
UseR !

Nina Golyandina · Anton Korobeynikov
Anatoly Zhigljavsky

Singular
Spectrum
Analysis
with R

Use R!

Series editors
Robert Gentleman Kurt Hornik Giovanni Parmigiani

More information about this series at http://www.springer.com/series/6991

http://www.springer.com/series/6991

Nina Golyandina • Anton Korobeynikov •
Anatoly Zhigljavsky

Singular Spectrum Analysis
with R

123

Nina Golyandina
Faculty of Mathematics and Mechanics
Saint Petersburg State University
Saint Petersburg, Russia

Anton Korobeynikov
Faculty of Mathematics and Mechanics
Saint Petersburg State University
Saint Petersburg, Russia

Anatoly Zhigljavsky
School of Mathematics
Cardiff University
Cardiff, United Kingdom

ISSN 2197-5736 ISSN 2197-5744 (electronic)
Use R!
ISBN 978-3-662-57378-5 ISBN 978-3-662-57380-8 (eBook)
https://doi.org/10.1007/978-3-662-57380-8

Library of Congress Control Number: 2018940189

Mathematics Subject Classification (2010): 37M10, 68U10

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of
Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-57380-8

Preface

Singular spectrum analysis (SSA) is a well-known methodology for analysis and
forecasting of time series. Since quite recently, SSA was also used to analyze digital
images and other objects that are not necessarily of planar or rectangular form and
may contain gaps. SSA is multipurpose and naturally combines both model-free
and parametric techniques; this makes it a very special and attractive methodology
for solving a wide range of problems arising in diverse areas, most notably those
associated with time series and digital images. An effective, comfortable, and
accessible implementation of SSA is provided by the R-package Rssa, which is
available from CRAN and reviewed in this book.

For time series, SSA can be used for many different purposes, from non-
parametric time series decomposition and filtration to parameter estimation, fore-
casting, gap filling, and change-point detection; many of these techniques can be
extended to digital images. An essential difference between one-dimensional SSA
and the majority of methods that analyze time series with trend and/or periodicities
lies in the fact that SSA does not require any model for trend and no prior knowledge
is needed about the number of periodical components and their frequencies.
Also, periodicities can be modulated in different ways, and therefore, the type of
model, additive or multiplicative, is not necessary to be assumed and taken into
consideration for applying SSA. In the process of analysis, SSA constructs a number
of the so-called subspace-based models; an example of a time series which satisfies
such a model is provided by a series that follows a linear recurrence relation in the
presence of noise. The validity of any of these models, however, is not a prerequisite
for SSA, which makes SSA a very flexible tool that could be applied to virtually any
data in the form of a time series or a digital image.

v

vi Preface

There are three books devoted to SSA1 as well as many papers related to the
methodological and theoretical aspects of SSA and comparison with ARIMA and
other methods but especially to various applications. This present book expands the
SSA methodology in many different directions and unifies various approaches and
modifications within the SSA framework. Those mostly interested in applications
may consider this book as an RSSA textbook.

Any method needs effective, comfortable, and accessible implementation. The
R-package RSSA2 provides such an implementation for SSA. RSSA is well docu-
mented and contains many standard and nonstandard tools for time series analysis
and forecasting and image processing; it also has many visual tools which are useful
for making proper choice of SSA parameters and examination of results. RSSA is
the only SSA implementation available from CRAN and is almost certainly the most
efficient implementation of SSA. RSSA is well theoretically and methodologically
supported as its main routines are based on the books mentioned above. Most of the
new SSA developments, which are systemized in this book, are also implemented
in RSSA.

This book has the following goals: (a) to present the up-to-date SSA methodol-
ogy, including multidimensional extensions, in the language accessible to a large
circle of users; (b) to interconnect a variety of versions of SSA into a single tool,
(c) to show the diverse tasks that SSA can be used for; (d) to formally describe the
main SSA methods and algorithms; and (e) to provide tutorials on the RSSA package
and the use of SSA. The companion website for the book is http://ssa-with-r-book.
github.io.

The authors have vast experience with SSA. Nina Golyandina (NG) and Anatoly
Zhigljavsky (AZ) have worked on SSA for more than 30 years and wrote about 20
papers each on the SSA-related topics. They authored the books Golyandina et al.
(2001) and Golyandina and Zhigljavsky (2013) and in doing so they have spent
huge efforts on trying to develop and tidy up the SSA methodology. NG is the
head of the “Caterpillar-SSA” project http://gistatgroup.com/cat/ and a part of the
team which has applied SSA to the analysis of gene expression; see Sect. 5.4.3. NG
had supervised six PhD students (Eugene Osipov, Theodore Alexandrov, Konstantin
Usevich, Alex Shlemov, Maxim Lomtev, and Nikita Zvonarev) whose projects were
fully devoted to SSA. There is much material in this book which is based on
recent papers of NG with coauthors; see Sect. 1.7.4 for details. AZ was behind
the idea of using SSA for change-point detection and structural monitoring of time
series, has participated in many projects on applications of SSA in economics,
organized a number of conferences on SSA, and edited two recent SSA-oriented

1Elsner JB, Tsonis AA (1996) Singular spectrum analysis: a new tool in time series analysis.
Plenum; Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer
briefs in statistics. Springer; Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time
series structure: SSA and related techniques. Chapman & Hall/CRC.
2Korobeynikov A, Shlemov A, Usevich K, Golyandina N (2017) Rssa: a collection of methods for
singular spectrum analysis. R package version 1.0. http://CRAN.R-project.org/package=Rssa.

http://ssa-with-r-book.github.io
http://ssa-with-r-book.github.io
http://gistatgroup.com/cat/
http://CRAN.R-project.org/package=Rssa

Preface vii

special issues of the Statistics and Its Interface journal. Both NG and AZ have
taught SSA to different audiences which enormously helped them with the books.
Anton Korobeynikov (AK) specializes in data analysis, computational statistics, and
programming. He has a vast experience in programming in C, C++, and R and
contributed to many open-source projects. He stood behind the initial ideas toward
fast SSA implementation.3 AK was the original author of RSSA; currently, he is
its maintainer and one of the two major contributors to RSSA (the second major
contributor is Alex Shlemov).

We believe that the book will be very useful to a very wide circle of readers
including professional statisticians, specialists in signal and image processing, and
specialists in numerous applied disciplines interested in using statistical methods
of time series analysis, forecasting, and signal and image processing in their
applications. The book is written on a level accessible to a very broad audience
and contains a large number of examples; hence it can also be considered as a
textbook for undergraduate and postgraduate courses on time series analysis and
signal processing.

Acknowledgements The authors are very grateful to Vladimir Nekrutkin, their
coauthor and one of the founders of the “Caterpillar-SSA” project, and to Alex Shle-
mov and Konstantin Usevich for their valuable contributions to RSSA and for their
enormous contributions to the development of multidimensional extensions of SSA.
Research of the third author was supported by the Russian Science Foundation,
project No. 15-11-30022 “Global optimization, supercomputing computations, and
application.”

Saint Petersburg, Russia Nina Golyandina
Saint Petersburg, Russia Anton Korobeynikov
Cardiff, UK Anatoly Zhigljavsky

3Korobeynikov A (2010) Computation- and space-efficient implementation of SSA. Stat Interface
3(3):357–368.

Contents

1 Introduction: Overview . 1
1.1 Generic Scheme of the SSA Family and the Main Concepts 2

1.1.1 SSA Methods . 2
1.1.2 The Main Concepts . 5

1.2 Different Versions of SSA . 8
1.2.1 Decomposition of X into a Sum of Rank-One Matrices 8
1.2.2 Versions of SSA Dealing with Different Forms

of the Object . 11
1.3 Separability in SSA . 12
1.4 Forecasting, Interpolation, Low-Rank Approximation,

and Parameter Estimation in SSA . 13
1.5 The Package .. 14

1.5.1 SSA Packages . 14
1.5.2 Tools for Visual Control and Choice of Parameters 15
1.5.3 Short Introduction to RSSA. 16
1.5.4 Implementation Efficiency . 17

1.6 Comparison of SSA with Other Methods . 17
1.6.1 Fourier Transform, Filtering, Noise Reduction.. 18
1.6.2 Parametric Regression . 19
1.6.3 ARIMA and ETS . 20

1.7 Bibliographical Notes . 21
1.7.1 Short History . 21
1.7.2 Some Recent Applications of SSA. 21
1.7.3 SSA for Preprocessing/Combination of Methods 22
1.7.4 Materials Used in This Book . 23

1.8 Installation of RSSA and Description of the Data
Used in the Book . 24
1.8.1 Installation of RSSA and Usage Comments 24
1.8.2 Data Description . 27

References . 27

ix

x Contents

2 SSA Analysis of One-Dimensional Time Series . 31
2.1 Basic SSA . 32

2.1.1 Method . 32
2.1.2 Appropriate Time Series. 34
2.1.3 Separability and Choice of Parameters . 36
2.1.4 Algorithm . 38
2.1.5 Basic SSA in RSSA . 39

2.2 Toeplitz SSA . 46
2.2.1 Method . 46
2.2.2 Algorithm . 48
2.2.3 Toeplitz SSA in RSSA . 48

2.3 SSA with Projection . 51
2.3.1 Method . 51
2.3.2 Appropriate Time Series. 54
2.3.3 Separability . 55
2.3.4 Algorithm . 56
2.3.5 SSA with Projection in RSSA . 57

2.4 Iterative Oblique SSA. 63
2.4.1 Method . 63
2.4.2 Separability . 69
2.4.3 Algorithms . 71
2.4.4 Iterative O-SSA in RSSA . 72

2.5 Filter-Adjusted O-SSA and SSA with Derivatives . 79
2.5.1 Method . 79
2.5.2 Separability . 81
2.5.3 Algorithm . 82
2.5.4 Filter-Adjusted O-SSA in RSSA . 84

2.6 Shaped 1D-SSA .. 88
2.6.1 Method . 88
2.6.2 Separability . 89
2.6.3 Algorithm . 89
2.6.4 Shaped SSA in RSSA . 90

2.7 Automatic Grouping in SSA . 92
2.7.1 Methods . 92
2.7.2 Algorithm . 96
2.7.3 Automatic Grouping in RSSA . 97

2.8 Case Studies . 103
2.8.1 Extraction of Trend and Oscillations by Frequency

Ranges . 103
2.8.2 Trends in Short Series . 104
2.8.3 Trend and Seasonality of Complex Form . 106
2.8.4 Finding Noise Envelope . 108
2.8.5 Elimination of Edge Effects . 109

Contents xi

2.8.6 Extraction of Linear Trends . 111
2.8.7 Automatic Decomposition.. 114
2.8.8 Log-Transformation . 118

References . 120

3 Parameter Estimation, Forecasting, Gap Filling . 121
3.1 Parameter Estimation . 122

3.1.1 Method . 122
3.1.2 Algorithms . 124
3.1.3 Estimation in RSSA . 126

3.2 Forecasting . 129
3.2.1 Method . 131
3.2.2 Algorithms . 134
3.2.3 Forecasting in RSSA . 136

3.3 Gap Filling . 139
3.3.1 Method . 141
3.3.2 Algorithms . 143
3.3.3 Gap-Filling in RSSA . 145

3.4 Structured Low-Rank Approximation . 151
3.4.1 Cadzow Iterations .. 151
3.4.2 Algorithms . 153
3.4.3 Structured Low-Rank Approximation in RSSA 154

3.5 Case Studies . 157
3.5.1 Forecasting of Complex Trend and Seasonality 157
3.5.2 Different Methods of Forecasting . 159
3.5.3 Choice of Parameters and Confidence Intervals 162
3.5.4 Gap Filling . 167
3.5.5 Parameter Estimation and Low-Rank Approximation 171
3.5.6 Subspace Tracking .. 176
3.5.7 Automatic Choice of Parameters for Forecasting 178
3.5.8 Comparison of SSA, ARIMA, and ETS . 182

References . 186

4 SSA for Multivariate Time Series . 189
4.1 Complex SSA . 190

4.1.1 Method . 190
4.1.2 Separability . 190
4.1.3 Algorithm . 191
4.1.4 Complex SSA in RSSA . 192

4.2 MSSA Analysis . 194
4.2.1 Method . 194
4.2.2 Multi-Dimensional Time Series and LRRs . 197
4.2.3 Separability . 200
4.2.4 Comments on 1D-SSA, MSSA and Complex SSA 201
4.2.5 Algorithm . 204
4.2.6 MSSA Analysis in RSSA . 205

xii Contents

4.3 MSSA Forecasting . 210
4.3.1 Method . 211
4.3.2 Algorithms . 214
4.3.3 MSSA Forecasting in RSSA . 216
4.3.4 Other Subspace-Based MSSA Extensions.. 221

4.4 Case Studies . 222
4.4.1 Analysis of Series in Different Scales (Normalization) 222
4.4.2 Forecasting of Series with Different Lengths

and Filling-In . 224
4.4.3 Simultaneous Decomposition of Many Series. 226

References . 229

5 Image Processing . 231
5.1 2D-SSA .. 232

5.1.1 Method . 232
5.1.2 Elements of 2D-SSA Theory .. 235
5.1.3 Algorithm . 236
5.1.4 2D-SSA in RSSA. 237

5.2 Shaped 2D-SSA .. 241
5.2.1 Method . 242
5.2.2 Rank of Shaped Arrays . 245
5.2.3 Algorithm . 246
5.2.4 Shaped 2D-SSA in RSSA . 247
5.2.5 Comments on nD Extensions . 252

5.3 Shaped 2D ESPRIT . 253
5.3.1 Method . 253
5.3.2 Theory: Conditions of the Algorithm Correctness 255
5.3.3 Algorithm . 256
5.3.4 2D-ESPRIT in RSSA . 257

5.4 Case Studies . 260
5.4.1 Extraction of Texture from Non-Rectangle Images 260
5.4.2 Adaptive Smoothing .. 261
5.4.3 Analysis of Data Given on a Cylinder . 263
5.4.4 Analysis of nD Objects: Decomposition of a Color Image . . . 266

References . 269

Index . 271

Common Symbols and Acronyms

SVD Singular value decomposition
LRR Linear recurrence relation
SSA Singular spectrum analysis
X or XN Time series or ordered collection of numbers
N Length or size of X
L Window length or size
K The number of L-lagged vectors obtained from X;

in the 1D case, K = N − L + 1
T Embedding operator
X = T(X) The trajectory matrix of size L × K associated with X

‖X‖F Frobenius matrix norm
rankX Rank of X
X = X(L)(X) L-trajectory space of X
rankL(X) L-rank of X
ΠH Hankelization operator
λi ith eigenvalue of the matrix XXT

Ui ith eigenvector of the matrix XXT

Vi = XTUi/
√

λi ith factor vector of the matrix X
(
√

λi, Ui, Vi) ith eigentriple of the SVD of the matrix X
IM Identity M × M matrix
RL Euclidean space of dimension L

RL×K Space of L × K matrices
M

(H)
L,K Set of trajectory matrices

span(P1, . . . , Pn) Linear subspace spanned by vectors P1, . . . , Pn

A† Pseudo-inverse of A

xiii

Chapter 1
Introduction: Overview

The present book expands SSA methodology in many different directions and
unifies different approaches and modifications within the SSA framework. This
chapter is introductory; it outlines the main principles and ideas of SSA, presents a
unified view on SSA, reviews its computer implementation in the form of the RSSA

package, and gives references to all data sources used. The chapter contains eight
sections serving different objectives.

Section 1.1 describes the generic structure of all methods from the SSA family
and introduces the main concepts essential for understanding different versions of
SSA and for making application of SSA in practice efficient.

Section 1.2 classifies different versions of SSA. As explained in that section,
there are two complementary directions in which versions of SSA can be created:
one is related to geometrical features of the object X and the other one is determined
by the choice of the procedure of decomposition of the trajectory matrix into rank-
one matrices. These two directions of variations of SSA are not related to each other
so that any extension of SSA related to the geometry of X can be combined with
any procedure of decomposition of the trajectory matrix.

Section 1.3 discusses the concept of separability, which is the most theoretically
important concept of SSA. Achieving separability (for example, of a signal from
noise) is the key task of SSA in most applications. Correct understanding of this
concept is therefore imperative for making a particular application of SSA reliable
and efficient. We will be returning to separability in many discussions within the
book.

Section 1.4 briefly introduces the main underlying model used to apply SSA for
common problems such as forecasting, imputation of missing data, and monitoring
structural stability of time series. In the one-dimensional case, this model assumes
that a part of the series can be described by a linear recurrent relation and in
particular, by a sum of damped sinusoids. Estimation of parameters of this model
often constitutes the main objective in signal processing.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
N. Golyandina et al., Singular Spectrum Analysis with R, Use R!,
https://doi.org/10.1007/978-3-662-57380-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57380-8_1&domain=pdf
https://doi.org/10.1007/978-3-662-57380-8_1

2 1 Introduction: Overview

In Sect. 1.5, we give information about most known implementations of SSA,
describe the general structure of the RSSA package, and discuss efficiency of its
implementation.

In Sect. 1.6 we briefly discuss the place of SSA among other methods of time
series analysis, signal and image processing and provide a short overview of recent
publications where a comparison of SSA with several traditional methods has been
made.

In Sect. 1.7 we make a short historical survey of SSA, refer to recent applications
of SSA and to papers which discuss combination of SSA with other methods; we
also list the main papers, which a significant part of this book is based upon.

In Sect. 1.8 we make comments concerning installation of the RSSA package and
describe the real-life data sets (taken from many different sources) which we have
used in the book for illustrations. We provide the basic information about these data
sets and specify their location. The corresponding references would help the reader
to get more information about any of these data sets.

1.1 Generic Scheme of the SSA Family and the Main
Concepts

We use SSA as a generic term for a family of methods based on a sequential
application of the four steps schematically represented in Fig. 1.1 below and briefly
described in the next section.

1.1.1 SSA Methods

We define an SSA method (or simply SSA) as any method performing the four steps
depicted in Fig. 1.1 and briefly described below. The input object X is an ordered
collection of N numbers (e.g., a time series or a digital image). We denote the set of
such objects by M. Unless stated otherwise, the entries of X are assumed to be real
numbers although a straightforward generalization of the main SSA method to the
case of complex numbers is available, see Sect. 4.1.

Input: X, an ordered collection of N numbers.
Output: A decomposition of X into a sum of identifiable components: X = ˜X1 +

. . . + ˜Xm.

Step 1: Embedding The so-called trajectory matrix X = T(X) is constructed,
where T is a linear map transforming the object X into an L × K matrix of certain
structure. Let us denote the set of all possible trajectory matrices by M

(H)
L,K . The

letter H is used to stress that these matrices have Hankel-related structure.
As an example, in 1D-SSA (that is, SSA for the analysis of one-dimensional

real-valued time series), X = (x1, . . . , xN) and T = T1D-SSA maps RN to the space

1.1 Generic Scheme of the SSA Family and the Main Concepts 3

Input : X –
time series (t.s.),
collection of t.s.,
array (image), . . .

X = (X)

Trajectory matrix

1. Embedding

X = d

j=1
Xj

Sum of rank-one matrices

2. Decomposition

X = XI1 + · · · + XIm ,

XI =
j∈I

Xj

Grouped matrices

3. Grouping

X = X1 + . . . + Xm ,

Xk = −1 ◦ Π (XIk)

Output: SSA decomposition

4. Reconstruction

Fig. 1.1 SSA family: Generic scheme

of Hankel matrices L × K with equal values on the anti-diagonals, where N is the
series length, L is the window length, which is a parameter, and K =N−L+1:

T1D-SSA(X) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1

x3 x4 x5 . . . xK+2
...

...
...

. . .
...

xL xL+1 xL+2 . . . xN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (1.1)

Step 2: Decomposition of X into a Sum of Matrices of Rank 1 The result of this
step is the decomposition

X =
∑

i

Xi , Xi = σiUiV
T
i , (1.2)

where Ui ∈ RL and Vi ∈ RK are vectors such that ‖Ui‖ = 1 and ‖Vi‖ = 1 for all i

and σi are non-negative numbers.

4 1 Introduction: Overview

The main example of this decomposition is the conventional singular value
decomposition (SVD) for real-valued matrices X. If this conventional SVD is used,
then we call the corresponding SSA method “Basic SSA” (Golyandina et al. 2001;
Chapter 1). Let S = XXT, λ1 ≥ . . . ≥ λL ≥ 0 be eigenvalues of the matrix S,
d = rankX = max{j : λj > 0}, U1, . . . , Ud be the corresponding eigenvectors,
and Vj = XTUj/

√

λj , j = 1, . . . , d , be factor vectors. Denote Xj = √

λjUjV
T
j .

Then the SVD of the trajectory matrix X can be written as

X = X1 + . . . + Xd . (1.3)

The triple (
√

λj ,Uj , Vj) consisting of the singular value σj = √

λj , the left singular
vector Uj and the right singular vector Vj of X is called j th eigentriple.

Step 3: Grouping The input in this step is the expansion (1.2) and a specification
of how to group the components of (1.2).

Let I = {i1, . . . , ip} ⊂ {1, . . . , d} be a set of indices. Then the resultant matrix
XI corresponding to the group I is defined as XI = Xi1 + . . . + Xip .

Assume that a partition of the set of indices {1, . . . , d} into m disjoint subsets
I1, . . . , Im is specified. Then the result of Grouping step is the grouped matrix
decomposition

X = XI1 + . . . + XIm. (1.4)

If only one subset, I , of {1, . . . , d} is specified, then we still can assume that a
partition of {1, . . . , d} is provided: this is the partition consisting of two subsets, I

and Ī = {1, . . . , d} \ I . In this case, XI is usually associated with the pattern of
interest (for example, signal) and XĪ = X− XI can be treated simply as a residual.

The grouping of the expansion (1.2), where Ik = {k}, is called elementary.

Step 4: Reconstruction At this step, each matrix XIk from the decomposition (1.4)
is transferred back to the form of the input object X. This transformation is
performed optimally in the following sense: for a matrix Y ∈ RL×K , we seek for
an object ˜Y ∈ M that provides the minimum to ‖Y − T(˜Y)‖F, where ‖Z‖F =
(

∑

ij |zij |2
)1/2

is the Frobenius norm of Z = [zij] ∈ RL×K .

Let ΠH : RL×K → M
(H)
L,K be the orthogonal projection from RL×K to M

(H)
L,K

in the Frobenius norm. Then ˜Y = T−1 ◦ ΠH(Y). The projection ΠH is simply
the averaging of the entries corresponding to a given element of an object, see
Sect. 1.1.2.6 for details. For example, in 1D-SSA the composite mapping T−1 ◦ΠH

uses the averaging along anti-diagonals so that ỹk = ∑

(i,j)∈Ak
(Y)ij /|Ak|, where

Ak = {(i, j) : i + j = k + 1, 1 ≤ i ≤ L, 1 ≤ j ≤ K}.
Let ̂Xk = XIk be the reconstructed matrices, ˜Xk = ΠH

̂Xk be the corresponding
trajectory matrices, and ˜Xk = T−1(˜Xk) be the reconstructed objects. Then the
resulting decomposition of the initial object X is

X = ˜X1 + . . . + ˜Xm. (1.5)

1.1 Generic Scheme of the SSA Family and the Main Concepts 5

If the grouping is elementary, then the reconstructed objects ˜Xk in (1.5) are called
elementary components.

For convenience of referencing, Steps 1 and 2 of the generic SSA scheme are
sometimes combined into the so-called “Decomposition stage” and Steps 3 and 4
are combined into “Reconstruction stage.”

1.1.2 The Main Concepts

1.1.2.1 Parameters of the SSA Methods

Step 1: parameters of the linear map T. For a given object X, the trajectory matrix
X = T(X) can be computed in different ways. In 1D-SSA, there is only one
parameter in Step 1, the window length L.

Step 2: no parameters if the conventional SVD is performed. Otherwise, if an
alternative decomposition of X into a sum of rank-one matrices is used,
there may be some parameters involved, see Sect. 1.2.1.

Step 3: the parameter (or parameters) that defines the grouping.
Step 4: no extra parameters.

1.1.2.2 Separability

A very important concept in the SSA methodology is separability. Let X = X1+X2.
(Approximate) separability of X1 and X2 means that there exists a grouping such
that the reconstructed object ˜X1 is (approximately) equal to X1. The representation
X = X1 + X2 can be associated with many different models such as “signal plus
noise,” “trend plus the rest,” and “texture plus the main image.”

If X = X1 + X2 and X1 and X2 are approximately separable, then SSA can
potentially separate X1 from X2; that is, it can find a decomposition X = ˜X1 + ˜X2
so that ˜X1 ≈ X1 and ˜X2 ≈ X2.

Consider, as an example, Basic SSA. Properties of the SVD yield that the
(approximate) orthogonality of columns and of rows of the trajectory matrices X1
and X2 of X1 and X2 can be considered as natural separability conditions.

There is a well-elaborated theory of separability for the one-dimensional time
series (Golyandina et al. 2001; Sections 1.5 and 6.1). Many important decomposi-
tion problems, from noise reduction and smoothing to trend, periodicity and signal
extraction, can be solved by SSA. The success of 1D-SSA in making separation
between separable objects is related to the simplicity of the Hankel structure of the
trajectory matrices and the optimality features of the SVD.

We will come back to the important concept of separability in Sect. 1.3 where
we define the main characteristic which is used in SSA for separability checking.

6 1 Introduction: Overview

1.1.2.3 Information for Grouping

The theory of SSA exhibits the ways of helping to detect the components
(σi, Ui, Vi) in the decomposition (1.2) related to the object component with certain
properties to perform proper grouping under the condition of separability. One of
the rules is that Ui and Vi (eigenvectors and factor vectors in the case of Basic
SSA) produced by an object component emulate the properties of this component.
For example, in Basic 1D-SSA the eigenvectors produced by slowly-varying series
components are slowly-varying, the eigenvectors produced by a sine wave are
sine waves with the same frequency, and so on. These properties help to perform
the grouping by visual inspection of eigenvectors and also by some automatic
procedures, see Sect. 2.7.

1.1.2.4 Trajectory Spaces and Signal Subspaces

Let X be the trajectory matrix corresponding to some object X. The column
(row) trajectory space of X is the linear subspace spanned by the columns
(correspondingly, rows) of X. The term “trajectory space” usually means “column
trajectory space.” The column trajectory space is a subspace of RL, while the row
trajectory space is a subspace of RK . In general, for real-world data the trajectory
spaces coincide with the corresponding Euclidean spaces, since they are produced
by a noisy data. However, in the “signal plus noise” model, when the signal has
rank-deficient trajectory matrix, the signal trajectory space can be called “signal
subspace.” Both column and row signal subspaces can be considered; note that the
dimensions of the row and column subspaces coincide.

1.1.2.5 Objects of Finite Rank

The class of objects that suit SSA are the so-called objects of finite rank. We say
that the object (either time series or image) has L-rank r if the rank of its trajectory
matrix is r < min(L,K); that is, the trajectory matrix is rank-deficient. If the L-
rank r does not depend on the choice of L for any sufficiently large object and
trajectory matrix sizes, then we say that the object is of finite rank and has rank r ,
see Sect. 2.1.2 for rigorous definitions.

Since the trajectory matrices considered in SSA methods are either pure Hankel
or consist of Hankel blocks, then the rank-deficient trajectory matrices are closely
related to the objects satisfying some linear relations. These linear relations can
be used for building forecasting methods. In the one-dimensional case, under some
non-restrictive conditions, rank-deficient Hankel matrices are in the one-to-one
correspondence with the linear recurrence relations (LRRs) of the form

xn = a1xn−1 + . . . + arxn−r

1.1 Generic Scheme of the SSA Family and the Main Concepts 7

and therefore are related to the time series which can be expressed as sums of
products of exponentials, polynomials, and sinusoids, see Sect. 2.1.2.2.

Each specific SSA extension produces a class of specific objects of finite rank.
The knowledge of ranks of objects of finite rank can help to recognize the rank-one
components for the component reconstruction. For example, in order to reconstruct
the exponential trend in the one-dimensional case, we need to group only one rank-
one component (the exponential function has rank 1), while to reconstruct a sine
wave we generally need to group two SVD components (the rank of a sine wave
equals 2).

The real-life time series or images are generally not of finite rank. However, if
a given object X is a sum of a signal of finite rank and noise, then, in view of
approximate separability, SSA may be able to approximately extract the signal and
subsequently use the methods that are designed for series of finite rank.

1.1.2.6 Reconstruction (Averaging)

Let us formally describe the operation of reconstruction of a matrix used in Step 4 of
the generic scheme described in Sect. 1.1.1. By analogy with the one-dimensional
case this operation can also be called “averaging over diagonals” even if the
averaging will be performed over more complicated patterns.

Assume that the entries xτ of the object X = {xτ } are indexed by the index τ

which can be simply a positive integer (for the one-dimensional series) or multi-
index (for digital images).

A linear map T is making a one-to-one transformation of M to M
(H)
L,K , the set of

L × K matrices of a specified structure. It puts elements of X on certain places of
the matrix T(X) = X = [(X)ij].

Let eτ ∈ M be the object with 1 as the τ th entry with all other entries zero.
Define the set of indices

Aτ = {(i, j) such that (Eτ)ij = 1} ,

where Eτ is the matrix

Eτ = [(Eτ)ij] = T(eτ) ∈ M
(H)
L,K .

If τ is the place of an element xτ ∈ X, then (X)ij = xτ for all (i, j) ∈ Aτ .
Assume now that ̂X ∈ RL×K is an arbitrary L × K matrix and we need to

compute

˜X = (̃xτ) = T−1 ◦ ΠH(̂X)

by first making the orthogonal projection of ̂X to the set M(H)
L,K and then writing

the result in the object space M. This operation is the extension of the “diagonal

8 1 Introduction: Overview

averaging” procedure applied in 1D-SSA: the elements x̃τ of ˜X are computed by the
formula

x̃τ =
∑

(i,j)∈Aτ

(̂X)ij /wτ = 〈̂X,Eτ 〉F/‖Eτ‖2
F ,

where Eτ = T(eτ), wτ = |Aτ | = ‖Eτ ‖2
F is the number of elements in the set Aτ

and the Frobenius inner product 〈·, ·〉F is defined by

〈Z,Y〉F =
∑

i,j

zij yij . (1.6)

1.2 Different Versions of SSA

Let us consider how the four steps of the generic scheme of SSA formulated in
Sect. 1.1 can vary for different versions of SSA.

Step 1: the form of the objectX and hence the specificity of the embedding operator
T makes a big influence on how a particular version of SSA looks like.

Step 2: not only the conventional SVD but many other decompositions of X into
rank-one matrices could be used.

Step 3: formally, this step is exactly the same for all versions of SSA although the
tools used to perform the grouping may differ.

Step 4: the embedding operator T defined in Step 1 fully determines the operations
performed at this step.

Therefore, we have two directions for creating different versions of SSA: the first
direction is related to geometrical features of the object X and a form of the
embedding operator T, while the second direction is determined by the form of the
decomposition at Step 2. Essentially, Step 1 is determined by the form of the object;
therefore, its variations can be considered as extensions of 1D-SSA. If instead of
SVD we use some other decomposition of X into rank-one matrices at Step 2,
then we call the corresponding algorithm a modification of Basic SSA. These two
directions of variations of SSA are not related to each other so that any extension of
Step 1 can be combined with any modification of Step 2.

We start the discussion with outlining some modifications that can be offered for
the use at Step 2.

1.2.1 Decomposition of X into a Sum of Rank-One Matrices

1.2.1.1 Variations of SSA Related to Methods of Decomposition

The conventional SVD formulated in the description of SSA in Sect. 1.1.1 is a
decomposition of X into a sum of rank-one matrices, which has some optimality

1.2 Different Versions of SSA 9

properties, see Golyandina et al. (2001; Chapter 4). Therefore, Basic SSA, which
is SSA with the conventional SVD used at Step 2, can be considered as the most
fundamental version of SSA among all SSA methods.

Let us enumerate several variations of SSA, which could be useful for answering
different questions within the framework of SSA.

A well-known modification of Basic SSA is Toeplitz SSA (Sect. 2.2), which was
created for dealing with stationary time series. This modification is devised for the
analysis of a natural estimate of the auto-covariance matrix of the original time
series and assumes that this time series is stationary. However, if the time series
X is non-stationary, then the reconstruction obtained by Toeplitz SSA can have a
considerable bias.

An important variation of SSA is SSA with projection (Sect. 2.3). If we have
a parametric model (which should be linear in parameters and agreeable with the
finite-rank assumption) for one of the components of the series, such as trend of
a one-dimensional series, then a projection on a suitable subspace is performed
and is followed by a decomposition of the residual, e.g., by the SVD. The known
methods of SSA with centering and SSA with double centering for extraction of
constant and linear trends, respectively, are special cases of SSA with projection.
More generally, an arbitrary polynomial trend can be extracted by a suitable version
of SSA with projection. Another use of SSA with projection is to build a subspace
from a supporting series and project the main series onto this subspace.

In some versions of SSA the intention is to improve separability properties of
SVD. If we use an oblique version of the SVD, then the resulting SSA method
becomes Oblique SSA. The following two versions of Oblique SSA seem to be
useful in practice, namely Iterative Oblique SSA (Sect. 2.4) and Filter-adjusted
Oblique SSA (Sect. 2.5). The latter is useful for separation of components with equal
contribution.

1.2.1.2 Nested Application of Different Versions of SSA

Since Oblique SSA does not have good approximating features, it cannot replace
Basic SSA which uses the conventional SVD. Therefore, Oblique SSA should be
used in a nested manner so that Basic SSA is used first to extract several components
without performing careful split of these components and then one of the proposed
oblique methods is used for separating the mixed components.

If we use Basic SSA for denoising and then some other version of SSA (like
Independent Component Analysis or Oblique SSA) for improvement of separability,
then we can interpret this as if using Basic SSA for preprocessing and using another
method for a more refined analysis. There is, however, a significant difference
between this and some methods mentioned in Sect. 1.7.3, where Basic SSA is
used for preprocessing and then ARIMA or other methods of different nature are
employed. Indeed, when we use Basic SSA for denoising and some other SSA
technique like Oblique SSA for improvement of separability, then we are using the
signal subspace estimated by Basic SSA rather than the estimated signal itself (recall

10 1 Introduction: Overview

that in the transition from the estimated signal subspace to the estimated signal we
incur an additional error).

Let us schematically demonstrate the nested use of the methods as follows. Let
X = X

(1)+X
(2)+X

(3) be a decomposition of the time series and X = X(1)+X(2)+
X(3) be the corresponding decomposition of the trajectory matrix of X. Let Basic
SSA return at Decomposition stage X = ˜X(1,2) + ˜X(3) and assume that a chosen
nested method makes the decomposition ˜X(1,2) = ˜X(1) + ˜X(2). Then the final result
is X = ˜X(1) +˜X(2)+˜X(3) and, after the diagonal averaging, X = ˜X

(1) +˜X
(2) +˜X

(3).
There is no need for reconstruction of the signal by Basic SSA as only the estimated
signal subspace is used for making a refined decomposition.

1.2.1.3 Features of Decompositions

The result of Decomposition step of SSA (Step 2) can be written in the form (1.2).
The SVD is a particular case of (1.2) and corresponds to the orthonormal systems
of {Ui} and {Vi}. By analogy with the SVD, we will call (σi , Ui, Vi) eigentriples, σi

singular values, Ui left singular vectors or eigenvectors, Vi right singular vectors or
factor vectors. For most of SSA decompositions, each Ui belongs to the column
space of X while each Vi belongs to the row space of X. We shall call such
decompositions consistent.

If the systems {Ui} and {Vi} are linearly independent, then the decomposi-
tion (1.2) is minimal; that is, it has smallest possible number of addends equal to
r = rankX. If at least one of the systems {Ui} or {Vi} is not linearly independent,
then the decomposition (1.2) is not minimal. If the decomposition (1.2) is not
consistent, then it can be not minimal even if {Ui} or {Vi} are linearly independent,
since their projections on the column (or row) space can be dependent.

If both vector systems {Ui} and {Vi} are orthogonal, then the decomposition (1.2)
is called biorthogonal. If {Ui} is orthogonal, then the decomposition is called left-
orthogonal; if {Vi} is orthogonal, then the decomposition is called right-orthogonal.

If Xi are F-orthogonal so that 〈Xi ,Xj 〉F = 0 for i
= j , then we say that the
corresponding decompositions are F-orthogonal. Either left or right orthogonality
is sufficient for F-orthogonality. For F-orthogonal decompositions (1.2), ‖X‖2

F =
∑

i ‖Xi‖2
F. In general, however, ‖X‖2

F may differ from
∑

i ‖Xi‖2
F.

The contribution of kth matrix componentXk is defined as σ 2
k /‖X‖2

F, where σ 2
k =

‖Xk‖2
F. For F-orthogonal decompositions, the sum of component contributions is

equal to 1. Otherwise, this sum can considerably differ from 1 (e.g., the sum of
component contributions can be 146%).

1.2.1.4 Decompositions in Different Versions of SSA

Let us gather several versions of 1D-SSA which are implemented in the RSSA

package and based on different procedures used at Decomposition step, and indicate
their features. Some of these variations are also implemented for multivariate and
multidimensional versions of SSA.

1.2 Different Versions of SSA 11

Basic SSA: the conventional SVD, consistent, minimal, biorthogonal and therefore
F-orthogonal decomposition. Implemented in ssa with kind="1d-ssa".

Toeplitz SSA: generally, non-consistent, non-minimal F-orthogonal decomposi-
tion. Implemented in ssa with kind="toeplitz-ssa".

SSA with projection: F-orthogonal but non-consistent decomposition if at least one
basis vector used for the projection does not belong to the column (row)
trajectory space. The components, which are obtained by projections, are
located at the beginning of the decomposition and have indices 1, . . . , nspecial.
Implemented in ssa with kind="1d-ssa" and non-NULL row.projector or
column.projector arguments.

Oblique SSA with filter preprocessing (Filter-adjusted O-SSA): consistent, min-
imal F-orthogonal decomposition. The main particular case is DerivSSA.
Implemented in fossa.

Iterative Oblique SSA (Iterative O-SSA): consistent, minimal oblique decomposi-
tion. Implemented in iossa.

Oblique versions of SSA are made to perform in a nested manner.

1.2.2 Versions of SSA Dealing with Different Forms
of the Object

In this section, we briefly consider different versions of SSA which operate objects
X of different forms. The main difference between different versions of SSA of this
section is the form of the embedding operator T.

As has been mentioned above, SSA can be applied to multivariate and multidi-
mensional objects. SSA for a system of series is called Multivariate (or Multichan-
nel) SSA, shortly MSSA (Sect. 4.2); SSA for digital gray-scale images is called
2D-SSA (Sect. 5.1).

Complex SSA (Sect. 4.1) is a special version of SSA for the analysis of two time
series of equal length or a single one-dimensional complex-valued time series.

Shaped SSA (Sects. 2.6 and 5.2) can process data of complex structure and
arbitrary shape; the dimension of the object X is irrelevant. Shaped SSA can be
applied to many different kinds of data including time series, systems of time series,
digital images of rectangular and non-rectangular shapes.

For both series and images, circular versions of SSA are available. For series,
circular SSA works in the metric of a circle and therefore this version is suitable for
series, which are indeed defined on a circle.

For images, circular versions of SSA provide a possibility to decompose images
given on a cylinder (for example, obtained as a cylindrical projection of a sphere
or an ellipsoid) or given on a torus. Circular versions allow to eliminate the edge
effects, which are unavoidable in the case of, e.g., planar unfolding of a cylinder.

Table 1.1 contains a list of the extensions considered in this book.

12 1 Introduction: Overview

Table 1.1 Classification of different versions of SSA based on different geometrical features of
the object X

Method Data Notation Trajectory matrix Section

1D-SSA Time series (t.s.) X = (x1, . . . , xN) of
length N

Hankel 2.1

CSSA Complex t.s. X
(1) + iX(2) Complex Hankel 4.1

MSSA System of t.s. X
(p) of length Np ,

p = 1, . . . , s

Stacked Hankel 4.2

2D-SSA Rectangular image X = (xij)
Nx ,Ny

i,j=1 Hankel-Block-Hankel 5.1

ShSSA Shaped objects X = (x(i,j))(i,j)∈N Quasi-Hankel 5.2

Circular SSA Circular/cylindrical Objects on circle or
cylinder

Quasi-Hankel 5.2.1.3

1.3 Separability in SSA

In this section, we discuss the SSA separability in more detail; see also
Sects. 2.1.3, 2.3.3, 2.4.2, 2.5.2 for special cases.

Let us assume that we observe a sum of two objects X = X
(1)+X

(2). We say that
SSA separates these two objects if a grouping at Grouping step (Step 3) can be found
such that ˜X

(k) = X
(k) for k = 1, 2. If these equalities hold approximately, then

this defines approximate separability. Asymptotic separability can be introduced if
the series length N → ∞. In this case, approximate separability takes place for
large enough series lengths. The separability property is very important for SSA as
it means that the method potentially works; that is, it is able to extract the object
components.

In Basic SSA and its multidimensional extensions, (approximate) separability
means (almost) orthogonality of the object components, since the biorthogonal SVD
decomposition is used. In other versions of SSA, different conditions of separability
can be formulated.

If the decomposition (1.2) at Decomposition step is not unique, then two
variants of separability are introduced. Weak separability means that there exists a
decomposition such that after grouping we obtain ˜X

(k) = X
(k). Strong separability

means that this equality is achievable for any admissible decomposition.
Conditions of exact separability are very restrictive whereas asymptotic sepa-

rability takes place for a wide range of object components. For example, slowly
varying smooth components are asymptotically separable from regular oscillations
and they both are asymptotically separable from noise.

In order to verify separability of the reconstructed components ˜X1 and ˜X2, we
should check orthogonality of their reconstructed trajectory matrices ˜X1 and ˜X2. A
convenient measure of their orthogonality is the Frobenius inner product 〈˜X1,˜X2〉F
defined in (1.6).

The normalized measure of orthogonality is

ρ(˜X1,˜X2) = 〈˜X1,˜X2〉F/(‖˜X1‖F‖˜X2‖F) .

1.4 Forecasting, Interpolation, Low-Rank Approximation, and Parameter. . . 13

Since the trajectory matrix consists of wτ = |Aτ | = ‖T(eτ)‖2
F entries of the τ th

element xτ of the initial ordered object, we can introduce the weighted inner product
in the space M: (Y,Z)w = ∑

τ wτ yτ zτ . Then the quantity

ρw(˜X1,˜X2) = ρ(˜X1,˜X2) = (˜X1,˜X2)w

‖˜X1‖w‖˜X2‖w
(1.7)

will be called w-correlation by statistical analogy. Note however that in this
definition the means are not subtracted.

Let ˜Xj be the elementary reconstructed components produced by the elementary

grouping Ij = {j }. Then the matrix of ρ
(w)
ij = ρw(˜Xi ,˜Xj) is called w-correlation

matrix.
The norm ‖ · ‖w is called the weighted norm and serves as a measure of

contribution of the components in the decomposition (1.5): the contribution of ˜Xk

is defined as ‖˜Xk‖2
w
/‖X‖2

w.
If the weighted correlation between a pair of elementary components is large,

then this suggests that these two components are highly correlated and should
perhaps be included into the same group.

1.4 Forecasting, Interpolation, Low-Rank Approximation,
and Parameter Estimation in SSA

There is a class of objects, which is special for SSA. This is the class of objects
satisfying linear recurrence relations. Trajectory matrices of these objects are rank-
deficient and, moreover, for these objects the number of non-zero terms in the
SVD (1.3) does not depend on the window length if this length is sufficiently large;
we will say in such cases that the objects are of finite rank. The class of objects
satisfying linear recurrence relations provides a natural model of the signal for SSA,
which is a fundamentally important concept for forecasting of time series.

Linear recurrence relation (LRR) for a time series SN = (si)
N
i=1 is a relation of

the form

si+t =
t

∑

k=1

aksi+t−k, 1 ≤ i ≤ N − t, at
= 0, t < N. (1.8)

It is well known (see, e.g., Hall (1998; Theorem 3.1.1)) that a sequence S∞ =
(s1, . . . , sn, . . .) satisfies the LRR (1.8) for all i ≥ 0 if and only if for some integer
p we have for all n

sn =
p

∑

k=1

Pk(n)μn
k , (1.9)

14 1 Introduction: Overview

where Pk(n) are polynomials in n and μk are some complex numbers. For real-
valued time series, (1.9) implies that the class of time series governed by the LRRs
consists of sums of products of polynomials, exponentials, and sinusoids.

A simplified model of (1.9) is sn =
p
∑

k=1
ckμ

n
k . Estimation of complex numbers

μk = ρke
i2πωk is equivalent to estimating the frequencies ωk and the rates ln ρk .

For images S = [smn], LRRs are two-dimensional and the common term of the
signal (which can be called pattern) under the model has the form

smn =
p

∑

k=1

Pk(m, n)μm
k νn

k . (1.10)

This important fact is well known starting from Kurakin et al. (1995; §2.20).
In many real-life problems, a noisy signal (or noisy pattern for images) is

observed and the problem is to forecast the signal, impute gaps in the signal,
estimate signal parameters, find change-points in the signal, and so on. Note that
it is not compulsory to assume that the noise is random. In a very general sense,
noise is a residual which does not require further investigation.

SSA may provide estimates of the signal space, which is the subspace spanned by
the chosen basis during Grouping step in SSA. The estimation of the signal subspace
can be performed by iterations (so-called Cadzow iterations), which consist of
iterative SSA processing, see Sect. 3.4.

In the process of estimation of the signal subspace we also obtain a parametric
estimate of the signal; that is, of the set of {μk} in the 1D case and the set of {μk, νk}
in the 2D case. One of the most common methods is called ESPRIT for series and
2D-ESPRIT for images (see Sects. 3.1.1.2 and 5.3).

For series, sequential on-line estimation of the signal structure produces natural
algorithms of subspace tracking (e.g., for monitoring structural stability of an object
changing in time) and change-point detection. Also, we can forecast the found
structure, e.g., by application of the constructed LRR. By performing interpolation
(which is forecasting inside the series) missing data can be filled in.

1.5 The Package

1.5.1 SSA Packages

There are many implementations of SSA. They differ by potential application areas,
implemented methods, interactive or non-interactive form, free or commercial use,

1.5 The Package 15

computer system (Windows, Unix, Mac), level of reliability and support. The most
known supported software packages implementing SSA are the following:

1. http://gistatgroup.com:
general-purpose interactive “Caterpillar”-SSA software (Windows) following
the methodology described in Golyandina et al. (2001), Golyandina and Zhigl-
javsky (2013);

2. http://www.atmos.ucla.edu/tcd/ssa:
oriented mainly on climatic applications SSA-MTM Toolkit for spectral analysis
(Ghil et al. 2002) (Unix) and its commercial extension kSpectra Toolkit (Mac),
interactive;

3. The commercial statistical software, SAS, has an econometric extension called
SAS/ETS�, which includes SSA in its rather basic form; this version of SSA is
based on the methodology of Golyandina et al. (2001).

4. http://cran.r-project.org/web/packages/Rssa:
R package RSSA (Korobeynikov et al. 2017), an implementation of the main SSA
procedures for major platforms, extensively developed.

We consider the RSSA package as an efficient implementation of a large variety
of the main SSA algorithms. This package also contains many visual tools which
are useful for making proper choice of SSA parameters and examination of results.

RSSA is the only SSA package available from CRAN and we believe it is the
fastest implementation of SSA. Another important feature of the package is its very
close relation to the SSA methodology thoroughly described in Golyandina et al.
(2001), Golyandina and Zhigljavsky (2013), Golyandina et al. (2015). As a result of
this, the use of the package is well theoretically and methodologically supported.

1.5.2 Tools for Visual Control and Choice of Parameters

SSA needs tools to help choosing the method parameters and controlling the results.
To a great extent, SSA is an exploratory technique and hence visual tools are vital
and they are extensively used in RSSA. For example, in order to help to choose the
groups in (1.4), RSSA allows plotting measures of separability of series components
in the obtained decompositions.

The tools for accuracy control are divided into two groups. First, stability of
results with respect to parameter changes can be checked. Second, the bootstrap
procedure could be used when the model (not necessarily parametric) of either
the series or other object is built on the base of signal reconstruction and then
the accuracy of this model is assessed by simulation according to the estimated
model. Shortly, RSSA allows the user to enjoy a large variety of graphical tools and
bootstrap procedures.

http://gistatgroup.com
http://www.atmos.ucla.edu/tcd/ssa
http://cran.r-project.org/web/packages/Rssa

16 1 Introduction: Overview

1.5.3 Short Introduction to RSSA

The RSSA package implements all methods and tools mentioned above.
The main function is ssa, which initializes an ssa object and by default

performs the decomposition by different methods. Together with reconstruct,
they implement the SSA method. For nested versions, iossa and fossa serve for
refined decompositions.

An ssa object s contains, among others, elements of the decomposition (1.2),
which can be accessed as s$sigma, s$U, and s$V. Features of the decompositions
differ for different versions of SSA (see Sect. 1.2.1.4). For Basic SSA, s$sigma

are called singular values; squares of s$sigma are called eigenvalues; s$U are
called eigenvectors. (We keep these names for other versions of SSA as well.)
The relative contributions of components to the decomposition can be obtained
as contributions(s); see Sect. 1.2.1.3, where formulas for their calculation are
given and explained.

A variety of functions plot help to visualize the results and additional infor-
mation. Functionality of SSA-related methods is supplemented by the functions
forecast, parestimate, and some others.

All essential versions of SSA are implemented in RSSA but not all further actions
like forecasting and gap filling are consistent with all implemented versions of SSA.
The user can check the ssa object, which is returned by the main function ssa, for
compatibility by the function ssa.capabilities. This function returns a list of
capabilities with information TRUE or FALSE, respectively.

A general scheme of investigation by means of RSSA is as follows:

1. perform decomposition by ssa;
2. visualize the result by plot;
3. if necessary, refine decomposition by iossa or fossa;
4. again, visualize the result by plot;
5. perform grouping based on the obtained visual and numerical information; in

particular, choose the group of signal components;
6. then perform one of the following actions: reconstruction of series compo-

nents by reconstruct, forecasting by forecast, parameter estimation by
parestimate;

7. visualize the result by plot.

Note that RSSA contains more algorithms than this book formulates. However,
the book has enough information to understand how to extend the algorithms, such
as parameter estimation, filling-in missing data and O-SSA, to different dimensions
and geometries. Many of these versions are implemented in RSSA but not described
in the book explicitly: there are infinitely many dimensions and geometries and the
algorithms are formulated in the book in such a manner that they can be easily
generalized if needed.

1.6 Comparison of SSA with Other Methods 17

1.5.4 Implementation Efficiency

The user does not need to know the specifics of the internal implementation of the
RSSA functions. However, understanding of the general principles of implementa-
tion can help to use the package more effectively.

The fast implementation of SSA-related methods, which was suggested in
Korobeynikov (2010), extended in Golyandina et al. (2015) and is used in the
RSSA package (Korobeynikov et al. 2017), relies on the following techniques (see
Shlemov and Golyandina (2014) for a more thorough discussion).

1. The truncated SVD calculated by the Lanczos methods (Golub and Van Loan
1996; Ch. 9) is used. In most SSA applications, only a number of leading SVD
components correspond to the signal and therefore are used at Grouping step of
the SSA algorithm. Thus, a truncated SVD rather than the full SVD is usually
required by SSA.

2. Lanczos methods do not use the explicit representation of the decomposed
matrix A. They need only the results of multiplication of A and AT on some
vectors. In view of the special Hankel-type structure of A in the SSA algorithms,
multiplication by a vector can be implemented very efficiently with the help of
the Fast Fourier Transform (FFT). Fast SVD algorithms are implemented in the
R-package SVD (Korobeynikov et al. 2016) in such a way that their input is the
function of a vector which yields the result of fast multiplication of the vector
by the trajectory matrix. Therefore, the use of SVD in RSSA allows a fast and
space-efficient implementation of the SSA algorithms.

3. At Reconstruction step, hankelization or quasi-hankelization of a matrix of
rank 1, stored as σUV T, can be written by means of the convolution operator
and therefore can also be effectively implemented; this is also done in RSSA.

The overall complexity of the computations is O(kN log(N) + k2N), where N

is the number of elements in a shaped object and k is the number of considered
eigentriples, see details in Korobeynikov (2010) and in Golyandina et al. (2015).
This makes the computations feasible for large data sets and large window sizes. For
example, the case of an image of size 299 × 299 and a window size 100 × 100 can
be handled rather easily, whereas the conventional algorithms (e.g., the full SVD
(Golub and Van Loan 1996)) are impractical, because the matrix that needs to be
decomposed has size 104×4 ·104. Using larger window sizes is often advantageous,
since, for example, separability of signal from noise (in the “signal+noise” scenario)
can be significantly improved.

1.6 Comparison of SSA with Other Methods

In this section, we provide some notes and a short bibliographical overview
concerning comparison of SSA with several traditional methods.

18 1 Introduction: Overview

1.6.1 Fourier Transform, Filtering, Noise Reduction

• Fourier Transform uses a basis given in advance, while SSA uses an adaptive
basis, which is not restricted to a frequency grid with resolution 1/N . The wavelet
transform also uses fixed bases; the advantage of the wavelet transform is that a
change in the frequencies can be detected by the used time-space basis. In the
framework of SSA, the analysis of time series with changing frequency structure
can be performed by using moving procedures, e.g., by subspace tracking.

• One of the state-of-the-art methods of frequency estimation is the high-resolution
method ESPRIT, which is a subspace-based method. This method can be con-
sidered as an SSA-related method and indeed it is frequently used in the present
book and in RSSA.

• Fourier Transform is very inefficient for series with modulations in amplitudes
and frequencies. SSA can easily deal with amplitude modulation but cannot
efficiently deal with frequency modulation.

• SSA decomposition can sometimes be viewed as an application of a set of linear
filters (Bozzo et al. 2010; Harris and Yan 2010; Golyandina and Zhigljavsky
2013) with an interpretation depending on the window length L. For small L,
each decomposition component on the interval [L,K], where K = N − L + 1,
can be obtained by a linear filter. Therefore, the viewpoint of filtering on the
decomposition result can be adequate. For example, the reconstruction by the
leading components is close to application of the triangle filter.
If L � K and hence the interval [L,K] is small, then it is not so. In this case, the
separability approach, which is based on orthogonality of separated components,
is more appropriate. Note that oblique versions of SSA can weaken the condition
of orthogonality, see Sect. 2.4.

• There is a big difference between the moving averaging and SSA for noise
reduction. Consider an example of a noisy sinusoid. The moving averaging will
add a bias in estimation caused by the second derivative of the signal, while SSA
with large L will provide an unbiased estimate of the signal.
Note that even for small L, when the reconstruction by the leading component
is a weighted moving average with positive weights and therefore has the same
drawbacks as the moving averaging, the user can add additional components to
remove the possible bias.

• Filtering by SSA to obtain noise reduction can be considered from the view-
point of the low-rank approximation. The good approximation properties yield
appropriate noise suppression. Empirical-mode decomposition (EMD), in turn,
starts Intrinsic Mode Functions (IMF) with high frequencies, while the trend is
contained in the last IMFs.

As an example of comparison of SSA, Fourier transform and wavelet transform
see, e.g., Kumar et al. (2017). The authors conclusion states: “the SSA-based
filtering technique is robust for regional gravity anomaly separation and could be
effectively exploited for filtering other geophysical data.”

1.6 Comparison of SSA with Other Methods 19

In Barrios-Muriel et al. (2016), an SSA-based de-noising technique for removal
of electrocardiogram interference in Electromyography signals is compared with the
high-pass Butterworth filter, wavelets, and EMD. The authors of this paper state:
“the proposed SSA approach is a valid method to remove the ECG artifact from the
contaminated EMG signals without using an ECG reference signal.”

In Watson (2016), many different methods for trend extraction are compared
for synthetic data simulating sea level behavior; SSA is compared against moving
average, wavelets, regression, EMD. The author writes: “the optimum performing
analytic is most likely to be SSA whereby interactive visual inspection (VI)
techniques are used by experienced practitioners to optimize window length and
component separability.”

Comparison of SSA filtering and Kalman filters (KF) can be found in Chen et al.
(2016), where it is shown that “both SSA and KF obtain promising results from
the stations with strong seasonal signals, while for the stations dominated by the
long-term variations, SSA seems to be superior.”

1.6.2 Parametric Regression

Parametric regression naturally assumes a parametric model. There is a big dif-
ference between parametric and non-parametric models: if the assumed model is
true, then the related parametric methods are the most appropriate methods (if there
are no outliers in the data). If the assumed parametric model is not true, then the
results of parametric methods are biased and may be very misleading. Drawbacks of
non-parametric methods are also clear: there are problems with forecasting, testing
the model, confidence interval construction, and so on. Frequently, non-parametric
methods serve as preprocessing tools for parametric methods. As discussed in
Sect. 1.7.3, this is often the case for SSA.

For comparison of SSA with double centering and linear regression see, for
example, Sect. 2.3 and Golyandina and Shlemov (2017). It appears that SSA with
double centering as preprocessing method considerably improves the accuracy of
linear trend estimation.

SSA has a very rare advantageous property: it can be a non-parametric method
for preliminary analysis and can also be parametric for modeling the series governed
by LRRs. Moreover, the forecast by an LRR uses the parametric model in implicit
manner; therefore, it is more robust to deviations from the model than the forecast
based on explicit parameter estimation.

One of the subspace-based method for constructing the model of the signal,
which is governed by an LRR, is Hankel low-rank approximation (HLRA). HLRA
can be considered as a method of parameter estimation in a parametric model, where
only the rank of the signal is given rather than exact parametric form, see Sect. 3.4.

20 1 Introduction: Overview

1.6.3 ARIMA and ETS

First, the (Seasonal) ARIMA and Exponential smoothing models (ETS, which
means Error, Trend, Seasonal) totally differ from the model of SSA (for a com-
prehensive introduction to ARIMA and ETS, see Hyndman and Athanasopoulos
(2013)). In particular, in ARIMA the noise is added at each recurrence step, while
for SSA the noise is added after the signal is formed. Also, trends/seasonality in
SSA are deterministic, while in ARIMA/ETS the trends/seasonality are random. As
in many classical methods, ARIMA and ETS need the period values to be specified
for the periodic components.

However, if one considers the analysis/forecast of real-life time series, then these
time series do not exactly follow any model. Therefore, the problem of comparison
of methods of different nature is not easy.

As a rule, confidence intervals for ARIMA forecasts are too large but the mean
forecast can often be adequate. Advantage of Seasonal ARIMA and ETS is that
the model and its parameters can be fitted automatically on the base of information
criteria.

Rigorously substantiated information criteria are not constructed for SSA. One
of the reasons for this is the fact that SSA is a non-parametric method. The most
standard approach for the choice of parameters, when there are no given models,
is the minimization of the forecasting error on the validation period. In the most
frequent case, when the forecast is constructed on the base of r leading eigentriples,
SSA has only two parameters (L and r), which can be estimated by the minimization
of the forecasting error for several forecasts performed within the validation period,
see Sect. 3.5.7.

Comparison of SSA and ARIMA/ETS was performed in many papers. Some
examples are as follows.

• It is demonstrated in Hassani et al. (2015) that SSA has topped several other
methods in an example involving forecasting of tourist arrivals,

• It is exhibited in Vile et al. (2012) that for predicting ambulance demands “SSA
produces superior longer-term forecasts (which are especially helpful for EMS
planning), and comparable shorter-term forecasts to well established methods.”

• The author of Iqelan (2017) concludes: “The forecasting results are compared
with the results of exponential smoothing state space (ETS) and ARIMA models.
The three techniques do similarly well in forecasting process. However, SSA
outperforms the ETS and ARIMA techniques according to forecasting error
accuracy measures.”

• In Hassani et al. (2009, 2013), the univariate and multivariate SSA were favorable
in a comparison with ARIMA and VAR for forecasting of several series of
European industrial production.

1.7 Bibliographical Notes 21

1.7 Bibliographical Notes

1.7.1 Short History

Commencement of SSA is usually associated with publication in 1986 of the papers
Broomhead and King (1986) and Broomhead and King (1986b). However, some
ideas, which later became parts of SSA, have been formulated very long ago
(de Prony 1795). Arguably, the most influential papers on SSA published in the
1980 and 1990s, in addition to Broomhead and King (1986,b), are Fraedrich (1986),
Vautard and Ghil (1989), Vautard et al. (1992), Allen and Smith (1996). In view of
many successful applications of SSA, the number of publications considering SSA
methodology grows exponentially and has surely reached few hundred.

A parallel development of SSA (under the name “Caterpillar”) has been con-
ducted in the former USSR, especially, in St.Petersburg (known at that time as
Leningrad), see, e.g., Danilov and Zhigljavsky (1997). The authors of this book
continue the traditions of the St.Petersburg school of SSA.

The monograph (Golyandina et al. 2001) contains a comprehensive description
of the theoretical and methodological foundations of SSA for one-dimensional (1D)
time series; the authors of that monograph tried to summarize all the knowledge
about 1D-SSA available at that time. A short book (Golyandina and Zhigljavsky
2013) developed further the methodology of 1D-SSA. It reflected the authors’ new
understandings as well as new SSA insights including subspace-based methods,
filtering and rotations in the signal space for improving separability. A substantial
paper (Golyandina et al. 2015) supplements the above books by expanding SSA for
processing multivariate time series and digital images.

1.7.2 Some Recent Applications of SSA

The number of publications devoted to applications of SSA is steadily increasing.
In addition to the standard applications areas such as climatology, meteorology,
and geophysics, there are now many papers devoted to applications in engineering,
economics, finance, biomedicine, and other areas. One can find many references to
recent publications in Zhigljavsky (2010) and many papers in the two special issues
of Statistics and Its Interface (2010, v.3, No.3 and 2017, v.10, No.1), which are
either fully or partly devoted to SSA. In this short section we briefly mention some
recent applications of SSA. In most of these papers, only the simplest versions of
SSA (that is, Basic SSA of Sect. 2.1 and Toeplitz SSA of Sect. 2.2) have been used.

Advantages of 2D-SSA (described in Sect. 5.1) over some other methods of
image processing are demonstrated in Zabalza et al. (2014, 2015) in application
to hyperspectral imaging. Application of 2D-SSA to gap-filling is considered in
von Buttlar et al. (2014). Application of Multivariate SSA for detecting oscillator
clusters in multivariate datasets is proposed in Groth and Ghil (2015).

22 1 Introduction: Overview

It is not easy to find applied areas related to analysis of temporal data, where
1D-SSA was not applied. Let us give some examples. In Salgado et al. (2013) and
several other papers of the same authors, SSA has been used as the main technique
in the development of a tool-wear monitoring system. Security of mobile devices is
considered in Genkin et al. (2016), where SSA is used for preprocessing. In Sella
et al. (2016), SSA was used for extraction of economic cycles. Filho and Lima
(2016) use SSA for gap filling of precipitation data. Some recent applications in
climatology were considered in Mudersbach et al. (2013), Monselesan et al. (2015)
and in Pepelyshev and Zhigljavsky (2017). In Karnjana et al. (2017), SSA helps
to solve the problem of unauthorized modification in speech signals. In Barrios-
Muriel et al. (2016), SSA is used for de-noising in the problem of removal of
electrocardiogram interference in electromyography signals. The paper (Hudson
and Keatley 2017) is related to the decomposition and reconstruction of long-term
flowering records of eight eucalypt species. In Wang et al. (2017), SSA was used as
a preprocessing tool prior to making a classification of a medical data; the authors
wrote: “the results have demonstrated the robustness of the approach when testing
on large scale datasets with clinically acceptable sensitivity and specificity.”

1.7.3 SSA for Preprocessing/Combination of Methods

For many different methods, SSA provides improvement if it is used as a preprocess-
ing tool. There are dozens of papers, where hybrid methods incorporating SSA are
considered. In most of the applications, SSA serves for either denoising or feature
extraction. Let us give some examples of papers considering hybrids of SSA and
other methods.

SSA is used as a preprocessing step for ARIMA in Zhang et al. (2011). A
cooperative hybrid of SSA, ARIMA, and Holt-Winters is suggested in Xin et al.
(2015). In Lakshmi et al. (2016) it is shown that the hybrid SSA + ARMAX is better
than ARMAX alone for detection of structural damages for problems of Structural
Health Monitoring.

In machine leaning, SSA is frequently used to obtain new characteristics of time
series for a subsequent use of them in other models and methods. This is called
feature extraction. The paper (Sivapragasam et al. 2001) is considered as a one of
the first papers, where SSA is used together with Support Vector Machines (SVM).
A hybrid of SSA with Neural Networks was suggested in Lisi et al. (1995).

In Wang et al. (2016), support vector machine regression (SVR) is applied
separately to the trend and fluctuations, which are extracted by SSA. The con-
structed method is applied to forecast a time series data of failures gathered at the
maintenance stage of the Boeing 737 aircraft. It is shown that the suggested hybrid
SSA+SVR outperforms Holt-Winters, autoregressive integrated moving average,
multiple linear regression, group method of data handling, SSA, and SVR used
separately. Similar techniques are considered in Xiao et al. (2014), where SSA is
employed for extraction of the trend and seasonality and then Neural Networks and

1.7 Bibliographical Notes 23

fuzzy logic are applied to them separately with consequent combination. In Wu and
Chau (2011), SSA is successfully used for noise removal before Neural Networks
are applied. This work contains a review of different approaches to Rainfall-runoff
modeling by means of SSA used in combination with other methods.

In Zabalza et al. (2014), SSA has been applied in hyperspectral imaging for
effective feature extraction (noise removal), and then SVM was used for classifi-
cation. It appeared that SSA performed preprocessing better than Empirical Mode
Decomposition (EMD). Note that SSA and EMD do not only compete; they can be
successful as hybrids. For example, in Yang et al. (2012) EMD is used for trend
extraction and then SSA is applied to forecast changes in the trend.

1.7.4 Materials Used in This Book

In writing this book we have used much material from different sources. Many
sections contain the material which is entirely new but other sections are based on
our previous publications. Let us briefly describe the main references we have used
in writing the theoretical and methodological material of the book.

Chapter 1 (Introduction: Overview) contains an original approach to the SSA
modifications from a general viewpoint. The generic scheme of SSA-family meth-
ods from Sect. 1.1 was suggested in Golyandina et al. (2015).

1D-SSA is well elaborated and therefore Chap. 2 (SSA analysis of one-
dimensional time series), in addition to some new material (this especially concerns
new examples and the discussions concerning RSSA), revises standard SSA tech-
niques. Sections 2.1 (Basic SSA) and Sect. 2.2 (Toeplitz SSA) contain standard
material partially taken from Golyandina et al. (2001; Chapter 1). Ideas of Sect. 2.3
(SSA with projection) were firstly suggested in Golyandina et al. (2001; Sec-
tion 1.7.1) (centering) and then extended in Golyandina and Shlemov (2017).
Methods described in Sect. 2.4 (Iterative Oblique SSA) and Sect. 2.5 (Filter-adjusted
O-SSA and SSA with derivatives) were suggested in Golyandina and Shlemov
(2015); these two sections closely follow this paper. Section 2.6 (Shaped 1D-SSA)
contains a particular case of Shaped SSA, which was suggested in Golyandina
et al. (2015) for multidimensional case and is described in Sect. 5.2. Section 2.7
(Automatic grouping in SSA) follows Alexandrov (2009) and Golyandina and
Zhigljavsky (2013; Section 1.4.5).

Much of the theoretical material of Chap. 3 (Parameter estimation, forecasting,
gap filling) is standard for the methodologies of the subspace-based methods. In
writing Sect. 3.1 (Parameter estimation) we have extensively used Golyandina
and Zhigljavsky (2013; Sections 2.2, 2.8). Section 3.2 (Forecasting) includes the
algorithms from Golyandina et al. (2001; Chapter 2). Gap filling in Sect. 3.3
contains two methods, iterative method taken from Kondrashov and Ghil (2006)
and the subspace-based method taken from Golyandina and Osipov (2007). Both
methods are described in accordance with Golyandina and Zhigljavsky (2013).
Section 3.4 devoted to structured low-rank approximation (briefly, SLRA) describes

24 1 Introduction: Overview

Cadzow-like (Cadzow 1988) iterative algorithms for finding low-rank approxima-
tions. SLRA is a very standard approach, which was extended to weighted Cadzow
iterations in Zhigljavsky et al. (2016a) and Zvonarev and Golyandina (2017).

In writing Chap. 4 (SSA for multivariate time series) we use Golyandina and
Stepanov (2005) and Golyandina et al. (2015). In Chap. 5 (Image processing), we
mainly follow Golyandina et al. (2015). Moreover, in Sect. 5.1 (2D-SSA) we use
material from Golyandina and Usevich (2010) and in Sect. 5.2 (Shaped 2D-SSA)
and Sect. 5.3 (2D ESPRIT) we incorporate the ideas developed in Golyandina et al.
(2015) and Shlemov and Golyandina (2014).

Some material in the algorithmic and RSSA sections is based on the papers
(Golyandina and Korobeynikov 2013; Golyandina et al. 2015).

1.8 Installation of RSSA and Description of the Data
Used in the Book

1.8.1 Installation of RSSA and Usage Comments

The package RSSA is available from CRAN on http://CRAN.R-project.org/
package=Rssa and can be installed via the standard install.packages routine
and therefore all the dependencies are installed automatically.

There is a special library, FFTW (Frigo and Johnson 2005), which is not mandatory
for the installation of RSSA; however, possibilities of RSSA would be considerably
lower if FFTW is not installed. The library FFTW should be installed prior to RSSA

by the standard tools of the used operating system. For example, FFTW can be
installed by running apt-get install libfftw3-bin libfftw3-dev (Ubuntu
Linux) or brew install fftw (MacOS, homebrew). Windows pre-built packages
from CRAN already use FFTW.

Sources of RSSA can be found at https://github.com/asl/rssa, where the user
can ask questions about installation and usage problems. In addition, the current
development version of RSSA could be installed straight from github repository
using install_github from DEVTOOLS (Wickham and Chang 2017).

In this book, RSSA v1.0 has been used for all illustrative examples. All SSA
computations can be reproduced by the reader and should run correctly by any later
version of RSSA. The sets of data used in these examples are included into the R-
package SSABOOK, unless a particular set is contained in one of the following three
R-packages: built-in DATASETS, FMA, and RSSA. The description of the datasets is
contained in Tables 1.2 and 1.3. In order to reproduce the examples from the book,
SSABOOK should be installed as well as LATTICE, LATTICEEXTRA, PLYR, and FMA.
Source codes for all examples as well as the R-package SSABOOK can be down-
loaded from the web-site devoted to the book https://ssa-with-r-book.github.io.

In the following chapters there are quite a few sections named “Description of
functions.” In these sections, we describe the main RSSA functions and their basic

http://CRAN.R-project.org/package=Rssa
http://CRAN.R-project.org/package=Rssa
https://github.com/asl/rssa
https://ssa-with-r-book.github.io

1.8 Installation of RSSA and Description of the Data Used in the Book 25

Table 1.2 Description of data and R-packages

Data Short description Timing R package Dataframe name

AustralianWine Australian wine sales:
thousands of liters. By wine
makers in bottles ≤ 1 l

Monthly RSSA AustralianWine

CO2 Atmospheric concentrations
of CO2 in parts per million
(ppm)

Monthly DATASETS co2

White dwarf Time variation of the
intensity of the variable
white dwarf star
PG1159-035

Each 10 s SSABOOK dwarfst

Production Crude oil and natural gas
plant liquids production

Monthly SSABOOK oilproduction

Tree rings Tree ring indices, Douglas
fir, Snake river basin, USA

Annual SSABOOK dftreerings

MotorVehicle Total domestic and foreign
car sales in the USA in
thousands

Monthly RSSA MotorVehicle

US
unemployment

U.S. male and female
unemployment figures in
thousands (16–19 years and
from 20 years)

Monthly RSSA USUnemployment

Hotel Hotel occupied room av. Monthly SSABOOK hotel

PayNSA All employees: Total
nonfarm payrolls

Monthly SSABOOK paynsa

Elec Australian electricity
production

Monthly FMA elec

Cowtemp Daily morning temperature
of a cow, measured at
6.30am

Daily FMA cowtemp

Glonass Glonass time corrections Each 5 min SSABOOK g15

Sunspots Mean total sunspot number Annual SSABOOK sunspot2

Bookings Numbers of hotel bookings
through a particular web-site

Hourly SSABOOK bookings

EuStockMarkets Closing prices of major
European stock indices

Daily DATASETS EuStockMarkets

Mars An image of Mars
performed by Pierre Thierry

Image RSSA Mars

Brecon
Beacons

The test DTM of a region in
South Wales, UK

Image SSABOOK brecon

Kruppel Regularized data of gene
expression for the “Krüppel”
gene (a drosophila embryo)

image SSABOOK kruppel

Monet “A preview of the painting
of Claude Monet called
“Study of a Figure
Outdoors: Woman with a
Parasol, facing left,” 1886

Image SSABOOK monet

26 1 Introduction: Overview

Table 1.3 Description of data and sources

Data Length Time range Source

AustralianWine 176 Jan 1980–Jul
1995

Hyndman (2013)

CO2 468 Jan 1959–Jan
1997

Cleveland (1993)

White dwarf 618 during March
1989

Weigend and Gershenfeld (1993)

Production 300 Jan 1973–Dec
1997

Source: U.S. Energy Information
Administration (Jan 2016) http://www.
eia.gov/totalenergy/data/monthly/#
summary

Tree rings 669 1282–1950 Hyndman (2013)

MotorVehicle 541 Jan 1967–Jan
2012

U.S. Bureau of Economic Analysis,
2015. Table 7.2.5s https://www.bea.
gov/histdata/Releases/GDP_and_PI/
2015/Q1/Third_June-24-2015/UND/
Section7ALL_xls.xls

US unemployment 408 Jan 1948–Jan
1981

Andrews and Herzberg (1985)

Hotel 168 Jan 1963–Dec
1976

Hyndman (2013)

PayNSA 913 Jan 1939–Jan
2015

Hyndman (2013)

Elec 476 Jan 1956–Aug
1995

Makridakis et al. (1998)

Cowtemp 75 Unknown Makridakis et al. (1998)

Glonass 104832 02/01/2014 to
31/12/2014

https://www.glonass-iac.ru/en/index.
php

Sunspots 316 1700–2015 Hyndman (2013)

Bookings 4344 23/09/2016 to
22/03/2017

Provided by Crimtan, UK, to the
authors of the R-package SSABOOK

EuStockMarkets 1860 During
1994–1998

Provided by Erste Bank AG, Vienna,
Austria, to the authors of the R-package
DATASETS

Mars 258 × 275 NA http://www.astrosurf.com/buil/iris/
tutorial8/doc23_us.htm

Brecon Beacons 80 × 100 NA The data are obtained by means of the
function getData of the R-package
RASTER

Kruppel 200 × 200 NA http://bdtnp.lbl.gov/Fly-Net/

Monet 400 × 263 × 3 NA https://commons.wikimedia.org/wiki/
File:Monet.012.sonnenschirm.jpg

http://www.eia.gov/totalenergy/data/monthly/#summary
http://www.eia.gov/totalenergy/data/monthly/#summary
http://www.eia.gov/totalenergy/data/monthly/#summary
https://www.bea.gov/histdata/Releases/GDP_and_PI/2015/Q1/Third_June-24-2015/UND/Section7ALL_xls.xls
https://www.bea.gov/histdata/Releases/GDP_and_PI/2015/Q1/Third_June-24-2015/UND/Section7ALL_xls.xls
https://www.bea.gov/histdata/Releases/GDP_and_PI/2015/Q1/Third_June-24-2015/UND/Section7ALL_xls.xls
https://www.bea.gov/histdata/Releases/GDP_and_PI/2015/Q1/Third_June-24-2015/UND/Section7ALL_xls.xls
https://www.glonass-iac.ru/en/index.php
https://www.glonass-iac.ru/en/index.php
http://www.astrosurf.com/buil/iris/tutorial8/doc23_us.htm
http://www.astrosurf.com/buil/iris/tutorial8/doc23_us.htm
http://bdtnp.lbl.gov/Fly-Net/
https://commons.wikimedia.org/wiki/File:Monet.012.sonnenschirm.jpg
https://commons.wikimedia.org/wiki/File:Monet.012.sonnenschirm.jpg

References 27

arguments. For more information about the RSSA functions and their arguments, we
refer the reader to the help information in the RSSA package.

1.8.2 Data Description

Tables 1.2 and 1.3 present the data used in the book for examples. All these sets of
data can be found in the R-packages indicated in the fourth column of Table 1.2.
Table 1.3 contains one of possible references; detailed descriptions and references
can be found in the corresponding R-packages.

References

Alexandrov T (2009) A method of trend extraction using singular spectrum analysis. RevStat
7(1):1–22

Allen M, Smith L (1996) Monte Carlo SSA: Detecting irregular oscillations in the presence of
colored noise. J Clim 9(12):3373–3404

Andrews D, Herzberg A (1985) Data. A collection of problems from many fields for the student
and research worker. Springer, New York

Barrios-Muriel J, Romero F, Alonso FJ, Gianikellis K (2016) A simple SSA-based de-noising
technique to remove ECG interference in EMG signals. Biomed Signal Process Control
30:117–126

Bozzo E, Carniel R, Fasino D (2010) Relationship between singular spectrum analysis and Fourier
analysis: Theory and application to the monitoring of volcanic activity. Comput Math Appl
60(3):812–820

Broomhead D, King G (1986) Extracting qualitative dynamics from experimental data. Physica D
20:217–236

Broomhead D, King G (1986b) On the qualitative analysis of experimental dynamical systems. In:
Sarkar S (ed) Nonlinear phenomena and chaos. Adam Hilger, Bristol, pp 113–144

von Buttlar J, Zscheischler J, Mahecha MD (2014) An extended approach for spatiotemporal
gapfilling: dealing with large and systematic gaps in geoscientific datasets. Nonlinear Process
Geoph 21:203–215

Cadzow JA (1988) Signal enhancement: a composite property mapping algorithm. IEEE Trans
Acoust 36(1):49–62

Chen Q, Weigelt M, Sneeuw N, van Dam T (2016) On time-variable seasonal signals: Comparison
of SSA and Kalman filtering based approach. Springer International Publishing, Cham, pp 75–
80

Cleveland WS (1993) Visualizing data. Hobart Press
Danilov D, Zhigljavsky A (eds) (1997) Principal components of time series: the “Caterpillar”

method. St. Petersburg Press (in Russian)
Filho ASF, Lima GAR (2016) Gap filling of precipitation data by SSA - singular spectrum analysis.

J Phys Conf Ser 759(1):012,085
Fraedrich K (1986) Estimating dimensions of weather and climate attractors. J Atmos Sci 43:

419–432
Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231
Genkin D, Pachmanov L, Pipman I, Tromer E, Yarom Y (2016) Ecdsa key extraction from mobile

devices via nonintrusive physical side channels. In: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. ACM, New York, NY, USA, CCS ’16,
pp 1626–1638

28 1 Introduction: Overview

Ghil M, Allen RM, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson A, Saunders
A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev
Geophys 40(1):1–41

Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press,
Baltimore, MD, USA

Golyandina N, Korobeynikov A (2013) Basic singular spectrum analysis and forecasting with R.
Comput Stat Data Anal 71:943–954

Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with
missing values. J Stat Plan Inference 137(8):2642–2653

Golyandina N, Shlemov A (2015) Variations of singular spectrum analysis for separability
improvement: Non-orthogonal decompositions of time series. Stat Interface 8(3):277–294

Golyandina N, Shlemov A (2017) Semi-nonparametric singular spectrum analysis with projection.
Stat Interface 10(1):47–57

Golyandina N, Stepanov D (2005) SSA-based approaches to analysis and forecast of multidi-
mensional time series. In: Proceedings of the 5th St.Petersburg workshop on simulation, June
26–July 2, 2005. St. Petersburg State University, St. Petersburg, pp 293–298

Golyandina N, Usevich K (2010) 2D-extension of singular spectrum analysis: algorithm and
elements of theory. In: Olshevsky V, Tyrtyshnikov E (eds) Matrix methods: Theory, algorithms
and applications. World Scientific Publishing, pp 449–473

Golyandina N, Zhigljavsky A (2013) Singular apectrum analysis for time series. Springer briefs in
statistics. Springer

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and
related techniques. Chapman&Hall/CRC

Golyandina N, Korobeynikov A, Shlemov A, Usevich K (2015) Multivariate and 2D extensions of
singular spectrum analysis with the Rssa package. J Stat Softw 67(2):1–78

Groth A, Ghil M (2015) Monte Carlo singular spectrum analysis (SSA) revisited: Detecting
oscillator clusters in multivariate datasets. J Climate 28(19):7873–7893

Hall MJ (1998) Combinatorial theory. Wiley, New York
Harris T, Yan H (2010) Filtering and frequency interpretations of singular spectrum analysis.

Physica D 239:1958–1967
Hassani H, Heravi S, Zhigljavsky A (2009) Forecasting European industrial production with

singular spectrum analysis. Int J Forecast 25(1):103–118
Hassani H, Heravi S, Zhigljavsky A (2013) Forecasting UK industrial production with multivariate

singular spectrum analysis. J Forecast 32(5):395–408
Hassani H, Webster A, Silva ES, Heravi S (2015) Forecasting U.S. tourist arrivals using optimal

singular spectrum analysis. Tourism Manag 46:322–335
Hudson IL, Keatley MR (2017) Singular spectrum analytic (ssa) decomposition and reconstruction

of flowering: Signatures of climatic impacts. Environ Model Assess 22(1):37–52
Hyndman R, Athanasopoulos G (2013) Forecasting: principles and practice. OTexts, URL http://

otexts.org/fpp/, accessed on 28.07.2017
Hyndman RJ (2013) Time Series Data Library. URL http://data.is/TSDLdemo, accessed on

10/08/2013
Iqelan BM (2017) A singular spectrum analysis technique to electricity consumption forecasting.

Int J Eng Res Appl 7(3):92–100
Karnjana J, Unoki M, Aimmanee P, Wutiwiwatchai C (2017) Tampering detection in speech signals

by semi-fragile watermarking based on singular-spectrum analysis. Springer International
Publishing, Cham, pp 131–140

Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets.
Nonlinear Process Geophys 13(2):151–159

Korobeynikov A (2010) Computation- and space-efficient implementation of SSA. Stat Interface
3(3):357–368

Korobeynikov A, Larsen RM, Wu KJ, Yamazaki I (2016) SVD: Interfaces to various state-of-art
SVD and eigensolvers. URL http://CRAN.R-project.org/package=svd, R package version 0.4

http://otexts.org/fpp/
http://otexts.org/fpp/
http://data.is/TSDLdemo
http://CRAN.R-project.org/package=svd

References 29

Korobeynikov A, Shlemov A, Usevich K, Golyandina N (2017) Rssa: A collection of methods
for singular spectrum analysis. URL http://CRAN.R-project.org/package=Rssa, R package
version 1.0

Kumar KS, Rajesh R, Tiwari RK (2017) Regional and residual gravity anomaly separation using
the singular spectrum analysis-based low pass filtering: a case study from Nagpur, Maharashtra,
India. Explor Geophys.

Kurakin V, Kuzmin A, Mikhalev A, Nechaev A (1995) Linear recurring sequences over rings and
modules. J Math Sci 76(6):2793–2915

Lakshmi K, Rao ARM, Gopalakrishnan N (2016) Singular spectrum analysis combined with
ARMAX model for structural damage detection. Struct Control Health Monit. https://doi.org/
10.1002/stc.1960

Lisi F, Nicolis O, Sandri M (1995) Combining singular-spectrum analysis and neural networks for
time series forecasting. Neural Process Lett 2(4):6–10

Makridakis S, Wheelwright S, Hyndman R (1998) Forecasting: Methods and applications, 3rd edn.
Wiley, New York

Monselesan DP, O’Kane TJ, Risbey JS, Church J (2015) Internal climate memory in observations
and models. Geophys Res Lett 42(4):1232–1242

Mudersbach C, Wahl T, Haigh ID, Jensen J (2013) Trends in high sea levels of German North Sea
gauges compared to regional mean sea level changes. Cont Shelf Res 65:111–120

Pepelyshev A, Zhigljavsky A (2017) Ssa analysis and forecasting of records for earth temperature
and ice extents. Stat Interface 10(1):151–163

de Prony G (1795) Essai expérimental et analytique sur les lois de la dilatabilité des fluides
élastiques et sur celles de la force expansive de la vapeur de l’eau et la vapeur de l’alkool à
différentes températures. J de l’Ecole Polytechnique 1(2):24–76

Salgado D, Cambero I, Olivenza JH, Sanz-Calcedo JG, López PN, Plaza EG (2013) Tool wear
estimation for different workpiece materials using the same monitoring system. Procedia Eng
63:608–615

Sella L, Vivaldo G, Groth A, Ghil M (2016) Economic cycles and their synchronization: A
comparison of cyclic modes in three European countries. J Bus Cycle Res 12(1):25–48

Shlemov A, Golyandina N (2014) Shaped extensions of singular spectrum analysis. In: 21st
international symposium on mathematical theory of networks and systems, July 7–11, 2014.
Groningen, The Netherlands, pp 1813–1820

Sivapragasam C, Liong SY, Pasha M (2001) Rainfall and runoff forecasting with SSA–SVM
approach. J Hydroinform 3(3):141–152

Vautard M, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to
paleoclimatic time series. Physica D 35:395–424

Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: A toolkit for short, noisy chaotic
signals. Physica D 58:95–126

Vile JW J L nnd Gillard, Harper PR, Knight VA (2012) Predicting ambulance demand using
singular spectrum analysis. J Oper Res Soc 63(11):1556–1565

Wang S, Tang HL, turk LIA, Hu Y, Sanei S, Saleh GM, Peto T (2017) Localizing microaneurysms
in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002

Wang X, Wu J, Liu C, Wang S, Niu W (2016) A hybrid model based on singular spectrum analysis
and support vector machines regression for failure time series prediction. Qual Reliab Eng Int
32(8):2717–2738, qRE-16-0186.R2

Watson PJ (2016) Identifying the best performing time series analytics for sea level research.
Springer International Publishing, Cham, pp 261–278

Weigend A, Gershenfeld N (eds) (1993) Time series prediction: Forecasting the future and
understanding the past. Addison-Wesley, Reading

Wickham H, Chang W (2017) DEVTOOLS: Tools to Make Developing R Packages Easier. URL
http://CRAN.R-project.org/package=devtools, R package version 1.13.2

Wu C, Chau K (2011) Rainfall–runoff modeling using artificial neural network coupled with
singular spectrum analysis. J Hydrol 399(3):394–409

http://CRAN.R-project.org/package=Rssa
https://doi.org/10.1002/stc.1960
https://doi.org/10.1002/stc.1960
http://CRAN.R-project.org/package=devtools

30 1 Introduction: Overview

Xiao Y, Liu JJ, Hu Y, Wang Y, Lai KK, Wang S (2014) A neuro-fuzzy combination model based on
singular spectrum analysis for air transport demand forecasting. J Air Transp Manag 39:1–11

Xin W, Chao L, Weiren X, Ying L (2015) A failure time series prediction method based on UML
model. In: 2015 4th international conference on computer science and network technology
(ICCSNT), vol 01, pp 62–70

Yang Z, Bingham C, Ling WK, Zhang Y, Gallimore M, Stewart J (2012) Unit operational
pattern analysis and forecasting using EMD and SSA for industrial systems. Springer, Berlin,
Heidelberg, pp 416–423

Zabalza J, Ren J, Wang Z, Marshall S, Wang J (2014) Singular spectrum analysis for effective
feature extraction in hyperspectral imaging. IEEE Geosci Remote Sens Lett 11(11):1886–1890

Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S (2015) Novel two-dimensional singular
spectrum analysis for effective feature extraction and data classification in hyperspectral
imaging. IEEE Trans Geosci Remote Sens 53(8):4418–4433

Zhang Q, Wang BD, He B, Peng Y, Ren ML (2011) Singular spectrum analysis and ARIMA hybrid
model for annual runoff forecasting. Water Resour Manag 25(11):2683–2703

Zhigljavsky A (2010) Singular spectrum analysis for time series: Introduction to this special issue.
Stat Interface 3(3):255–258

Zhigljavsky A, Golyandina N, Gillard J (2016a) Analysis and design in the problem of vector
deconvolution. In: Kunert J, Müller HC, Atkinson CA (eds) mODa 11 - Advances in model-
oriented design and analysis. Springer International Publishing, pp 243–251

Zvonarev N, Golyandina N (2017) Iterative algorithms for weighted and unweighted finite-rank
time-series approximations. Stat Interface 10(1):5–18

Chapter 2
SSA Analysis of One-Dimensional
Time Series

In the present chapter and Chap. 3, we thoroughly examine the use of SSA for one-
dimensional data. This chapter is fully devoted to the SSA analysis of such data.
Consideration of SSA forecasting, gap filling, and estimation of parameters of the
signal is delayed until Chap. 3. The main difference between the materials of these
two chapters is the use of the models. In the present chapter, the use of models is
minimal; on the contrary, the methodologies of Chap. 3 are model-based.

In the terminology of Chap. 1, SSA for one-dimensional data should be referred
to as 1D-SSA. However, but for the sake of brevity, in this chapter we will refer to
it simply as SSA. The SSA input for all algorithms of this chapter is a collection
XN = (x1, . . . , xN) of N real numbers, which can be thought of as a time series.

Let us start with the common parts of all versions of SSA algorithms considered
in this chapter. These common parts are the embedding procedure at Step 1 of SSA
and the diagonal averaging which makes the reconstruction at Step 4 (see Fig. 1.1).

Let L (1 < L < N) be some integer called window length and set K =N−L+1.
Construct L-lagged vectors of size L as

Xi = (xi, . . . , xi+L−1)
T, i = 1 . . . ,K.

Define the embedding operator T = TSSA by

TSSA(X) = X = [X1 : . . . : XK] =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1

x3 x4 x5 . . . xK+2
...

...
...

. . .
...

xL xL+1 xL+2 . . . xN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (2.1)

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
N. Golyandina et al., Singular Spectrum Analysis with R, Use R!,
https://doi.org/10.1007/978-3-662-57380-8_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57380-8_2&domain=pdf
https://doi.org/10.1007/978-3-662-57380-8_2

32 2 SSA Analysis of One-Dimensional Time Series

Matrix X of (2.1) is called trajectory (or L-trajectory) matrix. There are two
important properties of this matrix:

(a) both the rows and columns of X are subseries of the original series, and
(b) X has equal elements on its anti-diagonals, which is equivalent to saying that X

is a Hankel matrix.

The operator T = TSSA : RN → M
(H)
L,K makes a correspondence between

time series (collections of N numbers) and M
(H)
L,K , the set of Hankel matrices of size

L×K . Since the correspondence defined by T is one-to-one, there exists the inverse
T−1, which transfers any Hankel matrix of size L × K to a series of length N .

Let us also introduce the projector ΠH : RL×K → M
(H)
L,K into the space of

Hankel matrices as the operator of hankelization

(ΠHY)ij =
∑

(l,k)∈As

ylk

/

ws, (2.2)

where s = i + j − 1, As = {(l, k) : l + k = s + 1, 1 ≤ l ≤ L, 1 ≤ k ≤ K}
and ws = |As | denotes the number of elements in the set As . This corresponds to
averaging the matrix elements over the “anti-diagonals.” The weights ws are equal to
the number of series elements xs in the trajectory matrix (2.1) and has a trapezoidal
shape, decreasing towards both ends of the series.

On the base of (2.2), any matrix Y ∈ RL×K can be transferred to a series of
length N by applying T−1 ◦ ΠH. Note that this is done in an optimal way.

2.1 Basic SSA

Basic SSA is the SSA for the analysis of one-dimensional series such that the
decomposition into rank-one matrices at Step 2 (see the general scheme in Fig. 1.1)
is done by the SVD.

2.1.1 Method

2.1.1.1 Step 1: Embedding

The series X is mapped to a sequence of L-lagged vectors, which form the trajectory
matrix X = TSSA(X), as shown in (2.1).

2.1 Basic SSA 33

2.1.1.2 Step 2: Decomposition

Set S = XXT and denote by λ1, . . . , λd the positive eigenvalues of S taken in
the decreasing order of magnitude (λ1 ≥ . . . ≥ λd > 0) and by U1, . . . , Ud

an orthonormal system of the eigenvectors of the matrix S corresponding to these
eigenvalues; Vi = XTUi/

√
λi are called factor vectors. At this step, we perform the

singular value decomposition (SVD) of the trajectory matrix:

X =
d

∑

i=1

√

λiUiV
T
i = X1 + . . . + Xd . (2.3)

The matrices Xi = √
λiUiV

T
i in (2.3) have rank 1; such matrices are called

elementary matrices. The collection (
√

λi, Ui, Vi) consisting of the singular value√
λi , the left singular vector Ui and the right singular vector Vi will be called ith

eigentriple (abbreviated as ET). Note that λi = ‖Xi‖2
F and ‖X‖2

F = ‖X1‖2
F + . . . +

‖Xd‖2
F. The contribution of ith component Xi can thus be measured by λi/

∑

j λj .
For real-world time series, d = rankX is typically equal to min(L,K); that is,

the trajectory matrix is of full rank.

2.1.1.3 Step 3: Eigentriple Grouping

The input in this step is the expansion (2.3) and the specification of how to group
the components of (2.3).

Let I = {i1, . . . , ip} ⊂ {1, . . . , d} be a set of indices. Then the resultant matrix
XI corresponding to the group I is defined as XI = Xi1 + . . . + Xip .

Assume that a partition of the set of indices {1, . . . , d} into m disjoint subsets
I1, . . . , Im is specified. Then the expansion (2.3) leads to the decomposition

X = XI1 + . . . + XIm. (2.4)

The procedure of choosing the sets I1, . . . , Im is called eigentriple grouping. If m =
d and Ij = {j }, j = 1, . . . , d , then the corresponding grouping is called elementary.

The grouping is performed by analyzing the eigentriples so that each group
corresponds to an identifiable series component. The choice of several leading
eigentriples corresponds to an optimal approximation of the time series, in accor-
dance with the well-known optimality property of the SVD.

2.1.1.4 Step 4: Reconstruction (Diagonal Averaging)

The diagonal averaging (2.2) applied to a resultant matrix XIk produces a recon-

structed series ˜X
(k) = (̃x

(k)
1 , . . . , x̃

(k)
N) = T−1 ◦ ΠH(X(k)). This way, the initial

34 2 SSA Analysis of One-Dimensional Time Series

series (x1, . . . , xN) is decomposed into a sum of m reconstructed series:

xn =
m

∑

k=1

x̃(k)
n , n = 1, . . . , N. (2.5)

The reconstructed series produced by the elementary grouping will be called
elementary reconstructed series.

If grouping is sensible, then we obtain a reasonable decomposition into identi-
fiable series components. Typical resultant decompositions are signal plus noise or
trend plus seasonality plus noise.

As well as in the generic scheme, Steps 1 and 2 of Basic SSA are sometimes
combined into the so-called “Decomposition stage” and Steps 3 and 4 are combined
into “Reconstruction stage.”

2.1.2 Appropriate Time Series

2.1.2.1 Time Series of Finite Rank

Although the SSA method is model-free and therefore SSA can be considered as an
exploratory method, there is a model that perfectly suits SSA.

We say that a series has L-rank r if its L-trajectory matrix has rank r . Series S is
called a series of finite rank r (rankS = r) if rankL S = r for any sufficiently large
series length N and window length L. The term “finite rank” also has a meaning
for the case of infinite series. For a generic infinite times series (cut at some N),
L = L(N) can tend to infinity and in this case the rank of the trajectory matrix
would typically tend to infinity too. For a time series of finite rank, the rank r of
the trajectory matrix is finite and fixed for large enough N and L such that r ≤
min(L,N − L + 1).

It is useful to know rank of a time series and the form of the singular vectors
of its trajectory matrix, since knowing rank means knowing the number of the
SVD components, which we should group for extraction of the corresponding
series component, while the form of the singular vectors along with properties of
eigenvalues helps in finding these SVD components.

We refer to Golyandina et al. (2001; Chapter 5) for details and full description.
Here we mention that an exponential series sn = Aeαn, n = 1, 2, . . ., has rank 1, a
linear function sn = an+b, a
= 0, has rank 2, a sinusoid with sn = A sin(2πωn+φ)

has rank 2 for 0 < ω < 0.5 and rank 1 for ω = 0.5. Singular vectors of trajectory
matrices of time series have the same form as the series itself, which follows from
the fact that rows and columns of the trajectory matrices are subseries of the original
series. This information helps in choosing the groups at Grouping step.

2.1 Basic SSA 35

2.1.2.2 Linear Recurrence Relations, Characteristic Polynomials
and Roots

Time series of finite rank are closely related to the series governed by linear
recurrence relations (LRRs). In particular, for infinite time series, the class of time
series governed by LRRs coincides with the class of time series of finite rank.

Definition 2.1 A time series SN = (si)
N
i=1 is governed by an LRR, if there exist

a1, . . . , at such that

si+t =
t

∑

k=1

aksi+t−k, 1 ≤ i ≤ N − t, at
= 0, t < N − 1. (2.6)

The number t is called the order of the LRR and a1, . . . , at are the coefficients of
the LRR. If t = r is the minimal order of an LRR that governs the time series SN ,
then the corresponding LRR is called minimal.

The minimal LRR is unique and its order is equal to the series rank.
As was mentioned in Sect. 1.4, it is well known that the time series S∞ =

(s1, . . . , sn, . . .) satisfies the LRR (2.6) for all i ≥ 0 if and only if

sn =
p

∑

m=1

⎛

⎝

km−1
∑

j=0

cmjn
j

⎞

⎠μn
m, (2.7)

where the complex coefficients cmj depend on the first t points s1, . . . , st .
For real-valued time series, (2.7) implies that the class of time series governed by

the LRRs consists of sums of products of polynomials, exponentials, and sinusoids

sn =
p̃

∑

m=1

⎛

⎝

km−1
∑

j=0

c̃mjn
j

⎞

⎠ eαmn cos(2πωmn + φm), 0 ≤ ωm ≤ 0.5. (2.8)

The minimal LRR determines all, except cmj , parameters in (2.7) and all, except
c̃mj and φm, parameters in (2.8).

Definition 2.2 The polynomial Pt (μ) = μt −∑t
k=1 akμ

t−k is called characteristic
polynomial of the LRR (2.6).

Roots of the characteristic polynomial are called characteristic roots of the
corresponding LRR. The roots of the characteristic polynomial of the minimal LRR
governing the series, which can be called signal roots of the LRR or characteristic
roots of the series, determine the values of parameters μm and km in (2.7) as follows.
Let the time series S∞ = (s1, . . . , sn, . . .) satisfy the LRR (2.6) with at
= 0
and i ≥ 1. Consider the characteristic polynomial of the LRR (2.6) and denote
its different (complex) roots by μ1, . . . , μp, where p ≤ t . All these roots are

36 2 SSA Analysis of One-Dimensional Time Series

non-zero as at
= 0 with km being the multiplicity of the root μm (1 ≤ m ≤ p,
k1 + . . . + kp = t).

Let ckp−1,j
= 0 for all j ; this corresponds to the case of the minimal LRR. Then
the rank of time series S∞ given in (2.7) is equal to r = ∑p

m=1 km. In the real-
valued case, if c̃kp̃−1,j
= 0 for all j , then the rank of time series S∞ given in (2.8)

is equal to r = ∑p̃

m=1 δmkm, where δm = 1 for ωm equal 0 or 0.5 and δm = 2 for
0 < ωm < 0.5.

If we find the signal roots μm = ρme±i2πωm of the characteristic polynomial
of the LRR governing the signal, then we can estimate the signal parameters. For
example, the frequency ωm of an exponentially-modulated sinusoid can be found
using the argument of the corresponding conjugate roots, whereas the root modulus
ρm gives the exponential rate αm = ln ρm.

2.1.3 Separability and Choice of Parameters

Understanding separability is very important for understanding how SSA works.
Recall that if two time series X(1)

N and X
(2)
N are separable, then X

(1)
N can be extracted

from the observed series XN = X
(1)
N +X

(2)
N . This means that there exists a partition

into groups at Grouping step such that ˜X
(m)
N = X

(m)
N .

Let us define the separability formally. Let X(m) be the trajectory matrices of the
considered series components, X(m) = ∑dm

i=1

√

λm,iUm,iV
T
m,i , m = 1, 2, be their

SVDs. The column and row spaces of the trajectory matrices are called column and
row trajectory spaces correspondingly.

Definition 2.3 Let L be fixed. Two series X(1)
N and X

(2)
N are called weakly separable

(or simply separable) if their column trajectory spaces are orthogonal and the
same is valid for their row trajectory spaces; that is, (X(1))TX(2) = 0K,K and
X(1)(X(2))T = 0L,L.

Definition 2.4 Two series X
(1)
N and X

(2)
N are called strongly separable, if they are

weakly separable and the sets of singular values of their L-trajectory matrices are
disjoint; that is, λ1,i
= λ2,j for any i and j .

Weak separability means that at Decomposition step there exists such an SVD
that allows the proper grouping. A possibility of a non-separating SVD expansion
which does not allow a proper grouping is related to the non-uniqueness of the SVD
in the case of equal singular values. Strong separability means that any SVD of the
trajectory matrix admits the proper grouping. Therefore, in order to be sure that SSA
makes an accurate separation we have to require strong (approximate) separability.

By the definition, weak separability means orthogonality of the column and
row spaces of the trajectory matrices of the series components X(1)

N and X
(2)
N . For

approximate (asymptotic) separability with ˜X
(m)
N ≈ X

(m)
N , we need the condition of

2.1 Basic SSA 37

approximate (asymptotic) orthogonality of subseries of the considered components.
Asymptotic separability is considered if L and/or K tend to infinity.

For sufficiently long time series, SSA can approximately separate, for example,
signal and noise, sine waves with different frequencies, trend and seasonality
(Golyandina et al. 2001; Chapter 6, Section 1.5; Golyandina and Zhigljavsky 2013;
Section 2.3.3).

Let us demonstrate the separability of two sinusoids with different frequencies
ω1 and ω2: x

(i)
n = Ai cos(2πωin + φi). These sinusoids are asymptotically weakly

separable; that is, their subseries are asymptotically orthogonal as their lengths tend
to infinity. However, the rate of convergence depends on the difference between
the frequencies. If the frequencies are close and the time series length is not long
enough, the two series can be far from orthogonal and therefore not separable.
Note that two sinusoids with equal amplitudes are asymptotically weakly separable,
but not strongly asymptotically separable and therefore are mixed in the SSA
decompositions.

2.1.3.1 Separability Measure

The so-called w-correlation matrix contains very helpful information that can be
used for detection of separability and identification of groups. This matrix consists
of weighted cosines of angles between the reconstructed time series components.

Let wn (n = 1, 2, . . . , N) be the weights defined in (2.2): wn is equal to the
number of times the series element xn appears in the trajectory matrix. Define the
w-scalar product of time series of length N as (YN,ZN)w = ∑N

n=1 wnynzn =
〈Y,Z〉F, where Y and Z are the L-trajectory matrices of the series YN and ZN ,
respectively. Define the so-called w-correlation between YN and ZN as

ρw(YN,ZN) = (YN,ZN)w/(‖YN‖w‖ZN‖w).

Well-separated components in (2.5) have weak (or zero) correlation whereas
poorly separated components typically have high correlation. Therefore, looking at
the matrix of w-correlations between elementary reconstructed series ˜X

(i)
N and ˜X

(j)
N

one can find groups of correlated series components and use this information for
the subsequent grouping. One of the main rules is: “do not include highly correlated
components into different groups.” Thew-correlations can also be used for checking
the grouped decomposition.

It is very instructive to depict the matrix of absolute values of w-correlations
between the series components graphically in the white-black scale, where small
correlations are shown in white and correlations with their absolute values close
to 1 are shown in black; see, for example, Figs. 2.4 and 2.15.

38 2 SSA Analysis of One-Dimensional Time Series

2.1.3.2 Choice of Parameters

The conditions of (approximate) separability yield recommendations for the choice
of the window length L: it should be large enough (L ∼ N/2) and if we want to
extract a periodic component with known period, then the window lengths, which
are divisible by the period, provide better separability. Choice of parameters is
discussed in Golyandina et al. (2001; Section 1.6) and Golyandina (2010). If we
choose a few leading eigentriples, then SSA with small L performs smoothing of the
series as a filter of order 2L−1, see Golyandina and Zhigljavsky (2013; Section 3.9).
Generally, the choice of the window length is important but the result is usually
stable with respect to small changes in the values of L.

If the time series has a complex structure, then the so-called Sequential SSA
(Golyandina et al. 2012a; Section 2.5.5) is recommended. Sequential SSA consists
of two stages; at the first stage, trend is extracted with a small window length and
then periodic components are detected and extracted from the residual with L ∼
N/2.

2.1.3.3 Justification

If we use SSA as a model-free and exploratory technique, then the justification of
the decomposition cannot be formal; it must be based on the separability theory and
the interpretability of the results. Real-time or batch processing by SSA is possible
if the class of series is not too broad and well-determined so that one can fix the rule
for choosing proper parameters. For performing statistical testing, a model of the
time series should be specified.

2.1.4 Algorithm

In Sect. 2.1.1 we described the Basic SSA method. Here we formally present the
algorithm of Basic SSA. Note that the RSSA package implements the algorithms
efficiently (see Sect. 1.5.4 for a brief discussion). Since effective implementation is
complicated and hides the sense of algorithm steps, we write down the algorithms
in the original form.

Input data for the whole algorithm of Basic SSA are the window length and the
way of grouping of the elementary components Xi in (2.3). However, the rule for
grouping is made after the decomposition (2.3) is made. Therefore, the grouping
becomes the input data for Reconstruction stage. For this reason, we split the
algorithm into two parts. Note that modifications of Basic SSA mostly differ by
Decomposition step only; Reconstruction stage is the same for virtually all SSA
versions.

2.1 Basic SSA 39

Algorithm 2.1 Basic SSA: decomposition
Input: Time series X of length N , window length L.
Output: Decomposition of the trajectory matrix on elementary matrices X = X1 + . . .+Xd , where

d = rankX and Xi = √
λiUiV

T
i (i = 1, . . . , d).

1: Construct the trajectory matrix X = TSSA(X).
2: Compute the SVD X = X1 + . . . + Xd , Xi = √

λiUiV
T
i .

Reconstruction algorithms are almost the same for different versions of SSA;
their inputs have a decomposition of the trajectory matrix into a sum of rank-one
matrices and the split of the rank-one components into groups. We therefore for-
mulate a general algorithm of reconstruction and will make comments concerning
specific features of modifications in the corresponding sections. The specific feature
of Basic SSA is: the input decomposition is the SVD and hence the biorthogonal
decomposition into the rank-one components is ordered according to component
contribution σ 2

i = λi so that σ1 ≥ . . . ≥ σd .

Algorithm 2.2 Reconstruction
Input: Decomposition X = X1 + . . . + Xd , where Xi = σiUiV

T
i and ‖Ui‖ = ‖Vi‖ = 1; partition

of indices: {1, . . . , d} = ⊔m
j=1 Ij .

Output: Decomposition of the time series X into identifiable components X = X1 + . . . + Xm.
1: Construct the grouped matrix decomposition X = XI1 + . . . + XIm , where XI = ∑

i∈I Xi .
2: Compute X = X1 + . . . + Xm, where Xi = T−1

SSA ◦ ΠH(XIi).

2.1.5 Basic SSA in RSSA

2.1.5.1 Description of Functions

The main function of RSSA is ssa which constructs the so-called ssa object holding
the decomposition and various auxiliary information necessary for performing a
particular implementation. The function has many arguments; some of them are
common for different types of SSA, some are specific. Below we will outline the
main arguments of ssa in a typical function call:

s <- ssa(x, L = (N + 1) %/% 2, neig = NULL,
kind = "1d-ssa", svd.method = "auto")

where N is the series length.
Arguments:

x is an object to be decomposed. For Basic SSA it is assumed to be a simple
vector or vector-like object (e.g., univariate ts or zooreg object). Everything
else is coerced to a vector.

40 2 SSA Analysis of One-Dimensional Time Series

L is a window length. By default it is fixed to half of the series length.
neig is the number of desired eigentriples. If neig = NULL, a default value, which

depends on L and N , will be used.
kind specifies the version of SSA to be used; it can be omitted in non-ambiguous

cases (e.g., when x is a vector or a ts object).
svd.method selects the SVD method to use. Full description is given in

Sect. 2.1.5.2.

In addition to constructing an ssa object s, by default the ssa function also
performs Decomposition step and thus corresponds to Algorithm 2.1. If necessary,
Decomposition stage can be skipped setting the argument force.decompose to
FALSE.

The function returns an ssa object. The precise layout of the object is hidden
and can be different in different versions of the package. However, there are several
fields that are available to users and can be extracted with the help of $ operator,
namely:

s$sigma is a vector of singular values;
s$U is a matrix of eigenvectors;
s$V is a matrix of factor vectors. Note that it may not be calculated for particular

selections of the SVD method.

The number of the calculated singular values, eigenvectors, and factor vectors
can be obtained by means of the functions nsigma(s), nu(s), and nv(s) corre-
spondingly. Call of summary(s) provides a consolidated information about the ssa

object.
The next function is reconstruct which implements Reconstruction stage

(Algorithm 2.2). The basic signature of the function call is

r <- reconstruct(s, groups = list(trend = 1:2, c(3:6,9)))

Arguments:

s is an ssa object holding the decomposition.
groups is a list of numeric vectors consisting of indices of the elementary

components used for reconstruction; the entries of the list can be named.
drop acts only if one group is chosen; TRUE value means that the result is

transformed from the list of the reconstructed series to the reconstructed series
itself (FALSE is default).

The function returns a list of reconstructed objects. Elements of the list have the
same names as elements of groups (e.g., r$trend). If a group is unnamed, then
the corresponding component will obtain the name Fn, where n is its index in the
groups list (e.g. r$F2).

By default, the routine tries to preserve all the attributes of the input object. In
this way, for example, the reconstruction result of the ts object is the ts object
with the same time scale. This feature can be disabled by setting the argument
drop.attributes to TRUE.

2.1 Basic SSA 41

2.1.5.2 SVD Methods

In many cases only few leading eigentriples are of interest for the SSA analysis.
Thus the full SVD of the trajectory matrix can yield large computational and
memory space burdens. Instead, the so-called Truncated SVD can be used and
only a number of desired leading eigentriples can be computed. Four different
SVD implementations are available in RSSA and can be specified via the argument
svd.method of the function ssa:

• "auto"—Automatic method of selection depending on the series length, the
window length, and the number of desired eigentriples.

• "nutrlan"—Truncated SVD via thick-restart Lanczos bidiagonalization algo-
rithm (Yamazaki et al. 2008). The method internally calculates the eigenvalues
and eigenvectors of the matrix XXT. Factor vectors are calculated on-fly during
Reconstruction stage when necessary.

• "propack"—Implicitly restarted Lanczos bidiagonalization with partial
reorthogonalization (Larsen 1998). The method calculates the truncated SVD
of the trajectory matrix X (and hence calculates the factor vectors as well).

• "eigen" and "svd"—Full decomposition of the trajectory matrix using either
eigendecomposition or SVD routines from LAPACK (Anderson et al. 1999).
Using ssa with these svd.methods yields the straightforward implementations
of Basic SSA algorithm without computational and space complexity reductions
via additional sophisticated algorithms. Note that both methods perform full
decompositions and thus the argument neig (which allows one to request a
desired number of eigentriples) is silently ignored for these methods.

Selecting the best method for performing the SVD is not easy. However, there
are several simple rules of thumb which work well in most situations.

First of all, it is unwise to use the Lanczos-based truncated SVD methods if the
trajectory matrix is small or “wide.” This corresponds to small series lengths (say,
N < 100) or small window lengths (L < 50). Also, it is unwise to ask for too
many eigentriples: when more than L/2 eigentriples are needed then it is better to
use the full SVD instead of a truncated one. The SVD method eigen works best for
small L.

Usually the method propack tends to be slightly faster and more numerically
stable than nutrlan; however, it may yield considerable memory consumption
when factor vectors are large. For example, for a time series of length 87000 and
window length 43500, the decomposition with the method nutrlan took 16 s while
with propack it took only 13 s (we are not aware of any other implementation of
SVD, besides RSSA implementations, which can perform the decomposition with
such a large window length at all). The memory consumption for the latter method is
twice higher than the consumption of the former. This difference is more important
for multivariate versions of SSA and should not be a problem in the 1D case.

A specific feature of the Lanczos-based truncated SVD methods is their possible
non-convergence in the case of coinciding eigenvalues. In real-life time series, the
exact coincidence of eigenvalues happens very rarely and hence we can often enjoy

42 2 SSA Analysis of One-Dimensional Time Series

the outstanding effectiveness of these SVD methods. For a time series of finite
rank r , zero eigenvalue has the multiplicity L − r; therefore, the number of the
truncated components should be chosen appropriately, e.g. r + 1 components can
be requested for calculation. Since for a time series of finite rank r even a small
window length L � r + 1 can be sufficient for the analysis and forecasting, the use
of the eigen method is recommended.

By default, the method nutrlan is selected. However, the function ssa tries
to correct the selection, when the chosen method is clearly not the most suitable.
In particular, for short series, small window lengths or large number of desired
eigentriples, the method eigen is automatically selected.

It should be noted that the truncated SVD implementations were extracted from
the RSSA package into a separate package SVD (Korobeynikov et al. 2016) and thus
can be used independently.

2.1.5.3 Typical Code

For demonstration, we consider the series of sales of fortified wines (shortly
“FORT”) taken from the dataset “Australian Wines” (monthly wine sales in
thousands of liters). The full dataset contains sales from January, 1980, to July, 1995
(187 points). However, the data after June, 1994 have missing values. Therefore, we
analyze the first 174 points.

Fragment 2.1.1 contains the standard code for loading the package RSSA and for
the input of the data included into the package.

Fragment 2.1.1 (“Australian Wines”: Input)

> library("Rssa")
> data("AustralianWine", package = "Rssa")
> wine <- window(AustralianWine, end = time(AustralianWine)[174])

Fragment 2.1.2 contains a typical code for extraction of the trend and seasonality.
The resultant decomposition is depicted in Fig. 2.1.

Fragment 2.1.2 (“FORT”: Reconstruction)

> fort <- wine[, "Fortified"]
> s.fort <- ssa(fort, L = 84, kind = "1d-ssa")
> r.fort <- reconstruct(s.fort,
+ groups = list(Trend = 1,
+ Seasonality = 2:11))
> plot(r.fort, add.residuals = TRUE, add.original = TRUE,
+ plot.method = "xyplot",
+ superpose = TRUE, auto.key = list(columns = 2))

Roughly speaking (see details in Golyandina and Korobeynikov (2013)), ssa

performs Steps 1 and 2 of the algorithmic scheme described in Sect. 1.1.1, while
reconstruct performs steps 3 and 4 of the algorithm. The argument values kind

= "1d-ssa" and svd.method = "auto" are default and can be omitted. The

2.1 Basic SSA 43

Reconstructed Series

Time

0
20

00
40

00

1980 1985 1990 1995

Original
Trend

Seasonality
Residuals

Fig. 2.1 “FORT”: Decomposition

function plot applied to the reconstruction object performs different special kinds
of plotting. In addition to specific parameters, this function can include parameters
of the function xyplot from the standard package LATTICE (see the last two
parameters of plot in Fragment 2.1.2).

The choice of groups for reconstruction was made on the base of the following
information obtained from the ssa object:

1. one-dimensional (1D) figures of the eigenvectors Ui (Fig. 2.2),
2. two-dimensional (2D) figures of the eigenvectors (Ui, Ui+1) (Fig. 2.3), and
3. matrix of w-correlations ρw between the elementary reconstructed series (func-

tions wcor and plot, Fig. 2.4).

The following fragment shows the code that reproduces Figs. 2.2–2.5.

Fragment 2.1.3 (“FORT”: Identification)

> plot(s.fort, type = "vectors", idx = 1:8)
> plot(s.fort, type = "paired", idx = 2:11, plot.contrib = FALSE)
> print(parestimate(s.fort, groups = list(2:3, 4:5),
+ method = "pairs"))
$F1

period rate | Mod Arg | Re Im
11.971 0.000000 | 1.00000 0.52 | 0.86540 0.50109

$F2
period rate | Mod Arg | Re Im
4.005 0.000000 | 1.00000 1.57 | 0.00177 1.00000

> plot(wcor(s.fort, groups = 1:30),

44 2 SSA Analysis of One-Dimensional Time Series

+ scales = list(at = c(10, 20, 30)))
> plot(reconstruct(s.fort, groups = list(G12 = 2:3, G4 = 4:5,
+ G6 = 6:7, G2.4 = 8:9)),
+ plot.method = "xyplot", layout = c(2, 2),
+ add.residuals = FALSE, add.original = FALSE)

Let us explain how the figures obtained by means of Fragment 2.1.3 can help to
perform the grouping. Figure 2.2 shows that the first eigenvector is slowly-varying
and therefore the eigentriple ET1 should be included into the trend group. Figure 2.3
shows that the pairs 2–3, 4–5, 6–7, 8–9, 10–11 are produced by modulated sine-
waves, since the corresponding 2D-scatterplots of eigenvectors resemble regular

Eigenvectors
1 (94.65%) 2 (1.43%) 3 (1.36%) 4 (0.5%)

5 (0.5%) 6 (0.26%) 7 (0.25%) 8 (0.15%)

Fig. 2.2 “FORT”: 1D graphs of eigenvectors

Pairs of eigenvectors
2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7

7 vs 8 8 vs 9 9 vs 10 10 vs 11 11 vs 12

Fig. 2.3 “FORT”: 2D scatterplots of eigenvectors

2.1 Basic SSA 45

Fig. 2.4 “FORT”: Weighted
correlations

W−correlation matrix

F10

F20

F30

F10 F20 F30

polygons. This way of identification is based on the following properties: a sine
wave has rank 2 and produces two eigentriples, which are sine waves with the same
frequency and have a phase shift exactly or approximately equal to π/2, due to the
orthogonality of eigenvectors.

By counting the numbers of polygon vertices in Fig. 2.3, the periods of the
sine-waves can be determined as 12, 4, 6, 2.4, 3. Alternatively, automatic methods
of frequency calculation can be employed, such as LS-ESPRIT and TLS-ESPRIT
methods (Roy and Kailath 1989). These methods are implemented in RSSA in the
function parestimate, see Sect. 3.1, and are described in Golyandina et al. (2001;
Sections 2.4.2.4. and 3.8.2) and Golyandina and Korobeynikov (2013) for one-
dimensional time series. The periods, calculated by the automatic parestimate

method in Fragment 2.1.3, agree with the numbers of vertices in Fig. 2.3 for the five
pairs listed.

The matrix of absolute values of w-correlations in Fig. 2.4 is depicted in
grayscale (white color corresponds to zero and black color corresponds to the
absolute values equal to 1). Figure 2.4 confirms that the indicated pairs are separated
between themselves and also from the trend component, since the w-correlations
between the pairs are small, while w-correlations between the components from the
same pair are very large. The block of 12–84 components is “gray,” therefore we
can expect that these components are mixed and are largely produced by noise.

46 2 SSA Analysis of One-Dimensional Time Series

Reconstructed Series

Time

−1
00

0
0

50
0

10
00

G12

1980 1985 1990 1995

−2
00

0
20

0

G4

−4
00

−2
00

0
20

0
40

0

1980 1985 1990 1995

G6

−2
00

0
10

0
20

0

G2.4

Fig. 2.5 “FORT”: Reconstructed sine waves

Figure 2.5 contains four reconstructed modulated sine waves and shows that
several sine waves have increasing amplitudes, while others are decreasing; the
same can be seen in Fig. 2.2. In Fig. 2.1, we grouped the modulated sine waves
and obtained the seasonal component with varying annual behavior.

2.2 Toeplitz SSA

2.2.1 Method

Toeplitz SSA differs from Basic SSA only in Step 2 of the generic scheme presented
in Fig. 1.1; that is, in the decomposition of X into rank-one matrices. Basic SSA uses
the SVD at this step with Ui calculated as eigenvectors of S = XXT. If the length
N of the series X is not large and the series is assumed to be stationary, then the
usual recommendation is to replace the matrix S by some other matrix, which is
constructed under the assumption of stationarity.

Note first that in Basic SSA we can consider the lag-covariance matrix C =
S/K instead of S for obtaining the SVD of the trajectory matrix X. Indeed, the
eigenvectors of the matrices S and C are the same and the eigenvalues differ only
by the factor 1/K .

2.2 Toeplitz SSA 47

Denote by cij = cij (N) the elements of the lag-covariance matrix C. If the time
series is stationary with zero mean, L is fixed and K → ∞, then lim cij (N) =
RX(|i − j |) as N → ∞, where RX(k) stands for the lag-k term of the time
series autocovariance function. We can therefore define a Toeplitz version of the
lag-covariance matrix by putting equal values c̃ij at each matrix auxiliary diagonal
|i − j | = k. The most natural way for defining the values c̃ij and the corresponding
matrix ˜C is to compute

c̃ij = 1

N − |i − j |
N−|i−j |

∑

m=1

xmxm+|i−j |, 1 ≤ i, j ≤ L. (2.9)

While using this formula it is usually assumed that the time series X is centered so
that the mean x̄ = ∑N

i=1 xi/N is subtracted from all xi ∈ X.
Let L ≤ K and denote by Pi (i = 1, . . . , L) the eigenvectors of ˜C; these vectors

form an orthonormal basis of RL. Then the decomposition on elementary matrices
can be written as X = ∑L

i=1 Pi(XTPi)
T. Ordering of addends is performed by

the magnitudes of σi = ‖XTPi‖. Note that this ordering generally differs from
the ordering of eigenvalues of the matrix ˜C corresponding to the eigenvectors Pi .
Some of these eigenvalues could even be negative as the matrix ˜C is not necessarily
positive definite.

If the original series is stationary with zero mean, then the use of Toeplitz lag-
covariance matrix ˜C can be more appropriate than the use of the lag-covariance
matrix C. On the other hand, Toeplitz SSA is not suitable for nonstationary series;
if the original series has an influential nonstationary component, then Basic SSA
works better than Toeplitz SSA. For example, if we are dealing with a pure
exponential series, then it is described by a single eigentriple for any window length,
while Toeplitz SSA produces L eigentriples for the window length L; moreover,
the eigenvectors in Toeplitz SSA have some special properties (Andrew 1973),
which do not depend on the series. The same effect takes place for the linear series,
exponential-cosine series, etc.

A number of papers devoted to SSA analysis of climatic time series (e.g., Ghil
et al. (2002), where Toeplitz SSA is often referred to as a VG method) consider
Toeplitz SSA as the main version of SSA and state that the difference between the
Basic and Toeplitz versions of SSA is marginal. However, using the Toeplitz version
of SSA is unsafe if the series contains a trend or oscillations with increasing or
decreasing amplitude. Examples of effects observed when Toeplitz SSA is applied
to non-stationary time series are presented in Golyandina (2010). For the study of
theoretical properties of Toeplitz SSA, see, for example, Harris and Yan (2010).

48 2 SSA Analysis of One-Dimensional Time Series

2.2.2 Algorithm

Algorithm 2.3 Toeplitz SSA: decomposition
Input: Time series X of length N , window length L.
Output: Decomposition of the trajectory matrix on elementary matrices X = X1+. . .+XL, where

Xi = σiPiQ
T
i , ‖Pi‖ = ‖Qi‖ = 1.

1: Construct the trajectory matrix X = TSSA(X).
2: Obtain the decomposition

X =
L

∑

i=1

σiPiQ
T
i = X1 + . . . + XL, (2.10)

where {Pi}Li=1 are eigenvectors of the matrix ˜C with entries computed by (2.9), Si = XTPi ,
Qi = Si/‖Si‖ and σi = ‖Xi‖F = ‖Si‖. Components are ordered by the magnitudes of σi :
σ1 ≥ σ2 ≥ . . . ≥ σL.

The reconstruction algorithm is exactly the same as Algorithm 2.2 with vectors
(Pi,Qi) substituted for (Ui, Vi).

2.2.3 Toeplitz SSA in RSSA

2.2.3.1 Description of Functions

In RSSA, Toeplitz SSA is implemented via the same ssa function as Basic SSA.
One should use kind="toeplitz-ssa" to enable the Toeplitz version. All other
arguments have the meaning as described in Sect. 2.1.5:

s <- ssa(x, L = (N + 1) %/% 2, neig = NULL,
kind = "toeplitz-ssa", svd.method = "auto")

where N is the series length.
Note that the triples (σi, Pi,Qi), which are generated by the decomposi-

tion (2.10), are also called eigentriples in RSSA and the access to {Pi} and {Qi}
is provided by the codes s$U and s$V.

2.2.3.2 Typical Code

To our mind, Toeplitz SSA has a limited range of applications, since it requires
stationarity for both signal and noise, which is first unnatural and second impossible
to verify. Hence, in the example below we use simulated data (Fragment 2.2.1).

As mentioned above, before using Toeplitz SSA it is recommended to center the
series. Then Toeplitz SSA can be used in exactly the same way as Basic SSA.

2.2 Toeplitz SSA 49

Eigenvectors
1 (36.52%) 2 (33.46%) 3 (1.61%) 4 (1.59%)

Eigenvectors
1 (36.63%) 2 (33.6%) 3 (1.81%) 4 (1.72%)

Fig. 2.6 Noisy sinusoid: 1D graphs of eigenvectors (top: Toeplitz SSA, bottom: Basic SSA)

Fragment 2.2.1 (Noisy Sinusoid: Toeplitz SSA)

> N <- 100
> sigma <- 0.5
> set.seed(1)
> F <- sin (2 * pi * (1:N) / 7) + sigma * rnorm(N)
> Fcenter <- F - mean(F)
> st <- ssa(Fcenter, L = 50, kind = "toeplitz-ssa")
> s <- ssa(F, L = 50, kind = "1d-ssa")
> p <- plot(s, type = "vectors", idx = 1:4, layout = c(4, 1))
> pt <- plot(st, type = "vectors", idx = 1:4, layout = c(4, 1))
> plot(pt, split = c(1, 1, 1, 2), more = TRUE)
> plot(p, split = c(1, 2, 1, 2), more = FALSE)
> pt <- plot(reconstruct(st, groups = list(1:2)),
+ plot.method = "xyplot", layout = c(3, 1))
> p <- plot(reconstruct(s, groups = list(1:2)),
+ plot.method = "xyplot", layout = c(3, 1))
> plot(pt, split = c(1, 1, 1, 2), more = TRUE)
> plot(p, split = c(1, 2, 1, 2), more = FALSE)

Here we see that for Toeplitz SSA the amplitude of the sinusoid reconstruction
is closer to a constant than that for Basic SSA (Figs. 2.6 and 2.7). Generally,
eigenvectors for Toeplitz SSA are more regular, even for the noise decomposition.
This is due to the properties of eigenvectors of Toeplitz matrices (Fig. 2.7).

Note that typically the window length for Toeplitz SSA should be rather small,
since the used estimate of auto-covariance matrix of the series tends to the true
auto-covariance matrix only if L is fixed and K tends to infinity.

50 2 SSA Analysis of One-Dimensional Time Series

Reconstructed Series

1:nrow(x)

−1

0

1

0 20 40 60 80 100

Original

0 20 40 60 80 100

F1

0 20 40 60 80 100

Residuals

Reconstructed Series

1:nrow(x)

−1

0

1

0 20 40 60 80 100

Original

0 20 40 60 80 100

F1

0 20 40 60 80 100

Residuals

Fig. 2.7 Noisy sinusoid: Reconstruction (top: Toeplitz SSA, bottom: Basic SSA)

2.2.3.3 Simulated Example

As was mentioned above, for stationary time series the use of Toeplitz SSA is
appropriate, while it makes no sense to apply Toeplitz SSA for trend extraction.
Also, if a periodic component (e.g., a seasonal behavior) is changing in time, the
accuracy of signal reconstruction is worse than that for Basic SSA.

Let us demonstrate this by means of simulation. We consider the signal in the
form sn = exp(αn) sin(2πn/7), n = 1, . . . , 100, and the noisy series xn = sn+σεn,
where σ = 0.5, εn is white Gaussian noise.

For α = 0 this series can be considered as stationary with stationary deterministic
signal (see definition in Golyandina et al. (2001; Sections 1.7.2 and 6.4)). For non-
zero α, this series is not stationary. Thus, let us consider α from [0, 0.01].

2.3 SSA with Projection 51

Fragment 2.2.2 (Simulation: Comparison of Toeplitz and Basic SSA)

> SIMUL <- FALSE
> N <- 100
> sigma <- 0.5
> set.seed(1)
> alpha <- seq(0.0, 0.01, 0.001)
> L <- 50
> Q <- 1000
> if (SIMUL) {
+ RMSE <-
+ sapply(alpha,
+ function(a) {
+ sqrt(rowMeans(replicate(Q, {
+ S <- exp(a * (1:N)) * sin(2 * pi * (1:N) / 7)
+ F <- S + sigma * rnorm(N)
+ Fcenter <- F - mean(F)
+ st <- ssa(Fcenter, L = L, kind = "toeplitz-ssa")
+ s <- ssa(F, L = L, kind = "1d-ssa")
+ rec <- reconstruct(s, groups = list(1:2))$F1
+ rec.t <- reconstruct(st, groups = list(1:2))$F1
+ c("1d-ssa" = mean((rec - S)^2),
+ "toeplitz" = mean((rec.t - S)^2))
+ })))
+ })
+
+ toeplitz.sim <- as.data.frame(t(RMSE))
+ } else {
+ data("toeplitz.sim", package = "ssabook")
+ }
> matplot(alpha, toeplitz.sim, type = "l", ylim = c(0, 0.25))

Figure 2.8 shows the dependence of the reconstruction accuracy on the exponen-
tial rate α constructed with the help of the code from Fragment 2.2.2. The window
length L = 50 was chosen and RMSE was taken as a measure of accuracy. One can
see that the accuracy of Basic SSA reconstruction does not depend on α, while the
error of Toeplitz SSA increases as α increases. If a series is very close to a stationary
series, Toeplitz SSA has a slightly smaller error than Basic SSA. However, already
for α = 0.01 Toeplitz SSA makes considerably larger errors than Basic SSA.

2.3 SSA with Projection

2.3.1 Method

As was mentioned in Sect. 1.2.1.1, the goal of SSA with projection is an efficient
use of a known information about series components. The well-known methods of
SSA with centering and SSA with double centering for extraction of constant and
linear trends, respectively, are special cases of SSA with projection.

52 2 SSA Analysis of One-Dimensional Time Series

0.000 0.002 0.004 0.006 0.008 0.010

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

alpha

R
M

SE

Fig. 2.8 Simulation: Reconstruction error of Toeplitz (dash red line) and Basic SSA (solid black
line)

Let X be a time series of length N , L be the window length, K =N−L+1, and X
be the trajectory matrix. The general form of centering can be expressed as follows:

1. Calculation of a special matrix C(center) = C(X) based on a priori information.
2. Computation of X� = X − C(center).
3. Construction of the SVD: X� = ∑d�

i=1

√

λ�
i U

�
i (V �

i)T.

As a result, we obtain the decomposition X = C(center) +
d�
∑

i=1

√

λ�
i U

�
i (V �

i)T.

Denote EM = (1, . . . , 1)T ∈ RM the M-vector of ones. The following three
types of centering can be considered (Golyandina et al. 2001; Sections 1.7.1
and 6.3):

• Single row centering when C(center)
row (X) = (XEK/K)ET

K corresponds to averag-

ing by rows; that is, each element of a row of C(center)
row consists of the average of

the corresponding row of the trajectory matrix.
• Single column centering when C(center)

col (X) = EL(XTEL/L)T corresponds to
averaging by columns.

• Double centering when C(center)
both = C(center)

row + C(center)
col

(

X − C(center)
row (X)

)

corre-
sponds to averaging by both rows and columns.

Note that the single centering can be considered as a projection of rows or
columns of X on span(EK) or span(EL), respectively, since EKET

K and ELET
L

are exactly the matrices of the projection operators. Therefore, centering in SSA
can be considered as a preliminary projection of the trajectory matrix on a given
subspace; the residual matrix will be subsequently expanded by the SVD or any
other decomposition.

2.3 SSA with Projection 53

Let us generalize this approach to projections to arbitrary spaces following
Golyandina and Shlemov (2017). Let Πcol : RL → Lcol and Πrow : RK → Lrow
be orthogonal projectors, where Lcol ∈ RL is called the column projection space
and Lrow ∈ RK is called the row projection space. For any Y ∈ RL×t , denote
Πcol(Y) the matrix consisting of the columns, which result from projections of the
columns of Y. Similarly, for any Y ∈ Rt×K , denote Πrow(Y) the matrix consisting
of the rows, which result from projections of the rows of Y.

Denote a basis of the column projection space {Pi, i = 1, . . . , p} and a basis
of the row projection space {Qi, i = 1, . . . , q}. Let P = [P1 : . . . : Pp] and
Q = [Q1 : . . . : Qq]. Without loss of generality we assume that {Pi, i = 1, . . . , p}
and {Qi, i = 1, . . . , q} are orthonormal bases of Lcol and Lrow (otherwise, we can
perform ortho-normalization).

In SSA with projection, the scheme of SSA with centering is extended to
arbitrary projections; that is, C = Πcol(X) for the column projection, C = Πrow(X)

for the row projection and C = Πboth(X) for the double projection, where

Πboth(X) = Πrow(X) + Πcol(X − Πrow(X))

= Πcol(X) + Πrow(X − Πcol(X))

= Πrow(X) + Πrow(X) − (Πcol ◦ Πrow) (X). (2.11)

If either the column or row basis is absent (that is, the space for column or row
projection consists of zero), then we formally set the corresponding projector to be
zero operator implying C = Πboth(X) in any mode.

A general form of the decomposition provided by SSA with projection is

X = C +
d�
∑

i=1

√

λ�
i U

�
i (V �

i)T, (2.12)

where C = Πboth(X) and
∑d�

i=1

√

λ�
i U

�
i (V �

i)T is the SVD of X� = X − C.
It is shown in Golyandina and Shlemov (2017) that (2.12) can be represented

as a sum of elementary matrices of rank 1. The matrix C can be considered as
a sum of q + p elementary matrices of the forms σ

(r)
i

˜PiQ
T
i , i = 1, . . . , q , and

σ
(c)
i Pi

˜QT
i , i = 1, . . . , p. The triples (σ

(r)
i , ˜Pi,Qi) and (σ

(c)
i , Pi , ˜Qi) have the

same meaning as eigentriples. For double projection, this representation depends
on the order of projections; we will apply the row projector first. Therefore, the
decomposition (2.12) can be transformed into a decomposition of X into a sum of
q + p + d� elementary rank-one matrices, which are orthogonal with respect to the
Frobenius norm ‖ · ‖, by construction. As a consequence, the contribution of the
projection term C into the decomposition is measured by ‖C‖2/‖X‖2.

Thus, (2.12) is a decomposition of X on elementary matrix components unam-
biguously defined. Reconstruction stage is exactly the same as in the Basic SSA
method. Note that it has little sense to include the eigentriples produced by

54 2 SSA Analysis of One-Dimensional Time Series

projections to different groups, since the projections are performed on the subspaces
as a whole. It follows from Golyandina and Shlemov (2017; Lemma 1) that the rank
d� of the matrix X� obtained after projection cannot be larger than the rank of the
original matrix X and can not be smaller than rankX − (q + p).

When we use projections, we should expect some specific form for one of the
series component. For example, to extract a sine wave using projections, we should
know its period, and to extract exponential trend, we should know its rate. These
conditions are often too restrictive. A clear exception is extraction of the polynomial
trends, when we should assume only the degree of the polynomial to define its
trajectory space.

Note finally that SSA with projection can be applied in the shaped version, when
the series has gaps.

2.3.2 Appropriate Time Series

For SSA with projection, a known series component with a trajectory matrix Y
should be in agreement with projections so that Πcol(Y) = Y for the column
projection, Πrow(Y) = Y for the row projection, and Πboth(Y) = Y for the double
projection.

Clearly, for column and row projections, this is true if the corresponding
projection is performed on the column or row trajectory space of the known series
component. For example, the trajectory space of an exponential component sn = μn

spans (1, μ, . . . , μL)T, while the trajectory space of the linear function sn = an+b

spans (1, 1, . . . , 1)T and (1, 2, . . . , L)T for any a and b.
Let us introduce a condition sufficient for Πboth(X) = X to hold for the general

case of the double projection.
Recall that a series governed by an LRR, whose characteristic polynomial has

the given set of roots called characteristic roots, is of the form (1.9).

Theorem 2.1 (Golyandina and Shlemov (2017)) Let series Y(m), m = 1, 2, be
governed by minimal LRRs of orders rm, Y(m) be their trajectory matrices. Denote
{μj ; j = 1, . . . , s} the set containing the characteristic roots of both series.
Assume that Y(m), m = 1, 2, have the signal roots μj , j = 1, . . . , s, with

multiplicities d
(m)
j ≥ 0,

∑s
j=1 d

(m)
j = rm. Let Πcol be the projector on the column

space of Y(1), Πrow be the projector on the row space of Y(2), Πboth be given
in (2.11). Then Πboth(X) = X if and only if the set of characteristic roots of the
series X consists of the roots μj , j = 1, . . . , s, of multiplicities dj ≤ d

(1)
j + d

(2)
j .

Corollary 2.1 Let Y be a series of dimension r , Y be its trajectory matrix, Πrow
be the projector on its row trajectory space, Πcol be the projector on its column
trajectory space. Consider the series X with xn = (an + b)yn. Then Πboth(X) = X.

Remark 2.1 Note that multiplication by an + b means that the multiplicities of the
characteristic roots increase by 1.

2.3 SSA with Projection 55

Since for polynomial trends of a degree k there is the unique characteristic root
equal to 1 of multiplicity k+1 (Golyandina et al. 2001; Example 5.3) and we should
assume only the degree of the polynomial trend to obtain its trajectory space, this
case is of particular interest.

Corollary 2.2 Let Πrow be the projection on the row trajectory space of the
polynomial of order m, Πcol be the projection on the column trajectory space of
the polynomial of order k. Then for the polynomialX = Pm+k+1 of order m+ k + 1
we have Πboth(X) = X.

It immediately follows from the projection definition that in the conditions of
Corollary 2.2, for any polynomial X = Pm of degree m we have Πrow(X) = X and
for any polynomial X = Pk of degree k we have Πcol(X) = X.

2.3.3 Separability

We can expect that if the bases of the spaces to be projected to are chosen properly
(for example, if an LRR governing a time series component is known), then SSA
with projection improves the resultant decomposition, in comparison with Basic
SSA.

Using the notion of separability, we can formulate this improvement as follows.
Let X = X

(1) + X
(2). We will say that a time series component X(1) is separated

by SSA with projection if its trajectory matrix X(1) coincides with C, where C
is as in (2.12). Therefore, separability by SSA with projection means that the
series component X(1) can be reconstructed by projecting components of the matrix
decomposition (2.12) only.

Let X(1) be a series of finite rank, X = X
(1) + X

(2). Similar to Golyandina
et al. (2001; Sections 1.7.1 and 6.3), where conditions for separability by SSA with
centering are considered, the following conditions of separability can be obtained:

1. Basic SSA: X(1) and X
(2) are separable if (if and only if, by the definition) their

row and column spaces are orthogonal.
2. SSA with row projection on the row space of X(1): X(1) and X

(2) are separable if
their row spaces are orthogonal.

3. SSA with column projection on the column space of X
(1): X(1) and X

(2) are
separable if their column spaces are orthogonal.

4. SSA with double projection on the row and column space of Y, where X
(1) and

Y are such that x
(1)
n = (an + b)yn, a
= 0: X

(1) and X
(2) are separable by SSA

with double projection if Y and X
(2) are separable by Basic SSA.

For an approximate separability X(1) ≈ C, we need an approximate orthog-
onality. Also, an asymptotic separability and the rate of convergence can be
considered by analogy with the conventional separability for Basic SSA and SSA
with centering.

56 2 SSA Analysis of One-Dimensional Time Series

Recall that the usual double centering in SSA corresponds to a constant series
Y and therefore a linear series X

(1). Orthogonality to a constant series is a much
weaker condition than that to a linear series. Therefore, for extraction of a linear
trend the use of double centering is recommended.

We can expect that in the case of a polynomial trend, SSA with double centering
can work better than SSA with row or column centering and also than Basic SSA.

Also, the separability conditions imply that for extraction of polynomial trends
double projection can be used for better separability and therefore the result can
be more accurate than the ordinary least-squares polynomial regression provides;
see Golyandina et al. (2001; Section 1.7.1) and Golyandina and Shlemov (2017)
containing comparison with least-squares regression estimates.

It is important that separability of SSA with projection, if it takes place, is always
strong, since the elementary components, which are produced by the projection,
precede the SVD components, by construction of the decomposition.

2.3.4 Algorithm

Algorithm 2.4 SSA with projection: decomposition
Input: Time series X of length N , window length L, orthonormal basis of the column projection

space {Pi, i = 1, . . . , p} and orthonormal basis of the row projection space {Qi, i =
1, . . . , q}. Either p or q can be zero.

Output: Decomposition of the trajectory matrix on elementary matrices X = X1 + . . .+Xd , where
Xi = σiUiV

T
i are either zero or rank-one matrices.

1: Construct the trajectory matrix X = TSSA(X).
2: Subtract the row projection: X′ = X − Crow, where

Crow = Πrow(X) =
q

∑

i=1

σ
(r)
i

˜PiQ
T
i ,

σ
(r)
i = ‖XQi‖, ˜Pi = XQi/σ

(r)
i if σ

(r)
i > 0; otherwise, ˜Pi is the zero vector.

3: Subtract the column projection: X� = X′ − Ccol, where

Ccol = Πcol(X′) =
p

∑

i=1

σ
(c)
i Pi

˜QT
i ,

σ
(c)
i = ‖X′TPi‖, ˜Qi = X′TPi/σ

(c)
i if σ

(c)
i > 0; otherwise, ˜Qi is the zero vector.

4: Construct an SVD of the matrix X�: X� = ∑d�

i=1 X
�
i , where X�

i = √

λ�
i U

�
i (V �

i)T.

5: As a result, X = ∑d
i=1 Xi , where d = q + p + d� , Xi = σ

(r)
i

˜PiQ
T
i for i = 1, . . . , q,

Xi+q = σ
(c)
i Pi

˜QT
i for i = 1, . . . , p, and Xi+q+p = √

λ�
i U

�
i (V �

i)T for i = 1, . . . , d�.

2.3 SSA with Projection 57

Algorithm 2.5 SSA with projection: reconstruction

Input: Decomposition X = X1+. . .+Xd , Xi = σiUiV
T
i , number q of row-projection components,

number p of column-projection components, grouping {1, . . . , d} = ⊔m
j=1 Ij , which does not

split the first q + p projection components.
Output: Decomposition of the time series on identifiable components X = X1 + . . . + Xm.
1: Construct the grouped matrix decomposition X = XI1 + . . . + XIm , where XI = ∑

i∈I Xi .
2: Compute X = X1 + . . . + Xm, where Xi = T−1

SSA ◦ ΠH(XIi).

The only essential difference with the reconstruction by Basic SSA is that the set
of the matrices Xi , i = 1, . . . , q + p, produced by projections, should be included
to the same group.

2.3.5 SSA with Projection in RSSA

2.3.5.1 Description of Functions

In RSSA, Basic SSA with projection is a special case of Basic SSA, hence ssa

function should be used with additional arguments that would specify column and
row projection bases. The meaning of all other arguments is the same as described
in Sect. 2.1.5. A typical call is as follows:

s <- ssa(x, L = (N + 1) %/% 2, neig = NULL,
kind = "1d-ssa", svd.method = "auto",
column.projector = "centering",
row.projector = "centering")

where N is the series length.
Arguments:

column.projector, row.projector Each may be a matrix of orthonormal basis
of the projection subspace, or a single integer, which will be interpreted as the
dimension of the orthogonal polynomial basis (note that the dimension equals
to the degree of the basis plus 1, e.g. the quadratic basis has dimension 3), or
one of following character strings: "none", "constant" (or "centering"),
"linear", "quadratic," or "cubic" for orthonormal bases of the corre-
sponding polynomial series.

The ssa call when both projectors are set to "none" corresponds to ordinary Basic
SSA, column.projector = "centering" (or, the same, column.projector=1)
corresponds to Basic SSA with centering, column.projector = "centering"

and row.projector = "centering" corresponds to Basic SSA with double
centering. The mode kind = "toeplitz-ssa" is unavailable for any choice of
projections.

Note that the special triples generated by projections are included into the whole
set of triples produced by the adaptive decomposition used. In RSSA, all the triples

58 2 SSA Analysis of One-Dimensional Time Series

are named eigentriples for uniformity. The first nspecial(s) triples correspond
to projections. Hence, reconstruction by groups = list(1:nspecial(n)) corre-
sponds to reconstruction of the projection term. For example, for double centering
mode, one obtains a linear trend estimation.

2.3.5.2 Typical Code

Let us consider the example “CO2” (Mauna Loa Atmospheric CO2 Concentration).
It seems that for such kind of time series, many methods can yield very similar
results. Basic SSA provides very natural way for trend extraction, it is demonstrated
in Golyandina and Korobeynikov (2013), where the choice L = 120, ET 1, 4 was
considered.

Fragment 2.3.1 demonstrates the code, which allows to perform reconstruction
by means of SSA with projection.

Fragment 2.3.1 (“CO2”: SSA with Projection)

> s2 <- ssa(co2, column.projector = "centering",
+ row.projector = "centering")
> plot(reconstruct(s2, groups =
+ list(Linear.trend = seq_len(nspecial(s2)))),
+ add.residuals = FALSE, plot.method = "matplot")
> s4 <- ssa(co2, column.projector = 2, row.projector = 2)
> plot(reconstruct(s4, groups =
+ list(Trend = seq_len(nspecial(s4)))),
+ add.residuals = FALSE, plot.method = "matplot")
> plot(s4, type = "vectors", idx = 1:12)
> r <- reconstruct(s4,
+ groups =
+ list(Signal = c(seq_len(nspecial(s4)), 5:8)))
> plot(r, plot.method = "xyplot")

We start with extraction of linear trend and therefore choose column.projector

= "centering", row.projector = "centering" to perform SSA with double
centering. Note that the same choice of projectors can be achieved by setting
column.projector and row.projector equal to 1, where 1 is the dimension of
the trajectory space of a polynomial series of degree 0; that is, of a constant series.
Recall that the choice column.projector = p, row.projector = q corresponds
to extraction of a polynomial trend of degree p + q − 1. To select all the
projection components in the decomposition s2 for extraction, we set the trend
group consisting of the first nspecial(s2) components. The extracted trend is close
to linear, see Fig. 2.9. Certainly, the accurate trend of “CO2” series is not linear.

To extract a more accurate trend, let us choose other subspaces for projections,
column.projector = 2 and row.projector = 2, to extract a trend, which is
close to a cubic polynomial. Figure 2.10 shows that the extracted trend is quite
accurate. This trend is very similar to that in Golyandina and Korobeynikov
(2013), which was extracted by Basic SSA. Note that in this example the trend

2.3 SSA with Projection 59

0 100 200 300 400

31
0

32
0

33
0

34
0

35
0

36
0

Reconstructed Series

Fig. 2.9 “CO2”: Reconstruction of linear trend

0 100 200 300 400

32
0

33
0

34
0

35
0

36
0

Reconstructed Series

Fig. 2.10 “CO2”: Reconstruction of the cubic trend

is approximated by a sum of two exponentials in Basic SSA (ET1,4 for L = 120)
and a polynomial of order 3 in SSA with projection; both approximations have four
parameters and achieve similar accuracy.

Note that SSA with projection allows us to extract not only a trend but also other
kinds of series components, similar to what Basic SSA does. Figure 2.11 presents
graphs of eigenvectors for the “CO2” example. The first two components contain
two vectors produced by projecting rows on the row projection space and the next

60 2 SSA Analysis of One-Dimensional Time Series

Eigenvectors
1 (99.94%) 2 (0.05%) 3 (0%) 4 (0%)

5 (0%) 6 (0%) 7 (0%) 8 (0%)

9 (0%) 10 (0%) 11 (0%) 12 (0%)

Fig. 2.11 “CO2”: 1D graphs of eigenvectors

two components contain a basis of the column space (two linear functions here).
Other graphs show singular vectors of the matrix X′′ obtained by subtraction of
the projection matrices. Choice of the trend components ET1–4 and the seasonality
components ET5–8 leads to the signal extraction depicted in Fig. 2.12.

2.3.5.3 Simulated Examples: Polynomial Regression

Here we consider an example showing the difference between SSA with projection
and the least-squares parametric regression for polynomial trend extraction. Let us
take a polynomial trend tn = 10(n/N − 0.5)5 of order 5, xn = tn + sin(2πn/10),
where N = 199 and n = 1, . . . , N .

Projections, which keep a polynomial of degree 5, can be composed in different
ways. It can be purely either column or row projection on the 6-dimensional
polynomial trajectory space. Also, a double projection can be considered. For
example, we can take both row and column projections on the row and column
trajectory spaces of a polynomial of degree 2 (and of dimension 3). By Corollary 2.2,
this double projection with k = m = 2 keeps polynomial of degree 5.

2.3 SSA with Projection 61

Reconstructed Series

Time

32
0

33
0

34
0

35
0

36
0

Original
32

0
33

0
34

0
35

0
36

0

Signal

−1
.0

0.
0

0.
5

1.
0

1.
5

1960 1970 1980 1990

Residuals

Fig. 2.12 “CO2”: Reconstruction of signal

SSA with projection for neither choice provides approximate separability of the
polynomial trend from a sinusoid. However, in view of the separability conditions
we can expect that the choice k = m = 2 probably corresponds to the best accuracy.

Fragment 2.3.2 (Polynomial Trend: SSA with Projection)

> N <- 199
> tt <- (1:N) / N
> r <- 5
> F0 <- 10 * (tt - 0.5)^r
> F <- F0 + sin(2 * pi * (1:N) / 10)
> L <- 100
> dec <- ssa(F, L = L, column.projector = 3, row.projector = 3)
> rec1 <- reconstruct(dec, groups =
+ list(Trend = seq_len(nspecial(dec))))
> fit1 <- rec1$Trend
> fit1_3b <- lm(fit1 ~ poly((1:N), r, raw = TRUE))
> fit3b <- lm(F ~ poly((1:N), r, raw = TRUE))
> li <- 1:199
> d <- data.frame(Initial = F[li],
+ dproj = fit1[li],

62 2 SSA Analysis of One-Dimensional Time Series

+ dproj_reg = predict(fit1_3b)[li],
+ regr = predict(fit3b)[li], trend = F0[li])
> xyplot(as.formula(paste(paste(colnames(d), collapse = "+"),
+ "~", "1:nrow(d)")),
+ data = d,
+ type = "l", ylab = "", xlab = "",
+ lty = c(1, 1, 1, 1, 1), lwd = c(1, 2, 2, 2, 2),
+ auto.key = list(columns = 3,
+ lines = TRUE, points = FALSE))

We compare the following trend estimations (see Fragment 2.3.2). First, we set
L = 100 and consider the trend obtained by double projection with k = m = 2 (this
is called “dproj”). Then, we find the least-squares polynomial regression of order 5
for the initial series (“regr”) and for “dproj” (“dproj_regr”).

If L and K are divisible by the period, then the separability accuracy is better
and the result is in a sense unbiased. Least-squares polynomial regression of order 5
does not estimate the polynomial trend in the meaning considered in this example
as it minimizes the prediction mean square error, by the definition.

The results are presented in Fig. 2.13. SSA with double projection extracts the
trend approximately with visible mixture with the sine-wave component. However,
these oscillations are around the proper trend. Least-squares polynomial regression
of order 5 applied to the result of double projection confirms it.

Least-squares parametric regression provides a poor estimator of trend in the
considered example. For longer time series the difference is not so dramatic and the
trend estimates are closer.

−1.0

−0.5

0.0

0.5

1.0

0 50 100 150 200

Initial
dproj

dproj_reg
regr

trend

Fig. 2.13 Polynomial trend: Comparison of trend reconstructions

2.4 Iterative Oblique SSA 63

2.4 Iterative Oblique SSA

For reasonably long time series lengths and moderate noise levels, interpretable
components such as trends, oscillations, and noise are approximately separable by
Basic SSA (Golyandina et al. 2001; Sections 1.5 and 6.1). However, the conditions
of approximate separability can be restrictive, especially, for short time series.

Orthogonality of subseries, which is the main condition for separability in Basic
SSA, see Sect. 2.1.3, can be a strong limitation on the series which we want to
separate. However, if we consider orthogonality with respect to a non-standard
Euclidean inner product, conditions of separability are considerably weaker. This
approach yields the method called Oblique SSA (O-SSA) with the SVD performed
in a non-orthogonal coordinate system at Decomposition step. The idea of Oblique
SSA is similar to that of prewhitening which is frequently used in statistics as
preprocessing: if we know covariances between components, then we can perform
linear transformation and obtain uncorrelated components. Since the “covariances”
of the components are not known in advance, an iterative method called Iterative
Oblique SSA can be used. Also, the method is able to change contributions of the
components in a specific way so that their strong separability will most likely to be
improved.

2.4.1 Method

2.4.1.1 Use of Oblique SVD

Although many interpretable series components like trend (a slowly varying
component) and seasonality are asymptotically orthogonal, for a given time series
length the orthogonality can be unreachable even approximately. Therefore, it would
be helpful to weaken the orthogonality condition. Oblique SSA uses different
orthogonality, which still means the equality of an inner product to 0, but this time
a non-standard inner product is used; this inner product is adapted to the time series
components, which we want to separate.

It is well-known that any inner product in the Euclidean space is associated with
a symmetric positive-definite matrix A and is defined as 〈X1,X2〉A = (AX1,X2).
The standard inner product corresponds to the use of the identity matrix as A. The
notion of inner product implies the notion of A-orthogonality: two vectors X1 and
X2 are A-orthogonal if 〈X1,X2〉A = 0. If the matrix A is semi-definite, then it
defines the inner product in its column space (also, in the row space which is the
same in view of symmetry). While considering 〈X1,X2〉A, we will always assume
that the vectors X1 and X2 belong to the column space of A.

The non-standard Euclidean inner products induce such notions as oblique
coordinate systems, orthogonality of vectors, which are oblique in the ordinary
sense, and so on.

64 2 SSA Analysis of One-Dimensional Time Series

Let us consider an elementary example. Let X = (1, 2)T and Y = (1, 1)T. These
two vectors are not orthogonal in the usual sense as (X, Y) = 3. However, if we
define

A =
(

5 −3
−3 2

)

, (2.13)

then 〈X,Y 〉A = (AX,Y) = 0 and (OAX,OAY) = 0 for any OA such that OT
AOA =

A, e.g.,

OA =
(

1 −1
−2 1

)

.

This means that {X,Y } is an orthogonal basis with respect to the A-inner product
〈·, ·〉A and the matrix OA defines the orthogonalizing map. The matrix A can be
chosen in such a way that X and Y have any given A-norms. The choice (2.13)
corresponds to A-orthonormality.

To describe Oblique SSA, let us introduce the SVD of a matrix X produced by
two oblique bases, L-orthonormal and R-orthonormal correspondingly, in the row
and column spaces.

Definition 2.5 We say that

X =
d

∑

i=1

σiPiQ
T
i (2.14)

is the (L,R)-SVD, if {Pi}di=1 is an L-orthonormal system and {Qi}di=1 is an R-
orthonormal system; that is, the decomposition is (L,R)-biorthogonal.

This kind of SVD is called Restricted SVD (RSVD) given by the triple (X,L,R),
see De Moor and Golub (1991) for details. The mathematics related to inner
products 〈·, ·〉A with positive-semidefinite matrix A and the corresponding RSVD
is shortly described in Golyandina and Shlemov (2015; Appendix A) from the
viewpoint of decompositions into a sum of elementary matrices.

Oblique SSA (O-SSA) is a modification of the Basic SSA method described in
Sect. 2.1, where the standard SVD at Decomposition step is replaced by the (L,R)-
SVD for some matrices L and R. We will use all the notions related to Basic SSA
for this oblique modification.

If L and R are the identity matrices, then Oblique SSA coincides with Basic SSA,
σi = √

λi , Pi = Ui , and Qi = Vi .
Computationally, oblique SVD is straightforwardly reduced to the ordinary SVD

(see Golyandina and Shlemov (2015; Proposition 4)) and therefore its calculation
does not require special numerical techniques, see Algorithm 2.6.

2.4 Iterative Oblique SSA 65

2.4.1.2 Nested Oblique SSA

Unlike the ordinary SVD, the SVD with respect to a non-orthogonal coordinate sys-
tem provides a matrix approximation which does not have obvious approximation
properties. This implies that Oblique SSA is not a good tool for extraction of the
leading components, in particular, for extraction of the signal and for denoising.

Therefore, we suggest to use Oblique SSA in the nested way. The approach
is somewhat similar to factor analysis, where a factor space can be estimated by
principal component analysis and then interpretable factors are extracted from the
factor space.

Suppose that in a particular application Basic SSA is able to extract the signal
but is not able to separate the signal components. For example, let the time series
consist of a noisy sum of two sinusoids with close frequencies. Then Basic SSA
can perform the denoising but it is unlikely that it will be able to separate these
sinusoids. Hence Basic SSA should only be used for estimation of the subspace
of the sum of sinusoids and then some other method is advised to be employed
for separating the sinusoids. Note that the nested approach is similar to the refined
grouping used in Golyandina and Zhigljavsky (2013; Section 2.5.4) for the SSA-
ICA and Golyandina and Lomtev (2016) for the SSA-AMUSE algorithms, which
use ideas taken from independent component analysis.

Thus, let us apply Basic SSA with proper parameters and let a matrix decom-
position X = XI1 + . . . + XIp be obtained at Grouping step of Basic SSA; each
group corresponds to a separated time series component. Let the sth group I = Is be
chosen for a refined decomposition. DenoteY = XI , r = rankY, Y = T−1◦ΠH(Y)

the series obtained from Y by diagonal averaging.
Let us describe the scheme of Nested Oblique SSA. The aim of the nested

scheme is obtaining a refined decomposition of Y = XI in the matrix form
Y = Y(1) + . . .+Y(l), using the (L,R)-SVD and therefore getting a decomposition
of the corresponding time series Y = ˜Y

(1) + . . . + ˜Y
(l).

For correctness of the scheme, we should assume that the matrices L and R are
consistent with Y; that is, the column space of Y is a subset of the column space of
L and the row space of Y is a subset of the column space of R.

Nested O-SSA is very similar to Basic SSA; the difference is that there is no
Embedding step and that the matrix XI , which is not necessarily a Hankel matrix,
is used instead of the conventional trajectory matrix.

At Decomposition step, we construct the (L,R)-SVD of Y in the form

Y =
r

∑

i=1

σiPiQ
T
i , (2.15)

see Algorithm 2.6.
The rest of the method coincides with Reconstruction stage of Basic SSA. After

Grouping step, we obtain the decomposition Y = YJ1 + . . . + YJl and then, as

66 2 SSA Analysis of One-Dimensional Time Series

a result, the refined series decomposition Y = ˜Y
(1) + . . . + ˜Y

(l), where ˜Y
(m) =

T−1 ◦ ΠH(YJm).
Therefore, after application of Nested O-SSA to the group Is , we obtain the

following decomposition of the original series X:

X = ˜X
(1) + . . . + ˜X

(p), where ˜X
(s) = ˜Y

(1) + . . . + ˜Y
(l).

For simplicity, below we will consider the case l = 2.

2.4.1.3 Iterative Approach to O-SSA

Let us describe an iterative version of Nested O-SSA; that is, an iterative algorithm
for obtaining appropriate matrices L and R for the (L,R)-SVD of XI . For proper
use of nested decompositions, we should expect that the matrix XI is close to a
rank-deficient trajectory matrix of rank r .

To explain the main principle of the method, assume that XI = Y is the trajectory
matrix of Y. Let Y = Y

(1) +Y
(2) and the trajectory matrices Y1 and Y2 be of ranks

r1 and r2, r1 + r2 = r . Then by Golyandina and Shlemov (2015; Theorem 1) there
exist r-rank separating matrices L∗, R∗ of sizes L × L and K × K correspondingly
and a partition {1, . . . , r} = J1 � J2 such that we can perform the proper grouping
in the (L∗,R∗)-SVD and thereby obtain YJ1 = Y1 and YJ2 = Y2.

The separating matrices L∗ and R∗ are unknown as they are determined by
unknown trajectory spaces of Y

(1) and Y
(2). Therefore, we want to construct

a sequence of (L,R)-SVD decompositions (2.14), which in the limit gives the
required separating decomposition.

Let us have an initial (L(0),R(0))-SVD decomposition of Y and group its
components to obtain some initial estimates ˜Y

(1,0) and ˜Y
(2,0) of Y

(1) and Y
(2).

Then we can use the trajectory spaces of ˜Y
(1,0) and ˜Y

(2,0) to construct the new
inner product which is expected to be closer to the separating one. Therefore, we
can expect that ˜Y

(1,1) and ˜Y
(2,1) will be closer to Y

(1) and Y
(2) and therefore we

take their trajectory spaces to construct a new inner product; and so on. Of course, if
the initial decomposition is strongly separating, then we obtain ˜Y

(m,1) = ˜Y
(m,0) =

Y
(m), m = 1, 2.

2.4.1.4 Basic Iterative Algorithm

We call the iterative version of Nested Oblique SSA Iterative Oblique SSA or
Iterative O-SSA.

As before, we consider a nested O-SSA whose input is the matrix Y = XI of
rank r . For Basic SSA and for nested O-SSA, a partition of eigentriple numbers for
grouping is made after Decompositions stage. For Iterative O-SSA, a partition I =
˜J1 � ˜J2, rm = |˜Jm|, should be specified in advance, since iterations are performed

2.4 Iterative Oblique SSA 67

in an automatic mode. Certainly, the choice of partition is not made in dark since
before the use of a nested version, we have a full decomposition which we use for
choosing the group I and its partition.

Iterative O-SSA is made of repeated application of nested O-SSA with recal-
culation of (L(k),R(k)). As any iterative algorithm, Iterative O-SSA should have
initial data (L(0),R(0)) and a stopping rule. Standard stopping rule includes the
maximum number of iterations M and the precision threshold ε. In Iterative O-SSA,
the algorithm stops if the reconstructed series components ˜Y

(m,k), m = 1, 2, change
very little. For a function ρ(·) defining a vector norm, the iterations stop under the
condition max

(

ρ(˜Y(m,k) − ˜Y
(m,k−1)),m = 1, 2

)

< ε.
Note that since the consistence of (L,R) with Y is needed for a correct (L,R)-

SVD, the initial data (L(0),R(0)) should also be consistent.

Remark 2.2 The initial matrices (L(0),R(0)) together with grouping can be speci-
fied so that the initial decomposition is a part of the SVD (2.3) given by the set of
indices I and I = ˜J1 � ˜J2, where ˜J1 and ˜J2 are chosen on the base of analysis of
the components in (2.3). Since (2.3) is biorthogonal, L(0) and R(0) are the identity
matrices. It is convenient to denote by J1 and J2 the sets consisting of ordinal indices
of the elements of ˜J1 and ˜J2 in I . Thereby, {1, . . . , r} = J1 � J2. For example, if
˜J1 = {11, 14} and ˜J2 = {12, 18}, then I = {11, 12, 14, 18}, J1 = {1, 3} and
J1 = {2, 4}.

To finalize the Iterative O-SSA method, we present a formal description of
iterations. The separating decomposition Y = Y1 +Y2 should satisfy the following
properties:

(a) Y1 and Y2 are Hankel;
(b) rankY1 = r1, rankY2 = r2;
(c) the column and row spaces of Y1 and Y2 lie in the column and row spaces of Y;
(d) Y1 and Y2 are (L,R)-biorthogonal for L = L∗ and R = R∗.

Define Πcol the orthogonal projection operator (for the Euclidean norm) on the
column space of Y, Πrow the projection operator on the row space of Y. The nested
group is the ordered union I = ˜J1 � ˜J2, rm = |˜Jm|, J1 and J2 are defined in
Remark 2.2; the pair of matrices (L(k−1),R(k−1)) is the input for the kth iteration.

Let us formulate the kth iteration steps.

(A) To obtain Hankel matrices, we perform hankelization of the input decomposi-
tion ˜Ym = ΠHY(k−1)

Jm
, m = 1, 2.

(B) Then, to obtain a low-rank approximation of ranks r1 and r2 correspondingly,

we construct the ordinary SVDs ˜Ym = ∑dm

i=1

√

λ
(m)
i U

(m)
i (V

(m)
i)T, m = 1, 2,

and take the leading rm terms.
(C) Since we should not fall outside the column space of the input matrix Y (we

consider a nested decomposition), we find the projections ̂U
(m)
i = ΠcolU

(m)
i

and ̂V
(m)
i = ΠrowV

(m)
i for i = 1, . . . , rm, m = 1, 2. Denote

̂U(m) = [̂U(m)
1 : . . . : ̂U(m)

rm
], ̂V(m) = [̂V (m)

1 : . . . : ̂V (m)
rm

].

68 2 SSA Analysis of One-Dimensional Time Series

For the algorithm correctness, we assume that the matrices ̂U(m) and ̂V(m) are
of full rank; otherwise, the algorithm may not work.

(D) Finally, calculate L(k) = (̂U†)T
̂U† and R(k) = (̂V†)T

̂V†, where ̂U = [̂U(1) :
̂U(2)] and ̂V = [̂V(1) : ̂V(2)], to achieve the (L(k),R(k))-biorthogonality.

The convergence of ˜Y
(1,k) and ˜Y

(2,k) to a proper decomposition is not proved
theoretically. However, looking at the construction scheme, which resembles the
alternating projections, we do expect this convergence, at least if the case chosen is
not too unusual. Numerical experiments confirm the convergence in the majority of
examples. Note also that Iterative O-SSA does not change the separating decompo-
sition; that is, the separating decomposition is a fixed point of the algorithm.

2.4.1.5 Modification with Sigma-Correction

If the initial point (L(0), R(0)) for iterations is not far from the separating pair
(L∗, R∗), then we can expect that the convergence in the algorithm above will
take place, since we are close to the fixed-point value and we can expect that σ

(k)
i

in the (L(k), R(k))-SVDs Y = ∑r
i=1 σ

(k)
i P

(k)
i (Q

(k)
i)T are just slightly changed

during iterations. In general, however, a possible reordering of the decomposition
components between iterations of Iterative O-SSA can interfere with convergence.
The case of J1 = {1, . . . , r1}, when the minimal singular value σr1 of the first
series is kept significantly larger than the maximal singular value σr1+1 of the second
series, would prevent the component reordering and hence improve the convergence.

Let us describe a modification of Iterative O-SSA that provides reordering of
the components, moves them apart and thereby relaxes the problem of component
mixing. In this modification, an adjustment is made for calculation of ̂U(2) and ̂V(2)

at Step (C) of iterations.
Let us choose a parameter � > 1. If λ

(1)
r1 < �2λ

(2)
1 at Step (C), then define

μ = �

√

λ
(2)
1 /λ

(1)
r1 and change ̂U(2) ← √

μ̂U(2), ̂V(2) ← √
μ̂V(2). To be consistent

with the reordering, set J1 = {1, . . . , r1}, J2 = {r1 + 1, . . . , r}.
Note that if λ

(1)
r1 < �2λ

(2)
1 , then the adjustment above makes a change in the

order of the matrix components in (2.18), since they are ordered by σ
(k)
i . Hence we

force an increase of the matrix components related to the first series component.
For explanation of how this sigma-correction works, see Golyandina and Shlemov
(2015; Proposition 5).

Remark 2.3 The reordering procedure is made by sequential adjustment of the
component weights and therefore depends on the component enumeration.

Summarizing, the described correction can help to improve convergence and to
provide strong separability of components in the case when only weak separability
takes place.

2.4 Iterative Oblique SSA 69

2.4.2 Separability

The notion of weak and strong (L,R)-separability, which is similar to the conven-
tional separability described in Sect. 2.1.3, can be introduced. Let X = X

(1) +X
(2),

X be the trajectory matrix of X, X(m) be the trajectory matrices of the series
components, X(m) = ∑rm

i=1 σm,iPm,iQ
T
m,i be their (L,R)-SVDs, m = 1, 2. We

assume that L and R are consistent with X, X(1) and X(2).

Definition 2.6 Let L be fixed. Two series X(1)
N and X

(2)
N are called weakly (L,R)-

separable, if their column trajectory spaces are L-orthogonal and their row trajec-
tory spaces are R-orthogonal; that is, (X(1))TLX(2) = 0K,K and X(1)R(X(2))T =
0L,L.

Definition 2.7 Two series X
(1)
N and X

(2)
N are called strongly (L,R)-separable, if

they are weakly (L,R)-separable and σ1,i
= σ2,j for any i and j .

The (L,R)-separability of two series components means L-orthogonality of their
subseries of length L and R-orthogonality of the subseries of length K =N−L+1.
For suitably chosen L and R, the (L,R)-separability is much less restrictive than the
ordinary one. Indeed, Theorem 1 from Golyandina and Shlemov (2015) states that
for series X = X

(1) + X
(2) of rank r , where X(m) is the series of rank rm, m = 1, 2,

and r1 + r2 = r , there exist separating matrices L ∈ RL×L and R ∈ RK×K of
rank r such that the series X

(1) and X
(2) are strongly (L,R)-separable. Moreover,

the separating matrices L and R can be explicitly written down.
Denote by {P (m)

i }rmi=1 a basis of the column space of X(m) and by {Q(m)
i }rmi=1 a

basis of the row space of X(m), m = 1, 2; e.g., P
(m)
i = Pm,i ∈ RL, Q

(m)
i = Qm,i ∈

RK . Define

P = [P (1)
1 : . . . : P (1)

r1
: P

(2)
1 : . . . : P (2)

r2
],

Q = [Q(1)
1 : . . . : Q(1)

r1
: Q

(2)
1 : . . . : Q(2)

r2
].

Then the separating matrices have the form L = (P†)TP† and R = (Q†)TQ†

(compare with Step (D) of the algorithm scheme in Sect. 2.4.1.4).
The condition r1 + r2 = r can be expressed in terms of the characteristic roots.

This condition is satisfied if the sets of the characteristic roots of the series are
disjoint.

Thus, any two times series governed by LRRs with different characteristic roots
can be separated by some (L,R)-SVD for sufficiently large series and window
lengths. This statement is not constructive, since the trajectory spaces of the
separated series should be known for exact separation. However, we can try to
estimate these spaces and therefore improve the separability.

We have already explained how to achieve weak separability. Proposition 5 from
Golyandina and Shlemov (2015) shows how to correct the decomposition to get
strong separability. Denote by I the set of decomposition components corresponding

70 2 SSA Analysis of One-Dimensional Time Series

to X
(1) in a separating (L,R)-SVD

Y =
∑

i

σiPiQ
T
i =

∑

i∈I

σiPiQ
T
i +

∑

i /∈I

σiPiQ
T
i . (2.16)

If in the group I there is a σi , which coincides with a σj from the residual group, then
the SVD decomposition is not unique and therefore the calculated SVD can differ
from the separating SVD (2.16). This situation can be easily avoided as follows: let
us take ˜Pi = μiPi and ˜Qi = νiQi for some μi and νi , then the (˜L,˜R)-SVD

Y =
∑

i

σ̃i
˜Pi

˜QT
i

for ˜L = (˜P†)T
˜P† and ˜R = (˜Q†)T

˜Q† will still be separating; however, σ̃i =
σi/(μiνi) can be made equal to any given numbers by choosing appropriate μi

and νi .
Measures of oblique separability. If Oblique SSA does not separate the

components exactly, a measure of separability is necessary. As stated in Sect. 1.3,
the main measure of separability in Basic SSA is the w-correlation between two
time series: ρw(X,Y) = 〈X,Y〉F/ (‖X‖F‖Y‖F) , where X and Y are the trajectory
matrices of the series.

In Oblique SSA with (L,R)-SVD we then naturally consider ρL,R, which is
similar to ρw and defines the inner product by

〈X,Y〉(L,R) = trace(LXRYT).

Note that if the matrices L and R are not consistent with X and Y, then ρL,R takes
into consideration only projections of their columns and rows on the column spaces
of L and R. This means that ρL,R can underestimate the separability inaccuracy.

For Oblique SSA, when only one of two coordinate systems (left or right)
is oblique, the conventional w-correlations between series are more appropriate
measures of separability, since in the case of exact oblique separability we have
both ρw and ρL,R equal to zero.

Another important measure of separability is the closeness of the reconstructed
series components to set of time series of finite rank. This can be measured by the
contribution of the leading rm = |Im| eigentriples into the SVD of the trajectory
matrix ˜X(m) of the mth reconstructed series component ˜X

(m). If we denote˜λm,i the
squared singular values in the ordinary SVD of ˜X(m), then

τrm(˜X(m)) = 1 −
rm
∑

i=1

˜λm,i/‖˜X(m)‖2 (2.17)

can be considered as a characteristic of closeness of the mth series to the set of series
of rank rm.

2.4 Iterative Oblique SSA 71

2.4.3 Algorithms

Let us present the method described in Sect. 2.4 in the form of algorithms. The
method consists of different parts and therefore we describe it as several algorithms.

Let us start with a general algorithm demonstrating how Oblique SVD of a matrix
Z can be reduced to an ordinary SVD.

Algorithm 2.6 (L,R)-SVD
Input: Matrix Z ∈ RL×K to decompose and matrices L ∈ RL×L, and R ∈ RK×K of rank r , where

(L,R) is consistent with Z.
Output: The (L,R)-SVD in the form Z = ∑r

i=1 σiPiQ
T
i .

1: Find OL ∈ Rr×L and OR ∈ Rr×K such that OT
LOL = L and OT

ROR = R.
2: Calculate OLZOT

R.
3: Compute the ordinary SVD decomposition OLZOT

R = ∑r
i=1

√
λiUiV

T
i .

4: Set σi = √
λi , Pi = O†

LUi and Qi = O†
RVi , where † denotes pseudo-inverse.

Now we formulate the Iterative O-SSA algorithm. Denote Y = XI , r = rankY,
Y = T−1 ◦ ΠH(Y) the series obtained from Y by the diagonal averaging.

We separate the whole algorithm into two parts. Algorithm 2.7 shows a general
scheme of Iterative O-SSA, but it does not show how to calculate the pair of matrices
(L(k),R(k)) at each iteration. Algorithm 2.8 covers this gap.

Algorithm 2.7 Iterative O-SSA

Input: Decomposition of the L-trajectory matrix X = ∑d
i=1 σiPiQ

T
i of the series X; disjoint sets

of indices ˜J1 and ˜J2 from {1, . . . , d}; the accuracy tolerance ε; function ρ for calculating the
accuracy; the maximal number of iterations M ; initial matrices (L(0),R(0)) consistent with
Y = XI . The set I = {i1, . . . , ir } is defined as I = ˜J1 � ˜J2, rm = |˜Jm|, r = |I | = r1 + r2, the
sets J1 and J2 are defined in Remark 2.2. This partition produces the decompositions for the
matrices and series: Y = Y(0)

J1
+ Y(0)

J2
and Y = ˜Y

(1,0) + ˜Y
(2,0).

Output: Y = ˜Y
(1) + ˜Y

(2).
1: Set k = 1.
2: Call Algorithm 2.8 for calculation of (L(k),R(k)) consistent with Y.
3: Compute the (L(k),R(k))-SVD of Y by Algorithm 2.6:

Y =
r

∑

i=1

σ
(k)
i P

(k)
i (Q

(k)
i)T = Y(k)

J1
+ Y(k)

J2
. (2.18)

4: Obtain the decomposition of the series Y = ˜Y
(1,k) +˜Y

(2,k), where ˜Y
(m,k) = T−1 ◦ΠH(Y(k)

Jm
),

m = 1, 2.
5: If k ≥ M or max

(

ρ(˜Y(m,k) − ˜Y
(m,k−1)),m = 1, 2

)

< ε, then ˜Y
(m) ← ˜Y

(m,k), m = 1, 2, and
STOP; else k ← k + 1 and go to Step 2.

72 2 SSA Analysis of One-Dimensional Time Series

Algorithm 2.8 presents the iteration itself, including the sigma-correction, which
may be useful for achieving the strong separability.

Algorithm 2.8 Calculation of (L(k),R(k))

Input: Partition {1, . . . , r} = J1 � J2; rm = |Jm|; pair of matrices (L(k−1),R(k−1)); parameter for
sigma-correction � > 1 (if � = 0, then the sigma-correction is not performed).

Output: Pair of matrices (L(k),R(k)) for kth iteration.
1: Calculate ˜Ym = ΠHY(k−1)

Jm
, m = 1, 2.

2: Construct the ordinary SVDs:

˜Ym =
dm
∑

i=1

√

λ
(m)
i U

(m)
i (V

(m)
i)T, m = 1, 2,

(we need the first rm terms only).

3: Sigma-correction (if �
= 0): If λ
(1)
r1 < �2λ

(2)
1 , then define μ = �

√

λ
(2)
1 /λ

(1)
r1 and change

̂U(2) ← √
μ̂U(2), ̂V(2) ← √

μ̂V(2). In view of reordering, set J1 = {1, . . . , r1}, J2 = {r1 +
1, . . . , r}.

4: Find the projections ̂U
(m)
i = ΠcolU

(m)
i and ̂V

(m)
i = ΠrowV

(m)
i for i = 1, . . . , rm, m = 1, 2.

Denote

̂U(m) = [̂U(m)
1 : . . . : ̂U(m)

rm
], ̂V(m) = [̂V (m)

1 : . . . : ̂V (m)
rm

].

5: Calculate L(k) = (̂U†)T
̂U† and R(k) = (̂V†)T

̂V†, where ̂U = [̂U(1) : ̂U(2)] and ̂V = [̂V(1) :
̂V(2)].

Remark 2.4 Algorithm 2.7, which uses the sigma-correction, may change the
groups of indices. The new groups in Algorithm 2.8 are constructed in such a way
that J1 and J2 partition the set {1, . . . , r}. The new partition of I is obtained as
˜J1 = {ik ∈ I : k ∈ J1} and ˜J2 = {ik ∈ I : k ∈ J2}.
Remark 2.5 Algorithm 2.7 describes a refined decomposition of the matrix XI .
However, we can consider Iterative O-SSA as an algorithm, where the full decom-
position of the trajectory matrix X of an original series X is used (which changes
components from the group I). The result would also be a full decomposition.

2.4.4 Iterative O-SSA in RSSA

2.4.4.1 Description of Functions

Since Iterative O-SSA is a nested method, the ssa function can be called for
obtaining an ssa object s, see “Description of Function” in Sects. 2.1–2.3, 2.6.
For Iterative O-SSA itself, the function iossa is used. Since the result of iossa is

2.4 Iterative Oblique SSA 73

also an ssa object, which contains the full decomposition, the iossa function can
be applied to the result of another application of iossa.

Let us outline the main arguments of iossa in a typical function call:

ios <- iossa(s, nested.groups = list(c(1,4),7:10), trace = FALSE,
tol = 1e-5, maxiter = 100,
norm = function(x) sqrt(mean(x^2)),
kappa = 2)

Arguments:

s is an ssa object holding the full one-dimensional SSA (Basic SSA, Toeplitz
SSA, Basic SSA with projections, Shaped SSA) decomposition.

nested.groups is a list of groups of eigentriples from the full decomposition s;
the list gives the initial grouping for Iterative O-SSA iterations.

tol, maxiter, norm are related to the convergence of iterations: tolerance with
respect to the indicated norm and the number of iterations. Function norm

calculates a norm of a vector; this norm is applied to the difference between
the reconstructed series at sequential iterations and is used for convergence
detection. If this norm is smaller than tol, then iterations stop.

trace indicates whether the convergence process should be traced.
kappa is the “kappa”-parameter for the sigma-correction procedure. If kappa =

NULL, the sigma-correction is not applied.

Note that only s and nested.groups should be set if the default values are
appropriate.

The returning value of the function is an object of ossa class. In addition to usual
ssa object fields, it also contains the following fields:

iossa.result is an object of iossa.result class, a list which contains algorithm
parameters, condition numbers, separability measures, the number of iterations,
and the convergence status.

iossa.groups is a list of groups within the nested decomposition; indices of
components correspond to their indices in the full decomposition.

iossa.groups.all is a list, which describes the cumulative grouping after
sequential Iterative O-SSA decompositions in the case of non-intersecting
groups given by nested.groups. Otherwise, the list iossa.groups.all

coincides with iossa.groups.
ossa.set is a vector of indices of elementary components used in Iterative O-SSA

(that is, used in nested.groups).

To look at weighted oblique correlations of the obtained elementary components,
one can call owcor(ios, groups = ios$ossa.set).

The reconstruct function performs reconstruction as usual. A possible ques-
tion is how to set the groups, which are a part of the result of iossa. A typical call
is

r.ios <- reconstruct(ios, groups = ios$iossa.groups)

74 2 SSA Analysis of One-Dimensional Time Series

2.4.4.2 Typical Code

Fragment 2.4.1 demonstrates the method on a simulated example. Since Iterative
O-SSA is designed to separate non-orthogonal series components, let us consider
a noisy sum of three sine waves with two of them having close frequencies, see
Fig. 2.14. For achieving separability from noise we assume that the level of noise is
low.

First, we apply Basic SSA. In Fig. 2.15 we see that the signal is contained in
components 1–6 and is separated from noise. Weighted correlations do not show any

1:N

F

−6

−4

−2

0

2

4

0 20 40 60 80 100

Fig. 2.14 Noisy sum of three sinusoids: The original series

F1

F3

F5

F7

F9

F11

F13

F15

F17

F19

F1 F3 F5 F7 F9 F11 F13 F15 F17 F19

W−correlation matrix

Fig. 2.15 Noisy sum of three sinusoids, Basic SSA: w-Correlation matrix

2.4 Iterative Oblique SSA 75

Eigenvectors
1 (32.79%) 2 (31.38%) 3 (18.64%) 4 (16.86%)

5 (0.12%) 6 (0.11%) 7 (0.01%) 8 (0.01%)

Fig. 2.16 Noisy sum of three sinusoids, Basic SSA: Eigenvectors

problem with separability of three groups of components, 1–2, 3–4, 5–6. However
the graph with eigenvectors (Fig. 2.16) shows that the pairs 3–4 and 5–6 are most
likely mixed within the signal. This means that Iterative O-SSA may help.

Fragment 2.4.1 (Noisy Sum of Three Sinusoids: Iterative O-SSA)

> N <- 100
> L <- 50
> omega1 <- 0.07
> omega2 <- 0.065
> omega3 <- 0.15
> sigma <- 0.1
> set.seed(3)
> F <- 2 * sin(2 * pi * omega1 * (1:N)) +
+ sin(2 * pi * omega2 * (1:N)) +
+ 3 * sin(2 * pi * omega3 * (1:N)) + sigma * rnorm(N)
> xyplot(F ~ 1:N, type = "l")
> s <- ssa(F, L)
> plot(s, type = "vectors", idx = 1:8, layout = c(4, 2))
> plot(wcor(s, groups = 1:20), scales = list(at = seq(1,20,2)))
> ios <- iossa(s, nested.groups = list(3:4, 5:6), maxiter = 1000)
> plot(ios, type = "vectors", idx = 1:8, layout = c(4, 2))
> ior <- reconstruct(ios, groups = c(list(1:2), ios$iossa.groups))
> plot(ior, plot.method = "xyplot", add.original = FALSE,
+ add.residuals = FALSE)

Indeed, the reconstruction by Basic SSA has failed, while the nested reconstruc-
tion of the signal components by Iterative O-SSA is successful, see Figs. 2.17
and 2.18. We can apply Iterative O-SSA to the whole signal but the separability
is better if we take only the mixed components 3–6. We choose initial grouping

76 2 SSA Analysis of One-Dimensional Time Series

Eigenvectors
1 (32.79%) 2 (31.38%) 3 (3.85%) 4 (3.42%)

5 (13.65%) 6 (12.9%) 7 (0.01%) 8 (0.01%)

Fig. 2.17 Noisy sum of three sinusoids, Iterative O-SSA: Eigenvectors

Reconstructed Series

1:nrow(x)

−2

0

2

0 20 40 60 80 100

F1

0 20 40 60 80 100

F2

0 20 40 60 80 100

F3

Fig. 2.18 Noisy sum of three sinusoids, Iterative O-SSA: Reconstruction

list(3:4, 5:6) since these groups look like corrupted pairs; we could have also
chosen list(3:6, 4:5).

For Iterative O-SSA, it is convenient to use automatically generated groups
ios$iossa.groups for grouping within the refined decomposition. The groups
returned by ios$iossa.groups can differ from the groups which were set initially,
especially if the sigma-correction is used (kappa is not zero). In the considered
example, the resulting groups after sigma-correction will be list(3:4, 5:6).

If the problem of lack of conventional weak separability is supplemented by
the problem of lack of strong separability (in the considered example, when the
amplitudes of sinusoids coincide or are close to each other), the use of kappa can
still allow us to achieve the right decomposition.

2.4 Iterative Oblique SSA 77

Fragment 2.4.2 contains characteristics of the resultant decomposition by Iter-
ative O-SSA. The summary contains measures of quality of the initial and the
final decompositions. One can see that the iterations converged according to a
default tolerance (tol) in 243 iterations. The measure τ defined in (2.17) as a
measure of rank-deficiency of trajectory matrices of the found components has
decreased considerably. Standard w-correlations appear inappropriate as measures
of separability.

Fragment 2.4.2 (Noisy Sum of Three Sinusoids: Iterative O-SSA, Summary)

> print(ios$iossa.groups)
[[1]]
[1] 3 4
[[2]]
[1] 5 6
> summary(ios)
Call:
iossa.ssa(x = s, nested.groups = list(3:4, 5:6), maxiter = 1000)
Series length: 100,Window length: 50, SVD method: eigen
Special triples: 0
Computed:
Eigenvalues: 50, Eigenvectors: 50, Factor vectors: 6
Precached: 0 elementary series (0 MiB)
Overall memory consumption (estimate): 0.0352 MiB
Iterative O-SSA result:

Converged: yes
Iterations: 243
Initial mean(tau): 0.1032
Initial tau: 0.0007976, 0.2055299
I. O-SSA mean(tau): 0.0004452
I. O-SSA tau: 0.0006709, 0.0002196
Initial max wcor: 0.02442
I. O-SSA max wcor: 0.06986
I. O-SSA max owcor: 0.0732

2.4.4.3 Simulated Example: Separability of Sine Waves

Let us add noise to the sum of two sinusoids and take

xn = sin(2πω1n) + A sin(2πω2n) + δεn

with close frequencies ω1 = 0.07 and ω2 = 0.06 and unequal amplitudes, 1 and
A = 1.2. Here εn is white Gaussian noise with variance 1, δ = 1. Let N = 150,
L = 70.

Basic SSA separates well the sinusoids from noise, but cannot separate these
sinusoids from each other. Thus, Iterative O-SSA, applied to the estimated signal
subspace, should be used. We use the sigma-correction with � = 2, since the
difference between amplitudes, 1 and 1.2, appears to be small for achieving strong
separability in the presence of noise. We set the initial grouping ET1–2 and ET3–4.

78 2 SSA Analysis of One-Dimensional Time Series

Let us investigate the dependence of number of iterations on ω1 with fixed ω2 =
0.06. We change ω1 from 0.03 to 0.059 and from 0.061 to 0.1. Fragment 2.4.3
depicts the results.

Fragment 2.4.3 (Dependence of iossa Error on Difference Between Frequen-
cies)

> rowMeansQuantile <- function(x, level = 0.05) {
+ apply(x, 1,
+ function(x) {
+ q <- quantile(x, c(level / 2, 1 - level / 2))
+ x[x < q[1]] <- q[1]
+ x[x > q[2]] <- q[2]
+
+ mean(x)
+ })
+ }
> data("iossa.err", package = "ssabook")
> lseq <- c(seq(0.03, 0.058, 0.002), seq(0.062, 0.1, 0.002))
> iter.real <- rowMeansQuantile(iossa.err$iter.real)
> iter.est <- iossa.err$iter.est
> err1 <- sqrt(rowMeansQuantile(iossa.err$err1))
> err2 <- sqrt(rowMeansQuantile(iossa.err$err2))
> xlab <- expression(omega[1])
> ylab1 <- expression(N[plain(iter)])
> ylab2 <- expression(RMSE)
> p1 <- xyplot(iter.real + iter.est ~ lseq,
+ type = "l", ylab = ylab1, xlab = xlab)
> p2 <- xyplot(err1 + err2 ~ lseq,
+ type = "l", ylab = ylab2, xlab = xlab)
> print(p1, split = c(1, 1, 1, 2), more = TRUE)
> print(p2, split = c(1, 2, 1, 2), more = FALSE)

Figure 2.19 (top) shows the number of iterations for noiseless signal (blue
line) and the estimated mean number of iterations for the noisy signal (red line);
the number of repetitions equals 1000, 5% winsorized estimates of means were
calculated. Note that the number of iterations was limited by 200, although for the
pure signal the convergence was achieved for each ω1 from the considered set. A
surprisingly small number of iterations for the noisy signal and close frequencies
is explained by the convergence to a wrong limit, see Fig. 2.19 (bottom) with root
mean square errors of LS-ESPRIT estimates for ω1 and ω2 based on the subspaces
spanned by eigenvectors from ET1–2 and ET3–4 (see Algorithm 3.3 for the ESPRIT
algorithms). Since we use the nested decomposition, the noise slightly influences the
reconstruction accuracy for the frequencies that are quite different (ω1 smaller than
0.048 and larger than 0.072).

2.5 Filter-Adjusted O-SSA and SSA with Derivatives 79

ω1

N
ite

r

0

50

100

150

200

0.04 0.06 0.08 0.10

ω1

R
M

SE

0.00
0.05
0.10
0.15
0.20
0.25

0.04 0.06 0.08 0.10

Fig. 2.19 Dependence of number of iterations (top) and RMSE errors of frequency estimations
(bottom) on ω1 for ω2 = 0.6

2.5 Filter-Adjusted O-SSA and SSA with Derivatives

2.5.1 Method

In this section we describe further variations of SSA that help to overcome the
problem of lack of strong separability of components if weak separability holds.

Recall that the lack of strong separability of two series components is caused
by equal singular values in the sets of the singular values generated by the two
components. In turn, the singular values depend on the coefficients A1 and A2 in the
representation of the signal as the sum sn = A1s

(1)
n +A2s

(2)
n . The question is how to

change the coefficients A1 and A2 with unknown s
(1)
n and s

(2)
n to make the singular

values different.
It appears that it could be advantageous to use the derivative of the time series

in order to change the coefficients without changing the component subspaces. For
example, if xn = A sin(2πωn + φ), then x ′

n = 2πωA cos(2πωn + φ); that is,
the new coefficient is A′ = 2πωA. For two sinusoids with different frequencies,
derivatives change their amplitudes differently. The derivative of xn = Aeαn also
changes the coefficient before the exponential, since x ′

n = αAeαn, preserving the
rate. For most of the series of finite rank, the derivative subspace coincides with

80 2 SSA Analysis of One-Dimensional Time Series

the series subspace. The exception is the polynomial series, when the derivative
subspace is a subset of the initial subspace.

As we deal with discrete time, we consider the differences ϕn(X) = xn+1 − xn

instead of derivatives, but this is still an approach that seems to be working well.
For example, for the series X = XN of length N with xn = A sin(2πωn + φ), the
differences give us the series ΦN−1(X) = (ϕ1(X), . . . , ϕN−1(X)) of length N − 1
with ϕn(X) = 2 sin(πω)A cos(2πωn+πω+φ); for xn = Aeαn, we obtain ϕn(X) =
(eα − 1)Aeαn.

Thus, we can combine the initial series and the series of its differences to
change the balance for the component contributions and therefore to reach strong
separability. For sinusoids with small periods, an increase of the sinusoid amplitudes
is large. Therefore, taking derivatives (or differences) increases the contribution of
high frequencies. This can also increase the level of the noise component, if the
series is corrupted by a high-frequency noise. Hence, the nested version of the
method implementation should be employed; in particular, the noise component
should be removed by Basic SSA first.

The approach involving derivatives (that is, sequential differences) can be
naturally extended to considering an arbitrary linear filtration ϕ instead of taking
simple (sequential) differences. We start with the version with derivatives (that is,
differences), since this particular case is simple and has very useful applications.

2.5.1.1 Nested O-SSA with Derivatives (DerivSSA)

Taking the sequential differences changes contributions of the components. There-
fore, the method is inappropriate as an approximation method for signal extraction.
Thus, the suggested method should be applied in a nested manner (see Sect. 2.4.1.2).

Let us formulate the nested version of O-SSA with derivatives called DerivSSA
(Golyandina and Shlemov 2015). As well as in Sect. 2.4.1.2, let L be the window
length, K = N − L+ 1, and Y = XI ∈ RL×K be one of the matrices in the
decomposition X = XI1 + . . . +XIp obtained at Grouping step of Basic SSA; each
group corresponds to a separated time series component and we want to construct a
refined decomposition of Y. As before, denote r = rankY, Y = T−1 ◦ ΠH(Y).

DerivSSA is similar to Basic SSA. Since DerivSSA is applied in a nested manner,
the window length is already chosen. Therefore, DerivSSA adds only one additional
parameter γ , which regulates the contribution of derivatives.

The DerivSSA method consists of decomposition and reconstruction. First we
take sequential differences for each row of Y = [Y1 : . . . : YK] and hence compute
the matrices Φ(Y) = [Y2 − Y1 : . . . : YK − YK−1] ∈ RL×(K−1) and Z = [Y :
γΦ(Y)]. Then DerivSSA works almost exactly as Basic SSA but it uses Z instead
of the conventional trajectory matrix.

After Decomposition step, we obtain the SVD of Z in the form Z =
∑r

i=1
√

λiUiV
T
i . We are interested only in the first K columns in this matrix

decomposition. Since the column space of Z coincides with the column space of

2.5 Filter-Adjusted O-SSA and SSA with Derivatives 81

Y and therefore {Ui}ri=1 is a basis of the column space of Y, we can rewrite the
decomposition as Y = ∑r

i=1 UiU
T
i Y.

The rest of the method coincides with Reconstruction step of Basic SSA. After
Grouping step, we obtain the decomposition Y = YJ1 + . . . + YJl and then, as
a result, the refined series decomposition Y = ˜Y

(1) + . . . + ˜Y
(l), where ˜Y

(m) =
T−1 ◦ ΠH(YJm), m = 1, . . . , l.

The following proposition shows that DerivSSA is a version of Oblique SSA with
a specific pair of matrices (L,R), where Pi = Ui and Qi are normalized vectors
YTUi in (2.15). Denote IM the M × M identity matrix.

Proposition 2.1 (Golyandina and Shlemov (2015)) The left singular vectors of
the ordinary SVD of Z coincide with the left singular vectors of the (IL,R)-SVD of
the input matrix Y, where R is defined by the equality R = IK + γ 2FTF and

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −1 1 0
0 · · · 0 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R(K−1)×K.

2.5.1.2 Filter-Adjusted O-SSA

Note that sequential differences, which are taken for each row of the matrix
Y, can be extended to an arbitrary linear filter of the rows. That is, we can
choose coefficients of a linear filter A = (a1, . . . , at)

T and define Φ(Y) =
[Y ∗

1 , . . . , Y ∗
K−t+1], where Y ∗

i = a1Yi + . . . + atYi+t−1. The rest of the respective
version of SSA is the same as DerivSSA. DerivSSA corresponds to t = 2 and
A = (−1, 1)T.

2.5.2 Separability

Let XN = X
(1)
N + X

(2)
N and X

(1)
N and X

(2)
N be of finite rank and approximately

weakly separable which implies that their row and column trajectory spaces are
approximately orthogonal. The same is then true for ΦN−1(X

(1)) and ΦN−1(X
(2)),

due to the fact that their column spaces belong to the column spaces of X(1)
N and

X
(2)
N , while their row spaces are spanned by the vectors of the same structure that

the vectors constituting bases of the row spaces of X(1)
N and X

(2)
N , except that these

basis vectors have length K − 1 and not K . Therefore, approximate orthogonality
still holds. Since ΦN−1(X) = ΦN−1(X

(1)) + ΦN−1(X
(2)), DerivSSA applied to

(XN, γΦN−1(X)) will approximately separate the time series X(1)
N and X

(2)
N .

82 2 SSA Analysis of One-Dimensional Time Series

Thus, DerivSSA does not worsen weak separability and can achieve strong
separability. It is important to always keep in mind that DerivSSA increases the
contribution of high-frequency components and decreases that for low-frequency
components.

2.5.3 Algorithm

The general algorithm of Filter-adjusted O-SSA is described in two equivalent
forms in Algorithms 2.9 and 2.10. Algorithm 2.9 directly follows the description
of the method given in Sect. 2.5.1, while Algorithm 2.10 is more appropriate for an
effective implementation and for a modification implemented in Algorithm 2.11.

Algorithm 2.9 Filter-adjusted O-SSA: decomposition

Input: Decomposition of the L-trajectory matrix X = ∑

σiPiQ
T
i , group of components I , |I | = r ,

filter coefficients (a1, . . . , at), weight γ > 0.
Output: Decomposition of Y = XI on elementary matrices Y = Y1 + . . . + Yr , where Yi =

σ ′
i P

′
i (Q

′
i)

T.
1: Form the matrix Y = XI = ∑

i∈I σiPiQ
T
i .

2: Denote Φ(Y) = [Y ∗
1 , . . . , Y ∗

K−t+1], where Y ∗
i = a1Yi + . . . + at Yi+t−1. Construct the matrix

Z = [Y : γΦ(Y)].
3: Compute the SVD of Z: Z = ∑r

i=1
√

λiUiV
T
i .

4: Construct the following decomposition of Y = XI into a sum of elementary matrices: Y =
∑r

i=1 UiU
T
i Y.

5: Obtain the decomposition Y = ∑r
i=1 σ ′

i P
′
i (Q

′
i)

T, where σ ′
i = ‖UT

i Y‖, P ′
i = Ui , Q′

i =
UT

i Y/σ ′
i .

Algorithm 2.10 Filter-adjusted O-SSA: decomposition (equivalent)

Input: Decomposition of the trajectory matrix X = ∑

σiPiQ
T
i , group of components I , |I | = r ,

filter coefficients (a1, . . . , at), weight γ .
Output: Decomposition of Y = XI on elementary matrices Y = Y1 + . . . + Yr , where Yi =

σ ′
i P

′
i (Q

′
i)

T.

1: Form the matrix Y = XI = ∑

i∈I σiPiQ
T
i and compute its thin SVD Y = UrΛ

1/2
r VT

r . Set

S = [S1 : . . . : SK] = Λ
1/2
r VT

r ∈ Rr×K .
2: Denote Φ(S) = [S∗

1 , . . . , S∗
K−t+1], where S∗

i = a1Si + . . . + atSi+t−1. Construct the matrix

Z = [S : γΦ(S)] ∈ Rr×(2K−t+1).
3: Calculate the rotation matrix ˜U ∈ Rr×r consisting of the eigenvectors of ZZT as columns.
4: Set ˜P = [˜P1 : . . . : ˜Pr] = Ur

˜U and ˜Q = [˜Q1 : . . . : ˜Qr] = ST
˜U.

5: Obtain the decomposition Y = ∑r
i=1 σ ′

i P
′
i (Q

′
i)

T, where σ ′
i = ‖˜Qi‖, P ′

i = ˜Pi , Q′
i = ˜Qi/σ

′
i .

The method introduced in Sect. 2.5.1 has a modification implemented in RSSA,
which can slightly worsen the separability but has an advantage that it orders
the eigentriples corresponding to sine-waves exactly by the decrease of their
frequencies, independently of the values of the sine-wave amplitudes. We will call

2.5 Filter-Adjusted O-SSA and SSA with Derivatives 83

this modification “Filter-adjusted O-SSA with normalization.” The main difference
between Algorithms 2.10 and 2.11 is in the construction of the matrix S at step 1.

Algorithm 2.11 Filter-adjusted O-SSA with normalization: decomposition

Input: Decomposition of the trajectory matrix X = ∑

σiPiQ
T
i , group of components I , |I | = r ,

filter coefficients (a1, . . . , at), weight γ .
Output: Decomposition of Y = XI on elementary matrices Y = Y1 + . . . + Yr , where Yi =

σ ′
i P

′
i (Q

′
i)

T.

1: Form the matrix Y = XI = ∑

i∈I σiPiQ
T
i and construct its thin SVD Y = UrΛ

1/2
r VT

r . Set
S = [S1 : . . . : SK] = VT

r ∈ Rr×K .
2: Denote Φ(S) = [S∗

1 , . . . , S∗
K−t+1], where S∗

i = a1Si + . . . + atSi+t−1. Construct the matrix

Z = [S : γΦ(S)] ∈ Rr×(2K−t+1).
3: Calculate the rotation matrix ˜U ∈ Rr×r consisting of the eigenvectors of ZZT as columns.
4: Set ˜P = [˜P1 : . . . : ˜Pr] = (UrΛ

1/2
r)˜U and ˜Q = [˜Q1 : . . . : ˜Qr] = ST

˜U.
5: Obtain the decomposition Y = ∑r

i=1 σ ′
i P

′
i (Q

′
i)

T, where σ ′
i = ‖˜Pi‖, P ′

i = ˜Pi/σ
′
i , Q′

i = ˜Qi .

Remark 2.6 Algorithms 2.9–2.11 can be extended to the case when several filters
in a stacked manner are applied. For example, if filters Φ1 and Φ2 are given, then
the matrix Z at Step 2 has the forms Z = [Y : γΦ1(Y) : γΦ2(Y)] and Z = [S :
γΦ1(S) : γΦ2(S)], respectively.

The reconstruction algorithm is the same as for most versions of SSA. Since
Filter-adjusted O-SSA (as well as DerivSSA) is a nested method, the result is a
decomposition of a chosen series component rather than a decomposition of the
original series.

Algorithm 2.12 Filter-adjusted O-SSA: reconstruction

Input: Decomposition Y = ∑r
i=1 Yi , where Yi = σ ′

i P
′
i (Q

′
i)

T, grouping I = ⊔l
k=1 Jk .

Output: Refined series decomposition Y = ˜Y
(1) + . . . + ˜Y

(l).
1: Obtain the grouped matrix decomposition Y = YJ1 + . . . + YJl

, where YJ = ∑

j∈J Yj .

2: Obtain a refined series decomposition Y = ˜Y
(1) + . . . + ˜Y

(l), where ˜Y
(m) = T−1 ◦ΠH(YJm

),
m = 1, . . . , l.

Remark 2.7 Algorithm 2.12 describes a refined decomposition of the matrix XI .
However, we can consider Filter-adjusted O-SSA as an algorithm, which we apply
to the full decomposition of the trajectory matrix X of an original series X, which
changes components from the group I . Then the result is also a full decomposition
of X.

84 2 SSA Analysis of One-Dimensional Time Series

2.5.4 Filter-Adjusted O-SSA in RSSA

2.5.4.1 Description of Functions

As in the case of Iterative O-SSA, since Filter-adjusted O-SSA is a nested method,
the ssa function must be called prior to this in order to obtain an ssa object s, see
“Description of function” in Sects. 2.1–2.3, 2.6. For Filter-adjusted O-SSA itself,
the function fossa is used. Since the result of fossa is also an ssa object, which
contains the full decomposition, the fossa and iossa functions can be applied to
the result of another application of fossa.

Let us outline the main arguments of fossa in a typical function call:

fos <- fossa(s, nested.groups = list(2:3, 6:7),
filter = c(-1,1), gamma = 1, normalize = TRUE)

Arguments:

s is an ssa object holding the full one-dimensional SSA (Basic SSA, Toeplitz
SSA, Basic SSA with projections, Shaped SSA) decomposition.

nested.groups is a vector of indices of eigentriples from the full decomposition
for the nested decomposition. The argument is coerced to a vector, if necessary.

filter is a list of numeric vectors of reverse impulse response coefficients for filter
adjustment. Value by default c(-1,1) corresponds to DerivSSA, which is the
most common case.

gamma is the weight of filter adjustment; the value Inf corresponds to the removal
of the first part of the matrix Z: Z = Φ(S).

normalize indicates if the modification with normalization is used (see Algo-
rithm 2.11).

Note that for Filter-adjusted SSA, only a group I should be given; the partition
is performed later at Reconstruction step. Therefore, the list of groups, which are
given for the parameter nested.groups, is transformed to a single vector of indices
composing I (compare with iossa). That is, in the considered function call, I =
{2, 3, 5, 6}.

The return value is an object of class ossa. The field ossa.set contains the
vector of indices of elementary components used in Filter-adjusted O-SSA (that
is, used in nested.groups, which is in fact just I). For example, to look at
weighted oblique correlations of the obtained elementary components, one can call
owcor(fos, groups = fos$ossa.set).

2.5.4.2 Typical Code

This example demonstrates the difference between Filter-adjusted O-SSA and
Iterative O-SSA with sigma-correction. Let us consider a noisy sum of two sinusoids
with different and not close frequencies (see Fragment 2.5.1). These sinusoids are
approximately separable. However, since the sinusoid amplitudes are equal, there

2.5 Filter-Adjusted O-SSA and SSA with Derivatives 85

is no strong separability and therefore after application of Basic SSA we obtain an
unsatisfactory decomposition, an arbitrary mixture of the sinusoids (the top pictures
of Fig. 2.21 with eigenvectors).

Fragment 2.5.1 (Separation of Two Sine Waves with Equal Amplitudes)

> N <- 100
> L <- 50
> omega1 <- 0.03
> omega2 <- 0.06
> sigma <- 0.1
> set.seed(3)
> F <- sin(2 * pi * omega1 * (1:N)) +
+ sin(2 * pi * omega2 * (1:N)) +
+ sigma * rnorm(N)
> s <- ssa(F, L = L, neig = min(L, N - L + 1)) #full decomposition
> plot(s)
> p1 <- plot(s, type = "vectors", idx = 1:4, layout = c(4, 1),
+ main = "Eigenvectors, Basic SSA")
> fos <- fossa(s, nested.groups = list(1:2, 3:4), gamma = 10,
+ normalize = FALSE)
> # The total percent is equal to 100%
> print(sum(fos$sigma^2) / sum(s$sigma^2) * 100)
[1] 100
> p2 <- plot(fos, type = "vectors", idx = 1:4, layout = c(4, 1),
+ main = "Eigenvectors, SSA with derivatives")
> ios1 <- iossa(s, nested.groups = list(1:2, 3:4), maxiter = 1)
> # The total percent is not equal to 100%
> print(sum(ios1$sigma^2) / sum(s$sigma^2) * 100)
[1] 99.62939
> p3 <- plot(ios1, type = "vectors", idx = 1:4, layout = c(4, 1),
+ main = "Eigenvectors, Iterative O-SSA, 1 iter")
> ios2 <- iossa(ios1, nested.groups = list(1:2, 3:4), maxiter = 1)
> # The total percent is not equal to 100%
> print(sum(ios2$sigma^2) / sum(s$sigma^2) * 100)
[1] 101.7544
> p4 <- plot(ios2, type = "vectors", idx = 1:4, layout = c(4, 1),
+ main = "Eigenvectors, Iterative O-SSA, 2 iter")
> plot(p1, split = c(1, 1, 1, 4), more = TRUE)
> plot(p2, split = c(1, 2, 1, 4), more = TRUE)
> plot(p3, split = c(1, 3, 1, 4), more = TRUE)
> plot(p4, split = c(1, 4, 1, 4), more = FALSE)
> fo.rec <- reconstruct(fos, groups = list(1:2, 3:4))
> pr1 <- plot(fo.rec, plot.method = "xyplot",
+ main = "SSA with derivatives", xlab = "")
> io.rec <- reconstruct(ios2, groups = ios2$iossa.groups)
> pr2 <- plot(io.rec, plot.method = "xyplot",
+ main = "Iterative O-SSA", xlab = "")
> plot(pr1, split = c(1, 1, 1, 2), more = TRUE)
> plot(pr2, split = c(1, 2, 1, 2), more = FALSE)

86 2 SSA Analysis of One-Dimensional Time Series

Component norms

Index

no
rm

s

10^−1.5

10^−1.0

10^−0.5

10^0.0

10^0.5

10^1.0

10^1.5

0 10 20 30 40 50

l l
l l

l l
l l

l l
l l l

l l
l

l

l

l

l

Fig. 2.20 Noisy sum of sinusoids: Graph of eigenvalues for Basic SSA

To apply a nested version of Oblique SSA, we should start with the signal
subspace extraction. Figure 2.20 confirms that the signal is contained in eigentriples
1–4, since the corresponding eigenvalues are considerably larger than the eigenval-
ues of the residual components.

Thus, we apply SSA with derivatives to the group ET1–4, taking a large enough
γ = 10. The eigenvectors become regular (Fig. 2.21, top) and the reconstruction is
accurate (Fig. 2.22, top).

The Iterative O-SSA algorithm is designed to improve weak separability. Let us
also use its ability to change component contribution during iterations by means
of the sigma-correction. One can see that one iteration slightly improves the
decomposition, while the second iteration provides almost ideal decomposition (see
Fig. 2.21 with eigenvectors and Fig. 2.22 with reconstruction).

Comparing the results in this example, we see that among the versions of the two
methods with the same computational cost, DerivSSA is better; however, one more
iteration in Iterative O-SSA makes Iterative O-SSA advantageous to DerivSSA.

Let us draw attention to different order of the sinusoids in the reconstructions
(Fig. 2.22). The order of components produced by DerivSSA is explained by an
increase of contribution of high frequencies due to taking the differences, while the
order of components in Iterative O-SSA is more or less random in this example.

2.5 Filter-Adjusted O-SSA and SSA with Derivatives 87

Eigenvectors, Basic SSA
1 (29.05%) 2 (27.99%) 3 (21.7%) 4 (20.54%)

Eigenvectors, SSA with derivatives
1 (23.47%) 2 (24.88%) 3 (26.27%) 4 (24.65%)

Eigenvectors, Iterative O−SSA, 1 iter
1 (22.55%) 2 (23.81%) 3 (25.92%) 4 (26.62%)

Eigenvectors, Iterative O−SSA, 2 iter
1 (26.29%) 2 (25.21%) 3 (25.27%) 4 (24.25%)

Fig. 2.21 Noisy sum of sinusoids: 1D graphs of eigenvectors for Basic SSA (top), DerivSSA
(middle) and Iterative O-SSA, 1 iteration (second from bottom) and 2 iterations (bottom)

For DerivSSA, the decomposition is F-orthogonal and therefore the contributions
of series components are correct. Iterative O-SSA may have the sum of contributions
different from 100%. This is exactly the case in our example, see the last warning
message:

In .contribution(x, idx, ...): Elementary matrices are not

F-orthogonal (max F-cor is -0.016). Contributions can be

irrelevant.

88 2 SSA Analysis of One-Dimensional Time Series

SSA with derivatives

−1
0
1

Original

0 20 40 60 80 100

F1

0 20 40 60 80 100

F2

−1
0
1

Residuals

Iterative O−SSA

−1
0
1

Original

0 20 40 60 80 100

F1

0 20 40 60 80 100

F2

−1
0
1

Residuals

Fig. 2.22 Noisy sum of sinusoids: Reconstructions for DerivSSA (top) and Iterative O-SSA, 2
iterations (bottom)

2.6 Shaped 1D-SSA

2.6.1 Method

Shaped SSA is a very general SSA method. Formally, any other SSA method can
be considered as a particular case of Shaped SSA. For multivariate extensions, the
versions of Shaped SSA, which cannot be reduced to conventional SSA, have many
different applications. For one-dimensional time series, Shaped SSA is particularly
useful when the time series contains gaps as in this case the versions of 1D-SSA
considered above are not directly applicable.

The specificity of Shaped SSA is in the construction of the L-trajectory matrix,
which we denote ˜X = TshSSA(X). This matrix is constructed so that its columns are
the complete L-lagged vectors. Any incomplete lagged vectors containing missing
values are not included into TshSSA(X).

2.6 Shaped 1D-SSA 89

Denote the set of series elements, which are presented in the trajectory matrix
˜X, as N; that is, N is the set of non-missed elements of X, which are covered
by windows of length L. The operator TshSSA makes a one-to-one correspondence
between a restriction of the series to N and the set of trajectory matrices, if the
location of the missing data is fixed.

The SSA decomposition is performed by any technique (excluding Toeplitz SSA)
described in Sects. 2.1–2.5 including nested Iterative O-SSA and Filter-adjusted O-
SSA. All these SSA decompositions, except for Toeplitz SSA, are eligible tools
since construction of the trajectory matrix and a tool for SSA decomposition do not
affect one another. Thus, we can naturally define shaped Basic SSA, shaped SSA
with projection, and so on.

For Toeplitz SSA, the decomposition is performed in a very specific way, which
is not directly based on the trajectory matrix; thereby the shaped version of Toeplitz
SSA does not make much sense and hence it is not implemented in the current
version of RSSA.

After decomposition of the trajectory matrix into a sum of elementary matrices
and then into a sum of grouped matrices, we need to obtain the series decomposition.
Generally speaking, the trajectory matrix is not Hankel in view of the gaps.
Therefore, we need a more general procedure than the hankelization and diagonal
averaging. This procedure is determined by the operator ΠH,sh(·) which is defined
as follows.

For ith term of the series, where i ∈ N, denote Ei the series with zeros
everywhere except ith term, which is equal to 1, Bi = TshSSA(Ei). For a given
matrix Y, define a series ˜Y by ỹi = 〈Y,Bi 〉F/‖Bi‖2 which gives

ΠH,sh(Y) = TshSSA(˜Y).

2.6.2 Separability

Definition and conditions of separability for Shaped SSA are the same as for
underlying modifications of SSA (see, e.g., Sect. 2.1.3). However, the separability
accuracy is naturally worse when there are gaps in the series. Moreover, there
are extreme cases where ranks of series can be corrupted by gaps and where the
conditions of separability cannot be satisfied.

2.6.3 Algorithm

The SSA modifications described in Sects. 2.2–2.5 differ from Basic SSA (Sect. 2.1)
by Decomposition step, while Shaped SSA differs from these modifications by
Embedding step, which depends on the window shape and the shape of the analyzed
object. Therefore, we consider Shaped SSA as an extension of SSA. Let us describe
the Shaped SSA algorithm for the analysis of time series with gaps.

90 2 SSA Analysis of One-Dimensional Time Series

Algorithm 2.13 Shaped SSA: decomposition
Input: Time series X of length N with missing data, window length L, an SSA modification for

making a decomposition.
Output: Decomposition of the trajectory matrix on elementary matrices ˜X = ˜X1 + . . .+˜Xd , where

˜Xi = σiPiQ
T
i .

1: Construct the trajectory matrix ˜X = TshSSA(X).
2: Obtain the decomposition ˜X = ∑d

i=1
˜Xi , where ˜Xi = σiPiQ

T
i , by means of Decomposition

step of the chosen SSA modification.

Since Decomposition stage differs by Embedding step, which transfers a time
series with gaps into a trajectory matrix, Reconstruction stage differs by the way a
matrix is transferred to a time series with gaps.

Algorithm 2.14 Shaped SSA: reconstruction

Input: Decomposition ˜X = ˜X1 + . . . + ˜Xd , ˜Xi = σiPiQ
T
i , grouping {1, . . . , d} = ⊔m

j=1 Ij .
Output: Decomposition of the time series on identifiable components X = X1 + . . . + Xm.
1: Construct the grouped matrix decomposition ˜X = ˜XI1 + . . . + ˜XIm , where ˜XI = ∑

i∈I
˜Xi .

2: X = X1 + . . . + Xm, where Xj = T−1
shSSA ◦ ΠH,sh(˜XIj), j = 1, . . . , m.

We have assumed here that all series points can be covered by the window of the
chosen length. If it is not so, then we obtain the reconstruction given only on the
covered points.

2.6.4 Shaped SSA in RSSA

2.6.4.1 Description of Functions

There is no specific form of the ssa function for Shaped SSA. If the series has gaps
(that is, it contains NA values), then the shaped version of Basic SSA is applied by
default.

In the 1D case as well as in the case of 2D-SSA, specific masks for the window
shape can be done. For example, the window can be not a whole interval but an
interval with a gap. Since windows with gaps do not have much sense in the one-
dimensional case we do not discuss general shaped window in this chapter; see
Sect. 5.2 on how to set shaped windows for 2D-data.

2.6.4.2 Typical Code

Let us consider the time series “CO2” and set up several artificial missing values.

2.6 Shaped 1D-SSA 91

Fragment 2.6.1 (Decomposition for Series with a Gap)

> F <- co2; F[100:200] <- NA
> # Prompt for the choice of window length
> clplot(F)
> # Perform shaped SSA
> s1 <- ssa(F, L = 72)
> plot(s1, type = "vectors", idx = 1:12)
> plot(s1, type = "series", groups = 1:6, layout = c(2, 3))
> plot(wcor(s1, groups = 1:20), scales = list(at = seq(1,20,2)))
> plot(reconstruct(s1, groups = list(c(1, 4, 7))),
+ add.residuals = FALSE,
+ plot.method = "xyplot", superpose = TRUE)

Fragment 2.6.1 demonstrates that the code looks similar to the code for Basic
SSA. However, there is a specificity. First, the choice of the window length should
take into consideration the number of complete vectors. The function clplot

(Fig. 2.23) shows the proportions of complete vectors; this proportion is equal to
1 only if there are no gaps. Eigenvectors serve for component identification in
the same way as for the series with no gaps (Fig. 2.24). Note that plotting the
factor vectors can be misleading, since factor vectors are depicted point-by-point
and therefore the gaps are not visible. The reconstructed series, however, are drawn
correctly, with the gaps (Figs. 2.25, 2.27). Weighted correlations, as usual, help for
component identification (Fig. 2.26).

Since in Basic SSA large window lengths can provide better accuracy, Frag-
ment 2.6.2 performs reconstruction with window length L = 120. This window

0 50 100 150 200

20
30

40
50

60
70

80

Proportion of complete lag vectors

window length, L

Pe
rc

en
ts

Fig. 2.23 “CO2” with gaps, Shaped SSA: Dependence of proportion of complete vectors on
window length

92 2 SSA Analysis of One-Dimensional Time Series

Eigenvectors
1 (100%) 2 (0%) 3 (0%) 4 (0%)

5 (0%) 6 (0%) 7 (0%) 8 (0%)

9 (0%) 10 (0%) 11 (0%) 12 (0%)

Fig. 2.24 “CO2” with gaps, Shaped SSA: Eigenvectors, L = 72

cannot cover the series points on the left from the gap and therefore the left part of
the series cannot be reconstructed (Fig. 2.28).

Fragment 2.6.2 (Incomplete Decomposition for a Series with a Gap)

> s2 <- ssa(F, L = 120)
> # plot(s2, type = "vectors")
> # plot(wcor(s2, groups = 1:20))
> # plot of reconstruction
> plot(reconstruct(s2, groups = list(c(1, 6, 7))),
+ add.residuals = FALSE,
+ plot.method = "xyplot", superpose = TRUE)

2.7 Automatic Grouping in SSA

2.7.1 Methods

While the choice of the window length is well supported by the SSA theory, the
procedure for choosing the eigentriples for grouping is much less formal. Several
methods for component identification and automatic grouping are described in

2.7 Automatic Grouping in SSA 93

Reconstructed series
32

0
34

0
36

0

1960 1970 1980 1990

1

−2
−1

0
1

2

1960 1970 1980 1990

2

−2
−1

0
1

1960 1970 1980 1990

3

−1
.5

0.
0

1.
0

1960 1970 1980 1990

4

−0
.5

0.
0

0.
5

1960 1970 1980 1990

5

−0
.4

0.
0

0.
4

1960 1970 1980 1990

6

Fig. 2.25 “CO2” with gaps, Shaped SSA: Elementary reconstructed series, L = 72

Golyandina and Zhigljavsky (2013; Section 2.4.5). Let us shortly discuss these
methods and the basic principles of automatic grouping.

Automatic grouping assumes that the components to be identified are (approx-
imately) separated between themselves and from the residual. Grouping is based
on finding common features in the components. The first method measures the
communality of components by means of thew-correlations ρ

(w)
ij , see (1.7), between

them: if a weighted correlation is large, then the corresponding components have
similar behavior and should be included into the same group. This approach is very
similar to the so-called correlation clustering of variables in multivariate statistics.
The input dissimilarity matrix for clustering methods contains values 1 − |ρ(w)

ij |.
The second method is based on finding components with similar frequency

characteristics. Contribution of frequencies is defined through the periodogram

ΠM
y (k/M) =

⎧

⎪

⎨

⎪

⎩

c2
0 for k = 0,

(c2
k + s2

k)/2 for 0 < k < M/2,

c2
M/2 for k = M/2 if M is even,

(2.19)

94 2 SSA Analysis of One-Dimensional Time Series

W−correlation matrix

F1

F3

F5

F7

F9

F11

F13

F15

F17

F19

F1 F3 F5 F7 F9 F11 F13 F15 F17 F19

Fig. 2.26 “CO2” with gaps, Shaped SSA: w-Correlation matrix, L = 72

Reconstructed Series

Time

32
0

33
0

34
0

35
0

36
0

1960 1970 1980 1990

Original
F1

Fig. 2.27 “CO2” with gaps, Shaped SSA: Trend reconstruction, L = 72

2.7 Automatic Grouping in SSA 95

Reconstructed Series

Time

32
0

33
0

34
0

35
0

36
0

1960 1970 1980 1990

Original
F1

Fig. 2.28 “CO2” with gaps, Shaped SSA: Incomplete trend reconstruction, L = 120

where the coefficients ck and sk are taken from the Fourier decomposition of Y =
(y1, . . . , yM):

yn = c0 +
�M/2�
∑

k=1

(

ck cos(2πn k/M) + sk sin(2πn k/M)
)

,

For a series Y of length M and for 0 ≤ ω1 ≤ ω2 ≤ 0.5, we define

T (Y; ω1, ω2) =
∑

k:ω1≤k/M<ω2

IM
y (k/M), (2.20)

where IM
y (k/M) = M ΠM

y (k/M)/‖Y‖2, ΠM
y is defined in (2.19). Since ‖Y‖2 =

M
∑[M/2]

k=1 ΠM
y (k/M), the measure T (Y; ω1, ω2) can be considered as a proportion

of frequencies contained in the frequency bin [ω1, ω2).
One of the aims in performing grouping is the extraction of a series component

with frequency range mostly from the chosen frequency bin. Therefore, it is natural
to calculate the value of T for elementary reconstructed components. Moreover,
SSA reconstruction can be considered as a linear filter. It appears that the frequency
response of the filter generated by the ith eigentriple is almost the same as the
periodogram of the corresponding singular vector, see Golyandina and Zhigljavsky
(2013; Proposition 3.13). Therefore, it is reasonable to apply T also to singular
vectors to reconstruct the series components with the given frequency ranges.

96 2 SSA Analysis of One-Dimensional Time Series

Since the trend of a series can be defined as its slowly varying series component,
for extracting a trend a frequency bin in the form [0, ω) should be chosen. The value
of ω reflects the frequency range, which we associated with a trend. For example, if
the series has monthly seasonality, ω should be notably smaller than 1/12. Note that
the grouping method does not answer the question whether the extracted component
is indeed a deterministic trend or simply a result of smoothing.

We can also consider several frequency bins, perhaps overlapping; in this case,
the described method can be applied to each bin separately. A modification of
grouping with several bins can be suggested.

Let the whole frequency range be divided into disjoint bins. Then we can refer a
component to a frequency bin with the largest proportions of the corresponding
frequency range; that is, with the maximal value of T . In this modification, all
the considered bins participate simultaneously and are hence dependent. This
modification can be used for splitting the series into a set of the components
according to the specified frequency ranges.

Values of T for each elementary decomposition component can be used for
devising the grouping. To perform an automatic grouping, a threshold T0, 0 ≤ T0 ≤
1, should be given. For example, if the value T (Yi; 0, ω) is larger than T0 for some
small ω, where Yi is the ith elementary series or ith left/right singular vector, then
the corresponding eigentriple can be automatically considered as a part of trend.

2.7.2 Algorithm

The algorithm of auto-grouping, which uses the w-correlation matrix, supplements
an algorithm which performs clustering based on the (dis)similarity matrix.

Algorithm 2.15 Auto-grouping: Clustering

Input: w-Correlation matrix [ρ(w)
ij] between reconstructed components, number of groups.

Output: Groups of components.
1: Use a method of cluster analysis to the dissimilarity measure defined by 1 − |ρ(w)

ij |.
2: Obtain the given number of groups from the results of cluster analysis.

The algorithm of component identification based on frequency characteristics
of the components is implemented in two versions. In the first version, each
frequency interval is considered separately and the desired components are selected
by comparing the values of (2.20) to a given threshold. For simplicity, we formulate
Algorithm 2.16 for one frequency interval only. The second version, Algorithm 2.17,
uses the set of frequency intervals simultaneously.

2.7 Automatic Grouping in SSA 97

Algorithm 2.16 Auto-grouping: Frequency ranges, by the threshold
Input: Frequency range [ω1, ω2), threshold T0, group I , type of series: eigenvectors, factor vectors

or reconstructed series.
Output: A group of components J ⊂ I .
1: For each series Yi , i ∈ I , the measure T (Yi; ω1, ω2) given in (2.20) is calculated.
2: The resultant group J consists of indices i ∈ I such that T (Yi; ω1, ω2) ≥ T0.

Algorithm 2.17 Auto-grouping: Frequency ranges, by the maximal contribution

Input: Set of frequency ranges [ω(m)
1 , ω

(m)
2), m = 1, . . . , k (if the separating points 0 = ω0 <

ω1 < ω2 < . . . < ωk for frequencies are given, then [ω(m)
1 , ω

(m)
2) = [ωm−1, ωm)), group I ,

type of series Yi : eigenvectors, factor vectors or reconstructed series.
Output: Set of k groups Jm ⊂ I , I = ⊔

m Jm.

1: For each series Yi , i ∈ I , and each frequency interval [ω(m)
1 , ω

(m)
2), m = 1, . . . , k, the measure

T (Yi; ω
(m)
1 , ω

(m)
2) given in (2.20) is calculated.

2: Each index i, i ∈ I , is referred to a group Jm0 with the maximal value of the measures

T (Yi; ω
(m)
1 , ω

(m)
2), m ∈ {1, . . . , k}. As a result, k groups are formed.

2.7.3 Automatic Grouping in RSSA

2.7.3.1 Description of Functions

Let us outline the main arguments of grouping.auto for Algorithm 2.15 in typical
function calls (the two grouping calls below are equivalent):

g <- grouping.auto(s, nclust = 2, groups = 1:20,
method = "complete", grouping.method = "wcor")

g <- grouping.auto.wcor(s, nclust = 2,
groups = 1:20, method = "complete")

Arguments

s is an ssa object holding the full one-dimensional SSA (Basic SSA, Toeplitz
SSA, SSA with projection, Shaped SSA, DerivSSA, Iterative O-SSA) decom-
position.

grouping.method is a method for automatic grouping.
groups is a list of groups, which is coerced to a vector with component numbers to

obtain the elementary reconstructed components and calculate the w-correlation
matrix for them.

nclust is a number of clusters.
method determines the way of cluster amalgamation; method is a parameter of the

R function hclust from the STATS package, which performs the hierarchical
cluster analysis.

The result of the function grouping.auto.wcor can be depicted by the function
call plot(g) in the form of a hierarchical tree.

98 2 SSA Analysis of One-Dimensional Time Series

For application of Algorithms 2.16 and 2.17, the typical call is

gp <- grouping.auto(s, groups = 1:20, base = "series",
freq.bins = list(0.01,0.02),
threshold = 0.8,
grouping.method = "pgram")

Arguments

s is an ssa object holding the full one-dimensional SSA (Basic SSA, Toeplitz
SSA, SSA with projection, Shaped SSA, DerivSSA, Iterative O-SSA) decom-
position.

grouping.method is a method for automatic grouping.
groups is a list of indices of elementary components for grouping, which is coerced

to a vector.
base is an input for the periodogram analysis: elementary reconstructed series

("series"), eigenvectors ("eigen"), or factor vectors ("factor").
freq.bins could be: a single integer larger than 1, which defines the number of

intervals of equal length dividing the frequency range [0, 1/2]; a vector of
frequency separating points (of length ≥ 2); a list of frequency ranges. For
each range, if only one frequency is indicated, then it will be used as the upper
bound, while the lower bound will be zero. If the frequency intervals, given by
the parameter freq.bins, are named, then the resultant groups will take these
names.

threshold is a threshold for frequency contributions. The value threshold=0
indicates that Algorithm 2.17 will be used.

method is a method of interpolation ("const" or "linear") of the periodogram
values, which are initially given on the regular grid.

The result of grouping.auto.pgram (that is, of grouping.auto, where the
parameter grouping.method = "pgram") can be depicted in the form of compo-
nent contributions T by the call

plot(gp, superpose = TRUE, order = TRUE)

Here superpose is logical and indicates whether to plot contributions for all
intervals on one panel. If the parameter order is TRUE, then the depicted component
contributions are ordered by their values.

2.7.3.2 Typical Code

Let us demonstrate how to replicate the examples of automatic grouping taken from
Golyandina and Zhigljavsky (2013; Section 2.4.5) by means of the RSSA package.

2.7 Automatic Grouping in SSA 99

Grouping Based on w-Correlations

Let us consider the “White dwarf” data and apply clustering to the corresponding
w-correlation matrix for window length L = 100. To do that we use Fragment 2.7.1.

Fragment 2.7.1 (“White dwarf”: Auto Grouping by Clustering)

> data("dwarfst", package = "ssabook")
> s <- ssa(dwarfst, L = 100)
> g <- grouping.auto(s, grouping.method = "wcor",
+ method = "average", nclust = 2)
> print(g[[1]])
[1] 1 2 3 4 5 6 7 8 9 10 11

> plot(wcor(s, groups = 1:30), scales = list(at = c(1, 11, 30)))
> plot(reconstruct(s, groups = g),
+ add.residuals = FALSE,
+ plot.method = "xyplot", superpose = FALSE)

The w-correlations between the 30 leading elementary reconstructed components
are depicted in Fig. 2.29. We can deduce from this figure that the components can
be partitioned into two groups, signal (ET1–11) and noise (ET12–100). Hierarchical
clustering with average linkage into two groups provides a proper split into two
clusters with the first cluster consisting exactly of ET1–11. Reconstruction with
automatic grouping is presented in Fig. 2.30.

Fig. 2.29 “White dwarf”:
w-Correlation matrix,
L = 100

W−correlation matrix

F1

F11

F30

F1 F11 F30

100 2 SSA Analysis of One-Dimensional Time Series

Reconstructed Series

Time

−0
.3

−0
.1

0.
1

0.
3 Original

−0
.3

−0
.1

0.
1

1

−0
.0

6
0.

00
0.

04

522000 524000 526000

2

Fig. 2.30 “White dwarf”: Decomposition with automatic grouping performed by clustering

Identification of Trend

Let us consider the “Production” example. Fragment 2.7.2 demonstrates how to
choose the threshold and how to extract trends of different forms by means of the
frequency approach. We consider two frequency ranges, [0, 1/240] and [0, 1/24].
To understand what is a reasonable value of the threshold, we first choose an
arbitrary small threshold to draw the plot of component contributions in the chosen
frequency ranges; we reorder the components by their contributions. Figure 2.31
shows that the threshold should be between the contributions of the 9th and
10th components. We choose the contribution of the 9-th component, which is
approximately equal to 0.89, as a new threshold.

Fragment 2.7.2 (“Production”: Auto Grouping by Frequency Analysis)

> data("oilproduction", package = "ssabook")
> s <- ssa(oilproduction, L = 120)
> plot(s, type = "vectors", vectors = "factor", idx = 1:12)
> g0 <- grouping.auto(s, base = "series",
+ freq.bins = list(Tendency = 1/240,
+ Trend = 1/24),
+ threshold = 0.1)
> plot(g0, order = TRUE, type = "b")
> contrib <- attr(g0, "contributions")[, 2]
> print(thr <- sort(contrib, decreasing = TRUE)[9])

8

2.7 Automatic Grouping in SSA 101

0.861955
> g <- grouping.auto(s, base = "series",
+ freq.bins = list(Tendency = 1/240,
+ Trend = 1/24),
+ threshold = thr)
> print(g[[1]])
[1] 1 2
> print(g[[2]])
[1] 1 2 3 6 8 11 12 17 18
> plot(reconstruct(s, groups = g),
+ add.residuals = FALSE,
+ plot.method = "xyplot", superpose = TRUE)

If we choose ω0 = 1/24 and T0 = 0.89, then the described procedure identifies
ET1–3,6,8,11,12,17,18; a rough trend is thus identified accurately enough, see
Fig. 2.33, red line. Figure 2.32 with factor vectors explains the result. Indeed, the
detected factor vectors are slowly varying. The function grouping.auto allows to
consider several frequency intervals. In this case, one should set a threshold for each
frequency bin. In the code of Fragment 2.7.2, by rules of R, threshold = thr is
equivalent to threshold = list(thr, thr). For convenience, the implementa-
tion of grouping.auto allows to write freq.bins = list(1/240,1/24) instead
of freq.bins = list(c(0,1/240),c(0,1/24)). Figure 2.33 shows two trends
of different forms obtained by means of different frequency intervals.

If we were interested in the general tendency only, then the measure T with
ω0 = 1/240 and the threshold T0 = 0.89 identifying one leading component would
be sufficient.

Fig. 2.31 “Production”:
Ordered frequency
contributions of factor
vectors, L = 120

Component

R
el

at
iv

e
co

nt
rib

ut
io

n

0.0

0.2

0.4

0.6

0.8

1.0 l

l

l

l
ll

lllll
lll

l

ll

l
llllllllllllllllllllllllllllllllllllll

Tendency
Trend

l

l

102 2 SSA Analysis of One-Dimensional Time Series

Factor vectors
1 (99.75%) 2 (0.13%) 3 (0.02%) 4 (0.02%)

5 (0.02%) 6 (0.01%) 7 (0.01%) 8 (0.01%)

9 (0%) 10 (0%) 11 (0%) 12 (0%)

Fig. 2.32 “Production”: Factor vectors, L = 120

Reconstructed Series

Time

14
00

16
00

18
00

1975 1980 1985 1990 1995

Original
Tendency
Trend

Fig. 2.33 “Production”: Two extracted trends of different resolution, automatic grouping by
frequencies

2.8 Case Studies 103

2.8 Case Studies

2.8.1 Extraction of Trend and Oscillations by Frequency
Ranges

A decomposition on interpretable series components may differ from a decom-
position on components with different frequency ranges but sometimes these
decompositions can be similar. For example, extraction of a trend can be considered
as a smoothing, i.e., extraction of a slowly-varying series component with a
frequency range close to zero.

In Sect. 2.1.5.3, a typical decomposition of the series of sales of fortified wines
in Australia into a sum of a trend, a seasonal component and a noise is shown.

Let us introduce an example of frequency decomposition. Consider the series
“Tree rings” (tree ring width, annual, 1282–1950).

Fragment 2.8.1 makes a decomposition of the series “Tree rings” into compo-
nents from the following frequency ranges: [0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4),
and [0.4, 0.5]. In the code, the last frequency is depicted as +Inf but in fact the
upper bound is 0.5.

Fragment 2.8.1 (“Tree rings”: Frequency Decomposition)

> data("dftreering", package = "ssabook")
> L <- 300
> s.tree <- ssa(dftreering, L = L, neig = L)
> g.tree <- grouping.auto(s.tree, base = "series",
+ freq.bins = c(0.1, 0.2, 0.3, 0.4, +Inf))
> r.tree <- reconstruct(s.tree, groups = g.tree)
> plot(r.tree, add.residuals = FALSE, add.original = TRUE,
+ plot.method = "xyplot")
> specs <-
+ lapply(r.tree, function(x) spectrum(x, plot = FALSE)$spec)
> w.tree <- seq(0, length.out = length(specs$F1),
+ by = 1/length(dftreering))
> xyplot(F1 + F2 + F3 + F4 + F5 ~ w.tree, data = specs,
+ superpose = FALSE, type = "l", xlab = NULL, ylab = NULL,
+ auto.key = list(lines = TRUE, points = FALSE,
+ column = 5))

The resultant decomposition is depicted in Fig. 2.34. Since the given frequency
ranges split the whole range [0, 0.5], we obtain a full decomposition of the original
series.

Figure 2.35 shows spectrums of the series components depicted in Fig. 2.34. It
can be seen that the frequency ranges of the series components are almost disjoint.
Since the window length L makes an influence on the resolution of the method (see,
e.g., Golyandina and Zhigljavsky (2013; Section 2.9)), the intersection of frequency
ranges increases for small window lengths.

104 2 SSA Analysis of One-Dimensional Time Series

Reconstructed Series

Time

50
15

0

Original

60
10

0
14

0 F1

−2
0

01
0

F2

−2
0

0
10

F3

−2
0

0
10

F4

−1
0

0
10

1400 1600 1800

F5

Fig. 2.34 “Tree rings”: Frequency decomposition

2.8.2 Trends in Short Series

Let us consider the series “FORT” from the dataset “Australian Wines” with
monthly sales. The first 120 points of the series are depicted in Fig. 2.36.

The series length is long enough to obtain weak separability; therefore, we will
consider short subseries to demonstrate the ability of Iterative O-SSA to improve
separability.

We choose the window length L = 18 to make the difference between Basic SSA
and Iterative O-SSA clearly visible on the figures, although the relation between
accuracies of the considered methods is very similar for other choices of the window
length. Let us consider the subseries consisting of the points from 30th to 72th.

Let us start with Basic SSA. ET1 is identified as corresponding to trend; other
components are produced by seasonality and noise (we do not include their plots).

2.8 Case Studies 105

0

1000

2000

3000

4000

5000

6000

0.0 0.1 0.2 0.3 0.4 0.5

F1 F2 F3 F4 F5

Fig. 2.35 “Tree rings”: Periodograms of the series components

20
00

30
00

40
00

50
00

1980 1982 1984 1986 1988 1990

Basic SSA trend
Iterative O−SSA trend
Full series

Fig. 2.36 “FORT”: Trend reconstruction by Iterative O-SSA for the subseries consisting of points
30–72

One can see in Fig. 2.36 that the reconstructed trend is slightly mixed with the
seasonality and follows the seasonal component at the ends of the series.

To apply Iterative O-SSA, we should choose a group of elementary components
containing the trend components and approximately separated from the residual.
Let it be ET1–7. Thus, we apply one iteration of O-SSA to the refined groups
ET1 and ET2–7. Since the trend has much larger contribution than the residual,
we consider Iterative O-SSA with no sigma-correction. The result of reconstruction

106 2 SSA Analysis of One-Dimensional Time Series

is much more relevant, see Fig. 2.36. This reconstruction is obtained by means of
the code of Fragment 2.8.2.

Fragment 2.8.2 (“FORT”: Basic SSA and Iterative O-SSA Trends)

> data("AustralianWine", package = "Rssa")
> Nfull <- 120
> wine <- window(AustralianWine,
+ end = time(AustralianWine)[Nfull])
> fort_sh <- window(wine[, "Fortified"],
+ start = c(1982, 6), end = c(1985, 12))
> ss_sh <- ssa(fort_sh, L = 18)
> res_ssa_sh <- reconstruct(ss_sh, groups = list(1, 2:7))
> iss_sh <- iossa(ss_sh, nested.groups = list(1, 2:7),
+ kappa = 0, maxiter = 1, tol = 1e-5)
> res_issa_sh <- reconstruct(iss_sh, groups = iss_sh$iossa.groups)
> theme <- simpleTheme(col = c("blue", "red", "black"),
+ lwd = c(1, 2, 1),
+ lty = c("solid", "solid", "dashed"))
> xyplot(cbind(res_ssa_sh$F1, res_issa_sh$F1, wine[, "Fortified"]),
+ superpose = TRUE,
+ xlab = "", ylab = "", type = "l", lwd = c(1, 2, 1),
+ col = c("blue", "red", "black"),
+ auto.key = list(text = c("Basic SSA trend",
+ "Iterative O-SSA trend",
+ "Full series"),
+ type = c("l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)

2.8.3 Trend and Seasonality of Complex Form

Let us analyze the time series “MotorVehicle” which contains monthly data of
total domestic and foreign car sales in the USA, from 1967 to 2012, January. The
total series length is 541. This time series was investigated in Golyandina and
Korobeynikov (2013) by means of Sequential SSA.

Figure 2.37 shows that the shape of the trend is complex. From the viewpoint of
SSA, complexity of a trend means that it can only be approximated by a time series
of a large rank and therefore it is decomposed into a large number of elementary
components, if a large enough window length was chosen. Therefore, there are high
odds that the trend decomposition components are going to be mixed with seasonal
components in Basic SSA.

Since seasonal components are approximately orthogonal to slowly-varying
components, we can consider the problem of mixing as a problem of lack of strong
separability.

RSSA offers several options helping to avoid mixing. The first option is to use
Sequential SSA as done in Golyandina and Korobeynikov (2013) (see Sect. 2.1.3.2,
where the idea of Sequential SSA is briefly described).

2.8 Case Studies 107

Reconstructed Series

Time

40
0

60
0

80
0

10
00

12
00

1970 1980 1990 2000 2010

Original
trend

Fig. 2.37 “MotorVehicle”: Trend extracted by Basic SSA with small window length L = 12

First, let us extract a trend. Since for a trend of such a difficult shape its
extraction is similar to smoothing, we start with choosing a minimally possible
window length, which in this case is L = 12. The reason for this choice of window
length is similar to that in the moving averaging procedure: for smoothing a time
series containing a periodic component, the window length should be divisible by
the period. Then, the residual is decomposed with a large window length 264 to
extract the seasonality, since the seasonal component can be considered as a sum of
exponentially-modulated harmonics and therefore has a rank not exceeding 11.

Fragment 2.8.3 shows how Sequential SSA can be performed (see the explana-
tion of the component choice in Golyandina and Korobeynikov (2013)). Figure 2.37
shows the resultant decomposition.

Fragment 2.8.3 (“MotorVehicle”: Decomposition by Sequential SSA)

> data("MotorVehicle", package = "Rssa")
> s1 <- ssa(MotorVehicle, L = 12)
> res1 <- reconstruct(s1, groups = list(trend = 1))
> trend <- res1$trend
> plot(res1, add.residuals = FALSE, plot.type = "single",
+ col = c("black", "red"), lwd = c(1, 2),
+ plot.method = "xyplot", superpose = TRUE)
> res.trend <- residuals(res1)
> s2 <- ssa(res.trend, L = 264)
> res2 <- reconstruct(s2, groups = list(seasonality = 1:10))
> seasonality <- res2$seasonality
> res <- residuals(res2)
> # The resultant decomposition consists of
> # trend, seasonality and residual

108 2 SSA Analysis of One-Dimensional Time Series

Sequential SSA consists of a repeated application of one of the SSA methods,
for example, Basic SSA. Let us demonstrate the use of another two-step approach,
DerivSSA of Sect. 2.5, using a nested decomposition. In DerivSSA, a signal
subspace should be estimated at the first step and then an additional rotation is
performed in the signal subspace to avoid a mixture. Fragment 2.8.4 shows how
DerivSSA can be applied. The signal subspace was detected by the analysis of
eigenvectors and the w-correlation matrix. Identification of components of the
refined decomposition, which was obtained by means of DerivSSA, is performed
in the same way as it is done in Basic SSA.

Fragment 2.8.4 (“MotorVehicle”: Decomposition by DerivSSA)

> data("MotorVehicle", package = "Rssa")
> s <- ssa(MotorVehicle, L = 264)
> sf <- fossa(s, nested.groups = 1:19)
> rf <- reconstruct(sf, groups =
+ list(seasonality = 1:10, trend = 11:19))
> plot(rf, plot.method = "xyplot", superpose = TRUE,
+ add.residuals = FALSE,
+ col = c("black", "darkgreen", "red"), lwd = c(1, 1, 2))
> p<- parestimate(sf, groups = list(1:10),
+ method = "esprit")
> print(p$period[seq(1, 10, 2)], digits = 3)
[1] 3.00 12.01 2.40 5.99 4.02

The decomposition results are similar. We present the results of full DerivSSA
decomposition (we have used the version with normalization, see Algorithm 2.11)
into trend, seasonal component and a noise in Fig. 2.38.

2.8.4 Finding Noise Envelope

Here we demonstrate how to estimate the variance of a heterogeneous noise. The
procedure is based on the following two observations: first, the variance of noise is
equal to the expectation of the squared noise values, and second, for a stochastic
process the trend is its expectation. Therefore, the variance can be estimated as the
trend of squared residuals. This trend can be extracted by SSA with a small window
length and reconstructed by the leading eigentriple. The choice of the window
length influences the level of detail with which we see the extracted trend. For the
“MotorVehicle” data, window length L = 30 provides an appropriate trend. The
result of Fragment 2.8.5 is depicted in Fig. 2.39 which shows the residuals and the
standard deviation bounds.

Fragment 2.8.5 (“MotorVehicle”: Finding Noise Envelope)

> resf <- residuals(rf)
> s.env <- ssa(resf^2, L = 30)
> rsd <- sqrt(reconstruct(s.env, groups = list(1))$F1)
> xyplot(resf + rsd + (-rsd) ~ time(resf), type = "l")

2.8 Case Studies 109

Reconstructed Series

Time

0
50

0
10

00

1970 1980 1990 2000 2010

Original
seasonality
trend

Fig. 2.38 “MotorVehicle”: Decomposition by DerivSSA with L = 264

time(resf)

re
sf

 +
 rs

d
+

(−
rs

d)

−200

−100

0

100

200

300

1970 1980 1990 2000 2010

Fig. 2.39 “MotorVehicle”: Residuals with envelopes

2.8.5 Elimination of Edge Effects

Let us consider “US Unemployment” data (monthly, 1948–1981, thousands) for
male (20 years and over). The series length is N = 408. Since the series is long,
we can expect weak separability between the trend and seasonality. For better weak
separability we choose the window length equal to L = N/2 = 204, which is
divisible by 12. Fragment 2.8.6 demonstrates how DerivSSA allows to improve the
decomposition.

110 2 SSA Analysis of One-Dimensional Time Series

Fragment 2.8.6 (“US unemployment”: Improvement by DerivSSA)

> data("USUnemployment", package = "Rssa")
> ser <- USUnemployment[, "MALE"]
> Time <- time(ser)
> L = 204
> ss <- ssa(ser, L = L, svd.method = "eigen")
> res<- reconstruct(ss, groups =
+ list(c(1:4, 7:11), c(5, 6, 12, 13)))
> trend <- res$F1
> seasonality <- res$F2
> w1 <- wcor(ss, groups = 1:30)
> fss <- fossa(ss, nested.groups =
+ list(c(1:4, 7:11), c(5, 6, 12, 13)),
+ gamma = Inf)
> fres <- reconstruct(fss, groups = list(5:13, 1:4))
> ftrend <- fres$F1
> fseasonality <- fres$F2
> theme1 <- simpleTheme(col = c("grey", "blue","red"),
+ lwd = c(2, 1, 1),
+ lty = c("solid", "solid", "solid"))
> theme2 <- simpleTheme(col = c("blue", "red"), lwd = c(1, 1),
+ lty = c("solid", "solid"))
> p1 <- xyplot(ser + trend + ftrend ~ Time,
+ xlab = "", ylab = "", type = "l", lwd = c(2, 1, 1),
+ col = c("grey", "blue","red"),
+ auto.key = list(text = c("Full series",
+ "Basic SSA trend",
+ "DerivSSA trend"),
+ type = c("l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme1)
> p2 <- xyplot(seasonality + fseasonality ~ Time,
+ xlab = "", ylab = "", type = "l", lwd = c(2, 1),
+ col = c("blue", "red"),
+ auto.key = list(text = c("Basic SSA seasonality",
+ "DerivSSA seasonality"),
+ type = c("l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme2)
> plot(p1, split = c(1, 1, 1, 2), more = TRUE)
> plot(p2, split = c(1, 2, 1, 2), more = FALSE)

Basic SSA does not separate the trend and seasonality for this time series.
It is another very typical situation that if trend has a complex form, then trend
components are mixed with the seasonality components and therefore the so-
called Sequential SSA was recommended (Golyandina et al. 2001; Section 1.7.3).
However, this is also the case when DerivSSA is able to help.

We apply DerivSSA (the version with normalization) to the group ET1–13
that can be related to the signal. DerivSSA separates different frequencies so that
components with higher frequencies become the leading ones. Since the low-
frequency components in the considered series have large contribution, the weight

2.8 Case Studies 111

1000

2000

3000

4000

1950 1960 1970 1980

Full series
Basic SSA trend
DerivSSA trend

−400

−200

0

200

400

600

1950 1960 1970 1980

Basic SSA seasonality
DerivSSA seasonality

Fig. 2.40 “US unemployment”: Decompositions by Basic SSA and DerivSSA

of derivatives should be large in order to make the seasonal components leading; we
take gamma = Inf to exclude non-derivative part from the decomposed matrix.

Figure 2.40 depicting the DerivSSA reconstructions of the trend and the seasonal-
ity confirms that DerivSSA visibly improves the reconstruction accuracy, especially
at both ends of the series. It is shown in Golyandina and Shlemov (2015) how to
obtain a similar effect by means of Iterative O-SSA.

2.8.6 Extraction of Linear Trends

Here we consider the example “Hotel” following Golyandina et al. (2001; Sec-
tion 1.7.1). We extract trend from a short subseries of length n. Then we compare
predictions by linear regressions constructed from the series itself and constructed
from the trends extracted by SSA. More detailed comparison of SSA and regression
for simulated examples can be found in Golyandina and Shlemov (2017).

112 2 SSA Analysis of One-Dimensional Time Series

Time

0
50

10
0

15
0

20
0

25
0

1965 1970 1975

Original series
General linear trend
Linear regression, forecasted
Linear regression
SSA with double centering, forecasted
SSA with double centering

Fig. 2.41 “Hotel”: SSA with projection, linear trend detection

Consider two cases: n = 24 (Fragment 2.8.7) and n = 30 (Fragment 2.8.8).
For n = 24, the best separability of the linear trend from the residual is achieved
by SSA with double centering (a particular case of SSA with projection). This is
because we can choose L and K approximately divisible by the period 12. One
can see in Fig. 2.41 that SSA linear trend (blue) is very close to a linear trend
constructed by the whole long time series (green). Linear regression line (red) gives
an approximation of the trend which is much worse than for SSA.

However, for n = 30, there is no appropriate window length providing desired
orthogonalities. Therefore, direct SSA with double centering is not so successful
in this case but to improve separability we can apply Iterative O-SSA. The result
shown in Fig. 2.42 is rather good.

Fragment 2.8.7 (“Hotel”: SSA with Projection, Linear Trend Detection)

> data("hotel", package = "ssabook")
> len <- length(hotel)
> n <- 24
> hotel.2years <- window(hotel, end = time(hotel)[n])
> sp <- ssa(hotel.2years, L = 12,
+ row.projector = "center",
+ column.projector = "center")
> r <- reconstruct(sp, groups = list(trend = 1:2))
> hotel.2years.data <- data.frame(x = 1:n, y = hotel.2years)
> fit.2years <- lm(y ~ x, data = hotel.2years.data)
> fit.2years.continued <- predict(fit.2years,
+ newdata = data.frame(x = 1:len))

2.8 Case Studies 113

> hotel.data <- data.frame(x = 1:len, y = hotel)
> fit <- lm(y ~ x, data = hotel.data)
> fit.rec <- lm(r$trend ~ x, data = hotel.2years.data)
> fit.rec.continued <- predict(fit.rec,
+ newdata = data.frame(x = 1:len))
> xyplot(cbind(hotel,
+ predict(fit),
+ fit.2years.continued,
+ ts(predict(fit.2years),
+ start = c(1963, 1), freq = 12),
+ fit.rec.continued,
+ ts(predict(fit.rec),
+ start = c(1963, 1), freq = 12)),
+ superpose = TRUE,
+ type = "l", ylab = "",
+ lty = c(1, 2, 1, 1, 1, 1),
+ lwd = c(1, 2, 1, 5, 1, 5),
+ col = c("black", "green", "red", "red",
+ "blue", "blue"),
+ auto.key =
+ list(text = c("Original series",
+ "General linear trend",
+ "Linear regression, forecasted",
+ "Linear regression",
+ "SSA with double centering, forecasted",
+ "SSA with double centering"),
+ type = c("l", "l", "l", "l", "l", "l"),
+ lines = TRUE, points = FALSE))

Time

0
50

10
0

15
0

1965 1970 1975

Original series
General linear trend
Linear regression, forecasted
Linear regression
Iterative O−SSA, forecasted
Iterative O−SSA

Fig. 2.42 “Hotel”: Iterative O-SSA, linear trend detection

114 2 SSA Analysis of One-Dimensional Time Series

Fragment 2.8.8 (“Hotel”: Iterative O-SSA, Linear Trend Detection)

> n <- 30
> hotel.2years <- window(hotel, end = time(hotel)[n])
> s <- ssa(hotel.2years, L = 12)
> ios <- iossa(s, nested.groups = list(1, 2:5))
> r <- reconstruct(ios, groups = list(trend = 1))
> hotel.2years.data <- data.frame(x = 1:n, y = hotel.2years)
> fit.2years <- lm(y ~ x, data = hotel.2years.data)
> fit.2years.continued <- predict(fit.2years,
+ newdata = data.frame(x = 1:len))
> hotel.data <- data.frame(x = 1:len, y = hotel)
> fit <- lm(y ~ x, data = hotel.data)
> fit.rec <- lm(r$trend ~ x, data = hotel.2years.data)
> fit.rec.continued <- predict(fit.rec,
+ newdata = data.frame(x = 1:len))
> xyplot(cbind(hotel,
+ predict(fit),
+ fit.2years.continued,
+ ts(predict(fit.2years),
+ start = c(1963, 1), freq = 12),
+ fit.rec.continued,
+ ts(predict(fit.rec),
+ start = c(1963, 1), freq = 12)),
+ superpose = TRUE,
+ type = "l", ylab = "",
+ lty = c(1, 2, 1, 1, 1, 1),
+ lwd = c(1, 2, 1, 5, 1, 5),
+ col = c("black", "green", "red", "red",
+ "blue", "blue"),
+ auto.key =
+ list(text = c("Original series",
+ "General linear trend",
+ "Linear regression, forecasted",
+ "Linear regression",
+ "Iterative O-SSA, forecasted",
+ "Iterative O-SSA",
+ type = c("l", "l", "l", "l", "l", "l"),
+ lines = TRUE, points = FALSE))

2.8.7 Automatic Decomposition

Let us consider an automatic identification based on frequency characteristics of the
elementary series components (Fragment 2.8.9). This way of identification is very
well suited for the problem of trend extraction. For the extraction of periodicities,
we would recommend a more sophisticated approach described in Alexandrov and
Golyandina (2005) and based on an idea from Vautard et al. (1992).

2.8 Case Studies 115

Component

R
el

at
iv

e
co

nt
rib

ut
io

n

0.0

0.2

0.4

0.6

0.8

1.0 l l l

l

l

l

l l

trend l

Fig. 2.43 “PayNSA”: Contributions of trend components

The data “PayNSA” contains monthly numbers of all employees, total nonfarm
payrolls, thousands of persons. Since the trend is complex, we will use Sequential
SSA.

To extract a trend we take a small window length L = 36 and a frequency
range [0, 0.06] noting that the frequency 1/12 ≈ 0.0833 is related to seasonality.
Figure 2.43 shows ordered contributions of these frequency ranges. A sharp drop
after the fifth ordered component is clearly seen. Therefore, we choose the threshold
equal to 0.7. The extracted trend is depicted in Fig. 2.44 together with the original
series.

After performing trend extraction, let us investigate the residual. To extract the
seasonal component, we choose the frequency range consisting of small intervals
containing the frequencies 1/12, 2/12, 3/12, 4/12, 5/12, and 6/12. Figure 2.45
shows the contributions of the components in the initial order (right) and the
contributions ordered by the magnitude of their values for each frequency range
(left). In the right figure, one can see that the components with large contributions
come in pairs with each pair corresponding to one frequency, except for a single
component for the frequency 1/2. The extracted seasonal component is presented in
Fig. 2.46.

Note that if we subtract the seasonal component from the original time series,
then we obtain the so-called seasonally adjusted component. To confirm that the
seasonal component was really extracted, we depict the log-spectra of the original
series and seasonally-adjusted series together (Fig. 2.47).

116 2 SSA Analysis of One-Dimensional Time Series

Reconstructed Series

Time

60
00

0
80

00
0

10
00

00
12

00
00

14
00

00

1960 1970 1980 1990 2000 2010

Original
trend

Fig. 2.44 “PayNSA”: Automatically identified trend

Component

R
el

at
iv

e
co

nt
rib

ut
io

n

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

ll

l
l

llllllllllllllll

l

lllllllllllllllllll

l
l

llllllllllllllllll

l
l

llllllllllllllllll

l
l

llllllllllllllllll

ll

llllllllllllllllll

s12
s2

s2.4
s3

s4
s6

l

l

l

l

l

l

Component

R
el

at
iv

e
co

nt
rib

ut
io

n

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

ll

ll

lllllllll

l
l

lllllllllll

l

llllllllllllllllllllll

l
l

lllllllllllll

l
l

lllllllllllllllllllll

l
l

lllllllllll

ll

llllllllllllllllll

s12
s2

s2.4
s3

s4
s6

l

l

l

l

l

l

Fig. 2.45 “PayNSA”: Contributions of seasonal components, ordered by their values (left) and
ordered by component numbers (right) for different frequency ranges

2.8 Case Studies 117

Reconstructed Series

Time

−2
00

0
−1

00
0

0
10

00

1960 1970 1980 1990 2000 2010

Fig. 2.46 “PayNSA”: Automatically identified seasonal component

0

5

10

15

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 2.47 “PayNSA”: Log-periodogram of original and seasonally-adjusted series

Fragment 2.8.9 (“PayNSA”: Automatically Identified Trend)

> data("paynsa", package = "ssabook")
> n <- 241
> pay <- window(paynsa, start = time(paynsa)[n])
> s <- ssa(pay, L = 36)
> g1 <- grouping.auto(s, base = "series",
+ freq.bins = list(trend = 0.06),
+ threshold = 0.7)
> print(g1$trend)
[1] 1 2 3 8 12
> plot(g1, order = TRUE, type = "b")
> r1 <- reconstruct(s, g1)
> plot(r1, plot.method = "xyplot", superpose = TRUE,
+ add.residuals = FALSE)
> s1 <- ssa(pay - r1$trend, L = 120)

118 2 SSA Analysis of One-Dimensional Time Series

> coef <- c(1 - 0.02, 1 + 0.02)
> freq.bins.seas = list(s12 = 1/12 * coef, s6 = 1/6 * coef,
+ s4 = 1/4 * coef, s3 = 1/3 * coef,
+ s2.4 = 1/2.4 * coef, s2 = 1/2 * coef)
> g3 <- grouping.auto(s1, base = "series", groups = 1:20,
+ freq.bins = freq.bins.seas,
+ threshold = list(0.6))
> p1 <- plot(g3, order = TRUE, scales = NULL,
+ auto.key = list(columns = 3))
> p2 <- plot(g3, order = FALSE, scales = NULL,
+ auto.key = list(columns = 3))
> plot(p1, split = c(1, 1, 2, 1), more = TRUE)
> plot(p2, split = c(2, 1, 2, 1), more = FALSE)
> r3 <- reconstruct(s1, groups = list(unlist(g3)))
> plot(r3, plot.method = "xyplot", add.residuals = FALSE,
+ add.original = FALSE)
> specNSA <- spectrum(pay - r3$F1, plot = FALSE)
> specSA <- spectrum(pay, plot = FALSE)
> w.pay <- seq(0, length.out = length(specNSA$spec),
+ by = 1/length(pay))
> xyplot(log(specNSA$spec) + log(specSA$spec) ~ w.pay,
+ type = "l", xlab = NULL, ylab = NULL)

2.8.8 Log-Transformation

As mentioned in Golyandina and Zhigljavsky (2013; Section 2.3.1.3), any multi-
plicative model can be considered as an additive model:

xn = tn(1 + sn)(1 + rn) = tn + tnsn + (tn + tnsn)rn, (2.21)

where tn is a trend, sn consists of regular oscillations, and rn is a homogeneous noise.
Since tnsn can be considered as modulated regular oscillations and (tn + tnsn)rn is
a heterogeneous noise, SSA is able to perform such a decomposition.

On the other hand, one can consider the log-transformed series x̃n = ln xn =
˜tn+s̃n+r̃n, where˜tn = log(tn) is a trend, s̃n = log(1+sn), and r̃n = log(1+rn) ≈ rn
is noise; if sn is small, then s̃n = log(1 + sn) ≈ sn can still be treated as oscillations.

Thus, if a series follows the multiplicative model (2.21), then SSA-family
methods can be applied both to the initial series and to the log-transformed data
to obtain a decomposition into a sum of a trend, oscillations, and noise.

If the log-transformation makes the structure of the series components simpler,
then it can be recommended. For example, if the model is multiplicative and the
time series trend has a complex form, then the log-transformation may eliminate
the modulation. Note that if the trend is exponential, then the log-transformed trend
becomes linear and therefore SSA with double centering can be recommended for
its extraction.

2.8 Case Studies 119

0

5000

10000

15000

1960 1970 1980 1990

original
exp(log−trend)
trend
residual

l

l

l

l

Fig. 2.48 “Elec”: Decomposition for initial and log-transformed data

Let us consider the series “Elec” of Australian monthly electricity production
(Jan 1956 – Aug 1995).

In Fragment 2.8.10, the trend is estimated by the decomposition of the original
data and of the log-transformed data. Figure 2.48 shows that the trend estimations
almost coincide. This is typical in cases when the model is not purely multiplicative.
In the present example, the multiplicativity breaks down after 1980 when the range
of oscillations slightly decreases.

The log-transformation can only be applied when the original data is positive.
After making the log-transformation we have to apply the exponential transforma-
tion to the series, which we obtain from the SSA analysis, in order to return to the
initial scale. This makes the resulted data positive; this is a very attractive feature of
the log-transformation in many applications.

Fragment 2.8.10 (“Elec”: Log-Transformation)

> data("elec", package = "fma")
> elec.log <- log(elec)
> Time <- time(elec)
> s <- ssa(elec, L = 12)
> r <- reconstruct(s, groups = list(trend = c(1)))
> sl <- ssa(elec.log, L = 12)
> rl <- reconstruct(sl, groups = list(trend = c(1)))
> xyplot(elec + exp(as.vector(rl$trend)) + r$trend +
+ (elec - r$trend) ~ Time,
+ superpose = TRUE, type ="l", ylab = NULL, xlab = NULL,

120 2 SSA Analysis of One-Dimensional Time Series

+ auto.key = list(text = c("original", "exp(log-trend)",
+ "trend", "residual")))

References

Alexandrov T, Golyandina N (2005) Automatic extraction and forecast of time series cyclic
components within the framework of SSA. In: Proceedings of the 5th St.Petersburg workshop
on simulation. St. Petersburg State University, pp 45–50

Andrew AL (1973) Eigenvectors of certain matrices. Linear Algebra Appl 7(2):151–162
Anderson E, Bai Z, Bischof C, Blackford L, Demmel J, Dongarra J, Du Croz J, Greenbaum A,

Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ guide, 3rd edn. Society for
Industrial and Applied Mathematics

De Moor BLR, Golub GH (1991) The restricted singular value decomposition: Properties and
applications. SIAM J Matrix Anal Appl 12(3):401–425

Ghil M, Allen RM, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson A, Saunders
A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev
Geophys 40(1):1–41

Golyandina N (2010) On the choice of parameters in singular spectrum analysis and related
subspace-based methods. Stat Interface 3(3):259–279

Golyandina N, Korobeynikov A (2013) Basic singular spectrum analysis and forecasting with R.
Comput Stat Data Anal 71:943–954

Golyandina N, Lomtev M (2016) Improvement of separability of time series in singular spectrum
analysis using the method of independent component analysis. Vestnik St. Petersburg Univ
Math 49(1):9–17

Golyandina N, Shlemov A (2015) Variations of singular spectrum analysis for separability
improvement: Non-orthogonal decompositions of time series. Stat Interface 8(3):277–294

Golyandina N, Shlemov A (2017) Semi-nonparametric singular spectrum analysis with projection.
Stat Interface 10(1):47–57

Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer briefs in
statistics. Springer

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and
related techniques. Chapman&Hall/CRC

Golyandina N, Pepelyshev A, Steland A (2012a) New approaches to nonparametric density
estimation and selection of smoothing parameters. Comput Stat Data Anal 56(7):2206–2218

Harris T, Yan H (2010) Filtering and frequency interpretations of singular spectrum analysis.
Physica D 239:1958–1967

Korobeynikov A, Larsen RM, Wu KJ, Yamazaki I (2016) SVD: Interfaces to various state-of-art
SVD and eigensolvers. URL http://CRAN.R-project.org/package=svd, R package version 0.4

Larsen RM (1998) Efficient algorithms for helioseismic inversion. PhD thesis, University of
Aarhus, Denmark

Roy R, Kailath T (1989) ESPRIT: estimation of signal parameters via rotational invariance
techniques. IEEE Trans Acoust 37:984–995

Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: A toolkit for short, noisy chaotic
signals. Physica D 58:95–126

Yamazaki I, Bai Z, Simon H, Wang LW, Wu K (2008) Adaptive projection subspace dimension
for the thick-restart Lanczos method. Tech. rep., Lawrence Berkeley National Laboratory,
University of California, One Cyclotron road, Berkeley, California 94720

http://CRAN.R-project.org/package=svd

Chapter 3
Parameter Estimation, Forecasting,
Gap Filling

Similarly to Chap. 2, this chapter is devoted to applications of SSA for one-
dimensional series; that is, to 1D-SSA. The SSA analysis of time series, which
is considered in Chap. 2, can be classified as model-free. In this chapter, on
the contrary, we consider the methodologies within the 1D-SSA approach, which
require a model. These methodologies include the common problems of forecasting,
interpolation, low-rank approximation, and parameter estimation. The model used
is based on properties of the approximating subspace constructed in the process of
1D-SSA analysis of Chap. 2 and so the methodologies of this chapter belong to the
class of subspace-based methods of time series analysis and signal processing.

The main parametric model of 1D-SSA is a linear recurrence relation (LRR)
which a time series should approximately satisfy. In Sect. 3.1, we describe how to
estimate the LRR coefficients and parameters of a series component satisfying such
LRR.

Section 3.2 is devoted to forecasting, the most practically important application
of time series analysis. In 1D-SSA, the problem of forecasting coincides with the
problem of continuation of the signal S extracted from the observed series S + R,
where R is the residual (or noise). To do that, we estimate the trajectory space of
S and make the continuation based on the estimated subspace. A straightforward
manner to make a forecast is to directly use the parametric form of the signal
estimated using the methods of Sect. 3.1. However, the class of series suitable for
forecasting is much wider than the class of series where the parametric model is
adequate and some of the forecasting methods of Sect. 3.2 only use certain features
of the estimated subspaces and not the estimators of the signal parameters; hence,
a medium-term forecast could be quite accurate even if the given series cannot
be approximated by a signal which globally satisfies an LRR. Section 3.2 also
thoroughly discusses the problem of assessing stability of forecasts, which is the
key issue in understanding of how much the forecasts can be trusted.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
N. Golyandina et al., Singular Spectrum Analysis with R, Use R!,
https://doi.org/10.1007/978-3-662-57380-8_3

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57380-8_3&domain=pdf
https://doi.org/10.1007/978-3-662-57380-8_3

122 3 Parameter Estimation, Forecasting, Gap Filling

Section 3.3 is devoted to the problem of imputation of missing values, or gap
filling. The methods of Sect. 3.3 extend the methods of Sect. 3.2 as the problem of
forecasting can be considered as a particular case of the problem of missing value
imputation when the missing values are located at the end of the series.

Section 3.4 is devoted to the problem of structured low-rank approximation of
Hankel matrices which arises when the parametric model of the signal is of the main
interest. The most common method of solving this problem is a repeated application
of the SSA algorithm. In Sect. 3.4 we stress that choosing appropriate weights in
defining the matrix norm can make a significant improvement in the accuracy of the
approximation, especially at the points close to both ends of the series.

In Sect. 3.5 we carefully analyze several real-world time series to illustrate
the main points of previous sections. We also discuss the problem of choosing
parameters of the algorithms.

As in Chap. 2, for the sake of brevity, in this chapter we will refer to 1D-SSA
simply as SSA. In contrast to the SSA analysis, the input for the algorithms of this
chapter is not necessarily a collection XN = (x1, . . . , xN) of N real numbers; it can
be an estimated subspace. This subspace is, as a rule, obtained after Grouping step
of any of the SSA algorithms and has the form span(Ui, i ∈ I).

3.1 Parameter Estimation

In Sect. 2.1.2, in the process of explaining the concepts related to the SSA analysis
such as SSA decomposition and separability, we have described a class of series
S = (sn) governed by linear recurrence relations (LRRs) sn = ∑

aisn−i . In this
section, we describe how to estimate the LRR coefficients and parameters of a series
components governed by an LRR. We will assume that the SSA method is able to
approximately extract the investigated series component; that is, the component of
interest is approximately separated and the window length together with the SSA
modification are chosen appropriately.

A series governed by an LRR can be expressed in the parametric form (1.9).
A particular case is a series S = (sn) with sn = ∑r

i=1 Ciμ
n
i , μi ∈ C, or, in the

real-valued form, sn = ∑p

i=1 Ai exp(αin) cos(2πnωi + φi), where Ai , αi , ωi and
φi (i = 1, . . . , p) are unknown parameters whose values may be (and often are) of
interest to the investigator. Hence the problem of parameter estimation arises.

3.1.1 Method

We describe the so-called subspace-based methods of parameter estimation, where
only the estimated subspace of the series components is of concern but Reconstruc-
tion step of the SSA algorithm is of no importance.

3.1 Parameter Estimation 123

Let a set of indices I correspond to the component of interest in the constructed
decomposition of the trajectory matrix X = ∑d

i=1 σiPiQ
T
i . For simplicity of

notation we assume I = {1, 2, . . . , r}. Then the estimated subspace is ˜S =
span(P1, . . . , Pr). We always consider the generating set {Pi} of˜S to be orthonormal
as otherwise we can orthonormalize it. Since the original vectors Pi may be linearly
dependent (for example, in the method of SSA with projection), the procedure of
orthogonalization may reduce the number of vectors. We will consider r to be equal
to the number of vectors after orthogonalization.

We consider two kinds of parametrization; first, in the form of a governing LRR
and, second, in the form (1.9). Correspondingly, we describe how to estimate the
coefficients of a governing LRR and the parameters of (1.9).

3.1.1.1 Estimation of the Governing LRR

The trajectory space S of a signal S governed by a particular LRR corresponds
to many LRRs. More precisely, any vector from S⊥ with the last coordinate −1
produces such an LRR; in other words, any such vector from S⊥ provides a set of
coefficients for a linear combination of the first L−1 coordinates of a vector from S

to obtain the last coordinate; see Golyandina et al. (2001; Section 5) and Golyandina
and Zhigljavsky (2013; Chapter 3) for detailed explanations.

Among all these LRRs (generating the same trajectory space S) there is the best
LRR with minimal sum of squared coefficients (the so-called min-norm LRR). The
min-norm LRR suppresses possible perturbations in the initial data as much as
possible, which is important if we use this LRR for series generation or continuation,
on the base of SSA approximation of the initial data.

For a chosen window length L, the signal subspace S ∈ RL and therefore the
min-norm LRR has order L− 1. For each column vector Pi of Pr , denote πi the last
coordinate of Pi , P i ∈ RL−1 the vector Pi with the last coordinate removed, and
ν2 = ∑r

i=1 π2
i . Then the elements of the vector

R = (aL−1, . . . , a1) = 1

1 − ν2

r
∑

i=1

πiP i (3.1)

provide the coefficients of the min-norm governing LRR: sn = ∑L−1
i=1 aisn−i .

For an estimated subspace ˜S, the estimated LRR is calculated in the same way,
on the base of an orthonormal basis of ˜S.

3.1.1.2 Estimation of Frequencies

Let XN = SN + RN , where sn = ∑r
j=1 cjμ

n
j and the series SN and RN are

approximately separable for a given window length L. Generally, the signal roots
of the characteristic polynomial of a governing LRR allow estimation of the signal

124 3 Parameter Estimation, Forecasting, Gap Filling

parameters μj , j = 1, . . . , r (see Sect. 2.1.2.2). However, the min-norm LRR is not
minimal and therefore we should somehow distinguish between the signal roots and
the extraneous roots. Usually, the signal roots of the min-norm LRR have maximal
moduli (e.g., see Usevich (2010)). Therefore, one can find roots of the min-norm
LRR, arrange them in the order of decrease, and take the first r roots.

However, the ordering is never guaranteed. Therefore, the methods that are able
to separate the signal and extraneous roots could be very useful.

Let us describe one of these methods called ESPRIT (Roy and Kailath 1989).
This method is implemented in two versions, LS-ESPRIT and TLS-ESPRIT, where
LS means least squares, TLS means total least squares (see, e.g., the method
description in Golyandina and Zhigljavsky (2013; Section 3.8.2)). Other names
are HSVD (Barkhuijsen et al. 1987) and HTLS (Van Huffel et al. 1994). Here we
describe the LS version (HSVD).

Denote {P1, . . . , Pr } an orthonormal basis of the estimated subspace of the
component under interest. Set Pr = [P1 : . . . : Pr] and let Pr be the matrix with the

last row removed and Pr be the matrix with the first row removed. Then μi can be
estimated by the eigenvalues of the matrix P†

rPr , where † denotes pseudo-inversion.
Correspondingly, the estimated frequencies are the arguments of μi .

Note that the matrix Pr conventionally consists of the chosen eigenvectors Ui in
the Basic SSA algorithm. However, any basis of the subspace, which estimates the
signal subspace, is suitable.

Let us mention a simple and fast method of frequency estimation which is used
for identification of the eigentriples at Grouping step. Two vectors U(1) and U(2)

forming an orthogonal basis of the trajectory space of an exponentially-modulated
sine wave have similar forms and their phases differ by approximately π/2. Let A

and B be defined by an = ρn sin(2πωn + φ) and bn = ρn cos(2πωn + φ). Denote

the angle between vectors by
 . Then ω =

((

a1
b1

)

,
(

a2
b2

))/

(2π). Therefore,

we can estimate the frequency using the basis vectors U(1) and U(2). Since these
vectors do not have exactly the same form as A and B, the sequence of angles

((

u
(1)
i

u
(2)
i

)

,

(

u
(1)
i+1

u
(2)
i+1

))

/

(2π), i = 1, . . . , L − 1, can be considered and then the

mean or median can be taken as an estimate of the frequency; see Golyandina et al.
(2001; Section 1.6) for details. In RSSA, the median is considered and the median
of absolute deviations from the median is used as a measure of accuracy.

3.1.2 Algorithms

Although the LRR approximating the time series is usually used for forecasting,
it can also be helpful for construction of the signal model. Hence we introduce an
algorithm for calculation of the min-norm LRR coefficients.

3.1 Parameter Estimation 125

Algorithm 3.1 Estimation of the signal LRR

Input: Matrix Pr ∈ RL×r consisting of orthonormal column vectors, which form a basis of the
estimated signal subspace.

Output: Coefficients R = (aL−1, . . . , a1) of the corresponding LRR.
1: For each column vector Pi of Pr , calculate πi and P i , ν2 = ∑r

i=1 π2
i . If ν2 is equal to 1, then

STOP with the error message “Verticality coefficient equals 1.”
2: Compute R = 1

1−ν2

∑r
i=1 πiP i .

The next algorithm shows how the parameters μi in sn = ∑r
i=1 Ciμ

n
i can be

estimated from the roots of the characteristic polynomial of an LRR governing this
time series (see Sect. 2.1.2.2 for a description of the relation between LRRs and their
characteristic polynomials). The given LRR is an estimate of an LRR governing a
series of rank r; therefore, only r roots correspond to the signal, while the other
roots are extraneous. Since frequently (but not always!) the signal roots for the min-
norm LRR have larger moduli than the extraneous roots, we can select signal roots
with large absolute values among the whole set of roots.

Algorithm 3.2 Estimation of the signal roots through characteristic polynomial of
LRR
Input: Coefficients A = (a1, . . . , am) of the LRR sn = ∑m

i=1 aisn−i , rank r .
Output: Signal roots μi , i = 1, . . . , r .
1: Construct the characteristic polynomial P (μ) = μd − ∑m

i=1 aiμ
n−i .

2: Find the roots μ1, . . . , μm of P (μ).
3: Order the roots so that |μ1| ≥ . . . ≥ |μm|.
4: The leading roots μi , i = 1, . . . , r , are the candidates for the signal roots.

Algorithm 3.3 is one of the most known high-resolution subspace-based algo-
rithms of estimation of frequencies and damping factors.

Algorithm 3.3 ESPRIT
Input: Matrix Pr ∈ RL×r consisting of orthonormal column vectors, which form a basis of the

estimated signal space.
Output: r roots in the form (ρi , ωi).
1: Using either LS or TLS method, find a matrix M ∈ Rr×r satisfying Pr ≈ PrM. For the

LS-method, M = P†
rPr .

2: Find eigenvalues μi , i = 1, . . . , r , of M.
3: Set ρi = Mod(μi), ωi = Arg(μi).

The next algorithm is a complementary to Decomposition step used for helping
to gather sine-waves with similar frequencies.

126 3 Parameter Estimation, Forecasting, Gap Filling

Algorithm 3.4 Fast (“pairs”) estimation of frequencies

Input: Two orthonormal vectors U(1) and U(2) forming an estimated trajectory space of a sine
wave.

Output: Frequency ω, period T .

1: Compute φi =

((

u
(1)
i

u
(2)
i

)

,

(

u
(1)
i+1

u
(2)
i+1

))

, i = 1, . . . , L − 1.

2: Calculate φ̄ as the mean or median of {φi}.
3: ω = φ̄/(2π), T = 1/ω.

3.1.3 Estimation in RSSA

3.1.3.1 Description of Functions

After the ssa object s has been constructed by the call of the ssa (alternatively,
iossa or fossa) function, the min-norm LRR can be constructed by the call of the
form

lrr.coef <- lrr(s, groups = list(2:3))

Arguments:

s is an ssa object holding the full one-dimensional SSA decomposition.
groups is a list defining the group of selected eigentriples.

The function lrr returns a list of objects of the lrr class, which contain coefficients
of the LRRs for each given group.

Complex roots of the characteristic polynomial of an LRR, which are ordered by
their moduli, are calculated by the call

lrr.roots <- roots(lrr.coef, method = "companion")

Arguments:

lrr.coef is an lrr object.
method is a method used for calculation of the polynomial roots: via eigenvalues

of the companion matrix or via R’s standard polyroot routine.

Estimation of parameters can be performed by means of this typical call:

est <- parestimate(s, groups = list(c(2, 3, 5, 6)),
method = "esprit")

Arguments:

s is an ssa object holding the full one-dimensional SSA decomposition.
groups is a list of eigentriples groups; for method = "pairs" each group should

consist of exactly two components.
method is a method of estimation of frequencies and damped factors; it can have

the following values: "esprit", "pairs".

3.1 Parameter Estimation 127

subspace indicates which space, column or row, will be used for parameter
estimation by the ESPRIT method. The default value "column" is standard for
ESPRIT.

solve.method is the method of shift matrix estimation; it can be set as "ls" for
the least squares solution and "tls" for the total least squares approach.

For an lrr object, the function print prints the LRR coefficients and plot draws
the produced complex roots, both signal and extraneous.

For the result of parestimate, the function print prints the estimated parame-
ters, while plot draws the estimated signal roots on the complex plane.

3.1.3.2 Typical Code

We start with a simple example to show a relation between LRRs and roots
(Fragment 3.1.1). For the exponential series sn = 1.01n = en ln 1.01 of rank
r = 1, the minimal LRR is xn = 1.01xn−1; that is, the vector of its coefficients
is A = (1.01). The characteristic polynomial has the form P(μ) = μ − 1.01, its
root is 1.01. The minimal LRR can be obtained for L = r + 1. Note that this choice
is an inappropriate choice for noisy series, since it would most likely provide a poor
separability between the signal and noise.

For L = 6 we have 4 extraneous roots. All five roots are depicted in Fig. 3.1.
Moduli of all four extraneous roots are smaller than 1.

The second simple example produces LRR coefficients and signal roots for a
linear function. In this example, rank r = 2, the minimal LRR does not depend
on the coefficients of the linear function and is xn = 2xn−1 − xn−2; that is, A =
(2,−1)T. The characteristic polynomial is P(μ) = μ2 − 2μ + 1; it has root 1 of
multiplicity 2. Since all methods are numerical, it is impossible to obtain exactly
equal roots. Therefore, a linear function numerically generates two different roots,
each close to 1. In this example, the linear function is approximated by a sum of
two exponentials (the case of two different real roots). In the case of two conjugate
complex roots instead of one root 1 of multiplicity 2, it can be approximated by one
sine wave with low frequency.

Fragment 3.1.1 (LRRs and Roots of Characteristic Polynomials)

> # Minimal LRR
> x <- 1.01^(1:10)
> s <- ssa(x, L = 2)
> l <- lrr(s, groups = list(1))
> print(l)
[1] 1.01
attr(,"class")
[1] "lrr"
> print(roots(l))
[1] 1.01
> # Extraneous roots
> x <- 1.01^(1:10)

128 3 Parameter Estimation, Forecasting, Gap Filling

> s <- ssa(x, L = 6)
> l <- lrr(s, groups = list(1))
> r <- roots(l)
> plot(l)
> # Multiple roots
> x <- 2.188 * (1:10) + 7.77
> s <- ssa(x, L = 3)
> l <- lrr(s, groups = list(1:2))
> print(l)
[1] -1 2
attr(,"class")
[1] "lrr"
> print(roots(l))
[1] 1.0000003 0.9999997

Fragment 3.1.2 demonstrates the methods of parameter estimation for the real-
life series “CO2.” For this series, ET1,4 correspond to a trend, while ET2,3 are
related to a sine-wave with period 12 (annual periodicity) and ET5,6 correspond to
half-year periodicity. One can see that both estimation methods provide almost equal

Roots of Linear Recurrence Relation

Real part

Im
ag

in
ar

y
pa

rt

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

l

l

l

l

l

Fig. 3.1 Exponential signal: One signal and four extraneous roots

3.2 Forecasting 129

estimated periods of the annual component close to 12. Note that for the method
"pairs", the values rate and Mod mean nothing.

The ESPRIT method results in complex signal roots μj , which are presented
in convenient exponential form μj = ρje

i2πωj : period is 1/ωj , Mod is ρj ,
rate is ln ρj , Arg means 2πωj . Since for real-valued series complex roots form
conjugate pairs, two rows with parameter estimates have equal absolute values but
have opposite signs. One can see that the trend part of the chosen components is
approximated by a sum of two real exponentials (their periods equal Inf), the first
one is increasing (the rate is positive), while the second one is decreasing.

Fragment 3.1.2 (Parameter Estimation for “CO2”)

> # Decompose "co2" series with default window length L
> s <- ssa(co2)
> # Estimate the periods from 2nd and 3rd eigenvectors
> # using default "pairs" method
> print(parestimate(s, groups = list(c(2, 3)), method = "pairs"))

period rate | Mod Arg | Re Im
11.995 0.000000 | 1.00000 0.52 | 0.86592 0.50019

> # Estimate the periods and rates using ESPRIT
> pe <- parestimate(s, groups = list(1:6),
+ method = "esprit")
> print(pe)

period rate | Mod Arg | Re Im
11.995 0.000542 | 1.00054 0.52 | 0.86638 0.50047

-11.995 0.000542 | 1.00054 -0.52 | 0.86638 -0.50047
5.999 0.000512 | 1.00051 1.05 | 0.50015 0.86653

-5.999 0.000512 | 1.00051 -1.05 | 0.50015 -0.86653
Inf 0.000375 | 1.00037 0.00 | 1.00037 0.00000
Inf -0.008308 | 0.99173 0.00 | 0.99173 0.00000

> plot(pe)

Figure 3.2 depicts six estimated signal roots on the complex plane, where two
trend real-valued roots can hardly be distinguished.

3.2 Forecasting

The problem of forecasting is the problem of continuation of the signal S extracted
from the observed series X = S + R. To do that it is sufficient to estimate the
trajectory space of S and then to construct the forecasted series based on the
estimated subspace.

An obvious way to perform forecasting would be to estimate series parameters
and use them for forecasting. However, the class of series suitable for forecasting is
considerably wider than the class of series for parameter estimation and hence the
forecasting methods considered below do not estimate series parameters but only
use some features of the estimated subspace.

130 3 Parameter Estimation, Forecasting, Gap Filling

Roots

Real part

Im
ag

in
ar

y
pa

rt

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

l

l

l

l

ll

Fig. 3.2 “CO2”: Six signal roots

Generally, the forecasted series should have a structure to forecast. In the
framework of SSA, we say that S has a structure if S is governed by an LRR.
However, it is very important to note that SSA forecasts are meaningful for a much
wider class of series when an LRR gives an adequate description of the structure
of the series only locally rather than globally, which is a requirement for parameter
estimation. For example, as a rule, a trend does not satisfy an LRR on the whole
time range but it can be locally approximated by a smooth series governed by an
LRR. In particular, relatively reliable forecasts can be made for the series which can
be approximated by a series of the form sn = ∑r

i=1 Ci(n)μn
i , μi ∈ C, where Ci(n)

are slowly varying functions of n.
In any version of the forecasting algorithm, we should assume that the series S is

approximately separated from R by a chosen modification of the SSA method.

3.2 Forecasting 131

3.2.1 Method

The methods of SSA forecasting are closely related to construction of LRRs
described in Sect. 3.1. Below we describe two forecasting algorithms. One of them
directly uses the constructed LRR for forecasting, whereas the other algorithm does
it implicitly. Both algorithms provide the same forecasts of series governed by
LRRs, if parameters of SSA are chosen properly.

3.2.1.1 Approach

We will use the same notation as in Sect. 3.1.
Let {Pi} be a basis of a subspace ˜S of RL. Then we can state the problem of

forecasting in this subspace.
Different modifications of SSA described in Chap. 2 (except for SSA with

projection) provide an estimate of a basis of the signal subspace.
If an SSA modification is applied and a set of eigentriples {(σi , Pi,Qi), i ∈ I } is

chosen for reconstruction, then ˜S = span{Pi, i ∈ I }. The set of vectors {Pi, i ∈ I }
is not necessarily an orthonormal basis. The first mandatory step is therefore the
ortho-normalization of the set of vectors {Pi, i ∈ I }. After making this step we can
construct forecasting algorithms considering an orthonormal basis as an input.

The subspace ˜S produces coefficients of a linear combination for reconstruction
of the last coordinates of vectors from ˜S through their first L − 1 coordinates. The
linear combination used for forecasting has minimal Euclidean norm of coefficients
among all linear combinations that correspond to the subspace ˜S. If ˜S is exactly the
trajectory subspace of a series governed by an LRR, then the linear combination
with minimal norm corresponds to the min-norm LRR. Moreover, the continuation
of the series in this subspace is unique.

However, if the series subspace is estimated approximately, several versions
of forecasting can be suggested. If the estimation of the subspace was accurate
enough, then different forecasting versions will be close. Otherwise, they can differ
considerably.

Now we formally describe the forecasting algorithms. For detailed explanation,
see Golyandina et al. (2001; Chapter 2).

3.2.1.2 Recurrent Forecasting

The recurrent SSA forecasting is performed by means of the min-norm LRR defined
in (3.1).

132 3 Parameter Estimation, Forecasting, Gap Filling

The recurrent forecasting method can be formulated as follows:

1. The time series YN+M = (y1, . . . , yN+M) is defined by

yi =

⎧

⎪

⎨

⎪

⎩

x̃i for i = 1, . . . , N,
L−1
∑

j=1
ajyi−j for i = N + 1, . . . , N + M.

(3.2)

2. The numbers yN+1, . . . , yN+M form the M terms of the recurrent forecast.

Thus, the recurrent forecasting is performed by the direct use of the forecasting
LRR with coefficients taken from R = (aL−1, . . . , a1).

Remark 3.1 Let us define the linear operator PRec : RL �→ RL by the formula

PRecZ =
(

Z

RTZ

)

, (3.3)

where Z consists of the last L − 1 coordinates of Z. Set

Yi =
{

˜Xi for i = 1, . . . ,K,

PRecYi−1 for i = K + 1, . . . ,K + M.
(3.4)

It is easily seen that the matrix Y = [Y1 : . . . : YK+M] is the trajectory matrix of the
series YN+M . Therefore, (3.4) can be regarded as a vector version of (3.2).

Remark 3.2 In recurrent forecasting, the original series can be taken instead of the
reconstructed series as the initial data for the forecasting LRR. This may be sensible
only if the leading components are chosen for forecasting. This option can reduce
the bias caused by the reconstruction inaccuracy but the volatility of forecasts may
increase.

If the LRR is not minimal, then only r of the roots correspond to the signal.
Other roots are extraneous and can influence the forecast. Extraneous roots that
have moduli larger than 1 can lead to instability.

3.2.1.3 Vector Forecasting

Let Lr = span(Pi, i ∈ I) and ̂Xi be the projection of the lagged vector Xi on Lr .
Consider the matrix

Π = PPT + (1 − ν2)RRT, (3.5)

where P = [P1 : . . . : Pr] and R is defined in (3.1). The matrix Π defines the
linear operator that performs the orthogonal projection RL−1 �→ Lr , where Lr =

3.2 Forecasting 133

span(Pi, i ∈ I). Finally, we define the linear operator PVec : RL �→ Lr by the
formula

PVecZ =
(

ΠZ

RTZ

)

. (3.6)

The vector forecasting method can be formulated as follows:

1. In the notation above, define the vectors

Yi =
{

̂Xi for i = 1, . . . ,K,

PVecYi−1 for i = K + 1, . . . ,K + M + L − 1.
(3.7)

2. By constructing the matrix Y = [Y1 : . . . : YK+M+L−1] and making its diagonal
averaging we obtain the series y1, . . . , yN+M+L−1.

3. The numbers yN+1, . . . , yN+M form the M terms of the vector forecast.

In recurrent forecasting, we perform diagonal averaging to obtain the recon-
structed series and then apply the LRR. In the vector forecasting algorithm, these
steps are applied in the reverse order. The vector forecast is typically slightly more
stable. The current fast implementation of the vector forecasting makes the vector
forecasting comparable with recurrent forecasting it terms of the computational cost,
see Golyandina et al. (2015).

If the time series component is fully separated from the residual and is governed
by an LRR, both recurrent and vector forecasting coincide and provide the exact
continuation. In the case of an approximate separability, the recurrent and vector
forecasting algorithms give different forecasts.

3.2.1.4 Specificity of SSA Modifications

Basic SSA, Toeplitz SSA, and Filter-adjusted SSA provide orthogonal bases. The
basis obtained by Iterated O-SSA needs ortho-normalization. After the subspace is
chosen, the forecasting algorithms do not depend on the modification of SSA used.

The algorithms of forecasting for SSA with projection are constructed and
implemented in the RSSA package by Alex Shlemov but are not yet properly studied
and even properly described. In view of this, we do not discuss these algorithms in
this book. For row centering, the algorithm is a generalization of the forecasting
with centering described in Golyandina et al. (2001; Section 1.7.1).

3.2.1.5 Bootstrap Confidence and Prediction Intervals

Assume again XN = SN + RN . Let us describe the construction of bootstrap
confidence intervals for the signal SN and its forecast assuming that the signal has

134 3 Parameter Estimation, Forecasting, Gap Filling

rank r and the residuals are white noise. The algorithm consists of the following
steps.

• Fix L, I = {1, . . . , r}, apply SSA, reconstruct the signal and obtain the
decomposition XN = ˜SN + ˜RN .

• Fix ˜SN , calculate the empirical distribution of the residual ˜RN .
• Simulate Q independent copies ˜RN,i , i = 1, . . . ,Q, using the empirical

distribution, construct ˜XN,i = ˜SN + ˜RN,i .
• Apply SSA with the same L and I to ˜XN,i , reconstruct the signal, then perform

M-step ahead forecasting and obtain ˜SN+M,i , i = 1, . . . ,Q.
• For each time point j consider the sample s̃j,i , i = 1, . . . ,Q, and construct the
bootstrap γ -confidence interval as the interval defined by (1 − γ)/2- lower and
upper sample quantiles. The sample mean is called average bootstrap forecast.

Remark 3.3 In the same manner as for linear regression, the prediction intervals
can be considered in addition to the confidence intervals. The prediction intervals
are constructed as the confidence intervals enlarged by the values of quantiles of
the noise distribution. While the confidence intervals show the bounds for the signal
and its forecast, the prediction intervals determine the bounds for the whole series
and its prediction. Note that in the case of linear regression, this is the theoretical
approach; for SSA, this is an empirical approach. To estimate quantiles of the
noise distribution, we use (1 − γ)/2- lower and upper sample quantiles of the
residuals ˜RN = (r1, . . . , rN). To construct the bootstrap γ -prediction intervals,
these quantiles are added to the lower and upper bounds of the γ -confidence interval,
correspondingly.

Note that for cross-validation of SSA forecasts future values should not be
involved for construction of forecasts and choice of parameters; in this respect, see
a discussion in a recent paper (Du et al. 2017).

3.2.2 Algorithms

Let a version of SSA be applied to the time series X and let an eigentriple group
{(σi, Pi,Qi), i ∈ I } be chosen for reconstruction. The suggested forecasting
algorithms are formulated for forecasting in the subspace Lr = span{Pi, i ∈ I } ⊂
RL. For simplicity, we assume that I = {1, . . . , r} and the vectors Pi , i ∈ I , are
orthonormal. Note that the forecasting values do not depend on the choice of basis
in Lr .

Algorithm 3.5 is written in the form, when the reconstructed series is taken as a
base for forecasting. If the original series is used as the base of forecasting, xn are
taken instead of x̃n for n = N − L + 2, . . . , N at Step 3.

Algorithm 3.5 constructs a forward recurrent forecasting. Backward recurrent
forecasting is obtained by applying the forward forecasting to the reversed series.

3.2 Forecasting 135

Algorithm 3.5 Recurrent SSA forecasting
Input: Time series X of length N , window length L, orthonormal system of vectors {Pi}ri=1,

forecast horizon M .
Output: Forecast values (̃xN+1, . . . , x̃N+M).
1: Construct the vector R = (aL−1, . . . , a1)

T of coefficients of the min-norm LRR by
Algorithm 3.1 applied to {Pi, i ∈ I}.

2: Construct the reconstructed matrix ̂X = PPTX, where P = [P1 : . . . : Pr], and the
reconstructed series ˜X = (̃x1, . . . , x̃N) by ˜X = T−1

SSA ◦ ΠH(̂X).
3: Calculate the forecast values by applying the min-norm LRR:

x̃n =
L−1
∑

i=1

ai x̃n−i , n = N + 1, . . . , N + M

The next algorithm implements the algorithm of vector forecasting, where the
application of the min-norm LRR and the hankelization operation are taken in the
reverse order.

Algorithm 3.6 Vector SSA forecasting
Input: Time series X of length N , window length L, orthonormal system of vectors {Pi}ri=1,

forecast horizon M .
Output: Forecast values (̃xN+1, . . . , x̃N+M).
1: Obtain the vector R = (aL−1, . . . , a1)

T of coefficients of the min-norm LRR by Algorithm 3.1
applied to {Pi, i ∈ I}.

2: Calculate the matrix Π of projection given in (3.5).
3: Construct the reconstructed matrix ̂X = PPTX, where P = [P1 . . . : Pr].
4: Extend the reconstructed matrix ̂X = [̂X1 : . . . : ̂XK] by column vectors:

̂Xn = PVeĉXn−1 for n = K + 1, . . . , K + M + L − 1,

where PVec is given in (3.6) and uses Π and R. Denote the extended matrix ̂Xext ∈
RL×(K+M+L−1).

5: Obtain the extended reconstructed series ˜Xext = (̃x1, . . . , x̃N+M+L−1) as ˜Xext = T−1
SSA ◦

ΠH(̂Xext).
6: Return the forecast values (̃xN+1, . . . , x̃N+M).

Additional L − 1 vectors ̂Xn at Step 4 are calculated to make the forecast values
independent on the forecast horizon.

In Algorithm 3.6, the reconstructed series is taken as the base for forecasting.
For vector forecasting, it makes little sense to use the original series as the base for
forecasting.

Note that in this straightforward form, Algorithm 3.6 has a much larger com-
putational cost than Algorithm 3.5. However, a fast implementation described in
Golyandina et al. (2015; Section 6.3) and realized in RSSA makes the vector
forecasting as fast as the recurrent one.

136 3 Parameter Estimation, Forecasting, Gap Filling

3.2.3 Forecasting in RSSA

3.2.3.1 Description of Functions

Forecasting becomes available after an SSA decomposition is performed. RSSA

implements two methods of SSA forecasting, the recurrent and vector ones, with
construction of bootstrap confidence intervals if the signal is forecasted. The
package provides different interfaces for forecasting.

Let the decomposition s be constructed by one of SSA modifications. For
example, we construct the decomposition by Basic SSA as s <- ssa(x). Then
typical calls of forecasting functions are

Recurrent forecasting
fr <- rforecast(s, groups = list(1, c(2:3)), len = 1,

only.new = TRUE)

Vector forecasting
fv <- vforecast(s, groups = list(trend = c(1,4)), len = 12,

only.new = FALSE, drop = FALSE)

Arguments

s is an ssa object holding the decomposition;
groups is a list of groups of eigentriples to be used in the forecast;
len is a number of terms to forecast;
base is a series used as a “seed” of forecast: "original" or "reconstructed"

(default) according to the value of groups argument;
reverse : TRUE means that the recurrent forecast is backward;
only.new : if TRUE, only the forecast values are returned; otherwise, the forecasted

values from the parameter base are added;
drop acts only if one group is chosen; TRUE (default) value means that the result is

transformed from the list of the forecasted series to the forecasted series itself.

The following function can perform the chosen forecasting algorithm along with
construction of bootstrap confidence intervals. For example, one can call

Bootstrap confidence intervals
bf <- bforecast(s, groups = list(1, c(2:3)), len = 1,

R = 100, level = 0.95,
type = "recurrent",
interval = "confidence", only.intervals = FALSE)

In addition to parameters of rforecast and vforecast, the parameter R defines
the number of simulations and level denotes the confidence level. The parameter
type, which might take either "recurrent" or "vector" values, indicates what
kind of forecasting should be used. The parameter only.intervals influences
the construction of the forecast. If only.intervals = TRUE, then the forecast
coincides with the result of the function rforecast (or vforecast, in the case of
vector forecast). For the default value only.intervals = FALSE, the forecasting
values are obtained by averaging the forecasts, which were performed during the

3.2 Forecasting 137

construction of bootstrap confidence intervals. Since these forecasts are constructed
for simulated series, both the bootstrap intervals and the forecasting values can differ
for different calls of bforecasts.

The argument interval takes the value from c("confidence","predic-

tion"). The value "confidence" means that the bootstrap confidence bounds for
the reconstructed signal/forecast are calculated; the value "prediction" means that
the bootstrap prediction intervals for the whole series are computed.

One of the parameters of rforecast and vforecast, which can be added to the
arguments of the functions bforecast, is the parameter only.new. If only.new =

FALSE, then the bootstrap intervals are constructed for both the signal/series and the
forecast.

The following all-in-one function is designed to form an input for visualization
of the forecast results by means of the FORECAST package (Hyndman 2017).

All-in-one forecasting
f <- forecast(s,

groups = list(trend = 1:4), len = 12,
method = "recurrent",
interval = "confidence",
level = c(0.8, 0.99))

The function predict is exactly the same as forecast except for the form of the
returned value.

The parameter method can have values "recurrent" (by default) and
"vector". The value of interval is from c("none", "confidence",

"prediction"). If interval = "none", then bootstrap intervals are not
constructed. Opposite to the function bforecast, the default value of the parameter
only.intervals in the function forecast is TRUE. Parameters of rforecast,
vforecast, or bforecast can be added to the parameters of the functions
forecast and predict depending on the values of method and interval. One
of the parameters, which can be formally added, is only.new. However, for the
function forecast the value of this parameter is forced to TRUE.

Note that the help information for forecast and predict can be obtained in R
as ?forecast.ssa and ?predict.ssa.

Like the function reconstruct, all the forecasting routines try to use the
attributes of the initial series for the resulting series (in particular, they try to add
to the result the time index of the series). Unfortunately, this cannot be done in
class-neutral way as it is done in the reconstruct case and needs to be handled
separately for each possible type of time series. The forecasting routines know how
to impute the time indices for some standard time series classes like ts and zooreg.

3.2.3.2 Typical Code

Let us demonstrate the result of application of the family of forecasting functions to
the series “CO2,” see Fragment 3.2.1.

138 3 Parameter Estimation, Forecasting, Gap Filling

Fragment 3.2.1 (Forecasting of “CO2”)

> # Decomposition stage
> s <- ssa(co2, L = 120)
> # Recurrent forecast, the result is the forecast values only
> # The result is the set of forecasts for each group
> for1 <- rforecast(s, groups = list(1, c(1,4), 1:4, 1:6),
+ len = 12)
> matplot(data.frame(for1), type = "b",
+ pch = c("1", "2", "3", "4"), ylab = "")
> # Vector forecast, the forecasted points are
> # added to the base series
> for1a <- vforecast(s,
+ groups = list(1, trend = c(1,4), 1:4, 1:6),
+ len = 36, only.new = FALSE)
> # Plot of the forecast based on the second group c(1,4)
> plot(cbind(co2, for1a$trend), plot.type = "single",
+ col = c("black", "red"), ylab = NULL)
> # Reverse recurrent forecast
> len <- 60
> for2 <- rforecast(s, groups = list(1:6), len = len,
+ only.new = TRUE, reverse = TRUE)
> initial <- c(rep(NA, len), co2)
> forecasted <- c(for2, rep(NA, length(co2)))
> matplot(data.frame(initial, forecasted), ylab = NULL,
+ type = "l", col = c("black", "red"), lty = c(1, 1))
> set.seed(3)
> for3 <- forecast(s, groups = list(1:6),
+ method = "recurrent", interval = "confidence",
+ only.intervals = FALSE,
+ len = 24, R = 100, level = 0.99)
> plot(for3, include = 36, shadecols = "green", type = "l",
+ main = "Confidence intervals")
> set.seed(3)
> for4 <- forecast(s, groups = list(1:6),
+ method = "recurrent", interval = "prediction",
+ only.intervals = FALSE,
+ len = 24, R = 100, level = 0.99)
> plot(for4, include = 36, shadecols = "green", type = "l",
+ main = "Prediction intervals")

Analysis of the Basic SSA decomposition (see Sect. 2.1 for recommendations)
shows that ET1,4 can be referred to a trend, while ET2-3,5–6 make the seasonality
group. Figure 3.3 shows a set of the forecast values for different eigentriple
groups. The forecast for trend (ET1 and ET4) is shown in Fig. 3.4 together
with the reconstructed series. Figure 3.5 demonstrates backward recurrent forecast.
Figure 3.6 shows the bootstrap confidence and prediction intervals for the forecasts;
it uses the graphical tools from the FORECAST package. Recall that the confidence
intervals are constructed for the signal forecast, while the prediction intervals are
constructed for the forecast of the whole signal. Therefore, prediction intervals are
wider.

3.3 Gap Filling 139

1 1 1 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12

36
2

36
3

36
4

36
5

36
6

36
7

36
8

2 2 2 2 2 2 2 2 2 2 2 2

3

3

3

3 3

3

3

3

3
3

3

3
4

4

4

4

4
4

4

4

4 4

4

4

Fig. 3.3 “CO2”: A set of recurrent forecasts

Time

1960 1970 1980 1990 2000

32
0

33
0

34
0

35
0

36
0

37
0

Fig. 3.4 “CO2”: Forecast of trend

3.3 Gap Filling

This section is devoted to the extension of the SSA forecasting algorithms for the
analysis of time series with missing data.

There are three approaches for solving this problem. The first approach was
suggested in Schoellhamer (2001). This approach is suitable for stationary time
series only and uses the following simple idea: in the process of the calculation
of the inner products of vectors with missing components we use only pairs of valid

140 3 Parameter Estimation, Forecasting, Gap Filling

0 100 200 300 400 500

31
0

32
0

33
0

34
0

35
0

36
0

da
ta

.fr
am

e(
in

iti
al

, f
or

ec
as

te
d)

Fig. 3.5 “CO2”: Backward forecast of the signal

Confidence intervals

1995 1997 1999

35
8

36
2

36
6

37
0

Prediction intervals

1995 1997 1999

35
8

36
2

36
6

37
0

Fig. 3.6 “CO2”: Plots of confidence and prediction intervals for the forecast

vector components and omit the others. The RSSA package does not implement
this approach in view of its limitations. We hence concentrate on the other two
approaches, the subspace-based (Golyandina and Osipov 2007) approach and the
iterative (Kondrashov and Ghil 2006) one.

Usually, the problem of missing data imputation is stated as the problem of
filling-in the signal data. However, the problem of imputation is more general.
For example, one can be interested in imputation of missing data in the trend or
seasonality only. To do it, the structure, which we are interested in, should be
detected by the method. From the viewpoint of SSA, it means that the interesting
series component should be separated from the residual and also the rule for the
component extraction should be fixed (e.g., the indices of the eigentriples for
reconstruction should be set in Basic SSA). Therefore, it makes sense to combine the
considered methods with the SSA modifications described in Chap. 2 that improve
separability.

For detection of structure prior to performing gap filling, Shaped SSA can be
applied to the series if the location of the gaps allows the decomposition (see

3.3 Gap Filling 141

Sect. 2.6). If Shaped SSA gives unsatisfactory results (for example, if the number
of complete lagged vectors is too small and therefore detection of the structure
is impossible), then the subspace-based approach is not applicable. However, the
following general technique can be applied in the framework of the iterative
approach: artificial gaps can be added and parameters of the method of gap filling
can be chosen to minimize the error of imputation.

3.3.1 Method

3.3.1.1 Subspace-Based Approach

The subspace-based method of gap filling suggested in Golyandina and Osipov
(2007) (see also Golyandina and Zhigljavsky (2013; Section 3.7)) is an extension
of SSA forecasting algorithms. For forecasting, the last vector coordinate in a
chosen subspace can be uniquely imputed as a linear combination of the first L − 1
coordinates. The approach can be extended for imputing a set of unknown (missing)
vector coordinates as linear combinations of known coordinates. Here we use a
found signal structure (in the form of a subspace) to fill the gaps. In a particular
case, when missing values are located at the end of the series, the problem of filling-
in of these values coincides with the problem of forecasting.

The assumptions for the gap filling are the same as for forecasting; that is, SSA
should be able to approximately separate the series component of interest.

Note that imputation of gaps in separate signal components can be performed
as the following two-step procedure: first, we fill gaps in the whole signal and then
decompose the reconstructed signal into desired components.

Clusters of Missing Data

In the subspace-based approach, the gap filling method can be applied to different
groups of missing data independently. To introduce such independent clusters, let
us give several definitions following (Golyandina and Osipov 2007).

Definition 3.1 For a fixed L, a sequence of missing data of a time series is called a
cluster of missing data if every two adjacent missing values from this sequence are
separated by less than L non-missing values and there is no missing data among L

neighbors (if they exist) of the left/right element of the cluster.
Thus, a group of not less than L successive non-missing values of the series

separates clusters of missing data.
A cluster is called left/right if its left/right element is located at a distance of less

than L from the left/right end of the series. A cluster is called continuous if it does
not contain non-missing data.

142 3 Parameter Estimation, Forecasting, Gap Filling

The Layout of the Algorithm

Let us describe the algorithm layout. Note that the description below is different
from the descriptions provided in Golyandina and Osipov (2007) and Golyandina
and Zhigljavsky (2013; Section 3.7); we present it here in the form that is
implemented in the RSSA package.

Assume that we have the initial time series XN = (x1, . . . , xN) consisting
of N elements, some part of which is unknown. Let us describe the scheme of
the algorithm assuming that we are reconstructing the first component X(1)

N of the

observed series XN = X
(1)
N + X

(2)
N .

The scheme of the method is as follows. Parameters are the window length
L and a group I of components in the SSA decomposition. We assume that the
location of missing data allows application of Shaped SSA for the chosen L. Two
versions, “sequential” and “simultaneous” are suggested. These versions correspond
to sequential recurrent forecasting and simultaneous vector forecasting, respectively.

Scheme of Subspace-Based Gap Filling

1. Shaped SSA. For the series, the shaped version of SSA is applied for the given
window length L and group I . Any modification described in Chap. 2 and
consistent with Shaped SSA can be used. As a result, we obtain a reconstructed
series and a set of orthonormal vectors providing a basis for the approximated
signal subspace.

2. Detection of clusters of missing data. All missing entries are split into clusters.
For sequential version, each cluster is transformed into a continuous one; that is,
non-missing values within the cluster are changed to NA.

3. Forecasting. For forecasting or filling-in several values, two approaches can
be used, sequential and simultaneous. Both of these approaches can use either
the recurrent or vector forecasting methods. In the current version of the RSSA

package, the sequential approach uses the recurrent forecasting method, while
the simultaneous approach uses a method similar to the vector forecasting one.
Sequential gap filling-in makes forecasting from the left and from the right for
each cluster with subsequent weighted averaging of the forecasting results; the
subspace used for forecasting is estimated by Shaped SSA. If a cluster is left or
right, then only one forecast is used for gap-filling.
For simultaneous gap filling the so-called simultaneous forecasting is used. In
Golyandina and Zhigljavsky (2013; Section 3.1), simultaneous forecasting is
described in its recurrent version. Since here we use the vector version, the
simultaneous gap filling coincides with the description in Golyandina and Osipov
(2007), where the method consists of two operations called “Π-projection” and
“simultaneous filling-in.”

3.3 Gap Filling 143

Discussion

Note that for successful imputation, an approximate separability of the imputed
component is necessary. For exactly separated component, the missing values can
be reconstructed with no error. The location of missing data is very important for the
possibility of imputation by the subspace method, since the number of non-missing
values should be large enough for achieving separability by Shaped SSA. At least,
the number of the complete lagged vectors should be larger than the rank of the
imputed time series component.

3.3.1.2 Iterative Approach

A natural and simple idea for filling-in missing values is the iterative approach, when
the missing entries are initially filled-in using some reasonable values and then these
values are iteratively improved by updating the SSA approximations for underlying
structure of the object. This idea was suggested in Beckers and Rixen (2003) for the
imputation of missing values in noisy rank-deficient matrices and was later extended
to time series in Kondrashov and Ghil (2006).

For a rank-deficient matrix, the structure is defined by its rank and therefore
the improvement is performed by the SVD, where the first r SVD components
describe this structure. Time series of finite rank r can be considered in the form
of its trajectory matrix, which has rank r and also is a Hankel matrix. Therefore, the
improvement can be obtained with the help of the SVD of the trajectory matrix with
subsequent hankelization. Note that this is exactly the Basic SSA algorithm with
reconstruction. Also, Toeplitz SSA or SSA with projection can be used at iterations,
if the series is stationary or we partly know the series model.

At each iteration, we insert the improved values at the places of missing entries
and restore the initially used data at the places of non-missing entries. The initially
used data may be of two types. First, the original values are used. Second, if
application of Shaped SSA is possible, then the reconstructed values can be used
instead of the original ones.

The approach described above can be formally applied for almost any location
of missing values. Numerical experiments shows that the iterative approach can fail
if missing data are located at the ends of the time series.

The iterative approach has no rigorous proof of convergence. Another drawback
of the iterative approach is its impossibility to fill-in the gaps exactly even for
noiseless signals. Moreover, the iterative method has large computational cost.

3.3.2 Algorithms

Let us start with describing a simpler iterative gap-filling algorithm. For a collection
Y and a set of indices P we denote by Y

∣

∣

P
the part of the collection with the indices

from P . Set N = {1, . . . , N}.

144 3 Parameter Estimation, Forecasting, Gap Filling

Algorithm 3.7 Iterative gap filling
Input: Time series X of length N containing gaps, set of indices of missing values P , window

length L, version of SSA, series G of length N as the source of initial values for gaps, rank for
reconstruction r , stop criterion STOP.

Output: Reconstructed series component ˜X with no gaps.
1: k ← 0, ˜G

(k)
∣

∣

P
= G

∣

∣

P
, I = {1, . . . , r}.

2: Set ˜X
(k+1) such that ˜X

(k+1)
∣

∣

N\P = X
∣

∣

N\P and ˜X
(k+1)

∣

∣

P
= G

(k)
∣

∣

P
.

3: Apply the selected version of SSA with the chosen L and I to ˜X
(k+1) and obtain the

reconstructed series G(k+1).
4: k ← k + 1
5: If not STOP, go to Step 2; else ˜X = G

(k).

Input of the algorithm can contain several groups of indices Ik , k = 1, . . .m.
Then the iterations are performed for r = max{i : i ∈ Ik, k = 1, . . . ,m}. In this
case, the reconstruction at the last step before STOP is performed for each group Ik

separately.
There is a modification of Algorithm 3.7, where ˜X

(k+1)
∣

∣

N\P at step 2 is taken
from the reconstructed series, which is calculated by Shaped SSA applied to the
initial time series X.

Below we only provide a short description of the algorithms of subspace-
based filling-in. More comprehensive description and mathematical details of the
algorithms can be found in Golyandina and Osipov (2007) and Golyandina and
Zhigljavsky (2013; Section 3.7). The algorithms can deal with several gaps. We
only describe their versions for one internal gap.

The following algorithm corresponds to a combination of methods “sequential
filling-in from the left” and “sequential filling-in from the right.”

Algorithm 3.8 Sequential recurrent subspace-based gap filling
Input: Time series X of length N containing a gap, which starts from ith and finished in j th

points, set of gap indices P = {i, . . . , j}, p = |P |, window length L, version of SSA, group
of eigentriples I .

Output: Reconstructed series component ˜X with a filled gap.
1: Apply the shaped form of the chosen SSA version to ˜X (Algorithms 2.13 and 2.14) and obtain

the subspace L = span{Pi, i ∈ I} and the reconstructed series ˜X with gaps.
2: Apply the forward recurrent forecasting algorithm in the subspace L starting from

(̃xi−L+1, . . . , x̃i−1) and construct the p-step recurrent forecast Gleft.
3: Apply the backward recurrent forecasting algorithm in the subspace L starting from

(̃xj+L−1, . . . , x̃j+1) and construct the p-step recurrent forecast Gright.

4: Combine Gleft and G
right to obtain G. For example, gi = (1−αi)g

left
i +αig

right
i , i = 1, . . . , p,

where αi = i/(p + 1).
5: Set ˜X

∣

∣

P
= G.

Note that if the gap is right (or left), then only forward (or backward) recurrent
forecasting is applied.

3.3 Gap Filling 145

There is a modification of the algorithm, when the initial data for the forecasting
formula at Steps 2 and 3 is taken from the initial series but not from the reconstructed
series as in Algorithm 3.8.

The following algorithm corresponds to the combination of the method “Π-
projector” and “simultaneous filling-in” introduced in Golyandina and Osipov
(2007).

Algorithm 3.9 Simultaneous vector subspace-based gap filling
Input: Time series X of length N containing a gap, which starts from ith and finishes in j th

points, set of gap indices P = {i, . . . , j}, p = |P |, window length L, version of SSA, group
of eigentriples I .

Output: Reconstructed series component ˜X with a filled gap.
1: Apply the shaped form of the chosen SSA version to ˜X (Algorithms 2.13 and 2.14) and obtain

the subspace L = span{Pi, i ∈ I} and the reconstructed matrix ̂X consisting of vectors with
non-missing values at all positions.

2: Continue the values of the complete reconstructed vectors according to Hankel structure of the
matrix to obtain partly filled reconstructed vectors.

3: Project the valid parts of vectors by means of the Π -projector.
4: Simultaneously fill-in the missing parts of the vectors. If it is impossible, then put NA (“not

available”).
5: Hankelize the matrix ̂X to obtain the series ˜X. Hankelization is performed by averaging by

non-missing values. If there are no non-missing values, then the result is NA.

3.3.3 Gap-Filling in RSSA

3.3.3.1 Description of Functions

Since subspace-based gap filling can be considered as interpolation (that is, as
forecasting of the time series to gaps), the call of gapfill is similar to a call of
the forecasting functions.

Similarly to forecasting, one should estimate the trajectory space of an inter-
polated series component by an SSA-modification; for example, by a call s <-

ssa(ts, L=120). Since series contains gaps, the shaped version of SSA is applied.
Shaped SSA results in reconstruction of a set of series points, which can be covered
by the chosen window length. Therefore, the set of uncovered points can be wider
than the set of missing values. The sequential method considers uncovered points as
gaps, while the simultaneous method imputes the initial gaps.

Subspace-based gap filling-in is applied to each cluster of missing values, which
are detected automatically. A typical call is as follows:

Subspace-based gap filling
g <- gapfill(s, groups = list(c(1,4),c(2:3,5:6)),

base = "reconstructed",
method = "sequential",
alpha = function(len) seq.int(0, 1, length.out = len))

146 3 Parameter Estimation, Forecasting, Gap Filling

Arguments:

s is a shaped ssa object holding the decomposition; this kind of the object is
obtained for a series with NA values.

groups is a list of groups of eigentriples used for estimation of the component
subspaces.

base is a series used as a “seed” for gap filling: original or reconstructed according
to the value of groups argument; e.g., for sequential filling-in, this is simply the
series a forecasting LRR is applied to.

method is a method used for gap filling, "sequential" or "simultaneous".
alpha is used for method = "sequential" and sets weights used for combining

forecasts from the left and from the right. It can have the following values: 0 (1)
means that only the forecast from the left (respectively, from the right) is used;
0.5 means that the forecasts are averaged. It can be a function of len, where
len is the number of missing data in one gap. By default, the function provides
linearly decreasing weights from 1 to 0 from both sides.

Note that the computational cost of subspace-based gap filling is very low.
Iterative gap filling is used when the signal subspace is hard (or even impossible)

to estimate. Suppose that we know the rank of the signal r . Then the short call has
the form

Iterative gap filling
ig <- igapfill(s, groups=list(1:r), base = "original")

Arguments:

s is a shaped ssa object holding the decomposition; at least, the window length
L is taken from s. Decomposition in s can be empty if base = "original" is
used.

groups is a list of groups of eigentriples to be used for reconstruction at iterations.
Each group I is used at the first iteration. Next iterations use groups {1, . . . , |I |}.

fill is a time series of the length coinciding with the length of the original series;
initial values for the missing entries at the first iteration are taken from this
series; if fill = NULL, the average of the base series is used.

tol is a tolerance for the difference between reconstructions at subsequent itera-
tions.

maxiter is an upper bound for the number of iterations; if maxiter = 0, the upper
bound is not used.

norm is a distance function used in the convergence criterion;
base is a series used for forced values at non-missing positions at each

iteration. "original" is used if a shaped decomposition is impossible;
"reconstructed" is used if Shaped SSA yields an appropriate estimation
of the component subspace.

trace is logical; specifies whether the convergence process should be traced. For
example, the number of iterations for convergence can be found in the trace.

3.3 Gap Filling 147

3.3.3.2 Typical Code

Let us demonstrate the methods of gap filling by inserting artificial gaps into the
time series “CO2.” The methods fill gaps in a series component such as signal or
trend; noise component can not be recovered.

Fragment 3.3.1 demonstrates how the subspace-based filling method is able to
reconstruct a gap. We take one gap of length 100 in the middle of the time series
and use the window length L = 72. In this case we have enough data to estimate
the signal subspace.

Fragment 3.3.1 (Subspace-Based Gap Filling)

> F <- co2
> F[201:300] <- NA
> s <- ssa(F, L = 72)
> g0 <- gapfill(s, groups = list(c(1, 4)), method = "sequential",
+ alpha = 0, base = "reconstructed")
> g1 <- gapfill(s, groups = list(c(1, 4)), method = "sequential",
+ alpha = 1, base = "reconstructed")
> g <- gapfill(s, groups = list(c(1, 4)), method = "sequential",
+ base = "reconstructed")
> plot(co2, col = "black")
> lines(g0, col = "blue", lwd = 2)
> lines(g1, col = "green", lwd = 2)
> lines(g, col = "red", lwd = 2)

Figure 3.7 shows the result of sequential filling-in. Sequential filling-in is
constructed as a linear combination of forecasts from the left and from the right
in the subspace estimated by Shaped SSA applied to the whole series. To choose the
subspace, identification of eigentriples should be performed as it was demonstrated
in Sect. 2.6. Here ET1,4 correspond to a trend.

It can be seen that the accuracy of forecasts from the left and from the right gets
worse as the distance from the corresponding edge increases. Therefore, one should

Time

co
2

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0

Fig. 3.7 “CO2”: Subspace-based gap filling, from the left, from the right, and their combination

148 3 Parameter Estimation, Forecasting, Gap Filling

Time

co
2

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0

Fig. 3.8 “CO2”: Iterative gap filling of trend

combine these forecasts with assigning weights which decrease while moving far
from the edges (this combination is discussed in Rodrigues and de Carvalho (2013)).
We take the sets of weights linearly decreasing from 1 to 0 with the sum of weights
equal to 1. The linear combination of forecasts becomes more accurate.

Since for the recurrent forecast the forecasting LRR is applied to reconstructed
series by default, here we also choose base = "reconstructed". The mode base

= "original" can be used only if the gaps in the signal are imputed, while base =

"reconstructed" provides a reasonable result for reconstruction of any separable
series component, e.g., seasonality.

Simultaneous gap filling cannot fill-in the considered missing data, since the
window length is smaller than the size of the gap.

Let us demonstrate how the iterative method works (Fragment 3.3.2). The first
example of gaps location is the same as in Fragment 3.3.1 and Fig. 3.7. At each
iteration, non-missing values are returned to either reconstructed or original values.
The mode with reconstructed values is available only if Shaped SSA for estimation
of the component subspace is applicable. The mode with original series values is
used when the component subspace cannot be estimated by Shaped SSA because
of the gap location. Note that the latter cannot be used for filling-in gaps in
components, which are not the leading ones. Figure 3.8 shows that both options
yield approximately the same result as the subspace method.

Fragment 3.3.2 (Iterative Gap Filling, One Gap)

> F <- co2
> F[201:300] <- NA
> is <- ssa(F, L = 72)
> ig <- igapfill(is, groups = list(c(1,4)),
+ base = "reconstructed")
> igo <- igapfill(is, groups = list(c(1,4)),
+ base = "original")
> # Compare the result
> plot(co2, col="black")

3.3 Gap Filling 149

> lines(ig, col = "blue", lwd = 1)
> lines(igo, col = "red", lwd = 1)
> ig1 <- igapfill(is, groups = list(c(1, 4)),
+ base = "original", maxiter = 1)
> ig5 <- igapfill(is, groups = list(c(1, 4)), fill = ig1,
+ base = "original", maxiter = 4)
> ig10 <- igapfill(is, groups = list(c(1, 4)), fill = ig5,
+ base = "original", maxiter = 5)
> init.lin <- F
> init.lin[200:301] <- F[200] + (0:101) / 101 * (F[301] - F[200])
> ig.lin <- igapfill(s,
+ fill = init.lin,
+ groups = list(c(1, 4)),
+ base = "original", maxiter = 10)
> # Compare the result
> plot(co2, col = "black")
> lines(ig1, col = "green", lwd = 1)
> lines(ig5, col = "blue", lwd = 1)
> lines(ig10, col = "red", lwd = 1)
> lines(ig.lin, col = "darkred", lwd = 1)

By default, iterations are run until the difference between filled-in values
becomes smaller than the given accuracy. The reconstructed trend in Fig. 3.8 was
obtained with accuracy tol = 1e-6 and used about 200 iterations; that is, 200 calls
of SSA (to obtain this information, one can add trace = TRUE to the function
parameters).

Results of filling-in after performing 1, 5 and 10 iterations are depicted in
Fig. 3.9. It seems that performing 10 iterations is probably enough. The difference
between filled-in values in consecutive iterations is 0.17. Note that we continue the
iterations (1 + 4 = 5, 5 + 5 = 10) using the results of the previous iterations as
the initial values for the next iterations. These iterations start from the initial values
by default; these initial values are the mean for the whole time series. Evidently, for

Time

co
2

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0

Fig. 3.9 “CO2”: Iterative gap filling of trend: convergence

150 3 Parameter Estimation, Forecasting, Gap Filling

time(co2)

320

330

340

350

360

1960 1970 1980 1990

igapfill
gapfill
series

Fig. 3.10 “CO2”: Iterative and simultaneous subspace-based gap filling of trend: randomly
located gaps

non-stationary time series it is not a good choice. If we take a linear combination of
edge values, then 10 iterations give the difference 0.1.

In the second example (Fragment 3.3.3), gaps are located arbitrarily and their
location may make it difficult to estimate the signal subspace. Here we use an
additional information that the components ET1–6 correspond to a signal. The result
of imputation is shown in Fig. 3.10. Recall that in the case of unknown rank of the
signal, one can add artificial gaps and choose the number of components to minimize
errors for artificial gaps (Kondrashov and Ghil 2006).

Fragment 3.3.3 (Iterative Gap Filling, Several Gaps)

> F <- co2
> loc <- c(11:17, 61:67, 71:77, 101:107)
> F[loc] <- NA;
> sr <- ssa(F, L = 200)
> igr <- igapfill(sr, groups = list(c(1:6)), fill = 320,
+ base = "original", maxiter = 10)
> gr <- gapfill(sr, groups = list(c(1:6)),
+ method = "simultaneous", base = "original")
> G <- rep(NA, length(F)); G[loc] = gr[loc]
> print(mean((gr[loc] - co2[loc])^2)) #MSE of gapfill
[1] 0.1132225
> print(mean((igr[loc] - co2[loc])^2)) #MSE of igapfill
[1] 0.1425962
> xyplot(igr + G + F ~ time(co2), type = "l",
+ lwd = c(1, 2, 1), ylab = NULL,
+ auto.key = list(lines = TRUE, points = FALSE,
+ text = c("igapfill", "gapfill", "series")))

3.4 Structured Low-Rank Approximation 151

Note that it is typical for the iterative approach to use the parameter value
force.decompose = FALSE in the preliminary call of ssa to avoid the decom-
position, which may be impossible due to the gap location. Here we used the
default value TRUE of force.decompose, since it was necessary for demonstration
of gapfill and igapfill with base = "reconstructed".

In addition to iterative gap filling-in, we depict the result of simultaneous
subspace-based gap filling, with the original series as the base series. One can see
that the results almost coincide. Moreover, the mean-squared error is slightly smaller
for the simultaneous filling-in.

3.4 Structured Low-Rank Approximation

3.4.1 Cadzow Iterations

Let us consider the problem of extraction of a finite-rank signal SN of rank r from
an observed noisy signal XN = SN + RN .

The problem of finite-rank approximation can be reduced to the problem of
approximation of the L-trajectory matrix X of the observed time series X by a
Hankel matrix of rank r . This problem belongs to the class of problems of structured
low-rank approximation (SLRA), see, e.g., Markovsky et al. (2006), Markovsky
(2012).

The Hankel SLRA problem can be stated in two forms: (a) vector form and (b)
matrix form. The vector (time series) form of this problem is

fw(Y) → min
Y:rankY≤r

, fw(Y) = ‖X − Y‖2
w =

N
∑

i=1

wi(xi − yi)
2, (3.8)

where Y = (y1, . . . , yN) and w1, . . . , wN are some non-negative weights.
The Hankel SLRA problem in the matrix form is the following optimization

problem:

fM(Y) → min
Y∈Mr∩H

, fM(Y) = ‖X−Y‖2
M =

L
∑

l=1

K
∑

k=1

mlk(xlk −ylk)
2, (3.9)

where M = [mlk] is a matrix of size L × K , H = M
(H)
L,K ⊂ RL×K is the space

of Hankel matrices of size L × K , Mr ⊂ RL×K is the set of matrices of rank not
larger than r . Matrices X and Y are related to vectors (time series) X and Y by,
respectively, X = T(X) and Y = T(Y), where T = TSSA is the SSA embedding
operator defined in (2.1).

152 3 Parameter Estimation, Forecasting, Gap Filling

Each M in (3.9) generates a set of weights wi in (3.8) by the equality fM(Y) =
fw(Y). If mlk = 1 for all l and k, then the weights wi are as in (2.2).

The iterative step of the method of alternating projections for solving (3.9) has
the following form:

Yk+1 = Π̆H ◦ Π̆Mr
(Yk), (3.10)

where Y0 = X and Π̆H and Π̆Mr
are projectors to the corresponding sets with

respect to the norm ‖ · ‖M.
For the matrix M with mlk = 1 for all l and k, we obtain the well-known

method of Cadzow iterations (Cadzow 1988). In this case, ‖ · ‖M is the conventional
Frobenius norm and Π̆H = ΠH. We will keep the same name “Cadzow iterations”
for general M.

The projector Π̆H is calculated in a straightforward way: for ̂Y = Π̆HY we have

ŷij =
∑

l,k: l+k=i+j mlkylk
∑

l,k: l+k=i+j mlk

. (3.11)

The projector Π̆Mr
is easily calculated if there exist P and Q such that ‖X −

Y‖2
M corresponds to the Frobenius norm with respect to the oblique inner products

(X, Y)P = XTPY in RL and (X, Y)Q = XTQY in RK . Then Π̆Mr
is calculated as

the r leading terms of the (P,Q)-SVD defined by (2.14) in Definition 2.5.
One of examples of such M is the case, when P = diag(p1, . . . , pL), Q =

diag(q1, . . . , qK) and therefore mij = piqj . In this case, as explained in Zhigl-
javsky et al. (2016a), ‖ · ‖M = ‖ · ‖w if and only if W = P � Q, where
W = (w1, . . . , wN), P = (p1, . . . , pL), Q = (q1, . . . , qK), and � denotes
convolution of vectors.

A natural choice of equal weights wi in (3.8) corresponds to the ordinary least-
squares method. As there are no vectors P and Q with positive elements (in
this case (·, ·)P and (·, ·)Q would be norms) such that (1, 1, . . . , 1) = P � Q

only approximately equal weights wi , i = 1, . . . , N , can be achieved; see, e.g.,
Zhigljavsky et al. (2016b) or Gillard and Zhigljavsky (2016).

As a rule, Cadzow iterations do not converge to the optimal solution, see, e.g.,
Gillard and Zhigljavsky (2011, 2013). There are some partial results on convergence
of Cadzow iterations to the set Y ∈ Mr ∩H, but even this question is hard, see, e.g.,
Zvonarev and Golyandina (2017). One may try to solve (3.8) by applying standard
techniques of global optimization in a parametric space (assuming the model of
the sum of damped sinusoids, for example) but the arising optimization problem is
far too difficult, see Gillard and Kvasov (2016). Another general approach to the
numerical solution of the weighted SLRA problems can be found in Markovsky and
Usevich (2014).

3.4 Structured Low-Rank Approximation 153

Assume we have stopped after k iterations of (3.10) and have mapped the
matrices to RN . Then the resulting series can be written as

˜SN = T−1 ◦ (

Π̆H ◦ Π̆Mr

)k ◦ T (XN). (3.12)

The vector (series) ˜SN obtained by (3.12) can be considered as an estimator of the
signal. If k = 1 and mlk = 1 for all l and k, then (3.12) is simply the Basic SSA
reconstruction with I = {1, . . . , r}.

Let the series length N be divisible by the window length L. Choose some α > 0
and set pi = 1 for each i and

qk = qk(α) =
{

1, if k = jL + 1 for some j,

α, otherwise.
(3.13)

According to Zvonarev and Golyandina (2017), we will call the method (3.12)
with these P = (p1, . . . , pL) and Q = (q1, . . . , qK) “Cadzow(α) iterations.”
In this notation, Cadzow(1) corresponds to the conventional Cadzow iterations,
while Cadzow(0) corresponds to the Cadzow iterations that would attempt to solve
the problem (3.8) with wi = 1 (i = 1, . . . , N). Cadzow(0) does not solve the
problem (3.8) in view of the degeneracy of some weights in Q. As an approximation
to Cadzow(0) iterations, Cadzow(α) iterations with small α > 0 are considered.

It is shown in Zvonarev and Golyandina (2017) that Cadzow(α) with smaller α

has slower convergence rate and better accuracy in the limit than Cadzow(α) with
larger α.

3.4.2 Algorithms

We call Algorithm 3.10 Cadzow iterations. It implements the iterations (3.12),
where projections are performed with respect to the norm, induced by the left and
right weight vectors P and Q.

Algorithm 3.10 Cadzow iterations
Input: Time series X of length N , window length L, version of SSA, weight vectors P ∈ RL and

Q ∈ RK , rank for reconstruction r , stop criterion STOP.
Output: Approximation ˜X of rank r for the series X.
1: k ← 0, X(0) = T(X).
2: X(k+1)

r = Π̆Mr
X(k) taking the leading r components of the (P,Q)-SVD, see Algorithm 2.6.

3: X(k+1) = Π̆HX(k)
r by (3.11) with mij = piqj .

4: k ← k + 1;
5: If not STOP, go to Step 2; else ˜X = T−1(X(k)).

154 3 Parameter Estimation, Forecasting, Gap Filling

Note that in the RSSA package the input data are partly taken from the ssa object
(e.g., the window length L).

3.4.3 Structured Low-Rank Approximation in RSSA

3.4.3.1 Description of Functions

A typical call is as follows:

c <- cadzow(s, rank = 2, correct = FALSE, tol = 1e-6,
maxiter = 100, norm = function(x) max(abs(x)))

Arguments:

s is an ssa object holding the decomposition parameters. Decomposition in s can
be empty.

tol is a tolerance for the difference between reconstructions at sequential itera-
tions.

maxiter is an upper bound for the number of iterations; if maxiter = 0, this upper
bound is not used.

norm is a distance function used for the convergence criterion;
trace is logical; it indicates whether the convergence process should be traced. For

example, the number of iterations for convergence can be found in the trace,
which is printed at the output window.

There are no parameters related to weights in Cadzow iterations. This is because
the weights are fully specified in the preliminary call of the ssa function. For
example, in the call

s <- ssa(x, column.oblique = ’identity’, row.oblique = weights)

the parameter row.oblique = weights provides the vector of right weights of
length K .

3.4.3.2 Typical Code

Let us demonstrate how to perform forecasting by means of the result of weighted
Cadzow iterations. We take the first 360 points of the “CO2” series and L = 60.
Small values of α provide better accuracy of the signal reconstruction but slow
convergence, see Zvonarev and Golyandina (2017). Therefore, we take 10 iterations
with small α = 0.01 and then continue iterations with α = 1 to reach convergence.
Fragment 3.4.1 contains the code for such iterations. The weights are constructed
according to (3.13).

3.4 Structured Low-Rank Approximation 155

Fragment 3.4.1 (Weighted Cadzow Approximation)

> cut <- 49 + 60
> x <- window(co2, end = time(co2)[length(co2) - cut + 1])
> L <- 60
> K <- length(x) - L + 1
> alpha <- 0.01
> weights <- vector(len = K)
> weights[1:K] <- alpha
> weights[seq(K, 1, -L)] <- 1
> xyplot(weights ~ 1:K, type = "l")
> s1 <- ssa(x, L = L) #to detect the series rank
> ncomp <- 6
> s01 <- ssa(x, L = L, column.oblique = "identity",
+ row.oblique = weights)
> c01 <- cadzow(s01, rank = ncomp, maxiter = 10)
> s01.1 <- ssa(c01, L = L, column.oblique = NULL,
+ row.oblique = NULL)
> c01.1 <- cadzow(s01.1, rank = ncomp, tol = 1.e-8 * mean(co2))
> print(t(ssa(c01.1, L = ncomp + 1)$sigma), digits = 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 16472 73.537 41.096 12.29 4.674 0.044457 2.2465e-06
> ss01.1<- ssa(c01.1, L = ncomp + 1)
> fr <- rforecast(ss01.1, groups = list(1:ncomp), len = cut)
> xyplot(cbind(Original = co2, Cadzow1and01 = c01.1,
+ ForecastCadzow = fr), superpose = TRUE)
> print(parestimate(ss01.1, groups = list(1:ncomp),
+ method = "esprit"))

period rate | Mod Arg | Re Im
11.998 0.000525 | 1.00053 0.52 | 0.86643 0.50035

-11.998 0.000525 | 1.00053 -0.52 | 0.86643 -0.50035
Inf 0.000450 | 1.00045 -0.00 | 1.00045 -0.00000

5.998 0.000287 | 1.00029 1.05 | 0.49986 0.86644
-5.998 0.000287 | 1.00029 -1.05 | 0.49986 -0.86644

Inf -0.004656 | 0.99535 -0.00 | 0.99535 -0.00000

The resultant signal estimate c01.1 has rank r = 6: the 7-th singular value is
practically zero. The trajectory subspace of this signal for any L > 6 uniquely
defines the LRR, which governs the estimated signal and provides the forecasting
formula. To obtain this formula by means of RSSA, we apply Basic SSA with
L = r + 1 and then construct forecast by any forecasting method, see Fig. 3.11.
In addition to forecasting, parameter estimation can be performed by applying the
corresponding function to the ssa object.

3.4.3.3 Simulated Example

One example presented in Sect. 3.4.3.2 cannot show if Cadzow(α) iterations
are better than the conventional Cadzow(1) iterations. Therefore, we perform
simulations for a noisy sine wave. The parameters are chosen to repeat one of
the numerical results of Zvonarev and Golyandina (2017). Simulations show that

156 3 Parameter Estimation, Forecasting, Gap Filling

Time

32
0

33
0

34
0

35
0

36
0

37
0

1960 1970 1980 1990

Original
Cadzow1and01
ForecastCadzow

Fig. 3.11 “CO2”: Approximation of rank 6 by the weighted Cadzow method and its forecast

α = 0.01 provides approximately 10% improvement in the MSE of the signal
estimator.

Fragment 3.4.2 (Accuracy of Weighted Cadzow Approximation)

> SIMUL <- FALSE
> set.seed(3)
> L <- 20
> N <- 2 * L
> K <- N - L + 1
> alpha <- 0.01
> sigma <- 1
> signal <- 5 * sin(2 * pi * (1:N) / 6)
> weights <- vector(len = K)
> weights[1:K] <- alpha
> weights[seq(1, K, L)] <- 1
> M <- 1000
> norm.meansq <- function(x) mean(x^2)
> if (SIMUL) {
+ RMSE <- sqrt(rowMeans(replicate(M, {
+ x <- signal + sigma * rnorm(N)
+ s.alpha <- ssa(x, L = L, column.oblique = NULL,
+ row.oblique = weights)
+ c.alpha <- cadzow(s.alpha, rank = 2, tol = 1.e-8,
+ norm = norm.meansq,
+ correct = FALSE)
+ s <- ssa(x, L = L)
+ cc <- cadzow(s, rank = 2, norm = norm.meansq, tol = 1.e-8,
+ correct = FALSE)
+ c("err" = mean((cc - signal)^2),
+ "err.alpha" = mean((c.alpha - signal)^2))
+ })))

3.5 Case Studies 157

+
+ cadzow.sim <- as.data.frame(t(RMSE))
+ } else {
+ data("cadzow.sim", package = "ssabook")
+ }
> print(cadzow.sim)

err err.alpha
1 0.3753331 0.3222088

3.5 Case Studies

3.5.1 Forecasting of Complex Trend and Seasonality

Let us consider the series “Elec,” which was analyzed in Sect. 2.8.8. We will
construct forecasts obtained using the subseries with the last two years removed
and then compare the two-year forecasts with the known data. The series “Elec”
has complex trend and therefore the trend can be extracted by means of Basic SSA
with a small window length. Unfortunately, the window length L = 12 is too small
to obtain a stable forecast. However, larger window lengths would make the signal
and residual to be badly mixed. Iterated O-SSA can help to better separate the trend
from the residual. Fragment 3.5.1 contains the code, which performs two forecasts,
on the base of the whole time series and on the base of the second half of the
series. Figure 3.12 shows that Iterative O-SSA allows to obtain accurate forecasts.
Moreover, both forecasts are almost the same.

50
00

10
00

0
15

00
0

1960 1970 1980 1990

original
trend
forecast
forecast0

Fig. 3.12 “Elec”: Trend forecasting

158 3 Parameter Estimation, Forecasting, Gap Filling

Fragment 3.5.1 (“Elec”: Trend Forecasting and iossa)

> data("elec", package = "fma")
> N <- length(elec)
> len <- 24
> L <- 24
> s <- ssa(window(elec, end = c(1993, 8)), L = L)
> si <- iossa(s, nested.groups = list(c(1, 4), c(2, 3, 5:10)))
> fi <- rforecast(si, groups = list(trend = c(1:2)),
+ len = len, only.new = FALSE)
> s0 <- ssa(window(elec, start = c(1972, 8), end = c(1993, 8)),
+ L = L)
> f0 <- vforecast(s0, groups = list(trend = c(1)),
+ len = len, only.new = TRUE)
> si0 <- iossa(s0, nested.groups = list(c(1,4), c(2,3,5:10)))
> fi0 <- vforecast(si0, groups = list(trend = c(1:2)),
+ len = len, only.new = TRUE)
> theme <- simpleTheme(col = c("black", "red", "blue", "green"),
+ lwd = c(1, 1, 2, 2),
+ lty = c("solid", "solid",
+ "solid", "dashed"))
> xyplot(cbind(elec,
+ window(fi, end = c(1993, 8)),
+ window(fi, start = c(1993, 9)),
+ fi0),
+ superpose = TRUE, type ="l", ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("original", "trend",
+ "forecast", "forecast0"),
+ type = c("l", "l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)

Unlike the trend, seasonality has a stable structure. The window length L

equal to two periods is still too small to obtain an accurate forecast. Therefore,
a combined forecast similar to Sequential SSA briefly described in Sect. 2.1.3.2
can be recommended. In Fragment 3.5.2, the trend estimated in Fragment 3.5.1 is
subtracted from the series and the residual is forecasted with large window L = 240.
Figure 3.13 contains the forecast obtained by the sum of trend and seasonality
forecasts. Note that the choice of eigentriples for forecasting was performed by the
standard technique, which involves the analysis of eigenvectors as demonstrated in
Sect. 2.1.5.3.

Fragment 3.5.2 (“Elec”: Combined Forecasting)

> L <- 240
> elec_sa <- elec - fi
> s_sa <- ssa(window(elec_sa, end = c(1993, 8)), L = L)
> f_sa <- rforecast(s_sa, groups = list(trend = c(1:13)),
+ len = len, only.new = FALSE)
> theme <- simpleTheme(col = c("black", "red", "green"),
+ lwd = c(1, 2, 2),
+ lty = c("solid", "solid", "solid"))
> xyplot(cbind(window(elec, start = c(1985, 12)),

3.5 Case Studies 159

+ window(fi, start = c(1985, 12), end = c(1993, 8)),
+ window(fi, start = c(1993, 9)) +
+ window(f_sa, start = c(1993, 9))),
+ superpose = TRUE, type = "l", ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("original", "trend",
+ "forecast"),
+ type = c("l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)

3.5.2 Different Methods of Forecasting

In the example considered in Sect. 3.5.1, it was not important which forecasting
method to apply, since the series “Elec” has a reasonably stable structure. Generally,
the closeness of vector and recurrent forecasts can be considered as an indication of
structural stability of the series component we have chosen to forecast. This does not
guarantee, however, that the forecasts are accurate, since the structure of the series
may change in the future.

Here we demonstrate a difference between recurrent and vector forecasts. From
the theoretical point of view, the recurrent forecast is simpler, since it is just
a continuation by an LRR. An explicit formula for this continuation can be
constructed in a similar manner to what is done in Sect. 3.5.5 below. Vector
forecasting, however, can be more accurate for continuation of a stable structure;
in particular, it performs extra L − 1 steps; the extra steps are done for making the

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

1986 1988 1990 1992 1994 1996

original
trend
forecast

Fig. 3.13 “Elec”: Combined forecasting

160 3 Parameter Estimation, Forecasting, Gap Filling

coincidence between an M-step forecast and the first M points of (M + 1)-step
forecast.

Let us consider a small example “Cowtemp” (daily morning temperature of a
cow).

We have removed the last 14 points (2 weeks) and constructed the recurrent
and vector forecasts of the 61-term series. Window length was chosen to be equal
to 4 weeks. It is large and therefore we can expect the global tendency to be
captured well. In addition to the two main forecasts, we consider the forecast
based on Toeplitz SSA (see Sect. 2.2). Recall that Toeplitz SSA is designed to
analyze stationary series. The considered series probably has a trend. Therefore,
we take a small window length for Toeplitz SSA. The code, which implements
three methods of forecasting, is contained in Fragment 3.5.3. In all cases, we will
construct forecasts based on one leading eigentriple.

Figure 3.14 shows several typical effects. First, if the separability is not good,
then the recurrent forecast can have a jump at its first point. We can see that the
vector forecast (a) has no jumps and (b) changes the last L − 1 points of the
reconstructed series. Nevertheless, both forecasts are similar. They have the form
C · 0.995n.

The estimator of the signal root by Toeplitz SSA is much closer to 1. Note that
parestimate for Toeplitz SSA force unit moduli of roots by default. For the option
normalize.roots = FALSE, which we have chosen, the root estimate is almost 1.
The root estimator obtained as the maximum-modulus root of the characteristic
polynomial of the estimated LRR (which is the forecasted LRR for the recurrent
forecast) is equal to 0.999. Thus, we see that the vector and recurrent Basic SSA

40
50

60
70

80
90

0 20 40 60 80 100

original series
reconstructed series
recurrent forecast
vector forecast
recurrent Toeplitz forecast

Fig. 3.14 “Cowtemp”: Basic SSA and Toeplitz SSA forecasting

3.5 Case Studies 161

forecasts decrease as 0.995n, while the recurrent Toeplitz SSA forecast decreases
slower as 0.999n.

On the time interval [62, 75], the forecasts are more or less similar. However,
the long-term forecast is much more appropriate in the case of Toeplitz SSA,
since the temperature is likely to oscillate around a constant and cannot rapidly
decrease. Therefore, the method, which adds the limitation of stationarity, wins in
this particular example.

Fragment 3.5.3 (“Cowtemp”: Different Methods of Forecasting)

> data("cowtemp", package = "fma")
> series <- cowtemp
> N <- length(series)
> cut <- 14
> future <- 21
> len <- cut + future
> r <- 1
> L <- 28
> Lt <- 14
> s <- ssa(window(series, end = N - cut), L = L)
> parestimate(s, groups = list(trend = c(1:r)),
+ method = "esprit")$moduli
[1] 0.9946241
> roots(lrr(s, groups = list(trend = c(1:r))))[1]
[1] 0.9953519+0i
> rec <- reconstruct(s, groups = list(1:r))
> st <- ssa(window(series, end = N - cut),
+ kind = "toeplitz-ssa", L = Lt)
> parestimate(st, groups = list(trend = c(1:r)),
+ method = "esprit")$moduli
[1] 1
> parestimate(st, groups = list(trend = c(1:r)),
+ normalize.roots = FALSE,
+ method = "esprit")$moduli
[1] 0.9999984
> roots(lrr(st, groups = list(trend = c(1:r))))[1]
[1] 0.9990458+0i
> fr <- rforecast(s, groups = list(trend = c(1:r)),
+ len = len, only.new = TRUE)
> fv <- vforecast(s, groups = list(trend = c(1:r)),
+ len = len, only.new = FALSE)
> ftr <- rforecast(st, groups = list(trend = c(1:r)),
+ len = len, only.new = FALSE)
> print(sqrt(mean((window(fr, start = 62) -
+ window(series, start = 62))^2)))
[1] 5.711485
> print(sqrt(mean((window(fv, start = 62) -
+ window(series, start = 62))^2)))
[1] 5.253602
> print(sqrt(mean((window(ftr, start = 62) -
+ window(series, start = 62))^2)))
[1] 4.785783

162 3 Parameter Estimation, Forecasting, Gap Filling

> theme <- simpleTheme(col = c("black", "red", "blue",
+ "green", "violet"),
+ lwd = c(1, 1, 2, 2, 1),
+ lty = c("solid", "solid", "solid",
+ "dashed", "solid"))
> future.NA <- rep(NA, future)
> xyplot(cbind(series, rec$F1, fr, fv, ftr),
+ superpose = TRUE, type = "l", ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("original series",
+ "reconstructed series",
+ "recurrent forecast",
+ "vector forecast",
+ "recurrent Toeplitz forecast"),
+ type = c("l", "l", "l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)

3.5.3 Choice of Parameters and Confidence Intervals

Since SSA is a model-free method, there are no theoretical confidence intervals. As
shown in Sect. 3.2.1.5 we can naturally construct bootstrap confidence intervals for
the signal. The assumption for the adequacy of bootstrap confidence intervals is that
the signal is extracted and a model for the residual distribution is built. In practice,
these assumptions are not valid (or we cannot check them) and therefore bootstrap
confidence intervals can only be considered as indicative measures of accuracy of
the forecasts.

By considering bootstrap confidence intervals, the user investigates forecasting
stability. As an alternative to bootstrap confidence intervals, one can study forecast
response to a perturbation of the initial series. To do this, we add to the initial
series a perturbation (e.g., a white noise with some standard deviation σ) and
look at the resulting variability of forecasts. Similarly to the case of bootstrap
confidence intervals, for a confidence level γ , we will consider the intervals between
(1 − γ)/2 lower and upper quantiles and call them perturbed forecasting intervals
(see Fragment 3.5.4). Note that the influence of perturbation on the signal subspace
estimation is theoretically studied in Nekrutkin (2010).

Fragment 3.5.4 (Function for Perturbed Forecasting Intervals)

> perturbation <-
+ function(s, noise, R, Qfor, num.comp, L, level, template) {
+ r <- reconstruct(s, groups = list(1:num.comp))
+ stopifnot(length(r) == 1)
+
+ delta <- sd(residuals(r))
+ res <- matrix(nrow = Qfor, ncol = R)
+
+ ser <- s$F; attributes(ser) <- s$Fattr
+ for (j in 1:R) {

3.5 Case Studies 163

+ si <- ssa(ser + delta * noise[, j], L = L)
+ res[, j] <- rforecast(si, groups = list(1:num.comp),
+ len = Qfor)
+ }
+
+ cf <- apply(res, 1, quantile,
+ probs = c((1 - level) / 2, (1 + level) / 2))
+ out <- template
+ out$x[] <- ser
+ out$fitted[] <- r[[1]]
+ out$residuals[] <- residuals(r)
+ out$lower[] <- cf[1,]
+ out$upper[] <- cf[2,]
+ out$level[] <- 100 * level
+ out$mean[] <- rowMeans(res)
+
+ out
+ }

Fragment 3.5.5 shows how the bootstrap and perturbed intervals depend on the
number of eigentriples, which are used for reconstruction, for the total wine sales
“Total” from the dataset “AustralianWine”.

Fragment 3.5.5 (“Total”: Stability of Forecasting)

> data("AustralianWine", package = "Rssa")
> wine <- window(AustralianWine, end = time(AustralianWine)[174])
> ser0 <- wine[, "Total"]
> Q <- 66
> l <- length(ser0)
> ser <- window(ser0, end = time(ser0)[l-Q])
> include <- min(1000, l - Q)
> L <- 48
> s <- ssa(ser, L = L)
> plot(wcor(s, groups = 1:min(nu(s), 50)),
+ scales = list(at = c(10, 20, 30, 40, 50)))
> set.seed(1)
> R <- 100
> noise <- matrix(rnorm(length(ser) * R), nrow = length(ser))
> range <- 1:30
> err.pert <- numeric(length(range))
> err <- numeric(length(range))
> k <- 1
> for (num.comp in range) {
+ bf0 <- forecast(s, groups = list(1:num.comp),
+ method = "recurrent",
+ interval = "confidence",
+ len = Q, R = R, level = 0.9)
+
+ bf0.pert <- perturbation(s, noise, R, Q, num.comp, L,
+ level = 0.9, bf0)
+ err.pert[k] <- sqrt(mean((bf0.pert$upper - bf0.pert$lower)^2))
+ err[k] <- sqrt(mean((bf0$upper - bf0$lower)^2))
+ k <- k + 1

164 3 Parameter Estimation, Forecasting, Gap Filling

+ }
> bf0.pert1 <- perturbation(s, noise, R, Q, 1, L,
+ level = 0.9, bf0)
> plot(bf0.pert1, include = include, shadecols = "green",
+ main = paste("Perturbed SSA forecast, 1 component"))
> bf0.pert12 <- perturbation(s, noise, R, Q, 12, L,
+ level = 0.9, bf0)
> plot(bf0.pert12, include = include, shadecols = "green",
+ main = paste("Perturbed SSA forecast, 12 components"))
> bf0.pert14 <- perturbation(s, noise, R, Q, 14, L,
+ level = 0.9, bf0)
> plot(bf0.pert14, include = include, shadecols = "green",
+ main = paste("Perturbed SSA forecast, 14 components"))
> start <- 48
> theme <- simpleTheme(col = c("black","red","blue"),
+ lwd = c(2, 1, 2),
+ lty = c("solid", "solid", "solid"))
> xyplot(cbind(window(ser0, start = c(1984, 1)),
+ bf0.pert12$mean,
+ bf0.pert14$mean),
+ superpose = TRUE, type = "l", ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("‘Total’",
+ "forecast, ET1-12",
+ "forecast, ET1-14"),
+ type = c("l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)
> xyplot(err + err.pert ~ range, type = "l",
+ ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("Bootstrap errors",
+ "Perturbation errors"),
+ type = c("l", "l"),
+ lines = TRUE, points = FALSE),
+ scales = list(y = list(log = TRUE)))

We take the first 108 points and consider 66-term forecasting. Window length is
L = 48. Figure 3.15 contains the graph of w-correlations. One can see that there
are several natural candidates for the number of leading components which we can
choose. For example, if we choose the number of leading components to be equal to
12, 16, 17, or 19, then the reconstructed signal looks to be almost unmixed with the
residual. Let us calculate the mean size of bootstrap and perturbed 90% confidence
intervals for the forecasts performed for different numbers of leading components.
For construction of the perturbed intervals, we will take σ equal to the standard
deviation of the residuals after the reconstruction by the corresponding number of
components. Figure 3.16 contains square roots of mean squared confidence ranges
as a function of the number of components. One can see that after 12 components
the variability of forecasts sharply increases. On the base of this, the choice of
12 components can be recommended. It is interesting that there is only a small
difference between bootstrap and perturbed intervals.

3.5 Case Studies 165

W−correlation matrix

10

20

30

40

10 20 30 40

Fig. 3.15 “Total”: w-Correlations

10^4.0

10^4.5

10^5.0

10^5.5

10^6.0

0 5 10 15 20 25 30

Bootstrap errors
Perturbation errors

Fig. 3.16 “Total”: Sizes of 90% forecasting intervals in dependence on the number of components

166 3 Parameter Estimation, Forecasting, Gap Filling

Let us demonstrate how the confidence intervals look like for forecasts which use
ET1, ET1–12, and ET1–14 (Figs. 3.17, 3.18, and 3.19, respectively). Figure 3.19
shows that the long-term forecasting by 14 components is likely to be wrong.

Let us compare the obtained forecasts with the known series values. The mean
forecasts which are calculated by averaging simulated forecast values are depicted.
Figure 3.20 shows that, first, the long-term forecast by ET1–12 is more or less
adequate, but the forecast by ET1–14 fails. On the other hand, short-term forecasts
by ET1–12 and 1–14 are similar. Moreover, the “wrong” forecast (by ET1–14) is
slightly more accurate at short horizons.

Perturbed SSA forecast, 1 component

1980 1985 1990

15
00

0
30

00
0

Fig. 3.17 “Total”: Perturbed forecasting intervals, ET1

Perturbed SSA forecast, 12 components

1980 1985 1990

20
00

0
40

00
0

Fig. 3.18 “Total”: Perturbed forecasting intervals, ET1–12

Perturbed SSA forecast, 14 components

1980 1985 1990

−1
e+

05
0e

+0
0

Fig. 3.19 “Total”: Perturbed forecasting intervals, ET1–14

3.5 Case Studies 167

10
00

0
30

00
0

1984 1986 1988 1990 1992 1994

`Total'
forecast, ET1−12
forecast, ET1−14

Fig. 3.20 “Total”: Comparison of forecasts by ET1–12 and ET1–14

3.5.4 Gap Filling

Let us consider the data “Glonass” provided by the satellite navigation system
Glonass (the investigated data igs<wwww><d>.clk.Z contains final corrections of
time in the format Clock_RINEX obtained in IGS). Data are presented with the
step 5 min (300 s) so that any 24-h period consists of 288 points. This data can be
used for correcting future time values. However, the data contain gaps. Trends of
corrections can be of different form. In Fragment 3.5.6, we demonstrate how RSSA

can help for data imputation on a simple example with an almost linear trend. Data
consists of 104832 points, taken from 02/01/2014 to 31/12/2014, the GLONASS
satellite number 15.

Fragment 3.5.6 (“Glonass”: Gap Filling)

> data("g15", package = "ssabook")
> xyplot(g15 ~ 1:length(g15), type = "l",
+ ylab = NULL, xlab = NULL)
> range1 <- 14950:15050
> g15_short <- g15[range1]
> g15_un <- na.omit(as.vector(g15))
> g15_un_short <- g15_un[range1]
> p1 <- xyplot(g15_short ~ range1, type = "l",
+ ylab = NULL, xlab = NULL)
> p2 <- xyplot(g15_un_short ~ range1, type = "l",
+ ylab = NULL, xlab = NULL)
> plot(p1, split = c(1, 1, 2, 1), more = TRUE)
> plot(p2, split = c(2, 1, 2, 1), more = FALSE)
> L <- 72
> neig <- min(L, 100)
> s <- ssa(g15, L = 72, neig = neig)
> plot(s, type = "vectors", idx = 1:8, plot.contrib = FALSE)
> g <- gapfill(s, groups = list(1:2))
> xyplot(g[range1] + g15[range1] ~ range1, type = "l",
+ ylab = NULL, xlab = NULL,

168 3 Parameter Estimation, Forecasting, Gap Filling

+ par.settings = simpleTheme(col = c("red", "black")))
> spec.pgram(g15_un, detrend = FALSE, log = "no",
+ xlim = c(0.00, 0.02), ylim = c(0, 1e-14),
+ main = "", sub = "")
> axis(1, at = c(1/144, 1/72), labels = c("1/144", "1/72"),
+ las = 2)
> spec.pgram(as.vector(g), detrend = FALSE, log = "no",
+ xlim = c(0.00, 0.02), ylim = c(0, 1e-14),
+ main = "", sub = "")
> axis(1, at = c(1/144, 1/72), labels = c("1/144", "1/72"),
+ las = 2)

The whole time series is depicted in Fig. 3.21. It contains several gaps; the total
number of missing points is 895.

Let us consider two ways for dealing with missing data: suppressing it (simply
by removing time points with missing observations and thus reducing the sample
size) or properly treating it as missing and imputing the missing observations. A
part of the data in these two cases is depicted in Fig. 3.22.

We start with filling-in the gaps and then show why suppressing the missing data
is a wrong strategy, at least for this data set.

Since the time series is very long and the missing data has several compact loca-
tions, we will use the subspace-based method of gap filling, which is implemented
in the function gapfill. To cover by the window all the points of the time series, we

−0.00022

−0.00020

−0.00018

−0.00016

0 20000 40000 60000 80000 100000

Fig. 3.21 “Glonass”: Initial series with gaps

−0.00016448

−0.00016446

−0.00016444

−0.00016442

14960 15000 15040

−0.00016448

−0.00016446

−0.00016444

−0.00016442

14960 15000 15040

Fig. 3.22 “Glonass”: A subseries with a gap (left) and with the suppressed gap (right)

3.5 Case Studies 169

will take a moderate window length L equal to 120. Figure 3.23 shows the leading
eight eigenvectors. One can see that the first two eigenvectors correspond to a linear
trend. Let us implement the gaps on the base of ET1,2. Figure 3.24 demonstrates
imputation for one of the gaps. Certainly, for a trend as simple as this one, many
methods can impute the gaps. An advantage of SSA is that the method does not use
any trend model and therefore can be applied to trends of other shapes in exactly the
same way.

Periodograms of the series with suppressed gaps (Fig. 3.25) and with filling-
in gaps (Fig. 3.26) clearly demonstrate that the suppression of gaps corrupts the
trend and hides periodicities, while the time series with properly filled gaps is

Eigenvectors
1 2 3 4

5 6 7 8

Fig. 3.23 “Glonass”: Eigenvectors for the series with gaps, L = 72

−0.00016448

−0.00016446

−0.00016444

−0.00016442

14960 14980 15000 15020 15040

Fig. 3.24 “Glonass”: A subseries with the filled gap

170 3 Parameter Estimation, Forecasting, Gap Filling

0.000 0.005 0.010 0.015 0.020

0e
+0

0
2e

−1
5

4e
−1

5
6e

−1
5

8e
−1

5
1e

−1
4

frequency

sp
ec

tru
m

1/
14

4

1/
72

Fig. 3.25 “Glonass”: Periodogram of the series with suppressed gaps

0.000 0.005 0.010 0.015 0.020

0e
+0

0
2e

−1
5

4e
−1

5
6e

−1
5

8e
−1

5
1e

−1
4

frequency

sp
ec

tru
m

1/
14

4

1/
72

Fig. 3.26 “Glonass”: Periodogram of the series with filled gaps

well-structured. Figure 3.26 shows that there are strong peaks at frequencies 1/144
and 1/72, which corresponds to a 12-h periodicity.

Let us extract the periodicity (Fragment 3.5.7) from the obtained time series with
no gaps. Since the trend is simple, we take a large window length L = 52416 equal
to the half of the time series length and divisible by 288. As a guess, we use the
period estimates obtained from all pairs of eigenvectors with numbers (i, i + 1).

3.5 Case Studies 171

−4e−10

−2e−10

0e+00

2e−10

0 200 400 600

Fig. 3.27 “Glonass”: A subseries with the 12-h periodicity; it is extracted from the series with
filled gaps and L = 52416

The pairs (32, 33) and (59, 60), where the estimated period is smaller than 300,
have the expected periods 144 and 72, approximately.

Figure 3.27 demonstrates the extracted 12-h periodicity.

Fragment 3.5.7 (“Glonass”: Periodicity Extraction After the Gap Filling)

> s_filled = ssa(g, L = 52416, neig = 100)
> pg <- vector(length = 99)
> for (i in 1:99) {
+ pg[i] <- parestimate(s_filled, groups = list(i:(i + 1)),
+ method = "esprit")$period[1]
+ }
> print(ind <- which(pg < 1/0.003))
[1] 32 58
> print(pg[ind], digits = 0)
[1] 144 72
> r <- reconstruct(s_filled, groups = list(day = c(ind, ind+1)))
> xyplot(r$day[1:720] ~ 1:720, type = "l",
+ ylab = NULL, xlab = NULL)

3.5.5 Parameter Estimation and Low-Rank Approximation

Low-rank approximation works well if the signal is governed by an LRR exactly.
Such kind of signals, e.g., a sum of modulated sinusoids, is a common case in
engineering.

To demonstrate the method, we choose a simple series “FORT” from the dataset
“AustralianWine,” which is very similar to a noisy signal of finite rank. First, let
us apply the Cadzow(α) method described in Sect. 3.4 (see Fragment 3.5.8). In
Zvonarev and Golyandina (2017), the value α = 0.2 is recommended for the

172 3 Parameter Estimation, Forecasting, Gap Filling

Time

10
00

20
00

30
00

40
00

50
00

1980 1985 1990

Reconstructed
Initial

Fig. 3.28 “FORT”: Approximation by a series of finite rank

reconstruction of the signal in “FORT.” The result of the Cadzow(0.2) iterations
is depicted in Fig. 3.28.

Fragment 3.5.8 (“FORT”: Cadzow Iterations)

> wine <- window(AustralianWine, end = time(AustralianWine)[168])
> ser <- wine[, "Fortified"]
> N <- length(ser)
> L <- 84
> K <- N - L + 1
> rank <- 11
> # Basic SSA
> s0 <- ssa(ser, L = L)
> r0 <- reconstruct(s0, groups = list(signal = 1:rank))$signal
> # Cadzow iterations with series weights close to equal.
> alpha <- 0.1
> weights <- numeric(K)
> weights[1:K] <- alpha
> weights[seq(from = K, to = 1, by = -L)] <- 1
> s <- ssa(ser, L = L, column.oblique = "identity",
+ row.oblique = weights, decompose.force = FALSE)
> c <- cadzow(s, rank = rank)
> sc <- ssa(c, L = rank + 1)
> rc <- reconstruct(sc, groups = list(signal = 1:rank))$signal
> xyplot(cbind(rc, ser), type = "l",
+ superpose = TRUE,
+ auto.key = list(text = c("Reconstructed",
+ "Initial"),
+ type = c("l", "l"),
+ lines = TRUE, poinwts = FALSE))

3.5 Case Studies 173

Let us describe how an explicit form of the estimated signal can be obtained.
We consider two cases: (a) estimation of the signal parameters by means of one
Cadzow iteration (this iteration coincides with the Basic SSA reconstruction) in
Fragment 3.5.9, and (b) estimation of the signal parameters using a finite-rank
approximation in Fragment 3.5.10.

To estimate r signal roots of a signal of rank r , it is sufficient to take the
window length equal to r + 1. Thus, we apply Basic SSA to the limit series of the
Cadzow iterations and then call the function parestimate for the group consisting
of ET1–r . Since we apply Basic SSA to a noisy signal, we should take a large
window length L to separate the signal from noise. The results are quite similar for
different choices of L, as long as L is large enough. Negative periods are calculated
formally as 1/ ± ω.

Fragment 3.5.9 (“FORT”: Estimation of Parameters by Basic SSA)

> # Estimation by means of the first iteration of Cadzow
> # iterations (SSA)
> par <- parestimate(s0, groups = list(1:rank),
+ method = "esprit")
> print(par)

period rate | Mod Arg | Re Im
5.972 0.004238 | 1.00425 1.05 | 0.49781 0.87218

-5.972 0.004238 | 1.00425 -1.05 | 0.49781 -0.87218
2.388 0.001744 | 1.00175 2.63 | -0.87403 0.48945

-2.388 0.001744 | 1.00175 -2.63 | -0.87403 -0.48945
4.000 0.000359 | 1.00036 1.57 | -0.00008 1.00036

-4.000 0.000359 | 1.00036 -1.57 | -0.00008 -1.00036
Inf -0.003318 | 0.99669 -0.00 | 0.99669 -0.00000

12.006 -0.005931 | 0.99409 0.52 | 0.86104 0.49680
-12.006 -0.005931 | 0.99409 -0.52 | 0.86104 -0.49680

3.015 -0.011285 | 0.98878 2.08 | -0.48570 0.86127
-3.015 -0.011285 | 0.98878 -2.08 | -0.48570 -0.86127

> o <- order(abs(par$periods), decreasing = TRUE)
> periods <- (par$periods[o])
> moduli <- par$moduli[o]
> len <- rank
> vars <- matrix(nrow = len, ncol = rank)
> for (i in 1:rank) {
+ if (periods[i] == Inf)
+ vars[, i] <- moduli[i]^(1:len)
+ else if (periods[i] == 2)
+ vars[, i] <- (-moduli[i])^(1:len)
+ else if (periods[i] > 0)
+ vars[, i] <-
+ moduli[i]^(1:len) * sin(2 * pi * (1:len) / periods[i])
+ else
+ vars[, i] <-
+ moduli[i]^(1:len) * cos(2 * pi * (1:len) / periods[i])
+ }
> lm0 <- lm(r0[1:len] ~ 0 + ., data = data.frame(vars))
> coefs0 <- coef(lm0)
> print(round(coefs0[1:6], digits = 2))

174 3 Parameter Estimation, Forecasting, Gap Filling

X1 X2 X3 X4 X5 X6
3969.23 -717.10 -927.57 105.52 137.98 -287.11
> print(round(coefs0[7:11], digits = 2))

X7 X8 X9 X10 X11
215.64 -254.51 -205.12 90.44 10.95

Fragment 3.5.10 (“FORT”: Estimation of Parameters by Cadzow Iterations)

> # Estimation by means of the limit of Cadzow iterations
> parc <- parestimate(sc, groups = list(1:rank),
+ method = "esprit")
> print(parc)

period rate | Mod Arg | Re Im
5.975 0.004986 | 1.00500 1.05 | 0.49863 0.87258

-5.975 0.004986 | 1.00500 -1.05 | 0.49863 -0.87258
2.389 0.003402 | 1.00341 2.63 | -0.87506 0.49102

-2.389 0.003402 | 1.00341 -2.63 | -0.87506 -0.49102
3.998 0.000311 | 1.00031 1.57 | -0.00076 1.00031

-3.998 0.000311 | 1.00031 -1.57 | -0.00076 -1.00031
Inf -0.003356 | 0.99665 0.00 | 0.99665 0.00000

12.009 -0.005985 | 0.99403 0.52 | 0.86105 0.49669
-12.009 -0.005985 | 0.99403 -0.52 | 0.86105 -0.49669

3.018 -0.010620 | 0.98944 2.08 | -0.48394 0.86301
-3.018 -0.010620 | 0.98944 -2.08 | -0.48394 -0.86301

> oc <- order(abs(parc$periods), decreasing = TRUE)
> periodsc <- (parc$periods[o])
> modulic <- parc$moduli[o]
> lenc <- rank
> varsc <- matrix(nrow = lenc, ncol = rank)
> for (i in 1:rank) {
+ if (periodsc[i] == Inf)
+ varsc[, i] <- modulic[i]^(1:lenc)
+ else if (periodsc[i] == 2)
+ varsc[, i] <- (-modulic[i])^(1:lenc)
+ else if (periodsc[i] > 0)
+ varsc[, i] <-
+ modulic[i]^(1:lenc) * sin(2 * pi * (1:lenc) / periodsc[i])
+ else
+ varsc[, i] <-
+ modulic[i]^(1:lenc) * cos(2 * pi * (1:lenc) / periodsc[i])
+ }
> lm.c <- lm(rc[1:lenc] ~ 0 + ., data = data.frame(varsc))
> #lm.c
> coefs.c <- coef(lm.c)
> print(round(coefs.c[1:6], digits = 2))

X1 X2 X3 X4 X5 X6
4005.56 -721.77 -940.64 68.30 184.45 -269.52
> print(round(coefs.c[7:11], digits = 2))

X7 X8 X9 X10 X11
325.92 -251.10 -255.41 154.28 61.90

3.5 Case Studies 175

By looking at the signal root estimates, we suggest the following model for the
signal:

sn = C0ρ
n
0 +

5
∑

k=1

Ckρ
n
k sin

(

2πn

Tk
+ φk

)

= C0ρ
n
0 +

5
∑

k=1

ρn
k

(

Ak sin

(

2πn

Tk

)

+ Bk cos

(

2πn

Tk

))

. (3.14)

Results of parestimate are the estimates of ρk and Tk in (3.14). To estimate Ck

and φk , one can first estimate Ak and Bk by the least-squares method and then find

Ck =
√

A2
k + B2

k , φk = arctan(Bk/Ak) (Fragment 3.5.11). Note that for Basic SSA
we take the whole time series to estimate the coefficients, while in the case of series
of finite rank it is sufficient to take any r sequential series points to find r unknown
parameters.

Fragment 3.5.11 (“FORT”: Estimation of Parametric Real-Valued Form)

> idx <- seq(2, 11, 2)
> coefs.c.phase <- numeric(length(idx))
> phases.c <- numeric(length(idx))
> periods.c.phase <- numeric(length(idx))
> moduli.c.phase <- numeric(length(idx))
> for (i in seq_along(idx)) {
+ periods.c.phase[i] <- periodsc[idx[i]]
+ moduli.c.phase[i] <- modulic[idx[i]]
+ coefs.c.phase[i] <- sqrt(coefs.c[idx[i]]^2 +
+ coefs.c[idx[i] + 1]^2)
+ phases.c[i] <- atan2(coefs.c[idx[i] + 1], coefs.c[idx[i]])
+ }
> print("trend:")
[1] "trend:"
> print("coefficient * modulus^n")
[1] "coefficient * modulus^n"
> print(data.frame(coefficients = coefs.c[1],
+ moduli = modulic[1]))

coefficients moduli
X1 4005.561 0.9966493
> print("periodics:")
[1] "periodics:"
> print("coefficient * modulus^n * cos(2 * pi* n/period + phase)")
[1] "coefficient * modulus^n * cos(2 * pi* n/period + phase)"
> print(data.frame(periods = periods.c.phase, phases = phases.c,
+ coefficients = coefs.c.phase,
+ moduli = moduli.c.phase))

periods phases coefficients moduli
1 12.008804 -2.225294 1185.6458 0.9940328
2 5.974637 1.216171 196.6835 1.0049988
3 3.998061 2.261753 422.9253 1.0003111
4 3.018060 -2.347688 358.1681 0.9894363
5 2.388825 0.381569 166.2372 1.0034081

176 3 Parameter Estimation, Forecasting, Gap Filling

3.5.6 Subspace Tracking

Let us consider the problem of finding changes in a time series by the SSA subspace
tracking. There are many algorithms for change-point detection in time series, see
Basseville et al. (1993), Tartakovsky et al. (2014). We advocate SSA for change-
point detection and structure monitoring. The principal technique of using SSA
for sequential detection of structural changes was developed in Moskvina and
Zhigljavsky (2003); in what follows, we pursue the approach thoroughly described
in Golyandina et al. (2001; Chapter 3). We take the annual sunspots data 1700–
2015 and try to find changes in the oscillations. Trend needs to be extracted
as a preprocessing step. Trend extraction and further analysis are performed in
Fragment 3.5.12.

Fragment 3.5.12 (“Sunspots”: Subspace Tracking)

> data("sunspot2", package = "ssabook")
> s <- ssa(sunspot2, L = 11)
> r <- reconstruct(s, groups = list(Trend = 1))
> plot(r, plot.method = "xyplot", superpose = TRUE)
> sun.oscill <- residuals(r)
> N <- length(sun.oscill)
> rank <- 2
> periods <- function(M, L) {
+ ts(sapply(1:(N - M),
+ function (i) {
+ s <- ssa(sun.oscill[i:(i + M - 1)], L = L)
+ par <- parestimate(s, groups = list(c(1:rank)),
+ method = "esprit")
+ abs(par$periods[1])
+ }),
+ start = time(sunspot2)[M + 1], delta = 1)
+ }
> per22 <- periods(22, 11)
> per44 <- periods(44, 22)
> xyplot(cbind(per22, per44), type = "l", xlim = c(1677, 2040),
+ strip = strip.custom(factor.levels =
+ c("B = 22", "B = 44")))
> M <- 22; L <- M / 2
> hm <- hmatr(sun.oscill, B = M, T = M, L = L, neig = rank)
> plot(hm)
> M <- 44; L <- M / 2
> hm <- hmatr(sun.oscill, B = M, T = M, L = L, neig = rank)
> plot(hm)

Figure 3.29 (top) contains the extracted trend and the residual. We choose the
window length L = 11 as approximately equal to the main period. This choice
corresponds to the extraction of a more detailed trend, which can be reconstructed
by the leading eigentriple.

Further we consider the residual. Let us check the behavior of the main frequency.
First, we consider the sliding subseries Xn = (xn−B+1, . . . , xn), n = B, . . . N , with

3.5 Case Studies 177

Time

10
12

14
16

B = 22

10
11

12
13

14

1700 1800 1900 2000

B = 44

Reconstructed Series

Time

−1
00

0
10

0
20

0

1700 1800 1900 2000

Original
Trend
Residuals

Fig. 3.29 “Sunspots”: Trend extraction (top), subspace tracking of residuals with B = 22 (middle)
and B = 44 (bottom)

B = 22 and B = 44, choosing window length L equal to B/2. Then, we apply
SSA to each series Xn, find the subspace produced by the first two eigenvectors and
estimate the main period Pn by the LS-ESPRIT method. Graphs of periods Pn as
functions of n are shown in Fig. 3.29 (middle and bottom). One can see that the
period is oscillating around P = 11. However, after 1800 we see that the period
sharply increases. This corresponds to small values of sun activities (Fig. 3.29, top).
If we use the tracking of frequencies for a-priori change detection, then we can
clearly see that the delay for B = 44 (bottom) is larger than that for B = 22
(middle).

Let us apply the techniques suggested in Golyandina et al. (2001; Chapter 3)
for a visualization of a-posteriori change-point detection. Visual change-point
detection can be performed by means of the so-called heterogeneity matrix. The

178 3 Parameter Estimation, Forecasting, Gap Filling

50 100 200

50
15

0
25

0

Heterogeneity Matrix

50 100 200

50
10

0
20

0

Heterogeneity Matrix

Fig. 3.30 “Sunspots”: Heterogeneity matrices B = 22 (left) and B = 44 (right)

rows correspond to sliding base subseries of length B. We chose the same two
values, B = 22 and B = 44. Each subseries produces a subspace, which is
exactly the subspace used for frequency tracking. The columns correspond to sliding
test subseries of length T . We take T = B. Each test series produces a set
of L-lagged vectors. The heterogeneity index is defined as the sum of distances
from the L-lagged vectors of the test series to the base subspace, see (3.1) in
Golyandina et al. (2001). Large values of the heterogeneity index correspond to
large dissimilarity between the test and base subseries. In Fig. 3.30, large values
of the heterogeneity index are depicted by red color, while small values of this
index are depicted by white and yellow colors. If we consider rows or columns of
the heterogeneity matrix, then we see that there is a change-point starting from the
subseries (x80, . . . , x80+B−1). This corresponds to the same change at around year
1800, which we have found by the frequency tracking. Note that after the subseries
passes the intervals that include the change-point, the values of the heterogeneity
index become smaller again. This means that the change in the series was temporal.

Fast algorithms of subspace tracking were developed in many papers (e.g., Real
et al. (1999), Badeau et al. (2004), among others), since it can be expected that the
subspace estimate for the (n + 1)th subseries can be calculated more effectively if
one uses the information obtained at the previous nth step. However, our experience
shows that despite the fast algorithms implemented in the RSSA and SVD packages
cannot be improved on the base of the use of previously constructed subspaces, these
implementations of RSSA and SVD can be faster than the improved conventional
algorithms.

3.5.7 Automatic Choice of Parameters for Forecasting

Since SSA can be applied without requiring validity of any model for the time
series, the choice of parameters should be non-specific. The most conventional

3.5 Case Studies 179

model-free way of parameter choice is the minimization of forecasting errors within
the validation (training) period. This approach can be applied if the time series
length is large enough.

Fragment 3.5.13 contains the code of functions, which may help in finding
the optimal parameters (which are the window length and the number of leading
components). The function forecast.mse performs forecasting on the base of a
given ssa object x and calculates the mean square of the difference between the
forecast and a given time series F.check. The function forecast.sliding.mse

call forecast.mse for sliding subseries, given set of window lengths L, and set of
numbers of components ncomp used for forecasting. The function forecast.mse

is designed to be applied to one series (subseries), one window length, one number
of leading components. In forecast.sliding.mse, forecast.mse is applied to
many (K.sliding) subseries of a given series, many window lengths (stored in
the vector L), many numbers of components (stored in the vector ncomp), which is
done in an effective manner. In this way, we obtain a 3D array of MSE errors. Note
that the number of SSA decompositions is equal to the number of sliding windows
K.sliding multiplied by the number of window lengths.

Finally, the function optim.par on the base of this 3D array calculates the matrix
of mean MSE errors, which are obtained by computing the average of the MSE
errors corresponding to different sliding subseries, and finds the optimal window
length and the number of components, which correspond to the minimal mean MSE.
The matrix of mean MSE errors provides a possibility to plot the dependence of
accuracy as a function of parameters and hence to check if this accuracy is stable
(that is, does not change much) in the chosen range of parameters.

To use the function optim.par, the user should choose the length of the
validation period. This validation period may correspond to the whole series. In the
example considered (see Fragment 3.5.13) the whole series is divided into training
and test periods to check the forecast accuracy.

Fragment 3.5.13 (Functions for the Search of Optimal Parameters)

> library("plyr")
> forecast.mse <- function(x, F.check,
+ forecast.len = 1, ...) {
+ stopifnot(length(F.check) == forecast.len)
+ f <- forecast(x, h = forecast.len, ...)
+ mean((f$mean - F.check)^2)
+ }
> forecast.sliding.mse <- function(F,
+ L, ncomp,
+ forecast.len = 1,
+ K.sliding = N %/% 4,
+ .progress = "none",
+ .parallel = FALSE,
+ ...) {
+ N <- length(F)
+ sliding.len <- N - K.sliding - forecast.len + 1
+ L.max = max(L); L.min = min(L); ncomp.max = max(ncomp)
+ stopifnot(sliding.len > L.max)

180 3 Parameter Estimation, Forecasting, Gap Filling

+ stopifnot(ncomp.max + 1 < min(L.min, N - L.max + 1))
+ g <- expand.grid(L = L, i = 1:K.sliding)
+ aaply(g, 1,
+ splat(function(L, i) {
+ F.train <- F[seq(from = i, len = sliding.len)]
+ F.check <- F[seq(from = sliding.len + i,
+ len = forecast.len)]
+ s <- ssa(F.train, L = L)
+ sapply(ncomp,
+ function(ncomp) {
+ res <- forecast.mse(s, F.check,
+ forecast.len =
+ forecast.len,
+ groups =
+ list(1:ncomp),
+ ...)
+ names(res) <- as.character(ncomp)
+ res
+ })
+ }),
+ .progress = .progress, .parallel = .parallel)
+ }
> optim.par <- function(m0) {
+ m <- apply(m0, c(1, 3), mean)
+ mpos <- which(m == min(m), arr.ind = TRUE)
+ L.opt <- Ls[mpos[1]]
+ ncomp.opt <- ncomp[mpos[2]]
+ list(L.opt = L.opt, ncomp.opt = ncomp.opt, m = m)
+ }

Fragment 3.5.14 shows how this function is applied to “Bookings” data to obtain
optimal parameters. The data contains the numbers of hourly hotel bookings through
a particular web-site during 6 months. We can expect the main period of the data to
be equal to 168 = 24 · 7 (frequency of the data is equal to 168 observations per
week). We forecast the series for 2 weeks. To find the parameters, we minimize the
RMSE errors of two forecasts for 336 = 2 · 168 steps ahead (K.sliding = 2).

Fragment 3.5.14 (“Bookings”: Search for Optimal Parameters)

> data("bookings", package = "ssabook")
> K.sliding <- 2
> forecast.base.len <- 2*frequency(bookings)
> base.len <- length(bookings)
> sliding.len <- base.len - K.sliding - forecast.base.len + 1
> print(sliding.len)
[1] 4007
> ncomp <- 1:100
> L.min <- frequency(bookings)
> Ls <- seq(L.min, 10*L.min, by = frequency(bookings))
> m0 <- forecast.sliding.mse(bookings,
+ K.sliding = K.sliding,
+ L = Ls, ncomp = ncomp,
+ method = "recurrent",

3.5 Case Studies 181

+ forecast.len = forecast.base.len,
+ .progress = "none")
> p <- optim.par(m0)
> print(c(p$L.opt, p$ncomp.opt, sqrt(min(p$m))))
[1] 504.0000 90.0000 116.0134
> matplot(Ls, sqrt(p$m), ylab = "", xlab = "Window lengths",
+ type = "l", col = topo.colors(100))

The dependence of RMSE errors on window lengths for different number
of components r chosen for decomposition is depicted in Fig. 3.31. Colors are
changing from blue to yellow; this corresponds to values of r from 1 to 100. The
optimal window length us equal to 504, the optimal number of components is equal
to 90.

In Fragment 3.5.15, the forecast is constructed with the parameters found. The
forecasts are shown in Fig. 3.32 for the whole series. One can see that the series has
some irregularities. The last points are depicted in Fig. 3.33.

Fragment 3.5.15 (“Bookings”: Forecast with Optimal Parameters)

> forecast.len <- 2*frequency(bookings)
> ssa.obj <- ssa(bookings, L = p$L.opt)
> ssa.for <- rforecast(ssa.obj, groups = list(1:p$ncomp.opt),
+ len = forecast.len)
> xyplot(cbind(bookings, ssa.for),
+ type = "l", superpose = TRUE)
> xyplot(cbind(bookings, ssa.for), type = "l",
+ superpose = TRUE, xlim = c(21,29))

500 1000 1500

15
0

20
0

25
0

30
0

Window lengths

Fig. 3.31 “Bookings”: Dependence of RMSE on L for different numbers of components

182 3 Parameter Estimation, Forecasting, Gap Filling

Time

0
50

0
10

00
15

00

5 10 15 20 25 30

bookings
ssa.for

Fig. 3.32 “Bookings”: Forecast with optimal parameters

Time

0
50

0
10

00
15

00

22 24 26 28

bookings
ssa.for

Fig. 3.33 “Bookings”: Forecast with optimal parameters for last points

3.5.8 Comparison of SSA, ARIMA, and ETS

As was mentioned in Sect. 1.6.3, real-world time series do not satisfy any model
exactly. Therefore, comparing application of ARIMA and SSA with totally different
models, we compare approximations by these models.

3.5 Case Studies 183

Seasonal ARIMA and exponential smoothing (ETS) methods correspond to
concrete model families. In particular, the frequency of the periodic component
(e.g., seasonality) should be specified. Therefore, different information criteria are
developed for these models. The idea of these criteria is to use some measure of
correspondence between the model and the time series and then adjust it by the
number of parameters in the model. In real-world problems, these information
criteria can be formally applied for the choice of model from the corresponding
family.

For SSA, we will use the approach described in Sect. 3.5.7. Since the minimized
forecasting errors are calculated for series points which do not participate in the
construction of the forecasts, this procedure partly avoids over-fitting. Minimization
of reconstruction errors is senseless, since the minimum can be reached by over-
fitting (the larger is the number of the reconstructed components, the smaller is the
reconstruction error).

ARIMA and ETS models provide theoretical prediction intervals for the whole
series. SSA provides bootstrap confidence intervals for the signal and bootstrap
prediction for the whole series in the model “signal + noise,” see Sect. 3.2.1.5. For
comparability, we will consider prediction intervals for all considered methods. To
compare accuracy of the methods, we consider the mean squared difference between
the series and mean forecasts for ARIMA and ETS and the mean squared difference
between the series and signal forecasts for SSA.

Let us consider the series “Sweetwhite” from the dataset “AustralianWine.”
This time series contains monthly sales of sweet white wines and has a changing
structure. Therefore, it does not suit any model. We divide the series into two parts:
training (base) and test ones (Fragment 3.5.16). Models will be constructed by
means of the training part, while the methods will be compared by the forecasting
of the test part values.

Fragment 3.5.16 (“Sweetwhite”: Training and Test Periods)

> name <- "Sweetwhite"
> wine <- window(AustralianWine, end = time(AustralianWine)[174])
> series <- wine[, name]
> set.seed(1)
> forecast.len <- 12
> base.len <- length(series) - forecast.len
> F.base <- window(series,
+ end = time(series)[base.len]) # training
> F.new <- window(series,
+ start = time(series)[base.len + 1]) # test

Fragment 3.5.17 contains the code, which seeks the parameters of SSA, the
window length and the number of eigentriples for forecasting. Similar to the
example in Sect. 3.5.7, the parameters correspond to minimal MSE forecasting
errors on the training part. Since the series is short enough and has a changing

184 3 Parameter Estimation, Forecasting, Gap Filling

behavior, we minimize the mean MSE of 12 two-step ahead forecasts. The obtained
values are L = 108, r = 8.

Fragment 3.5.17 (“Sweetwhite”: Search for SSA Parameters)

> K.sliding <- 12
> forecast.base.len <- 2
> ns <- base.len - K.sliding - forecast.base.len + 1
> ncomp <- 1:15
> L.min <- 24
> Ls <- seq(L.min, ns - L.min, by = 12)
> method <- "recurrent"
> m0 <- forecast.sliding.mse(F.base, K.sliding = K.sliding,
+ L = Ls, ncomp = ncomp,
+ method = method,
+ forecast.len = forecast.base.len)
> p <- optim.par(m0)
> print(c(p$L.opt, p$ncomp.opt, sqrt(min(p$m))))
[1] 108.00000 8.00000 24.80634
> # These parameters provides the best forecast
> # L.opt <- 132; ncomp.opt <- 13

In Fragment 3.5.18, the forecasts are constructed and the methods are compared
by RMSE. Since the parameters of SSA were constructed by forecasting of sliding
shortened time series of length 149, we will use the last 149 points of the base
series to construct the forecast for comparison. One can see that the forecast
accuracy is approximately the same. Since ARIMA and ETS models provides
prediction intervals for the whole series, we consider the SSA prediction intervals
too. Figures 3.34, 3.35, and 3.36 depict the series, the forecast (in blue color), and
the prediction intervals. Note that for ARIMA forecasting the prediction intervals
are very large.

Fragment 3.5.18 (“Sweetwhite”: Comparison of SSA, ARIMA and ETS)

> # SSA forecast
> F.base.short <-
+ window(F.base, start =
+ time(series)[K.sliding + forecast.base.len])
> ssa.obj <- ssa(F.base.short, L = p$L.opt)
> ssa.for <- forecast(ssa.obj,
+ groups = list(1:p$ncomp.opt),
+ method = method, h = forecast.len,
+ interval = "prediction",
+ level=c(0.8, 0.95))
> err.ssa <- (ssa.for$mean - F.new)^2
> # ARIMA forecast
> sarima.fit <- auto.arima(F.base, trace = FALSE,
+ lambda = 0, stepwise = FALSE)
> sarima.for <- forecast(sarima.fit, h = forecast.len)
> err.sarima <- (sarima.for$mean - F.new)^2
> # ETS forecast
> ets.fit <- ets(F.base)
> ets.for <- forecast(ets.fit, h = forecast.len)

3.5 Case Studies 185

> err.ets <- (ets.for$mean - F.new)^2
> # Models
> print(sarima.fit)
Series: F.base
ARIMA(1,1,0)(2,0,0)[12]
Box Cox transformation: lambda= 0
Coefficients:

ar1 sar1 sar2
-0.4165 0.4847 0.2123

s.e. 0.0722 0.0765 0.0813
sigma^2 estimated as 0.03897: log likelihood=30.78
AIC=-53.55 AICc=-53.29 BIC=-41.22
> print(ets.fit)
ETS(M,N,M)
Call:
ets(y = F.base)
Smoothing parameters:

alpha = 0.5571
gamma = 1e-04

Initial states:
l = 123.5798
s=1.4262 1.2408 1.0236 1.0546 1.1188 1.0852

0.7795 0.8136 0.8903 0.8834 0.8241 0.8598
sigma: 0.1732

AIC AICc BIC
2026.600 2029.887 2072.913
> print(c("SSA(L,r)", p$L.opt, p$ncomp.opt))
[1] "SSA(L,r)" "108" "8"
> # RMSE for test periods
> print(c("ssa", sqrt(mean(err.ssa))))
[1] "ssa" "55.3572366330604"
> print(c("sarima", sqrt(mean(err.sarima))))
[1] "sarima" "60.1534785331151"
> print(c("ets", sqrt(mean(err.ets))))
[1] "ets" "54.2338009066311"
> # Plot of forecasts with confidence intervals
> plot(ets.for); lines(series,col="black");
> plot(sarima.for); lines(series,col="black");
> plot(ssa.for); lines(series,col="black");

186 3 Parameter Estimation, Forecasting, Gap Filling

Forecasts from ETS(M,N,M)

1980 1985 1990

10
0

30
0

50
0

Fig. 3.34 “Sweetwhite”: ETS forecast with optimal parameters

Forecasts from ARIMA(1,1,0)(2,0,0)[12]

1980 1985 1990

10
0

30
0

50
0

Fig. 3.35 “Sweetwhite”: ARIMA forecast with optimal parameters

Forecasts from SSA (recurrent)

1982 1984 1986 1988 1990 1992 1994

10
0

30
0

50
0

Fig. 3.36 “Sweetwhite”: SSA forecast with optimal parameters

References

Badeau R, Richard G, David B (2004) Sliding window adaptive SVD algorithms. IEEE Trans
Signal Process 52(1):1–10

Barkhuijsen H, de Beer R, van Ormondt D (1987) Improved algorithm for noniterative time-
domain model fitting to exponentially damped magnetic resonance signals. J Magn Reson
73:553–557

Basseville M, Nikiforov IV, et al (1993) Detection of abrupt changes: theory and application,
vol 104. Prentice Hall, Englewood Cliffs

References 187

Beckers J, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic data
sets. Atmos Ocean Technol 20:1839–1856

Cadzow JA (1988) Signal enhancement: a composite property mapping algorithm. IEEE Trans
Acoust 36(1):49–62

Du K, Zhao Y, Lei J (2017) The incorrect usage of singular spectral analysis and discrete wavelet
transform in hybrid models to predict hydrological time series. J Hydrol 552:44–51

Gillard J, Kvasov D (2016) Lipschitz optimization methods for fitting a sum of damped sinusoids
to a series of observations. Stat Interface 10(1):59–70

Gillard J, Zhigljavsky A (2011) Analysis of structured low rank approximation as an optimization
problem. Informatica 22(4):489–505

Gillard J, Zhigljavsky A (2013) Optimization challenges in the structured low rank approximation
problem. J Global Optim 57(3):733–751

Gillard J, Zhigljavsky AA (2016) Weighted norms in subspace-based methods for time series
analysis. Numer Linear Algebra Appl 23(5):947–967

Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with
missing values. J Stat Plan Inference 137(8):2642–2653

Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer briefs in
statistics. Springer

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and
related techniques. Chapman&Hall/CRC

Golyandina N, Korobeynikov A, Shlemov A, Usevich K (2015) Multivariate and 2D extensions of
singular spectrum analysis with the Rssa package. J Stat Softw 67(2):1–78

Hyndman RJ (2017) FORECAST: Forecasting functions for time series and linear models. URL
http://CRAN.R-project.org/package=forecast, R package version 8.1, with contributions from
Slava Razbash and Drew Schmidt

Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets.
Nonlinear Process Geophys 13(2):151–159

Markovsky I (2012) Low rank approximation. Springer
Markovsky I, Usevich K (2014) Software for weighted structured low-rank approximation. J

Comput Appl Math 256:278–292
Markovsky I, Willems JC, Van Huffel S, De Moor B (2006) Exact and approximate modeling of

linear systems: A behavioral approach, vol 11. SIAM
Moskvina V, Zhigljavsky A (2003) An algorithm based on singular spectrum analysis for change-

point detection. Commun Stat Simul Comput 32(2):319–352
Nekrutkin V (2010) Perturbation expansions of signal subspaces for long signals. Stat Interface

3:297–319
Real E, Tufts D, Cooley JW (1999) Two algorithms for fast approximate subspace tracking. IEEE

Trans Signal Process 47(7):1936–1945
Rodrigues PC, de Carvalho M (2013) Spectral modeling of time series with missing data. Appl

Math Modell 37(7):4676–4684
Roy R, Kailath T (1989) ESPRIT: estimation of signal parameters via rotational invariance

techniques. IEEE Trans Acoust 37:984–995
Schoellhamer D (2001) Singular spectrum analysis for time series with missing data. Geophys Res

Lett 28(16):3187–3190
Tartakovsky A, Nikiforov I, Basseville M (2014) Sequential analysis: Hypothesis testing and

changepoint detection. CRC Press
Usevich K (2010) On signal and extraneous roots in singular spectrum analysis. Stat Interface

3(3):281–295
Van Huffel S, Chen H, Decanniere C, van Hecke P (1994) Algorithm for time-domain NMR data

fitting based on total least squares. J Magn Reson Ser A 110:228–237
Zhigljavsky A, Golyandina N, Gillard J (2016a) Analysis and design in the problem of vector

deconvolution. In: Kunert J, Müller HC, Atkinson CA (eds) mODa 11 - advances in model-
oriented design and analysis. Springer International Publishing, pp 243–251

http://CRAN.R-project.org/package=forecast

188 3 Parameter Estimation, Forecasting, Gap Filling

Zhigljavsky A, Golyandina N, Gryaznov S (2016b) Deconvolution of a discrete uniform distribu-
tion. Stat Probab Lett 118:37–44

Zvonarev N, Golyandina N (2017) Iterative algorithms for weighted and unweighted finite-rank
time-series approximations. Stat Interface 10(1):5–18

Chapter 4
SSA for Multivariate Time Series

In this chapter we consider the problem of simultaneous decomposition, recon-
struction, and forecasting for a collection of time series from the viewpoint of
SSA. The main method of this chapter is usually called either Multichannel SSA
or Multivariate SSA, shortly MSSA. The principal idea of the algorithm is the
same as for Basic SSA, the difference is in the way of how the trajectory matrix is
constructed. The aim of MSSA is to take into consideration the combined structure
of a multivariate series to obtain more accurate results.

MSSA is usually considered as an extension of 1D-SSA. However, the algorithm
of MSSA was published even earlier than the algorithm of 1D-SSA; see Weare
and Nasstrom (1982), where MSSA was named Extended Empirical Orthogonal
Function (EEOF) analysis. The MSSA algorithm in the framework of SSA was
formally formulated in Broomhead and King (1986b). Here we consider the
algorithm of MSSA for the analysis and forecasting of multivariate time series
following the approach described in Golyandina et al. (2001; Chapter 2) for one-
dimensional series and in Golyandina and Stepanov (2005) for multidimensional
ones.

Section 4.1 starts this chapter by describing the complex-valued version of 1D-
SSA (called Complex SSA), which is a natural generalization of 1D-SSA for the
analysis and forecasting of a system of two time series (Keppenne and Lall 1996).

In Sect. 4.2 we expand the methodology of Chap. 2 for the SSA analysis
of a system of several time series. It is important to note that there are two
main ways of stacking individual trajectory matrices into a joint trajectory matrix:
horizontal stacking and vertical stacking. For the MSSA analysis, these two stacking
procedures are equivalent.

Section 4.3 considers forecasting in MSSA. There are four main variants of
MSSA forecasting: recurrent column forecasting, recurrent row forecasting, vector
column forecasting, and vector row forecasting. We carefully describe the com-
monalities and differences between these four variants and make their comparison
on a simulated data. Finally, in Sect. 4.4 we discuss features of the MSSA analysis,

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
N. Golyandina et al., Singular Spectrum Analysis with R, Use R!,
https://doi.org/10.1007/978-3-662-57380-8_4

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57380-8_4&domain=pdf
https://doi.org/10.1007/978-3-662-57380-8_4

190 4 SSA for Multivariate Time Series

forecasting and data filling on several real-world data sets. The examples considered
in Sects. 4.3 and 4.4 and the discussion of Sect. 4.3.4 demonstrate that essentially
all the techniques that have been developed in Chaps. 2 and 3 for 1D-SSA can be
naturally extended to the multivariate case. This concerns, in addition to the SSA
analysis and forecasting, the practical problems of smoothing, filtering, imputation
of missing values, estimation of parameters of the signal, and also subspace tracking
for monitoring stability and change-point detection.

4.1 Complex SSA

Any real-valued 1D-SSA variation can be transferred to the complex-valued case.
At present, only Basic 1D-SSA is implemented in the RSSA package in the complex-
valued form. Therefore, in this section we briefly discuss the complex-valued
version of Basic 1D-SSA and call it Complex SSA. A comparison of Complex SSA
with other methods of multivariate SSA will be made in subsequent sections of this
chapter.

4.1.1 Method

Assume that a system of two time series of the same length N is given. Then we
can consider the one-dimensional complex-valued series X = X

(1) + iX(2) and
apply the complex version of 1D-SSA to this one-dimensional series. Since the
Basic SSA algorithm in Sect. 2.1 is written in the real-valued form, there is some
difference in the form of the SVD performed in the complex-valued space, where
the transposition should be Hermitian.

Also, there is a specificity related to the uniqueness of the SVD expansion. If the
singular values are different, then the SVD is unique up to multiplication of left and
right singular vectors by c, where |c| = 1. In the real-valued case, c = ±1, while in
the complex-valued case there are infinitely many complex numbers c with |c| = 1.

Complex-valued SSA forecasting and parameter estimation are straightforward
extensions of the corresponding techniques for the real-valued time series. In the
current version of RSSA, forecasting (recurrent and vector ones), Cadzow iterations
and gap-filling are implemented but the parameter estimation and the shaped version
of SSA are not.

4.1.2 Separability

Separability in Complex SSA is defined exactly as in the real-valued 1D-SSA
variations. However, the conditions for separability are different. Conditions for

4.1 Complex SSA 191

Complex SSA separability of time series are more restrictive than the separability
conditions for the one-dimensional series (Golyandina et al. 2015; Appendix A.1).
In particular, the following sufficient condition for weak separability is valid.

Proposition 4.1 If time series F(1) and F(2),G(1) andG(2), F(1) andG(2), and also
G

(1) and F
(2) are weakly L-separable by 1D-SSA, then the complex-valued time

series F(1) + iF(2) and G(1) + iG(2) are weakly L-separable for Complex SSA.

The conditions of Proposition 4.1 can be extended to conditions for asymptotic
separability (N → ∞) and therefore for approximate separability for fixed N .

The most important difference between 1D-SSA and Complex SSA is
related to the separability of imaginary exponential functions with the term
sn = Aei(2πωn+φ) = A cos(2πωn + φ) + iA sin(2πωn + φ), 0 < ω < 0.5.
Such series have the Complex SSA-rank 1, which is smaller than the 1D-SSA-ranks
of real and imaginary parts of these functions; these ranks are equal to 2. Recall
that the rank of a series is equal to the rank of its trajectory matrix constructed by
the chosen method. In particular, this feature implies that Complex SSA provides
better separability of imaginary exponential functions, in comparison with other
1D-SSA variations, see Golyandina and Stepanov (2005). Note that Complex SSA
for extraction of imaginary exponential functions is used as a step of the “f-xy
eigenfiltering” method for noise suppression in stacked 3-D volumes of seismic
traces (Trickett 2003).

Another difference is related to the eigenvalues produced by the complex
exponentials like sn = A cos(2πωn+φ1)+ iB sin(2πωn+φ2). In contrast to Basic
SSA, such time series frequently produce quite different eigenvalues depending on
relation between amplitudes and phases (Golyandina et al. 2015; Appendix A.1).
This can influence strong separability, either for the better or for the worse.

4.1.3 Algorithm

Complex SSA formally differs from Basic SSA, presented in Sect. 2.1.4, by the use
of the Hermitian transpose, which we will denote by “*.”

Algorithm 4.1 Complex SSA: decomposition
Input: Complex-valued time series X of length N and rank d, window length L.
Output: Decomposition of the trajectory matrix on elementary matrices X = X1 + . . .+Xd , where

where d = rankX and Xi = √
λiUiV

∗
i .

1: Construct the trajectory matrix X = TSSA(X).
2: Compute the SVD X = X1 + . . . + Xd , Xi = √

λiUiV
∗
i .

Note that despite the difference between Algorithms 2.1 and 4.1 is just in the
change of “T” by “*,” numerical complex-valued algorithms can be much more
complicated and less stable.

192 4 SSA for Multivariate Time Series

The reconstruction algorithm in Complex SSA is standard, see Algorithm 2.2.
Since the algorithms of forecasting for Complex SSA are very similar to that in

the real-valued case, we do not formulate them here.

4.1.4 Complex SSA in RSSA

4.1.4.1 Description of Functions

A typical call of the ssa function has the form

s <- ssa(x, L = (N + 1) %/% 2, kind = "cssa", svd.method = "svd")

where N is the series length.
Arguments:

x is an object to be decomposed. For Complex SSA it is assumed to be a simple
vector or vector-like object of complex numbers. Everything else is coerced to
vector.

L is a window length. By default it is fixed to half of the series length.
kind specifies the kind of SSA to apply.
svd.method selects the SVD method to use. Unlike for the case of real-valued

SSA, only straightforward implementations of the complex SVD at Decompo-
sition step are included into the RSSA package (called svd and eigen).

Since Complex SSA is an extension of Basic SSA to the complex-valued case,
calls of reconstruct, forecast, and cadzow functions are exactly the same as in
the real-valued case; see details in Sect. 2.1.5.

4.1.4.2 Typical Code

The following code demonstrates how to extract trends from two series simulta-
neously. The data “Stocks” includes daily closing prices of major European stock
indices, 1991–1998, included into the RSSA package. The first series is related to
Germany DAX (Ibis), the second series contains data for Switzerland SMI.

Fragment 4.1.1 (“Stocks”: Reconstruction)

> library("Rssa")
> s <- ssa(EuStockMarkets[, 1] + 1i*EuStockMarkets[, 2],
+ kind = "cssa", svd.method = "svd")
> r <- reconstruct(s, groups = list(Trend = 1:2))
> plot(r, plot.method = "xyplot", layout = c(2, 3))
> plot(s, type = "vectors", idx = 1:8)
> len = 2
> print(rforecast(s, groups = list(Trend = 1:2), len = len)[1:len])
[1] 6156.061+8492.425i 6169.006+8507.808i

4.1 Complex SSA 193

Reconstructed Series

Time

20
00

40
00

60
00

Original Re

1992 1994 1996 1998

20
00

40
00

60
00

80
00

Original Im

20
00

40
00

60
00

Re Trend

20
00

40
00

60
00

80
00

Im Trend

−5
00

0
50

0

1992 1994 1996 1998

Residuals Re

−1
00

0
0

50
0

Residuals Im

Fig. 4.1 “Stocks”: Reconstructed trends

The estimated common trends are depicted in Fig. 4.1.
We choose ET1–2 by analyzing eigenvectors shown in Fig. 4.2. Similarly to the

real-valued case, for trend extraction we should specify eigentriples with slowly-
varying real and imaginary parts of eigenvectors; they are depicted using different
colors. Note that the real part refers to the first series and the imaginary part
corresponds to the second series.

However, paired scatterplots can no longer be used for detecting the sine-wave
components, since eigenvectors are defined up to multiplication by a unit complex
number and therefore the real and imaginary parts of two eigenvectors can differ by
an arbitrary phase not equal to π/2.

194 4 SSA for Multivariate Time Series

Eigenvectors
1 (98.78%) 2 (0.79%) 3 (0.17%) 4 (0.06%)

5 (0.05%) 6 (0.04%) 7 (0.02%) 8 (0.01%)

Fig. 4.2 “Stocks”: Eigenvectors, real and imaginary parts

4.2 MSSA Analysis

4.2.1 Method

Consider a multivariate time series; that is, a collection {X(p) = (

x
(p)
j

)Np

j=1, p =
1, . . . , s} of s time series of length Np, p = 1, . . . , s.

Denote X = (X(1), . . . ,X(s)) the initial data for the MSSA algorithm. The
generic scheme of the algorithm described in Sect. 1.1 holds for MSSA; we only
need to define the embedding operator TMSSA(X) = X.

4.2.1.1 Embedding

Let L be an integer called window length, 1 < L < min(Np, p = 1, . . . , s).

For each time series X
(p), we form Kp = Np − L + 1 L-lagged vectors X

(p)

j =
(x

(p)
j , . . . , x

(p)

j+L−1)
T, 1 ≤ j ≤ Kp. Denote K = ∑s

p=1 Kp. The trajectory matrix
of the multidimensional series X is a matrix of size L × K and has the form

TMSSA(X) = X = [X(1)
1 : . . . : X

(1)
K1

: . . . : X
(s)
1 : . . . : X

(s)
Ks

] = [X(1) : . . . : X(s)], (4.1)

where X(p) = TSSA(X(p)) is the trajectory matrix of the one-dimensional series
X

(p) defined by (2.1). Thus, the trajectory matrix of a system of time series has

4.2 MSSA Analysis 195

stacked Hankel structure. Note that

T−1
MSSA(X) = [T−1

SSA(X(1)) : . . . : T−1
SSA(X(s))]. (4.2)

Let us make an important comment concerning Embedding step formulated
above.

In papers devoted to MSSA, Embedding step can differ. First, in some papers,
including papers on climatological applications of MSSA (see, e.g., Broomhead and
King (1986); Allen and Robertson (1996); Hannachi et al. (2007)), the trajectory
matrix is transposed; that is, the trajectory matrices X(p) are stacked vertically. We
stack them horizontally with the purpose of getting the same structure of the column
space in MSSA as in 1D-SSA. Since the time series can have different lengths, one
dimension of their trajectory matrices X(p), p = 1, . . . , s, is the same, while the
other dimension can differ. We call the coinciding dimension the window length
L and stack the matrices horizontally to obtain the trajectory space (the column
subspace of the trajectory matrix, i.e., the space produced by L-lagged vectors of
the system of series) of dimension L.

In the horizontally-stacked case, the column trajectory space of a system of
identical series coincides with the trajectory space of one time series, while in
the vertically-stacked case it is not so. Also, the horizontal stacking is consistent
with the continuation of time series, since the increase of series lengths changes the
number of lagged vectors and does not change their dimension.

The discussion on similarities and dissimilarities of the horizontally-stacked and
vertically-stacked versions of MSSA will be continued at the end of this section (see
Remarks 5 and 6) and in Sect. 4.2.4.1.

4.2.1.2 Decomposition

The conventional rank-one matrix decomposition at Decomposition step of MSSA
is constructed by applying the SVD to the trajectory matrix; that is, the standard
MSSA is an extension of Basic SSA and therefore it can be called Basic MSSA.

Oblique modifications of MSSA are the same as in the 1D case; that is, one can
perform nested decompositions by Iterative O-SSA and Filter-adjusted O-SSA. The
use of these nested variations is exactly the same as in the 1D case and we refer the
reader to Sects. 2.4 and 2.5 for details.

4.2.1.3 Reconstruction

Since M(H)
L,K in MSSA is the set of stacked Hankel matrices, the orthogonal projector

Πstacked H to M
(H)
L,K has the form

Πstacked H(Y) = [ΠH(Y(1)) : . . . : ΠH(Y(s))], (4.3)

196 4 SSA for Multivariate Time Series

where ΠH is defined in (2.2). The equality (4.3) follows from the general form of
the projection described in Sect. 1.1.2.6. Similar to the 1D case, the reconstructed
series are obtained by means of the composition of T−1

MSSA and Πstacked H.

4.2.1.4 Comments

Let us make some comments concerning characteristic features of MSSA.
The eigenvectors {Ui} in the SVD of the trajectory matrix X = ∑

i

√
λiUiV

T
i

form the common basis of the column trajectory spaces of all time series from the
system. Factor vectors {Vi} (often called extended empirical orthogonal functions
(EEOF) in climatology applications, starting from Weare and Nasstrom (1982))
consist of parts related to each time series separately; that is,

Vi =
⎛

⎜

⎝

V
(1)
i
...

V
(s)
i

⎞

⎟

⎠
, (4.4)

where the pth factor subvector V
(p)

i ∈ RKp belongs to the row trajectory space of
the pth series.

The eigenvectors Ui reflect the common features of time series, while the factor
subvectors V

(p)

i show how these common features appear in each series. It is natural

to transform a factor vector to a factor system of factor subvectors V
(p)
i . Then the

form of transformed factor vectors will be similar to the initial system of series.
Similarly to the one-dimensional case, the main result of application of MSSA

is a decomposition of the multivariate time series into a sum of m multivariate
series; the parameters are the window length L and the way of grouping. For the
frequently used case of two groups, we denote by ˜X

(k) = (

x̃
(k)
j

)N

j=1, k = 1, . . . , s,
the reconstructed series (usually, the signal) corresponding to the first group of
eigentriples I1.

4.2.1.5 Remarks

1. The indexing of time points 1, . . . , Np (p = 1, . . . , s) starting from 1 does not
mean that all s series start at the same time; they can also finish at different times.
The resultant decomposition obtained by the MSSA algorithm does not depend
on the shift between the one-dimensional series and therefore this indexing is
only a formality. In particular, MSSA decompositions of two one-dimensional
series measured at the same time interval and at disjoint time intervals do not
differ.

4.2 MSSA Analysis 197

2. The original time ranges for series X
(p) can be useful for depicting and inter-

preting them. The reconstructed series have the same time ranges as the original
series. Factor subvectors from the factor system can also be synchronized for
plotting based on the ranges of the initial series; although factor vectors are
shorter than the initial series, their time shifts are the same.

3. For simultaneous analysis of several time series, it is recommended to transfer
them into the same scale. Otherwise, the structure of one particular time series
will have too much influence on the MSSA results. To balance the time series,
they can be either standardized (centered and normalized, in additive models) or
only normalized (in multiplicative models). From the other viewpoint, scaling of
individual series can be used to influence the importance of a particular series of
the system when, for example, this particular series is more important or has a
smaller noise component.

4. The MSSA algorithm can be modified in the same ways as the 1D-SSA
algorithm. For example, Toeplitz MSSA and MSSA with projection (including
centering) can be considered. (However, these options are not implemented in
the current version of RSSA.) Nested oblique variations of 1D-SSA (Iterative
O-SSA and Filter-adjusted O-SSA) are implemented in RSSA.

5. In climatology, the SVD of the transposed (vertically-stacked) trajectory matrix
defined in (4.1) is traditionally considered (Hannachi et al. 2007) as the trajectory
matrix. Therefore, the eigenvectors {Ui} correspond to normalized extended
principal components in Hannachi et al. (2007), while the factor vectors {Vi}
are called Extended Empirical Orthogonal Functions (EEOFs).

6. The computational cost of the SVD at Decomposition step depends on the size of
the matrix XXT and hence this computational cost may be significantly different
for the horizontally-stacked and vertically-stacked versions of MSSA.

4.2.2 Multi-Dimensional Time Series and LRRs

The model of a system of time series which well suits MSSA is related to times
series governed by LRRs. Instead of one LRR of the form (1.8) in the 1D case, see
Sects. 1.4 and 2.1.2.2, we have a system of LRRs, which can reflect similarity of
time series in the system.

Consider a system of infinite time series X
(1), . . . ,X(s), choose the window

length L, and denote X(1), . . . ,X(s) the column trajectory spaces of the series.
Let X = span(X(1), . . . ,X(s)) be the column trajectory space of the collection
of time series (X(1), . . . ,X(s)). Similarly to the 1D case, we call the dimension
of the trajectory space X (equal to the rank of the trajectory matrix X of the
series collection) the MSSA-rank of the series collection, see Sect. 1.1.2 for short
description of general notions.

198 4 SSA for Multivariate Time Series

Denote the 1D-SSA-ranks of X(l) by rl = dimX(l) ≤ L, l = 1, . . . , s. For each
time series X(l), we can write the minimal LRR governing the series:

x
(l)
j+rl

=
rl
∑

k=1
a

(l)
k x

(l)
j+rl−k, where a

(l)
rl
= 0, l = 1, . . . , s. (4.5)

The characteristic polynomials of the LRRs (4.5) are

P
(l)
rl (μ) = μrl −

rl
∑

k=1
a

(l)
k μrl−k, l = 1, . . . , s. (4.6)

Recall that the roots of the characteristic polynomials of the minimal LRRs
governing the series are called signal roots.

Let

p(l) be the number of different roots of the polynomial P
(l)
rl (μ),

μ
(l)
m be the m-th root of the polynomial P

(l)
rl (μ),

k
(l)
m be the multiplicity of the root μ

(l)
m .

Then

k
(l)
1 + . . . + k

(l)

p(l) = rl, l = 1, . . . , s.

The characteristic roots determine the series behavior. For example, if k
(l)
m = 1, then

x(l)
n =

rl
∑

m=1

C(l)
m

(

μ(l)
m

)n

.

Also let

μ1, . . . , μp be the pooled set of roots of polynomials P
(1)
r1 , . . . , P

(s)
rs ,

k1, . . . , kp be the multiplicities of the roots μ1, . . . , μp,

where multiplicity of a root in the pooled set is equal to the maximum of
multiplicities of the corresponding roots in the initial sets.

Since the roots are determined by the structure of the trajectory space, the
following proposition holds, see Golyandina et al. (2015; Appendix A.2).

Proposition 4.2 Let r = ∑p

i=1 ki < L. Then the rank of the infinite multi-
dimensional time series (X(1),X(2), . . . ,X(s)) is equal to r .

Consider a simple example.

4.2 MSSA Analysis 199

Example 4.1 Let F(1) = (f
(1)
1 , . . . , f

(1)
N) and F

(2) = (f
(2)
1 , . . . , f

(2)
N) with

f
(1)
k = A cos(2πω1k + ϕ1), f

(2)
k = B cos(2πω2k + ϕ2), (4.7)

where 0 < ω < 1/2, 0 ≤ ϕ1, ϕ2 < 2π and A,B
= 0. Let us fix the window length
L > 4 and find the 1D-SSA-rank of the time series F

(1), the MSSA-rank of the
system (F(1),F(2)) and the Complex SSA-rank of F(1) + iF(2):

1. For ω1 = ω2, the 1D-SSA ranks of F(1) and F
(2), as well as the MSSA-rank of

(F(1),F(2)), are equal to 2. The Complex SSA-rank of F(1) + iF(2) is equal to 1
if A = B and |ϕ1 − ϕ2| = π/2 mod π and is equal to 2 otherwise.

2. For ω1
= ω2 the 1D-SSA-rank of F(1) and F
(2) is equal to 2. The MSSA rank of

(F(1),F(2)) and the Complex SSA-rank of F(1) + iF(2) are both equal to 4.

4.2.2.1 Matching of Series

Simultaneous analysis of several time series is usually performed to identify their
inter-relation and to extract their common structure. Recall that for 1D-SSA, a time
series has a structure if and only if the trajectory matrix of this series is rank-
deficient. Certainly, for a typical real-world series, the trajectory matrix has full
rank. Therefore, in what follows we talk about the rank of signal (a part of times
series with structure) or its components.

Consider a system of signals H = (H(1),H(2)) with a rank-deficient trajectory
matrix. The structure of a series is reflected in its trajectory space. We can say
that two time series have the same structure if their trajectory spaces coincide. For
example, for two sine waves with equal periods their trajectory spaces coincide,
whatever the values of their amplitudes and phases. This follows from the fact that
the trajectory space is the span of subseries of length L of the initial series. On the
other hand, sine waves with different frequencies have entirely different structure
and the combined trajectory space of their system is a direct sum of the series
trajectory spaces.

If two time series are fully matched, then the trajectory space of one time series
can be used for reconstructing or forecasting of the second series. If two series are
unrelated and have totally different structure, then neither series contains any useful
information about the other series for the MSSA analysis.

For MSSA, any shift between two time series and any difference between phases
of two matched sine waves have no influence on the result of analysis. Therefore,
one cannot say anything about the direction of causality. Moreover, asymmetry of
influence of one time series to the another series can be caused by different levels
of noise. However, the time series X(2) can be called supportive for the time series
X

(1) = H
(1) + R

(1) if the accuracy of either reconstruction or forecasting of H(1)

improves if we analyze the system of two series X = (X(1),X(2)) rather than the
series X(1) alone.

200 4 SSA for Multivariate Time Series

Numerical experiments confirm that for two matching signals the series with any
level of noise, which is not larger than the other one, is always supportive (see, e.g.,
Sect. 4.3.3.3).

4.2.3 Separability

The notion of separability for multidimensional time series is similar to that for one-
dimensional series; the latter was briefly considered in Sect. 1.1.2 and thoroughly
described in Golyandina et al. (2001; Sections 1.5 and 6.1).

Separability is the key notion in the SSA theory. Indeed, separability of H from
R means the ability of SSA to extract H from the sum H + R. Recall that there is a
weak separability, which means orthogonality of the trajectory spaces, and a strong
separability which is equivalent to empty intersection of the sets of singular values
produced by the series which we are trying to separate.

Conditions of separability of multidimensional time series are more restrictive
than that for one-dimensional series. The following sufficient condition of weak
separability is valid (exactly the same as for Complex SSA, see Sect. 4.1.2), see
(Golyandina et al. 2015; Appendix A.1).

Proposition 4.3 If time series F(1) and F(2),G(1) andG(2), F(1) andG(2), and also
G

(1) and F
(2) are weakly L-separable by 1D-SSA, then the two-dimensional time

series (F(1),F(2)) and (G(1),G(2)) are weakly L-separable by MSSA.

Proposition 4.3 can be extended to cover the case of asymptotic separability (as
series lengths Ni → ∞) and therefore approximate separability for fixed large Ni .

Example 4.2 Consider an example of four harmonic real-valued time series F
(1),

F
(2), G(1), and G

(2) of length N :

f
(1)
k = A1 cos(2πω1k + ϕ1), f

(2)
k = B1 cos(2πω1k + ϕ2),

g
(1)
k = A2 cos(2πkω2k + φ1), g

(2)
k = B2 cos(2πkω2k + φ2),

ω1
= ω2, k = 0, . . . , N − 1, A1, A2, B1, B2
= 0. If Lωi and Kωi (i = 1, 2) are
integers, then (F(1),F(2)) and (G(1),G(2)) are L-separable by MSSA.

Note that if either Lωi or Kωi (or both) is not integer, then the two series are not
L-separable; however, asymptotic (and approximate for finite lengths) separability
takes place.

Weak separability is not enough for extraction of time series components.
Therefore, let us look at strong separability related to eigenvalues produced by
time series components. It appears that the same pair of time series (F(1),F(2)) can
produce different eigenvalues in 1D-SSA, MSSA, and Complex SSA. Therefore, by
applying a more suitable multivariate extension of 1D-SSA we can improve strong
separability.

4.2 MSSA Analysis 201

Example 4.3 Let

f
(1)
k = A cos(2πωk + ϕ1), f

(2)
k = B cos(2πkωk + ϕ2).

If Lω and Kω are integers, then (F(1),F(2)) produces two equal eigenvalues in
MSSA: λ1 = λ2 = (A2+B2)LK/4. This implies that there is no strong separability
in the respective version of MSSA. Note, however, that there is strong separability
in this example for Complex SSA, see Golyandina et al. (2015).

4.2.4 Comments on 1D-SSA, MSSA and Complex SSA

4.2.4.1 Covariance Structure

Consider in more detail the case of two time series X = (F,G) and let F and G
be the trajectory matrices of F and G correspondingly. Then, since in MSSA we
stack the individual trajectory matrices horizontally, the trajectory matrix of X is
X = [F : G]. In accordance with (2.3), the SVD of X = X(H) is X = ∑

i

√
λiUiV

T
i ,

where λi and Ui are eigenvalues and eigenvectors of the matrix S = S(H)
MSSA =

XXT = FFT + GGT and Vi = XTUi/
√

λi .
Consider now the vertical stacking of the trajectory matrices of F and G in the

trajectory matrix: X(V) =
(

FT

GT

)

= (

X(H)
)T

.

The SVD of X(V) is then X(V) = ∑

i

√
λiViU

T
i , the transposed SVD of X.

Here λi , Vi , and Ui are exactly the same as above but now they have different
interpretation: in particular, Vi (they are often called EEOFs, see Remark 5 in
Sect. 4.2.1) are the eigenvectors of

S(V)
MSSA = X(V)

(

X(V)
)T =

(

FTF FTG
GTF GTG

)

.

The last formula clearly demonstrates the relation between the two versions
(horizontal stacking and vertical stacking) of MSSA and shows that MSSA takes
into consideration cross-covariances of time series (more precisely, we obtain
the cross-covariances if centering of the one-dimensional series is done at the
preprocessing stage).

Consider now Complex SSA. Since the eigendecomposition of a complex-valued
matrix A + iB can be reduced to the eigendecomposition of the real-valued matrix

D =
(

A −B
B A

)

,

202 4 SSA for Multivariate Time Series

in the case of Complex SSA we in fact analyze eigenvectors of the matrix

SCSSA =
(

FTF FTG
GTF GTG

)

+
(

GTG −GTF
−FTG FTF

)

.

We can observe that the structures of the two one-dimensional series in Complex
SSA are mixed more than in MSSA.

4.2.4.2 Separability

Conditions of separability for multidimensional time series are more restrictive than
that for one-dimensional series. In particular, a sufficient condition for separability
of a two-series system is the separability of each series from the first collection with
each series from the second one. However, for matched signals, their (weak) 1D-
SSA-separability from noise can be considerably improved by their simultaneous
MSSA analysis.

Since weak separability is not enough for extraction of time series components,
we should pay attention to strong separability related to eigenvalues produced by
the time series components. It appears (see Example 4.3) that the two-dimensional
time series (F(1),F(2)) typically produce different eigenvalues in 1D-SSA, MSSA,
and Complex SSA. Therefore, an application of more suitable multidimensional
version of SSA can improve strong separability. However, non-matching of one-
dimensional time series in a system of series increases the number of eigenvalues
related to the signal and hence increases the chance of mixing the signal with the
residual. To overcome this effect, the modification DerivSSA (see Sect. 2.5 for the
1D case), which is able to considerably improve strong separability, is implemented
in RSSA for the MSSA analysis of a collection of time series.

4.2.4.3 Ranks

Rank of a signal is a very important notion in SSA, since it reflects the complexity
of signals and hence the difficulty of the problem of their extraction. For MSSA
and Complex SSA, the notions of the time series of finite rank and of time
series satisfying LRRs are similar to the related notions in 1D-SSA, although the
rank of the same time series may be different and depend on the method used.
Let us compare 1D-SSA-, MSSA-, and Complex SSA-ranks, i.e., ranks of the
corresponding trajectory matrices. By 1D-SSA-rank for a collection of time series
we mean the rank of each one-dimensional series separately.

If two time series have the same structure (and therefore the same 1D-SSA-
ranks), then the MSSA-rank is equal to the 1D-SSA-rank of each of the two series.
The Complex SSA-rank can be even smaller than the individual 1D-SSA-ranks in
the specific case of imaginary exponentials.

4.2 MSSA Analysis 203

Consider a collection H
(k) = (

h
(k)
j

)N

j=1, k = 1, . . . , s, of s signals of length N .

Let rk denote the 1D-SSA rank of H(k) (i.e., the dimension of the trajectory space
generated by one-dimensional SSA applied to this time series) and r denote the
MSSA rank of (H(1), . . . ,H(s)). The relation between r and rk , k = 1, . . . , s, is
considered in Sect. 4.2.2. In particular, it is shown that rmin ≤ r ≤ rmax, where
rmin = max{rk, k = 1, . . . , s} and rmax = ∑s

k=1 rk . The case r = rmax is the
least favorable for MSSA and means that different time series do not have matched
components. The case r < rmax indicates the presence of matched components and
hence simultaneous processing of the time series system can be more effective than
their individual analysis.

In terms of matching, if all s series have the same characteristic roots (see
Sect. 4.2.2 for the definition), then the time series H

(m), m = 1, . . . , s, consist
of additive components of the same 1D-SSA-structure. Such time series are fully
matched. For fully matched time series, the MSSA-rank is much smaller than the
sum of the 1D-SSA-ranks of the separate time series from the system. On the other
hand, if the sets of characteristic roots do not intersect, then the time series have no
common structure. In this case, the MSSA-rank is equal to the sum of the 1D-SSA-
ranks of the separate time series from the system. For a typical system of real-world
time series, we are in-between these two extreme cases.

4.2.4.4 Choice of the Window Length

The choice of the window length for one-dimensional SSA was reviewed in
Sect. 2.1.3.2; see Golyandina et al. (2001; Section 1.6) and Golyandina (2010) for
more thorough discussions. The problem of the choice of the window length in
MSSA is more complicated than that in 1D-SSA. Until now there is no in-depth
study of the problem of the choice of the optimal window length for analysis and, to
an even greater extent, for forecasting of multidimensional time series. Moreover,
the choice of the best window length for MSSA forecasting differs for different types
of forecasting methods, see numerical comparison in Sect. 4.4. Some numerical
investigation of this problem has been performed in Golyandina and Stepanov
(2005), Golyandina et al. (2015); it is extended in Sect. 4.4.

By analogy with the one-dimensional case, we can formulate some key principles
for the choice of L. The main principle is the same as for 1D-SSA and states
that the choice of L should provide (approximate) separability of series. However,
the MSSA case has additional features. Different approaches to the choice of the
window length can be partly explained as follows. In 1D-SSA, it makes sense to
constrain the window length to the interval 2 ≤ L ≤ [(N + 1)/2], since the
SVD expansions for window lengths L and N − L + 1 coincide. For the MSSA-
analysis of more than one time series, the expansions for all possible window lengths
2 ≤ L ≤ mini Ni − 1 are generally different. In particular, while in the 1D-SSA
analysis it makes no sense to take L > (N + 1)/2, in the MSSA analysis it makes

204 4 SSA for Multivariate Time Series

perfect sense choosing large L (and hence small Ki = Ni − L + 1) for trend
extraction and smoothing.

Since L in 1D-SSA does not exceed half of the time series length, the divisibility
of L = min(L,K) on possible periods of oscillations is recommended in 1D-SSA.
In MSSA, min(L,Ki) is not necessarily equal to L and therefore one also has to
pay attention to the values of Ki .

In 1D-SSA, the most detailed decomposition can be obtained if the trajectory
matrix X has maximal rank. In the general case of SSA-family methods, this
corresponds to the case of a square trajectory matrix. Thus, for a system of s time
series of length N the window length in MSSA providing the square trajectory
matrix X is approximately sN/(s + 1). For the case of two time series this
corresponds to 2L/3 for MSSA, while for Complex SSA applied to one complex-
valued series this gives N/2.

Numerical investigations show that the formula L � sN/(s + 1) is appropriate
for the decomposition of a small number of time series (see simulation results in
Sect. 4.4), but does not look suitable for the system of many short series (the values
of Ki become too small for achieving separability). Generally, the choice L � N/2
is still appropriate for MSSA.

Various special techniques can be transferred from 1D-SSA to MSSA, such
as Sequential SSA, see Sect. 2.8 for examples of Sequential 1D-SSA analysis.
Sequential 1D-SSA is based on successive application of 1D-SSA with different
window lengths, see Golyandina and Zhigljavsky (2013; Section 2.5.5) for more
details. Sequential MSSA can be applied in a similar manner. In addition to the
reasons which are similar to the 1D case, we may find extra arguments in favor of
Sequential MSSA. In particular, if trends of different one-dimensional series are of
different structure, a smaller window length can be applied to achieve similarity of
eigenvectors and to improve separability. After that, the residuals with a common
structure (e.g., containing the seasonality) can be simultaneously decomposed with
a larger window length.

4.2.5 Algorithm

The algorithm of MSSA decomposition differs from Algorithm 2.1 of Basic SSA
decomposition only by the form of the embedding operator.

Algorithm 4.2 MSSA: decomposition

Input: Collection {X(p) = (

x
(p)

j

)Np

j=1, p = 1, . . . , s} of s time series of length Np , p = 1, . . . , s,
window length L.

Output: Decomposition of the trajectory matrix on elementary matrices X = X1 + . . .+Xd , where
Xi = √

λiUiV
T
i .

1: Construct the trajectory matrix X = TMSSA(X), where TMSSA is defined by (4.1).
2: Compute the SVD X = X1 + . . . + Xd , Xi = √

λiUiV
T
i .

4.2 MSSA Analysis 205

Reconstruction stage is also very similar to Algorithm 2.2 for Basic SSA
reconstruction.

Algorithm 4.3 MSSA reconstruction

Input: Decomposition X = X1 + . . . +Xd , where Xi = σiUiV
T
i and ‖Ui‖ = ‖Vi‖ = 1, grouping

{1, . . . , d} = ⊔m
j=1 Ij .

Output: Decomposition of the time series system on identifiable components X = X1+. . .+Xm.
1: Construct the grouped matrix decomposition X = XI1 + . . . + XIm , where XI = ∑

i∈I Xi .
2: X = X1 + . . . + Xm, where Xi = T−1

MSSA ◦ Πstacked H(XIi).

Recall that TMSSA and Πstacked H can be expressed through TSSA and ΠH

introduced in Chap. 2 for 1D-SSA (see Sect. 4.2.1).

4.2.6 MSSA Analysis in RSSA

4.2.6.1 Description of Functions

Typical call of ssa for the MSSA analysis is

s <- ssa(x, L = (min(N) + 1)%/%2, kind = "mssa")

where N is the vector of the series lengths.
Arguments:

x is an object containing a collection of time series to be decomposed.
L is a window length. By default it is fixed to half of the minimal series length.
neig is the number of desired eigentriples. If neig = NULL, a sane default value

which depends on L and N will be used.
kind specifies the kind of SSA to apply.
svd.method selects the SVD method to use. Full description is given in

Sect. 2.1.5.2.

Additional details and the description of the reconstruct function can be found
in Sect. 2.1.5, since there is no difference between one-dimensional and multivariate
cases here.

4.2.6.2 Typical Code

Here we demonstrate how the MSSA decomposition of a system of time series can
be performed by means of the Rssa package. Since the analysis and forecasting
of one-dimensional time series by Rssa are thoroughly described in previous
chapters and in Golyandina and Korobeynikov (2013), we pay more attention to
the differences between 1D-SSA and MSSA.

206 4 SSA for Multivariate Time Series

Reconstructed Series

Time

0
20

00
40

00

1980 1985 1990 1995

Original Fortified
Original Drywhite

Fortified Trend
Drywhite Trend

Fortified Seasonality
Drywhite Seasonality

Fig. 4.3 “FORT” and “DRY”: Reconstructed trend and seasonality

In Sect. 2.1.5.3 we decomposed the one-dimensional series “FORT” (sales of
fortified wines) from the dataset “AustralianWine.” Here we add one more series,
the sales of dry wines (shortly “DRY”), for simultaneous analysis.

For loading the data we use the code from Fragment 2.1.1.

Fragment 4.2.1 (“FORT” and “DRY”: Reconstruction)

> wineFortDry <- wine[, c("Fortified", "Drywhite")]
> L <- 84
> s.wineFortDry <- ssa(wineFortDry, L = L, kind = "mssa")
> r.wineFortDry <- reconstruct(s.wineFortDry,
+ groups = list(Trend = c(1, 6),
+ Seasonality = c(2:5, 7:12)))
> plot(r.wineFortDry, add.residuals = FALSE,
+ plot.method = "xyplot",
+ superpose = TRUE, auto.key = list(columns = 3))

Fragment 4.2.1 contains a typical code for simultaneous extraction of the trend
and seasonality (compare with Fragment 2.1.2) and produces Fig. 4.3. A clear
difference between the two fragments is in the indicated value of the parameter
kind in the ssa function. A more significant difference is related to plotting the
results. For a multivariate series, there is, in a sense, a matrix of series, where
one index is the series number in the system and the second index indicates the
component number in the decomposition. The plot function for the reconstruction
object allows to indicate which subset (slice) of this matrix one wants to depict by

4.2 MSSA Analysis 207

Eigenvectors
1 (95.14%) 2 (0.97%) 3 (0.95%) 4 (0.48%)

5 (0.47%) 6 (0.32%) 7 (0.21%) 8 (0.21%)

Fig. 4.4 “FORT” and “DRY”: 1D graphs of eigenvectors

means of the parameter slice. The parameter slice consists of the list of indices of
series and indices of decomposition components. The use of slice is demonstrated
on several examples in Sects. 4.4.1 and 4.4.3.

The code for the component identification in MSSA is very similar to that in SSA,
compare Fragments 4.2.2 and 2.1.3. The difference is in the structure of the factor
vectors; however, they are not necessary for the identification. Figure 4.4 (compare
it with Fig. 2.2) shows that the trend is described by ET1 and ET6, which is slightly
mixed with seasonality. Figure 4.5 (compare with Fig. 2.3) demonstrates those pairs
of ETs that are related to seasonality.

The results of MSSA analysis are similar to the results of 1D-SSA analysis.
However, the separability is sometimes slightly worse for MSSA. Iterative O-SSA
(Sect. 2.4) and DerivSSA (Sect. 2.5) can be applied to MSSA objects to improve
separability. One can see in Fig. 4.6 (compare ET2 here with ET6 in Fig. 4.4)
that after application of the Iterative O-SSA the trend is no longer mixed with
seasonality. The eigentriples are reordered and the trend is described by the first two
eigentriples. Note that if the signal components are mixed up between themselves,
then the signal forecasting is not affected by this. However, if one wants to forecast
the trend only, then the mixture would typically worsen the forecast accuracy.

Since the implemented methods of parameter estimation are based on eigenvec-
tors only, they can be applied to eigenvectors in multidimensional case in exactly
the same way as in the one-dimensional case.

208 4 SSA for Multivariate Time Series

Pairs of eigenvectors
2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7

7 vs 8 8 vs 9 9 vs 10 10 vs 11 11 vs 12

Fig. 4.5 “FORT” and “DRY”: 2D scatterplots of eigenvectors

Eigenvectors
1 (95.13%) 2 (0.33%) 3 (0.96%) 4 (0.94%)

5 (0.48%) 6 (0.47%) 7 (0.21%) 8 (0.21%)

Fig. 4.6 “FORT” and “DRY”: 1D graphs of eigenvectors after Iterative O-SSA

Fragment 4.2.2 (“FORT” and “DRY”: Identification)

> plot(s.wineFortDry, type = "vectors", idx = 1:8)
> plot(s.wineFortDry, type = "paired", idx = 2:11,
+ plot.contrib = FALSE)
> print(parestimate(s.wineFortDry, groups = list(2:3, 4:5),
+ method = "esprit"))
$F1

period rate | Mod Arg | Re Im

4.2 MSSA Analysis 209

12.128 -0.004789 | 0.99522 0.52 | 0.86463 0.49283
-12.128 -0.004789 | 0.99522 -0.52 | 0.86463 -0.49283

$F2
period rate | Mod Arg | Re Im
4.007 -0.001226 | 0.99877 1.57 | 0.00279 0.99877

-4.007 -0.001226 | 0.99877 -1.57 | 0.00279 -0.99877
> plot(wcor(s.wineFortDry, groups = 1:30),
+ scales = list(at = c(10, 20, 30)))
> si.wineFortDry <- iossa(s.wineFortDry,
+ nested.groups = list(c(1,6), c(2:5, 7:12)))
> plot(si.wineFortDry, type = "vectors", idx = 1:8)

4.2.6.3 Comments

Formats of Input and Output Data

While the representation of a one-dimensional time series in R is pretty obvious,
there are many possible ways of defining a multivariate time series. Let us outline
some common choices.

• A matrix with separate series in the columns. Optionally, an additional time
structure like in mts objects can be embedded.

• A matrix-like (e.g., a data.frame) object with series in the columns. In
particular, data.frame would be a result of reading the series from a file via
the read.table function.

• A list of separate time series objects (e.g., a list of ts or zoo objects).

Also, the time scales of the individual time series can be normalized via head or
tail padding with NA (for example, as a result of the ts.union call) or specified via
time series attributes.

The package is designed to allow any of the input cases outlined above and
produces the reconstructed series in the same format. All the attributes, names of the
series, NA padding, etc. are carefully preserved. For forecasted series, the time scale
attributes for several known time series objects (e.g., ts) are inferred automatically
where possible.

The examples in Fragments 4.2.1 and 4.3.2 provide an overview of the possible
input series formats.

Plotting Specifics

Plotting of the reconstructed series is performed by the function plot applied to
the reconstructed collection of time series. The parameter plot.method can be
"native" or "xyplot". Keep in mind that the default ("native") plotting method
for reconstruction objects may or may not be suitable for multivariate time series
plotting. For example, it provides many useful plotting possibilities for ts and mts

objects, but may be totally unusable in the case of data.frame objects, because it
will only call the pairs function on the resulting data frame at the end.

210 4 SSA for Multivariate Time Series

Efficient Implementation

All ideas from the one-dimensional case can be extended to the multivariate case. In
the one-dimensional case, the complexity is determined by the series length N and
the window length L and the worst case corresponds to L ∼ K ∼ N/2 with overall
complexity of O(L3 + L2K) = O(N3).

In the multidimensional case (for simplicity assume that all the series have
equal lengths N), the worst case corresponds to L ∼ K ∼ sN/(s + 1); the
order of complexity is the same O(N3) but the constant can be considerably
larger. Therefore, the speed-up (due to efficient implementation) giving the order
O(kN log(N) + k2N), where k is the number of calculated eigentriples, in the
multivariate case can be much higher than in the one-dimensional case.

Note that MSSA can be viewed as a special case of Shaped 2D-SSA (see
Sect. 5.2.1.3) and the current implementation in the package implicitly uses this.

4.3 MSSA Forecasting

Recall from Sect. 3.2 that forecasting in 1D-SSA is performed for a signal compo-
nent which can be separated by 1D-SSA and is governed, perhaps approximately,
by an LRR. For brevity, we will talk about forecasting of the whole signal. 1D-
SSA provides an estimate of the signal subspace and thereby an estimate of one
of LRRs governing the signal. The recurrent 1D-SSA forecasting continues the
estimated signal by the estimated LRR. The vector 1D-SSA forecasting continues
the reconstructed vectors in the given subspace.

Methods of one-dimensional SSA forecasting in a given subspace are described
in Sect. 3.2. For CSSA, the forecasting algorithms are straightforward extensions
of 1D-SSA forecasting algorithms to the complex-valued case, therefore we do not
discuss them here. On the other hand, the methods of MSSA forecasting require
special attention.

As in 1D-SSA, methods of MSSA forecasting can be subdivided into recurrent
and vector forecasting. In contrast with 1D-SSA, rows and columns of the trajectory
matrix in MSSA have different structure. Therefore, there exist two kinds of MSSA
forecasting: row forecasting and column forecasting; this depends on which of the
two spaces the forecasting is made (row or column space respectively). In total,
there are four main variants of MSSA forecasting: recurrent column forecasting,
recurrent row forecasting, vector column forecasting, and vector row forecasting.

There are different names for the same forecasting methods. In Golyandina and
Stepanov (2005), column and row forecasting are called L- and K-forecasting.
In Hassani and Mahmoudvand (2013), these methods are called horizontal and
vertical forecasts and the trajectory matrix is transposed. In Sects. 4.2.1 and 4.2.4.1
we have explained the choice of orientation of the MSSA trajectory matrix and
the connection between the horizontally-stacked and vertically-stacked trajectory
matrices of separate time series. We use the name “column” and “row” with respect
to the horizontally-stacked trajectory matrices as defined in Sect. 4.2.1.

4.3 MSSA Forecasting 211

In the column forecasting methods, each time series in the system is forecasted
separately but in a given common subspace (i.e., using the common LRR). In the
row forecasting methods, each series is forecasted with the help of its own LRR
applied to the whole set of series from the system. Let us describe all four variants
of MSSA forecasting.

4.3.1 Method

4.3.1.1 Common Notation

First, we introduce some common notation used for description of all the variants
of MSSA forecasting.

Denote by A ∈ RQ−1 the vectors consisting of the last Q − 1 coordinates of
A ∈ RQ; that is, the vectors with the first coordinate removed are indicated by the
line on the top of the vector. Denote by A ∈ RQ−1 the vectors consisting of the first
Q − 1 coordinates of A; by π(A) we denote the last coordinate of the vector. For a
matrix A = [A1 : . . . : Ar], we denote A = [A1 : . . . : Ar] and A = [A1 : . . . : Ar]
and let π(A) = (π(A1), . . . , π(Ar))

T be the last row of the matrix A.
Consider the following form of B ∈ RK , where K = ∑s

i=1 Ki , induced by the
structure of the row trajectory space:

B =

⎛

⎜

⎜

⎜

⎝

B(1)

B(2)

...

B(s)

⎞

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎝

B(1)

B(2)

...

B(s)

⎞

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎝

B
(1)

B
(2)

...

B
(s)

⎞

⎟

⎟

⎟

⎟

⎠

, (4.8)

where B(j) ∈ RKj , and let μ(B) = (π(B(1)), . . . , π(B(s)))T. Also, for B = [B1 :
. . . : Br] let B = [B

1
: . . . : B

r
] and B(j) = [B(j)

1 : . . . : B
(j)
r].

Assume that the group I corresponding to the forecasted component is given
by the set of the leading components at Decomposition step of Algorithm 4.2; this
assumption is made just for simplifying the formulas. Thus, let r leading eigentriples
(
√

λj ,Uj , Vj) be identified and chosen as related to the signal of rank r so that I =
I1 = {1, . . . , r}, U = [U1 : . . . : Ur], V = [V1 : . . . : Vr]. The reconstructed series
˜X, its trajectory matrix ˜X, and the reconstructed matrix ̂X are defined in Sect. 1.1.1.
Define Lcol = span(Ui, i ∈ I), Lrow = span(Vi, i ∈ I). The reconstructed matrix
̂X = [̂X1 : . . . : ̂XK] consists of the column vectors which are the projections of the
column vectors of the trajectory matrix on the chosen subspace Lcol.

To avoid repeating the transpose sign, denote ˜Y = [˜Y1 : . . . : ˜YL] = ˜XT,
̂Y = [̂Y1 : . . . : ̂YL] = ̂XT, ̂Yk = ̂XT

k .

212 4 SSA for Multivariate Time Series

4.3.1.2 Recurrent MSSA Forecast

We denote the vector of forecasted signal values for each time series by RN =
(

x̃
(1)
N1+1, x̃

(2)
N2+1, . . . , x̃

(s)
Ns+1

)T
. Recurrent forecasting is closely related to missing

data imputation for components of vectors from the given subspace and in fact
uses the formula (1) from Golyandina and Osipov (2007). Following Golyandina
and Stepanov (2005), we will write the forecasting formulas for two versions of the
recurrent MSSA forecast: row (generated by {Uj }rj=1) and column (generated by
{Vj }rj=1). These one-term ahead forecasting formulas can be applied for M-term
ahead forecasting by using the recurrence.

The column recurrent forecasting performs forecast by an LRR of order L − 1
applied to the last L − 1 points of the reconstructed signal; that is, the same LRR
and different initial data. The row recurrent forecasting constructs s different linear
relations, each is applied to the set of Ki − 1 last points of series; that is, the LRRs
are different but the initial data for them is the same.

Column Forecast

Denote by Z the matrix consisting of the last L − 1 values of the reconstructed
signals:

Z =

⎛

⎜

⎜

⎜

⎜

⎝

x̃
(1)
N1−L+2 . . . x̃

(1)
N1

x̃
(2)
N2−L+2 . . . x̃

(2)
N2

...
...

...

x̃
(s)
Ns−L+2 . . . x̃

(s)
Ns

⎞

⎟

⎟

⎟

⎟

⎠

,

ν2 =
r

∑

j=1
π(Uj)

2. If ν2 < 1, then the column MSSA forecast is uniquely defined

and can be calculated by the formula

RN = ZRL, where RL = 1

1 − ν2

r
∑

j=1

π(Uj)Uj ∈ RL−1. (4.9)

Note that (4.9) implies that the forecasting of all individual signals is made using
the same linear recurrent formula which is generated by the whole system.

Row Forecast

Introduce the vectors of the last Km − 1 values of the reconstructed signals

Z(m) = (

x̃
(m)
N−Km+2, . . . , x̃

(m)
Nm

)T
, m = 1, . . . , s,

4.3 MSSA Forecasting 213

and denote

Z =

⎛

⎜

⎜

⎜

⎝

Z(1)

Z(2)

...

Z(s)

⎞

⎟

⎟

⎟

⎠

, S = [μ(V1) : . . . : μ(Vr)].

In this notation, Z = ˜YL.
If the inverse matrix (Is − SST)−1 exists and r ≤ K − s, then the row MSSA

recurrent forecast exists and can be calculated by the formula

RN = RKZ, where RK = (Is − SST)−1 SVT. (4.10)

Note that (4.10) implies that the forecasting of the individual signals is made using
the LRRs which are different for different series. The forecasting value generally
depends on the last values of all time series from the system of time series.

4.3.1.3 Vector MSSA Forecasting

Denote Lcol = span(U1, . . . , Ur) and Lrow = span(V
1
, . . . , V

r
). Let Πcol be the

orthogonal projector of RL−1 on Lcol and Π row be the orthogonal projector of RK−s

on Lrow.
An explicit form of the matrices of the column and row projectors can be

found in Golyandina and Osipov (2007; formula (4)). However, the calculation
by that formula is time-consuming. A fast algorithm of calculation is presented in
Golyandina et al. (2015; Section 6.3).

Column Forecast

We have mentioned above that for a given subspace (Lcol in our case) the column
forecast is performed independently for each time series. Define the linear operator
Pcol

Vec : RL �→ Lcol by the formula

Pcol
VecZ =

(

ΠcolZ

RT
LZ

)

, (4.11)

where RL is defined in (4.9).
The vector forecasting algorithm for j th series is as follows:

1. In the notation above, define vectors Zi as follows:

Zi =
{

̂X
(j)

i for i = 1, . . . ,Kj ,

Pcol
VecZi−1 for i = Kj + 1, . . . ,Kj + M + L − 1.

(4.12)

214 4 SSA for Multivariate Time Series

2. By constructing the matrix Z = [Z1 : . . . : ZKj+M+L−1] and making its
diagonal averaging we obtain the series z1, . . . , zNj +M+L−1.

3. The numbers zNj +1, . . . , zNj +M form the M terms of the vector forecast.

Row Forecast

Define the linear operator Prow
Vec : RK �→ Lrow by the formula

Prow
VecZ = A, (4.13)

such that A = Π rowZ and μ(A) = RKZ, where RK is defined in (4.10).
The vector forecasting algorithm is as follows:

1. In the notation above, define vectors Zi as follows:

Zi =
{

̂Yi for i = 1, . . . , L,

Prow
VecZi−1 for i = L + 1, . . . , L + M + K∗ − 1,

(4.14)

where K∗ = max(Ki, i = 1, . . . , s).
2. By constructing the matrix Z = [Z1 : . . . : ZL+M+K∗−1] and making

Reconstruction step we obtain the series z
(j)

1 , . . . , z
(j)

Nj +M+K∗−1, j = 1, . . . , s.

3. The numbers z
(j)
Nj +1, . . . , z

(j)
Nj +M , j = 1, . . . , s, form the M terms of the vector

forecast.

Remark 4.1 For the M-step ahead vector forecast, M + K∗ − 1 new lagged
vectors for the row forecasting and M + L − 1 ones for the column forecasting
are constructed. The reason for this is to make the M-step forecast inheriting the
(M − 1)-step forecast as its part. This specific feature of the vector forecasting
provides its stability and accuracy if the accurately extracted component of finite
rank is forecasted; that is, if a long-term forecast is appropriate. Otherwise (if
the MSSA approximation is inadequate), the long-term vector forecasting can be
misleading and even a short-term vector forecasting can be inaccurate for large K∗
or L correspondingly.

4.3.2 Algorithms

Algorithms of MSSA column forecasting are very similar to the algorithms of 1D-
SSA forecasting (see Algorithms 3.5 and 3.6). Let a version of MSSA be applied
to the system of s time series X and let the eigentriples {(σi , Pi,Qi), i ∈ I } be
chosen for reconstruction. The suggested forecasting algorithms are formulated for
the forecasting in the subspace Lr = span{Pi, i ∈ I } ⊂ RL. For simplicity, we
assume that I = {1, . . . , r} and the vectors Pi , i ∈ I , are orthonormal. Note that the
forecasting values do not depend on the choice of a basis of Lr .

4.3 MSSA Forecasting 215

Algorithm 4.4 Recurrent MSSA column forecasting

Input: Collection of time series X
(p) of length Np , where p = 1, . . . , s, window length L,

orthonormal system of vectors {Pi}ri=1, forecast horizon M .

Output: Forecast values (̃x
(p)

Np+1, . . . , x̃
(p)

Np+M), p = 1, . . . , s.

1: Construct the vector R = (aL−1, . . . , a1)
T of coefficients of the min-norm LRR by

Algorithm 3.1 applied to {Pi, i ∈ I}.
2: Construct the reconstructed matrices ̂X(p) = PPTX(p), where P = [P1 : . . . : Pr], and the

reconstructed series ˜X
(p) = (̃x

(p)

1 , . . . , x̃
(p)

Np
) as ˜X

(p) = T−1
SSA ◦ ΠH(̂X(p)); p = 1, . . . , s.

3: Calculate the forecast values recurrently by

x̃
(p)
n =

L−1
∑

i=1

ai x̃
(p)
n−i , n = Np + 1, . . . , Np + M; p = 1, . . . , s.

Algorithm 4.4 is written for the version, where the reconstructed series is taken
as the base for forecasting. In the other version, where the original series itself is
the base of forecasting, x

(p)
n are taken instead of x̃

(p)
n at Step 3 for n = Np − L +

1, . . . , Np.
The next algorithm implements vector forecasting.

Algorithm 4.5 Vector MSSA column forecasting

Input: Collection of time series X
(p) of length Np , where p = 1, . . . , s, window length L,

orthonormal system of vectors {Pi}ri=1, forecast horizon M .

Output: Forecast values (̃x
(p)

Np+1, . . . , x̃
(p)

Np+M), p = 1, . . . , s.

1: Obtain the vector R = (aL−1, . . . , a1)
T of coefficients of the min-norm LRR by Algorithm 3.1

applied to {Pi, i ∈ I}.
2: Calculate the matrix Π defining the projection in (3.5).
3: Compute the reconstructed matrices ̂X(p) = PPTX(p), where P = [P1 . . . : Pr]; p = 1, . . . , s.
4: Extend the reconstructed matrices ̂X(p) = [̂X(p)

1 : . . . : ̂X
(p)
Kp

] by column vectors:

̂X
(p)
n = PVeĉX

(p)

n−1 for n = Kp + 1, . . . , Kp + M + L − 1; p = 1, . . . , s,

where PVec is given in (3.6) and uses the vector R of coefficients of the min-norm LRR. Denote
the extended matrices by ̂X(p)

ext ; ̂X(p)
ext ∈ RL×(Kp+M+L−1); p = 1, . . . , s.

5: Obtain the extended reconstructed series ˜X
(p)
ext = (̃x

(p)

1 , . . . , x̃
(p)

Np+M+L−1) by ˜X
(p)
ext = T−1

SSA ◦
ΠH(̂X(p)

ext); p = 1, . . . , s.

6: Return the forecast values (̃x
(p)

Np+1, . . . , x̃
(p)

Np+M); p = 1, . . . , s.

Algorithms of row forecasting have more complicated form and follow the steps
outlined in Sect. 4.3.1.

216 4 SSA for Multivariate Time Series

4.3.3 MSSA Forecasting in RSSA

4.3.3.1 Description of Functions

MSSA forecasting functions differ from the functions described in Sect. 3.2.3.1 for
one-dimensional case by the additional parameter direction, which can be equal to
either "row" or "column". The other parameters are exactly the same as described
in Sect. 3.2.3.1. For example, a call for the recurrent row forecast based on the ssa

object s can be made as follows:

f <- rforecast(s, groups = list(1:2, 3:4),
direction = "row", len = 12, only.new = FALSE)

The wrappers predict is able to construct forecasts in a unified manner. For
example, the presented call of rforecast is similar to the call

f <- predict(s, groups = list(1:2, 3:4),
method = "recurrent", direction = "row", len = 12)

The function forecast, the bootstrap intervals, and backward forecasting are not
implemented for MSSA forecasting.

4.3.3.2 Typical Code

The code for forecasting is very similar to that in 1D-SSA, compare Fragments 4.3.1
and 3.2.1. For demonstration, we use the monthly sales of fortified (“FORT”) and
dry (“DRY”) wines taken from the dataset “AustralianWine” (Fig. 4.7).

Fragment 4.3.1 (“FORT” and “DRY”: Forecast)

> f.wineFortDry <- rforecast(s.wineFortDry,
+ groups = list(1, 1:12),
+ len = 60, only.new = TRUE)
> plot(cbind(wineFortDry[, "Fortified"],
+ f.wineFortDry$F2[, "Fortified"]),
+ plot.type = "single",
+ col = c("black", "red"), ylab = "Fort")
> plot(cbind(wineFortDry[, "Drywhite"],
+ f.wineFortDry$F2[, "Drywhite"]),
+ plot.type = "single",
+ col = c("black", "red"), ylab = "Dry")
> par(mfrow = c(1, 1))

4.3.3.3 Simulated Example: Numerical Comparison

In this section, we demonstrate how the accuracy of MSSA is related to the structure
of the multivariate time series. The aim is to compare accuracy for separate analysis
and forecasting of time series with simultaneous processing of the series system. We

4.3 MSSA Forecasting 217

Time

Fo
rt

1980 1985 1990 1995 2000

10
00

30
00

50
00

Time

D
ry

1980 1985 1990 1995 2000

20
00

40
00

Fig. 4.7 “FORT” and “DRY”: Forecast of the signal

summarize the results from Golyandina and Stepanov (2005) and Golyandina et al.
(2015) and supplement them with new comparisons. In particular, the comparison
results explain the choice of the default forecasting method.

In the study below, we consider the case s = 2 and examine the following SSA
methods: (a) 1D-SSA applied twice, (b) MSSA, and (c) CSSA. The investigated
model examples include the least favorable and the most favorable cases for MSSA
as well as some cases well suited for the application of CSSA.

Let us assume that we observe (X(1),X(2)) = (H(1),H(2)) + (N(1),N(2)), where
(H(1),H(2)) is a two-dimensional signal consisting of two harmonic time series,
N

(1) and N
(2) are realizations of independent white Gaussian noises. Then we can

use the standard simulation techniques to obtain estimates of the mean square errors
(MSE) for the reconstruction and forecasting of (H(1),H(2)) by the indicated SSA
methods. The resultant MSE is calculated as the mean of MSE(1) and MSE(2) for
H

(1) and H
(2) correspondingly.

We take the following parameters for the simulation of the time series: N = 71,
the variance of all noise components is σ 2 = 25, the number of replications is
10000. We consider the following three versions of the signal (H(1),H(2)).

Example A (the same periods; the difference between the phases is different
from π/2):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 20 cos(2πk/12 + π/4), k = 1, . . . , N.

218 4 SSA for Multivariate Time Series

Example B (the same periods and amplitudes; the difference between the phases
is equal to π/2):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 30 cos(2πk/12 + π/2), k = 1, . . . , N.

Example C (different periods):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 20 cos(2πk/8 + π/4), k = 1, . . . , N.

The choice of these examples is determined by the observation that the dimen-
sions of the signal trajectory spaces (i.e., ranks) are different for different extensions
of the 1D-SSA method, see Table 4.1. For each example the rank in blue corresponds
to the method with the best accuracy for this example. Cells in the row correspond-
ing to 1D-SSA contain one number, since the ranks of the times series from the
considered collections coincide.

The results of investigation for different window lengths L are summarized in
Tables 4.2 and 4.3. The 24 term-ahead forecast was performed. For each example,
the cells corresponding to the method with the reconstruction/forecast accuracy,
which is closed to the best one, are shown in bold and the overall minimum is in
blue color.

Comparison of Tables 4.2 and 4.3 with Table 4.1 clearly demonstrates the relation
between the accuracy of the signal reconstruction (forecast) and the dimension of
the signal trajectory space. Since the structure of the series from Example B and
Example A is the same from the viewpoint of MSSA and 1D-SSA, we omit the
corresponding results for Example B in Table 4.3.

Table 4.1 Dimension of the
signal trajectory space

Example A Example B Example C

MSSA 2 2 4

1D-SSA 2 2 2
CSSA 2 1 4

Table 4.2 MSE of signal reconstruction

Example A L = 12 L = 24 L = 36 L = 48 L = 60

MSSA 3.18 1.83 1.59 1.47 2.00

1D-SSA 3.25 2.01 2.00 2.01 3.25

CSSA 3.25 2.02 2.01 2.02 3.25

Example B L = 12 L = 24 L = 36 L = 48 L = 60

MSSA 3.18 1.82 1.58 1.47 1.97

1D-SSA 3.25 2.01 2.00 2.01 3.25

CSSA 1.57 1.00 0.99 1.00 1.57

Example C L = 12 L = 24 L = 36 L = 48 L = 60

MSSA 6.91 3.77 3.07 2.88 3.84

1D-SSA 3.23 2.01 2.00 2.01 3.23

CSSA 6.98 4.06 3.82 4.06 6.98

4.3 MSSA Forecasting 219

Table 4.3 MSE of signal forecast

Example A L = 12 L = 24 L = 36 L = 48 L = 60

Recurrent

MSSA-column 5.36 3.67 3.73 3.70 4.43

MSSA-row 6.02 4.25 3.83 3.32 3.98

1D-SSA 7.24 5.59 6.30 6.42 7.93

CSSA 7.30 5.60 6.32 6.41 7.86

Vector

MSSA-column 5.93 3.77 3.62 3.11 3.65

MSSA-row 4.00 3.03 3.39 3.17 4.24

1D-SSA 7.74 5.43 5.85 5.14 6.76

CSSA 7.79 5.44 5.86 5.12 6.87

Example C L = 12 L = 24 L = 36 L = 48 L = 60

Recurrent

MSSA-column 25.76 7.39 7.55 7.43 9.00

MSSA-row 19.82 8.47 8.00 6.66 8.30

1D-SSA 7.36 5.61 6.28 6.44 8.00

CSSA 38.79 11.21 13.37 13.09 24.89

Vector

MSSA-column 25.34 7.56 7.57 6.20 7.67

MSSA-row 57.59 6.04 7.03 6.30 8.69

1D-SSA 7.84 5.47 5.84 5.18 6.88

CSSA 35.77 10.89 13.44 10.22 69.04

Example B L = 12 L = 24 L = 36 L = 48 L = 60

CSSA recurrent 3.48 2.76 3.10 3.19 3.99

CSSA vector 3.82 2.70 2.89 2.56 3.18

Note that the reconstructions by 1D-SSA and CSSA are the same for window
lengths L and N − L + 1 (12 and 60, 24 and 48 for the considered examples).
Reconstructions by MSSA are different for different L. Also note that the trajectory
matrix for 1D-SSA has rank min(L,N − L + 1) and the rank is maximal for L �
N/2. The MSSA-trajectory matrix has rank equal to min(L, (N −L+1)s), where s

is the number of time series in the system. This rank is maximal for L � sN/(s+1).
Although the maximality of the rank does not guarantee the minimality of errors,
this consideration means that to achieve better separability the choice of the window
length L larger than N/2 can often be recommended. Simulations confirm this: the
minimum of the reconstruction error for MSSA is achieved at L = 48 = 72 × 2/3.

The forecasting errors have much more complicated structure, see Golyandina
(2010). In particular, these errors for forecasting depend on the reconstruction errors
for the last time series points; therefore, the error may have a dependence on L,
which is different from that for the average reconstruction errors. The considered
examples show that the vector forecast is more accurate than the recurrent one
and that the row MSSA forecast is slightly more accurate than the column MSSA
forecast.

220 4 SSA for Multivariate Time Series

The considered examples confirm the following assertions:

• The accuracy of the SSA-based methods is closely related to the structure
of the signal trajectory spaces generated by these methods. MSSA has an
advantage if time series from the system have matched components. (Note that
we considered equal levels of noise.)

• Optimal window lengths for analysis and forecasting can differ. Despite the
accuracy of forecast is related to the accuracy of reconstruction, this relation is
not straightforward.

• The vector forecast with the best window length is more accurate than the
recurrent forecast. However, it is not always the case if we compare forecast
accuracies for the same window length. This is probably valid for forecasting
of well-separated signal of finite rank only, see Remark 4.1.

• In MSSA, the recommendations for the choice of the window length (e.g., “take
L larger (or smaller) than the half of the time series length”) for recurrent
forecasting are in a sense opposite to that for the vector forecasting.

• For the row and column forecasting (1D-SSA and CSSA forecasting methods
are particular cases of the column forecasting), the recommendations are also
opposite. This is not surprising since L and K have swapped places in MSSA
relative to 1D-SSA and CSSA.

Fragment 4.3.2 demonstrates how the RSSA package allows estimation of the
reconstruction and forecast accuracy on the example of MSSA and CSSA analysis
and vector forecasting applied to Example A with R = 10 replications. Note that the
numbers in Tables 4.2 and 4.3 were obtained by another complicated code, where
R = 10000 (see the replicated code to Golyandina et al. (2015)).

Fragment 4.3.2 (Simulation for Accuracy Estimation)

> N <- 71
> sigma <- 5
> Ls <- c(12, 24, 36, 48, 60)
> len <- 24
> signal1 <- 30 * cos(2*pi * (1:(N + len)) / 12)
> signal2 <- 30 * cos(2*pi * (1:(N + len)) / 12 + pi / 4)
> signal <- cbind(signal1, signal2)
> R <- 10
> mssa.errors <- function(Ls) {
+ f1 <- signal1[1:N] + rnorm(N, sd = sigma)
+ f2 <- signal2[1:N] + rnorm(N, sd = sigma)
+ f <- cbind(f1, f2)
+ err.rec <- numeric(length(Ls)); names(err.rec) <- Ls
+ err.for <- numeric(length(Ls)); names(err.for) <- Ls
+ for (l in seq_along(Ls)) {
+ L <- Ls[l]
+ s <- ssa(f, L = L, kind = "mssa")
+ rec <- reconstruct(s, groups = list(1:2))[[1]]
+ err.rec[l] <- mean((rec - signal[1:N,])^2)
+ pred <- vforecast(s, groups = list(1:2), direction = "row",
+ len = len, drop = TRUE)

4.3 MSSA Forecasting 221

+ err.for[l] <- mean((pred - signal[-(1:N),])^2)
+ }
+ list(Reconstruction = err.rec, Forecast = err.for)
+ }
> mres <- replicate(R, mssa.errors(Ls))
> err.rec <- rowMeans(simplify2array(mres["Reconstruction",]))
> err.for <- rowMeans(simplify2array(mres["Forecast",]))
> print(err.rec)

12 24 36 48 60
2.869683 1.587789 1.248881 1.153730 1.855115
> print(err.for)

12 24 36 48 60
2.671251 2.578059 1.501565 2.595378 4.564218
> signal <- signal1 + 1i*signal2
> cssa.errors <- function(Ls) {
+ f1 <- signal1[1:N] + rnorm(N, sd = sigma)
+ f2 <- signal2[1:N] + rnorm(N, sd = sigma)
+ f <- f1 + 1i*f2
+ err.rec <- numeric(length(Ls)); names(err.rec) <- Ls
+ err.for <- numeric(length(Ls)); names(err.for) <- Ls
+
+ for (l in seq_along(Ls)) {
+ L <- Ls[l]
+ s <- ssa(f, L = L, kind = "cssa", svd.method = "svd")
+ rec <- reconstruct(s, groups = list(1:2))[[1]]
+ err.rec[l] <- mean(abs(rec - signal[1:N])^2)
+ pred <- vforecast(s, groups = list(1:2), len = len,
+ drop = TRUE)
+ err.for[l] <- mean(abs(pred - signal[-(1:N)])^2)
+ }
+ list(Reconstruction = err.rec, Forecast = err.for)
+ }
> cres <- replicate(R, cssa.errors(Ls))
> err.rec <- rowMeans(simplify2array(cres["Reconstruction",]))
> err.for <- rowMeans(simplify2array(cres["Forecast",]))
> print(err.rec)

12 24 36 48 60
7.349316 4.298144 4.101666 4.298144 7.349316
> print(err.for)

12 24 36 48 60
24.67425 13.60116 14.54819 11.72135 15.86380

4.3.4 Other Subspace-Based MSSA Extensions

In view of the common structure of all SSA-family algorithms (see Sect. 1.1), many
SSA-related techniques can be naturally extended from 1D objects (i.e., series) to
other objects, and particularly to the systems of series.

222 4 SSA for Multivariate Time Series

In Sect. 4.3.1, we have considered methods of MSSA forecasting. Let us now
describe some extensions. Since the algorithms and the codes are either exactly
or almost identical to the 1D case, we are not writing them out. In particular, all
methods and algorithms that are based on the use of the column subspaces are
exactly the same in MSSA and 1D-SSA. For example, parameter estimation based
on the column subspace can be performed using the same function parestimate.

The shaped version of MSSA is almost the same as Shaped 1D-SSA (Sect. 2.6)
except for the following difference. If NA are placed at the ends of the time series,
then the corresponding series is considered as a series of smaller length. If there is
no other missing data, then the resultant series of smaller length does not have any
missing values and is decomposed by a non-shaped version of MSSA. It is important
to mention that if there are NA at the right end of a series, then forecasts start from
the last not-NA values.

Formally, forecasting can be applied to shaped ssa object. However, it is
generally recommended to fill gaps first and then forecast the series.

Iterative gap-filling (Sect. 3.3.3, the function igapfill) and low-rank approxi-
mation by Cadzow iterations (Sect. 3.4, the function cadzow) are implemented in a
general manner and therefore can be applied to systems of time series with gaps in
exactly the same manner as in the 1D case.

Subspace-based gap-filling (Sect. 3.3.3, the function gapfill) is implemented
on the base of the recurrent column forecasting only and therefore does not have the
parameters direction and method.

4.4 Case Studies

4.4.1 Analysis of Series in Different Scales (Normalization)

Assume that different time series in the system of series are measured in different
scales. In statistics, this problem is typically resolved by making a standardization
of the data. In SSA, centering may not be an appropriate preprocessing. Therefore,
two types of preprocessing can be applied, conventional standardization and
normalization, which is the division by the square root of the mean sum of squares.
The normalization can be more appropriate for positive series, since it changes only
the scale of data.

Let us consider fortified (“FORT”) and rosé (“ROSE”) wine sales from the
dataset “AustralianWine.” Sales of fortified wines are measured in thousands but
sales of rosé wines are measured in tens and hundreds. Fragment 4.4.1 shows how
the scale influences the reconstruction result.

4.4 Case Studies 223

Fragment 4.4.1 (“FORT” and “ROSE”: Influence of Series Scales)

> wineFortRose <- wine[, c("Fortified", "Rose")]
> summary(wineFortRose)

Fortified Rose
Min. :1154 Min. : 30.00
1st Qu.:2372 1st Qu.: 66.00
Median :2898 Median : 87.00
Mean :3010 Mean : 93.01
3rd Qu.:3565 3rd Qu.:114.25
Max. :5618 Max. :267.00

> norm.wineFortRosen <- sqrt(colMeans(wineFortRose^2))
> wineFortRosen <-
+ sweep(wineFortRose, 2, norm.wineFortRosen, "/")
> L <- 84
> s.wineFortRosen <- ssa(wineFortRosen, L = L, kind = "mssa")
> r.wineFortRosen <- reconstruct(s.wineFortRosen,
+ groups = list(Trend = c(1, 12, 14),
+ Seasonality = c(2:11, 13)))
> s.wineFortRose <- ssa(wineFortRose, L = L, kind = "mssa")
> r.wineFortRose <- reconstruct(s.wineFortRose,
+ groups = list(Trend = 1,
+ Seasonality = 2:11))
> wrap.plot <- function(rec, component = 1, series,
+ xlab = "", ylab, ...)
+ plot(rec, add.residuals = FALSE, add.original = TRUE,
+ plot.method = "xyplot", superpose = TRUE,
+ scales = list(y = list(tick.number = 3)),
+ slice = list(component = component, series = series),
+ xlab = xlab, ylab = ylab, auto.key = "", ...)
> trel1 <- wrap.plot(r.wineFortRosen, series = 2,
+ ylab = "Rose, norm", main = NULL)
> trel2 <- wrap.plot(r.wineFortRosen, series = 1,
+ ylab = "Fort, norm", main = NULL)
> trel3 <- wrap.plot(r.wineFortRose, series = 2,
+ ylab = "Rose", main = NULL)
> trel4 <- wrap.plot(r.wineFortRose, series = 1,
+ ylab = "Fort", main = NULL)
> plot(trel1, split = c(1, 1, 2, 2), more = TRUE)
> plot(trel2, split = c(1, 2, 2, 2), more = TRUE)
> plot(trel3, split = c(2, 1, 2, 2), more = TRUE)
> plot(trel4, split = c(2, 2, 2, 2))

Figure 4.8 demonstrates the result of a trend reconstruction, where the trend was
detected in the same way as before; that is, by using the forms of eigenvectors
and weighted correlations. The trend of the “ROSE” series is more complicated.
However, “FORT” overweighs the decomposition and the eigentriples that refine the
“ROSE” trend have very small weight and mix with the common noise. Therefore,
the MSSA processing with no normalization is worse for the analysis of the series
ROSE, which is measured on a smaller scale.

224 4 SSA for Multivariate Time Series

R
os

e,
 n

or
m

1
2

1980 1985 1990 1995

Fo
rt,

 n
or

m
0.

5
1.

0
1.

5

1980 1985 1990 1995

R
os

e
10

0
20

0

1980 1985 1990 1995

Fo
rt

20
00

40
00

1980 1985 1990 1995

Fig. 4.8 “FORT” and “ROSE”: Trends with normalization (ET1,12,14) and without (ET1)

4.4.2 Forecasting of Series with Different Lengths and
Filling-In

Fragment 4.3.1 in Sect. 4.3.3.2 shows a typical code when MSSA is used for the
series of equal lengths. However, the same code can be applied to series which have
different lengths. The full set of “AustralianWine” data has missing values: there is
no data for two months (points 175 and 176) for sales of “ROSE” and there is no
data for the last 11 months of “Total” sales.

Let us perform the following actions: (A) fill-in missing data in ROSE, (B)
calculate the sum of sales of the wines presented in the data, and (C) forecast this
sum together with the total series in order to fill-in the missing data.

To use the analysis performed above, let us process the “ROSE” series together
with the “FORT” series for (A). Fragment 4.4.2 implements (A). We fill-in the
missing data by two methods. The result is presented in Fig. 4.9.

Fragment 4.4.2 (“FORT” and “ROSE”: Filling-in the Missing Data in
“ROSE”)

> wineFortRose <- AustralianWine[, c("Fortified", "Rose")]
> L <- 84
> wineFortRose <- AustralianWine[, c("Fortified", "Rose")]
> norm.wineFortRosen <-
+ sqrt(colMeans(wineFortRose^2, na.rm = TRUE))
> wineFortRosen <-
+ sweep(wineFortRose, 2, norm.wineFortRosen, "/")

4.4 Case Studies 225

> s.wineFortRosen <- ssa(wineFortRosen, L = L, kind = "mssa")
> g.wineFortRosen <-
+ gapfill(s.wineFortRosen, groups = list(1:14))
> ig.wineFortRosen <-
+ igapfill(s.wineFortRosen, groups = list(1:14))
> ig.wineFortRose <-
+ norm.wineFortRosen["Rose"] * ig.wineFortRosen
> g.wineFortRose <-
+ norm.wineFortRosen["Rose"] * g.wineFortRosen
> xyplot(AustralianWine[100:187, "Rose"] +
+ ig.wineFortRose[100:187, "Rose"] +
+ g.wineFortRose[100:187, "Rose"] ~
+ time(AustralianWine)[100:187],
+ type = "l", xlab = "Time", ylab = "Rose",
+ lty = c(1, 2, 1), lwd = c(2, 1, 1),
+ auto.key = list(text = c("‘Rose’",
+ "Iterative gap filling",
+ "Subspace-based gap-filling")))

Fragment 4.4.3 implements (B) and (C). Since the series “Total” and “Mainsales”
are of different lengths (recall that NA at the end of series correspond to the reduction
of the series length), the forecasts correspond to different times (Fig. 4.10). If one is
only interested in filling-in the missing data in “Total,” then the forecasted values of
“Mainsales” can be ignored.

Time

R
os

e

40

60

80

100

120

140

1988 1990 1992 1994

`Rose'
Iterative gap filling
Subspace−based gap−filling

l

l

l

Fig. 4.9 “FORT” and “ROSE”: Filling-in of “ROSE” by two methods

226 4 SSA for Multivariate Time Series

80
00

14
00

0
M

ai
ns

al
es

20
00

0
30

00
0

1996.0 1996.5 1997.0

To
ta

l

Fig. 4.10 “Total” and “Mainsales”: Forecast to fill-in “Total”

Fragment 4.4.3 (“Total” and “Mainsales”: Forecast to Fill-in “Total”)

> FilledRose <- AustralianWine
> FilledRose[175:176, "Rose"] <- g.wineFortRose[175:176]
> mainsales <- ts(rowSums(FilledRose[, -1]))
> tsp(mainsales) <- tsp(AustralianWine)
> wine.add.mainsales <- cbind(FilledRose, mainsales)
> colnames(wine.add.mainsales) <-
+ c(colnames(FilledRose), "Mainsales")
> L <- 84
> s.totalmain <- ssa(wine.add.mainsales[, c("Mainsales",
+ "Total")],
+ L = L, kind = "mssa")
> f.totalmain <- rforecast(s.totalmain, groups = list(1:14),
+ len = 11, only.new = TRUE)
> plot(f.totalmain, main = "", xlab = NULL, oma = c(3, 1, 1, 1))

4.4.3 Simultaneous Decomposition of Many Series

In this example, we consider the system of many time series and show that the
decomposition by MSSA helps to look at similar patterns in the series.

Let us consider a collection of s = 6 series from the “AustralianWine”
dataset, which includes the series of wine sales considered in Fragment 4.2.1, see
Sect. 4.2.6.2. A considerable part of this multivariate series can be described as
seasonality. Therefore, MSSA can have an advantage over conventional 1D-SSA
applied separately to each series from the system.

Since the time series have different scales, it may be advantageous to transform
the time series to the same scale by normalizing them. We choose the window length
L = 163, then Ki = 12 (i = 1, . . . , 6) and K = 6 · 12 = 72 and therefore the

4.4 Case Studies 227

number of elementary components is equal to 72 = min(163, 72). This choice of
window length does not correspond to the maximal possible number of elementary
components.

We can obtain a more detailed decomposition with 144 = min(151, 144)

elementary components if we choose L = 151 and Ki = 24 but in this case
elementary components appear with almost equal weights (implying a lack of strong
separability). Thus, the choice L = 163 and Ki = 12 helps to avoid mixing up of
the components.

The identification of the trend (ET1,2,5) and seasonality (ET3,4, 6–12) is per-
formed on the base of eigenvectors and uses the principles used in the typical code
from Sect. 4.2.6.2. Fragment 4.4.4 contains the code which gives the reconstruction
shown in Figs. 4.11 and 4.12.

Reconstructed Series

Time

Drywhite

Fortified

Red

Rose

Sparkling

1980 1985 1990 1995

Sweetwhite

Fig. 4.11 “Australian wines”: Extraction of trends

228 4 SSA for Multivariate Time Series

Reconstructed Series

Time

Drywhite Seasonality

Fortified Seasonality

Red Seasonality

Rose Seasonality

Sparkling Seasonality

1980 1985 1990 1995

Sweetwhite Seasonality

Fig. 4.12 “Australian wines”: Extraction of seasonality

Fragment 4.4.4 (“Australian wines”: Simultaneous Decomposition by MSSA)

> L <- 163
> norm.wine <- sqrt(colMeans(wine[, -1]^2))
> winen <- sweep(wine[, -1], 2, norm.wine, "/")
> s.winen <- ssa(winen, L = L, kind = "mssa")
> r.winen <- reconstruct(s.winen,
+ groups = list(Trend = c(1, 2, 5),
+ Seasonality = c(3:4, 6:12)))
> plot(r.winen, add.residuals = FALSE,
+ plot.method = "xyplot",
+ slice = list(component = 1),
+ screens = list(colnames(winen)),
+ col =
+ c("blue", "green", "red", "violet", "black", "green4"),
+ lty = rep(c(1, 2), each = 6),
+ scales = list(y = list(draw = FALSE)),
+ layout = c(1, 6))
> plot(r.winen, plot.method = "xyplot", add.original = FALSE,
+ add.residuals = FALSE, slice = list(component = 2),

References 229

+ col =
+ c("blue", "green", "red", "violet", "black", "green4"),
+ scales = list(y = list(draw = FALSE)),
+ layout = c(1, 6))

The reconstructed trends and seasonal components look adequate. In addition,
the simultaneous processing of several time series is very convenient as we obtain
similar time series components all at once. In particular, it is clearly seen from
Fig. 4.12 that the sales of fortified wines are maximal in June-July (that are winter
months in Australia), while the sales of sparkling wines are largest in December.

References

Allen RM, Robertson WA (1996) Distinguishing modulated oscillations from coloured noise in
multivariate datasets. Clim Dynam 12(11):775–784

Broomhead D, King G (1986) Extracting qualitative dynamics from experimental data. Physica D
20:217–236

Broomhead D, King G (1986b) On the qualitative analysis of experimental dynamical systems. In:
Sarkar S (ed) Nonlinear phenomena and chaos. Adam Hilger, Bristol, pp 113–144

Golyandina N (2010) On the choice of parameters in singular spectrum analysis and related
subspace-based methods. Stat Interface 3(3):259–279

Golyandina N, Korobeynikov A (2013) Basic singular spectrum analysis and forecasting with R.
Comput Stat Data Anal 71:943–954

Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with
missing values. J Stat Plan Inference 137(8):2642–2653

Golyandina N, Stepanov D (2005) SSA-based approaches to analysis and forecast of multidi-
mensional time series. In: Proceedings of the 5th St.Petersburg workshop on simulation, June
26–July 2, 2005. St. Petersburg State University, St. Petersburg, pp 293–298

Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer briefs in
statistics. Springer

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and
related techniques. Chapman&Hall/CRC

Golyandina N, Korobeynikov A, Shlemov A, Usevich K (2015) Multivariate and 2D extensions of
singular spectrum analysis with the Rssa package. J Stat Softw 67(2):1–78

Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related
techniques in atmospheric science: A review. Int J Climatol 27(9):1119–1152

Hassani H, Mahmoudvand R (2013) Multivariate singular spectrum analysis: a general view and
vector forecasting approach. Int J Energy Stat 01(01):55–83

Keppenne C, Lall U (1996) Complex singular spectrum analysis and multivariate adaptive
regression splines applied to forecasting the southern oscillation. In: Exp. long-lead forcst.
Bull

Trickett SR (2003) F-xy eigenimage noise suppression. Geophysics 68(2):751–759
Weare BC, Nasstrom JS (1982) Examples of extended empirical orthogonal function analyses.

Mon Weather Rev 110(6):481–485

Chapter 5
Image Processing

This chapter is devoted to extensions of 1D-SSA (Chaps. 2 and 3) and MSSA
(Chap. 4) for the analysis of objects of dimension 2 and larger. The 2D case
corresponds to the digital image processing. The objects with larger dimensions
are also widely used. For example, a color image can be considered as a system of
2D images and its analysis can be performed by multivariate 2D-SSA, which is an
extension of MSSA designed for analyzing a system of series. The third temporal
dimension naturally arises if images are changing in time, which is a typical data
in climatology (Hannachi et al. 2007). The data can be 3D, if the measurements
are performed at points located in a 3D area, see, e.g., Shlemov et al. (2015a) for
a quantitative analysis of a gene expression data. A system of 3D data changing
in time can also be considered. The list of extensions can be continued; see, e.g.,
Oropeza (2010) for high-dimensional SSA algorithms applied to specific problems
in seismology.

The scheme of SSA-family methods of Sect. 1.1 can be naturally applied for
multidimensional objects of any dimension since the difference is in the embedding
operator only. Moreover, the SSA analysis of an object of any dimension and shape
is a particular case of the shaped version of SSA, where a window of arbitrary shape
goes through an object of arbitrary shape and forms a trajectory matrix consisting
of vectorized lagged windows.

The RSSA package implements the so-called nD-SSA for analysis of objects of
arbitrary dimensions, in rectangular and shaped versions. In particular, 2D or 3D
images, which are not necessarily rectangular and are changing in time (that is,
have an additional temporary dimension) can be analyzed. We start this chapter
with a description of the 2D-SSA analysis (Sect. 5.1) thus avoiding details related
to shapes (these details can be quite complicated). Section 5.2 extends the material
of Sect. 5.1 to arbitrary shapes. The algorithms presented in Sect. 5.2 for 2D-shapes
could be easily reformulated for objects of any dimension. The same is true for 2D
extensions of the ESPRIT method for parameter estimation described in Sect. 5.3.1.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
N. Golyandina et al., Singular Spectrum Analysis with R, Use R!,
https://doi.org/10.1007/978-3-662-57380-8_5

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57380-8_5&domain=pdf
https://doi.org/10.1007/978-3-662-57380-8_5

232 5 Image Processing

We do not formally write the algorithms for dimensions larger than two, since
they can be obtained by a formal extension of the algorithms from Sects. 5.2
and 5.3. A demonstration of the RSSA code for performing nD-SSA can be found
in Sect. 5.4.4.

5.1 2D-SSA

In this section, we consider an extension of the 1D-SSA algorithm for decomposi-
tion of two-dimensional data. This extension has the name 2D singular spectrum
analysis (or 2D-SSA for short). For 2D-SSA, the data object X is a two-dimensional
data array of size Nx × Ny (or simply an Nx × Ny real-valued matrix), represented

as X = XNx,Ny = (xij)
Nx ,Ny

i,j=1 . A typical example of a 2D-array is a digital 2D
monochrome image.

2D-SSA was proposed as an extension of 1D-SSA in Danilov and Zhigljavsky
(1997), and was further developed in Golyandina and Usevich (2010), Rodríguez-
Aragón and Zhigljavsky (2010). However, related decompositions were developed
independently in texture analysis (Ade 1983; Monadjemi 2004), seismic data
processing (Trickett 2008; Oropeza 2010), and parameter estimation methods for
sums of two-dimensional complex exponentials, see, e.g., Rouquette and Najim
(2001).

Until recently, the major drawback of the methods based on 2D-SSA decompo-
sition was its computational complexity. The RSSA package contains an efficient
implementation of the 2D-SSA decomposition and reconstruction, which to a great
extent overcomes this deficiency (Golyandina et al. 2015).

5.1.1 Method

We mostly use the notation from Golyandina and Usevich (2010) and Golyandina
et al. (2015). For a matrix A ∈ RM×N (or CM×N), we denote by vec(A) ∈ RMN

(or CMN) its column-major vectorization. For a vector A ∈ RMN (or CMN), we
define its M devectorization as the matrix vec−1

M (A) = B ∈ RM×N (or CM×N) that
satisfies vec(B) = A.

5.1.1.1 The Embedding Operator

The generic scheme of the SSA algorithm is described in Sect. 1.1. Hence,
to formally present 2D-SSA, we only need to define the embedding operator
T2D-SSA(X) = X.

5.1 2D-SSA 233

Fig. 5.1 Moving 2D
windows

1
1

Nx

Nyl

k

Ly

LxX
(Lx ,Ly)

k,l

The parameters of the method are the two-dimensional window sizes (Lx, Ly),
with restrictions 1 ≤ Lx ≤ Nx , 1 ≤ Ly ≤ Ny and 1 < LxLy < NxNy . For
convenience, we also denote Kx = Nx − Lx + 1, Ky = Ny − Ly + 1. As in the
general scheme of the algorithms, we define L = LxLy (the number of rows of X)
and K = KxKy (the number of columns of X).

Consider all possible Lx × Ly submatrices of X (2D sliding windows). For k =
1, . . . ,Kx and l = 1, . . . ,Ky , we define by X

(Lx,Ly)

k,l = (xij)
Lx+k−1,Ly+l−1
i=k,j=l the

submatrix of size Lx × Ly shown in Fig. 5.1. Note that the x axis is oriented to the
bottom, and the y axis is oriented to the right; the origin is the upper left corner. We
use this orientation as it is consistent with the standard mathematical indexing of
matrices (Golyandina and Usevich 2010).

Then the trajectory matrix is defined as

T2D-SSA(X) = X = [X1 : . . . : XKxKy], (5.1)

where the columns Xj are vectorizations of the Lx × Ly submatrices:

Xk+(l−1)Kx = vec
(

X
(Lx,Ly)

k,l

)

.

5.1.1.2 Hankel-Block-Hankel Structure

The trajectory matrix (5.1) has the following structure (Golyandina and Usevich
2010):

X = T2D-SSA(X) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H1 H2 H3 . . . HKy

H2 H3 H4 . . . HKy+1

H3 H4 . .
.

. .
. ...

...
... . .

.
. .

. ...

HLy HLy+1 HNy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5.2)

234 5 Image Processing

where each Hj is an Lx × Kx Hankel matrix constructed from X:,j (the j th column
of the 2D array X). More precisely, Hj = TSSA(X:,j), where TSSA is defined
in (1.1). The matrix (5.1) is called Hankel-block-Hankel (shortened to HbH), since
it is block-Hankel with Hankel blocks. Thus, M(H)

L,K in 2D-SSA is the set of HbH
matrices.

Projection ΠHbH on the space of HbH matrices can be performed using the
general form described in Sect. 1.1.2.6. In this particular case, the projection consists
of hankelization of each matrix block at the places of each Hj and then averaging
of the blocks at the places of Hj with the same index j .

5.1.1.3 Trajectory Space

From (5.1), we observe that the trajectory space is the linear space spanned by the
Lx × Ly submatrices of X. Therefore, the eigenvectors Ui can also be viewed as
vectorized Lx × Ly arrays. Their devectorizations are denoted by Ψi = vec−1

Lx
(Ui).

Similarly, the rows of X are vectorizations of the (Kx,Ky) submatrices

X = [X1 : . . . : XLxLy]T, Xk+(l−1)Lx = vec(X
(Kx,Ky)

k,l), (5.3)

where Xj is the j th row of the matrix X. The factor vectors Vi can also be viewed
as Kx × Ky arrays. Their devectorizations are denoted by Φi = vec−1

Kx
(Vi).

5.1.1.4 Comments

1. The algorithm of 2D-SSA coincides with the algorithm of MSSA for time series
of the same length when Lx = 1 or Ly = 1 (Golyandina and Usevich 2010).
This observation will be used in Sect. 5.2.

2. The arrays X of finite rank in 2D-SSA (i.e., the arrays such that T2D-SSA(X)

is rank-deficient and has a fixed rank) are sums of products of polynomials,
exponentials and cosines, similarly to the one-dimensional case. More details
can be found in Sect. 5.1.2.

3. The generic scheme of SSA described in Sect. 1.1 includes a decomposition
of the trajectory matrix into a sum of rank-one matrices. If this decomposition
is performed by means of the SVD, then we call the method Basic 2D-SSA
or simply 2D-SSA. Other versions, such as Shaped 2D-SSA, nested Iterative
Oblique 2D-SSA or 2D-SSA with projection, can be also considered.

5.1 2D-SSA 235

5.1.2 Elements of 2D-SSA Theory

In the next two sections, we give a short summary of the theory of arrays of finite
rank; for detail we refer to Golyandina and Usevich (2009).

5.1.2.1 Arrays of Finite Rank

Consider the class of infinite arrays X = (xmn)
∞,∞
m,n=1 given in the parametric form:

xmn =
r

∑

k=1

ckμ
m
k νn

k , (5.4)

where (μk, νk) ∈ C2 are distinct pairs of complex numbers and ck are non-zero. It
can be shown that for large enough Nx,Ny,Lx,Ly , the rank of the trajectory matrix
X is equal to r (or equivalently, the arrays of the form (5.4) are arrays of finite rank).
Note that the exponentials can be also represented in the form

μk = ρx,k exp(2π iωx,k), νk = ρy,k exp(2π iωy,k), −0.5 < ωy,k ≤ 0.5.

The class of arrays of finite rank also contains bivariate polynomials and their
products with the functions from (5.4), see (1.10). The complete algebraic char-
acterization of infinite arrays of finite rank can be found in Golyandina and Usevich
(2009). Similar to the 1D case, we can call (μk, νk) the characteristic roots.

5.1.2.2 Real Arrays

Now let us summarize what happens in the case of real arrays X. If all elements xmn

are real, then for any pair (μ, ν) = (μk, νk) ∈ C2 in (5.4) its complex conjugate
(conj(μ), conj(ν)) is also presented in the right-hand side of (5.4). This is due to the
fact that xm,n = xm,n+xm,n

2 and that the infinite arrays μmνn are linearly independent.
The corresponding coefficients associated with (μ, ν) and (conj(μ), conj(ν)) are
also complex conjugate. We order the roots so that (μk, νk) are real for 1 ≤ k ≤ d ,
and the other 2s roots consist of complex conjugate pairs and are arranged so that
(μk, νk) = (conj(μk−s), conj(νk−s)) for d + s + 1 ≤ k ≤ d + 2s. Then these roots
have the representation

(μk, νk) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(ρx,k, ρy,k) = (

ρy,k exp(2π iωx,k), ρy,k exp(2π iωy,k)
)

, 1 ≤ k ≤ d,
(

ρx,k exp(2π iωx,k), ρy,k exp(2π iωy,k)
)

, d + 1 ≤ k ≤ d + s,
(

ρx,k−s exp(−2π iωx,k−s), ρy,k exp(−2π iωy,k−s)
)

, d + s + 1 ≤ k ≤ r,

236 5 Image Processing

where (ρx,k, ρy,k, ωx,k, ωy,k) ∈ R2 ×[0; 1/2)2 are distinct 4-tuples of real numbers
such that ωx,k = ωy,k = 0 for 1 ≤ k ≤ d .

Then the representation (5.4) becomes a sum of d + s planar modulated
sinewaves:

xmn =
d+s
∑

k=1

bkρ
m
x,kρ

n
y,k cos

(

2π(ωx,km + ωy,kn) + φk

)

,

where bk and φk ∈ [0; 2π) are unique real coefficients obtained from ck .

Example 5.1 The product of sines can be uniquely represented as a sum of two
planar sines:

2 cos(2πωxm + φ1) cos(2πωyn + φ2) =
cos(2π(ωxm + ωyn) + φ1 + φ2) + cos(2π(ωxm − ωyn) + φ1 − φ2).

5.1.3 Algorithm

The algorithm of 2D-SSA decomposition, as well as 1D-SSA and MSSA, is a
particular case of the generic scheme described in Sect. 1.1.1. Let us write down
the algorithm of the basic version of 2D-SSA, which is characterized by the use of
the SVD for performing the rank-one matrix decomposition.

Algorithm 5.1 Basic 2D-SSA: decomposition
Input: Image X of size Nx × Ny ; window of size Lx × Ly .
Output: Decomposition of the trajectory matrix of sizes LxLy ×KxKy , where Kx = Nx −Lx +1

and Ky = Ny − Ly + 1, on elementary matrices X = X1 + . . . +Xd , where Xi = √
λiUiV

T
i .

1: Construct the trajectory matrix X = T2D-SSA(X), where T2D-SSA is defined by (5.1) or (5.2).
2: Compute the SVD X = X1 + . . . + Xd , Xi = √

λiUiV
T
i .

Note that the presentation of Ui or Vi in plots is performed in the form of matrices
Ψi = vec−1

Lx
(Ui) and Φi = vec−1

Ly
(Vi), which are called eigenarrays and factor

arrays, respectively.
Reconstruction stage of 2D-SSA is standard.

Algorithm 5.2 2D-SSA reconstruction
Input: Decomposition X = X1 + . . . +Xd , where Xi = σiUiV

T
i and ‖Ui‖ = ‖Vi‖ = 1, grouping

{1, . . . , d} = ⊔m
j=1 Ij .

Output: Decomposition of the image on identifiable components: X=X1+. . .+Xm.
1: Construct the grouped matrix decomposition X = XI1 + . . . + XIm , where XI = ∑

i∈I Xi .
2: X = X1 + . . . + Xm, where Xi = T−1

2D-SSA ◦ ΠHbH(XIi).

5.1 2D-SSA 237

5.1.4 2D-SSA in RSSA

5.1.4.1 Description of Functions

Let x be a digital image in a gray scale, which is given by a real matrix. Then a
typical call of the ssa function is

s <- ssa(x, L = c(30,30), kind = "2d-ssa")

Arguments:

x is an object to be decomposed. If there are any NA’s, then the shaped variant of
2D-SSA (see Sect. 5.2) will be used and all non-NA elements will be considered
as a mask.

L is a 2D-window size; it should be a vector of length 2 for 2D-SSA. Each
vector element is set to the half of the corresponding image size by default.
Default value can be time-consuming. It is recommended to start with window
c(30,30) or smaller.

neig is the number of desired eigentriples. If neig = NULL, a default value which
depends on L and N will be used.

kind specifies the version of SSA to be used; it can be omitted in non-ambiguous
cases (e.g., when x is a matrix for the 2D case).

svd.method selects the SVD method. Full description is given in Sect. 2.1.5.2.

The function returns the ssa object, see details in Sect. 2.1.5.

5.1.4.2 Typical Code

Here we demonstrate a typical decomposition of 2D images with the package RSSA.
We follow the same route as in the simple example provided in Sect. 2.1.5.3 and
stress on the differences that appear in the 2D case.

As an example, we use the image of Mars by Pierre Thierry, from the tutorial of
the free IRIS software. The image is of size 258 × 275, 8-bit grayscale, values from
0 to 255. The input code for this image can be found in Fragment 5.1.1 (the image
is included in the package RSSA).

Fragment 5.1.1 (“Mars”: Input)

> data("Mars", package = "Rssa")

We would like to decompose this image with the window of size 25 × 25. Easy
calculations show that even this rather small window produces a 625 × 58734
trajectory matrix. In Fragment 5.1.2 with svd.method = "svd", we intentionally
comment the call to the SSA function, because we do not recommend to use it,
unless the trajectory matrix is very small.

Fragment 5.1.2 (“Mars”: Decomposition with svd.method = "svd")

> # ssa(Mars, kind = "2d-ssa", L = c(25, 25), svd.method = "svd")

238 5 Image Processing

A remedy for this could be a calculation of just the matrix XXT, and computing its
eigendecomposition. In the package RSSA, this is implemented in svd.method =

"eigen", see Fragment 5.1.3.

Fragment 5.1.3 (“Mars”: Decomposition with svd.method = "eigen")

> print(system.time(ssa(Mars, kind = "2d-ssa", L = c(25, 25),
+ svd.method = "eigen")))

user system elapsed
5.42 0.53 5.95

For larger window sizes this approach quickly becomes impractical because the
complexity of the full eigendecomposition grows at least as O(L3). Therefore,
in the RSSA package the method nutrlan is used by default. This gives a
considerable speed-up even for moderate window sizes (25 × 25), as demonstrated
in Fragment 5.1.4. Note that for the 2D-SSA decomposition, kind = "2d-ssa"

should be used.

Fragment 5.1.4 (“Mars”: Decomposition)

> print(system.time(s.Mars.25 <- ssa(Mars, kind = "2d-ssa",
+ L = c(25, 25))))

user system elapsed
0.67 0.02 0.68

Fragment 5.1.5 shows a typical reconstruction code for 2D-SSA.

Fragment 5.1.5 (“Mars”: Reconstruction)

> r.Mars.25 <-
+ reconstruct(s.Mars.25,
+ groups = list(Noise = c(12, 13, 15, 16)))
> plot(r.Mars.25, cuts = 255, layout = c(3, 1))

The reconstruction results are shown in Fig. 5.2.

Reconstructions
Original [0, 260] Noise [−8.6, 8.6] Residuals [−3.8, 260]

Fig. 5.2 “Mars”: Separated periodic noise, (Lx, Ly) = (25, 25)

5.1 2D-SSA 239

Eigenvectors
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Fig. 5.3 “Mars”: Eigenarrays, (Lx, Ly) = (25, 25)

W−correlation matrix

F10

F20

F30

F10 F20 F30

Fig. 5.4 “Mars”: w Correlations, (Lx, Ly) = (25, 25)

The grouping for this decomposition was made on the base of the following
information:

• eigenarrays Ψi (see Fig. 5.3), and
• the matrix of w-correlations, see Fig. 5.4.

Fragment 5.1.6 shows the corresponding code.

Fragment 5.1.6 (“Mars”: Identification)

> plot(s.Mars.25, type = "vectors", idx = 1:20,
+ cuts = 255, layout = c(10, 2),
+ plot.contrib = FALSE)
> plot(wcor(s.Mars.25, groups = 1:30),
+ scales = list(at = c(10, 20, 30)))

240 5 Image Processing

Reconstructions
Original [0, 260] Noise [−7.8, 7.8] Residuals [−5.7, 260]

Fig. 5.5 “Mars”: Reconstruction, (Lx, Ly) = (160, 80)

Let us now try a much more challenging window size (Lx, Ly) = (160, 80). In
this case, the trajectory matrix has size 12800×19404 and svd.method = "eigen"

would take a very long time. However, with the default method svd.method =

"nutrlan", the computation of the first 50 eigenvectors can be done in about a
second, see Fragment 5.1.7. The results of the reconstruction are shown in Fig. 5.5.

Fragment 5.1.7 (“Mars”: Reconstruction)

> print(system.time(s.Mars.160.80 <-
+ ssa(Mars, kind = "2d-ssa", L = c(160, 80))))

user system elapsed
0.78 0.03 0.81

> r.Mars.160.80.groups <- list(Noise = c(36, 37, 42, 43))
> r.Mars.160.80 <- reconstruct(s.Mars.160.80,
+ groups = r.Mars.160.80.groups)
> plot(r.Mars.160.80, cuts = 255, layout = c(3, 1))

From Fig. 5.5 we see that in the case of large window sizes, the extracted periodic
noise is not modulated (compare to Fig. 5.2). This can be interpreted as follows. We
chose the window sizes as (160, 80) (approximately (0.6Nx, 0.3Ny)) for which the
separability of signal and noise in the parametric model should be better than for
small window sizes. On the other hand, if we choose smaller windows (for example,
25 × 25), then the 2D-SSA decomposition would act more like smoothing.

5.1.4.3 Comments

Formats of Input and Output Data

The input for 2D-SSA is assumed to be a matrix (or an object which can be coerced
to a matrix).

5.2 Shaped 2D-SSA 241

Plotting Specifics

By default, all plotting routines use the raster representation (via the argument
useRaster = TRUE provided to the LATTICE plotting functions). In most cases it
does not make sense to turn the raster mode off, since the input is a raster image in
any case. However, not all graphical devices support this mode.

Efficient Implementation

Most of the ideas from the one-dimensional case can be either transferred directly
or generalized to the 2D case. The overall computational complexity of the
direct implementation of 2D-SSA is O(L3 + KL2) and thus 2D-SSA can be
extremely time consuming even for moderate images and window sizes. (Recall
that L = LxLy and K = KxKy .) The ideas presented in Golyandina et al. (2015)
coupled with Lanczos-based truncated SVD implementations (Larsen 1998; Trickett
2003; Yamazaki et al. 2008; Korobeynikov 2010) allow to dramatically reduce the
computational complexity down to O(kN log N + k2N), where N = NxNy and k

denotes the number of desired eigentriples. Therefore, the achieved speed-up can be
much higher than that for the 1D-SSA and MSSA cases.

Note that the Lanczos-based methods have significant overhead for small
trajectory matrices, so in this case other SVD methods should be used. For the
choice svd.method="eigen", the matrix XXT is computed in O(LN log N) flops
using the fast matrix-vector multiplication (Golyandina et al. 2015). Therefore, the
total complexity of the decomposition method is O(LN log N + L3), which makes
the method applicable for small L and moderate N .

5.2 Shaped 2D-SSA

In its general form, Shaped SSA can be used for analyzing an object given on a
grid of dimension k ≥ 1. The case k = 1, which is described in Sect. 2.6, is, to a
certain extent, degenerate. For simplicity of notation, we consider the case k = 2 as
a representative for dimensions k > 1.

Shaped 2D-SSA (we will use the same short name ShSSA as for the 1D case) is
a generalization of 2D-SSA, which allows arbitrary shapes of the input array and of
the window (Golyandina et al. 2015). This considerably extends the range of real-
life applications of SSA, since it allows to analyze parts of the image with different
structures separately, exclude areas with corrupted data, analyze images with gaps,
decompose non-rectangular images, etc. In ShSSA, not all values of the rectangular
image have to be specified, and the sliding window is not necessarily rectangular.
Moreover, there is a circular version of Shaped SSA, when the object can be taken
on a circle, a cylinder, or a torus (Shlemov and Golyandina 2014).

242 5 Image Processing

5.2.1 Method

5.2.1.1 Shapes and Actions with Them

Formally, we call shape B a finite non-empty subset of {1, . . . , Tx} × {1, . . . , Ty},
where Tx, Ty ∈ N ∪ {∞}, N is the set of natural numbers. The values Tx and Ty

characterize the topology of the set containing this shape. If Tx < ∞ (or Ty <

∞), then the topology is circular and the shapes are cyclic with respect to the x-
coordinate (or the y-coordinate) with period Tx (respectively, Ty).

A B-shaped array is a partially indexed array X = XB = (x(i,j))(i,j)∈B. Let us
denote the space of B-shaped arrays as RB. There is an isomorphism RB ∼ RB ,
where B = |B| is the cardinality of the set B. This isomorphism is not unique, since
the elements in the shape can be ordered in different ways. However, the result of
the algorithm does not depend on the chosen order.

For convenience, we consider the lexicographical order, which fixes the isomor-
phism

JB : RB �→ RB. (5.5)

We call JB vectorization and its inverse J−1
B shaping.

Next, we introduce the operation of addition in the considered topology for two
pairs of indices � = (�x, �y), κ = (κx, κy). For convenience, we omit the parameters
(Tx, Ty) and write ⊕ instead of ⊕(Tx,Ty):

� ⊕ κ = (

(�x + κx − 2) mod Tx + 1, (�y + κy − 2) mod Ty + 1
)

,

where mod denotes the remainder in the integer division. Formally, a mod ∞ = a

for any a. Note that −2 and +1 in the definition of ⊕ is the consequence of the
indexing, which starts at 1 (so that {1} ⊕ {1} = {1}).

For two shapes A and B, we modify the definition of the Minkowski sum in the
following way:

A ⊕ B = {α ⊕ β | α ∈ A, β ∈ B}. (5.6)

5.2.1.2 Embedding Step

The embedding operator for the Shaped 2D-SSA algorithm is defines as follows:

Input Data and Parameters of the Embedding

The input data are the topology characteristics (Tx, Ty), the shape N, where N ⊂
{1, . . . , Tx} × {1, . . . , Ty}, and the N-shaped array X ∈ RN. The parameter of
the algorithm is a window shape L ⊂ N. It is convenient to consider the window

5.2 Shaped 2D-SSA 243

shape in the form L = {�1, . . . , �L}, where L = |L| and �i ∈ N2 are ordered
lexicographically.

For each κ ∈ N, we define a shifted L-shaped subarray as XL⊕{κ} =
(xα)α∈L⊕{κ}. The index κ is a position of the origin for the window. Consider the
set of all possible origin positions for the L-shaped windows:

K = {κ ∈ N | L ⊕ {κ} ⊂ N}.

We assume that K is written as K = {κ1, . . . , κK }, where K = |K|
= 0 and κj are
ordered lexicographically.

If the shapes N and L are rectangles, then K is also rectangular and we call the
version of Shaped 2D-SSA rectangular. Note that the rectangular version of Shaped
2D-SSA is exactly the ordinary 2D-SSA described in Sect. 5.1.

Embedding Operator

The trajectory matrix X is constructed by the embedding operator TShSSA : RN →
RL×K

T(X) = TShSSA(X) := X = [X1, . . . , XK], (5.7)

where the columns

Xj = (x�i⊕κj)
L
i=1

are vectorizations of the shaped subarrays XL⊕{κj }.
The embedding operator TShSSA is linear. Denote its range M

(H)
L,K as HL×K ⊂

RL×K . The subspace HL×K consists of structured matrices, which we will call
quasi-Hankel. (In fact, they are generalizations of quasi-Hankel matrices from
Mourrain and Pan (2000).) If the operator TShSSA is injective, then it sets the
isomorphism between the spaces RN and HL×K.

Remark 5.1 The embedding operator TShSSA is injective if and only if L ⊕ K =
N, i.e., if each point of the initial shaped array X can be covered by a window of
shape L.

If there are uncovered points, we can remove them and consider only the
decomposition of the restricted array X

′ = (X)N′ , where N′ = L⊕K. Hereafter we
will suppose that N = L ⊕ K, i.e., all points are covered and the operator TShSSA is
injective.

244 5 Image Processing

Projection to HL×K

Projection ΠN-HbH to the space of quasi-Hankel matrices is generated by the
embedding operator TShSSA and can be performed using the general form described
in Sect. 1.1.2.6.

5.2.1.3 Particular Cases

As shown in Golyandina et al. (2015), many versions of SSA can be considered as
special cases of Shaped 2D-SSA. Basic SSA corresponds to the shapes

N = {1, . . . , N} × {1}, L = {1, . . . , L} × {1}.

The shaped arrays X ∈ RN in this case are time series, and the set HL×K is the set of
ordinary Hankel matrices. 1D-SSA for time series with missing values is obtained
by removing the indices of missing elements from the shape N.

MSSA for multivariate time series of possibly different lengths can be considered
as Shaped 2D-SSA for a shaped 2D array consisting of stacked series and a
rectangular window shape L = {1, . . . , L}× {1}. Then the space HL×K is the space
of horizontally-stacked Hankel matrices.

The 2D-SSA algorithm corresponds to Shaped 2D-SSA with

N = {1, . . . , Nx} × {1, . . . , Ny },
L = {1, . . . , Lx} × {1, . . . , Ly}.

The shaped arrays X ∈ RN are rectangular images, the windows L are rectangular,
and the set HL×K is the set of Hankel-block-Hankel matrices. For more details on
different SSA versions as special cases of Shaped 2D-SSA, we refer the reader to
Golyandina et al. (2015; Section 5.3).

All these SSA versions can be extended by allowing circular topology. In order
to distinguish between different variants, we use the following terminology. If both
Tx and Ty are infinite, then we call the SSA version planar (see Fig. 5.6, left);

Fig. 5.6 Left: shaped image and window; center: cylindrical topology; right: toroidal topology

5.2 Shaped 2D-SSA 245

otherwise, we use the term circular. The case, when only one of Tx and Ty equals
infinity, is cylindrical (see Fig. 5.6, center), while the case, when both of them are
finite, is toroidal (see Fig. 5.6, right).

5.2.2 Rank of Shaped Arrays

5.2.2.1 L-Rank

Following the definition of finite-rank time series (Golyandina et al. 2001; Chap-
ter 5) and finite-rank 2D arrays (Golyandina and Usevich 2010), let us generalize
the notion of rank to the shaped and circular shaped cases. Note that generally the
theory of infinite arrays of finite rank is closely related to multidimensional arrays
satisfying LRRs.

Definition 5.1 The L-trajectory space SL of a shaped array S ∈ RN is defined as

SL(S) = span{(S)L⊕{κ}}κ|L⊕{κ}⊂N.

The introduced trajectory space corresponds to the column space of the trajectory
matrix S = TShSSA(S). In view of the isomorphism JL, {P1, . . . ,Pr } is a basis of
SL(S) if and only if {P1, . . . , Pr }, where Pk = JL(Pk), is a basis of the column
space of S. Let {Q1, . . . ,Qr } be a basis of the row space of S, that is, of the row
trajectory space. Then {Q1, . . . ,Qr }, where Qk = J−1

K (Qk), forms the basis of a
space, which can be denoted as SK(S). We will use the terms column/row trajectory
spaces and column/row shaped trajectory spaces, depending on the context.

Definition 5.2 The L-rank of a shaped array S is defined as the dimension of its
L-trajectory subspace:

rankL S = dimSL(S) = rankS.

5.2.2.2 Infinite Arrays of Finite Rank

In order to describe the general form of arrays of finite rank, we consider infinite
arrays (and their trajectory spaces) in both sides for both dimensions (i.e., N =
Z × Z). We will consider the planar case with Tx = Ty = ∞.

Definition 5.3 Infinite (in both directions) array S∞ is called the array of finite
shaped rank if r = max

L
rankL S∞ (here the maximum is taken over L ⊂

{1, . . . ,∞} × {1, . . . ,∞}) is finite. In this case, we will write rankS∞ = r .

Remark 5.2 The shaped rank for an infinite array is equal to its rectangular rank
(when the maximum is taken over rectangular shapes), since a sequence of shapes
that contain increasing rectangular shapes and are contained in the rectangular

246 5 Image Processing

shapes can be easily constructed. Therefore, we will talk about arrays of finite rank
omitting “shaped.”

Remark 5.3 If S∞ is an infinite array of finite rank r , S = (S∞)N is a sufficiently
large finite subarray of S∞ and L is a sufficiently large shape, then

rankL S = rankL S∞ = rankS∞ = r. (5.8)

Let K = {κ | L ⊕ {κ} ⊂ N}. A sufficient condition for (5.8) (see, e.g., Golyandina
and Usevich (2010) for the proof) is that both L and K shapes contain at least one
r × r square. More formally, it is sufficient that there exists a 2D index α = (l, n)

such that {1, . . . , r} × {1, . . . , r} ⊕ {α} ⊂ L; the same should be valid for K.

Proposition 5.1 Let Tx = Ty = ∞. Then an infinite array S∞ of finite rank has
the form

(S∞)m,n =
s

∑

k=1

Pk(m, n)μm
k νn

k , (5.9)

where μk, νk ∈ C, the pairs (μk, νk) are different, and Pk(m, n) are complex
polynomials of m and n. This representation is unique up to the order of summation.
As was mentioned in Sect. 1.4, this important fact is well known starting from
Kurakin et al. (1995; §2.20). Note that the rank of the array S∞ given in (5.9) is
not determined by the degrees of the polynomials Pk only and is hard to compute
(see Golyandina and Usevich (2010)).

An important special case is (S∞)ln = ∑r
k=1 Akμ

l
kν

n
k ; it is widely used in signal

processing. In this case, rankS∞ is equal to the number of different (μk, νk)-pairs.

5.2.3 Algorithm

Algorithm 5.3 Shaped 2D-SSA (planar): decomposition
Input: Image X of size Nx × Ny and mask of the same size consisting of TRUE and FALSE;

window of size Lx × Ly and mask of the same size consisting of TRUE and FALSE; if the
objects contain “NA,” this means that the FALSE values are added to the masks at the places
of “NA.”

Output: Shaped image N, which has been decomposed, consisting of N points covered by the
shaped window L consisting of L points; shape K consisting of the K possible positions of the
window. Decomposition of the trajectory matrix of size L × K: X = X1 + . . . + Xd , where
Xi = √

λiUiV
T
i .

1: Construct the shapes L, K, N and the trajectory matrix X = TShSSA(X
∣

∣

N
), where TShSSA is

defined by (5.7).
2: Compute the SVD X = X1 + . . . + Xd , Xi = √

λiUiV
T
i .

5.2 Shaped 2D-SSA 247

The circular version of 2D-SSA can be considered in two versions, the cylindric
and toroidal ones. Let us comment on the case, when the image is given on a cylinder
with the main axis parallel to the axis “y.” This case corresponds to Tx < ∞ and
Ty = ∞. It is convenient to take Tx = Nx , which means that the image is located
on the circular segment of a cylinder. The only difference of the algorithm of the
circular 2D-SSA from the rectangular one, see Algorithm 5.3, is in the number K

of the windows, which cover the image, and therefore in the form of the trajectory
matrix X. For example, in the cylindric topology, the window, which starts on one
edge of the image, can continue to the opposite edge.

Note that the presentation of Ui or Vi in plots is performed in the form of shapes
Ψi = J−1

L (Ui) and Φi = J−1
K (Vi), which are called eigenshapes and factor shapes,

respectively. Here J is the shaping operator, see (5.5). In the cylindric version, if the
window is bounded, then eigenshapes are also bounded, while factors shapes are
given on a cylinder.

Reconstruction stage is standard.

Algorithm 5.4 Shaped 2D-SSA reconstruction

Input: Decomposition X = X1 + . . . +Xd , where Xi = σiUiV
T
i and ‖Ui‖ = ‖Vi‖ = 1, grouping

{1, . . . , d} = ⊔m
j=1 Ij , N.

Output: Decomposition of the object on identifiable components: X
∣

∣

N
= X1 + . . . + Xm.

1: Construct the grouped matrix decomposition X = XI1 + . . . + XIm , where XI = ∑

i∈I Xi .
2: X

∣

∣

N
= X1 + . . . + Xm, where Xi = T−1

ShSSA ◦ ΠN-HbH(XIi).

5.2.4 Shaped 2D-SSA in RSSA

5.2.4.1 Description of Functions

Shaped 2D-SSA is performed if the initial image contains “NA” values. A typical
call for Shaped 2D-SSA is

s <- ssa(x, mask = x != 0, wmask = circle(50), kind = "2d-ssa",
circular = c(FALSE, FALSE))

Arguments:

x is a 2D object to be decomposed; it is assumed to be a matrix. The shape can be
set by NA. All non-NA elements will be used as a mask.

L should be a vector of length 2 for 2D-SSA. If the parameter wmask is specified,
then its value is considered as a shaped window, while the parameter L is
ignored.

248 5 Image Processing

mask is used for the shaped 2D-SSA case only. This parameter indicates which
entries in x will be considered for decomposition. It is a logical matrix with the
same dimension as x. If mask = NULL, then all non-NA elements of x will be
used. In the example considered, the mask is given separately and consists of
non-zero elements of the input image x.

wmask should be set for Shaped SSA case only. It is a logical matrix which specifies
the window shape. If wmask = NULL, then a rectangular window (specified by
L) will be used. In addition, one may use the following functions as the wmask

values:
circle(R) is the circle mask of radius R,
triangle(side) is the mask in the form of a isosceles right triangle with
the leg of size side, where the right angle lays on the top-left corner of the
circumscribed square.

circular is a logical vector of two elements describing the topology of a 2D
object. The value TRUE means series circularity by the corresponding coor-
dinate. One TRUE value provides the topology of a cylinder, while both TRUE

values correspond to the topology of torus. Note that in the 1D case circular

is a logical vector of one element, which describes the series topology for 1D-
SSA and Toeplitz SSA. In the 1D case, the value TRUE means the topology of
circle.

neig is the number of desired eigentriples. If neig = NULL, a default value which
depends on L and N will be used.

kind specifies the version of SSA to be used; it can be omitted in non-ambiguous
cases (e.g., when x is a matrix for the 2D case).

svd.method selects the SVD method. Full description is given in Sect. 2.1.5.2.

The function returns the ssa object, see details in Sect. 2.1.5. In addition,
s$fmask provides the mask, which determines the shape K, and s$weights

determines the weights of points of the initial object (how many times the window
passes through each point); as a result, s$weights > 0 defines the shape N.

Note that the ordinary 2D-SSA is implemented as a special case of Shaped 2D-
SSA with rectangular window. Therefore, their computational costs are the same.

5.2.4.2 Typical Code

We repeat the experiment from Sect. 5.1.4 (noise removal from the image of Mars);
this time using Shaped 2D-SSA. The code for loading the image is the same as in
Fragment 5.1.1.

5.2 Shaped 2D-SSA 249

Recall that the array shape can be specified in two different ways:

• by passing the NA values in the input array (these elements are excluded), or
• by specifying the parameter mask which is a logical Nx × Ny array (the indicator

of N).

If both shape specifications are present, their intersection is considered. The shape
of the window is typically passed as an Lx × Ly logical array (wmask). The
shapes can be also specified by a command circle, as shown in Fragment 5.2.2.
Fragment 5.2.2 uses the function plot2d, which is presented in Fragment 5.2.1.

Fragment 5.2.1 (Auxiliary Plot of 2D Image)

> plot2d <- function(x) {
+ regions <- list(col = colorRampPalette(grey(c(0, 1))));
+ levelplot(t(x[seq(nrow(x), 1, -1),]), aspect = "iso",
+ par.settings = list(regions = regions),
+ colorkey = FALSE,
+ scales = list(draw = FALSE, relation = "same"),
+ xlab = "", ylab = "")
+ }

Fragment 5.2.2 (“Mars”: Mask Specification and Decomposition)

> mask.Mars.0 <- (Mars != 0)
> mask.Mars.1 <- (Mars != 255)
> Mars[!mask.Mars.0] <- NA
> print(system.time(s.Mars.shaped <-
+ ssa(Mars, kind = "2d-ssa",
+ mask = mask.Mars.1, wmask = circle(15))))

user system elapsed
0.92 0.01 1.00

> mask.Mars.res <- (s.Mars.shaped$weights > 0)
> plot2d(mask.Mars.0)
> plot2d(mask.Mars.1)
> plot2d(mask.Mars.res)

In Fig. 5.7 one can see both types of masks and the resulting mask. Note that the
resulting mask is constructed as a part of the combined mask, which is covered by
the given shaped window.

Fig. 5.7 “Mars” masks specification. Left: specified by NA, center: the parameter mask, right:
resulting mask. White and black colors correspond to TRUE and FALSE, respectively

250 5 Image Processing

Reconstructions
Original [1, 260] Noise [−8.7, 8.7] Residuals [−7, 260]

Fig. 5.8 “Mars”: Reconstruction, ShSSA

Fragment 5.2.3 shows a typical reconstruction code for ShSSA.

Fragment 5.2.3 (“Mars”: Reconstruction)

> r.Mars.shaped.groups <- list(Noise = c(7, 8, 9, 10))
> r.Mars.shaped <- reconstruct(s.Mars.shaped,
+ groups = r.Mars.shaped.groups)
> plot(r.Mars.shaped, cuts = 255, layout = c(3, 1),
+ fill.color = "yellow")

The reconstruction results are shown in Fig. 5.8, where we can see that the elements
are reconstructed only inside the resulting mask but the original array is drawn for
all available elements (except the NA values).

The grouping for this decomposition was made based on the following informa-
tion:

• the eigenarrays (see Fig. 5.9), and
• the matrix of w-correlations (see Fig. 5.11 (left)).

The same information can be used for visual estimation of the decomposition
quality. Fragment 5.2.4 shows the code that reproduces Figs. 5.9 and 5.11 (left).

Fragment 5.2.4 (“Mars”: Identification)

> plot(s.Mars.shaped, type = "vectors", idx = 1:30,
+ fill.color = "yellow", cuts = 255, layout = c(10, 3),
+ plot.contrib = FALSE)
> plot(wcor(s.Mars.shaped, groups = 1:30),
+ scales = list(at = c(10, 20, 30)))
> plot(s.Mars.shaped)

One can see that in Fig. 5.9 the texture components are slightly mixed with
the smooth components, see, e.g., ET12,13,16,17,22. For shaped 2D (and nD)
objects, as for the 1D case, we can use the techniques described in Sects. 2.5
and 2.4 for improving the quality of decompositions. Fragment 5.2.5 shows that
Filter-adjusted O-SSA can be applied exactly in the same way as for the 1D case.
We use the default value of the parameter filter in the function fossa, which
corresponds to discrete derivatives in each direction given in the stacked manner,

5.2 Shaped 2D-SSA 251

Eigenvectors
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Fig. 5.9 “Mars”: Eigenarrays, ShSSA

Eigenvectors
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Fig. 5.10 “Mars”: Eigenarrays, ShSSA; improvement by DerivSSA

see Remark 2.6. Figure 5.10 shows 30 leading eigenarrays and Fig. 5.11 (right)
indicates the improvement in separability. We use the version with normalization
(Algorithm 2.11) and therefore the components are ordered by the decrease of their
frequencies. Thereby, the texture components are located before the smooth image
components. Recall that this ordering does not reflect the component contribution,
in contrast to the decomposition obtained with the help of the SVD (Fig. 5.9).

Fragment 5.2.5 (“Mars”: Improvement by DerivSSA)

> s.Mars.shaped.deriv <-
+ fossa(s.Mars.shaped, nested.groups = list(1:30))
> plot(s.Mars.shaped.deriv, type = "vectors", idx = 1:30,
+ fill.color = "yellow", cuts = 255, layout = c(10, 3),
+ plot.contrib = FALSE)
> plot(wcor(s.Mars.shaped.deriv, groups = 1:30),
+ scales = list(at = c(10, 20, 30)))
> plot(s.Mars.shaped.deriv)

252 5 Image Processing

W−correlation matrix

F10

F20

F30

F10 F20 F30

W−correlation matrix

F10

F20

F30

F10 F20 F30

Fig. 5.11 “Mars”: w-Correlations, ShSSA: initial (left) and after DerivSSA

Component norms

Index

no
rm

s

10^3.0

10^3.5

10^4.0

10^4.5

10^5.0

10^5.5

0 10 20 30 40 50

l

l

l

l
l

lll
ll

l

l

llll
lllll

lll
llllllllllllllllllllllllll

Component norms

Index

no
rm

s

10^3.0

10^3.5

10^4.0

10^4.5

10^5.0

10^5.5

0 10 20 30 40 50

llll

ll

llll

llll

llll

l
l

l

l

l

l

l

l

l

l
l

l

llllllllllllllllllll

Fig. 5.12 “Mars”: Contribution of elementary components, ShSSA: initial (left) and after
DerivSSA

Figure 5.12 contains the component norms after application of ShSSA, where the
component norms coincide with the ordered squared singular values of the trajectory
matrix, and after application of DerivSSA. Note that after DerivSSA the components
can be totally reordered, since their order is related to the values of their frequencies.

5.2.5 Comments on nD Extensions

We mentioned in the beginning of this chapter that the nD case is very similar to the
2D case. Moreover, many approaches presented in Chaps. 2 and 3 for the 1D case
can be applied in the nD case. Let us describe the commonalities and the specificity
of the nD case with n > 2.

5.3 2D ESPRIT 253

• The ssa function has an option kind, which can have the value "nd-ssa". This
version of SSA is chosen by default if the input object is, e.g., array of dimension
larger than 2.

• The nD objects can be of non-rectangular shapes; also, non-rectangular windows
can be used. That is, the shaped nD-SSA is implemented. Moreover, all other SSA
versions can be considered as particular cases of Shaped nD-SSA.

• The method nD-ESPRIT of frequency and damped factor estimation, which is
a direct extension of the 2D-ESPRIT and Shaped ESPRIT, is implemented for
objects of any dimension and shape.

• For the nD case, Iterative O-SSA and Filter-adjusted O-SSA, which are described
in Chap. 2, and also Iterative gap-filling and Cadzow iterations, which are
described in Chap. 3, are implemented. The call of the corresponding functions is
very similar to the 1D case.

• In the nD case, there is a specificity for setting the parameter filter in the
function fossa. In this case, the filter can be given by an array with the same
number of dimensions as for the input object. Also, a list of 1D filters (formally,
of vectors) can be provided for application to different dimensions in a stacked
manner (see Remark 2.6). If only one 1D filter is given, then it is replicated n

times. The value by default is filter = c(-1,1), the same as in DerivSSA.
• Plotting of nD objects is an obviously difficult problem. Plotting functions in

RSSA use the parameter slice to indicate which 2D slices the user wants to
depict.

5.3 Shaped 2D ESPRIT

The well-known ESPRIT (Roy and Kailath 1989) and 2D-ESPRIT (Rouquette and
Najim 2001) methods are used for estimation of parameters in the model X = S +
R, where R is noise and S is a signal of finite rank, which is of the form (S)l =
∑r

k=1 Akμ
l
k (for ESPRIT, see Sect. 3.1.1.2) and (S)ln = ∑r

k=1 Akμ
l
kν

n
k (for 2D-

ESPRIT). In this section, following Shlemov and Golyandina (2014), we briefly
describe the general scheme of ESPRIT-like methods on the example of shaped 2D-
arrays.

5.3.1 Method

ESPRIT-like methods use an estimation of the signal subspace, which is obtained
at Decomposition step of SSA. The described scheme is applicable to the shaped
version of 2D-SSA.

254 5 Image Processing

5.3.1.1 General Scheme

1. Estimation of the Signal Subspace

We assume that the signal is at least approximately separated from the residual by
a version of Shaped 2D-SSA. Let us consider Basic Shaped 2D-SSA. In this case,
r left singular vectors {Ui1 , . . . , Uir } of the trajectory matrix (and corresponding
shaped arrays {Ui1, . . . ,Uir }, where Uik = J−1

L (Uik)) approximate the column
signal subspace. In signal processing, typically, the first r components are chosen,
i.e. {i1, . . . , ir } = {1, . . . , r}.

2. Construction of Shifted Matrices

The algorithm uses the notion of shifts for shaped arrays from the space spanned
by {Ui1, . . . ,Uir }. Directions of shifts correspond to the directions in the initial
space. Thus, the four matrices Px , Qx , Py , Qy are constructed, whose columns
span the shifted subspaces. For 2D-ESPRIT this step is considered in Rouquette
and Najim (2001). For Shaped ESPRIT, which is more general, we define this step
in Sect. 5.3.1.2.

3. Construction of Shift Matrices

The relation between the shifted subspaces allows estimation of the so-called shift
matrices Mx and My of order r × r as approximate solutions of PxMx ≈ Qx and
PyMy ≈ Qy . The method of estimation is based on least squares (LS-ESPRIT) or
total least squares (TLS-ESPRIT).

4. Estimation of Parameters

The eigenvalues of the shift matrices provide estimates of the parameters: the
eigenvalues of the x-direction shift matrix Mx provide estimates of μk , while the
eigenvalues of the y-direction shift matrix My produce estimates of νk . However,
the method should provide estimates of the pairs (μk, νk). There are different
approaches for pair estimation: simultaneous diagonalization of shift matrices (see
Rouquette and Najim (2001; Section IV, method C); we will name it ESPRIT-DIAG)
and a pairing of independently calculated eigenvalues of two shift matrices (the
latter method is called 2D-MEMP (Rouquette and Najim 2001; Section IV, method
A) and is improved in Wang et al. (2005); we will name the improved version
ESPRIT-MEMP).

5.3 2D ESPRIT 255

5.3.1.2 Method for Construction of Shifted Matrices

Let us introduce the shaped version of the ESPRIT method and describe its specific
features. A difference of the shaped version from the rectangular planar one is in a
special shift construction for shapes at Step 2 of the ESPRIT scheme; other steps
are exactly the same as in the planar versions. Also, the circular topology influences
the algorithm.

We will use the terminology introduced in Sect. 5.2: the topology of the initial
2D array N is parameterized by (Tx, Ty); the 2D shape window L is equipped with
the topology of the initial object; U1, . . . ,Ur ∈ RL is a basis of the estimated signal
subspace. For example, {Uk}rk=1 are the L-shaped eigenvectors from the chosen
eigentriples of the trajectory matrix identified as related to the image component
that one wants to analyze.

Let us show how to construct the x-shifted matrix; that is, the matrix obtained by
the shift along the x axis; the case of the shift along the y axis is analogous.

First, the subset of points from L that have adjacent points of L from the right in
the x-direction has to be found:

Mx = {� ∈ L | � ⊕ (2, 1) ∈ L}, (5.10)

where ⊕ is defined in (5.6). Recall that the sum ⊕ with 1 corresponds to no shift.
Then the shaped eigenarrays restricted on Mx and on Mx ⊕ {(2, 1)} are computed:

Pk = (Uk)Mx , Qk = (Uk)Mx⊕{(2,1)}, k = 1, . . . , r; (5.11)

after that, the arrays Pk and Qk are vectorized into Pk and Qk correspondingly.
Finally, the obtained vectors are stacked into the matrices

Px = [P1, : · · · : Pr], Qx = [Q1 : · · · : Qr].

This way, the shifted matrices Px , Qx , Py , Qy are constructed and the shift
matrices Mx and My can be estimated from the relations

PxMx ≈ Qx, PyMy ≈ Qy. (5.12)

Remark 5.4 We have considered the version of ESPRIT based on the column space.
The version based on the row space is similar.

5.3.2 Theory: Conditions of the Algorithm Correctness

Let an N-shaped array S of rank r have the common term in the form (S)ln =
∑r

k=1 Akμ
l
kν

n
k for a set of different pairs {(μk, νk)}rk=1, μk, νk ∈ C, and let the

noise R be zero. Proposition 5.2 (Shlemov and Golyandina 2014) forms the basis

256 5 Image Processing

of the ESPRIT-type methods (see, e.g., Rouquette and Najim (2001)) and provides
the conditions when Algorithm 5.5 and the ESPRIT scheme as a whole are correct;
that is, the equations (5.12) have exact solutions and the constructed shift matrices
produce exactly the pairs (μk, νk) by the exact joint diagonalization at the last step
of the scheme.

Proposition 5.2 Assume that the window L can be chosen so that the forms Mx

and My given in (5.10) are nonempty and rankMx S = rankMy S = rankL S = r .

Denote {Uk}rk=1, Uk ∈ RL, a basis of SL(S). Then

(1) the equalities PxMx = Qx and PyMy = Qy , see (5.12), have unique exact
solutionsMx andMy ;

(2) there exists a matrix T ∈ Cr×r so that Mx = T diag(μ1, . . . , μr)T−1 and
My = T diag(ν1, . . . , νr)T−1.

The following proposition (Shlemov and Golyandina 2014) provides sufficient
conditions for the correctness of the Shaped 2D ESPRIT algorithm for both planar
and circular versions.

Proposition 5.3 Let the shape L contain at least one (r + 1) × (r + 1) square and
the shape K = {κ | L ⊕ {κ} ⊂ N} contain at least one r × r square. Then the
conditions of Proposition 5.2 are valid.

5.3.3 Algorithm

Let us show how to construct the x-shifted matrix; that is, the matrix obtained by
the shift along the x axis; the case of the shift along the y axis is analogous.

Algorithm 5.5 Construction of x-shifted matrices
Input: Topology of the initial 2D array N parameterized by (Tx , Ty); 2D shape L equipped with

the topology of the initial object; basis U1, . . . ,Ur ∈ RL of the estimated signal subspace.
Output: Matrices Px , Qx .

1: Find the subset of points from L that have adjacent points of L from the right in the x-direction:

Mx = {� ∈ L | � ⊕ (2, 1) ∈ L} (5.13)

2: Consider the shaped eigenarrays restricted on Mx and on Mx ⊕ {(2, 1)}:

Pk = (Uk)Mx
, Qk = (Uk)Mx⊕{(2,1)}, k = 1, . . . , r. (5.14)

3: Vectorize the arrays Pk and Qk into Pk and Qk correspondingly.
4: Stack the obtained vectors to the matrices

Px = [P1, : · · · : Pr], Qx = [Q1 : · · · : Qr].

5.3 2D ESPRIT 257

Now let us write down the scheme of the Shaped 2D ESPRIT algorithm
according to the scheme described in Sect. 5.3.1.1.

Algorithm 5.6 Shaped 2D-ESPRIT
Input: Topology of the initial 2D array N parameterized by (Tx , Ty); 2D shape L equipped with

the topology of the initial object; rank r .
Output: Set of pairs (μk, νk), k = 1, . . . , r .

1: Find a basis U1, . . . ,Ur ∈ RL of the estimated signal subspace by Algorithm 5.3.
2: Construct the shifted matrices Px , Qx by Algorithm 5.5 and the shifted matrices Py , Qx in a

similar way.
3: Calculate the shift matrices Mx and My using the least-squares or total least squares method

for PxMx ≈ Qx and PyMy ≈ Qy .
4: Obtain the estimates (μk, νk) by applying one of the pairing methods to the shift matrices Mx

and My .

5.3.4 2D-ESPRIT in RSSA

5.3.4.1 Description of Functions

Estimation of parameters by 2D-ESPRIT is performed by the function
parestimate, which is also used for 1D-ESPRIT (see Sect. 3.1.3). The difference
is in the type of the ssa object and additional parameters. A typical call has the
form

est <- parestimate(s, groups = list(c(1:4)))

Arguments:

s is an ssa object holding the full 2D-SSA decomposition (possibly in the shaped
version).

groups is a list of groups of eigentriples.
method is a method of estimation of frequencies and damped factors; it can only

have the value "esprit" for nD objects.
subspace indicates which space, column or row, will be used for parameter

estimation by the ESPRIT method. The default value "column" is standard for
ESPRIT.

solve.method is the method of shift matrices estimation (see Step 3 in
Sect. 5.3.1.1); it can be "ls" for the least squares solution or "tls" for the total
least squares solution.

258 5 Image Processing

pairing.method is the method for roots pairing; it can be "diag" for 2D-ESPRIT
diagonalization or "memp" for MEMP with the improved pairing step (see Step 4
in Sect. 5.3.1.1).

beta is a coefficient in the convex linear combination of the shifted matrices
(Rouquette and Najim 2001; Eq. (48)).

5.3.4.2 Typical Code

Let us consider a simple rectangular case.
We continue the example “Mars” from Fragment 5.1.7. This example demon-

strates advantages of RSSA because of the possibility to choose large window sizes,
which was always considered to be problematic for the ESPRIT-type methods. Frag-
ment 5.3.1 shows the corresponding code that outputs the estimated exponentials.
In Fig. 5.13, the estimated pairs of complex exponentials (μk, νk) are shown on
separate complex plane plots and the points for μk and νk have the same color (for
the same k).

Fragment 5.3.1 (“Mars”: Parameter Estimation with 2D-ESPRIT)

> pe.Mars.160.80 <- parestimate(s.Mars.160.80,
+ groups = r.Mars.160.80.groups)
> print(pe.Mars.160.80)

x: period rate | y: period rate
-5.000 -0.000169 | 10.003 -0.000111
5.000 -0.000169 | -10.003 -0.000111
9.995 0.000175 | 4.999 -0.000093

-9.995 0.000175 | -4.999 -0.000093
> print(pe.Mars.160.80[[1]])

period rate | Mod Arg | Re Im
-5.000 -0.000169 | 0.99983 -1.26 | 0.30906 -0.95087
5.000 -0.000169 | 0.99983 1.26 | 0.30906 0.95087
9.995 0.000175 | 1.00017 0.63 | 0.80897 0.58814

-9.995 0.000175 | 1.00017 -0.63 | 0.80897 -0.58814
> print(pe.Mars.160.80[[2]])

period rate | Mod Arg | Re Im
10.003 -0.000111 | 0.99989 0.63 | 0.80905 0.58755

-10.003 -0.000111 | 0.99989 -0.63 | 0.80905 -0.58755
4.999 -0.000093 | 0.99991 1.26 | 0.30879 0.95103

-4.999 -0.000093 | 0.99991 -1.26 | 0.30879 -0.95103
> plot(pe.Mars.160.80, col = c(11, 12, 13, 14))
> plot(s.Mars.160.80, type = "vectors",
+ idx = r.Mars.160.80.groups$Noise,
+ cuts = 255, layout = c(4, 1), plot.contrib = FALSE)

In Fragment 5.3.1 and Fig. 5.13, it can be seen that each pair (μk, νk) has its
conjugate counterpart (μk′, νk′) = conj((μk, νk)). In particular, it is the case for
(k, k′) = (1, 2), and for (k, k′) = (3, 4). Therefore, the periodic noise is a sum of
two planar sines, as explained in Sect. 5.1.2. This is also confirmed by the plots of
the eigenarrays in Fig. 5.14.

5.3 2D ESPRIT 259

Roots

Real part

Im
ag

in
ar

y
pa

rt

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

l

l

l

l

x

−1.0 −0.5 0.0 0.5 1.0

l

l

l

l

y

Fig. 5.13 “Mars”: Parameter estimation with 2D-ESPRIT, (Lx, Ly) = (160, 80)

Eigenvectors
36 37 42 43

Fig. 5.14 “Mars”: Eigenarrays corresponding to the periodic noise, (Lx, Ly) = (160, 80)

Fragment 5.3.2, which continues Fragment 5.1.7, demonstrates that similar
estimates of parameters can be obtained by Shaped 2D-SSA.

Fragment 5.3.2 (“Mars”: Parameter Estimation with Shaped 2D-ESPRIT)

> pe.Mars.shaped <- parestimate(s.Mars.shaped,
+ r.Mars.shaped.groups)
> print(pe.Mars.shaped)

x: period rate | y: period rate
-5.007 -0.001403 | 10.015 -0.000408
5.007 -0.001403 | -10.015 -0.000408

10.008 0.000350 | 5.004 -0.001084
-10.008 0.000350 | -5.004 -0.001084

260 5 Image Processing

5.4 Case Studies

5.4.1 Extraction of Texture from Non-Rectangle Images

Let us compare the results of shaped and rectangular versions of 2D-SSA applied to
“Mars” data, which were obtained in Sects. 5.1.4.2 and 5.2.4.2.

The quality of the texture extraction and therefore of the image recovery by
Shaped SSA (Fig. 5.8) is considerably better than that for 2D-SSA (Fig. 5.2). The
improvement in the reconstruction accuracy can be explained by the edge effect
that is caused by a sharp drop of intensity near the boundary of Mars. In Fig. 5.15,
we compare magnified reconstructed images for 2D-SSA and ShSSA. In the left
subfigure, a yellow shadow is shown for the background area in order to indicate
the Mars boundary. In the right subfigure, the pure yellow color corresponds to NA.
The code that reproduces Fig. 5.15 is shown in Fragment 5.4.1.

Fragment 5.4.1 (“Mars”: Magnified Reconstructions by 2D-SSA and ShSSA)

> Mars.sh <- r.Mars.shaped$Noise
> Mars.rect.sh <- Mars.rect <- r.Mars.25$Noise
> Mars.rect.sh[is.na(Mars.sh)] <- NA
> library("latticeExtra")
> p.part.rect <- plot2d(Mars.rect[60:110, 200:250]) +
+ layer(panel.fill(col = "yellow",
+ alpha = 0.2),
+ under = FALSE) +
+ plot2d(Mars.rect.sh[60:110, 200:250])
> p.part.shaped <- plot2d(r.Mars.shaped[[1]][60:110, 200:250]) +
+ layer(panel.fill(col = "yellow"),
+ under = TRUE)
> plot(c(Rectangular = p.part.rect, Shaped = p.part.shaped))

Rectangular Shaped

Fig. 5.15 “Mars”: comparison of texture reconstructions by 2D-SSA and ShSSA

5.4 Case Studies 261

5.4.2 Adaptive Smoothing

2D-SSA can be used for adaptive smoothing of two-dimensional data. It was used
for this purpose in Golyandina et al. (2007) for smoothing digital terrain models
(DTM) as well as in Holloway et al. (2011) and Golyandina et al. (2012b) for
smoothing spatial gene expression data.

Similarly to the example in Golyandina et al. (2007), we consider an image
extracted from the SRTM database. The test DTM of a region in South Wales, UK,
is extracted by the function getData of the package RASTER (Hijmans 2016). The
DTM is 80 × 100, and it includes the Brecon Beacons national park. The point
(Nx, 1) lies in a neighborhood of Port Talbot, (Nx,Ny) is in a neighborhood of
Newport, and (1, Ny) is near Whitney-on-Wye. In Fragment 5.4.2, we decompose
the image with a small window and plot the eigenvectors in Fig. 5.16.

Fragment 5.4.2 (“Brecon Beacons”: Decomposition)

> data("brecon", package = "ssabook")
> s.brecon <- ssa(brecon, kind = "2d-ssa", L = c(8, 8),
+ svd.method = "eigen")
> plot(s.brecon, type = "vectors", idx = 1:32,
+ cuts = 255, layout = c(8, 4), plot.contrib = FALSE)

Eigenvectors
1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Fig. 5.16 “Brecon Beacons”: 8 × 8 windows, eigenarrays

262 5 Image Processing

Reconstructions
Original [6, 780] F1 [21, 660] F2 [−110, 150] F3 [−95, 100] Residuals [−96, 110]

Fig. 5.17 “Brecon Beacons”: 8 × 8 window, reconstructions (˜Xk)

Reconstructions
Original [6, 780] F1 [21, 660] F1:F2 [−0.021, 710] F1:F3 [−15, 730] Residuals [−96, 110]

Fig. 5.18 “Brecon Beacons”: 8 × 8 window, cumulative reconstructions (˜Yk)

Next, we reconstruct the image by grouping the components with numbers from
I1 = {1, . . . , 3}, I2 = {4, . . . , 8}, and I3 = {9, . . . , 17}. The grouping was chosen
based on eigenarrays to gather frequencies of similar scale in the same components.

We take cumulative sums of the reconstructed components ˜Y1 = ˜X1, ˜Y1 =
˜X1+˜X2, and ˜Y1 = ˜X1+˜X2+˜X3 (this is a convenient way to compute reconstructed
components for sets J1 = I1, J2 = I1 ∪I2, and J3 = I1 ∪I2 ∪I3). The reconstructed
components are plotted in Fig. 5.17. The cumulative components ˜Yk are shown in
Fig. 5.18 using the parameter cumsum of the plotting function of RSSA.

Fragment 5.4.3 (“Brecon Beacons”: Reconstruction)

> r.brecon <- reconstruct(s.brecon,
+ groups = list(1:3, 4:8, 9:17))
> plot(r.brecon, cuts = 255, layout = c(5, 1),
+ par.strip.text = list(cex = 0.75),
+ col = topo.colors(1000))
> plot(r.brecon, cuts = 255, layout = c(5, 1),
+ par.strip.text = list(cex = 0.75),
+ type = "cumsum", at = "free",
+ col = topo.colors(1000))

From observing Figs. 5.17 and 5.18 we can conclude that the reconstructed
components capture morphological features at different scales (Golyandina et al.
2007). The cumulative reconstructions represent smoothing of the original DTM of
different resolution.

5.4 Case Studies 263

Fig. 5.19 “Brecon Beacons”: 8 × 8 window, absolute values of the DFT of X − ˜Yk , k = 1, 2, 3

To illustrate the behavior of smoothing, we plot the absolute values of the
centered discrete Fourier transforms (DFT) of X− ˜Yk (residuals for the cumulative
reconstructions, see Fig. 5.19). The corresponding code can be found in Frag-
ment 5.4.5. We also use the function plot2d, which is defined in Fragment 5.2.1,
and introduce a code for computing their centered DFTs in Fragment 5.4.4.

Fragment 5.4.4 (2D-SSA: Centered DFT)

> centered.mod.fft <- function(x) {
+ N <- dim(x)
+ shift.exp <- exp(2i*pi * floor(N/2) / N)
+ shift1 <- shift.exp[1]^(0:(N[1] - 1))
+ shift2 <- shift.exp[2]^(0:(N[2] - 1))
+ Mod(t(mvfft(t(mvfft(outer(shift1, shift2) * x)))))
+ }

Fragment 5.4.5 (“Brecon Beacons”: DFT of Cumulative Reconstructions)

> plot2d(centered.mod.fft(brecon - r.brecon$F1))
> plot2d(centered.mod.fft(brecon - r.brecon$F1 - r.brecon$F2))
> plot2d(centered.mod.fft(brecon - r.brecon$F1 -
+ r.brecon$F2 - r.brecon$F3))

In Fig. 5.19, it is clearly seen that 2D-SSA reconstruction by the leading
components acts as a filter that preserves dominating frequencies (in this case, a
low-pass filter).

5.4.3 Analysis of Data Given on a Cylinder

Let us consider an example of data for expression of gene activity measured on the
embryo of the drosophila (fruit fly) (Shlemov and Golyandina 2014). The aim of the
analysis is to decompose the data into a sum of a pattern and noise and then measure
the signal/noise ratio. The form of the embryo is similar to an ellipsoid and therefore
the cylindrical projection is adequate for the middle part of the embryo. The data are
cropped and then are interpolated to a regular grid; in this way, we obtain a digital
image, which can be processed by 2D-SSA. After that, the values of the smoothed
expression are interpolated onto the nuclei centers.

264 5 Image Processing

As an input, we take the data v5_s11643-28no06-04.pca, gene “Krüp-
pel.” The data was downloaded from the BDTNP archive (Berkeley Drosophila
Transcription Network Project 2014), and then was preprocessed to obtain a digital
image by means of BioSSA (Shlemov et al. 2014). The conventional technique of
SSA analysis of such kind of 2D data is a planar non-shaped 2D-SSA (Holloway
et al. 2011; Golyandina et al. 2012b). However, this technique does not take into
consideration the fact that the top edge of this image continues the bottom edge in
the considered orientation; the data is in fact cylindrical.

Fragment 5.4.6 demonstrates that the circular version of 2D-SSA can perform
smoothing without making the artificial transformation of the cylinder to a rect-
angle. Thus the result of processing does not depend on the technique of this
transformation and has no extra edge effects. We consider the cylindrical topology
(Tx = Nx and Ty = ∞). Since the axis x with circular topology corresponds to
rows of the image, this can be set by circular = c(TRUE, FALSE). We use a
mask corresponding to the middle part from 20 to 80% of the embryo lengths to
remove corruptions caused by the cylindrical projection of an ellipsoid. That is, in
fact, we use the shaped version of 2D-SSA.

Fragment 5.4.6 (“Krüppel”: Analysis of Data Given on a Cylinder)

> data("kruppel", package = "ssabook")
> mask <- matrix(0, ncol = 200, nrow = 200)
> mask[, 40:160] <- 1
> s <- ssa(kruppel, L = c(20, 20), mask = mask,
+ circular = c(TRUE, FALSE))
> plot(s, type = "vectors", vectors = "factor",
+ idx = 1:12, aspect = 1.4, col = topo.colors(1000))
> rec6 <- reconstruct(s, list("C1-6" = 1:6))
> p <- plot(rec6, aspect = 1.4, col = topo.colors(1000))
> p$condlevels[[1]] <-
+ sub("Residuals", "Resd.", p$condlevels[[1]], fixed = TRUE)
> plot(p)

The result of the decomposition (in the form of the factor vectors from 12 leading
eigentriples) is depicted in Fig. 5.20, where contributions of the corresponding
eigentriples are indicated in the headers.

The components 1–6 grouped together provide an adequate smoothing; the
residual oscillates around zero, see Fig. 5.21 (the maximal and minimal values of
the reconstructed components are shown in the headers). Note that the top edge of
the reconstruction continues its bottom edge by construction; that is, there is no edge
effect.

Several examples of application of the circular and shaped versions of 2D-SSA
to similar data can be found in Shlemov et al. (2015b).

5.4 Case Studies 265

Factor vectors
1 (97.9%) 2 (1.64%) 3 (0.23%) 4 (0.11%)

5 (0.02%) 6 (0.02%) 7 (0.01%) 8 (0.01%)

9 (0%) 10 (0%) 11 (0%) 12 (0%)

Fig. 5.20 “Krüppel”: Factor vectors

Reconstructions
Original [0.00049, 0.0024] C1−6 [0.00054, 0.0023] Resd. [−2e−04, 0.00019]

Fig. 5.21 “Krüppel”: Original image, reconstruction and residual

266 5 Image Processing

5.4.4 Analysis of nD Objects: Decomposition of a Color Image

As multidimensional data is very difficult to visualize, we demonstrate possibilities
of RSSA to perform nD-SSA on an example of a decomposition of a color image.
Since color images can be given by three channels corresponding to the red, green,
and blue colors, they can be considered as 3D objects. The window for 3D objects
should also be 3D; that is, be given by 3 sizes (Lx, Ly,Lz). Since the size of the
third image dimension is equal to 3, there are not many choices for Lz. We take
Lz = 1, which corresponds to Multivariate 2D-SSA (M-2D-SSA), since with Lz =
1 the window has in fact 2 dimensions. Fragment 5.4.7 contains an example of the
code for performing M-2D-SSA.

Fragment 5.4.7 (“Monet”: Decomposition by Multivariate 2D-SSA)

> data("monet", package = "ssabook")
> plot(c(0, 1), c(0, 1), type = "n", xlab = "", ylab = "",
+ axes = FALSE)
> rasterImage(monet, 0, 0, 1, 1, interpolate = FALSE)
> ss <- ssa(monet, L = c(30, 30, 1))
> plot(ss, type = "vectors", idx = 1:20, slice = list(k = 1),
+ plot.contrib = FALSE)
> rec <- reconstruct(ss, groups = list(smooth = 1:6))
> rec$smooth[rec$smooth > 1] <- 1
> rec$smooth[rec$smooth < 0] <- 0
> plot(c(0, 1), c(0, 1), type = "n", xlab = "", ylab = "",
+ axes = FALSE)
> rasterImage(rec$smooth, 0, 0, 1, 1,
+ interpolate = FALSE)
> p1 <- plot(rec, slice = list(k = 1), main = "Red",
+ col = c("#000000", "#FF7070"), layout = c(3, 1))
> p2 <- plot(rec, slice = list(k = 2), main = "Green",
+ col = c("#000000", "#70FF70"), layout = c(3, 1))
> p3 <- plot(rec, slice = list(k = 3), main = "Blue",
+ col = c("#000000", "#7070FF"), layout = c(3, 1))
> plot(p1, split = c(1, 1, 1, 3), more = TRUE)
> plot(p2, split = c(1, 2, 1, 3), more = TRUE)
> plot(p3, split = c(1, 3, 1, 3), more = FALSE)

We have selected a small color image 263 × 400 of the painting of Claude
Monet called “Study of a Figure Outdoors: Woman with a Parasol, facing left,”
1886, (Fig. 5.22 (left), the file was taken from the public domain via Wikimedia
Commons) and apply M-2D-SSA with the window of sizes (50, 50, 1). For the
component identification, we can examine eigenarrays of the same size as the
window has. For depicting multidimensional objects, 2D slices can be used, where
the values in all the dimensions except two are fixed. Since the window is in fact 2D,
there is only one slice in the third dimension (slice = list(k = 1)). Figure 5.23
contains images of 12 leading eigenarrays. White contours separate positive and
negative values.

5.4 Case Studies 267

Fig. 5.22 “Monet”: Initial (left) and smoothed (right) images

Eigenvectors
1 [0.033, 0.033] 2 [−0.054, 0.053] 3 [−0.055, 0.056] 4 [−0.052, 0.077] 5 [−0.061, 0.054]

6 [−0.048, 0.064] 7 [−0.064, 0.063] 8 [−0.079, 0.076] 9 [−0.064, 0.07] 10 [−0.069, 0.055]

11 [−0.06, 0.071] 12 [−0.07, 0.067] 13 [−0.08, 0.077] 14 [−0.07, 0.082] 15 [−0.078, 0.066]

16 [−0.075, 0.08] 17 [−0.072, 0.082] 18 [−0.073, 0.077] 19 [−0.072, 0.078] 20 [−0.072, 0.086]

Fig. 5.23 “Monet”: Eigenarrays

268 5 Image Processing

Red
Original [0, 1] smooth [0.11, 1] Residuals [−0.63, 0.61]

Green
Original [0, 1] smooth [0.16, 0.99] Residuals [−0.57, 0.55]

Blue
Original [0, 1] smooth [0.038, 0.95] Residuals [−0.51, 0.52]

Fig. 5.24 “Monet”: Three channels of the reconstructed and residual images

References 269

Assume that we want to look at fine details of the image. Then we should smooth
the image by taking several leading components for reconstruction, say, 3, and look
at the residual.

Figure 5.22 (right) contains a smoothed color image. Figure 5.24 contains three
layers (channels) of the reconstructed and residual images in the b/w scale. The
channels were extracted by means of indicating three splices by k=1, k=2 and k=3

in the third dimension.
In this example we have decomposed a beautiful painting of Monet. Decompo-

sitions of paintings can be useful to those studying different styles of painting and
comparing or verifying painters. This can be done similarly to the face verification
by 2D-SSA; this problem was discussed in Rodríguez-Aragón and Zhigljavsky
(2010). The nD-SSA methods can be used, similarly to the 1D- and 2D-cases,
for imputation of gaps in multidimensional objects and performing clustering,
recognition, verification, etc.; all applications that need decompositions of objects,
which may have complex geometry. All this can be done within the framework of
nD-SSA by RSSA.

References

Ade F (1983) Characterization of textures by ‘eigenfilters’. Signal Process 5(5):451–457
Berkeley Drosophila Transcription Network Project (2014) URL http://bdtnp.lbl.gov/Fly-Net/
Danilov D, Zhigljavsky A (eds) (1997) Principal components of time series: the “Caterpillar”

method. St. Petersburg Press (in Russian)
Golyandina N, Usevich K (2009) An algebraic view on finite rank in 2D-SSA. In: Proceedings of

the 6th St.Petersburg workshop on simulation, June 28–July 4. St. Petersburg, Russia, pp 308–
313

Golyandina N, Usevich K (2010) 2D-extension of singular spectrum analysis: algorithm and
elements of theory. In: Olshevsky V, Tyrtyshnikov E (eds) Matrix methods: theory, algorithms
and applications. World Scientific, pp 449–473

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and
telated techniques. Chapman&Hall/CRC

Golyandina N, Florinsky I, Usevich K (2007) Filtering of digital terrain models by 2D singular
spectrum analysis. Int J Ecol Dev 8(F07):81–94

Golyandina N, Korobeynikov A, Shlemov A, Usevich K (2015) Multivariate and 2D extensions of
singular spectrum analysis with the Rssa package. J Stat Softw 67(2):1–78

Golyandina NE, Holloway DM, Lopes FJ, Spirov AV, Spirova EN, Usevich KD (2012b) Mea-
suring gene expression noise in early Drosophila embryos: Nucleus-to-nucleus variability. In:
Procedia Comput Sci, vol 9, pp 373–382

Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related
techniques in atmospheric science: A review. Int J Climatol 27(9):1119–1152

Hijmans RJ (2016) RASTER: Geographic Data Analysis and Modeling. URL http://CRAN.R-
project.org/package=raster, R package version 2.5–8

Holloway DM, Lopes FJP, da Fontoura Costa L, Travençolo BAN, Golyandina N, Usevich K,
Spirov AV (2011) Gene expression noise in spatial patterning: hunchback promoter structure
affects noise amplitude and distribution in Drosophila segmentation. PLoS Comput Bioly
7(2):e1001,069

Korobeynikov A (2010) Computation- and space-efficient implementation of SSA. Stat Interface
3(3):357–368

http://bdtnp.lbl.gov/Fly-Net/
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=raster

270 5 Image Processing

Kurakin V, Kuzmin A, Mikhalev A, Nechaev A (1995) Linear recurring sequences over rings and
modules. J Math Sci 76(6):2793–2915

Larsen RM (1998) Efficient algorithms for helioseismic inversion. PhD thesis, University of
Aarhus, Denmark

Monadjemi A (2004) Towards efficient texture classification and abnormality detection. PhD
thesis, University of Bristol

Mourrain B, Pan VY (2000) Multivariate polynomials, duality, and structured matrices. J Com-
plexity 16(1):110–180

Oropeza V (2010) The singular spectrum analysis method and its application to seismic data
denoising and reconstruction. Master Thesis in University of Alberta

Rodríguez-Aragón L, Zhigljavsky A (2010) Singular spectrum analysis for image processing. Stat
Interface 3(3):419–426

Rouquette S, Najim M (2001) Estimation of frequencies and damping factors by two-dimensional
ESPRIT type methods. IEEE Trans Signal Process 49(1):237–245

Roy R, Kailath T (1989) ESPRIT: estimation of signal parameters via rotational invariance
techniques. IEEE Trans Acoust 37:984–995

Shlemov A, Golyandina N (2014) Shaped extensions of Singular Spectrum Analysis. In: 21st
international symposium on mathematical theory of networks and systems, July 7–11, 2014.
Groningen, The Netherlands, pp 1813–1820

Shlemov A, Golyandina N, Korobeynikov A, Zvonarev N, Spirov A (2014) BioSSA. URL http://
biossa.github.io/

Shlemov A, Golyandina N, Holloway D, Spirov A (2015a) Shaped 3D singular spectrum analysis
for quantifying gene expression, with application to the early Drosophila embryo. BioMed Res
Int 2015(Article ID 986436):1–18

Shlemov A, Golyandina N, Holloway D, Spirov A (2015b) Shaped singular spectrum analysis for
quantifying gene expression, with application to the early Drosophila embryo. BioMed Res Int
2015(Article ID 689745)

Trickett S (2008) F-xy Cadzow noise suppression. In: 78th annual international meeting, SEG,
Expanded Abstracts, pp 2586–2590

Trickett SR (2003) F-xy eigenimage noise suppression. Geophysics 68(2):751–759
Wang Y, Chan JW, Liu Z (2005) Comments on ‘Estimation of frequencies and damping factors by

two-dimensional ESPRIT type methods’. IEEE Trans Sig Proc 53(8):3348–3349
Yamazaki I, Bai Z, Simon H, Wang LW, Wu K (2008) Adaptive projection subspace dimension

for the thick-restart Lanczos method. Tech. rep., Lawrence Berkeley National Laboratory,
University of California, One Cyclotron road, Berkeley, California 94720

http://biossa.github.io/
http://biossa.github.io/

Index

characteristic polynomial, 35, 125, 160, 198
characteristic root, 35, 54, 69, 203, 235
confidence intervals

bootstrap, 133, 136, 162, 183

Data
‘AustralianWine’, 183
‘Bookings’, 180

data, 24, 27
‘AustralianWine’, 27, 42, 104, 163, 171,

172, 206, 216, 222, 224, 226
‘Brecon Beacons’, 27, 261
‘CO2’, 27, 58, 90, 128, 137, 147, 154
‘Cowtemp’, 27, 160
‘Elec’, 27, 119
‘Hotel’, 27, 111
‘Krüppel’, 27, 264
‘Mars’, 27, 237, 248, 258, 260
‘Monet’, 27, 266
‘MotorVehicle’, 27, 106, 108
‘PayNSA’, 27, 115
‘Production’, 27, 100
‘Stocks’, 27, 192
‘Tree rings’, 27, 103
‘US unemployment’, 27, 109
‘White dwarf’, 27, 99

decomposition
F-orthogonal, 10, 11, 87
consistent, 10, 11
minimal, 10, 11
Oblique SVD, 64, 71
SVD, 4, 11

embedding operator, 8
1D-SSA, 31, 151
2D-SSA, 232
MSSA, 194
Shaped SSA, 243

ESPRIT, 14
1D, 45, 78, 124
2D, 253
LS, 124
Shaped, 253
TLS, 124

finite rank, 6, 34
1D-SSA, 34
2D-SSA, 234, 235
MSSA, 202
Shaped SSA, 245

forecasting, 13, 129, 137, 157, 159, 164, 178,
182, 210, 216, 224

recurrent, 131, 212
column, 212
row, 212

vector, 132, 213
column, 213
row, 214

gap filling, 139, 147, 167, 222, 224
iterative, 143, 222
subspace based, 141, 222

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
N. Golyandina et al., Singular Spectrum Analysis with R, Use R!,
https://doi.org/10.1007/978-3-662-57380-8

271

https://doi.org/10.1007/978-3-662-57380-8

272 Index

linear recurrent relation (LRR), 6, 13, 35, 122
forecasting, 132
min-norm, 123
minimal, 35

low-rank approximation, 13, 151, 154, 171
Cadzow, 151, 222, 253

parameter estimation, 122, 171, 222, 258
frequency estimation, 123

separability, 5, 12, 36, 55, 69, 81, 89, 190, 202
approximate, 12, 36
asymptotic, 12, 37
strong, 12, 36, 69, 82
weak, 12, 36, 69, 82

signal root, 35, 123, 132, 160, 198
SSA methods

1D-SSA, 2, 12, 21, 31, 122, 189, 195, 210
2D-SSA, 12, 210, 232, 241, 248
Basic SSA, 4, 9, 11, 32, 64, 104, 133, 138,

143, 153, 160, 189, 204, 244
circular, 11, 12, 241, 242, 245, 247, 248,

256, 264
Complex SSA (CSSA), 11, 12, 190, 210,

217
DerivSSA, 11, 79, 80, 108, 109, 250
Filter-Adjusted SSA, 9, 11, 79, 197, 250,

253
Iterative O-SSA, 9, 11, 63, 66, 86, 104,

105, 112, 197, 253
Multivariate SSA (MSSA), 11, 12, 189,

210, 217, 222, 244
nD-SSA, 231, 253, 266
nested, 9, 11, 65, 80, 195, 234
Oblique SSA, 9, 63–65, 195, 234
Sequential SSA, 38, 106, 110, 204
Shaped SSA (ShSSA), 11, 12, 88, 140, 142,

222, 241, 253, 254, 260
SSA with centering, 9, 51, 52
SSA with double centering, 9, 51, 56, 112,

118
SSA with projection, 9, 11, 51, 112, 133,

143

Toeplitz SSA, 9, 11, 46, 143, 160
SSA tasks

decomposition, 42, 90, 103, 114, 118, 226,
237, 248, 266

oscillation extraction, 103
seasonality extraction, 106
smoothing, 38, 261, 264
subspace tracking, 176
texture extraction, 237, 248
trend extraction, 42, 58, 90, 100, 103, 104,

106, 108, 111, 114, 223
stage

Decomposition, 5, 34
Reconstruction, 5, 34

step
Decomposition, 3, 33
Diagonal averaging, 33
Embedding, 2, 32
Grouping, 4, 33
Reconstruction, 4, 33

SVD, 4
eigentriple, 4, 10
eigenvalue, 4
eigenvector, 4, 10
factor vector, 4, 10
singular value, 4, 10
singular vector, 4, 10

trajectory matrix, 2, 11
1D-SSA, 11, 32
2D-SSA, 11, 233
MSSA, 11, 194
Shaped SSA, 11, 243

trajectory space, 6, 54
1D-SSA, 36, 55
2D-SSA, 234
MSSA, 197
Shaped SSA, 245

window
length, 3, 5, 31, 38, 194
shape, 231, 242
size, 233

	Preface
	Contents
	Common Symbols and Acronyms
	1 Introduction: Overview
	1.1 Generic Scheme of the SSA Family and the Main Concepts
	1.1.1 SSA Methods
	1.1.2 The Main Concepts
	1.1.2.1 Parameters of the SSA Methods
	1.1.2.2 Separability
	1.1.2.3 Information for Grouping
	1.1.2.4 Trajectory Spaces and Signal Subspaces
	1.1.2.5 Objects of Finite Rank
	1.1.2.6 Reconstruction (Averaging)

	1.2 Different Versions of SSA
	1.2.1 Decomposition of X into a Sum of Rank-One Matrices
	1.2.1.1 Variations of SSA Related to Methods of Decomposition
	1.2.1.2 Nested Application of Different Versions of SSA
	1.2.1.3 Features of Decompositions
	1.2.1.4 Decompositions in Different Versions of SSA

	1.2.2 Versions of SSA Dealing with Different Forms of the Object

	1.3 Separability in SSA
	1.4 Forecasting, Interpolation, Low-Rank Approximation, and Parameter Estimation in SSA
	1.5 The Package
	1.5.1 SSA Packages
	1.5.2 Tools for Visual Control and Choice of Parameters
	1.5.3 Short Introduction to Rssa
	1.5.4 Implementation Efficiency

	1.6 Comparison of SSA with Other Methods
	1.6.1 Fourier Transform, Filtering, Noise Reduction
	1.6.2 Parametric Regression
	1.6.3 ARIMA and ETS

	1.7 Bibliographical Notes
	1.7.1 Short History
	1.7.2 Some Recent Applications of SSA
	1.7.3 SSA for Preprocessing/Combination of Methods
	1.7.4 Materials Used in This Book

	1.8 Installation of Rssa and Description of the Data Used in the Book
	1.8.1 Installation of Rssa and Usage Comments
	1.8.2 Data Description

	References

	2 SSA Analysis of One-Dimensional Time Series
	2.1 Basic SSA
	2.1.1 Method
	2.1.1.1 Step 1: Embedding
	2.1.1.2 Step 2: Decomposition
	2.1.1.3 Step 3: Eigentriple Grouping
	2.1.1.4 Step 4: Reconstruction (Diagonal Averaging)

	2.1.2 Appropriate Time Series
	2.1.2.1 Time Series of Finite Rank
	2.1.2.2 Linear Recurrence Relations, Characteristic Polynomials and Roots

	2.1.3 Separability and Choice of Parameters
	2.1.3.1 Separability Measure
	2.1.3.2 Choice of Parameters
	2.1.3.3 Justification

	2.1.4 Algorithm
	2.1.5 Basic SSA in Rssa
	2.1.5.1 Description of Functions
	2.1.5.2 SVD Methods
	2.1.5.3 Typical Code

	2.2 Toeplitz SSA
	2.2.1 Method
	2.2.2 Algorithm
	2.2.3 Toeplitz SSA in Rssa
	2.2.3.1 Description of Functions
	2.2.3.2 Typical Code
	2.2.3.3 Simulated Example

	2.3 SSA with Projection
	2.3.1 Method
	2.3.2 Appropriate Time Series
	2.3.3 Separability
	2.3.4 Algorithm
	2.3.5 SSA with Projection in Rssa
	2.3.5.1 Description of Functions
	2.3.5.2 Typical Code
	2.3.5.3 Simulated Examples: Polynomial Regression

	2.4 Iterative Oblique SSA
	2.4.1 Method
	2.4.1.1 Use of Oblique SVD
	2.4.1.2 Nested Oblique SSA
	2.4.1.3 Iterative Approach to O-SSA
	2.4.1.4 Basic Iterative Algorithm
	2.4.1.5 Modification with Sigma-Correction

	2.4.2 Separability
	2.4.3 Algorithms
	2.4.4 Iterative O-SSA in Rssa
	2.4.4.1 Description of Functions
	2.4.4.2 Typical Code
	2.4.4.3 Simulated Example: Separability of Sine Waves

	2.5 Filter-Adjusted O-SSA and SSA with Derivatives
	2.5.1 Method
	2.5.1.1 Nested O-SSA with Derivatives (DerivSSA)
	2.5.1.2 Filter-Adjusted O-SSA

	2.5.2 Separability
	2.5.3 Algorithm
	2.5.4 Filter-Adjusted O-SSA in Rssa
	2.5.4.1 Description of Functions
	2.5.4.2 Typical Code

	2.6 Shaped 1D-SSA
	2.6.1 Method
	2.6.2 Separability
	2.6.3 Algorithm
	2.6.4 Shaped SSA in Rssa
	2.6.4.1 Description of Functions
	2.6.4.2 Typical Code

	2.7 Automatic Grouping in SSA
	2.7.1 Methods
	2.7.2 Algorithm
	2.7.3 Automatic Grouping in Rssa
	2.7.3.1 Description of Functions
	2.7.3.2 Typical Code

	2.8 Case Studies
	2.8.1 Extraction of Trend and Oscillations by Frequency Ranges
	2.8.2 Trends in Short Series
	2.8.3 Trend and Seasonality of Complex Form
	2.8.4 Finding Noise Envelope
	2.8.5 Elimination of Edge Effects
	2.8.6 Extraction of Linear Trends
	2.8.7 Automatic Decomposition
	2.8.8 Log-Transformation

	References

	3 Parameter Estimation, Forecasting, Gap Filling
	3.1 Parameter Estimation
	3.1.1 Method
	3.1.1.1 Estimation of the Governing LRR
	3.1.1.2 Estimation of Frequencies

	3.1.2 Algorithms
	3.1.3 Estimation in Rssa
	3.1.3.1 Description of Functions
	3.1.3.2 Typical Code

	3.2 Forecasting
	3.2.1 Method
	3.2.1.1 Approach
	3.2.1.2 Recurrent Forecasting
	3.2.1.3 Vector Forecasting
	3.2.1.4 Specificity of SSA Modifications
	3.2.1.5 Bootstrap Confidence and Prediction Intervals

	3.2.2 Algorithms
	3.2.3 Forecasting in Rssa
	3.2.3.1 Description of Functions
	3.2.3.2 Typical Code

	3.3 Gap Filling
	3.3.1 Method
	3.3.1.1 Subspace-Based Approach
	3.3.1.2 Iterative Approach

	3.3.2 Algorithms
	3.3.3 Gap-Filling in Rssa
	3.3.3.1 Description of Functions
	3.3.3.2 Typical Code

	3.4 Structured Low-Rank Approximation
	3.4.1 Cadzow Iterations
	3.4.2 Algorithms
	3.4.3 Structured Low-Rank Approximation in Rssa
	3.4.3.1 Description of Functions
	3.4.3.2 Typical Code
	3.4.3.3 Simulated Example

	3.5 Case Studies
	3.5.1 Forecasting of Complex Trend and Seasonality
	3.5.2 Different Methods of Forecasting
	3.5.3 Choice of Parameters and Confidence Intervals
	3.5.4 Gap Filling
	3.5.5 Parameter Estimation and Low-Rank Approximation
	3.5.6 Subspace Tracking
	3.5.7 Automatic Choice of Parameters for Forecasting
	3.5.8 Comparison of SSA, ARIMA, and ETS

	References

	4 SSA for Multivariate Time Series
	4.1 Complex SSA
	4.1.1 Method
	4.1.2 Separability
	4.1.3 Algorithm
	4.1.4 Complex SSA in Rssa
	4.1.4.1 Description of Functions
	4.1.4.2 Typical Code

	4.2 MSSA Analysis
	4.2.1 Method
	4.2.1.1 Embedding
	4.2.1.2 Decomposition
	4.2.1.3 Reconstruction
	4.2.1.4 Comments
	4.2.1.5 Remarks

	4.2.2 Multi-Dimensional Time Series and LRRs
	4.2.2.1 Matching of Series

	4.2.3 Separability
	4.2.4 Comments on 1D-SSA, MSSA and Complex SSA
	4.2.4.1 Covariance Structure
	4.2.4.2 Separability
	4.2.4.3 Ranks
	4.2.4.4 Choice of the Window Length

	4.2.5 Algorithm
	4.2.6 MSSA Analysis in Rssa
	4.2.6.1 Description of Functions
	4.2.6.2 Typical Code
	4.2.6.3 Comments

	4.3 MSSA Forecasting
	4.3.1 Method
	4.3.1.1 Common Notation
	4.3.1.2 Recurrent MSSA Forecast
	4.3.1.3 Vector MSSA Forecasting

	4.3.2 Algorithms
	4.3.3 MSSA Forecasting in Rssa
	4.3.3.1 Description of Functions
	4.3.3.2 Typical Code
	4.3.3.3 Simulated Example: Numerical Comparison

	4.3.4 Other Subspace-Based MSSA Extensions

	4.4 Case Studies
	4.4.1 Analysis of Series in Different Scales (Normalization)
	4.4.2 Forecasting of Series with Different Lengthsand Filling-In
	4.4.3 Simultaneous Decomposition of Many Series

	References

	5 Image Processing
	5.1 2D-SSA
	5.1.1 Method
	5.1.1.1 The Embedding Operator
	5.1.1.2 Hankel-Block-Hankel Structure
	5.1.1.3 Trajectory Space
	5.1.1.4 Comments

	5.1.2 Elements of 2D-SSA Theory
	5.1.2.1 Arrays of Finite Rank
	5.1.2.2 Real Arrays

	5.1.3 Algorithm
	5.1.4 2D-SSA in Rssa
	5.1.4.1 Description of Functions
	5.1.4.2 Typical Code
	5.1.4.3 Comments

	5.2 Shaped 2D-SSA
	5.2.1 Method
	5.2.1.1 Shapes and Actions with Them
	5.2.1.2 Embedding Step
	5.2.1.3 Particular Cases

	5.2.2 Rank of Shaped Arrays
	5.2.2.1 L-Rank
	5.2.2.2 Infinite Arrays of Finite Rank

	5.2.3 Algorithm
	5.2.4 Shaped 2D-SSA in Rssa
	5.2.4.1 Description of Functions
	5.2.4.2 Typical Code

	5.2.5 Comments on nD Extensions

	5.3 Shaped 2D ESPRIT
	5.3.1 Method
	5.3.1.1 General Scheme
	5.3.1.2 Method for Construction of Shifted Matrices

	5.3.2 Theory: Conditions of the Algorithm Correctness
	5.3.3 Algorithm
	5.3.4 2D-ESPRIT in Rssa
	5.3.4.1 Description of Functions
	5.3.4.2 Typical Code

	5.4 Case Studies
	5.4.1 Extraction of Texture from Non-Rectangle Images
	5.4.2 Adaptive Smoothing
	5.4.3 Analysis of Data Given on a Cylinder
	5.4.4 Analysis of nD Objects: Decomposition of a Color Image

	References

	Index

