-pass filter

ω(ωu−ωl)

ω2+ωlωu
for a band-stop filter

where ω = f ÷ 2π are the angular frequencies to be transformed by the transfer
function H(ω), ωc = fc ÷2π is the angular cutoff frequency for a low-pass or high-
pass filter, and ωl = fl ÷ 2π and ωu = fu ÷ 2π are the lower and upper angular
cutoff frequencies for a band-pass or band-stop filter. Examples of amplitude Bode
plots are given in Fig. 14.10 and in DIY box 14.1.

DIY 14.1 — How to produce the Bode plot of a Butterworth low-pass
or high-pass filter

We have seen that the transfer function H(ω) or H(f) of a low-pass or high-pass
Butterworth filter or order n can be written with two simple equations (see Sect. 14.3).
We can write a function, named butter.H(), which parameters are the frequencies f

for which we want to compute the transfer function, the cutoff frequency fc, the order of
the filter n, and the type of filter, either a low-pass or a high-pass. We first check this type
argument with the function match.arg(), we then compute H(f) for a low-pass and
H(f) for a high-pass only if the condition type==“high” is true:

butter.H <- function(freq, fc, n, type=c("low", "high"))
{

type <- match.arg(type)
if(type=="low") s <- freq/fc
if(type=="high") s <- fc/freq
H <- 1/sqrt(1+s^(2*n))
H <- 20*log10(H)
return(H)

}

We can try the function for frequencies between 1 and 44,100 Hz with a high-pass filter
of second order at a cutoff frequency of 2500 Hz:

freq <- seq(1, 44100, length.out=1000)
H <- butter.H(freq=freq, fc=2500, n=2, type="high")

(continued)

448 14 Frequency Filters

DIY 14.1 (continued)

It is now easy to create an amplitude Bode plot with:

plot(x=freq, y=H, type="l", log="x",
xlab="Frequency (Hz)", ylab="Amplitude (dB)")

1 10 100 1000 10000

−1
40

−1
20

−1
00

−8
0

−6
0

−4
0

−2
0

0

Frequency (Hz)

Am
pl

itu
de

 (d
B)

The seewave function to apply a Butterworth filter is bwfilter().
This function is a rather simple wrapper of the two functions butter() and
filtfilt() of the package signal. This later function does a correction of the
phase so that distortion is limited. It is first necessary to load signal:

library(signal)

14.4 Wave Smoothing Filter 449

Then, the main arguments of the function bwfilter() are:

n the order of the filter,
from lower cutoff frequency fl expressed in Hz,
to upper cutoff frequency fu expressed in Hz,
bandpass type of filter, either band-pass (if TRUE, default) or band-stop (if

FALSE).

The different types of filters are obtained with the following combinations of
these arguments, here with a 3rd-order filter:

low-pass with a 5000 Hz cutoff frequency
res <- bwfilter(femo, n=3, to=5000, output="Wave")
high-pass with a 5000 Hz cutoff frequency
res <- bwfilter(femo, n=3, from=5000, output="Wave")
band-pass between 3000 and 5000 Hz
res <- bwfilter(femo, n=3, from=3000, to=5000, output="Wave")
band-stop from 3000 Hz to 5000 Hz
res <- bwfilter(femo, n=3, from=3000, to=5000,

bandpass=FALSE, output="Wave")

14.4 Wave Smoothing Filter

A solution to remove high-frequency noise is to smooth the time wave. This can
be achieved by using a sum sliding window as discussed in Sect. 5.2.3.3. Such
operation is available in the seewave function smoothw(). Its usage is rather
straightforward as the main parameter, wl, is the window length in number of
samples over which the sum is operated. The operation can be repeated so that a
nth-order filter can be obtained. The following example uses smoothw() twice on
femo (Fig. 14.11):

first order
res1 <- smoothw(femo, wl=4, output="Wave")
second order
res2 <- smoothw(res1, wl=4, output="Wave")

The function rmnoise() also attempts to remove noise through smooth-
ing but this time using cubic smoothing spline as implemented in the function

450 14 Frequency Filters

Fig. 14.11 Filter through wave smoothing with smoothw(). The original femo recording (left)
is passed through a wave smoothing a first time (middle) and a second time (right)

smooth.spline() of the package stats. The parameter that controls the
degree of smoothing is the argument spar which is typically in (0, 1]. Here is a
test with two values of spar (Fig. 14.12):

res1 <- rmnoise(femo, output="Wave", spar=0.4)
res2 <- rmnoise(femo, output="Wave", spar=0.6)

In both cases, the frequency band around 8.2 kHz due to distant insects is
reduced. However, such filter may introduce distortion like the uncontrolled ampli-
fication of low frequencies. It should be then used carefully and the results should
always be visualized with either a spectrogram or a frequency spectrum display.

14.5 DFT and STDFT Filter 451

Fig. 14.12 Filter through wave smoothing with rmnoise(). The original femo recording (left)
is passed through a cubic smoothing spline with a smoothing parameter spar=0.4 (middle) and
spar=0.6 (right)

14.5 DFT and STDFT Filter

14.5.1 Principle

Another way to filter out unwanted frequencies, or to select frequencies of interest, is
to use the Fourier transform (FT, DFT). The frequency spectrum F(f) of the signal
s(t) is first obtained using the DFT. This frequency spectrum is then multiplied by
the frequency transfer function of the filter H(f) so that the frequency domain of
the signal is transformed. The filtered signal sf iltered(t) is then obtained by using
the inverse Fourier transform (IFT, IDFT). This process can be windowed using the
short-term Fourier transform (STDFT) and its inverse form (ISTDFT) (Fig. 14.13).

14.5.2 ffilter() Function

The seewave function ffilter() operates a DFT filter by (1) computing
the STDFT as spectro() does, (2) applying a filter transfer function defined

452 14 Frequency Filters

Time

Am
pl

itu
de

s[n]

DFT /
STDFT

Frequency

F[n]

×

Frequency

H[n]

Frequency

F[n] × H[n]

IDFT /
ISTDFT

Time

Am
pl

itu
de

sfiltered[n]

Fig. 14.13 Principle of DFT filter. A DFT filter is based on a return travel between the time and
frequency domains: the frequency signal spectrum F [n] of the original signal s[n] is multiplied
by the transfer function of the filter H [n], here a low-pass filter, and the filtered signal is obtained
through the inverse Fourier transform. Each function is made of n samples

in the arguments, and (3) using the function istft() to construct the filtered
signal. In addition to the traditional arguments wl, ovlp and wn linked to STDFT
computation, the function has the following key arguments:

from lower cutoff frequency fl expressed in Hz,
to upper cutoff frequency fu expressed in Hz,
bandpass type of filter, either band-pass (if TRUE, default) or band-stop (if

FALSE)
custom optionally a numeric vector of length wl ÷ 2 that set the frequency

function transfer H(f) of the filter. The vector can be manually built or designed
with the values obtained with spec() or meanspec().

14.5.3 Examples

The use of ffilter() is in all points similar to the use of the function fir() so
that the examples given in Sect. 14.6.3 can be then directly translated by replacing
fir() by ffilter().

14.5 DFT and STDFT Filter 453

A DFT filter can be windowed to give birth to a STDFT filter. Some fancy
filters can be designed according to frequency and time. As mentioned above,
ffilter() calls in background the function istft() which processes the
ISTDFT. However, this transform is possible only if we provide the matrix of
the Fourier coefficients of the STDFT as complex numbers. This can be obtained
by extracting the item $amp of the value of spectro() having specified the
arguments norm=FALSE, dB=NULL, and complex=TRUE (see Sect. 11.7.1.4).
A dummy example on femo shows how to recover the original sound taking care
to specify exactly the same parameters (wl, ovlp, wn) for the STDFT (function
spectro()) and the ISTDFT (function istft()):

f <- femo@samp.rate ; wl <- 512; ovlp <- 75; wn <- "hanning"
data <- spectro(femo, wl=wl, ovlp=ovlp, wn=wn,

plot=FALSE, norm=FALSE, dB=NULL, complex=TRUE)
res <- istft(data$amp, wl=wl, ovlp=ovlp, wn=wn,

f=f, output="Wave")

The following line produces the same spectrogram displayed in Fig. 14.2:

spectro(res, collevels=seq(-80,0,1), osc=TRUE)

We can now try to modify the object data to change the time × frequency
content of femo. We can, for instance, try to remove the first harmonic of the fourth
note. The tricky thing is to identify the time and frequency limits of this harmonic
in the matrix data$amp. The first step consists in using locator() after having
displayed the spectrogram with spectro() and in identifying the limits with the
mouse cursor (see Sect. 11.8.1). We obtained the following limits: 0.44 and 0.51 s
and 2.77 and 4.21 kHz. Which columns and rows of data$amp do correspond to
these values? The time and frequency values of the STDFT matrix are stored in
the list items data$time and data$freq, respectively. The next step is to find
the closest values in these vectors to the limits determined previously. This can be
achieved by localizing the value min(|x − limit|):

tmin <- which.min(abs(data$time-0.44))
tmax <- which.min(abs(data$time-0.51))
fmin <- which.min(abs(data$freq-2.77))
fmax <- which.min(abs(data$freq-4.21))

As we know where the first harmonic of the fourth note is in the data$amp
matrix, we can replace the Fourier coefficients by 0 values, use the istft()

454 14 Frequency Filters

function, and plot the result with spectro() so that we apply a band-stop filter
(Fig. 14.14, top):

data1 <- data$amp
data1[fmin:fmax, tmin:tmax] <- 0
res1 <- istft(data1, wl=wl, ovlp=ovlp, wn=wn, f=f, output="Wave")

Alternatively, we can apply a band-pass filter by replacing all the Fourier
coefficients except those of the harmonic by 0 values (Fig. 14.14, bottom):

Fig. 14.14 Example of STDFT filter. Two examples of DFT filter based on the function
istft(). The second harmonic of the first harmonic of the fourth note of femo was removed
with a band-stop filter (top) or selected with band-pass filter (bottom). The red square was added
using the low-level plot function rect()

14.6 FIR Filter 455

data2 <- data$amp
data2[-(fmin:fmax), -(tmin:tmax)] <- 0
res2 <- istft(data2, wl=wl, ovlp=ovlp, wn=wn, f=f, output="Wave")

These modifications through the STDFT matrix open the possibility of other
changes detailed in Sect. 15.4.

14.6 FIR Filter

14.6.1 Principle

We have seen that the DFT/STDFT filter is partly based on a multiplication between
the frequency spectrum of the sound to be filtered and a transfer function expressed
in the frequency domain H(f). This multiplication constrains to compute the DFT
(or STDFT) and the IDFT (or ISTDFT) to travel between the time and frequency
domains. However, a multiplication in the frequency domain is equivalent to a
convolution in the time domain. A convolution is a mathematical operation quite
similar to cross-correlation (see Sect. 17.1) which returns the amount of overlap of
one function as it is shifted over another function. The idea of the finite impulse
response (FIR) filter is to use convolution between the original signal and the
transfer function to stay in the time domain. Doing so, we avoid the use of the
Fourier transforms for a more efficient implementation. The only thing we have to
do is to pass the transfer function H(f) from the frequency domain to the time
domain. This can be achieved easily with the IDFT.

To summarize, the filtered signal sf iltered[n] is obtained by the convolution of
the original signal s[n] with a finite transfer function expressed in the time domain
H [n] of length 2n + 1 (Fig. 14.15):

sf iltered[n] = s[n] ∗ H [n]
where ∗ is the convolution operation. This can also be written as:

sf iltered [n] =
M∑

m=−M

s[m] × H [n − m]

14.6.2 fir() Function

The fir() function from seewave can be employed to apply a FIR filter. The
main arguments of fir() are:

456 14 Frequency Filters

Time

Am
pl

itu
de

s[n]

∗

Time

H[n]

IDFT

Frequency

H[n]

Time

Am
pl

itu
de

sfiltered[n]

Fig. 14.15 Principle of FIR filter. A FIR filter is based on a convolution (∗ sign) between the
original signal s[n] and the transfer function of the filter H [n] expressed in the time domain. This
latter can be obtained from the transfer function in the frequency domain using the inverse of the
Fourier transform (IDFT)

from lower cutoff frequency fl expressed in Hz,
to upper cutoff frequency fu expressed in Hz,
bandpass type of filter, either band-pass (if TRUE, default) or band-stop (if

FALSE),
custom optionally a numeric vector of length wl ÷ 2 that sets the frequency

function transfer H(f) of the filter. The vector can be manually built or designed
with the value obtained with spec() or meanspec().

14.6.3 Examples

14.6.3.1 Simple Use

Here are simple calls of fir() applied on femo:

low-pass with a 5000 Hz cutoff frequency
res <- fir(femo, to=5000, output="Wave")
high-pass with a 5000 Hz cutoff frequency

(continued)

14.6 FIR Filter 457

res <- fir(femo, from=5000, output="Wave")
band-pass between 3000 and 5000 Hz
res <- fir(femo, from=3000, to=5000, output="Wave")
band-stop from 3000 Hz to 5000 Hz
res <- fir(femo, from=3000, to=5000,

bandpass=FALSE, output="Wave")

14.6.3.2 FIR Band-Pass Filter to Increase Automatic Time Detection

We can explore the usefulness of a FIR filter by using the recording toad of the
European midwife toad Alytes obstetricans. The recording is blurred by the noise of
wind and by the stridulation of surrounding katydids such that the toad notes cannot
be isolated on the oscillogram (Fig. 14.17, top). If we wish to get automatic time
measurements for these notes, we can be quite sure that the function timer() shall
return irrelevant values (see Chap. 8). However, if we have a look at the spectrogram
(Fig. 14.3) and the mean spectrum (Fig. 14.16), we can see that the toad occupies a
sharp and isolated frequency band framed by wind and insect sounds.

This suggests that applying a band-pass filter between 0.95 and 1.8 kHz should
increase the signal-to-noise ratio of the toad vocalizations (Fig. 14.17, bottom):

0 5 10 15 20

Frequency (kHz)

Am
pl

itu
de

0 5 10 15 20

wind

l

toad

nocturnal insects

Fig. 14.16 Mean frequency spectrum of toad. The recording not only includes vocalizations
produced by a male of Alytes obstetricans but also wind and nocturnal insect stridulations

458 14 Frequency Filters

Fig. 14.17 Oscillogram of toad before and after FIR filtration. The oscillogram of toad, a
recording including three vocalizations of Alytes obstetricans, wind, and stridulation of nocturnal
insects, is shown before (top) and after filtration (bottom)

toad.filt <- fir(toad, from=950, to=1800, output="Wave")

We can now test timer() to measure the note and pause duration taking the
precaution to smooth the envelope with the argument ssmooth():

res <- timer(toad.filt, envt="hil",
threshold=4, ssmooth=400, plot=FALSE)

14.6 FIR Filter 459

We check that timer() detected the right number, i.e., 3, of vocalizations:

length(res$s)
[1] 3

14.6.3.3 FIR Band-Pass Filter to Avoid Aliasing

As explained in Sect. 6.1, undersampling a sound may introduce aliasing artifacts. A
solution to avoid the occurrence of unwanted frequencies due to aliasing is to apply
and band-pass filter before to resample. Suppose that we had the very bad idea to
undersample the recording peewit by a factor 4 with the function resamp() (see
Sect. 6.1):

g <- peewit@samp.rate
g
[1] 22050
peewit.u <- resamp(peewit, g=g/4, output="Wave")

The undersampling clearly introduced artifact frequencies that are due to fre-
quencies that occur in the original sound above the new Nyquist frequency which
is here g ÷ 8 = 2756.25 Hz (Fig. 14.18, left and middle). However, if we take care
of applying a FIR low-pass filter with a cutoff frequency corresponding to this new
Nyquist frequency then the unwanted frequencies disappear (Fig. 14.18, right):

peewit.filtered <- fir(peewit, to=g/8, output="Wave")
peewit.filtered.u <- resamp(peewit.filtered, g=g/4, output="Wave")

14.6.4 Setting the Transfer Function

The function fir() (and the function ffilter() as well) has an argument
named custom which can be used to give a specific transfer function expressed
in the frequency domain as a numeric vector. The values describe the relative
amplitude value of the transfer function from 0 to the frequency bin just below the
Nyquist frequency, that is, (fs ÷2)−(fs ÷wl). If we keep on with the femo dataset
that was sampled at fs = 44,100 Hz, then a band-pass filter should be described by
512 values between 0 and (44,100 ÷ 2) − (44,100 − 512) = 21,963.87 Hz. The

460 14 Frequency Filters

Fig. 14.18 Antialiasing FIR filter. The figure shows the original signal peewit, the downsampled
and distorted version without any filter process, and the downsampled version with a low-pass FIR
filter

following code is a construction of a transfer function for a 3000–5000Hz band-
pass filter. We localize the cutoff frequencies by searching for the minimum absolute
difference in the numeric vector containing the frequencies (Fig. 14.19):

f <- 44100 ; wl <- 512
freq <- seq(0, f/2-f/wl, length.out=wl)
H1 <- rep(0, wl)
H1[which.min(abs(freq-3000)):which.min(abs(freq-5000))] <- 1

The transfer function is then provided to the argument custom of fir():

res <- fir(femo, wl=wl*2, custom=H1, output="Wave")

14.6 FIR Filter 461

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Frequency (Hz)

Am
pl

itu
de

simple
square
gaussian
pink
manual

Fig. 14.19 Band-pass frequency transfer functions. Five band-pass transfer functions are dis-
played on a plot with linear scales. These functions were built manually with basic numeric vectors
or with the help of the functions squarefilter() and drawfilter()

This kind of filter is not very interesting as it is actually equivalent to:

res <- fir(femo, from=3000, to=5000, output="Wave")

However, we can define any transfer function with 0 and 1 values, as the
following one which applies a band-pass filter between 1000 and 2200 and 4200
and 5900 Hz to select the fundamental and the first harmonic only (Fig. 14.19):

H2 <- rep(0, wl)
H2[which.min(abs(freq-1000)):which.min(abs(freq-2200))] <- 1
H2[which.min(abs(freq-4200)):which.min(abs(freq-5900))] <- 1
res <- fir(femo, wl=wl*2, custom=H2, output="Wave")

Such filter can also be more directly generated with the function square-
filter() using the arguments from and to to set the lower and upper cutoff
frequencies in Hz:

H2 <- squarefilter(f=f, from=c(1000,4200), to=c(2200,5900))

462 14 Frequency Filters

We could also wish to apply a band-pass filter around a specific frequency, say
4000 Hz, with a filter that would have a Gaussian shape. To do that, we can use the
density function for the normal distribution dnorm(), scale the result between 0
and 1, and then use fir() (Fig. 14.19):

fc <- 4000
H3 <- dnorm(seq(0, f/2, length=wl), mean=4000, sd=1000)
H3 <- H3/max(H3)
res <- fir(femo, wl=wl*2, custom=H3, output="Wave")

Another example of hand-made filter is the generation of pink noise (see
Sect. 18.2 for direct synthesis). Pink noise is a noise which frequency spectrum is not
flat but favors low frequencies. Such kind of noise better mimics wind or running
water noise than white noise that has a flat frequency spectrum. One solution to
synthesize pink noise is to first generate white noise and then to apply a frequency
filter which transfer function H(f) follows:

H(f) ∝ 1

f α

with α = 1.
Such transfer function is easy built with the following code which excludes the

frequency f = 0 because the ratio 1 ÷ 0 returns infinity (Fig. 14.19):

H4 <- 1/freq[-1]
H4 <- H4/max(H4)

The transfer function appears as a regular decrease of amplitude expressed in
dB and the logarithm of the frequency with a −3 dB roll-off per octave and 10 dB
per decade. The last steps consist in producing a white noise with the function
noisew() (see Sect. 18.2) and in applying the FIR filter with fir():

white <- noisew(d=1, f=44100, output="Wave")
pink <- fir(white, wl=wl*2, custom=c(0,H4), output="Wave")

We could also like to manually draw the transfer function H(f). The interactive
graphical function drawfilter() lets the user the draw either a “continuous”

14.6 FIR Filter 463

transfer function or to choose discrete frequencies that will be removed (or kept in
the case of a band-pass filter). An empty frequency × amplitude plot is displayed,
and the user is invited to choose with the mouse the points that will draw the transfer
function (Fig. 14.19):

H5 <- drawfilter(f=f, n=wl, continuous=TRUE, discrete=FALSE)

The last option could be to recycle the frequency spectrum of another sound
as a transfer function. Such operation may be applied when trying to adjust the
frequency response of a loudspeaker. In some propagation experiments, a white
noise is broadcast in the environment, for instance, a forest, and recorded at specific
distances to estimate how sound propagates. However, such experiments rely on
a loudspeaker and a microphone with fairly flat frequency response, that is, with
an equipment which properties are not frequency dependent. This is rarely the
case for low or medium quality loudspeakers used outdoor. A preliminary test is
therefore required to determine the frequency response of the loudspeaker and to
potentially modify the input to artificially obtain a white noise with a true flat
response. Let’s walk through an example. Imagine we would like to run such a
propagation experiment, we first generate a 1 s noise sampled at fs = 44,100 Hz
with the function noisew() (see Sect. 18.2).

noise.in <- noisew(f=44100, d=1, output="Wave")

This sound constitutes the input of the system. It is broadcast by the loudspeaker
and recorded at a short distance (<1 m) in an anechoic chamber with a microphone
that has a flat frequency response. This recording, stored in a .wav file named
noise.wav, is the output of the system:

noise.out <- readWave("sample/noise.wav")

We compute the mean spectrum of this file to see the frequency profile of the
loudspeaker, and we place the result in an object to be used as a transfer function by
fir(). The argument of bandpass of fir() is set to FALSE so that we apply a
band-stop filter as we wish to reduce the importance of the frequency enhanced by
the loudspeaker:

464 14 Frequency Filters

0 5 10 15 20

−40

−30

−20

−10

0

10

Frequency (kHz)

Am
pl

itu
de

original (input)
recorded (output)
corrected (new input)

Fig. 14.20 Correction FIR filter for a loudspeaker. Plot of the frequency filter of the original noise
(input) given to the loudspeaker, of the noise as recorded after being broadcast by the loudspeaker,
and of the noise corrected by the FIR filter

H6 <- meanspec(noise.out, plot=FALSE)
noise.cor <- fir(noise.in, custom=H6,

bandpass=FALSE, output="Wave")

The result is a new object, noise.cor, that can be used as new input which
should broadcast a noise with a flatter frequency response (Fig. 14.20).

Chapter 15
Other Modifications

We have already seen ways to modify a sound through either edition (see Chap. 6)
or filtering (see Chap. 14). Some other changes in amplitude, time, and/or frequency
might be required for analysis or to prepare files for broadcast. To go through some
functions that change the amplitude, time, and frequency parameters of sound, we
will use the song of the bird Zonotrichia capensis, the sound of the A-flat tuning
fork, the voice of child saying “hello,” the vocalizations of the South-American dart
poison frog Allobates femoralis, and the calling song of the cicada Cicada orni:

data(tico)
tuningfork <- readWave("sample/tuning-fork.wav")
hello <- readWave("sample/hello.wav")
femo <- readWave("sample/Allobates_femoralis.wav")
data(orni)

15.1 Setting the Amplitude Envelope

The amplitude envelope can be changed through edition functions, as detailed in
Chap. 6, but a fancy change could be to create a sort of sound chimera by applying
the amplitude envelope of one sound to another one, such that the second sound
would have the amplitude envelope of the first sound. This kind of mix, which can
be useful in psychoacoustic or bioacoustic experiments, can be performed with the
seewave function setenv().

In the following example, we apply the envelope of tico to tuningfork so
that the original amplitude envelope of tuningfork is drastically changed with
the four-note amplitude envelope of tico. In this particular case, this manipulation
could be used in a playback experiment where the frequency properties of the tico

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_15

465

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_15&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_15

466 15 Other Modifications

sound would be tested. The code starts with a downsampling of tuningfork so
that both objects have a similar sampling frequency fs = 22,050 Hz:

f <- tico@samp.rate
tuningfork.u <- resamp(tuningfork, g=f)

We then call setenv() which has two main arguments: the first argument,
wave1, is the input sound, and the second argument, wave2, is the sound which
amplitude envelope will be used as a reference. The result is visualized with
spectro() (Fig. 15.1):

Fig. 15.1 Changing the amplitude envelope with setenv(). The amplitude envelope of tico
was applied to tuningfork. Fourier window size = 512 samples, overlap = 0%, Hanning window

15.2 Echoes and Reverberation 467

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Am
pl

itu
de

Fig. 15.2 Changing the amplitude envelope with drawenv(). The amplitude envelope of tico
was modified graphically using the mouse cursor

res <- setenv(tuningfork.u, tico, f=f,
plot=FALSE, output="Wave")

spectro(res, osc=TRUE)

As we did with the transfer function of a frequency filter (see Sect. 14.6.4), we
could need to modify the amplitude envelope by drawing it on the graphical device.
The interactive graphical function drawenv() displays the oscillogram of the
original sound and lets the user draw a new envelope profile by clicking several
times on the waveform (Fig. 15.2):

res <- drawenv(tuningfork, output="Wave")

15.2 Echoes and Reverberation

The exploration of echolocation and reverberation might require the artificial
addition of echoes to a signal. The seewave function echo() adds several
echoes to an input sound. This function, which is based on a similar principle
to the FIR filter (see Sect. 14.6), processes a convolution between the input wave
and a pulse echo filter. There are two parameters defining an echo: its relative
amplitude compared to the input signal and its time position or delay in reference
to the beginning of the input signal. These parameters are set with the arguments
amplitude and delay, respectively. For instance, choosing delay=1 and
amp=0.8 results in the addition of an echo starting 1 s after the beginning of the
input file with an amplitude scaled by a factor of 0.8 compared to the maximum of
the input file.

In the following example, some reverberation is generated on hello using a
simple echo with a high relative amplitude (0.9) and very brief delay (0.01 s). The

468 15 Other Modifications

use of listen=TRUE allows to listen to the result directly:

echo(hello, amp=0.9, delay=0.01, output="Wave", listen=TRUE)

In this second example, three non-overlapping echoes decreasing in amplitude
by a power of 2 and increasing in duration by a factor of 1, 2, and 3 are added to the
same dataset hello:

echo(hello, amp=1/(2^(2:4)), delay=duration(hello)*1:3,
output="Wave", listen=TRUE)

15.3 Amplitude Filtering

A way to attempt cleaning a sound is to replace any signal sample which amplitude
absolute value falls below a threshold by a 0 value. Such amplitude filter is easy to
implement and fast because it relies on the test of a simple condition:

sf iltered [n] =
{

0 if |s[n]| ≤ θ

s[n] if |s[n]| > θ

where s[n] is the original signal and θ the threshold.
The seewave function afilter() does this easy job by referring to a

threshold expressed in percentage relative to the maximum of the amplitude
envelope. Here is a test with a threshold set with the argument threshold at
2% and 5%, respectively (Fig. 15.3):

res1 <- afilter(femo, threshold=2,
output="Wave", plot=FALSE)

res2 <- afilter(femo, threshold=5,
output="Wave", plot=FALSE)

The function afilter() is actually parsed by several functions which includes
an argument threshold (e.g., dfreq(), ifreq(), timer()).

The function afilter() is far to be clever since it converts every sample
below the threshold into 0, even if these samples are part of the main signal to be
analyzed—here the frog vocalizations. It is thereby necessary to check whether the

15.3 Amplitude Filtering 469

Fig. 15.3 Amplitude filter with afilter(). The original femo recording (left) was passed
through an amplitude filter with a threshold of 3% (middle) and 5% (right). Fourier window size =
512 samples, overlap = 0%, Hanning windows

modified sound was not too much altered in its amplitude and frequency content. A
simple test consists in listening to the results:

listen(res1)
listen(res2)

Here, the sounds appear slightly distorted. Such distortion may introduce some
artifacts when tracking the frequency feature, as the dominant frequency. This was
the case for the sheep dataset as shown in Fig. 13.2. Here, in the case of femo, the
impact on frequency tracking is negligible as illustrated in Fig. 15.4:

df1 <- dfreq(femo, plot=FALSE)
df2 <- dfreq(res1, plot=FALSE)
df3 <- dfreq(res2, plot=FALSE)

470 15 Other Modifications

lllllllll

llllll

l

lll
llll

lllllll

llllll

ll

llll
llll
l
ll

ll

lll

lllllllllllllllllllllll

l

l

lll

lll

lll
lll

l

l

llllllll

lll
l

l

l

l

lll
llll

l

l

l

l

ll

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

2

4

6

8

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

l

ll
lllll

l
ll
l

lllll

ll
ll

ll

ll
ll
lll

l

l l l l

llll

l

lll
lll

lll

ll
ll

ll

ll
l
llll

ll

l
l
l

l
l
l
l

ll
l

l
l

ll

l
l

l
l
l
l

l

ll
l
l

l
l
l

l
ll

l
l

l
l

l
l
l

l
l
l
l

l
l
l

no filter
afilter(..., threshold=3)
afilter(..., threshold=5)

Fig. 15.4 Use of afilter() on dominant frequency tracking. The graphic shows the results of
tracking the dominant frequency of femo after having filtered the sound using afilter() with
different settings

15.4 Modifications Using the ISTDFT

We have seen in Sect. 14.5.3 that we can use the inverse short-time Fourier transform
(ISTFT/ISTDFT) to apply a band-pass or a band-stop filter to a particular time ×
frequency section of sound. The principle was based on the production a STDFT
matrix, the inclusion of 0 values in the STDFT matrix, and then a return in the time
domain using the ISTDFT. The changes of the STDFT matrix are not limited to the
introduction of 0 values. Any modification can be applied to a time × frequency
section. For instance, we can increase the amplitude of the first harmonic of the
fourth note of femo by a simple multiplication by 20 (Fig. 15.5, top-left). We first
compute the STDFT matrix and get time and frequency limits of the harmonic to be
manipulated as presented in Sect. 14.5.3:

STDFT matrix
f <- femo@samp.rate ; wl <- 512; ovlp <- 75; wn <- "hanning"
data <- spectro(femo, wl=wl, ovlp=ovlp, wn=wn,

plot=FALSE, norm=FALSE, dB=NULL, complex=TRUE)
time and frequency limits of the harmonic
tmin <- which.min(abs(data$time-0.44))
tmax <- which.min(abs(data$time-0.51))
fmin <- which.min(abs(data$freq-2.77))
fmax <- which.min(abs(data$freq-4.21))

15.4 Modifications Using the ISTDFT 471

Fig. 15.5 Modifications using the ISTDFT. Four examples of sound modifications on femo based
on the function istft(). The second harmonic of the first harmonic of the fourth note was
amplified (top-left), reversed in frequency (top-right), replaced by a pure tone (bottom-left), and
replaced by noise (bottom-right). Fourier window size = 512 samples, overlap = 0%, Hanning
windows

472 15 Other Modifications

We then apply the modification with (Fig. 15.5, top-left):

data1 <- data$amp
data1[fmin:fmax, tmin:tmax] <- 20*data1[fmin:fmax, tmin:tmax]
res1 <- istft(data1, wl=wl, ovlp=ovlp, wn=wn, f=f, output="Wave")

We can also invert the harmonic in frequency (Fig. 15.5, top-right):

data2 <- data$amp
data2[fmin:fmax, tmin:tmax] <- data2[fmax:fmin, tmin:tmax]
res2 <- istft(data2, wl=wl, ovlp=ovlp, wn=wn, f=f, output="Wave")

We may also like to replace the harmonic by a pure tone (Fig. 15.5, bottom-left):

data3 <- data$amp
data3[fmin:fmax, tmin:tmax] <- 0
data3[fmin+(fmax-fmin)/2, tmin:tmax] <-

complex(real=max(Re(data3)))
res3 <- istft(data3, wl=wl, ovlp=ovlp, wn=wn, f=f, output="Wave")

Eventually we can replace the harmonic with white noise (Fig. 15.5, bottom-
right)

data4 <- data$amp
re <- im <- rnorm(length(fmin:fmax)*length(tmin:tmax))
data4[fmin:fmax, tmin:tmax] <- complex(real=re, imaginary=im)
res4 <- istft(data4, wl=wl, ovlp=ovlp, wn=wn, f=f, output="Wave")

Figure 15.5 was produced with the following code. The graphic function named
plot.istft() is designed to facilitate the repetition of the plots:

collevels <- seq(-80,0,1)
plot.istft <- function(x){

spectro(x, collevels=collevels, flim=c(0,10),
scale=FALSE, tlab="", flab="")

rect(xleft=0.44, ybottom=2.77, xright=0.51, ytop=4.21,
border="red", lwd=3)

}
par(mfrow=c(2,2), mar=c(3,3,1,1), oma=c(2,2,0,0))
plot.istft(res1)

(continued)

15.4 Modifications Using the ISTDFT 473

plot.istft(res2)
plot.istft(res3)
plot.istft(res4)
mtext("Time (s)", side=1, outer=TRUE)
mtext("Frequency (kHz)", side=2, outer=TRUE, las=0)

We can also take advantage of the ISTDFT to shift positively or negatively
the frequencies of a sound to be used, for instance, in playback experiments.
The function lfs()—for linear frequency shift—of seewave can apply
such drastic change. The main argument is shift that controls the frequency
shift in Hz. If we take the orni song, we first apply a high-pass FIR
filter to remove the wind noise that could generate undesired frequency
bands:

orni.filtered <- fir(orni, from=150, output="Wave")

We afterward use lfs() to apply a positive and a negative frequency shift of
1000 Hz (Fig. 15.6):

orni.higher <- lfs(orni.filtered, shift=1000, output="Wave")
orni.lower <- lfs(orni.filtered, shift=-1000, output="Wave")

The process of frequency shift can be easily included in a for loop to generate
a succession of modified sounds as illustrated in the DIY box 15.1.

DIY 15.1 — How to generate a series of sounds with different linear
frequency shifts

It can be necessary for the purpose of an experiment to generate a series of stimuli that
result of a linear frequency shift. We can, for instance, think that in the case of the cicada
Cicada orni, a playback experiment could aim at testing the importance of frequency
in the encoding-decoding process of species recognition. To run such a test, it could be
necessary to apply a series of regular shift between −2000 and +2000 Hz with a step of
500 Hz. We first prepare a numeric vector containing the shift values:

shift <- seq(-2000, 2000, by=500)

(continued)

474 15 Other Modifications

DIY 15.1 (continued)

We remove the 0 value:

shift <- shift[shift!=0]

so that we obtain the vector:

shift
[1] -2000 -1500 -1000 -500 500 1000 1500 2000

We use a FIR filter to remove low-frequency noise due to wind:

orni.filtered <- fir(orni, from=150, output="Wave")

We write a for loop that calls the function lfs() to apply the frequency
change and the function savewav() to export the modified sounds into individ-
ual .wav file files named orni_lfs_-2000.wav, orni_lfs_-1500.wav,
orni_lfs_-1000.wav, etc.:

for(i in 1:length(shift)){
tmp <- lfs(orni.filtered, shift=shift[i],

output="Wave")
savewav(tmp,

file=paste("orni_lfs_", shift[i], ".wav",
sep=""))

}

15.5 Modifications Using the Hilbert Transform

We have seen in Sects. 5.2.1 and 13.1.4.1 that the Hilbert transform can be used
to obtain the amplitude envelope and the instantaneous frequency of monotonal
sounds. If we call the seewave functions env() and ifreq(), we can store
the Hilbert amplitude envelope and the instantaneous frequency of tico in two

15.5 Modifications Using the Hilbert Transform 475

Fig. 15.6 Linear frequency shift using the ISTDFT. The song of orni was shifted toward low or
high frequencies with the function lfs() that uses the ISTDFT in background. Fourier window
size = 512 samples, overlap = 0%, Hanning window

distinct objects:

env.tico <- env(tico, plot=FALSE)
ifreq.tico <- ifreq(tico, plot=FALSE)

seewave includes a function to synthesize sound, synth2(), that uses as
input the Hilbert amplitude envelope and the instantaneous frequency. This function,
which is detailed in Sect. 18.5, can be used to recover the original sound of tico.
We just extract and multiply by 1000 the second column of ifreq.tico that
contains the instantaneous frequency in Hz:

f <- tico@samp.rate
ifreq.tico <- ifreq.tico$f[,2]*1000

476 15 Other Modifications

We use these parameters to feed the function synth2():

res <- synth2(env=env.tico, ifreq=ifreq.tico,
f=f, output="Wave")

The object res is similar to tico so that the manipulation is not that interesting.
However, we can play with envelope and instantaneous frequency independently
to modify the sound in a more fancy way. First we could inverse the amplitude
envelope but not the frequency modulations1:

res <- synth2(env=rev(env.tico), ifreq=ifreq.tico,
f=f, output="Wave")

Second, we may reverse the instantaneous frequency but not the envelope
(Fig. 15.7, left):

res <- synth2(env=env.tico, ifreq=rev(ifreq.tico),
f=f, output="Wave")

We can apply any arithmetic operation as squaring the amplitude envelope:

res <- synth2(env=env.tico^2, ifreq=ifreq.tico,
f=f, output="Wave")

shifting the instantaneous frequency by adding 1000 Hz:

res <- synth2(env=env.tico, ifreq=ifreq.tico+1000,
f=f, output="Wave")

1A simple time reversion of the sound can be obtained with the function revw() as seen in
Sect. 6.3.5.

15.5 Modifications Using the Hilbert Transform 477

Fig. 15.7 Modifications using the Hilbert transform. Three examples of sound modifications on
tico based on the function synth2(). The frequency modulation was inverted according to time
(left), the frequencies were multiplied by 2 (middle), and the frequency modulation was replaced
by 4000 Hz pure tone (right). Fourier window size = 512 samples, overlap = 0%, Hanning window

or multiplying the instantaneous frequency by a factor of 2 (Fig. 15.7, middle):

res <- synth2(env=env.tico, ifreq=ifreq.tico*2,
f=f, output="Wave")

We can also generate slightly more complex modifications. For instance, we can
selectively change the second note which position can be estimated automatically
using the function timer() (see Sect. 8.3):

timer() call
tres <- timer(tico, threshold=5, msmooth=c(50,0), plot=FALSE)
start position of the second note

(continued)

478 15 Other Modifications

start <- tres$s.start[2]
end position of the second note
end <- tres$s.end[2]
assignation of env.tico object in a new object
env.tico.mod <- env.tico

We replace the sample values of the second note by the maximum of the
amplitude envelope with:

env.tico.mod[floor(start*f):floor(end*f)] <- max(env.tico)

that we use with synth2():

res <- synth2(env=env.tico.mod, ifreq=ifreq.tico,
f=f, output="Wave")

The second note now appears as a rectangular signal but still containing the
original frequency modulation. This suggests that the amplitude modulation could
be removed without touching to the frequency modulation, a manipulation often
carried out in animal playback experiments. Such manipulation is also directly
accessible with the seewave function rmam():

res <- rmam(tico, plot=FALSE, output="Wave")

At the opposite, we might intend to keep the amplitude modulation but to remove
any frequency modulation. Here is a possible solution by replacing the frequency
modulation by a 4000 Hz pure tone (Fig. 15.7, right):

res <- synth2(env=env.tico, ifreq=rep(4000,
times=length(ifreq.tico)),
f=f, output="Wave")

Chapter 16
Indices for Ecoacoustics

The recent development of ecoacoustics, a discipline that aims at tackling ecol-
ogy questions through the lens of acoustics (Sueur and Farina 2015), has been
accompanied by the development of acoustic indices. These indices derive from
historical biodiversity indices that are mathematical functions designed to evaluate
some aspects of biodiversity (Magurran and McGill 2011). Acoustic indices aspire
at estimating the complexity of the sound emerging from animal populations, animal
communities, and landscapes.

There is now a long list of acoustic indices that can be split into two main groups:
(1) α acoustic indices that are designed to evaluate the acoustic diversity of a single
unit, defined as a population, a community, or a landscape at a specific time, and
(2) β acoustic indices that are developed to compare the acoustic diversity of two
units, for instance, two communities recorded from two different sites or the same
community recorded at two different periods of the year (Sueur et al. 2014).

This chapter is a review of the α and β indices that can be computed with the
packages seewave and soundecology, but their “quality” to infer ecological
patterns and processes will not be treated here. Usage and test of the indices can be
found in several papers (Fuller et al. 2015; Kendrick et al. 2016; Gasc et al. 2015;
Lellouch et al. 2014; Towsey et al. 2014).

The acoustic indices will be introduced by referring to the file forest.wav,
a sound of the tropical forest recorded in French Guiana previously introduced in
Sect. 11.7.2:

forest <- readWave("sample/forest.wav")

We will also analyze a series of 24 files lasting each 20 s recorded as well
in French Guiana in the Nouragues wildlife sanctuary at the cross of the trails
labeled “M” and “XV.” These stereo files were obtained every hour from 00:00

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_16

479

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_16&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_16

480 16 Indices for Ecoacoustics

Fig. 16.1 Recording the French Guiana tropical acoustic communities. Twelve autonomous
recorder SM2 of the company Wildlife Acoustics© were settled in the Nouragues reserve in
French Guiana to record both understory and canopy acoustic communities. For each recorder,
one microphone was installed at 1.5 m (understory recording), and another one was set at a height
of 20 m (canopy recording). The hanging microphone on the right of the picture is ready to be sent
up to the canopy. Picture by Jérôme Sueur and Amandine Gasc

to 23:00 on the 25th of November 2010 with a Song Meter SM2 of the company
Wildlife Acoustics©. One microphone was installed at a height of 1.5 m to record
the understory soundscape (right channel), and a second microphone was settled
at a height of 20 m to capture the canopy soundscape (left channel) (Rodriguez
et al. 2014) (Fig. 16.1). These 24 files are stored in a subdirectory named guiana
included in the directory sample. The names of the files can be listed using the
function dir() as seen in Sect. 4.2.5:

files <- dir("sample/guiana", pattern="wav$")
files
[1] "M-XV_20101125_000000.wav" "M-XV_20101125_010000.wav"
[3] "M-XV_20101125_020000.wav" "M-XV_20101125_030000.wav"
[5] "M-XV_20101125_040000.wav" "M-XV_20101125_050000.wav"
[7] "M-XV_20101125_060000.wav" "M-XV_20101125_070000.wav"
[9] "M-XV_20101125_080000.wav" "M-XV_20101125_090000.wav"

[11] "M-XV_20101125_100000.wav" "M-XV_20101125_110000.wav"
[13] "M-XV_20101125_120000.wav" "M-XV_20101125_130000.wav"

(continued)

16 Indices for Ecoacoustics 481

[15] "M-XV_20101125_140000.wav" "M-XV_20101125_150000.wav"
[17] "M-XV_20101125_160000.wav" "M-XV_20101125_170000.wav"
[19] "M-XV_20101125_180000.wav" "M-XV_20101125_190000.wav"
[21] "M-XV_20101125_200000.wav" "M-XV_20101125_210000.wav"
[23] "M-XV_20101125_220000.wav" "M-XV_20101125_230000.wav"

The names of the files were automatically generated by the Song Meter device
so that we can use the seewave function songmeter() to get details about the
context of the recordings (see Sect. 4.2.7):

head(songmeter(files))
model prefix mic year month day hour min sec

1 SM2/SM4 M-XV NA 2010 11 25 0 0 0
2 SM2/SM4 M-XV NA 2010 11 25 1 0 0
3 SM2/SM4 M-XV NA 2010 11 25 2 0 0
4 SM2/SM4 M-XV NA 2010 11 25 3 0 0
5 SM2/SM4 M-XV NA 2010 11 25 4 0 0
6 SM2/SM4 M-XV NA 2010 11 25 5 0 0

time geo
1 2010-11-25 00:00:00 NA
2 2010-11-25 01:00:00 NA
3 2010-11-25 02:00:00 NA
4 2010-11-25 03:00:00 NA
5 2010-11-25 04:00:00 NA
6 2010-11-25 05:00:00 NA
tail(songmeter(files))

model prefix mic year month day hour min sec
19 SM2/SM4 M-XV NA 2010 11 25 18 0 0
20 SM2/SM4 M-XV NA 2010 11 25 19 0 0
21 SM2/SM4 M-XV NA 2010 11 25 20 0 0
22 SM2/SM4 M-XV NA 2010 11 25 21 0 0
23 SM2/SM4 M-XV NA 2010 11 25 22 0 0
24 SM2/SM4 M-XV NA 2010 11 25 23 0 0

time geo
19 2010-11-25 18:00:00 NA
20 2010-11-25 19:00:00 NA
21 2010-11-25 20:00:00 NA
22 2010-11-25 21:00:00 NA
23 2010-11-25 22:00:00 NA
24 2010-11-25 23:00:00 NA

We can check the audio specifications by reading the header of each file with
readWave(..., header=TRUE) (see Sect. 4.2.1) and looping the process
with the base function sapply() (see Sect. 3.3.5.2):

482 16 Indices for Ecoacoustics

files.spec <- sapply(X=files,
FUN=function(x)
readWave(paste("sample/guiana/", x, sep=""),

header=TRUE)
)

The specifications of all the files can be explored by just printing files.spec:

head(files.spec)

16.1 α Indices

16.1.1 Functions

There are 11 α indices available in R (Table 16.1). We will review sequentially
several indices on the dataset forest. It is indeed often advised to compute and
compare several indices at the same time.

The bioacoustics index, BI , was coined to assess relative avian abundance. The
index consists in computing the dB mean spectrum and in calculating the area under
the curve between two frequency limits, originally between 2000 and 8000 Hz. We
can use the function bioacoustic_diversity() of soundecology tuning
the arguments min_freq and max_freq to increase the frequency bandwidth.
As forest is a mono sound, the main result is stored in the item $left_area:

res <- bioacoustic_index(forest, min_freq=500, max_freq=16000)

This is a mono file.

Calculating index. Please wait...

Bioacoustic Index: 42.21748
res$left_area
[1] 42.21748

The amplitude index, M , is an amplitude index that computes the median of the
amplitude envelope, either the absolute or Hilbert amplitude envelope, scaled by the

16.1 α Indices 483

Table 16.1 α acoustic indices: name, function, package, and main literature reference

Name Function Package Reference

Acoustic
Complexity Index

ACI() seewave Pieretti et al.
(2011)

Acoustic diversity
index

acoustic_complexity() soundecology Villanueva-Rivera
et al. (2011)

acoustic_diversity() soundecology

Acoustic entropy
index

H() seewave Sueur et al.
(2008b)

Acoustic evenness
index

acoustic_evenness() soundecology Villanueva-Rivera
et al. (2011)

Acoustic richness
index

AR() seewave Depraetere et al.
(2012)

Bioacoustic index bioacoustic_index() soundecology Boelman et al.
(2007)

Frequency peaks
number

fpeaks() seewave Gasc et al. (2013b)

Amplitude index M() seewave Depraetere et al.
(2012)

Normalized
difference
soundscape index

NDSI() seewave Kasten et al.
(2012)

Spectral entropy ndsi() soundecology Sueur et al.
(2008b)

sh() seewave

Temporal entropy th() seewave Sueur et al.
(2008b)

The indices are sorted out by alphabetic order

digitization depth of the recording. The formula is:

M = median(ai) × 21−depth

with M ∈ [0, 1].
The function M() is easy to use and is by default based on the Hilbert amplitude

envelope so that no argument needs to be changed:

res <- M(forest)
res
[1] 0.01798825

The temporal entropy index, Ht , estimates the Shannon evenness of the ampli-
tude envelope. The amplitude envelope, usually the Hilbert amplitude envelope,
is scaled by its sum, so that the sum of the sample values equals to 1. This is
equivalent to transform the amplitude envelope into a probability mass function.

484 16 Indices for Ecoacoustics

For an amplitude envelope made of n samples, the index is therefore computed
according to:

Ht = −
∑n

i=1 ai log(ai)

log(n)

with
∑n

i=1 ai = 1 and Ht ∈ [0, 1].
The computation of Ht with R consists in a two-step process including the

computation of the amplitude envelope with env() (see Sect. 5.2.1) and then the
calculation of the index with th():

forest.env <- env(forest, plot=FALSE)
res <- th(forest.env)
res
[1] 0.9889863

This can also be written with a single line code:

res <- th(env(forest, plot=FALSE))

The acoustic richness index, AR, is based on the ranks of the indices M and
Ht obtained for a set of n files. The indices M and Ht are first computed for each
file and then sorted into ascending order. The position, or rank, of each file in this
forward sort is then used to compute AR. The index, which is scaled between 0
and 1, depends therefore on the set of the files considered. The expression of AR

is:

AR = rank(M) × rank(Ht)

n2

with AR ∈ [0, 1].
The function AR() returns the AR index and its companions M and Ht indices

for either a set of R objects or for a series of files stored in the working directory.
This choice between objects and files is set with the argument datatype. In the
following code, the current working directory is saved in an object, a new working
directory is chosen to point out to the directory containing the .wav files, the AR

index is computed specifying datatype="files", the results are stored and
displayed with an object of class data.frame, and lastly the original working

16.1 α Indices 485

directory is restored:

oldwd <- getwd()
setwd("sample/guiana/")
res <- AR(getwd(), datatype="files")
res

M Ht AR
M-XV_20101125_000000 0.043846503 0.9888873 0.659722222
M-XV_20101125_010000 0.037427357 0.9886404 0.562500000
M-XV_20101125_020000 0.034101580 0.9888316 0.560763889
M-XV_20101125_030000 0.026792128 0.9885353 0.413194444
M-XV_20101125_040000 0.023252848 0.9884119 0.361111111
M-XV_20101125_050000 0.029294027 0.9882671 0.388888889
M-XV_20101125_060000 0.020471720 0.9895142 0.458333333
M-XV_20101125_070000 0.014155508 0.9851849 0.038194444
M-XV_20101125_080000 0.011916565 0.9882846 0.208333333
M-XV_20101125_090000 0.009461191 0.9873620 0.060763889
M-XV_20101125_100000 0.009815709 0.9873231 0.060763889
M-XV_20101125_110000 0.009706416 0.9873461 0.062500000
M-XV_20101125_120000 0.009216894 0.9879034 0.062500000
M-XV_20101125_130000 0.008761356 0.9876396 0.041666667
M-XV_20101125_140000 0.007850435 0.9880655 0.041666667
M-XV_20101125_150000 0.007297304 0.9853045 0.005208333
M-XV_20101125_160000 0.013712839 0.9896097 0.399305556
M-XV_20101125_170000 0.028655706 0.9879145 0.260416667
M-XV_20101125_180000 0.012190863 0.9694965 0.015625000
M-XV_20101125_190000 0.083331516 0.9882367 0.541666667
M-XV_20101125_200000 0.057486511 0.9869541 0.159722222
M-XV_20101125_210000 0.050075458 0.9902678 0.833333333
M-XV_20101125_220000 0.052779448 0.9879280 0.420138889
M-XV_20101125_230000 0.052096677 0.9889630 0.765625000
setwd(oldwd)

The spectral entropy index, Hf , follows the same principle as Ht but works
in the frequency domain. Hf is actually the Shannon evenness of the frequency
spectrum (see Sect. 10.1.6.3), usually the mean spectrum (see Sect. 11.14). The
index is constrained between 0 and 1 by transforming the frequency spectrum into a
probability mass function as done for the Hilbert amplitude envelope with Ht . The
equation used to compute Hf for a frequency spectrum made of n frequency bins
is:

Hf = −
∑n

i=1 fi log fi

log(n)

with
∑n

i=1 fi = 1 and Hf ∈ [0, 1].

486 16 Indices for Ecoacoustics

The function sh() calculates Hf for a spectrum obtained upstream, such that,
as in the case of Ht , the index is obtained by calling two functions:

mspec <- meanspec(forest, plot=FALSE)
res <- sh(mspec)
res
[1] 0.8503514

This code can be compressed into:

res <- sh(meanspec(forest, plot=FALSE))

The acoustic entropy index, H , is the multiplication of Ht and Hf :

H = Ht × Hf

with H ∈ [0, 1].
The function H() can do the computation in a direct way:

res <- H(forest)
res
[1] 0.8409859

This is equivalent to the multiplication of Ht and Hf obtained with th() and
sh(), respectively:

res.t <- th(env(forest, plot=FALSE))
res.f <- sh(meanspec(forest, plot=FALSE))
res <- res.t*res.f
res
[1] 0.8409859

The acoustic diversity index, ADI , uses, as Hf does, the Shannon entropy on
the spectral content. The ADI index computes the STDFT, cuts the STDFT into a
determined number of bins, selects the relative amplitude of each bin that is above
a dB threshold, and applies the Shannon entropy index on these selected values. By
default the frequency bandwidth between 0 and 10 kHz is split into 10 bins, and
the dB threshold is set to −50 dB. The function acoustic_diversity() of
soundecology is dedicated to this index:

16.1 α Indices 487

res <- acoustic_diversity(forest)

This is a mono file.

Calculating index. Please wait...

Acoustic Diversity Index: 2.110825

All these parameters can be modified using the arguments max_freq for the
upper frequency limit of the analysis in Hz, freq_step for the width of each
frequency in Hz, and db_threshold for the dB threshold. In the following, ADI

covers the full frequency range (fs = 44,100÷2 = 22,050 Hz) with frequency bins
of 500 Hz and a threshold of −40 dB:

res <- acoustic_diversity(forest, max_freq=forest@samp.rate/2,
db_threshold=-40, freq_step=500)

The function acoustic_diversity() prints the result in the console,
but the object returned is a list of items containing the results of each chan-
nel. Here, forest being a mono sound, the main result is stored in the item
$adi_left:

res$adi_left
[1] 2.447162

A quick representation of the frequency bins used by ADI can be obtained
using two other items that contain the amplitude value of each frequency bin
($left_band_values) and their frequency limits ($left_bandrange_
values). Some general graphical parameters can be changed with the function
par() to improve the display of the x-axis based on barplot() as in (Fig. 16.2):

par(las=2, cex.axis=0.75, oma=c(1,0,0,0))
barplot(height=res$left_band_values,

names=res$left_bandrange_values,
ylab="Proportion")

488 16 Indices for Ecoacoustics

0−
50

0
H

z
50

0−
10

00
 H

z
10

00
−1

50
0

H
z

15
00

−2
00

0
H

z
20

00
−2

50
0

H
z

25
00

−3
00

0
H

z
30

00
−3

50
0

H
z

35
00

−4
00

0
H

z
40

00
−4

50
0

H
z

45
00

−5
00

0
H

z
50

00
−5

50
0

H
z

55
00

−6
00

0
H

z
60

00
−6

50
0

H
z

65
00

−7
00

0
H

z
70

00
−7

50
0

H
z

75
00

−8
00

0
H

z
80

00
−8

50
0

H
z

85
00

−9
00

0
H

z
90

00
−9

50
0

H
z

95
00

−1
00

00
 H

z
10

00
0−

10
50

0
H

z
10

50
0−

11
00

0
H

z
11

00
0−

11
50

0
H

z
11

50
0−

12
00

0
H

z
12

00
0−

12
50

0
H

z
12

50
0−

13
00

0
H

z
13

00
0−

13
50

0
H

z
13

50
0−

14
00

0
H

z
14

00
0−

14
50

0
H

z
14

50
0−

15
00

0
H

z
15

00
0−

15
50

0
H

z
15

50
0−

16
00

0
H

z
16

00
0−

16
50

0
H

z
16

50
0−

17
00

0
H

z
17

00
0−

17
50

0
H

z
17

50
0−

18
00

0
H

z
18

00
0−

18
50

0
H

z
18

50
0−

19
00

0
H

z
19

00
0−

19
50

0
H

z
19

50
0−

20
00

0
H

z
20

00
0−

20
50

0
H

z
20

50
0−

21
00

0
H

z
21

00
0−

21
50

0
H

z
21

50
0−

22
00

0
H

z

Pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

Fig. 16.2 Barplot of the values used by the acoustic diversity index (ADI). The relative amplitude
values of the frequency bins used to compute ADI are plotted as a barplot. The values were
obtained with a maximum frequency of 22,050 Hz and a frequency step of 500 Hz

The acoustic evenness index, AEI , proceeds the same first step as ADI but
computes the Gini coefficient which is a measure of distribution inequality. The
function acoustic_evenness() works as acoustic_diversity() but
uses the function ineq() of the package ineq to compute the Gini index G. The
ineq() function uses the following equation:

G = 2
∑n

i=1 iai

n
∑n

i=1 ai

− n + 1

n

where the values ai are sorted into ascending order, such that ai ≤ ai+1.
The default use of acoustic_evenness() is rather simple:

res <- acoustic_evenness(forest)

This can be tuned with the same arguments as in acoustic_diversity():

res <- acoustic_evenness(forest, max_freq=forest@samp.rate/2,
db_threshold=-40, freq_step=500)

16.1 α Indices 489

The results are stored this time in a two-item list, each item containing the result
for each channel, here only for the left channel as forest is a mono sound:

res
$aei_left
[1] 0.796779

$aei_right
[1] NA

The acoustic complexity index, ACI , aims at measuring the complexity of
STDFT matrix giving more importance to sounds that are modulated in amplitude
and, hence, reducing the importance of sound with a rather constant amplitude
as anthropogenic noise may have. The main principle of the ACI is to compute
the average absolute amplitude difference between adjacent cells of the STDFT
matrix in each frequency bin, that is, in each row of the STDFT matrix. If we
refer to the construction of the STDFT matrix as explained in Sect. 11.1.1, the
STDFT matrix is a collection of Fourier coefficients akj , with K the number
of frequencies and J the number of Fourier windows computed along the sig-
nal:

⎛
⎜⎜⎜⎜⎜⎜⎝

n1 . . . nj . . . nJ

ω1 a11 . . . a1j . . . a1J

...
...

. . .
...

. . .
...

ωk ak1 . . . akj . . . akJ

...
...

. . .
...

. . .
...

ωK aK1 . . . aKj . . . aKJ

⎞
⎟⎟⎟⎟⎟⎟⎠

In the original description of ACI , long audio files were split into I time frames
so that I STDFT matrices were obtained. If we consider a single frequency bin that
is a single row k of one STDFT matrix, the ACI computes the derivative of the
coefficients scaled by the sum of the coefficients:

ACIj =
J−1∑
j=1

⎛
⎝|aj+1 − aj |/

J∑
j=1

aj

⎞
⎠

490 16 Indices for Ecoacoustics

The computation is processed for each frequency bin k, and the total is summed
up, so that we have for a single time frame i:

ACIkj =
K∑

k=1

ACIk

=
K∑

k=1

J−1∑
j=1

⎛
⎝|aj+1 − aj |/

J∑
j=1

aj

⎞
⎠

k

If we now generalize for all i time frames, we end up with:

ACIkji =
I∑

i=1

ACIkj

=
I∑

i=1

K∑
k=1

J−1∑
j=1

⎛
⎝|aj+1 − aj |/

J∑
j=1

aj

⎞
⎠

ik

If the final and complete equation of ACI seems to be complex, its computation
is rather simple. There are two R functions to compute the ACI , the eponymous
function ACI() of seewave and the function acoustic_complexity() of
soundecology. ACI() was checked by Nadia Pierreti and Almo Farina and
seems to be faster and will only be considered here.1

A basic computation of ACI, without time splitting is:

ACI(forest)
[1] 151.5964

The classic STDFT parameters can be changed as in:

ACI(forest, wl=1024, ovlp=50, wn="hanning")
[1] 294.7536

1See the soundecology vignette that explains the homology between ACI() and
acoustic_complexity(). The vignette can be consulted from R with: vignette
("ACIandSeewave", package="soundecology").

16.1 α Indices 491

A frequency selection using the argument flim expressed in Hz can be applied
to limit the computation to a specific frequency band, here a [4, 8] kHz band:

ACI(forest, flim=c(4,8))
[1] 25.96505

The number of time frames I can also be set with the argument nbwindows. In
the following, the sound is divided into four frames of equal duration:

ACI(forest, nbwindows=4)
[1] 606.6612

The number of frequency peaks, NP , is the number of major peaks appearing
in a frequency spectrum, usually the mean spectrum of the sound of interest. A
high diversity of sounds is supposed to generate an important number of frequency
peaks. We have seen in Sect. 10.1.3.1 that fpeaks() works as a peak detection
function with several threshold parameters to select major frequency peaks and
discard residual frequency peaks due to background noise. fpeaks() returns a
two-column matrix where each line corresponds to the amplitude and frequency of
each peak. The number of rows of this matrix is the index NP . To compute NP on
forest, we do:

mspec <- meanspec(forest, plot=FALSE)
res <- nrow(fpeaks(mspec, amp=c(0.04,0.04), plot=FALSE))
res
[1] 6

Changing the arguments of fpeaks() that are used to select the frequency
peaks—amp, freq, or threshold—will of course change the results. It is obvi-
ously recommended to set carefully these parameters and to keep them unchanged
when comparing different sounds.

The normalized difference soundscape index, NDSI , aims at estimating the
level of anthropogenic disturbance on the soundscape by computing the ratio of
human-generated (anthropophony) to biological (biophony) acoustic components.
The index computes the following ratio:

NDSI = (b − a)

(b + a)

492 16 Indices for Ecoacoustics

where b = biophony, a = anthropophony, NDSI ∈ [−1, 1], and NDSI =
1 indicate a sound containing no anthropophony. In terms of frequency, the
anthropophony was originally defined as the [1 − 2[kHz frequency bin and the
biophony as the [2 − 8[kHz frequency bins, but these values are supposed to
be modified according to the soundscape explored and to the sampling frequency
of the recording. The seewave function NDSI(), written with the control of
Eric Kasten, computes the above ratio for a frequency spectrum obtained with
the function soundscapespec() which returns a Welch’s frequency spectrum
binned into 1 kHz frequency bands (see Sect. 11.15). The computation of NDSI

follows then a two-step process:

sdspec <- soundscapespec(forest, plot=FALSE)
NDSI(sdspec)
[1] 0.9452764

The arguments anthropophony and biophony can be used to change the
kHz frequency limits of the anthropophony and biophony, with here almost no
changes on the result:

NDSI(sdspec, anthropophony=1, biophony=1:18)
[1] 0.9476306

16.1.2 Batch Processing: How to Obtain a List of α Indices
for a Set of Sounds

The soundecology function multiple_sounds() allows the computation
of one index on several files, but it is often necessary to compute several indices
on several objects or files. The goal is here to compute a series of indices on the
24 files recorded in French Guiana. We retrieve the list of the .wav file names to
analyze:

oldwd <- getwd()
setwd("sample/guiana")
files <- dir(pattern = "wav$")

16.1 α Indices 493

We then write a new function, named indices(), that reads a .wav file and
computes a selection of four indices, namely, Hf , AEI , ACI , and NDSI :

indices <- function(x){
x <- readWave(x)
return(c(sh(meanspec(x, plot=FALSE)),

acoustic_evenness(x)$aei_left,
ACI(x),
NDSI(soundscapespec(x, plot=FALSE))
)

)
}

We prepare an object where the results will be written in:

n <- length(files)
num <- rep(NA, n)
res <- data.frame(Hf=num, AEI=num, ACI=num, NDSI=num,

row.names=files)

We use the new function on each mean spectrum with a for loop:

for(i in 1:n) res[i,] <- indices(files[i])

We print the results:

head(res)
Hf AEI ACI

M-XV_20101125_000000.wav 0.8222687 0.055606 152.6392
M-XV_20101125_010000.wav 0.8245113 0.088373 152.4629
M-XV_20101125_020000.wav 0.8318868 0.096916 151.8242
M-XV_20101125_030000.wav 0.8410839 0.110988 151.6884
M-XV_20101125_040000.wav 0.8402450 0.074288 151.5751
M-XV_20101125_050000.wav 0.8172957 0.142642 152.3881

NDSI
M-XV_20101125_000000.wav 0.9834654
M-XV_20101125_010000.wav 0.9838402
M-XV_20101125_020000.wav 0.9820926
M-XV_20101125_030000.wav 0.9762023
M-XV_20101125_040000.wav 0.9602881
M-XV_20101125_050000.wav 0.9770428

494 16 Indices for Ecoacoustics

And we finally restore the original working directory to get back where we were
before to run the analysis:

setwd(oldwd)

16.2 β Indices

When can we say that two sounds differ or not? β indices consist in com-
puting a distance that estimates how much two sounds are dissimilar. Finding
an appropriate β acoustic dissimilarity index is actually very delicate as sound
is by essence a multivariate object and two sounds may differ for one param-
eter, say their amplitude envelope, but not another one, say their fundamental
frequency. It might be tricky as well to conclude whether a difference of a
few Hz or a few ms is significant or not. In addition, to compare two sounds
requires to identify homologous parameters. For instance, we need to be sure
that we measure the same frequency band (for instance, the fundamental fre-
quency) or that we measure the duration of the same note. This homology is
not always trivial and might require a detailed exploration of the sounds struc-
ture.

Most of the β acoustic dissimilarity indices simplified these issues by working
on the frequency domain only. Two frequency spectra computed with the same
DFT or STDFT parameters can be considered as homologous objects where the
frequency bins computed for one frequency spectrum can be paired with the
frequency bins of another frequency spectrum. Nonetheless this homology does
not solve everything. The comparison of two spectra, deriving from a physical
or chemical analysis, is not an easy task. The difficulty of finding a proper
metric probably explains why several indices have been coined (Table 16.2). These
spectral distances often derive from classical geometric, probability, or statistic
distances.

16.2.1 Functions

We will review the dissimilarity acoustic indices available in R one after one.
The list of β indices could probably be lengthened with other distances that
could be easy adapted to sound, as the Hellinger distance or the Bhattacharyya
distance or any other measure proposed in the package proxy (Meyer and Buchta
2016). We could also consider the methods reviewed in Chap. 17 as potential
indices.

16.2 β Indices 495

Table 16.2 β acoustic indices: name, function, package, and main literature reference

Name Function Package Reference

Temporal dissimilarity diffenv() seewave Sueur et al. (2008b)

Cumulative spectral
dissimilarity

diffcumspec() seewave Lellouch et al. (2014)

Spectral dissimilarity diffspec() seewave Sueur et al. (2008b)

Wave dissimilarity diffwave() seewave Sueur et al. (2008b)

Itakura-Saito distance itakura.dist() seewave –

Kullback-Leibler distance kl.dist() seewave Gasc et al. (2013a)

1-Mutual information 1-symba() seewave Cazelles (2004)

Kolmogorov-Smirnov
distance

ks.dist() seewave Gasc et al. (2013a)

Log-spectral distance logspec.dist() seewave –

Relative frequency
dissimilarity

100-simspec() seewave Deecke and Janik (2006)

Correlation-based
dissimilarity

1-cor() stats Lellouch et al. (2014)

RV dissimilarity 1-coeffRV() FactoMineR Gasc et al. (2013a)

Examples of use of most of these indices can be found as well in Depraetere et al. (2012), Gasc
et al. (2013b), and Rodriguez et al. (2014)

In the following, fi and gi are two frequency spectra containing each n frequency
bins. These frequency spectra can be scaled by their sum that is converted into
probability mass functions xi and yi with:

xi = fi∑n
i=1 fi

yi = gi∑n
i=1 gi

so that
∑n

i=1 xi = 1 and
∑n

i=1 yi = 1.
The cumulative probability mass functions Xi and Yi of xi and yi , respectively,

are obtained with:

Xi =
i∑

j=1

xj

Yi =
i∑

j=1

yj

To test the R functions dedicated to acoustic dissimilarity, we will use two sounds
from the set of 24 files recorded in French Guiana, one corresponding to midnight
and the other one corresponding to midday:

496 16 Indices for Ecoacoustics

night <- readWave("sample/guiana/M-XV_20101125_000000.wav")
day <- readWave("sample/guiana/M-XV_20101125_120000.wav")

We select the left channel that caught the canopy acoustic communities by
applying the tuneR function mono():

night.left <- mono(night, which="left")
day.left <- mono(day, which="left")

We compute the mean spectrum of each sound with:

night.mspec <- meanspec(night.left, plot=FALSE)
day.mspec <- meanspec(day.left, plot=FALSE)

The spectral dissimilarity index, Df , is probably the simplest way to compare
fi and gi by computing the absolute difference by pair of frequency bin of xi and yi

and by summing up these point-wise differences:

Df =
∑n

i=1 |xi − yi |
2

with Df ∈ [0, 1]
The function diffspec(), which computes Df , waits two frequency spectra

as input:

diffspec(night.mspec, day.mspec)
[1] 0.472607

Note that the function of Df is symmetric so that the two following commands
are equivalent:

diffspec(night.mspec, day.mspec)
[1] 0.472607
diffspec(day.mspec, night.mspec)
[1] 0.472607

16.2 β Indices 497

The result can be visualized by turning the argument plot to TRUE (Fig. 16.3,
top):

diffspec(night.mspec, day.mspec, plot=TRUE)

The cumulative spectral dissimilarity index, Dcf , proceeds the same way as
Df , but the pairwise absolute difference between frequency bins is computed on
the cumulative probability mass functions Xi and Yi :

Dcf =
∑n

i=1 |Xi − Yi |
n

with Dcf ∈ [0, 1].
The difference between Df and Dcf might appear very subtle, but they may

actually return contrasted results, as it is in the case for night.left and
day.left. Df is a point-wise metric that can return high values between
two frequency spectra with a similar shape but shifted in frequency by a few
Hz only (Fig. 16.4 top-left). Comparable values could actually be obtained
for two frequency spectra totally differing in frequency (Fig. 16.4 top-right).
The index Dcf does not have this drawback as it is sensitive to the spectral
overlap between fi and gi but also to the mean frequency distance between
the different frequency peaks of fi and gi (Fig. 16.4, bottom-left and bottom-
right).

The function diffcumspec() works as diffspec() with a similar option
to display the result (Fig. 16.3, middle). The input arguments may be swapped as
well as the index is symmetric:

diffcumspec(night.mspec, day.mspec)
[1] 0.08755972

The Kolmogorov-Smirnov distance, DKS , is a statistic metric used in the
Kolmogorov-Smirnov nonparametric rank test. The distance is the maximal distance
between the cumulative probability mass functions:

DKS = max
i

|Xi − Yi |

with DKS ∈ [0, 1].
The function ks.dist() computes and optionally displays the result. The

advantage of the Kolmogorov-Smirnov metric is that the distance can be associated
with a frequency. Here a distance of 0.386 is found at a frequency of 7.235 kHz
(Fig. 16.3 bottom):

498 16 Indices for Ecoacoustics

0 5 10 15 20

0.
00

0.
01

0.
02

0.
03

0.
04

Frequency (kHz)

Am
pl

itu
de

night.mspec
day.mspec

D = 0.473

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Frequency (kHz)

C
um

ul
at

ed
 a

m
pl

itu
de

night.mspec
day.mspec

D = 0.088

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Frequency (kHz)

C
um

ul
at

ed
 a

m
pl

itu
de

D = 0.386
 F = 7.235 kHz

night.mspec
day.mspec

Fig. 16.3 Visualization of three β indices. Graphical output of the function diffspec() (top),
diffcumspec() (middle), and ks.dist() (bottom) for the indices Df , Dcf , and DKS ,
respectively. In each case the mean spectra of the two sounds night and day were provided
to the functions. The gray area or the segment indicates the dissimilarity index

16.2 β Indices 499

l l l l l l l l l l

l

l l l l l l l l l0.0

0.2

0.4

0.6

0.8

1.0

l l l l l l l l

l

l l l l l l l l l l l

Df = 1

l l l l l l l l l l

l l l l l l l l l l

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

l l l l l l l l

l l l l l l l l l l l l

Dcf = 0.1

l l

l

l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l

l

l l

Df = 1

l l

l l l l l l l l l l l l l l l l l l

5 10 15 20

l l l l l l l l l l l l l l l l l

l l l

Dcf = 0.75

Frequency (kHz)

R
el

at
iv

e
am

pl
itu

de

Fig. 16.4 Comparison between spectral dissimilarity index and cumulative spectral dissimilarity
index. The indices Df and Dcf return different values for spectra of similar shapes but with
different frequency. The examples are here for pure-tone theoretic sounds. The index Df returns
the same value in the two cases (probability mass functions of two frequency spectra, top-left and
top-right) when Dcf returns expected low and high values (cumulated probability mass functions
of two frequency spectra, bottom-left and bottom-right)

ks.dist(night.mspec, day.mspec)
$D
[1] 0.3861037

$F
[1] 7.235156

Note that the distance returned by ks.dist() differs from the D statistics that
could be obtained with the function ks.test() that applies the Kolmogorov-
Smirnov test. The function ks.test() should not be fed with cumulative
probability mass functions as night.spec[,2] and day.spec[,2] are but
with raw data. This command is therefore a nonsense:

500 16 Indices for Ecoacoustics

ks.test(night.mspec[,2], day.mspec[,2])$statistic
D

0.3242188

The Itakuro-Saito distance, DIS , is a nonsymmetric measure of the difference
between two probability mass functions calculated following:

DIS(x‖y) =
n∑

i=1

xi

yi

− log

(
xi

yi

)
− 1

A symmetrization of the distance can be operated by calculating the mean
between the distances of each direction:

DIS = DIS(x‖y) + DIS(y‖x)

2

with DIS ∈ [0, 1].
The Itakuro-Saito distances are provided by the function itakura.dist()

as a list of three items. In the following example, the function returns: (1) $D1 the
distance of day.mspec with respect to night.mspec, (2) $D2 the distance of
night.mspec with respect to day.mspec, and $D the symmetric distance:

itakura.dist(night.mspec, day.mspec)
$D1
[1] 0.7338433

$D2
[1] 0.7871226

$D
[1] 0.7604829

The Kullback-Leibler divergence, DKL, is another nonsymmetric measure
of the difference between two probability mass functions. This distance has the
advantage to be linked to the measurement of entropy, such that DKL values can
be therefore expressed in number of bits. The formula to obtain DKL of fi with
respect to gi is expressed as:

DKL(f ‖g) =
n∑

i=1

xi × log

(
xi

yi

)

16.2 β Indices 501

A symmetry can be obtained by calculating the mean between the two directions:

DKL = DKL(f ‖g) + DKL(f ‖g)

2

The Kullback-Leibler divergences are provided by the function kl.dist()
as a list of three items in the same way as itakura.dist(): (1) $D1 the
divergence of day.mspecwith respect to night.mspec, (2) $D2 the divergence
of night.mspecwith respect to day.mspec, and $D the symmetric divergence:

kl.dist(night.mspec, day.mspec)
$D1
[1] 1.236742

$D2
[1] 0.9032989

$D
[1] 1.07002

The mutual information, I , is the result of a symbolic analysis as detailed in
Sect. 10.1.5.1. The frequency spectra fi and gi are transformed into two series of
symbols, Sfi and Sgi , respectively, following an alphabet of five letters encoding for
an increase, a decrease, a peak, a trough, or a flat region in the frequency spectrum.
The absolute frequency of each symbol is then computed and used to compute a
level of entropy referring to the usual formula H = −∑n

i=1 pi log pi . The mutual
information combines the entropy of each frequency spectrum and the joint entropy
Sfgi obtained when concatenating the two frequency spectra:

I = HSf + HSg − HSfg

We have seen in Sect. 10.1.5.1 that the function symba() computes the entropy
of one frequency spectrum transformed into a series of symbols. If we provide
two frequency spectra to symba(), then the function calculates the entropy
corresponding to each frequency spectrum and the mutual information between
the two frequency spectra, stored in the element $I. To obtain a dissimilarity
measure, we only need to compute 1 − I as shown here between night.left
and day.left sounds:

res <- 1-symba(round(night.mspec[,2],2), round(day.mspec[,2],2))$I
res
[1] 0.8144348

502 16 Indices for Ecoacoustics

The log-spectral distance, DLS , is a symmetric distance based on the logarithm
of the ratio of xi and yi :

DLS =
√√√√ n∑

i

10 × log10

(
xi

yi

)2

The use of the function logspec.dist() is elementary:

logspec.dist(night.mspec, day.mspec)
[1] 76.72361

The distance can be scaled by the length of the spectra with the argumentscale:

logspec.dist(night.mspec, day.mspec, scale=TRUE)
[1] 4.795226

The relative frequency similarity, S, is an index expressed in % based on
minimum and maximum of each fi and gi frequency bin:

S = 100

n
×

n∑
i=1

mini (fi , gi)

maxi (fi , gi)

The same process can be applied to the probability mass functions, x and y:

S = 100

n
×

n∑
i=1

mini (xi, yi)

maxi (xi, yi)

A dissimilarity metric can be obtained by computing 100 − S. Here, with the
function simspec(), we compute such a dissimilarity on the raw spectra and then
on the probability mass functions with PMF=TRUE:

100-simspec(night.mspec, day.mspec)
[1] 60.11749
100-simspec(night.mspec, day.mspec, PMF=TRUE)
[1] 56.98964

16.2 β Indices 503

The Pearson correlation coefficient, r , can be used to estimate how much two
frequency spectra are correlated, that is, similar. The equation of the coefficient for
xi and yi is:

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

However, xi and yi are probability mass functions so that we have:

x̄ = ȳ = 1

n

We can then simplify the equation of rxy :

rxy =
∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i

A dissimilarity based on Pearson correlation can be derived by computing√
1 − rxy . There is no dedicated function to compute such a dissimilarity, but this

can be solved using the base function cor():

sqrt(1-cor(night.mspec[,2]/sum(night.mspec[,2]),
day.mspec[,2]/sum(day.mspec[,2])))

[1] 0.8513756

So far, we worked only on the (mean) frequency spectrum, but distances can also
work in the time domain. In that case, the sounds to be compared should be perfectly
synchronized to ensure a perfect homology between the items to be compared. This
is the case between the left and right channel of a stereo recording as found in
each recording stored in the directory guiana but not between day.left and
night.left as the recordings were not taken at the same time.

The temporal dissimilarity index, Dt , is similar to the spectral dissimilarity
index Df except that it compares the absolute difference between Hilbert envelopes
instead of the absolute difference between mean spectra. If we have two signals, s1
and s2, the Dt is computed according to:

Dt =
∑n

i=1 |s1i − s2i |
2

with Dt ∈ [0, 1]

504 16 Indices for Ecoacoustics

The function diffenv(), which computes Dt , accepts sounds as input and has
arguments to optionally smooth the envelope (see Sect. 5.2.3). Here is the command
to compare the left and right channels of day:

diffenv(day@left, day@right, f=day@samp.rate)
[1] 0.3592248

Both spectral and temporal indices can be combined in a single index, D:

D = Df × Dt

with Dt ∈ [0, 1]. The function to obtain D is diffwave():

diffwave(day@left, day@right, f=day@samp.rate)
[1] 0.05598203

The time domain can also be considered as the component of a STDFT matrix.
Two STDFT can be compared through a matrix distance method. For instance,
the RV correlation coefficient, developed by Robert and Escoufier (1976), can
be defined for two matrices X and Y centered by columns as (Josse et al.
2008):

RV = tr(XXᵀYYᵀ)√
tr(XXᵀ2)tr(YYᵀ2)

where tr(X) is the trace of the matrix X, that is, the sum of the elements found
on the main diagonal of X, and where Xᵀ denotes the transpose of X. The RV
coefficient can take values between 0 for total uncorrelation between X and Y

and 1 when X and Y are identical or when X and Y only differ by a scaling
factor.

The RV coefficient can be computed, thanks to the function coeffRV() of the
package FactoMineR:

library(FactoMineR)

The STDFT matrices including linear real coefficients normalized to 1 are
obtained with spectro() as explained in Sect. 11.7.1.4. Finally, the RV coef-
ficient is retrieved by selecting the element $rv. The dissimilarity value is obtained
by computing 1 − RV :

16.2 β Indices 505

f <- day@samp.rate
left.stft <- spectro(day@left, f=f, dB=NULL, plot=FALSE)$amp
right.stft <- spectro(day@right, f=f, dB=NULL, plot=FALSE)$amp
res <- 1-coeffRV(left.stft, right.stft)$rv
res
[1] 0.1351937

16.2.2 Batch Processing: How to Obtain and Analyze a Matrix
of β Indices

Obtaining an index for a single pair of sounds is obviously not satisfactory as audio
databases usually include hundreds or thousands of files to be compared. Files have
to be compared pair by pair in such a way that a dissimilarity matrix can be built.
A dissimilarity matrix for n sounds si contains n × n D distances. The matrix is a
square and symmetric matrix. The main diagonal is the repetition of a single value,
the minimum of the dissimilarity matrix, in most cases 0:

⎛
⎜⎜⎜⎜⎜⎜⎝

s1 . . . si . . . sn

s1 D11 . . . D1i . . . D1n
...

...
. . .

...
. . .

...

si Di1 . . . Dii . . . Din
...

...
. . .

...
. . .

...

sn Dn1 . . . Dni . . . Dnn

⎞
⎟⎟⎟⎟⎟⎟⎠

with {D11, . . . ,Dii , . . . ,Dnn} = 0
In this section, we will see how to generate such a matrix and how to visualize

and treat it with a clustering method and a statistical procedure. We will refer to the
24 files recorded in French Guiana and stored in the subdirectory guiana of the
directory sample:

oldwd <- getwd() # save the current directory path
setwd("sample/guiana") # change the current directory
files <- dir(pattern = "wav$") # get the .wav file names
n <- length(files) # number of files
n
[1] 24

506 16 Indices for Ecoacoustics

The time of recording (hour) is saved in an object hour to be used as a factor:

hour <- songmeter(files)$hour
hour
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

[19] 18 19 20 21 22 23

16.2.2.1 Generation of the Distance Matrix

The prelude to the matrix generation consists in obtaining the raw data, that is,
n frequency spectra, one for each of the n files. Here we will compute the mean
frequency spectrum of each file using the function meanspec() with a Hanning
window (default), a window including 512 samples (wl=512) and no overlap
between successive windows (ovlp=0, default) (see Sect. 11.14). To do that we
first create a matrix of dimension n × wl ÷ 2 containing only NA values. We
then apply a for loop calling meanspec() and readWave(). Only the second
column of the value of meanspec() is kept as it contains the amplitude value of
the frequency spectrum:

wl <- 512
mspectra <- matrix(NA, nrow=wl/2, ncol=n)
for(i in 1:n) mspectra[,i] <- meanspec(readWave(files[i]),

wl=wl, plot=FALSE)[,2]

We can check that everything went well using str():

str(mspectra)
num [1:256, 1:24] 0.0678 0.0602 0.0482 0.0499 0.0539 ...

Now the challenge is to compare these 24 mean spectra by pair. It is therefore
necessary to compare the mean spectrum 1 with the mean spectra 2, 3, . . . , 24, then
the mean spectrum 2 with the mean spectra 3, 4, . . . , 24, then the mean spectrum 3
with the mean spectra 4, 5, . . . , 24, and so on up to have ((24×23)÷2)−24 = 276
pair-wise combinations.

16.2 β Indices 507

The number defining each pair, that is, {(1, 2), (1, 3), . . . , (23, 24)}, can be
obtained with the base function combn():

comb <- combn(1:n, 2)
ncol(comb)
[1] 276
comb[, 1:25]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 1 1 1 1
[2,] 2 3 4 5 6 7 8 9 10 11

[,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19]
[1,] 1 1 1 1 1 1 1 1 1
[2,] 12 13 14 15 16 17 18 19 20

[,20] [,21] [,22] [,23] [,24] [,25]
[1,] 1 1 1 1 2 2
[2,] 21 22 23 24 3 4

We now open a new matrix m of dimension (n × n) where the dissimilarity
distances will be stored. We compute the cumulative spectral difference Dcf index
between each pair of mean spectra with a loop for:

m <- matrix(NA, nrow=n, ncol=n)
for(i in 1:ncol(comb)){
m[comb[2,i], comb[1,i]] <- diffcumspec(mspectra[,comb[1,i]],

mspectra[,comb[2,i]],
plot=FALSE)

}

For a sake of clarity, we use the names of the audio files as column and row
names. The function strplit() is called to remove the useless file extension
.wav:

colnames(m) <- rownames(m) <- unlist(strsplit(files, split=".wav"))

We check the first 16 elements of the matrix m:

m[1:4,1:4]
M-XV_20101125_000000

M-XV_20101125_000000 NA
M-XV_20101125_010000 0.007904314

(continued)

508 16 Indices for Ecoacoustics

M-XV_20101125_020000 0.009130246
M-XV_20101125_030000 0.026090174

M-XV_20101125_010000
M-XV_20101125_000000 NA
M-XV_20101125_010000 NA
M-XV_20101125_020000 0.004061756
M-XV_20101125_030000 0.018414709

M-XV_20101125_020000
M-XV_20101125_000000 NA
M-XV_20101125_010000 NA
M-XV_20101125_020000 NA
M-XV_20101125_030000 0.01770413

M-XV_20101125_030000
M-XV_20101125_000000 NA
M-XV_20101125_010000 NA
M-XV_20101125_020000 NA
M-XV_20101125_030000 NA

Only the lower triangle of the matrix is filled so we need to make the matrix
symmetric. To achieve this, we use the base function upper.tri() to select the
upper triangle that we fill with the upper triangle of the transposed matrix:

m[upper.tri(m)] <- t(m)[upper.tri(m)]
m[1:4,1:4]

M-XV_20101125_000000
M-XV_20101125_000000 NA
M-XV_20101125_010000 0.007904314
M-XV_20101125_020000 0.009130246
M-XV_20101125_030000 0.026090174

M-XV_20101125_010000
M-XV_20101125_000000 0.007904314
M-XV_20101125_010000 NA
M-XV_20101125_020000 0.004061756
M-XV_20101125_030000 0.018414709

M-XV_20101125_020000
M-XV_20101125_000000 0.009130246
M-XV_20101125_010000 0.004061756
M-XV_20101125_020000 NA
M-XV_20101125_030000 0.017704135

M-XV_20101125_030000
M-XV_20101125_000000 0.02609017
M-XV_20101125_010000 0.01841471
M-XV_20101125_020000 0.01770413
M-XV_20101125_030000 NA

16.2 β Indices 509

We end up by replacing the NA values on the main diagonal by 0 values so that
the matrix is ready for further analyses:

diag(m) <- 0
m[1:5,1:5]

M-XV_20101125_000000
M-XV_20101125_000000 0.000000000
M-XV_20101125_010000 0.007904314
M-XV_20101125_020000 0.009130246
M-XV_20101125_030000 0.026090174
M-XV_20101125_040000 0.037985776

M-XV_20101125_010000
M-XV_20101125_000000 0.007904314
M-XV_20101125_010000 0.000000000
M-XV_20101125_020000 0.004061756
M-XV_20101125_030000 0.018414709
M-XV_20101125_040000 0.030688195

M-XV_20101125_020000
M-XV_20101125_000000 0.009130246
M-XV_20101125_010000 0.004061756
M-XV_20101125_020000 0.000000000
M-XV_20101125_030000 0.017704135
M-XV_20101125_040000 0.029312122

M-XV_20101125_030000
M-XV_20101125_000000 0.02609017
M-XV_20101125_010000 0.01841471
M-XV_20101125_020000 0.01770413
M-XV_20101125_030000 0.00000000
M-XV_20101125_040000 0.01422946

M-XV_20101125_040000
M-XV_20101125_000000 0.03798578
M-XV_20101125_010000 0.03068820
M-XV_20101125_020000 0.02931212
M-XV_20101125_030000 0.01422946
M-XV_20101125_040000 0.00000000

16.2.2.2 Visualization

A solution to visualize the results is to plot the dissimilarity matrix as a false
color plot, or heatmap, where the dissimilarity distance obtained for each pair of
sound is plotted as a square of color following a linear color scale. We utilize
the function image() as already done when building by hand a spectrogram
(see Sects. 11.4 and 12.1.2.1) together with the seewave function dBscale()
initially implemented to add a dB scale to a spectrogram. For fancy color output,
we use the palette viridis from the eponymous package. The result seems to
indicate three parts according to time that can be grouped into two main periods: a

510 16 Indices for Ecoacoustics

hour

ho
ur

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Dcf

0.00

0.02

0.04

0.06

0.08

0.10

Fig. 16.5 Visualization of a β index matrix with a heatmap. The dissimilarity matrix obtained
with the cumulative spectral difference Dcf index was plotted as a heatmap using the function
image(). The scale on the left was produced by taking advantage of the function dBscale()
used to add a dB scale to a spectrogram. Gray lines were added manually with abline()

night period between 17:00 and 08:00 and a day period between 09:00 and 16:00
(Fig. 16.5):

library(viridis)
col <- viridis(20)
layout(matrix(1:2, nrow=1), width=c(8,1))
image(x=1:n, y=1:n, z=m, col=col, axes=FALSE,

xlab="hour", ylab="hour")
axis(side=1, at=1:n, labels=hour, las=2)
axis(side=2, at=1:n, labels=hour, las=2)
abline(v=c(8.5,16.5)+1, h=c(8.5,16.5)+1, col="grey", lwd=2)
abline(a=0, b=1, col="grey", lwd=2)

(continued)

16.2 β Indices 511

box()
par(mar=c(5.1,0,4.1,3))
dBscale(collevels=seq(0,max(m),length.out=20),

textlab=bquote(D[italic(cf)]), palette=viridis)

16.2.2.3 Clustering

Hierarchical cluster analysis (HCA) is an unsupervised clustering method that
groups observations according to an agglomeration method, the most popular being
the Ward distance that minimizes the intra-cluster inertia (variance) and maximizes
the intercluster inertia. The result is visualized as a dendrogram where closely
related observations are grouped by branches. The topology of the dendrogram can
help in defining clusters. In R, HCA is made available, thanks to the base function
hclust() which requires an object of class dist. The function hclust() has a
dedicated plot() function that displays the dendrogram. The dendrogram can be
cut in a specific number of clusters k by using the functionrect.hclust(). Here
the original dissimilarity matrix m containing the Dcf values between the 24 sounds
is coerced into a dist object with the function as.dist(), the HCA is processed
with the Ward distance and displayed. Three tries of tree cutting are attempted, with
k = {2, 3, 4} (Fig. 16.6):

d <- as.dist(m)
hc <- hclust(d, method="ward.D")
plot(hc, labels=hour, main="", sub="", xlab="Hour", hang=-1)
rect.hclust(hc, k=2, border="green")
rect.hclust(hc, k=3, border="red")
rect.hclust(hc, k=4, border="blue")
legend("topright", legend=paste("k", 2:4, sep="="),

lty=1, col=c("green","red","blue"), bty="n")

For k = 2 we obtain a night period between 19:00 and 8:00 and a day period
between 09:00 and 18:00, slightly different from what we could conclude by
observing the heatmap (Fig. 16.5). For k = 3, we have a first night period between
19:00 and 02:00, a second night period extending to the morning between 03:00
and 08:00, and a day period between 09:00 and 18:00. With k = 4, the day period
is split into two periods including discontinuous hours: 09:00, 10:00, and 13:00 in
one and 11:00, 12:00, 14:00, 15:00, 16:00, 17:00, and 18:00 in the other one.

512 16 Indices for Ecoacoustics

9 10 13 15 14 11 12 17 16 18 4 3 5 6 7 8 19 20 0 1 2 21 22 23

0.
0

0.
1

0.
2

0.
3

0.
4

Hour

H
ei

gh
t

k=2
k=3
k=4

Fig. 16.6 Visualization of a β index matrix with a hierarchical cluster analysis dendrogram.
The dissimilarity matrix obtained with the cumulative spectral difference Dcf was treated with
hierarchical cluster analysis, the result being plotted as a dendrogram. The color rectangles show
how to cut the dendrogram in 2, 3, or 4 clusters

16.2.2.4 Ordination Analysis

Ordination methods are descriptive analyses that consist in extracting the main
trends of a set of variables in the form of continuous and orthogonal axes.
Unconstrained ordination methods include, among others, the very popular principal
component analysis (PCA) and correspondence analysis (CA). These unconstrained
methods are mainly graphical methods based on scatterplots that are not supported
with a statistical test. Constrained, or canonical, ordination procedures compute the
axes under the constraint of explanatory variables. These constrained methods are
also visual methods but can be accompanied with a statistical test.

The redundancy analysis (RDA) is a constrained ordination technique which
aims at modeling a multivariate response data, e.g., a matrix Y made of several
observations (lines) described by several variables (columns) by a set of explanatory
variables organized in a matrix X. The RDA is a kind of PCA which axes are
constrained by a linear combination of the explanatory variables. In practice, a
RDA consists in a multivariate multiple linear regression (MLR) followed by a
PCA applied on the table of the fitted values returned by the regression (Borcard
et al. 2011). The null hypothesis H0 of absence of linear relationship between Y and
X can be tested.

The RDA has been extended to the analysis of distance metrics such that the
response matrix Y takes the form of a distance matrix (Legendre 1999). The very
first step of the method, named distance-based redundancy analysis (db-RDA), is a
principal coordinate analysis (PCoA), an ordination procedure that takes a distance
matrix as input. The relationship of the principal coordinates with the explanatory

16.2 β Indices 513

variables stored in X is then treated with a usual RDA. The importance of the
explanatory variables in modeling the response variables can be tested through a
permutation test. The db-RDA has proved to be useful in the analysis of tropical
acoustic communities and soundscapes (Gasc et al. 2013b; Rodriguez et al. 2014).
In R, the db-RDA is available in the package ade4 with the sequential use of the
functionsdudi.pco() for computing the PCoA and pcaiv() for the application
of a PCA with respect to instrumental variables.

We first load ade4 and its graphical companion adegraphics:

library(ade4)
library(adegraphics)

We compute the PCoA taking care of transforming the dissimilarity matrix as
quasi-Euclidean distance matrix with the help of the function quasieuclid().
The argument scannf is turned to FALSE so that the barplot of the eigenvalues is
not produced:

d <- as.dist(m)
pcoa <- dudi.pco(quasieuclid(d), scannf=FALSE)

We prepare two sets of factors to be tested with the db-RDA: (1) a first
factor named hour corresponding to each hour of recording and (2) a second
factor, named period, corresponding to the time periods of the night and
day cycle as highlighted by the HCA with k = 3 (Fig. 16.6), i.e., with a
first night period between 19:00 and 02:00, a second night period extending to
the morning between 03:00 and 08:00, and a day period between 09:00 and
18:00.

So for the hour, the factor is obtained as above with:

hour <- songmeter(files)$hour

The three periods can be built by filling a vector of length n = 24 according to
the object hour we have just created:

period <- rep(NA, n)
period[hour >= 19 | hour < 3] <- "night"
period[hour >= 3 & hour < 9] <- "morning"
period[hour >= 9 & hour < 19] <- "day"

514 16 Indices for Ecoacoustics

Both objects need to be coerced as factor objects:

hour <- as.factor(hour)
hour
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

[19] 18 19 20 21 22 23
24 Levels: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 23
period <- as.factor(period)
period
[1] night night night morning morning morning morning
[8] morning morning day day day day day

[15] day day day day day night night
[22] night night night
Levels: day morning night

We compute the RDA on the PCoA with the function pcaiv() that runs a PCA
with respect to instrumental variables, here with respect to hour and period,
respectively, so that we end up with two db-RDA:

rda.hour <- pcaiv(pcoa, df=hour, scannf=FALSE)
rda.period <- pcaiv(pcoa, df=period, scannf=FALSE)

The last action consists in plotting with the adegraphics function
s.class() the projection of the observations grouped according to the factor
levels in the space defined by the two first axes of the db-RDA. The projections of
the observations on the axes of the db-RDA are stored in the item $ls. In the case
of the hour level, each level contains a single observation. The graphic undeniably
shows that hours are not randomly positioned but that they draw a circular pattern
suggesting that the acoustic communities of the tropical forest change according to
the 24 h cycle (Fig. 16.7):

s.class(rda.hour$ls, fac=hour)

The function s.class() uses the package lattice that, as ggplot2 does,
implements a new way to create graphics. The lattice and the base graphic
systems cannot be mixed so that a new grammar should be learned to tune the
ade4 graphics. Another solution is to retrieve the data describing the positions
of the factor levels and to manually build a new graphic as illustrated in the DIY
box 16.1.

16.2 β Indices 515

DIY 16.1 — How to tune the visualization of a db-RDA projection

The projection of the observations treated with a dB-RDA can be manually constructed
using R base graphical functions. In the following the raw data are stored in an object
res and then plotted with classical functions including polypath() that draws a path
between points which coordinates are kept in a two-column matrix:

res <- rda.hour$ls # raw data
plot(res, type="n", las=1) # empty plot
grid(lty=1) # x-y grid
polypath(res) # path
points(res, pch=19, cex=3, col="black") # black points
text(res, label=0:23, col="white") # white labels
box(lwd=2) # frame width

−0.04 −0.02 0.00 0.02 0.04 0.06

−0.04

−0.02

0.00

0.02

0.04

Axis1

Ax
is

2

l
ll

l l
l

lll

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

0
1 2

3 4
5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

The adegraphics scatterplot returned by s.sclass() for the period
factor is much more interesting. The points are grouped according to the levels of
the factor used to compute the db-RDA. For each level, an ellipse is drawn with
its center and axes. The center of the ellipse is the centroid of each group, and an
arrow connects the centroid to each point drawing a kind of star. The ellipses are not

516 16 Indices for Ecoacoustics

d = 0.02

ll

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0
1 2

3 4
5

67
8

9

10

11
12

13

14

15

16

17

18

19

20

21

22
23

Fig. 16.7 Visualization of a β index matrix with a db-RDA projection according to hour. The β

index matrix was treated with a distance-based redundancy analysis, and the observations were
projected with s.class() in the space defined by the two first axes of the ordination process.
Each observation is one factor level, i.e., there is a single observation per factor level

true confidence areas, but they outline an area where a defined percentage p of the
observations are expected to be found. This percentage p obeys to the formula:

p = 100 ×
(

1 − e− S2
2

)

where S is the size of the ellipse in the space of the scatterplot. This can be translated
in R with the function:

p <- function(S) {100*(1-exp(-S^2/2))}

16.2 β Indices 517

Setting S = 1.5 or S = 2.5 returns a percentage of ≈67.5% and ≈95.6
respectively:

p(1.5)
[1] 67.53475
p(2.5)
[1] 95.60631

If we inspect the documentation of s.class(), we see that the argu-
ment ellipseSize is the size of the ellipse S, with the default value
ellipseSize=1.5. The following command uses the function s.class()
with all default values that is with 67.5% ellipses (Fig. 16.8)

s.class(rda.period$ls, fac=period)

d = 0.02

ll

l l

l

l

l l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
day

morning

night

Fig. 16.8 Visualization of a β index matrix with a db-RDA projection according to time periods.
The β index matrix was treated with a distance-based redundancy analysis, and the observations
were projected with s.class() in the space defined by the two first axes of the ordination
process. Each observation is grouped according to a factor with the three levels: morning, day, and
night. Ellipses would include 67.5% of the observations

518 16 Indices for Ecoacoustics

d = 0.05

ll

l l

l

l

l l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
day

morning

night

Fig. 16.9 Tuned visualization of the β index matrix with a db-RDA projection according to time
periods. This is another version of the graphic displayed in Fig. 16.8 but tuned by modifying some
arguments of s.class(). In particular the ellipses would here cover 95% of the observations

The display can be tuned by playing with some graphical parameters and by
increasing the size of the ellipses, here to reach 95% ellipses (Fig. 16.9):

s.class(rda.period$ls, fac=period, col=1:3,
ellipseSize=2.5, xlim=c(-0.08,0.08), ylim=c(-0.08,0.08))

The great advantage of the db-RDA is that a statistical test can be run to objec-
tively interpret the visualization. The null hypothesis H0 of the test is the absence
of a linear relationship between the explanatory variables X and the projection of
the observations Y along the ordination axes. The test is based on a permutation of
the lines of the table that describes the position of the observations in the ordination
space. The statistic tested is the coefficient R2 of the multiple linear regression.

The permutation test can be run with the ade4 generic function randtest().
The number of permutations is specified with the argument nrepet. Testing the
factor hour would be a nonsense as there is a single observation per factor level. In
the following, we test the effect of the factor period; it is highly significant with
p ≈ 0.0009.

16.2 β Indices 519

test.period <- randtest(rda.period, nrepet=1000)
test.period
Monte-Carlo test
Call: randtest.pcaiv(xtest = rda.period, nrepet = 1000)

Observation: 0.6049304

Based on 1000 replicates
Simulated p-value: 0.000999001
Alternative hypothesis: greater

Std.Obs Expectation Variance
9.004050978 0.091154854 0.003255899

and we plot the result of the permutation using plot() (Fig. 16.10):

plot(test.period)

Histogram of sim

sim

Fr
eq

ue
nc

y

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
10

0
20

0
30

0
40

0

Fig. 16.10 Visualization of the db-RDA permutation test. The histogram shows the distribution of
the statistic obtained by permutation when H0 is true. The statistic observed for the data tested is
depicted as a diamond placed on the top of a segment. The p-value of the test is the probability to
obtain a statistic greater than the statistic observed, that is, the surface of the histogram on the right
of the diamond, here p ≈ 0.0009

Chapter 17
Comparison and Automatic Detection

The comparison of two sounds is an exercise often practiced when estimating
differences among recording devices, broadcasting systems, instruments, singers,
music genres, and in the special case of ecoacoustics, animal populations, animal
communities, and soundscapes. The comparison of two objects may appear as
a simple task as we commonly do this sort of operation in our everyday life.
However, to spot the difference between two sounds is not that an easy game for
a machine. The first solution can be descriptive: the dissimilarity of two sounds is
estimated through a statistical comparison of their time, frequency, and amplitude
features (see Chaps. 7, 8, and 10). The second solution can consist in using the β

dissimilarity indices developed to assess global differences between pairs of sounds
(see Sect. 16.2). A third solution involves algorithms that compare time series.

In this chapter, we will introduce the cross-correlation, the frequency coherence,
and the dynamic time warping. We will also see how to proceed a supervised binary
automatic detection.

17.1 Cross-Correlation

The cross-correlation of two discrete time series, x[n] and y[n], consists in
computing a measure of similarity between the x[n] and a delayed version of y[n]
that is between x[n] and y[n + m], where m �= 0 is a positive or negative time lag,
usually set to one audio sample (Fig. 17.1).1 The cross-correlation can be employed
to automatically identify a sound of reference (template) in a test file as detailed in
Sect. 17.4.

1Cross-correlation is related to convolution (see Sect. 14.6.1) and autocorrelation (see
Sect. 13.1.2.1).

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_17

521

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_17&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_17

522 17 Comparison and Automatic Detection

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Am

pl
itu

de
0.1 sx

y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Time (s)

r xy

l (0.1,1)

Fig. 17.1 Cross-correlation principle. Cross-correlation mainly consists in moving forward and
backward a series along another series and in computing a correlation coefficient at each m lag
step. In this graphic, the blue x series is moved forward (m > 0) along the red series y (top)
generating a time series of the correlation coefficient rxy (bottom). The correlation time series
shows a peak for a lag of 0.1 s indicating that the two series are shifted by 0.1 s. The backward
movement (m < 0) is not shown for a sake of clarity

Any similarity function can be used as a correlation measure. The most common
similarity function, named normalized correlation coefficient rxy [m], is obtained
according to:

rxy [m] =
∑N−m

n=1 x[n]y[n + m]√∑N−m
n=1 x2[n]∑N−m

n=1 y2[n]

with rxy ∈ [0, 1].
The result of the cross-correlation is a time series made of the successive rxy

values. If m corresponds to a single audio sample, then the time series of the cross-
correlation rxy has the same sample frequency than x[n] and y[n]. Note that the
cross-correlation function is asymmetric such that rxy �= ryx .

Cross-correlation method is not limited to time series. It can be applied to
frequency spectra where the spectra are slid against each other according to
frequency. It can also be adapted to compare STDFT matrices according to time.

The main advantages of the cross-correlation is to obtain an estimation of the
potential shift, or offset, that may occur between the objects to be compared and
to be potentially supported by a statistical test. For instance, the two times series

17.1 Cross-Correlation 523

compared in Fig. 17.1 have a similar shape but are delayed by a lag of 0.1 s. The rxy

function shows indeed a peak for m = 0.1 s, clearly identifying the delay between
the two time series.

To illustrate the use of cross-correlation, we will compare the second and the third
notes of tico extracted with cutw() and stored in two Wave objects, note2 and
note3:

note2 <- cutw(tico, from=0.5, to=0.9, output="Wave")
note3 <- cutw(tico, from=0.9, to=1.3, output="Wave")

The two objects to be compared should have exactly the same length. This
condition can be tested with:

length(note2@left)==length(note3@left)
[1] TRUE

Cross-correlation for time series is available in the base function ccf(). We first
need to coerce the objects as ts objects:

note2.ts <- ts(note2@left, start=0, end = duration(note2),
frequency=note2@samp.rate)

note3.ts <- ts(note3@left, start=0, end = duration(note3),
frequency=note3@samp.rate)

We then use directly the function ccf() setting the maximum lag m as half the
number of samples:

res <- ccf(note2.ts, note3.ts, lag.max=length(note2@left)/2,
plot=FALSE)

rxy is stored in the list item $acf and the lag m in $lag. The best correlation
occurs at the maximum of $acf so that the estimated delay or offset between the
two notes is obtained with:

res$lag[which.max(res$acf)]
[1] 0.01718821

524 17 Comparison and Automatic Detection

We can now look at the original waveform and the rxy time series with
(Fig. 17.2):

layout(matrix(1:3, nc=1))
par(mfrow=c(3,1), mar=c(5,4.5,4,2))
oscillo(note2, bty="o", title="note 2")
oscillo(note3, bty="o", title="note 3")
plot(reslag, resacf, type="l", bty="o",

xaxs="i", yaxs="i", cex.lab=1.5,
xlab=expression(italic(m)~(s)), ylab=expression(r[xy]),
main="cross-correlation")

seewave offers three cross-correlation functions: (1) corenv() for the
cross-correlation between two amplitude envelopes, (2) corspec() for the cross-
correlation between two frequency spectra, and (3) covspectro() for the cross-
correlation (or strictly spoken cross-covariance) between two STDFT matrices.
The particularity of these functions is to use a statistical correlation coefficient
as a similarity measure (either Spearman, Pearson, or Kendall coefficient) for the
amplitude envelope and frequency spectra and the mean of the covariance matrix
diagonal between the STDFT matrices.

The function corenv() cross-correlates the amplitude envelopes of the two
sounds to be compared. By default, the function computes the Hilbert amplitude
envelopes, applies the cross-correlation, and plots the correlation function. The use
of corenv() is rather simple but the time of process can be quite long. A solution
to save time consists in smoothing the amplitude envelope by parsing the arguments
msmooth, ksmooth, or ssmooth of the function env() (see Sect. 5.2.3). In the
following we use msmooth=c(50,75) that is a moving average with a window
of 50 samples and with an overlap of 75% (Fig. 17.3):

res <- corenv(note2, note3, msmooth=c(50,75))

The maximum reached by the correlation function and the time delay in s are
stored in the list items $rmax and $t:

res$rmax
[1] 0.9334181
res$t
[1] 0.01367676

17.1 Cross-Correlation 525

note 2

0.0 0.1 0.2 0.3 0.4

Time (s)

note 3

0.0 0.1 0.2 0.3 0.4

Time (s)

cross−correlation

−0.2 −0.1 0.0 0.1 0.2
m (s)

r xy
Am

pl
itu

de
Am

pl
itu

de
−0

.2

 −
0.

1
0.

0
0.

1
0.

2

Fig. 17.2 Waveform cross-correlation. The waveform of the second and third notes of tico was
cross-correlated with the base function ccf(). The figure shows the oscillogram of the two notes
and the time series of the correlation coefficient rxy (m), where m is the lag in s

526 17 Comparison and Automatic Detection

−0.4 −0.2 0.0 0.2 0.4

−0
.5

0.
0

0.
5

Time (s)

C
oe

ffi
ci

en
t o

f c
or

re
la

tio
n

(r)
rmax = 0.93 , offset = 0.014 s

l

Fig. 17.3 Hilbert amplitude envelope cross-correlation. The Hilbert amplitude envelopes of the
second and third note of tico were cross-correlated with the function corenv(). The cross-
correlation indicates a frequency shift, or offset, of 0.014 s

The function corspec() works as corenv() but takes frequency spectra as
input arguments. In the following code, the mean frequency spectra of note2 and
note3 are computed and displayed, and their cross-correlation is run and shown
below (Fig. 17.4):

par(mfrow=c(2,1))
note2.mspec <- meanspec(note2, col="blue")
note3.mspec <- meanspec(note3, plot=FALSE)
lines(note3.mspec, col="red")
legend("topright", c("Note 2", "Note 3"), lty=1,

col=c("blue", "red"), bty="n")
res <- corspec(note2.mspec, note3.mspec)

The maximum reached by the correlation function and the frequency shift in kHz
are in the list items $rmax and $f:

res$rmax
[1] 0.8362717
res$f

x
0.2583984

17.1 Cross-Correlation 527

0 2 4 6 8 10

Frequency (kHz)

Am
pl

itu
de

Note 2
Note 3

−10 −5 0 5 10

−0
.5

0.
0

0.
5

Frequency (kHz)

C
oe

ffi
ci

en
t o

f c
or

re
la

tio
n

(r)

rmax = 0.85 , offset = 0.26 kHz
l

Fig. 17.4 Frequency spectrum cross-correlation. The mean frequency spectra of the second and
third note of tico were cross-correlated with the function corspec(). The cross-correlation
indicates a frequency shift, or offset, of 0.26 kHz

The last function, covspectro(), computes the STDFT matrices of the
two sounds and the covariance between the STDFT matrices at each lag step.
The procedure can be quite long. A solution to speed up the computation is to
limit the number of covariances computed with the argument n, which must be
odd. For instance, the following command runs the cross-correlation based on 39
covariances:

res <- covspectro(note2, note3, n=39)

528 17 Comparison and Automatic Detection

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time (s)

N
or

m
al

is
ed

 c
ov

ar
ia

nc
e

(c
ov

)
covmax = 0.59 , offset = 0.02 s

l

Fig. 17.5 STDFT cross-correlation of STDFT matrices. The STDFT matrices of the second
and third note of tico were cross-correlated with the function covspectro(). The cross-
correlation indicates a time shift, or offset, of 0.02 s

The maximum reached by the covariance function and the time delay in s are in
the list items $covmax and $t (Fig. 17.5):

res$covmax
[1] 0.5870936
res$t
[1] 0.02000227

17.2 Frequency Coherence

Coherence is a frequency function that reveals the degree of a relationship between
two signals. The value of the coherence function ranges from 0 to 1. A value of 0
indicates there is no causal relationship between the signals, and a value of 1 points
out the existence of a linear frequency response between the two signals. Frequency
coherence can be used, for instance, to compare the input and output signals of a
system.

17.2 Frequency Coherence 529

The magnitude-squared frequency coherence between two time series x[n] and
y[n] is computed according to:

Cxy [f] = |Gxy[f]|2
Gxx[f]Gyy[f]

where Gxy[f] is the crossed power spectral density of x[n] and y[n] which is the
Fourier transform of the cross-correlation rxy between x[n] and y[n], and Gxx and
Gyy are the power spectral densities, or auto-spectra, of x[n] and y[n], respectively.

The seewave function coh() returns the magnitude-squared frequency coher-
ence of two sounds. The function parses the function spec.pgram() of the base
package stats. An example of the coherence could be the comparison of the
left and right channel of a single recording. To illustrate this, we select one file
among the 24 files recorded in the tropical forest of French Guiana, for instance, the
recording obtained at tea time, that is, at 3:00 pm:

teatime <- readWave("sample/guiana/M-XV_20101125_150000.wav")
teatime@stereo
[1] TRUE

The frequency coherence is here computed for the first 2048 samples (Fig. 17.6):

coh(teatime@left[1:2048], teatime@right[1:2048],
f=teatime@samp.rate)

seewave includes as well a short-time version of the coherence, named
ccoh(), which evaluates the variation of the frequency coherence according to
time. This produces a spectrogram-like image that shows the variation of coherence
according to time. The use of ccoh() is direct, and the graphical options are similar
to those of the spectrographic function spectro() (see Sect. 11.7) (Fig. 17.7):

ccoh(teatime@left, teatime@right, f=teatime@samp.rate)

530 17 Comparison and Automatic Detection

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Frequency (kHz)

C
oh

er
en

ce

Fig. 17.6 Frequency coherence. Frequency coherence between the left and right channel of a
recording achieved at tea time in French Guiana. A value of 1 indicates a pure coherence. Here
the coherence is maximum between 10 and 15 kHz

17.3 Dynamic Time Warping

Dynamic time warping (DTW) is a technique introduced by Sakoe and Chiba (1978)
to compare two time series that are possibly not in phase or have different duration.
DTW algorithms mainly consist in stretching or compressing in a nonlinear way (or
warping) the two time series to find their best alignment so that that their similarity is
maximized. This can be translated in finding the optimal alignment Φ between two
time series x[n] and y[m] with n = {1, . . . , N} and m = {1, . . . ,M} in reference to
a pair-wise distance d computed between x[n] and y[m] (Giorgino 2009).

The DTW distance D obeys then to the condition:

DDTW = min
Φ

dΦ(x[n], y[m])

The distance d between x[n] and y[m] is usually the Euclidian distance, but
other distances as the squared Euclidian, the Manhattan, the Kullback distances can
be used (see the proxy package for other distances).

The DTW technique has a double interest: (1) DTW returns a similarity distance
that could be used for pattern recognition and also as a dissimilarity index (see
Sect. 16.2), and (2) DTW shows the correspondence between the points of two
series after alignment. The first use of DTW involved the recognition of Japanese
spoken words based on time × frequency series (Sakoe and Chiba 1978). DTW
was operated in a vast range of domains including, among others, medical sciences,
genetics, image processing, and music. More specifically, in the context of this book,

17.3 Dynamic Time Warping 531

Fig. 17.7 Continuous frequency coherence. The frequency coherence is computed along time
using ccoh(), a short-term version of coh(). Here the function is applied between the left
and right channel of the a recording achieved at tea time in French Guiana

DTW can be helpful to compare amplitude envelopes, frequency tracking profiles
or contours, and frequency spectra.

The package dtw offers all the necessary algorithms to run a nice DTW analysis
(Giorgino 2009):

library(dtw)

Here, we test only the front-end function dtw(). The function is facile to
use: it basically only requires two vectors to be compared as input and returns an
object of class dtw that has dedicated plot methods. Other arguments include the
choice of the point-wise distance method (argument dist.method), the saving
of the original series in the returned object (argument keep), and the possibility to
compute the distance only to save computing time (argument distance.only).
In the following example, we extract the smoothed Hilbert amplitude envelopes of
note2 and note3 that we give to dtw(). The result is displayed with plot()

532 17 Comparison and Automatic Detection

Index

Q
ue

ry
 v

al
ue

0 50 100 150

0
50

00
15

00
0

0
50

00
15

00
0

Fig. 17.8 Dynamic time warping on Hilbert amplitude envelope. The smoothed Hilbert amplitude
envelopes of note2 and note3 of tico are compared using dynamic time warping alignment.
Note that the envelopes here have the same length (176 samples) but that their length could differ.
The dotted gray lines connect the samples that match following the best alignment found by the
algorithm

specifying the type of plot (argument type), the vertical offset between the two
series (argument offset), and the number of matching lines between the two
series (argument match.indices) (Fig. 17.8):

note2.env <- env(note2, msmooth=c(50,0), plot=FALSE)
note3.env <- env(note3, msmooth=c(50,0), plot=FALSE)
res <- dtw(note2.env, note3.env, keep=TRUE)
plot(res, type="two", offset=10000,

match.indices=length(note2.env)/4)

The DTW distance D is stored in the list item $distance:

res$distance
[1] 134790.6

17.3 Dynamic Time Warping 533

Index

Q
ue

ry
 v

al
ue

0 50 100 150 200 250

0.
0

0.
4

0.
8

0
0.

4
0.

8

Fig. 17.9 Dynamic time warping on frequency spectra. The mean frequency spectra of note2
and note3 of tico are compared using dynamic time warping alignment. Note that the frequency
spectra have here the same length (256 bins) but that their length could differ. The dotted gray lines
connect the frequency bins that match following the best alignment found by the algorithm

A fast way to obtain this distance is to turn the argument distance.only to
TRUE:

dtw(note2.env, note3.env, distance.only=TRUE)$distance
[1] 134790.6

Similarly, frequency spectra, here mean frequency spectra, can be compared with
(Fig. 17.9):

note2.mspec <- meanspec(note2, plot=FALSE)[,2]
note3.mspec <- meanspec(note3, plot=FALSE)[,2]
res <- dtw(note2.mspec, note3.mspec, keep=TRUE)
plot(res, type="two", off=1, match.indices=length(note2.mspec)/4)

The same procedure can be applied to the dominant frequency tracking (or
contour) obtained with dfreq() for the two notes (see Sect. 13.1.1).NA values that
may occur in the result of dfreq() should be removed with na.omit(). Note
that in this case, the two series differ in length (11 and 14, respectively) and that

534 17 Comparison and Automatic Detection

Index

Q
ue

ry
 v

al
ue

2 4 6 8 10 12 14

3.
0

3.
5

4.
0

4.
5

5.
0

Fig. 17.10 Dynamic time warping on dominant frequency tracking. The dominant frequency of
note2 and note3 of tico was obtained with dfreq() and then compared using dynamic
time warping alignment. Note that the frequency tracks have not the same length (11 and 14
measurements, respectively). The dotted gray lines connect the dominant frequency measurements
that match following the best alignment found by the algorithm

using no graphical offset seems to be useful to compare the frequency modulations
(Fig. 17.10):

note2.df <- na.omit(dfreq(note2, threshold=5, plot=FALSE)[,2])
note3.df <- na.omit(dfreq(note3, threshold=5, plot=FALSE)[,2])
res <- dtw(note2.df, note3.df, keep=TRUE)
plot(res, type="two", match.indices=length(note2.df))

The packagewarbleR offers two end-user functions,ffDTW() and dfDTW(),
to directly apply DTW on fundamental frequency and dominant frequency
contours.

17.4 Automatic Identification

17.4.1 Principle

Automatic identification pertains to the field of machine learning, a very active
discipline that combines data mining techniques, high-level statistics, and computer
sciences. Automatic identification is a computer task that consists in taking a

17.4 Automatic Identification 535

decision about the identity of an object, usually a digital object, without human
expertise. This task can be conducted in a supervised or unsupervised way. In the
first case, the identification is achieved with access to labeled data, that is, with a
collection of identified objects. In the second case, the identification is performed
without any labeled reference.

Here, we will deal with a single automatic identification task that consists in
localizing the occurrence of a known sound of interest (SOI), as a bird note, in
an unlabeled recording (recording test), as a recording achieved by a naive bird
watcher. The task can be seen as a binary classification task: the SOI does occur at
time t in the recording test, in that case the outcome of the system is 1; the SOI does
not occur at time t in the recording test, in that case the outcome of the system is 0.
The task can be of course applied to a group of different recording tests through a
batch process.

The achievement of the binary task is based on the development of a system
that compares one or several examples of the SOI, also known as template, with
successive time sections of the recording to be analyzed. The goal is not to find
exactly the same sound as the template but to assess the level of similarity between
the template and the recording and then to take a decision considering this degree of
similarity. Such a system is usually based on the following workflow (Fig. 17.11):

Fig. 17.11 Automatic identification system workflow. An automatic identification system can be
divided into two major components: a first phase of development where the system is built and
trained based on one or several templates, one or several training datasets, and a second phase of
application on one or several test datasets. The plain arrows indicate the basic way of the workflow,
and the dashed arrows indicate feedback to optimize the system. See text for further details

536 17 Comparison and Automatic Detection

1. selection of one or, more commonly, several templates. This collection of
templates should give a good overview of the time × frequency variation of the
SOI and of the background that can occur in the recordings.

2. selection of one or several labeled datasets, named training dataset. This
database consists in a collection of recordings where the occurrence of the SOI is
manually labeled by a human expert. This reference is also known as the ground
truth.

3. selection of a comparison method that estimates the similarity between the
templates and the training dataset. This method can combine signal analysis and
machine learning.

4. application of the comparison method on the training dataset. The method returns
0|1 (or presence | absence or positive | negative) predictions in reference to an
output threshold θ that select the most similar events.

5. evaluation of the classification rates by matching the manual labels edited by a
human expert and the automatic labels obtained with the comparison method.
This leads to 2 × 2 confusion matrix with the following categories: (1) true
positives (TP) that are correct positive predictions, (2) false positives (FP) that
are negative examples incorrectly labeled as positive, (3) true negatives (TN)
that are correct negative predictions, and (4) false negatives (FN) that are positive
examples incorrectly labeled as negative (Table 17.1).

6. evaluation of the performance of the comparison method by computing outcome
metrics precision such as:

true positive rate = TPR = sensitivity = recall = TP

TP + FN

true negative rate = TNR = specificity = TN

TN + FP

Table 17.1 Confusion
matrix in automatic
identification process

Ground truth

True False

System

True TP FP

False FN TN

Confusion matrix between ground
truth and algorithm prediction indi-
cating the predictions that this is the
number of true positives (TP), false
positives (FP), true negatives (TN),
and false negatives (FN)

17.4 Automatic Identification 537

false positive rate = FPR = 1 − specificity = FP

FP + TN

positive predictive value = PPV = precision = TP

TP + FP

7. optimization of the system performance by tuning the parameters of the system
in particular the output threshold θ . The system performance is assessed by
constructing the receiver operating characteristic curve (ROC curve) (Fig. 17.12)
and/or the precision-recall curve (PR curve) that are both θ functions (Davis and
Mermelstein 1980; Fawcett 2006). The ROC curve consists in plotting FPR(θ) on
the x-axis against TPR(θ) on the y-axis. The PR curves display the same TPR(θ)

named “recall” on the x-axis and the “precision” according to θ on the y-axis.
The area under the curve (AUC, respectively the AUC-ROC and AUC-PR) is a
metric for the performance of the system. The AUC is obtained by computing
the integral of TPR(θ) (resp. “precision”) with respect to FPR(θ) (resp. “recall”)
using trapezoid rule integration.

8. application of the tuned comparison method on an unlabeled dataset known as
testing dataset. The final outcome of the system is a prediction of the occurrence
of the SOI.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

false positive rate (FPR)

tru
e

po
si

tiv
e

ra
te

 (T
PR

)

AUC
0.91
0.65
0.5

Fig. 17.12 Receiver operating characteristic (ROC). The false positive rate (FPR) and the true
positive rate (TPR) define the ROC space. The plain curves indicate the ROC curves for an efficient
system (blue), a non-efficient system (red), and a system returning random predictions (pink).
Areas under the curve (AUC) are colored accordingly and specified in the legend

538 17 Comparison and Automatic Detection

17.4.2 In Practice with the Package monitoR

The package monitoR covers two main aims: (1) manage a database resulting of
an acoustic monitoring or survey and (2) run an automatic binary classification task.
The package functionalities are described in depth in Katz et al. (2016a,b) and in
the “Quick Start” vignette of the package than can be reached with:

library(monitoR)
vignette("monitoR_QuickStart", package="monitoR")

monitoR offers two methods of comparison, namely, cross-correlation as
detailed in Sect. 17.1 and bin template matching as defined in Towsey et al. (2012).
Bin template matching does not apply a direct comparison between the template and
the training dataset. The STDFT matrix of the template is binarized according to an
amplitude threshold resulting in a binary matrix with cells labeled as on (signal) and
off (background noise) cells. For instance, if the user sets a threshold of 6 dB, all the
cells of the STDFT matrix between 0 and −6 dB will be considered as on cells, the
remaining cells being defined as off cells. A score is then computed for the template
according to the equation:

score =
∑

aon

non

−
∑

aoff

noff

where a are the amplitudes of the cells and n are the number of cells. The same
score is computed on the training set, and the score of the training set is compared
to the score of the template according to a selection threshold θ .

Whichever the comparison method selected, the main steps of the workflow
followed by monitoR can be listed as:

1. manual annotation of the training dataset using viewSpec() with the argu-
ment annotate=TRUE.

2. selection of one or more templates with makeCorTemplate() for cross-
correlation (resp. makeBinTemplate() for bin template matching) and
combination of these templates in a single object with combineCor
Templates() (resp. combineBinTemplates()).

3. setting a negative value to the output threshold θ with templateCutoff().
4. application of the comparison method with corMatch() (resp. bin

Match()).2 This generates the raw results of the comparison method, that

2See the functions, batchCorMatch() [resp. batchBinMatch()], for operating the
template-training dataset comparison on set of files speeding up the complete process.

17.4 Automatic Identification 539

is, the time series of the cross-correlation rtemplate,training (resp. bin template
matching score).

5. selection of the peaks of rtemplate,training time series with findPeaks().
6. generation of the outcome of the system as TRUE / FALSE labels with

getPeaks().
7. find a consensus between the detections of the different templates with

timeAlign().
8. comparison between manual labels and automatic labels with eventEval()

with different values of θ so that the ROC curve can be built.
9. selection of θ on the ROC curve for optimizing the system performance.

10. selection of other parameters, as time tolerance τ in manual and automatic
comparison, for optimizing the system performance.

11. application of the tuned system on a test dataset.

In the following paragraph, we work a simple detection example. We use the
following data and parameters:

SOI vocalizations of the South-American dart poison frog Allobates femoralis
(see Chap. 14 and Fig. 14.1),

templates four templates stored in the file Allobates_femoralis.wav
stored in the directory sample,

training dataset 28 vocalizations occurring in the 30 s file
Allobates_femoralis_2015-11-10_161500_GFT.wav stored in the
same directory sample. The name of the file is, according to monitoR
instructions, constructed following:
“name_YYYY-MM-DD_HHMMSS_TIMEZONE.wav”:

femo.training <- readWave(
"sample/Allobates_femoralis_2015-11-10_161500_GFT.wav")

femo.training

Wave Object
Number of Samples: 1323000
Duration (seconds): 30
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

ground truth manual labels edited on the training dataset and written in a .csv
file,

comparison method cross-correlation,
output threshold set a priori to θ = −0.1 and then tuned,
system performance ROC curve and AUC,
test dataset not included.

540 17 Comparison and Automatic Detection

We obtained the manual annotations on the training file using the interactive
spectrographic function viewSpec() with the argument annotate=TRUE to
allow interactive annotations with the mouse (see Sect. 11.8.2.2). To facilitate the
annotation, we focused in frequency between 1 and 7 kHz with the argument
frq.lim, and we navigated through the sound using overlapping spectrographic
views lasting 5 s with the argumentspage.length and page.ovlp. This action
produces a data.frame written in a .csv file saved in a directory specified with
the argument output.dir:

viewSpec(femo.training, frq.lim=c(1, 7),
page.length=5, page.ovlp=0.2,
annotate=TRUE, output.dir="data")

We just followed the instructions printed in the console by viewSpec() to
manually delimit and label the SOI. Here, the annotations were saved in a file
named femo-training-annotations.csv. The resulting data.frame
is organized in five columns: the start time in s (start.time), the end time
in s (end.time), the minimum frequency in kHz (min.frq), the maximum
frequency in kHz (max.frq), and the text label (name) of each annotation. The
annotation file can be loaded afterward with a classical table reading function:

manual <- read.csv("data/femo-training-annotations.csv")

We can check we have 28 frog vocalizations or SOI:

dim(manual)
[1] 28 5
head(manual)

start.time end.time min.frq max.frq name
1 0.288 0.558 1.4952 5.8852 1
2 2.873 3.173 1.4711 5.9093 2
3 6.140 6.352 1.5194 6.1023 3
4 7.867 8.137 1.4952 6.0540 4
5 9.195 9.416 1.4591 5.9937 5
6 10.352 10.603 1.4470 5.7887 6

17.4 Automatic Identification 541

Fig. 17.13 Visualization of manual annotations with viewSpec(). The 28 SOI of the
Allobates_femoralis.wav recording were delimited and overlaid on a spectrographic
display with viewSpec()

These annotations can also be visually checked afterward using another time
viewSpec() by importing the .csv file containing the annotations (Fig. 17.13):

viewSpec(femo.training, annotate=TRUE,
anno="data/femo-training-annotations.csv")

Now that we have listed all the required data and that we have the annota-
tions for the ground truth, we can select and build the templates. The function
makeCorTemplate() prepares a template for the cross-correlation method. The
external file is used as a direct input. Here we select the four vocalizations included
in the file Allobates_femoralis.wav as separate templates. The selection in
time and frequency is achieved using the arguments t.lim in s and freq.lim
in kHz. We add a name (t1, t2, t3, t4) with the argument name to facilitate
individual calling:

542 17 Comparison and Automatic Detection

template1 <- makeCorTemplate("sample/Allobates_femoralis.wav",
t.lim=c(0.09, 0.24), frq.lim=c(3,6),
name="t1")

template2 <- makeCorTemplate("sample/Allobates_femoralis.wav",
t.lim=c(0.36, 0.51), frq.lim=c(3,6),
name="t2")

template3 <- makeCorTemplate("sample/Allobates_femoralis.wav",
t.lim=c(0.9, 1.04), frq.lim=c(3,6),
name="t3")

template4 <- makeCorTemplate("sample/Allobates_femoralis.wav",
t.lim=c(1.15, 1.32), frq.lim=c(3,6),
name="t4")

We then associate the four templates in a single object with
combineCorTemplates():

templates <- combineCorTemplates(template1, template2,
template3, template4)

The templates can be quickly visualized with plot():

plot(templates)

A default threshold or cutoff score θ = 0.4 is associated to each template. The
value of θ can be changed with the function templateCutoff() and can also be
modified later at several steps of the system. Here we will first set it up to θ = −0.1
to consider all possible events as positive, or true:

templateCutoff(templates) <- rep(-0.1,4)
templateCutoff(templates)

t1 t2 t3 t4
-0.1 -0.1 -0.1 -0.1

Now comes the time to apply the comparison method, that is, the cross-
correlation between each template and the training recording, so that we end up

17.4 Automatic Identification 543

with four rtemplate,training series. The action is rather simple: we only give the path to
the training file and the template object to the function corMatch():

scores <- corMatch(
"sample/Allobates_femoralis_2015-11-10_161500_GFT.wav",
templates)

corMatch() has a print method that summarizes the correlation values
obtained for each template:

scores

A "templateScores" object

Based on the survey file: sample/Allobates_femoralis_
2015-11-10_161500_GFT.wav

And 4 templates
Score information

min.score max.score n.scores
t1 -0.15 0.93 2571
t2 -0.12 0.86 2571
t3 -0.15 0.92 2571
t4 -0.08 0.85 2569

The structure of scores is a bit complex but the raw data can be obtained
by selecting the right items and subitems. The following instruction plots
rtemplate,training for the first template “t1” (Fig. 17.14):

plot(scores@scores$t1$time, scores@scores$t1$score,
type="l", col="blue", xlab="Time (s)", ylab="r")

We then identify the peaks occurring in the four rtemplate,training series with the
function fpeaks():

peaks <- findPeaks(scores)

544 17 Comparison and Automatic Detection

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

Time (s)

r

Fig. 17.14 Cross-correlation with the package monitoR. The time series of the correlation
coefficient as stored in the result of the function corMatch(). The function was applied
between four templates and a training file Allobates_femoralis.wav. Only the score for
the template t1 is here displayed

findPeaks() returns an S4 object containing a long list of items. However,
findPeaks() has also a print method to summarize the information:

peaks

A "detectionList" object

Based on survey file: sample/Allobates_femoralis_2015-11-10_
161500_GFT.wav

and 4 templates

Detection information
n.peaks n.detections min.peak.score max.peak.score

t1 200 200 -0.03492637 0.9313097
t2 206 206 0.18363149 0.8623351
t3 189 189 -0.03607333 0.9169110
t4 142 142 0.35517511 0.8529895

min.detection.score max.detection.score
t1 -0.03492637 0.9313097
t2 0.18363149 0.8623351
t3 -0.03607333 0.9169110
t4 0.35517511 0.8529895

17.4 Automatic Identification 545

The time position of the peaks selected is stored in the S4 slot labeled @peaks.
This slot contains a list with four items, each item corresponding to one template.
Each template item is a data.frame with four columns giving the absolute time
including date of the Gregorian calendar, the time in s, the correlation coefficient
rtemplate,training, and a logical label for detection. Here we print the structure of the
data.frame of the template t1:

str(peaks@peaks$t1)
’data.frame’: 200 obs. of 4 variables:
$ date.time: POSIXct, format: "2015-11-10 16:14:30" ...
$ time : num 0.0813 0.3367 0.418 0.5805 0.6618 ...
$ score : num 0.445 0.46 0.853 0.519 0.476 ...
$ detection: logi TRUE TRUE TRUE TRUE TRUE TRUE ...

The peaks can be nicely visualized with a two-panel plot that combines an
overlay of the peaks on the spectrogram and the time series. Plotting the peaks of
the four templates may generate a blurry graphics so that we can use the option
which.one to select a single template. We can also remove the legend with
the argument legend and highlight the peaks with a circle with the argument
hit.marker (Fig. 17.15):

plot(peaks, which.one="t1", legend=FALSE, hit.marker="points")

We eventually extract in a data.frame the information of each selected peak
with the function getPeaks()

peaks.selected <- getPeaks(peaks)
head(peaks.selected)

template date.time time score
1 t1 2015-11-10 16:14:30 0.08126984 0.4450226
2 t1 2015-11-10 16:14:30 0.33668934 0.4604150
3 t1 2015-11-10 16:14:30 0.41795918 0.8531751
4 t1 2015-11-10 16:14:30 0.58049887 0.5190559
5 t1 2015-11-10 16:14:30 0.66176871 0.4764891
6 t1 2015-11-10 16:14:30 0.77786848 0.4671649

detection
1 TRUE
2 TRUE
3 TRUE
4 TRUE
5 TRUE
6 TRUE

546 17 Comparison and Automatic Detection

0
2
4
6
8

10
12

Fr
eq

ue
nc

y
(k

H
z)

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Time (s or min:sec)

00:00 00:05 00:10 00:15 00:20 00:25 00:30

ll

l

l
ll
l

l

l
lll
l

l

l

llll

l

l

l

l
lll

l
ll
l
l
l
lll
l

ll
l
l

l

l

l
l
l
l

l
ll

l

ll

l

l
l

l

l

l
l
ll
l
ll

l

l

l

l

l

l

l

l

l
ll

l
l
l

l

ll

ll

l
l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

ll
l

l

l
l

l

l

l

l

l

l
l
ll

l

ll

l

l

l

l

l
l
l

l

l

ll
l

l

l

l
l

l

l
l

l

l
l
l

l

l

l

l
l

l

ll

l

l
l

l

ll
l

l

l

l

l

l

l
l

l

l

ll
l

ll

l

lll

l

l
l

l

ll

l

l

l

l

l

l

Fig. 17.15 Automatic detection with the package monitoR. The two-panel figure obtained with
plot() on an object obtained with findPeaks() on the template 1. The top panel is a
spectrogram with detections indicated with red rectangles. The bottom panel shows the time series
of the correlation coefficient, here named Score. In this case, no selection (threshold θ = −0.1)
was applied so that all peaks were considered as positive or true detections

As we used several templates, we end up with information that may be redundant,
that is, a single vocalization detected by several templates. This redundancy can be
reduced by combining the detections and keeping only the best ones, that is, the
detections that have the best scores. Such a consensus of the results can be obtained
with the function timeAlign() with the argument what=“peaks”. The time
matching between the peaks might not be perfect such that some time tolerance can
be specified with the argument tol expressed in s. We can define a tolerance value
in reference to the median duration of the SOI to be detected. Here, the median of
the frog vocalization duration can be obtained from the manual annotations with:

duration <- median(manual$end.time - manual$start.time)
duration
[1] 0.251

17.4 Automatic Identification 547

This duration is here divided by 2 to be used as the time tolerance so that τ ≈
0.126:

automatic <- timeAlign(peaks.selected, what="peaks",
tol=duration/2)

We can now compare the results of the automatic detection operated by the
system with the ground truth obtained by an expert in reference to the threshold
or score cutoff θ such that we can estimate the number of true positives, true
negatives, false positives, and false negatives. This is achieved with the function
eventEval() which has two main arguments to apply the selection. The
argument score.cutoff is the threshold θ applied on the correlation time series
of the cross-correlation rtemplate,training, and the argument tol is the time tolerance
τ as in timeAlign(). The function compares the position of the detection stored
in the column time of the object peaks.selected and the position of the
items labeled by the user with viewSpec(), here stored in the object manual.
The positions obtained automatically in peaks.selected correspond to the
midpoint time value, that is, the time center of the detection. A similar midpoint
position is derived from the manual annotations using the start.time and
end.time columns of manual. As for timeAlign() when comparing peaks
of the correlation rtemplate,training series, the time matching cannot be totally exact so
that some tolerance should be set to make a correspondence between the automatic
and manual time positions. We apply similarly τ ≈ 0.126. Considering a usual value
of θ = 0.4, we end up with the next command:

res <- eventEval(detections=automatic, standard=manual,
what="peaks", score.cutoff=0.4, tol=duration/2)

head(res)
template date.time time score

1 t2 2015-11-10 16:14:30 0.08126984 0.5147601
2 t1 2015-11-10 16:14:30 0.33668934 0.4604150
3 t3 2015-11-10 16:14:30 0.41795918 0.8532125
4 t4 2015-11-10 16:14:30 0.49922902 0.5814246
5 t2 2015-11-10 16:14:30 0.58049887 0.5887462
6 t2 2015-11-10 16:14:30 0.66176871 0.5477226

detection outcome
1 TRUE FALSE +
2 TRUE FALSE +
3 TRUE TRUE +
4 TRUE FALSE +
5 TRUE FALSE +
6 TRUE FALSE +

548 17 Comparison and Automatic Detection

We can summarize the final results calling the base function table() on the
results so that we have directly access to the number of outcomes (true positives,
false positives, true negatives, and false negatives):

table(res$outcome)

FALSE - FALSE + TRUE - TRUE +
1 160 29 31

We observe that the number of true positives exceeds the number of SOI in
the training file (31 > 28). This overestimation might be due to a mischoice in
the values of θ and τ . We need first to optimize the performance of the system in
reference to θ . The idea is to build the ROC curve by repeating the above process
for several values of θ . We can, for instance, set θ ∈ [0, 1] with θn+1 = θn + 0.01,
something which is written in R as:

theta <- seq(0, 1, by=0.01)

We write a for loop so that we obtain a confusion matrix and the number of
outcomes for each value of θ . We first prepare a data frame with NA values to store
the results:

categories <- matrix(NA, nrow=length(theta), ncol=5)
categories <- as.data.frame(categories)
colnames(categories) <- c("theta", "tp", "tn", "fp", "fn")
categories[,1] <- theta

and we write a for loop around θ :

for(i in 1:length(theta)){
tmp <- table(eventEval(detections=automatic, standard=manual,

what="peaks", score.cutoff=theta[i],
tol=duration/2)$outcome)

categories[i,2] <- tmp["TRUE +"]
categories[i,3] <- tmp["TRUE -"]
categories[i,4] <- tmp["FALSE +"]
categories[i,5] <- tmp["FALSE -"]

}

17.4 Automatic Identification 549

The output of the loop may contain NA values that we replace by 0 values:

categories[is.na(categories)] <- 0

The head and tail of categories look then as:

head(categories)
theta tp tn fp fn

1 0.00 32 1 188 0
2 0.01 32 1 188 0
3 0.02 32 1 188 0
4 0.03 32 2 187 0
5 0.04 32 2 187 0
6 0.05 32 2 187 0
tail(categories)

theta tp tn fp fn
96 0.95 0 189 0 32
97 0.96 0 189 0 32
98 0.97 0 189 0 32
99 0.98 0 189 0 32
100 0.99 0 189 0 32
101 1.00 0 189 0 32

We can use the table categories to compute the FPR and TPR metrics
required to build the ROC curve. We use the base function with() to facilitate
the manipulation of the columns:

tpr <- with(categories, tp/(tp+fn))
fpr <- with(categories, fp/(fp+tn))

The AUC metric can be obtained with the function trapz() of the package
caTools which implements the trapezoid rule integration for any curve. The
values just need to be reversed:

library(caTools)
auc <- trapz(rev(fpr), rev(tpr))
auc
[1] 0.9260086

550 17 Comparison and Automatic Detection

llllllllllllllllllllllllllllllllllll

lllll
llllllllllllll

l
llllllllll

llllllll
ll
l
l
l

l
lllll

l
l
l
l
ll
lllllllll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC= 0.93

false positive rate

tru
e

po
si

tiv
e

ra
te

67

Fig. 17.16 ROC curve for Allobates femoralis vocalization identification. The curve was built by
varying the output threshold θ from 0 to 1 by step of 0.01. The size of the points is relative to θ .
The point 67 was chosen as the best output threshold θ with a good TPR and a null FPR

We can finally display the ROC curve and the AUC value with (Fig. 17.16):

plot(fpr, tpr, type="o", pch=19, cex=theta*2,
xlab="false positive rate", ylab="true positive rate",
main=paste("AUC=", round(auc,2)))

The ROC curve shows a inflection point with a high TPR and a null FPR. This
inflection point can be identified using identify() as in:

identify(fpr, tpr)

This allows to flag the point 67 so that we can obtain the corresponding FPR,
TPR, and θ values:

fpr[67]
[1] 0
tpr[67]

(continued)

17.4 Automatic Identification 551

[1] 0.875
theta[67]
[1] 0.66

As we wish to minimize the FPR and maximize the TPR, we eventually choose
θ = 0.66 as the best output threshold.

However, this choice is not the final point of the story. We now need to optimize
the choice of the time tolerance τ set with the argument tol of the function
eventEval(). The idea is to produce a ROC curve for a series of tolerance values
and compute the AUC of each ROC curve. The highest AUC should determine the
best tolerance value. Hence we will make vary both θ and τ . θ will vary according
to θn+1 = θn + 0.01 with θ ∈ [0, 1] and τ according to τn+1 = τn + 0.01 with
τ ∈ [0, 0.2]:

theta <- seq(0, 1, by=0.01)
tau <- seq(0, 0.2, by=0.01)

We first prepare a vector where the AUC values to be computed will be stored:

auc <- rep(NA, times=length(tau))

We develop a double loop for based on the previous code used to obtain the
ROC curve:

loop around tau
for(j in 1:length(tau)){

empty data frame for data storage
categories <- matrix(NA, nrow=length(theta), ncol=4)
categories <- as.data.frame(categories)
colnames(categories) <- c("tp", "tn", "fp", "fn")
loop around theta
for(i in 1:length(theta)){

tmp <- table(eventEval(detections=automatic,
standard=manual,
what="peaks",
score.cutoff=theta[i],
tol=tau[j])$outcome

)
categories[i,1] <- tmp["TRUE +"]

(continued)

552 17 Comparison and Automatic Detection

categories[i,2] <- tmp["TRUE -"]
categories[i,3] <- tmp["FALSE +"]
categories[i,4] <- tmp["FALSE -"]

}
replacement of NA values by 0 values
categories[is.na(categories)] <- 0
computation of metrics, TPR and FPR
tpr <- with(categories, tp/(tp+fn))
fpr <- with(categories, fp/(fp+tn))
computation of AUC with trapezoid rule integration
auc[j] <- trapz(rev(fpr), rev(tpr))

}

We can now look for the coordinates of the highest AUC value:

tau.max <- tau[which.max(auc)]
tau.max
[1] 0.09
auc.max <- auc[which.max(auc)]
auc.max
[1] 0.9853628

and also plot the result as a simple profile of AUC according to τ (Fig. 17.17):

l

l

l

l

l

l l l

l
l l l

l
l

l
l

l

l l

l l

0.00 0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

Tolerance (τ)

AU
C

l

0.09

Fig. 17.17 Variation of the area under the curve (AUC) according to time tolerance (τ). The AUC
was computed for a series of time tolerances between 0 and 0.2. The area reaches a maximum
when τ = 0.09

17.4 Automatic Identification 553

col <- "red"
par(xpd=TRUE, las=1)
plot(tau, auc, type="o", yaxs="i", ylim=c(0,1.1),

xlab=expression(paste("Tolerance (", tau, ")")),
ylab="AUC")

points(tau.max, auc.max, pch=19, col=col)
segments(x0=tau.max, y0=0, x1=tau.max, y1=auc.max,

lty=2, col=col)
text(tau.max, -0.03, label=tau.max, col=col)

We can check the system with θ = 0.67 and τ = 0.09 on the training set by
running the complete chain of functions:

templateCutoff(templates) <- rep(0.67,4)
scores <- corMatch(

"sample/Allobates_femoralis_2015-11-10_161500_GFT.wav",
templates)

peaks <- findPeaks(scores)
peaks.selected <- getPeaks(peaks)
automatic <- timeAlign(peaks.selected, what="peaks",

tol=duration/2)
res <- eventEval(detections=automatic, standard=manual,

what="peaks", score.cutoff=0.67, tol=0.09)

The final result is:

table(res$outcome)

FALSE - TRUE - TRUE +
2 192 27

We see that only one SOI, the sixth vocalization, among the 28 manually
annotated is missed by the automatic system (Fig. 17.18):

plot(peaks, legend=TRUE, hit.marker="points")

This result is of quite good quality and suggests that the system could be applied
on an unlabeled test dataset with θ = 0.67 and τ = 0.09.

554 17 Comparison and Automatic Detection

0
2
4
6
8

10
12

Fr
eq

ue
nc

y
(k

H
z)

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Time (s or min:sec)

00:00 00:05 00:10 00:15 00:20 00:25 00:30

t1
t2
t3
t4

l
l l

l

l l l

l l l l
l

l

l

l
l

l l

l
l

l l l
l

l

l
l

l l
l

l

l l l

l
l l l

l
l

l
l l l

l

l
l

l l l
l

l

l ll
l l

l

l l l

l l l l
l

l
l

l
l

l l

l
l

l l l
l

l

l
l

l
l l

l

l l l

l
l l l l

l l
l l l

l

l l l
l

l
l

l

l l

Fig. 17.18 Automatic detection with the package monitoR: final check. The final results of
the automatic detection system applied on the training dataset, here a single file containing 28
vocalizations of Allobates femoralis. The plot shows the detections of all four templates. Only the
sixth vocalization is missed

Chapter 18
Synthesis

All the previous chapters dealt with the exploration of sound through parametriza-
tion. In this last chapter, we will see how to generate, or synthesize, sound.
Sound synthesis can be used in different contexts, including computer music or
experimental procedures where the effects of a sound, a stimulus, are tested through
a playback procedure onto a specific subject. This latter can be a living animal,
including a human being, an environment as a theater or a forest, or a still object as
a specific material. Sound synthesis can also be useful to check the quality of a data
analysis or to test the validity of a model which fully or partly relies on acoustics.

In the following sections we will see how to generate sound ex nihilo or,
occasionally, use some parameters of a pre-existing sound. The chapter will first
cover the generation of no sound, that is, of silence, and then of noise, non-
sinusoidal sound, sinusoidal sound, tonal sound, and, lastly, the particular case of
the human voice.1 Sound synthesis may require to edit, filter, and modify existing
sounds so that we will use occasionally functions described in Chaps. 6, 14, and 15.
The sounds synthesized in this chapter can be accessed in the directory sample as
.wav files as mentioned in footnotes.

18.1 Silence

We have seen in Sect. 6.4 that it was possible to edit silence bouts. In particular, the
seewave function addsilw() can be invoked to add a silence bout into a sound
object. The tuneR function silence() can also be used to generate a silence
section that can be then bound to any sound. We create with the following action
a 16 bit PCM silence wave object lasting 1 s and sampled at fs = 22,050 Hz. We

1We will not consider sonification that is the process of converting data into sound (Hermann et al.
2011). See the packages playitibyr and audiolyzR.

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7_18

555

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77647-7_18&domain=pdf
https://doi.org/10.1007/978-3-319-77647-7_18

556 18 Synthesis

specify with the argument xunit="time" that we wish to refer to seconds for
the argument duration (setting xunit="samples" and duration=1 will
produce an object with a single sample)2:

s <- silence(duration=1, samp.rate=22050, xunit="time",
bit=16, pcm=TRUE)

The object contains a series of 22,050 zeroes:

s

Wave Object
Number of Samples: 22050
Duration (seconds): 1
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

head(s@left)
[1] 0 0 0 0 0 0

Such silence bout could be added to a pre-existing sound, as tico3:

tico.silence <- bind(tico, s)
tico.silence

Wave Object
Number of Samples: 61628
Duration (seconds): 2.79
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

2synth-silence.wav.
3synth-tico-silence.wav.

18.2 Noise 557

18.2 Noise

Noise can be generated with the seewave function noisew() and the tuneR
function noise(). The latter is more versatile as it can generate white and colored
noise, as pink, red, and any other type knowing that the frequency spectrum of the
noise generated should follow the formula (see Sect. 14.6.4):

F(f) ∝ 1

f α

with α = 1 for pink noise and α = 1.5 for red noise.
White noise is a noise with a flat frequency spectrum, that is with all fre-

quencies having equal weight—as light is a light made of all colors. Colored
noises have a frequency spectrum with a specific shape. Here is the synthesis
of four different noises differing in their frequency spectra (Fig. 18.1). The color
of the noise is set with the first argument kind. The parameter α of the above
expression can be directly set with the argument alpha taking care of to specify
kind="power":4

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

−100

−80

−60

−40

−20

0

Frequency (kHz)

Am
pl

itu
de

white
pink
red
power (α=2)

Fig. 18.1 Frequency spectrum of white and colored noises. The noises were obtained with the
function noise() of tuneR. The frequency spectra were built calling spec() with a log
frequency x-axis and a dB y-axis

4synth-noise-white.wav, synth-noise-pink.wav, synth-noise-red.wav,
synth-noise-power.wav.

558 18 Synthesis

d <- 1 ; f <- 44100 ; xunit <- "time"
white <- noise("white", duration=d, samp.rate=f, xunit=xunit)
pink <- noise("pink", duration=d, samp.rate=f, xunit=xunit)
red <- noise("red", duration=d, samp.rate=f, xunit=xunit)
power <- noise("power", duration=d, samp.rate=f, xunit=xunit,

alpha=2)

18.3 Non-sinusoidal Sound

There are four main types of non-sinusoidal but periodic waves: pulse,
square, triangle, and sawtooth waves (see Sect. 2.2.6). The first three types are
encoded in tuneR functions; the fourth type is not available in R but can
be easily generated by designing a short function as demonstrated in the DIY
box 18.1.

18.3.1 Pulse Wave

A pulse is a wave containing 0 values except for a short period where it contains a
series of 1 values. A pulse follows then the condition:

s(t) =
{

1 if t ∈ [0, N]

0 elsewhere

The seewave function pulsew() can construct such a wave. The duration
of the pulse (i.e., the duration where the wave reaches 1) is set by the argument
dpulse when the duration of the wave before and after the pulse (i.e., the duration
where the wave is 0) is set by the dbefore and dafter arguments, respectively.
The following example produces a pulse lasting 0.001 s (= 1 ms) framed by
silence periods lasting 0.05 s (= 50 ms) each. The class of the object returned
is chosen with the argument output which can accept “Wave", “matrix",
“audioSample", or “ts" (Fig. 18.2)5:

pse1 <- pulsew(dbefore=0.05, dpulse=0.001, dafter=0.05,
f=44100, output="Wave")

5synth-pulse-1.wav.

18.3 Non-sinusoidal Sound 559

0.00 0.02 0.04 0.06 0.08 0.10

0.00 0.02 0.04 0.06 0.08 0.10
Time (s)

Am
pl

itu
de

ps
e1

ps
e2

ps
e3

ps
e4

Fig. 18.2 Synthesis of pulse waves. Four series of pulses were generated with pulsew() of
seewave and pulse() of tuneR. The waveforms were plot with oscillo()

The function pulse() of tuneR generate pulses of Wave class that take
successively positive (+1) and negative values (−1). In addition, pulse() lets the
user control several temporal parameters to shape the pulse. The main arguments of
pulse() are:

freq the number of pulses produced per s, that is, the pulse repetition rate or
carrier frequency in Hz. Note that this is different from a spectral frequency as a
single pulse generates a broadband frequency spectrum,

duration the total duration in s of the Wave object returned. This is not the
duration of the pulse,

width the relative pulse width, that is, the proportion of time the amplitude is
±1,

plateau the relative plateau width, that is, the proportion of the pulse width
where amplitude is ±1,

interval the relative interval between the positive part and the negative part
of the pulse. An interval of 0 produces pulses with positive and negative parts
succeeding immediately when an interval of 1 places the negative and positive
parts at regular time intervals.

560 18 Synthesis

The following examples illustrates the flexibility of the function pulse()
(Fig. 18.2):6

f <- 44100 ; xunit <- ‘‘time"
pse2 <- pulse(freq=50, duration=1, samp.rate=f, xunit=xunit,

width=0.1, plateau=1, interval=0)
pse3 <- pulse(freq=50, duration=0.1, samp.rate=f, xunit=xunit,

width=0.1, plateau=1, interval=1)
pse4 <- pulse(freq=50, duration=0.1, samp.rate=f, xunit=xunit,

width=0.1, plateau=0.1, interval=1)

18.3.2 Square Wave

A square wave is a pulse with a symmetry around the amplitude axis following the
time equation:

s(t) = A × sgn(2πfct)

where A is the amplitude, fc is pulse repetition rate or carrier frequency in Hz, and
t is time in s. Such a wave can be synthesized with the function square() of
tuneR which is defined by the following main arguments:

freq the total number of squares whichever the total duration of the sound. This
is therefore not a repetition rate or frequency expressed in Hz as in pulse(),
neither a spectral frequency,

duration the total duration in s of the Wave object returned. This is not the
duration of the square,

up a number in]0, 1[giving the percentage of the waveform reaching the
maximum value. For instance, setting up=0.3 produces a square wave that has
a maximum value during 30% of the period.

Here are some uses of square() (Fig. 18.3), all returning Wave objects:7

6synth-pulse-2.wav, synth-pulse-3.wav, synth-pulse-4.wav.
7synth-square-1.wav, synth-square-2.wav, synth-square-3.wav, synth-
square-4.wav.

18.3 Non-sinusoidal Sound 561

0.0 0.5 1.0 1.5 2.0

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

Am
pl

itu
de

sq
r1

sq
r2

sq
r3

sq
r4

Fig. 18.3 Synthesis of square waves. Four series of squares were generated with square() of
tuneR. The waveforms were plot with oscillo()

d <- 1 ; f <- 44100 ; xunit <- "time"
sqr1 <- square(freq=20, duration=d+1, up=0.3,

samp.rate=f, xunit=xunit)
sqr2 <- square(freq=20, duration=d, up=0.3,

samp.rate=f, xunit=xunit)
sqr3 <- square(freq=20, duration=d, up=0.1,

samp.rate=f, xunit=xunit)
sqr4 <- square(freq=10, duration=d, up=0.3,

samp.rate=f, xunit=xunit)

18.3.3 Triangle and Sawtooth Waves

A triangle wave is a symmetric wave, that is, a wave with a similar increase and
decrease in amplitude (see DIY box 18.18). A sawtooth wave is an asymmetric
triangle wave with a slow increase in amplitude followed by fast decrease (or the

8synth-triangle.wav.

562 18 Synthesis

reverse). A sawtooth wave can be defined according to:

s(t) = A × 2 (fct − �f t + 0.5)

where A is the amplitude, t is time in s, and fc is the repetition rate or carrier
frequency in Hz. The function sawtooth() of tuneR can produce a sawtooth
wave. The function, which returns Wave objects, has three main arguments:

freq the total number of saws whichever the total duration of the sound. This
is therefore not a repetition rate or frequency expressed in Hz as in pulse(),
neither a spectral frequency,

duration the total duration in s of the Wave object returned. This is not the
duration of the saw,

reverse a logical, if TRUE, then the waveform is mirrored vertically, that is, a
fast increase in amplitude precedes a slow decrease in amplitude.

Follow three examples of use of sawtooth() (Fig. 18.4)9:

0.00 0.05 0.10 0.15 0.20
Time (s)

Am
pl

itu
de

sa
w

1
sa

w
2

sa
w

3

Fig. 18.4 Synthesis of sawtooth waves. Four series of sawtooth were generated with
sawtooth() of tuneR. The waveforms were plot with oscillo()

9synth-saw-1.wav, synth-saw-2.wav, synth-saw-3.wav.

18.3 Non-sinusoidal Sound 563

d <- 0.2 ; f <- 44100 ; xunit <- "time"
saw1 <- sawtooth(freq=50, duration=d, samp.rate=f, xunit=xunit,

reverse=FALSE)
saw2 <- sawtooth(freq=25, duration=d, samp.rate=f, xunit=xunit,

reverse=FALSE)
saw3 <- sawtooth(freq=25, duration=d, samp.rate=f, xunit=xunit,

reverse=TRUE)

DIY 18.1 — How to a generate a symmetric triangle wave

There is no function to generate a symmetric triangle wave, but we can refer to the time
expression of such a wave to design a new function:

s(t) = A
2

π
sin−1(sin(2πfct))

where A is the amplitude, t is time in s, and fc is the carrier frequency in Hz. We coin
a new function named triangle() with four arguments: (1) d for the duration of the
wave in s, (2) f for the sampling frequency in Hz, (3) fc for the carrier frequency, and
(4) A for the amplitude:

triangle <- function(d, f, fc, A){
t <- seq(0, d, length=d*f)
s <- A*(2/pi)*asin(sin(2*pi*fc*t))
return(s)
}

We now test and plot the function for a d = 1.5 s wave sampled at fs = 44,100 Hz, with
a carrier frequency of fc = 25 Hz and an amplitude A = 2:

s <- triangle(d=1.5, f=44100, fc=25, A=2)
range(s)
[1] -1.999909 1.999970
oscillo(s, f=44100, colwave="blue")

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (s)

Am
pl

itu
de

564 18 Synthesis

18.4 Sinusoidal Sound: Additive Synthesis

18.4.1 Principle

If we refer to the compact expression of the Fourier series, a wave s(t) can be
decomposed into a sum of sines (or cosines) following (Sect. 9.2.3):

s(t) = C0 +
∞∑

n=1

Cn sin(ωnt + ϕn)

= C0 +
∞∑

n=1

Cn sin(2πfnt + ϕn)

where C0 is the DC offset, Cn is the amplitude of the sine, ωn is the angular
frequency, fn the regular frequency, and ϕn the phase.

Additive synthesis is a direct application of these equations: it simply consists
in adding sine functions with predefined amplitude Cn, frequency fn, and phase
ϕn, the DC offset C0 being usually set to 0. However, some caution should be
taken as unwanted effects may arise when combining sines with inadequate relative
properties.

We have seen in Sect. 10.1.4.2 that amplitude modulations may generate fre-
quency sideband series. The reverse is also true: two pure tones, i.e., two sinusoid
sounds, with closed carrier frequencies, may generate an amplitude modulation
when added. This phenomenon, known as frequency beating, is ruled out by the
formula:

fam = |f1 − f2|

where fam is the beat frequency or frequency of the AM, f1 the frequency of the first
pure tone, and f2 the frequency of the second pure tone. As illustrated in Fig. 18.5,
the addition of two pure tones with f1 = 50 Hz and f2 = 55 Hz generates a sound
with two frequency bands at 50 and 55 Hz modulated in amplitude at a frequency of
55 − 50 = 5 Hz.

Similarly, attention should be paid to the phase of the sounds to be added as it
can result in constructive or destructive interference (see Sect. 2.2.4). If we have two
pure tones, s1(t) and s2(t), defined by the same angular frequency ω but potentially
different amplitudes, A and B, and different phases, α and β:

s1(t) = A sin(ωt + α)

s2(t) = B sin(ωt + β)

18.4 Sinusoidal Sound: Additive Synthesis 565

s1−

p0

+

s2−

p0

+

0.0 0.2 0.4 0.6 0.8 1.0

s1 + s2−

p0

+

Time (s)

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 18.5 Frequency beating. Beating can arise when adding pure tones closely related in
frequency. The addition of two pure tones with carrier frequencies of 50 and 55 Hz generates a
sound with an amplitude modulation of 5 Hz

If α = β, then the sum of s1(t) and s2(t) is:

s1+2(t) =
√

A2 + B2 + 2AB × sin (ωt + α)

The amplitude of the result is then reinforced through constructive interference.
However, when a phase shift occurs between s1(t) and s2(t), then the result obeys to:

s1+2(t) =
√

a2 + b2 × sin

(
ωt + tan−1 b

a

)

with

a = A cos(α) + B cos(β)

and

b = A sin(α) + B sin(β).

For instance, with A = 1, B = 2, α = 0, and β = π ÷ 2, the result has an
amplitude of 2.236 and a phase of 1.107 rad. In the particular case of the addition
of two pure tones out of phase, that is, with a phase shift of |α − β| = π rad, then
the addition returns a sound with an amplitude of 0, that is, silence. This destructive
interference is actually an issue in audio recording if a pair of microphones receives

566 18 Synthesis

s1

s2

s3

s1 + s2

0.0 0.2 0.4 0.6 0.8 1.0

s1 + s3

Time (s)

−

p0

p0

p0

p0

p0

+

−

+

−

+

−

+

−

+

In
st

an
ta

ne
ou

s
pr

es
su

re
 p

 (P
a)

Fig. 18.6 Constructive and destructive interference. The pure tones s1 and s2 have a similar
frequency of 3 Hz and are in phase, whereas s1 and s3 have also a frequency of 3 Hz but are out
of phase that is an absolute phase shift of π rad. The sum of s1 and s2 returns a reinforced sound
due to constructive interference. The sum of s1 and s3 leads to a null sound due to destructive
interference

two sounds out of phase but is an advantage in active noise control as an opposition
of phase may reduce noise (Fig. 18.6).

18.4.2 In Practice with tuneR

The function sine() of tuneR produces a sinusoidal wave, or pure tone, at a
specific frequency expressed in Hz provided to the argument freq. The object
returned is of class Wave. The simplest way to call sine() to produce a 440 Hz
sound is:10

s <- sine(440)

This produces an IEEE 32 bit mono Wave object lasting 1 s with a sampling
frequency fs = 44,100 Hz:

10synth-sine-440-1.wav.

18.4 Sinusoidal Sound: Additive Synthesis 567

s

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): FALSE
Bit (8/16/24/32/64): 32

We can apply some changes affecting the duration, sampling frequency, digitiza-
tion depth, number of channels, and format11:

s <- sine(440, duration=2, samp.rate=22050, xunit="time",
bit=16, pcm=TRUE, stereo=TRUE)

s

Wave Object
Number of Samples: 44100
Duration (seconds): 2
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Stereo
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

We can use stereo() to generate two different channels as seen in Sect. 6.212:

left <- sine(440)
right <- sine(880)
s <- stereo(left, right)
s

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Stereo
PCM (integer format): FALSE
Bit (8/16/24/32/64): 32

11synth-sine-440-2.wav.
12synth-sine-440-880-stereo.wav.

568 18 Synthesis

The wonderful thing with Wave objects is that they are accompanied with
arithmetic methods so that they can be combined through arithmetic operations.
Here is a direct way to generate a simple harmonic series:13

cf <- 440
s <- sine(cf) + 0.75*sine(2*cf) + 0.5*sine(3*cf) + 0.25*sine(4*cf)

Here is another sum of harmonics that generates a waveform tending toward a
square shape (Fig. 18.7):14

cf <- 440
s <- sine(cf) + 1/3*sine(3*cf) + 1/5*sine(5*cf) + 1/7*sine(7*cf)

So far all the sounds synthesized were characterized by a rectangular amplitude
envelope. However, this amplitude envelope can be modified with setenv() or
drawenv() (see Sect. 15.1) or fadew() (see Sect. 6.5.3). A raw way to change
the envelop is to use arithmetics by multiplying the sine sound with a time function
describing the envelope. In the following we modify a 440 Hz sound by applying a
linear, exponential, or sinusoid increase in amplitude:15

s <- sine(440)
m <- max(s@left)
n <- length(s@left)
linear increase
e.lin <- seq(0, m, length.out=n)
s.lin <- s*e.lin
exponential increase
e.exp <- 1 - exp(seq(0, 4*m, length.out=n))
s.exp <- s*e.exp
sinusoidal increase
e.sin <- sin(seq(0, pi/2, length.out=n))
s.sin <- s*e.sin

13synth-sine-harmonics-1.wav.
14synth-sine-harmonics-2.wav.
15synth-sine-linear-amplitude.wav, synth-sine-exponential-amplitude
.wav, synth-sine-sinusoidal-amplitude.wav.

18.4 Sinusoidal Sound: Additive Synthesis 569

Fig. 18.7 Synthesis of an harmonic series. This series leads to a waveform with a square-like
shape. The figure was produced calling spectro() using the arguments tlim and flim to
zoom in time and frequency. Fourier window size = 512 samples, overlap = 0%, Hanning window

We can plot the results with (Fig. 18.8):

par(mfrow=c(3,1))
oscillo(s.lin)
oscillo(s.exp)
oscillo(s.sin)

18.4.3 In Practice with seewave

seewave has a function to generate sine sound (pure tone) as well. The function,
named synth(), has a few options to generate pure or harmonic tones. The

570 18 Synthesis

Fig. 18.8 Synthesis of a sine wave with amplitude envelop changes. A 440 Hz sine sound was
synthesized using sine() and multiplied with an amplitude envelope following a linear (top),
exponential (middle) and sinusoid (bottom) increase

best way to understand how synth() works is to review its main arguments in
reference to the formula of a sine wave:

s(t) = A sin(2πfct + ϕ)

f the sampling frequency fs expressed in Hz,
cf the carrier frequency fc expressed in Hz,
a the maximum amplitude A,
signal a character vector to specify the shape of the waveform, either

“square", “tria", or “saw" for a square, triangular, or saw waveform
respectively,

shape a character vector to specify the shape of the amplitude envelope, either
“incr", “decr", “sine", and “tria" for a linear increase, linear decrease,
sinusoid shape, or triangular shape,

p the phase ϕ expressed in rad,
harmonics a numeric vector specifying the number and the relative amplitude

of possible harmonics,

18.4 Sinusoidal Sound: Additive Synthesis 571

listen a logical to listen directly to the sound synthesized,
plot a logical to view the sound synthesized as a spectrogram, the arguments of

spectro() can also be passed to control the plot parameters,
output a character vector to choose the class of the object to be returned, either

“matrix", “Wave", “Sample", “audioSample", “sound", or “ts".

The most basic use of synth() is the following command that generates a
440 Hz sine wave sampled at 44,100 Hz and lasting 1 s:

s <- synth(f=44100, d=1, cf=440, output="Wave")
s

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

We can change the maximum amplitude to 10, the phase to π ÷ 2, and the shape
of the waveform to a square shape and apply a linear increase with:16

s <- synth(f=44100, d=1, cf=440, a=10, p=pi/2,
signal="square", shape="incr", output="Wave")

The argument harmonics of synth() simplifies the process of additive
synthesis by generating automatically an harmonic series. The argument waits a
numeric vector which length corresponds to the number of harmonics+1, given that
the first element of the vector corresponds to the fundamental frequency. The values
provided to harmonics are the relative amplitudes of each harmonic including the
fundamental. The value for the fundamental must equal to 1. For instance, setting
cf=500 and harmonics = c(1, 0.5, 0.25) produces a sound with three
frequency bands (fundamental at 500 Hz + 1 harmonic at 1000 Hz and 1 harmonic at
1500 Hz), the second harmonic having an amplitude half the fundamental amplitude
and the second harmonic an amplitude a quarter of the fundamental amplitude
(Fig. 18.9 top-left):17

16synth-sine-440-3.wav.
17synth-sine-harmonics-3.wav.

572 18 Synthesis

Fig. 18.9 Synthesis of harmonic series. Four examples of use of the argument harmonics of
synth(). See text for details. Fourier window size = 1024 samples, overlap = 0%, Hanning
window, frequency zooming between 0 and 5 kHz

s <- synth(f=44100, d=1, cf=500,
harmonics=c(1, 0.5, 0.25), output="Wave")

Setting harmonics = c(1, 0, 0.25) generates two frequency bands
(fundamental at 500 Hz + 1 harmonic at 1500 Hz) as the first harmonic has a null
relative amplitude (Fig. 18.9 top-right):18

18synth-sine-harmonics-4.wav.

18.4 Sinusoidal Sound: Additive Synthesis 573

s <- synth(f=44100, d=1, cf=500,
harmonics=c(1, 0, 0.25), output="Wave")

With harmonics = rep(1,4), four harmonics of equal amplitude are
produced (fundamental at 500 Hz + 3 harmonics at 1000 Hz, 1500 Hz, and 2000 Hz
respectively) (Fig. 18.9 bottom-left):19

s <- synth(f=44100, d=1, cf=500,
harmonics=rep(1, 4), output="Wave")

Values superior to 1 should be used to have harmonics with an amplitude higher
than the amplitude of the fundamental. In the following last example, the third
harmonic at 2000 Hz is set to be the dominant frequency (Fig. 18.9 bottom-right):20

s <- synth(f=44100, d=1, cf=500,
harmonics=c(1:4,3:1), output="Wave")

The function getRolloff() of soundgen can be extremely useful to
generate nice harmonic series. The function returns the relative amplitude in [0, 1]
of successive harmonics according to roll-off parameters. In the following example,
a steady exponential −12 dB/octave roll-off is specified above 500 Hz with a
maximum of 20 harmonics:21

rolloff <- getRolloff(pitch_per_gc=500, nHarmonics=20,
rolloff=-12)

head(rolloff)
[,1]

1 1.0000000000000000
2 0.3438854545349359
3 0.1833601137104065
4 0.1150234563281094
5 0.0788764935835791
6 0.0572235078486934
s <- synth(f=44100, d=1, cf=500,

harmonics=rolloff, output="Wave")

19synth-sine-harmonics-5.wav.
20synth-sine-harmonics-6.wav.
21synth-sine-harmonics-7.wav.

574 18 Synthesis

18.5 Sinusoidal Sound: Modulation Synthesis

18.5.1 Principle

As detailed in Sect. 2.2.7, a sinusoidal sound s(t) with both amplitude and frequency
modulations follows the equation:

s(t) = A × a(t) × sin(f (t) + 2πfct + ϕ)

where A is the maximum amplitude, a(t) the amplitude modulation in respect
with time (AM), f (t) the frequency modulation in respect with time (FM), fc the
carrier frequency in Hz, and ϕ the phase in rad. Playing with the AM and FM time
functions, a(t) and f (t), opens several possibilities in terms of synthesis. We will
first review one function of the package signal to generate a chirp and then the
options offered by synth() of seewave.

18.5.2 In Practice with signal

The package signal comes with a chirp() function that can generate a numeric
vector corresponding to a chirp wave. A chirp wave, or sweep wave, is a pure tone
sound modulated in frequency. The frequency modulation can follow a linear, a
quadratic, or a time logarithmic function. In the following we produce a 1 s chirp
wave sampled at fs = 44,100 Hz starting at 5000 Hz and stopping at 15,000 Hz
with three different FMs (Fig. 18.10)22:

library(signal)
f <- 44100
f0 <- 5000 ; f1 <- 15000 ; t1 <- 1
t <- seq(0, 1, length.out=f)
chirp.lin <- chirp(t=t, f0=f0, t1=t1, f1=f1, form="linear")
chirp.qua <- chirp(t=t, f0=f0, t1=t1, f1=f1, form="quadratic")
chirp.log <- chirp(t=t, f0=f0, t1=t1, f1=f1, form="logarithmic")

18.5.3 In Practice with seewave

There are two additional arguments in synth() that can control the amplitude
modulation a(t) (AM) and the frequency modulation f (t) (FM) (Fig. 18.11).23 As

22synth-chirp-linear.wav, synth-chirp-quadratic.wav, synth-chirp-log
arithmic.wav.
23synth-am-fm-1.wav.

18.5 Sinusoidal Sound: Modulation Synthesis 575

Fig. 18.10 Synthesis of chirps. Linear, quadratic and logarithmic chirps were synthesized with
chirp() and visualized with spectro(). Fourier window size = 1024 samples, overlap =
87.5%, Hanning window

seen in Sect. 2.2.8, an AM can be defined by its depth m, also called modulation rate,
that varies between 0 (no modulation) to 100 (maximum modulation) expressed in
percentage, its rate or frequency fam, and its phase ϕam. These three parameters can
be specified in the argument am which is a numeric vector of length 3:

am[1] the depth m of the AM expressed in %,
am[2] the frequency fam of the AM expressed in Hz,
am[3] the phase ϕam of the AM expressed in rad.

As introduced as well in Sect. 2.2.8, a FM can follow a sinusoidal, linear, or even
an exponential function. In the first case, the FM is defined by its own frequency
ffm, its phase ϕfm, and its modulation index β = Δfc ÷ ffm. These parameters can
be controlled with the first, second, and fourth elements of fm which is a numeric
vector of length 5. A linear FM can be parametrized by its maximum excursion
defined in the third element of fm. An exponential FM can also be applied using the
fifth element of fm. Here is a review of the five elements of fm:

fm[1] the peak frequency deviation Δfc. This value, expressed in Hz, is the
difference between the carrier frequency and either the minimum or maximum

576 18 Synthesis

Fig. 18.11 Modulation synthesis: parameters of synth(). The arguments am and fm control
the amplitude modulation (AM) and frequency modulation (FM) parameters. Each parameter is
labeled according to the element position in the argument. For instance, fm[2] indicates the
second element of the argument fm, that is, the frequency deviation of the sinusoid FM. The
sound used as an example combines a sinusoid AM, a positive linear FM, and a sinusoid FM.
The sound was synthesized with synth(f=44100, d=1, cf=5000, fm=c(2000, 10,
10000, pi/2), am=c(80, 5, pi/2)). Fourier window size = 1024 samples, overlap =
87.5%, Hanning window

frequency reached by the FM, that is, Δfc = fmax − fcf = fcf − fmin. The
value, which can be positive only, is therefore half the range of the sinusoid FM.
A sinusoid FM covering 1000 Hz will be then defined with Δfc = 500 Hz,

fm[2] the frequency of a sinusoidal FM ffm expressed in Hz,
fm[3] the maximum excursion δfc of a linear frequency modulation expressed

in Hz. This value defines the difference between the start and the end of the
FM, or the range of the FM. The value can be either positive (linear increase) or
negative (linear decrease). A linear FM starting at 500 Hz and stopping at 2000
will have a maximum excursion of δfc = 2000 − 500 = 1500 Hz,

18.5 Sinusoidal Sound: Modulation Synthesis 577

fm[4] the phase of a sinusoidal frequency modulation ϕfm expressed in rad,
fm[5] the maximum excursion Δfc of an exponential frequency modulation

expressed in Hz. This is similar to the element 3 except that the modulation
follows an exponential function. This can be used to synthesize a chirp.

Here are some basic examples of synth() making use of the arguments am or
fm:24

10 Hz AM with phase changed
s <- synth(f=44100, d=1, cf=2000, am=c(80,10,pi/2))
+ 10 kHz linear FM
s <- synth(f=44100, d=1, cf=5000, fm=c(0,0,10000,0,0))
- 10 kHz linear FM
s <- synth(f=44100, d=1, cf=15000, fm=c(0,0,-10000,0,0))
sinusoid FM
s <- synth(f=44100, d=1, cf=5000, fm=c(2000,10,0,0,0))
sinusoid and linear FM
s <- synth(f=44100, d=3, cf=2000, fm=c(2000,10,15000,0,0))
sinusoid and exponential FM
s <- synth(f=44100, d=3, cf=2000, fm=c(2000,10,0,0,15000))

The arguments can be of course used together as in:25

s <- synth(f=44100, d=1, cf=2000,
am=c(80,10,pi/2),
fm=c(2000,10,10000,0,0))

The arguments of synth() previously detailed in Sect. 18.4.3 can also be called
to tune a bit more the shape of the synthetic sound. Here we produce a sound
modulated in amplitude and frequency with harmonics and with a change of the
overall amplitude envelope. The spectrographic display is controlled by passing
arguments of spectro() to synth() (Fig. 18.12):26

s <- synth(f=44100, d=3, a=2, cf=440,
shape="sine",
am=c(80,10,pi/2), fm=c(1000,10,0,0,8000),

(continued)

24synth-am-fm-2.wav, synth-am-fm-3.wav, synth-am-fm-4.wav, synth-am-
fm-5.wav, synth-am-fm-6.wav, synth-am-fm-7.wav.
25synth-am-fm-8.wav.
26synth-am-fm-9.wav.

578 18 Synthesis

harmonics=seq(1,0.2, length=3),
plot=TRUE, osc=TRUE,
wl=1024, ovlp=87.5,
output="Wave")

18.5.4 Examples

Here follow a few practical examples making use of tuneR and seewave
functions to synthesize sounds.

Fig. 18.12 Modulation synthesis full example with synth(). The sound was generated using
most of the arguments of synth(). The display was directly produced with plot=TRUE. Fourier
window size = 1024 samples, overlap = 87.5%, Hanning window

18.5 Sinusoidal Sound: Modulation Synthesis 579

Amplitude
(dB)

−30

−25

−20

−15

−10

−5

0

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

Time (s)

Fr
eq

ue
nc

y
(k

H
z)

Fig. 18.13 Synthesis of an exponential chirp with harmonics. The sound was generated using the
arguments fm and harmonics of synth(). Fourier window size = 1024 samples, overlap =
87.5%, Hanning window

18.5.4.1 Exponential Chirp

We can generate a chirp based on the C Western musical note with harmonics
by using the fifth element of the argument fm and the argument harmonics of
synth() (Fig. 18.13):27

s <- synth(f=44100, d=1, cf=notefreq("C", octave=4),
fm=c(0,0,0,0,1000), har=seq(1,0.1,by=-0.1),
plot=TRUE, wl=1024, ovlp=87.5, output="Wave")

We can also combine chirps using simple arithmetics. Here is the weighted
addition of a first chirp sweeping up in frequency from 5000 to 10,000 Hz and a
second chirp sweeping down from 10,000 to 5000 Hz (Fig. 18.14):28

27synth-chirp-harmonics.wav.
28synth-chirp-combination.wav.

580 18 Synthesis

Fig. 18.14 Synthesis of a combination of exponential chirps. The sound was generated using the
argument fm of synth() and the addition of two synthetic sounds. Fourier window size = 512
samples, overlap = 0%, Hanning window

s1 <- synth(f=44100, d=1, cf=5000,
fm=c(0,0,0,0,10000), output="Wave")

s2 <- synth(f=44100, d=1, cf=15000,
fm=c(0,0,0,0,-10000), output="Wave")

s <- s1+2*s2
spectro(s)

18.5.4.2 Synthesis of a Sideband Series with an AM

We have seen in Sect. 10.1.4.2 that a pure tone modulated in amplitude can be made
of additional frequency bands or frequency sidebands. We can check this fact by
using the argumentam of synth(). We generate four amplitude modulated sounds
which differ in their AM depth m expressed in % and in their AM frequency fam
expressed in Hz and (Fig. 18.15).29

The main shared parameters are:

29synth-AM-sidebands-1.wav, synth-AM-sidebands-2.wav, synth-AM-side
bands-3.wav, synth-AM-sidebands-4.wav.

18.5 Sinusoidal Sound: Modulation Synthesis 581

Fig. 18.15 Synthesis of AM waves. Four AM waves differing in the depth (m) and frequency
(fam) of the AM. These AM waves are characterized by frequency sidebands. Fourier window size
= 512 samples, overlap = 0%, Hanning window, dynamic range = 60 dB

d <- 1 # duration
f <- 44100 # sampling frequency
cf <- 5000*2 # carrier frequency
out <- "Wave" # output class

AM sound with m = 10% and fam = 2500 Hz:

582 18 Synthesis

s1 <- synth(f=f, d=d, cf=cf, am=c(10,2500,0), output=out)

AM sound with m = 100% and fam = 2500 Hz:

s2 <- synth(f=f, d=d, cf=cf, am=c(100,2500,0), output=out)

AM sound with m = 10% and fam = 5000 Hz:

s3 <- synth(f=f, d=d, cf=cf, am=c(10,5000,0), output=out)

AM sound with m = 100% and fam = 5000 Hz:

s4 <- synth(f=f, d=d, cf=cf, am=c(100,5000,0), output=out)

18.5.4.3 Synthesis of a Sideband Series with a FM

We have also detailed in Sect. 10.1.4.3 that FM sounds can produce frequency
sidebands which frequency and amplitude are ruled out by the modulation index
β defined as:

β = Δfc

ffm

where Δfc is the peak frequency deviation and ffm is the frequency of the FM. These
two parameters are, respectively, the first and the second elements of the argument
fm of synth(). We can therefore generate a sound made of complex sidebands
with a few lines of code. The following examples show the results for four values of
β (Fig. 18.16)30:

30synth-FM-sidebands-1.wav, synth-FM-sidebands-2.wav, synth-FM-side
bands-3.wav, synth-FM-sidebands-4.wav.

18.5 Sinusoidal Sound: Modulation Synthesis 583

Fig. 18.16 Synthesis of FM waves. Four FM waves differing in their modulation index β = Δfc÷
ffm where Δfc is the carrier frequency and (ffm) is the frequency of the FM. These FM waves are
characterized by complex frequency sidebands. Fourier window size = 512 samples, overlap =
0%, Hanning window

The main shared parameters are:

main shared parameters
d <- 1 # duration
f <- 44100 # sampling frequency
cf <- 5000 # carrier frequency
out <- "Wave" # output class
delta.fc <- 1000 # peak frequency deviation
f.fm <- 1000 # FM frequency

584 18 Synthesis

FM sound with β = 1000 ÷ 2000 = 0.5:

beta = delta.fc/f.fm = 0.5
s1 <- synth(d=d, f=f, cf=cf,

fm=c(delta.fc,f.fm*2,0,0,0), output=out)

FM sound with β = 1000 ÷ 1000 = 1:

beta = delta.fc/f.fm = 1
s2 <- synth(d=d, f=f, cf=cf,

fm=c(delta.fc,f.fm,0,0,0), output=out)

FM sound with β = 2000 ÷ 1000 = 2:

beta = delta.fc/f.fm = 2
s3 <- synth(d=d, f=f, cf=cf,

fm=c(delta.fc*2,f.fm,0,0,0), output=out)

FM sound with β = 4000 ÷ 1000 = 4:

beta = delta.fc/f.fm = 4
s4 <- synth(d=d, f=f, cf=cf,

fm=c(delta.fc*4,f.fm,0,0,0), output=out)

18.5.4.4 The Sound of π and Other Numbers

The first idea of this example is to change a number into a pure tone sound according
to Western music scale. This means is that we should be able first to convert any
numeric value into a frequency value that corresponds to the Western musical scale
(see Sect. 9.4.2). We can get this frequency by applying the following formula:

f = fc × 2
x−1
12

where fc is the carrier frequency of the reference note in Western musical scale and
x is the numeric value to be converted into a musical frequency.

This equation can be transferred and tested for a A-440 Hz note and for x values
in {0, 1, . . . , 9} with:

18.5 Sinusoidal Sound: Modulation Synthesis 585

A <- 440
x <- 0:9
A*2^((x-1)/12)
[1] 415.3047 440.0000 466.1638 493.8833 523.2511 554.3653
[7] 587.3295 622.2540 659.2551 698.4565

We can now try to write a function, named numsound(), that applies this
formula and synthesizes a short sound for each value of x. To do this, we need
to specify the sampling frequency fs in Hz of the output sound, the duration in
s of each short sound associated to each value of x, and the frequency of the
reference note in Hz. To make the function a bit more fancy, we add harmonics
and we listen to the sound directly. We therefore end with a function with six
arguments:

numsound <- function(
x, # input numeric vector
f=44100, # sampling frequency
d=0.1, # duration of each sound
cf=440, # carrier frequency
harmonics=1, # harmonics amplitudes
listen=FALSE # listen output
)

{
empty initial sound
s <- Wave(left=numeric(0), samp.rate=f, bit=16)
loop around x
for(i in 1:length(x))
{

temporary sound corresponding to a single value of x
tmp <- synth(f=f, d=d, cf=cf*2^((x[i]-1)/12),

shape="sine",
harmonics=harmonics,
output="Wave")

bind/paste the successive notes
s <- bind(s,tmp)

}
output with listen option
if(listen) {listen(s) ; invisible(s)}
else return(s)

}

We can now use the function with a simple vector starting at 440 × 2(1−1)/12 =
440 Hz and increasing up to 440 × 2(40−1)/12 = 3951 Hz and decreasing down back
to 440 × 2(1−1)/12 = 440 Hz. Setting the argument harmonics with a numeric

586 18 Synthesis

Fig. 18.17 Synthetic sound based on a numeric vector. The sound was generated using the
handmade function numsound(). Fourier window size = 512 samples, overlap = 0%, Hanning
window

vector of length 5 implies to find the highest harmonic at 5 × 440 × 2(40−1)/12 =
20, 930 Hz. The result can be visualized using spectro() (Fig. 18.17)31:

s <- numsound(c(1:40,39:1),
harmonics=seq(1,0.2,length.out=5),
listen=TRUE)

spectro(s)

We can now play with the function. For instance, we could wish to listen to the
decimal values of gold numbers as π is. To do this, we first need to extract the
decimal values of these peculiar numbers. There are no R function to achieve this.
However, the base functions format(), strsplit() and as.numeric() can
be used to manipulate the class of the object and to isolate the different elements of
a numeric vector. We take care of increasing from 7 (default) to 15 the number of
digits displayed by R using the base function options():

31synth-numsound-test.wav.

18.5 Sinusoidal Sound: Modulation Synthesis 587

options(digits=15)
get.digits <- function(x){

as.numeric(strsplit(format(x),"")[[1]][-(1:2)])
}

get.digits(1.12345678987654)
[1] 1 2 3 4 5 6 7 8 9 8 7 6 5 4

We can apply this new function to gold numbers, as π , the golden ratio, the Euler
number, and a rational number with decimals showing a repeating sequence:

pi.digits <- get.digits(pi) # pi
gold.digits <- get.digits((1+sqrt(5))/2) # golden ratio
euler.digits <- get.digits(exp(1)) # Euler number
rational.digits <- get.digits(22/7) # rational number

The results can be forwarded to numsound():32

numsound(pi.digits, listen=TRUE)
numsound(gold.digits, listen=TRUE)
numsound(euler.digits, listen=TRUE)
numsound(rational.digits, listen=TRUE)

18.5.4.5 C Major Scale with a Clarinet Timbre

We can use the functions notefreq() (see Sect. 9.4.2) and synth() to generate
a series of pure tones which frequencies follow the C major scale of Western music
(Fig. 18.18). The sound created here33 imitates the timbre of a clarinet by specifying
an appropriate harmonic series:34:

32synth-numsound-pi.wav, synth-numsound-golden-ratio.wav, synth-num-
sound-euler.wav, synth-numsound-rational.wav.
33synth-C-major-sale.wav.
34http://www.phy.mtu.edu/ suits/clarinet.html

http://www.phy.mtu.edu/~suits/clarinet.html

588 18 Synthesis

Fig. 18.18 Synthesis of C major scale notes. Synthesis of the 12 notes of the C major scale
following Western music. Fourier window size = 4096 samples, overlap = 87.5%, Hanning
window

data
notes <- c("C","C#","D","D#","E","F","F#","G","G#","A","A#","B")
freq <- notefreq(notes) # the frequency of the 12 notes
f <- 44100 # sampling frequency
d <- 0.5 # duration of each note
s <- Wave(left=numeric(0), # empty initial sound

samp.rate=f, bit=16)
loop around the number of notes
for (i in 1:length(notes))

{
temporary sound corresponding to each note
tmp <- synth(d=d, f=f,

cf=freq[i],
har=c(1,0,0.75,0,0.5,0,0.14,

0,0.5,0,0.12,0,0.17),
shape="sine",
output="Wave")

bind/paste the successive notes
s <- bind(s,tmp)

}

(continued)

18.5 Sinusoidal Sound: Modulation Synthesis 589

visualization
spectro(s, f, flim=c(0,6), wl=1024, ovlp=87.5)
par(xpd=TRUE)
x <- seq(0.25,5.75,length=length(notes))
y <- rep(0, length(notes))
points(x, y, cex=3.5, pch=19)
text(x, y=y, labels=notes, col="white")

18.5.4.6 Shepard Scale

The Shepard scale is an ordered succession of tones, or musical notes, made of
several frequency bands.35 The frequency and amplitude of these bands can be fixed
according to the following instructions: (1) the frequency of each band is twice
the frequency of the band below so that bands are equally spaced on a logarithmic
scale, and (2) the amplitude of the bands follow a density function of a normal
distribution according to logarithmic frequency (Shepard 1964; Deutsch 2010).
Through a phenomenon of circularity, the repeated play of such tone series gives
the illusion of endlessly ascending tones. In the following example, we generate a
Shepard scale made of six successive tones.

We first set the main time and frequency parameters of the sounds to be
generated:

f <- 44100 # sampling frequency
mu <- 440 # mean of the normal distribution
lmu <- log(mu)/log(2) # log conversion
sigma <- 0.5 # s.d. of the normal distribution
n <- 5 # bands above the fundamental frequency
phi <- 1/10 # phase along the normal distribution
d.tone <- 0.12 # duration of the tones
d.sil <- 0.84 # duration of the silence between tones

We include a new function, g(x), that generates the density function of the
normal distribution knowing that the density function of N (μ, σ) is written as:

f (x) = 1√
2πσ 2

× e
− (x−μ)2

2σ2

35This example was kindly provided by Laurent Lellouch.

590 18 Synthesis

g <- function (x) {
(1/sqrt(2*pi*sigma^2))*exp(-(x-lmu)^2/(2*sigma^2))

}

We create the fundamental frequency of each tone with:

lf0 <- floor(lmu-n) + 0:5/6 + phi
f0 <- 2^lf0
f0
[1] 8.57418770029035 9.62420028865693 10.80279956934552
[4] 12.12573253208319 13.61067457521369 15.27746566256667

It is now time to generate the bands above the fundamental frequency. To achieve
this, we use the function g(x) created above that we include into a for loop so that
the bands are generated for each tone:

h1 <- h2 <- h3 <- h4 <- h5 <- h6 <- NULL
for (i in 0:(2*n+1)){

h1 <- c(h1, rep(0,2^i-1), g(lf0[1]+i))
h2 <- c(h2, rep(0,2^i-1), g(lf0[2]+i))
h3 <- c(h3, rep(0,2^i-1), g(lf0[3]+i))
h4 <- c(h4, rep(0,2^i-1), g(lf0[4]+i))
h5 <- c(h5, rep(0,2^i-1), g(lf0[5]+i))
h6 <- c(h6, rep(0,2^i-1), g(lf0[6]+i))

}

We check that h1 is actually the frequency spectrum of the first tone and that
the frequency bands are equally spaced according to the log of the frequency
(Fig. 18.19):

plot(x=seq(1, f/2, length.out=length(h1)), y=h1, col="blue",
xlab= "log frequency (Hz)", ylab="Amplitude",
type="l", log="x")

We write a short function that parses synth(), normalize(), and
addsilw() to generate the tone wave and together with the silence bouts
framing this wave. The function has only two arguments: (1) cf for the carrier
or fundamental frequency and (2) bands for the frequency harmonics:

18.5 Sinusoidal Sound: Modulation Synthesis 591

1 10 100 1000 10000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

log frequency (Hz)

Am
pl

itu
de

Fig. 18.19 Frequency spectrum of a Shepard scale tone. The bands are equally spaced along a log
frequency scale

shepard <- function(cf, bands){
s <- synth(f=f, d=d.tone, cf=cf, harmonics=bands,

shape="sine", output="Wave")
s <- normalize(s)
s <- addsilw(s, f=f, at="start", d=d.sil/2, output="Wave")
s <- addsilw(s, f=f, at="end", d=d.sil/2, output="Wave")
return(s)

}

We call this function and generate a wave for each tone. The bands are divided
by their first value for scaling purposes:

s1 <- shepard(cf=f0[1], bands=h1/h1[1])
s2 <- shepard(cf=f0[2], bands=h2/h2[1])
s3 <- shepard(cf=f0[3], bands=h3/h3[1])
s4 <- shepard(cf=f0[4], bands=h4/h4[1])
s5 <- shepard(cf=f0[5], bands=h5/h5[1])
s6 <- shepard(cf=f0[6], bands=h6/h6[1])

The six tones are then bounded in a specific order using bind():

592 18 Synthesis

s <- bind(s4,s5,s6,s1,s2,s3)

The result can be visualized as a spectrogram (Fig. 18.20):

spectro(s, flim=c(0,5), wl=1024, ovlp=87.5)

Listening once and three times the Shepard scale demonstrates the pitch ascend-
ing illusion:36

listen(s) # play once
listen(repw(s, times=3, output="Wave")) # play 3 times

Fig. 18.20 Synthesis of a Shepard scale. Six tones, or notes, composed, ordered to create an
illusion of endlessly ascending pitch when repeated. Frequency zoom in between 0 and 5 kHz.
Fourier window size = 4096 samples, overlap = 87.5%, Hanning window

36synth-shepard-scale.wav.

18.5 Sinusoidal Sound: Modulation Synthesis 593

18.5.4.7 Risset Glissando

Similar to Shepard scale illusion (Sect. 18.5.4.6), we can create a Risset glissando
which gives the illusion to be endless (Risset 1978) (Fig. 18.21).37

The glissando is made by the superposition of identical chirp components shifted
in time and whose amplitude and frequency follow the rules defined by the Shepard
scale (Sect. 18.5.4.6). We will synthesize a glissando made of n + p = 17
components lasting p × d = 63second each, with a shift of d = 7 s. As usual, we
initiate the process by defining the main parameters of the sound to be produced:

f <- 44100 # sampling frequency
cf <- 32 # carrier or fundamental frequency
n <- 8
p <- 9
d <- 7
mu <- 3.5 # mean of the normal distribution
sigma <- p*f # s.d. of the normal distribution

We first generate an exponential sweep using the fifth element of the argumentfm
of synth(). The sweep duration and the spectral width are set using the parameter
p. Here the duration is p*d=63 s, the carrier frequency fc is cf=32Hz, and the
frequency modulation increase equals 2p − 1 ∗ cf = 16, 352 Hz:

a <- synth(f=f, d=p*d, cf=cf, fm=c(0,0,0,0,(2^p-1)*cf))

We then aim at generating the frequency components following the rules of the
Shepard scale. We use again the density function of a normal distribution:

l <- length(a)
g <- (1/sqrt(2*pi*sigma^2))*exp(-((1:l)-l/mu)^2/(2*sigma^2))

We first initiate a vector made of 0 values and we then use a for loop to add the
successive components with a d*f time shift:

37This example was kindly provided by Laurent Lellouch.

594 18 Synthesis

s <- rep(0,(n+2*p)*d*f)
for (i in 0:(n+p)) {

s <- s + c(rep(0,i*d*f), a*g, rep(0,(n+p-i)*d*f))
}

We trim the sound so that we eliminate time sections that have no interest for the
acoustic illusion. This is also the occasion to coerce the numeric vector into a Wave
object with the argument output:

s <- cutw(s, f=f, from=p*d, to=(n+p)*d, output="Wave")

We end up by adding fade-in and fade-out effects of duration d=7 s:

s <- fadew(s, din=d, dout=d, output="Wave")

We look at the result with a simple call to spectro() (Fig. 18.21):

spectro(s, f, flim=c(0,5), wl=4096, ovlp=87.5,
collevels=seq(-60,0,1))

And the acoustic illusion can be appreciated with:38

listen(s, f)

18.5.4.8 Imitation of Stridulation of the Tree Cricket Oecanthus pellucens

We introduced in Sect. 10.1 the stridulation of the Italian tree cricket (Fig. 10.1)
which is stored in the dataset pellucens. We wish to produce a synthetic version
of the second stridulation sequence that can be found between 2.1 and 3.2 s of the
Wave object. This sequence is the repetition of short motifs also named echemes.
Each echeme is characterized by a carrier frequency at 2300 Hz with a linear FM
of −315 Hz. A second frequency band is found at 1.9 times the frequency of the

38synth-risset-glissando.wav.

18.5 Sinusoidal Sound: Modulation Synthesis 595

Fig. 18.21 Synthesis of a Risset glissando. Fourier window size = 4096 samples, overlap =
87.5%, Hanning window, dynamic range = 60 dB

carrier frequency with a relative amplitude of 0.12. The amplitude envelope of
each echeme shows a sine-like shape. The echemes are repeated 20 times and
separated by a period of silence of about 0.015 s. Finally, the complete sequence
starts with a slow increase in amplitude that can be mimicked with a fade-in
effect.

Here is the complete code to take into account all these features (Fig. 18.22)39:

d <- 0.03 # echeme duration
f <- 11025 # sampling frequency
cf <- 2300 # carrier frequency
out <- "Wave" # output class
s1 <- synth(d=d, cf=cf, f=f, # first frequency component

fm = c(0,0,-315,0,0), # (fundamental)
shape="sine", output=out)

s2 <- synth(d=d, cf=1.9*cf, f=f, # second frequency component
fm=c(0,0,-315,0,0), # (first harmonic)
shape="sine", output=out)

s <- s1 + (0.12*s2) # weighted addition

(continued)

39synth-oecanthus-pellucens.wav.

596 18 Synthesis

s <- addsilw(s, d=0.015, # adding a silence period
at="end", output=out)

s <- repw(s, times=20, output=out) # repetition of 20 echemes
s <- fadew(s, f=f, din=0.25, # fade-in effect

shape="cos", output=out)
s <- addsilw(s, d=0.1, # silence before the sequence

at="start", output=out)
s <- addsilw(s, d=0.1, # silence after the sequence

at="end", output=out)

18.5.4.9 Imitation of the Call of the Frog Eleutherodactylus martinicensis

The call of the Martinique Robber frog Eleutherodactylus martinicensis was used
in Sect. 8.3.2 to test automatic time measurement. We here imitate the first four
two-note vocalizations that occur between 1.6 and 5.4 s:

Fig. 18.22 Synthesis of the call of the tree cricket Oecanthus pellucens. Original (left) and
synthesis (right) of one stridulation of the Italian tree cricket Oecanthus pellucens. Fourier window
size = 512 samples, overlap = 87.5%, Hanning window

18.5 Sinusoidal Sound: Modulation Synthesis 597

frog <- readWave("sample/Eleutherodactylus_martinicensis.wav",
from=1.6, to=5.4, unit="seconds")

By taking direct measurements on the oscillogram and spectrogram, we can
estimate that the duration of the first note is about 0.21 s, the duration of the second
note is about 0.17 s, and that two-note vocalizations are separated by a silent bout of
approximately 0.3 s. In terms of frequency, the first note can be described as a linear
FM sound starting at 1850 Hz and stopping at 2100 Hz, and the second note as a
linear FM sound beginning as well at 2800 Hz and ending at 3750 Hz. This leads to
the following script (Fig. 18.23):40

Fig. 18.23 Synthesis of the call of the frog Eleutherodactylus martinicensis. Original (left) and
synthesis (right) of four two-note vocalizations of the Martinique Robber frog Eleutherodactylus
martinicensis. Fourier window size = 512 samples, overlap = 0%, Hanning window

40synth-eleutherodactylus_martinicensis.wav.

598 18 Synthesis

f <- frog@samp.rate
synthesis of the first note
s1 <- synth(f=f, d=0.21, cf=1850,

fm=c(0,0,2100-1850,0,0), out="Wave")
synthesis of the second note
s2 <- synth(f=f, d=0.17, cf=2800,

fm=c(0,0,3750-2800,0,0), out="Wave")
fade in and fade out to smooth the attack and tail
s1 <- fadew(s1, din=0.1, dout=0.05, shape="cos", output="Wave")
s2 <- fadew(s2, din=0.05, dout=0.05, shape="cos", output="Wave")
bind the two notes
s <- bind(s1,s2)
add silence at the start and end
s <- addsilw(s, at="start", d=0.3, out="Wave")
s <- addsilw(s, at="end", d=0.3, out="Wave")
repeat 4 times the two-note vocalization
s <- repw(s, times=4, out="Wave")

18.6 Tonal Synthesis

18.6.1 Principle

Tonal synthesis, following Beeman (1998), essentially consists in combining instan-
taneous frequency (frequency contour) and instantaneous amplitude (amplitude
envelope), to generate a tonal sound, that is, a sound made of a single frequency
band. The instantaneous frequency and instantaneous amplitude can be generated
de novo through mathematics functions (sine or others) or can derive from a Hilbert
transform applied on a pre-existing sound (see Sects. 5.2.1 and 13.1.4.1). This
latter option is actually often used to modify a sound as illustrated with tico in
Sect. 15.5.

18.6.2 In Practice with seewave

Tonal synthesis is available with the seewave function synth2(). The two main
arguments of this function are (1) env which waits a numeric vector describing the
amplitude envelope either created with usual numeric generation tools or obtained
with env() (see Sect. 5.2.2) and (2) ifreq which describes the instantaneous
frequency in Hz with a numeric vector generated de novo or resulting from
ifreq()$f (see Sect. 13.1.4.1). The numeric vectors given to env and ifreq

18.6 Tonal Synthesis 599

must have exactly the same length. Here follow three examples with a 1 s pure tone
continuously beating at 2000 Hz but with different amplitude envelopes:41:

f <- 44100 # sampling frequency
output <- "Wave" # output class
ifreq <- rep(2000,f) # 2000 Hz instantaneous frequency
linear increase of the amplitude envelope
s <- synth2(env=seq(0,1,length=f),

ifreq=ifreq, f=f, output=output)
square-root increase of the amplitude envelope
s <- synth2(env=sqrt(seq(0,1,length=f)),

ifreq=ifreq, f=f, output=output)
square-root increase and decrease of the amplitude envelope
s <- synth2(

env=c(sqrt(seq(0,1,length=f/2)), sqrt(seq(1,0,length=f/2))),
ifreq=ifreq, f=f, output=output)

The next code illustrates modifications of the instantaneous frequency only, the
default amplitude envelope following a rectangular shape. Each sound lasts similarly
1 s:42

f <- 44100 # sampling frequency
output <- "Wave" # output class
instantaneous frequency from 500 to 4000 Hz by step of 500 Hz
s <- synth2(ifreq=rep(seq(500,4000,by=500), each=f/8),

f=f, output=output)
instantaneous frequency following a x^2 function
s <- synth2(ifreq=4000 + seq(-75,75, length=f)^2,

f=f, output=out)

As a last example the density function of a normal distribution is used to shape
both the AM and FM (Fig. 18.24):43

f <- 44100 # sampling frequency
output <- "Wave" # output class
norm <- dnorm(-(f/2):(f/2-1), sd=7000)
s <- synth2(env=norm, ifreq=5000+(norm/max(norm))*10000,

f=f, output=output)

41synth-tonal-1.wav, synth-tonal-2.wav, synth-tonal-3.wav.
42synth-tonal-4.wav, synth-tonal-5.wav.
43synth-tonal-6.wav.

600 18 Synthesis

Fig. 18.24 Synthetic sound with AM and FM following a normal density function. The sound
was generated using tonal principle with the function synth2(). Fourier window size = 1024
samples, overlap = 87.5%, Hanning window

18.6.3 Examples

18.6.3.1 Synthesis of Frequency Bands Based on a Pre-existing Sound

As we went through in Sect. 15.5 with several examples changing tico, tonal
synthesis can be used to generate a new sound from a pre-existing sound. The
following practice consists in generating a sound that has the same properties
than the fundamental frequency of peewit but containing frequency bands of
equal energy. The first step of the process consists in selecting the fundamental
frequency of peewit by filtering out all other frequencies, that is, by applying
a bandpass filter between 1000 and 1500 Hz with fir() (see Sect. 14.6). Then
the instantaneous frequency and the instantaneous amplitude of the fundamental
frequency are retrieved thanks to the functions ifreq() and env(), respectively:

18.6 Tonal Synthesis 601

Fig. 18.25 Tonal synthesis based on a pre-existing sound. The pre-existing sound of peewit
(left) was used to synthesize a new sound (right) with several frequency bands of equal energy.
Fourier window size = 512 samples, overlap = 0%, Hanning window

data(peewit)
f <- peewit@samp.rate
peewit.filt <- fir(peewit, from=1000, to=1500, output="Wave")
peewit.ifr <- ifreq(peewit.filt, plot=FALSE)$f[,2]*1000
peewit.env <- env(peewit.filt, plot=FALSE)

We now apply the functionsynth2() each time that we wish to add a frequency
band. Here we decide to add six frequency harmonics which relative amplitudes are
all similar. The final sound is then obtained with a loop for initiated with a Wave
object containing zeroes only (Fig. 18.25):44

s <- Wave(numeric(length(peewit.env)), samp.rate=f, bit=16)
for(i in 1:7) s <- s + synth2(peewit.env,

i*peewit.ifr, f=f, output=out)

44synth-peewit.wav.

602 18 Synthesis

18.6.3.2 Face

We used in Chap. 11 a synthetic wave which spectrographic display reminds a
smiling face. This wave was partly built using synth2(). The idea was to generate
a sound for each face element and to sum up at the end of the process all the
elements. The main constraint is to generate individual sounds which all have the
same sampling frequency fs and exactly the same duration, that is the same number
of samples, here 1 s.

The smile sound is based on synth2(), the amplitude envelope following the
density function of a normal distribution and the instantaneous frequency being
defined by a square function:

f <- 44100 ; d <- 1
amplitude envelope
env.smile <- dnorm(-(f/2):(f/2 - 1), sd=5000)
instantaneous frequency
ifreq.smile <- 1500 + seq(-135,135,length.out=d*f)^2
smile <- synth2(env=env.smile, ifreq=ifreq.smile,

f=f, output="Wave")

The eyes are also based on synth2() with a density function for the amplitude
envelope recycled for the instantaneous frequency:

env.eyes <- rep(dnorm(-(f/4):(f/4-1), sd=1000), 2)
ifreq.eyes <- 15000 + (env.eyes/max(env.eyes))*1000
eyes <- synth2(env=env.eyes,ifreq=ifreq.eyes, f=f, output="Wave")

The nose is a pure tone sound without any AM or FM generated with synth().
Silence are added before and after the pure tone to reach 1 s sound:

nose <- synth(f=44100, d=0.2, cf=10000, output="Wave")
nose <- addsilw(nose, at="start", d=0.4, output="Wave")
nose <- addsilw(nose, at="end", d=0.4, output="Wave")

The hair are made of two pure tones affected by a sinusoid FM and with a
triangular amplitude envelope. This is obtained by summing the results of two
synth() calls:

18.6 Tonal Synthesis 603

hair <- synth(f=f,d=d, cf=20000, fm=c(250,10,0,0,0),
shape="tria", output="Wave")

hair <- hair + 0.8*synth(f=f,d=d, cf=21000, fm=c(250,10,0,0,0),
shape="tria", output="Wave")

The last operation consists in normalizing in amplitude each element so that they
have similar amplitude ranges and in summing up all the elements (Fig. 18.26)45:

face <- normalize(smile) + normalize(eyes) +
normalize(nose) + normalize(hair)

spectro(face, ovlp=75)

Fig. 18.26 Synthesis of a face-like sound. This smiling face was synthesized using additive
synthesis with synth() and tonal synthesis synth2(). Fourier window size = 512 samples,
overlap = 75%, Hanning window

45synth-face.wav.

604 18 Synthesis

18.7 Speech

There are two main ways to synthesize speech ex nihilo46: (1) articulatory synthesis
that attempts to follow the mechanical model of speech production also known
as the source-filter model (articulatory source + resonant tracts) and (2) formant
synthesis which works as an additive synthesis method that mainly consists in
adding a fundamental frequency and a series of formants. The formant synthesis
is available thanks to the function vowelsynth() of the package phonTools
and the articulatory synthesis with the function soundgen() of the package
soundgen.

18.7.1 Solution with the Package phonTools

The function vowelsynth(), which follows the method defined by Klatt (1980),
can synthesize a vowel based on the following main arguments:

ffs the center frequencies for each formant in Hz. A list containing two vectors
may be provided to indicate the initial and final values so that a linear FM can be
applied.

fbw the bandwidths for each formant in Hz.
dur the duration in ms, by default 300 ms.
f0 the fundamental frequency in Hz. A vector with initial and final values may

also be provided for a linear FM.
fs the sampling frequency fs in Hz.
power the amplitude envelope.

Noise can be added to make the output less robotic with the following two
arguments:

noise1 the level of the noise that would affect the speech source, that is before
the filtering action of the formants.

noise2 the level of the noise that would be added to the output, that is, once the
sound has been produced by the speaker.

46Concatenative synthesis or diphone synthesis, which consists in concatenating diphones, is not
strictly speaking a synthesis method as it relies on real speech recordings. A diphone is a unit of
speech that makes the transition between two simple speech sounds known as phones.

18.7 Speech 605

We first call the library:

library(phonTools)

The following example, extracted from the documentation of vowelsynth(),
consists in synthesizing the five vowels of an English speaker. We use
returnsound=FALSE to retrieve a numeric vector instead of a sound
object:47

f0 <- c(125, 105)
i <- vowelsynth(f0=f0, returnsound=FALSE)
a <- vowelsynth(ffs=c(700, 1300, 2300, 3400, 4400),

f0=f0, returnsound=FALSE)
e <- vowelsynth(ffs=c(400, 2000, 2600, 3400, 4400),

f0=f0, returnsound=FALSE)
o <- vowelsynth(ffs=c(400, 900, 2300, 3400, 4400),

f0=f0, returnsound=FALSE)
u <- vowelsynth(ffs=c(300, 750, 2300, 3400, 4400),

f0=f0, returnsound=FALSE)
silence <- rep(0, 1000) # 100 ms of silence
s <- c(silence, a, silence, e,

silence, i, silence, o,
silence, u, silence)

The results can be viewed with (Fig. 18.27):

spectro(s, f=10000, ovlp=87.5, collevels=seq(-60,0,1))
text(x=(0.1+0.3)*0:4 + (0.1+0.15), y=2.5,

labels=c("[i]", "[a]", "[e]", "[o]", "[u]"),
col="red",
cex=3)

18.7.2 Solution with the Package soundgen

The function soundgen() of the eponymous package can synthesize a great vari-
ety of sounds including human nonlinguistic and animal vocalizations. Based on the

47synth-vowels-phontools.wav.

606 18 Synthesis

Fig. 18.27 Synthesis of an English speaker vowels with phonTools. The five vowels were
synthesized with vowelsynth() of the package phonTools. Fourier window size = 512
samples, overlap = 87.5%, Hanning window, dynamic range = 60 dB

source-filter model, the function generates a fundamental frequency accompanied
with a harmonic series for the articulatory source, a coloring noise for breathing
sound, and a frequency filter for the resonant tract and the lip radiation. The function
can produce several syllables with a control over the contour of the fundamental
frequency f0, the contour of the amplitude that is the amplitude envelope, and
the amplitude profiles of the formants. Other parameters control for a random
variation between successive syllables (the so-called temperature), the gender of the
voice (male vs female), nonlinear effects (subharmonics, jitter, and shimmer), and
background noise (e.g., breathing, hissing). This versatility in the setting parameters
leads to the possibility to synthesize vowel, scream, roar, moan, sigh, gasp, laugh,
cry, and Mmm sounds as well as mammal sounds as cat meowing, cow bellowing,
dog barking, elephant trumpeting, chimpanzee vocalizations, or bird calls.

The most easiest way to use soundgen() is to take advantage of presets
that correspond to vowels. Here follows the code used to generate a sequence
of the five vowels uttered by a male.48 The vowels are literally written in the
argument formants, the corresponding number of syllables is given in nSyl,
the syllable duration is set with sylLen, the silence duration between the syllables
is provided in ms with pauseDur_mean, and the sampling frequency fs is set
with samplingRate:

48synth-vowels-soundgen.wav.

18.7 Speech 607

f <- 10000
s <- soundgen(formants=’iaeou’, nSyl=5, sylLen=300,

pauseDur_mean=100, samplingRate=f)

The function returns a vector that can be coerced into a Wave object

s <- Wave(s, samp.rate=f, bit=16)

and visualized with spectro() (Fig. 18.28):

spectro(s, ovlp=87.5, collevels=seq(-60,0,1))
text(x=c(0.2,0.75,1.25,1.75,2.25), y=4.5,

labels=c("[i]", "[a]", "[e]", "[o]", "[u]"),
col="red",
cex=3)

Fig. 18.28 Synthesis of an English speaker vowels with soundgen. The five vowels were
synthesized with generateBout(). Fourier window size = 512 samples, overlap = 87.5%,
Hanning window, dynamic range = 60 dB

608 18 Synthesis

F
ig
.1

8.
29

s
o
u
n
d
g
e
n

Sh
in

y
ap

pl
ic

at
io

n.
A

w
eb

Sh
in

y
ap

pl
ic

at
io

n
li

nk
ed

to
th

e
pa

ck
ag

e
s
o
u
n
d
g
e
n

18.7 Speech 609

More complex examples can be tested with the vignette “Sound generation with
soundgen”:

vignette("acoustic_generation", package="soundgen")

For those who are unfortunately reluctant to the use of the R console, a Shiny
application (Chang et al. 2016) has also been developed for an interactive use of
soundgen(). The synthesis parameters and the sound can be saved in .csv
and .wav format, respectively. The shiny application can be launched from the
R console with (Fig. 18.29):

soundgen_app()

Appendix A
List of R Functions

List of audio 0.1.5 (Urbanek 2013), monitoR 1.0.5 (Katz et al. 2016b),
phonTools 0.2.2.1 (Barreda 2015), seewave 2.1.0 (Sueur et al. 2008a),
signal 0.7.6 (Ligges et al. 2015), soundecology 1.3.2 (Villanueva-Rivera
and Pijanowski 2016), soundgen 1.1.0 (Anikin 2017), tuneR 1.3.1 (Ligges
et al. 2014), and warbleR 1.1.5 (Araya-Salas and Smith-Vidaurre 2016) functions
used in this book and grouped by themes. Some functions can appear in several
themes. The description comes from the description field of the documentation as
provided by the package authors. A complete definition of each function is included
in the related package documentation. The number of the main chapter where each
function is introduced is given in the last column of the table.

Name Package Description Chapter

Input/output

audio.drivers() audio Lists all currently loaded and
available audio drivers

4

checkwavs() warbleR Checks .wav files 4

current.audio.driver() audio Returns the name of the
currently active audio driver

4

getWavPlayer() tuneR Gets the default player for
.wav files

4

loadsound() phonTools Allows .wav files to be loaded
into R

4

load.wave() audio Loads a .wav file 4

load.audio.driver() audio Attempts to load a modular
audio driver

4

listen() seewave Plays a sound wave 4

mp32wav() warbleR Converts .mp3 files to .wav 4

play() audio Plays audioSample objects 4

(continued)

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7

611

https://doi.org/10.1007/978-3-319-77647-7

612 A List of R Functions

Name Package Description Chapter

play() tuneR Plays Wave objects 4

playlist() seewave Runs a playlist of sound files 4

playsound() phonTools Plays sounds in R using VLC player 4

pause() audio Pauses (stops) audio recording or
playback

4

querxc() warbleR Accesses Xeno-Canto recordings and
metadata

4

readMP3() tuneR Reads an MPEG-2 layer 3 file into a
Wave object

4

readWave() tuneR Reads and writes .wav files 4

record() audio Records audio 4

resume() audio Resumes previously paused audio
recording or playback

4

rewind() audio Rewinds audio recording or playback 4

savewav() seewave Saves audio data as .wav file 4

save.wave() audio Saves audioSample objects as .wav
file

4

set.audio.driver() audio Selects an audio driver as the current
driver

4

setWavPlayer() tuneR Sets the default player for .wav files 4

sox() seewave Calls externally SoX 3

wait() audio Waits for an event during a recording
session

4

wav2flac() seewave wav-flac file conversion 4

writesound() phonTools Creates a WAV file from a numeric vector
or sound object

4

writeWave() tuneR Reads and writes Wave files 4

xcmaps() warbleR Maps Xeno-Canto recordings by species 4

Objects

as.audioSample() audio Converts an object into an audio sample
object

4

audioSample() audio audiosample class and constructor 4

duration() seewave Duration of a time wave 4

equalWave() tuneR Checks for some kind of equality of
objects of class Wave

4

makesound() phonTools Creates a sound object from a numeric
vector.

4

MCnames() tuneR Defaults channel ordering for
multichannel wave files (WaveMC
objects)

6

nchannel() tuneR Number of channels 6

updateWave() tuneR Updates old Wave objects for use with
new versions of tuneR

4

Wave() tuneR Constructors and coercion for class Wave
objects

4

WaveMC() tuneR Constructors and coercion for class
WaveMC objects

4

(continued)

A List of R Functions 613

Name Package Description Chapter

Edition

addsilw() seewave Adds or inserts a silence section 6

bind() tuneR Concatenates Wave objects 6

channel() tuneR Channel conversion for Wave objects 6

crossFade() soundgen Joins two waveforms by cross-fading 6

cutw() seewave Cuts a section of a time wave 6

deletew() seewave Deletes a section of a time wave 6

downsample() tuneR Downsamples a Wave or WaveMC object 6

equalWave() tuneR Checks Wave objects 4

extractWave() tuneR Extractor for Wave objects 6

mono() tuneR Converts stereo to mono and vice versa 6

mutew() seewave Replaces time wave data by 0 values 6

normalize() tuneR Rescales the range of values 6

noSilence() tuneR Cuts off silence from a Wave object 6

panorama() tuneR Narrows the panorama of a stereo sample 6

pastew() seewave Pastes a time wave to another one 6

prepComb() tuneR Prepares the combination/concatenation of Wave
objects

6

repw() seewave Repeats a time wave 6

resamp() seewave Resamples a time wave 6

rmoffset() seewave Removes the offset of a time wave 6

stereo() tuneR Converts (extracts, joins) stereo to mono and vice
versa

6

zapsilw() seewave Zaps silence periods of a time wave 6

Time/amplitude

acoustat() seewave Statistics on time and frequency STFT contours 11

ama() seewave Amplitude modulation analysis of a time wave 8

corenv() seewave Cross-correlation between two time wave
envelopes

17

crest() seewave Crest factor 7

discrets() seewave Discretization of a numeric (time) series 10

drawenv() seewave Draws the amplitude envelope of a time wave 15

dynoscillo() seewave Dynamic oscillogram 5

env() seewave Amplitude envelope of a time wave 5

oscillo() seewave Shows a time wave as an oscillogram 5

oscilloST() seewave Shows a stereo time wave as oscillograms 6

phaseplot() seewave First, second, and third derivatives of a wave 10

phaseplot2() seewave Phase portrait of a wave 10

powertrack() seewave Creates a power track for a sound 5

roughness() seewave Roughness of a curve (a time wave or a spectrum) 10

rugo() seewave Rugosity of a time wave or time series 10

segment() soundgen Segments a sound 8

setenv() seewave Sets the amplitude envelope of a time wave to
another one

15

(continued)

614 A List of R Functions

Name Package Description Chapter

timer() seewave Time measurements of a time wave 8

th() seewave Temporal entropy 16

Frequency

bark2hz() tuneR Frequency scale conversion 9

bwfilter() seewave Butterworth frequency filter 14

ceps() seewave Cepstrum or real cepstrum 10

coh() seewave Coherence between two time waves 17

comb filter() seewave Combfilter 14

corspec() seewave Cross-correlation between two frequency
spectra

17

cutspec() seewave Cuts a frequency spectrum 10

diffcumspec() seewave Difference between two cumulative
frequency spectra

16

diffspec() seewave Difference between two frequency spectra 16

drawfilter() seewave Draws the frequency response of a filter 14

fbands() seewave Frequency band plot (equalizer plot) 10

FF() tuneR Estimation of fundamental frequencies from
a Wspec object

13

FFpure() tuneR Estimation of fundamental frequencies from
a Wspec object

13

ffilter() seewave Frequency filter 14

fma() seewave Frequency modulation analysis 13

fpeaks() seewave Frequency peak detection 10

ftwindow() seewave Fourier transform windows 9

fund() seewave Fundamental frequency 10

H() seewave Total entropy 16

hz2bark() tuneR Frequency scale conversion 9

hz2mel() tuneR Frequency scale conversion 9

HzToSemitones() soundgen Convert Hz to semitones 9

ifreq() seewave Instantaneous frequency 13

itakura.dist() seewave Itakura-Saito distance 16

kl.dist() seewave Kullback-Leibler distance 16

ks.dist() seewave Kolmogorov-Smirnov distance 16

lifter() tuneR Liftering of cepstra 12

localpeaks() seewave Local maximum frequency peak detection 10

logspec.dist() seewave Log-spectral distance 16

meanspec() seewave Mean frequency spectrum of a time wave 11

mel() seewave Hertz/Mel conversion 9

mel2hz() tuneR Frequency scale conversion 9

melfcc() tuneR MFCC calculation 12

melfilterbank() seewave Mel-frequency filter bank 12

notesDict() soundgen Conversion table from Hz to semitones
above C0 to musical notation

9

notefreq() seewave Frequency of a musical note 9

(continued)

A List of R Functions 615

Name Package Description Chapter

noteFromFF() tuneR Derives notes from frequencies 10

periodogram() tuneR Periodogram (spectral density)
estimation on Wave objects

10

preemphasis() seewave Preemphasis frequency filter 14

Q() seewave Resonance quality factor of a frequency
spectrum

10

roughness() seewave Roughness of a curve (a time wave or a
spectrum)

10

SAX() seewave Symbolic aggregate approximation 10

sfm() seewave Spectral flatness measure 10

sh() seewave Spectral entropy 10

semitonesToHz() soundgen Convert semitones to Hz 9

simspec() seewave Similarity between two frequency
spectra

16

soundscapespec() seewave Soundscape frequency spectrum of a
time wave

11

spec2cep() tuneR Spectra to cepstra conversion 12

spec() seewave Frequency spectrum of a time wave 10

specan() warbleR Measures acoustic parameters in
batches of sound files

10

specprop() seewave Spectral properties 10

squarefilter() seewave Frequency response of a square filter 14

symba() seewave Symbol analysis 10

zcr() seewave Zero-crossing rate 13

Time/frequency

acoustat() seewave Statistics on time and frequency STFT
contours

11

analyze() soundgen Analyzes sound 13

audspec() tuneR Frequency band conversion 12

autoc() seewave Short-time autocorrelation of a time
wave

13

batchBinMatch monitoR Batch template detection 17

batchCorMatch monitoR Batch template detection 17

binMatch monitoR Calculates spectrogram template
matching scores

17

ccoh() seewave Continuous coherence function
between two time waves

17

combineBinTemplates monitoR Combines acoustic template lists 17

combineCorTemplates monitoR Combines acoustic template lists 17

corMatch monitoR Calculates spectrogram template
matching scores

17

covspectro() seewave Covariance between two spectrograms 17

deltas() tuneR Calculates delta MFCC features 12

dfDTW() warbleR Dynamic time warping on dominant
frequency contours

17

dfreq() seewave Dominant frequency of a time wave 13

(continued)

616 A List of R Functions

Name Package Description Chapter

dynspec() seewave Dynamic sliding spectrum 11

dynspectro() seewave Dynamic sliding spectrogram 11

eventEval monitoR Evaluates detected events with known
event sources and times

17

ffDTW() warbleR Dynamic time warping on fundamental
frequency contours

17

ffilter() seewave Frequency filter 14

findformants() phonTools Finds formants given a sound or set of
LPC coefficients

12

findPeaks() monitoR Finds score peaks and detections in a
templateScores object

17

formanttrack() phonTools Creates a formant track for a sound 13

ftwindow() seewave Fourier transform windows 9

fund() seewave Fundamental frequency 10

getPeaks() monitoR Extracts detections or peaks from a
detectionList object

17

hilbert() seewave Hilbert transform and analytic signal 13

ifreq() seewave Instantaneous frequency 13

istft() seewave Inverse of the short-time Fourier
transform

11

lpc() phonTools Predicts autoregressive filter coefficients 12

lspec() warbleR Creates long spectrograms of whole
sound files

11

makeBinTemplate() monitoR Makes an acoustic template 17

makeCorTemplate() monitoR Makes an acoustic template 17

manualoc() warbleR Interactive view of spectrograms 11

manualoc.df() warbleR Data frame of manualoc() selections 11

meanspec() seewave Mean frequency spectrum of a time wave 11

melodyplot() tuneR Plots a melody 13

powspec() tuneR Power spectrum 11

periodogram() tuneR Periodogram (spectral density) estimation
on Wave objects

11

pitchtrack() phonTools Creates a pitch (fundamental frequency)
track for a sound

13

readBinTemplates() monitoR Reads acoustic templates from a local
disk

17

readCorTemplates() monitoR Reads acoustic templates from a local
disk

17

showPeaks() monitoR Views or verifies detections or peaks 17

spectro() seewave 2D spectrogram of a time wave 11

spectrogram() phonTools Creates and displays spectrograms 11

spectrogram() soundgen Spectrogram 11

spectro3D() seewave 3D-spectrogram of a time wave 11

stft.ext() seewave Short-time Fourier transform using
external C libraries

11

(continued)

A List of R Functions 617

Name Package Description Chapter

templateCutoff() monitoR Queries or sets template cutoffs 17

timeAlign() monitoR Condenses detections or peaks
from multiple templates

17

viewSpec() monitoR Interactively views and
annotates spectrograms

11

wf() seewave Waterfall display 11

TKEO() seewave Teager-Kaiser energy operator 13

zc() seewave Instantaneous frequency of a
time wave by zero crossing

13

Indices

ACI() seewave Acoustic complexity index 16

acoustic_complexity() soundecology Acoustic complexity index 16

acoustic_diversity() soundecology Acoustic diversity index 16

acoustic_evenness() soundecology Acoustic evenness index 16

AR() seewave Acoustic richness index 16

bioacoustic_index() soundecology Bioacoustic index 16

diffcumspec() seewave Difference between two
cumulative frequency spectra

16

diffspec() seewave Difference between two
frequency spectra

16

fpeaks() seewave Frequency peaks detection 10

H() seewave Total entropy 16

itakura.dist() seewave Itakura-Saito distance 16

kl.dist() seewave Kullback-Leibler distance 16

ks.dist() seewave Kolmogorov-Smirnov distance 16

logspec.dist() seewave Log-spectral distance 16

M() seewave Amplitude index 16

multiple_sounds() soundecology Multiple sound files 16

ndsi() soundecology Normalized difference
soundscape index

16

NDSI() seewave Normalized difference
soundscape index

16

roughness() seewave Roughness of a curve (a time
wave or a spectrum)

10

SAX() seewave Symbolic aggregate
approximation

10

sfm() seewave Spectral flatness measure 10

sh() seewave Spectral entropy 16

simspec() seewave Similarity between two
frequency spectra

16

th() seewave Temporal entropy 16

Filters and modifications

afilter() seewave Amplitude filter 15

bwfilter() seewave Butterworth frequency filter 14

echo() seewave Echo generator 15

(continued)

618 A List of R Functions

Name Package Description Chapter

fadew() seewave Fade in and fade out of a time wave 6

fir() seewave Finite impulse response filter 14

lfs() seewave Linear frequency shift 15

preemphasis() seewave Preemphasis frequency filter 14

revw() seewave Time reverse of a time wave 6

rmam() seewave Removes the amplitude modulations of a time
wave

15

rmnoise() seewave Removes Gaussian noise 14

rmoffset() seewave Removes the offset of a time wave 6

Synthesis

chirp() signal Creates a chirp signal 18

getRolloff() soundgen Controls roll-off of harmonics 18

noise() tuneR Creates Wave objects of special waveforms 18

noisew() seewave Generates noise 18

pulsew() seewave Generates rectangle pulse 18

sawtooth() tuneR Creates Wave objects of special waveforms 18

silence() tuneR Creates Wave objects of special waveforms 18

sine() tuneR Creates Wave objects of special waveforms 18

square() tuneR Creates Wave objects of special waveforms 18

soundgen() soundgen Generates a sound 18

soundgen_app() soundgen soundgen shiny app 18

synth() seewave Synthesis of time wave (additive model) 18

synth2() seewave Synthesis of time wave (tonal model) 18

vowelsynth() phonTools Creates synthetic vowels using a cascade
formant synthesizer

18

Extra

attenuation() seewave Generates sound intensity attenuation data 7

convSPL() seewave Converts sound pressure level in other units 7

dBscale() seewave dB color scale for a spectrogram display 11

dBweight() seewave dB weightings 7

meandB() seewave Mean of dB values 7

micsens() seewave Microphone sensitivity 7

moredB() seewave Addition of dB values 7

notenames() tuneR Generates note names from numbers 9

octaves() seewave Octaves series 9

quantMerge() tuneR Quantization of notes to produce sheet music 13

quantize() tuneR Quantization of notes to produce sheet music 13

quantplot() tuneR Plots the quantization of a melody 13

rms() seewave Root mean square 7

songmeter() seewave Reads and interprets songmeter file name 4

Appendix B
Sound Samples

Here are information of the sounds used as samples, or examples. Several sounds
were very kindly provided by colleagues.

Name: bat
Data source: file ‘Pipistrellus_kuhlii.wav’
Description: one call of the European bat Pipistrellus kuhlii
Author: Jean-François Julien
Location: Cournonterral, France
Properties:

Wave Object
Number of Samples: 3841
Duration (seconds): 0.02
Samplingrate (Hertz): 192000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: cockroach
Data source: file ‘Elliptorhina_chopardi.wav’
Description: one male courtship call of the hissing cockroach from Madagascar
Elliptorhina chopardi
Author: Jérôme Sueur
Location: laboratory, Orsay, France
Properties:

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7

619

https://doi.org/10.1007/978-3-319-77647-7

620 B Sound Samples

Wave Object
Number of Samples: 19137
Duration (seconds): 0.43
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: elephant
Data source: file ‘Loxodonta_africana.wav’
Description: eight sounds used in Gilbert et al. (2014, figures 2–3). Sounds 1–4
were produced produced with a 3 m hose pipe. Sounds 1 and 2 are low-amplitude,
“non-brassy” sounds produced with a low-intensity source. Sounds 3 and 4 are
high-amplitude, “brassy” sounds produced with a high (increasing)-intensity source.
Sounds 5–8 are trumpet calls recorded from a 20-year-old female African elephant.
Sounds 5 and 6 are low-amplitude, “non-brassy” trumpet calls. Sounds 7 and 8 are
high-amplitude trumpet calls.
Author: Joël Gilbert
Location: Beauval Zoo, Saint-Aignan, France for the elephant trumpet calls
Properties:

Wave Object
Number of Samples: 366706
Duration (seconds): 8.32
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: face
Data source: file ‘synth-face.wav’
Description: a synthetic sound made of various items modulated in amplitude and
frequency. The sound was created with the code detailed in Sect. 18.6.3.2.
Author: Jérôme Sueur
Location: in silico
Properties:

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 32

B Sound Samples 621

Name: femo
Data source: file ‘Allobates_femoralis.wav’
Description: four vocalizations of the South-American dart poison frog Allobates
femoralis
Author: Jérôme Sueur
Location: Kaw, Guiana, France
Properties:

Wave Object
Number of Samples: 61740
Duration (seconds): 1.4
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: femo
Data source: file ‘Allobates_femoralis_2015-11-10_161500_GFT.wav’
Description: 28 vocalizations of the South-American dart poison frog Allobates
femoralis
Author: Jérôme Sueur
Location: Location: Kaw, Guiana, France
Properties:

Wave Object
Number of Samples: 1323000
Duration (seconds): 30
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: forest
Data source: file ‘forest.wav’
Description: one minute of soundscape recording in the tropical forest during the
first part of the night
Author: Jérôme Sueur
Location: Kaw, Guiana, France
Properties:

Wave Object
Number of Samples: 2646000
Duration (seconds): 60

(continued)

622 B Sound Samples

Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: frog
Data source: file ‘Eleutherodactylus_martinicensis.wav’
Description: 17 two-note vocalizations of the Martinique Robber frog Eleuthero-
dactyus martinicenis
Author: Renaud Boistel
Location: Lesser Antilles, France
Properties:

Wave Object
Number of Samples: 316602
Duration (seconds): 19.79
Samplingrate (Hertz): 16000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: guiana
Data source: files
‘M-XV_20101125_000000.wav’, ‘M-XV_20101125_010000.wav’,
‘M-XV_20101125_020000.wav’ ‘M-XV_20101125_030000.wav’,
‘M-XV_20101125_040000.wav’ ‘M-XV_20101125_050000.wav’,
‘M-XV_20101125_060000.wav’, ‘M-XV_20101125_070000.wav’,
‘M-XV_20101125_080000.wav’, ‘M-XV_20101125_090000.wav’,
‘M-XV_20101125_100000.wav’, ‘M-XV_20101125_110000.wav’,
‘M-XV_20101125_120000.wav’, ‘M-XV_20101125_130000.wav’,
‘M-XV_20101125_140000.wav’, ‘M-XV_20101125_150000.wav’,
‘M-XV_20101125_160000.wav’, ‘M-XV_20101125_170000.wav’,
‘M-XV_20101125_180000.wav’, ‘M-XV_20101125_190000.wav’,
‘M-XV_20101125_200000.wav’ ‘M-XV_20101125_210000.wav’,
‘M-XV_20101125_220000.wav’, ‘M-XV_20101125_230000.wav’
Description: 24 stereo files recorded in the tropical forest in French Guiana every
hour from 00:00 to 23:00 on the 25 November 2010
Author: Amandine Gasc and Jérôme Sueur
Location: Nouragues, Guiana, France
Properties: first file

B Sound Samples 623

Wave Object
Number of Samples: 2646016
Duration (seconds): 60
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Stereo
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: hello
Data source: file ‘hello.wav’
Description: English word “hello” said by a 7-year old French native girl
Author: Jérôme Sueur
Location: Paris, France
Properties:

Wave Object
Number of Samples: 38400
Duration (seconds): 0.8
Samplingrate (Hertz): 48000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: noise
Data source: file ‘noise.wav’
Description: a white noise broadcast by a low-quality loudspeaker and recorded with
a high-quality microphone in an anechoic chamber.
Author: Diego Llusia
Location: Paris, France
Properties:

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

624 B Sound Samples

Name: peewit
Data source: seewave accompanying data
Description: song emitted by a peewit (lapwing) male Vanellus vanellus
Author: Thierry Aubin
Location: France
Properties:

Wave Object
Number of Samples: 15561
Duration (seconds): 0.71
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: pellucens
Data source: seewave accompanying data
Description: two stridulations of the Italian tree cricket Oecanthus pellucens
Author: Jérôme Sueur
Location: Brain-sur-Allonnes, France
Properties:

Wave Object
Number of Samples: 36476
Duration (seconds): 3.31
Samplingrate (Hertz): 11025
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: sheep
Data source: seewave accompanying data
Description: a single bleat of the Préalpes-du-Sud Ovis aries
Author: Frédéric Sèbe
Location: Brouessy, France
Properties:

Wave Object
Number of Samples: 19764
Duration (seconds): 2.47
Samplingrate (Hertz): 8000

(continued)

B Sound Samples 625

Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: tico
Data source: seewave accompanying data
Description: four notes of the rufous-collared sparrow Zonotrichia capensis
Author: Thierry Aubin
Location: Brazil
Properties:

Wave Object
Number of Samples: 39578
Duration (seconds): 1.79
Samplingrate (Hertz): 22050
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: theremin
Data source: recording freely accessible at
https://www.freesound.org/people/realtheremin/sounds/119007/
Description: a frequency-modulated sound produced by a theremin, an electronic
instrument
Author: –
Location: –
Properties:

Wave Object
Number of Samples: 626176
Duration (seconds): 14.2
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: toad
Data source: file ‘Alytes_obstetricans.wav’
Description: four single-note vocalizations of the European midwife toad Alytes

https://www.freesound.org/people/realtheremin/sounds/119007/

626 B Sound Samples

obstetricans with important background noise due to wind and nocturnal insects
(Orthoptera)
Author: Jérôme Sueur
Location: Badefols-sur-Dordogne, France
Properties:

Wave Object
Number of Samples: 264000
Duration (seconds): 5.5
Samplingrate (Hertz): 48000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Name: tuningfork
Data source: file ‘tuning-fork.wav’
Description: a synthetic 440 Hz pure tone mimicking a A-tone tuning fork.
The sound was created with synth(f=44100, d=1, cf=440, output=
"Wave") Author: Jérôme Sueur
Location: in silico
Properties:

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

References

Adler D, Murdoch D (2016) rgl: 3D visualization device system (OpenGL). http://CRAN.R-
project.org/package=rgl, R package

Aldersley A, Champneys A, Homer M, Robert D (2016) Quantitative analysis of harmonic
convergence in mosquito auditory interactions. J R Soc Interface 13:20151007

Anikin A (2017) soundgen: Parametric voice synthesis. https://CRAN.R-project.org/package=
soundgen, R package 1

Araya-Salas M, Smith-Vidaurre G (2016) warbleR: an R package to streamline analysis of animal
acoustic signals. Meth Ecol Evol 8:184–191

Barreda S (2015) phonTools: functions for phonetics in R. https://cran.r-project.org/web/packages/
phonTools/index.html, R package

Beeman K (1998) Digital signal analysis, editing, and synthesis. Springer, Berlin/Heidelberg,
pp 59–103

Bennet-Clark HC (1999) Which Qs to choose: questions of quality in bioacoustics? Bioacoustics
9:351–359

Boelman NT, Asner GP, Hart PJ, Martin RE (2007) Multi-trophic invasion resistance in Hawaii:
bioacoustics, field surveys, and airborne remote sensing. Ecol Appl 17:2137–2144

Boersma P (1993) Accurate short-term analysis of the fundamental frequency and the harmonics-
to-noise ratio of a sampled sound. In: Proceedings of the Institute of Phonetic Sciences,
Amsterdam, vol 17, pp 97–110

Bogert BP, Healy MJR, Tukey JW (1963) The quefrency alanysis of time series for echoes:
cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe cracking. In: Time series analysis.
Wiley, New York, pp 209–243

Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York
Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates,

Sunderland
Butterworth S (1930) On the theory of filter amplifiers. Exp Wirel Wirel Eng 7:536–541
Butts CT (2008) network: a package for managing relational data in r. J Stat Softw 24(2):2–36
Carson JR (1922) Notes on the theory of modulation. Proc Institute Radio Eng 10:57–64
Cazelles B (2004) Symbolic dynamics for identifying similarity between rhythms of ecological

time series. Ecol Lett 7:755–763
Chang W, Cheng J, Allaire J, Xie Y, McPherson J (2016) shiny: web application framework for R.

https://CRAN.R-project.org/package=shiny, R package
Chowning JM (1973) The synthesis of complex audio spectra by means of frequency modulation.

J Audio Eng Soc 21:526–531

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7

627

http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=soundgen
https://CRAN.R-project.org/package=soundgen
https://cran.r-project.org/web/packages/phonTools/index.html
https://cran.r-project.org/web/packages/phonTools/index.html
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1007/978-3-319-77647-7

628 References

Cooley JW, Tukey JW (1965) An algorithm for the machine computation of complex Fourier series.
Math Comput 19:297–301

Cooper MA, Dultsev FN, Minson T, Ostanin VP, Abell C, Klenerman D (2001) Direct and sensitive
detection of a human virus by rupture event scanning. Nat Biotechnol 19:833–837

Cryer JD, Chan KS (2008) Time series analysis with applications in R. Springer, New York
Das A (2012) Signal conditioning. An introduction to continuous wave communication and signal

processing. Springer, Berlin
Davis SB, Mermelstein P (1980) Comparison of parametric representations for monosyllabic

word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process
28:357–366

Deecke VB, Janik VM (2006) Automated categorization of bioacoustic signals: avoiding percep-
tual pitfalls. J Acoust Soc Am 119:645–653

Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur J (2012) Monitoring animal diversity
using acoustic indices: implementation in a temperate woodland. Ecol Indic 13:46–54

Deutsch D (2010) The paradox of pitch circularity. Acoust Today 6:8–15
Dziak RP, Bohnenstiehl DR, Baker ET, Matsumoto H, Caplan-Auerbach J, Embley RW, Merle

SG, Walker SL, Lau TK, Chadwick WW (2015) Long-term explosive degassing and debris
flow activity at west mata submarine volcano. Geophys Res Lett 42:1480–1487

Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874
Felisberto P, Jesus SM, Zabel F, Santos R, Silva J, Gobert S, Beer S, Björk M, Mazzuca S,

Procaccini G, Runcie JW, Champenois W, Borges AV (2015) Acoustic monitoring of O2
production of a seagrass meadow. J Exp Mar Biol Ecol 464:75–87

Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–
188

Fitch W, Neubauer J, Herzel H (2002) Calls out of chaos: the adaptive significance of nonlinear
phenomena in mammalian vocal production. Anim Behav 63:407–418

Fletcher NH (1992) Acoustic systems in biology. Oxford University Press, Oxford
Fristrup KM, Watkins WA (1992) Characterizing acoustic features of marine animal sounds. Tech.

rep., Woods Hole Oceanographic Institution Technical Report WHOI-92-04
Fuller S, Axel AC, Tucker D, Gage SH (2015) Connecting soundscape to landscape: which acoustic

index best describes landscape configuration? Ecol Indic 58:207–215
Gagliano M, Mancuso S, Robert D (2012) Towards understanding plant bioacoustics. Trends Plant

Sci 17:323–325
Gasc A, Sueur J, Jiguet F, Devictor V, Grandcolas P, Burrow C, Depraetere M, Pavoine S (2013a)

Assessing biodiversity with sound: do acoustic diversity indices reflect phylogenetic and
functional diversities of bird communities? Ecol Indic 25:279–287

Gasc A, Sueur J, Pavoine S, Pellens R, Grandcolas P (2013b) Biodiversity sampling using a
global acoustic approach: contrasting sites with microendemics in new caledonia. PLoS ONE
8:e65311

Gasc A, Pavoine S, Lellouch L, Grandcolas P, Sueur J (2015) Acoustic indices for biodiversity
assessments: analyses of bias based on simulated bird assemblages and recommendations for
field surveys. Biol Conserv 191:306–312

Gençay R, Selçuk F, Whitcher B (2001) An introduction to wavelets and other filtering methods in
finance and economics. Academic Press, San Diego

Gilbert J, Dalmont JP, Potier R, Reby D (2014) Is nonlinear propagation responsible for the
brassiness of elephant trumpet calls? Acta Acustica United Acustica 100:734–738

Giorgino T (2009) Computing and visualizing dynamic time warping alignments in R: the dtw
package. J Stat Softw 31:1–24

Gustafsson MV, Aref T, Kockum AF, Ekström MK, Johansson G, Delsing P (2014) Propagating
phonons coupled to an artificial atom. Science 346:207–211

Hartmann WM (1998) Signals, sound, and sensation. Springer, New York
Hermann T, Hunt A, Neuhoff JG (eds) (2011) The sonification handbook. Logos Verlag, Berlin
Hopp SL, Owren MJ, Evans CS (1998) Animal acoustic communication. Springer,

Berlin/Heidelberg

References 629

Ihaka R (2010) R: lessons learned, directions for the future. In: Joint statistical meetings
proceedings

Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comput Graph Stat
5:299–314

Josse J, Pagès J, Husson F (2008) Testing the significance of the RV coefficient. Comput Stat Data
Anal 53:82–91

Kabacoff R (2013) R in action, data analysis and graphics with R. Manning Publications, New
York

Kaiser JF (1990) On a simple algorithm to calculate the “energy” of a signal. In: International
conference on acoustics, speech, and signal processing, ICASSP-90, pp 381–384

Kantz H, Schreiber T (2003) Non linear time series analysis. Cambridge University Press,
Cambridge

Kasten EP, Gage SH, Fox J, Joo W (2012) The remote environmental assessment laboratory’s
acoustic library: an archive for studying soundscape ecology. Eco Inform 12:50–67

Katz J, Hafner SD, Donovan T (2016a) Assessment of error rates in acoustic monitoring with the
R package monitor. Bioacoustics 25:177–196

Katz J, Hafner SD, Donovan T (2016b) Tools for automated acoustic monitoring within the R
package monitor. Bioacoustics 25:191–210

Kendrick P, Lopez L, Waddington D, Young R (2016) Assessing the robust of soundscape
complexity indices. In: 23rd international congress on sound and vibration, Athens, pp 1–8

Klatt DH (1980) Software for a cascade/parallel formant synthesizer. J Acoust Soc Am 67:971–995
Kvedalen E (2003) Signal processing using the Teager energy operator and other nonlinear

operators. Master’s thesis, Department of Informatics, University of Oslo
Larsen NJ, Wahlberg M (2017) Sound and sound sources. In: Comparative bioacoustics: an

overview. Bentham Science, Sharjah, pp 3–61
Lauterborn W, Parlitz U (1988) Methods of chaos physics and their application to acoustics. J

Acoust Soc Am 84:1975–1993
Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies

responses in multifactorial ecological experiments. Ecol Monogr 69:1–24
Lellouch L, Pavoine S, Jiguet F, Glotin H, Sueur J (2014) Monitoring temporal change of bird

communities with dissimilarity acoustic indices. Methods Ecol Evol 5:495–505
Lemon RE (1971) Vocal communication by the frog Eleutherodactylus martinicensis. Copeia

49:211–217
Ligges U, Krey S, Mersmann O, Schnackenberg S (2014) tuneR: Analysis of music. http://r-forge.

r-project.org/projects/tuner, R package
Ligges U, Short T, Kienzle P (2015) signal: signal processing. http://CRAN.R-project.org/

package=signal, R package
Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with

implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop
on research issues in data mining and knowledge discovery, DMKD ’03. ACM, New York, pp
2–11

Magurran AE, McGill BJ (2011) Biological diversity, frontiers in measurement and assessment.
Oxford University Press, Oxford

Mallat S (2009) A wavelet tour of signal processing: the sparse way. Elsevier, Amsterdam
Mbu Nyamsi RG, Aubin T, Bremond JC (1994) On the extraction of some time dependent

parameters of an acoustic signal by means of the analytic signal concept. Its application to
animal sound study. Bioacoustics 5:187–203

McGregor PK (ed) (2005) Animal communication networks. Cambridge University Press, Cam-
bridge

Mellinger DK, Clark CW (2003) Blue whale (Balaenoptera musculus) sounds from the North
Atlantic. J Acoust Soc Am 114(2):1108–1119

Merchant ND, Fristrup KM, Johnson MP, Tyack PL, Witt MJ, Blondel P, Parks SE (2015)
Measuring acoustic habitats. Methods Ecol Evol 6:257–265

http://r-forge.r-project.org/projects/tuner
http://r-forge.r-project.org/projects/tuner
http://CRAN.R-project.org/package=signal
http://CRAN.R-project.org/package=signal

630 References

Meyer D, Buchta C (2016) proxy: distance and similarity measures. https://CRAN.R-project.org/
package=proxy, R package

Mezquida DA, Martinez JL (2009) Platform for beehives monitoring based on sound analysis. a
perpetual warehouse for swarm’s daily activity. Span J Agric Res 7:824–828

Nason GP (2008) Wavelet methods in statistics with R. Springer, New York
Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice-Hall, Upper Saddle River
Oppenheim A, Schafer R (2004) From frequency to quefrency: a history of the cepstrum. IEEE

Signal Process Mag 21:95–106
Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University

Press, Cambridge
Pieretti N, Farina A, Morri FD (2011) A new methodology to infer the singing activity of an avian

community:the acoustic complexity index (ACI). Ecol Indic 11:868–873
Quatieri TF (2002) Discrete-time speech signal processing: principles and practice. Pearson, Noida
Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New York
Rice AN, Land BR, Bass AH (2011) Nonlinear acoustic complexity in a fish “two-voice” system.

Proc R Soc B: Biol Sci 278:3762–3768
Richter I, Koenders C, Auster HU, Frühauff D, Götz C, Heinisch P, Perschke C, Motschmann U,

Stoll B, Altwegg K, Burch J, Carr C, Cupido E, Eriksson A, Henri P, Goldstein R, Lebreton
JP, Mokashi P, Nemeth Z, Nilsson H, Rubin M, Szegö K, Tsurutani BT, Vallat C, Volwerk M,
Glassmeier KH (2015) Ann Geophys 33:1031–1036

Risset JC (1978) Paradoxes de hauteur. Tech. rep., IRCAM - Centre Georges Pompidou
Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-

coefficient. J R Stat Soc 25:257–265
Rodriguez A, Gasc A, Pavoine S, Grandcolas P, Gaucher P, Sueur J (2014) Temporal and spatial

variability of animal sound within a neotropical forest. Eco Inform 21:133–143
Rossing TD (ed) (2007) Handbook of acoustics. Springer, New York
Royer JY, Chateau R, Dziak R, Bohnenstiehl D (2015) Seafloor seismicity, Antarctic ice-sounds,

cetacean vocalizations and long-term ambient sound in the Indian ocean basin. Geophys J Int
202:748–762

Rumsey F, McCormick T (2002) Sound and recording. An introduction. Focal Press, Boston
Russell DA (2000) On the sound field radiated by a tuning fork. Am J Phys 68:1139–1145
Russell DA, Junell J, Ludwigsen DO (2013) Vector acoustic intensity around a tuning fork. Am J

Phys 81:99–103
Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word

recognition. IEEE Trans Acoust Speech Signal Process 26:43–49
Schafer RM (1977) The soundscape: our sonic environment and the tuning of the world. Destiny

Books, Rochester
Schloerke B, Crowley J, Cook D, Briatte F, Marbach M, Thoen E, Elberg A, Larmarange J (2017)

GGally: Extension to ‘ggplot2’. https://CRAN.R-project.org/package=GGally, R package
Senin P (2015) jmotif: tools for time series analysis based on symbolic aggregate discretization.

http://CRAN.R-project.org/package=jmotif, R package
Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37:10–21
Shannon CE, Weaver W (1949) The mathematical theory of communication. Illinois University

Press, Urbana
Sharan VR, Moir TJ (2016) An overview of applications and advancements in automatic sound

recognition. Neurocomputing 200:22–34
Shepard RN (1964) Circularity in judgments of relative pitch. J Acoust Soc Am 36:2346–2353
Shumway RH, Stoffer DS (2006) Time series analysis and its applications with R examples.

Springer, Cham
Snell RC, Milinazzo F (1993) Formant location from LPC analysis data. IEEE Trans Speech Audio

Process 1:129–134
Soetaert K (2014) diagram: functions for visualising simple graphs (networks), plotting flow

diagrams. https://CRAN.R-project.org/package=diagram, R package
Speaks CE (1999) Introduction to sound. Singular Publishing Group, San Diego/London

https://CRAN.R-project.org/package=proxy
https://CRAN.R-project.org/package=proxy
https://CRAN.R-project.org/package=GGally
http://CRAN.R-project.org/package=jmotif
https://CRAN.R-project.org/package=diagram

References 631

Staszewski WJ, Robertson AN (2007) Time-frequency and time-scale analyses for structural health
monitoring. Philos Trans R Soc A: Math Phys Eng Sci 365:449–477

Stevens SS, Volkmann J, Newman EB (1937) A scale for the measurement of the psychological
magnitude pitch. J Acoust Soc Am 8:185–190

Sueur J, Aubin T (2006) When males whistle at females: complex fm signals in cockroaches.
Naturwissenschaften 93:500–505

Sueur J, Farina A (2015) Ecoacoustics: the ecological investigation and interpretation of environ-
mental sound. Biosemiotics 26:493–502

Sueur J, Aubin T, Simonis C (2008a) seewave: a free modular tool for sound analysis and synthesis.
Bioacoustics 18:213–226

Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008b) Rapid acoustic survey for biodiversity
appraisal. PLoS ONE 3:e4065

Sueur J, Mackie D, Windmill JFC (2011) So small, so loud: Extremely high sound pressure level
from a pygmy aquatic insect (Corixidae, Micronectinae). PLoS ONE 6:e21089

Sueur J, Farina A, Gasc A, Pieretti N, Pavoine S (2014) Acoustic indices for biodiversity
assessment and landscape investigation. Acta Acustica United Acustica 100:772–781

Sylvander M, Ponsolles C, Benahmed S, Fels JF (2007) Seismoacoustic recordings of small
earthquakes in the Pyrenees: experimental results. Bull Seismol Soci Am 97:294–304

Teetor P (2011) R Cookbook. O’Reilly, Sebastopol
Tokuda IT (2017) Nonlinear dynamics and temporal analysis. In: Comparative bioacoustics: an

overview. Bentham Science, Oak Park, pp 336–357
Towsey M, Planitz B, Nantes A, Wimmer J, Roe P (2012) A toolbox for animal call recognition.

Bioacoustics 21:107–125
Towsey M, Wimmer J, Williamson I, Roe P (2014) The use of acoustic indices to determine avian

species richness in audio-recordings of the environment. Eco Inform 21:110–119
Urbanek S (2013) audio: audio interface for R. https://CRAN.R-project.org/package=audio, R

package
Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York
Villanueva-Rivera LJ, Pijanowski BC (2016) soundecology: soundscape ecology. https://CRAN.

R-project.org/package=soundecology, R package
Villanueva-Rivera L, Pijanowski B, Doucette J, Pekin B (2011) A primer of acoustic analysis for

landscape ecologists. Landsc Ecol 26:1233–1246
Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method

based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust
15:70–73

Wickham H (2009) ggplot2. Elegant graphics for data analysis. Springer, Dordrecht
Wickham H (2014) Advanced R. Chapman & Hall/CRC Press, Boca Raton
Xie Y (2013) Dynamic documents with R and knitr. The R Series. Chapman & Hall/CRC, Boca

Raton
Zwicker E (1961) Subdivision of the audible frequency range into critical bands (frequenzgrup-

pen). J Acoust Soc Am 33:248–248

https://CRAN.R-project.org/package=audio
https://CRAN.R-project.org/package=soundecology
https://CRAN.R-project.org/package=soundecology

Index

.flac format, 94

.mp3 format, 33, 92, 93, 95, 97

.wav format, 33, 85, 87, 90, 92

acceleration, 9, 10
acoustat, 359
acoustic illusion, 589, 594
aliasing, 32, 140, 459
alignment, 530
AM. see amplitude
amplitude

crest, 168
envelope, 125, 126, 128, 132, 133, 135,

138, 189, 191, 193, 205, 465, 474,
483, 503, 524, 531, 568, 599, 602

instantaneous, 11, 12, 26, 167, 598, 600
maximum, 12, 168
modulation (AM), 26, 125, 126, 205, 242,

280, 428, 478, 564, 574, 580, 599
peak-to-peak, 12, 168
root-mean-square (RMS), 12, 161, 168,

169, 173, 298, 352
unit, 10, 115

analytic signal, 127, 128, 418
annotation, 258, 348, 353, 357, 358, 540, 541,

547
AR model. see autoregressive model
area under the curve, 537, 549, 551, 552
attenuation, 17, 19, 177–179
AUC. see area under the curve
audition, 381
auditory spectrogram, 386, 387
autocorrelation, 395, 405, 413
automatic identification, 534
autoregressive model, 394

Bark scale, 229, 390
Bessel function, 281, 283
bin template matching, 538
bioacoustics, 2
bit, 30, 35

calibration, 181, 182
Carson’s rule, 281
celerity, 12
centroid, 300
cepstrum, 241, 242, 273, 274, 302, 381, 405,

408
channel, 84, 89, 90, 92, 142–145
chirp, 574, 579, 593
clarinet, 587
clicks, 150, 153
clipping, 33
clustering, 511
communication, 35
complex numbers, 319, 332
contour lines, 338
convolution, 455, 467, 521
covariance, 527, 528
cross-correlation, 521, 522, 526, 527, 538, 541,

542, 547
cumulative probability mass function, 495,

497, 499
cut, 146

dB. see deciBel
db-RDA. see redundancy analysis
DC. see direct current
DCT. see discrete cosine function

© Springer International Publishing AG, part of Springer Nature 2018
J. Sueur, Sound Analysis and Synthesis with R, Use R!,
https://doi.org/10.1007/978-3-319-77647-7

633

https://doi.org/10.1007/978-3-319-77647-7

634 Index

decade, 438, 462
deciBel, 14, 16, 17, 174, 175, 235, 238, 294,

332, 338, 340, 438
decoration, 258, 348
delete, 149
delta coefficients, 385, 392
dendrogram, 511
DFT, 252
digitization, 30, 167
digitization depth. see quantization
direct current, 217, 249, 278, 395, 564
discrete cosine function, 384, 388
discretization, 286–288, 309
displacement, 9, 10
distance matrix, 506
dominant frequency, 533
downsample, 317
DTW. see dynamic time warping
duration, 11, 185
dynamic time warping, 530, 531, 534

echo, 241, 242, 467
ecoacoustics, 2, 479
ellipse, 515
energy, 13, 169
entropy, 298–301, 500, 501
evenness, 298, 299
external software, 74–76

fade-in and fade-out, 163, 594, 595
far-field, 9
FFT, see Fourier
fftw, 80
file list, 94
filter, 600

amplitude, 468
Butterworth, 445, 447, 448
comb, 443, 444
definition, 436
finite impulse response (FIR), 455, 457,

459, 462, 467, 473, 474
frequency response, 394, 398
mel-frequency, 382
pre-emphasis, 440
preemphasis, 382, 385, 390, 395
roll-off rate, 438, 445, 462
smoothing, 449

FIR. see filter
flatness, 298, 299, 301
FM. see frequency
formant, 23, 395, 396, 398, 416, 417, 604

Fourier
fast transform (FFT), 225, 229, 235
inverse transform (IFT), 240
Jean-Joseph, 213
series, 214–217, 219, 222, 564
short-time Fourier transform (STFT), 205,

309, 315, 329, 349, 382, 392, 451,
486, 489, 504, 527, 538

transform, 224, 311
transformation, 213, 214, 216
window, 237, 238, 254, 297, 316, 317, 329,

332, 375, 382
frequency

bandwidth, 294
beating, 564
carrier, 23, 280, 281, 283
coherence, 528, 529
definition, 21
dominant, 23, 272, 274, 280, 400, 403, 405,

407, 469
fundamental, 22, 23, 217, 242, 273, 274,

276, 280, 303, 405, 407, 409–411,
461, 590, 600, 604

instantaneous, 23, 26, 418–420, 474,
598–600, 602

modulation (FM), 26, 199, 252, 281, 420,
428, 476, 478, 574, 575, 582, 593,
594, 597, 599, 602

resonant, 23, 294, 295, 394
shift, 473, 476
sidebands, 278, 280, 281, 283–285

frequency spectrum. see spectrum
function

apply, 54
argument, 47, 48
definition, 47
help, 48
new, 48, 49

gain, 181–183
glissando, 593
gold number, 586
graphic

definition, 65
ggplot2, 71, 262
high level plot functions, 66
layout, 69, 70, 362
low level functions, 67, 68
parametrization, 67
save, 71, 72, 364, 365

graphical user interface, 40
GUI. see graphical user interface

Index 635

Hanning window, 238
harmonic, 23, 242, 276, 278, 280, 453, 461,

472, 568, 571, 573, 579, 585, 590,
601

heatmap, 509
Heisenberg

box, 312, 314, 315, 329
principle, 254, 312, 313, 315
uncertainty, 353

Hierarchical cluster analysis, 511
Hilbert transform, 127, 128, 189, 205, 418,

420, 474, 598
histogram, 155

IEEE, 33
IFT. see Fourier
impedance, 16
index

acoustic complexity, 489, 490
acoustic diversity, 486
acoustic entropy, 486
acoustic evenness, 488
acoustic richness, 484
amplitude, 482
Bhattacharyya distance, 494
bioacoustic, 482
cumulative spectral dissimilarity, 497
definition, 479
Gini coefficient, 488
Hellinger distance, 494
Itakuro-Saito, 500
Kolmogorov-Smirnov, 497
Kullback-Leibler, 500
log-spectral, 502
mutual information, 501
normalised difference soundscape, 491
number of frequency peaks, 491
Pearson correlation coefficient, 503
relative frequency similarity, 502
RV correlation coefficient, 504
spectral dissimilarity, 496
spectral entropy, 485
temporal dissimilarity, 503
temporal entropy, 483
wave dissimilarity, 504

information theory, 7
inharmonic, 23
intensity, 13, 18
interference, 564, 565
inverse short-time Fourier transform, 351, 451,

453, 470, 473. see Fourier
ISTFT. see Fourier

kurtosis, 171, 172, 301

lifter, 385, 389
linear predictive coefficients, 394
LPC. see linear predictive coefficients

map, 98, 99
mel(ody) scale, 230, 381, 382
mel-frequency cepstral coefficients, 381, 385,

389
MFCC, 385. see mel-frequency cepstral

coefficients
mix, 145
mono, 144, 145
movie, 368
moving average, 131, 132, 136
moving kernel, 133
moving sum, 132
multichannels, 89, 91, 144
music, 589
musical note, 231, 232, 234, 411, 579

near field, 9
noise, 25, 35, 36, 463, 604

control, 566
pink, 462, 557
red, 557
white, 462, 472, 557

non linearity, 303
normal distribution, 589, 593, 602
Nyquist frequency, 32, 227, 459
Nyquist-Shannon theorem, 32

object
attribute, 43, 44
character string, 64
class, 41, 44
concatenation, 47, 59, 60
dimension, 44
import/export, 61
indexing, 54–58, 63
mode, 44
name, 43
operator, 46
structure, 45
vectorization, 62

octave, 231, 232, 264, 271, 438, 462
offset, 159, 160
OLA. see overlap-add method
oscillogram, 111, 113–117, 119, 121, 123, 138,

188, 335

636 Index

overlap, 130
overlap-add method, 351
overplotting, 124
oversampling, 33
overtone, 22, 273, 422

PAA. see piecewise aggregate approximation
Parseval’s theorem, 226
paste, 150, 152
PCA. see principal component analysis
PCM, 30, 33
PCoA. see principal coordinate analysis
peak detection, 265, 267, 268, 271, 273, 302,

491
period, 11, 21
phase, 9, 20, 303, 305, 419, 438, 564, 565
piecewise aggregate approximation, 291
playback, 103
playlist, 107
PMF. see probility mass function
pole-zero diagram, 398
power, 13, 169, 171, 177
power spectral density, 248, 320, 321
precision, 189, 190, 192, 198
preemphasis filter, 395
pressure, 8, 10, 13, 14
principal component analysis, 512–514
principal coordinate analysis, 512–514
probability mass function, 248, 483, 485, 495,

500, 502, 503
PSD, 256. see power spectral density
pulse, 558, 559
pure tone, 278, 281, 283, 472, 478, 564, 566,

569, 574, 584, 587, 599, 602

Q. see quality factor
quality factor, 294
quantization, 30, 32, 162
quefrency, 242

RDA. see redundancy analysis
recall, 536
receiver operating characteristic curve, 537,

549–551
record, 108
rectangular window, 237
redundancy analysis, 512–515
repeat loop, 103, 104, 369
repetition rate, 188, 205, 207, 208, 210
resampling, 407

resolution, 210, 252, 254, 263, 297, 300, 301,
313–315, 317

resonator, 295
reverberation, 467
reverse, 155
RMS. see amplitude
ROC curve. see receiver operating

characteristic curve
root-mean-square. see amplitude
roughness, 298
rugosity, 298

sampling, 32
change speed, 141
definition, 30
downsampling, 139, 140
oversampling, 140, 141

sampling frequency, 30
change speed, 107

sawtooth, 24, 561, 562
SAX. see symbolic aggregate approximation
scaling, 256
script

condition, 50, 51
for loop, 51, 52, 123, 191, 299, 474, 493,

590, 593, 601
repeat, 52
sourcing, 74
structure, 48
things to do, 73
while, 52

sensitivity, 182, 536
Shannon, 34–36
Shannon evenness, 485
Shepard scale, 589, 593
shiny, 609
short-time Fourier transform. see Fourier
sideband, 564, 580, 582
signal-to-noise ratio, 173, 186, 200
SIL. see sound intensity level
silence, 155, 157, 555, 558, 565, 590, 595, 597,

602
sine wave, 25. see pure tone
skewness, 171, 172, 300
sliding window, 130, 131, 314
smoothing, 131–133, 135, 193, 524
smoothing kernel. see moving kernel
SNR. see signal-to-noise ratio
Song Meter, 99, 480, 481
sound intensity level, 16
sound pressure level, 14, 174, 177
sound velocity level, 16
specificity, 536

Index 637

spectral leakage, 237, 254
spectrogram, 335, 540, 577, 586, 592, 594

3D, 372, 374
animation, 373
annotation, 353, 357
decoration, 348
definition, 309, 315
display, 319, 320, 322, 324, 326, 334
dynamic, 366
long, 356
measurements, 353
movie, 368
parametrization, 358
plate, 362
waterfall, 370

spectrum
frequency, 221, 224, 226, 247–249, 251,

252, 257, 258, 260, 263, 265,
272, 274, 275, 278, 281, 285, 288,
293, 300, 337, 463, 485, 491, 492,
495–497, 501, 506, 526, 533, 557

mean frequency, 375, 377
phase, 221, 224
soundscape, 377

speech, 381, 382, 394, 604
SPL. see sound pressure level
splines, 449
square, 24, 560
stereo, 84, 85, 88, 92, 125, 143–145, 567
STFT. see Fourier
stridulation, 295, 594
SVL. see sound velocity level
sweep, 574
symbolic aggregate approximation, 291
symbolic series, 286, 288, 291, 501
synthesis

additive synthesis, 564, 604
articulatory synthesis, 604
formant synthesis, 604
modulation synthesis, 574
speech synthesis, 604

tonal synthesis, 598

Teager-Kaiser energy operator, 427, 428
template, 521, 535, 536, 538, 539, 541, 542,

545, 546
time series, 29, 30, 83, 84
TKEO. see Teager-Kaiser energy operator
transfer function, 394, 395, 436, 438, 440, 443,

445, 447, 451, 459, 461–463
triangle, 24, 561, 563
trim, 155
tuning fork, 8
two-voice, 278

uncertainty principle. see Heisenberg principle

velocity, 9, 12
vocal folds, 394
vocal tract, 394
voice, 413
vowel, 604–606

Ward distance, 511
wavelength, 9, 11, 12
wavelet transform, 214
Western music, 231, 410, 579, 584, 587
working directory, 40

ZC. see zero-crossing
ZCR. see zero-crossing rate
zero-crossing, 421–423
zero-crossing rate, 423
zero-padding, 315, 316, 332
zero-pading, 317
zoom

in time, 121, 123, 202, 203

	Preface
	Acknowledgements
	Contents
	Acronyms
	List of Figures
	List of Tables
	List of DIY Boxes
	1 Introduction
	1.1 Sound as a Science Material
	1.2 Layout
	1.3 Convention for Notation and Code
	1.4 Book Compilation

	2 What Is Sound?
	2.1 A Debate Under a Dangerous Tree
	2.2 Sound as a Mechanical Wave
	2.2.1 Air Particle Motion
	2.2.2 Air Pressure Variation
	2.2.3 Amplitude
	2.2.4 Phase
	2.2.5 Duration
	2.2.6 Frequency
	2.2.7 Writing Sound with a Simple Equation
	2.2.8 Amplitude and Frequency Modulations

	2.3 Sound as a Time Series
	2.4 Sound as a Digital Object
	2.4.1 Sampling
	2.4.2 Quantization
	2.4.3 Issues in Sampling and Quantization
	2.4.4 File Format

	2.5 Sound as a Support of Information

	3 What Is R?
	3.1 A Brief Introduction to an Ocean of Tools
	3.2 How to Get R
	3.3 Do You Speak R?
	3.3.1 Where Am I?
	3.3.2 Objects
	3.3.2.1 Classes
	3.3.2.2 Attributes

	3.3.3 Operators
	3.3.4 Functions
	3.3.5 Controlling Flow
	3.3.5.1 Conditioning
	3.3.5.2 Looping

	3.3.6 Manipulating Objects
	3.3.6.1 Indexing Operators
	3.3.6.2 Finding an Item Position
	3.3.6.3 Concatenating Objects
	3.3.6.4 Reading and Saving Objects

	3.3.7 Vectorization and Recycling
	3.3.8 Handling Character Strings
	3.3.9 Drawing a Graphic
	3.3.9.1 High-Level Plot Functions
	3.3.9.2 Parametrization
	3.3.9.3 Low-Level Plot Functions
	3.3.9.4 Organizing a Plate of Graphics
	3.3.9.5 ggplot2 Alternative
	3.3.9.6 Saving Graphics

	3.3.10 Scripting
	3.3.11 Calling External Software

	3.4 R and Sound
	3.4.1 To Use or Not to Use R for Sound Analysis?
	3.4.2 Main Packages
	3.4.3 How to Install seewave

	4 Playing with Sound
	4.1 Object Classes
	4.1.1 vector, matrix, data.frame Classes
	4.1.2 ts and mts Classes
	4.1.3 audioSample Class of the Package audio
	4.1.4 sound Class of the Package phonTools
	4.1.5 Wave Class of the Package tuneR

	4.2 How to Read (Load) a Sound
	4.2.1 .wav Files
	4.2.2 .mp3 Files
	4.2.3 From .mp3 to .wav Files
	4.2.4 .flac Files
	4.2.5 Local Files
	4.2.6 Online Files
	4.2.7 Song Meter© Files

	4.3 How to Listen to a Sound
	4.3.1 With the Package audio
	4.3.2 With the Package phonTools
	4.3.3 With the Package tuneR
	4.3.4 With the Package seewave

	4.4 How to Record a Sound
	4.5 How to Write (Save) a Sound
	4.6 Tuning R

	5 Display of the Wave
	5.1 Oscillogram
	5.1.1 Simple Oscillogram
	5.1.2 Axes
	5.1.3 Colors
	5.1.4 Decoration and Annotation
	5.1.5 Zoom In
	5.1.6 A Bit of Interactivity
	5.1.7 Multiple Oscillogram

	5.2 Amplitude Envelope
	5.2.1 Principle
	5.2.2 In Practice with seewave
	5.2.3 Smoothing
	5.2.3.1 Sliding Window Process
	5.2.3.2 Moving Average
	5.2.3.3 Moving Sum
	5.2.3.4 Moving Kernel
	5.2.3.5 Which Smoothing Method Should I Use?

	5.2.4 In Practice with phonTools

	5.3 Combining Oscillogram and Envelope

	6 Edition
	6.1 Resampling
	6.2 Channels Managing
	6.3 Manipulating Sound Sections
	6.3.1 Extract
	6.3.2 Delete
	6.3.3 Paste
	6.3.4 Repeat
	6.3.5 Reverse

	6.4 Removing and Inserting Silence Sections
	6.5 Changing Amplitude
	6.5.1 Offset
	6.5.2 Amplitude Level
	6.5.3 Fade-In and Fade-Out

	7 Amplitude Parametrization
	7.1 Linear Relative Scale
	7.2 Logarithm Relative Scale
	7.2.1 Signal-to-Noise Ratio
	7.2.2 dB Weightings
	7.2.3 dB Arithmetic
	7.2.4 Sound Attenuation Through Spreading Losses

	7.3 Absolute Scale

	8 Time-Amplitude Parametrization
	8.1 What and How to Measure?
	8.2 Manual Measurements
	8.3 Automatic Measurements
	8.3.1 The Cicada Case
	8.3.2 The Frog Case

	8.4 Amplitude Modulation Analysis
	8.4.1 The Cicada Case
	8.4.2 The Frog Case

	9 Introduction to Frequency Analysis: The Fourier Transformation
	9.1 From Time to Frequency and Back
	9.2 Fourier Series
	9.2.1 Periodicity
	9.2.2 Trigonometric Fourier Series
	9.2.3 Compact Fourier Series
	9.2.4 Exponential Fourier Series

	9.3 Fourier Transform
	9.4 Frequency Scales
	9.4.1 Bark and Mel Scales
	9.4.2 Musical Scale

	9.5 Amplitude Scales
	9.6 Fourier Windows
	9.7 Inverse Fourier Transform
	9.8 Cepstrum

	10 Frequency, Quefrency, and Phase in Practice
	10.1 Frequency Spectrum
	10.1.1 Functions of the Package tuneR
	10.1.2 Functions of the Package seewave
	10.1.2.1 Fourier Arguments
	10.1.2.2 Graphical Arguments
	10.1.2.3 Decoration
	10.1.2.4 Multifrequency Spectrum Plot
	10.1.2.5 Binned Frequency Spectrum

	10.1.3 Identification of Peaks
	10.1.3.1 Major Peaks
	10.1.3.2 Local Peaks
	10.1.3.3 Dominant Frequency
	10.1.3.4 Fundamental Frequency

	10.1.4 Profile Analysis
	10.1.4.1 Harmonic Series
	10.1.4.2 Sideband Series Due to Amplitude Modulations
	10.1.4.3 Sideband Series Due to Frequency Modulations
	10.1.4.4 Aperiodic or Brief Signals

	10.1.5 Symbolic Analysis
	10.1.5.1 Symbolic Discretization
	10.1.5.2 Symbolic Aggregate Approximation

	10.1.6 Parametrization
	10.1.6.1 Quality Factor Q
	10.1.6.2 Roughness and Rugosity
	10.1.6.3 Flatness and Evenness (Entropy)
	10.1.6.4 Statistic Parameters

	10.2 Quefrency Cepstrum
	10.3 Phase Portrait

	11 Spectrographic Visualization
	11.1 Short-Time Fourier Transform
	11.1.1 Principle
	11.1.2 The Uncertainty Principle
	11.1.2.1 Time and Frequency Resolutions
	11.1.2.2 Increasing the Time Resolution with Window Overlap
	11.1.2.3 Increasing the Frequency Resolution with Zero-Padding

	11.2 Computation and Display of the Spectrogram
	11.3 Function of the Package signal
	11.4 Functions of the Package tuneR
	11.5 Function of the Package phonTools
	11.6 Function of the Package soundgen
	11.7 Functions of the Package seewave
	11.7.1 2D Spectrogram
	11.7.1.1 Setting the Scene
	11.7.1.2 Input Arguments
	11.7.1.3 Fourier-Related Arguments
	11.7.1.4 Output Arguments
	11.7.1.5 High-Level Plot Arguments
	11.7.1.6 Colour Arguments
	11.7.1.7 Axes Arguments
	11.7.1.8 Layout Arguments
	11.7.1.9 Graphical Adding

	11.7.2 External Computing of the Short-Time Fourier Transform
	11.7.3 Inverse Short-Time Fourier Transform

	11.8 Measurements and Annotations on the Spectrogram
	11.8.1 Simple Measure
	11.8.2 Fancy Measure and Annotation
	11.8.2.1 Function of the Package warbleR
	11.8.2.2 Function of the Package monitoR

	11.8.3 Automatic Parametrization

	11.9 Complex Display and Printing
	11.9.1 Multi-Spectrogram Graphic
	11.9.2 Printing in a File
	11.9.3 Long Spectrogram Graphic

	11.10 Dynamic Spectrogram
	11.11 Movie
	11.12 Waterfall Display
	11.13 3D Spectrogram
	11.14 Mean Spectrum
	11.15 Soundscape Spectrum

	12 Mel-Frequency Cepstral and Linear Predictive Coefficients
	12.1 Mel-Frequency Cepstral Coefficients (MFCCs)
	12.1.1 Theory
	12.1.2 Practice
	12.1.2.1 Mel-Frequency Conversion and Filtering
	12.1.2.2 Cepstral Coefficients
	12.1.2.3 Lifter
	12.1.2.4 Complete MFCC Computation

	12.2 Linear Predictive Coefficients (LPCs)
	12.2.1 Theory
	12.2.2 Practice

	13 Frequency and Energy Tracking
	13.1 Frequency Tracking
	13.1.1 Dominant Frequency
	13.1.2 Fundamental Frequency
	13.1.2.1 seewave Solutions
	13.1.2.2 tuneR Solutions
	13.1.2.3 phonTools Solutions
	13.1.2.4 soundgen Solutions

	13.1.3 Formants
	13.1.4 Instantaneous Frequency
	13.1.4.1 Hilbert Transform
	13.1.4.2 Zero-Crossing

	13.2 Energy Tracking

	14 Frequency Filters
	14.1 Preemphasis Filter
	14.2 Comb Filter
	14.3 Butterworth Filter
	14.4 Wave Smoothing Filter
	14.5 DFT and STDFT Filter
	14.5.1 Principle
	14.5.2 ffilter() Function
	14.5.3 Examples

	14.6 FIR Filter
	14.6.1 Principle
	14.6.2 fir() Function
	14.6.3 Examples
	14.6.3.1 Simple Use
	14.6.3.2 FIR Band-Pass Filter to Increase Automatic Time Detection
	14.6.3.3 FIR Band-Pass Filter to Avoid Aliasing

	14.6.4 Setting the Transfer Function

	15 Other Modifications
	15.1 Setting the Amplitude Envelope
	15.2 Echoes and Reverberation
	15.3 Amplitude Filtering
	15.4 Modifications Using the ISTDFT
	15.5 Modifications Using the Hilbert Transform

	16 Indices for Ecoacoustics
	16.1 α Indices
	16.1.1 Functions
	16.1.2 Batch Processing: How to Obtain a List of α Indices for a Set of Sounds

	16.2 β Indices
	16.2.1 Functions
	16.2.2 Batch Processing: How to Obtain and Analyze a Matrix of β Indices
	16.2.2.1 Generation of the Distance Matrix
	16.2.2.2 Visualization
	16.2.2.3 Clustering
	16.2.2.4 Ordination Analysis

	17 Comparison and Automatic Detection
	17.1 Cross-Correlation
	17.2 Frequency Coherence
	17.3 Dynamic Time Warping
	17.4 Automatic Identification
	17.4.1 Principle
	17.4.2 In Practice with the Package monitoR

	18 Synthesis
	18.1 Silence
	18.2 Noise
	18.3 Non-sinusoidal Sound
	18.3.1 Pulse Wave
	18.3.2 Square Wave
	18.3.3 Triangle and Sawtooth Waves

	18.4 Sinusoidal Sound: Additive Synthesis
	18.4.1 Principle
	18.4.2 In Practice with tuneR
	18.4.3 In Practice with seewave

	18.5 Sinusoidal Sound: Modulation Synthesis
	18.5.1 Principle
	18.5.2 In Practice with signal
	18.5.3 In Practice with seewave
	18.5.4 Examples
	18.5.4.1 Exponential Chirp
	18.5.4.2 Synthesis of a Sideband Series with an AM
	18.5.4.3 Synthesis of a Sideband Series with a FM
	18.5.4.4 The Sound of π and Other Numbers
	18.5.4.5 C Major Scale with a Clarinet Timbre
	18.5.4.6 Shepard Scale
	18.5.4.7 Risset Glissando
	18.5.4.8 Imitation of Stridulation of the Tree Cricket Oecanthus pellucens
	18.5.4.9 Imitation of the Call of the Frog Eleutherodactylus martinicensis

	18.6 Tonal Synthesis
	18.6.1 Principle
	18.6.2 In Practice with seewave
	18.6.3 Examples
	18.6.3.1 Synthesis of Frequency Bands Based on a Pre-existing Sound
	18.6.3.2 Face

	18.7 Speech
	18.7.1 Solution with the Package phonTools
	18.7.2 Solution with the Package soundgen

	A List of R Functions
	B Sound Samples
	References
	Index

