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Preface

Starting in the 1930s, a mathematically rigorous approach to frequentist statistical
inference, now called statistical decision theory, was introduced by Jerzy Neyman,
Egon Pearson, and E.J.G. Pitman and formalized by Abraham Wald (Neyman
and Pearson 1933, Pitman 1939, and Wald 1939, 1950). As far as estimation is
concerned, statistical decision theory examines classes of functions of the data
that can serve as possible estimators of the unknown parameter. These general
estimators are compared through a risk function defined as the expected value over
the sample space of the loss for every possible value of the parameters of interest.
Alternatively, Bayesian decision theory examines estimators that are constructed by
minimizing the expected loss, however now with respect to the parameter’s posterior
distribution. In general, statistical decision theory provides a rigorous foundation to
formulate and solve decision problems under uncertainty.

In the case of the univariate normal distribution, the usual estimator of the
population mean is the sample mean. The sample mean is the maximum likelihood
estimator (MLE), the uniformly minimum variance unbiased estimator (UMVUE),
the best invariant (or equivariant) and minimax estimator for nearly arbitrary
symmetric loss, and is admissible for essentially arbitrary symmetric loss. Pitman
(1939) suggested, on intuitive grounds, the use of best invariant procedures in certain
problems of estimation concerning scale and location parameters. In the same year,
Wald (1939) claimed admissibility for such best invariant estimators; unfortunately,
as Peisakoff (1950) pointed out, there seemed to be a “lacuna” in Wald’s proof. The
possibility that some other estimator has a risk that is uniformly lower than that of
the average existed. Hodges and Lehmann (1950) and Girshick and Savage (1951)
first showed that no such estimator exists using the information inequality and then
Blyth (1951) by using a limit of Bayes-type argument. That is, the usual sample
mean is admissible, at least when estimating one unknown mean. In the bivariate
normal case, the above properties also hold. Stein (1956) proved admissibility using
an information inequality argument. In that same paper, Stein proved a result that
astonished many and which motivates many of the ideas developed in this book.
Stein’s proof made it quite clear that admissibility should fail for any dimension
greater than two.

vii



viii Preface

In the p-variate normal case, Stein (1956) showed that estimators of the form
(1 − a /(b + ‖X‖2))X dominate the MLE/UMVUE, X, for a sufficiently small
and b sufficiently large when p ≥ 3. James and Stein (1961) sharpened the result
and constructed an explicit class of dominating estimators, (1 − a /‖X‖2)X for
0 < a < 2(p − 2). Paradoxically the James-Stein estimator is itself inadmissible
and can be dominated by another inadmissible estimate, its positive part. The James-
Stein estimator can also be regarded as an “empirical Bayes rule,” a term coined by
Herbert Robbins. Ever since the pathbreaking results of Stein, the area of shrinkage
estimation has flourished. The goal of this book is to provide a coherent framework
for understanding this area. Our primary foci are on point and loss estimation for the
mean vector for multivariate normal and spherically symmetric distributions. The
coverage of topics reflects our personal perspective on shrinkage estimation, and we
apologize for omissions. Nevertheless, we hope the material we present provides an
adequate basis for the interested reader to pursue recent developments in shrinkage
estimation. There are many open directions in the area with much more to be done.

Chapter 1 gives an overview of the statistical and decision theoretic terminology
and results that will be used throughout the book. We assume that the reader is
familiar with the basic statistical notions of parametric families of distributions,
likelihood functions, maximum likelihood estimation, sufficiency, completeness,
and unbiasedness. We review the results in Bayesian decision theory, minimaxity,
admissibility, and invariance that will be used later in the book.

Chapter 2 is concerned with estimating the p-dimensional mean vector of a
multivariate normal distribution under quadratic loss from a frequentist perspective.
In Sect. 2.2, we give some intuition into why improvement over the MLE/UMVUE
should be possible in higher dimensions and how much improvement might be
expected. Section 2.3 is devoted to Stein’s unbiased estimation of risk technique
which provides the technical basis of many results in the area of multiparameter
estimation. Section 2.4 is devoted to establishing improved procedures, such as the
classical James-Stein estimator. In Sects. 2.5 and 2.6, we will provide a link between
Stein’s integration by parts lemma and Stokes’ theorem and give insights into the
Stein phenomenon in terms of nonlinear partial differential operators.

The Bayesian approach is well suited for the construction of possibly optimal
estimators. The frequentist paradigm is complementary, as it is well suited for risk
evaluations, but less well suited for estimator construction. In Chap. 3 we take a
Bayesian view of shrinkage estimation. In Sect. 3.1 we derive a general sufficient
condition for minimaxity of Bayes and generalized Bayes estimators in the known
variance case; we also illustrate the theory with numerous examples. In Sect. 3.2
we extend the results of the previous section to the case when the variance is
unknown. Section 3.3 considers the case of a known covariance matrix under
and a general quadratic loss. The admissibility of Bayes estimators is discussed
in Sect. 3.4. Interesting connections to maximum a posteriori (MAP) estimation,
penalized likelihood methods, and shrinkage estimation are developed in Sect. 3.5.
The fascinating connections to Stein estimation and estimation of a predictive
density under Kullback-Leibler divergence are outlined in Sect. 3.6.
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While Chaps. 2 and 3 consider estimation problems for the normal distribution
setting, Chap. 4 introduces the general class of spherically symmetric distributions.
Point estimation for this broad class is studied in subsequent chapters. In particular,
Chap. 5 extends many of the results from Chaps. 2 and 3 to spherically symmetric
distributions. Section 5.2 is devoted to a discussion of basic domination results
for Baranchik-type estimators, while Sect. 5.3 examines more general estimators.
Section 5.4 considers Bayes minimax estimation, and, finally, Sect. 5.5 discusses
estimation with a concave loss.

In Chap. 6, we consider the general linear model with spherically symmetric error
distributions when a residual vector is available. The inclusion of the residual term
in estimates yields interesting and strong robustness properties. Section 6.1 gives the
main results in this setting, and Sect. 6.2 discusses an interesting paradox concerning
shrinkage estimators when the scale is known but when a residual vector is available.
Section 6.3 extends some of the Bayes estimation results in Chap. 3 to spherically
symmetric distributions when a residual vector is available. Section 6.4 develops
a class of shrinkage estimators for a class of elliptically symmetric distributions.
Section 6.5 studies improved estimation for concave loss when a residual vector is
present.

Chapter 7 considers the problem of estimating a location vector which is
constrained to lie in a convex subset of Rp. Much of the chapter is devoted to one
of two types of constraint sets, balls, and polyhedral cones. However, Sect. 7.2 is
devoted to general convex constraint sets and more particularly to a striking result
of Hartigan.

In Chap. 8 we switch gears away from location parameter estimation and focus
on loss estimation and data-dependent evidence reports. In Sect. 8.2, we develop
the quadratic loss estimation problem for a multivariate normal mean. Section 8.3
is devoted to the multivariate normal mean case where the variance is unknown.
Extensions to spherically and elliptically symmetric distributions are given in
Sects. 8.4. In Sect. 8.5 we use loss estimation ideas to develop a modern perspective
on Akaike’s information criterion (AIC), Mallows’ Cp, and estimated degrees
of freedom for model selection and propose generalizations to spherically and
elliptically symmetric distributions. We conclude Chap. 8 by discussing confidence
set assessment and the differential operators and dimension cut-off when estimating
a loss in Sects. 8.6 and 8.7, respectively.

The text is intended for graduate students and researchers who want to learn
about the theory underlying shrinkage estimation. The reader should have some
exposure to graduate-level probability theory, mathematical statistics, and linear
models. The necessary topics from analysis are developed in the Appendix.

This book project has a ridiculously lengthy history that likely dates back to
summers during the late 1990s we spent together in Rouen. Given the duration of
this project, there are many people who have substantially influenced the writing
and rewriting of particular parts of this book. Their contributions are too diverse
to specify, and their influence has been by means of their excellent contributions to
the shrinkage estimation literature. In particular, Charles Stein had an immeasurable
influence on our research; his work and behavior were an inspiration to many. We
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warmly thank our coauthors and colleagues Jim Berger, Jim Booth, Ann Brandwein,
Anirban DasGupta, Persi Diaconis, Ed Green, Tatsuya Kubokawa, Éric Marchand,
Yuzo Maruyama, Christian Robert, Andrew Ruhkin and Rob Strawderman, as well
as our friends Sumanta Basu, Jacob Bien, Ed George, and Gene Hwang, and our late
colleagues Larry Brown and George Casella, who are sorely missed. Also thanks
to our outstanding students in courses at Cornell, Rouen and Rutgers, Ben Baer,
Haim Bar, Didier Chételat, Irina Gaynanova, Daniel Gilbert, Fatiha Mezoued, Raj
Narayanan, Galina Nogin, Ali Righi, Liz Schifano, and Stavros Zinonos. Thanks
also to the National Science Foundation, National Institutes of Health, and Simons
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Chapter 1
Decision Theory Preliminaries

1.1 Introduction

In this chapter we give an overview of statistical and decision theoretic concepts
and results that will be used throughout the book. We assume that the reader is
familiar with the basic statistical notions of parametric families of distributions,
likelihood functions, maximum likelihood estimation, sufficiency, completeness and
unbiasedness at the level of, for example, Casella and Berger (2001), Shao (2003),
or Bickel and Doksum (2001). In the following, we will discuss, often without proof,
some results in Bayesian decision theory, minimaxity, admissibility, invariance, and
general linear models.

1.2 The Multivariate Normal Distribution

For theoretical and practical reasons, the normal distribution plays a central role
in statistics. The central limit theorem is one reason for its importance; given
X1, . . . , Xn independent and identically distributed (i.i.d.) random variables with
mean μ and variances σ 2 < ∞, (X̄n − μ)/(σ/

√
n) converges in distribution to

the standard normal distribution, N (0, 1). Hence whatever the distribution of the
Xi’s, the distribution of the sample mean X̄n can be approximated by a normal
distribution with mean equal to μ and variance equal to σ 2/n. Essentially the same
theorem has been used to provide theoretical justification for the empirical fact that
many observed quantities tend to be approximately normally distributed.

In this section, we recall basic properties of the univariate and multivariate
normal distributions. By definition, the univariate normal distribution N (θ, σ 2)

with mean θ ∈ R and variance σ 2 > 0 has the density (
√

2π σ)−1 exp{−(x −
θ)2/(2σ 2)} with respect to the Lebesgue measure in R

1. For technical reasons, we
also include the case where σ 2 = 0, which corresponds to the point mass at θ . In

© Springer Nature Switzerland AG 2018
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2 1 Decision Theory Preliminaries

this case, the distribution is singular and has no density with respect to the Lebesgue
measure.

As the distribution of any random vector X ∈ R
n is characterized by the

distribution of all linear functions of the form aTX for a ∈ R
n, the following

multivariate extension is natural (see, e.g., Johnson and Kotz 1972).

Definition 1.1 A random vectorX ∈ R
n has a normal distribution if, for all a ∈ R

n,
aTX is distributed as an univariate normal distribution.

Note that the means and variances of the individual components exist by
definition and so do the individual covariances, by the Cauchy-Schwarz inequality.
Also, the characteristic function of a univariate standard normal N (0, 1) random
variable Xj is given by ϕXj (t) = E[exp{i t Xj }] = exp{−t2/2}. Hence, if X =
(X1, . . . , Xn) where the Xj are i.i.d. standard normal, the characteristic function of
X is equal to ϕX(u) = E[exp{i uTX}] = exp{−uTu/2}. Furthermore, if Y = AX+θ
whereA is a p×nmatrix and θ is a p×1 vector, ϕY (v) = E[exp{i vT(θ+AX)}] =
exp{i vTθ} exp{−vTΣv/2} where Σ = AAT is the covariance matrix and θ , the
mean vector of Y . This shows that the distribution of Y is determined by its mean
vector θ and its covariance matrix Σ . Hence Definition 1.1 is not vacuous and
the multivariate normal distribution exists for any mean vector θ and any positive
semi-definite covariance matrix Σ (take A = Σ1/2). We denote this distribution by
Np(θ,Σ).

It follows from the form of the above characteristic function that, if X is
distributed as Nn(θ,Σ) and B is a q × n matrix and ν is a q × 1 vector, then
Z = B X + ν is distributed as Nq(θZ,ΣZ) where θZ = B θ + ν and ΣZ =
B Σ BT. Hence, in particular, all marginal distributions are normal. Specifically,
decomposing

X =
(
X1

X2

)
∼ Nn

((
θ1

θ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

with dimXi = dim θi = ni and where Σi,j is ni × nj (1 ≤ i, j ≤ 2), we have
Xi ∼ Nni (θi,Σii). Note that X1 is independent of X2 if and only if Σ12 = 0.

We can find the conditional distribution of X1 given X2 as follows. Suppose
there exists an n1 × n2 matrix A such that X1 − AX2 is independent of X2. Then
the distribution of X1 −AX2 is normal with mean θ1 −Aθ2 and covariance matrix
Σ11 − AΣ21. Hence the conditional distribution of X1 given X2 is normal with
mean θ1 + A (X2 − θ2) and covariance matrix Σ11 − AΣ21. However such an A
is easy to find since cov(X1 − AX2, X2) = Σ12 − AΣ22. If Σ22 is non-singular,
A = Σ12Σ

−1
22 . If Σ22 is singular then A = Σ12Σ

−
22, where Σ−

22 is a generalized
inverse (see Muirhead 1982).

We now consider the existence of a density with respect to the Lebesgue measure
on R

n for a random vectorX distributed as Nn(θ,Σ). Note that, whenΣ is singular,
there exists an a ∈ R

n such that a 	= 0 and Σa = 0 and hence, for any such a,
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Var(aTX) = aTΣ a = 0. It follows that aTX = aTθ almost surely and hence that
X − θ is almost surely in a proper subspace of Rn; thus the distribution of X is
singular and X has no density in R

n.
If however Σ is nonsingular, then a density exists. To see this, let Σ = AAT for

some nonsingular n × n matrix and let X = AZ + θ where Z is a vector of i.i.d.
standard normal random variables in R

1, as in the comment after Definition 1.1. The
standard change of variables formula gives the density of X as

1

(2π)n|Σ |1/2 exp

{
−1

2
(x − θ)TΣ−1(x − θ)

}
. (1.1)

It is important to note that, when Σ = σ 2 In and θ = 0, the density (1.1)
is a function of ‖x‖2. Consequently, for any orthogonal transformation h, the
distribution of Y = h(X) is the same as that of X. Many properties of the normal
Nn(0, σ 2 In) follow from this invariance property and hold for other distributions
similarly invariant. We formalize this in the following definition.

Definition 1.2 Let O be the group of orthogonal transformations on R
n. A random

vector X ∈ R
n (equivalently the distribution P of X) is orthogonally invariant if,

for any h ∈ O , the distribution of Y = h(X) is the same as that of X.
In other words, for any bounded and continuous function f and for any h ∈ O ,

∫
Rn

f (h(x)) dP (x) =
∫
Rn

f (x) dP (x) . (1.2)

It is worth noting that, if an orthogonally invariant random vectorX has a density
f with respect to the Lebesgue measure, it is of the form f (x) = g(‖x‖2) for a
certain function g from R+ into R+ (see Theorem 4.2 in Chap. 4). In that case, we
will denote X ∼ g(‖x‖2). Also, if for some fixed θ ∈ R

p, X − θ is orthogonally
invariant, we will write X ∼ g(‖x − θ‖2).

As a simple example of the use of this notion, note that, if X is orthogonally
invariant and P [X = 0] = 0, then the unit vector, which lies on the unit sphere,
X/‖X‖ is orthogonally invariant as well. We will see in Sect. 1.3 that there exists
only one distribution orthogonally invariant on the unit sphere. It follows that, for
any function ϕ from R

n into R
k , the distribution of ϕ (X/‖X‖) does not depend on

the distribution of X as long as X is orthogonally invariant. One of the best known
and most useful of such statistics is the Fisher (F-) statistic

‖π1(X)‖2/k1

‖π2(X)‖2/k2

where π1 and π2 are orthogonal projections from R
n onto orthogonal subspaces of

dimension k1 and k2, respectively.
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1.3 The Uniform Distribution on a Sphere

We already noticed the existence of an orthogonally invariant distribution on the
unit sphere S of Rn. A closely related alternative approach is through the uniform
measure σR on the sphere SR of radius R centered at 0 which can be defined for any
Borel set Ω of SR , as

σR(Ω) = n

R
λ({ru ∈ R

n | 0 < r < R, u ∈ Ω}) (1.3)

where λ is the Lebesgue measure on R
n. Thus the measure of Ω is proportional to

the Lebesgue measure of the cone spanned by Ω . The constant of proportionality
n/R is standard and is chosen so that the total surface area of the sphere SR agrees
with the usual formulas relating σR(SR) to the volume of the ball BR of radius R,
that is, σR(SR) = n/R λ(BR). For example, for n = 2, σR(SR) = 2/R λ(BR) =
2π R or, for n = 3, σR(SR) = 3/R λ(BR) = 4π R2. As a consequence σR(SR) =
σ1(S1) R

n−1.
The uniform distribution on SR is naturally defined through σR .

Definition 1.3 The uniform distribution UR on SR is defined, for any Borel subset
Ω of SR , by

UR(Ω) = σR(Ω)

σR(SR)
= σR(Ω)

σ1(S1) Rn−1
. (1.4)

The orthogonal invariance of UR and σR follows immediately from the orthog-
onal invariance of the Lebesgue measure λ. The following lemma establishes a
uniqueness property for UR .

Lemma 1.1 The uniform distribution UR on SR is the unique orthogonally invari-
ant distribution on SR .

Proof We follow the approach of Cellier and Fourdrinier (1990) which is adapted
from the proof given by Philoche (1977) and relies on the uniqueness of the Haar
measure on the group O of orthogonal transformations (as it is developed, for
instance, by Nachbin 1965). More precisely, we use the fact that there exists a unique
probability measure ν on O which is invariant under left and right translations, that
is, which satisfies

∫
O
φ(h−1 g) dν(g) =

∫
O
φ(g) dν(g) ,

and
∫
O
φ(g h−1) dν(g) =

∫
O
φ(g) dν(g) , (1.5)
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for any function φ defined on O and for any h ∈ O . This measure is the so-called
Haar measure on O .

Clearly, it suffices to consider the case where R = 1, that is, for S1 = S and
U1 = U . Let C (S) be the set of real valued continuous functions on S. For any
f ∈ C (S), for any g ∈ O and x ∈ S, define the functions fx(g) and fg(x) by

fx(g) = fg(x) = f (g−1(x)) . (1.6)

Let f be fixed in C (S). As the group O operates transitively on S, the integral∫
O fx(g) dν(g) does not depend on x ∈ S. Indeed, for any x ∈ S and any y ∈ S,

there exists h ∈ Osuch that x = h(y) so that, by (1.5) and (1.6),

∫
O
fx(g) dν(g) =

∫
O
fh(y)(g) dν(g)

=
∫
O
fy(h

−1 ◦ g) dν(g)

=
∫
O
fy(g) dν(g) . (1.7)

Similarly, for every orthogonally invariant distribution P on S, the integral∫
O fg(x) dP (x) does not depend on g ∈ O since

∫
S

fg(x) dP (x) =
∫
S

f (g−1(x)) dP (x) =
∫
S

f (x) dP (x) , (1.8)

according to (1.2). Then, by (1.7), (1.8) and Fubini’s theorem,

∫
S

f (x) dP (x) =
∫
O

(∫
S

f (x) dP (x)

)
dν(g)

=
∫
O

(∫
S

fg(x) dP (x)

)
dν(g)

=
∫
S

(∫
O
fx(g) dν(g)

)
dP (x)

=
∫
O
fx(g) dν(g) .

Therefore, for any f ∈ C (S),

∫
S

f (x) dP (x) =
∫
S

f (x) dU (x) ,

which implies that P = U . ��
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The following result, mentioned in Sect. 1.2, is then immediate.

Lemma 1.2 If X ∈ R
n is an orthogonally invariant random vector such that

P [X = 0] = 0 then X/‖X‖ is distributed as U1.

It is worth noting that σR (and hence UR) can be expressed through the usual
parametrization in terms of n-dimensional spherical coordinates. Indeed let V =
(0, π)n−2 × (0, 2π) and for (t1, . . . , tn−1) ∈ V , ϕR(t1, . . . , tn−1) = (x1, . . . , xn)

with

x1 = R sin t1 sin t2 . . . sin tn−2 sin tn−1

x2 = R sin t1 sin t2 . . . sin tn−2 cos tn−1

x3 = R sin t1 sin t2 . . . cos tn−2 (1.9)

...

xn−1 = R sin t1 cos t2

xn = R cos t1.

Note that ϕR maps V onto SR , except for the set A of σR−measure 0, where
A = {x = (x1, . . . , xn) ∈ R

n | x1 = 0, x2 ≤ 0 and ‖x‖ = R}.
Lemma 1.3 For any Borel subset Ω of SR ,

σR(Ω) = Rn−1
∫
ϕ−1
R (Ω)

sinn−2 t1 sinn−3 t2 . . . sin tn−2 dt1 dt2 . . . dtn−1 .

(1.10)

Proof The usual n-dimensional spherical coordinates express x as r ϕ1(t1, . . . , tn−1)

and the set on the right hand side of (1.3) can be written as (0, R] × ϕ−1
R (Ω).

Hence, recalling that the Jacobian of the transformation in (1.9) is rn−1 sinn−2 t1
sinn−3 t2 . . . sin tn−2 (see e.g. Muirhead 1982), we have

σR(Ω) = n

R
λ
(
(0, R)× ϕ−1

R (Ω)
)

= n

R

∫ R

0
rn−1

∫
ϕ−1
R (Ω)

sinn−2 t1 sinn−3 t2 . . . sin tn−2 dt1 dt2 . . . dtn−1 dr

= Rn−1
∫
ϕ−1
R (Ω)

sinn−2 t1 sinn−3 t2 . . . sin tn−2 dt1 dt2 . . . dtn−1.

��
An immediate consequence is that, ifX is distributed as UR , then the angles ti are

independent with density proportional to sinn−i−1 ti on (0, π) for 1 ≤ i ≤ n−2 and
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tn−1 is uniform on (0, 2π). Note that (UR)R>0 is a scale family of distributions in
the sense that UR(Ω) = U1 (Ω/R) since, in (1.9) we have, ϕ−1

R (Ω) = ϕ−1
1 (Ω/R).

We will have occasion to use the following lemma which is just a re-expression
in terms of σR of the usual formula for integration in n-dimensional spherical
coordinates.

Lemma 1.4 For any Lebesgue integrable function h, we have

∫
Rn

h(x) dx =
∫ ∞

0

∫
SR

h(x) dσR(x) dR.

Proof Lemma 1.3 implies that

∫
SR

h(x) dσR(x)

=
∫
V

h(ϕR(t1, . . . , tn−1)) R
n−1 sinn−2 t1 . . . sin tn−2 dt1, . . . , dtn−1 (1.11)

and the result follows. ��
Corollary 1.1 The area measure of the unit sphere in R

n is given by

σ1(S1) = 2πn/2

Γ (n/2)
.

Proof We apply Lemma 1.4 with h(x) = (2π)−n/2 exp
{−‖x‖2/2

}
. Then

1 =
∫
Rn

1

(2π)n/2
exp

{
−‖x‖2

2

}
dx =

∫ ∞

0

1

(2π)n/2
exp{−r2/2} σ1(S1) r

n−1 dr

where we used the fact that h(x) is a function of ‖x‖ and that σr(Sr) = σ1(S1) r
n−1.

Letting t = r2/2 reduces the integral to a multiple of a gamma function. More
precisely, we have

1 = σ1(S1)

2πn/2
Γ (n/2)

which is the desired result. ��
It is worth noting that the normalizing constant (2π)−n/2 of the normal density

is usually obtained through Lemma 1.4 in dimension 2.
It is convenient to extend the notions of uniform measure and distribution on SR

to any sphere in R
n.
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Definition 1.4 For any R > 0 and for any θ ∈ R
n, let SR,θ = {x ∈ R

n | ‖x −
θ‖ = R} be the sphere of radius R and center θ . The uniform distribution UR,θ

(respectively the uniform measure σR,θ ) on SR,θ is the uniform distribution UR

(respectively the uniform measure σR) translated by θ , that is,

UR,θ (Ω) = U1

(
Ω − θ

R

)
,

for any Borel set Ω of SR,θ . For completeness, we denote the point mass at θ as
U0,θ .

Note that the definition of UR,θ (and σR,θ ) can be extended to be a distribution
(measure) on R

n by UR,θ (A) = UR,θ (A ∩ SR,θ ) for any Borel set A of Rn.
Formula (1.10) is an example of what is sometimes called superficial (or natural)

measure on an n − 1 dimensional submanifold of Rn. Briefly, let O be an open set
in R

n−1 and ϕ be a differentiable function mapping O into R
n with rank n − 1.

Let g = √
det(J TJ ) where J is the n × (n − 1) Jacobian matrix of ϕ. Then the

superficial measure σ on ϕ(O) is defined by

σ(Ω) =
∫
ϕ−1(Ω)

g(t1, . . . , tn−1) dt1 . . . dtn−1

for any Borel set Ω in ϕ(O).
It is easy to check that, for the transformation given by (1.9), the function g is

the integrand in the right hand side of (1.10). The superficial measure is connected
in an essential way to Stokes’ theorem which we will use extensively. There is more
discussion in Sects. 2.5 and A.5. See also Stroock (1990).

1.4 Bayesian Decision Theory

In this section, we introduce loss functions, risk functions, and some results in
Bayesian decision theory. SupposeX ∼ fθ (x) where fθ (x) is a density with respect
to a σ -finite measure μ on X a measurable subset of Rn (X is the sample space)
and θ ∈ Ω a measurable subset of Rp (Ω is the parameter space). We require that
fθ (x) be jointly measurable on X ×Ω .

In the problem of estimating a measurable function g(θ) from R
p into g(Ω) ⊂

R
k , an estimator is a measurable function δ(X) from R

n into D ⊂ R
k (D is the

decision space). Typically we would require D ⊂ g(Ω) but, occasionally, it is more
convenient to allow D to contain g(Ω).

The measure of closeness of an action d ∈ D to the “true value” of g(θ) is given
by a (jointly measurable) loss function L(θ, d), where, for any θ ∈ Ω , L(θ, g(θ)) =
0 and, for any d ∈ D , L(θ, d) ≥ 0. Hence there is no loss if the “correct decision”
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d = g(θ) is made and is a nonnegative loss for whatever decision is made. A larger
value of the loss corresponds to a worse decision.

A simple example for the case of g(Ω) ⊂ R
1 and D ⊂ R

1 is L(θ, d) =
(d − g(θ))2, the so called squared error loss. Another common choice is L(θ, d) =
|d − g(θ)| or, more generally, L(θ, d) = ρ(g(θ), d) where ρ(g(θ), g(θ)) = 0
and ρ(g(θ), d) is monotone nondecreasing in d when d ≥ g(θ), and monotone
nonincreasing in d when d ≤ g(θ), a so called bowl-shaped loss.

In higher dimensions, when D ⊂ R
k and Ω ⊂ R

k , similar examples would be

L(θ, d) = ||d − g(θ)||2 =
k∑
i=1

(di − gi(θ))
2

(the sum of squared errors loss or quadratic loss),

L(θ, d) =
k∑
i=1

|di − gi(θ)|

(the sum of absolute errors loss) and

L(θ, d) = (d − g(θ))TQ(d − g(θ)) ,

where Q is a positive semidefinite matrix (the weighted quadratic loss).
To help in the assessment of estimators (or, more generally, decision procedures),

it is useful to introduce the risk function R(θ, δ) = Eθ [L(θ, δ(X))]. The risk
function only depends on the estimator δ(·) (and not just on its value, δ(x), at a
particular observation, X = x) and, of course, on θ .

Frequentist decision theory is mainly concerned with the choice of estimators
which, in some sense, make R(θ, δ) small. Bayesian decision theory, in particular,
is largely focused on minimizing the average of R(θ, δ) with respect to some
(positive) weight function (measure) π , referred to as the prior measure or prior
distribution. It suffices for our purpose to suppose that the prior measure π is a
finite measure on Ω and, without loss of generality, to assume it is a probability
measure (i.e. π(Ω) = 1).

Definition 1.5 (Bayes procedures) For any (measurable) function δ from X into
D the Bayes risk of δ (with respect to π ) is

r(π, δ) =
∫
Ω

R(θ, δ) dπ(θ)

=
∫
Ω

[∫
X
L(θ, δ(x)) fθ (x) dμ(x)

]
dπ(θ) . (1.12)
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A (proper) Bayes procedure, δπ (X), with respect to the (proper) prior π , is any
estimator δπ such that

r(π) = r(π, δπ ) = inf
δ
r(π, δ) . (1.13)

The quantity r(π) is referred to as the Bayes risk of π or simply the Bayes risk.

In certain settings, it is not necessary to require that π be a finite measure but
only to require that there exists a δ(X) such that (1.12) is finite. Note also that the
joint measurability of fθ (X), and also ofL(θ, δ(X)), implies that the double integral
in (1.12) makes sense.

It is helpful to define joint and marginal distributions as follows.

Definition 1.6

(1) The joint distribution of (X, θ) is

P [X ∈ A, θ ∈ B] =
∫
B

[∫
A

fθ (x) dμ(x)

]
dπ(θ) . (1.14)

(2) The marginal distribution of θ is the prior distribution π(·) since

P [θ ∈ B] =
∫
B

[∫
X
fθ (x) dμ(x)

]
dπ(θ) =

∫
B

dπ(θ) = π(B) . (1.15)

(3) The marginal distribution of X is

M(A) = P [X ∈ A]

=
∫
Ω

[∫
A

fθ (x) dμ(x)

]
dπ(θ)

=
∫
A

[∫
Ω

fθ (x) dπ(θ)

]
dμ(x) by Fubini’s theorem

=
∫
A

m(x) dμ(x) (1.16)

where

m(x) =
∫
Ω

fθ (x) dπ(θ) .

Hence it follows that the marginal distribution of X is defined and is absolutely
continuous with respect to μ, and has density m.

Definition 1.7 The posterior distribution of θ given x is defined such that (for
m(x) 	= 0)
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dπ(θ |x) = fθ (x)

m(x)
dπ(θ) . (1.17)

Note that the posterior distribution as defined in (1.17) is absolutely continuous
with respect to the measure π , and hence, has density

fθ (x)

m(x)

with respect to π . It is well defined for all x such that m(x) > 0, and hence M-
almost everywhere.

The above observations and (again) Fubini’s theorem allow an immediate
convenient re-expression of (1.12).

Lemma 1.5 The Bayes risk in (1.12) may be expressed as

r(π, δ) =
∫
X

[∫
Ω

L(θ, δ(x)) dπ(θ |x)
]
dM(x)

=
∫
X

[∫
Ω

L(θ, δ(x)) dπ(θ |x)
]
m(x) dμ(x). (1.18)

It follows that a Bayes estimate δπ (x) may be calculated, for μ-almost every x,
by minimizing the so-called posterior loss function or posterior expected loss of δ.

Lemma 1.6 Suppose that there exists an estimator with finite Bayes risk and that,
for M-almost every x, there exists a value δπ (x) minimizing

E[L(θ, δ(X))|x] =
∫
Ω

L(θ, δ(x))
fθ (x)

m(x)
dπ(θ). (1.19)

Then, provided it is a measurable function, δπ (X) is a Bayes estimator and E[L(θ,
δ(X))|x] is said to be the posterior risk.

For details on the measurability aspects of Bayes estimators, see Brown and Purves
(1973).

Corollary 1.2 Under the assumptions of Lemma 1.6,

(1) if L(θ, d) = (d − g(θ))TQ(d − g(θ)) where Q is positive (semi) definite, the
Bayes estimator is given by δπ (X) = E[g(θ)|X] and

(2) if L(θ, d) = (d − g(θ))TQ(θ)(d − g(θ)) where Q(θ) is positive definite, the
Bayes estimator is given by

δπ (X) = (E[Q(θ)|X])−1E[Q(θ) g(θ)|X] .

Uniqueness of the Bayes estimator follows under the assumption of strict
convexity of L(θ, d) in d, finiteness of the integrated risk of δπ (X) and absolute
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continuity of μ with respect to the marginal distribution M of X (i.e. μ and M are
mutually absolutely continuous).

It is often convenient to deal with prior measures π that are not finite. In such
cases, there is typically no procedure δ(·) for which (1.12) is finite. However, it is
often the case that the posterior distribution given formally by (1.17) exists and is
a finite measure that can be normalized to be a probability distribution. In such a
case, an estimator δπ (X)minimizing (1.19) is called a generalized Bayes (or formal
Bayes) estimator.

Example 1.1 (Normal location families) Suppose X ∼ Np(θ, σ
2Ip) with σ 2

known and the prior measure π (not necessarily finite) satisfies

m(x) =
∫
Rp

(
1√

2π σ

)p
exp

(
− 1

2 σ 2
||x − θ ||2

)
dπ(θ) < ∞

for all x ∈ R
p. Note that the marginal m is an analytic function since it can be

expressed as

m(x) =
(

1√
2π σ

)p
exp

(
− 1

2 σ 2 ||x||2
)

∫
Rp

exp

(
− 1

2 σ 2 ||θ ||2
)

exp

(
− 1

σ 2 x
Tθ

)
dπ(θ) ,

which shows that it is proportional to the Laplace transform of a density with
respect to π . Then, for a loss of the form L(θ, d) = (d − g(θ))TQ(d − g(θ)),
where Q is positive definite, the Bayes (or generalized Bayes) estimator and the
posterior risk involve derivatives of m; more specifically, the gradient ∇m(x) =(
∂/∂x1m(x), · · · , ∂/∂xpm(x)

)
and the Laplacian Δm(x) = ∑p

i=1 ∂
2/∂x2

i m(x).
Indeed we have

δπ (X) = E[θ |X]

= X +
∫
Rp
(θ −X) exp

(
− 1

2 σ 2 ||X − θ ||2
)
dπ(θ)

∫
Rp

exp
(
− 1

2 σ 2 ||X − θ ||2
)
dπ(θ)

= X + σ 2 ∇m(X)
m(X)

, (1.20)

where the interchange of integration and differentiation is justified by standard
results for exponential families. See Brown (1986) and also Lemma A.4 in the
Appendix. Expression (1.20) is due to Brown (1971) and is also useful in analyzing
the risk properties of Bayes estimators. Similar expressions for spherically symmet-
ric location families will be developed in Chaps. 5 and 6.
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Consider now the posterior risk E[‖θ − δπ (X)‖2
∣∣ x]. According to (1.20), we

have

E[‖θ − δπ (X)‖2
∣∣ x] = E

[∥∥∥∥θ −X − σ 2 ∇m(X)
m(X)

∥∥∥∥
2 ∣∣∣∣ x

]

= E

[{
‖θ −X‖2 + σ 4

∥∥∥∥∇m(X)
m(X)

∥∥∥∥
2

− 2 σ 2 (θ −X)T ∇m(X)
m(X)

} ∣∣∣∣ x
]
.

Now

E

[
(θ −X)T ∇m(X)

m(X)

∣∣∣∣ x
]

= σ 2
∥∥∥∥∇m(x)
m(x)

∥∥∥∥
2

since, by (1.20),

E

[
(θ −X)

∣∣∣∣ x
]

= σ 2 ∇m(x)
m(x)

.

Hence

E[‖θ − δπ (X)‖2
∣∣ x] = E[‖θ −X)‖2

∣∣ x] − σ 4
∥∥∥∥∇m(X)
m(X)

∥∥∥∥
2

.

Also

E
[
‖θ −X‖2

∣∣∣ x] = p σ 2 + σ 4 Δm(x)

m(x)

since, again by standard results for exponential families,

Δm(x)

m(x)
=
Δ
∫
Rp

exp
(
− 1

2 σ 2 ||x − θ ||2
)
dπ(θ)

∫
Rp

exp
(
− 1

2 σ 2 ||x − θ ||2
)
dπ(θ)

=
∫
Rp
Δ exp

(
− 1

2 σ 2 ||x − θ ||2
)
dπ(θ)

∫
Rp

exp
(
− 1

2 σ 2 ||x − θ ||2
)
dπ(θ)

=
∫
Rp

( ||x−θ ||2
σ 4 − p

σ 2

)
exp

(
− 1

2 σ 2 ||x − θ ||2
)
dπ(θ)

∫
Rp

exp
(
− 1

2 σ 2 ||x − θ ||2
)
dπ(θ)

= E

[‖θ −X‖2

σ 4
− p

σ 2

∣∣∣ x
]
.
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Therefore the posterior risk equals

E[‖θ − δπ (X)‖2
∣∣ x] = p σ 2 + σ 4

{
Δm(x)

m(x)
−
∥∥∥∥∇m(x)
m(x)

∥∥∥∥
2
}
. (1.21)

Now suppose θ ∼ Np(ν, τ
2 Ip) (i.e. π is a normal distribution with mean vector

ν and covariance matrix τ 2 Ip). Then the marginal m(x) equals

(
1√

2π σ

)p ( 1√
2π τ

)p ∫
Rp

exp

(
− 1

2 σ 2
||x − θ ||2

)
exp

(
− 1

2 τ 2
||θ − ν||2

)
dθ

=
(

1√
2π

√
σ 2 + τ 2

)p
exp

(
− 1

2 (σ 2 + τ 2)
||x||2

)

since the convolution of Np(0, σ 2 Ip) and Np(ν, τ
2 Ip) is Np(ν, (σ

2 + τ 2) Ip).
Hence the Bayes estimator is

δπ (X) = X + σ 2 (−(X − ν))

σ 2 + τ 2

= τ 2

σ 2 + τ 2
X + σ 2

σ 2 + τ 2
ν

= ν + τ 2

σ 2 + τ 2 (X − ν) (1.22)

= ν +
(

1 − σ 2

σ 2 + τ 2

)
(X − ν) .

If the generalized prior distribution π is the Lebesgue measure (dπ(θ) = dθ ),
then m(X) ≡ 1 and the generalized Bayes estimator is given by

δπ (X) = X + σ 2 ∇1

1
= X .

It is often convenient, both theoretically and for computational reasons, to
express (proper and generalized) prior distributions hierarchically, typically in two
or three stages. The first stage of the hierarchy is often a conjugate prior, i.e. one
such that the posterior distribution is in the same class as the prior distribution. In
Example 1.1, the class of θ ∼ Np(ν, τ

2 Ip) priors is a conjugate family since the
posterior is given by

θ |x ∼ Np

(
τ 2 x + σ 2 ν

σ 2 + τ 2
,
σ 2 τ 2

σ 2 + τ 2
Ip

)
.
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At the second stage, one could put a prior (or generalized prior) distribution on
the first stage prior variance τ 2. A convenient way to do this in certain settings
(see, for example, Chap. 4 where this device is used to produce improved shrinkage
estimators for the normal model) is as follows.

Suppose the first stage prior variance τ 2 is expressed as τ 2 = σ 2 (1 − λ)/λ for
0 < λ < 1. Then σ 2 + τ 2 = σ 2/λ and

τ 2 x + σ 2 ν

σ 2 + τ 2
= (1 − λ) x + λ ν = ν + (1 − λ) (x − ν) .

Hence a second stage prior H(λ) with prior density h(λ) for 0 < λ < 1
(hierarchical, generalized, or proper) leads to the marginal density

m(x) =
∫ 1

0

(
λ

2π σ 2

)p/2
exp

(
− λ

2 σ 2
||x − ν||2

)
h(λ) dλ

and the Bayes estimator

δπ (X) = X + σ 2 ∇m(X)
m(X)

= X −
∫ 1

0 λ
p/2+1 exp

(
− λ

2 σ 2 ||X − ν||2
)
h(λ) dλ

∫ 1
0 λ

p/2 exp
(
− λ

2 σ 2 ||X − ν||2
)
h(λ) dλ

(X − ν)

= ν + E[(1 − λ)|X] (X − ν) .

Empirical Bayes estimators are closely related to hierarchical Bayes estimators.
If the first stage prior π(θ |τ) is viewed as specifying a class of priors indexed by a
parameter τ , then the first stage marginal

m(x|τ) =
∫
fθ (x) dπ(θ |τ)

may be viewed as a likelihood depending on the data x and the parameter τ .
One may choose to estimate the parameter τ in a classical frequentist way such
as a maximum likelihood estimator (MLE) or perhaps a UMVU estimator, and
then calculate a Bayes estimator by the first stage Bayesian model substituting the
estimated λ. Such estimators are called empirical Bayes estimators.

For example, in the above normal model, the first stage marginal distribution
(parametrized by τ 2 with ν fixed and known) is

X|τ 2 ∼ Np(ν, (σ
2 + τ 2)Ip) .
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Since ν is fixed and known, ||X− ν||2 is a complete sufficient statistic and the MLE
of τ 2 is τ̂ 2 = max(0, ||X − ν||2/p − σ 2), giving an empirical Bayes estimate of θ
(based on (1.22))

δEB(X) = ν + τ̂ 2

σ 2 + τ̂ 2 (X − ν)

= ν +
(

1 − p σ 2

||X − ν||2
)

+
(X − ν) .

Alternatively, the UMVU estimator of 1/(σ 2 + τ 2) is ̂1/(σ 2 + τ 2) = (p −
2)/||X − ν||2, so a different empirical Bayes estimator based on (1.22) would be

ν +
(

1 − (p − 2) σ 2

||X − ν||2
)
(X − ν).

The first of these is a version of the James-Stein positive-part estimator while the
second is the classical James-Stein estimator. The risk properties of these estimators
are examined in Chap. 2, when the distribution ofX is normal, and in Chap. 5, when
the distribution of X is spherically symmetric.

1.5 Minimaxity

In the development of Bayes estimators, the risk function was integrated with
respect to a prior. Minimax estimation takes another approach and does not depend
on a prior.

Definition 1.8 An estimator δ0(X) is minimax if

sup
θ∈Ω

R(θ, δ0) = inf
δ∈D

sup
θ∈Ω

R(θ, δ) ,

where D is the class of all estimators.

It is occasionally useful to take D to be a subset of the class of all estimators (for
example, all linear estimators) in which case δ0 would be said to be minimax in D .

We give two results which have proved useful for finding minimax estimators
(see Lehmann and Casella (1998) for proofs).

Lemma 1.7 If a proper prior π has an associated Bayes estimator δπ (X) and if
supθ∈Ω R(θ, δπ ) = r(π, δπ )(= r(π)) , then δπ (X) is minimax. The prior π is also
least favorable in the sense that r(π ′, δπ ) ≤ r(π, δπ ) for all prior distributions π ′.

One easy and useful corollary of this result is that a Bayes estimator with constant
(finite) risk is minimax. The second result is more useful in the case where the
parameter space is noncompact.
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Lemma 1.8 If δ0(X) is an estimator such that supθ∈Ω R(θ, δ0) = r and if there
exists a sequence of priors (πn) such that limn→∞ r(πn, δπn) = r then δ0(X) is
minimax. The sequence of priors (πn) is what is known as a least favorable sequence
in the sense that, for any prior π , we have r(π) ≤ r .

This second result is useful for establishing minimaxity of the usual estimator X
in the normal location problem.

Example 1.2 (Minimaxity of X for X ∼ Np(θ, σ
2I ), σ 2 known) Let X ∼

Np(θ, σ
2Ip) with σ 2 known and loss equal to L(θ, d) = ||d − θ ||2. Suppose

the sequence of priors, (πn), on θ is Np(0, nIp). Then the posterior distribution
is Np(n/(n + σ 2)X, n σ 2/(n + σ 2) Ip) and the posterior risk is n σ 2/(n + σ 2) p

which is also the Bayes risk. Since r(πn) = [n σ 2/(n+σ 2) p] → p σ 2 ≡ R(θ,X),
it follows that X is minimax.

Example 1.3 (Minimaxity of X for X ∼ f (||X− θ ||2)) Similarly, if X ∼ f (||X−
θ ||2) where E[||X − θ ||2] = p σ 2 < ∞, then the sequence of priors πn(θ) =
f ∗n(θ), where f ∗n is the n-fold convolution of f with itself, leads to a proof that X
is minimax. To see this, note that, if U1, . . . , Un are i.i.d. copies of U0 ∼ f (||u||2),
then θ = ∑n

i=1 Ui ∼ f ∗n(||θ ||2). AlsoU0 = X−θ ∼ f (||u0||2) and is independent
of θ = ∑n

i=1 Ui and X = (X − θ) + θ = ∑n
i=0 Ui . It follows that the Bayes

estimator corresponding to πn may be represented as

δπn(X) = E[θ |X]

= E

[
n∑
i=1

Ui

∣∣∣∣
n∑
i=0

Ui

]

= nE

[
U1

∣∣∣∣
n∑
i=0

Ui

]

= n

n+ 1
E

[
n∑
i=0

Ui

∣∣∣∣
n∑
i=0

Ui

]

= n

n+ 1
X .

The corresponding Bayes risk is

Eθ [EX|θ [||δπn(X)− θ ||2]] = Eθ

[
EX|θ

[∣∣∣∣
∣∣∣∣ n

n+ 1
X − θ

∣∣∣∣
∣∣∣∣
2
]]

= Eθ

[
p

(
n

n+ 1

)2

σ 2 +
p∑
i=1

(
1

n+ 1
θi

)2
]
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= Eθ

[
p

(
n

n+ 1

)2

σ 2 +
(

1

n+ 1

)2

||θ ||2
]

= p

(
n

n+ 1

)2

σ 2 +
(

1

n+ 1

)2

p nσ 2

→ p σ 2 = E[|X − θ ||2] .

Hence X is minimax and (πn) is a least favorable sequence.

Example 1.4 (Minimaxity ofX in the unknown σ 2 case) In this example, we assume
(X,U) ∼ Np+k((θ, 0)T, σ 2I ) when dim X = dim θ = p and dim U = dim 0 =
k. Suppose the loss is ||δ−θ ||2/σ 2. We need the following easy result (see Lehmann
and Casella 1998).

Lemma 1.9 Suppose δ(X) is minimax in a problem for X ∼ f with f ∈ F0.
Suppose F0 ⊂ F1 and supf∈F0

R(f, δ) = supf∈F1
R(f, δ). Then δ(X) is

minimax for f ∈ F1.

The argument of Example 1.2 suffices to show that X is minimax for any fixed
σ 2. Since the risk of X is constant and equal to p for the entire family for the scale
invariant loss ||δ − θ ||2/σ 2, it follows that X is minimax in the unknown scale
case.

1.6 Admissibility

An admissible estimator is one which cannot be uniformly improved upon in terms
of risk. An inadmissible estimator is one for which an improved estimator can be
found. More formally we have the following definition.

Definition 1.9

(1) δ(X) is inadmissible if there exists an estimator δ′(X) for which R(θ, δ′) ≤
R(θ, δ) for all θ ∈ Ω , with strict inequality for some θ .

(2) δ(X) is admissible if it is not inadmissible.

The most direct method to prove that an estimator is inadmissible is to find a
better one. Much of this book is concerned with exactly this process of finding
and developing improved estimators, typically by combining information from all
coordinates. Hence, in a certain sense, we are more concerned with inadmissibility
issues than with admissibility.

Proving admissibility can often be difficult but there are a few basic techniques
that can sometimes be applied with reasonable ease. The most basic is the following.

Lemma 1.10 A unique (proper) Bayes estimator is admissible. (Here uniqueness is
meant in the sense of probability 1 for all fθ , θ ∈ Ω).
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Typically, a minimax estimator in a location parameter problem is not proper
Bayes so Lemma 1.10 will be of little help in this setting.

A general sufficient condition for admissibility of generalized Bayes estimators
has been given by Blyth (1951). To apply Blyth’s method for a target generalized
prior density g(θ), select an increasing sequence of proper prior densities approach-
ing g, g1 ≤ g2 ≤ · · · ≤ g. Each gn is not necessarily normalized, so it just
satisfies

∫
Ω
gn(θ)dθ < ∞ for any fixed n. Let δg and δgn be the generalized Bayes

estimator with respect to g(θ) and the proper Bayes estimator with respect to gn(θ),
respectively. The non-standardized Bayes risk difference between δg and δgn with
respect to gn(θ) is given by

Δn =
∫
Ω

[
R(θ, δg)− R(θ, δgn)

]
gn(θ)dθ. (1.23)

Blyth (1951) showed under certain conditions that if Δn → 0 as n → ∞, δg is
admissible. The following version of Blyth’s methods is from Brown and Hwang
(1982).

Theorem 1.1 Suppose that the parameter spaceΩ is open, and the estimators with
continous risk functions form a complete class. SupposeX has a density f (‖x−θ‖),
where f (·) is strictly positive. Assume that there is an increasing sequence (gn)n≥1
of proper densities such that

∫
‖θ‖≤1 g1(θ)dθ > c for some positive c and thatΔn →

0 as n → ∞. Then δg is admissible under quadratic loss L(θ, d) = ‖d − θ‖2.

Proof Suppose that δg is inadmissible and let δ′ be such that R(θ, δ′) ≤ R(θ, δg)
for all θ with strict inequality for some θ . Let δ′′ = (δg+δ′)/2. Then, using Jensen’s
inequality,

R(θ, δ′′) =
∫

‖δ′′(x)− θ‖2f (‖x − θ‖)dx

<
1

2

(∫
X

‖δg(x)− θ‖2f (‖x − θ‖)dx +
∫
X

‖δ′(x)− θ‖2f (‖x − θ‖)dx
)

= 1

2

[
R(θ, δ′)+ R(θ, δg)

]

≤ R(θ, δg),

for any θ . Since R(θ, δ′′) and R(θ, δg) are both continuous functions of θ , there
exists an ε > 0 such that R(θ, δ′′) < R(θ, δg)− ε for ‖θ‖ ≤ 1. Then

Δn =
∫
Ω

[
R(θ, δg)− R(θ, δgn)

]
gn(θ)dθ

≥
∫
Ω

[R(θ, δg)− R(θ, δ′′)]gn(θ)dθ

≥
∫
‖θ‖≤1

[R(θ, δg)− R(θ, δ′′)]g1(θ)dθ
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≥ ε c

> 0 , (1.24)

which contradicts Δn → 0. ��
A good choice of the sequence of proper priors approaching the target prior is

critical for proving the admissibility of a generalized Bayes estimator. For example,
when p = 1 under normality and spherical symmetry, Blyth (1951) showed that the
most natural estimator X, which is generalized Bayes with respect to g(θ) = 1, is
admissible by using a sequence of conjugate priors.

However, even in 2 dimensions, a sequence of normal priors with covariance
equal to multiples of the identity, fails to show admissibility of X and the
technique completely fails in 3 and higher dimensions. An alternative sequence for
2 dimensions was found by James and Stein (1961) to demonstrate admissibility.
Under spherically symmetry, James and Stein (1961) showed for p = 2 that
gn(θ) = h2

n(θ) works where

hn(θ) =

⎧⎪⎪⎨
⎪⎪⎩

1 ‖θ‖ ≤ 1

1 − log ‖θ‖
log n 1 ≤ ‖θ‖ ≤ n/2

α(n,‖θ‖)
‖θ‖{log ‖θ‖} ‖θ‖ > n/2

and α(n, ‖θ‖) is chosen so that, for fixed θ , α(n, ‖θ‖)‖θ‖−1{log ‖θ‖}−1 → 1 as
n → ∞ and h1 ≤ h2 ≤ · · · ≤ 1. On the other hand, Stein (1956) showed that
when p ≥ 3 the standard estimator X is inadmissible under normality (and more
generally under the condition that the fourth moment exists). Brown (1966) showed
the dimension cutoff of p = 3 for inadmissibility of the best equivariant estimator
(δ(X) = X in the spherically symmetric case) was quite general.

Brown (1971) gave very general conditions on the generalized prior which gives
admissibility under quadratic loss for normal families and which resolves most
admissibility issues in the multivariate normal case (with σ 2 known). Here is a
version of Brown’s result.

Theorem 1.2 Let X ∼ Np(θ, σ
2I ). Suppose π is a generalized prior distribution

and loss is L(θ, d) = ||d − θ ||2. Define, for ||x|| = r ,

m̄(r) =
∫
m(x) dUr (x)

and

m(r) =
∫
(1/m(x)) dUr (x)

where Ur is the uniform distribution on the sphere of radius r and m(x) is the
marginal distribution.
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(1) (Admissibility) If ||δπ (x)− x|| is uniformly bounded and

∫ ∞

c

(rp−1 m̄(r))−1 dr = ∞

for some c > 0, then δπ (X) is admissible.
(2) (Inadmissibility) If

∫ ∞

c

r1−p m(r) dr < ∞

for some c > 0, then δπ (X) is inadmissible.

Although Brown (1971) is quite general, the proof of the deep result depends on
complex analytical concepts, solutions of the exterior Dirichlet problem for a class
of elliptic boundary value problems, and may be difficult to apply. Brown’s result
involves a continous time Markov process on the sample space. In contrast, Eaton
et al. (1992) develops an approach to admissibility which involves a discrete time
Markov chain on the parameter space.

In the setting of estimating the natural mean vector of an exponential family
under a quadratic loss function, Brown and Hwang (1982) gave a sufficient
condition for generalized Bayes estimators to be admissible when the generalized
prior density g(θ) is differentiable. Here is a version of their result for the normal
case.

Theorem 1.3 Let X ∼ Np(θ, σ
2 Ip) and L(θ, d) = ||d − θ ||2. Let δg be the

generalized Bayes estimator which is given by

δg(X) = X + σ 2 ∇mg(X)
mg(X)

= X + σ 2 ∇ logmg(X) ,

where mg is the marginal distribution under the prior density g. Assume that g
satisfies

(1)
∫
{θ :‖θ‖>1}

g(θ)

‖θ‖2 max{log ‖θ‖, log 2}2 < ∞,

(2)
∫
Rp

‖∇g(θ)‖2

g(θ)
dθ < ∞, and

(3) sup{R(θ, δg) : θ ∈ K} < ∞ for all compact sets K .

Then δg(X) is admissible.

Without loss of generality, we assume that σ 2 = 1. The proof uses the following
notation and results:

(i) for a measurable function ψ(·) and for x ∈ R
p,

m(ψ |x) =
(

1√
2π

)p ∫
Rp

ψ(θ) exp

(
−1

2
‖x − θ‖2

)
dθ ,
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(ii)
∫
Rp
m(ψ |x) dx = ∫

Rp
ψ(θ) dθ , and

(iii) if ψ(·) is (weakly) differentiable, ∇xm(ψ |x) = m(∇θψ |x).
Note that m(ψ |x) = Ex[ψ(θ)] where θ ∼ Np(x, Ip). In an abuse of notation,

we occasionally use m(θ ψ |x) = Ex[θ ψ(θ)].
Result (ii) follows from Fubini’s theorem. Result (iii) follows from the fact

that, for any 1 ≤ i ≤ p, denoting θ−i = (θ1, . . . , θi−1, θi+1, . . . , θp) and
x−i = (x1, . . . , xi−1, xi+1, . . . , xp),

∂

∂xi
m(ψ |x) =

∫
Rp

ψ(θ) (θi − xi)

(
1√
2π

)p
exp

(
−1

2
‖x − θ‖2

)
dθ

=
∫
Rp−1

∫
R

ψ(θ) (θi − xi)
1√
2π

exp

(
−1

2
(xi − θi)

2
)
dθi

(
1√
2π

)p−1

exp

(
−1

2
‖x−i − θ−i‖2

)
dθ−i

=
∫
Rp−1

∫
R

∂

∂θi
ψ(θ)

1√
2π

exp

(
−1

2
(xi − θi)

2
)
dθi

(
1√
2π

)p−1

exp

(
−1

2
‖x−i − θ−i‖2

)
dθ−i

= m

(
∂

∂θi
ψ

∣∣∣x
)
.

The first equality follows from the standard interchange of differentiation and
integration for exponential families. The third equality follows from Stein’s lemma
(Theorem 2.1) in one dimension applied to the inner integral.

In the following, it should be clear from the context whether the symbol ∇ refers
to ∇x or ∇θ and we omit the subscript in most of the proof.

Proof The key insight of the proof lies in the decomposition of Δn given by (1.23)
using the triangle and Cauchy-Schwarz inequalities. Take the sequence of priors
gn(θ) = h2

n(θ) g(θ) where

hn(θ) =

⎧⎪⎪⎨
⎪⎪⎩

1 ‖θ‖ ≤ 1

1 − log ‖θ‖
log n 1 ≤ ‖θ‖ ≤ n

0 ‖θ‖ > n

for n = 1, 2, 3, . . . . The Bayes risk difference between δg and δgn

Δn =
∫
Rp

[
R(θ, δg)− R(θ, δgn)

]
gn(θ)dθ
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can be expressed, thanks to (i) and Fubini’s theorem, as

Δn =
∫
Rp

m
([

‖δg(x)− θ‖2 − ‖δgn(x)− θ‖2
]
gn
∣∣x) dx

=
∫
Rp

m
([

‖δg(x)‖2 − ‖δgn(x)‖2 − 2 (δg(x)− δgn(x))
Tθ
]
gn
∣∣x) dx

=
∫
Rp

[{
‖δg(x)‖2 − ‖δgn(x)‖2

}
m(gn

∣∣x)− 2 (δg(x)− δgn(x))
Tm(θgn

∣∣x)] dx

=
∫
Rp

{
‖δg(x)‖2 − ‖δgn(x)‖2 − 2 (δg(x)− δgn(x))

Tδgn(x)
}
m(gn

∣∣x)dx

=
∫
Rp

‖δg(x)− δgn(x)‖2m(gn|x) dx

since m(θ gn|x) = δgn(x)m(gn
∣∣x). Note we have also used the factorization

m(h(x)ψ
∣∣x) = h(x)m(ψ

∣∣x) . (1.25)

Then, as

δg(x) = x + ∇ logm(g|x) , δgn(x) = x + ∇ logm(gn|x) and gn = g h2
n ,

we have

Δn =
∫
Rp

∥∥∥∥∇m(g|x)
m(g|x) − ∇m(g h2

n|x)
m(g h2

n|x)
∥∥∥∥

2

m(g h2
n|x) dx

≤ 2
∫
Rp

∥∥∥∥m(g∇h2
n|x)

m(g h2
n|x)

∥∥∥∥
2

m(g h2
n|x) dx

+2
∫
Rp

∥∥∥∥m(∇g|x)m(g|x) − m(h2
n ∇g|x)

m(g h2
n|x)

∥∥∥∥
2

m(g h2
n|x) dx

≡ 2 (An + Bn) ,

since

∇gn = ∇(g h2
n) = h2

n ∇g + g∇h2
n and ‖a + b‖2 ≤ 2 (‖a‖2 + ‖b‖2) .
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To show An → 0 note that

‖m(g∇h2
n |x)‖2 = 4 ‖m(g hn∇hn |x)‖2

≤ 4 {m(g hn ‖∇hn‖ |x)}2 (by Jensen’s inequality)

≤ 4 {[m1/2(g h2
n |x)] [m1/2(g ‖∇hn‖2 |x)]}2( by Cauchy-Schwarz)

= 4 [m(g h2
n |x)] [m(g ‖∇hn‖2 |x)] .

Hence

An = 4
∫
Rp

∥∥∥∥m(g hn∇hn|x)m(g h2
n|x)

∥∥∥∥
2

m(g h2
n|x) dx

≤ 4
∫
Rp

m(g ‖∇hn‖2 |x) dx

= 4
∫
Rp

‖∇hn(θ)‖2 g(θ) dθ ,

where equality follows by property (ii). Calculating the gradient term gives

‖∇hn(θ)‖2 = 1

‖θ‖2 log2(n)
11[1≤‖θ‖≤n]

≤ 1

‖θ‖2 max{log ‖θ‖, log 2}2 11[1≤‖θ‖] . (1.26)

Since ‖∇hn(θ)‖2 → 0 for all θ , Condition (1) and (1.26) imply, by the dominated
convergence theorem, An → 0 as n → ∞.

Next, note that, since gn → g, the integrand bn(x) of Bn tends to zero for all
x ∈ R

p and, using the factorization property in (1.25), can be expressed as

bn(x) =
∥∥∥m(m(∇g|x)m(g|x) h

2
n g − h2

n ∇g
∣∣∣x)∥∥∥2

m(h2
n g|x)

=
∥∥∥m (

gn

{
m(∇g|x)
m(g|x) − ∇g

g

} ∣∣∣x)
∥∥∥2

m(h2
n g|x)

.

By Jensen and Cauchy-Schwarz inequality applied as above, it follows that

bn(x) ≤ m

(∥∥∥∥gn
{
m(∇g|x)
m(g|x) − ∇g

g

}∥∥∥∥
2 ∣∣∣∣x

)
.
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Now, as 0 ≤ hn ≤ 1, we have

bn(x) ≤ m

(∥∥∥∥g
{
m(∇g|x)
m(g|x) − ∇g

g

}∥∥∥∥
2 ∣∣∣∣x

)

= m

(
‖∇g‖2

g

∣∣∣∣x
)

− ‖m(∇g|x)‖2

m(g|x) ,

where equality follows by expanding and using the factorization property in (1.25).
Hence

bn(x) ≤ m

(
‖∇g‖2

g

∣∣∣∣x
)

and it follows that

Bn ≤
∫
Rp

m

(
‖∇g‖2

g

∣∣∣∣x
)
dx =

∫
Rp

‖∇g‖2

g
dθ < ∞

by condition (2). Therefore Bn → 0 as n → ∞ by the dominated convergence
theorem.

Finally, An + Bn → 0 as n → ∞ and δg is admissible by Blyth’s method
(Theorem 1.1) . ��

As an application of Theorem 1.3 it is a easy to show that the estimator X is
admissible for p = 1 and p = 2. Indeed, if g = 1, then δg(X) = X since ∇g = 0
and the conditions of Theorem 1.3 are trivial to verify. In the general case with
p ≥ 3, δg(X) = X is inadmissible. In this case, Condition (2) holds but Condition
(1) fails.

Consider the class of priors with g(θ) ≤ ‖θ‖2−p−ε for some ε > 0 and with
‖∇g(θ)/g(θ)‖2 = O(‖θ‖−1). In this case, the conditions of Theorem 1.3 are easy
to check. Hence δg(X) is admissible.

In the case where g(θ) ≤ ‖θ‖2−p,

∥∥∥∥∇g(θ)
g(θ)

∥∥∥∥
2

= O(‖θ‖−1), and

∥∥∥∥∂
2g(θ)

∂θi∂θj

∥∥∥∥ = O(‖θ‖−2),

it can be shown, using an extension of Lemma 3.4.1 of Brown (1971) that the
conditions of Theorem 1.3 are satisfied. Hence δg(X) is admissible. If g(θ) ∼ ‖θ‖r
as |θ‖ → ∞ and is smooth, Brown (1971, 1979) show that δg(X)−X ∼ r X/ ‖X‖2

as ‖X‖ → ∞. The case r = 2 − p gives a form X ∼ (1 − (p − 2)/ ‖X‖2)X that
motivates the James-Stein estimator.
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Maruyama (2009) extends Brown and Hwang’s decomposition method to the
spherically symmetric case and gives a condition for admissibility as strong as that
of Brown (1971) under normality. A minimization problem that corresponds to the
An term in Brown and Hwang is formulated with clever use of an assumption that
the target prior is regularly varying. Maruyama’s construction also works well for
proving that the corresponding Bn approaches 0 as n → ∞ in the spherically
symmetric case. As a result, Maruyama gives a strong sufficient condition for
the admissibility of generalized Bayes estimators by using an adaptive sequence
of proper priors. Maruyama and Takemura (2008) deals with the same problem
as Maruyama (2009) and give a sufficient condition for admissibility without the
assumption that the target prior is regularly varying.

1.7 Invariance

Large classes of problems are invariant under a variety of groups of transformations
on the sample space X , associated groups of transformations acting on the
parameter space Ω , and the action space D . In such cases, it seems natural to
search for (optimal) procedures that behave in a manner consistent with the group
structure. There is also a (generalized) Bayes connection, in that optimal procedures,
when they exist, can be viewed as generalized Bayes estimators with respect to right
invariant Haar measure which may be considered a natural “objective” prior. Almost
all the problems considered in this book are invariant under the location or location-
scale group (when σ 2 is unknown).

We give a brief discussion of some of the general theory (for more details, see
e.g. Lehmann and Casella 1998 and Schervish 1997). Suppose X ∈ X ∼ Pθ
with θ ∈ Ω is an identifiable family and G is a group of one-to-one and onto
transformations on X . Suppose also that, for all θ ∈ Ω and g ∈ G, if X ∼ Pθ ,
then there exists a θ ′ ∈ Ω such that gX ∼ Pθ ′ . In this case, we may associate
a transformation ḡ on Ω defined as ḡθ = θ ′. It can be shown that ḡ is one-to-
one and onto. The collection Ḡ = {ḡ|g ∈ G} also forms a group of one-to-one
transformations acting on Ω . Under these conditions, the statistical model is said to
be invariant under G.

As an example, suppose the distributions of X form a location parameter family
in R

p with density f (x−θ). The location groupG in R
p consists of transformations

of the form ga : x �→ x + a where a ∈ R
p. If X ∼ f (x − θ), then X̃ = ga(X) ∼

f (x̃ − (θ + a)) so that ḡa : θ �→ θ + a. In this case, Ḡ and G essentially coincide
although they act on different (but equivalent) spaces.

If the statistical problem is to estimate h(θ), under the loss function L(θ, d),
the problem is said to be invariant if there is a g∗ acting on the action space D
corresponding to each g ∈ G such that L(θ, d) = L(ḡ θ, g∗d) for every θ ∈ Ω ,
d ∈ D and g ∈ G. In the above location problem, if h(θ) = θ and L(θ, d) =
ρ(||d − θ ||2), the transformation g∗

a corresponding to ga is g∗
a : d �→ d + a, so that

essentially G = Ḡ = G∗.
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An estimator, δ, is said to be equivariant if δ(g X) = g∗δ(X) for all g ∈ G and
X ∈ X . In the above location problem, this implies that δ(X + a) = δ(X) + a.
Choosing a = −X, this implies δ(X) = X + δ(0).

The following is a key property of equivariant estimators in invariant problems.

Lemma 1.11 If the problem is invariant and δ is equivariant, then the risk of δ is
constant on orbits of Ḡ, i.e. R(ḡ θ, δ) = R(θ, δ) for all θ ∈ Ω and ḡ ∈ Ḡ. If the
group Ḡ acting on Ω is transitive (i.e. for all θ1, θ2 ∈ Ω , there exists ḡ ∈ Ḡ such
that θ2 = ḡθ1) then it follows that the risk of an equivariant estimator is constant
on Ω .

Proof The lemma immediately follows from the equalities

R(ḡ θ, δ) = Eḡθ [L(ḡ θ, δ(X))]
= Eθ [L(ḡ θ, δ(g X))] since g X ∼ Pḡθ

= Eθ [L(ḡ θ, g∗δ(X))] since δ is equivariant

= R(θ, δ) since the problem is invariant. ��

This constancy of risk holds in location problems because the group Ḡ is
transitive: for any θ1, θ2 ∈ R

p, θ2 = θ1 + (θ2 − θ1) so that ḡθ2−θ1θ1 = θ2.
The risk constancy of equivariant estimators gives hope of finding a best one,

or minimum risk equivariant (MRE) estimator, since all that is required is the
existence of an estimator that attains the infimum among the set of constant risks.
The following lemma settles the issue for the location problem with quadratic loss;
the proofs of these results are given in Lehmann and Casella (1998).

Lemma 1.12

(1) For the multivariate location problem with loss L(θ, d) = ||d − θ ||2, the MRE
δ0(X) exists and is unique provided E0[||X||2] < ∞.

(2) δ0(X) = X − E0[X]
(3) δ0(X) = ∫

Rp
θ f (X−θ) dθ /∫

Rp
f (X − θ) dθ , i.e. δ0 is the generalized Bayes

estimator with respect to the Lebesgue measure on R
p (this is known as the

Pitman estimator).
(4) The MRE coincides with the UMVUE of θ provided the UMVUE exists and is

equivariant.

Things are somewhat simpler in the spherically symmetric case (see the comment
after Definition 1.2).

Lemma 1.13 If X ∼ f (||x − θ ||2) and L(θ, d) = ||d − θ ||2 then

(1) δ0(X) = X is MRE;
(2) the MRE is also UMVUE provided the family of distributions is complete.
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See also Sect. 4.5.4. For a general location-scale family

(X,U) ∼ 1

σp+k f
( ||x − θ ||2 + ||u||2

σ 2

)
,

the results for estimation of the parameter θ under loss L((θ, σ 2), d) = ||d −
θ ||2/σ 2 are quite similar. In particular, the family is invariant under the group
of transformations ga,b,P (x, u) = (a + b x, b P u), where a ∈ R

p, b > 0, P
orthogonal, is such that ḡa,b,P (θ, σ 2) = (a + b θ, b2 σ 2), and thus G is transitive.
Similarly, g∗

a,b,P d = a + b d and δ(X,U) is equivariant if δ(a + bX, b P U) =
a + b δ(X,U).

Choosing P such that P u = (||u||, 0, . . . , 0)T, b = 1/||u||, and a = −x/||u||,
implies

δ(X,U) =
[
X

||U || + δ(0, (1, 0, . . . , 0)T)

]/[
1

||U ||
]

= X + c ||U ||

where c = δ(0, (1, 0, . . . , 0)T) ∈ R
p is arbitrary.

Lemma 1.14 Suppose (X,U) has the density function

1

σp+k f
( ||x − θ ||2 + ||u||2

σ 2

)

and the invariant loss is

L((θ, σ 2), d) = ||d − θ ||2
σ 2

.

Then

(1) δ0(X) = X is MRE and unbiased.
(2) The MRE is also the UMVUE provided the family of distributions is complete.
(3) δ0(X) is generalized Bayes with respect to the right invariant prior on (θ, σ 2) ∈

R
p × R

+, that is,

δ0(X) =
∫ ∫

θ
σ 2

1
σp+k f

( ||x−θ ||2+||u||2
σ 2

)
1
σ 2 dθ dσ

2

∫ ∫ 1
σ 2

1
σp+k f

( ||x−θ ||2+||u||2
σ 2

)
1
σ 2 dθ dσ

2
.

The minimaxity of the MRE of the location parameter in the location and
location-scale families follows also from the so-called Hunt-Stein theorem since
the location and location-scale groups are amenable. See Kiefer (1957), Robert
(1994), Lehmann and Casella (1998), Bondar and Milnes (1981), and Eaton (1989)
for details.



Chapter 2
Estimation of a Normal Mean Vector I

2.1 Introduction

This chapter is concerned with estimating the p-dimensional mean vector of a
multivariate normal distribution under quadratic loss. Most of the chapter will be
concerned with the case of a known covariance matrix of the form Σ = σ 2Ip and
“usual quadratic loss,” L(θ, δ) = ‖δ − θ‖2 = (δ − θ)T(δ − θ). Generalizations
to known general covariance matrix Σ , and to general quadratic loss, L(θ, δ) =
(δ − θ)tQ(δ − θ), where Q is a p × p symmetric non-negative definite matrix
will also be considered. Let X ∼ Np(θ, σ

2Ip) where σ 2 is assumed known and
it is desired to estimate the unknown vector θ ∈ R

p. The “usual” estimator of
θ is δ0(X) = X, in the sense that it is the maximum likelihood estimator (MLE),
the uniformly minimum variance unbiased estimator (UMVUE), the least squares
estimator (LSE), and under a wide variety of loss functions it is the minimum
risk equivariant estimator (MRE), and is minimax. The estimator δ0(X) is also
admissible under a wide class of invariant loss functions if p = 1 or 2. However,
Stein (1956) showed thatX is inadmissible if p ≥ 3 for the loss L(θ, δ) = ‖δ−θ‖2.
This result was surprising at the time and has led to a large number of developments
in multi-parameter estimation. One important aspect of this “Stein phenomenon”
(also known as the Stein paradox at one time, see Efron and Morris 1977) is
that it illustrates the difference between estimating one component at a time and
simultaneously estimating the whole mean vector. Indeed, if we wish to estimate any
particular component, θi , of the vector θ , then the estimator δ0i (X) = Xi remains
admissible whatever the value of p (see for example Lehmann and Casella (1998),
Lemma 5.2.12). James and Stein (1961) showed that the estimator δJSa (X) =
(1 − a σ 2 /‖X‖2)X dominates δ0(X) for p ≥ 3 provided 0 < a < 2 (p − 2).
They also showed that the risk of δJSp−2(X) = (

1 − (p − 2) σ 2 /‖X‖2
)
X at θ = 0

is equal to 2 σ 2 for all p ≥ 3 indicating that substantial gain in risk over the usual
estimator is possible for large p, since the risk of δ0(X) is equal to the constant
p σ 2.
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In Sect. 2.2, we will give some intuition into why improvement over δ0(X)

should be possible in higher dimensions and how much improvement might be
expected. Section 2.3 is devoted to Stein’s unbiased estimation of risk technique
which provides the technical basis of many results in the area of multi-parameter
estimation. Section 2.4 is devoted to establishing improved procedures such as the
James-Stein estimator. In Sect. 2.5, we will provide a link between Stein’s lemma
and Stokes’ theorem while, in Sect. 2.6, we will give some insight into Stein’s
phenomenon in terms of nonlinear partial differential operators.

2.2 Some Intuition into Stein Estimation

2.2.1 Best Linear Estimators

Suppose X is a p-dimensional random vector such that E[X] = θ and Cov(X) =
σ 2 Ip where θ is unknown and σ 2 is known. We do not require at this point that
X have a multivariate normal distribution. Consider estimators of θ of the form
δa(X) = (1 − a)X under quadratic loss L(θ, δ) = ‖δ − θ‖2 = ∑p

i=1(δi − θi)
2.

The risk of δa(X) is given by

R(θ, δa) = E

[
p∑
i=1

((1 − a)Xi − θi)
2

]

=
p∑
i=1

V ar ((1 − a)Xi)+
p∑
i=1

(E [(1 − a)Xi − θi])
2

= (1 − a)2 p σ 2 + a2
p∑
i=1

θ2
i

= (1 − a)2 p σ 2 + a2 ‖θ‖2 .

The optimal choice of a, aopt , which minimizes R(θ, δa) is obtained by
differentiating R(θ, δa) with respect to a and equating the result to 0, that is,

∂

∂a
R(θ, δa) = −2 (1 − a) pσ 2 + 2 a ‖θ‖2

= 0

and solving for a gives

aopt = p σ 2

p σ 2 + ‖θ‖2 .
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We see that aopt depends on the unknown, θ but since

E‖X‖2 = p σ 2 + ‖θ‖2,

we may estimate aopt as

âopt = p σ 2

‖X‖2 ,

and hence approximate the best linear “estimator”

δaopt (X) =
(

1 − p σ 2

p σ 2 + ‖θ‖2

)
X

by

δ̂aopt (X) =
(

1 − p σ 2

‖X‖2

)
X.

This is in fact a James-Stein type estimator

δ̂aopt (X) = δJSp (X),

which is close to the optimal James-Stein estimator (as we will see in Sect. 2.4
δJSp−2(X) is optimal ifX is normal). Hence, the James-Stein estimator can be viewed

as an approximation to the best linear “estimator” that adapts to the value of ‖θ‖2.
It is worth noting that aopt = pσ 2/(p σ 2+‖θ‖2) can typically be better estimated

for large values of p since E‖X‖2/p = σ 2 + ‖θ‖2/p and (if we assume Xi are
symmetric about θi and that the Xi − θi are independent)

V ar

(‖X‖2

p

)
= V ar(X1 − θ1)

2

p
+ 4 ‖θ‖2 σ 2

p2

which tends to 0 uniformly as p → ∞ provided ‖θ‖2/p is bounded. This helps
to explain why there is a dimension effect and that it is easier to find dominating
estimators for large p.

It is also interesting to note that normality plays no role in the above discussion
indicating that we can expect James-Stein type estimators to improve on δ0(X) in
a fairly general location vector setting. This will be discussed further in Chaps. 5
and 6 for spherically symmetric distributions.

Note also, since the estimators are generally shrinkingX toward 0, we expect the
largest gains in risk to occur at θ = 0. In particular the risk of δaopt (X) at the true
value of θ is given by
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R(θ, δaopt ) = p σ 2 ‖θ‖2

p σ 2 + ‖θ‖2
= R(θ,X)

‖θ‖2

p σ 2 + ‖θ‖2
.

Hence, when ‖θ‖2 is large, there is very little savings in risk, but when ‖θ‖2 is close
to 0, the improvement is substantial.

We will see later in Sect. 2.4 that this is also true for James-Stein-type estimators
in the sense that there is very little savings in risk for large ‖θ‖2 but substantial
savings for small ‖θ‖2 and especially so for large p.

2.2.2 Some Geometrical Insight

The argument here closely follows the discussion presented by Brandwein and
Strawderman (1991a). We again suppose E[X] = θ ∈ R

p and Cov(X) = σ 2 Ip
with σ 2 known. Since E[‖X‖2] = ‖θ‖2 + p σ 2, it seems that X is“ too long” as an
estimator of θ and that perhaps the projection of θ onto X or something close to it
would be a better estimator than X. Again, the projection of θ onto X will depend
on θ and so will not be a valid estimator, but perhaps we can find a reasonable
approximation. Since the projection of θ on X has the form (1 − a)X we are trying
to approximate the constant a. Note E(θ − X)Tθ = 0, and hence we expect θ and
X − θ to be nearly orthogonal which implies that we expect 0 < a < 1.

In what follows, we assume that θ andX−θ are exactly orthogonal. The situation
is shown in Fig. 2.1.

From the two right triangles in Fig. 2.1 we note

‖(1 − a)X‖2 + ‖Y‖2 = ‖θ‖2 and ‖a X‖2 + ‖Y‖2 = ‖X − θ‖2.

Since

E‖X‖2 = ‖θ‖2 + p σ 2 and E‖X − θ‖2 = p σ 2 ,

reasonable approximations are

‖θ‖2 ∼= ‖X‖2 − pσ 2 and ‖X − θ‖2 ∼= p σ 2 .

Hence we have as approximations

‖(1 − a)X‖2 + ‖Y‖2 ∼= ‖X‖2 − p σ 2 and ‖a X‖2 + ‖Y‖2 ∼= p σ 2 .

Subtracting to eliminate ‖Y‖2, that is,

‖(1 − a)X‖2 − ‖a X‖2 = (1 − 2 a)‖X‖2 ∼= ‖X‖2 − 2p σ 2 ,
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q

X−q

X

(1−a)X

aX

Y

Fig. 2.1 Observation vector X in p dimensions with mean θ orthogonal to X − θ

we obtain a ∼= p σ 2/‖X‖2. Hence, we may approximate the projection of θ onX as

(1 − a)X ∼=
(

1 − p σ 2

‖X‖2

)
X = δJSp (X) , (2.1)

remarkably the same James-Stein estimator suggested in Sect. 2.2.1. Once again,
note that normality plays no role in the discussion. Stein (1962) gave a similar
geometric arguement to contruct confidence sets for θ , centred at (2.1), as the
orthogonal projection of θ on X. For more on the geometrical explanation of the
inadmissibility of X as a point estimator see Brown and Zhao (2012).

2.2.3 The James-Stein Estimator as an Empirical Bayes
Estimator

Assume in this subsection that X ∼ Np(θ, σ
2 Ip) with (σ 2 known) and that the

prior distribution on θ is Np(0, τ 2 Ip). As indicated in Sect. 1.4, the Bayes estimator
of θ for quadratic loss is the posterior mean of θ given by δ(X) = E[θ | X] =
(1 − σ 2/(τ 2 + σ 2))X.

If we now assume that τ 2 is unknown we can derive an empirical Bayes estimator
as follows; the marginal distribution of X is Np(0, (σ 2 + τ 2) Ip) and hence ‖X‖2,
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which is distributed as (σ 2 + τ 2) times a chi-square with p degrees of freedom, is a
complete sufficient statistic for σ 2+τ 2. It follows that (p−2)/‖X‖2 is the UMVUE
of 1/(σ 2 + τ 2) and that δJSp−2(X) = (1 − (p − 2) σ 2/‖X‖2)X can be viewed as an
empirical Bayes estimator of θ .

Here we have explicitly used the assumption of normality but a somewhat
analogous argument will be given in Sect. 5.1 for a general multivariate location
family.

2.3 Improved Estimators via Stein’s Lemma

In this section, we restrict our attention to the case where X ∼ Np(θ, σ
2 Ip) with

σ 2 known and where the loss function is L(θ, δ) = ‖δ− θ‖2. We will be concerned
with developing expressions for the risk function of a general estimator of the form
δ(X) = X + σ 2 g(X) for some function g from R

p into R
p. This development is

due to Stein (1973, 1981).
Through

L(θ, δ) = ‖X + σ 2 g(X)− θ‖2

= ‖X − θ‖2 + σ 4 ‖g(X)‖2 + 2 σ 2 (X − θ)Tg(X) , (2.2)

we will see that the risk of δ is finite if and only if Eθ [‖g(X)‖2] < ∞. Indeed,
considering the expectation of the cross product term in (2.2), we have

Eθ [|(X − θ)Tg(X)|] ≤ (
Eθ [‖(X − θ)‖2])1/2(Eθ [‖g(X)‖2])1/2 ,

by the Cauchy-Schwarz inequality. Therefore, as Eθ [‖(X − θ)‖2] < ∞, it suffices
that Eθ [‖g(X)‖2] < ∞ to have Eθ [‖X + g(X) − θ‖2] < ∞, that is, R(θ,X +
g(X)) < ∞.

Conversely, assume that R(θ,X + g(X)) < ∞. As

‖g(X)‖2 = ‖X + g(X)− θ − (X − θ)‖2

= ‖X + g(X)− θ‖2 + ‖X − θ‖2 − 2 (X − θ)T(X + g(X)− θ)

then applying the above argument gives Eθ [‖g(X)‖2] < ∞ since, by assumption,
Eθ [‖X + g(X) − θ‖2] < ∞, Eθ [‖(X − θ)‖2] < ∞ and hence using again the
Cauchy-Schwarz inequality

Eθ [|(X− θ)T(X+ g(X)− θ)|] ≤ (
Eθ [‖(X− θ)‖2])1/2(Eθ [‖X+ g(X)− θ‖2])1/2 .

Under this fineteness condition the risk function of δ is given by

R(θ, δ) = p σ 2 + σ 4Eθ [‖g(X)‖2] + 2 σ 2Eθ [(X − θ)Tg(X)] .
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Stein’s lemma in (2.7) below allows an alternative expression for the last
expectation, that is, Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] where divg(X) =∑p

i=1
∂
∂Xi

gi(X) under suitable conditions on g. The great advantage that Stein’s
lemma gives is that the risk function can be expressed as the expected value of a
function of X only (and not θ ), that is,

R(θ, δ) = Eθ [p σ 2 + σ 4 ‖g(X)‖2 + 2 σ 4 divg(X)], (2.3)

and hence the expression

p σ 2 + σ 4
[
‖g(X)‖2 + 2 divg(X)

]

can be interpreted as an unbiased estimate of the risk of δ (see Corollary 2.1
(3)). Actually, as X is a complete sufficient statistic, this unbiased estimator
is the uniformly minimum variance unbiased estimator of the risk. To see that
Eθ [(X− θ)Tg(X)] = σ 2 Eθ [divg(X)] is quite easy if g is sufficiently smooth.
Suppose first that p = 1 and g is absolutely continuous. We show in Sect. A.5 in the
Appendix that limx→±∞ g(x) exp{−(x − θ)2/2σ 2} = 0 as soon as Eθ [|g′(X)|] <
∞ (see also Hoffmann 1992 where g is assumed to be continuously differentiable).
Then a simple integration by parts gives

Eθ [(X − θ)g(X)] = 1

(2πσ 2)1/2

∫ ∞

−∞
(x − θ)g(x) exp{−(x − θ)2/2σ 2} dx

= 1

(2πσ 2)1/2

∫ ∞

−∞
σ 2g(x)

(−d
dx

exp{−(x − θ)2/2σ 2}
)
dx

= σ 2

(2πσ 2)1/2

∫ ∞

−∞
g′(x) exp{−(x − θ)2/2σ 2} dx

= σ 2Eθ [g′(X)] .

In higher dimensions, let g = (g1, . . . , gp) be a function from R
p into R

p.
Also, for any x = (x1, . . . , xp) ∈ R

p and for fixed i = 1, . . . , p, set x−i =
(x1, . . . , xi−1, xi+1, . . . , xp) and, with a slight abuse of notation, x = (xi, x−i ).
Then, using the independence of Xi and X−i , we have

Eθ [(Xi − θi) gi(X)] = Eθ
[
Eθ [(Xi − θi) gi(Xi,X−i )|X−i]

]

= Eθ
[
Eθ [σ 2 ∂igi(Xi,X−i )|X−i]

]

= σ 2Eθ [∂igi(X)] .

Now, summing on i gives Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)].
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However, we wish to include estimators such as the James-Stein estimators

δJSa (X) =
(

1 − a σ 2

‖X‖2

)
X (2.4)

where the coordinate functions of g(X) = (a σ 2/‖X‖2)X are not smooth, since g
explodes at 0. For this reason, Stein considered a weaker regularity condition for his
identity to hold, that he called almost differentiability. In his proof, he essentially
required that g(x) = (g1(x), g2(x), . . . , gp(x)) be such that, for each i = 1, . . . , p,
the coordinate gi(x) is absolutely continuous in xi for almost every x−i . Formally,
he stated: “A function h from R

p into R
p is said to be almost differentiable if there

exists a function ∇h = (∇1h, . . . ,∇ph) from R
p into R

p such that, for all z ∈ R
p,

h(x + z)− h(x) =
∫ 1

0
zT ∇h(x + t z) dt , (2.5)

for almost all x ∈ R
p. A function g = (g1, . . . , gp) from R

p into R
p is said to

be almost differentiable if all its coordinate functions gi’s are” (see Sect. A.1 in the
Appendix for a detailed discussion).

We will establish Stein’s identity under the weaker notion of weak differentiabil-
ity which is of more common use in analysis and also in statistics (see e.g. Johnstone
1988). To this end, recall that the space of functions h from R

p into R such that h
is locally integrable is defined by

L1
loc(R

p) =
{
h : Rp → R |

∫
K

|h(x)| dx < ∞ ∀K ⊂ R
p with K compact

}
.

Definition 2.1 A locally integrable function h from R
p into R is said to be weakly

differentiable if there exist p locally integrable functions ∂1h, . . . ∂ph such that, for
any i = 1, . . . , p,

∫
Rp

h(x)
∂ϕ

∂xi
(x) dx = −

∫
Rp

∂ih(x) ϕ(x) dx (2.6)

for any infinitely differentiable function ϕ with compact support from R
p into R.

Note that weak differentiability is a global, not local, property. The functions
∂ih in Definition 2.1 are denoted, as the usual derivatives, by ∂/∂xi . The vector
∂h = (∂1h, . . . , ∂ph) = (∂h/∂x1, . . . , ∂h/∂xp) denotes the weak gradient of h
and the scalar divg = ∑p

i=1 ∂igi denotes the weak divergence of g. The following
proposition establishes a link between weak differentiability and those aspects of
almost differentiability that Stein used (and we will use) in the proof of Stein’s
lemma.

Proposition 2.1 (Ziemer 1989) Let h be a locally integrable function from R
p

into R. Then h is weakly differentiable if and only if there exists a representative
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h0 which is equal to h almost everywhere such that, for any i = 1, . . . , p, the
function h0(xi, x−i ) is absolutely continuous in xi for almost all values of x−i and
whose (classical) partial derivatives belong to L1

loc(R
p). Also the classical partial

derivatives of h0 coincide with the weak partial derivatives of h almost everywhere.

Proposition 2.1 is essentially Theorem 2.1.4. of Ziemer (1989) who deals with
functions h in L1(Ω) where Ω is an open set of Rp (and, more generally, in Lq(Ω)
with q ≥ 1). However, his proof relies only on local integrability of h and its partial
derivatives. So, the apparently stronger statement of Proposition 2.1 follows from
his arguments. See also Theorem 8.27 of Bressan (2012).

As indicated in Proposition 2.1, the key feature of weak differentiability is the
local integrability of the function and of all its partial derivatives. For the functions
h of interest to us, the representative h0 is the function itself so that the weak
differentiability follows from the local integrability of h and its derivatives and its
absolute continuity along almost all lines parallel to the axes. In particular, as the
weak partial derivative is unique up to pointwise almost everywhere equivalence,
the weak partial derivative of a continuously differentiable function coincides with
the usual derivative (see e. g. Hunter 2014, Chap. 3).

As an example, consider the shrinkage factor h(x) = x/‖x‖2 of the James-
Stein estimator in (2.4). In Sect. A.2 in the Appendix, we show that h is weakly
differentiable if and only if p ≥ 3 and that div h(x) = (p− 2)/‖x‖2. We also show
that h is not almost differentiable in the sense of Stein given above. This last fact is
due to the requirement that h be absolutely continuous in all directions while weak
differentiability, in contrast, only requires absolute continuity in directions parallel
to the axes. Again we note that Stein only used absolute continuity in the coordinates
directions.

We give now a precise statement of Stein’s lemma for weakly differentiable
functions along the lines of Stein (1981). Note that we will see, in Sect. 2.5, that
it is closely related to Stokes’ theorem, which will provide an alternative proof.

Theorem 2.1 (Stein’s lemma) Let X ∼ Np(θ, σ
2Ip) and let g be a weakly

differentiable function from R
p into R

p. Then

Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] , (2.7)

provided, for any i = 1, . . . , p, either

Eθ [|(Xi − θi)gi(X)|] < ∞ or Eθ [|∂igi(X)|] < ∞ . (2.8)

Formula (2.7) is often referred to as Stein’s identity.

Proof Let x = (x1, . . . , xp) ∈ R
p and set

ϕ(x) = ‖x − θ‖2

2 σ 2
and φ(x) = 1

(2π σ 2)p/2
exp(−ϕ(x)) .
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Equality (2.7) is equivalent to

Eθ [∇ϕ(X)Tg(X)] = σ 2 Eθ [divg(X)] . (2.9)

For fixed i = 1, . . . , p, set x−i = (x1, . . . , xi−1, xi+1, . . . , xp) and, with a slight
abuse of notation, set x = (xi, x−i ). Note that

∂φ(x)

∂xi
= −∂ϕ(x)

∂xi
φ(x)

so that φ(x) can be written as

φ(x) =
∫ xi

−∞
−∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) dx̃i =

∫ ∞
xi

∂ϕ(x̃i , x−i )
∂x̃i

φ(x̃i , x−i ) dx̃i , (2.10)

noticing that, by assumption, lim|xi |→∞ ϕ(x1, . . . , xp) = ∞ implies

lim|xi |→∞φ(xi, x−i ) = 1

(2π σ 2)p/2
lim|xi |→∞ exp

(− ϕ(xi, x−i )
) = 0 . (2.11)

Fixing i ∈ {1, . . . , p} and assuming first Eθ [|∂igi(X)|] < ∞, we can write
using (2.10), for almost every x−i ,

∫ ∞

−∞
∂gi(xi, x−i )

∂xi
φ(xi, x−i ) dxi

=
∫ 0

−∞
∂gi(xi, x−i )

∂xi

∫ xi

−∞
−∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) dx̃i dxi

+
∫ ∞

0

∂gi(xi, x−i )
∂xi

∫ ∞

xi

∂ϕ(x̃i , x−i )
∂x̃i

φ(x̃i , x−i ) dx̃i dxi

=
∫ 0

−∞
−∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i )

∫ 0

x̃i

∂gi(xi, x−i )
∂xi

dxi dx̃i

+
∫ ∞

0

∂ϕ(x̃i , x−i )
∂x̃i

φ(x̃i , x−i )
∫ x̃i

0

∂gi(xi, x−i )
∂xi

dxi dx̃i .

(2.12)

Now, according to Proposition 2.1, as g is weakly differentiable, we may assume
without loss of generality that, for each i = 1, . . . , p, the function gi(xi, x−i ) is
absolutely continuous in xi for almost all values of x−i so that
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−
∫ 0

x̃i

∂gi(xi, x−i )
∂xi

dxi =
∫ x̃i

0

∂gi(xi, x−i )
∂xi

dxi = gi(x̃i , x−i )− gi(0, x−i ) .

Then (2.12) becomes

∫ ∞

−∞
∂gi(xi, x−i )

∂xi
φ(xi, x−i ) dxi

=
∫ ∞

−∞
∂ϕ(xi, x−i )

∂xi
φ(xi, x−i ) [gi(xi, x−i )− gi(0, x−i )] dxi

=
∫ ∞

−∞
∂ϕ(xi, x−i )

∂xi
φ(xi, x−i ) gi(xi, x−i ) dxi ,

since, using again (2.11),

−
∫ ∞

−∞
∂ϕ(xi, x−i )

∂xi
φ(xi, x−i ) dxi =

∫ ∞

−∞
∂φ(xi, x−i )

∂xi
dxi = 0 .

Finally, integrating with respect to x−i gives

Eθ

[
∂gi(X)

∂xi

]
=
∫
Rp

∂gi(xi, x−i )
∂xi

φ(xi, x−i ) dxi dx−i

=
∫
Rp

∂ϕ(xi, x−i )
∂xi

φ(xi, x−i ) gi(xi, x−i ) dxi dx−i

= Eθ

[
∂ϕ(X)

∂xi
gi(X)

]

and hence, summing on i gives (2.9), which is the desired result.
To show (2.7) assumingEθ [|(Xi−θi)Tgi(X)|] < ∞ for i ∈ {1, . . . , p}, it suffices

to essentially reverse the steps in the above argument. ��
The following corollary is immediate from Stein’s lemma and the above discus-

sion. Recall that L(θ, d) = ‖d − θ‖2, R(θ, δ) = Eθ [L(θ, δ(X))] = Eθ [‖δ(X) −
θ‖2], and Eθ [‖g(X)‖2] < ∞ implies that for any i = 1, . . . , p, Eθ [|(Xi −
θi) gi(X)|] < ∞.

Corollary 2.1 Let g(X) be a weakly differentiable function from R
p into R

p such
that Eθ [‖g(X)‖2] < ∞. Then

(1) R(θ,X + σ 2 g(X)) = Eθ [p σ 2 + σ 4 (‖g(X)‖2 + 2 divg(X))];
(2) δ(X) = X+ σ 2 g(X) is minimax as soon as ‖g(X)‖2 + 2 div g(X) ≤ 0 a.e. and

dominatesX provided there is strict inequality on a set of positive measure; and
(3) p σ 2+σ 4 (‖g(X)‖2+2 divg(X)) is an unbiased estimator (in fact the UMVUE)

of R(θ,X + σ 2 g(X)).
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We note once again that δ(X) is minimax since it dominates (or ties) the
minimax estimator X. In the next few sections we apply the above corollary to
show domination of the James-Stein estimators and several others over the usual
estimator in three and higher dimensions.

2.4 James-Stein Estimators and Other Improved Estimators

In this section, we apply the integration by parts results of Sect. 2.3 to obtain
several classes of estimators that dominate the classical minimax estimator δ0(X) in
dimension 3 and higher. The estimators of James and Stein, Baranchik, and certain
estimators shrinking toward subspaces are the main application of this section.
Bayes (generalized, proper, and pseudo) are considered in Chap. 3. Throughout this
section, except for Theorem 2.4, let X ∼ Np(θ, σ

2 Ip) and loss be L(θ, δ) = ‖δ −
θ‖2. According to Corollary 2.1 it suffices to find weakly differentiable functions
g from R

p into R
p such that Eθ [‖g(X)‖2] < ∞ and ‖g(X)‖2 + 2 div g(X) ≤ 0

(with strict inequality on a set of positive measure) in order to show that δ(X) =
X + σ 2 g(X) dominates X.

2.4.1 James-Stein Estimators

The class of James-Stein estimators is given by

δJSa (X) =
(

1 − a σ 2

‖X‖2

)
X. (2.13)

The basic properties of δJSa (X) are given in the following result.

Theorem 2.2 Under the above model

(1) The risk of δJSa (X) is given by

R(θ, δJSa ) = p σ 2 + σ 4 (a2 − 2 a (p − 2))Eθ

[
1

‖X‖2

]
(2.14)

for p ≥ 3.
(2) δJSa (X) dominates δ0(X) = X for 0 < a < 2 (p − 2) and is minimax for

0 ≤ a ≤ 2 (p − 2) for all p ≥ 3.
(3) The uniformly optimal choice of a is a = p − 2 for p ≥ 3.
(4) The risk at θ = 0 for the optimal James-Stein estimator δJSp−2(X) is 2 σ 2 for all

p ≥ 3.

Proof Observe that δJSa (X) = X + σ 2g(X) where g(X) = −a/‖X‖2X. As
noted in Sect. 2.3, g(X) is weakly differentiable if p ≥ 3. Also Eθ [‖g(X)‖2] =
a2 Eθ [1/‖X‖2] is finite if p ≥ 3 since ‖X‖2/σ 2 has a non-central χ2 distribution
with p degrees of freedom and non-centrality parameter λ = ‖θ‖2/2σ 2. Indeed
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by the usual Poisson representation of a non-central χ2, we have ‖X‖2/σ 2 | K ∼
χ2
p+2K where K ∼ Poisson (λ = ‖θ‖2/2σ 2) and hence,

Eθ

[
σ 2

‖X‖2

]
= Eλ

[
E

[
1

χ2
p+2K

∣∣∣∣K
]]

= Eλ

[
1

p + 2K − 2

]
≤ 1

p − 2
< ∞

(2.15)
if p > 2.

Also, according to (A.18), for any x 	= 0,

div

(
x

‖x‖2

)
= p − 2

‖x‖2 . (2.16)

Hence,

‖g(x)‖2 + 2 divg(x) = (a2 − 2 a (p − 2))
1

‖x‖2

and by Corollary 2.1, for p ≥ 3,

R(θ, δJSa ) = p σ 2 + σ 4 (a2 − 2 a (p − 2)) Eθ

(
1

‖X‖2

)
.

This proves (1).
Part (2) follows since a2 − 2 a (p − 2) < 0 for 0 < a < 2 (p − 2) and hence for

such a > 0,

R(θ, δJSa ) < p σ 2 = R(θ, δ0). (2.17)

The minimaxity claim for 0 ≤ a ≤ 2 (p − 2) follows by replacing < by ≤
in (2.17). It is interesting to note that R

(
θ, δJS2(p−2)

) ≡ R(θ, δ0) ≡ p σ 2 and, more

generally, R(θ, δ2(p−2)−a) ≡ R
(
θ, δJSa

)
.

Part (3) follows by noting that, for all θ , the risk of R
(
θ, δJSa

)
is minimized by

choosing a = p − 2 since this value minimizes the quadratic a2 − 2 a (p − 2).
To prove part (4) note that ‖X‖2/σ 2 has a central chi-square distribution with p

degrees of freedom when θ = 0. Hence, E0
[
σ 2/‖X‖2

] = E
[
1/χ2

p

]
= (p − 2)−1

and therefore, provided p ≥ 3,

R(0, δJSp−2) = p σ 2 + (
(p − 2)2 − 2 (p − 2)2

) σ 2

p − 2

= p σ 2 − (p − 2) σ 2

= 2 σ 2 .

��
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Hence we have that δJSp−2 = (
1−(p−2) σ 2/‖X‖2

)
X is the uniformly best estimator

in the class of James-Stein estimators. This is the estimator that is typically referred
to as the James-Stein estimator. Also note that at θ = 0 the risk is 2 σ 2 regardless of
p and so, large savings in risk are possible in a neighborhood of θ = 0 for large p.

In Theorem 2.2, the fact that p ≥ 3 is crucial (which is coherent with the
admissibility of X for p = 1 and p = 2). Actually, a crucial part of the proof
uses Stein’s identity, which fails to hold if p = 1, 2 with h(x) = x/‖x‖2. Indeed,
when p = 1, h(x) = 1/x and div(x) = −1/x2 so that E0[XTh(X)] = 1
and E0[divh(X)] = −∞. When p = 2, we also have E0[XTh(X)] = 1 while
E0[divh(X)] = 0 since, for any x 	= 0, divh(x) = 0. It is interesting to note
that, while the divergence of h exists and is 0 almost everywhere, h is not weakly
differentiable since its partial derivatives are not locally integrable as shown in
Sect. A.1 in the Appendix.

We may use (2.15) to give upper and lower bounds for the risk of δJSa based on
the following lemma.

Lemma 2.1 Let K ∼ Poisson(λ). Then, for b ≥ 1, we have

1

b + λ
≤ Eλ

[
1

b +K

]
≤

1−e−λ
λ

(b − 1) 1−e−λ
λ

+ 1
≤ 1

b − 1 + λ
.

Proof The first inequality follows directly from Jensen’s inequality and the fact that
Eλ(K) = λ. The second inequality follows since (also by Jensen’s inequality)

Eλ

[
1

b +K

]
= Eλ

[
1

K+1
b−1
K+1 + 1

]

≤
Eλ

[
1

K+1

]

(b − 1)Eλ
[

1
K+1

]
+ 1

=
1−e−λ
λ

(b − 1) 1−e−λ
λ

+ 1

and Eλ
[
(K + 1)−1

] = (1 − exp(−λ))/λ.
Now, since y/[(b− 1)y + 1] is increasing in y and (1 − exp(−λ))/λ < λ−1, we

have

1−e−λ
λ

(b − 1) 1−e−λ
λ

+ 1
≤

1
λ

b−1
λ

+ 1
= 1

b − 1 + λ
.

Hence the third inequality follows. ��



2.4 James-Stein Estimators and Other Improved Estimators 43

The following bounds on the risk of δJSa follow directly from (2.14), (2.15) and
Lemma 2.1.

Corollary 2.2 (Hwang and Casella 1982) For p ≥ 4 and 0 ≤ a ≤ 2 (p − 2), we
have

p σ 2 + (a2 − 2 a (p − 2)) σ 2

p − 2 + ‖θ‖2/σ 2
≤ R(θ, δJSa ) ≤ p σ 2 + (a2 − 2 a (p − 2)) σ 2

p − 4 + ‖θ‖2/σ 2
.

We note in passing that the upper bound may be improved at the cost of added
complexity by using the second inequality in Lemma 2.1. The improved upper
bound has the advantage that it is exact at θ = 0. The lower bound is also valid
for p = 3 and is also exact at θ = 0.

2.4.2 Positive-Part and Baranchik-Type Estimators

James-Stein estimators are such that, when ‖X‖2 < a σ 2, the multiplier of X
becomes negative and, furthermore, lim‖X‖→0 ‖δJSa (X)‖ = ∞. It follows that, for
any K > 0, there exits η > 0 such that ‖X‖ < η implies ‖δJSa (X)‖ > K . Hence
an observation that would lead to almost certain acceptance of H0 : θ = 0 gives
rise to an estimate very far from 0. Furthermore the estimator is not monotone in
the sense that a larger value of X for a particular coordinate may give a smaller
estimate of the mean of that coordinate. For example, if X = (X0, 0, . . . , 0) and
−√

a σ 2 < X0 < 0, then
(
1− a σ 2/‖X‖2

)
X0 > 0 while, if 0 < X0 <

√
a σ 2, then(

1 − a σ 2/‖X‖2
)
X0 < 0.

This behavior is undesirable. One possible remedy is to modify the James-Stein
estimator to its positive-part, namely

δJS+a (X) =
(

1 − a σ 2

‖X‖2

)
+
X (2.18)

where t+ = max(t, 0). The positive past estimate is a particular example of a
Baranchik-type estimator of the form

δBa,r (X) =
(

1 − a σ 2 r(‖X‖2)

‖X‖2

)
X (2.19)

where, typically r(·) is continuous and nondecreasing. The r(·) function for δJS+a is
given by

r(‖X‖2) =
{ ‖X‖2

a σ 2 if 0 < ‖X‖2 < a σ 2

1 if ‖X‖2 ≥ a σ 2.
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We show in this section that, under certain conditions, the Baranchik-type estimators
improve on X and that the positive-part James-Stein estimator improves on the
James-Stein estimator as well.

We first give conditions under which a Baranchik-type estimator improves on X.

Theorem 2.3 The estimator given by (2.19) with r(·) absolutely continuous, is
minimax for p ≥ 3 provided

(1) 0 < a ≤ 2 (p − 2);
(2) 0 ≤ r(·) ≤ 1; and
(3) r(·) is nondecreasing.

Furthermore, it dominates X provided that both inequalities are strict in (1) or in
(2) on a set of positive measure, or if r ′(·) is strictly positive on a set of positive
measure.

Proof Here δBa,r (X) = X + σ 2 g(X) where g(X) = (−a r(‖X‖2)/‖X‖2) X. As
noted in Sect. A.2 of the Appendix, g(·) is weakly differentiable and

div g(X) = −a
{
r(‖X‖2) div

(
X

‖X‖2

)
+ XT

‖X‖2 ∇r(‖X‖2)
}

= −a
{
r(‖X‖2)

p−2
‖X‖2 + 2 r ′(‖X‖2)

}
.

Hence,

‖g(X)‖2 + 2 divg(X) (2.20)

= a2 r2(‖X‖2)

‖X‖2
− 2 a (p − 2)r(‖X‖2)

‖X‖2
− 4 a r ′(‖X‖2)

≤ r(‖X‖2)

‖X‖2
(a2 − 2 a (p − 2))− 4 a r ′(‖X‖2)

≤ 0 .

The first inequality being satisfied by Conditions (2) while the last inequality uses
all of Conditions (1), (2), and (3). Hence, minimaxity follows from Corollary 2.1.
Under the additional conditions, it is easy to see that the above inequalities become
strict on a set of positive measure so that domination over X is guaranteed. ��

As an example of a dominating Baranchik-type estimator consider

δ(X) =
(

1 − a σ 2

b + ‖X‖2

)
X

for 0 < a ≤ 2 (p− 2) and b > 0. Here r(‖X‖2) = ‖X‖2/(‖X‖2 + b) and is strictly
increasing.
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The theorem also shows that the positive-part James-Stein estimator dominates
X for 0 < a ≤ 2 (p − 2). In fact, as previously noted, the positive-part James-Stein
estimator even improves on the James-Stein estimator itself. This reflects the more
general phenomenon that a positive-part estimator will typically dominate the non-
positive-part version if the underlying density is symmetric and unimodal. Here is a
general result along these lines.

Theorem 2.4 Suppose X has a density f (x − θ) in R
p such that the function f is

symmetric and unimodal in each coordinate separately for each fixed value of the
other coordinates. Then, for any finite risk estimator of θ of the form

δ(X) =
(

1 − B
(
X2

1, X
2
2, . . . , X

2
p

))
X ,

the positive-part estimator

δ+(X) =
(

1 − B
(
X2

1, X
2
2, . . . , X

2
p

))
+X

dominates δ(X) under any loss of the form L(θ, δ) = ∑p

i=1 ai(δi − θi)2 (ai > 0 for
all i) provided Pθ [B(X2

1, X
R
2 , . . . , X

2
p) > 1] > 0.

Proof Note that the two estimators differ only on the set where B(·) > 1. Hence the
ith term in R(θ, δ)− R(θ, δ+) is

ai Eθ

[{
(1 − B(X2

1, . . . , X
2
p))

2X2
i − 2 θiXi (1 − B(X2

1, . . . , X
2
p)
}
IB>1(X)

]

> −2 θi ai Eθ
[
Xi(1 − B(X2

1, . . . , X
2
p)IB>1(X)

]
.

Therefore it suffices to show that, for any nonnegative function H(X2
1, . . . , X

2
p),

θiEθ [XiH(X2
1, . . . , X

2
p)] ≥ 0. This follows by symmetry if whenever θi ≥ 0, then

Eθ [Xi | X2
i = t2i , Xj = tj j 	= i] ≥ 0 for all i (1 ≤ i ≤ p) and all (t1, . . . , tp).

However this expression is proportional to

| ti | [f (
(t1 − θ1)

2, (t2 − θ2)
2, . . . , (| ti | −θi)2, . . . , (tp − θp)

2
)

−f (
(t1 − θ1)

2, (t2 − θ2)
2, . . . , (− | ti | −θi)2, . . . , (tp − θp)

2
)] ≥ 0

since, for θi ≥ 0, (| ti | −θi)2 ≤ (− | ti | −θi)2 and since f (X2
1, X

2
2, . . . , X

2
p) is

nonincreasing in each argument. Hence the theorem follows. ��
For the remainder of this current section we return to the assumption that X ∼

Np(θ, σ
2Ip).

The positive-part James-Stein estimators are inadmissible because of a lack of
smoothness which precludes them from being generalized Bayes. The Baranchik
class however contains “smooth” estimators which are generalized (and even
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proper) Bayes and admissible. Baranchik-type estimators will play an important
role in Chap. 3.

We close this subsection with a generalization of the Baranchik result in
Theorem 2.3. It is apparent from the proof of the theorem that it is only necessary
that the second expression in (2.20) be nonpositive (and negative on a set of
positive measure) in order for δ(X) to dominate X. In particular it is not necessary
that r(·) be nondecreasing. The following result (see Efron and Morris 1976
and Fourdrinier and Ouassou 2000) gives a necessary and sufficient condition
for the unbiased estimator of risk difference, R(θ, δ) − R(θ,X), for δ(X) =(
1 − a r(‖X‖2)/‖X‖2

)
X, to be nonpositive. The proof is by direct calculation.

Lemma 2.2 Let g(X) = −a (r(‖X‖2)/‖X‖2
)
X where r(y) is an absolutely

continuous function from R
+ into R. Then on the set where r(y) 	= 0,

‖g(x)‖2 + 2 divg(x) = a

{
a r2(y)

y
− 2(p − 2)r(y)

y
− 4 r ′(y)

}

= −4 a2r2(y)y
p−2

2
d

dy

[
y− p−2

2

(
1

2(p − 2)
− 1

a r(y)

)]
a.e.,

where y = ‖x‖2.

The following corollary broadens the class of minimax estimators of Baranchik’s
form.

Corollary 2.3 Suppose δ(X) = (
1 − a r(‖X‖2)/‖X‖2

)
X with

a r(y) =
[

1

2 (p − 2)
+ y(p−2)/2H(y)

]−1

where H(y) is absolutely continuous, nonnegative and nonincreasing. Then δ(X)
is minimax provided Eθ

[
r2(‖X‖2)/‖X‖2

]
< ∞. If in addition H(y) is strictly

monotone on a set of positive measure where r(y) 	= 0, then δ(X) dominates X.

Proof The result follows from Corollaries 2.1 and 2.2 by noting that

H(y) = y−(p−2)/2
(

1

2(p − 2)
− 1

a r(y)

)
.

��
An application of Corollary 2.3 gives a useful class of dominating estimators due

to Alam (1973).

Corollary 2.4 Let δ(X) = (
1 − a f (‖X‖2)/(‖X‖2)τ+1

)
X where f (y) is nonde-

creasing and absolutely continuous and where 0 ≤ a f (y)/yτ < 2 (p − 2 − 2 τ)
for some τ ≥ 0. Then δ(X) is minimax and dominates X if 0 < a f (y)/yτ on a set
of positive measure.
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Proof The proof follows from Corollary 2.3 by letting

a r(y) = a f (y)

yτ
and H(y) = −y−(p−2)/2

(
1

2 (p − 2)
− yτ

a f (y)

)
.

Clearly r is bounded so that Eθ
[
r2(‖X‖2)/‖X‖2

]
< ∞ and H(y) ≥ 0. Also

H ′(y) = p − 2

2
y−p/2

(
1

2 (p − 2)
− yτ

a f (y)

)

−y−(p−2)/2
(−τ yτ−1

a f (y)
+ yτf τ (y)

a f 2(y)

)

≤ y− p
2

[
1

4
− y2p − 2 − 2 τ

2 a f (y)

]

≤ 0

since f ′(y) ≥ 0 and 0 < a f (y)/yτ < 2 (p − 2 − 2 τ). ��
A simple example of a minimax Baranchik-type estimator with a nonmonotone

r(·) is given by r(y) = y1−τ /(1+y) for 0 < τ < 1 and 0 < a < 2(p−2−2 τ). To
see this, apply Corollary 2.4 with f (y) = y/(1+y) and note that f (y) is increasing
and 0 ≤ f (y)/yτ = r(y) ≤ 1. Note also that r ′(y) = y−τ [(1 − τ)− τ y]/(1 + y)2,
hence r(y) is increasing for 0 < y < (1 − τ)/τ−1 and decreasing for y > (1 −
τ)/τ−1.

We will use the above corollaries in Chap. 3 to establish minimaxity of certain
Bayes and generalized Bayes estimators.

2.4.3 Unknown Variance

In the development above, it was tacitly assumed that the covariance matrix was
known and equal to a multiple of the identity matrix σ 2 Ip. Typically, this covariance
is unknown and should be estimated. The next result extends Stein’s identity (2.7)
to the case where it is of the form σ 2 Ip with σ 2 unknown.

Lemma 2.3 Let X ∼ Np(θ, σ
2Ip) and let S be a nonnegative random variable

independent of X such that S ∼ σ 2χ2
k . Denoting by Eθ,σ 2 the expectation with

respect to the joint distribution of (X, S), we have the following two results, provided
the corresponding expectations exist:

(1) if g(x, s) is a function from R
p ×R+ into R

p such that, for any s ∈ R+, g(·, s)
is weakly differentiable, then

Eθ,σ 2

[
1

σ 2
(X − θ)Tg(X, S)

]
= Eθ,σ 2 [divXg(X, S)]

where divxg(x, s) is the divergence of g(x, s) with respect to x;
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(2) if h(x, s) is a function from R
p × R+ into R such that, for any x ∈ R

p,
h(x, ‖u‖2) is weakly differentiable as a function of u, then

Eθ,σ 2

[
1

σ 2 h(X, S)

]
= Eθ,σ 2

[
2
∂

∂S
h(X, S)+ (k − 2) S−1 h(X, S)

]
.

Proof Part (1) is Stein’s lemma, from Theorem 2.1. Part (2) can be seen as a
particular case of Lemma 1(ii) (established for elliptically symmetric distributions)
of Fourdrinier et al. (2003), although we will present a direct proof. Part (2) also
follows from well known identities for chi-square distributions.

The joint distribution of (X, S) can be viewed as resulting, in the setting of
the canonical form of the general linear model, from the distribution of (X,U) ∼
N ((θ, 0), σ 2Ip+k) with S = ||U ||2. Then we can write

Eθ,σ 2

[
1

σ 2 h(X, S)

]
= Eθ,σ 2

[
1

σ 2 U
T U

||U ||2 h(X, ||U ||2)
]

= Eθ,σ 2

[
divU

(
U

||U ||2 h(X, ||U ||2)
)]

according to Part (1). Hence, expanding the divergence term, we have

Eθ,σ 2

[
1

σ 2
h(X, S)

]
= Eθ,σ 2

[
k − 2

||U ||2 h(X, ||U ||2)+ U T

||U ||2 ∂Uh(X, ||U ||2)
]

= Eθ,σ 2

[
k − 2

S
h(X, S)+ 2

∂

∂S
h(X, S)

]

since

∂Uh(X, ||U ||2) = 2
∂

∂S
h(X, S)

∣∣∣
S=||U ||2 U .

��
The following theorem provides an estimate of risk in the setting of an unknown

variance when the loss is given by

‖δ − θ‖2

σ 2
. (2.21)

Theorem 2.5 Let X ∼ Np(θ, σ
2 Ip) where θ and σ 2 are unknown and p ≥ 3

and let S be a nonnegative random variable independent of X such that S ∼
σ 2χ2

k . Consider an estimator of θ of the form ϕ(X, S) = X + S g(X, S) with
Eθ,σ 2 [S2 ||g(X, S)||2] < ∞, where Eθ,σ 2 denotes the expectation with respect to
the joint distribution of (X, S).
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Then an unbiased estimator of the risk under loss (2.21) is

δ0(X, S) = p + S

{
(k + 2) ||g(X, S)||2 + 2 divXg(X, S)+ 2 S

∂

∂S
||g(X, S)||2

}
.

(2.22)

Proof According to the expression of ϕ(X, S), its risk R(θ, ϕ) is the expectation of

1

σ 2
||X − θ ||2 + 2

S

σ 2
(X − θ)Tg(X, S)+ S2

σ 2
||g(X, S)||2 . (2.23)

Clearly,

Eθ,σ 2

[
1

σ 2 ||X − θ ||2
]

= p

and Lemma 2.3 (1) and (2) express, respectively, that

Eθ,σ 2

[
1

σ 2
(X − θ)Tg(X, S)

]
= Eθ,σ 2 [divXg(X, S)].

With h(x, s) = s2 ||g(x, s)||2 we have

Eθ,σ 2

[
S2

σ 2 ||g(X, S)||2
]
=Eθ,σ 2

[
S

{
(k + 2) ||g(X, S)||2 +2 S

∂

∂S
||g(X, S)||2

}]
.

Therefore R(θ, ϕ) = Eθ,σ 2 [δ0(X, S)] with δ0(X, S) given in (2.22), which means
that δ0(X, S) is an unbiased estimator of the risk ||ϕ(X, S)− θ ||2/σ 2. ��
Corollary 2.5 Under condition of Theorem 2.5, if, for any (x, s) ∈ R

p × R+,

(i) ∂/∂s ‖g(x, s)‖2 ≤ 0 and
(ii) (k + 2) ||g(x, s)||2 + 2 divxg(x, s)+ 2 ≤ 0,

then ϕ(X, S) is minimax. It dominates X if either inequality is strict on a set of
positive measure.

In the following corollary, we consider an extension of the Baranchik form in
Theorem 2.3.

Corollary 2.6 Let

δ(X, S) =
(

1 − a S r(‖X‖2/S)

‖X‖2

)
X

If r is nondecreasing and if 0 < a r(‖X‖2/S) < 2 (p − 2)/(k + 2), then δ(X, S)
dominates X and is minimax.
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Proof Straightforward calculations show that the term in curly brackets in (2.22)
equals

a
r(‖X‖2/S)

‖X‖2 ((k + 2) a r(‖X‖2/S)− 2 (p − 2))

−4 a
r ′(‖X‖2/S)

S
(1 + a r(‖X‖2/S)). (2.24)

Therefore, if 0 < a r(‖X‖2/S) < 2 (p− 2)/(k+ 2), then δ(X, S) dominates X and
is minimax. ��

Note that, in the case r ≡ 1, the bound on the constant a is 2 (p − 2)/(k + 2).
This is the estimator developed by James and Stein (1961) using direct methods.

2.4.4 Estimators That Shrink Toward a Subspace

We saw in Sect. 2.4.1, when σ 2 is known, that the James-Stein estimator shrinks
toward θ = 0 and that substantial risk savings are possible if θ is in a neighborhood
of 0. If we feel that θ is close to some other value, say θ0, a simple adaptation of the
James-Stein estimator that shrinks toward θ0 may be desirable. Such an estimator is
given by

δJSa,θ0
(X) = θ0 +

(
1 − a σ 2

‖X − θ0‖2

)
(X − θ0). (2.25)

It is immediate that R(θ, δJSa,θ0
(X)) = R(θ − θ0, δ

JS
a ) since

R(θ, δJSa,θ0
) = Eθ‖θ0 +

(
1 + a σ 2

‖X − θ0‖2

)
(X − θ0)− θ‖2

= Eθ−θ0‖
(

1 + a σ 2

‖X‖2

)
X − (θ − θ0)‖2

= R(θ − θ0, δ
JS
a (X)).

Hence, for p ≥ 3, δJSa,θ0
dominates X and is minimax for 0 < a < 2 (p − 2),

and a = p − 2 is the optimal choice of a. Furthermore the risk of δJSa,θ0
(X) at

θ = θ0 is 2 σ 2 and so large gains in risk are possible in a neighborhood of θ0. The
same argument establishes the fact that, for any estimator, δ(X), we have R(θ, θ0 +
δ(X− θ0)) = R(θ − θ0, δ(X)). Hence any of the minimax estimators of Sects. 2.4.1
and 2.4.2 may be modified in this way and minimaxity will be preserved.
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More generally, we may feel that θ is close to some subspace V of dimension
s < p. In this case, we may wish to shrink X toward the subspace V . One way to
do this is to consider the class of estimators given by

PVX +
(

1 − a σ 2r(‖X − PVX‖2)

‖X − PVX‖2

)
(X − PVX) (2.26)

where PVX is the projection of X onto V .
A standard canonical representation is helpful. Suppose V is an s-dimensional

linear subspace of Rp and V ⊥ is the p − s dimensional orthogonal complement of
V . Let P = (P1 P2) be an orthogonal matrix such that the s columns of the p × s

matrix P1 span V and the p − s columns of the p × (p − s) matrix P2 span V ⊥.
For any vector z ∈ R

p, let

W =
(
W1

W2

)
= P Tz

where W1 is s × 1 and W2 is (p − s) × 1. Then PV z = P1W1 and ‖PV z‖2 =
‖P1W1‖2 = ‖W1‖2. Also PV⊥z = P2W2 and ‖PV⊥z‖2 = ‖P2W2‖2 = ‖W2‖2.
Further, if X ∼ Np(θ, σ

2I ), then

P TX =
(
Y1

Y2

)
∼ Np

((
ν1

ν2

)
, σ 2

(
Is 0
0 Ip−s

))

where P1ν1 = PV θ and P2ν2 = PV⊥θ so that

‖PVX‖2 = ‖Y1‖2, ‖PV⊥X‖2 = ‖Y2‖2

and

‖PV (X − θ)‖2 = ‖Y1 − ν1‖2, ‖PV⊥(X − θ)‖2 = ‖Y2 − ν2‖2.

The following result gives risk properties of the estimator (2.26).

Theorem 2.6 Let V be a subspace of dimension s ≥ 0. Then, for the estimator
(2.26), we have

R(θ, δ) = s σ 2 + Eν2

[∥∥∥∥
(

1 − a σ 2r(‖Y2‖2)

‖Y2‖2

)
Y2 − ν2

∥∥∥∥
2]

where Y2 and ν2 are as above. Further, if p − s ≥ 3 and a and r(y) satisfy the
assumptions of Theorem 2.3 (or Corollary 2.3 or Corollary 2.4) with p−s in place of
p, then δ(X) is minimax and dominates X if the additional conditions are satisfied.
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Proof The proof involves showing that the risk decomposes into the sum of two
components. The first component is essentially the risk of the usual estimator in a
space of dimension s (i.e. of V ) and the second represents the risk of a Baranchik-
type estimator in a space of dimension p − s. The risk is

R(θ, δ) = Eθ

[∣∣∣
∣∣∣PVX +

(
1− a σ 2r(‖X−PV X‖2)

‖X−PV X‖2

)
(X−PVX)− θ

∣∣∣
∣∣∣2
]

= Eθ

[∣∣∣∣∣∣(PV X−PV θ)+
(
1− a σ 2r(‖X−PV X‖2)

‖X−PV X‖2

)
(X−PVX)−(θ−PV θ)

∣∣∣∣∣∣2
]

= Eθ [‖PV (X − θ)‖2]

+Eθ
[∣∣∣∣∣∣(1 − a σ 2r(‖X−PV X‖2)

‖X−PV X‖2

)
(X − PVX)− (θ − PV θ)

∣∣∣∣∣∣2
]

= Eν1 [‖Y1 − ν1‖2] + Eν2

[∥∥∥(1 − a σ 2r(‖Y2‖2)

‖Y2‖2

)
Y2 − ν2

∥∥∥2
]

= s σ 2 + Eν2 [‖
(

1 − a σ 2r(‖Y2‖2)

‖Y2‖2

)
Y2 − ν2‖2] .

This gives the first part of the theorem. The second part follows since Y2 ∼
Np−s(ν2, σ

2 Ip−s), with p − s ≥ 3. ��
For example, if we choose r(y) ≡ 1 the risk of the resulting James-Stein type

estimator

PVX +
(

1 − a σ 2

‖X − PVX‖2

)
(X − PVX)

is

p σ 2 + σ 4 (a2 − 2 a (p − s − 2)) Eθ

[
1

‖X − PVX‖2

]
.

This estimator is minimax if 0 ≤ a ≤ 2 (p − s − 2) and dominates X if
0 < a < 2 (p − s − 2) provided p − s ≥ 3. The uniformly best choice of a
is p − s − 2. If in fact θ ∈ V , the risk of the corresponding optimal estimator
is (s + 2) σ 2, since in this case ν2 = PV⊥θ = 0 and Eθ

[
σ 2‖X − PVX‖−2

] =
E0

[
σ 2‖Y2‖−2

]
E
[
1/χ2

p−s
]

= (p− s− 2)−1. If θ 	∈V , then ν2 	= 0 and ‖Y2‖2 has a

non-central chi-square distribution with p−s degrees of freedom and non-centrality
parameter ‖ν2‖2/2 σ 2.

One of the first instances of an estimator shrinking toward a subspace is due to
Lindley (1962). He suggested that while we might not have a good idea as to the
value of the vector θ , one may feel that the components are approximately equal.
This suggests shrinking all the coordinates to the overall coordinate mean X̄ =
p−1 ∑p

i=1Xi which amounts to shrinking toward the subspace V of dimension one



2.5 A Link Between Stein’s Lemma and Stokes’ Theorem 53

generated by the vector 1 = (1, . . . , 1)T. The resulting optimal James-Stein type
estimator is

δ(X) = X̄ 1 +
(

1 − (p − 3) σ 2

‖X − X̄1‖2

)
(X − X̄ 1).

Here, the risk is equal to 3 σ 2 if in fact all coordinates of θ are equal. If the dimension
of the subspace V is also at least 3 we could consider applying a shrinkage estimator
to PVX as well.

In the case where σ 2 is unknown, it follows from the results of Sect. 2.4.3 that
replacing σ 2 in (2.26) by S/(k + 2) results in an estimator that dominates X under
squared error loss and is minimax under scaled squared error loss (provided r(·)
satisfies the conditions of Theorem 2.6).

It may sometimes pay to break up the whole space into a direct sum of several
subspaces and apply shrinkage estimators separately to the different subspaces.

Occasionally it is helpful to shrink toward another estimator. For example, Green
and Strawderman (1991) combined two estimators, one of which is unbiased,
remarkably by shrinking the unbiased estimator toward the biased estimator to
obtain a Stein-type improvement over the unbiased estimator.

The estimators discussed in this section shrink toward some “vague” prior
information that θ is in or near the specified set. Consequently it shrinks toward
the set but does not restrict the estimator to lie in the set. In Chap. 7 we will consider
estimators that are restricted to lie in a particular set. We will see in Chap. 7 that,
although vague and restricted constraints seem conceptually similar, it turns out that
the analyses of risk functions in these two settings are quite distinct.

2.5 A Link Between Stein’s Lemma and Stokes’ Theorem

That a relationship exists between Stein’s lemma and Stokes’ theorem (the diver-
gence theorem) is not surprising. Indeed, Stein’s lemma expresses that, if X has a
normal distribution with mean θ and covariance matrix proportional to the identity
matrix, the expectation of the inner product of X − θ and a suitable function g is
proportional to the expectation of the divergence of g. On the other hand, when
the sets of integration are spheres Sr,θ and balls Br,θ of radius r ≥ 0 centered at θ ,
Stokes’ theorem states that the integral of the inner product of g and the unit outward
vector at x ∈ Sr,θ , which is (x − θ)/‖x − θ‖, with respect to the uniform measure
equals the integral of the divergence of g on Br,θ with respect to the Lebesgue
measure.

Typically, Stokes’ theorem is considered for a more general open set Ω in R
p

with boundary ∂Ω which could be less smooth than a sphere, and where the function
g is often smooth. For example, Stroock (1990) considers a bounded open set Ω in
R
p for which there exists a function ϕ from R

p into R having continuous third
order partial derivatives with the properties that Ω = {x ∈ R

p | ϕ(x) < 0} and the
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gradient ∂ϕ of ϕ vanishes at no point where ϕ itself vanishes. Further he requires
that g has continuous first order partial derivatives in a neighborhood of the closure
Ω̄ of Ω . For such an open set, its boundary is ∂Ω = {x ∈ R

p | ϕ(x) = 0}. Then,
Stroock states that

∫
∂Ω

nT(x) g(x)dσ(x) =
∫
Ω

divg(x) dx (2.27)

where n(x) is the outer normal (the unit outward vector) to ∂Ω at x ∈ ∂Ω and σ
is the surface measure (the uniform measure) on ∂Ω . He provides an elegant proof
of Stokes’ theorem in (2.27) through a rigorous construction of the outer normal
and the surface measure. It is beyond the scope of this book to reproduce Stroock’s
proof, especially as the link we wish to make with Stein’s identity only needs to deal
with Ω being a ball and with ∂Ω being a sphere. Note that Stroock’s conditions are
satisfied for a ball of radius r ≥ 0 centered at θ ∈ R

p with the function ϕ(x) =
‖x − θ‖ − r . In that context, Stokes’ theorem expresses that

∫
Sr,θ

(
x − θ

‖x − θ‖
)T

g(x) dσr,θ (x) =
∫
Br,θ

divg(x) dx (2.28)

where σr,θ is the uniform measure on Sr,θ .
In the following, we will show that Stein’s identity for continuously differentiable

functions can be derived in a straightforward way from this ball-sphere version of
Stokes’ theorem. Furthermore, and perhaps more interestingly, we will see that the
converse is also true: Stein’s identity (for which we have an independent proof in
Sect. 2.3) implies directly the classical ball-sphere version of Stokes’ theorem.

Proposition 2.2 Let X ∼ Np(θ, σ
2Ip) and let g be a continuously differentiable

function from R
p into R

p such that either

Eθ [|(X − θ)Tg(X)|] < ∞ or Eθ [|divg(X)|] < ∞ . (2.29)

Then Stein’s identity in (2.7) holds, that is,

Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] . (2.30)

Proof Integrating through uniform measures on spheres (see Lemma 1.4), we have

Eθ,σ 2 [(X − θ)Tg(X)] =
∫
Rp

(x − θ)Tg(x)
1

(2π σ 2)p/2
exp

(
−‖x − θ‖2

2 σ 2

)
dx

=
∫ ∞

0

∫
Sr,θ

(
x − θ

‖x − θ‖
)T

g(x) dσr,θ (x) ψσ 2(r) dr (2.31)
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where

ψσ 2(r) = 1

(2π σ 2)p/2
r exp

(
− r2

2 σ 2

)
(2.32)

and σr,θ is the uniform measure on Sr,θ . Then applying Stokes’ theorem in (2.28) to
the inner most integral in (2.31) gives

Eθ,σ 2 [(X − θ)Tg(X)] =
∫ ∞

0

∫
Br,θ

divg(x) dx ψσ 2(r) dr . (2.33)

Now, applying Fubini’s theorem to the right-hand side of (2.33), we have

∫ ∞

0

∫
Br,θ

divg(x)dx ψσ 2 (r) dr =
∫
Rp

divg(x)
∫ ∞

‖x−θ‖
ψσ 2 (r) dr dx

=
∫
Rp

divg(x)
1

(2π σ 2)p/2

[
−σ 2 exp

(
− r2

2 σ 2

)]∞

‖x−θ‖
dx

= σ 2
∫
Rp

divg(x)
1

(2π σ 2)p/2
exp

(
−‖x − θ‖2

2 σ 2

)
dx

= σ 2 Eθ,σ 2 [divg(X)] (2.34)

since, according to (2.32),

∂

∂r

{
1

(2π σ 2)p/2

[
−σ 2 exp

(
− r2

2 σ 2

)]}
= ψσ 2(r) .

Therefore combining (2.33) and (2.34) we have that

Eθ,σ 2 [(X − θ)Tg(X)] = σ 2 Eθ,σ 2 [divg(X)] ,

which is Stein’s identity in (2.39).
To show Stein’s identity in (2.7) assuming Eθ [|divg(X)|] < ∞, it suffices to

essentially reverse the steps in the above development. ��
Note that using Stokes’ theorem in the proof of Proposition 2.2 allows the weaker

condition (2.29) instead of Condition (2.8) used in Theorem 2.1.
Kavian (1993) showed that (2.27) and (2.28) continue to hold for weakly

differentiable functions g, provided that g behaves properly in a neighborhood of
the boundary. See also Lepelletier (2004). However, Stokes’ theorem may fail if
g is not sufficiently smooth in a neighborhood of the boundary. For example, it
is clear that a weakly differentiable function may be redefined on the boundary
of the ball Br,θ without affecting either its weak differentiability or the integral
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of the right-hand side of (2.28). But, by properly defining g on Sr,θ , the integral
over Sr,θ on the left-hand side of (2.28) may take on any value. For this reason,
we develop the following version of Stokes’ theorem (for balls and spheres) which
will hold simultaneously for almost all r as long as the function g is weakly
differentiable. It will be extensively used in extending Stein’s lemma to general
spherically symmetric distributions in Chaps. 5 and 6. Interestingly, the proof is
based on Stein’s lemma and completeness of a certain exponential family. We
provide an extension to general smooth open sets in Sect. A.5 of the Appendix.

Theorem 2.7 (Fourdrinier and Strawderman 2016) Let g be a weakly differen-
tiable function from R

p into R
p. Then (2.28) holds for almost every r .

Proof Since g is weakly differentiable, the functions (X−θ)Tg and divg are locally
integrable. The same is true for the functions gn = g hn where, for n ∈ N, hn is a
smooth cutoff function such that hn(x) = 1 if ‖x‖ < n, hn(x) = 0 if ‖x‖ > n+ 1,
hn ∈ C ∞, and hn(x) ≤ 1 for all x. Thus gn is weakly differentiable and we have
Eθ [|(X − θ)Tgn(X)|] < ∞ or Eθ [|divgn(X)|] < ∞. Hence, Stein’s lemma applies
to gn, so that (2.39) holds for gn, that is,

Eθ [(X − θ)Tgn(X)] = σ 2 Eθ [divgn(X)] . (2.35)

Then, as in (2.31), with ψσ 2 given in (2.32),

Eθ,σ 2 [(X − θ)Tgn(X)] =
∫ ∞

0

∫
Sr,θ

(
x − θ

‖x − θ‖
)T

gn(x) dσr,θ (x) ψσ 2(r) dr (2.36)

and, as in (2.33), we also have

σ 2 Eθ,σ 2 [divgn(X)] =
∫ ∞

0

∫
Br,θ

divgn(x) dx ψσ 2(r) dr . (2.37)

Hence, it follows from (2.35), (2.36), and (2.37) that, for all σ 2,

∫ ∞
0

∫
Sr,θ

(
x − θ

‖x − θ‖
)T

gn(x) dσr,θ (x)ψσ 2(r) dr =
∫ ∞

0

∫
Br,θ

divgn(x) dx ψσ 2 (r) dr .

Therefore, since the family {ψσ 2(r)}σ 2>0 defined in (2.32) is proportional to a
family of densities that is complete as an exponential family, we have

∫
Sr,θ

(
x − θ

‖x − θ‖
)T

gn(x) dσr,θ (x) =
∫
Br,θ

divgn(x) dx , (2.38)

for almost every 0 < r < n. Now, since gn(x) = g(x) for ‖x‖ < n, it follows
that (2.38) holds for g for almost every r > 0. ��
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As a first corollary, it follows that the classical (ball-sphere) version of Stokes’
theorem holds for every r when g is continuously differentiable.

Corollary 2.7 Let g be a continuously differentiable function from R
p into R

p.
Then (2.28) holds for every r > 0.

Proof Because g is continuously differentiable, both sides of (2.38) are continuous.
Then, since the equality holds almost everywhere, it must hold for all r > 0. ��

Note that the proof of Proposition 2.2 remains valid when (2.28) holds for
almost every r > 0. Hence the following corollary follows from Theorem 2.7 and
Proposition 2.2.

Corollary 2.8 (Stein’s lemma) Let X ∼ Np(θ, σ
2Ip) and let g be a weakly

differentiable function from R
p into R

p such that either Eθ [|(X − θ)Tg(X)|] < ∞
or Eθ [|divg(X)|] < ∞. Then Stein’s identity in (2.7) holds, that is,

Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] . (2.39)

Note that, as in Proposition 2.2, Corollary 2.8 uses the weaker condition (2.29)
instead of Condition (2.8) which was used in Theorem 2.1.

We have seen for balls and spheres that Stokes’ theorem can be directly
derived from Stein’s identity, for weakly differentiable functions. This result will
be particularly important for proving Stein type identities for spherically symmetric
distributions in Chaps. 5 and 6. Note that we have in fact obtained a stronger result. It
is actually shown that, any time Stein’s identity is valid, then the version of Stokes’
theorem given in Theorem 2.7 holds as well. This result is particularly interesting
when the weak differentiability assumption is not met. For example, Fourdrinier
et al. (2006) noticed that this may be the case when dealing with a location parameter
restricted to a cone; Stein’s identity (2.7) holds but the weak differentiability of the
functions at hand is not guaranteed (see also Sect. 7.3).

2.6 Differential Operators and Dimension Cut-Off When
Estimating a Mean

In the previous sections, when estimating the mean θ in the normal case, the
MLE X is admissible when p ≤ 2, but inadmissible when p ≥ 3. Although
specific to the normal case, this result can be extended to other distributional
settings (such as exponential families) so that this dimension cut-off should reflect a
more fundamental mathematical phenomenon. Below, we give an insight into such
phenomena in terms of nonlinear partial differential operators.

Indeed, when estimating θ under quadratic loss, improvements on X through
unbiased estimation techniques often involve a nonlinear partial differential operator
of the form
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Rg(x) = k divg(x)+ ‖g(x)‖2 (2.40)

for a certain constant k. A sufficient condition for improvement is typically

Rg(x) ≤ 0 (2.41)

for all x ∈ R
p (with strict inequality on a set of positive Lebesgue measure). We

will see that (2.41) does not have a nontrivial solution g (i.e. g is not equal to 0
almost everywhere) when the dimension p ≤ 2, even if we look for solutions with
smoothness conditions as weak as possible. Consequently, a necessary dimension
condition for (2.41) to have solutions g 	≡ 0 is p ≥ 3.

Here is a precise statement of this fact.

Theorem 2.8 Let k ∈ R be fixed. When p ≤ 2, the only weakly differentiable
solution g with ‖g‖2 ∈ L1

loc(R
p) of

Rg(x) = k divg(x)+ ‖g(x)‖2 ≤ 0 , (2.42)

for any x ∈ R
p, is g = 0 (a.e.).

Note that, in Theorem 2.8, the search for solutions of (2.42) is addressed in
the general setting of weakly differentiable functions. The proof will follow the
development in Blanchard and Fourdrinier (1999). However, in that paper, the g’s
are sought in the much larger space of distributions D ′(Rp) introduced by Schwartz
(see Schwartz 1973 for a full account). Note also that the condition ‖g‖2 ∈ L1

loc(R
p)

is not restrictive. Any estimator of the form X + g(X) with finite risk must satisfy
Eθ [‖g(X)‖2] < ∞ and hence ‖g‖2 must be in L1

loc(R
p).

The proof of Theorem 2.8 is based on the use of the following sequence of so-
called test functions. Let ϕ be a nonnegative infinitely differentiable function on R+
bounded by 1, identically equal to 1 on [0, 1], and with support on the interval [0, 2]
(supp(ϕ) = [0, 2] ), which implies that its derivative is bounded. Associate to ϕ the
sequence {ϕn}n≥1 of infinitely differentiable functions from R

p into [0, 1] defined
through

∀n ≥ 1 ∀x ∈ R
p ϕn(x) = ϕ

(||x||
n

)
. (2.43)

Clearly, for any n ≥ 1, the function ϕn has compact support B2n, the closed ball of
radius 2n and centered at zero in R

p. Also, an interesting property that follows from
the uniform boundedness of ϕ′, is that, for any β ≥ 1 and for any j = 1, . . . , p,
there exists a constant K > 0 such that

∣∣∣∣∣
∂ϕ

β
n

∂xj
(x)

∣∣∣∣∣ ≤ K

n
ϕβ−1
n (x) . (2.44)
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Note that, as all the derivatives of ϕ vanish outside of the compact interval [1, 2] and
ϕ is bounded by 1, (2.44) implies

∣∣∣∣∣
∂ϕ

β
n

∂xj
(x)

∣∣∣∣∣ ≤ K

n
11Cn(x) . (2.45)

where 11Cn is the indicator function of the annulus Cn = {x ∈ R
p | n ≤ ||x|| ≤ 2n}.

Proof of Theorem 2.8 Let g be a weakly differentiable function g, with ‖g‖2 ∈
L1
loc(R

p), satisfying (2.42). Then, using the defining property (2.6) of weak
differentiability (see also Sect. A.1), we have, for any n ∈ N

∗ and any β > 1,

∫
Rp

‖g(x)‖2 ϕβn (x) dx ≤ −k
∫
Rp

divg(x) ϕβn (x) dx

= −k
p∑
i=1

∫
Rp

∂

∂xi
gi(x) ϕ

β
n (x) dx

= k

p∑
i=1

∫
Rp

gi(x)
∂

∂xi
ϕβn (x) dx

= k

∫
Rp

gT(x) ∂ϕβn (x) dx

≤ k

∫
Rp

‖g(x)‖ ‖∂ϕβn (x)‖ dx . (2.46)

Then, using (2.44), it follows from (2.46) that there exists a constant C > 0 such
that
∫
Rp

‖g(x)‖2 ϕβn (x) dx ≤ C

n

∫
Rp

‖g(x)‖ϕβ−1
n (x) dx

≤ C

n

(∫
Rp

ϕβ−2
n (x) dx

)1/2 (∫
Rp

‖g(x)‖2 ϕβn (x) dx

)1/2

,

(2.47)

when applying Schwarz’s inequality with β > 2 and using

‖g(x)‖ϕβ−1
n (x) = ϕ

β/2−1
n (x) ‖g(x)‖ϕβ/2n (x) .

Clearly (2.47) is equivalent to

∫
Rp

‖g(x)‖2 ϕβn (x) dx ≤ C2

n2

∫
Rp

ϕβ−2
n (x) dx . (2.48)
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Thus, since ϕn = 1 on Bn and ϕn ≥ 0,

∫
Bn

‖g(x)‖2 dx =
∫
Bn

‖g(x)‖2 ϕβn (x) dx ≤
∫
Rp

‖g(x)‖2 ϕβn (x) dx . (2.49)

Then, since supp (ϕn) = B2n and 0 ≤ ϕn ≤ 1, using (2.48) gives

∫
Bn

‖g(x)‖2 dx ≤ C2

n2

∫
Rp

ϕβ−2
n (x) dx ≤ C2

n2

∫
B2n

dx = Anp−2 (2.50)

for some constant A > 0. Letting n go to infinity in (2.50) shows that, when p < 2,
g = 0 almost everywhere, which proves the theorem in that case. It also implies that
‖g‖2 ∈ L1(Rp) when p = 2.

In the case p = 2, the result will follow by applying (2.45). Indeed, it follows
from (2.45), (2.49) and the first inequality in (2.47) that, for some constant C > 0,

∫
Bn

‖g(x)‖2 dx ≤ C

n

∫
Cn

‖g(x)‖ dx

≤ C

n

(∫
Cn

dx

)1/2 (∫
Cn

‖g(x)‖2 dx

)1/2

(2.51)

by Schwarz’s inequality. Now, since p = 2,

∫
Cn

dx ≤
∫
B2n

dx ∝ n2 . (2.52)

Hence (2.51) and (2.52) imply that

∫
Bn

‖g(x)‖2 dx ≤ A

(∫
Cn

‖g(x)‖2 dx

)1/2

, (2.53)

for some constant A > 0. Since as noted above, ‖g‖2 ∈ L1(Rp), we have

lim
n→∞

∫
Cn

‖g(x)‖2 dx = 0

and consequently (2.53) gives rise to

0 = lim
n→∞

∫
Cn

‖g(x)‖2 dx =
∫
Rp

‖g(x)‖2 dx .

Thus g = 0 almost everywhere and gives the desired result for p = 2 is obtained.
��
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Such a dimension cut-off result implies that the usual Stein inequality 2 divg(x)
+||g(x)||2 ≤ 0, for any x ∈ R

p, has no nontrivial solution g, with ‖g‖2 ∈ L1
loc(R

p)

when p ≤ 2. This reinforces the fact that the MLEX is admissible in dimension p ≤
2 when estimating a normal mean. Blanchard and Fourdrinier (1999) (to which we
refer for a full account of the dimension cut-off phenomenon) also considered more
general nonlinear partial differential inequalities. We will again use their technique
in Chap. 8 (for loss estimation) to prove that, for an inequality of the form k Δγ (x)+
γ 2(x) ≤ 0, the same dimension cut-off phenomenon occurs for p ≤ 4 (there is no
nontrivial solution γ , with γ 2 ∈ L1

loc(R
p), when p ≤ 4).



Chapter 3
Estimation of a Normal Mean Vector II

As we saw in Chap. 2, the frequentist paradigm is well suited for risk evalua-
tions, but is less useful for estimator construction. It turns out that the Bayesian
approach is complementary, as it is well suited for the construction of possibly
optimal estimators. In this chapter we take a Bayesian view of minimax shrinkage
estimation. In Sect. 3.1 we derive a general sufficient condition for minimaxity
of Bayes and generalized Bayes estimators in the known variance case, we also
illustrate the theory with numerous examples. In Sect. 3.2 we extend these results
to the case when the variance is unknown. Section 3.3 considers the case of a
known covariance matrix under a general quadratic loss. The admissibility of Bayes
estimators in discussed in Sect. 3.4. Interesting connections to MAP estimation,
penalized likelihood methods, and shrinkage estimation are developed in Sect. 3.5.
The fascinating connections between Stein estimation and estimation of a predictive
density under Kullback-Leibler divergence are outlined in Sect. 3.6.

3.1 Bayes Minimax Estimators

In this section, we derive a general sufficient condition for minimaxity of Bayes and
generalized Bayes estimators when X ∼ Np(θ, σ

2Ip), with known σ 2, and the loss
function is ‖δ − θ‖2, due to Stein (1973, 1981). The condition depends only on the
marginal distribution and states that a generalized Bayes estimator is minimax if
the square root of the marginal distribution is superharmonic. Alternative (stronger)
sufficient conditions are that the prior distribution or the marginal distribution is
superharmonic. We establish these results in Sect. 3.1.1 and apply them in Sect. 3.1.2
to obtain classes of prior distributions which lead to minimax (generalized and
proper) Bayes estimators. Section 3.1.3 will be devoted to minimax multiple
shrinkage estimators.
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Throughout this section, let X ∼ Np(θ, σ
2Ip) (with σ 2 known) and the loss be

L(θ, δ) = ‖δ − θ‖2. Let θ have the (generalized) prior distribution π and let the
marginal density, m(x), of X be

m(x) = K

∫
Rp

e
−‖x−θ‖2

2 σ2 dπ(θ). (3.1)

Recall from Sect. 1.4 that the Bayes estimator corresponding to π(θ) is given by

δπ (X) = X + σ 2 ∇m(X)
m(X)

. (3.2)

Since the constant K in (3.1) plays no role in (3.2) we will typically take it to be
equal to 1 for simplicity. It may happen that an estimator will have the form (3.2)
wherem(X) does not correspond to a true marginal distribution. In this case we will
refer to such an estimator as a pseudo-Bayes estimator, provided x �→ ∇m(x)/m(x)
is weakly differentiable. Recall that, if δπ (X) is generalized Bayes, x �→ m(x)

is a positive analytic function and so x �→ ∇m(x)/m(x) is automatically weakly
differentiable.

3.1.1 A Sufficient Condition for Minimaxity of (Proper,
Generalized, and Pseudo) Bayes Estimators

Stein (1973, 1981) gave the following sufficient condition for a generalized Bayes
estimator to be minimax. This condition relies on the superharmonicity of the square
root of the marginal. Recall from Corollary A.2 in Appendix A.8.3 that a function
f from R

p into R which is twice weakly differentiable and lower semicontinuous
is superharmonic if and only if, for almost every x ∈ R

p, we have Δf (x) ≤ 0,
where Δf is the weak Laplacian of f . Note that, if the function f is analytic, the
last inequality holds for any x ∈ R

p.

Theorem 3.1 Under the model of this section, an estimator of the form (3.2) has
finite risk if Eθ

[‖∇m(X)/m(X)‖2
]
< ∞ and is minimax provided x �→ √

m(x) is
superharmonic (i.e., Δ

√
m(x) ≤ 0, for any x ∈ R

p).

Proof First, note that, as noticed in Example 1.1, the marginal m is a positive
analytic function, and so is

√
m.

Using Corollary 2.1 and the fact that δπ (X) = X + σ 2g(X) with g(X) =
∇m(X)/ m(X), the estimator δπ (X) has finite risk if Eθ

[‖∇m(X)/m(X)‖2
]
< ∞.

Also, it is minimax provided, for almost any x ∈ R
p,

D(x) = ‖∇m(x)‖2

m2(x)
+ 2 div

∇m(x)
m(x)

≤ 0 .
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Now, for any x ∈ R
p,

D(x) = ‖∇m(x)‖2

m2(x)
+ 2

m(x)Δm(x)− ‖∇m(x)‖2

m2(x)

where

Δm(x) =
p∑
i=1

∂2

∂x2
i

m(x)

is the Laplacian of m(x). Hence, by straightforward calculation,

D(x) = 2m(x)Δm(x)− ‖∇m(x)‖2

m2(x)
(3.3)

= 4
Δ

√
m(x)√
m(x)

.

Therefore D(x) ≤ 0 since x �→ √
m(x) is superharmonic. ��

It is convenient to assemble the following results for the case of spherically
symmetric marginals. The proof is straightforward and left to the reader.

Corollary 3.1 Assume the prior density π(θ) is spherically symmetric around 0
(i.e., π(θ) = π(‖θ‖2)). Then

(1) the marginal density m of X is spherically symmetric around 0 (i.e., m(x) =
m(‖x‖2), for any x ∈ R

p);
(2) the Bayes estimator equals

δπ (X) = X + 2 σ 2 m
′(‖X‖2)

m(‖X‖2)
X

and has the form of a Baranchik estimator (2.19) with

a r(t) = −2
m′(t)
m(t)

t ∀t ≥ 0 ;

(3) the unbiased estimator of the risk difference between δπ (X) and X is given by

D(X) = 4 σ 4

{
p
m′(‖X‖2)

m(‖X‖2)
+ 2 ‖X‖2 m

′′(‖X‖2)

m(‖X‖2)
− ‖X‖2

(
m′(‖X‖2)

m(‖X‖2)

)2}
.

While, in Theorem 3.1 minimaxity of δπ (X) follows from the superharmonicity
of

√
m(X), it is worth noting that, in the setting of Corollary 3.1, it can be obtained

from the concavity of t �→ m1/2(t2/(2−p)).
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The following corollary is often useful. It shows that
√
m(X) is superharmonic

if m(X) is superharmonic, which in turn follows if the prior density π(θ) is
superharmonic.

Corollary 3.2

(1) A finite risk (generalized, proper, or pseudo) Bayes estimator of the form (3.2)
is minimax provided the marginalm is superharmonic (i.e.Δm(x) ≤ 0, for any
x ∈ R

p).
(2) If the prior distribution has a density, π , which is superharmonic, then a finite

risk generalized or proper Bayes estimator of the form (3.2) is minimax.

Proof Part (1) follows from the first equality in (3.3), which shows that superhar-
monicity of m implies superharmonicity of

√
m. Indeed, the superharmonicity of m

implies the superharmonicity of any nondecreasing concave function of m.
Part (2) follows since, for any x ∈ R

p,

Δxm(x) = Δx

∫
Rp

exp

(
− 1

2 σ 2 ‖x − θ‖2
)
π(θ) dθ

=
∫
Rp

Δx exp

(
− 1

2 σ 2 ‖x − θ‖2
)
π(θ) dθ

=
∫
Rp

Δθ exp

(
− 1

2 σ 2
‖x − θ‖2

)
π(θ) dθ

=
∫
Rp

exp

(
− 1

2 σ 2
‖x − θ‖2

)
Δθπ(θ) dθ

where the second equality follows from exponential family properties and the last
equality is Green’s formula (see also Sect. A.9). More generally, any mixture of
superharmonic functions is superharmonic (Sect. A.8). ��

Note that the condition of finiteness of risk is superfluous for proper Bayes
estimators since the Bayes risk is bounded above by p σ 2, and Fubini’s theorem
assures that the risk function is finite a.e. (π ). Continuity of the risk function implies
finiteness for all θ in the convex hull of the support of π (see Berger (1985a) and
Lehmann and Casella (1998) for more discussion on finiteness and continuity of
risk).

As an example of a pseudo-Bayes estimator, consider m(X) of the form

m(X) = 1

(‖X‖2)b
.

The case b = 0 corresponds to m(X) = 1 which is the marginal corresponding to
the “uniform” generalized prior distribution π(θ) ≡ 1, which in turn corresponds
to the generalized Bayes estimator δ0(X) = X. If b > 0, m(X) is unbounded in a
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neighborhood of 0 and consequently is not analytic. Thus, m(X) cannot be a true
marginal (for any generalized prior). However,

∇m(X) = −2 b

(‖X‖2)b+1 X

and

∇m(X)
m(X)

= −2 b

‖X‖2 X,

which is weakly differentiable if p ≥ 3 (see Sect. 2.3). Hence, for p ≥ 3, the James-
Stein estimator

δJS2b (X) =
(

1 − 2 b σ 2

‖X‖2

)
X

is a pseudo-Bayes estimator. Also, a simple calculation gives

Δm(X) = (−2 b)[p − 2 (b + 1)]
(‖X‖2)b+1 .

It follows that m(X) is superharmonic for 0 ≤ b ≤ (p − 2)/2 and similarly that√
m(X) is superharmonic for 0 ≤ b ≤ p − 2. An application of Theorem 3.1 gives

minimaxity for 0 ≤ b ≤ p−2 which agrees with Theorem 2.2 (with a = 2b), while
an application of Corollary 3.2 establishes minimaxity for only half of the interval,
i.e. 0 ≤ b ≤ (p − 2)/2. Thus, while useful, the corollary is considerably weaker
than the theorem.

Another interesting aspect of this example relates to the existence of proper
Bayes minimax estimators for p ≥ 5. Considering the behavior of m(x) for
‖x‖ ≥ R for some positive R, note that

∫
‖x‖≥R

m(x) dx =
∫
‖x‖≥R

1

(‖X‖2)b
dX ∝

∫ ∞

R

rp−1

r2 b dr =
∫ ∞

R

rp−2 b−1 dr

and that this integral is finite if and only if p − 2 b < 0. Thus, integrability of
m(x) for ‖x‖ ≥ R and minimaxity of the (James-Stein) pseudo-Bayes estimator
corresponding to m(X) are possible if and only if p/2 < b ≤ p − 2, which implies
p ≥ 5.

It is also interesting to note that superharmonicity of m(X) (i.e. 0 ≤ b ≤
(p − 2)/2) is incompatible with integrability of m(x) on ‖x‖ ≥ R (i.e. b >

p/2). This is illustrative of a general fact that a generalized Bayes minimax
estimator corresponding to a superharmonic marginal cannot be proper Bayes (see
Theorem 3.2).
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3.1.2 Construction of (Proper and Generalized) Minimax
Bayes Estimators

Corollary 3.1 provides a method of constructing pseudo-Bayes minimax estimators.
In this section, we concentrate on the construction of proper and generalized Bayes
minimax estimators. The results in this section are primarily from Fourdrinier et al.
(1998). Although Corollary 3.1 is helpful in constructing minimax estimators it
cannot be used to develop proper Bayes minimax estimators as indicated in the
example at the end of the previous section. The following result establishes that a
superharmonic marginal (and consequently a superharmonic prior density) cannot
lead to a proper Bayes estimator.

Theorem 3.2 Letm be a superharmonic marginal density corresponding to a prior
π . Then π is not a probability measure.

Proof Assume π is a probability measure. Then it follows that m is an integrable,
strictly positive, and bounded function in C∞ (the space of functions which have
derivatives of all orders). Recall from Example 1.1 of Sect. 1.4 that the posterior
risk is given, for any x ∈ R

p, by

p σ 2 + σ 4 m(x)Δm(x)− ‖∇m(x)‖2

m2(x)
.

Hence, the Bayes risk is

r(π) = Em
[
pσ 2 + σ 4m(X)Δm(X)− ‖∇m(X)‖2

m2(X)

]
,

where Em is the expectation with respect to the marginal density m. Also, denoting
by Eπ the expectation with respect to the prior π , we may use the unbiased estimate
of risk to express r(π) as

r(π) = Eπ
[
Eθ

[
p σ 2 + σ 4 2m(X)Δm(X)−‖∇m(X)‖2

m2(X)

]]

= Em
[
p σ 2 + σ 4 2m(X)Δm(X)−‖∇m(X)‖2

m2(X)

]
,

since the unbiased estimate of risk does not depend on θ , by definition. Hence, by
taking the difference,

Em
[
Δm(X)

m(X)

]
= 0 .

Now, since the marginal m is superharmonic (Δm(x) ≤ 0 for any x ∈ R
p),

strictly positive and in C∞, it follows that Δm ≡ 0. Finally, the strict positivity
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and harmonicity of m implies that m ≡ C where C is a positive constant (see
Doob 1984), and hence, that

∫
Rp
m(X) dx = ∞, which contradicts the integrability

of m. ��
We now turn to the construction of Bayes minimax estimators. Consider prior

densities of the form

π(θ) = k

∫ ∞

0
exp

(
− ‖θ‖2

2 σ 2 v

)
v−p/2 h(v) dv (3.4)

for some constant k and some nonnegative function h on R
+ such that the integral

exists, i.e. π(θ) is a variance mixture of normal distributions. It follows from
Fubini’s theorem that, for any x ∈ R

p,

m(x) =
∫ ∞

0
mv(x) h(v) dv

where

mv(x) = k exp

(
− ‖x‖2

2 σ 2 (1 + v)

)
(1 + v)−p/2 .

Lebesgue’s dominated convergence theorem ensures that we may differentiate
under the integral sign and so

∇m(x) =
∫ ∞

0
∇mv(x) h(v) dv (3.5)

and

Δm(x) =
∫ ∞

0
Δmv(x) h(v) dv (3.6)

where

∇mv(x) = − k

σ 2
exp

(
− ‖x‖2

2 σ 2 (1 + v)

)
(1 + v)−p/2−1 x

and

Δmv(x) = − k

σ 2

[
p − ‖x‖2

σ 2(1 + v)

]
exp

(
− ‖x‖2

2 σ 2 (1 + v)

)
(1 + v)−p/2−1.

Then the following integral

Ij (y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−j h(v) dv
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exists for j ≥ p/2. Hence, with y = ‖x‖2/2σ 2, we have

m(x) = k Ip/2(y) (3.7)

∇m(x) = − k

σ 2
Ip/2+1(y) x

Δm(x) = − k

σ 2

[
p Ip/2+1(y)− 2 y Ip/2+2(y)

]

‖∇m(x)‖2 = 2
k2

σ 2 y I
2
p
2 +1(y).

Note that

‖∇m(x)‖2

m2(x)
= 2

σ 2

I 2
p/2+1(y)

I 2
p
2
(y)

y ≤ 2 y

σ 2 = ‖x‖2

σ 4

since Ij+p(y) ≤ Ij (y). Hence,

E0

[‖∇m(x)‖2

m2(x)

]
≤ E0

[‖x‖2

σ 4

]
< ∞ ,

which, according to Theorem 3.1, guarantees the finiteness of the risk of the
Bayes estimator δπ (X) in (3.2). Furthermore, the unbiased estimator of risk
difference (3.3) can be expressed as

D(X) = − 2
σ 2

[
p Ip/2+1(y)− 2 y Ip/2+2(y)

]
/Ip/2(y) (3.8)

− 2
σ 2

[
y I 2

p/2+1(y)/I
2
p/2(y)

]

= 2 Ip/2+1(y)

σ 2 Ip/2(y)

[
2 y Ip/2+2(y)

Ip/2+1(y)
− p − y Ip/2+1(y)

Ip/2(y)

]
.

Then the following intermediate result follows immediately from (3.2) and Theo-
rem 3.1 since finiteness of risk has been guaranteed above.

Lemma 3.1 The generalized Bayes estimator corresponding to the prior den-
sity (3.4) is minimax provided

2 Ip/2+2(y)

Ip/2+1(y)
− Ip/2+1(y)

Ip/2(y)
≤ p

y
. (3.9)

The next theorem gives sufficient conditions on the mixing density h(·) so that
the resulting generalized Bayes estimator is minimax.

Theorem 3.3 Let h be a positive differentiable function such that the function
−(v + 1)h′(v)/h(v) = l1(v) + l2(v) where l1(v) ≤ A and is nondecreasing while
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0 ≤ l2 ≤ B with A + 2B ≤ (p − 2)/2. Assume also that limv→∞ h(v)/(v +
1)p/2−1 = 0 and that

∫∞
0 exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv < ∞. Then the

generalized Bayes estimator (3.2) for the prior density (3.4) corresponding to the
mixing density h is minimax. Furthermore, if h is integrable, the resulting estimator
is also proper Bayes.

Proof Via integration by parts, we first find an alternative expression for

Ik(y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−k h(v) dv.

Letting u = (1 + v)−k+2h(v) and dw = (1 + v)−2 exp(−y/(1 + v)) dv, so that
du = (−k+ 2)(1 + v)−k+1 h(v)+ (1 + v)−k+2h′(v) and w = exp(−y/(1 + v))/y,
we have, for k ≥ p/2 + 1,

Ik(y) = (1 + v)−k+2 exp(−y/(1 + v)) h(v)

y

∣∣∣∞
0

+k − 2

y

∫ ∞

0
exp

(
− y

1 + v

)
(1 + v)−k+1 h(v) dv

−1

y

∫ ∞

0
exp

(
− y

1 + v

)
(1 + v)−k+2 h′(v) dv

= −e
−y h(0)
y

+ k − 2

y
Ik−1(y)

−1

y

∫ ∞

0
exp

(
− y

1 + v

)
(1 + v)−k+2 h′(v) dv . (3.10)

Applying (3.10) to both numerators in the left-hand side of (3.9) we have

2

Ip/2+1(y)

[−e−y h(0)
y

+ p

2 y
Ip/2+1(y)− 1

y

∫ ∞
0

exp

(
− y

1 + v

)
(1 + v)−p/2 h′(v) dv

]

− 1

Ip/2(y)

[−e−y h(0)
y

+ p − 2

2 y
Ip/2(y)− 1

y

∫ ∞
0

exp

(
− y

1 + v

)
(1 + v)−p/2+1 h′(v) dv

]

≤ p + 2

2 y
−

2
∫∞

0 exp
(
− y

1+v
)
(1 + v)−p/2+2 h′(v) dv

y Ip/2+1(y)

+
∫∞

0 exp
(
− y

1+v
)
(1 + v)−p/2+1 h′(v) dv
y Ip/2(y)

since Ip/2+1(y) < Ip/2(y). Then it follows from Lemma 3.1 that δπ (X) is minimax
provided, for any y ≥ 0,
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J
y
p ≤ p − p + 2

2
= p − 2

2
,

where

J
y
p = −2Eyp/2+1

[
(V + 1)

h′(V )
h(V )

]
+ E

y

p/2

[
(V + 1)

h′(V )
h(V )

]

and where Eyk [f (V )] is the expectation of f (V ) with respect to the random variable
V with density gyk (v) = exp(−y/(1 + v)) (1 + v)−k h(v)/Ik(y). Now upon setting
−(v+1) h′(v)/h(v) = l1(v)+l2(v) and noting that gyk (v) has monotone decreasing
likelihood ratio in k, for fixed y, we have

J
y
p = 2Eyp/2+1 [l1(V )+ l2(V )] − E

y

p/2 [l1(V )+ l2(V )]

≤ 2Eyp/2+1 [l1(V )] − E
y

p/2 [l1(V )] + 2Eyp/2+1 [l2(V )]

since l2 ≥ 0. Also

E
y

p/2+1 [l1(V )] ≤ E
y

p/2 [l1(V )]

since l1 is nondecreasing. Then

J
y
p ≤ E

y

p/2 [l1(V )] + 2Eyp/2+1 [l2(V )] ≤ A+ 2B ≤ p − 2

2
.

since l1 ≤ A and l2 ≤ B and by the assumptions on A and B. The result follows.
��

The following corollary allows the construction of mixing distributions so that
the conditions of the theorem are met and the resulting (generalized or proper) Bayes
estimators are minimax.

Corollary 3.3 Let ψ = ψ1 +ψ2 be a continuous function such that ψ1 ≤ C and is
nondecreasing, while 0 ≤ ψ2 ≤ D, and whereC ≤ −2D. Define, for v > 0, h(v) =
exp

[
− 1

2

∫ v
v0

2ψ(u)+p−2
u+1 du

]
where v0 ≥ 0. Assume also that limv→∞ h(v)/(1 +

v)p/2−1 = 0 and that Ip/2(y) = ∫∞
0 exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv < ∞.

Then the Bayes estimator corresponding to the mixing density h is minimax.
Furthermore if h is integrable the estimator is proper Bayes.

Proof A simple calculation shows that

−(v + 1)
h′(v)
h(v)

= ψ1(v)+ ψ2(v)+ p − 2

2
.

Setting l1(v) = ψ1(v) + (p − 2)/2 and l2(v) = ψ2(v), the result follows from
Theorem 3.1 with A = (p − 2)/2 + C and B = D. ��
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Note that finiteness of Ip/2(y) in Corollary 3.2 is assured if we strengthen the
limit condition to limv→∞ h(v)/(1 + v)p/2−1−ε = 0 for some ε > 0, since this
implies that, for h(v)/(1 + v)p/2 ≤ M/(1 + v)1+ε for some M > 0 and any v > 0.
Thus

Ip/2(y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv ≤

∫ ∞

0
(1 + v)−p/2 h(v) dv

≤
∫ ∞

0

M

(1 + v)1+ε
dv

< ∞ .

3.1.3 Examples

An interesting and useful class of examples results from the choice

ψ(v) = α + β/v + γ /v2 (3.11)

for some (α, β, γ ) ∈ R
3. A simple calculation shows

h(v) = exp

[
−
∫ v

v0

α + β/u+ γ /u2 + (p − 2)/2

u+ 1
du

]

∝ (v + 1)β−α−γ− p−2
2 vγ−β exp

(γ
v

)
. (3.12)

Example 3.1 (The Strawderman 1971 prior) Suppose α ≤ 0 and β = γ = 0 so
that h(v) ∝ (v + 1)−α−(p−2)/2. Let ψ1(v) = ψ(v) ≡ α and ψ2(v) ≡ 0 so that C =
D = 0. Then the minimaxity conditions of Corollary 3.1 require limv→∞ h(v)/(1+
v)p/2−1 = limv→∞(v + 1)−α−(p−2) = 0 and this is satisfied if α > 2 − p. Also

Ip/2(y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv

∝
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−α−p+1 h(v) dv

≤
∫ ∞

0
(1 + v)−α−p+1 h(v) dv

< ∞

if α > 2 − p as above. Hence in this case the corresponding generalized Bayes
estimator is minimax if 2 − p < α ≤ 0 (which requires p ≥ 3).

Furthermore it is proper Bayes minimax if
∫∞

0 (1+v)−α−(p−2)/2 dv < ∞ which
is equivalent to 2 − p/2 < α ≤ 0. This latter condition requires p ≥ 5 and
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demonstrates the existence of proper Bayes minimax estimators for p ≥ 5. We
will see below that this is the class of priors studied in Strawderman (1971) under
the alternative parametrization λ = 1/(1 + v).

Example 3.2 Consider ψ(v) given by (3.11) with α ≤ 0, β ≤ 0 and γ ≤ 0. Here
we take ψ1(v) = ψ(v), ψ2(v) = 0, and C = D = 0. The minimaxity conditions of
Corollary 3.2 require

lim
v→∞h(v)/(1 + v)p/2−1 = lim

v→∞(v + 1)β−α−γ−p+2vγ−β exp(γ /v) = 0.

This implies 2 − p < α ≤ 0. The finiteness condition on

Ip/2(y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv

∝
∫ ∞

0
e−

y
1+v (v + 1)β−α−γ−p+1vγ−β exp(γ /v) dv

also requires 2 − p < α ≤ 0. Therefore, minimaxity is ensured as soon as 2 − p <

α ≤ 0.
Furthermore, the minimax estimator will be proper Bayes if

∫ ∞

0
h(v) dv ∝

∫ ∞

0
(1 + v)β−α−γ−(p−2)/2 vγ−β exp(γ /v) dv < ∞.

This holds if 2 − p
2 < α ≤ 0 as in Example 3.1.

Example 3.3 Suppose α ≤ 0, β > 0, and γ < 0 and take

ψ1(v) = α + (γ /v)(1/+ β/γ )I[0,−2γ /β](v) ,

ψ2(v) = (γ /v)(1/v + β/γ ) 11[−2γ /β,∞](v) ,

for C = α and D = −β2/4γ .

Note first that ψ1(v) is monotone nondecreasing and bounded above by α; also,
0 ≤ ψ2(v) ≤ −β2/4γ . Therefore, we require C = α < −2D = β2/2γ .
The conditions limv→∞ h(v)/(1 + v)p/2−1 = 0 and

∫∞
0 exp(−y/(1 + v)) (1 +

v)−p/2 h(v) dv < ∞ are, as in Example 3.2, 2 − p < α ≤ 0.
Thus, δπ (X) is minimax for 2 − p < α ≤ β2/2γ < 0. The condition for

integrability of h is also, as in Example 3.2, i.e. 2 − p
2 < α ≤ β2/2γ < 0.

In this example, ψ(v) is not monotone but is increasing on [0,−2γ /β) and
decreasing thereafter. This typically corresponds to a non-monotone r(‖X‖2) in the
Baranchik-type representation of δπ (X).

For simplicity, in the following examples, we assume σ 2 = 1.
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Example 3.4 (Student-t priors) In this example we take ψ(v) as in Examples 3.2
and 3.3 with the specific choices α = (m−p+4)/2 ≤ 0, β = (m (1−ϕ)+2)/2, and
γ = −mϕ/2 ≤ 0, where m ≥ 1. In this case h(v) = C v−(m+2)/2 exp(−mϕ/2 v),
an inverse gamma density. Hence, as is well known, π(θ) is a multivariate-t
distribution with m-degrees of freedom and scale parameter ϕ if m is an integer
(see e.g. Muirhead 1982, p.33 or Robert 1994, p.174). If σ 2 	= 1, the scale of the
t-distribution is ϕ σ .

For various different values of m and ϕ, either the conditions of Example 3.2 or
the conditions of Example 3.3 apply. Both examples require α = (m−p+4)/2 ≤ 0,
or equivalently 1 ≤ m ≤ p − 4 (so that p ≥ 5), and γ = −mϕ/2 ≤ 0.

Example 3.2 requires β = (
m(1−ϕ)+2

)
/2 < 0, or equivalently, ϕ ≥ (m+2)/m.

The condition for minimaxity 2 − p < α ≤ 0 is satisfied since it is equivalent to
m > −p. Furthermore the condition for proper Bayes minimaxity, 2 − p

2 < α ≤ 0,
is satisfied as well since it reduces to m > 0. Hence, if ϕ ≥ (m + 2)/m, the scaled
p-variate t prior distribution leads to a proper Bayes minimax estimator for p ≥ 5
and m ≤ p − 4.

On the other hand, when ϕ < (m+ 2)/m, or equivalently, β > 0, the conditions
of Example 3.3 are applicable. Considering the proper Bayes case only, the
condition for minimaxity of the Bayes estimator is

2 − p

2
< α = m− p + 4

2
≤ β2

2γ
≤ β2

2γ
= −1

4

(
m(1 − ϕ)+ 2

)2

mϕ
.

The first inequality is satisfied by the fact that m > 0. The second inequality can
be satisfied only for certain ϕ since, when ϕ goes to 0, the last expression tends
to −∞. A straightforward calculation shows that the second inequality can hold
only if

ϕ ≥ p − 2

m

⎡
⎣1 −

√
1 −

(
m+ 2

p − 2

)2
⎤
⎦ > 0 .

In particular, if ϕ = 1 (the standard multivariate t), the condition becomes 2−p/2 <
m−p+4

2 ≤ − 1
m

. As m ≥ 1 this is equivalent to m + 2/m ≤ p − 4, which requires
p ≥ 7 for m = 1 or 2, and p ≥ m+ 5 for m ≥ 3.

An alternative approach to the results of this section can be made using
the techniques of Sect. 2.4.2 applied to Baranchik-type estimators of the form(
1 − a r(‖X‖2)/‖X‖2

)
X. Indeed any spherically symmetric prior distribution will

lead to an estimator of the form φ(‖X‖2)X. More to the point, for prior distributions
of the form studied in this section, the r(·) function is closely connected to the
function v �→ −(v + 1)h′(v)/h(v). To see this, note that
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δπ (X) = X + σ 2 ∇m(X)
m(X)

=
(

1 − Ip/2+1(y)

Ip/2(y)

)
X from (3.2) with y = ‖X‖2/2σ 2

=
(
1− 1

y

(
p − 2

2
−

∫∞
0 e−

y
1+v (1 + v)−p/2[(v + 1)h′(v)/h(v)] dv − e−yh(0)

Ip/2(y)

))
X

=
⎛
⎝1 − 2σ 2

‖X‖2

⎛
⎝p − 2

2
+ E

y

p/2

[
− (V + 1)h′(V )

h(V )

]
− e

−‖X‖2

2σ2 h(0)

Ip/2(
‖X‖2

2σ 2 )

⎞
⎠
⎞
⎠X ,

where Eyk (f ) is as in the proof of Theorem 3.1, the second to last equality following
from (3.4).

Hence, the Bayes estimator is of Baranchik form with

ar(‖X‖2) = 2

⎛
⎝p − 2

2
+ E

‖X‖2

2σ2

p/2

[
− (V + 1)h′(V )

h(V )

]
− e

−‖X‖2

2σ2 h(0)

Ip/2(
‖X‖2

2σ 2 )

⎞
⎠ .

��
Recall, as in the proof of Theorem 3.1, that the density gyk (V ) has a monotone

decreasing likelihood ratio in k, but notice also that it has a monotone increasing
likelihood ratio (actually as an exponential family) in y.

Hence, if − (v+1)h′(v)
h(v)

is nondecreasing, it follows that r is nondecreasing since
e−y/Ip/2(y) is also nondecreasing. Then the following corollary is immediate from
Theorem 3.3.

Corollary 3.4 Suppose the prior is of the form (3.4) where −(v + 1) h′(v)/h(v) is
nondecreasing and bounded above byA > 0. Then, the generalized Bayes estimator
is minimax provided A ≤ p−2

2 .

Proof As noted, r(·) is nondecreasing and is bounded above by p − 2 + 2A ≤
2(p − 2). ��

Corollary 3.3 yields an alternative proof for the minimaxity of the generalized
Bayes estimator in Example 3.1.

Finally, as indicated earlier in this section, an alternative parametrization has
often been used in minimaxity proofs for the mixture of normal priors, namely λ =

1
1+v , or equivalently, v = 1−λ

λ
.

Perhaps the easiest way to proceed is to reconsider the prior distribution as
a hierarchical prior as discussed in Sect. 1.7. Here the distribution of θ | v ∼
Np(0, vσ 2X) and the unconditional density of v is the mixing density h(v). The
conditional distribution of θ given X and v is Np(

v
1+vX,

V
1+v σ

2Ip). The Bayes
estimator is
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δπ (X) = E(θ | X)
= E[E(θ | X,V ) | X]
= E[ v

1+vX | X]
= (1 − E[ 1

1+v | X])X
= (1 − E[λ | X])X.

Note also that the Bayes estimator for the first stage prior

θ | λ ∼ N (0,
1 − λ

λ
σ 2I ) (3.13)

is (1−λ)X. Therefore, in terms of the λ parametrization, one may think of E[λ | X]
as the posterior mean of the shrinkage factor and of the (mixing) distribution on λ
as the distribution of the shrinkage factor.

In particular, for the prior distribution of Example 3.1 where the mixing density
on v is h(v) = C (1 + v)−α−(p−2)/2, the corresponding mixture density on λ is

given by g(λ) = Cλα+
p−2

2 −2 = Cλβ and (β = α+p/2 − 3). The resulting prior is
proper Bayes minimax if 2 − p/2 < α ≤ 0 or equivalently, −1 < β ≤ /2 − 3 (and
p ≥ 5). Note that, if p ≥ 6, β = 0 satisfies the conditions and consequently the
mixing prior g(λ) ≡ 1 on 0 ≤ λ ≤ 1, i.e. the uniform prior on the shrinkage factor
λ gives a proper Bayes minimax estimator. This class of priors is often referred to
as the Strawderman priors.

To formalize the above discussion further we present a version of Theorem 3.3
in terms of the mixing distribution on λ. The proof follows from Theorem 3.3 and
the change of variable λ = 1/(1 + v).

Corollary 3.5 Let θ have the hierarchical prior θ | λ ∼ Np(0, ({1 − λ}/λ) σ 2 Ip)

where λ ∼ g(λ) for 0 ≤ λ ≤ 1. Assume that limλ→0 g(λ)λ
p/2+1 = 0 and that∫ 1

0 e
−λλp/2g(λ)dλ < ∞. Suppose λg′(λ)/g(λ) can be decomposed as l∗1 (λ)+ l∗2 (λ)

where l∗1 (λ) is monotone nonincreasing and l∗1 (λ) ≤ A∗, 0 ≤ l∗2 (λ) ≤ B∗ with
A∗ + 2B∗ ≤ p/2 − 3.

Then the generalized Bayes estimator is minimax. Furthermore, if
∫ 1

0 g(λ)dλ <∞, the estimator is also proper Bayes.

Example 3.5 (Beta priors) Suppose the prior g(λ) on λ is a Beta (a, b) distribution,
i.e. g(λ) = Kλa−1(1 − λ)b−1. Note that the Strawderman (1971) prior is of this
form if b = 1. An easy calculation shows λg′(λ)

g(λ)
= a − 1 − (b − 1) λ

1−λ . Letting

l∗1 (λ) = λg′(λ)
g(λ)

and l∗2 (λ) ≡ 0, we see that the resulting proper Bayes estimator is
minimax for 0 < a ≤ p/2 − 2 and b ≥ 1.

It is clear that our proof fails for 0 < b < 1 since in this case λg′(λ)/g(λ) is not
bounded from above (and is also monotone increasing). Maruyama (1998) shows,
using a different proof technique involving properties of confluent hypergeometric
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functions, that the generalized Bayes estimator is minimax (in our notation) for
−p/2 < a ≤ p/2 − 2 and b ≥ (p + 2a + 2)(3p/2 + a)−1. This bound in b is
in (0, 1) for a < p/2 − 2. Hence, certain Beta distributions with 0 < b < 1 also
give proper Bayes minimax estimators. The generalized Bayes minimax estimators
of Alam (1973) are also in Maruyama’s class.

3.1.4 Multiple Shrinkage Estimators

In this subsection, we consider a class of estimators that adaptively choose a point
(or subspace) toward which to shrink. George (1986a,b) originated work in this
area and the results in this section are largely due to him. The basic fact upon
which the results rely is that a mixture of superharmonic functions is superharmonic
(see the discussion in the Appendix), that is, if mα(x) is superharmonic for each
α, then

∫
mα(x) dG(α) is superharmonic if G(·) is a positive measure such that∫

mα(x) dG(α) < ∞. Using this property, we have the following result from
Corollary 3.1.

Theorem 3.4 Let mα(x) be a family of twice weakly differentiable nonnega-
tive superharmonic functions and G(x) a positive measure such that m(x) =∫
mα(x) dG(x) < ∞, for all x ∈ R

p.
Then the (generalized, proper, or pseudo) Bayes estimator

δ(X) = X + σ 2 ∇m(X)
m(X)

is minimax provided E[‖∇m‖2/m2] < ∞.

The following corollary for finite mixtures is useful.

Corollary 3.6 Suppose thatmi(x) is superharmonic andE[‖∇mi(X)‖2/m2
i (X)] <∞ for i = 1, . . . , n. Then, if m(x) = ∑n

i=1mi(x), the (generalized, proper, or
pseudo) Bayes estimator

δ(X) = X + σ 2 ∇m(X)
m(X)

= ∑n
i=1(X + σ 2 ∇mi(X)

mi(X)
)Wi(X)

where Wi(X) = mi(X)/
∑n

i=1mi(X) for 0 < Wi(X) < 1,
∑n

i=1Wi(X) = 1 is
minimax. (Note that Eθ [‖∇m(X)‖2/m2(X)] < ∑n

i=1 Eθ [‖∇mi(X)‖2/m2(Xi)] <
∞.)
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Example 3.6

(1) Multiple shrinkage James-Stein estimator. Suppose we have several possible
points X1, X2, . . . , Xn toward which to shrink. Recall that mi(x) = (1/‖x −
Xi‖2)(p−2)/2 is superharmonic if p ≥ 3 and the corresponding pseudo-Bayes
estimator is δi(X) = Xi + (

1 − (p − 2) σ 2/‖X −Xi‖2
)
(X − Xi). Hence, if

m(x) = ∑n
i=1mi(x), the resulting minimax pseudo Bayes estimator is given

by

δ(X) =
n∑
i=1

[
Xi + (1 − (p − 2)σ 2

‖X −Xi‖2 )(X −Xi)

]
Wi(X)

where Wi(X) ∝ (
1/‖X −Xi‖2

)(p−2)/2
and

∑n
i=1Wi(X) = 1. Note that

Wi(X) is large when X is close to Xi and the estimator is seen to adaptively
shrink toward Xi .

(2) Multiple shrinkage positive-part James-Stein estimators. Another possible
choice for the mi(x) (leading to a positive-part James Stein estimator) is

mi(x) =
⎧⎨
⎩
C exp

( ‖x−Xi‖2

2 σ 2

)
if ‖x −Xi‖2 < (p − 2) σ 2(

1
‖x−Xi‖2

)
if ‖x −Xi‖2 ≥ (p − 2) σ 2

where C = (
1/(p − 2) σ 2

)(p−2)/2
e(p−2)/2 so that mi(x) is continuous. This

gives

δi(X) = Xi +
(

1 − (p − 2)σ 2

‖X −Xi‖2

)
+
(X −Xi)

since

∇mi(X)
mi(X)

=
{−X−Xi

σ 2 if ‖X −Xi‖2 < (p − 2)σ 2,

− (p−2)
‖X−Xi‖2 otherwise.

The adaptive combination is again minimax by the corollary and inherits the
usual advantages of the positive-part estimator over the James-Stein estimator.

Note that a smooth alternative to the above is mi(x) =
(

1
b+‖x−Xi‖2

) p−2
2

for

some b > 0.

In each of the above examples we may replace (p− 2)/2 in the exponent by a/2
where 0 ≤ a ≤ p − 2 (and where 0 ≤ ‖x − Xi‖2 < (p − 2) σ 2 is replaced by
0 ≤ ‖x − Xi‖2 < a σ 2 for the positive-part estimator). The choice of p − 2 as an
upper bound for a ensures superharmonicity of mi(x). A choice of a in the range
of p − 2 < a ≤ 2 (p − 2) seems also quite natural since

√
mi(x) is superharmonic
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(but mi(x) is not) for a in this range so that each δi(X) is minimax. Unfortunately
minimaxity of δ(X) = ∑n

i=1Wi(X)δi(X) does not follow from Corollary 3.3 for

p−2 < a ≤ 2 (p−2) since it need not be true that
√∑n

i=1mi(x) is superharmonic

even though
√
mi(x) is superharmonic for each i.

(3) A generalized Bayes multiple shrinkage estimator. If πi(θ) is superharmonic
then π(θ) = ∑n

i=1 πi(θ) is also superharmonic as is m(x) = ∑n
i=1mi(x).

For example, πi(θ) = (
1/b + ‖θ −Xi‖2

)a/2
, for b ≥ 0 and 0 ≤ a ≤ p − 2, is a

suitable prior. Interestingly, according to a heuristic of Brown (1971), m(x) in this

case should behave for large ‖x‖2 as
∑n

i=1 1/
(
b + ‖x −Xi‖2

)a/2
, the “smooth”

version of the adaptive positive-part multiple shrinkage pseudo-marginal in part (2)
of this example.

By obvious modifications of the above, multiple shrinkage estimators may be
constructed that shrink adaptively toward subspaces. Further examples can be found
in George (1986a,b), Ki and Tsui (1990) and Wither (1991).

3.2 Bayes Estimators in the Unknown Variance Case

3.2.1 A Class of Proper Bayes Minimax Admissible Estimators

In this subsection, we give a class of hierarchical Bayes minimax estimators for the
model

X ∼ Np(θ, σ
2 Ip) S ∼ σ 2 χ2

k , (3.14)

where S is independent of X, under scale invariant squared error loss

L(θ, δ(X, S)) = ‖δ(X, S)− θ‖2

σ 2 . (3.15)

We reparameterize σ 2 as 1/η and consider the following hierarchically, on the
unknown parameters, structured prior(θ, η), which is reminiscent of the hierarchical
version of the Strawderman prior in (3.13),

θ |λ, η ∼ Np

(
0,

1

η

1 − λ

λ
Ip

)

η ∼ Gamma

(
b

2
,
c

2

)
(3.16)

λ ∼ (1 + a) λa, 0 < λ < 1 .
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Lemma 3.2 For the model (3.14) and loss (3.15), the (generalized or proper) Bayes
estimator of θ is given by

δ(X, S) =
(

1 − S

‖X‖2
r(‖X‖2, S)

)
X (3.17)

where

r(‖X‖2, S) = ‖X‖2

‖X‖2 + c

∫ (‖X‖2+c)/S
0 uA+1

(
1
u+1

)B+1
du

∫ (‖X‖2+c)/S
0 uA

(
1
u+1

)B+1
du

(3.18)

where

A = p + a + b

2
and B = p + k + b − 2

2
(3.19)

provided A > −1, A− B < 0, and c > 0.

Proof Under the loss in (3.15) the Bayes estimator for the model in (3.16) is given
by

δ(X, S) = E[θ η|X, S]
E[η|X, S] . (3.20)

Expressing the expectation in the numerator of (3.20) gives

E[θ η|X, S] =
∫ ∞

0

∫ 1

0

∫
Rp

θ ηp/2+1
(
λ η

1 − λ

)p/2

× exp

(
−η

2

[
‖x − θ‖2 + λ

1 − λ
‖θ‖2

])
η(k+b−2)/2

×λ(b+a)/2 exp
(
−η

2
(S + λ c)

)
dθ dη dλ

=
∫ ∞

0

∫ 1

0
(1 − λ)λAηB exp

(
−η

2
(S + λ(‖x‖2 + c))

)
dη dλ (3.21)

upon integrating with respect to θ and evaluating with the constants in (3.19).
Similarly, for the denominator in (3.20)

E[η|X, S] =
∫ ∞

0

∫ 1

0

∫
Rp

ηp/2+1
(
λ η

1 − λ

)p/2

× exp

(
−η

2

[
‖x − θ‖2 + λ

1 − λ
‖θ‖2

])
η(k+b−2)/2
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×λ(b+a)/2 exp
(
−η

2
(S + λ c)

)
dθ dη dλ

=
∫ ∞

0

∫ 1

0
ηBλA exp

(
−η

2
(S + λ(‖x‖2 + c))

)
dηdλ. (3.22)

Therefore from (3.21) and (3.22) the Bayes estimator in (3.20) has the form

δ(X, S) =
(

1 − S

‖X‖2 r(‖X‖2, S)

)
X

where

r(‖X‖2, S) = ‖X‖2

S

∫∞
0

∫ 1
0 η

B λA+1 exp
(
− η S

2

(
1 + λ

‖x‖2+c
S

))
dη dλ

∫∞
0

∫ 1
0 η

B λA exp
(
− η S

2

(
1 + λ

‖x‖2+c
S

))
dη dλ

= ‖X‖2/S

(‖X‖2 + c) S

∫ (‖X‖2+c)/S
0

∫∞
0 ηB uA+1 exp

(
− η S

2 (1 + u)
)
dη du

∫ (‖X‖2+c)/S
0

∫∞
0 ηB uA exp

(
− η S

2 (1 + u)
)
dη du

= ‖X‖2

‖X‖2 + c

∫ (‖X‖2+c)/S
0 uA+1

(
1
u+1

)B+1
du

∫ (‖X‖2+c)/S
0 uA

(
1
u+1

)B+1
du

,

with the change of variable u = λ (‖X‖2 + c)/S is made in the next to last step. ��
The properties of r(‖X‖2, S) in Lemma 3.2 are given in the following result.

Lemma 3.3 The function r(‖X‖2, S) given in (3.18) satisfies the following proper-
ties:

(i) r(‖X‖2, S) is nondecreasing in ‖X‖2 for fixed S;
(ii) r(‖X‖2, S) is nonincreasing in S for fixed ‖X‖2; and

(iii) 0 ≤ r(‖X‖2, S) ≤ (A+ 1)/(B − A− 1) = (p + a + b + 2)/(k − a − 4)

provided the conditions of Lemma 3.2 hold.

Proof Note first that
∫ t

0 u f (u) du/
∫ t

0 f (u) du is nondecreasing in t for any
integrable nonnegative function f (·). Hence Part (i) follows since r(‖X‖2, S) is
the product of two nonnegative nondecreasing functions ‖X‖2/‖X‖2 + c and∫ (‖X‖2+c)/S

0 u f (u) du/
∫ (‖X‖2+c)/S

0 f (u) du for f (u) = uA (1 + u)−(B+1).
Part (ii) follows from a similar reasoning since the first term is constant in S and

(‖X‖2 + c)/S is decreasing in S.
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To show Part (iii) note that, by Parts (i) and (ii),

0 ≤ r(‖X‖2, S) ≤ lim
‖X‖2→∞
S→0

r(‖X‖2, S)

≤
∫∞

0 uA+1
(

1
u+1

)B+1
du

∫∞
0 uA

(
1
u+1

)B+1
du

=
∫ 1

0 λ
B−A−2 (1 − λ)A+1

∫ 1
0 λ

B−A−1 (1 − λ)A

= A+ 1

B − A− 1

= p + a + b + 2

k − a − 4
,

expressing the beta functions and according to the values of A and B. ��
We also need the following straightforward generalization of Corollary 2.6. The

proof is left to the reader.

Corollary 3.7 Under model (3.14) and loss (3.15) an estimator of the form

δ(X, S) =
(

1 − S

‖X‖2 r(‖X‖2, S)

)
X

is minimax provided

(i) r(‖X‖2, S) is nondecreasing in ‖X‖2 for fixed S;
(ii) r(‖X‖2, S) is nonincreasing in S for fixed ‖X‖2; and

(iii) 0 ≤ r(‖X‖2, S) ≤ 2 (p − 2)/(k + 2).

Combining Lemmas 3.2 and 3.3 and Corollary 3.7 gives the following result.

Theorem 3.5 For the model (3.14), loss (3.15) and hierarchical prior (3.16), the
generalized or proper Bayes estimator in Lemma 3.2 is minimax provided

p + a + b + 2

k − a − 4
≤ 2 (p − 2)

k + 2
. (3.23)

Furthermore, if p ≥ 5, there exist values of a > −2 and b > 0 which satisfy (3.23),
i.e. such that the estimator is proper Bayes, minimax and admissible.

Proof The first part is immediate. To see the second part, note that it suffices, if
a = −2 + ε b = δ, for ε, δ > 0, that

p

k − 2
<
p + ε + δ

k − 2 − ε
≤ 2 (p − 2)

k + 2
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equivalently p > 4 k−2
k−6 . Hence, for p ≥ 5 and k sufficiently large, k > 2 (3p −

4)/(p − 4), there are values of a and b such that the priors are proper. ��
Note that there exist values of a and b satisfying (3.23) and the assumptions of

Lemma 3.2 whenever p ≥ 3.
Strawderman (1973) gave the first example of a generalized and proper Bayes

minimax estimators in the unknown variance setting. Zinodiny et al. (2011) also
give classes of generalized and proper Bayes minimax estimators along somewhat
similar lines as the above. The major difference is that the prior distribution on
η (= 1/σ 2) in the above development is also hierarchical, as it also depends
on λ.

3.2.2 The Construction of a Class of Generalized Bayes
Minimax Estimators

In this subsection we extend the generalized Bayes results of Sect. 3.1.2, using the
ideas in Maruyama and Strawderman (2005) and Wells and Zhou (2008), to consider
point estimation of the mean of a multivariate normal when the variance is unknown.
Specifically, we assume the following model in (3.14) and the scaled squared loss
function in (3.15).

In order to derive the (formal) Bayes estimator we reparameterize the model
in (3.14) by replacing σ by η−1. The model then becomes

X∼Np(θ, η
−2Ip), S ∼ sk/2−1 ηk exp(s η2/2),

θ∼Np(0, ν η
−2Ip), ν∼h(ν), η ∼ ηd , η > 0 , (3.24)

for some constant d. Under this model, the prior for θ is a scale mixture of normal
distributions. Note that the above class of priors cannot be proper due to the
impropriety of the distribution of η. However, as a consequence of the form of this
model, the resulting generalized Bayes estimator is of the Baranchik form (3.17),
with r(‖X‖2, S) = r(F ), where F = ||X||2/S.

We develop sufficient conditions on k, p, and h(ν) such that the generalized
Bayes estimators with respect to the class of priors in (3.24) are minimax under
the invariant loss function in (3.15). Maruyama and Strawderman (2005) and Wells
and Zhou (2008) were able to obtain such sufficient conditions by applying the
bounds and monotonicity results of Baranchik (1970), Efron and Morris (1976),
and Fourdrinier et al. (1998).

Before we derive the formula for the generalized Bayes estimator under the
model (3.24), we impose three regularity conditions on the parameters of priors.
These conditions are easily satisfied by many hierarchical priors. These three
conditions are assumed throughout this section.
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C1: A > 1 where A = d+k+p+3
2 ;

C2:
∫ 1

0 λ
p
2 −2h

(
1−λ
λ

)
dλ < ∞; and

C3: limν→∞ h(ν)

(1+ν)p/2−1 = 0.

Now, as in Sect. 3.1, we will first find the form of the Bayes estimator and then
show that it satisfies some sufficient conditions for minimaxity. We start with the
following lemma that corresponds to (3.2) in the known variance case and (3.18) in
the previous subsection.

Lemma 3.4 Under the model in (3.24), the generalized Bayes estimator can be
written as

δ(X, S) = X − R(F)X = X − r(F )

F
X, (3.25)

where F = ||X||2/S,

R(F) =
∫ 1

0 λ
p/2−1 (1 + λF)−A h

(
1−λ
λ

)
dλ

∫ 1
0 λ

p/2−2 (1 + λF)−A h
(

1−λ
λ

)
dλ
, (3.26)

and

r(F ) = F R(F) . (3.27)

Proof Under the loss function (3.15), the generalized Bayes estimator for the
model (3.24) is

δ(X, S) = E( θ
σ 2 |X, S)

E( 1
σ 2 |X, S)

=
∫∞

0 h(ν)
∫∞

0 [(η2)A− 1
2 e− 1

2 η
2S

∫
Rp
( 1

2πνη−2 )
p
2 θe− 1

2 η
2(

||θ ||2
ν

+||X−θ ||2)dθ ]dη dν
∫∞

0 h(ν)
∫∞

0 [(η2)A− 1
2 e− 1

2 η
2S

∫
Rp
( 1

2πνη−2 )
p
2 e− 1

2 η
2(

||θ ||2
ν

+||X−θ ||2)dθ ]dηdν

=
⎛
⎜⎝1 −

∫∞
0 [( 1

1+ν )h(ν)(
1

1+ν )
p
2
∫∞

0 (η2)A− 1
2 e

− 1
2 η

2(S+ ||X||2
1+ν ) dη] dν

∫∞
0 [h(ν)( 1

1+ν )
p
2
∫∞

0 (η2)A− 1
2 e

− 1
2 η

2(S+ ||X||2
1+ν ) dη] dν

⎞
⎟⎠ X

=
⎛
⎝1 −

∫∞
0 ( 1

1+ν )h(ν)(
1

1+ν )
p
2 (1 + F

1+ν )−A dν∫∞
0 h(ν)( 1

1+ν )
p
2 (1 + F

1+ν )−A dν

⎞
⎠ X. (3.28)

Letting λ = (1 + ν)−1, δ(X, S) = (1 − R(F))X, which gives the form of the
generalized Bayes estimator. ��
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Recall from Stein (1981) that when σ 2 is known the Bayes estimator under
squared error loss and corresponding to a prior π(θ) is given by (3.2), that is,
δπ (X) = X + σ 2 �m(X)

m(X)
.

The form of the Bayes estimator given in (3.25) gives an analogous form with
the unknown variance replaced by a multiple of the usual unbiased estimator. In
particular, define the “quasi-marginal”

M(x, s) =
∫ ∫

fX(x) fS(s) π(θ, σ
2) dθ dσ 2

where

fX(x) =
(

1

2πσ 2

)p/2
e
− 1

2σ2 ||x−θ ||2

and

fS(s) = 1

2k/2Γ (k/2)
sk/2−1(σ 2)−k/2e−

s

2σ2 .

A straightforward calculation shows M(x, s) is proportional to

∫ ∞

0
h(ν)

∫ ∞

0
[(η2)A− 3

2 e−
1
2 η

2s

∫
Rp

(
1

2πνη−2 )
p
2 e−

1
2 η

2(
||θ ||2
ν

+||x−θ ||2)dθ ]dηdν.

It is interesting to note the unknown variance analog of (3.2) is

δ(X, S) = X − 1

2

∇XM(X, S)

∇SM(X, S)
.

Lastly, note that the exponential term in the penultimate expression in the rep-
resentation of δ(X, S) in (3.28) (that comes from the normal sampling distribution
assumption) cancels. Hence there is a sort of robustness with respect to the sampling
distribution. We will develop this theme in greater detail in Chap. 6 in the setting of
spherically symmetric distributions.

3.2.2.1 Preliminary Results

The minimax property of the generalized Bayes estimator is closely related to the
behavior of the r(F ) and R(F) functions, which is in turn closely related to the
behavior of

g(ν) = −(ν + 1)
h′(ν)
h(ν)

. (3.29)
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Fourdrinier et al. (1998) gave a detailed analysis of the type of function in (3.29).
However, their argument was deduced from the superharmonicity of the square root
of a marginal condition. Baranchik (1970) and Efron and Morris (1976) gave certain
regularity conditions on the shrinkage function r(·) such that an estimator

θ̂ (X, S) = X − r(F )

F
X (3.30)

is minimax under the loss function (3.15) for the model (3.14). Both results require
an upper bound on r(F ) and a condition on how fast R(F) = r(F )/F decreases
with F . Both theorems follow from a general result for spherically symmetric
distributions given in Chap. 6 (Proposition 6.1), or by applying Theorem 2.5 in a
manner similar to that in Corollary 2.3. The proofs are left to the reader.

Theorem 3.6 (Baranchik 1970) Assume that r(F ) is increasing in F and 0 ≤
r(F ) ≤ 2 (p − 2)/(k + 2). Then any point estimator of the form (3.30) is minimax.

Theorem 3.7 (Efron and Morris 1976) Define ck = p−2
k+2 . Assume that 0 ≤

r(F ) ≤ 2 ck , that for all F with r(F ) < 2ck ,

Fp/2−1 r(F )

(2 − r(F )/ck)1+2 ck
is increasing in F, (3.31)

and that, if an F0 exists such that r(F0) = 2ck , then r(F ) = 2 ck for all F ≥ F0.
With the above assumptions, the estimator θ̂ (X, S) = X − r(F )/F X is minimax.

Consequently, to apply these results one has to establish an upper bound for r(F )
in (3.27) and the monotonicity property for some variant of r(F ). The candidate we
use is r̃(F ) = Fcr(F ) with a constant c. Note that the upper bound 2 ck is exactly
the same upper bound needed in Corollary 3.7(iii). We develop the needed results
below.

First note that if h(ν) is a continuously differentiable function on [0,∞), and
regularity conditions C1, C2 and C3 hold, then the integrations by parts used in
Lemmas 3.5 and 3.6 are valid.

Lemma 3.5 Assume the regularity conditions C1, C2 and C3, and that g(ν) ≤ M ,
where M is a positive constant and g(ν) is defined as in (3.29). Then, for the r(F )
function (3.27), we have

0 ≤ r(F ) ≤
p
2 − 1 +M

A− p
2 −M

,

where A is defined in condition C1.

Proof By the definition in (3.26), R(F) ≥ 0. Then r(F ) = FR(F) ≥ 0. Note that

r(F ) = F

∫ 1
0 λ

p
2 −1(1 + λF)−Ah( 1−λ

λ
) dλ∫ 1

0 λ
p
2 −2(1 + λF)−Ah( 1−λ

λ
) dλ

= F
Ip

2 −1,A,h(F )

I p
2 −2,A,h(F )

,
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where we are using the notation

Iα,A,h(F ) =
∫ 1

0
λα(1 + λF)−Ah(1 − λ

λ
) dλ .

Using integration by parts, we obtain

FIp
2 −1,A,h(F ) =

∫ 1

0
λp/2−1h

(
1 − λ

λ

)
d

[
(1 + λF)1−A

1 − A

]

= λ
p
2 −1h

(
1 − λ

λ

)
(1 + λF)1−A

1 − A
|10 + 1

A− 1

∫ 1

0
(1 + λF)−A(1 + λF)

[(p
2

− 1
)
λ
p
2 −2h

(
1 − λ

λ

)
− 1

λ2
λ
p
2 −1h′

(
1 − λ

λ

)]
dλ.

By C1 and C3, we know that the first term of the right hand side is nonpositive.
The second term of the right hand side can be written as N1 +N2 +N3 +N4 where

N1 = 1

A− 1

∫ 1

0
(1+λF)−A

(p
2

− 1
)
λ
p
2 −2h

(
1 − λ

λ

)
dλ =

p
2 − 1

A− 1
I p

2 −2,A,h(F ),

N2 = 1

A− 1

∫ 1

0
(1 + λF)−Aλ

p
2 −2h′

(
1 − λ

λ

)(−λ
λ2

)
dλ

=
I p

2 −2,A,h(F )

A− 1

∫ 1
0 λ

p
2 −2(1 + λF)−Ag( 1−λ

λ
)h( 1−λ

λ
) dλ∫ 1

0 λ
p
2 −2(1 + λF)−Ah( 1−λ

λ
) dλ

≤ M

A− 1
I p

2 −2,A,h(F ),

N3 =
p
2 − 1

A− 1
FIp

2 −1,A,h(F ) = (
p
2 − 1)r(F )

A− 1
I p

2 −2,A,h(F ),

and

N4 =
I p

2 −2,A,h(F )

A− 1

F
∫ 1

0 λ
p
2 −1(1 + λF)−Ah′( 1−λ

λ
)(−1

λ
)dλ

Ip
2 −2,A,h(F )

=
I p

2 −2,A,h(F )

A− 1

F
∫ 1

0 (1 + λF)−Aλ
p
2 −1g( 1−λ

λ
)h( 1−λ

λ
)dλ

Ip
2 −2,A,h(F )

≤ Mr(F)

A− 1
I p

2 −2,A,h(F ).
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Combining all the terms, we get the following inequality

(A−1)r(F ) ≤
(p

2
− 1

)
+M+

(p
2

− 1
)
r(F )+Mr(F) ⇒ r(F ) ≤

p
2 − 1 +M

A− p
2 −M

.

Therefore, we have the needed bound on the r(F ) function. ��
We will now show that under certain regularity conditions on g(ν), we have the

monotonicity property for r̃(F ) = Fcr(F ) with a constant c. This monotonicity
property enables us to establish the minimaxity of the generalized Bayes estimator.
The following lemma is analogous to Theorem 3.3 in the known variance case.

Lemma 3.6 If g(ν) = −(ν + 1) h
′(ν)
h(ν)

= l1(ν) + l2(ν) such that l1(ν) is increasing
in ν and 0 ≤ l2(ν) ≤ c, then r̃(F ) = Fcr(F ) is nondecreasing.

Proof By taking the derivative, we only need to show (since r(F ) = FR(F))

0 ≤ FR′(F )+ (1 + c)R(F ), (3.32)

which is equivalent to

0 ≤ F

I ′
p
2 −1,A,h

(F )I p
2 −2,A,h(F )− I ′

p
2 −2,A,h

(F )I p
2 −1,A,h(F )

I 2
p
2 −2,A,h

(F )
+(1+c)

I p
2 −1,A,h(F )

I p
2 −2,A,h(F )

.

This in turn equivalent to

−FI ′
p
2 −1,A,h(F )I

p
2 −2,A,h(F )

≤ −FI ′
p
2 −2,A,h(F )I

p
2 −1,A,h(F )+ (1 + c)I p

2 −2,A,h(F )I p2 −1,A,h(F ). (3.33)

Now note that

−FI ′
a,A,h(F ) =

∫ 1

0
λa(1 + λF)−Ah

(
1 − λ

λ

)
AλF

1 + λF
dλ.

Define the intergral operator

Ja (f (u)) =
∫ F

0
ua(1 + u)−Af (u) du.

Therefore,

Ja

(
h

(
F − u

u

))
=
∫ F

0
ua(1 + u)−Ah

(
F − u

u

)
du
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and

Ja

(
Au

1 + u
h

(
F − u

u

))
=
∫ F

0
ua(1 + u)−A Au

1 + u
h

(
F − u

u

)
du.

Also, note that

Ja

(
Au

1 + u
h

(
F − u

u

))
= Fa+1

∫ 1

0
λa(1 + λF)−Ah

(
1 − λ

λ

)
AλF

1 + λF
dλ,

and

Ja

(
h

(
F − u

u

))
= Fa+1Ia,A,h(F ).

Now, with this new notation, it follows that (3.33) is equivalent to

Jp
2 −1(

Au
1+uh(

F−u
u
))

Jp
2 −1(h(

F−u
u
))

≤
Jp

2 −2(
Au

1+uh(
F−u
u
))

Jp
2 −2(h(

F−u
u
))

+ (1 + c). (3.34)

Using integration by parts, we have

Ja

(
Au

1 + u
h

(
F − u

u

))
=
∫ F

0
ua(1 + u)−Ah

(
F − u

u

)
Au

1 + u
du

= −ua+1h

(
F − u

u

)
(1 + u)−A|F0

+
∫ F

0
(1 + u)−A

[
(a + 1)uah

(
F − u

u

)
+ ua+1h′

(
F − u

u

)(−F
u2

)]
du.

Hence, (3.34) is equivalent to

−F p
2 h(0)(1 + F)−A

Jp
2 −1(h(

F−u
u
))

+
(p

2

)

+
∫ F

0 u
p
2 −1(1 + u)−Ah(F−u

u
)

[
h′( F−u

u
)

h( F−u
u
)
(−F
u
)

]
du

∫ F
0 u

p
2 −1(1 + u)−Ah(F−u

u
) du

≤ −F p
2 −1h(0)(1 + F)−A

Jp
2 −2(h(

F−u
u
))

+
(p

2
− 1

)
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+
∫ F

0 u
p
2 −2(1 + u)−Ah(F−u

u
)

[
h′( F−u

u
)

h( F−u
u
)
(−F
u
)

]
du

∫ F
0 u

p
2 −2(1 + u)−Ah(F−u

u
) du

+ (1 + c). (3.35)

Since −(v + 1)h′(v)/h(v) = l1(v)+ l2(v) (3.35) is equivalent to

−h(0)(1 + F)−A

I p
2 −1,A,h(F )

+
J p

2 −1(h(
F−u
u
)l1(

F−u
u
))

J p
2 −1(h(

F−u
u
))

+
J p

2 −1(h(
F−u
u
)l2(

F−u
u
))

J p
2 −1(h(

F−u
u
))

≤ −h(0)(1 + F)−A

I p
2 −2,A,h(F )

+
J p

2 −2(h(
F−u
u
)l1(

F−u
u
))

J p
2 −2(h(

F−u
u
))

+
J p

2 −2(h(
F−u
u
)l2(

F−u
u
))

J p
2 −2(h(

F−u
u
))

+ c. (3.36)

It is clear that I p
2 −1,A,h(F ) ≤ I p

2 −2,A,h(F ), so we then have

−h(0)(1 + F)−A

Ip
2 −1,A,h(F )

≤ −h(0)(1 + F)−A

Ip
2 −2,A,h(F )

which accounts for the first terms on the left and right hand sides of (3.36). As for
the second term on each side of (3.36) note that the hypothesis l1(ν) is increasing in
ν implies that for all fixed F , l1(F−u

u
) is decreasing in u. When t < u, we have

(1 + u)−Au
p
2 −2h(F−u

u
) 11{u ≤ F }

(1 + t)−At
p
2 −2h(F−t

t
) 11{t ≤ F }

≤ (1 + u)−Au
p
2 −1h(F−u

u
) 11{u ≤ F }

(1 + t)−At
p
2 −1h(F−t

t
) 11{t ≤ F }

.

By a monotone likelihood ratio argument, we have

Jp
2 −1(h(

F−u
u
)l1(

F−u
u
))

Jp
2 −1(h(

F−u
u
))

=
∫ F

0 u
p
2 −1(1 + u)−Ah(F−u

u
)l1(

F−u
u
)∫ F

0 u
p
2 −1(1 + u)−Ah(F−u

u
) du

≤
∫ F

0 u
p
2 −2(1 + u)−Ah(F−u

u
)l1(

F−u
u
) du∫ F

0 u
p
2 −2(1 + u)−Ah(F−u

u
) du

=
Jp

2 −2(h(
F−u
u
)l1(

F−u
u
))

Jp
2 −2(h(

F−u
u
))

.

Finally, note that since 0 ≤ l2(v) ≤ c for the third term on each side of (3.36) we
have

0 ≤
Jp

2 −i (l2(F−u
u
)h(F−u

u
))

Jp
2 −i (h(F−u

u
))

≤ c for i = 1, 2.

Therefore we established the inequality (3.36) and the proof is complete. ��
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3.2.2.2 Minimaxity of the Generalized Bayes Estimators

In this subsection we apply Lemmas 3.4, 3.5, 3.6 and Theorems 3.6 and 3.7 to show
minimaxity of the generalized Bayes estimator (3.25).

Theorem 3.8 Assume that g(ν) = −(ν + 1) h′(ν)/h(ν) is increasing in ν, g(ν) ≤
M , where M is a positive constant, and

p − 2 + 2M

k + 3 + d − 2M
≤ 2

p − 2

k + 2
.

Then δ(X, S) in (3.25) is minimax.

Proof Let l2(ν) = 0 and l1(ν) = g(ν). By applying Lemma 3.6 to the case c = 0,
we have r(F ) increasing in F . Applying the bound in Lemma 3.5, we can get 0 ≤
r(F ) ≤ 2 p−2

m+2 . Therefore, by Lemma 3.4, δ(X, S) is minimax. ��
It is interesting to make connections to the result in Faith (1978). Faith (1978)

considered generalized Bayes estimator for Np(θ, Ip) and showed that when g(ν) is
increasing in ν and M ≤ p−2

2 , the generalized Bayes estimator would be minimax.
By taking k → ∞, we deduce the same conditions as Faith (1978). The next lemma
is a variant of Alam (1973) for the known variance case.

Theorem 3.9 Define ck = p−2
k+2 . If there exists b ∈ (0, 1] and c = b(p−2)

4+4(2−b)ck , such
that 0 ≤ r(F ) ≤ (2 − b)ck , and Fcr(F ) is increasing in F , then the generalized
Bayes estimator δ(X, S) in (3.25) is minimax.

Proof By taking the derivative of the Efron and Morris’ condition, (3.31) can be
satisfied by requiring

0 ≤ 2
(p

2
− 1

)
R(F)

(
2 − r(F )

cm

)
+ 4r ′(F )(1 + r(F )). (3.37)

Since r(F ) ≤ (2−b)ck , then (3.37) is satisfied at the point where r ′(F ) ≥ 0. Since
r(F ) ≤ (2 − b)ck with β = (2 − b)ck

4r ′(F )(1 + β) ≤ 4r ′(F )(1 + r(F )), (3.38)

at the point where r ′(F ) < 0. We now have

0 ≤ (4 + 4β)(cR(F )+ R(F)+ FR′(F ))

= 2b
(p

2
− 1

)
R(F)+ 4r ′(F )(1 + β)

≤ 2
(p

2
− 1

)
R(F)

(
2 − r(F )

ck

)
+ 4r ′(F )(1 + r(F ))
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since Fcr(F ) is increasing in F . Thus, for all values of F , we have proven (3.37),
and combining with the bound on the r(F ) function, we have proven the minimaxity
of the generalized Bayes estimator. ��

It is interesting to observe that by requiring a tighter upper bound on r(F ), we
can relax the monotonicity requirement on r(F ). The tighter the upper bound, the
more flexible r(F ) can be. This result enriches the class of priors whose generalized
Bayes estimators are minimax. Direct application of Lemmas 3.4, 3.5, 3.6, and 3.9
gives the following theorem.

Theorem 3.10 If there exists b ∈ (0, 1] such that g(ν) = l1(ν) + l2(ν) ≤ M ,
and l1(ν) is increasing in ν, 0 ≤ l2(ν) ≤ c = b(p−2)

4+4(2−b) p−2
k+2

, and p−2+2M
k+3+d−2M ≤

(2−b)(p−2)
k+2 , then the generalized Bayes estimator δ(X, S) in (3.25) is minimax.

3.2.2.3 Examples of the Priors in (3.24)

In this subsection, we will give several examples to which our results can be
applied and make some connection to the existing literature found in Maruyama
and Strawderman (2005) and Fourdrinier et al. (1998).

Example 3.7 Maruyama and Strawderman (2005) considered the priors with

h(ν) ∝ νb(1 + ν)−a−b−2 for b > 0 and show that r(F ) ≤
p
2 +a+1

k
2 + d

2 −a− 1
2

(in terms

of the Maruyama and Strawderman (2005) notation d = 2e + 1). Condition C1
is equivalent to the condition that d + k + p > −1. C2 and C3 are equivalent
here, and both are equivalent to the condition that a + p

2 + 1 > 0. Then, using
Theorem 3.8, we have g(ν) = a + 2 − bν−1. The condition that g(ν) is increasing
in ν is equivalent to the condition that b ≥ 0. Clearly, we can let M = a + 2. Then
the condition of Theorem 3.8 is that

k

2
+ d

2
− 1

2
> a and

p
2 + a + 1

k
2 + d

2 − a − 1
2

≤ 2ck.

A close examination of the Maruyama and Strawderman (2005) proof shows that
their upper bound on r(F ) is sharp. This implies that our bound in Lemma 3.5
cannot be relaxed.

Example 3.8 Generalized Student-t priors correspond to a mixing distribution of
the form

h(ν) = c(ν + 1)β−α−γ− p−2
2 νγ−βe

γ
ν .

Consider the following two cases. The first case where α ≤ 0, β ≤ 0 and γ < 0
involves the construction of a monotonic r(·) function. The second case where α ≤
0, β > 0 and γ < 0 does not require the r(·) function to be monotonic. In both
cases,
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lnh(ν) = (β − α − γ − p − 2

2
) ln(1 + ν)+ (γ − β) ln ν + γ

ν

and

g(ν) =
(
p − 2

2
+ α + γ − β

)
+ (1 + ν)(β − γ )

ν
+ γ (1 + ν)

ν2
= p − 2

2
+ α + β

ν
+ γ

ν2
.

Clearly, g(ν) is monotonic in the first case, and minimaxity of the generalized Bayes
estimator follows when

0 ≤ p − 2 + α

k
2 + 1

2 + d
2 − p

2 − α
≤ p − 2

k
2 + 1

in addition to the conditions C1, C2, and C3. In the limiting case wherem → ∞, C1
holds trivially. Both C2 and C3 can be satisfied by α > 2 − p. The upper bound on
R(F) can be satisfied by any α ≤ 0. Consequently, the conditions reduce to those
in Example 3.4 for the case of known variance.

Next we consider spherical multivariate Student-t priors with f degrees of
freedom and a scale parameter τ and with α = f−p+4

2 , β = f (1−τ)+2
2 , and

γ = −f τ
2 . The case of τ = 1 is of particular interest but does not necessarily give

a monotonic r(·) function. However, we can use the result in Theorem 3.10 to show
that the generalized Bayes estimator is minimax under the following conditions for
f ≤ p − 4, suppose there exists a constant b ∈ (0, 1] such that

p + f + 1
f

k + 1 + d − f − 1
f

≤ (2 − b)
p − 2

k + 2
,

1

2f
≤ c = b(p − 2)

4 + 4(2 − b)
p−2
k+2

. (3.39)

Condition (3.39) can be established by observing that for this case,

g(ν) = p − 2

2
+ α + β

ν
+ γ

ν2 = f

2
+ 1 + 1

ν
− f

2ν2

is clearly nonmonotonic. We then let M = f
2 + 1 + 1

2f and apply Lemma 3.5 to get

the upper bound on r(·). We define l1(ν) = g(ν)− 1
2f when ν ≤ f and l1(ν) = f

2 +1

otherwise. We also define l2(ν) = 1
2f when ν ≤ f and l2(ν) = 1

ν
− f

2ν2 otherwise.
By applying Lemma 3.6, we get condition (3.39).

The spherical multivariate Cauchy prior corresponds to the case f = 1. If k =
O(p) and d = 3, then condition (3.39) reduces to p ≥ 5, p+2

k+2 ≤ (2 − b)
p−2
k+2 , and

1
2 ≤ b(p−2)

4+8−4b .
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3.3 Results for Known Σ and General Quadratic Loss

3.3.1 Results for the Diagonal Case

Much of this section is based on the review in Strawderman (2003). We begin with a
discussion of the multivariate normal case whereΣ = diag(σ 2

1 , . . . , σ
2
p) is diagonal,

which we assume throughout this subsection. Let

X ∼ Np(θ,Σ) (3.40)

and the loss be equal to a weighted sum of squared errors loss

L(θ, δ) = (δ − θ)TD(δ − θ) =
p∑
i=1

(δi − θi)
2di . (3.41)

The results in Sects. 2.3, 2.4 and 3.1 extend by the use of Stein’s lemma in a
straightforward way to give the following basic theorem.

Theorem 3.11 Let X have the distribution (3.40) and let the loss be given
by (3.41).

(1) If δ(X) = X +Σg(X), where g(X) is weakly differentiable and E||g||2 < ∞,
then the risk of δ is

R(δ, θ) = Eθ ((δ − θ)TD(δ − θ))

= tr(ΣD)+ Eθ

[
p∑
i=1

σ 4
i di

(
g2
i (X)+ 2

∂gi (X)

∂Xi

)]
.

(2) If θ ∼ π(θ), then the Bayes estimator of θ is δΠ(X) = X + Σ
∇m(X)
m(X)

, where
m(X) is the marginal distribution of X.

(3) If θ ∼ π(θ), then the risk of a proper (generalized, pseudo-) Bayes estimator of
the form δm(X) = X +Σ

∇m(X)
m(X)

is given by

R(δm, θ) = tr(ΣD)

+ Eθ

⎡
⎢⎢⎢⎣

2m(X)
p∑
i=1

σ 4
i di∂m

2(X)/∂2Xi

m2(X)
−

p∑
i=1

σ 4
i di (∂m(X)/∂Xi)

2

m2(X)

⎤
⎥⎥⎥⎦

= tr(ΣD)+ 4Eθ

⎡
⎢⎢⎢⎣

p∑
i=1

σ 4
i di∂

2√m(X)/∂2Xi

√
m(X)

⎤
⎥⎥⎥⎦ .
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(4) If

p∑
i=1

σ 4
i di∂

2√m(X)/∂2Xi

√
m(X)

is nonpositive, the proper (generalized, pseudo) Bayes

δm(X) is minimax.

The proof follows closely to that of corresponding results in Sects. 2.3, 2.4 and 3.1.
The result is essentially from Stein (1981).

A key observation that allows us to construct Bayes minimax procedures for
this situation, based on the procedures for the case Σ = D = I , is the following
straightforward result from Strawderman (2003).

Lemma 3.7 Suppose η(X) is such that Δη(X) =
p∑
i=1

∂2η(X)/∂2X2
i ≤ 0 (i.e. η(X)

is superharmonic). Then η∗(X) = η(Σ−1D−1/2X) is such that
p∑
i=1

σ 4
i di∂

2η∗(X)/

∂2Xi ≤ 0.

Note, that for any scalar a, if η(X) is superharmonic, then so is η(aX). This leads
to the following result.

Theorem 3.12 Suppose X has the distribution (3.40) and the loss is given
by (3.41).

(1) Suppose
√
m(X) is superharmonic (m(X) is a proper, generalized, or pseudo-

marginal for the case Σ = D = I ). Then

δm(X) = X +Σ

(∇m(Σ−1D−1/2X)

m(Σ−1D−1/2X)

)

is a minimax estimator.
(2) If

√
m(‖X‖2) is spherically symmetric and superharmonic, then

δm(X) = X + 2m′(XT Σ−1D−1Σ−1X)D−1Σ−1X

m(XT Σ−1D−1Σ−1X)

is minimax.
(3) Suppose the prior distribution π(θ) has the hierarchical structure θ |λ ∼

Np(0, Aλ) for λ ∼ h(λ), 0 < λ < 1, where Aλ = (c/λ)ΣDΣ −Σ , c is such
that A1 is positive definite, and h(λ) satisfies the conditions of Theorem 3.12.
Then

δπ (X) = X +Σ
∇m(X)
m(X)

is minimax.
(4) Suppose mi(X), i = 1, 2 . . . k are superharmonic. Then the multiple shrinkage

estimator
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δm(X) = X +Σ

⎡
⎢⎢⎢⎣

k∑
i=1

∇mi(Σ−1D−1/2X)

k∑
i=1

mi(Σ−1D−1/2X)

⎤
⎥⎥⎥⎦

is a minimax multiple shrinkage estimator.

Proof Part (1) follows directly from Parts (3) and (4) of Theorem 3.11 and
Lemma 3.7. Part (2) follows from Part (1) and Part (2) of Theorem 3.11 with a
straightforward calculation.

For Part (3), first note that θ |λ ∼ Np(0, Aλ) andX−θ |λ ∼ Np(0,Σ). Thus,X−
θ and θ are conditionally independent given λ. Hence we have X|λ ∼ Np(0, Aλ +
Σ). It follows that

m(X) ∝
∫ 1

0
λp/2 exp

[
−λ
c

(
XT Σ−1D−1Σ−1X

)]
h(λ) dλ

but m(X) = η
(
XT Σ−1D−1Σ−1X

/
c
)
, where

√
η (XT X) is superharmonic by

Theorem 3.11. Hence, by Part (2), δπ (X) is minimax (and proper or generalized
Bayes depending on whether h(λ) is integrable or not).

Since superharmonicity of η(X) implies the superharmonicity of
√
η (X), Part

(4) follows from Part (1) and the superharmonicity of mixtures of superharmonic
functions. ��
Example 3.9 (Pseudo-Bayes minimax estimators) When Σ = D = σ 2I , we saw
in Sect. 3.3 that by choosing m(X) = 1

‖X‖2b , the pseudo-Bayes estimator was the

James-Stein estimator δm(X) = (1 − 2bσ 2

‖X‖2 )X. It now follows from this and part

(2) of Theorem 3.12 that m(XT Σ−1D−1Σ−1X) = (1/XT Σ−1D−1Σ−1X)b has
associated with it the pseudo-Bayes estimator δm(X) = (1 − 2bD−1Σ−1

(XT Σ−1D−1Σ−1X)
)X.

This estimator is minimax for 0 < b ≤ 2(p − 2).

Example 3.10 (Hierarchical proper Bayes minimax estimator) As suggested by
Berger (1976) suppose the prior distribution has the hierarchical structure θ |λ ∼
Np(0, Aλ) where Aλ = cΣDΣ − Σ , c > 1/min(σ 2

i di) and h(λ) = (1 + b)λb

for 0 < λ < 1 and −1 < b ≤ (p−6)
2 . The resulting proper Bayes estimator will be

minimax for p ≥ 5 by part (3) of Theorem 3.12 and Example 3.9. For p ≥ 3, the
estimator δπ (X) given in part (3) of Theorem 3.12 is a generalized Bayes minimax
estimator provided − (p+2)

2 < b ≤ (p−6)
2 .

It can be shown to be admissible if the lower bound is replaced by −2, by the
results of Brown (1971). Also see the development in Berger and Strawderman
(1996) and Kubokawa and Strawderman (2007).
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Example 3.11 (Multiple shrinkage minimax estimators) It follows from Exam-

ple 3.9 and Theorem 3.12 that m(X) =
k∑
i=1

[
1

(X−νi )TΣ−1D−1Σ−1(X−νi )
]b

satisfies

the conditions of Theorem 3.12 (4) for 0 < b ≤ (p − 2)/2. and hence

δm(X) = X−
2b

k∑
i=1

[
D−1Σ−1 (X − νi)

]/[
(X − νi)

T Σ−1D−1Σ−1 (X − νi)
]b+1

k∑
i=1

1
/[
(X − νi)

T Σ−1D−1Σ−1 (X − νi)
]b

(3.42)
is a minimax multiple shrinkage (pseudo-Bayes) estimator.

If, as in Example 3.11 we used the generalized prior

π(θ) =
k∑
i=1

[
1

(θ − νi)
T Σ−1D−1Σ−1 (θ − νi)

]b
,

the resulting generalized Bayes (as opposed to pseudo-Bayes) estimators is minimax
for 0 < b ≤ (p − 2)/2.

3.3.2 General Σ and General Quadratic Loss

In this section, we generalize the above results to the case of

X ∼ Np(θ,Σ), (3.43)

where Σ is a general positive definite covariance matrix and the loss is given by

L(θ, δ) = (δ − θ)TQ(δ − θ), (3.44)

where Q is a general positive definite matrix. We will see that this case can be
reduced to the canonical form Σ = I and Q = diag(d1, d2, . . . , dp) = D. We
continue to follow the development in Strawderman (2003).

The following well known fact will be used repeatedly to obtain the desired
generalization.

Lemma 3.8 For any pair of positive definite matrices, Σ and Q, there exits a
non-singular matrix A such that AΣAT = I and (AT)−1QA−1 = D where D
is diagonal.

Using this fact we can now present the canonical form of the estimation problem.
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Theorem 3.13 Let X ∼ Np(θ,Σ) and suppose that the loss is L1(δ, θ) = (δ −
θ)TQ(δ−θ). LetA andD be as in Lemma 3.8 and let Y = AX ∼ Np(v, Ip), where
v = Aθ and L2(δ, v) = (δ − v)TD(δ − v).

(1) If δ1(X) is an estimator with risk function R1(δ1, θ) = EθL1(δ1(X), θ), then
the estimator δ2(Y ) = Aδ1(A

−1Y ) has risk function R2(δ2, v) = R1(δ1, θ) =
EθL2(δ2(Y ), v).

(2) δ1(X) is proper or generalized Bayes with respect to the proper prior distribu-
tion π1(θ) (or pseudo-Bayes with respect to the pseudo-marginalm1(X)) under
loss L1 if and only if δ2(Y ) = Aδ1(A

−1Y ) is proper or generalized Bayes with
respect to π2(v) = π1(A

−1v) (or pseudo-Bayes with respect to the pseudo-
marginal m2(Y ) = m1(A

−1Y )).
(3) δ1(X) is admissible (or minimax or dominates δ∗1(X)) under L1 if and only

if δ2(Y ) = Aδ1(A
−1Y ) is admissible (or minimax or dominates δ∗2(Y ) =

Aδ∗1(A−1Y ) under L2).

Proof To establish Part (1) note that the risk function

R2(δ2, v) = EθL2[δ2(Y ), v]
= Eθ [(δ2(Y )− v)TD(δ2(Y )− v)]
= Eθ [(Aδ1(A

−1(AX))− Aθ)TD(Aδ1(A
−1(AX))− Aθ)]

= Eθ [(δ1((X)− θ)TATDA(δ1(X)− θ)]
= Eθ [(δ1((X)− θ)TQ(δ1(X)− θ)]
= R1(δ1, θ).

Since the Bayes estimator for any quadratic loss is the posterior mean and θ ∼
π1(θ) and v = Aθ ∼ π2(v) = π1(A

−1v) (ignoring constants), then Part (2) follows
by noting that

δ2(Y )=E[v|Y ]=E[Aθ |Y ]=E[Aθ |AX]=A E[θ |X]=A δ1(X)=Aδ1(A
−1Y ).

Lastly, Part (3) follows directly from Part (1). ��
Note that if Σ1/2 is the positive definite square root of Σ and A = PΣ−1/2

where P is orthogonal and diagonalizes Σ1/2QΣ1/2, then this A and D =
PΣ1/2QΣ1/2P T satisfy the requirements of the theorem.

Example 3.12 Proceeding as we did in Example 3.9 and applying Theorem 3.13,
m(XT Σ−1Q−1Σ−1X) = (XT Σ−1Q−1Σ−1X)−b has associated with it, the
pseudo-Bayes minimax James-Stein estimators is

δm(X) =
(

1 − 2 bQ−1Σ−1(
XT Σ−1Q−1Σ−1X

)
)
X,

for 0 < b ≤ 2 (p − 2).



100 3 Normal Mean Vector II

Generalizations of Example 3.10 to hierarchical Bayes minimax estimators and
generalizations of Example 3.11 to multiple shrinkage estimators are straightfor-
ward. We omit the details.

3.4 Admissibility of Bayes Estimators

Recall from Sect. 2.4 that an admissible estimator is one that cannot be dominated
in risk, i.e. δ(X) is admissible if there does not exist an estimator δ′(X) such that
R(θ, δ′) ≤ R(θ, δ) for all θ , with strict inequality for some θ . We have already
derived classes of minimax estimators in the previous sections.

In this section, we study their possible admissibility or inadmissibility. One
reason that admissibility of these minimax estimators is interesting is that, as we
have already seen, the usual estimator δ0(X) = X is minimax but inadmissible if
p ≥ 3. Actually, we have seen that it is possible to dominate X with a minimax
estimator (e.g., δJS(p−2)(X)) that has a substantially smaller risk at θ = 0. Hence, it
is of interest to know if a particular (dominating) estimator is admissible.

Note that a unique proper Bayes estimator is automatically admissible (see
Lemma 2.6), so we already have examples of admissible minimax estimators for
p ≥ 5.

We also note that the class of generalized Bayes estimators contains all admis-
sible estimators if loss is quadratic (i.e., it is a complete class; see e.g., Sacks
1963; Brown 1971; Berger and Srinivasan 1978). It follows that if an estimator
is not generalized Bayes, it is not admissible. Further, in order to be generalized
Bayes, an estimator must be everywhere differentiable by properties of the Laplace
transform . In particular, the James-Stein estimators and the positive-part James-
Stein estimators (for a 	= 0) are not generalized Bayes and therefore not admissible.

In this section, we will study the admissibility of estimators corresponding to
priors which are variance mixtures of normal distributions for the case of X ∼
Np(θ, I ) and quadratic loss ‖δ − θ‖2 as in Sect. 3.1.2. In particular, we consider
prior densities of the form (3.4) and establish a connection between admissibility
and the behavior of the mixing (generalized) density h(v) at infinity. The analysis
will be based on Brown (1971), Theorem 1.2. An Abelian Theorem (see, e.g.,
Widder (1946), Corollary 1.a, p. 182) along with Brown’s theorem are our main
tools. We use the notation f (x) ∼ g(x) as x → a to mean limx→a f (x)/g(x) = 1.
Here is an adaptation of the Abelian theorem in Widder that meets our needs.

Theorem 3.14 Assume g : R
+ → R has a Laplace transform f (s) =∫∞

0 g(t)e−st dt that is finite for s ≥ 0. If g(t) ∼ tγ as t → 0+ for some γ > −1,
then f (s) ∼ s−(γ+1)Γ (γ + 1) as s → ∞.

The proof is essentially as in Widder (1946) but the assumption of finiteness of
the Laplace transform at s = 0 allows the extension from γ ≥ 0 to γ > −1.
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We first give a lemma which relates the tail behavior of the mixing density h(v)
to the tail behavior of π(‖θ‖2) and m(‖x‖2) and also shows that ‖δ(x) − x‖ is
bounded whenever h(v) has polynomial tail behavior.

Lemma 3.9 Suppose X ∼ Np(θ, Ip), L(θ, δ) = ‖δ − θ‖2 and π(θ) is given
by (3.4) where h(v) ∼ K va as v → ∞ with a < (p − 2)/2 and where v−p/2 h(v)
is integrable in a neighborhood of 0. Then

(1) π(θ) ∼ K (‖θ‖2)a−(p−2)/2 Γ ((p − 2)/2 − a) as ‖θ‖2 → ∞,
m(x) ∼ K(‖x‖2)a−(p−2)/2 Γ ((p − 2)/2 − a) as ‖x‖2 → ∞,
and therefore π(‖x‖2) ∼ m(‖x‖2) as ‖x‖2 → ∞,

(2) ‖δ(x) − x‖ is uniformly bounded, where δ is the generalized Bayes estimator
corresponding to π .

Proof First note that (with t = 1/v)

π(θ) = π∗(‖θ‖2) =
∫ ∞

0
exp

{
−‖θ‖2

2
t

}
t
p
2 −2h(1/t) dt

and g(t) = t
p
2 −2h(1/t) ∼ Kt

p−4
2 −a as t → 0+. Therefore, by Theorem 3.14,

π(θ) ∼ K(‖θ‖2)a−
p−2

2 Γ
(
p−2

2 − a
)

as ‖θ‖2 → ∞. Similarly

m(x) =
∫ ∞

0
e
− ‖θ‖2

2(1+v) (1 + v)−
p
2 h(v) dv

(
for t = 1

1 + v

)

=
∫ ∞

1
e−

‖θ‖2

2 t t
p
2 −2h

(
1 − t

t

)
dt.

We note that as t → 0+, t
p
2 −2h

(
1−t
t

)
∼ t

p−4
2

(
1−t
t

)a ∼ t
p−4

2 −a . Thus, again by

Theorem 3.14,

m(x) ∼ K(‖x‖2)a−
p−2

2 Γ

(
p − 2

2
− a

)
as ‖x‖2 → ∞,

and Part (1) follows.
To prove Part (2) note that

δ(x)− x = ∇m(x)
m(x)

= −
− ∫∞

0 exp

{
− ‖x‖2

2(1+v)
}
(1+v)−( p2 +1)

h(v) dv

∫∞
0 exp

{
− ‖x‖2

2(1+v)
}
(1+v) p2 h(v) dv

x.

The above argument applied to the numerator and denominator shows
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‖δ(x)− x‖2 ∼
[

(‖x‖2)
a− p

2 Γ (
p
2 −a)

‖x‖2)
a− p−2

2 Γ (
p−2

2 −a)

]2

‖x‖2

∼
(
p−2

2 − a
)2

1
‖x‖2 as ‖x‖2 → ∞.

Since δ(x)− x is in C ∞ and tends to zero as ‖x‖2 → ∞, the function is uniformly
bounded. ��

The following result characterizes admissibility and inadmissibility for general-
ized Bayes estimators when the mixing density h(v) ∼ va as v → ∞.

Theorem 3.15 For priors π(θ) of the form (3.4) with mixing density h(v) ∼ va as
v → ∞, the corresponding generalized Bayes estimator δ is admissible if and only
if a ≤ 0.

Proof (Admissibility if a ≤ 0) By Lemma 3.9, we have m̄(r) = m∗(r2) ∼ K∗
(r2)a−(p−2)/2, with m(x) = m∗(‖x‖2). Thus, for any ε > 0, there is an r0 > 0
such that, for r > r0, m̄(r) ≤ (1 + ε)K∗r2a−(p−2). Since ‖δ(x) − x‖ is uniformly
bounded,

∫ ∞

r0

(rp−1m̄(r))−1 dr ≥ (K∗(1 + ε))−1
∫ ∞

r0

r−(2a+1) dr = ∞

if a ≥ 0. Hence, δ(x) is admissible if a ≤ 0, by Theorem 1.2.
(Inadmissibility if a > 0) Similarly, we have, for r ≥ r0,

m(r) = 1

m∗(r2)
∼ 1

K∗ (r
2)

p−2
2 −a,

m(r) ≤ 1

(1 − ε)K∗ r
p−2−2a,

and
∫ ∞

0
r1−pm (r) dr ≤ 1

K∗

∫ ∞

r0

r−(1+2a) dr < ∞

if a > 0. Thus δ(x) is inadmissible if a > 0. ��
Example 3.13 (Continued) Recall for the Strawderman prior that h(v) = C(1 +
v)−α−(

p−2
2 ) ∼ va as v → ∞ for a = −(α + p−2

2 ).
The above theorem implies that the generalized Bayes estimator is admissible if

and only if α+ p−2
2 ≥ 0 or 1− p

2 ≤ α. We previously established minimaxity when
2−p < α ≤ 0 for p ≥ 3 and propriety of the prior when 2− p

2 < α ≤ 0 for p ≥ 5.
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Note in general that for a mixing distribution of the form h(v) ∼ Kva as v →
∞, the prior distribution π(θ) will be proper if and only if a < −1 by the same
argument as in the proof of Theorem 3.15. Hence the bound for admissibility, a ≤ 0,
differs from the bound for propriety, a < −1, by 1.

3.5 Connections to Maximum a Posteriori Estimation

3.5.1 Hierarchical Priors

As we have seen in previous sections of this chapter, the classical Stein estimate
and its positive-part modification can be motivated in a number of ways, perhaps
most commonly as empirical Bayes estimates (i.e., posterior means) under a
normal hierarchical model in which θ ∼ Np(0, ψ Ip) where ψ , viewed as a
hyperparameter, is estimated. In this section we look at shrinkage estimation through
the lens of maximum a posteriori (MAP) estimation. The development of this
section follows Strawderman and Wells (2012).

The class of proper Bayes minimax estimators constructed in Sect. 3.1 relies on
the use of a hierarchically specified class of proper prior distributions πS(θ, κ). In
particular, for the prior in Strawderman (1971), πS(θ, κ) is specified according to

θ |κ ∼ Np(0, g(κ)Ip), πS(κ) = κ−a(1 − a)−1 11[0<κ<1], (3.45)

where g(κ) = (1 − κ)/κ and the constant a satisfies 0 ≤ a < 1, i.e., πS(κ)
is a Beta(1 − a, 1) probability distribution. Suppose a = 1/2; then, utilizing the
transformation ψ = g(κ) > 0 in (3.45), we obtain the equivalent specification

θ |ψ ∼ Np(0, ψIp), πS(ψ) ∝
(

1

1 + ψ

) 3
2

11[ψ>0]. (3.46)

Two interesting alternative formulations of (3.46) are given below for the case p = 1
and generalized later for arbitrary p. In what follows, we let Gamma(τ, ξ) denote a
random variable with probability density function

g(x|τ, ξ) = ξτ

Γ (τ)
xτ−1e−xξ 11[x>0] for τ > 0 and ξ > 0

and Exp(ξ) corresponds to the choice τ = 1 (i.e., an exponential random variable
in its rate parametrization).

For p = 1, the marginal prior distribution on θ induced by (3.46) is equivalent to
that obtained under the specification
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θ |ψ, λ ∼ N (0, ψ), ψ |λ ∼ Exp

(
λ2

2

)
, λ|α ∼ HN(α−1), (3.47)

where α = 1 and HN(ζ ) denotes the half-normal density

f (x|ζ ) =
√

2

π ζ
exp

{
− x2

2 ζ

}
11[x>0] for ζ > 0.

The marginal prior distribution on θ induced by (3.46) is also equivalent to that
obtained under the alternative specification

θ |λ ∼ Laplace(λ), λ|α ∼ HN(α−1), (3.48)

where α = 1 and Laplace(λ) denotes a random variable with the Laplace (double
exponential) probability density function

f (y|λ) = λ

2
e−λ|y| 11[y∈R].

This result follows from Griffin and Brown (2010). Define

θ |ψ,ω ∼ N (0, ψ), ψ |ω ∼ Exp(ω), ω|δ, α ∼ Gamma(1/2, α) (3.49)

as a hierarchically specified prior distribution for θ ,ψ and ω. The resulting marginal
prior distribution for θ , obtained by integrating out ψ and ω, is exactly the quasi-
Cauchy distribution of Johnstone and Silverman (2004); see Griffin and Brown
(2010) for details. Carvalho et al. (2010) showed that this distribution also coincides
with the marginal prior distribution for θ induced by taking a = 1/2 in (3.45). The
transformation λ = √

2ω in (3.49) leads directly to (3.47) upon setting α = 1; (3.48)
is then obtained by integrating out ψ in (3.47).

3.5.2 The Positive-Part Estimator and Extensions as MAP
Estimators

Takada (1979) showed that a positive-part type minimax estimator

δcJS+(X) =
(

1 − c

‖X‖2
2

)
+
X, (3.50)

where (t)+ = max(t, 0), is also the MAP estimator under a certain class of hierar-
chically specified generalized prior distributions, say πT (θ, κ) = π(θ |κ)πT (κ). For
the specific choice c = p − 2 in (3.50), Takada’s prior reduces to
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θ |κ ∼ Np(0, g(κ)Ip), πT (κ) ∝ (1 − κ)p/2κ−1 11[0<κ<1]. (3.51)

The improper prior (3.51) evidently behaves similarly to Strawderman’s proper
prior (3.45) (i.e., for a = 1/2). Notably, the numerator (1 − κ)p/2 in πT (κ)

explicitly offsets the contribution of (1 − κ)−p/2 arising from the determinant of
the variance matrix g(κ) Ip in the conditional prior specification θ |κ . Under the
monotone decreasing variable transformation ψ = g(κ) > 0, (3.51) implies an
alternative representation that is analogous to (3.46):

θ |ψ ∼ Np(0, ψIp), πT (ψ) ∝ ψp/2
(

1

1 + ψ

)p/2+1

11[ψ>0]. (3.52)

We observe that the proper prior (3.46) and improper prior (3.52) (almost)
coincide when p = 1; in particular, multiplying the former by ψ1/2 yields the latter.
In view of the fact that (3.46) and (3.47) lead to the same marginal prior on θ when
p = 1, one is led to question whether a deeper connection between these two prior
specifications might exist. Supposing p ≥ 1, consider the following straightforward
generalization of (3.47):

θ |ψ, λ ∼ Np(0, ψIp), ψ |λ ∼ Gamma

(
p + 1

2
,
λ2

2

)
, λ|α ∼ HN(α−1). (3.53)

Integrating λ out of the higher level prior specification the resulting marginal
(proper) prior for ψ reduces to

π(ψ |α) ∝ ψ−1/2ψp/2

(
1

1 + ψ
α

) p
2 +1

11[ψ>0]. (3.54)

For α = 1 and any p ≥ 1, we now observe that the proper prior (3.54) is
simply the improper prior πT (ψ) in (3.52) multiplied by ψ−1/2 and it reduces to
Strawderman’s prior (3.46) for p = 1.

3.5.3 Penalized Likelihood and Hierarchical Priors

Expressed in modern terms of penalization, Takada (1979) proved that the positive-
part estimator (3.50) is the solution to a certain penalized likelihood estimation
problem in which the penalty (or regularization) term is determined by the
prior (3.51). Penalized likelihood estimation, and more generally problems of
regularized estimation, have become a very important conceptual paradigm in
both statistics and machine learning. Such methods suggest principled estimation
and model selection procedures for a variety of high-dimensional problems. The
statistical literature on penalized likelihood estimators has exploded, in part due
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to success in constructing procedures for regression problems in which one can
simultaneously select variables and estimate their effects. The class of penalty
functions leading to procedures with good asymptotic frequentist properties have
singularities at the origin; important examples of separable penalties include the
least absolute shrinkage and selection operator (LASSO) , Tibshirani (1996),
smoothly clipped absolute deviation (SCAD), Fan and Li (2001), and minimax
concave penalties (MCP) Zhang (2010). In fact, most such penalties utilized in the
literature behave similarly to the LASSO penalty near the origin, differing more
in their respective behaviors away from the origin, where control of estimation
bias for those parameters not estimated to be zero becomes the driving concern.
Generalizations of the LASSO penalty have been proposed to deal with correlated
groupings of parameters, such as those that might arise in problems with features
that can be sensibly ordered, as in the fused LASSO in Tibshirani et al. (2005), or
separated into distinct subgroups as in the group LASSO in Yuan and Lin (2006).
In such problems, the use of these penalties serves a related purpose.

The LASSO was initially formulated as a least squares estimation problem
subject to a �1 constraint on the parameter vector. The more well-known penalized
likelihood version arises from a Lagrange multiplier formulation of a convex
relaxation of a �0 non-convex optimization problem. Since the underlying objective
function is separable in the parameters, the underlying estimation problem is
evidently directly related to the now-classical problem of estimating a bounded
normal mean. From a decision theoretic point of view, if X ∼ N (θ, 1) for |θ | ≤ λ,
then the projection of the usual estimator dominates the unrestricted MLE, but
cannot be minimax for quadratic loss because it is not a Bayes estimator. Casella and
Strawderman (1981) showed that the unique minimax estimator of θ is the Bayes
estimator corresponding to a two-point prior on {−λ, λ} for λ sufficiently small.
Casella and Strawderman (1981) further showed that the uniform boundary Bayes
estimator, λ tanh(λx), is the unique minimax estimator if λ < λ0 ≈ 1.0567. They
also considered three-point priors supported on {−λ, 0, λ} and obtained sufficient
conditions for such a prior to be least favorable. Marchand and Perron (2001)
considered the multivariate extension, X ∼ Np(θ, Ip) with ‖θ‖2 ≤ λ and showed
that the Bayes estimator with respect to a boundary uniform prior dominates the
MLE whenever λ ≤ √

p under squared error loss.
It has long been recognized that the class of penalized likelihood estimators also

has a Bayesian interpretation. For example, in the canonical version of the LASSO
problem, minimizing

1

2
‖X − θ‖2

2 + λ‖θ‖1, ||θ ||1 =
p∑
i=1

|θi | (3.55)

with respect to θ is easily seen to be equivalent to computing the MAP estimator of
θ under a model specification in which X∼Np(θ, Ip) and θ has a prior distribution

satisfying θi
iid∼ Laplace(λ). It is easily shown that the solution to (3.55) is θ̂i (X) =

sign(Xi)(|Xi |−λ)+, i = 1, . . . , p. The critical hyperparameter λ, though regarded
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as fixed for the purposes of estimating θ , is typically estimated in some ad hoc
manner (e.g., cross validation), resulting in an estimator with an empirical Bayes
flavor.

The Laplace prior inherent in the LASSO minimization problem (3.55) has
broad connections to estimation under hierarchical prior specifications that lead to
scale mixtures of normal distributions. As pointed out above, the conditional prior
distribution of θ |λ obtained by integrating out ψ in (3.47) is exactly Laplace(λ).
More generally, the conditional distribution for θ |λ under the hierarchical prior
specification (3.53) is a special case of the class of multivariate exponential power
distributions in Gomez-Sanchez-Manzano et al. (2008); in particular, we obtain

π(θ |λ) ∝ λp exp {−λ‖θ‖2} , (3.56)

a direct generalization of the Laplace distribution that arises when p = 1. Treating
λ as fixed hyperparameter, computation of the resulting MAP estimator under the
previous model specification X ∼ Np(θ, Ip) reduces to determining the value of θ
that minimizes

1

2
‖X − θ‖2

2 + λ‖θ‖2. (3.57)

The resulting estimator is easily shown to be

δGL(X) =
(

1 − λ

‖X‖2

)
+
X, (3.58)

an estimator that coincides with the solution to the canonical version of the grouped
LASSO problem involving a single group of parameters (see Yuan and Lin 2006)
and equals θ̂ (X) = sign(X)(|X| − λ)+ for the case where p = 1.

Consider the problem of estimating θ in the canonical setting X ∼ Np(θ, Ip). In
view of the fact that (3.53) leads to (3.56) upon integrating out ψ , our starting point
is the (possibly improper) generalized class of joint prior distributions π(θ, λ|α, β),
which we define in the following hierarchical fashion

π(θ |λ, α, β) ∝ λp exp {−λ‖θ‖2} ,
π(λ|α, β) ∝ λ−p exp{−α(λ− β)2}, (3.59)

where α, β > 0 are hyperparameters. Equivalently,

π(θ, λ|α, β) ∝ exp {−λ‖θ‖2} exp{−α(λ− β)2}. (3.60)

The prior on λ is an improper modification of that given in (3.53), in which a location
parameter β is introduced and the factor λ−p is introduced to offset the contribution
λp in (3.56). This construction mimics the idea underlying the prior used by Takada
(1979) to motivate (3.50) as a MAP estimator.
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Considering (3.60) as motivation for defining a new class of hierarchical penalty
functions, Strawderman and Wells (2012) propose deriving the MAP estimator for
(θ, λ) through minimizing the objective function

G(θ, λ) = 1

2
‖X − θ‖2

2 + λ‖θ‖2 + α(λ− β)2 (3.61)

jointly in θ ∈ R
p and λ > 0, where α > 1/2 and β > 0 are fixed. The resulting

estimator for θ takes the closed form

δ(α,β)(X) = wα,β(‖X‖2)X, (3.62)

where

wα,β(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 s ≤ β

να

(
1 − β

s

)
β < s ≤ 2αβ

1 s > 2αβ

for να = 2α/(2α − 1). Equivalently, we may write

wα,β(s) =
⎧⎨
⎩
να

(
1 − β

s

)
+ s ≤ 2αβ

1 s > 2αβ

demonstrating that (3.62) has the flavor of a range-modified positive-part estimator.
A detailed derivation of this estimator is in Strawderman and Wells (2012).

Some interesting special cases of the estimator (3.62) arise when considering
specific values of α, β and p. For example, letting α → ∞, we obtain (for β > 0)

δ(β)(X) =
(

1 − β

‖X‖2

)
+
X; (3.63)

upon setting β = λ,we evidently recover (3.58); subsequently, setting λ = √
p − 2,

one then obtains an obvious modification of (3.50) for the case where c = p − 2:

δ∗PP (X) =
(

1 −
√
p − 2

‖X‖2

)
+
X (3.64)

In the special case p = 1, the estimator (3.62) reduces to

δM(X) =

⎧⎪⎨
⎪⎩

0 if |X| ≤ β

2α
2α−1 (X − sign(X)β) if β < |X| ≤ 2αβ

X if |X| > 2αβ

. (3.65)
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As shown in Strawderman et al. (2013), (3.65) is also the solution to the penalized
minimization problem

1

2
(X − θ)2 + ρ(θ;α, β),

where β > 0, α > 1/2 and

ρ(t;α, β) = β

∫ |t |

0
(1 − z

2αβ
)+ dz, t ∈ R.

This optimization problem is the univariate equivalent of the penalized likelihood
estimation problem considered in Zhang (2010), who referred to ρ(t;α, β) as MCP.
It follows that (3.65) is equivalent to the univariate MCP thresholding operator;
consequently, (3.62) may be regarded as a generalization of this operator for
thresholding a vector of parameters. Zhang (2010) showed that the LASSO, SCAD,
and MCP belong to a family of quadratic spline penalties with certain sparsity
and continuity properties. MCP turns out to be the simplest penalty that results
in an estimator that is nearly unbiased, sparse and continuous. As demonstrated
above, MCP also has an interesting Bayesian motivation under a hierarchical
modeling strategy. Strawderman et al. (2013) undertook a more detailed study of
the connections between MCP, the hierarchically penalized estimator, and proximal
operators for the case of p = 1. They also compared this estimator to several others
through consideration of frequentist and Bayes risks.

3.6 Estimation of a Predictive Density

Consider a parametric model {Y , (P ′
μ)μ∈Ω } where Y is the sample space, Ω is

the parameter space and P ′ = {p(y|μ) : μ ∈ Ω} is a class of densities of P ′
μ

with respect to a σ -finite measure. In addition, suppose an observed value x of the
random variableX follows a model {X , (Pμ)μ∈Ω} indexed by the same parameter.
In this section, we examine the problem of estimating the true density p′(.|μ) ∈ P ′
of a random variable Y . In this context p′(·|μ) is referred to as the predictive density
of Y .

Let the density q̂(y|x) (belonging to some class of models C ⊃ P ′) be an
estimate, based on the observed data x, of the true density p(y|μ). Aitchison (1975)
proposed using the Kullback and Leibler (1951) divergence, defined in (3.66) below,
as a loss function for estimating p(y|μ).

The class of estimates C can be identical to the class P ′, that is, for any y ∈ Y

q̂(y|x) = p(y|μ = μ̂(x))
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where μ̂ is some estimate of μ. This type of density estimator is called the “plug-in
density estimate” associated with the estimate μ̂. Alternatively, one may choose

q̂(y|x) =
∫
Ω

p(y|μ) dπ(μ|x)

where dπ(μ|x) may be a weight function (measure) or an a posteriori density
associated with a priori measure π(μ). In this case, the class C will be broader
than the class of the models P ′. Aitchison (1975) showed that this latter method
is preferable to the plug-in approach for several families of probability distributions
by comparing their risks induced by the Kullback-Leibler divergence.

3.6.1 The Kullback-Leibler Divergence

First, recall the definition of the Kullback-Leibler divergence and some of its
properties.

Lemma 3.10 The Kullback-Leibler divergence (relative entropy) DKL (p, q)

between two densities p and q is defined by

DKL (p, q) = Ep

[
log

p

q

]
=
∫

log

[
p(x)

q(x)

]
p(x) dx ≥ 0 (3.66)

and equality is achieved if and only if p = q, p−almost surely.

Note that the divergence can be finite only if the support of the density p is
contained in the support of the density q. By convention, we define 0 log 0

0 = 0.

Proof By definition of the Kullback-Leibler divergence we can write

−DKL(p, q) =
∫

log

[
q(x)

p(x)

]
p(x) dx

≤ log

[∫
q(x)

p(x)
p(x) dx

]
(by Jensen’s inequality)

= log

[∫
q(x) dx

]

= 0.

We have equality, using Jensen’s inequality, if and only if p = q, p -almost surely.
Note that the lemma is true if q is assumed only to be a subdensity (mass less than
or equal to 1). ��
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The Kullback-Leibler divergence is not a true distance since it is not symmetric
and it does not satisfy the triangle inequality. But it appears as the natural
discrepancy measure in information theory. An important property, given in the
following lemma, is that it is strictly convex.

Lemma 3.11 The Kullback-Leibler divergence is strictly convex, that is to say, if
(p1, p2) and (q1, q2) are two pairs of densities then, for any 0 ≤ λ ≤ 1,

DKL(λ p1 + (1 − λ) p2, λ q1 + (1 − λ) q2) ≤ λDKL(p1, q1)+ (1 − λ)DKL(p2, q2) ,

(3.67)
with strict inequality unless (p1, p2) = (q1, q2) a.e. with respect to p1 + p2.

Proof Note that f (t) = t log(t) is strictly convex on (0,∞). Let

α1 = λq1

λq1 + (1 − λ)q2
, α2 = (1 − λ)q2

λq1 + (1 − λ)q2
, t1 = p1

q1
and t2 = p2

q2
.

From the convexity of the function f it follows that

f (α1t1 + α2t2) ≤ α1f (t1)+ α2f (t2)

and consequently

(α1t1 + α2t2) log(α1t1 + α2t2) ≤ t1α1 log(t1)+ t2α2 log(t2) .

Substituting the above values of α1, α2, t1 and t2 gives

(λp1 + (1 − λ)p2) log
λp1 + (1 − λ)p2

λq1 + (1 − λ)q2
≤ λp1 log

p1

q1
+ (1 − λ)p2 log

p2

q2
.

Finally, by integrating the latter term, (3.67) and the strict convexity follow from the
strict convexity of the function f . ��

3.6.2 The Bayesian Predictive Density

Assume in the rest of this subsection that p(x|μ) and p′(y|μ) are densities with
respect to the Lesbegue measure. For any estimator p̂(·|x) of the density p′(y|μ),
define the Kullback-Leibler loss by

KL(μ, p̂(·|x)) =
∫
p′(y|μ) log

[
p′(y|μ)
p̂(y|x)

]
dy (3.68)

and its corresponding risk as
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RKL(μ, p̂) =
∫
p(x|μ)

[∫
p′(y|μ) log

[
p′(y|μ)
p̂(y|x)

]
dy

]
dx. (3.69)

We say that the density estimate p̂2 dominates the density estimate p̂1 if, for any
μ ∈ Ω, RKL(μ, p̂1) − RKL(μ, p̂2) ≤ 0, with strict inequality for at least some
value of μ.

In the Bayesian framework we will compare estimates using Bayes risk. We will
consider the class, more general than Aitchison (1975), of all subdensities,

D =
{
q(·|x)|

∫
q(y|x) dy ≤ 1 for all x

}
.

Lemma 3.12 (Aitchison 1975) The Bayes risk

rπ (p̂) =
∫

RKL(μ, p̂) π(μ) dμ

is minimized by

p̂π (y|x) =
∫
p′(y|μ)p(μ|x) dμ =

∫
p′(y|μ)p(x|μ)π(μ) dμ∫

p(x|μ)π(μ) dμ . (3.70)

We call p̂π the Bayesian predictive density.

Proof The difference between the Bayes risks of p̂π and another competing
subdensity estimator q̂ is

rπ (q̂)− rπ (p̂π ) =
∫
Ω

[∫
X

{∫
Y
p′(y|μ) log

p̂π (y|x)
q̂(y|x) dy

}
p(x|μ) dx

]
π(μ) dμ

=
∫
Ω

[∫
X

{∫
Y
p′(y|μ) log

p̂π (y|x)
q̂(y|x) dy

}
p(x|μ)π(μ) dx

]
dμ

=
∫
Ω

[∫
X

{∫
Y
p′(y|μ) log

p̂π (y|x)
q̂(y|x) dy

}
p(μ|x)m(x) dx

]
dμ .

Rearranging the order of integration thanks to Fubini’sTheorem gives

rπ (q̂)− rπ (r̂) =
∫
X

[∫
Y

{∫
Ω

p(μ|x) p′(y|μ) dμ
}

log
p̂π (y|x)
q̂(y|x) dy

]
m(x) dx

=
∫
X

[∫
Y
p̂π (y|x) log

p̂π (y|x)
q̂(y|x) dy

]
m(x) dx

=
∫
X
DKL(p̂π (.|x), q̂(.|x))m(x) dx ≥ 0.

��
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3.6.3 Sufficiency Reduction in the Normal Case

Let X(n) = (X1, . . . , Xn) and Y(m) = (Y1, . . . , Ym) be independent iid sam-
ples from p-dimensional normal distributions Np(μ,Σ1) and Np(μ,Σ2) with
unknown common mean μ and known positive definite covariance matrices Σ1 and
Σ2. On the basis of an observation x(n) = (x1, . . . , xn) from X(n), consider the
problem of estimating the true predictive density p′(y(m)|μ) of y(m) = (y1, . . . , ym),
under the Kullback-Leibler loss. For a prior density π(μ), the Bayesian predictive
density is given by

p̂π (y(m)|x(n)) =

∫
Ω

p′(y(m)|μ)p(x(n)|μ)π(μ) dμ∫
Ω

p(x(n)|μ)π(μ) dμ
. (3.71)

For simplicity, we consider the case whereΣ1 = Σ2 = Ip. According to Komaki
(2001) the Bayesian predictive densities satisfy

∫
Rpm

p′(y(m)|μ) log
p′(y(m)|μ)
p̂π (y(m)|x(n)) dy(m) =

∫
Rp

p′(ȳm|μ) log
p′(ȳm|μ)
p̂π (ȳm|x̄n) dȳm

(3.72)

where, denoting by φp(·, |μ,Σ) the density of Np(μ,Σ), in the left-hand side
of (3.72),

p′(y(m)|μ) =
m∏
i=1

φp(yi, |μ, Ip)

while, in the right-hand side of (3.72),

p′(ȳm|μ) = φp(ȳm|μ, Ip/m)

with ȳm = ∑m
j=1 yj /m. Similarly, p̂π (y(m)|x(n)) corresponds to the conditional

density of the p × m matrix y(m) given the p × m matrix x(n) while p̂π (ȳm|x̄m)
corresponds to the conditional density of the p× 1 vector ȳm given the p× 1 vector
x̄n = ∑n

i=1 xi/n.
To see this sufficiency reduction, use the fact that

m∑
i=1

‖yi − μ‖2 =
m∑
i=1

‖yi − ȳm‖2 +m(‖ȳm − μ‖)2.
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Then we can express p′(y(m)|μ) as

p′(y(m)|μ) = 1

(2π)mp/2
exp

(
−1

2

m∑
i=1

‖yi − ȳm‖2

)
exp

(
−m

2
(‖ȳm − μ‖)2

)

= mp/2

(2π)(m−1)p/2
exp

(
−1

2

m∑
i=1

‖yi − ȳm‖2

)
p(ȳm|μ). (3.73)

Similarly, it follows that

p(x(n)|μ) = np/2

(2π)(n−1)p/2
exp

(
−1

2

n∑
i=1

‖xi − x̄m‖2

)
p(x̄m|μ) .

By replacing these expressions in the form of the predictive density in (3.71), we
get

p̂π (y(m)|x(n))

=
{

mp/2

(2π)(m−1)p/2
exp

(
−1

2

m∑
i=1

‖yi − ȳm‖2

)} ∫
p′(ȳm|μ)p(x̄m|μ)π(μ) dμ∫

p(x̄m|μ)π(μ) dμ

=
{

mp/2

(2π)(m−1)p/2
exp

(
−1

2

m∑
i=1

‖yi − ȳm‖2

)}
p̂π (ȳm|x̄m). (3.74)

Finally, for (3.73) and (3.74), it follows that

∫
p′(y(m)|μ) log

p′(y(m)|μ)
p̂(y(m)|x(n))dy(m) =

∫
p′(y(m)|μ) log

p′(ȳm|μ)
p̂(ȳm|x̄m)dy(m)

=
∫
p′(ȳm|μ) log

p′(ȳm|μ)
p̂(ȳm|x̄m)dȳm.

Therefore, for any prior π , the risk of the Bayesian predictive density estimator is
equal to the risk of the Bayesian predictive density associated to π in the reduced
model X ∼ Np(μ,

1
n
Ip) and Y ∼ Np(μ,

1
m
Ip). Thus, for the Bayesian predictive

densities, it is sufficient to consider the reduced model.
Now we will compare two plug-in density estimators, p̂1 and p̂2 associated with

the two different estimators of μ, δ1 and δ2. That is, for i = 1, 2, define

p̂i(y(m)|x(n)) = p′(y(m)|μ = δi(x(n))). (3.75)
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The difference in risk between p̂2 and p̂1 is given by

ΔRKL(p̂2, p̂1) = RKL(μ, p̂2)− RKL(μ, p̂1)

=
∫
p(x(n)|μ)

∫
p(y(m)|μ) log

p̂1(y(m)|x(n))
p̂2(y(m)|x(n)) dy(m) dx(n)

=
∫
p(x(n)|μ)

∫
p(y(m)|μ)

(
1

2

m∑
i=1

‖δ2(x(n))− yi‖2

− 1

2

m∑
i=1

‖δ1(x(n))− yi‖2
)
dy(m) dx(n) .

By the independence of X(n) and Y(m) this can be reexpressed in terms of
expectations as

ΔRKL(p̂2, p̂1)

= 1

2

m∑
i=1

EX(n),Y(m)

(
‖δ2(X(n))− μ+ μ− Yi‖2 − ‖δ1(X(n))− μ+ μ− Yi‖2

)

= m

2
EX(n),Y(m)

[
‖δ2(X(n))− μ‖2 − ‖δ1(X(n))− μ‖2

]

+
m∑
i=1

EX(n),Y(m)

( [
(δ2(X(n))− μ)(μ− Yi)

]− [
(δ1(X(n))− μ)(μ− Yi)

] )

= m

2

(
EX(n)

[
‖δ2(X(n))− μ‖2

]
− EX(n)

[
‖δ1(X(n))− μ‖2

])

= m

2

[
RQ(δ2, μ)− RQ(δ1, μ)

]
,

which shows that the risk difference between p̂2 and p̂1 is proportional to the risk
difference between δ2 and δ1.

Note that, by completeness of the statistics X̄n, it suffices to consider only
estimates of μ that depend only on X̄n.

3.6.4 Properties of the Best Invariant Density

In this subsection, we restrict our attention to location models. We assume X ∼
p(x|μ) = p(x −μ) and Y ∼ p′(y|μ) = p′(y −μ), where p and p′ are two known
possibly different densities. A density q̂ is called invariant (equivariant) with respect
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to a location parameter if, for any a ∈ R
p, x ∈ R

p, and y ∈ R
p q(y|x + a) =

q(y − a|x). This is equivalent to q(y + a|x + a) = q(y|x). The following result
shows that the risk of an invariant predictive density is constant.

Lemma 3.13 The invariant predictive densities with respect to the location group
of translations have constant risk.

Proof By the property of invariance, the risk of an invariant density q̂ is equal to

R(μ, q̂) =
∫

log
p′(y − μ)

q̂(y|x) p(x − μ)p′(y − μ) dy dx

=
∫

log
p′(y − μ)

q̂(y − μ|x − μ)
p(x − μ)p′(y − μ) dy dx

=
∫

log
p(z′)
q̂(z′|z) p(z) p

′(z′) dz′ dz, (3.76)

by the change of variables z = x − μ and z′ = z − μ. Therefore, the risk R(μ, q̂)
does not depend on μ and it is constant. ��

Any invariant predictive density which minimizes this risk is known as the best
invariant predictive density.

Lemma 3.14 The best invariant predictive density is the Bayesian predictive
density p̂U associated with the Lebesgue measure on R

p, π(μ) = 1, is given by

p̂U (y|x) =
∫
Rp
p′(y|μ)p(x|μ) dμ∫
Rp
p(x|μ) dμ . (3.77)

Proof Let Z = X − μ, Z′ = Y − μ, and T = Y − X = Z′ − Z. We will
show that p̂(t), the density of T , which is independent of μ, is the best invariant
density. As noted in the previous section, if q̂ is an invariant predictive density,
q̂(y|x) = q̂(y − x|0) = q̂(y − x), by an abuse of notation. Hence,

R(μ, q̂)− R(μ, p̂) =
∫
Rp

∫
Rp

[
log

p̂(y − x)

q̂(y − x)

]
p(x − μ)p′(y − μ) dx dy

=
∫
Rp

∫
Rp

[
log

p̂(z′ − z)

q̂(z′ − z)

]
p(z)p′(z′) dz dz′

=
∫
Rp

[
log

p̂(t)

q̂(t)

]
p̂(t) dt, (3.78)

which is always positive by the inequality in (3.66). The result of the equality
in (3.78), and hence the lemma, follows from the fact that p̂(t) = p̂(y − x) =
p̂U (y|x), that is,
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p̂(t) =
∫
Rp

p(z) p′(z+ t) dz

=
∫
Rp

p(z) p′(z+ y − x) dz

=
∫
Rp

p(x − μ)p′(y − μ) dμ

=
∫
Rp
p′(y|μ)p(x|μ) dμ∫
Rp
p(x|μ) dμ (3.79)

which is the expression of p̂U given in (3.70) with π(μ) = 1. ��
Murray (1977) showed that p̂U is the best invariant density under the action

of translations and of linear transformations for a Gaussian model. Ng (1980)
has generalized this result. Liang and Barron (2004), without the hypothesis of
independence between X and Y , for the estimation of p′(y|x, μ) showed that

p̂U =
∫
Rp
p′(y|x, μ) p(x|μ) dμ∫

Rp
p(x|μ) dμ is the best invariant density.

We will now show that p̂U is minimax in location problems.

Lemma 3.15 Let X ∼ p(x|μ) = p(x − μ) and Y ∼ p(y|μ) = p′(y − μ), with
unknown location parameter μ ∈ R

p. Assuming that E0
[‖X‖2

]
< ∞, then the

best predictive invariant density p̂U is minimax.

Proof We show minimaxity using Lemma 1.8. Consider a sequence {πk} of normal
Np(0, k Ip) priors. The difference of Bayes risk between p̂U and p̂πk , is given by

r(p̂U , πk)− r(p̂πk , πk) =
∫
Rp

[
R(μ, p̂U )− R(μ, p̂πk )

]
πk(μ) dμ

=
∫
Rp

∫
Rp

∫
Rp

log
p̂πk (y|x)
p̂U (y|x) p(y|μ)p(x|μ)πk(μ) dy dx dμ

=
∫
Rp

∫
Rp

log
p̂πk (y|x)
p̂U (y|x)

[∫
Rp
p(y|μ)p(x|μ)πk(μ) dμ

]
dy dx

= EX,Yπk
log

p̂πk (Y |X)
p̂U (Y |X) (3.80)

where Ex,yπk denotes the expectation with respect to the joint marginal of (X, Y ),

mπk(x, y) =
∫
Rp

p(y|μ)p(x|μ)πk(μ) dμ.

Since r(p̂U , πk) = R(μ, p̂U ) (p̂U has constant risk) it suffices to show (3.80) tends
to 0 as k tends to infinity. By simplifying one gets
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r(p̂U , πk)− r(p̂πk , πk)

= EX,Yπk

[
log

(∫
p(x, y|μ)πk(μ) dμ∫
p(x|μ)πk(μ) dμ

1∫
p(x, y|μ) dμ

)]

= EX,Yπk

[
− log

∫
p(x, y|μ)πk(μ) 1

πk(μ)
dμ∫

p(x, y|μ)πk(μ) dμ − log

(∫
p(x|μ)πk(μ) dμ

)]

= EX,Yπk

[
− logEμ|X,Y

1

πk(μ)
− log

(∫
p(x|μ)πk(μ) dμ

)]

where Eμ|X,Y denotes the expectation with respect to the posterior of μ given
(X, Y ). An application of Jensen’s inequality gives

r(p̂U , πk)− r(p̂πk , πk)

≤ EX,Yπk
Eμ|X,Y logπk(μ)− EX,Yπk

[∫
p(X|μ) logπk(μ) dμ

]
. (3.81)

By developing the expectations, it follows that

EX,Yπk
Eμ|X,Y logπk(μ) =

∫∫
mπk (x, y)

∫
p(x, y|μ)πk(μ) log(πk(μ))dμ

mπk (x, y)
dxdy

=
∫∫∫

πk(μ) log(πk(μ)) dμ dxdy

=
∫
πk(μ) log(πk(μ))dμ. (3.82)

Similarly, by integrating with respect to y and by interchanging between μ and μ′
we have

EX,Yπk

[∫
p(X|μ) logπk(μ) dμ

]

=
∫∫∫∫

p(x|μ′)p(y|μ′)πk(μ′)p(x|μ) logπk(μ) dμ
′dμdxdy

=
∫∫∫

πk(μ
′)p(x|μ)p(x|μ′) logπk(μ)dμ

′ dx dμ

=
∫∫∫

πk(μ)p(x|μ)p(x|μ′) logπk(μ
′)dμ dxdμ′. (3.83)

By grouping the expressions (3.81), (3.83) and (3.84) and making the changes of
variables z = x − μ and z′ = x − μ′ it follows that
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r(p̂U , πk)− r(p̂πk , πk)

≤
∫∫∫

p(x|μ)p(x|μ′)πk(μ)
[
log(πk(μ))− log(πk(μ

′))
]
dμdμ′ dx

=
∫∫∫

πk(μ)p(x − μ)p(x − μ′) log

(
πk(μ)

πk(μ′)

)
dμ dz dz′

=
∫∫∫

πk(μ)p(z)p(z
′) log

(
πk(μ)

πk(μ+ z− z′)

)
dμ dz dz′. (3.84)

In view of the form πk(μ), the term on the right in (3.84) can be written as

EπkEZ,Z′ log

(
πk(μ)

πk(μ+ Z − Z′)

)

= EπkEZ,Z′
1

2k

(
‖μ+ Z − Z′‖ − ‖μ2‖

)

= EπkEZ,Z′
[

1

2k

(
‖Z‖2 + ‖Z′‖2 + 2〈μ,Z − Z′〈

)]

= EZ,Z′
[

1

2k

(
‖Z‖2 + ‖Z′‖2

)]
,

since E(Z) = E(Z′) = E0(X) (here, EZ,Z′ denotes the expectation with respect
to p(z, z′) = p(z)p(z′)). We then see that the limit of the difference of Bayes risks
tends toward zero when k → ∞. Therefore, p̂U is minimax by Lemma 1.8. ��

This result is in Liang and Barron (2004), a more direct proof for the Gaussian
case can be found in George et al. (2006) and is given in the next section.

3.6.5 An Explicit Expression for p̂U and Its Risk in the
Normal Case

We now give an explicit expression of p̂U , described the previous subsections, in
the Gaussian setting. Let X ∼ Np(μ, νxIp) and Y ∼ Np(μ, νyIp).

Lemma 3.16 The Bayesian predictive density associated with the uniform prior on
R
p, π(μ) ≡ 1, is given by the following expression

p̂U (y|x) = 1(
(2π) (vy + vx)

)p/2 exp

(
− ‖y − x‖2

2 (vx + vy)

)
. (3.85)

Proof For W = (vy X + vx Y )/(vx + vy) and vw = (vx vy)/(vx + vy) it is clear
that W ∼ Np(μ, vwIp), by the independence of X and Y . Further, note that
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‖x − μ‖2

2vx
+ ‖y − μ‖2

2vy
= ‖μ− w‖2

2vw
+ ‖y − x‖2

2(vx + vy)
. (3.86)

By definition, and through the previous representation, it follows that

p̂U (y|x) =

∫
Rp

p(y|μ, vy) p(x|μ, vx) dμ∫
Rp

p(x|μ, vx) dμ

=
∫
Rp

1

(2π)p(vy vx)p/2
exp

(
−‖x − μ‖2

2 vx
− ‖y − μ‖2

2 vy

)
dμ

=
∫
Rp

1

(2π)p(vy vx)p/2
exp

(
−‖μ− w‖2

2 vw

)
exp

(
− ‖y − x‖2

2 (vx + vy)

)
dμ

= (2πvw)p/2

(2π)p(vy vx)p/2
exp

(
− ‖y − x‖2

2(vx + vy)

)

= 1(
(2π) (vy + vx)

)p/2 exp

(
− ‖y − x‖2

2 (vx + vy)

)
.

��
Note that the risk of p̂U is constant, as we have previously seen for invari-

ant densities. Given the form of p̂U (.|x) it follows that the Kullback-Liebler
divergence is

KL(p̂U (.|x), μ)

=
∫
p(y|μ, vy) log

p(y|μ, v)
p̂U (y|x) dy

= EY
[

log
p(Y |μ, v)
p̂U (Y |x)

]

= EY
[
−p

2
log

vy

vx + vy
− 1

2vy
‖Y − μ‖2 + 1

2(vx + vy)
‖Y − x‖2

]

= −p
2

log
vy

vx + vy
− p

2
+ EY

[
1

2(vx + vy)

(
‖Y − μ‖2 + ‖μ− x‖2

)]

=
[
−p

2
log

vy

vx + vy
− p

2
+ pvy

2(vx + vy)

]
+ 1

2(vx + vy)
‖μ− x‖2. (3.87)
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Hence, we can conclude that the risk of p̂U is

RKL(p̂U , μ) = EX
[
KL(p̂U , μ,X)

]

=
[
−p

2
log

vy

vx + vy
− p

2
+ pvy

2(vx + vy)

]
+ pvx

2(vx + vy)

= −p
2

log

(
vy

vx + vy

)
= p

2
log

(
1 + vx

vy

)
. (3.88)

In the framework of the iid sampling model presented in Sect. 3.6.3 with Σ1 =
Σ2 = Ip, we can express the risk as

RKL(p̂U , μ) = p

2
log

(
1 + m

n

)
.

A predictive density is called the plug-in relative to an estimator δ if it has the
form

p̂δ(y|x) = 1

(2πvy)p/2
exp

(
−1

2

‖y − δ(x)‖2

vy

)
.

The predictive plug-in density, which corresponds to the standard estimator of the
mean, μ, δ0(X) = X, is

p̂δ(y|x) = 1(
2πvy

)p/2 exp

[
−1

2

‖y − x‖2

vy

]
.

We can directly verify that the predictive density p̂U dominates the plug-in density
p̂δ0 for any μ ∈ R

p. In fact, their difference in risk is

�RKL(p̂U , p̂δ0) = EX,Y
(

log
p̂U (Y |X)
p̂δ0(Y |X)

)

= −p
2

log

(
vx + vy

vy

)
− 1

2

[
1

vx + vy
− 1

vy

]
EX,Y

(
‖Y −X‖2

)
.

Since EX,Y
(‖Y −X‖2

)
equals

EX,Y
(
‖Y − μ‖2

)
+ EX,Y

(
‖X − μ‖2

)
− 2

〈
EX,Y (Y − μ),EX,Y (X − μ)

〉

= p(vx + vy),
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we have

�RKL(p̂U , p̂δ0) = −p
2

[
log

(
1 + vx

vy

)
− vx

vy

]
> 0 .

Surprisingly, the predictive density p̂U has similar properties to the standard
estimator, δ0(X) = X, for the estimation of the mean under quadratic loss. Komaki
(2001) showed that the density p̂U is dominated by the Bayesian predictive density
using the harmonic prior, π(μ) = ‖μ‖2−p. George et al. (2006) extended the
analogy with point estimation. We give some of this development next.

Lemma 3.17 (George et al. 2006, Lemma 2) For W = (vy X + vx Y )/(vx + vy)

and vw = (vx vy)/(vx + vy), let mπ(W ; vw) and mπ(X; vx) be the marginals of W
and X, respectively, relative to the a prior π . Then

p̂π (y|X) = mπ(W ; vw)
mπ(X; vx) p̂U (y|X) (3.89)

where p̂U (·|X) is the Bayes estimator associated with the uniform prior on R
p given

by (3.85). In addition, for any prior measure π, the Kullback-Leibler risk difference
between p̂U (·|x) and the Bayesian predictive density p̂π (·|x) is given by

RKL(μ, p̂U )− RKL(μ, p̂π ) = Eμ,vw
[
log mπ(W ; vw)

]− Eμ,vx
[
log mπ(X; vx)

]
(3.90)

where Eμ,v denotes the expectation with respect to the normal Np(μ, vIp) distri-
bution.

Proof The marginal density of (X, Y ) associated with π is equal to

p̂π (x, y) =
∫
Rp
p(x|μ, vx) p(y|μ, vy) π(μ) dμ

=
∫
Rp

1

(2πvx)p/2
exp

(
−‖x − μ‖2

2vx

)
1

(2πvy)p/2
exp

(
−‖y − μ‖2

2vy

)
π(μ) dμ.

Applying (3.85) and (3.86) it follows that

p̂π (x, y) = 1

(2π)p (vx vy)p/2

∫
Rp

exp

(
− ‖y − x‖2

2(vx + vy)

)
exp

(
−‖μ− w‖2

2vw

)
π(μ) dμ

= (2πvw)p/2

(2π)p (vx vy)p/2
exp

(
− ‖y − x‖2

2(vx + vy)

)
mπ(w; vw)

= p̂U (y|x)mπ (w; vw).

Since p̂π (y|x) = p̂π (x, y)/mπ(x), (3.89) follows.
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Hence, we can write the risk difference as

RKL(μ, p̂U )− RKL(μ, p̂π )

=
∫ ∫

p(x|μ, vx) p(y|μ, vy) log
p̂π (y|x)
p̂U (y|x) dy dx

=
∫ ∫

p(x|μ, vx) p(y|μ, vy) log
mπ(W(x, y); vw)

mπ(x; vx) dy dx

= EX,Y logmπ(W(X, Y ); vw)− EX,Y logmπ(X; vx)
= EW logmπ(W |vw)− EX logmπ(X|vx).

��
Using this lemma, George et al. (2006) gave a simple proof of the result of Liang

and Barron (2004) for the Gaussian setting. By taking the same sequence of priors
{πk} = Np(0, kIp), the difference of the Bayes risk equals (using constancy of the
risk of p̂U )

RKL(μ, p̂U ) − r(πk, p̂πk ) =
∫
πk(μ)

[
Eμ,vw logmπk (W, vw)− Eμ,vx logmπk (X, vx)

]
dμ

=
∫
πk(μ)

[
Eμ,vw log

{
(2π(vw + k))−p/2 exp

(
− ‖W‖2

2(vw + k)

)}

−Eμ,vx log

{
(2π(vx + k))−p/2 exp

(
− ‖X‖2

2(vx + k)

)}]
dμ

=
∫
πk(μ)

[
− p/2 log(2π(vw + k))− pvw

2(vw + k)

+p/2 log(2π(vx + k))+ pvx

2(vx + k)

]
dμ

=−p
2

log
vw + k

vx + k
− pvw

2(vw + k)
+ pvx

2(vx + k)
.

Hence, we see that limk→∞ r(πk, p̂U )− r(πk, p̂πk ) = 0 and so, p̂U is minimax
by Lemma 1.8. George et al. (2006) also show that the best predictive invariant
density is dominated by any Bayesian predictive density relative to a superharmonic
prior. This result parallels the result of Stein for the estimation of the mean
under quadratic loss and the use differential operators discussed in Sect. 2.6. The
following lemma from George et al. (2006) allows us to give sufficient conditions
for domination. We use Stein’s identity in the proof.
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Lemma 3.18 Ifmπ(z; vx) is finite for any z, then for any vw ≤ v ≤ vx the marginal
mπ(z; v) is finite. In addition,

∂

∂v
E logmπ(z; v) = Eμ,v

[
Δmπ(Z; v)
mπ(Z; v) − 1

2
‖∇ logmπ(Z; v)‖2

]

= Eμ,v

[
2
Δ

√
mπ(Z; v)√
mπ(Z; v)

]
. (3.91)

Proof For any vw ≤ v ≤ vx,

mπ(z; v) =
∫
Rp

1

(2π v)p/2
exp

(
−‖z− μ‖2

2v

)
π(μ) dμ

=
(vx
v

)p/2 ∫
Rp

1

(2π vx)p/2
exp

(
−vx
v

‖z− μ‖2

2vx

)
π(μ) dμ

≤
(vx
v

)p/2
mπ(z; vx) < ∞.

Hence, the marginal mπ is finite. Setting Z′ = (Z − μ)/
√
v ∼ N (0, I ),

∂

∂v
Eμ,v logmπ(Z; v) = ∂

∂v

∫
p(z|μ, v) log (mπ(z; v) dz)

= ∂

∂v

∫
p(z′|0, 1) log

(
mπ(

√
vz′ + μ; v)) dz′

= EZ′
(∂/∂v)mπ(

√
vZ′ + μ; v)

mπ(
√
vZ′ + μ; v) (3.92)

where

∂

∂v
mπ(

√
vz′ + μ; v) = ∂

∂v

∫
1

(2πv)p/2
exp

{
−‖√vz′ + μ− μ′‖2

2v

}
π(μ′) dμ′

= 1

(2π v)p/2

∫ (
− p

2 v
+ ‖z− μ′‖2

2 v2
− ‖z′‖2

2 v
− 2〈z′, μ− μ′〉

2 v3/2

)
p(z|μ′) π(μ′) dμ′

= ∂

∂v
mπ(z; v)−

∫ 〈z− μ, z− μ′〉
2 v2

p(z|μ′) π(μ′) dμ′. (3.93)

Note that

∇zmπ(z, v) =
∫ −(z− μ)

v
p(z|μ)π(μ)dμ (3.94)
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and

Δzmπ(z, v) =
∫ [−p

v
+ ‖z− μ‖2

v2

]
p(z|μ)π(μ)dμ

= 2
∂

∂v
mπ(z; v). (3.95)

It follows that

EZ′
(∂/∂v)mπ(

√
vZ′ + μ; v)

mπ (
√
vZ′ + μ; v) = Eμ,v

(
1

2

Δmπ(Z; v)
mπ (Z; v) + 〈Z − μ,∇ logmπ(Z; v)〉

2 v

)
.

Hence, using Stein’s identity,

Eμ,v

[
(Z − μ)T∇ logmπ(Z; v)

2 v

]
= Eμ,v

[
1

2
Δ logmπ(Z; v)

]

= Eμ,v

[
1

2

(
Δmπ(Z; v)
mπ (Z; v) − ‖∇ logmπ(Z; v)‖2

)]
,

which is the desired result. ��
Lemmas 3.17 and 3.18 gives a result regarding minimaxity and domination from

George et al. (2006). This result reveals parallels to those on minimax estimation
of mean under quadratic loss in Sect. 3.1.1. Its proof is contained in the proof of
Theorem 3.17.

Theorem 3.16 Assume that mπ(z; vx) is finite for any z in R
p. If Δmπ ≤ 0 for

all vw ≤ v ≤ vx , then the Bayesian predictive density p̂π (y|x) is minimax and
dominates p̂U (when π is not the uniform itself). If Δπ ≤ 0, then the Bayesian
predictive density p̂π (y|x) is minimax and dominates p̂U (when π is uniform).

The next result from Brown et al. (2008) illuminates the link between the two
problems of estimating the predictive density under the Kullback-Leibler loss and
estimating the mean under quadratic loss. The result expresses this link in terms of
risk differences.

Theorem 3.17 Suppose the prior π(μ) is such that the marginal mπ(z; v) is finite
for any z ∈ R

p. Then,

RKL(μ, p̂U )− RKL(μ, p̂π ) = 1

2

∫ vx

vw

1

v2

(
Rv
Q(μ,X)− Rv

Q(μ, μ̂π,v)
)
dv.

(3.96)

Proof From (3.90) and (3.91) it follows
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RKL(μ, p̂U )− RKL(μ, p̂π ) =
∫ vx

vw

− ∂

∂v
Eμ,v[logmπ(Z; v)] dv

=
∫ vx

vw

Eμ,v

[
2
Δ

√
mπ(Z; v)√
mπ(Z; v)

]
dv. (3.97)

On the other hand, Stein (1981) showed that

Rv
Q(μ,X)− Rv

Q(μ, μ̂π,v) = −4v2Eμ,v
Δ

√
mπ(Z; v)√
mπ(Z; v) . (3.98)

Hence substituting (3.98) in the integral (3.97) gives (3.96). ��
It is worth noting that using (3.88) and (3.96) leads to the following expression

for the Kullback-Liebler risk of p̂U :

1

2

∫ vx

vw

1

v2

(
Rv
Q(μ,X)

)
dv = 1

2

∫ vx

vw

p

v
dv

= p

2
log

vx

vw

= p

2
log

(
1 + vx

vy

)
.

= RKL(μ, p̂U ) . (3.99)

The area of predictive density estimation continues to develop. Recent research
covers the case of restricted parameter (Fourdrinier et al. 2011), general α-
divergence losses (Maruyama and Strawderman 2012; Boisbunon and Maruyama
2014), integrated L1 and L2 losses (Kubokawa et al. 2015, 2017). For a general
review, see George and Xu (2010).



Chapter 4
Spherically Symmetric Distributions

4.1 Introduction

In the previous chapters, estimation problems were considered for the normal
distribution setting. Stein (1956) showed that the usual estimator of a location vector
could be improved upon quite generally for p ≥ 3 and Brown (1966) substantially
extended this conclusion to essentially arbitrary loss functions. Explicit results of the
James-Stein type, however, have thus far been restricted to the case of the normal
distribution. Recall the geometrical insight from Sect. 2.2.2, the development did not
depend on the normality of X or even that θ is a location vector – this suggests that
the improvement for Stein-type estimators may hold for more general distributions.
Strawderman (1974a) first explored such an extension and considered estimation of
the location parameter for scale mixtures of multivariate normal distributions. Other
extensions of James-Stein type results to distributions other than scale mixtures
of normal distributions are due to Berger (1975), Brandwein and Strawderman
(1978), and Bock (1985). In this chapter, we will introduce the general class of
spherically symmetric distributions; we will examine point estimation for variants
of this general class in subsequent three chapters.

4.2 Spherically Symmetric Distributions

The normal distribution has been generalized in two important directions. First, as
a special case of the exponential family and second, as a spherically symmetric
distribution. In this chapter, we will consider the latter. There are a variety of
equivalent definitions and characterizations of the class of spherically symmetric
distributions; a comprehensive review is given in Fang et al. (1990). We now turn
our interest to general orthogonally invariant distributions in R

n and a slightly more
general notion of spherically symmetric distributions.
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Definition 4.1 A random vector X ∈ R
n (equivalently the distribution of X) is

spherically symmetric about θ ∈ R
n if X − θ is orthogonally invariant. We denote

this by X ∼ SS(θ).

Note that Definition 4.1 states that X ∼ SS(θ) if and only if X = Z + θ where
Z ∼ SS(0). As an example, the uniform distribution UR,θ (cf. Definition 1.4) on
the sphere SR,θ of radius R and centered at θ is spherically symmetric about θ .
Furthermore, if P is a spherically symmetric distribution about θ , then

P(HC + θ) = P(C + θ),

for any Borel set C of Rn and any orthogonal transformation H .
The following proposition is immediate from the definition.

Proposition 4.1 If a random vectorX ∈ R
n is spherically symmetric about θ ∈ R

n

then, for any orthogonal transformationH,HX is spherically symmetric aboutHθ
(X − θ has the same distribution as HX −Hθ ).

The connection between spherical symmetry and uniform distributions on
spheres is indicated in the following theorem.

Theorem 4.1 A distribution P in R
n is spherically symmetric about θ ∈ R

n if and
only if there exists a distribution ρ in R+ such that P(A) = ∫

R+ Ur,θ (A) dρ(r) for
any Borel set A of Rn. Furthermore, if a random vector X has such a distribution
P , then the radius ‖X − θ‖ has distribution ρ (called the radial distribution) and
the conditional distribution ofX given ‖X−θ‖ = r is the uniform distribution Ur,θ

on the sphere Sr,θ of radius r and centered at θ .

Proof Sufficiency is immediate since the distribution Ur,θ is spherically symmetric
about θ for any r ≥ 0.

It is clear that for the necessity it suffices to consider θ = 0. Let X be distributed
as P where P is SS(0), ν(x) = ‖x‖, and ρ be the distribution of ν. Now, for any
Borel sets A in R

n and B in R+ and for any orthogonal transformation H , we have
(using basic properties of conditional distributions )

∫
B

P (H−1(A) | ν = r) dρ(r) = P(H−1(A) ∩ ν−1(B))

= P(H−1(A ∩H(ν−1(B))))

= P(A ∩H(ν−1(B)))

= P(A ∩ ν−1(B))

=
∫
B

P (A | ν = r) dρ(r)

where we used the orthogonal invariance of the measure P and the function ν. Since
the above equality holds for any B, then, almost everywhere with respect to ρ, we
have
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P(H−1(A) | ν = r) = P(A | ν = r).

Equivalently, the conditional distribution given ν is orthogonally invariant on Sr .
By unicity (see Lemma 1.1), it is the uniform distribution on Sr and the theorem
follows. ��
Corollary 4.1 A random vector X ∈ R

n has a spherically symmetric distribution
about θ ∈ R

n if and only if X has the stochastic representation X = θ +RU where
R (R = ‖X − θ‖) and U are independent, R ≥ 0 and U ∼ U .

Proof In the proof of Theorem 4.1, we essentially show that the distribution of
(X − θ)/‖X − θ‖ is U independently of ‖X − θ‖. This is the necessity part of the
corollary. The sufficiency part is direct. ��

Also, the following corollary is immediate.

Corollary 4.2 Let X be a random vector in Rn having a spherically symmetric
distribution about θ ∈ R

n. Let h be a real valued function on Rn such that the
expectation Eθ [h(X)] exists. Then

Eθ [h(X)] = E[ER,θ [h(X)]] ,

where ER,θ is the conditional expectation of X given ‖X − θ‖ = R (i.e. the
expectation with respect to the uniform distribution UR,θ on the sphere SR,θ of
radius R and centered at θ ) and E is the expectation with respect to the distribution
of the radius ‖X − θ‖.

A more general class of distributions where (X − θ)/‖X − θ‖ ∼ U but not
necessarily independently of ‖X − θ‖ is known as the isotropic distributions (see
Philoche 1977). The class of spherically symmetric distributions with a density
with respect to the Lebesgue measure is of particular interest. The form of this
density and its connection with the radial distribution are the subject of the following
theorem.

Theorem 4.2 Let X∈R
n have a spherically symmetric distribution about θ ∈ R

n.
Then the following two statements are equivalent.

(1) X has a density f with respect to the Lebesgue measure on R
n.

(2) ‖X − θ‖ has a density h with respect to the Lebesgue measure on R+.

Further, if (1) or (2) holds, there exists a function g from R+ into R+ such that

f (x) = g(‖x − θ‖2) a.e.

and

h(r) = 2πn/2

Γ (n/2)
rn−1g(r2) a.e.
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The function g is called the generating function and h the radial density.

Proof The fact that (1) implies (2) follows directly from the representation of X in
polar coordinates. We can also argue that (2) implies (1) in a similar fashion using
the independence of ‖X − θ‖, angles, and the fact that the angles have a density.
The following argument shows this directly and, furthermore, gives the relationship
between f, g, and h.

It is clear that it suffices to assume that θ = 0. Suppose then that R = ‖X‖ has a
density h. According to Theorem 4.1, for any Borel set A of Rn, we have

P(X ∈ A) =
∫ ∞

0

∫
Sr

1A (y) dUr (y) h(r) dr

=
∫ ∞

0

∫
Sr

1A(y)
dσr (y)

σ1(S1)rn−1
h(r) dr (by (1.4))

=
∫ ∞

0

∫
Sr

1A(y)
h(‖y‖)

σ1(S1)‖y‖n−1
dσr(y) dr

=
∫
Rn

1A(y)
h(‖y‖)

σ1(S1)‖y‖n−1 dy (by Lemma 1.4)

=
∫
A

h(‖y‖)
σ1(S1)‖y‖n−1 dy.

This implies that the random vector X has density

f (x) = h(‖x‖)
σ1(S1)‖x‖n−1

= g(‖x‖2)

with h(r) = σ1(S1) r
n−1 g(r2), which is the announced formula for h(r) since

σ1(S1) = 2πn/2/Γ (n/2) by Corollary 1.1. ��
We now turn our attention to the mean and the covariance matrix of a spherically

symmetric distribution (when they exist).

Theorem 4.3 Let X ∈ R
n be a random vector with a spherically symmetric

distribution about θ ∈ R
n. Then, the mean of X exists if and only if the mean of

R = ‖X − θ‖ exists, in which case E[X] = θ . The covariance matrix of X exists if
and only if E[R2] is finite, in which case

cov(X) = E[R2]
n

In.

Proof Note that X = Z + θ where Z ∼ SS(0) and it suffices to consider the
case θ = 0. By the stochastic representation X = RU in Corollary 4.1 with R =
‖X‖ independent of U and U ∼ U , the expectation E[X] exists if and only if the
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expectations E[R] and E[U ] exist. However, since U is bounded, E[U ] exists and
is equal to zero since E[U ] = E[−U ] by orthogonal invariance.

Similarly, E[‖X‖2] = E[R2]E[‖U‖2] = E[R2] and consequently the covari-
ance matrix of X exists if and only if E[R2] < ∞. Now

cov(RU) = E[R2]E[UU T] = E[R2]
n

In.

Indeed E[U2
i ] = E[U2

j ] = 1/n since Ui and Uj have the same distribution by

orthogonal invariance and since
∑n

i=1 U
2
i = 1. Furthermore, E[UiUj ] = 0, for

i 	= j , since UiUj has the same distribution as −UiUj by orthogonal invariance.
��

An interesting and useful subclass of spherically symmetric distributions consists
of the spherically symmetric unimodal distributions. We only consider absolutely
continuous distributions.

Definition 4.2 A random vector X ∈ R
n with density f is unimodal if the set

{x ∈ R
n | f (x) ≥ a} is convex for any a ≥ 0.

Lemma 4.1 Let X ∈ R
n be a spherically symmetric random vector about θ with

generating function g. Then the distribution of X is unimodal if and only if g is
nonincreasing.

Proof Suppose first that the generating function g is nonincreasing. Take the left
continuous version of g. For any a ≥ 0, defining g−1(a) = sup{y ≥ 0 | g(y) = a}
we have

{x ∈ R
n | g(‖x‖2) ≥ a} = {x ∈ R

n | ‖x‖2 ≤ g−1(a)}

which is a ball of radius
√
g−1(a) and convex. Conversely suppose that the set

{x ∈ R
n | g(‖x‖2) ≥ a} is convex for any a ≥ 0 and let ‖x‖ ≤ ‖y‖. Then,

for xT = y/‖y‖‖x‖, we have ‖xT‖ = ‖x‖ and xT ∈ [−y, y] and hence, by the
unimodality assumption, g(‖x‖2) = g(‖xT‖2) ≥ g(‖y‖2). ��
Theorem 4.1 showed that a spherically symmetric distribution is a mixture of
uniform distributions on spheres. It is worth noting that, when the distribution is
also unimodal, it is a mixture of uniform distributions on balls.

Theorem 4.4 Let X ∈ R
n be a spherically symmetric random vector about θ ∈ R

n

with generating function g. Then the distribution of X is unimodal if and only if
there exists a distribution ν in R+ with no point mass at 0 such that

P [X ∈ A] =
∫
R+

Vr,θ (A) dν(r) (4.1)
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for any Borel set A of Rn, where Vr,θ is the uniform distribution on the ball Br,θ =
{x ∈ R

n | ‖x − θ‖ ≤ r}.
Proof It is clear that it suffices to consider the case where θ = 0. Suppose first that
formula (4.1) is satisfied. Then expressing

Vr,0(A) = 1

λ(Br)

∫
Br

1A(x) dx

gives

P [X ∈ A] =
∫
R+

1

λ(Br)

∫
Br

1A(x) dx dν (r)

=
∫
R+

1

λ(Br)

∫ r

0

∫
Su

1A(x) dσu(x) du dν(r)

=
∫
R+

∫
Su

1A(x)

∫ ∞

u

1

λ(Br)
dν(r) dσu(x) du

after applying Lemma 1.4 and Fubini’s theorem. Then

P [X ∈ A] =
∫ ∞

0

∫
Su

1A(x) g(‖x‖2) dσu(x) du

=
∫
A

g(‖x‖2) dx

again by Lemma 1.4 with the nonincreasing function

g(u2) =
∫ ∞

u

1

λ(Br)
dν (r). (4.2)

Hence according to Lemma 4.1, the distribution of X is unimodal.
Conversely, suppose that the distribution of X is unimodal. According to the

above, this distribution will be a mixture of uniform distributions on balls if there
exists a distribution ν on R+ with no point mass at 0 such that (4.2) holds. If
such a distribution exists, (4.2) implies that ν can be expressed through a Stieltjes
integral as

ν(u) =
∫ u

0
λ(Br)(−dg(r2)).

It suffices therefore to show that ν is a distribution function on R+ with no point
mass at 0. Note that, as g is nonincreasing, ν is the Stieltjes integral of a positive
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function with respect to a nondecreasing function and hence ν is nondecreasing.
Since λ(Br) = λ(B1) r

n = n σ1(S1) r
n, an integration by parts gives

ν(u) = σ1(S1)

∫ u

0
rn−1g(r2) dr − λ(B1)

n g(u2). (4.3)

Note that the first term of the right hand side (4.3) is the distribution function of
the radial distribution (see Theorem 4.2) and approaches 0 (respectively 1) when u
approaches 0 (respectively ∞). Therefore, to complete the proof it suffices to show
that

lim
u→0

ung(u2) = lim
u→∞ ung(u2) = 0 .

Since
∫ ∞

0
rn−1g(r2) dr < ∞,

we have

lim
r→∞

∫ r

r/2
rn−1g(u2) du = 0.

By the monotonicity of g, we have

∫ r

r/2
un−1g(u2) du ≥ (r2)

∫ r

r/2
un−1 du = g(r2) rn

1

n

(
1 − 1

2n

)
.

Hence, lim
r→∞ rng(r2) = 0. The limit as r approaches 0 can be treated similarly and

the result follows. ��
It is possible to allow the possibility of a point mass at 0 for a spherically

symmetric unimodal distribution, but we choose to restrict the class to absolutely
continuous distributions. For a more general version of unimodality see Section 2.1
of Liese and Miescke (2008).

4.3 Elliptically Symmetric Distributions

By Definition 1.2, a random vector X ∈ R
n is orthogonally invariant if, for

any orthogonal transformation H , HX has the same distribution as X. The
notion of orthogonal transformation is relative to the classical scalar product
〈x, y〉 = ∑n

i=1 xiyi . It is natural to investigate orthogonal invariance with respect to
orthogonal transformations relative to a general scalar product 〈x, y〉Γ = xTΓy =
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∑
1≤i,j≤n xiΓij yj where Γ is a symmetric positive definite n×n matrix. We define

a transformation H to be Γ-orthogonal if it preserves the scalar product in the sense
that, for any x ∈ R

n and y ∈ R
n, 〈Hx,Hy〉Γ = 〈x, y〉Γ or, equivalently, if it

preserves the associated norm ‖x‖Γ = √〈x, x〉Γ , that is, if ‖Hx‖Γ = ‖x‖Γ . Note
that H is necessarily invertible since

kerH = {x ∈ R
n | Hx = 0} = {x ∈ R

n | ‖Hx‖Γ = 0} = {x ∈ R
n | ‖x‖Γ = 0} = {0} .

Then it can be seen that H is Γ-orthogonal if and only if 〈Hx, y〉Γ = 〈x,H−1y〉Γ ,
for any x ∈ R

n and y ∈ R
n or, equivalently, if H TΓH = Γ .

In this context, the Γ -sphere of radius r ≥ 0 is defined as

SΓr = {x ∈ R
n | xTΓ x = r2} .

Definition 4.3 A random vector X ∈ R
n (equivalently the distribution of X) is Γ-

orthogonally invariant if, for any Γ-orthogonal transformationH , the distribution of
Y = HX is the same as that of X.

We can define a uniform measure on the ellipse SΓr in a manner analogous
to (1.3) and the resulting measure is indeed Γ-orthogonally invariant. It is not
however the superficial measure mentioned at the end of Sect. 1.3, but is, in fact,
a constant multiple of this measure where the constant of proportionality depends
on Γ and reflects the shape of the ellipse. Whatever the constant of proportionality
is, it allows the construction of a unique uniform distribution on SΓr as in (1.4).
The uniqueness follows from the fact that the Γ-orthogonal transformations form
a compact group. We can then adapt the material from Sects. 1.3 and 4.2 to the
case of a general positive definite matrix Γ . However, we present an alternative
development.

The following discussion indicates a direct connection between the usual
orthogonal invariance and Γ-orthogonal invariance. Suppose, for the moment, that
X ∈ R

n has a spherically symmetric density given by g(‖x‖2). Let Σ be a positive
definite matrix and A be a nonsingular matrix such that AAT = Γ . Standard change
of variables gives the density of Y = AX as |Σ |−1/2g(yTΣ−1y). LetH be anyΣ−1

orthogonal transformation and let Z = HY . The density of Z is |Σ |−1/2g(zTΣ−1z)

since H−1 is also Σ−1 -orthogonal and hence, (H−1)TΣ−1H−1 = Σ−1.

This suggests that, in general, Y = Σ
1
2X is Σ−1-orthogonally invariant if

and only if X is orthogonally invariant. The following result establishes this
general fact.

Theorem 4.5 Let Σ be a positive definite n × n matrix. A random vector Y ∈
R
n is Σ−1-orthogonally invariant if and only if Y = Σ1/2X with X orthogonally

invariant.

Proof First note that, for any Σ−1-orthogonal matrix H , Σ−1/2HΣ−1/2 is an In
-orthogonal matrix since



4.3 Elliptically Symmetric Distributions 135

(Σ−1/2HΣ1/2)T(Σ−1/2HΣ1/2) = Σ1/2H TΣ−1HΣ1/2

= Σ1/2Σ−1Σ1/2

= In.

Then, if X is orthogonally invariant, for any Borel set C, of Rn we have

P [HΣ1/2X ∈ C] = P [Σ−1/2HΣ1/2X ∈ Σ−1/2C]
= P [X ∈ Σ−1/2C]
= P [Σ1/2X ∈ C].

Hence Y = Σ1/2X is Σ−1-orthogonally invariant.
Similarly, for any orthogonal matrix G, Σ1/2GΣ−1/2 is a Σ−1-orthogonal

matrix. So, if Y = Σ1/2X is Σ−1-orthogonally invariant, then X is orthogonally
invariant. ��

Note that, if X is orthogonally invariant and its covariance matrix exists, it is of
the form σ 2In by Theorem 4.3. Therefore, if Y = Σ1/2X, the covariance matrix
of Y is σ 2Σ , while, by Theorem 4.5, Y is Σ−1-orthogonal invariant. In statistical
models, it is often more natural to parametrize through a covariance matrix Σ

than through its inverse (graphical models are the exception) and this motivates the
following definition of elliptically symmetric distributions.

Definition 4.4 Let Σ be a positive definite n × n matrix. A random vector X
(equivalently the distribution of X) is elliptically symmetric about θ ∈ R

n if X − θ

is Σ−1-orthogonally invariant. We denote this by X ∼ ES(θ,Σ).

Note that, ifX ∼ SS(θ), thenX ∼ ES(θ, In). If Y ∼ ES(θ,Σ), thenΣ−1/2Y ∼
SS(Σ−1/2θ).

In the following, we briefly present some results for elliptically symmetric
distributions that follow from Theorem 4.5 and are the analogues of those in
Sects. 1.3 and 4.2. The proofs are left to the reader.

For the rest of this section, let Σ be a fixed positive definite n × n matrix and
denote by SΣ

−1

R = {x ∈ R
n | xTΣ−1x = R2} the Σ−1- ellipse of radius R and by

U Σ
R the uniform distributions on SΣ

−1

R .

Lemma 4.2

(1) The uniform distribution U Σ
R on SΣ

−1

R is the image under the transformation

Y = Σ
1
2X of the uniform distribution UR on the sphere SR , that is,

U Σ
R (Ω) = UR(Σ

− 1
2Ω)

for any Borel set Ω of SΣ
−1

R .
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(2) If X is distributed as U Σ
R , then

(a) Σ−1/2X/(XTΣ−1X)1/2 is distributed as U and
(b) X/(XTΣ−1X)1/2 is distributed as U Σ

1 .

Theorem 4.6 A random vector X ∈ R
n is distributed as ES(θ,Σ) if and only if

there exists a distribution ρ ∈ R+ such that

P [X ∈ A] =
∫
R+

U Σ
r,θ (A) dρ (r)

for any Borel set A on R
n, where U Σ

r,θ is the uniform distribution U Σ
r translated

by θ . Equivalently X has the stochastic representation X = RU where R = ‖X −
θ‖Σ−1 = ((x − θ)TΣ−1(x − θ))1/2 and U are independent, R ≥ 0 and U ∼ U Σ

1 .
For such X, the radius R has distribution ρ (called the radial distribution).

Theorem 4.7 Let X ∈ R
n be distributed as ES(θ,Σ). Then the following two

statements are equivalent:

(1) X has a density f with respect to the Lebesgue measure on R
n; and

(2) ‖X − θ‖Σ−1 has a density h with respect to Lebesgue measure on R+.

Further, if (1) or (2) holds, there exists a function g from R+ into R+ such that

f (x) = g(‖x − θ‖2
Σ−1)

and

h(r) = 2πn/2

Γ (n/2)
|Σ |−1/2rn−1g(r2).

Theorem 4.8 Let X ∈ R
n be distributed as ES(θ,Σ). Then the mean of X exists

if and only if the mean of R = ‖X − θ‖Σ−1 exists, in which case E[X] = θ . The
covariance matrix exists if and only if E[R2] is finite, in which case cov(X) =
E[R2]Σ/n.

Theorem 4.9 Let X ∈ R
n be distributed as ES(θ,Σ) with generating function g.

Then the distribution ofX is unimodal if and only if g is nonincreasing. Equivalently
there exists a distribution ν ∈ R+ with no point mass at 0 such that

P [X ∈ A] =
∫
R+

V Σ
r,θ (A) dν(r)

for any Borel set A of Rn, where V Σ
r,θ is the uniform distribution on the ball (solid

ellipse)

BΣr,θ = {x ∈ R
n | ‖x − θ‖Σ−1 ≤ r}.
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4.4 Marginal and Conditional Distributions for Spherically
Symmetric Distributions

In this section, we study marginal and conditional distributions of spherically
symmetric distributions. We first consider the marginal distributions for a uniform
distribution on SR .

Theorem 4.10 Let X = (XT
1, X

T
2)

T ∼ UR in R
n where dim X1 = p and dim

X2 = n − p. Then, for 1 ≤ p < n, X1 has an absolutely continuous spherically
symmetric distribution with generating function gR given by

gR(‖x1‖2) = Γ (n/2) R2−n

Γ ((n− p)/2) πp/2
(R2 − ‖x1‖2)(n−p)/2−1 1BR(x1). (4.4)

Proof The proof is based on the fact that R Y/‖Y‖ ∼ UR , for any random
variable Y with a spherically symmetric distribution (see Lemma 1.2), in particular
Nn(0, In), and on the fact that X1 has an orthogonally invariant distribution in R

p.
To see this invariance, note that, for any p × p orthogonal matrix H1 and any
(n− p)× (n− p) orthogonal matrix H2, the matrix

H =
(
H1 0
0 H2

)
,

is a block diagonal n× n orthogonal matrix. Hence

H

(
X1

X2

)
=
(
H1X1

H2X2

)
(4.5)

is distributed as (xT
1, x

T
2)

T and it follows that H1X1 ∼ X1 and so X1 is orthogonally
invariant.

Therefore, if Y = (Y T
1 , Y

T
2 )

T ∼ Nn(0, In), then ‖Y1‖2 is independent of ‖Y2‖2

and, according to standard results, Z = ‖Y1‖2/‖Y‖2 has a beta distribution, that
is Beta(p/2, (n − p)/2). It follows that Z′ = ‖X1‖2/‖X‖2 = ‖X1‖2/R2 has the
same distribution since both X/‖X‖ and Y/‖Y‖ have distribution UR.

Thus ‖X1‖2 = R2Z′ has a Beta(p/2, (n − p)/2) density scaled by R2. By a
change of variable, the density of ‖X1‖ is equal to

hR(r) = 2

B(p/2, (n− p)/2)

rp−1(R2 − r2)(n−p)/2−1

Rn−2 1(0,R)(r).

Hence, by Theorem 4.2, X1 has the density given by (4.4). ��

Corollary 4.3 Let X = (XT
1, X

T
2)

T ∼ SS(θ) in R
n where dim X1 = p and dim

X2 = n− p and where θ = (θT
1 , θ

T
2 )

T.
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Then, for 1 ≤ p < n, the distribution of X1 is an absolutely continuous
spherically symmetric distribution SS(θ1) on R

p with generating function given
by

∫
gR(‖X1 − θ1‖2) dν(R) where ν is the radial distribution of X and gR is given

by (4.4).

Unimodality properties of the densities of projections are given in the following
result.

Corollary 4.4 For the setup of Corollary 4.3, the density of X1 is unimodal
whenever n − p ≥ 2. Furthermore, if p = n − 2 and X =∼ UR,θ , then X1
has the uniform distribution on BR,θ1 in R

n−2.

In this book, we will have more need for the marginal distributions than the
conditional distributions of spherically symmetric distributions. For results on
conditional distributions, we refer the reader to Fang and Zhang (1990) and to Fang
et al. (1990). We will however have use for the following result.

Theorem 4.11 Let X = (XT
1, X

T
2)

T ∼ UR,θ in R
n where dim X1 = p and dim

X2 = n−p and where θ = (θT
1 , θ

T
2 )

T. Then the conditional distribution of X1 given
X2 is the uniform distribution on the sphere in R

p of radius (R2 − ‖X2 − θ2‖2)1/2

centered at θ1.

Proof First, it is clear that the support of the conditional distribution of X1 given
X2 is the sphere in R

p of radius (R2 − ‖X2 − θ2‖2)1/2 centered at θ1. It suffices
to show that the translated distribution centered at 0 is orthogonally invariant. To
this end, note that, for any orthogonal transformation H on R

p, the block diagonal
transformation with blocks H and In−p, denoted by H̃ , is orthogonal in R

n. Then

H̃
(
(X1 − θ1)

T, (X2 − θ2)
T
)T ∼ (

(X1 − θ1)
T, (X2 − θ2)

T)T ∼ UR,θ

that is,

(
(H(X1 − θ1))

T, (X2 − θ2)
T
)T ∼ (

(X1 − θ1)
T, (X2 − θ2)

T
)T ∼ UR,θ .

Hence

H(X1 − θ1)|(X2 − θ2) ∼ (X1 − θ1)|(X2 − θ2) ,

and therefore, the distribution of X1 given X2 is orthogonally invariant, since θ2 is
fixed. The lemma follows. ��

When properly interpreted, Corollaries 4.3 and 4.4 and Theorem 4.11 continue
to hold for a general orthogonal projection π from R

n onto any subspace V of
dimension p. See also Sect. 2.4.4 where the distribution is assumed to be normal.
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4.5 The General Linear Model

This section is devoted to the general linear model, its canonical form and the issues
of estimation, sufficiency and completeness.

4.5.1 The Canonical Form of the General Linear Model

Much of this book is devoted to some form of the following general problem.
Let (XT, U T)T be a partitioned random vector in R

n with a spherically symmetric
distribution around a vector partitioned as (θT, 0T)T where dimX = dim θ = p

and dimU = dim 0 = k with p + k = n. Such a distribution arises from a
fixed orthogonally invariant random vector (XT

0, U
T
0 )

T and a fixed scale parameter σ
through the transformation

(XT, U T)T = σ (XT
0, U

T
0 )

T + (θT, 0T)T , (4.6)

so that the distribution of ((X− θ)T, U T)T is orthogonally invariant. We also refer to
θ as a location parameter.

We will assume that the covariance matrix of (XT, U T)T exists, which is equiva-
lent to the finiteness of the expectation E[R2] where R = (‖X − θ‖2 + ‖U‖2)1/2

is its radius (in this case, we have cov(XT, U T)T = E[R2] In/n). Then it will be
convenient to assume that the radius R0 = (‖X0‖2 + ‖U0‖2)1/2 of (XT

0, U
T
0 )

T

satisfies E[R2
0] = n since we have

cov(XT, U T)T = σ 2 cov(XT
0, U

T
0 )

T = σ 2 In .

Note that when it is assumed that the distribution in (4.6) is absolutely continuous
with respect to the Lebesgue measure on R

n, the corresponding density may be
represented as

1

σn
g

(‖z− θ‖2 + ‖u‖2

σ 2

)
(4.7)

where g is the generating function.
This model also arises as the canonical form of the following seemingly more

general model, the general linear model. For an n×p matrix V (often referred to as
the design matrix and assumed here to be full rank p), suppose that an n× 1 vector
Y is observed such that

Y = Vβ + ε , (4.8)
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where β is a p×1 vector of (unknown) regression coefficients and ε is an n×1 vector
with a spherically symmetric error distribution about 0. A common alternative
representation of this model is Y = η + ε where ε is as above and η is in the
column space of V .

Using partitioned matrices, let G = (GT
1 G

T
2)

T be an n × n orthogonal matrix
partitioned such that the first p rows ofG (i.e. the rows ofG1 considered as column
vectors) span the column space of V . Now let

(
X

U

)
= GY =

(
G1

G2

)
V β +Gε =

(
θ

0

)
+Gε (4.9)

with θ = G1Vβ andG2Vβ = 0 since the rows ofG2 are orthogonal to the columns
of V . It follows from the definition that (XT, U T)T has a spherically symmetric
distribution about (θT, 0T)T. In this sense, the model given in the first paragraph
is the canonical form of the above general linear model.

This model has been considered by various authors such as Cellier et al. (1989),
Cellier and Fourdrinier (1995), Maruyama (2003b), Maruyama and Strawderman
(2005), and Fourdrinier and Strawderman (2010). Also, Kubokawa and Srivastava
in (2001) addressed the multivariate case where θ is a mean matrix (in this case
where X and U are matrices as well).

4.5.2 Least Squares, Unbiased and Shrinkage Estimation

Consider the model in (4.9). Since the columns of GT
1 (the rows of G1) and the

columns of V span the same space, there exists a nonsingular p × p matrix A such
that

V = GT
1A, which implies A = G1V, (4.10)

since G1G
T
1 = Ip. So

θ = Aβ, that is, β = A−1θ . (4.11)

Noting that V TV = AT G1G
T
1A = ATA, it follows that the estimation of θ by

θ̂ (X,U) under the loss

L(θ, θ̂) = (θ̂ − θ)T(θ̂ − θ) = ‖θ̂ − θ‖2 (4.12)

is equivalent to the estimation of β by

β̂(Y ) = A−1 θ̂ (G1Y,G2Y ) = (G1V )
−1 θ̂ (G1Y,G2Y ) (4.13)
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under the loss

L∗(β, β̂) = (β̂ − β)TATA(β̂ − β) = (β̂ − β)TV TV (β̂ − β) (4.14)

in the sense that the resulting risk functions are equal,

R∗(β, β̂) = E[L∗(β, β̂(Y ))] = E[L(θ, θ̂)] = R(θ, θ̂) .

Actually, the corresponding loss functions are equal. To see this, note that

L∗(β, β̂(Y )) = (β̂(Y )− β)TATA(β̂(Y )− β)

= (A(β̂(Y )− β))T(A(β̂(Y )− β))

= (θ̂(X,U)− θ)T(θ̂(X,U)− θ)

= L(θ, θ̂(X,U)) ,

where (4.13) and (4.11) were used for the third equality.
Note that the above equivalence between the estimation of θ , the mean vector of

X, and the estimation of the regression coefficients β also holds for the respective
invariant losses

L(θ, θ̂ , σ 2) = 1

σ 2
(θ̂ − θ)T(θ̂ − θ) = 1

σ 2
‖θ̂ − θ‖2 (4.15)

and

L∗(β, β̂, σ 2) = 1

σ 2 (β̂ − β)TATA(β̂ − β) = 1

σ 2 (β̂ − β)TV TV (β̂ − β) . (4.16)

Additionally, the correspondence (4.13) can be reversed as

θ̂ (X,U) = A β̂(GT
1X +GT

2 U) = G1X β̂(G
T
1X +GT

2 U) (4.17)

since, according to (4.9),

Y = GT

(
X

U

)
=
(
G1

G2

)T (
X

U

)
= (GT

1G
T
2)

(
X

U

)
= GT

1X +GT
2 U . (4.18)

There is also a correspondence between the estimation of θ and the estimation of
η in the following alternative representation of the general linear model. Here

η = GT

(
θ

0

)
=
(
G1

G2

)T (
θ

0

)
= (GT

1G
T
2)

(
θ

0

)
= GT

1 θ +GT
2 0 = GT

1 θ
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and

G1η = G1G
T
1 θ = θ .

It follows that the estimation of θ ∈ R
p by θ̂ (X,U) under the loss ‖θ̂ − θ‖2 (the

loss (4.12)) is equivalent to the estimation of η in the column space of V under the
loss ‖η̂ − η‖2 by

η̂(Y ) = GT
1 θ̂ (G1Y,G2Y ) (4.19)

in the sense that the risks functions are equal. The easy demonstration is left to the
reader.

Consider the first correspondence expressed in (4.13) and (4.17) between estima-
tors in Models (4.8) and (4.9). We will see that it can be made completely explicit
for a wide class of estimators. First, note that the matrix G1 can be easily obtained
by the Gram-Schmidt orthonormalization process or by the QR decomposition of
the design matrix X, where Q is an orthogonal matrix such that QTV = R and R
is an n × p upper triangular matrix (so that G1 = QT

1 and G2 = QT
2). Second, a

particular choice of A can be made that gives rise to a closed form of G1.
To see this, let

A = (V TV )1/2 (4.20)

(a square root of V TV , which is invertible since V has full rank) and set

G1 = A (V TV )−1V T = (V TV )−1/2V T . (4.21)

Then we have

G1 V = A, V = GT
1A, (4.22)

and

G1G
T
1 = (V TV )−1/2V TV (V TV )−1/2 = Ip . (4.23)

Hence, as in (4.10), (4.22) expresses that the columns of GT
1 (the rows of

G1) span the same space as the columns of V , noticing that (4.23) means that
these vectors are orthogonal. Therefore, completing GT

1 through the Gram-Schmidt
orthonormalization process, we obtain an orthogonal matrix G = (GT

1G
T
2)

T, with
G1 in (4.21), such that

GV =
(
(V TV )1/2

0

)
. (4.24)
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The relationship linking A and G1 in (4.21) is an alternative to (4.10) and is true
in general; that is,

G1 = A (V TV )−1 V T or equivalently A = (V TGT
1)

−1V TV .

Indeed, we have V TV = AT A so that (V TV )−1 (ATA) = Ip. Hence,
(V TV )−1AT = A−1 , which implies V (V TV )−1AT = V A−1 = GT

1AA
−1 = GT

1 ,

according to (4.10).
As a consequence, if β̂ls is the least squares estimator of β, we have

β̂ls(Y ) = (V TV )−1 V T Y (4.25)

so that the corresponding estimator θ̂0 of θ is the projection θ̂0(X,U) = X since

θ̂0(X,U) = A β̂ls(Y ) = A (V TV )−1V T Y = G1 Y = X . (4.26)

From this correspondence, the estimator θ̂0(X,U) = X of θ is often viewed as the
standard estimator. Note that, with the choice of A in (4.20), we have the closed
form

β̂ls(Y ) = (V TV )−1/2X . (4.27)

Furthermore, the correspondence between θ̂ (X,U) and β̂ls(Y ) can be specified
when θ̂ (X,U) depends on U only through ‖U‖2, in which case, with a slight abuse
of notation, we write θ̂ (X,U) = θ̂ (X, ‖U‖2). Indeed, first note that

‖X‖2 = (A β̂ls(Y ))
T(A β̂ls(Y ))

= (β̂ls(Y ))
T ATA (β̂ls(Y ))

= (β̂ls(Y ))
T V TV (β̂ls(Y ))

= (V β̂ls(Y ))
TV (β̂ls(Y ))

= ‖V β̂ls(Y )‖2 . (4.28)

On the other hand, according to (4.9), we have ‖X‖2 + ‖U‖2 = ‖GY‖2 = ‖Y‖2.
Hence,

‖U‖2 = ‖Y‖2 − ‖X‖2

= ‖Y‖2 − ‖V β̂ls(Y )‖2

= ‖Y − V β̂ls(Y )‖2 (4.29)

since Y − V β̂ls(Y ) is orthogonal to V β̂ls(Y ). Consequently, according to (4.13)
and (4.10), Equations (4.29) and (4.26) give that the estimator β̂(Y ) of β corre-
sponding to the estimator θ̂ (X, ‖U‖2) of θ is
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β̂(Y ) = (G1 V )
−1 θ̂ (G1 V β̂ls(Y ), ‖Y − V β̂ls(Y )‖2) . (4.30)

Note that, when ones chooses G1 as in (4.21), β̂(Y ) in (4.30) has the closed form

β̂(Y ) = (V T V )−1/2 θ̂
(
(V T V )1/2 β̂ls(Y ), ‖Y − V β̂ls(Y )‖2

)

= (V T V )−1/2 θ̂
(
(V T V )−1/2V TY, ‖Y − V β̂ls(Y )‖2

)
. (4.31)

In particular, we can see through (4.28), that the “robust” Stein-type estimators
of θ ,

θ̂r (X, ‖U‖2) =
(

1 − a
‖U‖2

‖X‖2

)
X (4.32)

have as a correspondence the “robust” estimators of β

β̂r (Y ) = (G1 V )
−1

(
1 − a

‖Y − V β̂ls(Y )‖2

‖V β̂ls(Y )‖2

)
G1 V β̂ls(Y )

=
(

1 − a
‖Y − V β̂ls(Y )‖2

‖V β̂ls(Y )‖2

)
β̂ls(Y ) (4.33)

(note that the two G1 V terms simplify). We use the term “robust” since, for
appropriate values of the positive constant a, they dominate X whatever the
spherically symmetric distribution, as we will see in Chap. 5 (see also Cellier et al.
1989; Cellier and Fourdrinier 1995).

According to the correspondence seen above between the risk functions of the
estimators of θ and the estimators of β, using these estimators in (4.33) is then
a good alternative to the least squares estimator: they dominate the least squares
estimator of β simultaneously for all spherically symmetric error distributions with
a finite second moment (see Fourdrinier and Strawderman (1996) for the use of
these robust estimators when σ 2 is known and also Sect. 5.2).

4.5.3 Sufficiency in the General Linear Model

Suppose (XT, U T)T has a spherically symmetric distribution about (θT, 0T)T with
dim X = dim θ = p > 0 and dim U = dim 0 = k > 0. Furthermore, suppose
that the distribution is absolutely continuous with respect to the Lebesgue measure
on R

n for n = p+ k. The corresponding density may be represented as in (4.7). We
refer to θ as a location vector and to σ as a scale parameter. As seen in the previous
section, such a distribution arises from a fixed orthogonally invariant random vector
(XT

0, U
T
0 )

T with generating function g through the transformation
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(
X

U

)
= σ

(
X0

U0

)
+
(
θ

0

)
.

Each of θ, σ 2 and g(·) may be known or unknown, but perhaps the most
interesting case from a statistical standpoint is the following.

Suppose θ and σ 2 are unknown and g(·) is known. It follows immediately from
the factorization theorem that (X, ‖U‖2) is sufficient . It is intuitively clear that
this statistic is also minimal sufficient since dim(X, ‖U‖2) = dim(θ, σ 2). Here is a
proof of that fact.

Theorem 4.12 Suppose that (XT, U T)T is distributed as (4.7). Then the statistic
(X, ‖U‖2) is minimal sufficient for (θ, σ 2) when g is known.

Proof By Theorem 6.14 of Casella and Berger (2001), it suffices to show that if, for
all (θ, σ 2) ∈ R

p × R+,

g
( ‖x1−θ‖2+‖u1‖

σ 2

)

g
( ‖x2−θ‖2+‖u2‖2

σ 2

) = c (4.34)

where c is a constant then x1 = x2 and ‖u1‖2 = ‖u2‖2. Note that 0 < c < ∞ since
otherwise (4.7) cannot be a density.

Letting τ 2 = 1/σ 2, (4.34) can be written, for all τ > 0, as

g(τ 2v2
1) = cg(τ 2v2

2) (4.35)

where v2
1 = ‖x1 − θ‖2 +‖u1‖2 and v2

2 = ‖x2 − θ‖2 +‖u2‖2 for each fixed θ ∈ R
p.

First, we will show that v2
1 = v2

2. Note that

1 =
∫
Rp×Rk

g(‖x‖2 + ‖u‖2) dx du

= K

∫ ∞

0
rp+k−1 g(r2) dr (by Theorem 4.2)

= Kυp+k
∫ ∞

0
τp+k−1 g(v2τ 2) dτ (4.36)

for any v > 0. Then it follows from (4.35) and (4.36) that

1 = Kv
p+k
1

∫ ∞

0
τp+k−1g(v2

1τ
2) dτ

= cKv
p+k
1

∫ ∞

0
τp+k−1g(v2

2τ
2) dτ

= c
v
p+k
1

v
p+k
2

. (4.37)
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Let F(b) = ∫ b
0 τp+k−1g(τ 2) dτ and choose b such that F is strictly increasing at

b. Suppose v1 > v2. Then, for any v > 0,

F(b) = vp+k
∫ b/v

0
τp+k−1 g(v2τ 2) dτ

and consequently

∫ b/v1

0
τp+k−1 g(v2

1τ
2)dτ = F(b)

vn1

= c

∫ b/v1

0
τp+k−1 g(v2

2τ
2)dτ

< c

∫ b/v2

0
τp+h−1 g(v2

2τ
2)dτ

= c
F (b)

vn2
.

It follows that c vp+k
1 /v

p+h
2 > 1, which contradicts (4.37). A similar argument

would give c vp+k
1 /v

p+h
2 < 1 for v1 < v2 and v1 = v2. Now, setting θ = x1+x2

2 in
the expressions for v1 and v2 implies ‖u1‖2 = ‖u2

2‖. It then follows that ‖x1−θ‖2 =
‖x2 − θ‖2 for all θ ∈ R

p, which implies x1 = x2 by setting θ = x2 (or x1). ��
In the case where θ is unknown, σ 2 is known, and the distribution is multivariate

normal, X is minimal sufficient (and complete). However, in the non-normal case,
(X, ‖U‖2) is typically minimally sufficient, and may or may not be complete, which
is the subject of the next section.

4.5.4 Completeness for the General Linear Model

The section largely follows the development in Fourdrinier et al. (2014). In the
case where both θ and σ 2 are unknown and g is known, the minimal sufficient
statistic (X, ‖U‖2) can be either complete or incomplete depending on g. If g
corresponds to a normal distribution, the statistic is complete by standard results
for exponential families. However, when the generating function is of the form
K g(t)1(r1,r2)(t) with 0 < r1 < r2 < ∞ and K is the normalizing constant,
(X, ‖U‖2) is not complete. In fact incompleteness of (X, ‖U‖2) follows from the
fact that the minimal sufficient statistic, when θ is known, σ 2 is unknown and g is
known, is incomplete.
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Theorem 4.13

(1) If X ∼ f (x − θ) with θ ∈ R
p where f has compact support, then X is not

complete for θ .
(2) If X ∼ 1/σf (x/σ), where f has support contained in an interval [a, b] with

0 < a < b < ∞, then X is not complete for σ .

Before giving the proof of Theorem 4.13, note that if the generating function is
of the form K g(t)1[r1,r2](t) for 0 < r1 < r2 < ∞ and the value of θ is assumed to
be known and equal to θ0, then T = ‖X − θ0‖2 + ‖U‖2 is minimal sufficient and
has density of the form K/σp+k t (p+k)/2 g(t/σ 2)1[r1σ 2,r2σ

2](T ).
Therefore, T is not a complete statistic for σ 2 by Lemma 4.13 (2). It follows

that there exists a function h(·) not equal to zero a.e. such that Eσ [h(T )] = 0 for
all σ > 0. Since Eσ 2 [h(β T )] = Eβσ 2 [h(T )], it follows that Eσ 2 [h(β T )] = 0 for

all σ 2 > 0, β > 0, and also that M(t) = ∫ 1
0 Eσ 2 [h(β t)]m(β) dβ = 0 for any

function m(·) for which the integral exists. In particular, this holds when m(·) is
the density of a Beta(k/2, p/2) random variable (where finiteness of the integral
is guaranteed since Eσ 2 [h(β T )] is continuous in β). Now, since B = ‖U‖2/T

has a Beta(k/2, p/2) distribution, ‖U‖2 = BT , and M(σ 2) = Eσ 2 [h(B T ) =
Eσ 2 [h(‖U‖2)] ≡ 0.

Since the distribution of ‖U‖2 does not depend on θ , it follows that when
both θ and σ 2 are unknown, Eθ,σ 2 [h(‖U‖2)] ≡ 0. Hence, (X, ‖U‖2), while
minimal sufficient, is not complete for the case of a generating function of the form
g(t)1[r1,r2](T ) with 0 < r1 < r2 < ∞.

Note that whenever θ is unknown, σ 2 is known, and (X, ‖U‖2) is minimal
sufficient (so the distribution is not normal, since then X would be minimal
sufficient) ‖U‖2 is ancillary and the minimal sufficient statistic is not complete.

Proof of Theorem 4.13 First, note that part (2) follows from part (1) by the standard
technique of transforming a scale family to a location family by taking logs.

We will show the incompleteness of a location family in R when F has bounded
support. We show first that, if F is a cdf with bounded support contained inside
[a, b], the characteristic function (c.f.) f̂ is analytic in C (the entire complex plane)
and is of order 1 (i.e., |f̂ (η)| isO exp(|η|1+ε) for all ε > 0 and is notO(exp(|η|1−ε)
for any ε > 0).

To see this, without loss of generality assume 0 < a < b < ∞. Then

|f̂ (η)| ≤
∫ b

a

exp(|η|X) dF(x)

≤ exp(b|η|)
∫ b

a

dF (x)

= exp(b|η|)
= O(exp(|η|1+ε)).
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for all ε > 0. Also, if η = −iv for v > 0, then

|f̂ (η)| =
∫ b

a

exp(vx) dF (x) ≥ exp(av)
∫ b

a

dF (x) = exp(av) .

However, exp(av) is not O(exp(v1−ε) for any ε > 0. Hence f̂ (η) is of order 1.
In the step above, we used 0 < a < b < ∞. Note that if either a and/or b is

negative then the distribution of X is equal to the distribution of z + θ0 where θ0
is negative and where the distribution of z satisfies the assumptions of the theorem.
Hence E exp(iηx) = E exp(iηz)eiηθ0 , so |E exp(iηx)| ≤ exp(|η|b) exp(|iη||θ0|)
which is O exp(|η|1+ε) for all ε > 0.

Similarly, for η = −iv (recall θ0 < 0),

|E exp(iηx)| = E exp(tvz) exp(−vθ0)

≥ ev|θ0| exp(av)

= exp(v(a + |θ0|)

and this is not O(expv
1−ε
) for any ε > 0. ��

Note that f̂ (η) exists in all of C since F has bounded support and is analytic by
standard results in complex analysis (See e.g. Rudin 1966). To complete the proof
of Theorem 4.13 we need the following lemma.

Lemma 4.3 If X ∼ F(x) where the cdf F has bounded support in R and F is not
degenerate, then the characteristic function f̂ (η) has at least one zero in C.

Proof This follows almost directly from the Hadamard factorization theorem which
implies that a function f̂ (z) that is analytic in all of C and of order 1 is of the
form f̂ (z) = exp(az + b)P (z). P(z) is the so called canonical product formed
from the zeros of f̂ (z), where P(0) = 1 and P(z) = 0 for each such root. (See
e.g., Titchmarsh (1932) for an extended discussion of the form of P(z)). Therefore,
either f̂ (z) has no zeros, in which case f̂ (z) = exp(az) (since f̂ (0) = 1 = eb ⇒
b = 0) and P(z) ≡ 1, or f̂ (z) has at least one zero. The case where f̂ (z) =
exp(az) corresponds to the degenerate case where exp(az) = f̂ (z) = E exp(izx)
with P [X = −ia] = 1. Since F is assumed to not be degenerate, f̂ (z) must have at
least one zero by the uniqueness of the Fourier transform.

To finish the proof of Theorem 4.13 note that, by By Lemma 4.3, there exists an
η0 such that

f̂ (η0) =
∫ ∞

−∞
exp(iη0x)f (x) dx = 0.

This implies that for any θ ∈ R,
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0 =
(∫ ∞

−∞
exp(iη0x)f (x) dx

)
expiη0θ

=
∫ ∞

−∞
exp(ix(η0 + θ))f (x) dx

=
∫ ∞

−∞
exp(iη0x)f (x − θ) dx

= Eθ [exp(iη0X) = Eθ [exp(i(a0 + b0i))X]
= Eθ exp(iη0X) exp(−b0X)]
= Eθ [exp(−b0X){cos a0x + i sin a0x}].

Hence, for any θ ∈ R, we have Eθ [exp(−b0x) cos(a0x)] ≡ 0.
Additionally, Eθ [| exp(−b0x) cos(a0x)|] < ∞ for all θ since f (·) has bounded

support. The theorem then follows, since h(X) = e−b0X cos a0X is an unbiased
estimator of 0, which is not equal to 0 almost surely for each θ . This proves the
result for p = 1. The extension from R to R

p is straightforward since the marginal
distribution of each coordinate has compact support. ��

4.6 Characterizations of the Normal Distribution

There is a large literature on characterizations of the normal distribution that has had
a long history. A classical reference that covers a number of characterizations of
the normal distribution is Kagan et al. (1973). We give only a small sample of these
characterizations. The first result gives a characterization in terms of the normality
of linear transformations.

Theorem 4.14 Let X ∼ ES(θ) in R
n. If A is any fixed linear transformation

of positive rank such that AX has a normal distribution then X has a normal
distribution.

Proof First note that it suffices to consider the case θ = 0. Furthermore it suffices
to prove the result for X ∼ SS(0) since an elliptically symmetric distribution is the
image of a spherically symmetric distribution by a nonsingular transformation. Note
also that, if X ∼ SS(0), its characteristic function ϕX(t) = Ψ (tTt) since, for any
orthogonal transformation H , the characteristic function ϕHX of HX satisfies

ϕHX(t) = ϕX(H
Tt) = ϕX(t).

Now the characteristic function ϕAX of AX equals

ϕAX(t) = E[exp{itTAX}] = E[exp{i(ATt)TX}] = Ψ (tTAATt). (4.38)
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Also, by Theorem 4.3, Cov(X) = E[R2]/nIn. Hence Cov(AX) =
(E[R2]/n)AAT and the fact that AX is normal implies that E[R2] < ∞ and
that Cov(AX) = α AAT for α ≥ 0. This implies that ϕAX(t) = exp{−α tTAATt/2}.
Therefore, by (4.38), Ψ (z) = exp{−αz/2} and ϕX(t) = exp{−αtTt/2}, so X is
normal. ��
Corollary 4.5 Let X ∼ ES(θ) in R

n. If any orthogonal projectionΠ has a normal
distribution (and, in particular, any marginal), then X has a normal distribution.

The next theorem gives a characterization in terms of the independence of linear
projections.

Theorem 4.15 Let X ∼ ES(θ) in R
n. If A and B are any two fixed linear

transformations of positive rank such that AX and BX are independent, then X
has a normal distribution.

Proof As in the proof of Theorem 4.14, we can assume that X ∼ SS(0). Then
the characteristic function ϕX of X is ϕX(t) = Ψ (tTt). Hence, the characteristic
functions ϕAX and ϕBX of AX and BX are ϕAX(t1) = Ψ (tT

1AA
Tt1) and ϕBX(t2) =

Ψ (tT
2BB

Tt2), respectively. By the independence of AX and BX, we have

Ψ (tT
1AA

Tt1 + tT
2BB

Tt2) = Ψ (tT
1AA

Tt1)Ψ (t
T
2BB

Tt2).

Since A and B are of positive rank this implies that, for any u ≥ 0 and v ≥ 0,

Ψ (u+ v) = Ψ (u)Ψ (v).

This equation is known as Hamel’s equation and its only continuous solution
is Ψ (u) = eαu for some α ∈ R (see for instance Feller 1971, page 305). Hence,
ϕX(t) = eαt

Tt for some α ≤ 0 since ϕX is a characteristic function. It follows that
X has a normal distribution. ��
Corollary 4.6 Let X ∼ ES(θ) in R

n. If any two projections (in particular, any two
marginals) are independent, then X has a normal distribution.



Chapter 5
Estimation of a Mean Vector for
Spherically Symmetric Distributions I:
Known Scale

5.1 Introduction

In Chaps. 2 and 3 we studied estimators that improve over the “usual” estimator
of the location vector for the case of a normal distribution. In this chapter, we
extend the discussion to spherically symmetric distributions discussed in Chap. 4.
Section 5.2 is devoted to a discussion of domination results for Baranchik type
estimators while Sect. 5.3 examines more general estimators. Section 5.4 discusses
Bayes minimax estimation. Finally, Sect. 5.5 discusses estimation with a concave
loss.

We close this introductory section by extending the discussion of Sect. 2.2 on the
empirical Bayes justification of the James-Stein estimator to the general multivariate
(but not necessarily normal) case.

Suppose X has a p-variate distribution with density f (‖x − θ‖2), unknown
location vector θ and known scale matrix σ 2Ip. The problem is to estimate θ under
loss L(θ, δ) = ‖δ− θ‖2. Let the prior distribution on θ be given by π(θ) = f !n(θ),
the n-fold convolution of the density f (·) with itself. Note that the distribution of θ
is the same as that of

∑n
i=1 Yi where the Yi are iid with density f (·). Recall from

Example 1.3 that the Bayes estimator of θ is given by

δn(X) = n

n+ 1
X =

(
1 − 1

n+ 1

)
X.

Assume now that n is unknown. Since

E(XTX) = E

( n∑
i=0

Y T
i Yi

)
= (n+ 1) E(Y T

0 Y0) = (n+ 1) (tr σ 2I ) = (n+ 1) p σ 2 ,
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an unbiased estimator of n + 1 is XTX/(pσ 2), and so p σ 2/(XTX) is a reasonable
estimator of 1/(n+1). Substituting p σ 2/(XTX) for 1/(n+1) in the Bayes estimator,
we have that

δEB(X) =
(

1 − p σ 2

XTX

)
X

can be viewed as an empirical Bayes estimator of θ without any assumption on the
form of the density (and in fact there is not even any need to assume there is a
density). Hence this Stein-like estimator can be viewed as a reasonable alternative
to X from an empirical Bayes perspective regardless of the form of the underlying
distribution.

Note that Diaconis and Ylvisaker (1979) introduced the prior f !n(θ) as a rea-
sonable conjugate prior for location families since it gives linear Bayes estimators.
Strawderman (1992) gave the above empirical Bayes argument. In the normal case
the sequence of priors corresponds to that in Sect. 2.2.3 with τ 2 = n σ 2. The
shrinkage factor p σ 2 in the present argument differs from (p− 2) σ 2 in the normal
case since in this general case we use a “plug-in” estimator of 1/(n+ 1) as opposed
to the unbiased estimator (in the normal case) of 1/(σ 2 + τ 2).

5.2 Baranchik-Type Estimators

In this section, assuming that X has a spherically symmetric distribution with mean
vector θ and that loss is L(θ, δ) = ‖δ − θ‖2, we consider estimators of the
Baranchik-type, as (2.19) in the normal setting, for different families of densities.
In Sect. 5.3, we consider results for general estimators of the form X + g(X).

5.2.1 Variance Mixtures of Normal Distributions

We first consider spherically symmetric densities which are variance mixtures of
normal distributions. Suppose

f (‖x − θ‖2) = 1

(2π)p/2

∫ ∞

0

1

vp/2
exp

{
−‖x − θ‖2

2v

}
dG(v), (5.1)

where G(·) is a probability distribution on (0,∞), i.e., a mixture of Np(θ, vI )

distributions with mixing distribution G(·).
Our first result gives a domination result for Baranchik type estimators for such

distributions. This result is analogous to Theorem 2.3 in the normal case.
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Theorem 5.1 (Strawderman 1974b) Let X have density of the form (5.1) and let

δBa,r (X) =
(

1 − a
r(‖X‖2)

‖X‖2

)
X,

where the function r(·) is absolutely continuous. Assume the expectations E[V ] and
E[V −1] are finite where V has distribution G. Then δBa,r (X) is minimax for the loss
L(θ, δ) = ‖δ − θ‖2 provided

(1) 0 ≤ a ≤ 2(p − 2)/E[V −1],
(2) 0 ≤ r(t) ≤ 1 for any t ≥ 0,
(3) r(t) is nondecreasing in t , and
(4) r(t)/t is nonincreasing in t .

Furthermore, δBa,r (X) dominates X provided the inequalities in (1) or (2) (on a set
of positive measure) are strict or r ′(t) is strictly increasing on a set of positive
measure.

Proof The proof proceeds by calculating the conditional risk given V = v, noting
that the distribution of X|V = v is normal N(θ, vIp). First note that E[V ] <
∞ is equivalent to E0[‖X‖2] < ∞ so that the risk of X is finite. Similarly, it
can be seen that E[V −1] < ∞ if and only if E0[‖X‖−2] < ∞. Then, thanks
to (2), we have E0[r2(‖X‖2)‖X‖−2] < ∞. Actually, we will see below that, for
any θ , Eθ [‖X‖−2] ≤ E0[‖X‖−2], and hence, Eθ [r2(‖X‖2)‖X‖−2] < ∞ which
guarantees that the risk of δBa,r (X) is finite. Note that, conditionally on V , ‖X‖2/V

has a noncentral chi-square distribution with p degrees of freedom and noncentrality
parameter ‖θ‖2/V . Hence, since the family of noncentral chi-square distributions
have monotone (increasing) likelihood ratios in the noncentrality parameter (and
therefore are stochastically increasing), ‖X‖2/V is (conditionally) stochastically
decreasing in V and increasing in ‖θ‖2.

Hence,

Eθ

[
1

‖X‖2/V

]
≤ E0

[
1

‖X‖2/V

]

and, as a result,

Eθ

[
1

‖X‖2

]
= E

[
Eθ

[
1

‖X‖2

∣∣∣∣V
]

= E

[
1

V
Eθ

[
1

‖X‖2/V

∣∣∣∣V
]]

� E

[
1

V
E0

[
1

‖X‖2/V

]]

= E0

[
1

‖X‖2

]
.
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This sufficies to establish finiteness of the risk of δBa,r (X). We now deal with the
main part of the theorem. Using Corollary 2.1 and Theorem 2.3, we have

R(θ, δBa,r ) = E{E[‖δBa,r (X)− θ‖2 |V ]}

= E

{
E

[
‖X − θ‖2 + V 2

(
a2r2(‖X‖2)

V 2‖X‖2 − 2a(p − 2)

V

r(‖X‖2)

‖X‖2

)

−4 aV r ′(‖X‖2)

∣∣∣∣V
]}

≤ R(θ,X)+ E

{
aE

[
r(‖X‖2)

‖X‖2/V

∣∣∣∣V
](

a

V
− 2(p − 2)

)}
, (5.2)

since r2(‖X‖2) ≤ r(‖X‖2) and r ′(‖X‖2) ≥ 0. Now, as a consequence of the above
monotone likelihood property, ‖X‖2/V is stochastically decreasing in V . It follows
that the conditional expectation in (5.2) is nondecreasing in V since, if v1 < v2, we
have

E

[
r(‖X‖2)

‖X‖2/V

∣∣∣∣V = v1

]
= E

[
r
(
v1

‖X‖2

V

)
‖X‖2/V

∣∣∣∣V = v1

]

≤ E

[
r
(
v2

‖X‖2

V

)
‖X‖2/V

∣∣∣∣V = v1

]

≤ E

[
r
(
v2

‖X‖2

V

)
‖X‖2/V

∣∣∣∣V = v2

]

= E

[
r(‖X‖2)

‖X‖2/V

∣∣∣∣V = v2

]
.

The first inequality follows since r(‖X‖2) is nondecreasing while the second since
r(t)/t is nonincreasing and ‖X‖2/V is stochastically decreasing in V . Finally, using
the fact that aV −1 − 2(p − 2) is decreasing in V , and the fact that E[g(Y )h(Y )] ≤
E[g(Y )]E[h(Y )] if g and h are monotone in opposite directions, it follows that

R(θ, δBa,r ) ≤ R(θ,X)+ aE

[
V r(‖X‖2)

‖X‖2

]
E

[
a

V
− 2(p − 2)

]

≤ R(θ,X) (5.3)

by assumption (a). Hence δBa,r (X) is minimax, since X is minimax.
The dominance result follows since the inequality in (5.2) is strict if there is strict

inequality in (2) or if r ′(·) is strictly positive on a set of positive measure and the
inequality in (5.3) is strict if the inequalities in (1) are strict. ��
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Example 5.1 (The multivariate Student-t distribution) The multivariate Student-t
distribution: If V has an inverse Gamma (v/2, v/2) distribution (that is, V ∼ v/χ2

v ),
then the distribution of X is a multivariate Student-t distribution with ν degrees of
freedom. SinceE[V ] = E[v/χ2

v ] = v/(v−2) for v > 2 andE[V −1] = E[χ2
v /v] =

1, the conditions of Theorem 5.1 requires 0 ≤ a ≤ 2(p − 2) and v > 2.

Example 5.2 (Examples of the function r(t)) The James-Stein estimator has r(t) ≡
1 and hence satisfies conditions (2), (3) and (4) of Theorem 5.1. Also r(t) = t/(t+b)
satisfies these conditions. Similarly, the positive-part James-Stein estimator

(
1 −

a/XTX
)
+X is such that

r(t) =
{
t/a for 0 ≤ t ≤ a

1 for t ≥ a

and

r(t)

t
=
{

1/a for 0 ≤ t ≤ a

1/t for t ≥ a

hence also satisfies the conditions (2), (3) and (4) of Theorem 5.1.

It is worth noting, and easy to see, that if the sampling distribution isN(θ, Ip) and
the prior distribution is any variance mixture of normal distributions as in (3.4), in
the Baranchik representation of the Bayes estimator (see Corollary 3.1), the function
r(t)/t is always nonincreasing. This fact leads to the following observation on
the (sampling distribution) robustness of Bayes minimax estimators for a normal
sampling distribution. If δπ (X) = (

1 − a r(‖X‖2)/‖X‖2
)
X is a Bayes minimax

estimator with respect to a scale mixture of normal priors for a N(θ, Ip) sampling
distribution, and if r(t) is nondecreasing, this Bayes minimax estimator remains
minimax for a multivariate-t sampling distribution in Example 5.1 as long as the
degrees of freedom is greater than two.

It is also interesting to note that, in general, there will be no uniformly optimal
choice of the shrinkage constant “a” in the James-Stein estimator if the mixing
distribution G(·) is nondegenerate. The optimal choice will typically depend on
‖θ‖2. This is in contrast to the normal sampling distribution case, where G(·) is
degenerate, and where the optimal choice is a = (p − 2)σ 2.

5.2.2 Densities with Tails Flatter Than the Normal

In this section we consider the subclass of spherically symmetric densities f (‖x −
θ‖2) such that, for any t ≥ 0 for which f (t) > 0,

F(t)

f (t)
≥ c > 0 (5.4)
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for some fixed positive c, where

F(t) = 1

2

∫ ∞

t

f (u)du. (5.5)

This class was introduced in Berger (1975) (without the constant 1/2 multiplier).
This class of densities contains a large subclass of variance mixtures of normal

densities but also many others. The following lemma gives some conditions which
guarantee inclusion or exclusion from the class satisfying (5.4) and (5.5).

Lemma 5.1 Suppose X has density f (‖x − θ‖2).

(1) (Mixture of normals). If, for some distribution G on (0,∞),

f (‖x − θ‖2) =
(

1√
2π

)p ∫ ∞

0
v−p/2 exp

{
−‖x − θ‖2

2v

}
dG(v)

where E[V −p/2] is finite, E denoting the expectation with respect to G, then
f (·) is in the class (5.4) with c = E[V −p/2+1]/E[V −p/2] for p ≥ 3.

(2) If f (t) = h(t)e−at with h(t) nondecreasing, then f (·) is in the class (5.4).
(3) If f (t) = e−atg(t) where g(t) is nondecreasing and limt→∞ g(t) = ∞, then

f (t) is not in the class (5.4).

Proof (1) Applying the definition of F in (5.5) we have

F(t) = 1

2

∫ ∞

t

f (u)du

= 1

2(
√

2π)p

∫ ∞

t

∫ ∞

0
v−p/2 exp {−u/2v} dG(v)du

= 1

(
√

2π)p

∫ ∞

0
v−p/2+1 exp {−t/2v} dG(v).

Hence the ratio in (5.4) equals

F(t)

f (t)
=

∫∞
0 v−p/2+1 exp {−t/2v} dG(v)∫∞

0 v−p/2 exp {−t/2v} dG(v)

≥
∫∞

0 v−p/2+1 dG(v)∫∞
0 v−p/2dG(v)

= E[V −p/2+1]
E[V −p/2] . (5.6)

The inequality follows since the family of densities proportional to the function v �→
v−p/2 exp {−t/2v} has monotone (increasing) likelihood ratio in the parameter t .
Note that if p ≥ 3, E[V −p/2] < ∞ implies E[V −p/2+1] < ∞. This completes the
proof of (1).
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(2) In this case it follows

F(t)

f (t)
=

1
2

∫∞
t
h(u)e−audu
h(t)e−at

≥ 1

2

∫ ∞

t

e−a(u−t)du

= 1

2a
.

Hence (5.4) is satisfied with c = 1/2a, which proves (2).
(3) In this case it follows

2 lim
t→∞

F(t)

f (t)
= lim

t→∞

∫∞
t

exp {−aug(u)} du
exp{−atg(t)}

= lim
t→∞

∫ ∞

t

exp {−aug(u)+ atg(t)} du

= lim
t→∞

∫ ∞

0
exp {−a(u+ t)g(u+ t)+ atg(t)} du

≤ lim
t→∞

∫ ∞

0
exp {−aug(t)} du

= lim
t→∞

1

ag(t)

= 0.

Hence f (t) is not in the class (5.4), which shows (c). ��
Part (2) of the lemma shows that densities with tails flatter than the normal (and

including the normal) are in the class (5.4), while densities with tails “sufficiently
lighter” than the normal are not included. Also the condition in part (3) is stronger
than necessary in that it suffices that the condition hold only for all t larger than
some positive K . See Berger (1975) for further details and discussion.

Example 5.3 Some specific examples in the class (5.4) include (see Berger 1975
for more details)

(1) f (t) = K/cosht (c ≈ 1/2)

(2) f (t) = Kt(1 + t2)−m with m > p/4 (c = m/2)

(3) f (t) = Ke−αt−β
/
(1 + e−αt−β)2 (c = α/2)

(4) f (t) = Ktne−t/2 for n ≥ 0 (c = 1).

The latter two distributions are known as the logistic type and Kotz , respectively.
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The following lemma plays the role of Stein’s lemma (Theorem 2.1) for the
family of spherically symmetric densities.

Lemma 5.2 LetX have density f (‖x−θ‖2) and let g(X) be a weakly differentiable
function such that Eθ [|(X − θ)Tg(X)|] < ∞. Then

Eθ [(X − θ)Tg(X)] = Eθ

[
F(‖X − θ‖2)

f (‖X − θ‖2)
div g(X)

]

= C E∗
θ

[
div g(X)

]

where F(t) is defined as in (5.5) and E∗
θ denotes expectation with respect to the

density

x �→ 1

C
F(‖x − θ‖2)

and where it is assumed that

C =
∫
Rp

F (‖x − θ‖2) dx < ∞ .

Proof Note that the existence of the expectations in Lemma 5.2 will be guaranteed
for any function g(x) such that Eθ [‖g(x)‖2] < ∞ as soon as E0[‖X‖2] < ∞.
The proof will follow along the lines of Sect. 2.4 making use of Stokes’ theorem. It
follows that

E[(X − θ)Tg(X)]
=
∫
Rp
(x − θ)Tg(x)f (‖x − θ‖2) dx

=
∫ ∞

0

∫
SR,θ

(x − θ)Tg(x) f (‖x − θ‖2) dσR,θ (x) dR (by Lemma 1.4)

=
∫ ∞

0

∫
SR,θ

(
x − θ

‖x − θ‖
)T

dσR,θ (x) R f (R
2) dR

=
∫ ∞

0

∫
BR,θ

div g(x) dxR f (R2) dR (Stokes’ theorem)

=
∫
Rp

div g(x)
∫ ∞

‖x−θ‖
Rf (R2) dR dx (Fubini’s theorem)

=
∫
Rp

div g(x) F (‖x − θ‖2) dx
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= Eθ

[
div g(x)

F (‖x − θ‖2)

f (‖x − θ‖2)

]

= C E∗
θ

[
div g(X)

]

��
Now, with the important analog of Stein’s lemma in hand, we can extend some

of the minimaxity results from the Gaussian setting to the case of spherically
symmetric distributions. The following result gives conditions for minimaxity of
estimators of the Baranchik type.

Theorem 5.2 Let X have density f (‖x − θ‖2) which satisfies (5.4) for some 0 <
c < ∞. Assume also that E0[‖X‖2] < ∞ and E0[‖X‖−2] < ∞. Let

δBa,r (X) =
(

1 − a r(‖X‖2)

‖X‖2

)
X

where r(·) is absolutely continuous. Then δBa,r (X) is minimax for p ≥ 3 provided

(1) 0 < a ≤ 2 c (p − 2),
(2) 0 ≤ r(t) ≤ 1, and
(3) r(·) is nondecreasing.

Furthermore δBa,r (X) dominates X provided both inequalities are strict in (1) or
in (2) on a set of positive measure or if r ′(·) is strictly positive on a set of positive
measure.

Proof We note that the conditions ensure finiteness of the risk so that Lemma 5.2 is
applicable. Hence we have

R(θ, δBa,r ) = Eθ

[
‖X − θ‖2 + a2r2(‖X‖2)

‖X‖2
− 2

a r(‖X‖2)XT(X − θ)

‖X‖2

]

= R(θ,X)+ a Eθ

[
ar2(‖X‖2)

‖X‖2 − 2 div

(
r(‖X‖2)X

‖X‖2

)
F(‖X − θ‖2)

f (‖X − θ‖2)

]

by Lemma 5.2. Therefore the risk difference between δBa,r (X) and X equals

Δθ = a Eθ

[
ar2(‖X‖2)

‖X‖2
−
(

2(p − 2)r(‖X‖2)

‖X‖2
+ 4 r ′(‖X‖2)

)
F(‖X − θ‖2)

f (‖X − θ‖2)

]

≤ a Eθ

[
r(‖X‖2)

‖X‖2

(
a − 2(p − 2)

F (‖X − θ‖2)

f (‖X − θ‖2)

)]

≤ a Eθ

[
r(‖X‖2)

‖X‖2

(
a − 2(p − 2) c

)]

≤ 0.

The domination part follows as in Theorem 5.1. ��
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Theorem 5.2 applies for certain densities for which Theorem 5.1 is not applicable
and additionally lifts the restriction that r(t)/t is nonincreasing. However, if the
density is a mixture of normals, and both theorems apply, the shrinkage constant
“a” given by Theorem 5.1 (with a = 2(p − 2)/E[V −1]) is strictly larger than that
for Theorem 5.2 ( with a = 2(p−2)c) whenever the mixing distributionG(·) is not
degenerate. To see this note that

1

E[V −1] > c = E[V −p/2+1]
E[V −p/2]

or equivalently

E[V −p/2] > E[V −1]E[V −p/2+1]

whenever the positive random variable V is non-degenerate. Note also that
E[V −1] < ∞ whenever E[V −p/2] < ∞ and p ≥ 3.

Example 5.4 (The multivarite Student-t distribution, continued) Suppose X has a
p-variate Student-t distribution with ν degrees of freedom as in Example 5.1, so
that V has an inverse Gamma(ν/2, ν/2) distribution. In this case

E[V −p/2] = 2p/2Γ
(p+ν

2

)
νp/2Γ

(
ν
2

)

which is finite for all ν > 0 and p > 0.

The bound on the shrinkage constant, “a”, in Theorem 5.1 is 2(p − 2) as shown in
Example 5.1, while the bound on “a”, in Theorem 5.2, as indicated above, is given
by

2(p − 2)
E[V −p/2+1]
E[V −p/2] = 2(p − 2)

(
ν

ν + p − 2

)
< 2(p − 2).

Hence, for large p, the bound on the shrinkage factor “a” can be substantially less
for Theorem 5.2 than for Theorem 5.1 in the case of a multivariate-t sampling
distribution. Note that, for fixed p, as ν tends to infinity the smaller bound tends
to the larger one (and the Student-t distribution tends to the normal).

Example 5.5 (Examples 5.3 continued) All of the distributions in Example 5.3
satisfy the assumptions of Theorem 5.2 (under suitable moment conditions for the
second density). It is interesting to note that for the Kotz distribution , the value of c
(= 1), as in (5.4), doesn’t depend on the parameter n > 0. Hence the bound on the
shrinkage factor “a” is 2(p − 2) and is also independent of n, indicating a certain
distributional robustness of the minimaxity property of Baranchik type estimators
with a < 2(p − 2).
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With additional assumptions on the function F(t)/f (t) in (5.4) (i.e. it is either
monotone increasing or monotone decreasing), theorems analogous to Theorem 5.2
can be developed which further improve the bounds on the shrinkage factor “a”.
These typically may involve additional assumptions on the function r(·). We will
see examples of this type in the next section.

5.3 More General Minimax Estimators

We now consider minimaxity of general estimators of the form X + a g(X). The
initial results rely on Lemma 5.2. The first result follows immediately from this
lemma and gives an expression for the risk.

Corollary 5.1 Let X have a density f (‖x − θ‖2) such that E0[‖X‖2] < ∞ and let
g(X) be weakly differentiable and be such that Eθ [‖g(X)‖2] < ∞.

Then, for loss L(θ, δ) = ‖δ − θ‖2, the risk of X + a g(X) can be expressed as

R(θ,X + a g(X)) = R(θ,X)+ Eθ
[
a2 ‖g(X)‖2 + 2 a Q(‖X − θ‖2) div g(X)

]
(5.7)

where

Q(‖X − θ‖2) = F(‖X − θ‖2)

f (‖X − θ‖2)
(5.8)

and where F(‖X − θ‖2) is defined in (5.5).

An immediate consequence of Corollary 5.1 when the density of f satisfies (5.4),
i.e. Q(t) ≥ c > 0 for some constant c, is the following.

Corollary 5.2 Under the assumptions of Corollary 5.1, assume that, for some c >
0, we have Q(t) ≥ c for any t ≥ 0. Then X + g(X) is minimax and dominates X
provided, for any x ∈ R

p,

‖g(x)‖2 + 2 c div g(x) ≤ 0

with strict inequality on a set of positive measure.

The following two theorems establish minimaxity results under the assumption
that Q(t) is monotone.

Theorem 5.3 (Brandwein et al. 1993) Suppose X has density f (‖x − θ‖2) such
that E0[‖X‖2] < ∞ and that Q(t) in (5.8) is nonincreasing. Suppose there exists a
nonpositive function h(U) such that ER,θ [h(U)] is nondecreasing where U ∼ UR,θ
(the uniform distribution on the sphere of radius R centered at θ ) and such that
Eθ [|h(x)|] < ∞. Furthermore suppose that g(X) is weakly differentiable and also
satisfies
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(1) div g(X) ≤ h(X),
(2) ‖g(X)‖2 + 2h(X) ≤ 0 , and
(3) 0 ≤ a ≤ E0(‖X‖2)/p.

Then δ(X) = X + ag(X) is minimax. Also δ(X) dominates X provided g(·) is
nonzero with positive probability and strict inequality holds with positive probability
in (1) or (2), or both inequalities are strict in (3).

Proof Note that g(x) satisfies the conditions of Corollary 5.1. Then we have

R(θ, δ) = R(θ,X)+ a E[a ‖g(X)‖2 + 2Q(‖X − θ‖2) div g(X)]
= R(θ,X)+ a E[ER,θ [a ‖g(X)‖2 + 2Q(R2) div g(X)]]

where ER,θ is as above and E denotes the expectation with respect to the radial
distribution. Now, using (1) and (2), we have

R(θ, δ) ≤ R(θ,X)+ a E[ER,θ [−2 a h(X)+ 2Q(R2) h(X)]]
= R(θ,X)+ 2 a E[(a −Q(R2)) ER,θ [−h(X)]]
≤ R(θ,X)+ 2 a E[a −Q(R2)]Eθ [−h(X)]

by the monotonicity assumptions on ER,θ [h(·)] and Q(t) as well as the covariance
inequality.

Hence, since −h(X) ≥ 0, we have R(θ, δ) ≤ R(θ,X), provided 0 ≤ a ≤
E[Q(R2)]. Now E[Q(R2)] = E0[‖X‖2]/p by Lemma 5.3 below, hence δ is
minimax. The domination result follows since the additional conditions imply strict
inequality between the risks. ��
Lemma 5.3 For any k > −p such that E[Rk+2] < ∞,

E[RkQ(R2)] = 1

p + k
E[Rk+2].

In particular, we have

E[Q(R2)] = 1

p
E[R2] = 1

p
E0[‖X‖2]

and, for p ≥ 3,

E

[
Q(R2)

R2

]
= 1

p − 2
.

Proof Recall that the radial density ϕ(r) of R = ‖X − θ‖ can be expressed as
ϕ(r) = σ(S)rp−1f (r2) where σ(S) is the area of the unit sphere S in Rp. By (5.8)
and (5.5), we have
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E[RkQ(R2)] = 1

2

∫
Rp

‖x‖k
∫ ∞

‖x‖2
f (t) dt dx

= 1

2

∫ ∞

0

∫
B√

t

‖x‖kdx f (t) dt by Fubini’s theorem

= 1

2

∫ ∞

0

∫ √
t

0
σ(S) rk+p−1dr f (t) dt by Lemma 1.4

= 1

2

∫ ∞

0
σ(S)

t(k+p)/2

k + p
f (t) dt

= 1

k + p

∫ ∞

0
rk+2ϕ(r) dr by the change of variable t = r2

= 1

k + p
E[Rk+2].

Note that positivity of integrands and E[Rk+2] < ∞ implies E[RkQ(R2)] < ∞.
��

The next theorem reverses the monotonicity assumption onQ(·) and changes the
condition on the function h(X) which, in turn, bounds the divergence of g(X).

Theorem 5.4 (Brandwein et al. 1993) Suppose X has a density f (‖x − θ‖2)

such that E0[‖X‖2] < ∞ and E0[1/‖X‖2] < ∞ and such that Q(t) in (5.8)
is nondecreasing. Suppose there exists a nonpositive function h(X) such that
ER,θ

[
R2h(U)

]
is nonincreasing where U ∼ UR,θ and such that Eθ [−h(X)] < ∞.

Furthermore suppose that g(X) is weakly differentiable and also satisfies

(1) div g(X) ≤ h(X),
(2) ‖g(X)‖2 + 2h(X) ≤ 0, and
(3) 0 ≤ a ≤ 1

(p−2)E0(1/‖X‖2)
.

Then δ(X) = X + a g(X) is minimax. Also δ(X) dominates X provided g(·) is
nonzero with positive probability and strict inequality holds with positive probability
in (1) or (2), or both inequalities are strict in (3).

Proof As in the proof of Theorem 5.3, we have

R(θ, δ) ≤ R(θ,X)+ 2 a E[(a −Q(R2)) ER,θ [−h(X)]]

= R(θ,X)+ 2 a E

[(
a

R2 − Q(R2)

R2

)
ER,θ [−R2 h(X)]

]

≤ R(θ,X)+ 2 a E

[
a

R2
− Q(R2)

R2

]
ER0,θ [−R2

0 h(X)]

where R0 is a point such that a−Q(R2
0) = 0, provided such a point exists. Here we

have used the version of the covariance inequality that states
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Ef (X)g(X) ≤ Ef (X)g(X0)

provided that g(X) is nondecreasing (respectively, nonincreasing) and f (X)

changes sign once from + to − (respectively, − to +) at X0. But such a point
R0 does exist provided

E

[
a

R2 − Q(R2)

R2

]
≤ 0

since Q(R2) is nondecreasing.

It follows that R(θ, δ) ≤ R(θ,X) provided that aE[ 1
R2 ] ≤ E[Q(R2)

R2 ]. However

E[Q(R2)

R2 ] = 1
p−2 by Lemma 5.3 and hence the result follows as in Theorem 5.3. ��

Note that the bound on “a” in both of these theorems is strictly larger than the
bound in Theorem 5.2 providedQ(R2) is not constant. This is so since the bound in
Theorem 5.2 is based on c = infQ(R2) while, in these results, the bound is equal
to a (possibly weighted) average of Q(R2).

We indicate the utility of these two results by applying them to the James-Stein
estimator.

Corollary 5.3 Let X ∼ f (‖x − θ‖2) for p ≥ 4 and let δJSb (X) = (1 − b/‖X‖2)X.
Assume also that E0[‖X‖2] < ∞ and E0[1/‖X‖2] < ∞. Then δJSb (X) is minimax
and dominates X provided either

(1) Q(R2) is nonincreasing and

0 < b < 2(p − 2)
E0‖X‖2

p
, or

(2) Q(R2) is nondecreasing and

0 < b <
2

E0(1/‖X‖2)
.

Proof We apply Theorems 5.3 and 5.5 with g(X) = −[2 (p − 2)/‖X‖2]X,
div g(X) = −2 (p − 2)2/‖X‖2 = h(X). It follows from Lemma A.5 in
Appendix A.10 that when p ≥ 4, Eθ,R[h(U)] is nondecreasing in R and
Eθ,R[R2h(U)] is nonincreasing in R. Hence, if Q(R2) is nonincreasing, Theo-
rem 5.3 implies that

δa(X) = X − 2 (p − 2) a

‖X‖2 X = δJS2 (p−2) a(X)

is minimax and dominates X provided 0 < a < E0[‖X‖2]/p or equivalently 0 <
2 (p − 2) a < 2 (p − 2) E0(‖X‖2)/p which is (1) with b = 2 (p − 2) a. Similarly,
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applying Theorem 5.5 whenQ(R2) is nondecreasing, we find that δa(X) is minimax
and dominates X if

0 < a <
1

(p − 2)E0(1/‖X‖2)

which is (2). ��
Example 5.6 (Densities with increasing and decreasing Q(R2)) Note first that
variance mixtures of normal distributions have increasing Q(R2) since, by (5.6)
and (5.8),Q(R2)may be viewed as the expected value of V with respect to a family
of distributions with monotone increasing likelihood ratio in t = R2. Note also that
the bound for the shrinkage constant “a” in a James-Stein estimator is the same in
Corollary 5.3 as it is in Theorem 5.1 for mixtures of normals.

We also note that, if we consider f (t) to be proportional to a density of a positive
random variable, then 2Q(t) is the reciprocal of the hazard rate. There is a large
literature on increasing and decreasing hazard rates (see, for example, Barlow and
Proschan 1981).

We note that the monotonicity of Q(t) may be determined in many cases by
studying the log-convexity or the log-concavity of f (t). In particular, if ln f (t) is
convex (concave), thenQ(t) is nondecreasing (nonincreasing). To see this, note that

Q(t) = 1

2

∫∞
t
f (u) du

f (t)
= 1

2

∫ ∞

0

f (s + t)

f (t)
ds

and hence Q(t) will be nondecreasing (nonincreasing) if f (s+t)
f (t)

is nondecreasing
(nonincreasing) in t for each s > 0. But, assuming for simplicity that f is
differentiable, for any t ≥ 0 such that f (t) > 0,

d

dt

(
f (s + t)

f (t)

)
= f (t)f ′(s + t)− f (s + t)f ′(t)

f 2(t)

= f (s + t)

f (t)

[
f ′(s + t)

f (s + t)
− f ′(t)
f (t)

]

= f (s + t)

f (t)

[
d

dt
ln f (s + t)− d/dt ln f (t)

]
.

This is positive or negative when ln f (s + t) is convex or concave in t ,
respectively. For example if X has a Kotz distribution with parameter n, f (t) ∝
tne−t/2. Then ln f (t) = K + n ln t − t

2 which is concave if n ≥ 0 and convex
if n ≤ 0. Hence Q(t) is decreasing if n > 0 and increasing if n < 0. Of
course the log-convexity (log-concavity) of f (t) is not a necessary condition for
the nondecreasing (nonincreasing) monotonicity of Q(t). Thus, it is easy to check
that f (t) ∝ exp(−t2) exp[−1/2

∫ t
0 exp(−u2) du] leads to Q(t) = exp(t2), which

is increasing. But log f (t) is not convex.
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An important class of distributions is covered by the following corollary.

Corollary 5.4 Let X ∼ f (‖x − θ‖2) for p ≥ 4 with f (t) ∝ exp(−βtα) where
α > 0 and β > 0. Then δJSb (X) = (1 − b/‖X‖2)X is minimax and dominates X
provided either

(1) α ≤ 1 and 0 < b < 2
β1/α

p−2
p

Γ ((p+2)/2α)
Γ (p/2α) or

(1) α > 1 and 0 < b < 2
β1/α

Γ (p/2α)
Γ ((p−2)/2α) .

Proof By the above discussion, Q(R2) is nonincreasing (nondecreasing) for α ≥ 1
(α ≤ 1). Then the result follows from Corollary 5.3 and the fact that

E0[‖X‖k] = 1

βk/2α

Γ (
p+k
2α )

Γ (
p
2α )

for k > −p. ��
The final theorem of this section gives conditions for minimaxity of estimators

of the form X + a g(X) for general spherically symmetric distributions. Note that
no density is needed for this result which relies on the radial distribution defined in
Theorem 4.1.

We first need the following lemma which will play the role of the Stein lemma
in the proof of the domination and minimaxity results.

Lemma 5.4 Let X have a spherically symmetric distribution around θ , and let
g(X) be a weakly differentiable function such that Eθ [ |(X − θ)Tg(X)| ] < ∞.
Then

Eθ [(X − θ)Tg(X)] = 1

p
E

[
R2

∫
BR,θ

div g(X) dVR,θ (X)

]

where E denotes the expectation with respect to the radial distribution and where
VR,θ (·) is the uniform distribution on BR,θ , the ball of radius R centered at θ .

Proof Let ρ be the radial distribution and according to Theorem 4.1, we have

E[(X − θ)Tg(X)] =
∫
R+

∫
SR,θ

(x − θ)Tg(x) dUR,θ (x) dρ(R)

=
∫
R+

R

σR,θ (SR,θ )

∫
SR,θ

(x − θ)T

‖x − θ‖ g(x) dσR,θ (x) dρ(R)

=
∫
R+

R

σR,θ (SR,θ )

∫
BR,θ

div g(x) dx dρ(R) by Stokes’ theorem

= 1

p

∫
R+

∫
BR,θ

div g(x) dVR,θ (x) R
2dρ(R)

since the volume of BR,θ equals λ(BR,θ ) = RσR,θ (SR,θ )/p. ��
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Theorem 5.5 (Brandwein and Strawderman 1991a) Let X have a spherically
symmetric distribution around θ , and suppose E0[‖X‖2] < ∞ and E0[1/‖X‖2] <
∞. Suppose there exists a nonpositive function h(·) such that h(X) is subharmonic
and ER,θ [R2 h(U)] is nonincreasing where U ∼ UR,θ and such that Eθ [|h(x)|] <
∞. Furthermore suppose that g(X) is weakly differentiable and also satisfies

(1) div g(X) ≤ h(X),
(2) ‖g(X)‖2 + 2h(X) ≤ 0, and
(3) 0 ≤ a ≤ 1

pE0(1/‖X‖2)
.

Then δ(X) = X+ a g(X) is minimax. Also δ(X) dominates X provided g(·) is non-
zero with positive probability and strict inequality holds with positive probability in
(1) or (2), or both inequalities are strict in (3).

Proof Using Lemma 5.4 and Conditions (1) and (2), we have

R(θ, δ) = R(θ,X)+ a Eθ
[
a ‖g(X)‖2 + 2 (X − θ)Tg(X)

]
≤ R(θ,X)+ 2 a Eθ

[− a h(X)+ (X − θ)Tg(X)
]

= R(θ,X)+ 2 a

{
Eθ

[− a h(X)
]+ 1

p
E

[
R2

∫
BR,θ

div g(X) dVR,θ (X)

]}

≤ R(θ,X)+ 2 a

{
Eθ

[− a h(X)
]+ 1

p
E

[
R2

∫
BR,θ

h(X) dVR,θ (X)

]}
.

By subharmonicity of h (see Appendix A.8 and Sections 1.3 and 2.5 in du Plessis
1970),

∫
BR,θ

h(X)dVR,θ (X) ≤
∫
SR,θ

h(X)dUR,θ (X).

Hence,

R(θ, δ) ≤ R(θ,X)+ 2 a

{
Eθ

[− a h(X)
]+ 1

p
E

[
R2

∫
SR,θ

h(X) dUR,θ (X)

]}

= R(θ,X)+ 2 a E

[(
a

R2 − 1

p

)
·
(

− R2
∫
SR,θ

h(X)dUR,θ (X)

)]

= R(θ,X)+ 2 a E

[(
a

R2 − 1

p

)(− ER,θ [R2h(X)])
]

≤ R(θ,X)+ 2 a E

[(
a

R2 − 1

p

)]
E
[− ER,θ [R2h(X)]].
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The last inequality follows from the monotonicity of ER,θ [R2h(X)] and the
covariance inequality. Hence R(θ, δ) ≤ R(θ,X) when E

[
a/R2 − 1/p

] ≤ 0 which
is equivalent to (3). The domination part follows as before. ��

We note that the shrinkage constant in the above result 1/{pE0[1/‖X‖2]} is
somewhat smaller than the constant in Theorem 5.4 (a = 1/{(p− 2)E0[1/‖X‖2]}),
but Theorem 5.5 has essentially no restrictions on the distribution of X aside from
moment conditions (which coincide in Theorems 5.4 and 5.5). In particular we do
not even assume that a density exists! However there is an additional assumption of
subharmonicity of h.

The following useful corollary gives minimaxity for James-Stein estimators in
dimension p ≥ 4 for all spherically symmetric distributions with finite E0[‖X‖2]
and E0[1/‖X‖2].
Corollary 5.5 Let X have a spherically symmetric distribution with p ≥ 4, and
suppose E0[‖X‖2] < ∞ and E0[1/‖X‖2] < ∞. Then

δJSa (X) =
(

1 − a

‖X‖2

)
X

is minimax and dominates X provided

0 < a <
1

pE0(1/‖X‖2)
.

Proof Here g(X) = −X/‖X‖2 and is weakly differentiable for p ≥ 3. Then
div g(X) = −(p− 2)/‖X‖2 and ‖g(X)‖2 = 1/‖X‖2 so that Conditions (1) and (2)
of Theorem 5.5 are satisfied with h(X) = −α/‖X‖2 where 0 ≤ α ≤ p − 2. Now
the subharmonicity of h(X) and its monotonicity condition hold since it is shown in
the appendix that, for p ≥ 4, 1/‖X‖2 is super-harmonic (so that ER,θ [1/‖X‖2] is
nonincreasing in R) and that R2ER,θ [1/‖U‖2] is nondecreasing in R.

Furthermore, it is worth noting that ER,θ [1/‖U‖2] is nonincreasing in ‖θ‖
(see Lemma A.5 and remark that follows). Hence, for any θ ∈ R

p, we have
Eθ [−h(X)] < ∞ since

ER,θ [1/‖X‖2] ≤ ER,0[1/‖X2‖]

so that

Eθ [1/‖X‖2] ≤ E0[1/‖X‖2] < ∞ ,

by assumption. ��
Example 5.7 (Nonspherical minimax estimators) In Sect. 2.4.4, we considered esti-
mators which shrink toward a subspace. Theorem 5.5 allows us to show that
estimators of this type are minimax for general spherically symmetric distributions.
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To be specific, suppose V is a s < p dimensional linear subspace and let

δa(X) = PVX +
(

1 − a

‖X − PVX‖2

)
(X − PVX).

As in the proof of Theorem 2.6, it can be shown that the risk of δa(X) equals

R(θ, δa(X)) = Eν1 [‖Y1 − ν1‖2] + Eν2

[∥∥∥∥
(

1 − a

‖Y2‖2

)
Y2 − ν2

∥∥∥∥
2]
, (5.9)

where Y1, Y2, ν1 and ν2 are as in Theorem 2.6.
In the present case, Y2 has a spherically symmetric distribution about ν2 of

dimension p − s. Hence, by Theorem 5.5,

E(θ, δa(X)) ≤ Eν1 [‖Y1 − ν1‖2] + Eν2 [‖Y2 − ν2‖2]
= Eθ‖X − θ‖2

= R(θ,X),

provided p − s ≥ 4 and

0 < a <
1

(p − s) E0[1/‖X − PVX‖2] .

5.4 Bayes Estimators

In this section, we consider (generalized) Bayes estimators of the location vector
θ ∈ R

p of a spherically symmetric distribution. More specifically letX be a random
vector in R

p with density f (‖x − θ‖2) and let π(θ) be a prior density. Under
quadratic loss ‖δ−θ‖2, the (generalized) Bayes estimator of θ is the posterior mean
given by

δπ (X) = X + 1

m(X)

∫
Rp

(θ −X) f (‖X − θ‖2) π(θ) dθ (5.10)

where m(x) is the marginal

m(x) =
∫
Rp

f (‖x − θ‖2)π(θ) dθ. (5.11)

Recall from Sect. 3.1.1 that, in the normal case (that is, f (t) ∝ exp(−t/2σ 2)

with σ 2 known) the superharmonicity of
√
m(x) is a sufficient condition for

minimaxity of δπ (X). This superharmonicity is implied by that of m(x) and in



170 5 Spherically Symmetric Case I

turn by that of π(θ). While in the nonnormal case minimaxity has been studied by
many authors (for example, see Strawderman (1974b); Berger (1975); Brandwein
and Strawderman (1978, 1991a)) relatively few results on minimaxity of Bayes
estimators are known. The primary technique to establish minimaxity is through
a Baranchik representation of the form (1 − a r (‖X‖2)/‖X‖2)X. The minimaxity
conditions are essentially those developed in Theorems 5.3 and 5.4 and most of the
derivations are in the context of variance mixtures of normals. See Strawderman
(1974b), Maruyama (2003a) and Fourdrinier et al. (2008) for more discussion and
results on Bayes estimation in this setting.

The main difficulty in using Theorem 5.1 with mixtures of normals densities for
the sampling distribution is to prove the monotonicity (and boundedness) properties
of the function r(·). Maruyama (2003a) and Fourdrinier et al. (2008) consider
priors which are mixtures of normals as well. Their main condition for obtaining
minimaxity of the corresponding Bayes estimator is that the mixing density g of the
sampling distribution has monotone nondecreasing likelihood ratio when considered
as a scale parameter family. In Fourdrinier et al. (2008), explicit use is made of that
monotone likelihood ratio property for the mixing (possibly generalized) density h
of the prior distribution.

The main result of Fourdrinier et al. (2008) is the following. Consult that paper
for the somewhat technical proof.

Theorem 5.6 Let X be a random vector in R
p (p ≥ 3) distributed as a variance

mixture of multivariate normal distributions with density

f (x) =
∫ ∞

0

1

(2πv)p/2
exp

(
− 1

2

‖x − θ‖2

v

)
g(v) dv (5.12)

where g is the density of a known nonnegative random variable V . Let π be a
(generalized) prior with density of the form

π(θ) =
∫ ∞

0

1

(2πt)p/2
exp

(
− 1

2

‖θ‖2

t

)
h(t) dt (5.13)

where h is a function from R+ into R+ such that this integral exists.
Assume that the mixing density g is such that

E[V ] =
∫ ∞

0
v g(v) dv < ∞ and E[V −p/2] =

∫ ∞

0
v−p/2 g(v) dv < ∞.

(5.14)
Assume also that the mixing function h of the (possibly improper) prior density π is
absolutely continuous and satisfies

lim
t→∞

h(t)

tβ
= c (5.15)
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for some β < p/2 − 1 and some 0 < c < ∞. Assume, finally, that h and g have
monotone increasing likelihood ratio when considered as a scale parameter family.

Then, if there exist K > 0, t0 > 0 and α < 1 such that

h(t) ≤ K t−α for 0 < t < t0, (5.16)

the (generalized or proper) Bayes estimator δh with respect to the prior distribution
corresponding to the mixing function h is minimax provided that β satisfies

− (p − 2)

[
E[V −p/2+1]
E[V ]E[V −p/2] − 1

2

]
≤ β. (5.17)

For priors with mixing distribution h satisfying (5.16) and (5.17) an argument as
in Maruyama (2003a) using Brown (1979) and a Tauberian theorem suggests that
the resulting generalized Bayes estimator is admissible if β ≤ 0. Maruyama and
Takemura (2008) have verified this under additional conditions which imply, in the
setting of Theorem 5.6, that Eθ [‖X‖3] < ∞.

As an illustration assume that the sampling distribution is a p-variate Student-
t with n0 degrees of freedom which corresponds to the inverse gamma mixing
density (n0/2, n0/2), that is, to g(v) ∝ v−(n0+2)/2 exp(−n0/2v). Let the prior be
a Student-t distribution with n degrees of freedom, that is, with mixing density
h(t) ∝ t−(n+2)/2 exp(−n/2t). It is clear that Conditions (5.14) and (5.15) are
satisfied with n0 ≥ 7. It is also clear that Condition (5.16) holds for any α < 1.
Finally a simple calculation shows that

E[V −p/2+1]
E[V ]E[V −p/2] = n0 − 2

p + n0 − 2

so that Condition (5.17) reduces to

n ≤ (p − 2)

[
2(n0 − 2)

p + n0 − 2
− 1

]
− 2.

Note that, as n > 0, this condition holds if and only if p ≥ 5 and

n0 ≥ 3 + p
p

p − 4
.

Other examples (including generalized priors) can be found in Fourdrinier et al.
(2008).

In the following, we consider broader classes of spherically symmetric dis-
tributions which are not restricted to variance mixtures of normals. Minimaxity
of generalized Bayes estimators is obtained for unimodal spherically symmetric
superharmonic priors π(‖θ‖2) under the additional assumption that the Laplacian
of π(‖θ‖2) is a nondecreasing function of ‖θ‖2. The results presented below are



172 5 Spherically Symmetric Case I

derived in Fourdrinier and Strawderman (2008a). An interesting feature is that their
approach does not rely on the Baranchik representation used in Maruyama (2003a)
and Fourdrinier et al. (2008). Note, however, that the superharmonicity property of
the priors implies that the corresponding Bayes estimators cannot be proper (see
Theorem 3.2).

First note that, for any prior π(θ), the Bayes estimator in (5.10) can be written as

δπ (X) = X + ∇M(X)
m(X)

(5.18)

where, for any X ∈ R
p,

M(x) =
∫
Rp

F (‖x − θ‖2) π(θ) dθ

with F given in (5.5). Thus δπ (X) has the general form δπ (X) = X + g(X) (with
g(X) = ∇M(X)/m(X)). If the density f (‖x − θ‖2) is as in Sect. 5.2.1, that is,
such F(t)/f (t) ≥ c > 0 for some fixed positive constant c, then Corollary 5.2
applies and δπ (X) = X + g(X) = X + ∇M(X)/m(X) is minimax provided, for
any x ∈ R

p,

2 c div g(x)+ ‖g(x)‖2 ≤ 0.

In particular, it follows that if

2 c
ΔM(x)

m(x)
− 2 c

∇M(x) · ∇m(x)
m2(x)

+ ‖∇M(x)‖2

m2(x)
≤ 0 (5.19)

and

Eθ

[∥∥∥∥∇M(X)
m(X)

∥∥∥∥
2]
< ∞,

δπ is minimax.
For a spherically symmetric prior π(‖θ‖2), the main result of Fourdrinier and

Strawderman (2008a) is the following.

Theorem 5.7 Assume that X has a spherically symmetric distribution in R
p with

density f (‖x− θ‖2). Assume that θ ∈ R
p has a superharmonic prior π(‖θ‖2) such

that π(‖θ‖2) is nonincreasing and Δπ(‖θ‖2) is nondecreasing in ‖θ‖2. Assume
also that

Eθ

[∥∥∥∥∇M(X)
m(X)

∥∥∥∥
2]
< ∞.
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Then the Bayes estimator δπ is minimax under quadratic loss provided that f (t) is
log-convex, c = F(0)

f (0) > 0 and

∫ ∞

0
f (t)tp/2dt ≤ 4c

∫ ∞

0
−f ′(t)tp/2dt < ∞. (5.20)

To prove Theorem 5.7 we need some preliminary lemmas whose proofs are given in
Appendix A.9. Note first that it follows from the spherical symmetry of π that, for
any x ∈ R

p, m(x) and M(x) are functions of t = ‖x‖2. Then, setting

m(x) = m(t) and M(x) = M(t),

we have

∇m(x) = 2m′(t) x and ∇M(x) = 2M ′(t) x. (5.21)

Lemma 5.5 Assume that π ′(t) ≤ 0, for any t ≥ 0. Then we have M ′(t) ≤ 0, for
any t ≥ 0.

Lemma 5.6 For any x ∈ R
p,

x · ∇m(x) = −2
∫ ∞

0
H(u, t) up/2 f ′(u) du

and

x · ∇M(x) =
∫ ∞

0
H(u, t) up/2 f (u) du

where, for u ≥ 0 and for t ≥ 0,

H(u, t) = λ(B)

∫
B√

u,x

x · θ π ′(‖θ‖2) dV√
u,x(θ) (5.22)

and V√
u,x is the uniform distribution on the ball B√

u,x of radius
√
u centered at x

and λ(B) is the volume of the unit ball.

Lemma 5.7 For any t ≥ 0, the function H(u, t) in (5.22) is nondecreasing in u
provided that Δπ(‖θ‖2) is nondecreasing in ‖θ‖2.

Lemma 5.8 Let h(‖θ − x‖2) be a unimodal density and let ψ(θ) be a symmetric
function. Then

∫
Rp

x · θ ψ(θ) h(‖θ − x‖2) dθ ≥ 0

as soon as ψ is nonnegative.



174 5 Spherically Symmetric Case I

Proof (Proof of Theorem 5.7) By the superharmonicity of π(‖θ‖2), we have
ΔM(x) ≤ 0 for all x ∈ R

p so that by (5.19), it suffices to prove that

− 2 c∇M(x) · ∇m(x)+ ‖∇M(x)‖2 ≤ 0 (5.23)

for all x ∈ R
p. Since m and M are spherically symmetric, by (5.21), (5.23)

reduces to −2cM ′(t)m′(t) + (
M ′(t)

)2 ≤ 0 where t = ‖x‖2. Since M ′(t) ≤
0 by Lemma 5.5, (5.23) reduces to −2cm′(t) + M ′(t) ≥ 0 or, by (5.21), to
−2 c x · ∇m(x)+ x · ∇M(x) ≥ 0 or, by Lemma 5.6, to

4cE

[
H(u, t)

f ′(u)
f (u)

]
+ E[h(u, t)] ≥ 0, (5.24)

where E denotes the expectation with respect to the density proportional to
up/2f (u). Since, by assumption, Δπ(‖θ‖2) is nondecreasing in ‖θ‖2, H(u, t) is
nondecreasing in u by Lemma 5.7. Furthermore f ′(u)/f (u) is nondecreasing by
log-convexity of f so that (5.16) is satisfied as soon as

4 c E[H(u, t)]E
[
f ′(u)
f (u)

]
+ E[H(u, t)] ≥ 0. (5.25)

Finally, as π ′(‖θ‖2) ≤ 0 by assumption, Lemma 5.2 guarantees thatH(u, t) ≤ 0
(note that V√

u,x has a unimodal density) and hence (5.25) reduces to

4cE

[
f ′(u)
f (u)

]
+ 1 ≤ 0

which is equivalent to (5.20). ��
Several examples of priors and sampling distributions which satisfy the assump-

tions of Theorem 5.7 are given in Fourdrinier and Strawderman (2008a). We briefly
summarize these.

Example 5.8 (Priors related to the fundamental harmonic prior) Let π(‖θ‖2) =(
1

A+ ‖θ‖2

)c
with A ≥ 0 and 0 ≤ c ≤ p

2 − 1.

Example 5.9 (Mixtures of priors) Let (πα)αεA be a family of priors such that the
assumptions of Theorem 5.7 are satisfied for any α ∈ A. Then any mixture of the

form
∫
A

πα(‖θ‖2) dH(α) where H is a probability measure on A satisfies these

assumptions as well. For instance, Example 5.8 with c = 1, p ≥ 4, A = α and the

gamma density α �−→ β1−v

Γ (1 − v)
α−ve−βα with β > 0 and 0 < v < 1 leads to the

prior

‖θ‖−2−v eβ‖θ‖2
Γ (v, β‖θ‖2),
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where

Γ (v, y) =
∫ ∞

y

e−xxv−1 dx

is the complement of the incomplete gamma function.

Example 5.10 (Variance mixtures of normals) Let

π(‖θ‖2) =
∫ ∞

O

( u
2π

)p/2
exp

(−u‖θ‖2

2

)
h(u)du

a mixture of normals with respect to the inverse of the variance . As soon as, for any
u > 0,

uh′(u)
h(u)

≤ −2,

the prior π(‖θ‖2) satisfies the assumptions of Theorem 5.7. Note that the priors in
Example 5.10 arise as such a mixture with h(u) ∝ αuk−p/2−1 exp(−A/2u).

Other examples can be given and a constructive approach is proposed in
Fourdrinier and Strawderman (2008a).

We now give examples of sampling distributions which satisfy the assumptions
of Theorem 5.7.

Example 5.11 (Variance mixtures of normals) Let

f (t) = (2π)−p/2
∫ ∞

0
v−p/2 exp

(
− t

2 v

)
h(v) dv

where h is a mixing density and let V be a nonnegative random variable with density
proportional to f (t). IfE[V −p/2] < ∞ andE[V ]E[V −p/2]/E[V −p/2+1] < 2 then
the sampling density f satisfies the assumptions of Theorem 5.7.

Example 5.12 (Densities proportional to e−αtβ ) Let

f (t) = K e−αtβ

where α > 0, 1
2 < β ≤ 1 and K is the normalizing constant. Then the sampling

density f satisfies the assumptions of Theorem 5.7 as soon as β is in a neighborhood
of the form ]1 − ε, 1] with ε > 0. However, note that these are not satisfied when
β = 1/2.

Fourdrinier and Strawderman (2008a) give other examples with densities propor-
tional to e−αt+βϕ(t) where ϕ is a convex function.



176 5 Spherically Symmetric Case I

5.5 Shrinkage Estimators for Concave Loss

In this section we consider improved shrinkage estimators for loss functions that
are concave functions of squared error loss. The basic results are due to Brandwein
and Strawderman (1980, 1991b) and we largely follow the method of proof in the
later paper. The general nature of the main result is that (under mild conditions) if
an estimator can be shown to dominate X under squared error loss then the same
estimator, with a suitably altered shrinkage constant, will dominate X for a loss
which is a concave function of squared error loss.

Let X have a spherically symmetric distribution around θ , and let g(X) be a
weakly differentiable function. The estimators considered are of the form

δ(X) = X + ag(X). (5.26)

The loss functions are of the form

L(θ, δ) = �(||δ − θ ||2), (5.27)

where �(·) is a differentiable nonnegative, nondecreasing concave function (so that,
in particular �′(·) ≥ 0).

One basic tool needed for the main result is Theorem 5.5, and the other is the
basic property of the concave function �(·) that �(t + a) ≤ �(t)+ a�′(t).

The following result shows that shrinkage estimators that improve on X for
squared error loss also improve on X for concave loss provided the shrinkage
constant is adjusted properly.

Theorem 5.8 (Brandwein and Strawderman 1991a) Let X have a spherically
symmetric distribution around θ , let g(X) be a weakly differentiable function, and
let the loss be given by (5.27).

Suppose there exists a subharmonic function h(·) such that Eθ,R[R2 h(U)] is
nonincreasing where U ∼ UR,θ . Furthermore suppose that the function g(·)
satisfies E∗

θ [||g(X)||2] < ∞ and also satisfies

(1) div g(x) ≤ h(x), for any x ∈ R
p,

(2) ‖g(x)‖2 + 2h(x) ≤ 0, for any x ∈ R
p, and

(3) 0 ≤ a ≤ 1
pE∗

0 (1/‖X‖2)
,

where E∗
θ refers to the expectation with respect to the distribution whose Radon-

Nikodyn derivative with respect to the distribution of X is proportional to �′(||X −
θ ||2).

Then δ(X) = X + ag(X) is minimax. Also δ(X) dominates X provided
g(·) is non-zero with positive probability and strict inequality holds with positive
probability in (1) or (2), or both inequalities are strict in (3).
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Proof Note, by concavity of �(·) and the usual identity

R(θ, δ) = Eθ [�(||δ(X)− θ ||2)]
≤ Eθ [�(||X − θ ||2)]

+Eθ [�′(||X − θ ||2)(a2||g(X)||2 + 2a(X − θ)′g(X))].

Hence, the difference in risk, R(θ, δ)− R(θ,X) is bounded by

R(θ, δ)− R(θ,X) ≤ Eθ [�′(||X − θ ||2)(a2||g(X)||2 + 2a(X − θ)′g(X))]
= E∗

θ [(a2||g(X)||2 + 2a(X − θ)′g(X))]
≤ 0,

by Theorem 5.5 applied to the distribution corresponding to E∗
θ . ��



Chapter 6
Estimation of a Mean Vector for
Spherically Symmetric Distributions II:
With a Residual

6.1 The General Linear Model Case with Residual Vector

In this chapter, we consider the canonical form of the general linear model
introduced in Sect. 4.5 when a residual vector U is available. Recall that (X,U)
is a random vector around (θ, 0) (such that dim X = dim θ = p and dim U = dim
0 = k) with a spherically symmetric distribution, that is, (X,U) ∼ SSp+k(θ, 0).
Estimation of θ under quadratic loss ‖δ−θ‖2 parallels the normal situation presented
in Sects. 2.3 and 2.4 where X ∼ Np(θ, σ

2Ip) (with σ 2 known) and the estimators
of θ are of the form δ(X) = X + σ 2g(X). In the case where σ 2 is unknown (see
Sect. 2.4.3), the corresponding estimators are

δ(X) = X + S

k + 2
g(X)

where S ∼ σ 2 χ2
k independent of X. Note that, when (XT, U T)T ∼

N ((θT, 0T)T, σ 2 Ip+k), S = ‖U‖2. This most basic case of the general linear
model suggests considering improved shrinkage estimators of the form

δ(X) = X + ‖U‖2

k + 2
g(X) (6.1)

for some function g from R
p into R

p. In this section,

σ 2 = Var(Xi) = Var(Ui) = 1

p
Eθ [‖X − θ‖2] = 1

k
Eθ [‖U‖2] = 1

p + k
E[R2],

where R = (‖X− θ‖2 +‖U‖2)1/2, can be considered as known or unknown. When
σ 2 is unknown, ‖U‖2/k is an unbiased estimator of σ 2. Also, when σ 2 is unknown,
it is perhaps preferable to use the invariant loss ‖δ − θ‖2/σ 2 since the estimator X
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has constant risk p and is minimax for this loss provided the variance of X is finite,
while the minimax risk for the loss ‖δ − θ‖2 is infinite. Note that domination of an
estimator under one of these losses implies domination under the other.

When σ 2 is known, estimators of the form δ(X) = X + σ 2g(X) can be used
and we will contrast these estimators with estimators (6.1) in the next section. One
advantage of the estimators in (6.1) is that they share a striking robustness property,
namely that, if ‖g(X)‖2 + 2 div g(X) ≤ 0, then X+ g(X) ‖U‖2/(k+ 2) dominates
X for any spherically symmetric distribution of (X,U). In particular, the form of
the density may not be known and indeed there is no need that a density exists. The
proof of this robustness property is given below and follows closely that of Cellier
and Fourdrinier (1995).

Assuming the risk of X is finite (i.e., Eθ [‖X − θ‖2] = E0[‖X‖2] < ∞) the risk
of δ(X) is finite if and only if Eθ [‖U‖4‖g(X)‖2] < ∞ and the difference in risk
between δ(X) and X is

Δ(θ) = R(θ, δ)− R(θ,X)

= Eθ

[
2 (X − θ)Tg(X)

‖U‖2

k + 2
+ ‖g(X)‖2 ‖U‖4

(k + 2)2

]
. (6.2)

The cross product term, that is, the first term in the right-hand side of (6.2) will
be analyzed as in the normal case. The following is the key adaptation of Stein’s
identity.

Lemma 6.1 (Stein type lemma for the general linear model: Cellier and Four-
drinier 1995) Assume that (X,U) ∼ SS(θ, 0) where dimX = dim θ = p and
dimU = dim 0 = k. Then, for any weakly differentiable function g from R

p into
R
p such that

Eθ
[|(X − θ)Tg(X)|] < ∞,

we have

Eθ
[
(X − θ)Tg(X) ‖U‖2] = Eθ

[
div g(X)

‖U‖4

k + 2

]
. (6.3)

Proof We will show that, conditionally on the radius R = ‖X − θ‖2 + ‖U‖2, (6.3)
holds. First, conditionally on R, the left-hand side of (6.3) is expressed as (see
Corollary 4.2)

ER,θ
[
(X− θ)Tg(X) ‖U‖2]=

∫
SR,θ

(x− θ)Tg(x) ‖u‖2 dUR,θ (x, u)

=
∫
SR,θ

(x− θ)Tg(x) (R2 −‖x− θ‖2) dUR,θ (x, u)

=
∫
BR,θ

(x− θ)Tg(x)C
p,k
R (R2 −‖x− θ‖2)k/2 dx (6.4)
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since, according to (4.4), X given R has density

ψR,θ (x) = C
p,k
R (R2 − ‖x − θ‖2)k/2−1 11BR,θ (x)

with

C
p,k
R = Γ ((p + k)/2)

Γ (k/2)

R2−(p+k)

πp/2
.

Now, note that

(R2 − ‖x − θ‖2)k/2 (x − θ) = ∇γ (x)

where

γ (x) = −(R2 − ‖x − θ‖2)k/2+1

k + 2
.

Hence, using the classical identity

(∇γ (x))T
g(x) = div

(
γ (x) g(x)

)− γ (x) div g(x) ,

it follows from (6.4) that

ER,θ
[
(X − θ)Tg(X) ‖U‖2] = A+ B (6.5)

where

A = C
p,k
R

∫
BR,θ

div
(
γ (x) g(x)

)
dx (6.6)

and

B = C
p,k
R

∫
BR,θ

−γ (x) div g(x)dx. (6.7)

Applying Stokes’ theorem to the integral in (6.6) gives

A = C
S
p,k
R

∫
SR,θ

γ (x) g(x)
x − θ

‖x − θ‖ dσR,θ (x) = 0 (6.8)

since, for any x ∈ SR,θ , γ (x) = 0. The B term in (6.7) can be expressed as

B =
∫
BR,θ

div g(x)
(R2 − ‖x − θ‖2)2

k + 2
ψR,θ (x) dx = ER,θ

[
div g(X)

‖U‖4

k + 2

]
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and, finally, the lemma follows from (6.4), (6.5) and (6.8). ��
As a consequence of Lemma 6.1, we can derive a sufficient condition of

domination of δ(X) = X + ‖U‖2/(k + 2)g(X) over the usual estimate X.

Theorem 6.1 Let (X,U) ∼ SSp+k(θ, 0) and the loss be given by ‖δ−θ‖2. Assume
that Eθ [‖X‖2] < ∞ and Eθ [‖U‖4 ‖g(X)‖2] < ∞. Then an unbiased estimator of
the risk difference Δ(θ) in (6.2) between δ(X) = X+ g(X) ‖U‖2/(k+ 2) and X is

[2 div g(X)+ ‖g(X)‖2] ‖U‖4

(k + 2)2
. (6.9)

A sufficient condition for domination of δ(X) over X is that, for any x ∈ R
p,

2 div g(x)+ ‖g(x)‖2 ≤ 0 (6.10)

with strict inequality on a set a positive measure on R
p.

Proof The proof of (6.9) follows immediately from (6.3) and (6.2). The domination
condition (6.10) is a direct consequence of (6.9). ��
Remark 6.1 The addition of the residual termU in the estimate yields an interesting
and strong robustness property. Note that the hypotheses in Theorem (6.1) are
independent of the radial distribution and are consequently valid for any spherically
symmetric distribution. This is in contrast with the results of Sect. 6.2 which require
conditions on the radial distribution.

Differential expressions that lead to risk domination results, such as in The-
orem 6.1, have been extended to spherical and ellipitical location models by
several authors (see, for example, Cellier et al. 1989, Chou and Strawderman 1990,
Brandwein and Strawderman 1980, Brandwein and Strawderman 1991a, Cellier and
Fourdrinier 1995, Fourdrinier et al. 2003, Fourdrinier et al. 2006, Kubokawa 1991,
Maruyama 2003a, and Fourdrinier and Strawderman 2008a,b). A notable aspect of
many of the papers, in the presence of a residual vector U , is the development of
robust estimators in the sense that they are minimax for a wide class of spherically
symmetric distributions (see particularly, for example, Cellier et al. 1989, Cellier
and Fourdrinier 1995, and Fourdrinier et al. 2006).

The improved estimators in Sect. 5.3,without residual vector, require two critical
hypotheses. The first is the superharmonicity condition on an auxillary function
h such that ‖g‖2/2 ≤ −h ≤ −div g. Secondly these estimators require the
assumption that the function R → R2ER,θ [h] is nonincreasing. In contrast, the
conditions for improvement of the improved estimator with the residual term
included share the same set of hypotheses as the general Stein type estimators in
the normal case (see Sect. 2.3). As a result, estimators which dominate X (through
the differential inequality) in the normal case dominate X simultaneously for all
spherically symmetric distributions (subject to the finiteness of the risk). At this
point, we will focus on the so-called robust James-Stein estimators rather than
discussing general examples as in Sect. 2.3.
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Consider

δaRJS(X) =
(

1 − a

‖X‖2

‖U‖2

k + 2

)
X

where a is a positive constant which is of the form (6.1) with g(X) = −aX/‖X‖2.
Note this is the shrinkage in the basic James-Stein estimator in (2.13) with σ 2 = 1.
Using the divergence calculation of this g(X) from (2.16), the unbiased estimator
of the risk difference implied by (6.9) is,

(
a2 − 2 a(p − 2)

) 1

‖X‖2

‖U‖4

(k + 2)2
,

and so it follows that domination occurs for 0 < a < 2(p − 2), and the optimal
constant a (i.e., with minimum risk) is a = p − 2. Note that this optimal a
is independent of the sampling distribution and yields improvement on X for
any spherically symmetric distribution. Hence the best a also has a nice robust
optimality property.

An alternative approach to the results of this section can be based on the
approach used in Lemma 5.2 where a density is assumed, that is, (X,U) ∼
f (‖x − θ‖2 + ‖U‖2). This second approach has been used by many authors in this
and more general settings. For spherically symmetric distributions with a density
it is essentially related to the above method. A statement of this connection is
given at the end of this section. The proof is provided in the Appendix. Thus a
straightforward adaptation of the proof of Lemma 5.2 leads to

Eθ
[
(X − θ)Tg(X) ‖U‖2] = Eθ

[
F(‖X − θ‖2 + ‖U‖2)

f (‖X − θ‖2 + ‖U‖2)
divXg(X)

‖U‖2

k + 2

]

= C E∗
θ

[
divXg(X)

‖U‖2

k + 2

]
(6.11)

where C and E∗
θ are defined in Lemma 5.2. Similarly

Eθ

[
‖g(X)‖2 ‖U‖4

(k + 2)2

]
= Eθ

[
U T

(
U

‖U‖2

(k + 2)2
‖g(X)‖2

)]

= Eθ

[
F(‖X − θ‖2 + ‖U‖2)

f (‖X − θ‖2 + ‖U‖2)
divU

(
U‖U‖2) ‖g(X)‖2

]

= Eθ

[
F(‖X − θ‖2 + ‖U‖2)

f (‖X − θ‖2 + ‖U‖2)

‖U‖2

k + 2
‖g(X)‖2

]

= C E∗
θ

[‖U‖2

k + 2
‖g(X)‖2

]
. (6.12)
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Hence the difference in risk betweenX+g(X) ‖U‖2/(k+2) andX can be written as

C E∗
θ

[(
2 div g(X)+ ‖g(X)‖2) ‖U‖2

k + 2

]
. (6.13)

Note that the normalizing constant

C =
∫
Rp×Rk

F (‖x − θ‖2 + ‖u‖2) dx du . (6.14)

can be expressed, through a straightforward application of the Fubini theorem, as

C = 1

p + k

∫ ∞

0
r2 h(r) dr (6.15)

where h(r) is the radial density. Thus C is the common variance of each coordinate
of (X,U). Therefore it follows from (6.13) that condition (6.10) is sufficient for the
minimaxity of the estimator X+ g(X) ‖U‖2/(k + 2), provided we treat the density
f (·) as fixed and known, which implies implicitly that σ 2 is known. Alternatively, if

(X,U) ∼ 1

σp+k f
(‖x − θ‖2 + ‖u‖2

σ 2

)

where σ 2 is unknown, and the loss is ‖δ − θ‖2/σ 2, then X is minimax simul-
taneously for all such families where Eθ [‖X‖2] < ∞. Hence (6.10) implies
simultaneous minimaxity for the entire class as well.

6.1.1 More General Estimators

In this section, we give results for a more general class of estimators of θ of the form
δ = δ(X, ‖U‖2). The loss will be invariant squared error loss, i.e.

η ‖δ − θ‖2 , (6.16)

where η = 1/σ 2, so that the risk is

R(θ, η, δ) = Eθ,η

[
η ‖δ(X,U)− θ‖2

]
, (6.17)

where Eθ,η denotes the expectation with respect to the density (6.33) with η =
1/σ 2. For the rest of this section, we assume

Eθ,η

[
‖X − θ‖2

]
< ∞, (6.18)
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which guarantees that the standard estimator X has finite risk and is minimax. As
δ(X, ‖U‖2) can be written as δ(X, ‖U‖2) = X + g(X, ‖U‖2), the finiteness of its
risk is guaranteed by

Eθ,η

[
‖g(X, ‖U‖2)‖2

]
< ∞ . (6.19)

A version of the following lemma can be found in Fourdrinier et al. (2003). Its
proof follows closely the pattern of (6.11) and (6.12).

Lemma 6.2 Assume that the function g(x, ‖u‖2) is weakly differentiable from
R
p+k into R

p. Then

η Eθ,η

[
(X − θ)Tg(X, ‖U‖2)

]
= C E∗

θ,η

[
divXg(X, ‖U‖2)

]
, (6.20)

where E∗
θ,η is the expectation with respect to the density

ηp+k

C
F
(
η
(
‖x − θ‖2 + ‖u‖2

))
, (6.21)

provided either of the above expectations exists.
Similarly, for any weakly differentiable function h from R

p+k into R
p,

ηEθ,η
[
U Th(X,U)

] = C E∗
θ,η [divUh(X,U)] , (6.22)

provided either of these expectations exists.

Thanks to Lemma 6.2, an expression of the risk difference between δ(X, ‖U‖2)

and X is given in the following proposition.

Proposition 6.1 Assume thatEθ,η
[‖g(X,U)‖2

]
< ∞. The risk difference between

δ(X, ‖U‖2) = X + g(X, ‖U‖2) and X equals

R(θ, η, δ)− R(θ, η,X) = C E∗
θ,η

[
Og(X, ‖U‖2)

]
,

where

Og(X, ‖U‖2)

= 2 divXg(X, ‖U‖2)+ k − 2

‖U‖2 ‖g(X, ‖U‖2)‖2 + 2
∂

∂S
||g(X, S)||2

∣∣∣∣
S=‖U‖2

.

(6.23)
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Proof A straightforward calculation of the risk difference gives

�(θ, η) = η Eθ,η

[
2 (X − θ)Tg(X, ‖U‖2)+ ‖g(X, ‖U‖2)‖2

]

= η Eθ,η

[
2 (X − θ)Tg(X, ‖U‖2)+ U T U

‖U‖2 ‖g(X, ‖U‖2)‖2
]
.

Using Lemma 6.2 on each term in the brackets, we obtain

�(θ, η) = C E∗
θ,η

[
2 divXg(X, ‖U‖2)+ div

(
U

‖U‖2
‖g(X, ‖U‖2)‖2

)]

= C E∗
θ,η

[
2 divXg(X, ‖U‖2)+ k − 2

‖U‖2 ‖g(X, ‖U‖2)‖2

+ U T

‖U‖2
∇U‖g(X, ‖U‖2)‖2

]

by the divergence formula. Finally expressing the gradient gives

�(θ, η) = C E∗
θ,η

[
2 divXg(X, ‖U‖2)+ div

(
U

‖U‖2 ‖g(X, ‖U‖2)‖2
)]

= C E∗
θ,η

[
2 divXg(X, ‖U‖2)+ k − 2

‖U‖2 ‖g(X, ‖U‖2)‖2

+2
∂

∂S
||g(X, S)||2

∣∣∣∣
S=‖U‖2

]
.

��
This result will be used in Sect. 6.3 to develop generalized Bayes minimax

estimators. An easy corollary applicable to Baranchik type estimators of the form

(
1 − a r

(‖X‖2

S

)
S

‖X‖2

)
X (6.24)

is the following. The proof is left to the reader.

Corollary 6.1 The estimator (6.24) dominatesX simultaneously for all spherically
symmetric distributions SSp+k(θ, 0) for which E∗

θ,η[‖X‖2] < ∞ under loss (6.16)
provided

(a) 0 < a ≤ 2 (p − 2),
(b) 0 ≤ r(·) ≤ 1, and
(c) r(·) is nondecreasing.
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6.1.2 A Link Between Expectations with Respect to E∗
θ,σ 2

and Eθ,σ 2

We mentioned above that the two approaches to the results of this section are
connected. Here is a lemma, whose proof is postponed to Appendix A.6, which
makes explicit this connection thanks to a link between expectations with respect to
E∗
θ,σ 2 and Eθ,σ 2 .

Lemma 6.3 (Fourdrinier and Strawderman 2015) For any function γ defined on
R
p × R+ and for any θ ∈ R

p, we have

σ 2 C E∗
θ,σ 2

[
γ
(
X, ‖U‖2

)]
= Eθ,σ 2

[
1

2

1

‖U‖k−2

∫ ‖U‖2

0
γ (X, s) sk/2−1 ds

]
,

(6.25)

provided these expectations exist, where C is defined in (6.14).

6.2 A Paradox Concerning Shrinkage Estimators

In this section, we contrast the result of the previous section and Sect. 5.2. We
continue our study of the problem of estimating the mean vector θ of a spherically
symmetric distribution when the scale σ 2 is known but when a residual vector U is
available.

In Sect. 5.2, we studied the important class of improved estimators, the James-
Stein estimators δaJS(X) = (

1 − a σ 2/‖X‖2
)
X. The previous section provided

an alternative class of robust James-Stein estimators, that is, δaRJS(X,U) = (
1 −

a/‖X‖2 ‖U‖2/(k + 2)
)
X. In this section, we show that there often exist situations

where δp−2
RJS(X,U) dominates δaJS(X) simultaneously for all a and hence that the

use of the residual vector U to estimate σ 2 may be superior to using its known
value. This phenomenon seems paradoxical in the sense that the risk behavior of
an estimator may be improved by substituting an estimate for a known quantity.
This phenomenon adds to the attractiveness of the robust James-Stein class by
demonstrating not only domination of the usual estimator X simultaneously for
all spherically symmetric distributions, but also domination of the usual James-
Stein estimators in many cases. A similar paradox was found in the context of
goodness of fit testing by Wells (1990). The results of this section are Fourdrinier
and Strawderman (1996) and Fourdrinier et al. (2004).

Note that the paradox cannot occur in the case of a normal distribution since by
the Rao-Blackwell theorem, when σ 2 is known in the normal case, X is a complete
sufficient statistic so that the conditional expectation of δaRJS(X,U) givenX reduces

to δak/(k+2)
JS (X) which dominates δaRJS(X,U). Note also that, if the paradox holds
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for one value of σ 2 for a particular family, it holds for all values of σ 2 by the scale
equivariance of δaRJS(X,U) and, therefore, holds for any scale mixture. Hence, as
the normal distribution arises as a mixture of uniform distributions on spheres, and
also as a mixture of uniform distributions on balls, the paradox cannot occur for
these distributions as well.

For ease of presentation, it is convenient to define the general estimator δaα(X,U)
= (

1−a‖U‖2α/‖X‖2
)
X for α = 0 or 1 and to assume σ 2 = 1. Note that, for α = 0,

δa0 = δaJS and, for α = 1, δa1 = δ
a/(k+2)
RJS . As in Sect. 6.1, we assume the finiteness

of the risk of X (i.e., E0[‖X‖2] < ∞) and it is clear that the finiteness of the risk of
δaα(X,U) is guaranteed as soon as Eθ

[‖U‖2α/‖X‖2
]
< ∞. Under that condition,

the following proposition yields the risk of δaα .

Proposition 6.2 Let the loss be ‖δ − θ‖2. The risk of δaα equals

R(δaα, θ) = E0[‖X‖2] + a2 Eθ

[‖U‖4α

‖X‖2

]
− 2 a

p − 2

k + 2α
Eθ

[‖U‖2(α+1)

‖X‖2

]
.

Proof The risk calculation is a straightforward extension of the one in Lemma 6.1,
with g(x, s) = sαx/‖x‖2. ��

It is easy to deduce from Lemma 6.2 that, for any θ ∈ R
p, the constant a for

which the risk of δaα is minimum is

a(θ) = p − 2

k + 2α

Eθ
[ ‖U‖2(α+1)

‖X‖2

]
Eθ

[ ‖U‖4α

‖X‖2

] .

The corresponding risk is

R
(
δa(θ)α , θ

) = E0
[‖X‖2]−

(
p − 2

k + 2α

)2
(
Eθ

[ ‖U‖2(α+1)

‖X‖2

])2

Eθ
[ ‖U‖4α

‖X‖2

] . (6.26)

We already noticed in Sect. 6.1 that, for α = 1, the optimal a does not depend on
θ and equals p−2

k+2 , which can also be easily seen from the above expression. For
α = 0, the optimal a depends on θ and equals

a(θ) = p − 2

k

Eθ
[ ‖U‖2

‖X‖2

]
Eθ

[ 1
‖X‖2

] . (6.27)

Then the paradox will occur if, for any a ≥ 0, R
(
δ
(p−2)/(k+2)
1 , θ

)
< R

(
δa0 , θ

)
and will certainly occur if R

(
δ
(p−2)/(k+2)
1 , θ

)
< R

(
δ
a(θ)
0 , θ

)
with a(θ) as in (6.27).

By (6.26), this is equivalent to
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(
p − 2

k

)2
(
Eθ

[ ‖U‖2

‖X‖2

])2

Eθ
[ 1
‖X‖2

] <

(
p − 2

k + 2

)2

Eθ

[‖U‖4

‖X‖2

]
,

that is, to

(
Eθ

[ ‖U‖2

‖X‖2

])2

Eθ
[ ‖U‖4

‖X‖2

]
Eθ

[ 1
‖X‖2

] <
(

k

k + 2

)2

. (6.28)

Expression (6.28) is a general condition for the paradox to occur. Fourdrinier and
Strawderman (1996) developed a series of bounds for the quantities in the left-hand
side of (6.28). However the resulting sufficient condition was complex and could
be verified in a limited number of cases, the primary example being the Student
Student-t distribution case. Subsequently Fourdrinier et al. (2004) developed an
effective approach to deal with the expectations in (6.28) for the case of mixtures of
normals.

Assume that (X,U) has a scale mixture of normals distribution with the
representation

(X,U)| (Z = z) ∼ Np+k
(
(θ, 0), z Ip+k

)
(6.29)

where Z is a positive random variable. For model (6.29), expressions of the
expectations in (6.28) are given by the following lemma.

Lemma 6.4 Assume that (X,U) is a scale mixture of normals as in (6.29) and that
p ≥ 3. Let q > −k/2 and assume that E[Zq−1] < ∞. Then we have

Eθ

[‖U‖2q

‖X‖2

]
= 2q

Γ (k/2 + q)

Γ (k/2)
E

[
Zq−1fp

(‖θ‖2

Z

)]

where fp(γ ) = E[Y−1] for a random variable Y having a noncentral chi-square
distribution with p degrees of freedom and noncentrality parameter γ .

Proof Note that X and U are independent conditional on Z and (‖U‖2/Z)|Z ∼
χ2
k (0) and (‖X‖2/Z)|Z ∼ χ2

p

(‖θ‖2/Z
)
. Hence we can write

Eθ

[‖U‖2q

‖X‖2

∣∣∣∣Z
]

= E[‖U‖2q |Z]Eθ
[

1

‖X‖2

∣∣∣∣Z
]

= Zq−1E

[(‖U‖2

Z

)q ∣∣∣∣Z
]
Eθ

[
Z

‖X‖2

∣∣∣∣Z
]

= Zq−12q
Γ (k/2 + q)

Γ (k/2)
fp

(‖θ‖2

Z

)

since q > −k/2. Now use the fact that fp is bounded if p ≥ 3 and E[Zq−1] < ∞
and uncondition to complete the proof. ��
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It follows directly from Lemma 6.4 for q = 0, 1, 2 that (6.28) is equivalent to

HZ(λ) =
(
E
[
fp(λ

2/Z)
])2

E
[
Zfp(λ2/Z)

]
E
[
Z−1fp(λ2/Z)

] < k

k + 2
(6.30)

for all λ = ‖θ‖ ≥ 0.
Alternatively note that

HZ(λ) = (
Eλ[W ]Eλ[W−1])−1 (6.31)

where W is a positive random variable with density

hλ(w) = c(λ)fp(λ
2w)g(w)

where g is the density of V = Z−1 and c(λ) is a normalizing constant. Then (6.28)
can also be expressed as

Eλ[W ]Eλ[W−1] > 1 + 2

k
(6.32)

for all λ ≥ 0.
The following main result shows that the paradox occurs for any nondegenerate

mixture of normals when the dimension of the residual vectorU is sufficiently large.

Theorem 6.2 Assume that (X,U) is a scale mixture of normals as in (6.29), with
Z nondegenerate, E[Z] < ∞ and E[Z−1] < ∞. Then, for any p ≥ 3, there exists
a positive integer k0 such that, for any integer k ≥ k0, the optimal robust James-
Stein estimator δ(p−2)

RJS (= δ
(p−2)/(k+2)
1 ) simultaneously dominates all James-Stein

estimators δaJS (= δa0 ).

Proof Setting H̄ = supλ≥0HZ(λ), Condition (6.30) reduces to k > 2 H̄

1−H̄ .
From (6.31) we know (by covariance inequality) that HZ(λ) ≤ 1 with equality if
and only ifW is degenerate, that is, if and only ifZ is degenerate, which corresponds
to the normal case. Then H̄ ≤ 1 and we only need to show that H̄ < 1 since HZ is
continuous, and hence H̄ does not depend on k.

Now it can be shown (see Lemma 3 in Fourdrinier et al. 2004) that

lim
λ→∞HZ(λ) =

(
lim
λ→∞Eλ[W ] lim

λ→∞Eλ[W−1]
)−1

=
(

1

E[Z] · E[Z2]
E[Z]

)−1

= (E[Z])2
E[Z2]

< 1,
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for p ≥ 3 and nondegenerateZ. SinceHZ(λ) < 1 for all λ and limλ→∞HZ(λ) < 1,
this implies H̄ < 1. ��

The necessity of nondegeneracy of Z is explicit in the proof of Theorem 6.2.
Therefore the paradox occurs only in the case of nondegenerate mixtures of normals
and not in the normal case, as previously noted.

Outside the class of mixtures of normals little is known. In the case where
the radial distribution is concentrated on two points, Fourdrinier and Strawderman
(1996) show that the paradox can occur for suitable weights. Showing the existence
of the paradox in other families of spherically symmetric distributions is an open
question.

6.3 Bayes Estimators

Let (X,U) be a random vector in R
p × R

k with density

1

σp+k f
(‖x − θ‖2 + ‖u‖2

σ 2

)
, (6.33)

where θ ∈ R
p and σ ∈ R+\{0} are unknown. We assume throughout that p ≥ 3.

We consider generalized Bayes estimators of θ for priors of the form

π(‖θ‖2) ηb , (6.34)

where η = 1/σ 2, under the invariant quadratic loss in (6.16).
We first show that, under weak moment conditions, such generalized Bayes

estimators are robust in the sense that they do not depend on the underlying density
f . Furthermore, we exhibit a large class of superharmonic priors π for which
these generalized Bayes estimators dominate the usual minimax estimator X for the
entire class of densities (6.33). Hence this subclass of estimators has the extended
robustness property of being simultaneously generalized Bayes and minimax for the
entire class of spherically symmetric distributions.

Note that, paralleling Sect. 4.5, the above model arises as the canonical form of
the general linear model Y = Vβ + ε where V is a (p + k) × p design matrix, β
is a p × 1 vector of unknown regression coefficients, and ε is an (p + k)× 1 error
vector with spherically symmetric density f (‖ε‖2/σ 2)/σp+k .

In the following, for a real valued function g(x, ‖u‖2), we denote by ∇xg(x, u)
and Δxg(x, ‖u‖2) the gradient and the Laplacian of g(x, ‖u‖2) with respect to
the variable x. Analogous notations hold with respect to the variable u. When
g(x, ‖u‖2) is a vector valued function, divxg(x, ‖u‖2) is the divergence with respect
to x (here dim g(x, ‖u‖2) = dim x).

As previously noted, Stein (1981) shows that, when the density in (6.33) is
normal with known scale, the generalized Bayes estimator corresponding to a prior
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π(θ), for which the square root of the marginal density m(x) is superharmonic, is
minimax under the loss (6.16). Fundamental to this result is the development of an
unbiased estimator of risk based on a differential expression involving m(x) which
has become a basic tool in proving minimaxity.

Another line of research pertinent to this section is the development of Bayes
and generalized Bayes minimax estimators. In the case of a normal distribution with
known scale, see Sect. 3.1, When the scale is unknown, see Sect. 3.4. For variance
mixture of normals and, more generally, for spherically symmetric distributions with
no residual, see Sect. 5.4.

Maruyama (2003b) showed that, for spherically symmetric distributions with a
residual vector U and unknown scale parameter, the generalized Bayes estimator
with respect to a prior on θ and η proportioned to ηb ‖θ‖−a is independent of
the density f and is minimax under conditions on a and b and under weak
moment conditions (see also Maruyama and Takemura 2008 and Maruyama and
Strawderman 2005, 2009).

The goal of this section is to extend the phenomenon in Maruyama (2003b)
to a broader class of priors of the form π(‖θ‖2) ηb with π(‖θ‖2) superharmonic.
In particular, in Sect. 6.3.1, we show that the generalized Bayes estimators do not
depend on the density f under weak moment conditions and, in Sect. 6.3.2, we prove
that these generalized Bayes estimators are minimax provided the prior π(‖θ‖2) is
superharmonic and its Laplacian Δπ(‖θ‖2) is a nondecreasing function of ‖θ‖2,
under conditions on b, p and k.

In the case of a known scale parameter, Fourdrinier and Strawderman (2008a)
studied the same class of priors π(‖θ‖2) and proved minimaxity of generalized
Bayes estimators for a large subclass of unimodal densities. We rely strongly on the
techniques of that paper, as presented in Sect. 5.4.

6.3.1 Form of the Bayes Estimators

In Sect. 3.2 generalized Bayes estimators for the normal setting with an unknown
variance were discussed. In this subsection we extend the normal case to the
spherical setting with a residual vector, that is when the sampling distribution is of
the form of (6.33). In the normal setting the generalized Bayes estimators in (3.25)
were of the form X − r(F )

F
X where F = ||X||2/‖U‖2. In the more general setting

of this subsection the shrinkage function is not a function of only F but is a more
general function of both X and ‖U‖2 as in (3.17).

The results of this subsection and the next closely follow the developments in
Fourdrinier and Strawderman (2010). We will see that for the sampling distribution
in (6.33) and priors of the form (6.34), the generalized Bayes estimators do not
depend on the density (6.33); more precisely their expressions depend only on π
and b provided that
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∫ ∞

0
f (τ) τ (p+k)/2+b+1 dτ < ∞, (6.35)

which is equivalent to

E0,1

[
(‖X‖2 + ‖U‖2)2(b+2)

]
< ∞ .

Proposition 6.3 For a prior of the form (6.34) and loss (6.16), the generalized
Bayes estimator δ(X, ‖U‖2) = X + g(X, ‖U‖2) is such that, for any (x, u) ∈
R
p × R

k ,

g(x, ‖u‖2) =
∫
Rp

θ−x
(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 π(‖θ‖2) dθ∫

Rp
1

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 π(‖θ‖2) dθ
, (6.36)

provided (6.35) holds and (6.36) exists and hence δ(X, ‖U‖2) does not depend on
f (·).

Note that g(x, ‖u‖2) arises as

∇xM(x, ‖u‖2)

m(x, ‖u‖2)
,

where m(x, ‖u‖2) is the marginal associated to π and the density

ϕ
(
‖x − θ‖2 + ‖u‖2

)
∝ 1

(‖x − θ‖2 + ‖u‖2)(p+k)/2+b+2
, (6.37)

and M is the marginal associated to φ with

φ(t) = 1

2

∫ ∞

t

ϕ(v) dv . (6.38)

Therefore, for each fixed u, δ(X, u) = X+g(X, u) with g(X, u) in (6.36) can be
interpreted as the Bayes estimator of θ under the density ϕ and the prior π for fixed
scale parameter ‖u‖ under the loss‖δ − θ‖2. This observation will be important in
the next subsection since it will allow us to use results in Sect. 5.4 (Fourdrinier and
Strawderman 2008a) which are developed for the case of known scale parameter.

Finally, note that existence of (6.36) will be guaranteed by the stronger finiteness
risk condition developed in the proof of Theorem 6.3. More generally, it suffices
that π be locally integrable and have tails that do not grow too fast at infinity. In
particular, superharmonic priors are locally integrable and have bounded tails.



194 6 Spherically Symmetric Case II

Proof of Proposition 6.3. The Bayes estimator under loss (6.16) is

δ(X, ‖U‖2) = E[η θ |X,U ]
E[η|X,U ] = X + g(X, ‖U‖2),

with, for any (x, u) ∈ R
p × R

k ,

g(x, ‖u‖2) = E[η (θ − x) | x, u]
E[η|x, u]

=
∫∞

0

∫
Rp
η (θ − x) η(p+k)/2 f (η (‖x − θ‖2 + ‖u‖2)) π(‖θ‖2) ηb dθ dη∫∞

0

∫
Rp
η(p+k)/2+1 f (η (‖x − θ‖2 + ‖u‖2)) π(‖θ‖2)ηb dθ dη

=
∫
Rp

(∫∞
0 η(p+k)/2+b+1 f (η (‖x − θ‖2 + ‖u‖2)) dη

)
(θ − x) π(‖θ‖2) dθ∫

Rp

(∫∞
0 η(p+k)/2+b+1 f (η (‖x − θ‖2 + ‖u‖2)) d η

)
π(‖θ‖2) dθ

,

by Fubini’s theorem. Now, through the change of variable τ = η (‖x− θ‖2 +‖u‖2)

in the innermost integrals, we obtain

g(x, ‖u‖2) =
∫
Rp

∫∞
0 τ (p+k)/2+b+1 f (τ) dτ

(θ−x) π(‖θ‖2)

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ∫
Rp

∫∞
0 τ (p+k)/2+b+1 f (τ) dτ

π(‖θ‖2)

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ

=
∫
Rp

(θ−x) π(‖θ‖2)

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ∫
Rp

π(‖θ‖2)

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ

thanks to (6.35). ��

6.3.2 Minimaxity of Generalized Bayes Estimators

According to the expression of g(X, ‖U‖2) in (6.36), we give an expression of the
differential operator Og(X, ‖U‖2) in (6.23). The proof of Proposition 6.4 follows
from straightforward calculations.

Proposition 6.4 For g(X, ‖U‖2) = ∇XM(X,‖U‖2)

m(X,‖U‖2)
, (6.23) can be expressed as

Og(X, ‖U‖2) = 2
ΔXM(X, ‖U‖2)

m(X, ‖U‖2)
− 2

∇Xm(X, ‖U‖2)T∇XM(X, ‖U‖2)

m2(X, ‖U‖2)
(6.39)

+k − 2

‖U‖2

∥∥∥∥∇XM(X, ‖U‖2)

m(X, ‖U‖2)

∥∥∥∥
2

+ 2
∂

∂s

∥∥∥∥∇XM(X, s)
m(X, s)

∥∥∥∥
2 ∣∣∣∣
s=‖U‖2

,
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where, for any (x, u) ∈ R
p × R

k ,

m(x, ‖u‖2) =
∫
Rp

ϕ(‖x − θ‖2 + ‖u‖2) π(‖θ‖2) dθ, (6.40)

and

M(x, ‖u‖2) =
∫
Rp

φ(‖x − θ‖2 + ‖u‖2) π(‖θ‖2) dθ (6.41)

with ϕ and φ given by (6.37) and (6.38).

In Sect. 5.4, we studied Bayes minimax estimation of a location vector in the case
of spherically symmetric distributions with known scale parameter. For a subclass
of spherically symmetric densities, we proved minimaxity of generalized Bayes
estimators for spherically symmetric priors of the form π(‖θ‖2) under the following
assumptions (see Theorem 5.7 and also Fourdrinier and Strawderman 2008a, 2010).

Assumption 1

(1) π ′(‖θ‖2) ≤ 0 i.e. π(‖θ‖2) is unimodal;
(2) Δπ(‖θ‖2) ≤ 0 i.e. π(‖θ‖2) is superharmonic;
(3) Δπ(‖θ‖2) is nondecreasing in ‖θ‖2.

Note that Condition (2) in fact implies Condition (1) by the mean value property
of superharmonic functions. Several examples of priors which satisfy Assumption 1
have been given in Sect. 5.4: Examples 5.8, 5.9 and 5.10.

Our main result below is that a generalized Bayes estimator of θ for a den-
sity (6.33), a prior (6.34) and the loss (6.16) is minimax under weak moment
conditions and conditions on b, provided the prior satisfies the Assumptions above.
We remind the reader that, according to Proposition 6.3, the generalized Bayes
estimator is independent of the sampling density, f , provided the assumption (6.35)
holds. Hence, each such estimator is simultaneously generalized Bayes and minimax
for the entire class of spherically symmetric distributions.

Before developing our minimaxity result, we give a theorem which guarantees
the risk finiteness of the generalized Bayes estimators.

Theorem 6.3 Assume that π satisfies Assumption 1 and that b > −(k/2+1). Then
the generalized Bayes estimator associated to π has finite risk.

Proof According to (6.36), the risk finiteness condition (6.17) is satisfied as soon as

Eθ,η

⎡
⎢⎣
∥∥∥∥∥∥
∫
Rp
(θ −X)

π(‖θ‖2)

(‖X−θ‖2+‖U‖2)(p+k)/2+b+2 dθ∫
Rp

π(‖θ‖2)

(‖X−θ‖2+‖U‖2)(p+k)/2+b+2 dθ

∥∥∥∥∥∥
2
⎤
⎥⎦

≤ Eθ,η

⎡
⎣
∫
Rp

‖θ −X‖2 π(‖θ‖2)

(‖X−θ‖2+‖U‖2)(p+k)/2+b+2 dθ∫
Rp

π(‖θ‖2)

(‖X−θ‖2+‖U‖2)(p+k)/2+b+2 dθ

⎤
⎦

< ∞ . (6.42)
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Note that, for any (x, u) ∈ R
p × R

k and for any nonnegative function h on
R+ × R+ (see Lemma 1.4),

∫
Rp
π(‖θ‖2) h(‖x − θ‖2, ‖u‖2) dθ

=
∫ ∞

0

∫
SR,x

π(‖θ‖2) dUR,x(θ) σ (S)R
p−1 h(R2, ‖u‖2) dR , (6.43)

where UR,x is the uniform distribution on the sphere SR,x of radius R and centered
at x and σ(S) is the area of the unit sphere. Through the change of variableR = √

v,
the right hand side of (6.43) can be written as

∫ ∞

0
Sπ (

√
v, x) vp/2−1 h(v, ‖U‖2) dv,

where

Sπ (
√
v, x) = σ(S)

2

∫
S√

v,x

π(‖θ‖2) dU√
v,x(θ)

is nonincreasing in v by the superharmonicity of π(‖θ‖2).
Now we can express the last quantity in brackets in (6.42) as

∫∞
o

Sπ (
√
v, x) vp/2

(v+‖u‖2)(p+k)/2+b+2 dv∫∞
o

Sπ (
√
v, x) vp/2−1

(v+‖u‖2)(p+k)/2+b+2 dv
= E1[v] ≤ E2[v], (6.44)

where E1 is the expectation with respect to the density f1(v) proportional to

Sπ (
√
v, x)

vp/2−1

(v + ‖u‖2)(p+k)/2+b+2
,

and E2 is the expectation with respect to the density f2(v) proportional to

vp/2−1

(v + ‖u‖2)(p+k)/2+b+2
.

Indeed the ratio f2(v)/f1(v) is nondecreasing by the monotonicity of Sπ (
√
v, x).

In (6.44), E2[v] is

E2[v] =
∫∞

0
vp/2

(v+‖u‖2)(p+k)/2+b+2 dv∫∞
0

vp/2−1

(v+‖u‖2)(p+k)/2+b+2 dv
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= ‖u‖2

∫∞
0

vp/2

(v+1)(p+k)/2+b+2 dv∫∞
0

vp/2−1

(v+1)(p+k)/2+b+2 dv

= ‖u‖2 B(p/2 + 1, k/2 + b + 1)

B(p/2, k/2 + b + 2)
,

which is finite for k/2 + b + 1 > 0.
Finally the expectations in (6.42) are bounded above by K Eθ,η[‖U‖2] where K

is a constant, and hence are finite. ��
We will need the following result which is essentially a reexpression of

Lemma 5.6.

Lemma 6.5 Letm(x, ‖u‖2) andM(x, ‖u‖2) be as defined in (6.40) and (6.41) and
let · be the inner product in R

p. Then we have

(1)

x · ∇xm(x, ‖u‖2) = −2
∫ ∞

0
H(v, ‖x‖2) vp/2 ϕ′(v + ‖u‖2) dv,

and

x · ∇xM(x, ‖u‖2) =
∫ ∞

0
H(v, ‖x‖2) vp/2 ϕ(v + ‖u‖2) dv,

where, for v > 0,

H(v, ‖x‖2) = λ(B)

∫
B√

v,x

x · θ π ′(‖θ‖2) dV√
v,x(θ) (6.45)

and V√
v,x is the uniform distribution on the ball B√

v,x of radius
√
v centered

at x and λ(B) is the volume of the unit ball;
(2) For any x ∈ R

p, the function H(v, ‖x‖2) in (6.45) is nondecreasing in v

provided that Δπ(‖θ‖2) is nondecreasing in ‖θ‖2. (Assumption 1 (3));
(3) For any v > 0 and any x ∈ R

p, the functionH(v, ‖x‖2) in (6.45) is nonpositive
provided π ′(‖θ‖2) ≤ 0. (Assumption 1 (1)).

Given these preliminaries, we present our main result.

Theorem 6.4 Suppose that π satisfies Assumption 1. Then the generalized Bayes
estimator associated to π(‖θ‖2) ηb is minimax provided that b ≥ 2p−k−2

4 and the
assumptions of Theorem 6.3 are satisfied.

Proof It suffices to show that Og(X, ‖U‖2) in (6.38), with m(X, ‖U‖2) and M(X,
‖U‖2) given respectively by (6.39) and (6.41), is non positive since the assumptions
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guarantee that the generalized Bayes estimator δ is of the form δ(X, ‖U‖2) = X +
∇XM(X, ‖U‖2)/m(X, ‖U‖2) and has finite risk.

Due to the superharmonicity of π(‖θ‖2), for any (x, u) ∈ R
p × R

k , we have
ΔxM(x‖u‖2) ≤ 0 so that

Og(x, ‖u‖2) ≤ −2
∇xm(x, ‖u‖2)T∇xM(x, ‖u‖2)

m2(x, ‖u‖2)

+ k − 2

‖u‖2

∥∥∥∥∇xM(x, ‖u‖2)

m(x, ‖u‖2)

∥∥∥∥
2

+ 2
∂

∂s

∥∥∥∥∇xM(x, s)
m(x, s)

∥∥∥∥
2 ∣∣∣∣
s=‖u‖2

.

Note that

m2(x, s)
∂

∂s

∥∥∥∥∇xM(x, s)
m(x, s)

∥∥∥∥
2

= ∂

∂s
‖∇xM(x, s)‖2 + ‖∇xM(x, s)‖2m2(x, s)

∂

∂s

1

m2(x, s)

≤ ∂

∂s
‖∇xM(x, s)‖2 + (p + k + 2b + 4)

1

s
‖∇xM(x, s)‖2 ,

since

∂

∂s

1

m2(x, s)
= −2

m3(x, s)

∫
Rp

−[(p + k)/2 + b + 2]
(‖x − θ‖2 + s)(p+k)/2+b+3

π(‖θ‖2) dθ

= p + k + 2b + 4

m3(x, s)

1

s

∫
Rp

s

‖x − θ‖2 + s

1

(‖x − θ‖2 + s)(p+k)/2+b+2
π(‖θ‖2) dθ

≤ p + k + 2b + 4

m2(x, s)

1

s
.

Therefore

m2(x, s)Og(x, s) ≤ −2∇xm(x, s)T∇xM(x, s) (6.46)

+ k − 2 + 2(p + k + 2b + 4)

s
‖∇xM(x, s)‖2

+ 2
∂

∂s
‖∇xM(x, s)‖2 .

As m(x, s) and M(x, s) depend on x only through ‖x‖2, it is easy to check that
(as in Fourdrinier and Strawderman 2008a)

∇xm(x, s)T∇xM(x, s) = xT∇xm(x, s) xT∇xM(x, s)
‖x‖2
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and

‖∇xM(x, s)‖2 = (xT∇xM(x, s))2
‖x‖2

.

Thus the right hand side of (6.46) will be nonpositive as soon as

− 2xT∇xm(x, s)+ 2p + 3k + 4b + 6

s
xT∇xM(x, s)+ 4

∂

∂s
xT∇xM(x, s) ≥ 0,

(6.47)

since, according to Lemma 6.5, the common factor xT∇xM(x, s) is nonpositive.
Using again Lemma 6.5, the left hand side of (6.47) equals

4
∫ ∞

0
H(v, ‖x‖2) vp/2 ϕ′(v + s) dv

+2p + 3k + 4b + 6

s

∫ ∞

0
H(v, ‖x‖2) vp/2 ϕ(v + s) dv

+4
∫ ∞

o

H(v, ‖x‖2)vp/2ϕ′(v + s)dv

=
∫ ∞

0
vp/2ϕ(v + s)

{
8E

[
H(v, ‖x‖2)

ϕ′(v + s)

ϕ(v + s)

]

+2p + 3 k + 4 b + 6

s
E
[
H(v, ‖x‖2)

]}
dv , (6.48)

where E denotes the expectation with respect to the density proportional to v �−→
vp/2 ϕ(v + s).

As

ϕ′(v + s)

ϕ(v + s)
= −((p + k)/2 + b + 2)

v + s
(6.49)

is nondecreasing in v and, according to Lemma 6.5, H(v, ‖x‖2) is also nondecreas-
ing in v, the first expectation in (6.48) satisfies

E

[
H(v, ‖x‖2)

ϕ′(v + s)

ϕ(v + s)

]
≥ E

[
H(v, ‖x‖2)

]
E

[
ϕ′(v + s)

ϕ(v + s)

]

by the covariance inequality. Therefore Inequality (6.47) will be satisfied as soon as

8E

[
ϕ′(v + s)

ϕ(v + s)

]
+ 2p + 3k + 4b + 6

s
≤ 0, (6.50)
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since H(v, ‖x‖2) ≤ 0 by Lemma 6.5.
From (6.49) we have

E

[
ϕ′(v + s)

ϕ(v + s)

]
= −(

(p + k)/2 + b + 2
)
E

[
1

v + s

]
(6.51)

= −(
(p + k)/2 + b + 2

) ∫∞
o

1
v+s v

p/2 1
(v+s)(p+k)/2+b+2 dv∫∞

0 vp/2 1
(v+s)(p+k)/2+b+2 dv

= −(
(p + k)/2 + b + 2

) 1

s

∫∞
0

zp/2

(z+1)(p+k)/2+b+3 dz∫∞
0

zp/2

(z+1)(p+k)/2+b+2 dz

= −(
(p + k)/2 + b + 2

) 1

s

B(p/2 + 1, k/2 + b + 2)

B(p/2 + 1, k/2 + b + 1)
,

where B(α, β) is the beta function with parameters α > 0 and β > 0. Then (6.51)
becomes

E

[
ϕ′(v + s)

ϕ(v + s)

]
= − ((p + k)/2 + b + 2)

s

Γ ((k/2 + b + 2))

Γ ((p + k)/2 + b + 3)

= Γ ((p + k)/2 + b + 2)

Γ (k/2 + b + 1)

−(k/2 + b + 1)

s
. (6.52)

It follows from (6.52) that (6.50) reduces to

b ≥ 2p − k − 2

4
,

which is the condition given in the theorem. ��
The condition on b in Theorem 6.4 can be alternatively expressed as k ≥ 2p −

4b−2 which dictates that the dimension, k, of the residual vector, U , increases with
the dimension, p, of θ . This dependence can be (essentially) eliminated provided the
generalized Bayes estimator in Proposition 6.3 satisfies the following assumption.

Assumption 2 The function g(x, ‖u‖2) in (6.36) can be expressed as

g(x, ‖u‖2) = ∇xM(x, ‖u‖2)

m(x, ‖u‖2)
= − r(‖x‖

2, ‖u‖2) ‖u‖2

‖x‖2 x,

where r(‖x‖2, ‖u‖2) is nonnegative and nonincreasing in ‖u‖2.

Assumption 2 is satisfied, for example, by the generalized Bayes estimator

corresponding to the prior on (θ, η) proportional to π(‖θ‖2) = (
1/‖θ‖2

)−b/2
ηa for
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0 < b ≤ p − 2 and a > − k
2 − b

2 − 2, in which case the function r(‖x‖2, ‖u‖2) =
φ
(‖x‖2/‖u‖2

)
, where φ(t) is increasing in t , and hence r(‖x‖2, ‖u‖2) is decreasing

in ‖u‖2 (see, Maruyama 2003b).
We have the following corollary.

Corollary 6.2 Suppose π satisfies Assumptions 1 and the assumptions of Theo-
rem 6.4 and suppose also that the generalized Bayes estimator (which does not
depend on the underlying density f ) satisfies Assumption 2. Then the generalized
Bayes estimator is minimax provided b ≥ −(k + 2)/4.

Proof Assumption 2 guarantees that

∂

∂s

(
1

s2

∥∥∥∥∇xM(x, s)
m(x, s)

∥∥∥∥
2
)

= ∂

∂s

(
r2(‖x‖2, s)

‖x‖2

)
≤ 0.

Since

∂

∂s

∥∥∥∥∇xM(x, s)m(x, s)

∥∥∥∥
2

= ∂

∂s

(
s2

s2

∥∥∥∥∇xM(x, s)m(x, s)

∥∥∥∥
2
)

= 2

s

∥∥∥∥∇xM(x, s)m(x, s)

∥∥∥∥
2

+ s2 ∂

∂s

(
1

s2

∥∥∥∥∇xM(x, s)m(x, s)

∥∥∥∥
2
)
,

the inequality for Og(X, ‖U‖2) in the proof of Theorem 6.4 can be replaced by

Og(x, ‖u‖2) ≤ −2
∇xm(x, ‖u‖2)T∇xM(x, ‖u‖2)

m2(x, ‖u‖2)
+ k + 2

‖u‖2

∥∥∥∥∇xM(x, ‖u‖2)

m(x, ‖u‖2)

∥∥∥∥
2

.

It follows that inequality condition (6.47) becomes

−2 xT∇xm(x, s)+ k + 2

s
xT∇xM(x, s) ≥ 0,

and that inequality condition (6.50) becomes

4E

[
ϕ′(v + s)

ϕ(v + s)

]
+ k + 2

s
≤ 0,

which, by (6.52), becomes

4

[
−
(
k/2 + b + 1

s

)]
+ k + 2

s
≤ 0,

which is equivalent to b ≥ −(k + 2)/4. ��
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6.4 The Unknown Covariance Matrix Case

In this section, we consider estimation of the mean vector in the case of elliptically
symmetric distribution with an unknown nonsingular scale matrix. Most of the
material of this section is taken from Fourdrinier et al. (2003). We assume there
is sufficient data in the form of residual vectors to estimate the unknown covariance
matrix. In the canonical form of this model, X, V1, . . . , Vn−1 are n random vectors
in R

p with joint density of the form

|Σ |−n/2f
(
(x − θ)TΣ−1(x − θ)+

n−1∑
j=1

V T
j Σ

−1Vj

)
(6.53)

where the p× 1 location vector θ and the p× p scale matrix Σ are unknown. Note
occasionally we will absorb the normalizing factor |Σ−1|n/2 in the function f . If
both θ andΣ are unknown,X and S = ∑n−1

j=1 Vj V
T
j = V V T are minimal sufficient

statistics. Throughout this section, we assume that p ≤ n− 1 so that S is invertible.
The canonical form (6.53) arises through an n× n orthogonal transformation of

(Y1, . . . , Yn) ∼ |Σ |−n/2f
⎛
⎝ n∑
j=1

(Yi − θ)TΣ−1(Yi − θ)

⎞
⎠

as in the case of an i.i.d. sample of size n from a Np(θ,Σ) distribution.
To show this reduction to the canonical form define the p × nmatrices Y = (Y1 :

. . . : Yn) for Yi ∈ R
p and Θ = (θ : . . . : θ). Let P be an n × n orthogonal matrix

such that the first row of P is 1T
n/

√
n, where 1T

n = (1, . . . , 1) is the 1 × n row vector
of ones. Let the p × n matrices X = (X1 : . . . : Xn) and νT=(ν1 :...:νn) be defined
through XT = P YT and νT = P ΘT. Then

n∑
i=1

(Yi − θ)TΣ−1(Yi − θ) = tr
{
(Y −Θ)T (Y −Θ)Σ−1

}

= tr
{
(Y −Θ)T P P T (Y −Θ)Σ−1

}

= tr
{
(X − ν)T (X − ν)Σ−1

}

=
n∑
i=1

(Xi − νi)
TΣ−1(Xi − νi)

= (X1 − θ)TΣ−1(X1 − θ)+
n∑
i=2

XT
i Σ

−1Xi ,

since νT = P ΘT = (θ : 0, . . . : 0)T because the ith column of Θ is θi 1n and since
P T

1 1n = 1 and P T
i 1n = 0 for i = 2, . . . , n, where P T

i is the ith row of P .
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Letting X = X1 and Vi−1 = Xi for i = 2, . . . , n and noting that the
Jacobian of the transformation Y �→ X �→ (X1, V1, . . . , Vn−1) is 1, the density
of (X1, V1, . . . , Vn−1) is given by (6.53) (see also e.g. Rao 1973; Muirhead 1982 or
Anderson 1984).

There is an obvious connection with the canonical form of the general linear
model given in Sect. 4.5. Indeed, if Σ = σ 2 Ip, the density (6.53) becomes

σ−p n/2f
(
(x − θ)T(x − θ)+∑n−1

j=1 V
T
j Vj

σ 2

)
.

So, if Uij = Vij and U = (U12, . . . , U1p,U21, . . . , U2p,Un−11, . . . , Un−1p) then
(X,U) ∼ SSp,(n−1)p(θ, 0). This model is also related to the general (normal)
multivariate linear model Yn×m = Xn×p βp×m + εn×m where εi×m ∼ Nm(0,Σ),
i = 1, . . . , n are independent, X is a known design matrix and β is a matrix of
unknown regression parameters.

We consider the problem of estimating θ with the invariant loss

L(θ, δ) = (δ − θ)TΣ−1(δ − θ). (6.54)

Recall that the usual estimator δ0(X) = X is minimax provided E0,I [‖X‖2] < ∞
(where Eθ,Σ denotes the expectation with respect to the density in (6.53)). Note
that, when Σ is a covariance matrix, this expectation is necessarily finite and equal
to p. MoreoverX is typically admissible when p ≤ 2 and inadmissible when p ≥ 3.

We concentrate on the case p ≥ 3 and construct a class of estimators, depending
on the sufficient statistics (X, S), of the form

δ(X, S) = X + g(X, S), (6.55)

where S = ∑n−1
i=1 ViV

T
i , which dominate δ0(X) = X simultaneously under

loss (6.54), for the entire class of distributions defined in (6.53) such that
E0,I [‖X‖2] < ∞. Note that, although the loss in (6.54) is invariant, the estimate
in (6.55) may not be equivariant (except for δ0(X)).

The risk differenceΔθ,Σ between δ(X, S) given in (6.55) and δ0(X) = X equals

Δθ,Σ = R
(
θ, δ(X, S)

)− R
(
θ, δ0(X)

)
(6.56)

= Eθ,Σ
[
2gT(X, S)Σ−1(X − θ)

]+ Eθ,Σ
[
gT(X, S)Σ−1g(X, S)

]
,

provided Eθ,Σ
[
gT(X, S)Σ−1g(X, S)

]
< ∞.

We first give a lemma which expresses the two terms in the last expression
of (6.56) as expectations E∗

θ,Σ with respect to the distribution

C−1F

(
(x − θ)TΣ−1(x − θ)+

n−1∑
j=1

V T
j Σ

−1Vj

)
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where F and C are defined as

F(t) = 1

2

∫ ∞

t

f (s)ds

and

C =
∫
Rp×···×Rp

F

(
(x − θ)TΣ−1(x − θ)+

n−1∑
j=1

V T
j Σ

−1Vj

)
dx dv1 · · · dvn−1.

To this end, we will use the following notations. For any matrix M , ∇M is
interpreted as the matrix with components (∇M)ij = ∂/∂Mij . The differential

operator for a symmetric matrix S is DS =
(

1
2 (1 + δij ) (∇S)ij

)
and Haff

differential operator is defined, for any p×p matrix function of a symmetric matrix
S, say H(S), to be

D∗
1/2(H(S)) = tr

(
DS H(S)

) =
p∑
i=1

∂Hii(S)

∂Sii
+ 1

2

∑
i 	=j

∂Hij (S)

∂Sij
. (6.57)

Lemma 6.6 Let (X, V ) = (X, V1, . . . , Vn−1) be a p × n random matrix with
density (6.53) where p ≤ n− 1 and let S = V V T.

(1) Suppose g(x, s) is a weakly differentiable function in x for each s such that the
expectation Eθ,Σ

[
gT(X, S)(X, S)Σ−1(X − θ)

]
exists. Then

Eθ,Σ
[
gT(X, S)Σ−1(X − θ)

] = CE∗
θ,Σ

[
divXg(X, S)

]
(6.58)

where divx g(x, s) is the divergence of g(x, s) with respect to x.
(2) Suppose T (x, s) is a p × p matrix function weakly differentiable in vi (i =

1, . . . , n − 1) for any x and such that the expectation Eθ,Σ
[
tr
(
T (X, S)

)
Σ−1

]
exists. Then

Eθ,Σ
[
tr
(
T (X, S)Σ−1)]

= C E∗
θ,Σ

[
2D∗

1/2T (X, S)+ (n− p − 2) tr (S−1T (X, S))
]

= C E∗
θ,Σ

[
tr(V ∇V T {S−1T (X, S)}T)+ (n− 1) tr (S−1T (X, S))

]
. (6.59)

The proof of Lemma 6.6 is given at the end of this section. The two expressions
in (6.58) follow from equality between the two integrand terms thanks to the link
between the differential operatorsD∗

1/2 and tr(V ∇V T) established in Proposition 6.5
(also given at the end of this section).

Note that, when X, V1, . . . , Vn−1 are independent normal vectors with covari-
ance Σ , then f = F and therefore Eθ,Σ [ ] = E∗

θ,Σ [ ]. Hence for Lemma 6.6,
the identity in (6.58) essentially reduces to Stein’s lemma (Stein 1981), and the
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identity in (6.59) corresponds to a result of Stein (1977a) and Haff (1979), known
as the Stein-Haff identity.

Applying (6.58) to the first term in (6.56) and (6.59) to the second term in (6.56)
with T (x, s) = g(x, s)g′(x, s), noting that

gT(x, s)Σ−1g(x, s) = tr
(
g(x, s)gT(x, s)Σ−1)

gives immediately the following theorem.

Theorem 6.5 Assume that g(x, s) and T (x, s) = g(x, s)gT(x, s) satisfy
the assumptions of Lemma 6.6. Assume also that E0,Σ [‖X‖2] < ∞ and
Eθ,Σ

[
gT(X, S)Σ−1g(X, S)

]
< ∞. Then the risk difference Δθ,Σ in (6.56) between

δ(X, S) = X + g(X, S) and δ0(X) = X equals

C E∗
θ,Σ

[
2 divXg(X, S)+ 2D∗

1/2

(
g(X, S)gT(X, S)

)

+(n− p − 2) gT(X, S) S−1g(X, S)
]
. (6.60)

A sufficient condition for δ(X, S) to be minimax is that, for all x and s,

2 divxg(x, s)+ 2D∗
1/2

(
g(x, s)gT(x, s)

)+ (n− p − 2) gT(x, s)s−1g(x, s) ≤ 0
(6.61)

or, equivalently,

2 divxg(x, s)+ tr(v∇vT {s−1g(x, s)gT(x, s)}T + (n− 1) gT(x, s)s−1 g(x, s) ≤ 0 ,
(6.62)

where V = (V1, . . . , Vn−1) is a p × (n − 1) matrix and S = V V T. Furthermore
δ(X, S) dominates δ0(X) as soon as (6.61) or (6.62) is satisfied with strict inequality
on a set of positive measure.

Note that in the normal case E∗
θ,Σ [ ] = Eθ,Σ [ ] so that the left-hand side

of (6.61) is an unbiased estimator of the risk difference between δ(X, S) and
δ0(X). Perhaps, most importantly, observe that the theorem leads to an extremely
strong robustness property for estimators satisfying (6.61). Namely, any such
estimator is minimax and, as soon as strict inequality occurs on a set of positive
measure in (6.61), dominates δ0(X) for the entire class of elliptically symmetric
distributions (6.53). This property is analogous to the robustness property mentioned
in Sect. 6.1 in the case of spherically symmetric distributions. The following
corollary gives a general class of examples of minimax estimates which dominate
δ0(X) uniformly for densities of the form (6.53).

Corollary 6.3 Assume that E0,Σ [‖X‖2] < ∞ and Eθ,Σ
[ ‖X‖2

(XTS−1X)2

]
< ∞. Let

δ(X, S) = (1 − r(XTS−1X)/XTS−1X)X where r(·) is a nondecreasing function
bounded between 0 and 2(p − 2)/(n − p + 2). Then δ(X, S) is minimax for any
density of the form (6.53). Furthermore δ(X, S) dominates δ0(X) as soon as either r
is strictly increasing or bounded away for 0 and 2(p−2)

n−p+2 on a set of positive measure.
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Proof Setting

g(x, s) = − r(x
Ts−1x)

xTs−1x
x,

we have

divxg(x, s) = −
[
(p − 2)

r(xTs−1x)

xs−1x
+ 2r ′(xTs−1x)

]

by routine calculations. Now we have

D∗
1/2

(
g(x, s)gT(x, s)

)

=
p∑
i=1

∂

∂sii

[
r2(xTs−1x)

(xTs−1x)2

]
x2
i + 1

2

∑
i 	=j

∂

∂sij

[
r2(xTs−1x)

(xTs−1x)2

]
xixj

= 2(xTs−1x)2r(xTs−1x)r ′(x; s−1x)− 2(xTs−1x)r2(xTs−1x)

(xTs−1x)4

×
{ p∑
i=1

∂

∂sii
(xTs−1x)X2

i + 1

2

∑
i 	=j

∂

∂sij
(xTs−1x)xixj

}
. (6.63)

Using the fact that

∂

∂sij
(xTs−1x) = −(2 − δij )(x

Ts−1)i(x
Ts−1)j

it follows that the bracketed term in (6.63) equals

−
{ p∑
i=1

(xTs−1)2i x
2
i + 1

2

∑
i 	=j

2(xTs−1)i(x
Ts−1)j xixj

}

= −
∑

1≤i,j≤p
(xTs−1)i(x

Ts−1)j xj

= −
( p∑
i=1

(xTs−1)iXi

)2

= −(xTs−1x)2

and hence

D∗
1/2

(
g(x, s)gT(x, s)

) = −2

{
r(xTs−1x)r ′(xTsx)− r2(xTs−1x)

xTs−1x

}
.
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Finally it is clear that

gT(x, s)s−1g(x, s) = r2(xTs−1x)

xTs−1x

so that the left-hand side of (6.61) equals

−2

{
(p − 2)

r(xTs−1x)

xTs−1x
+ 2r ′(xTs−1x)

}
+ (n− p − 2)

r2(xTs−1x)

xTs−1x

−4
{
r(xTs−1x)r ′(xTs−1x)− r2(xTs−1x)

xTs−1x

}

= r(xTs−1x)

xTs−1x

{− 2(p − 2)+ (n− p + 2)r(xTs−1x)
}

−4r ′(xTs−1x)
{
1 + r(xTs−1x)

}
≤ 0, (6.64)

according to the assumptions on r(·).
Hence the minimaxity of δ(X, S) follows. The domination result follows as

well since strict inequality in (6.64) holds on a set of positive measure under the
additional assumptions. ��
Proof of Lemma 6.6 (Part 1) By definition, we have

Eθ

[
g(X, S)TΣ−1(X − θ)

]
=
∫
Rp×···×Rp

∫
Rp

g(x, s)TΣ−1(x − θ)

f

⎛
⎝(x − θ)TΣ−1(x − θ)+

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dx dv1 . . . dvn−1 .

Now applying the integration-by-slice in Lemma A.2 in Appendix A.5 with
ϕ(x) = √

(x − θ)TΣ−1(x − θ) to the inner most integral

I (v1, . . . , vn−1)

=
∫
Rp

g(x, s)TΣ−1(x − θ) f

⎛
⎝(x − θ)TΣ−1(x − θ)+

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dx

gives

∇ϕ(x) = Σ−1(x − θ)√
(x − θ)TΣ−1(x − θ)
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and

I (v1, . . . , vn−1)

=
∫ ∞

0
f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠∫

[ϕ=R]
g(x, s)TΣ−1(x − θ)

‖∇ϕ(x)‖ dσR(x) dR

=
∫ ∞

0
f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠∫

[ϕ=R]
g(x, s)T

√
(x − θ)TΣ−1(x − θ)

× ∇ϕ(x)
‖∇ϕ(x)‖ dσR(x) dR ,

according to the expression of ∇ϕ(x). Then, as
√
(x − θ)TΣ−1(x − θ) = R on

[ϕ = R], it follows using Stokes’ theorem that

I (v1, . . . , vn−1) =
∫ ∞

0
R f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠∫

[ϕ=R]
g(x, s)

∇ϕ(x)
‖∇ϕ(x)‖ dσR(x) dR =

∫ ∞

0
R f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠∫

[ϕ≤R]
divx g(x, s) dx dR .

Now, using Fubini’s theorem gives

I (v1, . . . , vn−1) =
∫
Rp

divxg(x, s)
∫ ∞
√
(x−θ)TΣ−1(x−θ)

R f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dR dx =

∫
Rp

divx g(x, s)
1

2

∫ ∞

(x−θ)TΣ−1(x−θ)
f

⎛
⎝r +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dr dx =

∫
Rp

divx g(x, s)F

⎛
⎝(x − θ)TΣ−1(x − θ)+

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dx , (6.65)

through the change of variable r = R2 and by definition of the function F .
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Finally integrating (6.65) with respect to the vj gives an expression for the
expectation Eθ [g(X, S)TΣ−1(X − θ)] and yields (6.58).

(Part 2) First note that, setting G = S−1T (X, S), we have

tr
(
T (X, S)Σ−1

)
= tr

(
Σ−1S G(X, S)

)
.

Then, as V = (V1, . . . , Vn−1) and S = VV T, we have

tr
(
Σ−1S G(X, S)

)
= tr

(
G(X, S)Σ−1S

)

= tr

(
G(X, S)Σ−1

n−1∑
i=1

Vi V
T
i

)

=
n−1∑
i=1

tr
(
V T
i G(X, S)Σ

−1 Vi

)

=
n−1∑
i=1

V T
i G(X, S)Σ

−1 Vi. (6.66)

Now, according to Part 1 of Lemma 6.6 where the roles of X and θ are played by Vi
and 0 respectively, it follows from (6.66) that

Eθ,Σ

[
tr
(
Σ−1S G(X, S)

)]
= C

n−1∑
i=1

E∗
θ,Σ

[
divVi (G

T(X, S) Vi)
]

= C E∗
θ,Σ [A1 + A2] , (6.67)

where

A1 =
n−1∑
i=1

p∑
j=1

p∑
m=1

∂Vmi

∂Vji
GT
jm

=
n−1∑
i=1

p∑
j=1

p∑
m=1

δjm G
T
jm(X, S)

= (n− 1)
p∑
j=1

GT
jj (X, S)

= (n− 1) tr(G(X, S)) (6.68)
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and

A2 =
n−1∑
i=1

p∑
j=1

p∑
m=1

Vmi
∂GT

jm(X, S)

∂Vji

=
n−1∑
i=1

p∑
m=1

Vmi

p∑
j=1

∂GT
jm(X, S)

∂Vji

=
n−1∑
i=1

p∑
m=1

Vmi(∇V TG
T(X, S))im

=
p∑

m=1

(V∇V TG
T(X, S))mm

= tr(V ∇V T G
T(X, S)) . (6.69)

Finally, combining (6.67), (6.68) and (6.69), we obtain the second formula in (6.59).
As for the first formula in (6.59), it follows directly from the link between the

differential expressions D∗
1/2S G(X, S) and tr

(
V ∇V T GT(X, S)

)
given in Proposi-

tion 6.5 below, whose proof is given in Appendix A.7. ��
Proposition 6.5 (Fourdrinier et al. 2016) For any p × p matrix function G(x, s)
weakly differentiable with respect to s for any x,

2D∗
1/2

(
S G(X, S)

) = (p + 1) tr(G(X, S))+ tr
(
V ∇V T G

T(X, S)
)
. (6.70)

6.5 Shrinkage Estimators for Concave Loss in the Presence
of a Residual Vector

In this section, we consider the case of concave loss and illustrate that certain
classes of shrinkage estimators which properly use the residual vector have the
strong robustness property of dominating the usual unbiased estimator uniformly
over the class of spherically symmetric distributions, simultaneously for a broad
class of concave loss functions. It extends and broadens the results of Sect. 5.5
to the residual vector case. We follow closely the development in Brandwein and
Strawderman (1991a).

Specifically, let (X,U) be a p + k dimensional vector with mean vector (θ, 0),
where the dimensions of X and θ are equal to p and the dimensions of the residual
vector U and its mean vector, 0, are equal to k, that is, (X,U) ∼ SSp+k(θ, 0). The
loss function we consider is

L(θ, δ) = �(||θ − δ||2), (6.71)
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for �(t) a nonnegative concave monotone nondecreasing function.
The estimators we consider will be of the now familiar form

δ(X, ‖U‖2) = X + a(S/(k + 2))g(X), (6.72)

where S = ||U ||2, and g(·) maps Rp into R
p.

The following result, extracted from the development in Theorem 5.5 due to
Brandwein and Strawderman (1991a) is basic to the development of this section.

Lemma 6.7 (Brandwein and Strawderman 1991a) Let X ∼ SSp(θ), for p ≥ 4
and let g(X) map Rp into R

p be weakly differentiable, and such that

(1) ||g(X)||2/2 ≤ −h(X) ≤ −∇Tg(X),

(2) −h(X) is superharmonic and Eθ [R2h(W)|R] is a nondecreasing function of
R, where W has a uniform distribution on the sphere of radius R centered at θ .

Then Eθ [||X+ag(X)−θ ||2 −||X−θ ||] ≤ E[(−2a2/r2 +2a/p)Eθ [r2h(W)|r2]],
where r2 = ||X − θ ||2.

We will also need the following well known result (see e.g. the discussion at the
end of Sect. 1.2).

Lemma 6.8 Suppose (X,U) ∼ SSp+k(θ, 0). Then the random variable β = ||X−
θ ||2/(||X − θ ||2 + S) has a Beta(p/2, k/2) distribution, independent of R2 =
||X − θ ||2 + S, where S = ||U ||2.

The main result is the following.

Theorem 6.6 Suppose (X,U) ∼ SSp+k(θ, 0), that loss is given by loss (6.71) and
that the estimator δ(X, S) is given by (6.72). Then δ(X, S) dominates the unbiased
estimator X, provided that

(1) g(X) satisfies assumptions (1) and (2) of Lemma 6.7,
(2) the concave nondecreasing function �(t) also satisfies tα�′(t) is nondecreasing,
(3) 0 < a ≤ (p − 2 − 2α)/p.

Note first, by concavity of �(·), that �(t) ≤ �(y) + (t − y)�′(y). Hence the risk
satisfies

R(θ, δ) = E[�(||X + aSg(X)

k + 2
− θ ||2)]

≤ E[�(||X − θ ||2)+ �′(||X − θ ||2)(||X + aSg(X)

k + 2
− θ ||2 − ||X − θ ||2)]

= R(θ,X)+ E[�′(||X − θ ||2)(||X + aSg(X)

k + 2
− θ ||2 − ||X − θ ||2)].

It suffices to prove the second term in the above expression is negative. Now, let
r2 = ||X− θ ||2, R2 = ||X− θ ||2 + S (where S = ||U ||2 = R2 − r2), and note that
the conditional distribution of X given r and R is SSp(θ). Then it follows, using
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Lemma 6.7 that

E[�′(||X − θ ||2)(||X + aSg(X)

k + 2
− θ ||2 − ||X − θ ||2)]

= E[�′(r2)E[||X + aSg(X)

k + 2
− θ ||2 − ||X − θ ||2|R, r]]

≤ E[�′(r2)E[(2( aS

(k + 2)r
)2 − 2

aS

(k + 2)p
)Eθ [−r2h(W)|r2]|R, r]].

Now using Lemma 6.8, this last expression may be written as

2E

[
�′(βR2)

({
a(1 − β)R2

k + 2

}2
1

βR2 − a(1 − β)R2

(k + 2)p

)

× Eθ [−βR2h(W)|βR2]|R]
]

= 2a

k + 2
E

[
(R2(βR2)α�′(βR2)(βR2)−α(1 − β)

(
(1 − β)a

β(k + 2)
− 1

p

)

× Eθ [−βR2h(W)| βR2]| R]
]
.

Next, for fixed R, by assumption (2) of Lemma 6.7 Eθ [−βR2h(W) | βR2] is
nonnegative and nondecreasing in β and by assumption (6.71) so is βα�′(βR2).
Also (1 − β)/β is decreasing in β. Hence it follows from the covariance inequality
(and independence of β and R) that the previous expression is less than or equal to

2a

k + 2
E

[
[Eθ [−βR2h(W)|βR2]R2(R2β)α�′(βR2)|R]E[βα(1 − β)]

×
(
a(1 − β)

β(k + 2)
− 1

p

)]
.

Since the first expectation in this term is nonnegative, it suffices that the second
expectation is negative. But this is equivalent to

0 ≤ a ≤ k + 2

p
E[βα(1 − β)]/E[(βα(1 − β)2)/β] = (p − 2 − 2α)/p,

which completes the proof. ��
For the loss L(θ, δ) = ||θ − δ||q, �(t) = tq/2, it follows that tα�′(t) =

(q/2)tα+q/2−1 is nondecreasing for α ≥ 1 − q/2. Thus, the following corollary
is immediate.
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Corollary 6.4 Under the loss L(θ, δ) = ||θ − δ||q, for p > 4 and 0 < q ≤ 2, the
estimator in Theorem 6.6 dominates X for 0 < a ≤ (p− 4 + 2q)/p simultaneously
for all spherically symmetric distributions with finite second moment. It does so
simultaneously for all such losses for 0 < a ≤ (p − 4)/p.

Note that the range of shrinkage constants for which domination holds includes
a = 1/2 as soon as p ≥ 8. For the usual James-Stein estimator,

δ(X) = (1 − a(2(p − 2)S)/((k + 2)||X||2))X, (6.73)

the uniformly optimal constant for quadratic loss (�(·) = 1) is a = 1/2 and hence
this optimal estimator improves for all such lq losses simultaneously for p ≥ 8.



Chapter 7
Restricted Parameter Spaces

7.1 Introduction

In this chapter, we will consider the problem of estimating a location vector which
is constrained to lie in a convex subset of RP . Estimators that are constrained to a
set should be constrasted to the shrinkage estimators discussed in Sect.2.4.4 where
one has “vague knowledge” that a location vector is in or near the specified set
and consequently wishes to shrink toward the set but does not wish to restrict the
estimator to lie in the set. Much of the chapter is devoted to one of two types of
constraint sets, balls, and polyhedral cones. However, Sect.7.2 is devoted to general
convex constraint sets and more particularly to a striking result of Hartigan (2004)
which shows that in the normal case, the Bayes estimator of the mean with respect
to the uniform prior over any convex set, C , dominates X for all θ ∈ C under the
usual quadratic loss ‖δ − θ‖2.

Section 7.3 considers the situation where X is normal with a known scale but
the constraint set is a ball, B, of known radius centered at a known point in R

p.
Here again, a natural estimator to dominate is the projection onto the ball PBX.
Hartigan’s result of course applies and shows that the Bayes estimate corresponding
to the uniform prior dominates X, but a finer analysis lead to domination over PBX
(provided the radius of the ball is not too large relative to the dimension) by the
Bayes estimator corresponding to the uniform prior on the sphere of the same radius.

Section 7.4 will consider estimation of a normal mean vector restricted to a
polyhedral cone, C , in the normal case under quadratic loss. Both the cases of
known and unknown scale are treated. Special methods need to be developed
to handle this restriction because the shrinkage functions considered are not
necessarily weakly differentiable. Hence the methods of Chap.4 are not directly
applicable. A version of Stein’s lemma is developed for positively homogeneous
sets which allows the analysis to proceed.

In general, if the constraint set, C , is convex, a natural alternative to the UMVUE
X, is PcX the projection of X onto C . Our methods lead to Stein type shrinkage
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estimators that shrink PcX which dominate PcX, and hence X itself, when C is a
polyhedral cone.

Section 7.5 is devoted to the case of a general spherically symmetric distribution
with a residual vector when the mean vector is restricted to a polyhedral cone. As in
Sect.7.4, the potential nondifferentiability of the shrinkage factors is a complication.
We develop a general method that allows the results of Sect.7.4 for the normal case
to be extended to the general spherically symmetric case as long as a residual vector
is available. This method also allows for an alternative development of some of the
results of Chap.6 that rely on an extension of Stein’s lemma to the general spherical
case.

7.2 Normal Mean Vector Restricted to a Convex Set

In this section, we treat the case X ∼ Np(θ, σ
2Ip) where σ 2 is known and where

the unknown mean θ is restricted to lie in a convex set C ⊆ R
p (with nonempty

interior and sufficiently regular boundary), and where the loss isL(θ, δ) = ‖δ−θ‖2.
We show that the (generalized) Bayes estimator with respect to the uniform prior
distribution on C , say π(θ) = 1C (θ), dominates the usual (unrestricted) estimator
δ0(X) = X. At this level of generality the result is due to Hartigan (2004) although
versions of the result (in R

1) date back to Katz (1961). We follow the discussion in
Marchand and Strawderman (2004).

Theorem 7.1 (Hartigan 2004) Let X ∼ Np(θ, σ
2Ip) with σ 2 known and θ ∈ C ,

a convex set with nonempty interior and sufficiently regular boundary ∂C (∂C is
Lipshitz of order 1 suffices). Then the Bayes estimator, δU (X) with respect to the
uniform prior on C , π(θ) = 1C (θ), dominates δ0(X) = X with respect to quadratic
loss.

Proof Without loss of generality, assume σ 2 = 1. Recall from (1.20) that the form
of the Bayes estimator is δU (X) = X + ∇m(X)/m(X) where, for any x ∈ R

p,

m(x) ∝
∫

C
exp

(
−1

2
‖x − ν‖2

)
dν.

The difference in risk between δU and δ0 is R(θ, δU )− R(θ, δ0)

R(θ, δU )− R(θ, δ0) = Eθ

[∥∥∥∥X + ∇m(X)
m(X)

− θ

∥∥∥∥
2

− ‖X − θ‖2

]

= Eθ

[‖∇m(X)‖2

m2(X)
+ 2

∇m(X)T(X − θ)

m(X)

]
. (7.1)

Hartigan’s clever development proceeds by applying Stein’s Lemma 2.3 to only
half of the cross product term in order to cancel the squared norm term in the above.
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Indeed, since

Eθ

[
(X − θ)T

(∇m(X)
m(X)

)]
= Eθ

[
div

(∇m(X)
m(X)

)]

= Eθ

[
Δm(X)

m(X)
− ‖∇m(X)‖2

m2(X)

]
,

(7.1) then becomes

R(θ, δU )− R(θ, δ0) = Eθ

[
Δm(X)+ (X − θ)T∇m(X)

m(X)

]

= Eθ

[
H(X, θ)

m(X)

]
(7.2)

with H(x, θ) = Δm(x) + (x − θ)T∇m(x). Hence it suffices to show H(x, θ) ≤ 0
for all θ ∈ C and x ∈ R

p. Using the facts that

∇x exp

(
−1

2
‖x − ν‖2

)
= −∇ν exp

(
−1

2
‖x − ν‖2

)

and

Δx exp

(
−1

2
‖x − ν‖2

)
= Δν exp

(
−1

2
‖x − ν‖2

)
,

it follows that

H(x, θ) ∝ Δx

∫
C

exp

(
−1

2
‖x − ν‖2

)
dν + (x − θ)′∇x

∫
C

exp

(
1

2
‖x − ν‖2

)
dν

=
∫

C

[
Δν exp

(
−1

2
‖x − ν‖2

)
− (x − θ)′∇ν exp

(
−1

2
‖x − ν‖2

)]
dν

=
∫

C
divν

[
∇ν exp

(
−1

2
‖x − ν‖2

)
− (x − θ) exp

(
−1

2
‖x − ν‖2

)]
dν

=
∫

C
divν

[
(θ − ν) exp

(
−1

2
‖x − ν‖2

)]
dν.

By Stokes’ theorem (see Sect.A.5 of the Appendix) this last expression can be
expressed as

∫
∂C
ηT(ν)(θ − ν) exp

(
−1

2
‖x − ν‖2

)
dσ(ν)
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where η(ν) is the unit outward normal to ∂C at ν and σ is the surface area Lebesgue
measure on ∂C . Finally, since C is convex and θ ∈ C , the angle between η(ν) and
θ − ν is obtuse for ν ∈ ∂C and so ηT(ν)(θ − ν) ≤ 0, for all θ ∈ C and ν ∈ ∂C ,
which implies the risk difference in (7.2) is nonpositive. ��

Note that, if θ is in the interior of C ,C 0, then η′(ν)(θ−ν) is strictly negative for
all ν ∈ ∂C , and hence, R(θ, δU ) − R(θδ0) < 0 for all θ ∈ C 0. However, if C is a
pointed cone at θ0, then ηT(ν)(θ0−ν) ≡ 0 for all ν ∈ ∂C andR(θ0, δU ) = R(θ0, δ0).

Note also that, if C is compact, the uniform prior on C is proper, and hence,
δU (X) not only dominates δ0(X) (on C ) but is also admissible for all p. On the
other hand, if C is not compact, it is often (typically for p ≥ 3) the case that δU is
not admissible and alternative shrinkage estimators may be desirable.

Furthermore, it may be argued in general, that a more natural basic estimator
which one should seek to dominate is PcX, the projection of X onto C which is the
MLE. We consider this problem for the case where C is a ball in Sect.7.3 and where
C is a polyhedral cone in Sect.7.4. ��

7.3 Normal Mean Vector Restricted to a Ball

When the location parameter θ ∈ R
p is restricted, the most common constraint

is a ball, that is, to a set for which ‖θ‖ is bounded above by some constant R.
In this setting Bickel (1981) noted that, by an invariance argument and analyticity
considerations, the minimax estimate is Bayes with respect to a unique spherically
symmetric least favorable prior distribution concentrating on a finite number of
spherical shells. This result extends what Casella and Strawderman (1981) obtained
in the univariate case. Berry (1990) specified that when R is small enough, the
corresponding prior is supported by a single spherical shell. In this section we
address the issues of minimax estimation under a ball constraint.

Let X ∼ Np(θ, σ
2Ip), with unknown mean θ = (θ1, . . . , θp) and known

σ 2, and with the additional information that
∑p

i=1(θi − τi)
2/σ 2 ≤ R2 where

τ1, . . . , τp, σ
2, R are known. From a practical point of view, a constraint as the one

above signifies that the squared standardized deviations |(θi−τi)/σ |2 are on average
bounded by R2/p. We are concerned here with estimating θ under quadratic loss
L(θ, δ) = ‖δ − θ‖2. Without loss of generality, we proceed by setting σ 2 = 1 and
τi = 0, i = 1, . . . , p, so that the constraint is the ball BR = {θ ∈ R

p | ‖θ‖ ≤ R}.
Since the usual minimax estimators take on values outside of BR with positive

probability, they are neither admissible nor minimax when θ is restricted to BR .
The argument given by Berry (1990) is the following. As for inadmissibility, it can
be seen that these estimators are dominated by their truncated versions. Thus, the
unbiased estimatorX is dominated by the MLE δMLE(X) = (R/‖X‖∧1)X (which
is the truncation of X on BR). Now, if an estimator which takes on values outside of
BR with positive probability were minimax, its truncated version would be minimax
as well, with a strictly smaller risk. This is a contradiction since the risk function
is continuous and attains its maximum in BR . Further δMLE(X) is not admissible
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since, due to its non differentiability, it is not a generalized Bayes estimator. See
Sect.3.4. For further discussions on this issue related to inadmissibility of estimators
taking values on the boundary of a convex parameter space, see the review paper of
Marchand and Strawderman (2004) and the monograph of van Eeden (2006).

As alternative estimators to δMLE(X), the Bayes estimators are attractive since
they may have good frequentist performances in addition to their Bayesian property.
Two natural estimators are the Bayes estimators with respect to the uniform
distribution on the ball BR and the uniform distribution on its boundary, the sphere
SR = {θ ∈ R

p | ‖θ‖ = R}. We will see that the latter is particularly interesting.
The model is dominated by the Lebesgue measure on R

p and has likelihood L
given by

∀x ∈ R
p ∀θ ∈ R

p L(x, θ) = 1

(2π)p/2
exp

(
−1

2
‖x − θ‖2

)
. (7.3)

Hence, if the prior distribution is the uniform distribution UR on the sphere SR , the
marginal distribution has density m with respect to the Lebesgue measure on R

p

given by

∀x ∈ R
p m(x) =

∫
SR

L(x, θ)dUR(θ)

= 1

(2π)p/2
exp

(
−1

2
‖x‖2

)
exp

(
−1

2
R2
)∫

SR

exp(xTθ)dUR(θ),

(7.4)

after expanding the likelihood in (7.3). Also, the posterior distribution given x ∈ R
p

has density π(θ |x) with respect to the prior distribution UR given by

∀θ ∈ SR π(θ |x) = L(x, θ)

m(x)
= exp(xTθ)∫

SR
exp(xTθ)dUR(θ)

, (7.5)

thanks to the second expression of m(x) in (7.4). As the loss is quadratic, the Bayes
estimator δR is the posterior mean, that is,

∀x ∈ SR δR(x) =
∫
SR

θπ(θ |x)dUR(θ) =
∫
SR
θ exp(xTθ)dUR(θ)∫

SR
exp(xTθ)dUR(θ)

. (7.6)

The Bayes estimator in (7.6) can be expressed through the modified Bessel
function Iν , solutions of the differential equation z2ϕ′′(z)+zϕ′(z)−(z2+ν2)ϕ(z) =
0 with ν ≥ 0. More precisely, we will use the integral representation of the modified
Bessel function
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Iν(z) = (z/2)ν

π1/2Γ (ν + 1/2)

∫ π

0
exp(z cos t) sin2ν tdt (7.7)

from which we may derive the formula

I ′
ν(z) = ν

z
Iν(z)+ Iν+1(z). (7.8)

Using the parametrization in terms of polar coordinates, we can see from the
proof of Lemma 1.4 that, for any function h integrable with respect to UR ,

∫
SR

h(θ)dUR(θ) = 1

σ(S)

∫
V
h(ϕR(t1, . . . , tp−1)) sinp−2 t1 . . . sin tp−2dt1, . . . , dtp−1

where σ(S) is the area measure of the unit sphere and, as in (1.9), where V =
(0, π)p−2 × (0, 2π) and for (t1, . . . , tn−1) ∈ V , ϕR(t1, . . . , tp−1) = (θ1, . . . , θp)

with

θ1 = R sin t1 sin t2 . . . sin tp−2 sin tp−1

θ2 = R sin t1 sin t2 . . . sin tp−2 cos tp−1

θ3 = R sin t1 sin t2 . . . cos tp−2

...

θp−1 = R sin t1 cos t2

θp = R cos t1.

Setting h(θ) = exp(xTθ) and choosing the angle between x and θ ∈ SR as the first
angle t1 gives

∫
SR

exp(xTθ)dUR(θ) = K

σ(S)

∫ π

0
exp(‖x‖R cos t1) sinp−2 t1dt1

where

K =
∫
V T

sinp−3 t2 . . . sin tp−2dt2, . . . , dtp−1

with V T = (0, π)p−3 × (0, 2π).
Therefore, according to (7.7), the marginal in (7.4) is proportional to

mR(‖x‖) = exp

(
−1

2
‖x‖2

)
exp

(
−1

2
R2
)
I(p−2)/2(‖x‖R)
(‖x‖R)(p−2)/2

, (7.9)
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the proportionality constant being independent of R. Then the Bayes estimator
δR(X) can be obtained thanks to (1.20), that is, for any x ∈ R

p,

δR(x) = x + ∇ logm(x).

As only the quantities depending on x matter, we have using (7.9), for any x ∈ R
p,

δR(x) = x + ∇ logmR(‖x‖)

= −p − 2

2

∇(‖x‖R)
‖x‖R + ∇I(p−2)/2(‖x‖R)

I(p−2)/2(‖x‖R)

= −p − 2

2

x

‖x‖2
+

x
‖x‖

[
p−2
2‖x‖I(p−2)/2(‖x‖R)+ RIp/2(‖x‖R)

]
I(p−2)/2(‖x‖R)

= RIp/2(‖x‖R)
I(p−2)/2(‖x‖R)

x

‖x‖ , (7.10)

where (7.8) has been used for the second to last equality.
Thus, according to (7.10), the Bayes estimator is expressed through a ratio of

modified Bessel functions, that is, denoting by ρν(t) = Iν+1/Iν with t > 0 and
ν > −1/2,

δR(x) = R

‖x‖ρp/2−1(R‖x‖)x. (7.11)

Before proceeding, we give two results from Marchand and Perron (2001).

(i) For sufficiently small R, say R ≤ c1(p), all Bayes estimators δπ with respect
to an orthogonally invariant prior π (supported on BR) dominate δMLE(X);

(ii) The Bayes estimator δR(X) with respect to the uniform prior on the sphere SR
dominates δMLE(X) whenever R ≤ √

p.

Note that Marchand and Perron (2002) extend the result in (ii) showing that
domination of δR(X) over δMLE(X) subsists for some m0(p) such that m0(p) ≥√
p and for R ≤ m0(p).
Various other dominance results, such as those pertaining to a fully uniform prior

on BR and other absolutely continuous priors are also available from Marchand
and Perron (2001), but we will focus here on results (i) and (ii) above, following
Fourdrinier and Marchand (2010).

With respect to important properties of δR(X), we point out that it is the optimal
equivariant estimator for θ ∈ SR , and thus necessarily improves upon δMLE(X) on
SR . Furthermore, δR(X) also represents the Bayes estimator which expands greatest,
or shrinks the least towards the origin (i.e., ‖δπ‖ ≤ ‖δR(X)‖ for all π supported
on BR; Marchand and Perron 2001). Despite this, as expanded upon below, δR(X)
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still shrinks more than δMLE(X) whenever R ≤ √
p, but not otherwise with the

consequence of increased risk at θ = 0 and failure to dominate δMLE(X) for
large R. With the view of seeking dominance for a wider range of values of R,
for potentially modulating these above effects by introducing more (but not too
much) shrinkage, we consider the class of uniform priors supported on spheres Sα
of radius α; 0 ≤ α ≤ R; about the origin, and their corresponding Bayes estimators
δα . The choice is particularly interesting since the amount of shrinkage is calibrated
by the choice of α (as formalized below), with the two extremes δR(X) ≡ δR(X),
and δ0 ≡ 0 (e.g., prior degenerate at 0). Moreover, knowledge about dominance
conditions for the estimators δα may well lead, through further analytical risk
and unbiased estimates of risk comparisons (e.g., Marchand and Perron (2001),
Lemma 5 and the Remarks that follow), to implications relative to other Bayes
estimators such as the fully uniform on BR prior Bayes estimator.

Using Stein’s unbiased estimator of risk technique, Karlin’s sign change argu-
ments, and a conditional risk analysis, Fourdrinier and Marchand (2010) obtain,
for a fixed (R, p), necessary and sufficient conditions on α for δα to dominate
δMLE(X).

Theorem 7.2

(a) An unbiased estimator of the difference in risks

Δα(‖θ‖) = R(θ, δα)− R(θ, δMLE(X))

is given by Dα(‖X‖) = Dα,1(‖X‖) 1[0 ≤ ‖X‖ ≤ R] + Dα,2(‖X‖) 1[‖X‖ >
R] , with

Dα,1(r) = 2α2 + r2 − 2p − 2αrρp/2−1(αr)− α2ρ2
p/2−1(αr), and

Dα,2(r) = 2α2 −m2 − α2ρ2
p/2−1(αr)+ 2Rr{1 − α

R
ρp/2−1(αr)} − 2(p − 1)

R

r
.

(b) For p ≥ 3, and 0 ≤ α ≤ R,Dα(r) changes signs as a function of r according to
the order: (i) (−,+) whenever α ≤ √

p, and (ii) (+,−,+) whenever α >
√
p.

(c) For p ≥ 3 and 0 ≤ α ≤ R, the estimator δα dominates δMLE(X) if and only if

(i) Δα(R) ≤ 0 whenever α ≤ √
p or

(ii) Δα(0) ≤ 0 and Δα(R) ≤ 0, whenever α >
√
p.

Proof

(a) Writing δMLE(x) = x + gMLE(x) with gMLE(x) = (R/r − 1)x 1[r>R] (with
r = ‖x‖) note that gMLE is weakly differentiable. Then we have

2divgMLE(x)+ ‖gMLE(x)‖2 =
{
2(p − 1)

R

r
− 2p + (R − r)2

}
1(R,∞)(r)

and, by virtue of Stein’s identity, R(θ, δMLE) = Eθ [ηMLE(X)] with



7.3 Normal Mean Vector Restricted to a Ball 223

ηMLE(x) = p1[0,R](r)+
{
2(p − 1)

R

r
− p + (R − r)2

}
1(R,∞)(r). (7.12)

Analogously, as derived by Berry (1990), the representations of δα and d
dt
ρν(t)

given in (7.11) and Lemma A.8, along with (2.3), permit us to write R(θ, δα) =
Eθ [λα(X)] with

λα(x) = 2α2 + r2 − p − 2αrρp/2−1(αr)− α2ρ2
p/2−1(αr). (7.13)

Finally, the given expression for the unbiased estimator Dα(‖X‖) follows
directly from (7.12) and (7.13).

(b) We begin with three intermediate observations which are proven below.

(I) The sign changes of Dα,1(r) ; r ∈ [0, R]; are ordered according to one of
the five following combinations: (+), (−), (−,+), (+,−), (+,−,+) ;

(II) limr→R+{Dα(r)} = limr→R−{Dα(r)} + 2;
(III) the function Dα,2(r); r ∈ (R,∞) is either positive, or changes signs once

from − to +.

From properties (I), (II) and (III), we deduce that the sign changes of Dα(r) r ∈
(0,∞); an everywhere continuous function except for the jump discontinuity at
R; are ordered according to one of the three following combinations: (+), (−,+),
(+,−,+). Now, recall that δα is a Bayes and admissible estimator of θ under
squared error loss. Therefore, among the combinations above, (+) is not possible
since this would imply that δα is dominated by δMLE in contradiction with its
admissibility. Finally, the two remaining cases are distinguished by observing that,
Dα(0) = 2α2 − 2p ≤ 0 if and only if α ≤ √

p.
Proof of (I): Begin by making use of Lemma A.8 to differentiate Dα,1 and obtain:

r−1 D′
α,1(r) = 2−2

α

r
ρp/2−1(αr)−2α2ρ′

p/2−1(αr)−2α3ρ′
p/2−1(αr)

ρp/2−1(αr)

r
.

Since, the quantities r−1ρp/2−1(αr) and ρ′
p/2−1(αr) are positive and decreasing in

r by virtue of Lemma A.8, r−1 D′
α,1(r) is necessarily increasing in r , r ∈ [0, R].

Hence, D′
α,1(·) has, on [0, R], sign changes ordered as either: (+), (−), or (−,+).

Finally, observe as a consequence that Dα,1(·) has at most two sign changes on
[0, R], and furthermore that, among the six possible combinations, the combination
(−,+,−) is not consistent with the sign changes of D′

α,1.
Proof of (II): Follows by a direct evaluation of Dα,1(R) and Dα,2(R) which are
given in part (a) of this lemma.
Proof of (III): First, one verifies from (7.13), part (a) of Lemma A.8, and part (c)
of Lemma A.9 that limr→∞Dα,2(r) is +∞, for α < R; and equal to p − 1 if
α = R. Moreover, part (a) also permits us to express Dα,2(r); r > R; as (1 −
α
R
ρp/2−1(αr))

∑3
i=1Hi(α, r) with
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H1(α, r) = 2rR

⎧⎨
⎩1 − (1 − α2

R2 )R

r{1 − α
R
ρp/2−1(αr)}

⎫⎬
⎭ ,

H2(α, r) = −2(p − 1)R

r { 1 − α
R
ρp/2−1(αr) }

and

H3(α, r) = R2 + αRρp/2−1(αr).

Hence, to establish property (III), it will suffice to show that each one of the
functions Hi(α, ·), i = 1, 2, 3, is increasing on (R,∞) under the given conditions
on (p, α,R). The properties of Lemma A.8 clearly demonstrate that H3(α, ·) is
increasing, and it is the same for H2(α, ·) given also Lemmas A.8 and A.9 since

r(1 − α

R
ρp/2−1(αr)) = r(1 − ρp/2−1(αr))+ r (1 − α

R
) ρp/2−1(αr).

Finally, for the analysis of H1(α, r), r > R, begin by differentiation and a
rearrangement of terms to obtain

∂

∂r
H1(α, r) ≥ 0 ⇔ T (R) ≥ 0

where, for r > R ≥ α,

T (R) = (R − αρp/2−1(αr))
2 − α2(R2 − α2)ρ′

p/2−1(αr).

But notice that T (α) = α2(1 − ρp/2−1(αr))
2 ≥ 0, and

1

2

∂T (R)

∂R
= (R − αρp/2−1(αr))− Rα2ρ′

p/2−1(αr)

≥ (α − αρp/2−1(αr))− Rα2 1 − ρp/2−1(αr)

αr

= α(1 − ρp/2−1(αr))

(
1 − R

r

)

≥ 0,

by Lemma A.9, part (b), since r ≥ R ≥ α. The above establishes that T (R) ≥
T (α) ≥ 0 for all R ≥ α, thatH1(α, r) increases in r , and completes the proof of the
Theorem.

(c) The probability distribution of ‖X‖2 is χ2
p(λ

2), so that the potential sign
changes of Δα(λ) = Eλ[Dα(‖X‖)] are controlled by the variational properties
of Dα(·) in terms of sign changes (e.g., Brown et al. 1981). Therefore, in
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situation (i) with α ≤ √
p, it follows from part (b) of Lemma 7.2 that, as Δα(·)

varies on [0,∞] (or [0, R]), the number of sign changes is at most one, and that
such a change must be from − to +. Therefore, since δα is admissible; and that
the caseΔα(λ) ≥ 0 for all λ ∈ [0, R] is not possible1; we must have indeed that
Δα(·) ≤ 0 on [0, R] if and only if Δα(R) ≤ 0 establishing (i). A similar line of
reasoning implies the result in (ii) as well. ��

We refer to Fourdrinier and Marchand (2010) for other results. In particular,
large sample determinations of these conditions are provided. Both cases where
all such δα’s, or no such δα’s dominate δMLE are elicited. As a particular case,
they establish that the boundary uniform Bayes estimator δR dominates δMLE if
and only if R ≤ k(p) with limp→∞ k(p)/

√
p = √

2, improving on the previously
known sufficient condition of Marchand and Perron (2001) for which k(p) ≥ √

p.
Finally, they improve upon a universal dominance condition due to Marchand and
Perron, by establishing that all Bayes estimators δπ with π spherically symmetric
and supported on the parameter space dominate δMLE whenever R ≤ c1(p) with
limp→∞ c1(p)/

√
p = √

1/3.
See Marchand and Perron (2005) for analogous results for other spherically

symmetric distributions including multivariate t .
Other significant contributions to the study of minimax estimation of a normal

mean restricted to an interval or a ball of radius R, were given by Bickel (1981)
and Levit (1981). These contributions consisted of approximations to the minimax
risk and least favourable prior for large R under squared error loss. In particular,
Bickel showed that for p = 1, as R → ∞, the least favourable distributions
rescaled to [−1, 1] converge weakly to a distribution with density cos2(πx/2),
and that the minimax risks behave like 1 − π2/(8R2) + o(R−2). There is also a
substantial literature on efficiency comparisons of minimax procedures and affine
linear minimax estimators for various models, and restricted parameter spaces; see
Donoho et al. (1990) and Johnstone and MacGibbon (1992) and the references
therein.

Finally, we observe that the loss function plays a critical role. In the case where
p = 1 and loss is absolute error |d − θ |, δMLE(X) is admissible. See Isawa and
Moritani (1997) and Kucerovsky et al. (2009).

7.4 Normal Mean Vector Restricted to a Polyhedral Cone

In this section, we consider first the case when X ∼ Np(θ, σ
2Ip) where σ 2 is

known and θ is restricted to a polyhedral cone C and where the loss is ‖δ − θ‖2.
Later in this Section, we will consider the case where σ 2 is unknown and, in

1The risks of δα and δMLE cannot match either, since a linear combination of these two distinct
estimators would improve on δα .
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Sect.7.5, the general spherically symmetric case with a residual vector. The reader
is referred to Fourdrinier et al. (2006) for more details.

A natural estimator in this problem is δC (X) = PCX, the projection of X onto
the cone C . The estimator δC is the MLE and dominates X which is itself minimax
provided C has a nonempty interior. Our goal will be to dominate δC and therefore
also δ0(X) = X.

We refer the reader to Stoer and Witzgall (1970) and Robertson et al. (1988) for
an extended discussion of polyhedral cones. Here is a brief summary. A polyhedral
cone C is defined as the intersection of a finite number of half spaces, that is,

C = {x | aT
i x ≤ 0, i = 1, . . . , m} (7.14)

for n fixed vectors a1, . . . , am in R
p.

It is positively homogeneous, closed and convex, and, for each x ∈ R
p, there

exists a unique point PC x in C such that ‖PC x − x‖ = infy∈C ‖y − x‖.
We assume throughout that C has a nonempty interior, C o so that C may be

partitioned into Ci , i = 0, . . . , m, where C0 = C o and Ci , i = 1, . . . , m, are
the relative interiors of the proper faces of C . For each set Ci , let Di = P−1

C Ci
(the pre-image of Ci under the projection operator PC and si = dim Ci). Then
Di, i = 0, . . . , m form a partition of Rp, where D0 = C0.

For each x ∈ Ci , we have PC x = Pix where Pi is the orthogonal linear
projection onto the si−dimensional subspace Li spanned by Ci . Also for each such
x, the orthogonal projection ontoL⊥

i , is equal to PC ∗x where C ∗ = {y | xTy ≤ 0} is
the polar cone corresponding to C . Additionally, if x ∈ Di , then aPix+P⊥

i x ∈ Di
for all a > 0, so Di is positively homogeneous in Pix for each fixed P⊥

i x (see
Robertson et al. 1988, Theorem 8.2.7). Hence we may express

δC (X) =
m∑
i=0

1Di (X)PiX. (7.15)

The problem of dominating δC is relatively simple in the case where C has the
form C = R

k+ ⊕ R
p−k where R

k+ = {(x1, . . . , xk) | xi ≥ 0, i = 1, . . . , k}. In this
case,

δC (X)i =
{
Xi if Xi ≥ 0
0 if Xi < 0 for i = 1, . . . k and δC (X)i = Xi for i = k + 1, . . . , p.

Furthermore, δC (X) is weakly differentiable and the techniques of Chap.3 (i.e.
Stein’s lemma) are available.

As a simple example, suppose C = R
p
+, i.e. all coordinates of θ are nonnegative.

Then δCi (X) = Xi + ∂i(X) i = 1, . . . , p where

∂i(X) =
{−Xi if Xi < 0

0 if Xi ≥ 0.
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Also, we may rewrite (7.15) as X+ = ∑2p
i=1 1Oi (X)PiX where O1 = R

p
+, and Oj ,

for j > 1, represent the other 2p − 1 orthants and Pi is the projection of X onto the
space generated by the face of O1 adjacent to Oi .

Then a James-Stein type shrinkage estimator that dominates X+ is given by

δ(X) =
2p∑
i=1

(
1 − ci

‖X+‖2

)
X+1Oi (X)

where ci = (si − 2)+ and si is the number of positive coordinates in Oi . Note that
shrinkage occurs only in those orthants such that si ≥ 3.

The proof of domination follows essentially by the usual argument of Chap.3,
Sect.2.4, applied separately to each orthant since X+ and X+/‖X+‖2 are weakly
differentiable in Oi and

∇·
X

X+
‖X+‖2 1Oi (X) = si − 2

‖X+‖2 1Oi (X),

provided si > 2. Note also that ci may be replaced by any value between 0 and
2(si − 2)+.

Difficulties arise when the cone C is not of the form C = R
k+ ⊕ R

p−k because
the estimator PCX may not be weakly differentiable (see Appendix A.1). In this
case, a result of Sengupta and Sen (1991) can be used to give an unbiased estimator
of the risk. Here is a version of their result.

Lemma 7.1 (Sengupta and Sen 1991) Let X ∼ Np(θ, σ
2Ip) and C a positively

homogeneous set. Then for every absolutely continuous function h(·) from R+ to R

such that limy→0,∞ h(y)yk+p/2e−y/2 = 0 for all k ≥ 0 and Eθ [h2(‖X‖2)‖X‖2] <
∞ we have

Eθ [h(‖X‖2)XT(X − θ)1C (X)] = σ 2Eθ [2‖X‖2h′(‖X‖2)+ ph(‖X‖2)1C (X)]
= σ 2Eθ [div(h(‖X‖2)X)1C (X)].

Note that for C = R
p, Lemma 7.1 follows from Stein’s lemma with g(X) =

h(‖X‖2)X provided E[h(‖X‖2)‖X‖2] < ∞. The possible non-weak differentia-
bility of the function h(‖X‖2)X1C (X) prevents a direct use of Stein’s lemma for
general C .

Proof of Lemma 7.1 Note first that, if, for any θ , Eθ [‖g(X)‖] < ∞, then

E0

[
g(X)eX

Tθ/σ 2
]

=
∞∑
k=0

E0

[
g(X)(XTθ/σ 2)k

k!
]

by the dominated convergence theorem. Without loss of generality, assume σ 2 = 1
and let
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Aθ = Eθ [h(‖X‖2)XT(X − θ)1C (X)] (7.16)

= (2π)−p/2e−‖θ‖2/2
∫
Rp

e−‖X‖2/2eX
Tθh(‖X‖2)(‖X‖2 −XTθ)1C (X)dx

= (2π)−p/2e−‖θ‖2/2
∞∑
k=0

E0

[
h(‖X‖2)(‖X‖2 −XTθ)

(XTθ)

k!
k

1C (X)

]

= (2π)−p/2e−‖θ‖2/2
∞∑
k=0

1

k!E0

[
h(‖X‖2)1C (X)(X

Tθ)k(‖X‖2 − k)
]

= (2π)−p/2e−‖θ‖2/2
∞∑
k=0

1

k!E0

[
h(‖X‖2)1C (X)

(
XTθ

‖X‖
)k
(‖X‖k+2 − k‖X‖k)

]
.

By the positive homogeneity of C , we have 1C (X) = 1C (X/‖X‖) and, by the
independence of ‖X‖ and X/‖X‖ for θ = 0, we have

Aθ = (2π)−p/2e−‖θ‖2/2
∞∑
k=0

1

k!E0

[(
XTθ

‖X‖
)k

1C

(
X

‖X‖
)]

×E0

[
h(‖X‖2)

(
‖X‖k+2 − k‖X‖k

)]
(7.17)

When θ = 0, ‖X‖2 has a central Chi-square distribution with p degrees of freedom.
Thus, with d = 1/2p/2Γ (p/2), we have

E0[h(‖X‖2)(‖X‖k+2 − k‖X‖k)] = d

∫ ∞
0

yp/2−1h(y)(y(k+2)/2 − kyk/2)e−y/2dy

= d

∫ ∞
0

y(p+k)/2h(y)e−y/2dy − dk

∫ ∞
0

y(p+k)/2−1h(y)e−y/2dy

Integrating by parts, the first integral gives

∫ ∞

0
y(p+k)/2h(y)e−y/2dy

= 2

[∫ ∞

0

p + k

2
y(p+k)/2−1h(y)e−y/2dy +

∫ ∞

0
y(p+k)/2h′(y)e−y/2dy

]

and thus combining gives
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E0[h(‖X‖2)(‖X‖k+2 − k‖X‖k)] = d

∫ ∞

0
yk/2[2yh′(y)+ ph(y)]y(p−2)/2e−y/2dy

= E0[(2‖X‖2h′(‖X‖2)+ ph(‖X‖2))‖X‖k].

Thus (7.17) becomes

Aθ = (2π)−p/2e−‖θ‖2/2
∞∑
k=0

1

k!E0

(
XTθ

‖X‖
)k

1C (X)

(
XTθ

‖X‖
)

×E0[(2‖X‖2h′(‖X‖2)+ ph(‖X‖2))‖X‖k]

= (2π)−p/2e−‖θ‖2/2
∞∑
k=0

1

k!E0[(XTθ)k{2‖X‖2h′(‖X‖2)+ ph(‖X‖2)}1C (X)]

= Eθ [{2‖X‖2h′(‖X‖2)+ ph(‖X‖2)}1C (X)]

where the final identity follows by the dominated convergence theorem. ��
General dominating estimators will be obtained by shrinking each PiX in (7.15)

on the set Di . Recall that each Di has the property that, if x ∈ Di , then aPix +
P⊥
i x ∈ Di for all a > 0. The next result extends Lemma 7.1 to apply to projections
Pi onto sets which have this conditional homogeneity property.

Lemma 7.2 LetX ∼ Np(θ, σ
2Ip) and P be a linear orthogonal projection of rank

s. Further, let D be a set such that, if x = Px + P⊥x ∈ D, then aPx + P⊥x ∈ D
for all a > 0. Then, for any absolutely continuous function h(·) on R+ into R such
that limy→0,∞ h(y)y(j+s)/2e−y/2 = 0 for all j ≥ 0, we have

Eθ [(X − θ)TPXh(‖PX‖2)1D(X)]
= σ 2Eθ [{2‖PX‖2h′(‖PX‖2)+ sh(‖PX‖2)}1D(X)].

Proof By assumption (Y1, Y2) = (PX,P⊥X) ∼ (Np(η1, σ
2P),Np(η2, σ

2P⊥))
where (P θ, P⊥θ) = (η1, η2). Also

A(θ) = Eθ [(X − θ)TPXh(‖PX‖2)1D(X)]
= Eθ [(PX − Pθ)TPXh(‖PX‖2)1D(X)]
= Eη1η2 [(Y1 − η1)

TY1h(‖Y1‖2)1D′(Y1, Y2)]

where

D′ = {(Y1, Y2)|(Y1, Y2) = (PX,P⊥X) ∈ D}.

On conditioning on Y2 (which is independent of Y1), and applying Lemma 7.1 to
Y1, we have
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A(θ) = Eη2 [Eη1 [(Y1 − η1)
TY1h(‖Y1‖2)1D′(Y1, Y2)|Y2]]

= σ 2Eη2 [Eη1 [{2‖Y1‖2h′(‖Y1‖2)+ sh(‖Y1‖2)}1D′(Y1,Y2)|Y2]]

= σ 2E[{2‖PX‖2h′(‖PX‖2)+ sh(‖PX‖2)}1D(X)].

��
Now we use Lemma 7.2 to obtain the main domination result of this section.

Theorem 7.3 Let X ∼ Np(θ, σ
2Ip) where σ 2 is known and θ is restricted to lie in

the polyhedral cone C , (7.14), with nonempty interior. Then, under loss L(θ, d) =
‖d − θ‖2/σ 2, the estimator

δ(X) =
m∑
i=0

(
1 − σ 2 ri(‖PiX‖2)(si − 2)+

‖PiX‖2

)
PiX1Di (X) (7.18)

dominates the rule δC (X) given by (7.15) provided 0 < ri(t) < 2, ri(·) is absolutely
continuous, and r ′i (t) ≥ 0, for each i = 0, 1, . . . , m.

Proof The difference in risk between δ and δC can be expressed as

Δ(θ) = R(θ, δ)− R(θ, δC )

=
m∑
i=0

Eθ

[
σ 2 r

2
i (‖PiX‖2)((si − 2)+)2

‖PiX‖2 (7.19)

−2
ri(‖PiX‖2)(si − 2)+

‖PiX‖2 (PiX)
T(PiX − θ)

]
1Di (X).

Now apply Lemma 7.2 (noting that (PiX)T(PiX − θ) = (PiX)
T(X − θ)) to each

summand in the second term to get

Δ(θ) = σ 2
m∑
i=0

Eθ

[
r2
i (‖PiX‖2)((si − 2)+)2

‖PiX‖2

− 2
ri(‖PiX‖2)(si − 2)+

‖PiX‖2
− 4r ′i (‖PiX‖2)(si − 2)+

]
1Di (X)

≤ 0| (7.20)

since each r ′i (·) ≥ 0 and 0 < ri(·) < 2. ��
As noted in Chap.3, the case of an unknown σ 2 is easily handled provided an

independent statistic S ∼ σ 2χ2
k is available. For completeness we give the result for

this case in the following theorem.
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Theorem 7.4 Suppose X ∼ Np(θ, σ
2Ip) and S ∼ σ 2χ2

k with X independent of
S. Let the loss be ‖d − θ‖2/σ 2. Suppose that θ is restricted to the polyhedral cone
C , (7.14), with non-empty interior. Then the estimator

δ(X, S) =
m∑
i=0

(
1 −

(
S

k + 2

)
ri(‖PiX‖2)(si − 2)+

‖PiX‖2

)
PiX1Di (X) (7.21)

dominates δC (X) given in (7.15) provided 0 < ri(·) < 2 and ri(·) is absolutely
continuous with r ′i (·) ≥ 0, for i = 0, . . . , m.

Many of the classical problems in ordered inference are examples of restrictions
to polyhedral cones. Here are a few examples.

Example 7.1 (Orthant Restrictions) Estimation problems where k of the coordi-
nate means are restricted to be greater than (or less than) a given set constants, can
be transformed easily into the case where these same components are restricted to
be positive. This is essentially the case for C = R

k+ ⊕ R
p−k mentioned earlier.

Example 7.2 (Ordered Means) The restrictions that θ1 ≤ θ2 ≤ . . . ≤ θp (or that a
subset are so ordered) is a common example in the literature and corresponds to the
finite set of half space restrictions θ2 ≥ θ1, θ3 ≥ θ2, . . . , θp ≥ θp−1 .

Example 7.3 (Umbrella Ordering) The ordering θ1 ≤ θ2 ≤ . . . ≤ θk ≥ θk+1 ≥
θk+2, . . . , θp−1 ≥ θp corresponds to the polyhedral cone generated by the half space
restrictions

θ2 − θ1 ≥ 0, θ3 − θ2 ≥ 0, . . . , θk − θk−1 ≥ 0, θk+1 − θk ≤ 0, . . . , θp − θp ≤ 0.

In some examples, such as Example 7.1, it is relatively easy to specify Pi andDi . In
others, such as Example 7.2 and 7.3 it is more complicated. The reader is referred
to Robertson et al. (1988) and references therein for further discussion of this issue.

7.5 Spherically Symmetric Distribution with a Mean Vector
Restricted to a Polyhedral Cone

This Section is devoted to proving the extension of Theorem 7.4 to the case of a
spherically symmetric distribution when a residual vector is present. Specifically we
assume that (X,U) ∼ SS(θ, 0) where dimX = dim θ = p, dimU = dim 0 = k

and where θ is restricted to lie in a polyhedral cone, C , with non-empty interior.
Recall that the shrinkage functions in the estimator (7.21) are not necessarily weakly
differentiable because of the presence of the indicator functions IDi (X). Hence the
methods of Chap.4 are not immediately applicable.
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The following theorem develops the required tools for the desired extension of
Theorem 7.4. It also allows for an alternative approach to the results in Sect.6.1 as
well.

Theorem 7.5 (Fourdrinier et al. 2006) Let (X,U) ∼ Np+k((θ, 0), σ 2Ip+k) and
assume f : Rp → R and g : Rp → R

p are such that

Eθ,0[(X − θ)Tg(X)] = σ 2Eθ,0[f (X)]

where both expected values exist for all σ 2 > 0. Then, if (X,U) ∼ SSp+k(θ, 0), we
have

Eθ,0[‖U‖2(X − θ)Tg(X)] = 1

k + 2
Eθ,0[‖U‖4f (X)]

provided either expected value exists.

Proof As (X,U) is normal, X ∼ Np(θ, σ
2I ) and ‖U‖2 ∼ σ 2χ2

k are independent,
using E[‖U‖2] = kσ 2 and E[‖U‖4] = σ 4k(k + 2), we have, for each fixed σ 2,

Eθ,0[‖U‖2(X − θ)Tg(X)] = kσ 2Eθ,0[(X − θ)Tg(X)]
= kσ 4Eθ,0[f (X)]

= 1

k + 2
Eθ,0[‖U‖4f (X)] (7.22)

For each θ (considered fixed), ‖X− θ‖2 +‖U‖2 is a complete sufficient statistic for
(X,U) ∼ Np+k((θ, 0), σ 2I ). Now noting

Eσ 2 [E[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2]] = Eθ,0[‖U‖2(X − θ)Tg(X)]

and

1

k + 2
Eσ 2 [‖U‖4f (X)] = 1

k + 2
Eσ 2 [E[‖U‖4f (X) | ‖X − θ‖2 + ‖U‖2]]

it follows from (7.22) and the completeness of ‖X − θ‖2 + ‖U‖2 that

E[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2]
= 1

k + 2
E[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2] (7.23)

almost everywhere. We show at the end of this section that the functions in (7.23) are
both continuous in ‖X− θ‖2 +‖U‖2, and hence, they are in fact equal everywhere.

Since the conditional distribution of (X,U) conditional on ‖X − θ‖2 + ‖U‖2 =
R2 is uniform on the sphere centered at (θ, 0) for all spherically symmetric
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distributions (including the normal), the result follows on integration of (7.23) with
respect to the radial distribution of (X,U). ��

The main result of this section results from an application of Theorem 7.3 to the
development of the proof of Theorem 7.4.

Theorem 7.6 Let (X,U) ∼ SSp+k(θ, 0) and let θ be restricted to the polyhedral
cone C , (7.14), with nonempty interior. Then, under loss L(θ, d) = ‖d − θ‖2, the
estimator

δ(X,U) =
m∑
i=0

(
1 − ‖U‖2

k + 2

(si − 2)+ri(‖PiX‖2)

‖PiX‖2

)
PiX1Di (X) (7.24)

dominates PCX = δC (X), given in (7.15) provided, 0 < ri(·) < 2, ri(·) is
absolutely continuous and r ′i (·) ≥ 0 for i = 0, . . . , m.

Proof The key observation is that, in passing from (7.19) to (7.20) in the proof of
Theorem 7.3, we used Lemma 7.2 and the fact that PiXT(PXi −θ) = PiX

T(X−θ)
to establish that

E

[
ri(‖PiX‖2)(si − 2)+

‖PiX‖2 (PiX)
T(PiX − θ)1Di (X)

]

= σ 2E

[
ri(‖PiX‖2)((si − 2)+)2

‖PiX‖2 + 2r ′i (‖PiX‖2)(si − 2)+1Di (X)

]
.

Hence, by Theorem 7.5,

E

[
‖U‖2

k + 2

ri (‖PiX‖2)(si − 2)+
‖PiX‖2

(PiX)
T(PiX − θ)1Di (X)

]

= σ 2E

[
‖U‖4

(k + 2)2

{
ri (‖PiX‖2)((si − 2)+)2

‖PiX‖2
+ 2r ′i (‖PiX‖2)(si − 2)+

}
1Di (X)

]
.

It follows then, as in the proof of Theorem 7.3,

R(θ, δ(X,U)) − R(θ, δC ) =
m∑
i=0

Eθ

[
‖U‖4

(k + 2)2

{
r2
i (‖PiX‖2)((si − 2)+)2

‖PiX‖2

−
{(

2
ri(‖PiX‖2)(si − 2)+

‖PiX‖2 + 4r ′i (‖PiX‖2)

)
(si − 2)+

}
1Di (X)

]

≤ 0. (7.25)

��
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Theorem 7.5 is an example of a meta result which follows from Theorem 7.6,
and states roughly that, if one can find an estimator X + σ 2g(X) that dominates
X for each σ 2 using a Stein-type differential equality in the normal case, then
X+‖U‖2/(k+ 2)g(X) will dominate X in the general spherically symmetric case,
(X,U) ∼ SS1+k(θ, U), under L(θ, δ) = ‖δ − θ‖2. The “proof” goes as follows.

Suppose one can show also that E[(X − θ)Tg(X)] = σ 2E[f (X)] in the normal
case, and also that ‖g(x)‖2 + 2f (x) ≤ 0, for any x ∈ R

p. Then, in the normal case,

R(θ,X − σ 2g(X))− R(θ,X) = σ 4E[‖g(X)‖2 + 2f (X)] ≤ 0.

Using Theorem 7.5 (and assuming finiteness of expectations), it follows in the
general case that

R

(
θ,X + ‖U‖2

k + 2
g(X)

)
− R(θ,X) = E

[ ‖U‖4

(k + 2)2
{‖g(X)‖2 + 2f (X)}

]
≤ 0.

In this Section, application of the above meta-result had the additional complica-
tion of a separate application (to PiX instead of X) on each Di but the basic idea is
the same. The results of Chap.6 which rely on extending a version of Stein’s lemma
to the general spherically symmetric case can be proved in the same way.

We close this Section with a result that implies the claimed continuity of the
conditional expectations in (7.23).

Lemma 7.3 Let (X,U) ∼ SSp+k(θ, 0) and let α ∈ N . Assume ϕ(·) is such that for
any R > 0, the conditional expectation

f (R) = E(θ,0)[‖U‖αϕ(X) | ‖X − θ‖2 + ‖U‖2 = R2]

exists. Then the function f is continuous on R+.

Proof Assume without loss of generality that θ = 0 and ϕ(·) ≥ 0. Since the
conditional distribution or (X,U) conditional on ‖X‖2 +‖U‖2 = R2 is the uniform
distribution UR on the sphere SR = {y ∈ Rp+k/‖y‖ = R} centered at 0 with radius
R, we have

f (R) =
∫
SR

‖u‖αϕ(x)dUR(x, u).

Since ‖u‖2 = R2 − ‖x‖2 for any (x, u) ∈ SR and X has distribution concentrated
on the ball Br = {x ∈ R

p|‖x‖ ≤ R} in R
p with density proportional to

R2−(p+k)((R2 − ‖x‖2)k/2−1) we have that Rp+k−2f (R) is proportional to

g(R) =
∫
BR

(R2 − ‖x‖2)(k+α)/2−1ϕ(x)dx.
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=
∫ R

0

∫
Sr

(R2 − ‖x‖2)(k+α)/2−1ϕ(x)dσr(x)dr

=
∫ R

0
(R2 − r2)(k+α)/2−1H(r)dr

where

H(r) =
∫
Sr

ϕ(x)dσr(x)

and where σr is the area measure on the sphere Sr . Since H(·) and (k + α)/2 − 1
are non-negative, the family of integrable functions r → K(R, r) = (R2 −
r2)(k+α)/2−1H(r)I[0,R](r), indexed by R, is nondecreasing in R and bounded above
for R < R0 by the integrable function K(R0, r). Then the continuity of g(R), and
hence of f (R), is guaranteed by the dominated convergence theorem. ��

Note that the continuity of (7.23) is not necessary for the application to (X,U) ∼
SSp+k(θ, 0) if (X,U) has a density, since then equality a.e. suffices.



Chapter 8
Loss and Confidence Level Estimation

8.1 Introduction

Suppose X is an observation from a distribution Pθ parameterized by an unknown
parameter θ . In classical decision theory, after selecting an estimation procedure
ϕ(X) of θ , it is typical to evaluate it through a criterion, i.e. a loss, L(θ, ϕ(X)),
which represents the cost incurred by the estimator ϕ(X) when the unknown
parameter equals θ . In the long run, as it depends on the particular value of X, this
loss cannot be appropriate to assess the performance of the estimator ϕ. Indeed, to
be valid (in the frequentist sense), a global evaluation of such a statistical procedure
should be based on all the possible observations. Consequently, it is common to
report the risk R(θ, ϕ) = Eθ [L(θ, ϕ(X))] as a gauge of the efficiency of ϕ (Eθ
denotes expectation with respect to Pθ ). Thus, we have at our disposal a measure
of the long run performance of ϕ(X) for each value of θ . However, although this
notion of risk can effectively be used in comparing ϕ(X) with other estimators, it is
inaccessible since θ is unknown. A common and, in principle, accessible, frequentist
risk assessment is the maximum risk R̄ϕ = supθ R(θ, ϕ).

By construction, this last report on the estimation procedure is non-data-depen-
dent (as we were guided by a global notion of the accuracy of ϕ(X)). However there
exist situations where the fact that the observation X has a particular value x may
influence the judgment on a statistical procedure. A particularly clarifying example
is given by the following simple confidence interval estimation (which can also be
seen as a loss estimation problem). Assume that the observation is a pair (X1, X2)

of independent copies of a random variable X satisfying, for θ ∈ R,

P [X = θ − 1] = P [X = θ + 1] = 1

2
.

Then it is clear that the confidence interval for θ defined by
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I (X1, X2) =
{
θ ∈ R

∣∣∣
∣∣∣∣X1 +X2

2
− θ

∣∣∣∣ < 1

2

}

satisfies

1[I (X1,X2)&θ] =
⎧⎨
⎩

1 if X1 	= X2

0 if X1 = X2

so that it suffices to observe (X1, X2) = (x1, x2) in order to know exactly whether
I (x1, x2) contains θ or not.

The previous (somewhat ad hoc) example indicates that data-dependent reports
are relevant. In our estimation context when X = x, note that, if it were available
(but θ is unknown), it would be the loss L(θ, ϕ(x)) itself that should serve as a
perfect measure of the accuracy of ϕ. It is then natural to estimate L(θ, ϕ(x)) by a
data-dependent estimator δ(X), a new estimator called a loss estimator which will
serve as a data-dependent report (instead of R̄ϕ). This is a conditional approach in
the sense that accuracy assessment is made on a data-dependent quantity, the loss,
instead of the risk.

Remark 8.1 Throughout this chapter, we will typically use ϕ(X) to denote the
estimator of the unknown parameter, θ , and δ(X) to denote the corresponding
estimator of loss, L(θ, ϕ(X)).

To evaluate the extent to which δ(X) successfully estimates L(θ, ϕ(X)), another
loss is required and it has become standard to use the squared error

L∗(θ, ϕ(X), δ(X)) = (δ(X)− L(θ, ϕ(X)))2 , (8.1)

for simplicity. In so far as we are thinking in terms of long-run frequencies, we adopt
a frequentist approach to evaluating the performance of L∗ by averaging over the
sampling distribution of X given θ , that is, by using a new notion of risk

R(θ, ϕ, δ) = Eθ [L∗(θ, ϕ(X), δ(X))] = Eθ [(δ(X)− L(θ, ϕ(X)))2] . (8.2)

As R̄ϕ reports on the worst situation (the maximum risk), we may hope that a
competitive data-dependent report δ(X) improves on R̄ϕ under new risk (8.1), that
is, for all θ , satisfies

R(θ, ϕ, δ) ≤ R(θ, ϕ, R̄ϕ) . (8.3)

More generally, a reference loss estimator δ0 will be dominated by a competitive
estimator δ if, for all θ ,

R(θ, ϕ, δ) ≤ R(θ, ϕ, δ0) , (8.4)

with strict inequality for some θ .
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Note that, unlike the usual estimation setting where the quantity of interest is a
function of the parameter θ , loss estimation involves a function of both θ andX (the
data). This feature may make the statistical analysis more difficult but it is clear that
the usual notions of minimaxity, admissibility, etc, and their methods of proof can
be directly adapted to that situation. Also, although frequentist interpretability was
evoked above, it is easily seen that a Bayesian approach could be naturally based on
the usual Bayes estimator ϕB of θ and the posterior loss δB(X) = E[L(θ, ϕB)|X].

The problem of estimating a loss function has been considered by Sandved
(1968) who developed a notion of an unbiased estimator of L(θ, ϕ(X)) in various
settings. However the underlying conditional approach traces back to Lehmann and
Sheffé (1950) who estimated the power of a statistical test. Kiefer, in a series of
papers (1975, 1976, 1977), developed conditional and estimated confidence theories
through frequentist interpretability. A subjective Bayesian approach was compared
by Berger (1985b,c,d) with the frequentist one.

We propose the following definition of an unbiased estimate of loss.

Definition 8.1 δ(X) is an unbiased estimator of the loss L(θ, ϕ(X)), if Eθ [δ(x)] =
Eθ [L(θ, ϕ(X))] for all θ ∈ Ω . Hence an unbiased estimator of loss is also an
unbiased estimator of risk.

Johnstone (1988) considered the (in)admissibility of unbiased estimators of loss
for the maximum likelihood estimator ϕ0(X) = X and for the James-Stein estimator
ϕJS(X) = (1 − (p − 2)/||X||2)X of a p-variate normal mean θ (with covX = Ip)
based on Stein’s lemma (Theorem 2.1). For ϕ0(X) = X, the unbiased estimator of
the quadratic loss L(θ, ϕ0(X)) = ||ϕ0(X)− θ ||2 which satisfies, for all θ ,

Eθ [δ0] = Eθ [L(θ, ϕ0(X))] = R(θ, ϕ0) , (8.5)

is δ0 = R̄ϕ = p (where we assume σ 2 = 1). Johnstone proved that (8.3) is satisfied
with the competitive estimator δ(X) = p − 2(p − 4)/||X||2 when p ≥ 5, with the
risk difference between δ0 and δ being expressed as −4(p − 4)2Eθ [1/||X||4].

For the James-Stein estimator ϕJS , the unbiased estimator of loss, from Corol-
lary 2.1 (3), is itself data-dependent and equal to δJS0 (X) = p − (p − 2)2/||X||2.
Jonhstone showed that improvement on δJS0 can be obtained with δJS(X) =
p − (p− 2)2/||X||2 + 2p/||X||2 when p ≥ 5, with strict inequality in (8.4) for all
θ since the difference in risk between δJS and δJS0 equals −4p2 Eθ [1/||X||4].

In Sect. 8.2, we develop the quadratic loss estimation problem for a multivariate
normal mean. After a review of the basic ideas, a new class of loss estimators is
constructed in Sect. 8.2.1. In Sect. 8.2.2, we turn our focus on some interesting and
surprising behavior of Bayesian assessments; this paradoxical result is illustrated
in a general inadmissibility theorem. Section 8.3 is devoted to the case where the
variance is unknown. Extensions to the spherical case are given in Sect. 8.4. In
Sect. 8.4.1, we consider the general case of a spherically symmetric distribution
around a fixed vector θ ∈ R

p. In Sect. 8.4.2, these ideas are then generalized to the
case where a residual vector is available. Section 8.5 discusses some connections
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of loss estimation with model selection. Section 8.6 covers topics in confidence set
assessment, while Sect. 8.7 presents material on a dimension cut-off phenomenon
for improved loss estimation associated with differential operators. We conclude by
mentioning a number of applied and theoretical developments of loss estimation not
covered in this overview.

8.2 Quadratic Loss Estimation: Multivariate Normal with
Known Variance

8.2.1 Dominating Unbiased Estimators of Loss

Let X be a random vector having a multivariate normal distribution Np(θ, Ip) with
unknown mean θ and identity covariance matrix Ip. To estimate θ , the observable
X is itself a reference estimator, being both MLE and unbiased. It is convenient to
write any estimator of θ as ϕ(X) = X+ g(X) for a certain function g from R

p into
R
p. Under squared error loss ||ϕ(X)− θ ||2, the (quadratic) risk of ϕ is defined by

R(θ, ϕ) = Eθ [||ϕ(X)− θ ||2] (8.6)

where Eθ denotes the expectation with respect to Np(θ, Ip).
Clearly, the risk of the MLE X equals p and ϕ(X) will be a reasonable estimator

only if its risk is finite. As seen in Chap. 2,

Eθ [||g(X)||2] < ∞ (8.7)

is a necessary and sufficient condition for this finiteness. We assume this in what
follows. Note again that in this chapter, the estimators of θ with typically be denoted
by ϕ(X) while the estimators of loss will typically be denoted by δ(X). We will
largely focus on improving some reference estimator of loss δ0(X) for a fixed
estimator ϕ(X) of θ .

Recall from Corollary 2.1 (3) that if X ∼ N (θ, Ip) that an, in fact the unique,
unbiased estimator of loss for an estimator of θ of the form ϕ(X) = X + g(X) is
given by

δ0(X) = p + 2 div g(X)+ ||g(X)||2. (8.8)

Hence for the UMVUE, MLE, MRE ϕ(X) = X it follows that δ0(X) = p and
for the James-Stein estimator, δJSa (X) = (

1 − a/‖X‖2
)
X in (2.13), the proof of

Theorem 2.2 shows that δ0(X) = p + (a2 − 2a(p − 2))/||X||2.
Any competitive loss estimator δ(X) can be written as δ(X) = δ0(X) −

γ (X) for a certain function γ (X), which can be interpreted as a correction to
δ0(X). If the MLE is concerned (that is, if g(X) = 0), we may expect that an
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improvement on δ0(X) = p would be obtained with a function γ (X) satisfying the
requirement expressed by condition (8.3). Note also that, similarly to the finiteness
risk condition (8.7), we will require that

Eθ [γ 2(X)] < ∞ (8.9)

to assure that the risk of δ(X) is finite.
Using straightforward algebra, the risk difference (under loss (8.1)) D(θ, ϕ, δ) =

R(θ, ϕ, δ)− R(θ, ϕ, δ0) simplifies in

D(θ, ϕ, δ) = Eθ [γ 2(X)− 2 γ (X) δ0(X)] + 2Eθ [γ (X) ||ϕ(X)− θ ||2] . (8.10)

Conditions for which D(θ, ϕ, δ) ≤ 0 will be formulated after finding, along the lines
of Stein’s techniques used above, an unbiased estimate of the term γ (X) ||ϕ(X) −
θ ||2 in the last expectation. This is given in the next lemma. Recall, for a function g
from R

p into R
p, that Stein’s lemma (Theorem 2.1) states that

Eθ [(X − θ)Tg(X)] = Eθ [div g(X)] , (8.11)

provided that these expectations exist.

Lemma 8.1 Let X ∼ Np(θ, Ip) and γ be a twice weakly differentiable function
such that Eθ [||X − θ ||2 |γ (X)|] < ∞. Then

Eθ [||X − θ ||2 γ (X)] = Eθ [p γ (X)+Δγ (X)] .

Proof Writing

||X − θ ||2 γ (X) = (X − θ)T(X − θ) γ (X) (8.12)

naturally leads to an iteration of Stein’s identity and involves the twice weak
differentiability of γ , we have

Eθ [||X − θ ||2 γ (X)] = Eθ [div((X − θ)T γ (X))]
= Eθ [p γ (X)+ (X − θ)T ∇γ (X)] , (8.13)

by the property of the divergence. Then again, applying Stein’s identity to the last
term in (8.13) gives

Eθ [(X − θ)T ∇γ (X)] = Eθ [div(∇γ (X))] = Eθ [Δγ (X)] (8.14)
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by definition of the Laplacian . Finally, gathering (8.13) and (8.14), we obtain that

Eθ [||X − θ ||2 γ (X)] = Eθ [p γ (X)+Δγ (X)] , (8.15)

which completes the proof. ��
We are now in a position to provide an unbiased estimator of D(θ, ϕ, δ). Its

nonpositivity will be a sufficient condition for D(θ, ϕ, δ) ≤ 0 and hence for δ to
improve on δ0.

Lemma 8.2 Suppose γ is a twice weakly differentiable function and all expecta-
tions are finite. Then

D(θ, ϕ, δ) = Eθ [γ 2(X)+ 4 ∇γ (X)T g(X)+ 2Δγ (X)]. (8.16)

Note that, when X ∼ Np(θ, σ
2 Ip), then if the correction term is replaced by

σ 2 γ (X) the risk difference D(θ, ϕ, δ) becomes replaced by σ 4 D(θ, ϕ, δ). For
notation simplicity we will restrict attention to X ∼ Np(θ, Ip) but the theorems
in this section remain valid with the change γ (X) �→ σ 2 γ (X).

Proof Note that

||ϕ(X)− θ ||2 = ||X + g(X)− θ ||2
= ||g(X)||2 + 2 (X − θ)T g(X)+ ||X − θ ||2

so that, according to (8.11) and (8.15),

Eθ [||ϕ(X)− θ ||2 γ (X)] = Eθ [γ (X) ||g(X)||2 + 2 div(γ (X) g(X))

+p γ (X)+Δγ (X)] .

Therefore, as

div(γ (X) g(X)) = γ (X) divg(X)+ ∇γ (X)T g(X)

and δ0(X) = p + 2 div g(X) + ||g(X)||2, the risk difference D(θ, ϕ, δ) in (8.10)
reduces to (8.16). ��

It follows from Lemma 8.2 that a sufficient condition for D(θ, ϕ, δ) to be
nonpositive is

γ 2(x)+ 4 ∇γ (x)T g(x)+ 2Δγ (x) ≤ 0 (8.17)

for any x ∈ R
p. Note that applying Lemma 8.2 to ϕ(X) = X and δ0(X) = p,

γ (X) = −2(p − 4)/‖X‖2 gives Johnstone’s (1988) result mentioned above. This
choice of γ also gives Jonhstone’s result for an improved loss estimator based on the
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James-Stein estimator. We will also give some further comments on these examples
after Theorem 8.1.

How can one determine a “best” correction γ satisfying (8.17)? The following
theorem provides a way to associate to the function g a suitable correction γ that
satisfies (8.17) in the case where g(x) is of the form g(x) = ∇m(x)/m(x) for a
certain nonnegative functionm. This is the case, as we saw in Chaps. 1 and 3 when ϕ
is a Bayes estimator of θ related to a prior π , the functionm being the corresponding
marginal (see also Brown 1971). Through the choice ofm, Bock (1988) showed that
such estimators constitute a wide class of estimators of θ (which are called pseudo-
Bayes estimators when the function m does not correspond to a true prior π ).

Theorem 8.1 Let m be a nonnegative function that is also superharmonic (respec-
tively subharmonic) on R

p such that ∇m/m ∈ W
1,1
loc (R

p) (see Appendix A.1). Let
ξ be a real valued function, strictly positive and strictly subharmonic (respectively
superharmonic) on R

p, and such that

Eθ

[(
Δξ(X)

ξ(X)

)2
]
< ∞ . (8.18)

Assume also that there exists a constant K > 0 such that, for any x ∈ R
p,

m(x) > K
ξ2(x)

|Δξ(x)| (8.19)

and let

K0 = inf
x∈Rp m(x)

|Δξ(x)|
ξ2(x)

.

Then the unbiased loss estimator δ0 of the estimator ϕ of θ defined by ϕ(X) =
X+∇m(X)/m(X) is dominated by the estimator δ = δ0 − γ , where the correction
term γ is given, for any x ∈ R

p such that m(x) 	= 0, by

γ (x) = −α sgn(Δξ(x))
ξ(x)

m(x)
, (8.20)

as soon as 0 < α < 2K0.

Proof The domination condition will be obtained by proving that the risk difference
is less than zero. We only consider the case where m is superharmonic and
ξ is strictly subharmonic, the case where m is subharmonic and ξ is strictly
superharmonic being similar.

First, note that the finiteness risk condition (8.9) is guaranteed by Condi-
tion (8.18) and the fact that (8.19) implies that, for any x ∈ R

p,
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γ 2(x) = α2 ξ
2(x)

m2(x)
≤ α2

K2
0

(
Δξ(x)

ξ(x)

)2
.

Also note that, for a shrinkage function g of the form g(x) = ∇m(x)/m(x), the
left hand side of (8.17) can be expressed as (sinceΔ(mγ ) = mΔγ+2 (∇m)T ∇γ+
γ Δm)

Dγ (x) ≡ γ 2(x)+ 2

{
Δ(m(x) γ (x))

m(x)
− γ (x)

Δm(x)

m(x)

}
(8.21)

and hence, for γ in (8.20), as

Dγ (x) = α2 ξ
2(x)

m2(x)
+ 2α

{
−Δξ(x)
m(x)

+ ξ(x)Δm(x)

m2(x)

}
. (8.22)

Now, since m is superharmonic and ξ is positive, it follows from (8.22) that

Dγ (x) ≤ α

m(x)

{
α ξ2(x)

m(x)
− 2Δξ(x)

}

and hence, by the subharmonicity of ξ , (8.19) and the definition of K0, that

Dγ (x) <
α

m(x)
{α − 2K0} ξ

2(x)

m(x)
. (8.23)

Finally, since 0 < α < 2K0, Inequality (8.23) gives Dγ (x) < 0, which is the
desired result. ��

As an example, considerm(x) = 1/||x||p−2, which is the fundamental harmonic
function that is superharmonic on the entire space R

p (see du Plessis 1970). Then
g(x) = −(p − 2)/||x||2 and ϕ(X) is the James-Stein estimator whose unbiased
estimator of loss is δ0(X) = p − (p − 2)2/||X||2. For any x 	= 0, choosing the
function ξ(x) = 1/||x||p gives rise to Δξ(x) = 2p/||x||p+2 > 0, and hence, to

ξ2(x)

|Δξ(x)| = 1

2p

1

||x||p−2
,

which means that Condition (8.19) is satisfied with K = 1/2p. Also, we have

(
Δξ(x)

ξ(x)

)2

= 4p2

||x||4 ,

which implies that condition (8.18) is satisfied for p ≥ 5. Now it is clear that the
constant K0 is equal to 2p and that the correction term γ in (8.20) equals γ (x) =
−α/||x||2 for any x 	= 0. Finally, Theorem 8.1 guarantees that an improved loss
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estimator over the unbiased estimator of loss δ0(X) is δ(X) = δ0(X)+ α/||X||2 for
0 < α < 4p, which is Johnstone’s (1988) result for the James-Stein estimator.

Similarly Johnstone’s result for ϕ(X) = X can be constructed with m(x) =
1 (which is both subharmonic and superharmonic) and with the choice of the
superharmonic function ξ(x) = 1/||x||2, for which K0 = 2 (p − 4), so that
δ(x) = p − α/||x||2 dominates p for 0 < α < 4 (p − 4) and p ≥ 5.

A possible shortcoming with the improved estimator in (8.20) is that it may
be negative, which is undesirable since we are estimating a nonnegative quantity.
A simple remedy to this problem is to use a positive-part estimator. If we define
the positive-part δ+ = max{δ, 0}, the loss difference between δ+ and δ is
(δ − L(θ, ϕ))2 − (δ+ − L(θ, ϕ))2 = (δ2 − 2δL(θ, ϕ))1δ≤0. Hence it is always
nonnegative. Therefore, the risk difference is positive, which implies that δ+
dominates δ. It would be of interest to find an estimator that dominates δ+.

In the context of variance estimation, despite warnings on its inappropriate
behavior (Stein 1964 and Brown 1968), the decision theoretic approach to the
normal variance estimation is typically based on the standardized quadratic loss
function where overestimation of the variance is much more severely penalized
than underestimation, thus leading to presumably too small estimates. Similarly,
in loss estimation under quadratic loss, overestimation of the loss is also much more
severely penalized than underestimation. A possible alternative to quadratic loss
would be a Stein-type loss. Suppose ϕ(X) is an estimator of θ under ‖ θ − ϕ(X) ‖2

and let δ(X) be an estimator of ‖ θ − ϕ(X) ‖2 for δ(X) > 0. Then we can define
the Stein-type loss for evaluating δ(X) as

L(θ, ϕ(X), δ(X)) = ‖ θ − ϕ(X) ‖2

δ(X)
− log

‖ θ − ϕ(X) ‖2

δ(X)
− 1. (8.24)

The analysis of loss estimates under a Stein-type loss is more challenging, but can
be carried out using the integration by parts tools developed in this section.

We have shown that the unbiased estimator of loss can be dominated under
certain conditions. Often one may wish to add a frequentist-validity constraint
to a loss estimation problem. Specifically in our problem, the frequentist-validity
constraint for some estimator δ would be Eθ [δ(X)] ≥ Eθ [δ0(X)] for all θ . Kiefer
(1977) suggested that conditional and estimated confidence assessments should be
conservatively biased; the average reported loss should be greater than the average
actual loss. Under such a frequentist-validity condition, Lu and Berger (1989) give
improved loss estimators for several of the most important Stein-type estimators.
One of their estimators is a generalized Bayes estimator, suggesting that Bayesians
and frequentists can potentially agree on a conditional assessment of loss.
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8.2.2 Dominating the Posterior Risk

In the previous sections, we have seen that the unbiased estimator of loss can
often be dominated. When a (generalized) Bayes estimator of θ is available,
incorporating the same prior information for estimating the loss of this Bayesian
estimator is coherent, and we may expect that the corresponding Bayes estimator
is a good candidate to improve on the unbiased estimator of loss. However,
somewhat surprisingly, Fourdrinier and Strawderman (2003) found in the normal
setting that the unbiased estimator often dominates the corresponding generalized
Bayes estimator of loss for priors that give minimax estimators in the original
point estimation problem. In particular, they give a class of priors for which the
generalized Bayes estimator of θ is admissible and minimax, but for which the
unbiased estimator of loss dominates the generalized Bayes estimator of loss. They
also give a general inadmissibility result for a generalized Bayes estimator of loss.
While much of their focus is on pseudo-Bayes estimators, in this section, we
concentrate on their results on generalized Bayes estimators.

Suppose X is distributed as Np(θ, Ip) and the loss function is L(θ, ϕ(X)) =
‖ϕ(X) − θ‖2 where we are estimating θ with the estimator ϕ(X). For a given
generalized prior π , we denote the generalized marginal by m and the generalized
Bayes estimator of θ by

ϕm(X) = X + ∇m(X)
m(X)

. (8.25)

Then (see Theorem 8.1 or Stein 1981) the unbiased estimator of the risk of
ϕm(X) is

δ0(X) = p + 2
Δm(x)

m(X)
− ‖∇m(X)‖2

m2(X)
, (8.26)

while the posterior risk of ϕm(X) is (see (1.20) for σ 2 = 1)

δm(X) = p + Δm(X)

m(X)
− ‖∇m(X)‖2

m2(X)
. (8.27)

It is interesting to note that (8.26) and (8.27) differ only by the factor 2 in the
middle term.

Domination of δ0(X) over δm(X) may be obtained thanks to the fact
(Δm(X)/m(X))2 − 2Δ(2)m(X)/m(X) is an unbiased estimator of their risk
difference, where Δ(2)m = Δ(Δm) is the bi-Laplacian of m (see Fourdrinier
and Strawderman 2003). That is,

R(θ, ϕm, δ0)− R(θ, ϕm, δm) = Eθ

[(
Δm(X)

m(X)

)2

− 2
Δ(2)m(X)

m(X)

]
(8.28)
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Thus, the above domination of the posterior risk as an estimator of loss by the
unbiased estimator of loss will occur as soon as

(
Δm(X)

m(X)

)2

− 2
Δ(2)m(X)

m(X)
≤ 0 . (8.29)

Applicability of that last condition is underlined by the remarkable fact that if the
prior π satisfies (8.29), that is, if

(
Δπ(θ)

π(θ)

)2

− 2
Δ(2)π(θ)

π(θ)
≤ 0 , (8.30)

then (8.29) is satisfied for the marginal m.
As an example, Fourdrinier and Strawderman (2003) considered the prior π(θ) =

(‖θ‖2/2 + a)−b (where a ≥ 0 and b ≥ 0) and showed that, if p ≥ 2(b + 3),
then (8.30) holds and hence δu dominates δm. Since π is integrable if and only if
b >

p
2 (for a > 0), the prior π is improper whenever this condition for domination

of δu over δm holds. Of course, whenever π is proper, the Bayes estimator δm is
admissible provided its Bayes risk is finite.

Inadmissibility of the generalized Bayes loss estimator is not exceptional. Thus,
in Fourdrinier and Strawderman (2003), the following general inadmissibility result
is given; its proof is parallel to the proof of Theorem 8.1.

Theorem 8.2 Under the conditions of Theorem 8.1, δm is inadmissible and a class
of dominating estimators is given by

δm(X)+ α sgn (Δξ(X))
ξ(X)

m(X)
for 0 < α < 2 K0 .

Note that Theorem 8.2 gives conditions for improvement on δm while Theo-
rem 8.1 looks for improvements on δ0. As we saw, δ0 often dominates δm.

In Fourdrinier and Strawderman (2003), it is suggested that the inadmissibility
of the generalized Bayes (or pseudo-Bayes) estimator is due to the fact that the loss
function (δ(x) − ‖ϕ(x) − θ‖2)2 may be inappropriate. The possible deficiency of
this loss is illustrated by the following simple result concerning estimation of the
square of a location parameter in R.

Suppose X ∈ R ∼ f
(
(X − θ)2

)
such that Eθ [X4] < ∞. Consider estimation of

θ2 under the loss (δ − θ2)2. The generalized Bayes estimator δπ of θ2 with respect
to the uniform prior π(θ) ≡ 1 is given by

δπ (X) =
∫
θ2f

(
(X − θ)2

)
dθ∫

f
(
(X − θ)2

)
dθ

= X2 + E0 [X2] .
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Since this estimator has constant bias 2E0[X2], it is dominated by the unbiased
estimatorX2−E0[X2] (the risk difference is 4 (E0[X2])2). Hence δπ is inadmissible
for any f (·) such that Eθ [X4] < ∞.

8.2.3 Examples of Improved Estimators

In this subsection, we give some examples of Theorems 8.1 and 8.2. Although the
shrinkage factor in Theorems 8.1 and 8.2 are the same, in the examples below we
will only focus on improvements of posterior risk.

As an application of Theorem 8.2, let ξb(x) = (‖x‖2 + a
)−b

(with a ≥ 0 and
b ≥ 0). It can be shown that Δξb(x) < 0 for a ≥ 0 and 0 < 2 (b + 1) < p. Also
Δξb(x) > 0 if a = 0 and 2(b + 1) > p. Furthermore,

ξ2
b (x)

|Δξb(x)| = 1

2 b
∣∣∣p − 2(b + 1) ‖x‖2

‖x‖2+a
∣∣∣

1

(‖x‖2 + a)b−1 .

(I) Suppose that 0 < 2 (b + 1) < p and a ≥ 0. Then

ξ2
b (x)

|Δξb(x)| ≤ 1

2 b(p − 2(b + 1))

1

(‖x‖2 + a)b−1

and Eθ

[(
Δξb(X)
ξb(X)

)2
]
< ∞ since it is proportional to Eθ

[
1

(‖X‖2+a)2
]
, which is finite

for a > 0 or for a = 0 and p > 4.

Suppose that m(x) is greater than or equal to some multiple of
(

1
(‖x‖2+a)

)b−1
or

equivalently,

m(x) ≥ k

2 b(p − 2(b + 1))

(
1

‖x‖2 + a

)b−1

(8.31)

for some k > 0. Theorem 8.2 implies that δm(X) is inadmissible and is dominated
by

δm(X)− α

m(X)(‖X‖2 + a)b

for 0 < α < 4 b(p − 2(b + 1)) infx∈Rp (m(x)(‖x‖2 + a)b−1).

Alternatively, if m(x) ≥ k
(‖x‖2+a)c for 0 < c <

p−4
2 , δm is inadmissible and the

above gives an explicit improvement upon substituting c − 1 for b. Note that the
improved estimators shrink towards 0.
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Suppose, for example, that m(x) ≡ 1. Then (8.31) is satisfied for b ≥ 1. Here
ϕm(X) = X and δm(X) = p. Choosing b = 1, an improved class of estimators
is given by p − α

‖X‖2+a for 0 < α < 4 (p − 4). The case a = 0 is equivalent to
Johnstone’s result for this marginal.
(II) Suppose that 2 (b + 1) > p > 4 and a = 0. Then,

ξ2
b (x)

|Δξb(x)| = 1

2 b(2(b + 1)− p)

1

‖x‖2(b−1)
.

A development similar to the above implies that, when m(x) is greater than or
equal to some multiple of ‖x‖2(1−b), an improved estimator is

δm(X)+ α

m(X)‖X‖2b

for

0 < α < 4 b(2 (b + 1)− p) inf
x∈Rp

(
m(x)‖x‖2(b−1)

)
.

In this case, the correction term is positive and the estimators expands away
from 0. Note also that this result only works for a = 0 and hence, applies to
pseudo-marginals which are unbounded in a neighborhood of 0. Since all marginals
corresponding to a generalized prior π are bounded, this result can never apply to
generalized Bayes procedures, but only to pseudo-Bayes procedures.

Suppose, for example, that m(x) = ‖x‖2−p. Here ϕm(X) =
(

1 − p−2
‖X‖2

)
X is

the James-Stein estimator and δm(X) = p− (p−2)2

‖X‖2 . In particular, the above applies

for b − 1 = p−2
2 , that is, for b = p

2 >
p−2

2 . An improved estimator is given
by δm(X) + γ

‖X‖2 for 0 < γ < 4p. This again agrees with Johnstone’s result for
James-Stein estimators.

8.3 Quadratic Loss Estimation: Multivariate Normal with
Unknown Variance

In Sect. 8.2 it was assumed that the covariance matrix was known and equal to the
identity matrix Ip. Typically, this covariance is unknown and should be estimated.
In the case where it is of the form σ 2Ip with σ 2 unknown, Wan and Zou (2004)
showed that, for the invariant loss ||ϕ(X)−θ ||2/σ 2, Johnstone’s (1988) result can be
extended when estimating the loss of the James-Stein estimator. In fact, the general
framework considered in Sect. 8.2 can be extended to the case where σ 2 is unknown,
and we show that a condition parallel to Condition (8.17) can be found.
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Suppose X ∼ Np(θ, σ
2Ip) and S ∼ σ 2χ2

k is independent of X. Consider an
estimator of θ of the form ϕ(X, S) = X + S g(X, S) with Eθ,σ 2 [S2 ||g(X, S)||2] <
∞, where Eθ,σ 2 denotes the expectation with respect to the joint distribution of
(X, S). Then, by Theorem 2.5, an unbiased estimator of the loss

||ϕ(X, S)− θ ||2
σ 2 (8.32)

of

ϕ(X, S) = X + S g(X, S) (8.33)

is

δ0(X, S) = p + S

{
(k + 2) ||g(X, S)||2 + 2 divXg(X, S)+ 2 S

∂

∂S
||g(X, S)||2

}
.

(8.34)
The following theorem provides an extension of results in Sect. 8.2 to the

setting of an unknown variance. The necessary conditions to insure the finiteness
of the risks are parallel to the case where the variance σ 2 is known. It should
be noticed that the corresponding domination condition of δ(X, S) over δ0(X, S),
that is, for any X ∈ Rp and any S ∈ R+, (k + 2) ||g(x, s)||2 + 2 divxg(x, s) +
2 s ∂

∂s
||g(x, s)||2 ≤ 0, entails that the two conditions Eθ,σ 2 [(S divg(X, S))2] < ∞

and Eθ,σ 2

[(
S2 ∂

∂S
||g(X, S)||)2

]
imply the condition Eθ,σ 2 [S2 ||g(X, S)||4] < ∞.

Also the derivation of the finiteness of R(θ, σ 2, ϕ) follows as in the known variance
case.

Theorem 8.3 Let X ∼ Np(θ, σ
2Ip) where θ and σ 2 are unknown and p ≥ 5 and

let S be a nonnegative random variable independent of X and such that S ∼ σ 2χ2
k .

Let the estimator ϕ(X, S) of θ (under loss (8.32)) be given by (8.33).
For any twice weakly differentiable function γ (X) such that Eθ,σ 2 [γ 2(X)] < ∞,

the risk difference (under loss (δ − ||ϕ(X, S)− θ ||2/σ 2)2)

D(θ, σ 2, ϕ, δ) = R(θ, σ 2, ϕ, δ)− R(θ, σ 2, ϕ, δ0)

between the estimators δ(X, S) = δ0(X, S)− S γ (X) and δ0(X, S) is given by

Eθ,σ 2

[
S2
{
γ 2(X)+ 2

k + 2
Δγ (X)+ 4 g(X, S)T∇ γ (X)+ 4 γ (X) ||g(X, S)||2

}]
, (8.35)

so that a sufficient condition for D(θ, σ 2, ϕ, δ) to be nonpositive, and for δ(X, S)
to improve on δ0(X, S), is



8.3 Quadratic Loss Estimation: Multivariate Normal with Unknown Variance 251

γ 2(x)+ 2

k + 2
Δγ (x)+ 4 g(x, s)T ∇γ (x)+ 4 γ (x) ||g(x, s)||2 ≤ 0 (8.36)

for any x ∈ R
p and any s ∈ R+, with strict inequality on a set of positive measure.

Note that, in Theorem 8.3, the estimation loss is invariant squared error loss
||ϕ(X, S) − θ ||2/σ 2 while the loss for estimating loss is squared error (δ −
||ϕ(X, S)− θ ||2/σ 2)2.

Proof Consider the finiteness of the risk of the alternative loss estimator δ(X, S) =
δ0(X, S) − S γ (X). It is easily seen that its difference in loss d(θ, σ 2, X, S) with
δ0(X, S) can be written as

d(θ, σ 2, X, S)

=
(
δ0(X, S)− 1

σ 2 ||ϕ(X)−θ ||2 − S γ (X)

)2

−
(
δ0(X, S)− 1

σ 2 ||ϕ(X)−θ ||2
)2

= S2 γ 2(X)− 2 S γ (X) (δ0(X, S)− 1

σ 2 ||ϕ(X)− θ ||2) . (8.37)

Hence, since Eθ,σ 2 [||ϕ(X, S) − θ ||2/σ 2] < ∞ the condition Eθ,σ 2 [γ 2(X)] <
∞ ensures that the expectation of the loss in (8.37), that is, the risk difference
D(θ, σ 2, ϕ, δ) is finite. Then R(θ, σ 2, ϕ, δ) < ∞ since R(θ, σ 2, ϕ, δ0) < ∞.

We now express the risk difference as D(θ, σ 2, ϕ, δ) = Eθ,σ 2 [d(θ, σ 2, X, S)].
Using (8.34) and expanding ||ϕ(X, S)−θ ||2/σ 2 we get that d(θ, σ 2, X, S) in (8.37)
can be written as

d(θ, σ 2, X, S) = A(X, S)+ B(θ, σ 2, X, S)

where

A(X, S) = S2 γ 2(X) − 2p S γ (X)− 2 (k + 2) S2 γ (X) ||g(X, S)||2

− 4 S2 γ (X) divXg(X, S)− 4 S3 γ (X)
∂

∂S
||g(X, S)||2 (8.38)

and

B(θ, σ 2, X, S) = 2
S3

σ 2 γ (X) ||g(X, S)||2+2
S

σ 2 γ (X) ||X − θ ||2

+4
S2

σ 2 γ (X) (X − θ)Tg(X, S) . (8.39)

Through Lemma 2.3 (2) with h(x, s) = 2 s3

σ 2 γ (x) ||g(x, s)||2, the expectation of
the first term in the right hand side of (8.39) equals
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Eθ,σ 2

[
2
S3

σ 2
γ (X) ||g(X, S)||2

]
= Eθ,σ 2

[
2 (k + 4) S2 γ (X) ||g(X, S)||2

+ 4 S3 γ (X)
∂

∂S
||g(X, S)||2

]
. (8.40)

Also, a reiterated application of Lemma 2.3 (1) to the expectation of the second
term in the right hand side of (8.39) allows us to write

Eθ,σ 2

[
2
S

σ 2 γ (X) ||X − θ ||2
]

= Eθ,σ 2 [2 1

σ 2 (X − θ)T S γ (X) (X − θ)]

= Eθ,σ 2 [2 divX{S γ (X) (X − θ)}]
= Eθ,σ 2 [2p S γ (X)+ 2 S (X − θ)T∇γ (X)]
= Eθ,σ 2 [2p S γ (X)+ 2 σ 2 S Δγ (X)]

which gives

Eθ,σ 2

[
2
S

σ 2 γ (X) ||X − θ ||2
]

= Eθ,σ 2

[
2p S γ (X)+ 2

S2

k + 2
Δγ (X)

]
. (8.41)

This follows since S ∼ σ 2χ2
k entails that E[S2/(k + 2)] = σ 2E[S] and since

S is independent of X. As for the third term in the right hand side of (8.39), its
expectation can also be expressed using Lemma 2.3 (1) as

Eθ,σ 2

[
4
S2

σ 2 γ (X) (X − θ)Tg(X, S)

]
= Eθ,σ 2 [4 S2 divX{γ (X) g(X, S)}]

= Eθ,σ 2 [4 S2 γ (X) divX{g(X, S)} + 4 S2 g(X, S)T ∇γ (X)] , (8.42)

by the property of the divergence.
Finally, gathering (8.40), (8.41), and (8.42) yields an expression of (8.39), which

with (8.38) gives the integrand term of (8.35), the desired result. ��
As an example, consider the James-Stein estimator ϕJS(X, S) = X− p−2

k+2
S

||X||2X
discussed in Sect. 2.4. Here the shrinkage factor g(X, S) only depends on X and
equals g(X) = −p−2

k+2
X

||X||2 so that, through routine calculation, the unbiased

estimator of loss is δ0(X, S) = p − (p−2)2

k+2
S

||X||2 . For a correction of the form

γ (x) = −d/||x||2 with d ≥ 0, it is easy to check that the expression in (8.36)
equals

d2 + 4
p − 4

k + 2
d − 8

p − 2

k + 2
d − 4

(
p − 2

k + 2

)2

d = d

(
d − 4

k + 2

[
p + (p − 2)2

k + 2

])
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which is negative for 0 < d < 4
k+2

[
p + (p−2)2

k+2

]
and gives domination of p −

(p−2)2

k+2
S

||X||2 + d
||x||2 over p− (p−2)2

k+2
S

||X||2 . This condition recovers the result of Wan

and Zou (2004) who considered the case d = 2
k+2

[
p + (p−2)2

k+2

]
.

8.4 Extensions to the Spherical Case

8.4.1 Quadratic Loss Estimation: Spherically Symmetric
Distributions with Known Scale

In the previous sections the loss estimation problem was considered for the normal
distribution setting. In this section we consider loss estimation for the class of
spherically symmetric distributions. As developed in Corollary 4.1 in Chap. 4
we will use the representation of a random variable from a spherically symmetric

distribution, X = (X1, . . . , Xp)
T, as X

d= RU(p) + θ , where R = ||X − θ || is a
random radius,U(p) is a uniform random variable on the p-dimensional unit sphere,
where R and U(p) are independent.

In Sect. 8.4.2 we extend these results to the case where the distribution of X is
spherically symmetric and where a residual vector U is available (which allows an
estimation of the variance σ 2).

Assume X ∼ SSp(θ) and suppose we wish to estimate θ ∈ R
p by a decision

rule ϕ(X) using quadratic loss. Suppose that we also use the quadratic loss to assess
the accuracy of the loss estimate ϕ(X); then the risk of this loss estimate is given
by (8.2). Fourdrinier and Wells (1995b) considers the problem of estimating the
loss when ϕ(X) = X is the estimate of the location parameter θ . The estimate
ϕ is the least squares estimator and is minimax among the class of spherically
symmetric distributions with bounded second moment. Furthermore, if one assumes
the density of X exists and is unimodal, then ϕ is also the maximum likelihood
estimator.

The unbiased constant estimate of the loss ||X − θ ||2 is δ0 = Eθ [R2]. Note
that δ0 is independent of θ , since Eθ [||X − θ ||2] = E0[||X||2]. Fourdrinier
and Wells (1995b) showed that the unbiased estimator δ0 can be dominated by
δ0 − γ , where γ is a particular superharmonic function for the case where the
sampling distribution is a scale mixture of normals and in a more general spherical
case.

The development of the results depends on some interesting extensions of the
classical Stein identities in (8.11) and (8.15) to the general spherical setting as in
Sect. 5.2. Recall that the distribution ofX−θ conditional on R = ||X−θ || is UR,θ .
Suppose γ is a weakly differentiable vector valued function, then by applying the
divergence theorem for weakly differentiable functions.
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Eθ [(X − θ)Tγ (X) | ||X − θ || = R] =
∫
SR,θ

(x − θ)T γ (x)UR,θ (dx) (8.43)

= R

σR,θ (SR,θ )

∫
BR,θ

div γ (x) dx.

If γ is a real-valued function, then it follows from (8.43) and the product rule applied
to the vector valued function (x − θ)γ (x) that

Eθ [||X − θ ||2γ (X) | ||X − θ || = R]
=
∫
SR,θ

(x − θ)T (x − θ) γ (x)UR,θ (dx)

= R

σR,θ (SR,θ )

∫
BR,θ

[p γ (x)+ (x − θ)T ∇γ (x)] dx. (8.44)

Our first extension of Theorem 8.1 is to the class of spherically symmetric distri-
butions that are scale mixtures of normal distributions as discussed in Lemma 5.1.
Suppose

pθ(x|θ) =
∫ ∞

0
φ(x; θ, I/t)G (dt) (8.45)

so that G(·) is the mixing distribution on τ = σ−2.
In the scale mixture of normals setting the unbiased estimate, δ0, of risk equals

δ0 = E[R2] = Eθ [||X − θ ||2] = p

∫ ∞

0
t−1G(dt). (8.46)

It is easy to see that the risk of the unbiased estimator δ0 is finite if and only if
Eθ [||X − θ ||4] < ∞, which holds if

∫ ∞

0
t−2G(dt) < ∞. (8.47)

The main theorem in Fourdrinier and Wells (1995b) is the following domination
result of an improved estimator of loss over the unbiased loss estimator.

Theorem 8.4 Let the distribution of X be a scale mixture of normal random
variables as in (8.45) such that (8.47) is satisfied and

∫
R+
tp/2G(dt) < ∞ . (8.48)

Estimating θ through X and estimating the loss ‖X − θ‖2, consider the estimator
of loss δ0 in (8.46) (which is an unbiased estimate of risk of X). Let γ be a twice
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weakly differentiable on R
p shrinkage function γ such that Eθ [γ 2] < ∞ for every

θ ∈ R
p.

Then a sufficient condition for δ0 −γ to dominate δ0 under loss (δ−||X− θ ||2)2
is that γ satisfies the differential inequality k Δγ + γ 2 < 0 with

k = 2

∫
R+ t

p/2G(dt)∫
R+ t

p/2−2G(dt)
. (8.49)

As an example, let γ (x) = c/||x||2 where c is a positive constant. Note
that γ is only weakly differentiable (but not differentiable in the usual sense)
and that its Laplacian exists as a locally integrable function only when p > 4
(see Appendices A.1, A.2, A.3, and A.4). Then it may be shown that Δγ (x) =
−2c(p − 4)/||x||4. Hence, kΔ(x)+ γ 2(x) = −2kc(p − 4)/||x||4 + c2/||x||4 < 0
if −2kc(p − 4) + c2 < 0, that is, 0 < c < 2k(p − 4). It is easy to see that the
optimal value of c for which this inequality is the most negative equals k(p− 4), so
an interesting estimate in this class of γ ’s is δ = δ0 − k(p − 4)/||x||2(p > 4). This
is precisely the estimate proposed by Johnstone (1988) in the normal distribution
case Np(θ, Ip) where k = 2; recall, in that case, δ0 = p. In this example, we
have assumed that the dimension p is greater than four. In general, we can have
domination as long as the assumptions of the theorem are valid. Actually, Blanchard
and Fourdrinier (1999) show explicitly (see Sect. 8.7) that, when p ≤ 4, the only
solution γ in L2

loc(R
p) of the inequality kΔγ + γ 2 ≤ 0 is γ ≡ 0 (a.e., with

respect to the Lebesgue measure). Hence, in the normal case Np(θ, Ip/t), where
2t−2Δγ + γ 2 is an unbiased estimator of the risk difference (for dimensions four
or less) it is impossible to find an estimator δ = δ0 − γ whose unbiased estimate of
risk is always less that of δ0.

In the case of scale mixtures of normal distributions, the conjecture of the
admissibility of δ0 − γ for lower dimensions (although it is probably true) remains
open. Indeed, under the conditions of Theorem 8.4, k Δγ + γ 2 is no longer an
unbiased estimator of the risk difference and Eθ [k Δγ + γ 2] is only its upper
bound. The use of Blyth’s method would need to specify the distribution of X
(that is, the mixture distribution G). It is worth noting that dimension-cutoff also
arises through the finiteness of Eθ [γ 2] when using the classical shrinkage function
c/||x||2.

In order to prove Theorem 8.4 we need some additional technical results. The first
lemma gives some important properties of superharmonic functions and is found in
du Plessis (1970) and the second lemma links the integral of the gradient on a ball
with the integral of the Laplacian, see also Appendix A.8.

Lemma 8.3 If γ is a real-valued superharmonic function then

(1)
∫
SR,θ

γ (x)UR,θ (dx) ≤ ∫
BR,θ

γ (x)VR,θ (dx).
(2) Both of the integrals in (1) are decreasing in R.

Proof See Sections 1.3 and 2.5 in du Plessis (1970) and Appendix A.8. ��
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Lemma 8.4 Suppose γ is a twice weakly differentiable function. Then

∫
BR,θ

(x − θ)T∇γ (x)VR,θ (dx) = p Γ (p/2)

2πp/2
1

Rp

∫ R

0
r

∫
Br,θ

Δγ (x) dx dr.

Proof Since the density of the distribution of the radius under VR,θ is (p/Rp)rp−1,
we have

∫
BR,θ

(x − θ)T∇γ (x)VR,θ (dx) =
∫ R

0

∫
Sr,θ

(x − θ)T ∇γ (x)Ur,θ (dx)
p

Rp
rp−1 dr.

The result follows from applying (8.44) to the inner most integral of the
right hand side of this equality and by recalling the fact that σr,θ (Sr,θ ) =
(2πp/2/Γ (p/2)) rp−1. ��
Proof of Theorem 8.4 The risk difference between δ0 and δ0 −γ equals α(θ)+β(θ)
where

α(θ) = 2p
∫
R+

(
1

t
− δ0

p

)∫
R+

∫
SR,θ

γ (x)UR,θ (dx) ρt (dt)G (dt)

and

β(θ) =
∫
R+

∫
Rp

(2 t−2Δγ (x)+ γ 2(x))

(
t

2π

)p/2
exp

(
− t

2
||x − θ ||2

)
dx G(dt) .

We have from the definition of VR,θ and an application of Fubini’s theorem

∫
R+
R2

∫
BR,θ

γ (x)VR,θ (dx) ρ(dR)

= p
Γ (p/2)

2πp/2

∫
R+
R2−p

∫
BR,θ

γ (x) dx ρ(dR)

= p
Γ (p/2)

2πp/2

∫
Rp

γ (x)

∫ +∞

||x−θ ||
R2−p ρ(dR) dx . (8.50)

Now, for fixed t ≥ 0, in the normal case Np(θ, Ip/t) the distribution ρt of the radius
has the density ft of the form ft (R) = tp/2/

(
2p/2−1 Γ (p/2)

)
Rp−1 exp{−t R2/2}

and δ0 = p/t . Thus, expression (8.50) becomes

∫
R+
R2

∫
BR,θ

γ (x)VR,θ (dx) ρ(dR)

= p tp/2

(2π)p/2

∫
Rp

γ (x)

∫ +∞

||x−θ ||
R exp

{
− t R

2

2

}
dR dx
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= p tp/2−1

(2π)p/2

∫
Rp

γ (x) exp

{
− t

2
||x − θ ||2

}
dx

= p

t

∫
R+

∫
SR,θ

γ (x)UR,θ (dx) ρt (dR),

the last equality holding since ρt is the radial distribution. Using the mixture
representation with mixing distribution G, the expression of α(θ) is written as

α(θ) = 2p
∫
R+

(
1

t
− δ0

p

)∫
Rp

γ (x)

(
t

2π

)p/2
exp

(
− t

2
||x − θ ||2

)
dx G(dt)

= 2p Cov

(
(
1

t
− δ0

p
),E[γ (X) | τ ]

)

≤ 0

since E[γ (x) | τ ] is nondecreasing by Lemma 8.3. Note also, since δ0 = p
t

,
the expression for α(θ) is a covariance with respect to G and is nonpositive by
Lemma 8.3 and the covariance inequality.

We can now treat the integral of the expression β(θ) in the same manner. The
function x → (x − θ)T∇γ (x) and the function x → Δγ (x) taking successively the
role of the function γ , we obtain

∫
R+

R2

p

∫
BR,θ

(x − θ)T∇γ (x)VR,θ (dx) ρt (dR)

= 1

t

∫
R+

∫
SR,θ

(x − θ)T∇γ (x)UR,θ (dx) ρt (dR)

= 1

t

∫
R+

R2

p

∫
BR,θ

Δγ (x) dx ρt (dR)

= tp/2−2

(2π)p/2

∫
Rp

Δγ (x) exp

{
− t

2
||x − θ ||2

}
dx

applying (8.43) for the second equality and remembering that Δγ = div(∇γ ).
Therefore, by Fubini’s Theorem, β(θ) can be reexpressed as

β(θ) =
∫
Rp

(
2Δγ (x)

∫
R+ t

p/2−2 exp(−t ||x − θ ||2/2)G(dt)∫
R+ t

p/2 exp(−t ||x − θ ||2/2)G(dt) + γ 2(x)

)
(8.51)

×
∫
R+

(
t

2π

)p/2
exp

(
− t

2
||x − θ ||2

)
G(dt) dx.

Note that the ratio of the integrals in (8.51) is bounded below by
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∫
R+ t

p/2−2G(dt)∫
R+ t

p/2G(dt)
= k

2
,

for k in (8.49), since the family of distributions with densities proportional to
tp/2 exp(−αt)G(dt) has monotone decreasing liklihood in α(= ||x − θ ||2/2)
and since t−2 is decreasing. Now, by the superharmonicity condition on γ ,
assumption (8.49) gives

β(θ) ≤
∫
Rp

(k Δγ (x)+ γ 2(x))

∫
R+

(
t

2π

)p/2
exp

(
− t

2
||x − θ ||2

)
G(dt) dx

≤ 0 .

��
The improved loss estimator result in Theorem 8.4 for scale mixtures of normal

distributions was extended to the more general family of spherically symmetric
distributions in Fourdrinier and Wells (1995b). In this setting, the conditions for
improvement rest on the generating function g of the spherical density pθ . A
sufficient condition for domination of δ0 has the usual form k∇γ + γ 2 ≤ 0.

Theorem 8.5 (Fourdrinier and Wells 1995b) Assume the spherical distribution
of X with generating function g has a finite fourth moment. Estimating θ through
X and estimating the loss ‖X − θ‖2, consider the estimator of loss δ0 = E0[‖X‖2]
(which is an unbiased estimate of risk of X). Let γ be a twice weakly differentiable
on R

p such that Eθ [γ 2] < ∞ for every θ ∈ R
p.

If, for every s ≥ 0,

2 g(s)
∫ ∞

s

g(z) dz ≤ p δ0 (8.52)

and if there exists a constant k such that, for any s ≥ 0,

0 < k <

∫∞
s
z g(z) dz− s

∫∞
s
g(z) dz

2 g(s)
, (8.53)

then a sufficient condition for δ0 − γ to dominate δ0 under loss (δ − ||X − θ ||2)2 is
that γ satisfies the differential inequality: k Δγ + γ 2 < 0.

For p ≥ 5, we have shown that one can dominate the unbiased constant estimator
of loss (associated with the estimator of θ , ϕ0(X) = X) by a shrinkage-type
estimator. As in the normal case, one may wish to add the frequentist-validity
constraint, Eθ [δ(X)] ≥ Eθ [δ0(X)] for all θ , to the loss estimation problem. In fact,
in the normal case, the only frequentist valid estimator with D(θ, ϕ0, δ) ≤ 0 is δ0
itself. The proof of this result follows from a randomization of the origin technique
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as in Hsieh and Hwang (1993). It remains an open question whether this is true in
the general setting of a spherically symmetric distribution.

8.4.2 Quadratic Loss Estimation: Spherically Symmetric
Distribution with a Residual Vector

In this subsection, we extend the ideas of the previous sections to a spherically
symmetric distribution with a residual vector. We largely follow the development
of Fourdrinier and Wells (1995a) (see also Fourdrinier and Wells 2012). We
first develop an unbiased estimator of the loss and then construct a dominating
shrinkage-type estimator. An important feature of our results is that the proposed
loss estimates dominate the unbiased estimates for the entire class of spherically
symmetric distributions. That is, the domination results are robust with respect
to spherical symmetry, just as the improved estimators of the mean developed in
Chap. 6 are similarly robust.

Let (X,U) ∼ SS(θ, 0) where dimX = dim θ = p and dimU = dim 0 = k

(p + k = n). For convenience let (X,U) and (θ, 0) represent n× 1 vectors. In this
section we consider the usual quadratic loss in estimation of θ ,

||ϕ(X)− θ ||2 , (8.54)

and not the scaled version ||ϕ(X)− θ ||2/σ 2.
In the spherical case in Sect. 8.4.2 with know scale, the risk of X was constant

with respect to θ . Thus, this risk, E[R2], provides an unbiased estimator of the loss
subject to the knowledge of E[R2]. Its properties, as the properties of any improved
estimator, may depend on the specific underlying distribution. An important feature
of the results in this subsection is that there is an unbiased estimator δ0 of the loss
of X, which is available for every spherically symmetric distribution (with finite
fourth moment), δ0(x) = p||U ||2/k. Thus, we do not need to know the specific
distribution, and we get robustness with an estimator that is no longer constant.
Notice δ0 makes sense because p < n.

We will now consider the estimation of the loss of a class of shrinkage estimators
considered in Sect. 6.1 (see Cellier and Fourdrinier 1995). That is, for location
estimators of the form

ϕg = X − ||U ||2
k + 2

g(X), (8.55)

where g is a weakly differentiable function from R
p into R

p. Recall Theorem 6.1
shows that, if ||g||2 ≤ 2 divg/(k + 2), ϕg dominates X under quadratic loss for all
spherically symmetric distributions with a finite second moment. A member of the
class is ϕJS = X−||U ||2/(k+2) (p−2)X/||X||2, the James-Stein estimator used
when the variance is unknown as in Sect. 8.3.
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It follows from Theorem 6.1 and the above discussion that an unbiased estimator
of the loss (8.54) of the shrinkage estimator ϕg is given by

δ
g

0 = p

k
||U ||2 +

(
||g(X)||2 + 2 divg(X)

) ||U ||4
(k + 2)2

. (8.56)

As shown in Theorem 8.6 below, the unbiased estimator of the loss can be
improved by a shrinkage estimator of the loss of the form

δgγ = δ
g

0 − ||U ||4 γ (X) , (8.57)

where γ is a positive function provided p ≥ 5. Note that (8.57) is a true shrinkage
estimator, while Johnstone’s (1988) optimal loss estimate for the normal case is
an expanding estimator. This is not contradictory since we are using a different
estimator than Johnstone and he is only dealing with the normal case with known
σ 2.

Theorem 8.6 (Fourdrinier and Wells 1995a) Assume that p ≥ 5 and the
distribution of (X,U) has a finite fourth moment. Estimate θ through ϕg in (8.55)
and consider estimating the loss ‖ϕg − θ‖2. Let γ be a twice weakly differentiable
nonnegative function on R

p.
A sufficient condition under which the estimator δgγ given in (8.57) dominates the

unbiased estimator δg0 under loss (δ−||ϕg− θ ||2)2 is that γ satisfies the differential
inequality

γ 2 + 4

(k + 2)2
γ divg − 4

(k + 2)(k + 6)
div(γ g)+ 2

(k + 4)(k + 6)
Δγ ≤ 0 .

(8.58)

An immediate corollary for the estimator ϕ0(X) = X (g ≡ 0) follows.

Corollary 8.1 Let ϕ0(X) = X, δ0(X, ||U ||2) = p/k ||U ||2, and δ(X) =
δ0(X) − ||U ||4 γ (X). Assume that p ≥ 5, the distribution of (X,U) has a finite
fourth moment, and the function γ is twice weakly differentiable on R

p. A sufficient
condition under which the estimator δ(X) dominates the unbiased estimator δ0 is
that γ satisfies the differential inequality

γ 2 + 2

(k + 4)(k + 6)
Δγ ≤ 0 . (8.59)

Example 8.1 (Loss estimator for ϕ0(X) = X) The standard example is where
γ (t) = d/||t ||2 for all t 	= 0 with d > 0 satisfying the conditions of the theorem.
More precisely it is easy to deduce that Δγ (t) = −2d (p − 4)/‖|t ||4 and thus
Inequality (8.59) reduces to

d2 − 4 (p − 4)

(k + 4) (k + 6)
d ≤ 0 (8.60)
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so that the sufficient condition of Corollary 8.1 is written as 0 < d ≤ 4 (p−4)/(k+
4)(k + 6), which only occurs when p ≥ 5. Clearly the left-hand side of (8.60)
is minimized for d = 2 (p − 4)/{(k + 4) (k + 6)}, which provides the greatest
improvement over the unbiased estimator δ0.

Before proving the theorem, we need some preliminary integration identities
which generalize Lemma 6.1.

Lemma 8.5 For every twice weakly differentiable function g : Rp → R
p and for

every function h : R+ → R,

ER,θ

[
h(||U ||2)(X − θ)T g(X)

]
= ER,θ

[
H(||U ||2)
(||U ||2)k/2−1 div g(X)

]
(8.61)

where H is the indefinite integral, vanishing at 0, of the function t �→
1/2 h(t) tk/2−1, and provided the expectations exist.

Proof As in the proof of Lemma 6.1, we have

ER,θ

[
h(||U ||2)(X − θ)T g(X)

]

= C
p,k
R

∫
BR,θ

h(R2−‖x−θ‖2)(x−θ)T g(x)
(
R2−‖x−θ‖2

) k
2 −1

dx

= − C
p,k
R

∫
BR,θ

(∇H(R2 − ‖x − θ‖2))T g(x) dx

since

∇H(R2 − ‖x − θ‖2) = −2H ′(R2 − ‖x − θ‖2)(x − θ)

= −h(R2 − ‖x − θ‖2)
(
R2 − ‖x − θ‖2

)k/2−1
(x − θ) .

Then, by the divergence formula,

ER,θ

[
h(||U ||2)(X − θ)Tg(X)

]
= − C

p,k
R

∫
BR,θ

div
(
H(R2 − ‖x − θ‖2) g(x)

)
dx

+ C
p,k
R

∫
BR,θ

H(R2 − ‖x − θ‖2) divg(x) dx .

Now, if σR,θ denotes the area measure on the sphere SR,θ , the divergence theorem
ensures that the first integral equals

∫
SR,θ

(H(R2 − ‖x − θ‖2)g(x))T x − θ

‖x − θ‖ σR,θ (dx)
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and is null since, for x ∈ SR,θ , we have R2 − ‖x − θ‖2 = 0 and H(0) = 0. Hence,
in terms of expectation, we have

ER,θ

[
h(||U ||2) (X − θ)Tg(X)

]

= C
p,k
R

∫
BR,θ

H(R2 − ‖x − θ‖2)(
R2 − ‖x − θ‖2

)k/2−1
divg(x)

(
R2 − ‖x − θ‖2

)k/2−1
dx

= ER,θ

[
H(||U ||2)
(||U ||2)k/2−1 divg(X)

]
,

which is the desired result. ��
Corollary 8.2 For every twice weakly differentiable function γ : Rp → R+ and
for every integer q,

ER,θ

[
||U ||q ||X − θ ||2 γ (X)

]
= p

k + q
ER,θ

[
||U ||q+2 γ (X)

]

+ 1

(k + q)(k + q + 2)
ER,θ

[
||U ||q+4Δγ (X)

]
.

provided the expectation exists.

Proof Take h(t) = tq/2 and g(x) = γ (x) (x − θ) and apply Lemma 8.5 twice. ��
Proof of Theorem 8.6 Since the distribution of (X,U) is spherically symmetric
around θ , it suffices to obtain the result working conditionally on the radius. For
R > 0 fixed, we can compute this using the uniform distribution UR,θ on the sphere
SR,θ . Hence, the risk of δgγ equals

ER,θ

[
(δgγ − ||ϕ − θ ||2)2

]
= ER,θ

[
(δ
g

0 − ||ϕ − θ ||2)2
]
+ ER,θ

[
||U ||8 γ 2(X)

]

− 2ER,θ
[
||U ||4γ (X)(δg0 − ||ϕ − θ ||2)

]
.

Applying Lemma 8.5, it follows that

2ER,θ
[
||U ||6 (X − θ)Tγ (X) g(X)

]
= 2

k + 6
ER,θ

[
||U ||8 div (γ (X) g(X))

]
.

Hence expanding the risk and Corollary 8.2, it follows that the risk of δgγ equals

ER,θ

[
(δ
g

0 − ||ϕ − θ ||2)2
]
+ ER,θ

[
||U ||8γ 2(X)

]

− 8k

(k)(k + 4)
ER,θ

[
||U ||6γ (X)

]
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+ ER,θ

[
||U ||8

{
4

(k + 2)2
γ (X) div g(X)+ 4

(k + 4)(k + 6)
div (γ (X) g(X))

}]

+ 2

(k + 4)(k + 6)
ER,θ

[
||U ||8�γ (X)

]
.

Since the function γ is nonnegative, the third term on the right-hand side is negative;
also the ||U ||8 term is a factor in all the other expressions. Hence, the sufficient
condition for domination is

γ 2 + 4

(k + 2)2
γ div g + 4

(k + 4)(k + 6)
div (γ g)+ 2

(k + 4)(k + 6)
Δγ ≤ 0

in order that the inequality R(δg, θ, ϕ) ≤ R(δ
g

0 , θ, ϕ) holds. ��

8.5 Applications to Model Selection

Loss estimation results discussed in the previous sections can be applied to the
model selection problem. The loss estimation ideas in this chapter lay the theoretical
foundation for the construction of model selection rules as well as give a decision
theoretic analysis of their statistical properties. Fourdrinier and Wells (1994) and
Boisbunon et al. (2014) show that improved loss estimators give more accurate
model selection procedures. Bartlett et al. (2002) studied model selection strategies
based on penalized empirical loss minimization and pointed out the equivalence
between loss estimation and data-based complexity penalization. It is shown that
any good loss estimate may be converted into a data-based penalty function and the
performance of the estimate is governed by the quality of the loss estimate.

The principle of parsimony helps to avoid classical issues such as overfitting
or computational error. At the same time, the model should capture sufficient
information in order to comply with some objectives of good prediction, good
estimation, or good selection and thus, it should not be too sparse. This principle
has been elucidated by many statisticians as a trade-off between the goodness of fit
to the data and the complexity of the model (see, for instance, Hastie et al. 2008).
From the practitioner’s point of view, model selection is often implemented through
cross-validation (see Celisse and Arlot (2010) for a review on this topic) or the
minimization of criteria whose theoretical justification relies on hypotheses made
within a given framework.

In this section, we review the work in Boisbunon et al. (2014) and examine model
selection measures,Cp andAIC, from a loss estimation point of view. We will focus
on the linear regression model

Y = Xβ + σε (8.62)
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where Y is a random vector in R
n, X is a fixed and known full rank design matrix

containing p observed variables xj in R
n, β is the unknown vector in R

p of
regression coefficients to be estimated, σ is the noise level and ε is a random vector
in R

n representing the model noise with mean zero and covariance matrix σ 2In. One
subproblem of model selection is the problem of variable selection: only a subset
of the independent variables Xj have nonredundant information on Y and we wish
to recover this subset as well as correctly estimate the corresponding regression
coefficients.

Early work treated the model selection problem from the hypothesis testing point
of view. For instance, the Forward Selection and Backward Elimination procedures
were stopped using appropriate critical values. This practice changed with Mallows’
automated criterion known as Cp (Mallows 1973). Mallows’ idea was to propose
an unbiased estimator of the scaled expected prediction error Eβ [‖Xβ̂I −Xβ‖2/σ 2]
where β̂I is an estimator of β based on the selected variable set I ⊂ {1, . . . , p}, Eβ
denotes the expectation with respect to the sampling distribution in model (8.62) and
‖ · ‖ is the Euclidean norm on R

n. Assuming Gaussian i.i.d. error terms, Mallows
proposed the following criterion

Cp = ‖Y −Xβ̂I‖2

σ̂ 2 + 2d̂f − n (8.63)

where σ̂ 2 is an estimator of the variance σ 2 based on the full linear model fitted with
the least-squares estimator β̂LS , that is, σ̂ 2 = ‖Y −Xβ̂LS‖2/(n− p), and d̂f is an
estimator of the “degrees of freedom” (df ), also called the effective dimension of
the model (see Hastie and Tibshirani 1990). For the least squares estimator, df is
the number k of variables in the selected subset I .

Mallows’ Cp relies on the assumption that, if for some subset I of explanatory
variables the expected prediction error is low, then those variables are relevant
for predicting Y. In practice, the rule for selecting the “best” candidate is the
minimization of Cp. However, Mallows argues that this rule should not be applied
in all cases, and that it is better to look at the shape of the Cp-plot instead, especially
when some explanatory variables are highly correlated.

In 1974, Akaike proposed different automatic criteria that would not need
a subjective calibration of the significance level as in hypothesis testing based
approaches. His proposal was more general with applications to many problems
such as variable selection, factor analysis, analysis of variance, and order selection
in autoregressive models (Akaike 1974). Also his motivation was different from
Mallows. Akaike considered the problem of estimating the density f (·|β, σ ) of an
outcome variable Y where f is parameterized by β ∈ R

p and σ ∈ R+. Akaike’s
aim was to generalize the principle of maximum likelihood, enabling a selection
between several maximum likelihood estimators β̂I and σ̂ 2

I . Akaike showed that
all the information for discriminating the estimator f (·|β̂I , σ̂ 2

I ) from the true
f (·|β, σ ) could be summed up by the Kullback-Leibler divergence DKL(β̂I , β) =
E[log f (Ynew|β, σ )]−E[log f (Ynew|β̂I , σ̂ 2

I )] where the expectation is taken over new
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observations. By means of asymptotic analysis and by considering the expectation
of DKL, Akaike arrived at the following criterion

AIC = −2
n∑
i=1

log f (yi |β̂I , σ̂ 2
I )+ 2|I |, (8.64)

where |I | is the number of parameters of β̂I . In the special case of a Gaussian
distribution, AIC and Cp are equivalent up to a constant for model (8.62). Hence,
Akaike described his AIC as a generalization of Cp to a more general class of
models. Unlike Mallows, Akaike explicitly recommends the rule of minimization
of AIC in order to identify the best model from data.

In the context of the model in (8.62), AIC = −n log σ̂ 2
I − 2(|I | + 1) − n −

n log(2π), where σ̂ 2
I = ‖Y − Xβ̂I‖2/n Thus the best model is determined by

minimizing n log σ̂ 2
I + 2|I | across all candidate models. Hurvich and Tsai (1989)

showed that AIC leads to overfitting in small sample size and proposed a biased
corrected version of AIC that selects the model that minimizes log σ̂ 2

I + (n +
|I |)/(n− |I | − 2) across all candidate models.

Ye (1998) extended AIC to more complex settings by replacing |I | by the
estimated degrees of freedom introduced by Efron (2004). For the model in (8.62)
Ye’s [E]xtended AIC is

EAIC(β̂) = ‖Y −Xβ̂I‖2

σ̂ 2 + 2 divY (Xβ̂I ). (8.65)

where σ̂ 2 = ‖Y −Xβ̂LS‖2/(n− p).

8.5.1 Model Selection in the Loss Estimation Framework

As seen in the previous sections of this chapter, the idea underlying the estimation of
loss is closely related to Stein’s Unbiased Risk Estimate (SURE). When considering
the Gaussian model in (8.62), we have μ = Xβ, we set μ̂ = Xβ̂ and L(β̂, β)
is defined as the quadratic loss ‖Xβ̂ − Xβ‖2. Special focus will be given to the
quadratic loss since it is the most commonly used and allows tractable calculations.
In practice, it is a reasonable choice if we are interested in both good selection and
good prediction at the same time. Moreover, quadratic loss allows us to link loss
estimation with Cp and AIC.

In the following theorem, an unbiased estimator of the quadratic loss, under a
Gaussian regression model, is developed using a result of Stein (1981).

Theorem 8.7 Let Y ∼ Nn(Xβ, σ
2In) and β̂ = β̂(Y ) be a function of the least

squares estimator of β such that Xβ̂ is weakly differentiable with respect to Y . Let
σ̂ 2 = ‖Y −Xβ̂LS‖2/(n− p).
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Then,

δ0(Y ) = ‖Y −Xβ̂‖2 + (2 divY (Xβ̂)− n)σ̂ 2 (8.66)

is the unbiased estimator of ‖Xβ̂ −Xβ‖2.

Proof The risk of Xβ̂ at Xβ is

Eβ [‖Xβ̂ −Xβ‖2] = Eβ [‖Xβ̂ − Y‖2 + ‖Y −Xβ‖2] (8.67)

+Eβ [2(Y −Xβ)T(Xβ̂ − Y )] .

Since Y ∼ Nn(Xβ, σ
2In), we have Eβ [‖Y −Xβ‖2] = Eβ [(Y −Xβ)TY ] = n σ 2

it follows that

Eβ [‖Xβ̂ −Xβ‖2]=Eβ [‖Y −Xβ̂‖2] − n σ 2 + 2 tr(covβ(Xβ̂, Y −Xβ)).

Moreover, applying Stein’s identity for the right-most part of the expectation
in (8.67) with g(Y ) = Xβ̂ and assuming that Xβ̂ is weakly differentiable with
respect to Y , we can rewrite (8.67) as

Eβ [‖Xβ̂ −Xβ‖2] = Eβ [‖Y −Xβ̂‖2] − n σ 2 + 2 σ 2 Eβ

[
divYXβ̂

]
.

Because σ̂ 2 is an unbiased estimator of σ 2 and is independent of β̂LS and
therefore of β̂(Y ), the right-hand side of this last equality is also equal to the
expectation of δ0(Y ) given by Eq. (8.66). Hence the statistic δ0(Y ) is an unbiased
estimator of ‖Xβ̂ −Xβ‖2. ��

Efron (2004) introduced the concept of the generalized degrees of freedom of

an estimator of the mean as df = Eβ

[
divYXβ̂

]
. Consequently d̂f = divYXβ̂ is

an unbiased estimate of the degrees of freedom. Therefore, δ0(Y ) in Theorem 8.66
can also be expressed as ‖Y − Xβ̂‖2 + (2 d̂f − n)σ̂ 2. For example in the case of a
linear estimator of the mean μ̂ = SY it follows that df = σ 2Tr(S). Specifically, if
μ̂ = Xβ̂LS = X(XTX)−1XTY then df = pσ 2 and d̂f = pσ̂ 2.

For invariant loss ‖Xβ − Xβ̂‖2/σ 2 and S = ‖Y − Xβ̂LS‖2 the following result
is a natural adaptation of Theorem 3.1 from Fourdrinier and Wells (2012).

Theorem 8.8 Let Y ∼ Nn(Xβ, σ
2In) and n ≥ 5. Let β̂ = β̂(Y ) be an estimator of

β weakly differentiable with respect to Y and independent of ‖Y −Xβ̂LS‖2.
Then

δinv
0 (Y ) = n− p − 2

‖Y −Xβ̂LS‖2
‖Y −X β̂‖2 + 2 divY (X β̂)− n (8.68)

is an unbiased estimator of the invariant loss ‖Xβ̂ −Xβ‖2/σ 2.
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Note that, for more general estimators of the form β̂(Y, S), a correction term has
to be added to (8.68). Thus, if β̂(Y, S) = β̂LS(Y ) + g(β̂LS, S) for some function
g, this correction is 4(X β̂(Y, S)− Y )T X ∂g(β̂LS, S)/∂S. An analogous correction
to (8.66) is needed in Theorem 8.7 if β̂ is a function of S as well as of β̂LS . We omit
the details.

In terms of predicting a future value Y0 ∼ Nn(Xβ, σ
2In) it is easy to see with a

calculation analogous to Theorem 8.7 that

Eβ [‖Y0 −Xβ̂‖2] = Eβ [‖(Y0 − Y )+ (Y −Xβ̂)‖2]
= Eβ [‖(Y0 − Y )‖2 + ‖Y −Xβ̂‖2

+2 〈Y0 −Xβ, Y −Xβ̂〉 − 2 〈Y −Xβ, Y −Xβ̂〉]
= Eβ [‖Y −Xβ̂‖2 + d̂f ].

Hence ‖Y − Xβ̂‖2 + σ̂ 2d̂f is an unbiased estimator of the prediction error
[‖Y0 − Xβ̂‖2]. Recall the formulas for Cp,EAIC and δ0 in (8.63), (8.65),
and (8.66), respectively, of the three criteria of interest under the Gaussian model .
The links between different criteria for model selection are due to the fact that,

under our working hypothesis (linear model, quadratic loss, normal distribution
Y ∼ Nn(Xβ, σ

2In) for a fixed design matrix X), they can be seen as unbiased
estimators of related quantities of interest. It can be easily seen that the three criteria
differ from each other only up to a multiplicative and/or additive constant. Hence the
models selected by the three criteria will be the same. There is also an equivalence
with other model selection criteria, such as those investigated in Li (1985), Shao
(1997) and Efron (2004).

The final objective is to select the “best” model among those at hand. This can be
performed by minimizing either of the three proposed criteria, that is the unbiased
estimator of loss δ0, Cp, AIC or EAIC. The idea behind this heuristic is that the
best model in terms of prediction is the one minimizing the estimated loss.

Note that Cp and EAIC are developed first fixing σ 2 and then estimating it by
σ̂ 2, while, for δ0, the estimation of σ 2 is integrated into the construction process. It
is then natural to gather the evaluation of β and σ 2 estimating the invariant loss

‖Xβ −Xβ̂‖2

σ 2 ,

for which δinv
0 (β̂) in an unbiased estimator. Note that δinv

0 (β̂) involves the variance
estimator ‖Y − Xβ̂LS‖2/(n − p − 2) instead of ‖Y − Xβ̂LS‖2/(n − p). This
alternative variance estimator was also considered in the unknown variance setting
for the construction of the modified Cp, which is actually equivalent to δinv

0 (β̂), and
the corrected AIC (see Davies et al. 2006 and Hurvich and Tsai 1989).

However, in practice, we might only have a vague intuition of the nature of the
underlying distribution and we might not be able to give its specific form. Boisbunon
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et al. (2014) showed that δ0, which is equivalent to the Gaussian AIC as we have
just seen, can be also derived from a more general distribution context, that of
spherically symmetric distributions, with no need to specify the precise form of
the distribution. Consequently, δ0 can be considered as a generalization of Cp for
non-Gaussian distributions.

A number of new regularized regression methods have recently been developed,
starting with ridge regression in Hoerl and Kennard (1970), followed by the LASSO
in Tibshirani (1996), and the Elastic Net in Zou and Hastie (2005), and Efron et al.
(2004). Each of these estimates is weakly differentiable and has the form of a general
shrinkage estimate; thus the prediction error estimate in (8.68) may be applied to
construct a model selection procedure. Zou et al. (2007), Tibshirani and Taylor
(2012), and Narayanan and Wells (2015) used this idea to develop a model selection
method for the Lasso. In some situations verifying the weak differentiability of ϕ
may be complicated. See Boisbunon et al. (2014) for further discussion of these
issues.

8.6 Confidence Set Assessment

In the previous sections of this chapter, the usual quadratic loss L(θ, ϕ(x)) =
||ϕ(x)− θ ||2 was considered to evaluate various estimators ϕ(X) of θ . The squared
norm ||x − θ ||2 was crucial in the derivation of the properties of the loss estimators
in conjunction with its role in the normal density or, more generally, in a spherical
density. One could imagine other losses, but, to deal with tractable calculations,
it helps to keep the Euclidean norm as a component of the loss. Hence, a natural
extension is to consider losses that are functions of ||δ(x)− θ ||2, that is, of the form
c(||δ(x)− θ ||2) for a nonnegative function c defined on R+.

Brandwein and Strawderman (1980) (see Sects. 5.5 and 6.5) considered a
nondecreasing and concave function c of ‖δ(x) − θ‖2 in order to compare various
estimators δ(X) of θ . As in the case tackled by Johnstone (1988) and Fourdrinier
and Wells (1995b), it is still of interest to assess the loss of δ(X) = X, that is, to
estimate c

(‖x − θ‖2
)
.

Note that estimating c(||x−θ ||2) can be viewed as an evaluation of a quantity that
is not necessarily a loss. Indeed, it includes the problem of estimating the confidence
statement of the usual confidence set {θ ∈ R

p |‖x − θ‖2 ≤ cα} with the confidence
coefficient 1 − α: c(·) is the indicator function 11[0,cα] (the confidence interval
estimation example seen in Sect. 8.1 has illustrated the necessity of a confidence
evaluation depending on the data).

The problem of estimating a function c(·) of ||x − θ ||2 was addressed by
Fourdrinier and Lepelletier (2008) whose work we follow.

LetX be a random vector in R
p with a spherical density of the form x �→ f (‖x−

θ‖2) where θ is the unknown location parameter. For a given nonnegative function
c on R+, we are interested in estimating the quantity c(‖x − θ‖2) when x has been
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observed from X. In contrast to the previous sections, if only X is considered as
an estimator of θ , the function c(·) intervenes in the quantity to estimate. A simple
reference estimator is the unbiased estimator δ0 = E0[c(‖X‖2)]. Note that, in the
confidence statement estimation problem, δ0 = E0[ 11[0,cα]] = 1 − α while, in the
loss estimation problem of ||x − θ ||2 considered in the previous sections, δ0 =
E0[‖X‖2] (that is, p in the normal case).

Since δ0 is a constant estimator, it is natural to search for better estimators in
terms of the risk (8.2), that is, estimators δ such that

Rc(δ, θ) = Eθ

[
(δ(X)− c

(‖X − θ‖2)
)2
]

≤ Eθ

[
(δ0 − c

(‖X − θ‖2)
)2
]

= Rc(δ0, θ)

= Rc(δ0, 0) .

Improvement on δ0 will be considered when its own risk is finite, that is, under
the condition E0[c2(‖X‖2)] < ∞, which also guarantees the existence of δ0. We
assume Condition (8.9) to assure the finiteness of the risk of δ(X) = δ0(X)+γ (X).

Due to the presence of the function c(·), repeated use of Stein’s identity is not
appropriate to deal with the risk difference

Dc(θ, δ) = Rc(θ, δ)− Rc(θ, δ0)

= Eθ [2 {δ0 − c(‖X − θ‖2)} γ (X)+ γ 2(X)] (8.69)

between δ(X) and δ0. As an alternative, the approach in Fourdrinier and Lepelletier
(2008) consists of introducing the Laplacian of the correction function γ , sayΔ(γ ),
under the expectation sign in the right hand side of (8.69) and in developing an upper
bound of the risk difference in terms of the expectation of a differential expression
of the form k Δγ + γ 2 where k is a constant different from 0. The underlying idea
is based on two facts. We know that, in the normal setting, δ0 = 1 − α is admissible
for estimating a confidence statement (see Brown and Hwang 1990) and δ0 = p

is admissible for estimating the loss ||x − θ ||2 (see Johnstone 1988) when p ≤ 4.
For p ≥ 5, improved estimators are available, mainly through simulations in Robert
and Casella (1994) and formally thanks to the differential inequality 2Δ(γ )+γ 2 ≤
0 in Johnstone (1988). In Sect. 8.7 it will be shown that inequalities of the form
k Δ(γ ) + γ 2 ≤ 0 have no nontrivial solution γ when p ≤ 4. Therefore, it may
be reasonable to think that, in (8.69), such operators of the form k Δ(γ ) + γ 2, the
Laplacian of γ should play a role in obtaining improved estimators when p ≥ 5.

Here we develop the principle that leads to the role of Δ(γ ), assuming that
suitable regularity conditions on the various functions in use are satisfied to make
valid what it is stated; we will precise the appropriate conditions afterwards. First,
it can be checked that, if K is the function depending on f and c defined, for any
t > 0, by
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K(t) = 1

p − 2

∫ ∞

t

[(y
t

)p/2−1 − 1

]
(γ0 − c(y)) f (y) dy.

then, for almost every x ∈ R
p,

ΔK(‖x − θ‖2) = 2(γ0 − c(‖x − θ‖2)) f (‖x − θ‖2).

Hence, the first part of the expectation in (8.69) can be written as

Eθ [2 (γ0 − c(‖X − θ‖2)) γ (X)] =
∫
Rp

ΔK(‖x − θ‖2) γ (x) dx . (8.70)

Now, through an appropriate Green’s formula, the Laplacian in (8.70) can be moved
from the function K to the function γ , so that

∫
Rp

ΔK(‖x − θ‖2) γ (x) dx =
∫
Rp

K(‖x − θ‖2)Δγ (x) dx. (8.71)

Hence, (8.70) can be written as

Eθ [2 (γ0 − c(‖X − θ‖2)) γ (X)] = Eθ

[
K(‖X − θ‖2)

f (‖X − θ‖2)
Δγ (X)

]
. (8.72)

Therefore, it follows from (8.72) an expression of the risk difference in (8.69)
involving Δγ (X), that is,

Dc(θ,Δ) = Eθ

[
K(‖X − θ‖2)

f (‖X − θ‖2)
Δγ (X)+ γ 2(X)

]
. (8.73)

In Fourdrinier and Lepelletier (2008), under the condition that δ0 − c has only
one sign change, two cases are considered for a domination result to be obtained:
(1) when δ0 − c is first negative and then positive, the Laplacian of γ is assumed
subharmonic while, when δ0 − c is first positive and then negative; and (2) the
Laplacian of γ is assumed superharmonic. Then, relying on the fact that f is
bounded from above by a constant M , it can be proved that

Eθ

[
K(‖X − θ‖2)

f (‖X − θ‖2)
Δs(X)

]
≤ Eθ [k Δs(X)]

with

k = 1

M
E0[K(‖X‖2)] ,

so that a sufficient condition for δ to dominate δ0 is for γ to satisfy the partial
differential inequality
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k Δγ (x)+ γ 2(x) ≤ 0 , (8.74)

for any x ∈ R
p.

Before commenting on this result, we specify the regularity conditions (that we
will call Conditions (C ) in the following) on γ , f , and c under which the result
holds. In addition to the usual requirements that Eθ [γ 2] < ∞ and γ ∈ W

2,1
loc (R

p),
it is assumed that there exists r > 0 such that γ ∈ C2

b(R
p \Br) the space of

the functions twice continuously differentiable and bounded on R
p \Br . Also, it

is supposed that the functions f (·) and c(·) are continuous on R
∗+ = {x | x > 0},

except possibly on a finite set T , and that there exists ε > 0 such that f and f (·)c
belong to S0,p/2+1+ε (R∗+\T ), the space of continuous functions v on R

∗+\T such
that

sup
x∈R∗+\T ;β≤p/2+1+ε

‖x‖β |v(x)| < ∞ .

Typical solutions of (8.74) are functions of the form γ (x) = −sgn(k) d/||x||2 with
0 ≤ d ≤ |k| (p − 4). Intuitively, estimating a loss as ||x − θ ||2 (i.e. c(t) = t) is
different from estimating a confidence statement (i.e. c(t) = 11[0,cα](t)) : we would
like to deal with small losses and with large confidence statements. The two sign
change conditions do report on these two situations. Thus, for the first problem, the
function δ0−t = p−t is first positive and then negative; this is a case for which it can
be shown that k < 0 (see Fourdrinier and Lepelletier 2008), so that a dominating
loss estimator is δ(X) = δ0 − γ (X) = p + sgn(k) d/||x||2 = p − d/||x||2 for
0 ≤ d ≤ −k (p − 4). Now, for the second problem, the function δ0 − 11[0,cα](t) =
1 − α − 11[0,cα] is first negative and then positive and it is shown in Fourdrinier
and Lepelletier (2008) that k > 0, so that a dominating confidence set assessment
estimator is δ(X) = δ0 − γ (X) = 1 − α + sgn(k) d/||x||2 = 1 − α + d/||x||2 for
0 ≤ d ≤ k (p− 4). Note that the correction to δ0 is downward (upward) by d/||x||2
for the first (second) problem.

The use of the property that the generating function f is bounded byM gives rise
to a constant k, which may be small in absolute value and hence, may reduce the
scope of the possible corrections γ leading to improved estimators δ. In Fourdrinier
and Lepelletier (2008), an additional condition is given, relying on the monotonicity
of the ratio K/f , which avoids the use of M . Here is their result.

Theorem 8.9 Assume that Conditions (C ) are satisfied and that the function δ0 −
c(t) has only one sign change. In the case where δ0 − c(t) is first negative and
then positive (first positive and then negative), assume that the Laplacian of γ is
subharmonic (superharmonic). Finally assume that the functions K and K/f have
the same monotonicity (both nonincreasing or both nondecreasing).

Then a sufficient condition for δ to dominate δ0 is that γ satisfy the partial
differential inequality

∀x ∈ R
p κ Δγ (x)+ γ 2(x) ≤ 0 (8.75)
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with

κ = E0

[
K(‖X‖2)

f (‖X‖2)

]
.

Proof We consider the case where γ0 −c is first negative and then positive (the case
where the function Δγ is assumed to be subharmonic). The main point is to treat
the left hand side of (8.72); it equals

Eθ [K(‖X − θ‖2)Δγ (X)]
=
∫
Rp

K(‖x − θ‖2)Δγ (x) f (‖x − θ‖2) dx

=
∫ ∞

0

∫
Sr,θ

Δγ (x) dUr,θ (x)K(r
2)

2πp/2

Γ (p/2)
rp−1 f (r2) dr (8.76)

where Ur,θ is the uniform distribution on the sphere Sr,θ = {x ∈ R
p|‖x − θ‖ = r}

of radius r and centered at θ . Note that the function r �→ 2πp/2
Γ (p/2) r

p−1 f (r2) is the
radial density, that is, the density of the radius R = ‖X − θ‖. Now the right hand
side of (8.76) can be bounded above by

∫ ∞

0

∫
Sr,θ

Δγ (x) dUr,θ (x)
2πp/2

Γ (p/2)

rp−1 f (r2) dr ×
∫ ∞

0

K(r2)

f (r2)

2πp/2

Γ (p/2)
rp−1 f (r2) dr, (8.77)

by the covariance inequality, since K/f is nonincreasing and r �→ ∫
Sr,θ

Δγ (x)

dUr,θ (x) is nondecreasing by the subharmonicity of Δγ (see e.g. Doob 1984).
Therefore, we have obtained

Eθ

[
K(‖X − θ‖2)

f (‖X − θ‖2)
Δγ (X)

]
≤ E0

[
K(‖X‖2)

f (‖X‖2)

]
Eθ [Δγ (X)] = κ Eθ [Δγ (X)],

which, through (8.72), implies that the risk difference in (8.69) satisfies

Dc(θ, δ) ≤ Eθ [κ Δγ (X)+ γ 2(X)]

and, finally, proves the theorem. ��
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8.7 Differential Operators and Dimension Cut-Off When
Estimating a Loss

In the previous sections, we have seen that, in various distribution settings, unbiased
estimators of loss can be improved when the dimension p ≥ 5. In the normal case,
Johnstone (1988) formally proved that when p ≤ 4 the unbiased loss estimator
Δ0(X) ≡ p (based on the MLE) is admissible so that no (global) improvement over
it cannot be expected. That situation parallels the dimension cut-off phenomenon
discussed in Sect. 2.6, which occurs when estimating the mean θ : the MLE X is
admissible when p ≤ 2, but inadmissible when p ≥ 3.

In this section, we give a result parallel to Theorem 2.8 in Sect. 2.6 which shows
that when p ≤ 4 there is no nontrivial solution to the relevant partial differential
inequality

Rγ (x) = k Δγ (x)+ γ 2(x) ≤ 0 , (8.78)

for any constant k. We once again follow Blanchard and Fourdrinier (1999) who
proved the nonexistence of nontrivial solutions for a general differential inequality.
Their unified result covers both Theorems 2.8 and 8.10 below.

Theorem 8.10 Let k ∈ R be fixed. When p ≤ 4, the only twice weakly differentiable
solution γ with γ 2 ∈ L1

loc(R
p) of (8.78), is γ = 0 (a.e.) for any x ∈ R

p.

The proof is based on the same sequence of test functions (ϕn)n≥1 used in the
proof of Theorem 2.8 and defined in Eq. (2.43). Recall that, for any n ≥ 1, the
function ϕn has compact support B2n, the closed ball of radius 2n and centered at
0 in R

p. Also, since ϕ′′ is bounded, a property analogous to (2.44) for the second
derivative is that, for any β ≥ 2 and for any j = 1, . . . , p,

∣∣∣∣∣
∂2ϕ

β
n

∂x2
j

(x)

∣∣∣∣∣ ≤ K

n2 ϕ
β−2
n (x) . (8.79)

Note that, as all the derivatives of ϕ vanish out of the compact [1, 2] and ϕ is
bounded by 1, (8.79) can be refined to

∣∣∣∣∣
∂2ϕ

β
n

∂x2
j

(x)

∣∣∣∣∣ ≤ K

n2 11Cn(x) . (8.80)

where 11Cn is the indicator function of the annulus Cn = {x ∈ R
p | n ≤ ||x|| ≤

2n}.
Proof of Theorem 8.10 Let γ be a twice differentiable function with γ 2 ∈ L1

loc(R
p)

satisfying (8.78). Then, using the defining property of twice differentiable functions,
we have, for any n ≥ 1 and any β > 2,
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∫
Rp

γ 2(x) ϕβn (x) dx ≤ −k
∫
Rp

Δγ (x) ϕβn (x) dx

= −k
∫
Rp

γ (x)Δϕβn (x) dx

≤ k

∫
Rp

|γ (x)| |Δϕβn | dx. (8.81)

Then, using (8.79), it follows from (8.81) that there exists a constant C > 0 such
that

∫
Rp

γ 2(x) ϕβn (x) dx

≤ C

n2

∫
Rp

|γ (x)|ϕβ−2
n (x) dx

≤ C

n2

(∫
Rp

ϕβ−4
n (x) dx

)1/2 (∫
Rp

γ 2(x) ϕβn (x) dx

)1/2

, (8.82)

applying Schwarz’s inequality with β > 4 and using

γ (x) ϕβ−2
n (x) = ϕ

β/2−2
n (x) γ (x) ϕ

β/2
n (x)

since γ 2 ∈ L1
loc(R

p).
Clearly, (8.82) is equivalent to

∫
Rp

γ 2(x) ϕβn (x) dx ≤ C2

n4

∫
Rp

ϕβ−4
n (x) dx . (8.83)

Thus, since ϕn = 1 on Bn and ϕn ≥ 0,

∫
Bn

γ 2(x) dx =
∫
Bn

γ 2(x) ϕβn (x) dx ≤
∫
Rp

γ 2(x) ϕβn (x) dx . (8.84)

Then, since suppϕn = B2n and 0 ≤ ϕn ≤ 1, using (8.83) gives

∫
Bn

γ 2(x) dx ≤ C2

n4

∫
Rp

ϕβ−4
n (x) dx ≤ C2

n4

∫
B2n

dx = Anp−4 (8.85)

for some constant A > 0. Letting n go to infinity in (8.85) shows that, when p < 4,
γ = 0 almost everywhere, which proves the theorem in that case. It also implies
that γ is in L2(Rp) when p = 4.

Consider now the case p = 4. The result will follow by applying (8.80). Indeed,
it follows from (8.80) and the first inequality in (8.82) that, for some constantC > 0,
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∫
Bn

γ 2(x) dx ≤ C

n2

∫
Cn

|γ (x)| dx

≤ C

n2

(∫
Cn

dx

)1/2 (∫
Cn

γ 2(x) dx

)1/2

(8.86)

by Schwarz’s inequality. Now,

∫
Cn

dx ≤
∫
B2n

dx ∝ n4 (8.87)

since p = 4. Hence (8.86) and (8.87) imply that, for some constant A > 0,

∫
Bn

γ 2(x) dx ≤ A

(∫
Cn

γ 2(x) dx

)1/2

. (8.88)

As γ ∈ L2(Rp), we have

lim
n→∞

∫
Cn

γ 2(x) dx = 0

and hence (8.88) gives rise to

0 = lim
n→∞

∫
Bn

γ 2(x) dx =
∫
Rp

γ 2(x) dx ,

which implies that γ = 0 almost everywhere and gives the desired result for p = 4.
��

8.8 Discussion

There are several areas of the theory of loss estimation that we have not discussed.
Our primary focus has been on location parameters for the multivariate normal
and spherical distributions. Loss estimation for exponential families is addressed in
Lele (1992, 1993) and Rukhin (1988). Lele (1992, 1993) developed improved loss
estimators for point estimators in the general setup of Hudson’s (1978) subclass of
continuous exponential families. Hudson’s family essentially includes distributions
for which the Stein-like identities hold; explicit calculations and loss estimators
are given for the gamma distribution, as well as for improved scaled quadratic loss
estimators in the Poisson setting for the Clevenson and Zidek (1975) estimator.
Rukhin (1988) studied the posterior loss estimator for a Bayes estimate (under
quadratic loss) of the canonical parameter of a linear exponential family.
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As pointed out in the introduction, in the known variance normal setting,
Johnstone (1988) used a version of Blyth’s method to show that the constant loss
estimate p, for estimating the loss of the estimator X, is admissible if p ≤ 4. Lele
(1993) gave some additional sufficient conditions for admissibility in the general
exponential family and worked out the precise details for the Poisson model. Rukhin
(1988) considers loss functions for the simultaneous estimation of θ and L(θ, ϕ(X))
and deduced some interesting admissibility results.

Loss estimates have been used to derive nonparametric penalized empirical
loss estimates in the context of function estimation, which adapt to the unknown
smoothness of the function of interest. See Barron et al. (1999) and Donoho and
Johnstone (1995) for more details.

A number of researchers have investigated improved estimators of a covariance
matrix, Σ , under the Stein loss, LS(Σ̂,Σ) = tr(Σ̂Σ−1)− log |Σ̂Σ−1| − p, using
an unbiased estimation of risk technique. In the normal case, Dey and Srinivasan
(1985), Haff (1979), Stein (1977a,b), and Takemura (1984) proposed improved
estimators that dominate the sample covariance under LS(Σ̂,Σ). In Kubokawa
and Srivastava (1999), it is shown that the domination of these improved estimators
over the sample covariance matrix are robust with respect to the family of elliptical
distributions. To date, there has not been any work on improving the unbiased
estimate of LS(Σ̂,Σ).
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A.1 Weakly Differentiable Functions

ForΩ ⊂ R
p an open set and for q ∈ R such that 1 ≤ q ≤ ∞, the space of functions

f from Ω into R such that f q is locally integrable is defined by

L
q
loc(Ω) =

{
f : Ω → R |

∫
K

|f (x)|q dx < ∞ ∀K ⊂ Ω with K compact

}
.

A function f ∈ L1
loc(Ω) is said to be weakly differentiable if there exist p functions

g1, . . . gp in L1
loc(Ω) such that, for any i = 1, . . . , p,

∫
Ω

f (x)
∂ϕ

∂xi
(x) dx = −

∫
Ω

gi(x) ϕ(x) dx (A.1)

for any ϕ ∈ C ∞
c (Ω), where C ∞

c (Ω) is the space of infinitely differentiable
functions from Ω into R with compact support (test functions).

The space of the functions f in L1
loc(Ω) satisfying (A.1) is the Sobolev space

W
1,1
loc (Ω). The functions gi are the i-th weak partial derivatives of f and are denoted,

as are the usual derivatives, by gi = ∂if or gi = ∂f/∂xi . They are unique in the
sense that any function g̃i which satisfies (A.1) is equal almost everywhere to gi .1

The vector ∇f = (∂if, . . . , ∂pf ) = (∂f/∂x1, . . . , ∂f/∂xp) is referred to as the
weak gradient of f .

Note that, in (A.1), it is just required that the function f is locally integrable
but not necessarily in L1(Ω), as will be the case for many functions of interest

1This can be derived from the fact that, if h ∈ L1
loc(Ω) is such that

∫
Ω
h(x) ϕ(x) dx = 0 for any

ϕ ∈ C ∞
c (Ω), then h = 0 a.e on Ω (see e.g. Chapter II of Schwartz 1961 for a detailed proof).
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(see examples below). The subspace of W 1,1
loc (Ω) of the functions f in L1(Ω)

satisfying (A.1) is the Sobolev space W 1,1(Ω).
If f is continuously differentiable, then f is weakly differentiable, the usual

derivative and the weak derivative of f coinciding. Thus (A.1) appears to be the
usual integration by part formula, where the usual term in brackets vanishes since
the function ϕ has compact support. In that sense, this notion extends the usual
notion of differentiability, which remains a basis to determine the expressions of the
weak derivatives as illustrated by examples in Sect. A.2.

A function f = (f1, . . . , fp) from Ω into R
p is said to be weakly differentiable

if, for any i = 1, . . . , p, the coordinate function fi is weakly differentiable. Then
divf = ∑p

i=1 ∂ifi = ∑p

i=1 ∂fi/∂xi is referred to as the weak divergence.
A function f ∈ L1

loc(Ω) is said to be twice weakly differentiable if there exist
functions ∂f1 = ∂f/∂x1, . . . , ∂fp = ∂f/∂xp in L1

loc(Ω) such that, for any i =
1, . . . , p,

∫
Ω

f (x)
∂ϕ(x)

∂xi
dx = −

∫
Ω

∂f (x)

∂xi
ϕ(x) dx , (A.2)

and also if there exist functions ∂2
ij f = ∂2f/∂xi∂xj , for 1 ≤ i, j ≤ p, in L1

loc(Ω)

such that

∫
Ω

f (x)
∂2ϕ(x)

∂xj ∂xi
dx =

∫
Ω

∂2f (x)

∂xj ∂xi
ϕ(x) dx , (A.3)

for any ϕ ∈ C ∞
c (Ω). The space of the functions f in L1

loc(Ω) having second

weak partial derivatives in L1
loc(Ω) is the Sobolev space W

2,1
loc (Ω). Note that

the weak derivatives commute in the sense that, for 1 ≤ i, j ≤ p, we have
∂2f/∂xi∂xj = ∂2f/∂xj ∂xi . Also, if f has continuous second derivatives, then
f is twice weakly differentiable and the usual derivatives and the weak derivatives
of f coincide. Finally,Δf = ∑p

i=1 ∂
2f/∂x2

i is referred to as the weak Laplacian of
f and satisfies

∫
Ω

f (x) Δϕ(x) dx =
∫
Ω

Δf (x) ϕ(x) dx , (A.4)

for any ϕ ∈ C ∞
c (Ω).

There is a natural extension to higher order derivatives. Following the lines of
the definition of the second weak derivative, to a p-dimensional multi-index, that
is, a p-tuple α = (α1, . . . , αp) of nonnegative integers with length |α| = ∑p

i=1 αi ,
is associated the derivative ∂α = ∂

α1
1 . . . ∂

αp
p = ∂ |α|/∂xα1

1 . . . ∂x
αp
p of order |α|.

Extending (A.3), a function f ∈ L1
loc(Ω) has αth weak derivative ∂α ∈ L1

loc(Ω) if

∫
Ω

f (x) ∂αϕ(x) dx = (−1)|α|
∫
Ω

ϕ(x) ∂αf (x) dx , (A.5)
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assuming jointly that the weak derivatives of order less than or equal to |α| exist.
For k a nonnegative integer, this leads to the Sobolev space

W
k,1
loc (Ω) = L1

loc(Ω) ∩ {f/∂αf ∈ L1
loc(Ω), |α| ≤ k} .

It is interesting to interpret a weak derivative as a distributional derivative in
the sense of Schwartz (1961). For this, we need first the following notion of
convergence: a sequence (ϕn∈N) in C ∞

c (Ω) is said to converge to ϕ ∈ C ∞
c (Ω)

if

(i) there exists an open set Ω ′ ∈ R
p such that Ω ′ ⊂ Ω with suppϕn ⊂ Ω ′ for

every n ∈ N;
(ii) ∂αϕn → ∂αϕ as n → ∞ uniformly on Ω for every α = 0, . . . , n.

The convergence in (ii) is called the convergence in the sense of test functions
and is denoted by ϕn → ϕ in D(Ω). There exists a topology corresponding to that
convergence (see Grubb 2009; Hunter 2014). Endowed with that topology, the set
C ∞
c (Ω) is denoted by D(Ω). A distribution on Ω is a continuous linear functional
T from D(Ω) into R. For any ϕ, the value of T acting on ϕ is denoted by 〈T , ϕ〉.
Linearity of T naturally means

∀(ϕ, ψ) ∈ D(Ω)2 ∀(α, β) ∈ R
2 〈T , αϕ + βψ〉 = α〈T , ϕ〉 + β〈T ,ψ〉

and continuity of T is viewed as

∀ϕ ∈ D(Ω) ∀(ϕn)n∈N ∈ D(Ω)N 〈T , ϕn〉 → 〈T , ϕ〉 as ϕn → ϕ in D(Ω) .

The set of distributions on Ω is denoted by D ′(Ω).
A central example of distributions is the class of regular distributions defined as

follows. Let f ∈ L1
loc(Ω). It defines a distribution Tf through

∀ϕ ∈ D(Ω) 〈Tf , ϕ〉 =
∫
Ω

f (x) ϕ(x) dx . (A.6)

Note that this integral is well defined since integration is made on the compact
support of ϕ. Clearly, this functional is linear. Also, it is continuous since, if
ϕn → ϕ in D(Ω), for any open set Ω ′ such that Ω ′ ⊂ Ω ,

|〈Tf , ϕn〉 − 〈Tf , ϕ〉| ≤
∫
Ω ′

|f (x)| dx sup
x∈Ω ′

|ϕn(x)− ϕ(x)| → 0 ,

the convergence to 0 following from the convergence in D(Ω) of the test functions.
Note also that f ∈ L1

loc(Ω) and g ∈ L1
loc(Ω) define the same distribution Tf = Tg

if and only if f = g almost everywhere (see Schwartz 1961 for a detailed proof).
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This fact leads to identify the locally integrable function f and its associated regular
distribution Tf , so that we may write

∀ϕ ∈ D(Ω) 〈f, ϕ〉 = 〈Tf , ϕ〉 =
∫
Ω

f (x) ϕ(x) dx . (A.7)

Considering the regular distribution associated to a smooth function allows to
define, in a natural way, the derivative of a distribution. Let f be a continuously
differentiable function on R

p and let 1 ≤ i ≤ p be fixed. The ith partial derivative
∂if is locally integrable and we have, for any ϕ ∈ D(Rp),

〈∂if, ϕ〉 =
∫
Rp

∂if (x) ϕ(x) dx =
∫
Rp−1

∫ ∞

−∞
∂if (x) ϕ(x) dxi dx−i , (A.8)

by Fubini’s theorem where dx−i = dx1, . . . , dxi−1, dxi+1, . . . , dxp. Integrating by
parts the most inner integral in (A.8) gives

∫ ∞

−∞
∂if (x) ϕ(x) dxi = −

∫ ∞

−∞
f (x) ∂iϕ(x) dxi

since ϕ is zero outside a compact set. Hence the right hand-side of the second
equality in (A.8) is

−
∫
Rp−1

∫ ∞

−∞
f (x) ∂iϕ(x) dxi dx−i = −

∫
Rp

f (x) ∂i ϕ(x) dx = −〈f, ∂iϕ〉 .
(A.9)

Finally (A.8) and (A.9) give

〈∂if, ϕ〉 = −〈f, ∂iϕ〉 . (A.10)

Then we are led to define the ith derivative ∂iT of any distribution T , for any
ϕ ∈ D(Rp), by

〈∂iT , ϕ〉 = −〈T , ∂iϕ〉 . (A.11)

Equality (A.11) does define a distribution. Indeed, first, it is clearly a linear
functional of ϕ. Secondly, by definition of the convergence in D(Rp), if ϕn → ϕ in
D(Ω), then ∂iϕn → ∂iϕ in D(Ω). Now, as T is a distribution, 〈T , ∂iϕn〉 converges
to 〈T , ∂iϕ〉. Therefore, according to (A.11), 〈∂iT , ϕn〉 converges to 〈∂iT , ϕ〉, and
hence, ∂iT is a distribution.

Returning to the regular distribution defined in (A.6), according to (A.11), its
derivative satisfies

〈∂iT , ϕ〉 = −〈T , ∂iϕ〉 . (A.12)
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Now, if ∂iT is also a regular distribution associated to a certain function gi ∈
L1
loc(Ω), Equality (A.12) can be written as

∫
Ω

gi(x) ϕ(x) dx = −
∫
Ω

f (x) ∂iϕ(x) dx ,

which is exactly Equality (A.1) defining the weak differentiability of f . Therefore
as noticed by Hunter (2014), a locally integrable function is weakly differentiable if
its distributional derivative is regular and its weak derivative is the locally integrable
function corresponding to the distributional derivative.

Twice distributional derivatives can be defined following the above plan. For
i, j = 1, . . . , p, and for any ϕ ∈ D(Rp),

〈∂ij T , ϕ〉 = −〈∂jT , ∂iϕ〉 = +〈T , ∂ij ϕ〉

and

〈∂jiT , ϕ〉 = −〈∂iT , ∂jϕ〉 = +〈T , ∂jiϕ〉 .

As ϕ is twice continuously differentiable, we have ∂ijϕ = ∂jiϕ. It follows that
∂ij T = ∂jiT . Setting i = j and summing on j gives rise to the distributional
Laplacian so that

〈ΔT, ϕ〉 = 〈T ,Δϕ〉 . (A.13)

The above link between locally integrable functions and regular distributions
can clearly be extended to twice differentiability. A locally integrable function
is twice weakly differentiable if its first and second distributional derivatives are
regular and its weak first and second derivatives are the locally integrable functions
corresponding to the respective distributional derivatives. In particular, the weak
Laplacian corresponds to the distributional Laplacian. Thus, identifying a twice
weakly differentiable function f with its associated regular distribution Tf and
identifying Δf with ΔTf , Equality (A.13) is

〈ΔTf , ϕ〉 = 〈Tf ,Δϕ〉 , (A.14)

and can be viewed as

〈Δf, ϕ〉 = 〈f,Δϕ〉 , (A.15)

which corresponds to (A.4).
Finally, in the same way, extension to higher order derivatives is done as follows.

Let T ∈ D ′(Ω). For any p-dimensional multi-index α = (α1, . . . , αp) with length
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|α| = ∑p

i=1 αi , the derivative of order |α| is ∂αT ∈ D ′(Ω) defined, for any ϕ ∈
D(Rp), by

〈∂αT , ϕ〉 = (−1)|α|〈T , ∂αϕ〉 .

A.2 Examples of Weakly Differentiable Functions

For each function h in the following examples, weak differentiability is determined
by the local integrability of h and its classical derivatives and its absolute continuity
along almost all lines parallel to the axes (see Proposition 2.1).

Example A.1 (Weak differentiability of James-Stein type shrinkage factors) For q ∈
R, define, for x ∈ R

p\{0},

h(x) = x

‖x‖q . (A.16)

As each coordinate function hj of h is continuously differentiable for all x 	= 0, the
absolute continuity holds for every line not containing 0. Hence it suffices to check
local integrability of h and its derivatives.

The function h is weakly differentiable if and only if q < p. This condition
reflects the local integrability of the partial weak derivative of any of the components
xj /‖x‖q :

∂

∂xi

(
xj

‖x‖q
)

=

⎧⎪⎪⎨
⎪⎪⎩

1

‖x‖q + xi
∂

∂xi

(
1

‖x‖q
)

if i = j

xj
∂

∂xi

(
1

‖x‖q
)

if i 	= j

=

⎧⎪⎨
⎪⎩

1

‖x‖q − q x2
i

‖x‖q+2 if i = j

− q xj xi

‖x‖q+2 if i 	= j

.

(A.17)

Using Eq. (1.11), the local integrability of ∂/∂xi(xj /‖x‖q) reduces to

∫
BR

1

‖x‖q dx < ∞ ⇔
∫ R

0
rp−1−q dr < ∞ ⇔ p − 1 − q > −1 ,

for any ball BR of radius R centered at 0, which is the announced condition. Note
that, through similar arguments, the local integrability of the function h itself is
q < p + 1 and hence is implied by the local integrability of its derivatives.
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As a special case, when q = 2, the function h corresponds (up to a multiplicative
constant) to the shrinkage factor of the James-Stein estimator which is, according to
the above, weakly differentiable for p ≥ 3. Also, for any x 	= 0, its weak divergence
equals

div

(
x

‖x‖2

)
=

p∑
i=1

∂

∂xi

(
xi

‖x‖2

)

=
p∑
i=1

(
‖x‖2 − 2 x2

i

‖x‖4

)
(A.18)

= p − 2

‖x‖2 .

As another example, it can be seen, following the above development, that the
function x �→ 1/||x||q is weakly differentiable if and only if q + 1 < p.

Example A.2 (Weak differentiability of spherically symmetric estimators) Define,
for x ∈ Rp,

h(x) = g(‖x‖2) x

where g is a function from R+ into R such that g(t) is absolutely continuous for
t > 0. For any j = 1, . . . , p, each coordinate function hj is absolutely continuous
on all lines not containing the origin. Then it suffices to check local integrability of
this function and its partial derivatives. We have

∂

∂xi
hj (x) =

{
g(‖x‖2)+ 2 g′(‖x‖2) x2

i if i = j

2 g′(‖x‖2) xi xj if i 	= j
. (A.19)

Using Eq. (1.11), a sufficient condition for local integrability of ∂/∂xihj (x) is

∫ R

0
g(r2) rp−1 dr < ∞ and

∫ R

0
g′(r2) rp+1 dr < ∞ .

Similarly, a sufficent condition for local integrability of hj (x) is

∫ R

0
g(r2) rp dr < ∞ ,

which is guaranteed by the first of the above two conditions. For example, if
g(‖x‖2) = r(‖x‖2)/‖x‖q where r and r ′ are bounded, weak differentiability of
h holds if q < p, which is the same condition as that for (A.16).
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Example A.3 (Twice weakly differentiable functions) It can be seen, following
Example A.1, that the function x �→ 1/||x||q is in W 2,1

loc (R
p) for p > q + 2,

which is the integrability condition of the second derivatives. Thus, for q = 2,
the function x �→ 1/||x||2 is in W 2,1

loc (R
p) for p ≥ 5; under that condition, its

weak Laplacian equals Δ(1/||x||2) = −2(p − 4)/||x||4, which shows that this
function is superharmonic. Also, taking q = p − 2 gives rise to the fundamental
harmonic function x �→ 1/||x||p−2 for p ≥ 3. Note that, although it is an infinitely
differentiable function in R

p\{0} (and, in fact, it is an analytic function), it is not a
twice weakly differentiable function on the entire space R

p (it does not belong to
W

2,1
loc (R

p)) since the above integrability condition is violated (with q + 2 = p).

Remark A.1 (Non-almost differentiability of the James-Stein shrinkage factor)
In Sect. 2.3, we mentioned that h : x �→ x/‖x‖2 is weakly differentiable for

p ≥ 3 but is not almost differentiable in the sense of Stein for any p. Indeed we
will show that, for any x 	= 0 in R

p and z = −a x with a > 1, each coordinate
hj (x) = xj /‖x‖2 does not satisfy (2.5). First, we have

hj (x − a x)− hj (x) = a

1 − a

xj

‖x‖2 . (A.20)

Secondly, it can be checked that

∫ 1

0
(−a x)T ∇hj

(
x + t (−a x)) dt = −a xT ∇hj (x)

∫ 1

0

1

(1 − a t)2
dt (A.21)

using (A.17) with q = 2. However, as a > 1, the last integral in (A.21) does not exist
because of the singularity at t = 1/a. Hence (A.20) is not equal to (A.21) for a > 1.
However, note that (A.20) is equal to (A.21) whenever a < 1 and, therefore, the only
possible candidate for ∇hj (x) is given in (A.17). Thus h is weakly differentiable but
not almost differentiable.

A.3 Vanishing of the Bracketed Term in Stein’s Identity

Proposition A.1 For fixed θ ∈ R and σ 2 > 0, let X be a random variable with
normal distribution N(θ, σ 2). Denoting by Eθ the expectation with respect to that
distribution, if g is an absolutely continuous function such that Eθ [|g′(X)|] < ∞
then limx→±∞ g(x) exp{−(x − θ)2/2σ 2} = 0.

Proof Through the change of variable t = (x − θ)/σ one can see that it suffices to
prove the result for θ = 0 and σ 2 = 1. Denoting by φ the standard normal density,
that is, φ(x) = (1/

√
2π) exp(−x2/2)we will use the fact that its derivative satisfies

φ′(x) = −x φ(x) and hence φ(x) = ∫∞
x
y φ(y) dy.
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As, by assumption, the expectation of g′ exists, we have

∫ ∞

0
g′(x) φ(x) dx =

∫ ∞

0
g′(x) dx

∫ ∞

x

y φ(y) dy dx

=
∫ ∞

0

∫ y

0
g′(x) dx y φ(y) dy

=
∫ ∞

0
[g(y)− g(0)] y φ(y) dy , (A.22)

by the Fubini theorem for the second equality and expressing the absolute continuity
of g in the third equality. Now, integrating by parts, we have

∫ ∞

0
g′(x) φ(x) dx = [g(x) φ(x)]∞0 −

∫ ∞

0
g(x) φ′(x) dx

= lim
x→∞ g(x) φ(x)− g(0) φ(0)+

∫ ∞

0
g(x) x φ(x) dx. (A.23)

Equating (A.22) and (A.23) gives

−g(0)
∫ ∞

0
y φ(y) dy = lim

x→∞ g(x) φ(x)− g(0) φ(0)

and hence

lim
x→∞ g(x) φ(x) = g(0)

{∫ ∞

0
−y φ(y) dy + φ(0)

}
= g(0)

{∫ ∞

0
φ′(y) dy + φ(0)

}
= 0

since
∫ ∞

0
φ′(y) dy = [φ(y)]∞0 = −φ(0) .

Finally, the fact that we also have limx→−∞ g(x) φ(x) = 0 can be obtained in a
similar way using the rewriting φ(x) = ∫ x

−∞ −y φ(y) dy. ��

A.4 Examples of Settings Where Stein’s Identity
Does Not Hold

Example A.4 (James-Stein shrinkage factor when p = 1, 2) In Example A.1,
we showed that the James-Stein shrinkage factor h : x �→ x/‖x‖2 is weakly
differentiable if and only if p ≥ 3 and that, in that case, its weak divergence equals
div h(x) = (p − 2)/‖x‖2. In all dimensions, this is also the classical divergence
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when x 	= 0 but Stein’s identity fails to hold when p ≤ 2. Indeed, when p = 2, the
classical divergence is identically equal to 0 almost everywhere so that its expected
value is identically equal to 0. On the other hand, when θ = 0, the function
x �→ (x − θ)Th(x) is identically equal to 1 so that its expected value equals 1,
and hence Stein’s identity fails to hold for the classical divergence when θ = 0.
Note that, when θ 	= 0, both expected values fail to exist. If p = 1, the classical
divergence is div h(x) = −1/x2 and (x− θ)Th(x) = 1− θ/x. Both expected values
fail to exist when θ 	= 0 while only the second expected value exists when θ = 0.
Therefore Stein’s identity fails to hold when p = 1.

Note that, when p = 1, the function h is not absolutely continuous while, when
p = 2, its coordinate functions are absolutely continuous on every line parallel to
the axes except for the axes themselves.

Example A.5 (The sign function) The sign function defined, for x = (x1, . . . , xp) ∈
R
p such that xi 	= 0 for all i = 1, . . . , p, by sgn(x) = (sgn(x1), . . . , sgn(xp)) =

(x1/|x1|, . . . , xn/|xp|) is not weakly differentiable (note that it is not necessary to
define sgn everywhere). Indeed, noticing that it suffices to consider the case where
p = 1, for ϕ ∈ C ∞

c (R), we have

∫
R

sgn(x) ϕ′(x) dx =
∫ 0

−∞
−ϕ′(x) dx +

∫ ∞

0
ϕ′(x) dx = −2ϕ(0) ,

since ϕ has compact support in R. On the other hand, since sgn(x) is constant and
equal to −1 for x < 0 and equal to +1 for x > 0, the natural candidate for a weak
derivative is the function identically equal to 0, for which we have

−
∫
R

sgn′(x) ϕ(x) dx = 0 .

Hence these two last integrals cannot be equal for any choice of ϕ such that
ϕ(0) 	= 0.

This non-weak differentiability is reflected in the fact that, whenX ∼ N (θ, Ip),
no unbiased estimator of Eθ [(X − θ)Tsgn(X)] exists. First, it is easy to see that it
suffices to consider p = 1 and it is straightforward to calculate the corresponding
expectation Aθ = Eθ [(X − θ) sgn(X)] since we have

Aθ = 1√
2π

∫ ∞

−∞
sgn(x)

d

dx

[
−exp

(
− (x − θ)2

2

)]
dx

= 1√
2π

{
−
[
−exp

(
− (x − θ)2

2

)]0

−∞
+
[
−exp

(
− (x − θ)2

2

)]∞

0

}

= 1√
2π

{
exp

(
−θ

2

2

)
+ exp

(
−θ

2

2

)}

=
√

2

π

{
exp

(
−θ

2

2

)}
.
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Now assume that there exists a function ψ such that

Eθ [ψ(X)] =
√

2

π

{
exp

(
−θ

2

2

)}
. (A.24)

Then, deriving with respect to θ , it follows that

d

dθ
Eθ [ψ(X)] = −

√
2

π
θ exp

(
−θ

2

2

)
= −θ Eθ [ψ(X)]

and hence, since we deal with an exponential family, deriving under the integral sign
gives

∫ ∞

−∞
ψ(x)

∂

∂x

{
1√
2π

exp

(
− (x − θ)2

2

)}
dx=−

∫ ∞

−∞
ψ(x)(x − θ)

1√
2π

exp

(
− (x − θ)2

2

)
dx,

that is, according to (A.24),

−θ Eθ [ψ(X)] = −Eθ [Xψ(X)] − θ Eθ [ψ(X)] ,

which gives rise to

Eθ [Xψ(X)] = 0 . (A.25)

Therefore, as (A.25) is satisfied for all θ , by completeness of the normal family,
we have x ψ(x) = 0 almost everywhere and, consequently, ψ(x) = 0 almost
everywhere. This contradicts (A.24) proving that ψ cannot be an unbiased estimator
of Eθ [(X − θ) sgn(X)].

A.5 Stein’s Lemma and Stokes’ Theorem for Smooth
Boundaries

In this section, we prove an extension of Stein’s lemma (Theorem 2.1) for densities
proportional to exp(−ϕ(x)) where ϕ is a continuously differentiable function.
Additionally, we give an extension of Theorem 2.7 when the sets of integration Br
with boundary Sr are replaced by [ϕ ≤ r] = {x ∈ R

p : ϕ(x) ≤ r} with boundary
[ϕ = r] = {x ∈ R

p : ϕ(x) = r}. We follow the development in Fourdrinier and
Strawderman (2016). Here is an extension of Stein’s lemma.

Lemma A.1 Let ϕ be a continuously differentiable function from R
p into R+

such that φ : x �→ K exp
( − ϕ(x)

)
is a density, where K is a normalizing

constant, and such that, for any i = 1, . . . , p, lim|xi |→∞ ϕ(x1, . . . , xp) = ∞. If
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g = (g1, . . . , gp) is a weakly differentiable function from R
p into R

p then, denoting
by E the expectation with respect to φ, we have

E[∇ϕ(X)Tg(X)] = E[divg(X)] , (A.26)

provided that either expectation exists.

Proof Let x = (x1, . . . , xp) ∈ R
p. For fixed i = 1, . . . , p, set x−i =

(x1, . . . , xi−1, xi+1, . . . , xp) and, with a slight abuse of notation, set x = (xi, x−i ).
Note that

∂φ(x)

∂xi
= −∂ϕ(x)

∂xi
φ(x)

so that φ(x) can be written as

φ(x) =
∫ xi

−∞
−∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) dx̃i =

∫ ∞

xi

∂ϕ(x̃i , x−i )
∂x̃i

φ(x̃i , x−i ) dxi ,

noticing that, by assumption, lim|xi |→∞ ϕ(x1, . . . , xp) = ∞ implies

lim|xi |→∞φ(xi, x−i ) = lim|xi |→∞ exp
(− ϕ(xi, x−i )

) = 0 . (A.27)

Thanks to the existence of the expectations in (A.26), we can write, for almost
every x−i ,

∫ ∞

−∞
∂gi(xi, x−i )

∂xi
φ(xi, x−i ) dxi

=
∫ 0

−∞
∂gi(xi, x−i )

∂xi

∫ xi

−∞
−∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) dx̃i dxi

+
∫ ∞

0

∂gi(xi, x−i )
∂xi

∫ ∞

xi

∂ϕ(x̃i , x−i )
∂x̃i

φ(x̃i , x−i ) dx̃i dxi

=
∫ 0

−∞
−∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i )

∫ 0

x̃i

∂gi(xi, x−i )
∂xi

dxi dx̃i

+
∫ ∞

0

∂ϕ(x̃i , x−i )
∂x̃i

φ(x̃i , x−i )
∫ x̃i

0

∂gi(xi, x−i )
∂xi

dxi dx̃i

=
∫ ∞

−∞
∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) [gi(x̃i , x−i )− gi(0, x−i )] dx̃i

=
∫ ∞

−∞
∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) gi(x̃i , x−i ) dx̃i ,
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since, using again (A.27),

−
∫ ∞

−∞
∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) dx̃i =

∫ ∞

−∞
∂φ(x̃i , x−i )

∂x̃i
dx̃i = 0 .

Then integrating with respect to x−i gives

E

[
∂gi(X)

∂xi

]
=
∫
Rp

∂gi(xi, x−i )
∂xi

φ(xi, x−i ) dxi dx−i

=
∫
Rp

∂ϕ(xi, x−i )
∂xi

φ(xi, x−i ) gi(xi, x−i ) dxi dx−i

= E

[
∂ϕ(X)

∂xi
gi(X)

]
,

and hence, summing on i gives the desired result. ��
Corollary A.1 Let ϕ and g be as in Lemma A.1. For τ > 0, let φτ : x �→
Kτ exp(−ϕ(x)/τ) be a density, where Kτ is a normalizing constant, and let Eτ
be the expectation with respect to φτ . Then

Eτ [∇ϕ(X)Tg(X)] = τ Eτ [divg(X)] , (A.28)

provided that either expectation exists.

Proof Then the result is immediate from Lemma A.1 since

∇
(
ϕ(x)

τ

)
= 1

τ
∇ϕ(x) .

��
In preparation for an extension of Theorem 2.7 the following integration by

slice theorem used in Fourdrinier et al. (2003) is relevant and serves as a general
replacement for spherical coordinates. This result can be derived from the co-area
theorem stated by Federer (1969) (i.e. Theorem 3.2.12).

Lemma A.2 (Fourdrinier et al. 2003) For any real number r , let [ϕ = r] be
the manifold in R

p associated with a given continuously differentiable function ϕ
defined on R

p with nonnegative values whose gradient does not vanish at any point.
Then, for any Lebesgue integrable function f , we have

∫
Rp

f (x)dx =
∫
{r∈R|[ϕ=r]	=∅}

∫
[ϕ=r]

f (x)

‖∇ϕ(x)‖dσr(x)dr (A.29)

where σr is the area measure defined on [ϕ = r].
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The following theorem is an extension of Theorem 2.7, i.e. an almost everywhere
version of Stokes’s theorem. As in typical statements of Stokes’ theorem, we assume
the set [ϕ ≤ r] is bounded, and hence, [ϕ ≤ r] is compact for every r > 0.
As in Theorem 2.7, the proof relies on Lemma A.1 and completeness of a certain
exponential family.

Theorem A.1 Let ϕ be a continuously differentiable function from R
p

into R+ whose gradient does not vanish at any point and is such that
lim|xi |→∞ ϕ(x1, . . . , xp) = ∞, for any i = 1, . . . , p. Also assume that, for every
r > 0, [ϕ ≤ r] is compact and that ϕ determines a density φ as in Lemma A.1.
Let g be a weakly differentiable function from R

p into R
p. Then, for almost every

r > 0,

∫
[ϕ=r]

( ∇ϕ(x)
‖∇ϕ(x)‖

)T
g(x) dσr(x) =

∫
[ϕ≤r]

divg(x) dx . (A.30)

Further, for every r for which

lim
r ′→r−

∫
[ϕ=r ′]

( ∇ϕ(x)
‖∇ϕ(x)‖

)T
g(x) dσr ′(x) =

∫
[ϕ=r]

( ∇ϕ(x)
‖∇ϕ(x)‖

)T
g(x) dσr(x)

(A.31)
the two integrals in (A.30) are equal.

Proof Let X ∼ φτ (x) with φτ as in Corollary A.1. We assume, without loss of
generality, that Eτ [|g(X)|] < ∞ since, as in the proof of Theorem 2.7, we may
replace g by a sequence (gn)n∈N of functions with compact support.

By Lemma A.2, we have

Eτ [∇ϕ(X)Tg(X)] =
∫
Rp

∇ϕ(x)Tg(x)Kτ exp

(
−ϕ(x)

τ

)
dx

= Kτ τ

∫ ∞

0

∫
[ϕ=r]

∇ϕ(x)Tg(x)

‖∇ϕ(x)‖ dσr(x) ξτ (r) dr (A.32)

with

ξτ (r) = 1

τ
exp

(
− r
τ

)
. (A.33)

We also have

τ Eτ [divg(X)] = τ

∫
Rp

divg(x)Kτ exp

(
−ϕ(x)

τ

)
dx

= Kτ τ

∫
Rp

divg(x)
[
− exp

(
− r
τ

)]∞
ϕ(x)

dx
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= Kτ τ

∫
Rp

divg(x)
∫ ∞

ϕ(x)

ξτ (r) dr dx

= Kτ τ

∫ ∞

0

∫
[ϕ≤r]

divg(x) dx ξτ (r) dr , (A.34)

by Fubini’s theorem.
Therefore, it follows from (A.28) in Corollary A.1, (A.32) and (A.34) that, for

all τ > 0,

∫ ∞

0

∫
[ϕ=r]

( ∇ϕ(x)
‖∇ϕ(x)‖

)T

g(x) dσr(x) ξτ (r) dr =
∫ ∞

0

∫
[ϕ≤r]

divg(x) dx ξτ (r) dr ,

(A.35)
and hence, since the family (ξτ (r))τ>0 defined in (A.33) is complete as an
exponential family, we have equality of the inner-most integrals in (A.35) for almost
every r > 0. This gives the first result.

Finally, the right hand-side of (A.30) is absolutely continuous in r , since

∫
[ϕ≤r]

divg(x) dx =
∫ r

0
h(ρ) dρ

where

h(ρ) =
∫
[ϕ=ρ]

divg(x)

‖∇ϕ(x)‖ dσρ,θ (x) ,

and hence continuous, so that (A.31) implies the second result. ��

A.6 Proof of Lemma 6.3

Denote by η
(
X, ‖U‖2) the integrand of the second expectation, that is,

η
(
X, ‖U‖2

)
= 1

2

1

‖U‖k−2

∫ ‖U‖2

0
γ (X, s) sk/2−1 ds .

Then conditionally on X = x, we have

Eθ,σ 2

[
η
(
X, ‖U‖2

)
|X = x

]
= 1

K(θ, σ 2, x)

∫
Rk

1

2

1

‖u‖k−2

∫ ‖u‖2

0
γ (x, s) sk/2−1 ds

1

σp+k f
(‖x − θ‖2 + ‖u‖2

σ 2

)
du
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where

K(θ, σ 2, x) =
∫
Rk

1

σp+k f
(‖x − θ‖2 + ‖u‖2

σ 2

)
du .

Applying Fubini’s theorem, we obtain

Eθ,σ 2

[
η
(
X, ‖U‖2

)
|X = x

]
= 1

K(θ, σ 2, x)

∫ ∞

0∫
B̄(

√
s)

1

2

1

‖u‖k−2

1

σp+k f
(‖x − θ‖2 + ‖u‖2

σ 2

)
du

γ (x, s) sk/2−1 ds

where B̄(
√
s) = {

u ∈ R
k/ ‖u‖ > √

s
}

is the complement of the ball of radius
√
s

centered at 0 in R
k . As, in the inner most integral, the variable u intervenes through

its norm ‖u‖, we have, letting ςk = 2πk/2/Γ (k/2),

∫
B̄(

√
s)

1

‖u‖k−2 f

(‖x − θ‖2 + ‖u‖2

σ 2

)
du = ςk

∫ ∞
√
s

1

rk−2 f

(‖x − θ‖2 + r2

σ 2

)
rk−1 dr

= ςk

2

∫ ∞

s

f

(‖x − θ‖2 + t

σ 2

)
dt

= ςk σ
2 F

(‖x − θ‖2 + s

σ 2

)
.

Hence

Eθ,σ 2

[
η
(
X, ‖U‖2

)
|X = x

]
= σ 2

2

ςk

K(θ, σ 2, x)

∫ ∞

0

1

σp+k

F

(‖x − θ‖2 + s

σ 2

)
γ (x, s) sk/2−1 ds

= σ 2
∫ ∞

0

F
( ‖x−θ‖2+s

σ 2

)

f
( ‖x−θ‖2+s

σ 2

) γ (x, s) 1

2

ςk

K(θ, σ 2, x)
sk/2−1 1

σp+k

f

(‖x − θ‖2 + s

σ 2

)
ds = σ 2 Eθ,σ 2

⎡
⎣F

( ‖x−θ‖2+‖U‖2

σ 2

)

f
( ‖x−θ‖2+‖U‖2

σ 2

) γ (x, ‖U‖2) |X = x

⎤
⎦

using the radial density of U |X = x as above. Consequently, unconditioning, we
have
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Eθ,σ 2

[
η
(
X, ‖U‖2

)]
= σ 2 Eθ,σ 2

⎡
⎣F

( ‖X−θ‖2+‖U‖2

σ 2

)

f
( ‖X−θ‖2+‖U‖2

σ 2

) γ (X, ‖U‖2)

⎤
⎦

= σ 2 c E∗
θ,σ 2

[
γ
(
X, ‖U‖2

)]
,

according to the definition of E∗
θ,σ 2 , which is the desired result. ��

A.7 An Expression of the Haff Operator

We follow Fourdrinier et al. (2016) to prove the expression of the Haff operator
given in Proposition 6.5. To this end, we recall some known differential expressions.

Let U and T be p × p matrices, the elements of which being functions of S =
(Sij ) and let D̃S be a p×p matrix, the elements of which being linear combinations
of ∂/∂Sij . Tsukuma and Konno (2006) recall the following result from Haff (1979)
and (1982):

D̃S U T = {D̃S U} T + (
U T D̃T

S

)T
T . (A.36)

In the particular case where D̃S = DS with (DS)ij = 1/2 (1 + δij ) ∂/∂Sij , we have
DT
S = DS so that, if U is symmetric,

DS U T = {DS U} T + (
U DS

)T
T . (A.37)

Note that

DS S = p + 1

2
Ip (A.38)

since

(
DS S

)
ik

=
p∑
j=1

1

2
(1 + δij )

∂Sjk

∂Sij

= ∂Sik

∂Sii
+ 1

2

p∑
j 	=i

∂Sjk

∂Sij

= δki + 1

2

p∑
j 	=i

δki

= δki + p − 1

2
δki

= p + 1

2
δki .
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Proof of Proposition 6.5 First, we express tr
(
V ∇V T GT(X, S)

)
in term of S, we

have

(V ∇V T G
T(X, S))ii =

n−1∑
j=1

p∑
k=1

Vij (∇V T)jk (G
T(X, S))ki

=
n−1∑
j=1

p∑
k=1

Vij
∂(GT(X, S))ki

∂Vkj

=
n−1∑
j=1

p∑
k=1

Vij

p∑
r≤l

∂(GT(X, S))ki

∂Srl

∂Srl

∂Vkj

=
n−1∑
j=1

p∑
k=1

Vij

p∑
r≤l

∂(GT(X, S))ki

∂Srl
(δrkVlj + δlkVrj ),(A.39)

since S = V V T. From (A.39) we can write

(V ∇V T G
T(X, S))ii = A+ B + C (A.40)

where

A =
n−1∑
j=1

p∑
k=1

Vij

p∑
r=l

2 δrkVrj
∂(GT(X, S))ki

∂Srr

= 2
n−1∑
j=1

p∑
k=1

Vij Vkj
∂(GT(X, S))ki

∂Skk

= 2
p∑
k=1

Sik
∂(GT(X, S))ki

∂Skk
, (A.41)

B =
n−1∑
j=1

Vij

p∑
k<l

Vlj
∂(GT(X, S))ki

∂Skl
,

and

C =
n−1∑
j=1

Vij

p∑
k>r

Vrj
∂(GT(X, S))ki

∂Srk
.
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Now it is clear that

B + C =
n−1∑
j=1

Vij

p∑
k 	=l

Vlj
∂(GT(X, S))ki

∂Skl

=
p∑
k 	=l

Slj
∂(GT(X, S))ki

∂Skl
. (A.42)

Then, substituting (A.41) and (A.42) in (A.40), it follows that

tr
(
V ∇V T G

T(X, S)
) = 2

p∑
i=1

⎧⎨
⎩

p∑
k=1

Sik
∂(GT(X, S))ki

∂Skk
+ 1

2

p∑
k 	=l

Sil
∂(GT(X, S))ki

∂Skl

⎫⎬
⎭

= 2
p∑
i=1

{
p∑
l=1

Sil

p∑
k=1

1

2
(1 + δlk)

∂(GT(X, S))ki

∂Slk

}

= 2
p∑
i=1

{
p∑
l=1

Sil

p∑
k=1

(DS)lk)
∂(GT(X, S))ki

∂Slk

}

= 2 tr
(
SDS G

T(X, S)
)

= 2 tr
(
(SDS)

T G(X, S)
)
. (A.43)

Secondly, by definition of D∗
1/2 recalled in (6.57), we have

2D∗
1/2

(
S G(X, S)

) = 2 tr
(
DS{S G(X, S)}

)
= 2 tr

({DS S}G(X, S)
)+ 2 tr

({
SDS

}T
G(X, S)

)
,(A.44)

according to (A.37) with U = S and T = G(X, S). Then, using (A.38) and (A.43)
in the right hand-side of (A.44), we obtain

2D∗
1/2

(
S G(X, S)

) = (p + 1) tr
(
G(X, S)

)+ tr
(
V ∇V T G

T(X, S)
)
,

which is the result given in (6.70). ��
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A.8 Harmonic, Superharmonic and Subharmonic Functions

A.8.1 Harmonic Functions

Let Ω be an open subset of Rp. A measurable function f from Ω into R is said to
be harmonic if it is locally integrable and possesses the sphere mean value property:
for any x ∈ Ω and any ball Br,x ⊂ Ω of radius r and centered at x, we have

f (x) =
∫
Sr,x

f (y) dUr,x(y) , (A.45)

where Ur,x is the uniform distribution on the sphere Sr,x , the boundary of Br,x .
Such a harmonic function f is necessarily infinitely differentiable and satisfies the
Laplace equation Δf = 0 on Ω (actually, Δf = 0 is equivalent to harmonicity of
f ). This may be seen as follows.

Let η be the function defined on R
p by

∀x ∈ R
p η(x) =

{
C exp

[ −1
1−‖x‖2

]
if ‖x‖ < 1

0 if ‖x‖ ≥ 1

where the positive constant C is chosen such that

∫
Rp

η(x) dx = 1

and hence is equal to

C =
{
σ(S)

∫ 1

0
exp

[ −1

1 − r2

]
rp−1 dr

}−1

, (A.46)

using Lemma 1.4. We have η ∈ C ∞
c (Rp) (i.e. η is infinitely differentiable and has

compact support B). For any ε > 0, consider the standard mollifier ηε defined by

∀x ∈ R
p ηε(x) = 1

εp
η
(x
ε

)
.

Then ηε ∈ C ∞
c (Rp) with supp ηε = Bε .

Now, if f is locally integrable in Ω , the convolution f ε = ηε ∗ f defined on the
set

Ωε = {x ∈ Ω/dist(x, ∂Ω) > ε}
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by

∀x ∈ Ω f ε(x) =
∫
Ω

ηε(x − y) f (y) dy

is a smooth approximation of f in the sense that f ε ∈ C ∞(Ωε), which may be
justified by use of the dominated convergence theorem. Then, integrating over the
spheres of radius r and centered at x (as in Lemma 1.4), we have, for any x ∈ Ωε ,

f ε(x) =
∫
R+

∫
Sr,x

ηε(x − y) f (y)1Ω(y) dσr,x(y) dr

=
∫
R+

∫
Sr,x

C

εp
exp

[ −1

1 − ‖x − y‖2/ε2

]
1Bε,x f (y)1Ω(y) dσr,x(y) dr

= C

εp

∫ ε

0
exp

[ −1

1 − r2/ε2

]
σ(S) rp−1

∫
Sr,x

f (y)1Ω(y) dUr,x(y) dr ,

since Bε,x ⊂ Ω . Hence, if f is harmonic,

f ε(x) = C σ(S)

εp

∫ ε

0
exp

[ −1

1 − r2/ε2

]
rp−1 dr f (x) = f (x) ,

thanks to the change of variable r = r ′ ε and (A.46). Therefore f ∈ C ∞(Ω) as
f ε ∈ C ∞(Ωε) and Ω = ⋃

ε>0Ω
ε .

For notational convenience, we will denote the above sphere mean by

Sr,x(f ) =
∫
Sr,x

f (y) dUr,x(y) (A.47)

and the ball mean of f by

Br,x(f ) =
∫
Br,x

f (y) dVr,x(y) (A.48)

where Vr,x is the uniform distribution on the ball Br,x = {y ∈ Ω | ‖y − x‖ ≤ r}.
Note that, by definition of Vr,x , provided Br,x ⊂ Ω ,

Br,x(f ) = 1

λ(B) rp

∫
Br,x

f (y) dy

= p

σ(S) rp

∫ r

0

∫
Sρ,x

f (y) dσρ,x(y) dρ

= p

rp

∫ r

0
ρp−1 Sρ,x(f ) dρ , (A.49)
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according to Lemma 1.4 and the relationship between the volume of the unit ball and
the area measure of the unit sphere. Equality (A.49) shows that, if f is harmonic,
then it satisfies the ball mean value property, that is, for any x ∈ Ω and any ball Br,x
of radius r and centered at x such that Br,x ⊂ Ω , we have

f (x) = Br,x(f ) . (A.50)

The fact that an harmonic function f satisfies the Laplace equation can be derived
from the following lemma which makes a link between the derivative of the sphere
mean and the ball mean of its Laplacian.

Lemma A.3 Let Ω be a domain of Rp and let f be a twice weakly differentiable
function on Ω such that Sr,x(∇f ) exists, for any x ∈ R

p and any r ≥ 0 such that
Br,x ⊂ Ω . Then, for almost every such r ,

d

dr
Sr,x(f ) = r

p
Br,x(Δf ) . (A.51)

Proof According to (A.47), we have, through an obvious change of variable,

d

dr
Sr,x(f ) = d

dr

∫
Sr,x

f (y) dUr,x(y)

= d

dr

∫
S

f (r z+ x) dU (z)

=
∫
S

∂

∂r
f (r z+ x) dU (z) , (A.52)

where the differentiation under the integral sign can be justified as follows. First,
note that

∂

∂r
f (r z+ x) = ∇f (r z+ x) · z (A.53)

so that, for z ∈ S,

∣∣∣∣ ∂∂r f (r z+ x)

∣∣∣∣ ≤ ‖∇f (r z+ x)‖ ‖z‖ = ‖∇f (r z+ x)‖ .

Hence

∫
S

∣∣∣∣ ∂∂r f (r z+ x)

∣∣∣∣ dU(z) ≤
∫
S

‖∇f (r z+ x)‖ dU (z) = Sr,x(‖∇(f )‖) < ∞ ,

since, by assumption, Sr,x(∇f ) exists. Therefore the last equality in (A.52) is valid
by the Lebesgue dominated convergence theorem.
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Then, according to (A.53), (A.52) can be rewritten as

d

dr
Sr,x(f ) =

∫
S

∇f (r z+ x) · z dU (z)

=
∫
Sr,x

∇f (y) · y − x

r
dUr,x(y)

= 1

σ(S) rp−1

∫
Sr,x

∇f (y) · y − x

r
dσr,x(y)

Hence, by Theorem 2.7 (Stokes theorem for weakly differentiable functions), for
almost every r ,

d

dr
Sr,x(f ) = 1

σr,x(Sr,x)

∫
Br,x

div(∇f (y)) dy

= 1

σr,x(Sr,x)

∫
Br,x

Δf (y) dy

= r

p

∫
Br,x

Δf (y) dVr,x(y) , (A.54)

since σr,x(Sr,x) = p λ(Br,x)/r . This is the desired result. ��
As announced above, if the function f in Lemma A.3 is harmonic, it satisfies the

Laplace equation. Indeed the sphere means Sr,x(f ) do not depend on the radius r
so that, according to (A.51), for almost every r , the ball mean Br,x(Δf ) equals 0. In
particular, according to (A.54),

∫
Br,x

Δf (y) dy = 0, for almost every r , and hence,
for all r since this integral is continuous in r; therefore Δf (x) = 0. Conversely, if
f satisfies the Laplace equation, for R > 0 such that Br,x ⊂ Ω , integrating (A.51)
between 0 and R gives

0 =
∫ R

0

r

p
Br,x(Δf ) dr =

∫ R

0

d

dr
Sr,x(f ) dr = SR,x(f )− f (x) ,

so that f is harmonic in Ω .

A.8.2 Semicontinuous Functions

For superharmonic functions and subharmonic functions the equality in (A.45) is
replaced by an inequality and their definitions require an additional semicontinuous
property. This gives rise to functions which are less smooth than harmonic functions,
and so, provides a flexible class of functions.
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We recall first the notion of semicontinuity. Note that the functions we consider
may have infinite values. To this end, we need the extended real field R = R ∪
{−∞,∞} = [−∞,∞].
Definition A.1 LetΩ be an open subset of Rp. A function f fromΩ into R is said
to be lower semicontinuous (l.s.c.) on Ω

(a) ∀x ∈ Ω lim inf
y→x

f (y) ≥ f (x)

and is said to be upper semicontinuous (u.s.c.) on Ω if

(b) ∀x ∈ Ω lim sup
y→x

f (y) ≤ f (x) .

More explicitely, in (a) and in (b) above, the limits correspond to

lim inf
y→x,y∈Ω f (y) = sup

V∈Nx

inf
y∈(V∩Ω)\{x} f (y) and

lim sup
y→x,y∈Ω

f (y) = inf
V∈Nx

sup
y∈(V∩Ω)\{x}

f (y) ,

respectively, where Nx denotes the collection of all neighborhoods of x in Ω . Then
we can express formally the lower semicontinuity of f at x as

∀t < f (x) ∃V ∈ Nx y ∈ V ⇒ f (y) ≥ t

and the upper semicontinuity of f at x as

∀t > f (x) ∃V ∈ Nx y ∈ V ⇒ f (y) ≤ t .

Then f is lower semicontinuous on Ω if and only if, for any t ∈ R, the subset
f−1((t,∞]) = {x ∈ Ω/t < f (x) ≤ ∞} is open (equivalently, if f−1([−∞, t]) =
{x ∈ Ω/− ∞ ≤ f (x) ≤ t} is closed). Indeed, if f is l.s.c. and if x ∈ f−1((t,∞])
then f (x) > t . Hence there exists V ∈ Nx such that f (V ) ⊂ (t,∞]. This means
that f−1((t,∞]) is open. Assume now that, for any t ∈ R, the subset f−1((t,∞])
is open. Then, in particular, for any t < f (x), the subset f−1((t,∞]) is open,
which proves that this is a neighborhood of x where f is bounded from below by t .
Therefore f is l.s.c. at x, and hence everywhere.

Similarly, f is upper semicontinuous on Ω if and only if, for any t ∈ R, the
subset f−1([−∞, t)) = {x ∈ Ω/ − ∞ ≤ f (x) < t} is open (equivalently, if
f−1([t,∞]) = {x ∈ Ω | t ≤ f (x) ≤ ∞} is closed).

Clearly, it follows from the above that the indicator function of an open set is l.s.c.
and that the indicator function of a closed set is u.s.c. Also, a function is continuous
if and only if it is both l.s.c. and u.s.c. As a last simple example, the function f from
R into R defined by f (x) = sin(1/x) if x 	= 0 and f (0) = 1 is u.s.c. at 0 but is not
continuous (the function limits from the left or right at zero do not even exist).
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A.8.3 Superharmonic and Subharmonic Functions

We now give the notion of superharmonicity and subharmonicity. For simplicity, we
will assume that the open subset Ω is connex (Ω is connected or Ω is a domain),
that is,Ω cannot be represented as the union of two or more disjoint nonempty open
subsets. Actually, when Ω is not connex, in most of the statements below, it can be
replaced by its connected components (the maximal connected subsets (ordered by
inclusion) of Ω).

Definition A.2 Let Ω be a domain of Rp. A function f from Ω into (−∞,∞] is
said to be superharmonic if

1. f is lower semicontinuous on Ω;
2. f (x) ≥ Sr,x(f ), for any x ∈ Ω and any r ≥ 0 such that Br,x ⊂ Ω

(superharmonic mean value property); and
3. f 	≡ ∞ on Ω .

A function f from Ω into [−∞,∞) is said to be subharmonic if −f is
superharmonic, that is, if

1. f is upper semicontinuous on Ω;
2. f (x) ≤ Sr,x(f ), for any x ∈ Ω and any r ≥ 0 such that Br,x ⊂ Ω (subharmonic

mean value property); and
3. f 	≡ −∞ on Ω .

It is easy to see that a function f is harmonic if and only if it is superharmonic and
subharmonic. When p ≥ 3, the function h defined by h(x) = ‖x‖2−p is harmonic
in R

p \ {0}. This can be seen from the fact (proved below) that its sphere mean, for
any x ∈ R

p and any R > 0, equals

SR,x(h) =
{
R2−p if ‖x‖ ≤ R

‖x‖2−p if ‖x‖ > R .
(A.55)

Note that h is continuous on R
p \ {0} and that the harmonic mean value property

is satisfied under the requirement BR,x ⊂ R
p \ {0} (second expression in (A.55)).

Extending h at 0 with h(0) = ∞, we see that SR,0(h) = R2−p < h(0) which
shows that the superharmonic mean value property is satisfied at 0. Also, as for any
t ∈ R, the subset h−1((t,∞]) is the open ball B1/t1/(p−2) , then h is l.s.c. at 0, and
hence, it is superharmonic.

The expressions in (A.55) can be found following Lemmas 3.21 and 3.22 of
du Plessis (1970). First, we have

SR,x(h) =
∫
SR,x

‖y‖2−p dUR,x(y) =
∫
SR

‖z+ x‖2−p dUR(z) =
∫
SR

‖x − z‖2−p dUR(z) ,

using the orthogonal invariance of the uniform distribution UR on the centered
sphere SR . Now, consider the spherical polar coordinates set in (1.9) under the
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following form: let z = (z1, . . . , zp) with

z1 = R sin t1 sin t2 . . . sin tp−2 sin tp−1

z2 = R sin t1 sin t2 . . . sin tp−2 cos tp−1

z3 = R sin t1 sin t2 . . . cos tp−2

...

zp−1 = R sin t1 cos t2

zp = R cos t1 ,

where (t1, . . . , tp−1) ∈ (0, π)p−2 × (0, 2π). Choosing the angle between x and
z ∈ SR as the first angle t1 and expending

‖x − z‖2 = R2 − 2R ‖x‖ cos t1 + ‖x‖2 ,

we have that SR,x(h) is proportional to

Ir =
∫ π

0
(R2 − 2R r cos t1 + r2)(2−p)/2 sinp−2 t1 dt1 ,

where r = ‖x‖. Assuming r < R and deriving with respect to r we have

d

dr
Ir = (2 − p)

∫ π

0
(R2 − 2R r cos t1 + r2)−p/2 (r − R cos t1) sinp−2 t1 dt1

= (p − 2)
∫ π

0
sinp−2 u cos u (R2 sin2 u− r2)−1/2 du , (A.56)

setting cos u = (r − R cos t1) ρ−1, sinu = r sin t1 ρ−1 with ρ = (R2 −
2R r cos t1+r2)1/2, which provides ρ = ρ(u) = −R cos u+(r2−R2 sin2 u)1/2 and
dt1 = ρ(u) (r2 − R2 sin2 u)−1/2 du. Integrating between 0 and π/2 and between
π/2 and π in (A.56), we can see, through the change of variable u = π − v, that
this last integral is equal to 0 since sinu = sin v and cos u = − cos v. Thus Ir does
not depend on r and hence, letting r → 0, equals R2−p.

A direct alternative proof of the second expression in (A.55) can also be given
as follows. Assume now that r > R. As above, we have that rp−2 SR,x(h) is
proportional to rp−2 Ir whose derivative with respect to r , say d/dr(rp−2 Ir ) =
(p − 2) rp−3Ir + rp−2 d/drIr , can be seen to be equal to

(p − 2) rp−3 R

∫ π

0
(R2 − 2R r cos t1 + r2)−p/2 (R − r cos t1) sinp−2 t1 dt1 (A.57)

Noticing that the integral in (A.57) corresponds to the first integral in (A.56)
with r and R interchanged, this derivative is equal to 0. Hence rp−2 SR,x(h) is
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constant. Now rp−2 ‖x − z‖2−p = (r/(R2 − 2R r cos t1 + r2)1/2)p−2 goes to
1 when r → ∞ and is bounded above by (r/(r − R))p−2 so that the Lebesgue
dominated convergence theorem applies and implies that rp−2 SR,x(h) = 1. This
is the second result in (A.55). We now give results implied by superharmonicity and
subharmonicity.

Theorem A.2 Let Ω be a domain of R
p and let f be a function from Ω into

(−∞,∞]. If f is superharmonic (respectively subharmonic) then

(i) for any x ∈ Ω lim infy→x f (y) = f (x) (respectively lim supy→x f (y) =
f (x));

(ii) f (x) ≥ Br,x(f ) (respectively f (x) ≤ Br,x(f )) whenever Br,x ⊂ Ω; and
(iii) either f ≡ ∞ (respectively f ≡ −∞) or f is locally integrable on Ω .

Proof We only prove the superharmonicity part, the subharmonicity part follows by
using similar arguments.

(i) By lower continuity of f at any x ∈ Ω , we have lim infy→x f (y) ≥ f (x). If
that inequality were strict, we would have f (y) > f (x) for any y ∈ Br,x \
{x} for some r > 0, which would contradict the superharmonic mean value
property of f in (ii) of Definition A.2.

(ii) According to (A.49) we have

Br,x(f ) = p

rp

∫ r

0
ρp−1 Sρ,x(f ) dρ ≤ p

rp

∫ r

0
ρp−1 f (x) dρ = f (x) ,

where the inequality expresses the superharmonic mean value property (ii) in
Definition A.2.

(iii) Let

Ω0 = {x ∈ Ω | f is integrable over some neighborhood of x} .

By definition of Ω0, if x ∈ Ω0, there exists r > 0 such that f is integrable
over Br,x . Then, for y ∈ Br,x , as Br/2,y ⊂ Br,x , f is integrable over Br/2,y .
and hence, y ∈ Ω0. This shows that Ω0 is open.

Now, for x ∈ Ω \Ω0, f is not integrable over any neighborhood of x. Further-
more, since f is l.s.c., it is bounded from below in any bounded neighborhood of
x. Hence Br,x(f ) = ∞ whenever Br,x ⊂ Ω which implies, according to (ii), that
f (x) = ∞.

Assume that Br,x ⊂ Ω . For y ∈ Br/3,x , we have B2r/3,y ⊃ Br/3,x , f , and hence,
f is not integrable over B2r/3,y . Therefore f (y) = ∞ and so f is not integrable
over any neighborhood of y, so that y ∈ Ω \Ω0. This shows that, if x ∈ Ω \Ω0,
then Br/3,x ⊂ Ω \Ω0, which means that Ω \Ω0 is open.

Finally, we have proved that Ω0 and Ω \ Ω0 are open which implies, as Ω is a
domain, that either Ω0 = ∅ or Ω \Ω0 = ∅, which is (iii). ��
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The following theorem relates the superharmonicity and the subharmonicity of a
function to the sign of its Laplacian.

Theorem A.3 Let Ω be a domain of Rp and let f be a twice weakly differentiable
function on Ω . Then f has the superharmonic mean value property (respectively
the subharmonic mean value property) if and only if, for almost every x ∈ Ω , we
have Δf (x) ≤ 0 (respectively Δf (x) ≥ 0).

Proof We only prove the superharmonicity part.
Assume that f has the superharmonic mean value property. For R > 0 such that

BR,x ⊂ Ω , integrating (A.51) between 0 and R gives

∫ R

0

r

p
Br,x(Δf ) dr =

∫ R

0

d

dr
Sr,x(f ) dr = SR,x(f )− f (x) ≤ 0 , (A.58)

by the superharmonic mean value property. As (A.58) is satisfied for any R > 0,
the integrand of the first integral in (A.58) is nonpositive almost everywhere. Then,
for almost every 0 < r < R, we have Br,x(Δf ) ≤ 0, and hence, for almost every
x ∈ Ω , Δf (x) ≤ 0.

Conversely, assume that, for almost every x ∈ Ω , Δf (x) ≤ 0. Then, according
to (A.51), Sr,x(f ) is nonincreasing in r . Also, when R goes to 0 in (A.58), the
integral goes to 0 so that limr→0 Sr,x(f ) = f (x). Hence f (x) ≥ Sr,x(f ) and so
f has the superharmonic mean value property. ��
The following corollary is immediate.

Corollary A.2 Let Ω be a domain of Rp and let f be a function which is twice
weakly differentiable and lower semicontinuous (respectively upper semicontinu-
ous) on Ω . Then f is superharmonic (respectively subharmonic) if and only if, for
almost every x ∈ Ω , we have Δf (x) ≤ 0 (respectively Δf (x) ≥ 0).

Corollary A.2 is usually stated for twice continuously differentiable functions
f . du Plessis (1970) notices that, when f is not smooth, a notion of generalized
Laplacian is needed and the Laplacian of f “can no longer be a point function”,
and must be a functional on the space of the test functions. In fact, the generalized
Laplacian that du Plessis considers is the Laplacian of the regular distribution
in (A.14) which has been seen to correspond to the weak Laplacian in (A.15).

The next theorem shows that, when a function is superharmonic or subharmonic,
then its sphere mean and its ball mean are monotone functions of the radius.

Theorem A.4 Let Ω be a domain of Rp and let f be a function which is twice
weakly differentiable and superharmonic (respectively subharmonic) on Ω . Then,
for r ≥ 0 and x ∈ Ω such that Br,x ⊂ Ω , the sphere mean Sr,x(f ) and the ball
mean Br,x(f ) are nonincreasing (respectively nondecreasing) functions of r .

Proof The monotonicity of the sphere mean Sr,x(f ) follows from (A.51) and
Corollary A.2. Next the monotonicity of the ball mean Br,x(f ) follows from
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the fact that the right-hand side of the last equality in (A.49) can be written as
p
∫ 1

0 t
p−1 Sr t,x(f ) dt . ��

A.9 Differentiation of Marginal Densities

When considering a prior density π(θ) for a normal model with density

1

(2π)p/2
exp

(
−||x − θ ||2

2

)
,

differentiation of the marginal density

m(x) =
∫
Rp

1

(2π)p/2
exp

(
−||x − θ ||2

2

)
π(θ) dθ

is easily tractable since we are dealing with an exponential family. Thus, deriving
under the integral sign, we have that the gradient of m is expressed as

∇m(x) =
∫
Rp

1

(2π)p/2
∇exp

(
−||x − θ ||2

2

)
π(θ) dθ

=
∫
Rp

1

(2π)p/2
exp

(
−||x − θ ||2

2

)
(θ − x) π(θ) dθ .

The following lemma shows that, for a general spherically symmetric density
f (||x − θ ||2) a similar formula is valid.

Lemma A.4 Let f (||x− θ ||2) be a spherically symmetric density and π(θ) a prior
density (possibly improper) such that, for any x ∈ R

p, the marginal density

m(x) =
∫
Rp

f (||x − θ ||2) π(θ) dθ

exists. If the generating function f is absolutely continuous then, for almost any
x ∈ R

p,

∇m(x) =
∫
Rp

∇f (||x − θ ||2) π(θ) dθ

=
∫
Rp

2 f ′(||x − θ ||2) (x − θ) π(θ) dθ .
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Proof Let j ∈ {1, . . . , p} and z ∈ R fixed. For any x = (x1, . . . , xj−1, xj , xj+1,

. . . , xp) in R
p, denote by x(z) = (x1, . . . , xj−1, z, xj+1, . . . , xp) the vector

obtained by replacing the j -th component xj of x by z.
As f is absolutely continuous, the function z → f (||x(z)−θ ||2) is also absolutely

continuous so that, for a ∈ R, we have

f (||x(z) − θ ||2)− f (||x(a) − θ ||2) =
∫ z

a

∂

∂xj
f (||x − θ ||2) dxj .

Therefore

m(x(z)) =
∫
Rp

∫ z

a

∂

∂xj
f (||x − θ ||2) dxj π(θ) dθ +m(x(a))

=
∫ z

a

∫
Rp

∂

∂xj
f (||x − θ ||2) π(θ) dθ dxj +m(x(a)) (A.59)

by Fubini’s theorem. Equation (A.59) means that the function z → m(x(z)) is
absolutely continuous, and hence differentiable almost everywhere. More precisely,
it entails that the partial derivative of m(x) with respect to xj equals

∂

∂xj
m(x) =

∫
Rp

∂

∂xj
f (||x − θ ||2) π(θ) dθ,

which is the desired result. ��
We now prove Lemmas 5.5, 5.6 and 5.7 given in Sect. 5.4 (see Fourdrinier and

Strawderman 2008a).

Proof of Lemma 5.5 It follows from (5.21) that the sign of M ′(t) is the same as the
sign of x · ∇M(x). As noted in the proof of Theorem 5.7 (after (5.25)), the function
H(u, t) defined in (5.22) is nonpositive. Hence, by Lemma 5.6, x · ∇M(x) ≤ 0 and
M ′(t) ≤ 0. ��
Proof of Lemma 5.6 According to (5.11) and Lemma A.4, we have

x · ∇m(x) = 2
∫
Rp

x · (x − θ) f ′(‖x − θ‖2) π(‖θ‖2) dθ

=
∫ ∞

0

∫
SR,x

x · (x − θ) π(‖θ‖2) dσR,x(θ) f
′(R2) dR

where σR,x is the uniform measure on the sphere SR,x of radius R centered at x.
Through (θ − x)/‖θ − x‖, the unit normal exterior vector at θ ∈ SR,x , we have

x · ∇m(x) = 2
∫ ∞

0

∫
SR,x

−π(‖θ‖2) x · θ − x

‖θ − x‖ dσR,x(θ) R f
′(R2) dR
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= −2
∫ ∞

0

∫
BR,x

divθ
(
π(‖θ‖2) x

)
dθ R f ′(R2) dR

by Stokes theorem and hence

x · ∇m(x) = −2
∫ ∞

0

∫
BR,x

x · ∇θ
(
π(‖θ‖2)

)
dθ R f ′(R2) dR

= −4
∫ ∞

0

∫
BR,x

x · θπ ′(‖θ‖2) dθ Rf ′(R2) dR

= −4 λ(B)
∫ ∞

0

∫
BR,x

x · θπ ′(‖θ‖2)VR,x(θ) R
p+1 f ′(R2) dR

according to the definition of VR,x . Then

x · ∇m(x) =
∫ ∞

0
H(R2, ‖x‖2) Rp+1 f ′(R2) dR

= −2
∫ ∞

0
H(u, ‖x‖2) up/2 f (u) du

through the change of variable u = R2.
This is the first result. The second result follows in the same way referring

to (5.18). ��
Proof of Lemma 5.7 The result will follow from the monotonicity in R of

∫
SR,x

x · θ π ′(‖θ‖2) dUR,x(θ) (A.60)

since

∫
BR,x

x · θ π ′(‖θ‖2) dVR,x(θ) = R

p

∫ R

0
τp−1

∫
Sτ,x

x · θ π ′(‖θ‖2) dUτ,x(θ) dτ

= p

∫ 1

0
up−1

∫
SRu,x

x · θ π ′(‖θ‖2) dURu,x(θ) du.

Now deriving (A.60) with respect to R gives through Lemma A.3

d

dR

∫
SR,x

x · θ π ′(‖θ‖2) dUR,x(θ) = R

p

∫
BR,x

Δ
(
x · θ π ′(‖θ‖2)

)
dUR,x(θ) .

Since, as noticed above,
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Δ
(
x · θ π ′(‖θ‖2)

) = x · θ ϕ′(‖θ‖2)

where

Δπ(‖θ‖2) = ϕ(‖θ‖2) ,

we have

d

dR

∫
SR,x

x · θ π ′(‖θ‖2) dUR,x(θ) = R

p

∫
BR,x

x · θ ϕ′(‖θ‖2) dVR,x(θ).

By assumption on the monotonicity of the Laplacian of π(‖θ‖2), we have
ϕ′(‖θ‖2) ≥ 0 which, by Lemma 5.8, implies that the last integral is nonnegative
since VR,x is unimodal. ��
Proof of Lemma 5.8 To express the integral

I (x) =
∫
Rp

x · θ ψ(θ) h(‖θ − x‖2) dθ

we will use the orthogonal decomposition θ = α + β with α ∈ Δx and β ∈ Δ⊥
x

whereΔx denotes the linear subspace of Rp spanned by x,Δ⊥
x being its orthogonal.

Then we have I (x) = x · A(x)+ x · B(x) with

A(x) =
∫
Δx

α

[∫
Δ⊥
x

ψ(α + β) h
(
‖α − x‖2 + ‖β‖2

)
dβ

]
dα

and

B(x) =
∫
Δ⊥
x

β

[∫
Δx

ψ(α + β) h
(
‖α − x‖2 + ‖β‖2

)
dαβ

]
dβ .

Note that x · B(x) = 0, and hence I (x) = x · A(x), since B(x) ∈ Δ⊥
x (actually,

B(x) = 0 since, in the expression of B(x), the most inner integral is a function of
‖β‖2 so that the most outer integral is the product of a real valued function of ‖β‖2

and β). Therefore

I (x) =
∫
Δx

α

[∫ ∞

0

(∫
Sr

ψ(α + β) h
(
‖α − x‖2 + r2

)
σr(dβ)

)
dr

]
dα

where σr denotes the area measure on the sphere Sr in Δ⊥
x of radius r and centered

at 0. Then, through the change of variable α = z x, we have
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A(x) =
∫ +∞

−∞
z

[∫ +∞

0
h
(
(z− 1)2‖x‖2 + r2

)(∫
Sr

ψ(z x + β)σr(dβ)

)
dr

]
dz

= x

∫ +∞

0
z

[∫ +∞

0

{
h
(
(z− 1)2‖x‖2 + r2

) ∫
Sr

ψ(z x + β)σr(dβ)

−h
(
(z+ 1)2‖x‖2 + r2

) ∫
Sr

ψ(−z x + β)σr(dβ)

}
dr

]
dz.

Now, using invariance of σr by symmetry, we have

∫
Sr

ψ(−z x + β) σr(dβ) =
∫
Sr

ψ(−z x − β) σr(dβ) =
∫
Sr

ψ(z x + β) σr(dβ)

since ψ is symmetric. Therefore A(x) = γ (x) · x where

γ (x) =
∫ +∞

0
z

[∫ +∞

0

{
h
(
(z− 1)2 ‖x‖2 + r2

)
− h

(
(z+ 1)2‖ x‖2 + r2

)}
(∫

Sr

ψ(z x + β)σr(dβ)

)
dr

]
dz .

Since h is nonincreasing and ψ ≥ 0, we obtain that γ (x) ≥ 0. Hence I (x) =
x · A(x) = γ (x) ‖x‖2 ≥ 0, which is the desired result. ��

A.10 Results on Expectations and Integrals

In the following, when X has a uniform distribution on a sphere of radius R, we
consider expectations of R2q ‖X‖−2q . We mention in our notations the dimension
of the spaces in which spheres and balls lie. Thus U

p+k
R,θ stands for the uniform

distribution on the sphere Sp+k
R,θ = {(x, u) ∈ R

p+k | ‖(x, u) − (θ, 0)‖ = R}, in

R
p+k , of radius R and centered at (θ, 0) ∈ R

p+k , while U
p
R,θ holds for the uniform

distribution on the sphere SpR,θ = {x ∈ R
p | ‖x − θ‖ = R}, in R

p. We essentially
extend a result given by Fourdrinier and Strawderman (2008b) who considered the
case where q = 1. See also Fourdrinier et al. (2013).

Lemma A.5 Let q > 0. Then, for any fixed θ ∈ R
p, the function

fθ : R �−→ R2q
∫
S
p+k
R,θ

1

‖x‖2q dU
p+k
R,θ (x, u) (A.61)

is nondecreasing for p ≥ 2 (q + 1) and k ≥ 0. Also, for any fixed R, this
monotonicity is reversed in ‖θ‖.
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Proof Note that, by invariance, fθ depends on θ only through ‖θ‖. With the change
of variable

(y, v) =
(
x − θ

R
,
u

R

)
,

we have

fθ (R) =
∫
S
p+k
1,0

1

‖y + θ
R
‖2q

dU
p+k

1,0 (y, v) = f ∗‖θ‖(R) .

Hence, integrating with respect to the uniform distribution on {θ ∈ R
p | ‖θ‖ = R0},

fθ (R) =
∫
S
p
R0,0

∫
S
p+k
1,0

1

‖y + θ
R
‖2q

dU
p+k

1,0 (y, v) dU
p

R0,0
(θ)

=
∫
S
p+k
1,0

∫
S
p
R0,0

1

‖y + θ
R
‖2q

dU
p

R0,0
(θ) dU

p+k
1,0 (y, v)

by Fubini’s theorem. In the inner integral, the change of variable z = θ/R+ y leads
to

fθ (R) =
∫
S
p+k
1,0

∫
S
p
R0/R,y

1

‖z‖2q dU
p
R0/R,y

(z) dU
p+k

1,0 (y, v)

As the function 1/‖z‖2q is superharmonic for p ≥ 2 (q + 1), the inner integral is
nonincreasing in R0/R for each y, and hence, nondecreasing in R and, for any fixed
R, nonincreasing in R0 = ‖θ‖. ��

The first part of Lemma A.5 can be extended thanks to an extension of Ander-
son’s theorem (see Anderson 1955) given in Lemma 3 of Chou and Strawderman
(1990) which we recall below.

Lemma A.6 (Chou and Strawderman 1990) Let h and f be measurable func-
tions from R

p into R+. Assume that h and f are symmetric about the origin,
unimodal and such that

∫
Rp
f (x) dx < ∞ and

∫
Rp
h(x) f (x) dx < ∞. Then, for

y ∈ R
p and 0 ≤ k ≤ 1,

∫
Rp

h(x) f (x + k y) dx ≥
∫
Rp

h(x) f (x + y) dx (A.62)

and hence φ(k) = ∫
Rp
h(x) f (x + k y) dx is a nonincreasing function of k.

Proof See Chou and Strawderman (1990) for Inequality (A.62). As for the mono-
tonicity part, for k1 < k2, it suffices to apply (A.62) with k = k1/k2 and k2 y playing
the role of y to obtain φ(k1) ≥ φ(k2). ��
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Lemma A.7 Let q > 0 and let r(t) be a nonnegative and nondecreasing function
on [0,∞) such that r(t)/tq is nonincreasing. Then, for any fixed θ ∈ R

p, the
function

fθ : R �−→ R2q
∫
S
p+k
R,θ

r(‖x‖2)

‖x‖2q dU
p+k
R,θ (x, u) (A.63)

is nondecreasing for p ≥ 1 and k ≥ 2.

Proof Under U
p+k
R,θ , it is well known that the marginal distribution of (x, u) �→ x

is absolutely continuous with unimodal density 1
Rp
ψ
( ‖x−θ‖2

R2

)
for all k ≥ 2 where

ψ(t) ∝ (1 − t)k/2−11[0,1](t) (see Theorem 4.10). Then fθ can be written as

fθ (R) =
∫
B
p
1,0

r(R2 ‖z+ θ
R
‖2)

‖z+ θ
R
‖2q

ψ(‖z‖2) dz .

For any R1 ≤ R2, we have, by nondecreasing monotonicity of r(t),

fθ (R1) ≤
∫
B
p
1,0

r(R2
2‖z+ θ

R1
‖2)

‖z+ θ
R1

‖2q
ψ(‖z‖2) dz .

Furthermore nonincreasing monotonicity of r(t)/t in t implies that the function
r(R2

2 ‖z+θ/R1‖2)/‖z+θ/R1‖2q is symmetric and unimodal in z about − θ
R1

. Hence,
by Lemma A.6,

∫
B
p
1,0

r(R2
2‖z+ θ

R1
‖2)

‖z+ θ
R1

‖2q
ψ(‖z‖2) dz ≤

∫
B
p
1,0

r(R2
2‖z+ θ

R2
‖2)

‖z+ θ
R2

‖2q
ψ(‖z‖2) dz

= fθ (R2) .

��
As, if (X,U) ∼ U

p+2
R,θ , then X ∼ V

p
R,θ , the following corollary of Lemma A.7

is immediate.

Corollary A.3 Under the conditions of Lemma A.7, the function

R �−→ R2q
∫
B
p
R,θ

r(‖x‖2)

‖x‖2q dV
p
R,θ (x) (A.64)

is nondecreasing for p ≥ 1.
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A.11 Modified Bessel Functions

We develop some results on ratio of Bessel functions ρν(t) = Iν+1(t)/Iν(t) needed
in Sect. 7.3. First, recall the modified Bessel function of the first kind, for ν > 0,

Iν(x) =
∞∑
k=0

x2k+ν

22k+ν k!Γ (k + ν + 1)
,

is one of the solutions to the modified Bessel differential equation given by

x2 y′′ + x y′ −
(
ν2 + x2

)
y = 0,

where Γ (x) is the gamma function.

Lemma A.8

(a) (Watson 1983) The function ρν(·) is increasing and concave on (0,∞), with
limt→0+ ρν(t) = 0, limt→∞ ρν(t) = 1; and ρν(t)

t
decreasing in t with

limt→0+ ρν(t)
t

= 1
2(ν+1) . Also, we have the identity d

dt
ρν(t) = 1−(1+2ν) ρν(t)

t
−

ρ2
ν (t), and the inequality d

dt
ρν(t) ≤ ρν(t)

t
.

(b) (Amos 1974) For all ν ≥ 0 and t > 0, we have

L

(
2(ν + 1)

t
,

2(ν + 1)

t

)
≤ ρ2

ν (t) ≤ L

(
2ν

t
,

2(ν + 2)

t

)
, (A.65)

where L(a, b) = {a/2 +√
1 + (b/2)2}−2.

Lemma A.9

(a) For all p ∈ {3, 4, . . .} and α ≥ 0, the function given by r {1 − ρp/2−1(α r)} is
increasing in r; r ≥ 0;

(b) For all p ∈ {3, 4, . . .}, we have the inequality ρp/2−1(t)+ t ρ′
p/2−1(t) ≤ 1, for

all t > 0;
(c) For all p ∈ {3, 4, . . .}, we have limt→∞ t {1 − ρp/2−1(t)} = (p − 1)/2.2

Proof

(c) The result follows from the fact that tρ′
ν(t) → 0 as t → ∞, which must be

the case for part (b) to hold since ρν(t) → 1 as t → ∞, as well as the given
expression for ρ′

ν given in Lemma A.8.

2Alternatively, the more general result limt→∞ t (1 − ρν(t)) = ν + 1/2 holds for all ν > 0 by
the bounds (A.65) given by Amos (1974) for ρν(t), t > 0. This is verified with the evaluation
limz→∞ z (1 − z/(ν + 1/2 + √

z2 + b) = ν + 1/2.
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(b) Part (a) tells us (take α = 1) that t (1−ρp/2−1(t)) increases in t , in other terms:
∂
∂t

{t (1 − ρp/2−1(t))} ≥ 0 which is equivalent to, and establishes, part (b).
(a) Begin with (7.10) which implies that r { 1 − ρp/2−1(αr) } = Eθ [W |R =

r], with W = ‖X‖ − θ ′X
‖θ‖ , and θ ∈ Sα . It will hence suffice to show that a

family of conditional distributions {W |R = r : r > 0} satisfies (for p ≥ 3) an
increasing in W monotone likelihood ratio property, with parameter r . Observe
also that the probability distribution of W remains unchanged with orthogonal
transformations X → ΓX (and θ → Γ θ ), which permits us, since the actions
are transitive on Sα , to set without loss of generality θ = θ0 = (α, 0, . . . , 0)′.
Pursue next with the joint density (for θ = θ0 and p > 1) of (Y1 = X1, Y2 =
X′X −X1

2), given by:

fY1,Y2(y1, y2) ∝ e−
1
2 [(y1−α)2+y2] y

p−1
2 −1

2 1(0,∞)(y2) ,

to derive the joint density of (W =
√
Y 2

1 + Y2 − Y1, R =
√
Y 2

1 + Y2),

fW,R(w, r) ∝ r exp{ − r
2

2
+α(r−w) } [w(2r−w)] p−3

2 1( 0, 2r )(w) 1( 0,∞ )(r) ,

and the conditional density3:

fW |R=r (w) ∝ exp{−αw} [w(2r − w)] p−3
2 1( 0, 2r )(w) ; r > 0. (A.66)

To conclude, the result follows by checking that the ratio
fW |R=r1 (w)
fW |R=r0 (w)

is nonde-

creasing in w for all r1 > r0 > 0. �

3Interestingly, for p = 3, the distribution W |R = r is truncated exponential.
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