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Preface

Our goal is to provide an easy-to-follow applied book on semiparametric regression
methods using R. Semiparametric regression has a large literature, but much of it is
geared towards data analysts with advanced knowledge of statistical methods. This
book is intended for applied statistical analysts who have some familiarity with R.
It is accompanied by the website:

semiparametric-regression-with-r.net

and contains pointers to datasets and R code relevant to this book. Given the ever-
changing nature of software, we recommend regular checking of this website for
news, updates, and errata.

Semiparametric regression builds on parametric regression models by allowing
for more flexible relationships between the predictors and response variables. For
example, the impact of alcohol consumption on heart disease risk may be U-shaped.
Semiparametric regression accommodates this type of relationship. Examples of
semiparametric regression include generalized additive models, additive mixed
models, and spatial smoothing. R now has a great deal of semiparametric regression
functionality. However, many of these developments have not trickled down to rank-
and-file statistical analysts. This book helps to close the gap between the available
methodology and their use in practice.

Semiparametric regression research continues to progress at a rapid pace, with
R as the dominant computing environment. Many semiparametric regression papers
now include R code or a reference to publicly available R packages. Mixed model
and hierarchical Bayesian representations of semiparametric regression models
mean that packages for general mixed model analyses and Bayesian inference also
play an important role in contemporary semiparametric regression.

We have assembled a broad range of semiparametric regression R analyses and
put them in a form that is useful for applied researchers. Where feasible, we provide
R code in the text. Full code for all examples is contained in scripts within the R
package HRW that accompanies this book.

For their detailed checking and generous feedback during the book’s final
production phase, we thank Alex Asher, Ray Carroll, Eli Kravitz, and Tianying
Wang. In addition, we are grateful for the help received from Brian Caffo, Bob
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Carpenter, Ciprian Crainiceanu, Andrew Gelman, Trevor Hastie, Giles Hooker, Hon
Hwang, Chris Jones, Cathy Lee, Yang Liu, Thomas Lumley, Marianne Menictas,
Fabian Scheipl, Kunlaya Soiaporn, Yi Su, Elizabeth Sweeney, Julie Vercelloni,
Naisyin Wang, Simon Wood, Luo Xiao, Thomas Yee, James Yu, and Vadim
Zipunnikov.
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Chapter 1
Introduction

1.1 Semiparametric Regression

Regression is used to understand the relationships between predictor variables and
response variables and for predicting the latter using the former. In parametric
regression, the effect of each predictor has a simple form, for example, is a linear or
exponential function, so that its overall shape is dictated by the model, not the data.
In contrast, with nonparametric regression the model is flexible enough to allow any
smooth trend in the data; see Fig. 1.1 for an example. Semiparametric regression
combines parametrically modeled effects for some predictors with nonparametric
modeling of the effects of the other variables.

Because of its flexibility, semiparametric regression has proven to be of great
value in many applications in fields as diverse as astronomy, biology, medicine,
economics, and finance. Using semiparametric regression models, one can extract
important information from often messy datasets. An introduction to the field can
be found in the book Semiparametric Regression by Ruppert et al. (2003) and its
follow-up survey article, Ruppert et al. (2009).

1.2 The R Language

R (R Core Team 2016) is a major computing programming language for statistical
methodology. The emergence of R around the start of mainstream Internet usage in
the mid-1990s leads to a revolution of sorts and has allowed statistical methodolo-
gists from around the world to share their code much more easily than ever before,
using the so-called packages. The primary website for R is the Comprehensive
R Archive Network (cran.r-project.org) and contains the latest version of R
and thousands of packages. Familiarity with R is assumed throughout this book.
A reader with no such familiarity should first consult some of the numerous R

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Harezlak et al., Semiparametric Regression with R, Use R!,
https://doi.org/10.1007/978-1-4939-8853-2_1
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Fig. 1.1 Area/price ratio versus construction date for the Warsaw apartment data in the data frame
WarsawApts within the R package HRW. The curve is an estimate of the mean area/price ratio
given the construction date. The shaded region indicates approximately 95% pointwise confidence
intervals.

tutorials and notes that are available on the Internet, including on the Comprehensive
R Archive Network.

1.3 Some Examples

To illustrate features of semiparametric regression, in this chapter we discuss one
dataset taken from each of the subsequent chapters. Table 1.2 at the end of the
chapter describes all datasets used in this book.

1.3.1 Warsaw Apartments

The Warsaw apartments dataset is used throughout this book’s early chapters to
illustrate the most fundamental semiparametric regression models. It contains data
on several variables for 409 apartments sold in the city of Warsaw, Poland, during
2007–2009. The data are stored in the data frame WarsawApts within the R
package, HRW, that accompanies this book. This data frame is a subset of one named
apartments in the R package PBImisc (Biecek 2014). The full description of
apartments can be found in the PBImisc package’s help files.



1.3 Some Examples 3

A question of interest is how the ratio of floor area to price depends on the
construction date. The basic unit of currency in Poland is the złoty. Figure 1.1
contains a plot of area per million złoty versus construction date with a nonpara-
metric regression function estimate and variability bands which have approximately
95% pointwise confidence interval validity. “Pointwise” means that there is a 95%
coverage probability at each value of the predictor. We see from Fig. 1.1 that there is
an interesting nonlinear relationship between area/price ratio and construction date.
The first three turning points in the mean function correspond to major events in
Warsaw’s history: (1) the German invasion of 1939, (2) the end of World War II and
beginning of communist rule in 1945, and (3) the start of martial law in 1981. During
communist rule building quality declined. Hence buildings constructed in 1975
have a larger mean area/price ratio compared with those constructed before 1940.
Poland became a democracy in 1989 and around 2000 pre-war building quality was
restored. In Chap. 2, we use the WarsawApts dataset to illustrate the basic concepts
of semiparametric regression modeling.

Another question of possible interest is “Are there differences between districts of
Warsaw in terms of how construction date impacts the area/price ratio?” Figure 1.2
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Fig. 1.2 The same data as shown in Fig. 1.1 but broken down according to the district in Warsaw
in which each apartment is located. The curve in each panel is an estimate of the mean area/price
ratio given the construction date for that district treated separately. The shaded regions indicate
approximately 95% pointwise confidence intervals.
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plots the data of Fig. 1.1 broken down according to district. This plot uses graphics
supported by the R package lattice (Sarkar 2017). The regression function
estimates and approximate pointwise confidence intervals are obtained individually
for each district. Some differences among the districts are apparent. For example,
the Mokotow curve is higher than that for Srodmiescie—the latter being the central
business district of Warsaw. This suggests that buyer’s get more floor space for their
money in Mokotow than Srodmiescie for apartments built around the same time.

1.3.2 Boston Mortgage Applications

Generalized additive models (GAMs) are useful when there are several predictors
each having a nonlinear effect. In GAMs, the linear predictor is a sum of nonpara-
metrically modeled functions of univariate predictors. GAMs are covered in Chap. 3.

We illustrate GAMs using a dataset concerning mortgage applications in Boston,
USA, during the years 1997–1998. The data frame BostonMortgages in the
HRW package contains data on several variables concerning 2380 applications.
BostonMortgages is a subset of the Hdma data frame in the package Ecdat

(Croissant 2016). This name “Hdma” is an apparent typographic error and should be
Hmda, which stands for “Home Mortgage Disclosure Act.” We selected a subset of
the predictors and deleted cases with missing values to create this smaller dataset.
The response of interest is deny, the status of the mortgage application which is
coded as “yes” when the mortgage application was denied and “no” otherwise. We
are interested in developing a regression model for the probability that a mortgage
application is denied.

Figure 1.3 is a visual display of the data in which the variable of primary interest,
indicator of mortgage application denied, is plotted against the 12 other variables
in BostonMortgages. The yes/no variables are coded as 0 = no and 1 = yes. To
aid visualization, jittering has been applied to the variables that take discrete values.

There are 12 possible predictors but, for now, we concentrate on the predictor
ratio of the debt payments to total income which is shortened to debt payments
to income ratio in Fig. 1.3. The curve in Fig. 1.4 shows that the probability
that a mortgage is denied is decreasing in the range from 0 to 0.3 of the debt
payments to income ratio and is increasing after 0.3. The shaded region has a
pointwise approximate 95% confidence interval interpretation. In Sect. 3.3.3, we
will incorporate additional predictors that feature in Fig. 1.3.

Munnell et al. (1996) investigated whether race was a factor in the denial of
mortgage applications after adjustment for the other variables. The variable black

is the indicator of Black or Hispanic ethnicity. In Chap. 3 we investigate the effect of
black using semiparametric regression to adjust for possible confounding variables.
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Fig. 1.3 Plots of indicator of a mortgage application denied against the other variables in the data
frame BostonMortgages within the R package HRW. The yes/no variables are coded: 0 = no and
1 = yes. To aid visualization, jittering has been applied to the discrete variables data.
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Fig. 1.4 Estimated probability of mortgage denial as a function of the debt payments to income
ratio based on the data shown in the top-left panel of Fig. 1.3. The blue circles show the data
with jittering of the response values to aid visualization. The shaded region is an approximate
95% confidence band. This fit was obtained using the gam() function in the R package mgcv;
see Chap. 3. Of the 2380 mortgage applications, 5 have debt payments to income ratios between
1.16 and 1.42 and one has a debt payments to income ratio of 3. These cases were used during
estimation but, to focus attention on the majority of the cases, they are not shown in the plot.

Table 1.1 Cross-tabulation
of adolescents by gender and
race in the Indiana adolescent
growth dataset.

Black White

Female 30 70

Male 28 88

1.3.3 Indiana Adolescent Growth Data

The Indiana adolescent growth data were obtained from a study of the mechanisms
of human hypertension development conducted at the Indiana University School of
Medicine, Indianapolis, USA, that started in the 1980s and is still continuing. Pratt
et al. (1989) contains a full description of the study. The data are from a longitudinal
study and are a special case of grouped data, which is the topic of Chap. 4.

The Indiana adolescent growth dataset is stored in the data frame named
growthIndiana in the HRW package. Note that growthIndiana is restricted to
the subset of 216 adolescents in the original study who had at least nine height
measurements. Table 1.1 is a cross-tabulation of the adolescents by race and gender.

Figure 1.5 shows the entire dataset using lattice graphics in R. The panels in
Fig. 1.5 plot height against age for each of the 216 adolescents, with color-coding
according to gender/race status. Such data are often referred to as growth curves. It is
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Fig. 1.5 The Indiana adolescent growth data stored in the data frame growthIndiana in the R
package HRW. Each panel plots height (centimeters) against age (years) for each of 216 adolescents.
Color-coding is used to indicate combined gender/race status.

not easy to fit these data using common parametric models. An additional challenge
arises from proper accounting for dependencies between measurements on the same
adolescent.

Comparison of growth between the gender and race categories is often of interest
and will be studied in Chap. 4. Figure 1.6 is a different lattice graphics plot
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Fig. 1.6 The same data as shown in Fig. 1.5 but with the panels corresponding to the four
gender/race combinations.

of the same data shown in Fig. 1.5 but with the panels corresponding to the four
gender/race combinations. This better enables cross-category comparisons. For
example, black males between 15 and 20 years of age tend to be taller than black
females in the same age bracket.

To give a flavor of semiparametric regression analyses of interest for such data,
described in Chap. 4, Fig. 1.7 shows two estimated contrast functions in which males
and females are compared within their own race categories. The estimates and
variability bands are based on a Bayesian semiparametric regression model with
approximate inference achieved via Markov chain Monte Carlo sampling facilitated
by the R package rstan (Guo et al. 2017). This approach is introduced in Sect. 2.10.

From Fig. 1.7 we see that there is little difference, statistically, between males
and females up to the age of 12. After that males are significantly taller, with the
gap bigger for the black race than it is for the white race. There is more variability
in the black race contrast function since it is based on fewer observations—only
about a quarter of the subjects in the study are black.
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Fig. 1.7 Estimated contrast functions and approximate pointwise 95% credible sets based on
a Bayesian semiparametric regression model fitted to the data shown in Figs. 1.5 and 1.6.
Approximate Bayesian inference, based on Markov chain Monte Carlo, was performed using the
R package rstan.

1.3.4 Sydney Real Estate Data

The Sydney real estate data were collected as a part of an unpublished study by A.
Chernih and M. Sherris at the University of New South Wales, Australia. The data
consist of 39 variables on 37,676 houses sold in Sydney, Australia, during the year
2001 and are stored in the data frame SydneyRealEstate in the HRW package.

Of central interest is the nature of the dependence of house prices on the
other variables. Figure 1.8 depicts some of the individual dependencies through
scatterplots of the logarithm of sale price against 8 of the potential predictors.
For example, the top-left panel in Fig. 1.8 shows the intuitively obvious positive
correlation between price and lot size. Underneath that, distance to the coastline is
seen to have a negative impact on price.

Figure 1.9 shows the average log-prices on a 50 × 50 equal-sized geographical
mesh. A strong spatial effect is apparent. The higher-priced areas tend to be near
Sydney’s waterways and ocean front. Rather than estimating univariate regression
functions a bivariate function of longitude and latitude seems to be appropriate to
model the behavior exhibited in Fig. 1.9. The bivariate extension of semiparametric
regression analysis is dealt with in Chap. 5.
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Fig. 1.8 Plots of logarithm of sale price (dollars) against some of the other variables in the data
frame SydneyRealEstate within the R package HRW. To aid visualization, a 10% random subset
of the data is used in the plots.
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Fig. 1.9 The spatial variation in log price of the houses sold in Sydney, Australia, during 2001
based on the dataset SydneyRealEstate within the R package HRW. The averaging was done on
a 50 by 50 rectangular longitude by latitude pixel mesh. The pixels where no data were recorded
are left blank. Data are present in only 836 out of 2500 pixels.

1.3.5 Michigan Panel Study of Income Dynamics Data

The scatterplot on the left panel of Fig. 1.10 is household income excluding income
from the wife’s work versus the wife’s age for 3382 households in the year 1987.
These data are part of a much larger dataset from the Michigan Panel Study of
Income Dynamics (e.g. Lee 1995). The 1987 cross-section is in the data frame
Workinghours in the R package Ecdat.

A question of interest is the impact of wife’s age on other household income
but, unlike the situation in Fig. 1.1, the response variable here is highly skewed
and includes some strong positive outliers. The methodology used to fit the mean
response curve to the Fig. 1.1 scatterplot is not appropriate for the Fig. 1.10 scatter-
plot and the conditional mean function is not necessarily a good way of summarizing
the response/predictor relationship. Instead we use conditional quantile functions.
The right panel shows the 1, 5, 25, 50, 75, 95, and 99% estimated quantiles of other
household income conditional on the wife’s age. This plot allows appreciation for
the effect of the predictor on the response in a different way than Fig. 1.1 and is
more appropriate for such a skewed and outlier-ridden response variable.

The Workinghours data frame has data on several other variables such as
education level of the wife, occupation of the husband, and number of children
in the household. In Chap. 6 we explore semiparametric quantile regression models
that incorporate multiple predictor effects.
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Fig. 1.10 Left panel: Household income from sources other than the wife’s work (thousands
of U.S. dollars) versus wife’s age (years). Right panel: Zoomed view of left panel plot with
restriction to households for which other income does not exceed $250,000. The curves correspond
to nonparametric quantile function estimates with color-coding for the level of the quantile. The
estimates were obtained using the function rqss() in the R package quantreg.

1.3.6 All of the Datasets Used in This Book

Table 1.2 lists and briefly describes each of the datasets used in this book, and the
sections in which they are analyzed.

1.4 Aim of This Book

Semiparametric regression is a major area of methodological development and is
being used widely in applications. See, for example, Ruppert et al. (2009) for
a summary of the state of affairs in the late 2000s. Nevertheless, we believe
that semiparametric regression should be used even more widely by applied
researchers and that ongoing contributions to the R computing environment make
this increasingly easier. The aim of this book is to demonstrate how semiparametric
regression analyses can be carried out with only minimal knowledge of R. We do not
get into the intricacies of semiparametric regression methodology and its underlying
theory. Instead, our focus is implementation in R.

Relevant R packages include gamlss (Stasinopoulos and Rigby 2017), nlme
(Pinheiro et al. 2017), mgcv (Wood 2017), quantreg (Koenker 2017), refund
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Table 1.2 Datasets used in this book and sections where they are analyzed.

R data frame (package) Brief description Sections

WarsawApts (HRW) Apartments sold in Warsaw, 1.3,

Poland, during 2007–2009 2.2–2.10

2.12, 3.6

BostonMortgages (HRW) Mortgage applications of resi- 1.3, 3.2

dents of Boston, USA 3.3, 3.6

growthIndiana (HRW) Longitudinal heights of adoles- 1.3, 4.3

cents in Indiana, USA

SydneyRealEstate (HRW) Real estate sold in Sydney, 1.3, 5.3

Australia, during 2001

Workinghours (Ecdat) Income and attributes of 1.3, 6.2

households in Michigan, USA

OFP (Ecdat) Physician visits and attributes 3.2, 3.3

of elderly USA residents

Caschool (Ecdat) School test scores and attri- 3.3, 3.4

butes in California, USA 3.4.2, 3.5

femSBMD (HRW) Longitudinal spinal bone mineral 4.2, 5.7

density in the USA adolescents

protein (HRW) Longitudinal protein intake 4.4

from a USA nutrition study

indonRespir (HRW) Longitudinal respiratory infection 4.5

status of children in Indonesia

ozoneSub (HRW) Ozone concentrations in the 5.2

midwest region of the USA

capm (HRW) Daily USA stock returns 5.4

and indices during 1993–2003

gasoline(refund) Near infrared spectra and octane 5.6

numbers for gasoline samples

brainImage (HRW) Brain image coronal slice 5.8

DTI (refund) Diffusion tensor imaging data 6.3

tecator (fda.usc) Content of meat samples 6.3, 6.5

yields (HRW) Yield curves 6.6

carAuction (HRW) Attributes of auction-bought cars 6.7

PimaIndiansDiabetes Diabetes status and attributes 6.8

(mlbench) of the USA study of Pima Indians

BCR (HRW) Mental health scores from 6.8

a drug/placebo clinical trial

CHD (HRW) Coronary heart status and 6.8

attributes from a U.S. study

coral (HRW) Alive/death status of coral 6.9

organisms in French Polynesia

Ozone (mlbench) Daily ozone levels and weather 6.9

Los Angeles area during 1976

Datasets used in exercises only are not listed here but can be found in the index
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(Goldsmith et al. 2016), rstan (Guo et al. 2017), and VGAM (Yee 2017). The index
has the full list of packages mentioned in the book. Our intention is to describe in a
straightforward way the relevant steps needed to conduct semiparametric regression
analyses using R packages such as these.

This book will be useful to anybody who has a basic knowledge of R and is
interested in exploring and modeling data where simple parametric assumptions are
not realistic. Biostatisticians, data analysts, econometricians, and social scientists
should find this book of special interest. We expect that the material presented
here will be accessible to any reader who has taken courses in linear regression
and generalized linear models. To fully appreciate Bayesian model fitting, an
introductory course in Bayesian inference will be helpful.

In Chap. 2 we give a detailed account of the main semiparametric regres-
sion building block: penalized splines. Chapter 3 covers the important family of
semiparametric regression models known as generalized additive models. Then
in Chap. 4 we deal with extensions to grouped data, which includes longitudinal,
multilevel, panel, and small area data as special cases. Chapter 5 is concerned
with bivariate extensions of penalized splines and spatial semiparametric regression
models. The last chapter, Chap. 6, is a collection of additional topics such as building
in robustness and accounting for missing observations in semiparametric regression
analysis.



Chapter 2
Penalized Splines

2.1 Introduction

In this chapter, we study nonparametric regression with a single continuous
predictor. This problem is often called scatterplot smoothing. Our emphasis is on
the use of penalized splines. We also show that a penalized spline model can be
represented as a linear mixed model, which allows us to fit penalized splines using
linear mixed model software. In R the most relevant packages are mgcv (Wood
2017), which supports a wide range of semiparametric regression models, nlme
(Pinheiro et al. 2017) which supports the mixed model approach and rstan (Guo
et al. 2017) which supports the Bayesian approach. Detailed R scripts for the
examples presented in this book are in the HRW package (see semiparametric-

regression-with-r.net).

2.2 Penalized Spline Basics

Penalized spline smoothing is a simple way of fitting a curve to a scatterplot and
is a major building block for semiparametric regression. For now we focus on the
nonparametric regression model

yi = f (xi) + εi, 1 ≤ i ≤ n, (2.1)

for predictor/response pairs (xi, yi). Here f is a smooth but otherwise arbitrary
function and the errors, εi , are independent random variables such that E(εi) = 0.
A simple penalized spline model for f is

f (x) = β0 + β1 x +
K∑

k=1

uk (x − κk)+ (2.2)

© Springer Science+Business Media, LLC, part of Springer Nature 2018
J. Harezlak et al., Semiparametric Regression with R, Use R!,
https://doi.org/10.1007/978-1-4939-8853-2_2
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where x+ ≡ max(x, 0) for any x ∈ R and the κks, 1 ≤ k ≤ K , are pre-set values,
usually taken to be approximately equally spaced with respect to the quantiles of the
xis. We will discuss choice of K in Sect. 2.4 but it is usually set to a number between
about 10 and 50. Functions of the form (2.2) are piecewise lines “tied together” at
the κks and, for this reason, the κks are called knots. The coefficients β0, β1 and uk ,
1 ≤ k ≤ K , are chosen according to the constrained optimization problem

minimize
n∑

i=1

{yi − f (xi)}2 subject to
K∑

k=1

u2
k ≤ C (2.3)

for some C > 0. An equivalent optimization problem is

minimize

[
n∑

i=1

{yi − f (xi)}2 + λ

K∑

k=1

u2
k

]
(2.4)

which is known as penalized least-squares, with λ ≥ 0 labeled the smoothing
parameter. The fitted function is

f̂ (x; λ) = β̂0 + β̂1 x +
K∑

k=1

ûk (x − κk)+

where the hatted coefficients are obtained from (2.4). The effect of λ on f̂ (·; λ) and
strategies for choosing its value are described in Sect. 2.3.

The upper panel of Fig. 2.1 shows the penalized spline fit to

xi = year of construction of ith apartment

and yi = area (square meters) per million złoty of the ith apartment

for 1 ≤ i ≤ 409 from the Warsaw apartment data introduced in Sect. 1.3.1, stored
as WarsawApts in the R package HRW. The smoothing parameter is λ = 100 and the
knots are placed at

κk =
(

k + 1

K + 2

)
th sample quantile of the unique xis

with K = 20. The corresponding spline basis functions (x − κk)+, 1 ≤ k ≤ 20, are
shown in the lower panel.

Even though the truncated line basis is simple and intuitive, it has some
disadvantages: (a) regression function fits have artificial kinks due to the restriction
that f is piecewise linear, and (b) the basis functions are unbounded and far from
orthogonal, which can lead to numerical problems. These shortcomings have been
long recognized in numerical analysis and have resulted in the development of
smoother and more stable spline bases. Increased smoothness can be achieved quite
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Fig. 2.1 Upper panel: Penalized spline fit to the Warsaw apartments running example regression
dataset based on (2.2) with λ = 100 and K = 20. The locations of the knots, κk , are shown by the
purple diamonds. Lower panel: the truncated line spline basis functions (x − κk)+, 1 ≤ k ≤ 20.

easily—by working with {(x − κk)+}p instead of (x − κk)+ for integers p > 1.
The basis functions, and hence the fits, are such that their (p − 1)th derivatives
are continuous. The most popular choice is p = 3, which leads to piecewise cubic
fits with continuous second derivatives. Numerical stability is achieved via linear
transformation of truncated polynomial bases with B-splines (e.g. de Boor 2001)
being the standard choice (Exercise 1). As explained in the Chap. 5 appendix of
Hastie et al. (2009), additional modifications can be made near the boundaries to
achieve good linear extrapolation properties. Further linear transformation, detailed
in Sect. 4 of Wand and Ormerod (2008), is required to ensure that the simple
penalized least-squares form (2.4) is appropriate for the spline basis coefficients.
The upshot of all of this is replacement of (2.2) by

f (x) = β0 + β1 x +
K∑

k=1

uk zk(x) (2.5)

where the zk , 1 ≤ k ≤ K , are new and improved spline basis functions. For reasons
given later in this section, we call the zk cubic O’Sullivan splines. Figure 2.2 is
analogous to Fig. 2.1 but with the (x−κk)+ replaced by zk(x) with knots at the same
locations. The bottom panel is a vertically zoomed version of the middle panel.
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Fig. 2.2 Top panel: Penalized spline fit to the Warsaw apartments running example regression
dataset based on (2.5) with λ = 100 and K = 20. The locations of the knots, κk , are shown by the
purple diamonds. Middle panel: the cubic O’Sullivan spline basis functions zk(x), 1 ≤ k ≤ 22.
Bottom panel: A zoomed view of the middle panel plot with the vertical range restricted to −2
to 2.

Unlike truncated lines, the zk functions do not have simple mathematical
expressions. The function ZOSull() in the R package HRW supports the evaluation
of zk(x) for arbitrary arguments x within a prespecified range. Specifically, the zk ,
1 ≤ k ≤ K , are defined with respect to range values a and b and interior knots
ξ1, . . . , ξK−2 for some positive integer K such that

a < ξ1 < · · · < ξK−2 < b.

Once these are specified, then zk(x) is defined for all a ≤ x ≤ b, but not for x

outside of the interval [a, b]. Usage of ZOSull() is illustrated by the following
code, which produces the middle panel of Fig. 2.2:
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> library(HRW); data(WarsawApts)

> x <- WarsawApts$construction.date

> a <- 1.01*min(x) - 0.01*max(x)

> b <- 1.01*max(x) - 0.01*min(x) ; numIntKnots <- 20

> intKnots <- quantile(unique(x),seq(0,1,length =

+ (numIntKnots+2))[-c(1,(numIntKnots+2))])

> xg <- seq(a,b,length = 1001)

> Zg <- ZOSull(xg,range.x = c(a,b),intKnots = intKnots)

> plot(0,type = "n",xlim = range(xg),ylim = range(Zg),

+ bty = "l",xlab = "construction date (year)",

+ ylab = "spline basis function")

> for (k in 1:ncol(Zg)) lines(xg,Zg[,k],col = k,lwd = 2)

> lines(c(min(xg),max(xg)),rep(0,2),col = "darkmagenta")

> for (k in 1:numIntKnots)

+ points(intKnots[k],0,pch = 18,cex = 2,col = "darkmagenta")

The object Zg is a 1001 × 22 matrix with kth column containing zk evaluated over
an equally spaced grid of length 1001 between a = 1929.22 and b = 2008.78.

O’Sullivan penalized splines also have the attraction of being a natural general-
ization of smoothing splines (e.g. Green and Silverman 1994). Smoothing splines,
parameterized by λ > 0, arise as the solution to the optimization problems

minimize

[
n∑

i=1

{yi − f (xi)}2 + λ

∫ ∞

−∞
f (m)(x)2 dx

]
(2.6)

over all functions f . The integral in (2.6) is known as a roughness penalty. For
m = 2, the solution to (2.6) is a linear combination of approximately n cubic basis
functions with knots at the xis. O’Sullivan (1986) provides a representation of the
solution in terms of cubic B-splines. Since the number of basis functions grows
with the sample size, so does the computational overhead of fitting a smoothing
spline. On the other hand, penalized splines with an O’Sullivan spline basis are
barely affected by high sample sizes and, for reasonable choices of K , are very
good approximations to smoothing splines. Because of the several attractive features
of O’Sullivan penalized splines, we will use them as the default for the remainder
of this book. From now on, a penalized spline estimate is assumed to use a cubic
O’Sullivan spline basis unless we say otherwise.

The R function smooth.spline() is so-named because it fits a smoothing
spline to the input data. However, its default is to use the O’Sullivan penalized spline
approximation when the sample size exceeds 50. The R code

> library(HRW); data(WarsawApts)

> x <- WarsawApts$construction.date

> y <- WarsawApts$areaPerMzloty

> fitSS <- smooth.spline(x,y,spar = 0.56)
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leads to a fit that is similar to that shown in the top panel of Fig. 2.2. The spar

in smooth.spline() is a monotonically increasing transformation of λ that is
described in this function’s help pages.

The choice of K and positioning of the interior knots have a relatively minor
effect on the fit. For most signals that arise in practice, including all examples in
this book, K = 35 O’Sullivan spline basis functions is sufficient. In keeping with
smoothing splines, a good default for the interior knots is

ξk =
(

k

K − 1

)
th sample quantile of the unique xis, 1 ≤ k ≤ K − 2.

An in-depth discussion on choosing K and formally checking whether a particular
K is adequate is given in Sect. 2.4.

In contrast to K , the value of λ has a very big influence on the penalized spline
fit. This is illustrated in Fig. 2.3 which shows four fits to the same data as in Figs. 2.1
and 2.2 with different values of λ.

The upper left panel of Fig. 2.3 has a very small λ and is close to an ordinary least-
squares fit. Since the basis functions are so numerous and wiggly, a high degree of
overfitting is observed. Setting λ = 100 leads to a more pleasing fit. If λ is made
very large, as in the lower two panels of Fig. 2.3, then the spline basis functions have
too little an influence and the fit becomes close to the ordinary least-squares line.
We next explain how a good λ value can be selected using the data.
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Fig. 2.3 Four penalized spline fits to Warsaw apartments running example regression dataset
based on (2.5) with the smoothing parameter λ set to a different value in each panel. The number
of spline basis functions is K = 35.
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2.3 Choosing the Smoothing Parameter

Figure 2.3 shows that λ has a profound impact on the resultant penalized spline.
Choosing λ by eye is one possibility and, as discussed in the previous section,
λ = 100 looks about right. However, an objective means of choosing the smoothing
parameter is desirable for a number of reasons. These include reproducibility, users
with varying degrees of experience and high throughput settings where very many
nonparametric regressions need to be performed and human involvement is not
feasible. There now exist several data-based algorithms that aim to select λ so that
the fit is optimal in some sense. We will not get into the technicalities of what it
means for a nonparametric regression estimate to be optimal here. Chapter 5 of
Ruppert et al. (2003), for example, provides details on this issue.

Two of the main penalized spline functions in R, smooth.spline() and gam()

in the mgcv package, select λ from the data using a method known as generalized
cross-validation (GCV) (Craven and Wahba 1979). The mathematical details of
GCV are given in Sect. 2.6 but the salient feature to note here is that it produces
an estimate of a theoretically optimal λ that depends only on the regression data
(xi, yi), 1 ≤ i ≤ n. We denote this estimate by λ̂GCV.

The following code illustrates penalized spline smoothing with λ chosen auto-
matically via GCV:

> library(HRW); data(WarsawApts)

> x <- WarsawApts$construction.date

> y <- WarsawApts$areaPerMzloty

> fitSSauto <- smooth.spline(x,y) ; print(fitSSauto)

This leads to the output:

Call:

smooth.spline(x = x, y = y)

Smoothing Parameter spar= 0.4977603 lambda= 8.835914e-05

(11 iterations)

Equivalent Degrees of Freedom (Df): 15.56644

Penalized Criterion (RSS): 18509.75

GCV: 322.2859

showing that the amount of smoothing has been chosen automatically via GCV.
The spar= 0.4977603 and lambda= 8.835914e-05 represent monotone trans-
formations of the λ parameter used in Sect. 2.2 and explanations are produced by
help(smooth.spline). The line GCV: 322.2859 indicates the minimum of the
GCV criterion function, which is given by (2.9) in Sect. 2.6.

GCV is also used for default smoothing parameter choice by the function gam()

in the R package mgcv (Wood 2017). Even though the primary aim of gam() is to
support sophisticated multi-predictor models, as discussed in Chap. 3, it supports
nonparametric regression via penalized splines as a special case. The code:
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> library(mgcv) ; fitGAMauto <- gam(y~s(x,bs = "cr",k = 52))

> print(fitGAMauto)

mimics the default call to smooth.spline() given above by using a similar type of
basis (bs = "cr") and number of basis functions (k = 52). Note that the argument
k in the function s() corresponds to K + 2 in our notation since k is the total
number of basis functions including those for the linear component. The resultant
output is:

Family: gaussian

Link function: identity

Formula:

y ~ s(x, bs = "cr", k = 52)

Estimated degrees of freedom:

14.6 total = 15.58

GCV score: 322.2575

Notice that GCV score: 322.2575 is relatively close to that obtained from
smooth.spline() above. The total Estimated degrees of freedom is 15.58
which is also close to the Equivalent Degrees of Freedom value of 15.56644
in the smooth.spline() output. These are λ-dependent measures of the model
complexity that this book calls effective degrees of freedom and are explained in
Sect. 2.6.

The two GCV-based penalized spline fits are plotted in Fig. 2.4. As one might
expect, the curves are virtually indistinguishable.

Choosing λ equal to λ̂GCV leads to a pleasing nonparametric regression fit in this
example. Note, however, that λ̂GCV is an estimator of the theoretically optimal λ and,
hence, is susceptible to estimation error. Therefore, λ̂GCV may not always lead to such
a good fit, especially in high noise situations (e.g. Härdle et al. 1988).

2.4 Choosing the Basis Size

The number of spline basis functions, K , is not as crucial as the smoothing
parameter. However, a choice still has to be made. Assuming uniqueness of the
predictor values, smoothing splines defined by (2.6) choose K ≈ n. This has the
advantage of catering for arbitrarily wiggly signals and, for this reason, much of the
classical smoothing spline literature (e.g. Wahba 1990) is confined to this K ≈ n

situation. In R the call:

> fitClassicSS <- smooth.spline(x,y,all.knots = TRUE)

achieves such a regression fit with GCV smoothing parameter selection. However,
what has become known as the low-rank alternative (e.g. Hastie 1996) where K �



2.4 Choosing the Basis Size 23

1940 1960 1980 2000

60
80

10
0

12
0

14
0

16
0

18
0

construction date (year)

ar
ea

 (s
qu

ar
e 

m
et

er
s)

 p
er

 m
ill

io
n 

zl
ot

y
smooth.spline()
gam()

Fig. 2.4 Penalized spline fit to the Warsaw apartments running example regression dataset
obtained from the default calls to the function smooth.spline() and gam(). In each case, the
smoothing parameter is chosen according to generalized cross-validation.

n for large n, has a number of practical advantages: (a) the computations do not
become too burdensome with very large sample sizes, (b) it is more amenable to
mixed model and Bayesian representations, and (c) extension to complicated models
such as those involving multiple predictors is more straightforward. In addition, if
the signal is not overly wiggly, then low-rank O’Sullivan penalized splines are very
close to classical smoothing splines for values of K that are much smaller than n

(e.g. Li and Ruppert 2008; Wand and Ormerod 2008; Kauermann et al. 2009). For
signals that typically arise in applications K ≈ 35 will often be more than enough.
The R commands:

> library(mgcv) ; help(choose.k)

give more discussion on this topic (Wood 2017).
There is a small literature on automatic choice of K from the data for penalized

spline regression and includes, for example, Ruppert (2002) and Kauermann and
Opsomer (2011). While such procedures are reasonably simple to implement in R,
they are not part of any of the main semiparametric regression packages. Instead
we will describe choice of K via the function gam.check() in the mgcv package
(Wood 2017), which performs a hypothesis test for the adequacy of the number of
spline basis functions in a gam() fit. The test, based on the so-called k-index, is
explained in the gam.check() help page. A fuller description is in Pya and Wood
(2016). For example, if we obtain the default gam() fit with cubic O’Sullivan splines
using:
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> library(mgcv) ; library(HRW) ; data(WarsawApts)

> x <- WarsawApts$construction.date

> y <- WarsawApts$areaPerMzloty

> fitGAMdefault <- gam(y~s(x,bs = "cr"))

then the command:

> gam.check(fitGAMdefault)

leads to the following output:

Method: GCV Optimizer: magic

Smoothing parameter selection converged after 6 iterations.

The RMS GCV score gradient at convergence was 0.0002739156.

The Hessian was positive definite.

Model rank = 10 / 10

Basis dimension (k) checking results. Low p-value (k-index<1)

may indicate that k is too low, especially if edf is close

to k'.

k' edf k-index p-value

s(x) 9.00 8.05 0.95 0.17

Note that ten basis functions are used in the fit, including two basis functions for the
linear component. Hence, the fit uses K = 8 spline basis functions. The combination
of low p-value, edf being close to k’ and k-index less than 1 is a cause for
concern and indicates that a higher number of spline basis functions is needed. A
gam.check() of the K = 50 fit demonstrated in Sect. 2.3:

> fitGAM50splines <- gam(y~s(x,bs = "cr",k = 52))

> gam.check(fitGAM50splines)

leads to the output:

Method: GCV Optimizer: magic

Smoothing parameter selection converged after 6 iterations.

The RMS GCV score gradient at convergence was 0.004910069.

The Hessian was positive definite.

Model rank = 52 / 52

Basis dimension (k) checking results. Low p-value (k-index<1)

may indicate that k is too low, especially if edf is close

to k'.

k' edf k-index p-value

s(x) 51.0 14.6 1.01 0.53
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We see that K = 50 passes the k-index test with flying colors. Finally, a check that
K = 25 is also sufficient:

> fitGAM25splines <- gam(y~s(x,bs = "cr",k = 27))

> gam.check(fitGAM25splines)

Method: GCV Optimizer: magic

Smoothing parameter selection converged after 4 iterations.

The RMS GCV score gradient at convergence was 0.005054014.

The Hessian was positive definite.

Model rank = 27 / 27

Basis dimension (k) checking results. Low p-value (k-index<1)

may indicate that k is too low, especially if edf is close

to k'.

k' edf k-index p-value

s(x) 26 14 1.01 0.53

shows a similar k-index score and p-value.
Figure 2.5 shows each of the three fits. The lessons are: (a) the default K = 8

for gam() is too low and does not allow for the finer structure in the signal to be
recovered, (b) K = 25 is a much better choice and passes the k-index test, and (c)
for this particular signal there is no advantage in having more than 25 O’Sullivan
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Fig. 2.5 Illustration of the effect of K (the number of spline basis functions) on penalized splines
to the Warsaw apartments running example regression dataset.
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spline basis functions since the K = 25 low-rank approximation to the classical
smoothing spline is excellent and has less computational baggage than penalized
splines having many more basis functions.

2.5 Checking the Residuals

The examination of residuals is an important part of any regression analysis.
Residuals are used to check model assumptions and to locate outliers and other
potential problems with the data. Assuming model (2.1), the residual for the ith
case is yi − f̂ (xi).

In the previous two sections we have established that the choice

(K, λ) = (25, λ̂GCV)

is a good one for penalized spline fitting of the Warsaw apartments running
example regression dataset. As with ordinary least-squares regression, checks of the
residuals are in order for reasonableness of assumptions such as homoscedasticity
and normality. If a penalized spline fit is performed using the gam() function in the
mgcv package, then the gam.check() function applied to the gam() fit object (used
in the previous section to guide choice of K) also provides residual plots. The code:

> print(gam.check(fitGAM25splines))

leads to the plot shown in Fig. 2.6. The top left panel is a Normal quantile-quantile
plot and the bottom left panel is a histogram of the residuals. Both plots show a
mild departure from normality, specifically right skewness, but not enough to be
of a serious concern. The top right panel is a plot of residuals against fitted values
and indicates that the homoscedasticity assumption is reasonable. The bottom right
plot is of the response and the fitted values. The squared correlation between these
variables is known as R2.

Two additional residual plots are shown in Fig. 2.7 and generated by the R code:

> stdResids <- (residuals(fitGAM25splines)

+ /sqrt(summary(fitGAM25splines)$scale))

> par(mfrow = c(1,2),mai = c(1,1,0.1,0.1))

> plot(x,stdResids,col="dodgerblue",cex = 1.5,

+ xlab = "construction date (year)",

+ ylab = "standardized residuals",

+ cex.lab = 2,cex.axis = 2,bty="l",

+ ylim=c(-3,max(stdResids)))

> abline(h = 0,col = "slateblue")

> for (hVal in c(-3,-2,2,3))

+ abline(h=hVal,lty = 2,col = "slateblue")

> acf(stdResids[order(x)],col="darkgreen",cex.lab = 2,

+ cex.axis = 2,main="")
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Fig. 2.6 Residual plots for the gam(y ~ s(x,bs = "cr",k = 27)) penalized spline fit to the
Warsaw apartments running example regression dataset. These plots are obtained from the call to
the function gam.check() applied to the gam() fit object.
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The standardized residuals are obtained by dividing the ordinary residuals by
an estimate of their standard deviation. This is extracted from the fit object
fitGAM25splines via sqrt(summary(fitGAM25splines)$scale). The left
panel of Fig. 2.7 shows an approximately equal-width band with most of the resid-
uals between −3 and 3 and all between −4 and 4. The right panel is the estimated
autocorrelation function of the residuals, ordered according to construction date,
and has only one borderline significant spike. Taken together, Fig. 2.7 and the upper
left panel of Fig. 2.6 are indicative of good compatibility with the homoscedasticity,
independence, and normality assumption on the errors:

εi
ind.∼ N(0, σ 2

ε )

for the (K, λ) = (25, λ̂GCV) penalized spline fit obtained from the gam() function in
mgcv.

The generalized linear models and generalized additive models discussed in
Chap. 3 use a generalization of residuals called deviance residuals; see Sect. 3.2.
With model (2.1) assumed in this chapter, residuals and deviance residuals coincide.
The mgcv package uses the term “deviance residuals” for both ordinary residuals
and their generalization. In the same vein, the sum of the squared residuals, or
residual sum of squares, is a standard statistic used to assess the goodness-of-fit of
linear models as well as the penalized spline models in this chapter. As discussed in
Chap. 3, for generalized linear models and generalized additive models, the deviance
is the generalization of residual sum of squares. Note that the mgcv package uses
the term “deviance” for both residual sum of squares and its generalization.

2.6 Effective Degrees of Freedom

The smoothing parameter λ associated with penalized spline smoothing depends on
the units of measurement of the regression data. Therefore λ is not a meaningful
parameter in terms of the effect that it has on the penalized spline fit. For a given
fit, λ can be made as small or big as one pleases simply by changing the units
of measurement of the data. The effective degrees of freedom (e.g. Hastie and
Tibshirani 1990) is a monotone transformation of λ that overcomes this drawback.
Denoted by EDF(λ), it is a meaningful and scale-free measure of the complexity of
a penalized spline fit.

We need some algebra to derive the appropriate form of EDF(λ). First, define the
matrices

C ≡
⎡

⎢⎣
1 x1 z1(x1) · · · zK(x1)
...

...
...

. . .
...

1 xn z1(xn) · · · zK(xn)

⎤

⎥⎦ and D ≡
[

02×2 02×K

0K×2 IK

]
(2.7)
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where, for example, 02×2 is the 2 × 2 matrix of zeroes and IK is the K ×K identity
matrix. Straightforward algebra (Exercise 3) can be used to show that the vector of
fitted values of a penalized spline fit is

⎡

⎢⎣
f̂ (x1; λ)

...

f̂ (xn; λ)

⎤

⎥⎦ = C(CT C + λ D)−1CT y.

Under the nonparametric regression model (2.1) with the homoscedasticity condi-
tion Var(εi) = σ 2

ε , 1 ≤ i ≤ n, one can show that

n∑

i=1

Cov
(
f̂ (xi; λ), yi

) = σ 2
ε tr{(CT C + λ D)−1CT C}.

This suggests the definition

EDF(λ) ≡ 1

σ 2
ε

n∑

i=1

Cov
(
f̂ (xi; λ), yi

) = tr{(CT C + λ D)−1CT C} (2.8)

as a scale-invariant measure of the effective degrees of freedom possessed by
f̂ (·; λ). Note that

EDF(0) = number of columns in C

which shows that the effective degrees of freedom reduces to the number of
parameters being fit when there is no penalization.

Definition (2.8) is a widely used standard in semiparametric regression, including
R software. For example, the fit object from a call to smooth.spline() includes
the effective degrees of freedom as the $df list component. An illustration is:

> library(HRW); data(WarsawApts)

> x <- WarsawApts$construction.date

> y <- WarsawApts$areaPerMzloty

> fitSS <- smooth.spline(x,y,spar = 0.56)

> print(fitSS$df)

[1] 12.42063

showing that EDF(λ) is about 12.4 for this fit. A rough interpretation is that the
fit has the same complexity as an 11th degree polynomial ordinary least-squares
fit—the latter having exactly 12 (effective) degrees of freedom.

Figure 2.8 is a reproduction of Fig. 2.3 with λ replaced by EDF(λ). The fit in the
top left panel is close to the ordinary least-squares fit with 37 basis functions (since
K = 35) and this is reflected in an EDF value being close to this maximal value. At
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Fig. 2.8 The four penalized spline fits of Fig. 2.3 but with effective degrees of freedom (EDF)
values instead of smoothing parameter values.

the other end of the spectrum, the bottom right panel is close to the minimum EDF
value of 2, corresponding to the least-squares line.

Common automatic smoothing parameter selectors are simple functions of
EDF(λ) and the residual sum of squares (RSS):

RSS(λ) ≡
n∑

i=1

{yi − f̂ (xi; λ)}2.

For example, λ̂GCV discussed in Sect. 2.3 is the minimizer of

GCV(λ) ≡ RSS(λ)

{1 − EDF(λ)/n}2 . (2.9)

The denominator on the right-hand side of (2.9) guards against the RSS-minimizing
choice of λ = 0. Details are given in, for example, Sect. 5.3 of Ruppert et al. (2003).

There are several other ways by which EDF(λ) and RSS(λ) can be combined to
produce sensible smoothing parameter selection criteria. For example,

AIC(λ) ≡ log{RSS(λ)} + 2 EDF(λ)/n (2.10)



2.7 Mixed Model-Based Penalized Splines 31

is known as Akaike’s information criterion (AIC) (Akaike 1973). Yet another
criterion is corrected AIC (Hurvich et al. 1998) given by

AICC(λ) ≡ log{RSS(λ)} + 2{EDF(λ) + 1}
n − EDF(λ) − 2

.

The semiparametric regression literature is not in total agreement regarding the
definition of AIC for Gaussian response models. For example, Hastie et al. (2009)
use a definition of AIC that differs from (2.10). However, note that (2.10) matches
Akaike (1973) and the majority of the literature.

Finally, we note that criteria such as AIC and GCV have wider usage outside of
smoothing parameter selection for penalized splines. They are commonly used to
choose between competing models regardless of whether nonparametric regression
is involved. Hence, they are known as model selection criteria.

2.7 Mixed Model-Based Penalized Splines

An alternative penalized spline model is

yi = β0 + β1 xi +
K∑

k=1

uk zk(xi) + εi

where the spline coefficients, uk , 1 ≤ k ≤ K , are independent zero mean random
variables distributed independently of the εis. This is a special case of the linear
mixed model (e.g. Robinson 1991). If it is also assumed that

Var(uk) = σ 2
u , 1 ≤ k ≤ K, and Var(εi) = σ 2

ε , 1 ≤ i ≤ n, (2.11)

then the best linear unbiased predictor of f (x) exactly matches the penalized spline
estimator with smoothing parameter

λ = σ 2
ε /σ 2

u .

Details of this equivalence are given in Sect. 4.9 of Ruppert et al. (2003). We call
this construction mixed model-based penalized splines. As we will see throughout
this book, this representation of penalized splines is extremely useful.

If (2.11) is strengthened to

uk
ind.∼ N(0, σ 2

u ) and εi
ind.∼ N(0, σ 2

ε ) (2.12)

then restricted maximum likelihood (REML) estimation of the variance parameters,
σ 2

u and σ 2
ε , is supported by contemporary mixed model software and yields an
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alternative approach to automatic penalized spline smoothing (e.g., Sect. 4.5.4 of
Ruppert et al. 2003). Let

λ̂REML ≡ σ̂ 2
ε /σ̂ 2

u

denote the estimator of the optimal λ based on the REML estimators σ̂ 2
ε and σ̂ 2

u .
A matrix representation of the mixed model-based penalized spline with Gaus-

sian assumptions (2.12) is

y|u ∼ N(Xβ + Zu, σ 2
ε I ), u ∼ N(0, σ 2

u I ) (2.13)

where y is the n × 1 vector containing the yis,

X ≡
⎡

⎢⎣
1 x1
...

...

1 xn

⎤

⎥⎦ and Z ≡
⎡

⎢⎣
z1(x1) · · · zK(x1)

...
. . .

...

z1(xn) · · · zK(xn)

⎤

⎥⎦ (2.14)

are design matrices containing, respectively, the linear and spline basis functions of
the predictors, and

β ≡
[

β0

β1

]
and u ≡

⎡

⎢⎣
u1
...

uK

⎤

⎥⎦

are the corresponding coefficient vectors. In mixed model parlance, the entries of β

are called fixed effects and those of u are called random effects.
The R function lme() in the package nlme (Pinheiro et al. 2017) supports mixed

model-based penalized splines with restricted maximum likelihood smoothing
parameter selection. The following code provides illustration:

> library(HRW); data(WarsawApts)

> x <- WarsawApts$construction.date

> y <- WarsawApts$areaPerMzloty

> numIntKnots <- 23

> intKnots <- quantile(unique(x),seq(0,1,length=

+ (numIntKnots+2))[-c(1,(numIntKnots+2))])

> a <- 1.01*min(x) - 0.01*max(x)

> b <- 1.01*max(x) - 0.01*min(x)

> Z <- ZOSull(x,range.x = c(a,b),intKnots = intKnots)

> library(nlme)

> dummyID <- factor(rep(1,length(x)))

> fit <- lme(y ~ x,random = list(dummyID = pdIdent(~-1+Z)))

> betaHat <- fit$coef$fixed ; uHat <- unlist(fit$coef$random)

> sigsqepsHat <- fit$sigma^2

> sigsquHat <- as.numeric(VarCorr(fit)[1,1])
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The key command in this code chunk is the call to lme(). This function supports
best linear unbiased prediction and restricted maximum likelihood estimation
for a variety of linear mixed models, but geared towards grouped data settings.
To fit (2.13) for a general random effects design matrix as in (2.14) requires
some coercion. The object dummyID contains the full index set and random =

list(dummyID = pdIdent(~-1+Z)) forces all of the data to be in a single group
with a multiple of the identity matrix covariance matrix imposed the random effects.
The specification -1+Z ensures that a column of ones is not added to Z matrix—
which happens by default. Also, unlist(fit$coef$random) converts the object
fit$coef$random from an R list to an R array.

Note that the function gam() in the package mgcv uses lme() in this way when
method is set to "REML". Nevertheless it useful to know how lme() can be used
for fitting penalized splines since such knowledge aids extension to more elaborate
models, such as those described in Sect. 4.3, with user-specified design matrices.

The estimated variance parameters and their ratio are obtained as follows:

> outVec <- c(sigsqepsHat,sigsquHat,sigsqepsHat/sigsquHat)

> print(round(as.numeric(outVec),2))

[1] 317.09 1.46 217.75

The last of these numbers is the smoothing parameter selected by REML.
Given the best linear unbiased predictors of β and u, which we denote by β̂ and

û, the estimate of f (x) for any x ∈ R is

f̂ (x) = Xx β̂ + Zx û

where

Xx ≡ [1 x] and Zx ≡ [z1(x) · · · zK(x)].

Plotting an estimate over a grid simply involves stacking versions of Xx and Zx ,
with x taking the value of each grid-point, into matrices. The following code does
this for an array, xg, of ng grid-points. The R matrices Xg and Zg are the grid-wise
versions of X and Z:

> ng <- 1001 ; xg <- seq(a,b,length=ng)

> Xg <- cbind(rep(1,ng),xg)

> Zg <- ZOSull(xg,range.x = c(a,b),intKnots = intKnots)

> fHatg <- as.vector(Xg%*%betaHat + Zg%*%uHat)

> plot(x,y,bty = "l",xlab = "construction date (year)",

+ ylab = "area (square meters) per million zloty",

+ col = "dodgerblue",cex.lab = 1.5,cex.axis = 1.5)

> lines(xg,fHatg,col = "darkgreen",lwd = 2)
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Fig. 2.9 Mixed model-based penalized spline fit to the Warsaw apartments running example
regression dataset obtained using the function lme(). The smoothing parameter is chosen
according to restricted maximum likelihood.

The fit shown in Fig. 2.9 results.
Further calculations lead to

λ̂REML = 217.8 and EDF(̂λREML) = 10.72.

This second value can be compared with

EDF(̂λGCV) = 15.05,

indicating that the REML fits a penalized spline with less fine structure than GCV.
This is in keeping with the simulation study in Sect. 5.4 of Ruppert et al. (2003)
and, in particular, Fig. 5.7 given there. Theoretical insight on the behavior of λ̂REML

compared with more traditional smoothing parameter selectors is given in Kou and
Efron (2002), Reiss and Ogden (2009) and Krivobokova (2013). Exercise 8 explores
this issue further.

Mixed model-based splines have profound implications for semiparametric
regression. As we will see in upcoming chapters, they allow flexible function
estimation to be incorporated into sophisticated models that deal with complications
such as grouping and missingness using software for mixed models and hierarchical
Bayesian models. The latter requires Bayesian mixed model representations of
penalized splines, which is discussed in Sect. 2.10.



2.8 Variability Bands 35

2.8 Variability Bands

Figure 2.10 is an embellishment of Fig. 2.9 that has a variability band added to the
penalized spline fit. Valid inferential statements concerning the variability band is
a delicate topic and is discussed in detail in Sects. 6.2–6.4 of Ruppert et al. (2003).
An approximate interpretation is one of pointwise 95% confidence intervals for the
mean response. For example, the dashed vertical line at 1980 on the horizontal axis
cuts the variability band at 124.2 and 136.6. Therefore, 124.2 m2/(million złoty) to
136.6 m2/(million złoty) is an approximate 95% confidence interval for the mean
area per million złoty of Warsaw apartments constructed in 1980. Simultaneous
confidence statements require a wider band (e.g., Sect. 6.5 of Ruppert et al. 2003).
Most R packages produce only pointwise confidence intervals. An exception is the
locfit() function in the locfit package (Loader 2013). This package uses local
polynomial regression (Loader 1999; Wand and Jones 1995) rather than penalized
splines.
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Fig. 2.10 The mixed model-based penalized spline fit of Fig. 2.9 with a variability band added
according to (2.15) and (2.16). The dashed vertical line passes through 1980 on the horizontal axis
and the points at which it crosses the boundaries of the variability band, 124.2 and 136.6 square
meters per million złoty, are the limits of an approximate 95% confidence interval for mean area
per million złoty for apartments constructed in 1980. Analogous pointwise confidence interval
statements apply to the points where other vertical lines cross the boundaries of the variability
band.
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The formulae for the lower and upper limits of the variability band shown in
Fig. 2.10 are

f̂ (x) ± 2 ŝt.dev.{f̂ (x) − f (x)} (2.15)

where

ŝt.dev.{f̂ (x) − f (x)} = σ̂ε Cx

(
CT C + σ̂ 2

ε

σ̂ 2
u

D

)−1

CT
x (2.16)

with C and D as defined by (2.7) and Cx ≡ [Xx Zx]. The following R code
produces the variability band shown in Fig. 2.10 by computing (2.16) over a grid:

> Cg <- cbind(rep(1,ng),xg,Zg)

> C <- cbind(rep(1,length(y)),x,Z)

> D <- diag(c(0,0,rep(1,ncol(Z))))

> sdg <- sqrt(sigsqepsHat)*sqrt(diag(Cg%*%solve(crossprod(C)

+ + (sigsqepsHat/sigsquHat)*D,t(Cg))))

> CIlowg <- fHatg - 2*sdg ; CIuppg <- fHatg + 2*sdg

> plot(x,y,bty = "l",xlab = "construction date (year)",

+ ylab = "area (square meters) per million zloty",

+ type = "n",cex.lab = 1.5,cex.axis = 1.5)

> polygon(c(xg,rev(xg)),c(CIlowg,rev(CIuppg)),col = "palegreen",

+ border = FALSE)

> lines(xg,fHatg,col = "darkgreen",lwd = 2)

> points(x,y,col = "dodgerblue")

> abline(v = 1980,lty=2,col = "darkorange")

Although variability bands are useful for assessing the uncertainty of f̂ , hypoth-
esis testing is needed to address questions such as whether f is linear or nonlinear.
Testing will be discussed in Sect. 2.9.

2.9 Hypothesis Testing

In many applications, it is of interest to test whether a simple model is satisfactory
or instead a more complex model is needed to describe the data adequately.

In a parametric setting, when the models are nested a likelihood ratio test is often
used. The approximate distribution of twice the logarithm of the likelihood ratio
(LR) is

2 log(LR) ∼ χ2
DF1−DF0

(2.17)
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where DF1 and DF0 are the degrees of freedom of the fit for the full and reduced
(or null) models, respectively. For an F-test, DF1 − DF0 is the numerator degrees of
freedom.

For non-nested models, no approximate null distribution is readily available, but
a comparison can be made between the values of a model selection criterion such
as AIC.

Although we have stressed a certain algebraic equivalence between penalized
least-squares estimation and mixed models, they have led to rather different types
of tests. This difference is due to a fundamental difference between the likelihood
functions for fixed effects models and for mixed effects models. Let y be the
response vector, let β be a vector of coefficients that we will always treat as fixed
effects, and let u be another vector of coefficients. Assume that we wish to test that
u = 0.

If we treat the elements of u as fixed effects, then the likelihood is based on

p(y;β,u, σ 2
ε ), (2.18)

the density of y as a function of (β,u, σ 2
ε ). Here σ 2

ε is the variance of the εi . On the
other hand, if we treat u as a vector of random effects, then u must have a density
which we will denote by p(u; σ 2

u ). Let p(y|u;β, σ 2
ε ) be the conditional density

function of y given u as a function of (β, σ 2
ε ). Then the likelihood is

p(y;β, σ 2
ε , σ 2

u ) =
∫

RK

p(y|u;β, σ 2
ε )p(u; σ 2

u ) du, (2.19)

the density of y as a function of (β, σ 2
ε , σ 2

u ). Note that u has been integrated out and
so does not appear on the left-hand side of (2.19).

One approach to testing is to use (2.18) as the likelihood with u estimated using
a penalty. For Gaussian responses, this leads to approximate F-tests. This approach
is used extensively in Hastie and Tibshirani (1990) and is implemented in the mgcv

package. With this approach, an approximation to the null distribution of twice the
logarithm of the LR is

2 log(LR) ∼ χ2
EDF1−EDF0

.

For the approximate F-test, EDF1 − EDF0 is the numerator effective degrees of
freedom, in analogy to (2.17).

Crainiceanu et al. (2005a) take a mixed model approach based on using (2.19)
as the likelihood function. As described in Sect. 2.7, testing that u = 0 reduces
to the restricted likelihood ratio test (RLRT) that σ 2

u = 0. (It is assumed that
E(u) = 0 so σ 2

u = 0 implies that u = 0.) Crainiceanu et al. (2005b) found that in
this setting, approximation (2.17) can be very inaccurate and is not recommended.
The problem is that the assumptions made by this approximation are violated in
two ways: (a) the null value of the variance component being tested is 0 which
is on the boundary of the parameter space, whereas the approximation assumes
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that it is in the interior; and (b) the random effects imply that all of the yis are
correlated under the alternative hypothesis, whereas the approximation assumes that
they are independent, or at least can be divided into a large number of independent
clusters. The approximation (2.17) would be asymptotically correct if the number of
independent clusters is increased to infinity, provided the parameter is in the interior
of the parameter space. However, typically all yis are correlated.

In contrast, the penalized least-squares approach to testing uses the null hypoth-
esis that u = 0 where u is a nonrandom parameter. The null value of u is clearly
in the interior of the parameter space since both positive and negative values of the
components of u are possible. Moreover, in the penalized least-squares approach u

cannot induce dependencies between the yi since u is nonrandom. Therefore, the
assumptions behind approximation (2.17) are not violated in the penalized least-
squares approach to testing.

The mixed model approach to testing that the variance component σ 2
u is 0 is

implemented by the function exactRLRT() in the RLRsim package (Scheipl and
Bolker 2016). In the case of testing that a single variance component is 0, the exact
null distribution of the restricted likelihood ratio test statistic has been derived in
Crainiceanu and Ruppert (2004). However, it does not have a simple form and its
quantiles are not available in closed form. Instead, exactRLRT() simulates of the
null distribution. The default number nsim of simulated draws is 10,000 giving a
good approximation to the exact null distribution. Moreover, the computation is
very fast so much larger values of nsim are feasible.

When treating u as nonrandom, that is, using likelihood (2.18), the F-test’s type
I error rate can be far from the nominal value when testing the null hypothesis
of a parametric model versus a smooth regression. This problem occurs when the
difference in EDF between the parametric and smooth fits is very close to zero
because smooth fit is nearly the same as the parametric fit; this is likely when the
null hypothesis holds. If this difference in EDF values is large, at least greater than 1,
then there is less concern about a possibly erroneous p-value. A possible solution to
this problem is to select the smoothing parameter so that the EDF of the smooth fit is,
say, 3 more than the parametric fit. An easy way to do this is by letting the smoothing
parameter be zero and fixing the dimension of the spline basis appropriately, e.g., 3
more than the dimension of the parametric model. See Exercise 6.

We now return to the running example involving the Warsaw apartments dataset.
If we want to test existence of a relationship between the mean area/price ratio and
the construction date, then the null hypothesis is β1 = 0 and u = 0, and then we
can use the following code that implements an approximate F-test:

> library(HRW) ; data(WarsawApts) ; library(mgcv)

> fitPenSpl <- gam(areaPerMzloty ~

+ s(construction.date,bs = "cr",k = 27),

+ data = WarsawApts,method = "REML")

> anova(fitPenSpl)

and gives output:
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Family: gaussian

Link function: identity

Formula:

areaPerMzloty ~ s(construction.date, bs = "cr", k = 27)

Approximate significance of smooth terms:

edf Ref.df F p-value

s(construction.date) 9.703 11.878 18.58 <2e-16

Note that method = "REML" in the call to gam() leads to employment of mixed
model-based penalized splines with REML smoothing parameter selection, instead
of the default GCV smoothing parameter selection. Nonetheless, the F-test is based
on (2.18).

The value of the F-statistic is 18.58 with the associated p-value less than
2 × 10−16, so we strongly reject the null model of no relationship between mean
area/price ratio and construction date. The EDF of the fit is 9.7, so there is little
concern about an approximation error in the calculation of the p-value.

We might instead wish to test the null hypothesis of a parametric model versus a
nonparametric fit. If the parametric model is a linear, quadratic, or cubic polynomial,
then the F-test is performed with the following code:

> WarsawApts$const.date.sq <- WarsawApts$construction.date^2

> WarsawApts$const.date.cu <- WarsawApts$construction.date^3

> fitLinear <- lm(areaPerMzloty ~ construction.date,

+ data = WarsawApts)

> fitQuadratic <- update(fitLinear, .~. + const.date.sq)

> fitCubic <- update(fitQuadratic, .~. + const.date.cu)

> anova(fitLinear,fitQuadratic,fitCubic,fitPenSpl,test = "F")

which gives:

Analysis of Variance Table

Model 1: areaPerMzloty ~ construction.date

Model 2: areaPerMzloty ~ construction.date + const.date.sq

Model 3: areaPerMzloty ~ construction.date + const.date.sq

+ const.date.cu

Model 4: areaPerMzloty ~ s(construction.date, bs = "cr", k = 27)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 407.0 197242

2 406.0 151979 1.0000 45262 142.6687 < 2.2e-16 ***

3 405.0 140195 1.0000 11784 37.1444 2.592e-09 ***

4 398.3 126362 6.7026 13833 6.5052 4.568e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The small p-values lead to rejection of all three parametric models. Moreover,
fitPenSpl uses 9.7 effective degrees of freedom compared to 4 or fewer (effective)
degrees of freedom for the polynomial fits which is in keeping with these low p-
values.

We now use the exactRLRT in the RLRsim package to apply the mixed model
approach to the WarsawApts dataset and test for no effect for construction date.
Here we use 50,000 simulations. The computation is very fast, even with this many
simulations.

> library(RLRsim) ; library(mgcv)

> fitVIAgamm <- gamm(areaPerMzloty ~

+ s(construction.date,bs = "cr",k = 27),

+ data = WarsawApts,method = "REML")

> print(exactRLRT(fitVIAgamm$lme,nsim = 50000))

simulated finite sample distribution of RLRT.

(p-value based on 50000 simulated values)

data:

RLRT = 144.87, p-value < 2.2e-16

The test results are similar to those obtained earlier in this section (see the output on
page 38) using the approximate F-test in the package mgcv. Note that, although both
gam() and gamm() can fit a mixed model-based penalized spline, only the output of
gamm() is compatible with exactRLRT().

2.10 Bayesian Penalized Splines

Mixed model-based penalized splines can also be fit by adopting a Bayesian
approach. We call these Bayesian penalized splines. The advantages of a Bayesian
approach compared to the frequentist mixed model approach include taking into
account uncertainty associated with the variance components and the ability to deal
with complications, such as heteroscedasticity and missing data, which cannot be
handled using standard mixed model software. Such complications are tackled in
Chap. 6.

We assume that the reader has some familiarity with Bayesian statistical analysis.
Practical Bayesian inference for semiparametric regression, including that using R,
usually involves Markov chain Monte Carlo (MCMC) samples, or chains, from
the posterior distributions of parameters of interest. In the 1990s the Bayesian
inference Using Gibbs Sampling (BUGS) project (Lunn et al. 2013) established
itself as the most prominent software suite for MCMC-based Bayesian analyses.
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The packages BRugs (Ligges et al. 2017) and R2WinBUGS (Gelman et al. 2015)
provide access to BUGS from R. In the early 2010s the Stan project (Carpenter
et al. 2017) emerged. It uses versions of MCMC known as Hamiltonian Monte
Carlo (e.g., Sect. 12.4, (Gelman et al. 2014)) and the no U-turn sampler (Hoffman
and Gelman 2014). Stan is accessible from R via the package rstan (Guo et al.
2017). For the majority of Bayesian semiparametric regression models that appear
in this book we have found Stan to be the superior MCMC software platform. It
is usually faster, supports more distributions, has a richer programming language,
and runs on each of the operating systems supported by R. Therefore, rstan is the
main package used in this book for Bayesian semiparametric regression. However,
note that Stan is a long-term project that is still in a state of intense development
at the time of publication of this book. It is likely that future modifications of
Stan will impact some of the examples that we present here. The website for
this book semiparametric-regression-with-r.net should be consulted for
updates. Section 2.13 suggests further readings on Bayesian inference, MCMC,
BUGS and Stan.

A Bayesian version of the penalized spline nonparametric regression model is:

yi |β,u, σ 2
ε

ind.∼ N
(
β0 + β1 xi +

K∑

k=1

ukzk(xi), σ
2
ε

)
, 1 ≤ i ≤ n,

u|σu ∼ N(0, σ 2
u I ), β0, β1

ind.∼ N(0, σ 2
β ),

σu ∼ Half-Cauchy(Au), σε ∼ Half-Cauchy(Aε)

(2.20)

where u is the K × 1 vector containing the uk . The notation x ∼ Half-Cauchy(A)

means that x has density function

p(x) = 2/[Aπ{1 + (x/A)2}], x > 0

where A > 0 is a scale parameter. As explained in Gelman (2006), Half-Cauchy
priors possess attractive noninformativity properties.

It should be noted that (2.20) is the same as (2.13) except that now β0, β1, σu, and
σε are treated as random variables, and have prior distributions imposed on them.

The hyperparameters in (2.20) are σβ > 0, Au > 0, and Aε > 0. These need
to be specified by the user. For some Bayesian analyses the analyst may be able
to make an informed choice of the hyperparameters. However, this is usually not
the case for model (2.20) and its various semiparametric regression extensions.
Therefore noninformative priors are recommended in general. Throughout this book
we will enforce noninformativity by setting hyperparameters such as σβ , Au, and
Aε to very high positive numbers, but only after first standardizing the data to avoid
scale issues. We then transform the results back to the original units for presentation
of final results.
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MCMC is a computer-intensive methodology and semiparametric regression
analyses typically take minutes, and sometimes hours or days, to run—depending on
the complexity of the model. Therefore, we do not recommend doing MCMC-based
analyses in R from the command line. Instead we recommend working with scripts.
The R script WarsawAptsBayes.R uses the rstan function stan() to fit (2.20) to
the following variables in the data frame WarsawApts:

xi = standardized construction date of ith apartment,

yi = standardized area/price ratio of ith apartment

for 1 ≤ i ≤ 409 and with hyperparameters set to σβ = Au = Aε = 105. Thus, the
data for input into stan() are created as follows:

> xOrig <- WarsawApts$construction.date

> yOrig <- WarsawApts$areaPerMzloty

> mean.x <- mean(xOrig) ; sd.x <- sd(xOrig)

> mean.y <- mean(yOrig) ; sd.y <- sd(yOrig)

> x <- (xOrig - mean.x)/sd.x ; y <- (yOrig - mean.y)/sd.y

> sigmaBeta <- 1e5 ; Au <- 1e5 ; Aeps <- 1e5

The design matrices (2.14) are then obtained and stored in X and Z. The number
of columns in Z is coded as ncZ. Specification of (2.20) in Stan is done via the R
object npRegModel as follows:

> npRegModel <-

+ 'data
+ {

+ int<lower=1> n; int<lower=1> ncZ;

+ vector[n] y; matrix[n,2] X;

+ matrix[n,ncZ] Z; real<lower=0> sigmaBeta;

+ real<lower=0> Au; real<lower=0> Aeps;

+ }

+ parameters

+ {

+ vector[2] beta; vector[ncZ] u;

+ real<lower=0> sigmaeps; real<lower=0> sigmau;

+ }

+ model

+ {

+ y ~ normal(X*beta + Z*u,sigmaeps);

+ u ~ normal(0,sigmau); beta ~ normal(0,sigmaBeta);

+ sigmaeps ~ cauchy(0,Aeps); sigmau ~ cauchy(0,Au);

+ }'
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The code under the data heading declares each of the required dimension and
data variables. These are to be inputted, as described below. The model parameters,
for which inference is sought, are under the heading parameters. Finally, under
the model heading is the Stan coding of the Bayesian nonparametric regression
model (2.20). The code

y ~ normal(X*beta + Z*u,sigmaeps);

specifies the likelihood by giving the conditional distribution of the response vector
y given the parameters and the predictor data. Observe that the second argument
of the Stan function normal() specifies the standard deviation, not the variance.
Also, even though y and X*beta + Z*u are vectors of length n, Stan sets the
distributions in an element-wise fashion and independently. The code

u ~ normal(0,sigmau);

then specifies u|σu ∼ N(0, σ 2
u I ). Finally, the priors are specified via the code

beta ~ normal(0,sigmaBeta);

sigmaeps ~ cauchy(0,Aeps); sigmau ~ cauchy(0,Au);

A Stan trick is being used here to specify the priors σε ∼ Half-Cauchy(Aε)

and σu ∼ Half-Cauchy(Au). The declarations real<lower=0> sigmaeps and
real<lower=0> sigmau force these parameters to be confined to the positive
half-line. Since Half-Cauchy density functions are proportional to Cauchy density
functions on the positive half-line the sigmaeps ~ cauchy(0,Aeps) and sigmau

~ cauchy(0,Au) specifications achieve the desired effect.
The next step is to set up a list containing the data to be inputted into Stan:

allData <- list(n = length(x),ncZ = ncZ,y = y,X = X,Z = Z,

sigmaBeta = sigmaBeta,Au = Au,Aeps = Aeps)

We then compile the code via the command:

stanCompilObj <- stan(model_code = npRegModel,data = allData,

iter = 1,chains = 1)

although this only needs to be done once within the same R session if npRegModel
remains unchanged. Now that the model has been compiled, we run 3000 iterations
using:

nWarm <- 1000 ; nKept <- 2000 ; nThin <- 2

stanObj <- stan(model_code = npRegModel,data = allData,

warmup = nWarm,iter = (nWarm + nKept),

chains = 1,thin = nThin,refresh = 100,

fit = stanCompilObj)

The command nWarm <- 1000 and the setting warmup = nWarm inside stan()

means that the first 1000 iterations are used to “warm-up” the sampling scheme.
The specifications:

nKept <- 2000, nThin <- 2, iter = (nWarm+nKept) and thin = nThin
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mean that the samples from 2000 iterations following the warm-up period are kept
temporarily, but then thinned in such a way that only every second sample value
is ultimately kept. Thinning a MCMC sample results in some loss of information.
However, it aids visualization of MCMC output since, for unthinned output, the
number of points and lines may be too high to assess chain behavior.

The resultant MCMC samples of size 1000 are extracted via:

MCMCsamples <- extract(stanObj,permuted = FALSE)

The object MCMCsamples is a three-dimensional array containing MCMC samples
corresponding to each of the parameters specified in npRegModel, and a log-
probability quantity. The first dimension corresponds to the sample indices, the
second dimension corresponds to the chain indices, and the third dimension
corresponds to the different parameters. For the current example MCMCsamples is a

1000 × 1 × 32 array

since the final MCMC sample size is 1000, there is only one chain (chains =

1) and, with ncZ= 27, the number of parameters, including the log-probability
quantity, is 32.

The MCMC sample for σε is extracted using:

sigmaepsMCMC <- MCMCsamples[,1,

dimnames(MCMCsamples)$parameters == "sigmaeps"]

A more direct command that has the same effect is:

sigmaepsMCMC <- extract(stanObj,"sigmaeps",permuted = FALSE)

The command

sigmaepsOrigMCMC <- sd.y*sigmaepsMCMC

then puts the sample on the same scale as the original data. Figure 2.11 plots
pertinent aspects of the MCMC sample stored in sigmaepsOrigMCMC:

1. a time series or trace plot,
2. a lag-1 plot,
3. an autocorrelation function (acf) plot, and
4. a kernel density estimate of the posterior density function of σε in the original

units of the data.

The code and rationale behind Fig. 2.11 is now described. First the 4 × 1 layout
and the trace plot in the upper panel are produced using:

> par(mfrow=c(4,1),mai=c(0.7,0.6,0.15,0))

> plot(sigmaepsOrigMCMC,type = "l",col = "tomato",bty = "l",

+ ylab=expression(sigma[epsilon]),cex.lab = 1.5,

+ cex.axis = 1.5)
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Fig. 2.11 Four plots based on the MCMC sample for the parameter σε for rstan fitting of
the Bayesian nonparametric regression model (2.20) to the Warsaw apartments running example
regression dataset. The MCMC sample has been converted to the original units. First panel: trace
plot. Second panel: lag 1 plot. Third panel: autocorrelation function plot. Fourth panel: approximate
posterior density function based on kernel density estimation applied to the MCMC sample.

The horizontal axis variable is understood to be the indices 1 up to 1000 and
the vertical axis variable are the entries of sigmaepsOrigMCMC. The specification
type="l" means that the coordinate points are joined with line segments. This
allows better appreciation of the time ordering in the MCMC sample.

In the second panel we plot the entries of sigmaepsOrigMCMC, with the
exception of the first entry, against each entry’s preceding value:

> plot(sigmaepsOrigMCMC[-1000],sigmaepsOrigMCMC[-1],

+ xlab = "corresponding preceding value in sample",

+ ylab = "value in sample",col = "mediumblue",

+ bty = "l",cex.lab = 1.8,cex.axis = 1.8)
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This permits visual assessment of lag 1 autocorrelation in the sample. In this case no
relationship is apparent, suggesting negligible lag 1 autocorrelation in the thinned
chain.

The third panel of Fig. 2.11 is obtained via

> acf(sigmaepsOrigMCMC,bty="l",col = "olivedrab4",

+ ci.col = "blue",lwd = 2,main = "",cex.lab = 2,

+ cex.axis = 1.5)

and displays the estimated autocorrelations at the first 30 lags. The dashed blue
lines are 95% confidence interval limits under the assumption of independence.
The fact that the spikes are quite low and mostly within these limits is in keeping
with this MCMC sample being close to an independent sample from the posterior
distribution of σε. In forthcoming autocorrelation plots, including the first one in
Fig. 2.13, we will see examples of autocorrelation function plots with significantly
high spikes and, therefore, MCMC samples with some dependence. For the purpose
of approximate Bayes estimates and credible sets such dependence is usually
innocuous because laws of large numbers, on which these approximations are based,
also hold for dependent samples. However, as discussed below, autocorrelation may
necessitate having a larger MCMC sample size.

The code that produces the fourth panel of Fig. 2.11 is

> library(KernSmooth)

> dest <- bkde(sigmaepsOrigMCMC,

+ bandwidth=dpik(sigmaepsOrigMCMC))

> plot(dest,type = "l",col = "darkred",

+ xlab = expression(sigma[epsilon]),

+ ylab = "post. dens. f'n",bty = "l",

+ lwd = 2,cex.lab = 1.9,cex.axis = 1.5)

> abline(0,0)

The kernel density estimate object dest is obtained using the function bkde() from
the package KernSmooth (Wand and Ripley 2015) with the bandwidth selected
using the direct plug-in method (e.g. Wand and Jones 1995) via the function
dpik(). This is an MCMC-based approximation of the posterior density function
p(σε|y) on the original scale of the data.

When examining the trace plots, one should check that the initial behavior of the
plot is similar to the plot’s overall appearance—this indicates an adequate warm-up
period. In contrast, an initial increase or decrease of the plot indicates that a longer
warm-up is needed. The trace, lag 1, and autocorrelation function plots all serve to
show how well the chain is converging. Ideally, the trace plot should show rapid
changes, not slow undulations, the lag 1 plot should show little correlation between
each iterate and the previous one, and the autocorrelation function plot should show
a rapid decay to zero. If, instead, these plots show signs of slow convergence, then
a larger Monte Carlo sample size might be warranted.
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The MCMC-approximate Bayes estimate, with respect to squared-error loss, of
σε is

> print(mean(sigmaepsOrigMCMC))

[1] 17.86439

and a corresponding 95% credible interval is

> print(quantile(sigmaepsOrigMCMC,c(0.025,0.975)))

2.5% 97.5%

16.58944 19.21266

This is the Bayesian analog of the frequentist 95% confidence interval. There is a
0.95 posterior probability that a parameter is in its 95% credible interval. From here
onwards, all Bayes estimates are with respect to squared-error loss—corresponding
to the mean of the posterior density function.

Of central interest, however, is Bayesian inference of the regression function f

in (2.20) which is shown in Fig. 2.12. The curve in this figure is the Bayes estimate
of f but after conversion to the original units. The shaded region signifies pointwise
95% credible intervals. The Bayes estimate of f shows a similar nonlinear form to
the frequentist mixed model-based spline fit shown in Figs. 2.9 and 2.10. The dashed
vertical lines in Fig. 2.12 pass through the quartiles of the construction date sample.
The MCMC samples corresponding to these three vertical slices are assessed later
in Fig. 2.13.

The coding for Fig. 2.12 is given in the R script WarsawAptsBayes.R. Fig-
ure 2.13 summarizes the MCMC output for the effective degrees of freedom, the
error standard deviation, and the regression function at the first, second, and third
quartiles of the predictor. This figure was created by the function summMCMC(),
which is a generic function in the HRW package for producing chain diagnosis and
summary plots such as those given in Fig. 2.11, but for several parameters. Note
that the MCMC sample for the effective degrees of freedom shows some significant
autocorrelation. As explained in the discussion concerning Fig. 2.11, this level of
dependence is acceptable for approximate Bayesian inference.

The initial segments of the trace plots in Fig. 2.13 appear similar to the rest of
the trace plots. This suggests that the Markov chain was already in its steady state
by the end of the warm-up, so the warm-up period of 1000 iterations is adequate.

Numerical summaries can be formed for any chain of interest using the mon-

itor() function. The following code provides illustration for the parameters
summarized in Fig. 2.13:

> myMCMCarray <- array(0, dim = c(length(sigmaepsMCMC),1,5))

> myMCMCarray[,1,1] <- EDFMCMC

> myMCMCarray[,1,2] <- sigmaepsOrigMCMC

> myMCMCarray[,1,3] <- fhatOrigQ1MCMC

> myMCMCarray[,1,4] <- fhatOrigQ2MCMC

> myMCMCarray[,1,5] <- fhatOrigQ3MCMC
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Fig. 2.12 The Bayes estimate of the mean area per million złoty conditional on construction date
according to the Bayesian penalized spline model (2.20) fit to the Warsaw apartments running
example regression dataset. The shaded region corresponds to pointwise 95% credible sets. The
dashed vertical lines pass through the quartiles of the construction date sample.
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Fig. 2.13 Summary of the MCMC sample, thinned to every second iteration, from the posterior
distribution of the parameters in the Bayesian nonparametric regression model fit to the Warsaw
apartments running example regression dataset. The columns are: parameter, trace plot of MCMC
sample, plot of sample against sample lagged by one iteration, sample autocorrelation function,
kernel estimates of posterior density, and basic numerical summaries.
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> monitorAnswer <- monitor(myMCMCarray,warmup=0,print=FALSE)

> dimnames(monitorAnswer)[[1]] <- c("EDF","err.st. dev.",

+ "f(Q1)","f(Q2)","f(Q3)")

> print(signif(monitorAnswer,4))

which produces:

mean se_mean sd 2.5% 25% 50%

EDF 11.43 0.16220 2.0020 7.34 10.00 11.38

err. st. dev. 17.86 0.02588 0.6531 16.64 17.35 17.79

f(Q_1) 111.00 0.09281 2.5960 105.60 109.30 111.00

f(Q_2) 118.20 0.08245 2.2270 113.60 116.70 118.40

f(Q_3) 122.70 0.18850 5.1140 112.80 119.30 122.80

75% 97.5% n_eff Rhat

EDF 12.84 15.09 152.3 0.9990

err. st. dev. 18.26 19.19 637.0 1.0000

f(Q_1) 112.70 116.10 782.2 1.0020

f(Q_2) 119.70 122.80 729.5 0.9992

f(Q_3) 125.90 133.00 735.9 1.0010

For each parameter, mean is the mean of the MCMC sample and, hence, the
approximate Bayes estimate. Also, sd is the standard deviation of the MCMC
sample and estimates the posterior standard deviation. The second column lists
values of the se_mean is the Monte Carlo standard error, defined to be

se_mean ≡ sd/
√
n_eff

where sd is the sample standard deviation and n_eff is the effective sample
size of the MCMC sample and takes into account loss of information due to
autocorrelation. The Stan User’s Guide and Reference Manual provides full details
on the calculation of the effective sample size for a given MCMC sample. For
the EDF parameter (the effective degrees of freedom of the penalized spline) the
effective sample size is only about 152 even though the actual sample size is
1000. As a rule-of-thumb, we like to have effective Monte Carlo sample sizes of
at least 100 for all parameters. For a correlated sample, the Monte Carlo sample size
required might be much larger. That is why we used a Monte Carlo sample size of
1000. We see here that the rule-of-thumb criterion has been met for all parameters,
so we can conclude that the Monte Carlo sample size of 1000 is sufficiently large.
As the number of iterations increases, se_mean converges to zero and sd converges
to the posterior standard deviation, so se_mean will eventually become negligible
relative to sd.



50 2 Penalized Splines

The summary statistics for the posterior sample also include the 2.5 and 97.5%
sample quantiles. The 2.5 and 97.5% sample quantiles are the endpoints of a 95%
credible interval.

The Rhat column is superfluous in this single chain example, but is a meaningful
statistic in the case of multiple chains, which is treated next in Sect. 2.10.1.

The full WarsawAptsBayes.R script can be run via the following commands:

> library(HRW) ; demo(WarsawAptsBayes,package = "HRW")

To access and, possibly, copy and edit WarsawAptsBayes.R note the following
code provides its location on the computer on which HRW is installed:

> system.file("demo","WarsawAptsBayes.R",package = "HRW")

2.10.1 Multiple Chains Extension

A common recommendation in MCMC-based analyses is to run more than one
Monte Carlo chain from different starting values and use the combined chains to
assess convergence (e.g., Sect. 11.4 of Gelman et al. 2014). The stan() function in
rstan has a default of four chains per parameter. These can be run in parallel on
multiple cores. When multiple chains are available, formal convergence diagnostics
such as those based on Brooks–Gelman–Rubin statistics (Gelman and Rubin 1992;
Brooks and Gelman 1998), can be employed. One such convergence statistic is
denoted by R̂interval (Brooks and Gelman 1998) and is a ratio of credible interval
lengths based on the combined chains and the mean of such intervals based on
individual chains.

Figure 2.14 provides illustration. The top panel shows the traces of three chains
for the parameter σε with distinctly different initial values. The middle panel shows
the trace plots of the numerator and denominator of the R̂interval statistic and the
bottom panel shows the statistic itself. As the three chains come together we see
that the numerator and denominator traces get closer to each other and the ratio
approaches unity. The upper dashed horizontal line in the bottom panel corresponds
to R̂interval = 1.2 and is a reasonable threshold for convergence being attained.

Figure 2.15 is an embellishment of Fig. 2.13 in that a column for Brooks–
Gelman–Rubin R̂interval trace plots has been added; the column headed BGR. This plot
is produced by the functions summMCMC() and BGRinterval() in the HRW package.
The BGR column is included in the plot produced by summMCMC() whenever
multiple chains are inputted. For this example we see that, for all chains, the R̂interval

statistic stays close to 1 after the first few kept iterations—indicative of very good
convergence.

MCMC analyses in the remainder of this book will involve single chains
and the less formal convergence diagnosis basedon examining trace, lag 1, and
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Fig. 2.14 Brooks–Gelman–Rubin convergence diagnosis for σε in rstan fitting of the Bayesian
nonparametric regression model (2.20) fit to the Warsaw apartments running example regression
dataset. Top panel: trace plots of three MCMC samples (chains) with different starting values.
Middle panel: trace plots of the numerator and denominator of the R̂interval statistic. Bottom panel:
trace plot of the R̂interval statistic. The horizontal dashed lines pass through R̂interval = 1 and R̂interval =
1.2.

autocorrelation function plots. This means that the examples can be tried out
without the additional effort required to run multiple chains. The extension of these
examples to multiple chains and BGR plots is straightforward if a formal diagnosis
is desired.

2.11 Choosing Between Different Penalized Spline
Approaches

So far in this chapter we have presented three different approaches to penalized
spline fitting:
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Fig. 2.15 A multiple chain extension of the MCMC summary plot shown in Fig. 2.13, produced
using summMCMC() in the HRW package. Six of the columns are the same as in Fig. 2.13, although
for different MCMC samples. There is an additional column labeled BGR that shows the Brooks–
Gelman–Rubin R̂interval statistic based on three chains for each parameter with random starting
values.

(A) penalized least-squares with smoothing parameter chosen by a model
selection criterion such as GCV,

(B) couching the problem within the frequentist mixed models framework and
estimating the coefficients via best linear unbiased prediction, with the
smoothing parameter chosen via REML,

(C) couching the problem within the Bayesian mixed models framework and
estimating all parameters via posterior means, made practical using MCMC.

How should one choose between these different approaches?
In the case of models with complete data satisfying the standard model assump-

tions (independence, normality, and homoscedasticity) reasonably, then (A) is the
preferred approach since it is very quick and simple to perform in R. However, (B)
and (C) come into their own when we move away from this utopia and complications
such as grouping, non-normality, heteroscedasticity, missingness, and measurement
error rear their ugly heads. R packages such as mgcv can handle some of these
problems, but not all of them. In Chap. 4 we show how the mixed model approach is
very useful for handling correlations arising from grouping, such as in longitudinal
studies. In Chap. 6 we will see that the Bayesian mixed model approach with MCMC
packages such as rstan allows arbitrarily complicated situations to be handled.
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2.12 Penalized Splines with Factor Effects

Semiparametric regression combines the ideas of nonparametric and parametric
regression. We now introduce what is perhaps the simplest semiparametric regres-
sion model where the nonparametrically modeled effect of a continuous predictor is
combined with the parametrically modeled effect of a factor, which is a categorical
predictor.

2.12.1 A Simple Semiparametric Additive Model

The WarsawApts data frame includes a categorical variable named district that
indicates whether the apartment is in one of four districts of Warsaw: Mokotow,
Srodmiescie, Wola, and Zoliborz. A question that can be raised is whether the rela-
tionship between the area/price ratio and construction date varies between districts.
This can be explored by extending the nonparametric regression model (2.1) to allow
each district to have its own intercept:

(area/price)i = β1 I (Srodmiesciei ) + β2 I (Wolai )

+β3 I (Zoliborzi ) + f (construction.datei ) + εi .
(2.21)

Here

I (Srodmiesciei ) =
{

1 if the ith apartment is in Srodmiescie,
0 otherwise

and similar definitions apply to I (Wolai ) and I (Zoliborzi ). Model (2.21) is a
combination of a nonparametric effect for construction.date and parametric
model for the factor district, and is called a simple semiparametric regression
model by Ruppert et al. (2003). It is also additive since the effects of district
and construction date are added together. The Mokotow district is used here as
the reference level of the factor district, so that β1 is the difference between
the expected area/price ratio for apartments in the Srodmiescie and Mokotow
districts constructed in the same year, and β2 and β3 have analogous interpretation.
Model (2.21) can be fit in R using the following code:

> fitSimpSemi <- gam(areaPerMzloty ~ factor(district) +

+ s(construction.date,bs = "cr",k = 27),

+ data = WarsawApts)

> summary(fitSimpSemi)
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which leads to the output:

Family: gaussian

Link function: identity

Formula:

areaPerMzloty ~ factor(district) + s(construction.date,

bs = "cr",k = 27)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 113.7319 1.2804 88.826 < 2e-16

***

factor(district)Srodmiescie -12.1574 2.1580 -5.634 3.38e-08

***

factor(district)Wola 0.7244 2.5419 0.285 0.776

factor(district)Zoliborz -1.2114 3.2364 -0.374 0.708

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(construction.date) 13.77 16.66 13.84 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.416 Deviance explained = 44%

GCV = 298.7 Scale est. = 285.73 n = 409

From this output we see that only Srodmiescie appears to be significantly
different from Mokotow. It is reasonable to conclude that mean area per million
złoty is about 12 square meters lower in the Srodmiescie district compared to the
Mokotow district. The area/price ratio in the Wola and Zoliborz are similar to that
in the Mokotow district. The negative effect of Srodmiescie on the mean area/price
ratio can be explained by noting that Srodmiescie is the central business district, or
“downtown” area, of Warsaw.

The script WarsawAptsSimpSemi.R in the HRW package contains the code that
produced Fig. 2.16 and it can be run by issuing:

> library(HRW) ; demo(WarsawAptsSimpSemi,package = "HRW")

The address of WarsawAptsSimpSemi.R on the computer on which HRW is installed
is determined from:

> system.file("demo","WarsawAptsSimpSemi.R",package = "HRW")
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Fig. 2.16 Left panel: scatterplot of area/price ratio versus construction date with color-coding
according to district for the Warsaw apartments running example. The curves are the estimated
mean response for each district based on the mgcv package gam() fit of the simple semiparametric
additive model (2.21). Right panel: R lattice graphics plot of the same data and curves as in the
left panel. Each panel within the lattice plot shows the scatterplot and estimated mean response
for each of the four districts of Warsaw. The left panel facilities comparisons between the districts
whereas the right panel presents separate, unobstructed views of each district. The four curves are
parallel because they come from a model without interactions. A model with interactions will be
considered in the next section.

2.12.2 A Simple Semiparametric Interaction Model

Next we consider a more complex model that allows each district to have its
own linear form and still keep the semiparametric relationship to be the same
between area/price ratio and construction data, so that the variables district

and construction.date interact in a parametric way. This model can be
written as

(area/price)i = f (construction.datei ) + β1 I (Srodmiesciei )

+ β2 I (Wolai ) + β3I (Zoliborzi )

+ β4 I (Srodmiesciei ) × construction.datei (2.22)

+ β5 I (Wolai ) × construction.datei

+ β6 I (Zoliborzi ) × construction.datei + εi .

(2.23)
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Fig. 2.17 Left panel: scatterplot of area/price ratio versus construction date with color-coding
according to district for the Warsaw apartments running example. The curves are the estimated
mean response for each district based on the mgcv package gam() fit of the interaction factor
effect model (2.23). Right panel: R lattice graphics plot of the same data and curves as in the
left panel. Each panel within the lattice plot shows the scatterplot and estimated mean response
for each of the four districts of Warsaw. Notice that because the model includes interactions, the
four curves are not parallel.

To fit model (2.23), we use the following code (contained in the script War-
sawAptsSimpSemiInt.R):

> fitSimpSemiInt <- gam(areaPerMzloty ~

+ factor(district)*construction.date +

+ s(construction.date,bs = "cr",k = 27),

+ data = WarsawApts)

The fits are shown in Fig. 2.17. We see that the linear differences between the
districts are not enormous. For example, the area/price ratios in the Srodmiescie
district are uniformly lower than in the other three districts. However, the area/price
ratios in the Zoliborz and Mokotow districts are predicted to be smaller than in
the Wola district for the buildings built between 1930 and 1980, but greater for the
buildings erected after 1980.

Next, we compare the nonparametric regression model, the simple semipara-
metric additive model of Sect. 2.12.1, and the simple semiparametric interaction
model. In the additive model, the effect of the factor district was added to
the nonparametric curve for the effect of construction.date. In the interaction
model, each district had its own linear component. We can compare all three models
using an F-test as follows:
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> fitNonParRegn <- gam(areaPerMzloty ~ s(construction.date,

+ k = 20),method = "REML",

+ data = WarsawApts)

> fitSimpSemiAdd <- gam(areaPerMzloty ~ s(construction.date,

+ k = 20) + district,method = "REML",

+ data = WarsawApts)

> fitSimpSemiInt <- gam(areaPerMzloty ~ s(construction.date,

+ k = 20) + construction.date*district,

+ method = "REML",data = WarsawApts)

> anova(fitNonParRegn,fitSimpSemiAdd,fitSimpSemiInt,test = "F")

Analysis of Deviance Table

Model 1: areaPerMzloty ~ s(construction.date, k = 20)

Model 2: areaPerMzloty ~ s(construction.date, k = 20)

+ district

Model 3: areaPerMzloty ~ s(construction.date, k = 20)

+ construction.date * district

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 394.20 126223

2 391.64 115501 2.5625 10722.2 14.3372 5.937e-08 ***

3 389.02 114686 2.6236 815.6 1.0651 0.3584

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The small p-value (5.9 × 10−8) suggests that the additive model is an improve-
ment over the nonparametric regression model. However, the linear interaction
model does not provide improvement over the additive model (p-value = 0.3584).

The code that produced Fig. 2.17 is in the script WarsawAptsSimpSemiInt.R in
the HRW package. To run the code type:

> library(HRW) ; demo(WarsawAptsSimpSemiInt,package = "HRW")

To access WarsawAptsSimpSemiInt.R issue the following code to determine its
location on the computer on which HRW is stored:

> system.file("demo","WarsawAptsSimpSemiInt.R",package = "HRW")

2.12.3 A Simple Factor-by-Curve Model

Another simple model that allows for an interaction between the district and
construction date effects is

(area/price)i = f1−I (Srodmiesciei )(construction.datei ) + εi
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where

f0(x) ≡ β0 + β1 x +
K∑

k=1

u0kzk(x),

f1(x) ≡ β0 + β contrast

0 + (β1 + β contrast

1 ) x +
K∑

k=1

u1kzk(x),

u0k
ind.∼ N(0, σ 2

u0), u1k
ind.∼ N(0, σ 2

u1), and εi
ind.∼ N(0, σ 2

ε ), 1 ≤ i ≤ n. (2.24)

which allows for two unconstrained penalized splines—one for Srodmiescie and
one for the other three districts. The contrast function:

c(x) ≡ f1(x) − f0(x) = β contrast

0 + β contrast

1 x +
K∑

k=1

(u1k − u0k) zk(x)

represents the difference between mean area/price ratios outside of Srodmiescie and
in Srodmiescie. Note that Srodmiescie is the central business district of Warsaw.

The R script WarsawAptsSimpFacByCurv.R fits a Bayesian version of (2.24)
using rstan. The left-hand panel of Fig. 2.18 shows the Bayes estimates of f0
and f1, together with pointwise 95% credible sets. The right-handpanel shows the
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Fig. 2.18 Left panel: Scatterplot of area/price ratio versus construction date for the Warsaw
apartments running example with color-coding according to whether or not the apartment is
located in the Srodmiescie district. The curves are penalized spline fits according to the Bayesian
simple factor-by-curve interaction model (2.24). The solid curves are Bayes estimates and the
dashed curves are pointwise 95% credible sets. The fits are based on Markov chain Monte
Carlo sampling using the R package rstan. Right panel: The estimated contrast function and
corresponding pointwise 95% credible sets. The contrast function corresponds to non-Srodmiescie
minus Srodmiescie.
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same for the contrast function c. As one might expect, the mean area/price ratio is
significantly higher outside of central Warsaw over much of the construction date
axis and especially so for particular periods such as construction dates between 1960
and 1975.

The code that produced Fig. 2.18 is in the script WarsawAptsSimpFacBy

Curv.R in the HRW package and can be run by issuing:

> library(HRW) ; demo(WarsawAptsSimpFacByCurv,package = "HRW")

To view, copy, and edit WarsawAptsSimpFacByCurv.R note the location informa-
tion provided by:

> system.file("demo","WarsawAptsSimpFacByCurv.R",

+ package = "HRW")

More general factor-by-curve interaction models are treated later in Sect. 3.6.

2.13 Further Reading

Semiparametric regression is a major area of research with hundreds of journal
articles and several books on the topic published since the 1990s. Summaries
and pointers to the wider literature are provided by Gurrin et al. (2005), Ruppert
et al. (2003, 2009), Wood (2006a), and Hodges (2014). Key articles on low-rank
penalized splines are Parker and Rice (1985), O’Sullivan (1986), Eilers and Marx
(1996), Hastie (1996), and Wood (2003).

Pinheiro and Bates (2000) and McCulloch et al. (2008) are standard references
on mixed models. Gałecki and Burzykowski (2013) provide detailed discussion of
the nlme and lme4 packages.

There are many excellent introductions to Bayesian analysis and MCMC includ-
ing Carlin and Louis (2009), Gelman et al. (2014), Hoff (2010), and Lee (2012).
Lunn et al. (2013) is strongly recommended for learning more about BUGS. Albert
(2007) discusses Bayesian computations using R and mentions BUGS briefly. Stan
is still in its early years and its main reference is Stan Development Team (2017).
Semiparametric regression via BUGS is illustrated by Crainiceanu et al. (2005b)
and Marley and Wand (2010). The R packages BayesX (Kneib et al. 2014) and
R2BayesX (Umlauf et al. 2016) also provide support for Bayesian semiparametric
regression. Illustrations are given in Umlauf et al. (2015).

As of this writing the main websites for BUGS and Stan are www.mrc-bsu.cam.
ac.uk/bugs/ and mc-stan.org.

www.mrc-bsu.cam.ac.uk/bugs/
www.mrc-bsu.cam.ac.uk/bugs/
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2.14 Exercises

1. Let T1, T2, and T3 be three functions on [0, 1] given by

T1(x) = 1, T2(x) = x, T3(x) = (x − 1
2 )+.

Recall that x+ ≡ max(x, 0) for x ∈ R. Also, let B1, B2, and B3 be three
functions on [0, 1] given by

B1(x) = (1 − 2x)+, B2(x) = 1 − |2x − 1|, B3(x) = (2x − 1)+.

a. Obtain plots of the Ti and Bi , i = 1, 2, 3, by running the following R code:
> ng <- 101 ; xg <- seq(0,1,length = ng)

> T1g <- rep(1,ng) ; T2g <- xg ;

> T3g <- (xg - 0.5)*(xg - 0.5>0)

> B1g <- (1 - 2*xg)*(1 - 2*xg>0)

> B2g <- 1 - abs(2*xg - 1) ; B3g <- 2*T3g

> par(mfrow = c(2,1))

> plot(0,type = "n",xlim = c(0,1),ylim = c(0,1),

+ xlab = "x",ylab = "",bty = "l")

> lines(xg,T1g,col = 1) ; lines(xg,T2g,col = 2)

> lines(xg,T3g,col = 3)

> text(0.1,0.8,expression(T[1]),col = 1)

> text(0.4,0.5,expression(T[2]),col = 2)

> text(0.8,0.2,expression(T[3]),col = 3)

> plot(0,type = "n",xlim = c(0,1),ylim = c(0,1),

+ xlab = "x",ylab = "",bty = "l")

> lines(xg,B1g,col = 4) ; lines(xg,B2g,col = 5)

> lines(xg,B3g,col = 6)

> text(0.1,0.9,expression(B[1]),col = 4)

> text(0.4,0.9,expression(B[2]),col = 5)

> text(0.9,0.6,expression(B[3]),col = 6)

b. Find expressions for B1, B2, and B3 in terms of T1, T2, and T3.
Hints: The R plots, rather than algebraic expressions, may be useful. Also,
what is B1 + B2 + B3?

c. Obtain the 3 × 3 matrix LTB such that

[B1(x) B2(x) B3(x)] = [T1(x) T2(x) T3(x)]LTB

for any x ∈ [0, 1].
d. Find the determinant of LTB and establish that LTB is invertible. In linear

algebra language, this implies that {B1, B2, B3} is an alternative basis for
the vector space of functions spanned by {T1, T2, T3}. It is known as the
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linear B-spline basis, and has better numerical properties that the truncated
line basis {T1, T2, T3}.

e. Based on a set of predictor values x1, . . . , xn let

XT ≡
⎡

⎢⎣
T1(x1) T2(x1) T3(x1)

...
...

...

T1(xn) T2(xn) T3(xn)

⎤

⎥⎦ and XB ≡
⎡

⎢⎣
B1(x1) B2(x1) B3(x1)

...
...

...

B1(xn) B2(xn) B3(xn)

⎤

⎥⎦

be design matrices for the two bases in part d. Run the following code to
confirm that ordinary least-squares regression with design matrix XT leads
to same fit as that with design matrix XB .
> par(mfrow=c(1,1))

> set.seed(1) ; n <- 100 ; x <- sort(runif(100))

> y <- cos(2*pi*x) + 0.2*rnorm(n)

> plot(x,y,col = "dodgerblue",bty = "l")

> XT <- cbind(rep(1,n),x,(2*x - 1)*(2*x - 1>0))

> XB <- cbind((1 - 2*x)*(1 - 2*x>0),1 - abs(2*x - 1),

+ (2*x - 1)*(2*x - 1>0))

> fitT <- lm(y~-1+XT) ; fitB <- lm(y~-1+XB)

> lines(x,fitted(fitT),col = "orange",lwd = 6)

> lines(x,fitted(fitB),col = "darkgreen",lwd = 2)

2. a. Issue the following commands in R to fit the following cubic regression
model

yi = β0 + β1 xi + β2 x2
i + α3 x3

i + εi,

to the running nonparametric regression example data, plot the fit, and
examine the residuals:
> library(HRW); data(WarsawApts)

> x <- WarsawApts$construction.date

> y <- WarsawApts$areaPerMzloty

> fitCubic <- lm(y ~ poly(x,3,raw = TRUE))

> ng <- 101 ; xg <- seq(1.01*min(x) - 0.01*max(x),

> 1.01*max(x) - 0.01*min(x),length = ng)

> fHatCubicg <- as.vector(cbind(rep(1,ng),xg,xg^2,xg^3)

+ %*%fitCubic$coef)

> plot(x,y,col = "dodgerblue")

> lines(xg,fHatCubicg,col = "darkgreen",lwd = 2)

> plot(fitted(fitCubic),residuals(fitCubic),

+ col = "dodgerblue")

> abline(0,0,col = "slateblue",lwd = 2)

Comment on the adequacy of this model.
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b. Issue the command:

trLin <- function(x,kappa) return((x-kappa)*(x>kappa))

to create the truncated line function with a knot at kappa (κ):

(x − κ)+ =
{

0, x ≤ κ

x − κ, x ≥ κ.

c. Now consider the spline regression model

yi = β0 + β1 xi + u1 (xi − κ1)+ + u2 (xi − κ2)+ + u3 (xi − κ3)+ + εi

where κ1, κ2, and κ3 are equally spaced knots over the range of the xis. Issue
the following R commands to fit the model to the data from part a. and plot
the fit:
> knots <- seq(min(x),max(x),length = 5)[-c(1,5)]

> X <- cbind(1,x)

> for (k in 1:3) X <- cbind(X,trLin(x,knots[k]))

> fitTLQ <- lm(y ~ -1 + X)

> Xg <- cbind(1,xg)

> for (k in 1:3) Xg <- cbind(Xg,trLin(xg,knots[k]))

> fHatTLQg <- as.vector(Xg%*%fitTLQ$coef)

> plot(x,y,col = "dodgerblue")

> lines(xg,fHatTLQg,col = "darkgreen",lwd = 2)

> plot(fitted(fitTLQ),residuals(fitTLQ),col = "dodgerblue")

> abline(0,0,col = "slateblue",lwd = 2)

Comment on the adequacy of this model.
d. Write an R script that uses ordinary least-squares via lm() to fit the spline

regression model

yi = β0 + β1 xi +
20∑

K=1

uk (xi − κk)+ + εi

where κ1, . . . , κ20 are equally spaced knots over the range of the data. The
script should then produce a scatterplot of the data, with the fitted curve
added and then a plot of the residuals against the fitted values.

e. Re-do part d., but using penalized least-squares, given by (2.4), with λ =
100.
Hint: See the explicit form of penalized least-squares given in Sect. 2.6.

3. a. Issue the following commands in R to plot truncated line and B-spline basis
functions with K = 15 knots:
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> library(splines) ; par(mfrow = c(2,1))

> K <- 15 ; ng <- 1001

> knots <- seq(0,1,length = (K+2))[-c(1,(K+2))]

> xg <- seq(0,1,length = ng)

> ZTg <- outer(xg,knots,"-") ; ZTg <- ZTg*(ZTg>0)

> CTg <- cbind(1,xg,ZTg)

> plot(0,type = "n",xlim = range(xg),ylim = range(CTg),

+ xlab = "x",ylab = "basis function")

> for (j in 1:(2+K)) lines(xg,CTg[,j],col = j)

> points(knots,rep(0,K),col = "darkmagenta",pch = 18)

> allKnots <- c(rep(0,2),knots,rep(1,2))

> CBg <- spline.des(allKnots,xg,ord = 2,

+ outer.ok = TRUE)$design

> plot(0,type = "n",xlim = range(xg),ylim = range(CBg),

+ xlab = "x",ylab = "basis function")

> for (j in 1:(2+K)) lines(xg,CBg[,j],col = j)

> points(knots,rep(0,K),col = "darkmagenta",pch = 18)

b. Re-issue the commands from part a. with higher values of K such as 25 and
35 to display larger bases of the same type.

c. For general K the matrix that transforms truncated line design matrices to
B-spline basis design matrices is the (K + 2) × (K + 2) matrix:

LTB = (K + 1)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
K+1 0 0 0 · · · 0 0 0 0
−1 1 0 0 · · · 0 0 0 0

1 −2 1 0 · · · 0 0 0 0
0 1 −2 1 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 1 −2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Issue the following commands in R to verify that LTB has the aforementioned
transformation property:
> K <- 15 ; ng <- 1001

> knots <- seq(0,1,length = (K+2))[-c(1,(K+2))]

> xg <- seq(0,1,length = ng)

> ZTg <- outer(xg,knots,"-") ; ZTg <- ZTg*(ZTg>0)

> CTg <- cbind(1,xg,ZTg) ; LTB <- matrix(0,(K+2),(K+2))

> LTB[1,1] <- 1 ; LTB[2,1:2] <- (K+1)*c(-1,1)

> for (k in 3:(K+2)) LTB[k,((k-2):k)] <- (K+1)*c(1,-2,1)

> CBviaLTBg <- CTg%*%LTB

> plot(0,type = "n",xlim = range(xg),

+ ylim = range(CBviaLTBg),xlab = "x",

+ ylab = "basis function")

> for (j in 1:(2+K)) lines(xg,CBviaLTBg[,j],col = j)

> points(knots,rep(0,K),col = "darkmagenta",pch = 18)
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d. Show that |LTB| = (K + 1)K+1. Since |LTB| �= 0, the two bases span the
same vector space for any K .

e. Let (xi, yi), 1 ≤ i ≤ n, be a set of regression data and define the matrices

CT ≡
⎡

⎢⎣
T1(x1) · · · TK+2(x1)

...
. . .

...

T1(xn) · · · TK+2(xn)

⎤

⎥⎦ , D ≡
[

02×2 02×K

0K×2 IK

]
and y ≡

⎡

⎢⎣
y1
...

yn

⎤

⎥⎦ .

Show that the vector of fitted values for the penalized least-squares prob-
lem (2.4), with f given by (2.2), is

⎡

⎢⎣
f̂ (x1; λ)

...

f̂ (xn; λ)

⎤

⎥⎦ = CT (CT
T CT + λ D)−1CT y.

f. If CB is defined analogously to CT , but containing Bj (xi) values, then show
that the vector of fitted values also equals

CB(CT
BCB + λ LT

TBDLTB)
−1CBy.

g. Issue the commands:
> set.seed(1) ; n <- 500 ; x <- sort(runif(n))

> y <- (6*x + sin(4*pi*x^2))/(5*x+1) + 0.1*rnorm(n)

> plot(x,y,bty = "l",col = "dodgerblue")

to generate and plot some test nonparametric regression data. Add the
(K, λ) = (35, 0.01) fitted values based on both the truncated line basis
expression from part e. and the B-spline basis expression from part f. and
verify their equality for this example. The B-spline basis is preferable due to
its better numerical stability.

4. Ensure that the package Ecdat (Croissant 2016) is installed in your R environ-
ment and issue the following R commands to obtain a scatterplot of data on
inflation rate against logarithm of gross domestic product for Canada based on
quarterly observations between 1950 and 1996:

> library(Ecdat) ; data(Tbrate) ;

> x <- as.data.frame(Tbrate)$y

> y <- as.data.frame(Tbrate)$pi

> plot(x,y,bty = "l",col = "dodgerblue",

+ xlab = "inflation rate (percentage)",

+ ylab = "logarithm(gross domestic product)")

a. Use the function gam() in the package mgcv to fit and plot a penalized
spline to these data with GCV choice of the smoothing parameter. Use
gam.check() to ensure that the number of spline basis functions in your
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final answer is sufficient. An autocorrelation function plot of the residuals
shows a small amount of serial correlation. For the purpose of this exercise
we ignore this and assume independence of the errors.

b. Use the function lme() in the package nlme to fit and plot a mixed model-
based penalized spline to these data with REML choice of smoothing
parameter. Also add a variability band to the plot, corresponding to approx-
imate pointwise 95% confidence interval coverage.

c. Use the function stan() in the package rstan to fit and plot a Bayesian
mixed model-based penalized spline to these data. Also add a variability
band to the plot, corresponding to approximate pointwise 95% credible
interval coverage. Your answer should include some diagnostic plots of
MCMC samples for key parameters. The script WarsawAptsBayes.R in the
HRW package contains some relevant code.

5. Issue the R commands:

> library(HRW) ; library(mgcv) ; data(WarsawApts)

> x <- WarsawApts$construction.date

> y <- WarsawApts$areaPerMzloty

> plot(x,y,bty = "l",col = "dodgerblue")

> fitGAMcr <- gam(y ~ s(x,bs = "cr",k = 30))

> xg <- seq(min(x),max(x),length = 1001)

> fHatgGAMcr <- predict(fitGAMcr,newdata = data.frame(x = xg))

> lines(xg,fHatgGAMcr,col = "darkgreen")

to fit and plot a penalized spline fit to the running nonparametric regression
example data with 30 cubic regression spline basis functions and GCV-based
smoothing parameter selection.

a. Obtain fits with other types of penalized bases specified in the call to s()

within the gam() function. Specifically, instead of bs = "cr" use:

i. bs = "gp" (Gaussian process basis functions),
ii. bs = "ps" (P-splines),

iii. bs = "tp" (thin plate regression splines).

Produce a plot that compares all four fits.
b. Obtain fits with other numbers of basis functions specified in the call to s()

within the gam() function. Specifically, retain bs = "cr" but instead of
k = 30 use:

i. k = 40 (40 basis functions),
ii. k = 50 (50 basis functions),

iii. k = 60 (60 basis functions).

Produce a plot that compares all four fits.
c. Obtain the fit with REML smoothing parameter selection, but with bs =

"cr" and k = 30 retained, via the call:
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> fitGAMcrREML <- gam(y ~ s(x,bs = "cr",k = 30),

+ method = "REML")

Produce a plot that compares the GCV-based and REML-based fits.
d. Based on the plots in parts a., b., and c., what can be said about the relative

influence of the type of basis, number of basis functions, and method of
smoothing parameter selection for this example?

6. Consider the nonparametric regression model

yi = f (xi) + εi, εi
ind.∼ N(0, σ 2

ε ), 1 ≤ i ≤ n (2.25)

and the hypothesis testing problem

H0 : f is linear versus H1 : f is a smooth nonlinear function. (2.26)

a. Ensure that the package RLRsim (Scheipl and Bolker 2016) is installed in
your R environment.

b. Start an R session and issue the commands:
> set.seed(1)

> x <- seq(0,1,length = 200) ; y <- x + rnorm(200)

to generate a dataset from (2.25) with f (x) = x, σε = 1, and n = 200.
c. Issue the following commands to obtain p-values for three different tests

of (2.26):
> library(mgcv) ; library(RLRsim)

> fitLine <- gam(y ~ x) ; fitDfltPenSpl <- gam(y ~ s(x))

> print(anova(fitLine,fitDfltPenSpl,

+ test = "F")$"Pr(>F)"[2])

> fitOLSspl <- gam(y ~ s(x,k = 5,sp = 0))

> print(anova(fitLine,fitOLSspl,test = "F")$"Pr(>F)"[2])

> fitGAMM <- gamm(y ~ s(x),method = "REML")

> print(exactRLRT(fitGAMM$lme)[2])

The three tests are (1) an F-test using the gam() default penalized spline
fit, (2) an F-test using an ordinary least-squares fit with two linear and three
spline basis functions, and (3) the exact restricted likelihood ratio test using
the function exactRLRT() in RLRsim. Given that H0 is true, comment on
the results.

d. Replicate 1000 random datasets of according to the code in part b. For each
replication perform the three tests from part c. and store the p-values. Plot
histograms of the p-values for all three tests. Comment on the histograms.

e. Suppose that the significance level of the tests is set at 0.05. Using the p-
values from d. tabulate the proportions of tests that reject H0 for each of
the three tests. Which tests have rejection probabilities that are close to the
advertised significance level?
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7. As in Exercise 6 we consider the nonparametric regression model (2.25) and
hypothesis testing problem (2.26) but work data generated from with the family
of regression functions

f (x; θ) = x + θφ(x; 1/2, 1/4), 0 ≤ θ ≤ 1

where φ(·;μ, σ) is the Normal density function with mean μ and standard
deviation σ . Note that f (x; 0) is linear but f (x; θ) is nonlinear for 0 < θ ≤
1.

a. Enter the following commands in R to obtain a plot of f (·; θ) for θ ∈
{0, 0.05, . . . , 1}:
> theta <- seq(0,1,by = 0.05)

> xg <- seq(0,1,length = 1001)

> plot(xg,xg,type="l",ylim = c(0,2.15),bty = "l",

+ xlab = "x",ylab = expression(paste("f(x;",theta,")")))

> for (j in 2:length(theta))

+ lines(xg,xg + theta[j]*dnorm(xg,0.5,0.25),col = j)

b. Consider the three tests from part c. of Exercise 6 and set the significance
level of the tests to be 0.05. For each θ ∈ {0, 0.05, . . . , 1} simulate 1000
random datasets according to the model

yi = f (xi; θ) + εi, εi
ind.∼ N(0, σ 2

ε ), 1 ≤ i ≤ n,

with n = 200, σε = 1 and the xis equally spaced between 0 and 1 and apply
all three tests to each dataset. Use the rejection proportions to approximate
the power functions of each test. Plot the approximate power functions on
the same set of axes.

c. Based on the plot in part b., which test performs best in terms of achieving
the advertised significance and being the most powerful?

8. As discussed in Sect. 2.7 GCV and REML are two methods for selecting
the smoothing parameter of a penalized spline. Consider the nonparametric
regression setting from Exercise 7:

yi = f (xi; θ) + εi, εi
ind.∼ N(0, σ 2

ε ), 1 ≤ i ≤ n (2.27)

where the xis are equally spaced between 0 and 1.

a. Fix (n, θ, σε) = (800, 0.5, 0.2) and generate a sample of (xi, yi) observa-
tions via the code:
> n <- 800 ; theta <- 0.5 ; sigmaEps <- 0.2

> set.seed(1) ; x <- seq(0,1,length = n);

> y <- x + theta*dnorm(x,0.5,0.25) + sigmaEps*rnorm(n)

Next obtain GCV-based and REML-based penalized spline fits via the calls:
> library(mgcv) ; fitGCV <- gam(y ~ s(x,k = 27))

> fitREML <- gam(y ~ s(x,k = 27),method = "REML")
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For a generic estimator f̂ of f (·; θ), the average squared error (ASE)
performance measure is

ASE ≡ 1

n

n∑

i=1

{f̂ (xi) − f (xi; θ)}2.

Implement the following code to compare the ASE values for the GCV-based
and REML-based penalized spline estimates:
> fhatGCV <- fitted(fitGCV) ; fhatREML <- fitted(fitREML)

> fTrue <- x + theta*dnorm(x,0.5,0.25)

> ASEforGCV <- sum((fhatGCV - fTrue)^2)/n

> ASEforREML <- sum((fhatREML - fTrue)^2)/n

> print(c(ASEforGCV,ASEforREML))

If the value of ASEforGCV is lower than ASEforREML, then GCV is better
than REML for this particular dataset and vice versa.

b. Fix (θ, σε) = (0.5, 0.2) and allow the sample size to vary over the set
n ∈ {25, 50, 100, 200, 400, 800, 1600, 3200}. For each value of n in this
set generate 100 random datasets according to (2.27), obtain the GCV-based
and REML-based penalized spline estimates of f (·; θ) using the code from
part a. and record the ASE performance measures for each fit.

c. Do the same as in part b. but fixing (n, σε) = (800, 0.2) and allowing θ to
vary over the set θ ∈ {0, 0.1, . . . , 1}.

d. Do the same as in part b. but fixing (n, θ) = (800, 0.5) and allowing σε to
vary over the set σε ∈ {0.1, 0.2, . . . , 1}.

e. Obtain comparative graphical and statistical summaries of the ASE perfor-
mance values and make some conclusions about the relative performance of
GCV and REML.

9. The simple factor-by-curve interaction model for the Warsaw apartment data
given by (2.24) has one curve for the Srodmiescie district and one curve for
each of the remaining districts.

a. Extend the model so that there is a separate curve for each of the four
districts.

b. Modify the code in the R script WarsawAptsSimpFacByCurv.R to fit the
model formulated in part a. and obtain a color-coded plot showing fitted
mean curves for each district and corresponding 95% pointwise credible sets.

c. Obtain and plot contrast function estimates for all six pairs of districts.
Include 95% pointwise credible sets with each contrast function estimate.

10. The dataset TreasuryRate in the HRW package contains two variables, date
and rate. The latter is the daily one-month maturity U.S. Treasury rate from
July 31, 2001 until July 10, 2013. There are occasional missing values due to
holidays.
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a. Issue the following commands in R to remove the missing values and obtain
a time series plot of the rates:
> library(HRW) ; data(TreasuryRate)

> date <- (as.Date(TreasuryRate$date,"%m/%d/%Y")

+ [!is.na(TreasuryRate$rate)])

> r <- TreasuryRate$rate[!is.na(TreasuryRate$rate)]

> plot(date,r,type = "l",bty = "l",col = "darkgreen",

+ xlab = "date",ylab="U.S. Treasury rate")

Let rt be the t th value of the variable plotted on the vertical axis, 1 ≤ t ≤
2987.

b. Define Δrt ≡ rt − rt−1 and consider the nonparametric mean and variance
regression model

Δrt = f (rt−1) + √
g(rt−1) εt ,

where f and g are smooth functions and, as a working assumption, assume
first that the εt are independent and identically distributed. Mixed-model
based penalized spline models for the mean and variance functions are

f (r) = β0 + β1 r +
Kf∑

k=1

uk z
f
k (r), uk ∼ N(0, σ 2

u )

and

g(r) = exp

⎧
⎨

⎩γ0 + γ1 r +
Kg∑

k=1

vk z
g
k (r)

⎫
⎬

⎭ , vk ∼ N(0, σ 2
v )

where the z
f
k and z

g
k are O’Sullivan cubic spline bases of sizes Kf and Kg

respectively. By modifying the code in WarsawAptsBayes.R fit a Bayesian
penalized model with Kf = 10 and Kg = 100. Use hyperparameter values
similar to those used in WarsawAptsBayes.R. Make the additional working
assumption that the εt are normally distributed. Plot the estimates of the
mean function f and the standard deviation function

√
g.

c. The t th standardized residual is

ε̂t ≡ {Δrt − f̂ (rt−1)}/
√

ĝ(rt−1)

and estimates εt . Plot ε̂2
t against t . If the assumption that the εt are

independent and identically distributed holds, then the ε̂2
t should have

a constant mean and be uncorrelated. Do you see evidence against this
assumption?
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d. The plot in part c. shows that there is a period of high volatility during
the financial crisis of 2008–2009. The model for g does not account for
extra variance due to this volatility. This extra variance could be modeled
by assuming that εt follows a generalized autoregressive conditional het-
eroscedasticity (GARCH) process rather than being an independent process.
See Ruppert and Matteson (2015) for details on GARCH processes and R
code for fitting them.



Chapter 3
Generalized Additive Models

3.1 Introduction

The models fit in Chap. 2 have two limitations. First, the conditional distribution
of the response, given the predictors, is assumed to be Gaussian. Second, only a
single predictor is allowed to have a smooth nonlinear effect—the other predictors
are modeled linearly. The first limitation is addressed by using generalized linear
models (GLMs), which remove the Gaussian assumption and allow the response
variable to have other distributions such as those within the Binomial and Poisson
families. The second limitation can be relaxed via the notion of additive models,
which is explained in Sect. 3.3. The combination of an additive model and gener-
alized regression is called a generalized additive model (GAM) and is the focus of
this chapter.

GAMs were proposed in Hastie and Tibshirani (1986); Hastie and Tibshirani
(1990) with accompanying software that is now packaged as gam (Hastie 2017a).
The attractions of allowing flexible predictor effects, interpretability, and ready-to-
use software have led to widespread use of GAMs in many areas of application. The
mgcv package (Wood 2017) also supports GAM analyses and has the advantage of
providing automatic smoothing parameter selection for multiple penalized spline
components. As we will demonstrate in this chapter, GAMs are supported by
other R packages including gamlss (Stasinopoulos and Rigby 2017), polspline
(Kooperberg 2015) and VGAM (Yee 2017).

3.2 Generalized Linear Models

Generalized linear models (GLMs) are often used when the assumptions of a linear
model are not met. Classical linear models make three assumptions about the
conditional distribution of the response given the predictors:
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1. the conditional mean of the response is a linear function of the predictors,
2. the conditional variance of the response is constant,
3. the conditional distribution of the response is Gaussian.

A GLM relaxes all three assumptions of a linear model. Assumption 1 is relaxed to
the assumption that a monotone transformation of the mean response, known as the
link, is a linear function of the predictors. A GLM also relaxes assumption 3, most
commonly to the assumption that the conditional distribution of the response is in
a one-parameter exponential family. Finally, assumption 2 is not made by a GLM.
Instead, the conditional variance is imposed by the exponential family.

The general form of the one-parameter exponential family of densities is

p(y; θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
, (3.1)

where θ is the so-called natural parameter, φ is a dispersion parameter, and b(θ) and
c(y, φ) are known functions. The relationship between the moments of y and b(θ)

is: E(y) = b′(θ) and Var(y) = b′′(θ). We assume that the conditional expectation
of y, denoted by μ, depends on the predictors xj , 1 ≤ j ≤ d, via the relationship
g(μ) = η, where g(·) is the link, and η has a linear form so that

g(μ) = η = β0 + β1 x1 + · · · + βd xd . (3.2)

Since η can potentially be any real number, ideally g maps the domain of μ onto the
entire real line. For example, for a binary response variable y, where y takes only
the values 0 and 1, μ is in the interval (0, 1) so g should map (0, 1) to the real line.
The logit function,

logit(x) ≡ log{x/(1 − x)}

and the probit function Φ−1, where Φ is the Standard Normal cumulative distribu-
tion function, have this property. For a binary response, the expected response is also
the probability that the response equals 1. The logit link transforms this probability
to the log-odds.

For conditionally Poisson-distributed or Gamma-distributed responses, the link
function should map the positive half-line to the entire real line. The log function is
the usual choice for the link.

The canonical link has the special property that η = θ and so there exists a (d +
1)-dimensional sufficient statistic regardless of the sample size. For the Binomial
distribution, the canonical link is the logit link (see Table 3.1). It is not essential that
one uses a canonical link. For example, probit regression uses a noncanonical link.
For Gamma regression, the log link is often used although the reciprocal function is
the canonical link. In Gamma regression, an advantage of the noncanonical log link
is that it maps (0,∞), the set of possible values of the mean, onto the entire real
line; the reciprocal link does not do this. One should use a link function that fits the



3.2 Generalized Linear Models 73

Table 3.1 Common exponential family distributions and corresponding link functions.

Canonical link Other commonly used link

Family (mathematical form) (mathematical form)

Gaussian identity (x)

Binomial logit (log{x/(1 − x)}) probit (Φ−1(x))

Poisson log (log(x))

Gamma reciprocal (1/x) log (log(x))

data well. In the case of binary regression, the logit and probit links are so similar
that one often finds that they provide equally good fits. For Gamma regression, the
log and reciprocal functions are sufficiently different that one might try both and
compare the fits.

Table 3.1 summarizes the main GLM families and their corresponding link
transformations.

In Sect. 2.9, likelihood ratio tests were discussed where random effects, if
present, are treated as fixed effects and replaced by estimates, rather than being
integrated out. Likelihood ratio tests of this type are also used for GLMs and
GAMs and for their mixed-model counterparts, generalized linear mixed models,
and generalized additive mixed models. Likelihood ratio tests for these models are
usually implemented using the so-called deviance statistics.

We begin by defining a scaled deviance. The scaled deviance of a model is twice
the logarithm of the likelihood ratio comparing that model to the saturated model.
The saturated model is the model where each yi has its own parameter, θi , and
therefore its own mean, μi . The saturated model has the highest likelihood of all
models. Usually, the saturated model provides a perfect fit, so that the fitted mean
μ̂i equals the response yi for all cases. The effect of comparing the likelihood of a
model to that of the saturated model is a simplification due to the cancellation of the
terms c(y, φ) in their likelihoods, assuming that both models use the same value of
the scale parameter φ.

If D0 and D1 are the scaled deviances of a reduced and full model, respectively,
then twice the logarithm of the likelihood ratio for these models is D1 − D0. The
log-likelihood of the saturated model appears in both D0 and D1 and is cancelled by
the subtraction. Therefore, D1 − D0 is 2 log(LR), the likelihood ratio test statistic
discussed in Sect. 2.9.

The scaled deviance D of a model can be expressed as
∑n

i=1 di where di ≥ 0 is
the contribution of the ith case to the scaled deviance. The deviance residual for the
ith case is defined as sign(yi − μ̂i)

√
di , so that D is the sum of the squared deviance

residuals. Here, assuming model (3.2), the fitted mean μ̂i is given by g(μ̂i) = β̂0 +
β̂1x1i + · · · + β̂dxdi . To keep the notation simple, we do not show that μi depends
on β0, . . . , βp (or μ̂i on β̂0, . . . , β̂p), but these facts should be kept in mind.

The deviance of a model is its scaled deviance times φ. For the logistic or Poisson
regression models, φ = 1 and the scaled deviance and deviance are equal. If,
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for example, yi is Poisson distributed with mean μi , then the ith term of the log-
likelihood is

−μi +yi log(μi)− log(yi !) = yiηi − exp(ηi)− log(yi !) = yiηi − b(ηi)

φ
+ c(yi, φ)

where ηi = log(μi), b(ηi) = exp(ηi), φ = 1, and c(y) = c(y, φ) = − log(y!).
For the saturated model, the estimated mean is simply yi . For another model with

μ̂i as the estimated mean, the deviance is

D =
n∑

i=1

{ − yi + yi log(yi) − log(yi !)
} − { − μ̂i + yi log(μ̂i) − log(yi !)

}

=
n∑

i=1

(μ̂i − yi) + yi log(yi/μ̂i) =
n∑

i=1

yi log(yi/μ̂i),

since
∑n

i=1(μ̂i − yi) = 0.
As another example, if yi is normally distributed with mean μi and variance σ 2,

then the scaled deviance is
∑n

i=1(yi − μ̂i)
2/σ 2. Also φ = σ 2, so the deviance is the

residual sum of squares,
∑n

i=1(yi − μ̂i)
2.

Maximum likelihood requires that one have a probability model for the data.
If instead, only the mean and variance of yi (conditional on the predictors) are
specified, then one can estimate the regression parameters by quasi-likelihood.
Quasi-likelihood assumes that the variance of yi is equal to φV (μi) where V is
a known function, μi is the mean of yi , and φ is called the scale parameter The
quasi-likelihood estimator of the regression parameters maximizes Q ≡ ∑n

i=1 Qi

where

Qi =
∫ μi

yi

yi − u

φV (u)
du.

The maximum does not depend on φ, but the standard errors do. To calculate the
standard errors, Q is treated as a log-likelihood. The negative second derivative
matrix of Q with respect to (β0, . . . , βd) is used as an information matrix and its
inverse estimates the covariance matrix of (β̂0, . . . , β̂d ). The latter is proportional
to φ, so the standard errors, which are the square roots of the diagonal elements, are
proportional to

√
φ.

Once the regression parameters have been estimated, one can estimate φ by

φ̂ = 1

n − d − 1

n∑

i=1

(yi − μ̂i)
2

V (μ̂i)
. (3.3)

Often count data are overdispersed relative to the Poisson model. One remedy
is to assume that yi has a Negative Binomial distribution; see Sect. 3.2.2. Another
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approach is the quasi-Poisson model, which does not specify a probability distri-
bution for yi but only assumes that var(yi) = φμi for some φ. The regression
parameters are estimated by quasi-likelihood and φ by (3.3).

3.2.1 Example: Mortgage Applications in Boston

Binary regression is the special case of Binomial regression where the response can
take only two possible values, so the conditional distribution of the response is the
Bernoulli special case of the Binomial distribution. Our first illustration of GLM is
a binary response example.

This example uses the BostonMortgage dataset introduced in Chap. 1. Recall
that our response of interest is the variable deny, the status of the mortgage
application—deny is coded as “yes” when the mortgage application was denied
and “no” otherwise. For GLM fitting deny is then converted to a binary variable
with “yes” equated with 1 and “no” equated with 0.

First, we look at the effect of race on the probability of a mortgage application
being denied. We see that approximately 12% of mortgages are denied and the odds
ratio of mortgage denial comparing Blacks to non-Blacks is 3.9:

> library(HRW) ; data(BostonMortgages)

> denyBin <- as.numeric(BostonMortgages$deny == "yes")

> blackIndic <- BostonMortgages$black == "yes"

> print(round(mean(denyBin),2))

[1] 0.12

> probabBlack <- mean(denyBin[blackIndic])

> probabNotBlack <- mean(denyBin[!blackIndic])

> oddsBlack <- probabBlack/(1 - probabBlack)

> oddsNotBlack <- probabNotBlack /(1 - probabNotBlack)

> print(round(oddsBlack/oddsNotBlack,1))

[1] 3.9

Next we fit a logistic regression model using glm() with deny as the response
variable and black as the only predictor variable. The argument family =

binomial is used for logistic regression; the default link is the logit function.

> fit1GLMBostMort <- glm(deny ~ black,family = binomial,

+ data = BostonMortgages)

> summary(fit1GLMBostMort)

Call:

glm(formula = deny ~ black, family = binomial,

data = BostonMortgages)
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Deviance Residuals:

Min 1Q Median 3Q Max

-0.8160 -0.4409 -0.4409 -0.4409 2.1815

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.28227 0.07636 -29.888 <2e-16

blackyes 1.35356 0.14270 9.485 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1744.2 on 2379 degrees of freedom

Residual deviance: 1663.4 on 2378 degrees of freedom

AIC: 1667.4

Number of Fisher Scoring iterations: 5

We see that the coefficient of blackyes is equal to the logarithm of the odds
ratio and is highly significant. Next, we investigate whether or not the higher
probability of mortgage denial for individuals with black ethnicity persists after
adjusting for confounders. The following confounders, with abbreviations as used
in the BostonMortgages data frame, are considered:

dir ratio of the debt payments to total income,

lvr ratio of the loan size to the assessed value of property,

pbcr indicator public bad credit record (yes/no),

self indicator of self-employment (yes/no),

single indicator that the applicant is single (yes/no),

ccs credit score, an ordinal variable ranging from 1 to 6,

with lower being better.

> fit2GLMBostMort <- glm(deny ~ black + dir + lvr + pbcr

+ + self + single + as.factor(ccs),

+ family = binomial,data = BostonMortgages)

> summary(fit2GLMBostMort)

Call:

glm(formula = deny ~ black + dir + lvr + pbcr + self + single +

as.factor(ccs), family = binomial, data = BostonMortgages)
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Deviance Residuals:

Min 1Q Median 3Q Max

-1.9299 -0.4721 -0.3319 -0.2347 3.0930

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.7185 0.4811 -13.966 < 2e-16

blackyes 0.6894 0.1657 4.160 3.19e-05

dir 4.7210 0.7634 6.184 6.24e-10

lvr 2.5367 0.4664 5.439 5.37e-08

pbcryes 1.2664 0.1971 6.426 1.31e-10

selfyes 0.5741 0.2035 2.821 0.004783

singleyes 0.3917 0.1419 2.761 0.005763

as.factor(ccs)2 0.6600 0.1959 3.370 0.000753

as.factor(ccs)3 0.8174 0.2832 2.887 0.003894

as.factor(ccs)4 1.3792 0.3189 4.324 1.53e-05

as.factor(ccs)5 1.1290 0.2311 4.885 1.04e-06

as.factor(ccs)6 1.4319 0.2147 6.669 2.58e-11

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1744.2 on 2379 degrees of freedom

Residual deviance: 1403.2 on 2368 degrees of freedom

AIC: 1427.2

Number of Fisher Scoring iterations: 6

All of the confounders are significant. Moreover, the odds ratio for black versus
non-black is only e0.6894 ≈ 2.0, compared to 3.9 when the confounders are not
in the model. However, the effect of black is still significant, which indicates that
black applicants are more likely to have a mortgage application denied even if one
conditions on the confounders.

The ordinal variable ccs has been treated as a factor so that each level has its own
mean. This requires five degrees of freedom. A linear effect for ccs involves only
one degree of freedom but is not appropriate for an ordinal variable. A compromise
between a linear fit and treating ccs as a factor is to fit a penalized spline and we
investigate this in Sect. 3.3.3.

In this section we have used the base R function glm() for GLM fitting. An
alternative is to use gam() from the package mgcv (Wood 2017). For example:

> library(mgcv)

> fit2GLMBostMortAlt <- gam(deny ~ black + dir + lvr + pbcr

+ + self + single + as.factor(ccs),

+ family = binomial,data = BostonMortgages)
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Since gam() will be used later for the additive model extension, we will start using
this function for GLM fitting as well. This will aid model comparison.

We will see later that the effects of dir and lvr are highly nonlinear. Also,
dir and lvr have outlying cases. A GLM cannot accommodate the nonlinear
effects of dir and lvr and are sensitive to the high leverage of their outliers.
Therefore, the results in this section are presented merely to illustrate GLM fitting.
To accommodate the nonlinear effects and outlying values of dir and lvr a
GAM, rather than a GLM, is needed. GAM analyses of these data are presented
in Sects. 3.3.3 and 3.6.1.

3.2.2 Example: Physician Offices Visits

The data frame OFP in the Ecdat (Croissant 2016) contains data on physician visits
and demographic characteristics of 4406 individuals in the USA. The data were
collected as part of the 1987 National Medical Expenditure Survey in the USA with
details given in Deb and Trivedi (1997). We consider the response variable:

ofp ≡ number of physician office visits

which is a count variable. We start with a Poisson GLM, but we will see that the
data are overdispersed compared to a Poisson distribution, that is, the conditional
variance of the response given the predictors is larger than the conditional mean.
To deal with overdispersion, we will use two strategies. First, we will fit a modified
Poisson model with an overdispersion parameter. Second, we will use a Negative
Binomial model for the conditional distribution of the response. Poisson regression
models can be fit using the function gam() in the mgcv package. To fit the Negative
Binomial distribution we will use the function gamlss() within the package
gamlss (Stasinopoulos and Rigby 2017). The Negative Binomial distribution can
also be fit with gam() in the mgcv package.

After preliminary exploratory data analysis, we selected the subset of the patients
whose age was 95 years or less. Also, for illustrative purposes, the predictors were
selected casually. With the abbreviation used in the OFP data frame, they are:

age age in decades which we convert to years,

school number of years of education,

adldiff indicator that person has a condition that limits

activities of daily living (0/1),

black indicator that the person is African-American (yes/no),

sex indicator of gender (male/female),
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maried (sic) indicator that the person is married (yes/no),

privins indicator of having private insurance coverage (yes/no),

medicaid indicator of having Medicaid coverage (yes/no),

region region of the USA (midwest/noreast/west/other),

hlth self-perceived health status (excellent/poor/other).

The following code creates the data frame that we will use:

> library(Ecdat) ; data(OFP) ; OFPforAna <- OFP

> OFPforAna$age <- 10*OFPforAna$age

> OFPforAna <- OFPforAna[OFPforAna$age<=95,]

After subsetting on age, the number of observations is n = 4394. A Poisson GLM
is fit as follows:

> library(mgcv)

> fit1GLMOFP <- gam(ofp ~ age + school + black + sex + maried +

+ adldiff + privins + medicaid + region + hlth,

+ family = poisson,data = OFPforAna)

> print(summary(fit1GLMOFP))

Family: poisson

Link function: log

Formula:

ofp ~ age + school + black + sex + maried + adldiff + privins +

medicaid + region + hlth

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.444856 0.086863 16.634 < 2e-16

age -0.004246 0.001085 -3.914 9.07e-05

school 0.025973 0.001913 13.577 < 2e-16

blackyes -0.098457 0.022470 -4.382 1.18e-05

sexmale -0.054165 0.014165 -3.824 0.000131

mariedyes -0.048654 0.014472 -3.362 0.000774

adldiff 0.172812 0.016649 10.380 < 2e-16

privinsyes 0.331427 0.019682 16.839 < 2e-16

medicaidyes 0.309938 0.025143 12.327 < 2e-16

regionnoreast 0.095057 0.017677 5.377 7.56e-08

regionmidwest -0.022209 0.016758 -1.325 0.185065

regionwest 0.107607 0.018016 5.973 2.33e-09

hlthexcellent -0.494783 0.030231 -16.367 < 2e-16

hlthpoor 0.476775 0.017555 27.160 < 2e-16
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R-sq.(adj) = 0.0624 Deviance explained = 8.26%

UBRE = 4.6145 Scale est. = 1 n = 4394

Even though the majority of the predictors is highly significant, we can only explain
8.3% of the deviance and the adjusted R2 is only 6.24%. This type of behavior,
where highly significant predictors are not very predictive of the response, is seen
commonly when, as here, the sample size is so large that small effects can be
detected with high probability. Moreover, the p-values in the summary above are
too small because we have not yet accounted for overdispersion.

A well-known property of the Poisson distribution is that the variance equals the
mean. In practice, count data often exhibit overdispersion meaning that the variance
exceeds the mean. Underdispersion is possible in principle but not common in
practice. To accommodate either overdispersion or underdispersion, most software
for count data introduces a scale parameter such that the variance is equal to the
squared scale parameter times the mean. Poisson dispersion corresponds to the scale
parameter being equal to 1. When the scale parameter does not equal 1, the model
is often called quasi-Poisson.

Note that by fitting the Poisson regression model with the scale argument
set at its default value, we fixed the scale parameter to be 1. To check for
overdispersion, we will fit the GLM with an estimated scale parameter. If the scale
argument is set to a negative number, then gam() takes the scale parameter to be
unknown and estimates it. When family = poisson is specified, if the scale

argument of gam() is positive, then the scale parameter is set to that value and the
quasipoisson family is used. One can adjust for overdispersion by specifying the
family quasipoisson directly instead of using the family poisson with scale =

-1.

> library(mgcv)

> fit2GLMOFP <- gam(ofp ~ age + school + black + sex + maried +

+ adldiff + privins + medicaid + region + hlth,

+ family = poisson,scale = -1,data = OFPforAna)

> print(summary(fit2GLMOFP))

Family: poisson

Link function: log

Formula:

ofp ~ age + school + black + sex + maried + adldiff + privins +

medicaid + region + hlth

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.444856 0.232112 6.225 5.27e-10

age -0.004246 0.002898 -1.465 0.143042

school 0.025973 0.005112 5.081 3.91e-07
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blackyes -0.098457 0.060043 -1.640 0.101125

sexmale -0.054165 0.037851 -1.431 0.152494

mariedyes -0.048654 0.038670 -1.258 0.208399

adldiff 0.172812 0.044488 3.884 0.000104

privinsyes 0.331427 0.052594 6.302 3.23e-10

medicaidyes 0.309938 0.067186 4.613 4.08e-06

regionnoreast 0.095057 0.047236 2.012 0.044240

regionmidwest -0.022209 0.044779 -0.496 0.619937

regionwest 0.107607 0.048141 2.235 0.025452

hlthexcellent -0.494783 0.080782 -6.125 9.87e-10

hlthpoor 0.476775 0.046909 10.164 < 2e-16

R-sq.(adj) = 0.0624 Deviance explained = 8.26%

GCV = 5.6441 Scale est. = 7.1404 n = 4394

The estimated scale is equal to 7.14 which, as expected, is much greater than 1.
Comparing the summary of fit1GLMOFP with that of fit2GLMOFP, we see that
after accounting for overdispersion, the standard errors are much larger and the p-
values are also larger. Some of the changes in p-value are dramatic. For example,
age has a p-value of 0.0001 when scale is fixed at 1 but the p-value increases over
1000-fold to 0.14 when scale is estimated.

3.3 Generalized Additive Models

In many cases, the relationships between η and the predictors are not well
represented by the simplistic linear relationship in (3.2). To accommodate possibly
nonlinear relationships, a smooth function of xj , j = 1, . . . , d, is used in place of a
linear function. Thus, the GAM extension to modeling η is

η = β0 + f1(x1) + · · · + fd(xd), (3.4)

where the fj , 1 ≤ j ≤ d, are smooth functions. Thus, η is no longer linear in
the predictor variables as in a GLM, but instead η is an additive function of the
predictors. Most commonly the fj are fitted using penalized splines as described in
Chap. 2. In the case of d = 2 and O’Sullivan splines (3.4) becomes

η = β0 + β1 x1 +
K1∑

k=1

u1kz1k(x1) + β2 x2 +
K2∑

k=1

u2kz2k(x2). (3.5)

where z1k(·), 1 ≤ k ≤ K1, is an O’Sullivan spline basis over the range of the x1 data
and the z2k(·) are defined analogously. Differing amounts of penalization are applied
to the u1k and the u2k . Note that (3.5) identifies f1 according to the definition



82 3 Generalized Additive Models

f1(x1) ≡ β1 x1 +
K1∑

k=1

u1kz1k(x1)

which means that it can only be interpreted as an effect on η due to changes in x1. A
common convention used by R GAM software, such as gam() in the package gam

and gam() in the package mgcv, is to plot estimates of the fj with vertical centering
around zero with respect to the predictor data. For an estimate of f̂1 of f1 this entails
plotting

f̂1(x1) − 1

n

n∑

i=1

f̂1(x1i ) against x1.

An alternative is to plot the slice of the estimated surface in the x1 direction with all
other predictors set to their averages. In the d = 2 case this involves plotting

β̂0 + f̂1(x1) + f̂2(x2) against x1

where x2 ≡ 1
n

∑
i=1 x2i . In the Gaussian response case, this has the advantage

of the function estimate being vertically aligned with the response data. The same
applies to other GAMs but after application of the inverse link transformation
to the function estimate. This approach involves use of the predict() function
applied to the gam() object, and is demonstrated in the scripts OFPGAMfit.R and
BostMortfit.R within the HRW package.

3.3.1 Example: Test Scores of Children in California School
Districts

We now illustrate GAM fitting using the Caschool dataset in the Ecdat (Croissant
2016) package. This dataset contains 420 cross-sectional observations collected
during the 1998–1999 school year in California school districts. We will model the
average mathematics scores as an additive function of district characteristics. We
will not be trying to build the best possible predictive model for mathscr (average
math scores), but only want to illustrate GAM fitting using a few chosen variables
for which the association with mathscr is not sufficiently explained by a linear
relationship. Selection of better models is discussed in Sect. 3.4 We consider the
following four predictors:

calwpct percentage of children qualifying for CalWORKs,

log.avginc natural logarithm of the average district income,

compstu number of computers per student,

expnstu expenditure per student.
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According to a California Department of Social Services website CalWORKs is
a “welfare program that gives cash aid and services to eligible needy California
families.”

The following code uses gam() in the mgcv package (Wood 2017) to produce a
GAM fit:

> library(mgcv) ; library(Ecdat) ; data(Caschool)

> Caschool$log.avginc <- log(Caschool$avginc)

> fitGAMCaschool <- gam(mathscr ~ s(calwpct) + s(log.avginc) +

+ s(compstu) + s(expnstu), data = Caschool)

In gam(), a predictor that is the argument of the s() function is modeled as having a
smooth function effect using penalized splines. A summary of the fit can be obtained
via:

> summary(fitGAMCaschool)

Family: gaussian

Link function: identity

Formula:

mathscr ~ s(calwpct) + s(log.avginc) + s(compstu) + s(expnstu)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 653.3426 0.5495 1189 <2e-16

Approximate significance of smooth terms:

edf Ref.df F p-value

s(calwpct) 3.826 4.751 19.976 < 2e-16

s(log.avginc) 3.942 4.938 19.829 < 2e-16

s(compstu) 3.480 4.396 3.290 0.00968

s(expnstu) 4.311 5.336 0.847 0.48521

R-sq.(adj) = 0.639 Deviance explained = 65.3%

GCV = 132.02 Scale est. = 126.82 n = 420

We see in the output that the family of conditional distributions of the responses
is Gaussian and the link is the identity function. Such a Gaussian response
model is often labeled an additive model rather than a generalized additive model.
However, we will not make this distinction and use the term GAM for all additive
models.
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Fig. 3.1 Estimated smooth function components for the GAM fit to the California schools data
obtained via the R function gam() in the package mgcv and stored in object fitGAMCaschool
according to code given in the text. The response variable is average mathematics score. Each
component function is vertically centered about zero. The shaded regions indicate approximately
95% pointwise confidence intervals. The tick marks indicate the values of the predictors.

A plot of the fitted penalized splines for each predictor is shown in Fig. 3.1. When
gam() output is plotted, the same vertical scale is used for each effect, which allows
a quick comparison among the sizes of the effects. This feature can be overridden
by using the select argument of plot.gam() to plot the effects one-at-a-time. The
script CaSchoolGAMfit.R in the HRW package contains the code used to produce
Fig. 3.1. It can be run from the command line using:

> library(HRW) ; demo(CaSchoolGAMfit,package = "HRW")

and its location for possible copying and modifying is determined by:

> system.file("demo","CaSchoolGAMfit.R",package = "HRW")

We see that log.avginc has the largest effect with average mathscr increasing
steadily with this predictor. Furthermore, calwpct has the next largest effect and
its effect is nonlinear with an initial steep decrease before leveling off. Interestingly,
compstu and expnstu appear to have little or no effect.

A question that arises frequently in practical data analysis is the adequacy of
a linear model. To address this issue, we start by fitting a GLM using the gam()
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function. This is done by having each predictor appear by itself rather than as the
argument of the function s().

> library(mgcv) ; library(Ecdat) ; data(Caschool)

> Caschool$log.avginc <- log(Caschool$avginc)

> fitGLMCaschool <- gam(mathscr ~ calwpct + log.avginc

+ + compstu + expnstu,data = Caschool)

The GLM just fit can be compared with the GAM fit by an F-test:

> anova(fitGLMCaschool,fitGAMCaschool,test = "F")

Analysis of Deviance Table

Model 1: mathscr ~ calwpct + log.avginc + compstu + expnstu

Model 2: mathscr ~ s(calwpct) + s(log.avginc) + s(compstu)

+ s(expnstu)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 415.00 58685

2 399.58 51163 15.42 7522.1 3.8466 1.499e-06

The small p-value is consistent with the nonlinear relationships seen in Fig. 3.1, and
both the p-value and this figure indicate that the GAM is preferred over the GLM.
One might consider dropping the variable expnstu, since in Fig. 3.1 it appears to
have little or no effect on mathscr. In Sect. 3.4 we choose the predictors in a more
principled fashion and, sure enough, there is good evidence that expnstu has at
most only a small effect.

3.3.2 Example: Physician Office Visits

Next, we return to the physician office visit data and fit a model where the
continuous predictors age and school are nonlinearly associated with ofp. We
estimate scale as before by specifying scale = -1.

> fitGAMOFP <- gam(ofp ~ s(age) + s(school) + adldiff + black

+ + sex + maried + privins + medicaid + region + hlth,

+ family = poisson,scale = -1,data = OFPforAna)

> summary(fitGAMOFP)

Family: poisson

Link function: log

Formula:

ofp ~ s(age) + s(school) + adldiff + black + sex + maried +

privins + medicaid + region + hlth
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Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.39387 0.06037 23.090 < 2e-16

adldiff 0.18308 0.04440 4.124 3.80e-05

blackyes -0.10365 0.06008 -1.725 0.0845

sexmale -0.05997 0.03796 -1.580 0.1142

mariedyes -0.05000 0.03856 -1.297 0.1947

privinsyes 0.33150 0.05275 6.285 3.60e-10

medicaidyes 0.30226 0.06730 4.491 7.26e-06

regionnoreast 0.10505 0.04733 2.219 0.0265

regionmidwest -0.01053 0.04493 -0.234 0.8147

regionwest 0.11267 0.04814 2.340 0.0193

hlthexcellent -0.49962 0.08081 -6.182 6.89e-10

hlthpoor 0.47569 0.04685 10.152 < 2e-16

Approximate significance of smooth terms:

edf Ref.df F p-value

s(age) 2.453 3.086 3.558 0.013

s(school) 2.405 3.029 9.876 1.66e-06

R-sq.(adj) = 0.065 Deviance explained = 8.66%

GCV = 5.6266 Scale est. = 7.1209 n = 4394

Next, we compare the GLM and GAM fits:

> anova(fit2GLMOFP,fitGAMOFP,test = "F")

Analysis of Deviance Table

Model 1: ofp ~ age + school + black + sex + maried + adldiff

+ privins + medicaid + region + hlth

Model 2: ofp ~ s(age) + s(school) + adldiff + black + sex

+ maried + privins + medicaid + region + hlth

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 4380.0 24642

2 4375.9 24534 4.1149 108.26 3.6948 0.00479

The p-value is small which suggests that the effects of age and school should be
modeled as smooth functions using a GAM.

The nonlinear effects of age and school on the number of physician visits can
be viewed in Fig. 3.2. Since we are using Poisson regression, we are modeling the
log-mean. The response scale plots in the bottom panels and correspond to slices,
as described in Sect. 3.3, with each of the categorical variables set to its mode and
the other continuous variable set to its mean. To run OFPGAMfit.R from the R
command line issue:
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Fig. 3.2 Estimated smooth function components for the Poisson GAM fit to the physician office
visits data obtained via the R function gam() in the package mgcv and stored in object fitGAMOFP
according to code given in the text. The response variable is the number of physician office visits.
Each component function in the upper panels is vertically centered about zero. The top panels
show the components on the link (logarithm) scale and were obtained using the plot() function
applied to the gam() fit object. The bottom panels show the components on the response scale and
were obtained using the predict() function, with details in the script OFPGAMfit.R. The shaded
regions indicate approximately 95% pointwise confidence intervals. The tick marks indicate the
values of the predictors, which are slightly jittered.

> library(HRW) ; demo(OFPGAMfit,package = "HRW")

To obtain its location for copying and modifying type:

> system.file("demo","OFPGAMfit.R",package = "HRW")

We see that thes expected number of physician office visits increases very slowly
from age 65 to 75 and then decreases at an increasingly rapid rate. The expected
number of visits increases with the number of years of education, with the rate of
increase being higher past 10 years of education.

Another way to model count data that properly accounts for overdispersion is
to assume that the response has a conditional Negative Binomial distribution. To
fit this more flexible model, we use the function gamlss() in the gamlss package
(Stasinopoulos and Rigby 2017).
> library(gamlss)

> fitGAMlssOFP <- gamlss(ofp ~ pb(age) + pb(school) + black +
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+ sex + maried + adldiff + privins + medicaid + region + hlth,

+ family = NBI,data = OFPforAna)

GAMLSS-RS iteration 1: Global Deviance = 24568.53

GAMLSS-RS iteration 2: Global Deviance = 24568.53

GAMLSS-RS iteration 3: Global Deviance = 24568.53

> summary(fitGAMlssOFP)

*******************************************************

Family: c("NBI", "Negative Binomial type I")

Call:

gamlss(formula = ofp ~ pb(age) + pb(school) + black +

sex + maried + adldiff + privins + medicaid +

region + hlth, family = NBI, data = OFPforAna)

Fitting method: RS()

-------------------------------------------------------

Mu link function: log

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.236738 0.218573 5.658 1.63e-08 ***

pb(age) -0.001992 0.002725 -0.731 0.46465

pb(school) 0.027473 0.004702 5.843 5.50e-09 ***

blackyes -0.112693 0.054104 -2.083 0.03732 *

sexmale -0.060312 0.035902 -1.680 0.09305 .

mariedyes -0.031337 0.037032 -0.846 0.39748

adldiff 0.188545 0.042834 4.402 1.10e-05 ***

privinsyes 0.339849 0.046940 7.240 5.27e-13 ***

medicaidyes 0.319242 0.065748 4.856 1.24e-06 ***

regionnoreast 0.102450 0.044810 2.286 0.02228 *

regionmidwest -0.008772 0.041237 -0.213 0.83155

regionwest 0.119663 0.046177 2.591 0.00959 **

hlthexcellent -0.514541 0.062338 -8.254 < 2e-16 ***

hlthpoor 0.486394 0.049533 9.820 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.1064 0.0271 -3.925 8.8e-05 ***
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---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-------------------------------------------------------

NOTE: Additive smoothing terms exist in the formulas:

i) Std. Error for smoothers are for the linear effect only.

ii) Std. Error for the linear terms maybe are not accurate.

-------------------------------------------------------

No. of observations in the fit: 4394

Degrees of Freedom for the fit: 17.68339

Residual Deg. of Freedom: 4376.317

at cycle: 3

Global Deviance: 24568.53

AIC: 24603.89

SBC: 24716.86

*******************************************************

Note that the function pb() is used to specify penalized spline components in
calls to gamlss(). Also family = NBI specifies a Negative Binomial response
distribution with the so-called Type I parametrization in which the variance exceeds
the mean by a multiple of the squared mean. The plot function for an R object
of class gamlss gives four plots for checking quantile residuals. The plots are
in Fig. 3.3. The residuals for a gamlss object are randomized quantile residuals
(Dunn and Smyth 1996) and will have an exact Standard Normal distribution if the
model is correct and is evaluated at the true parameters. For large samples, estimated
parameters will be close to the true values and the residuals will be approximately
Standard Normal if the model is correct. Randomization is used when the response is
discrete, as it is here. Otherwise, the residuals would also have a discrete distribution
and so cannot be normally distributed. We see no indication of modeling problems
in the residuals. They appear to be normally distributed and homoscedastic. Plotting
a gamlss object also causes the following summary statistics to be printed:

*******************************************************

Summary of the Randomised Quantile Residuals

mean = -0.004607413

variance = 1.00183

coef. of skewness = 0.1373671

coef. of kurtosis = 3.681591

Filliben correlation coefficient = 0.997155

*******************************************************
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Fig. 3.3 Quantile residual plots for the Negative Binomial gamlss() fit with response ofp stored
in the object fitGAMlssOFP. Top left panel: the quantile residuals versus fitted values. Top right
panel: quantile residuals versus index. Bottom left panel: kernel density estimate of the quantile
residuals. Bottom right panel: Normal quantile-quantile plot of the quantile residuals. The plots
suggest a slight right skewness of the quantile residuals.

3.3.3 Example: Mortgage Applications in Boston

We now return to the Boston mortgage applications example. Recall that we are
developing a model to predict whether a mortgage application will be denied and to
test whether race is a factor in application denial after adjusting for confounders.

The model of Sect. 3.2.1 will be modified so that the effects of debt payments to
income ratio (dir) and loan size to assessed value of the property (lvr) are modeled
as penalized spline rather than linear functions:

> fit1GAMBostMort <- gam(deny ~ black + s(dir) + s(lvr)

+ + pbcr + self + single + as.factor(ccs),family = binomial,

+ data = BostonMortgages)

> summary(fit1GAMBostMort)

Family: binomial

Link function: logit
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Formula:

deny ~ black + s(dir) + s(lvr) + pbcr + self + single

+ as.factor(ccs)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.2833 0.1483 -22.140 < 2e-16

blackyes 0.6136 0.1718 3.571 0.000356

pbcryes 1.2500 0.2033 6.148 7.83e-10

selfyes 0.4549 0.2110 2.156 0.031073

singleyes 0.3819 0.1453 2.628 0.008597

as.factor(ccs)2 0.6643 0.2008 3.309 0.000936

as.factor(ccs)3 0.8193 0.2919 2.807 0.004998

as.factor(ccs)4 1.3336 0.3268 4.080 4.50e-05

as.factor(ccs)5 1.1561 0.2389 4.840 1.30e-06

as.factor(ccs)6 1.4982 0.2205 6.794 1.09e-11

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(dir) 5.893 7.093 83.81 3.03e-15

s(lvr) 4.188 5.238 49.02 4.39e-09

R-sq.(adj) = 0.222 Deviance explained = 23.1%

UBRE = -0.41961 Scale est. = 1 n = 2380

The penalized spline fits to dir and lvr are shown in Fig. 3.4. As discussed
in Sect. 3.3.2, once we fit a GLM or a GAM, we have a choice of plotting the
relationship between the response and a predictor on the scale of the fitted model,
e.g., log-odds for the logistic regression, or on the scale of the response, e.g., the
probability scale for logistic regression. It is useful to look at both plots.

In logistic regression, the transformation from the logit scale to the probability
scale is the cumulative distribution function of the Logistic distribution and is the
inverse of the logit function in Table 3.1. Therefore, to plot on the probability scale,
we use the function plogis(), which computes the Logistic cumulative distribution
function

FLogistic(x) ≡ ex

1 + ex
.

In Fig. 3.4 the effects of dir and lvr on the logit scale are in the top panels, with
vertical centering about zero according to the default settings of plot.gam(). The
effects on the probability scale are in the bottom panels and correspond to slices,
as explained in Sect. 3.3, with each of the categorical variables set to its mode and
the other continuous variable set to its mean. We can see from these plots that the
best chance of not being denied a mortgage is when one’s debt payments to income
ratio is between 0.2 and 0.4 and the loan size to assessed value is low. Both low
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Fig. 3.4 Estimated smooth function components for the logistic GAM fit to the Boston mortgage
application data obtained via the R function gam() in the package mgcv and stored in object
fit1GAMBostMort according to code given in the text. The response variable is the indicator of
mortgage application denial. Each component function in the upper panels is vertically centered
about zero. The top panels show the components on the link (logit) scale and were obtained using
the plot() function applied to the gam() fit object. The bottom panels show the components
on the response scale and were obtained using the predict() function, with details in the script
BostonMortGAMfit.R. The shaded regions indicate approximately 95% pointwise confidence
intervals. The tick marks indicate the values of the predictors. As mentioned in Sect. 1.3.2, there
are outlying values of debt payments to income ratio and of loan size to property value ratio. The
outlying cases were used for estimation but, to improve visualization, are not included in these
plots.

debt payments to income ratios and especially high values of this ratio increase the
probability of application denial. The script BostMortGAMfit.R provides the code
needed to produce Fig. 3.4. It can be run using:

> library(HRW) ; demo(BostMortGAMfit,package = "HRW")

and then located on the computer on which HRW is installed via:

> system.file("demo","BostMortGAMfit.R",package = "HRW")

A test comparing the linear and smooth fit gives us strong evidence that the
association studied is nonlinear.

> anova(fit2GLMBostMort,fit1GAMBostMort,test = "Chisq")
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Analysis of Deviance Table

Model 1: deny ~ black + dir + lvr + pbcr + self + single

+ as.factor(ccs)

Model 2: deny ~ black + s(dir) + s(lvr) + pbcr + self + single

+ as.factor(ccs)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2368.0 1403.2

2 2359.9 1341.2 8.0816 61.991 2.072e-10

So far the credit rating ccs has been modeled as a factor. One can see in the
output that the coefficients increase nearly monotonically with ccs; this makes
sense since higher values of ccs indicate worse credit. We will now consider
modeling the effect of ccs as a smooth term. We specified a spline basis of
dimension 4 (k = 4) because ccs takes only six distinct values.

> fit2GAMBostMort <- gam(deny ~ black + s(dir) + s(lvr)

+ + pbcr + self + single + s(ccs,k = 4),family = binomial,

+ data = BostonMortgages)

> summary(fit2GAMBostMort)

Family: binomial

Link function: logit

Formula:

deny ~ black + s(dir) + s(lvr) + pbcr + self + single + s(ccs,

k = 4)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.8503 0.1197 -23.820 < 2e-16

blackyes 0.6213 0.1713 3.627 0.000287

pbcryes 1.2407 0.2004 6.190 6.03e-10

selfyes 0.4557 0.2107 2.162 0.030598

singleyes 0.3918 0.1448 2.706 0.006806

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(dir) 5.925 7.125 83.65 3.59e-15

s(lvr) 4.189 5.239 48.70 5.10e-09

s(ccs) 1.838 2.219 57.63 1.32e-12

R-sq.(adj) = 0.221 Deviance explained = 23%

UBRE = -0.42133 Scale est. = 1 n = 2380

Note that the effective degrees of freedom (see Sect. 2.6) of ccs was reduced from
5 to 1.838 by modeling that variable with a smooth function rather than as a factor.
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Fig. 3.5 Estimated smooth function of credit score for the logistic GAM fit to the Boston
mortgage data obtained via the R function gam() in the package mgcv and stored in object
fit2GAMBostMort according to code given in the text. The function estimate is on the probability
scale. The shaded region indicates approximately 95% pointwise confidence intervals. The tick
marks indicate the values of the predictor, with jittering, and show that credit score takes only
integer values from 1 to 6. A lower credit score indicates a better credit rating. The curves were
obtained using the predict() function applied to the gam() object.

To compare modeling ccs as a smooth function versus as a factor, a chi-squared test
can be used.

> anova(fit2GAMBostMort,fit1GAMBostMort,test = "Chisq")

Analysis of Deviance Table

Model 1: deny ~ black + s(dir) + s(lvr) + pbcr + self + single

+ s(ccs,k = 4)

Model 2: deny ~ black + s(dir) + s(lvr) + pbcr + self + single

+ as.factor(ccs)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2360.4 1343.3

2 2357.7 1341.2 2.7478 2.1546 0.4926

The large p-value suggests that ccs can be modeled as a smooth function rather
than as a factor. The smooth function effect of ccs is plotted in Fig. 3.5 as a slice of
overall surface with the other predictors set to mean and modal values. It shows that
the probability that a mortgage is denied increases more rapidly with ccs between
1 and 3 compared to when ccs is greater than 3.

For this model the above output shows that blackyes is still highly significant,
indicating possible racial discrimination. We return to this issue in Sect. 3.6.1 where
our final analysis of the Boston mortgage applications data is presented.
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3.4 Model Selection

A practical problem in GAM analysis is choosing among the multitude of possible
models for given set of predictors. If a candidate predictor is continuous, then
a choice needs to be made concerning whether it enters the model linearly,
nonlinearly, or not at all. Therefore there are 3d possible ways in which d continuous
predictors may enter a GAM. For example, the California schools data frame has
as many as d = 7 potential continuous predictors: calwpct, mealpct, compstu,
expnstu, str, log.avginc, and elpct. Four of these predictors were used and
defined in Sect. 3.3.1. The three additional predictors are:

mealpct percentage of students qualifying for a reduced-price lunch,

str student to teacher ratio,

elpct percentage of English learners.

So there are 37 = 2187 ways in which the 7 continuous predictors can enter a GAM.
Which among these should be chosen? The R computing environment facilitates
sifting through possibly very large candidate predictor sets. The approaches used
can be divided into two types:

• stepwise strategies, which involves stepping through a subset of the 3d possible
models based on rules for adding and dropping predictors,

• penalty-based strategies, which involves including all of the candidate predictors
in the fitting of the model but with penalties that annihilate the contributions from
less important predictors.

The remainder of this section contains demonstrations of each of these
approaches via use of relevant R functions. It should be pointed out that, around
the time of this writing, tools are being developed for post-selection inference
in particular regression contexts. See, for example, Taylor and Tibshirani (2015)
and Tibshirani et al. (2017). This section does not delve into this new stream of
research.

3.4.1 Stepwise Model Selection

Examples of R functions that use stepwise strategies for model selection are
bruto() in the package mda (Hastie 2017b), step.Gam() in the package gam()

(Hastie 2017a) and polymars in the package polspline() (Kooperberg 2015).
When faced with a large number of candidate models, a reasonable strategy is to

use a stepwise procedure to select the form of the model and then call upon gam()

in the mgcv package to fit the final model with GCV or REML choice of smoothing
parameters. We now illustrate this approach for the California schools example. First
we load the data and the gam() package using:
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> library(gam) ; library(Ecdat) ; data(Caschool)

> Caschool$log.avginc <- log(Caschool$avginc)

Then obtain an initial fit using:

> fitInitial <- gam:::gam(mathscr ~ calwpct + mealpct + compstu

+ + expnstu + str + log.avginc + elpct,data = Caschool)

Note that here we are using the version of the function gam() in the gam package
(Hastie 2017a) and not the function with the same name in the mgcv package (Wood
2017). This fact is highlighted by the gam:::gam() coding. Use of the function
step.Gam() is exemplified by:

> stepFit <- step.Gam(fitInitial, scope =

+ list("calwpct" = ~ 1 + calwpct + s(calwpct,2),

+ "mealpct" = ~ 1 + mealpct + s(mealpct,2),

+ "compstu" = ~ 1 + compstu + s(compstu,2),

+ "expnstu" = ~ 1 + expnstu + s(expnstu,2),

+ "str" = ~ 1 + str + s(str,2),

+ "log.avginc" = ~ 1 + log.avginc + s(log.avginc,2),

+ "elpct" = ~ 1 + elpct + s(elpct,2)))

Note that the scope argument in step.Gam() allows one to specify how each
predictor may enter the model. For example the code:

"calwpct" = ~ 1 + calwpct + s(calwpct,2)

signifies that calwpct may either be not present (1), enter the model linearly
(calwpct), or enter the model as a penalized spline with two effective degrees of
freedom (s(calwpct,2)). A stepwise search based on the notion of regimens and
a version of Akaike’s Information Criterion (Hastie 1992) is used to choose among
the models visited in the steps. The selected model can be obtained via:

> print(names(stepFit$"model")[-1])

which, in the current example, leads to

[1] "s(calwpct,2)" "mealpct" "s(compstu,2)" "s(log.avginc,2)"

[5] "elpct"

Since it is plausible that other effective degrees of freedom values are appropriate
for the nonlinear components, a reasonable next step is to refit with GCV smoothing
parameter choice. This involves the other version of the gam() function, from the
mgcv package. Here we use mgcv:::gam to make it clear that a different gam()
function is being called.

> detach("package:gam") ; library(mgcv)

> fitStepCaschool <- mgcv:::gam(mathscr ~ mealpct + elpct

+ + s(calwpct,k = 27) + s(compstu,k = 27)

+ + s(log.avginc,k = 27),data = Caschool)

The estimated functions corresponding to fitStepCaschool are shown in Fig. 3.6.
The script CaSchoolStepFit.R in the HRW package provides the code used to
produce Fig. 3.6. To run it type:
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Fig. 3.6 Components of the GAM fit to the California schools data with GCV smoothing
parameter selection using the function gam() in the mgcv package after the form of the model was
selected via the function step.Gam() in the gam package. The bands around the fits correspond to
approximately 95% pointwise confidence intervals. Each component function is vertically centered
about zero. The tick marks at the base of each panel show the predictor data.

> library(HRW) ; demo(CaSchoolStepFit,package = "HRW")

To locate it on the computer on which HRW is installed and to possibly copy and
modify it, issue the command:

> system.file("demo","CaSchoolStepFit.R",package = "HRW")

This 5-term GAM differs from the 4-term GAM for the same data presented
in Sect. 3.3.1 in that expnstu is no longer present in the model but mealpct and
elpct enter the model linearly. The deviance explained by this new step.Gam()-
selected model is 73.9%, which is substantially higher than the 65.4% deviance
explained by the Sect. 3.3.1 model.

Next, we conduct a residual check of this final model for average mathematics
test score in California school districts. The command:

> gam.check(fitStepCaschool,cex.lab = 2,cex.main = 2)

Method: GCV Optimizer: magic

Smoothing parameter selection converged after 10 iterations.

The RMS GCV score gradient at convergence was 0.0004017524.

The Hessian was positive definite.

Model rank = 81 / 81
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Fig. 3.7 Residual plots produced by the function gam.check() applied to the fit object fit-
StepCaschool.

Basis dimension (k) checking results. Low p-value (k-index<1)

may indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value

s(calwpct) 26.00 2.05 0.98 0.41

s(compstu) 26.00 2.81 0.99 0.39

s(log.avginc) 26.00 4.10 0.99 0.43

leads to the plots shown in Fig. 3.7 and indicates good compliance with the model
assumptions. In addition, the numbers of basis functions used for each penalized
spline seem to be more than adequate.

Exercise 9 illustrates use of the function polymars() in the polspline

package for additive model selection. The polymars() function differs from
the step.Gam() and gam() functions in that the (truncated line) spline basis
functions are not penalized. Instead subsets of the basis functions are selected. This
is commonly labeled as a regression spline approach.

3.4.2 Penalty-Based Model Selection

Penalty-based model selection methods are a newer alternative to stepwise methods.
They are particularly useful for datasets with many candidate predictors. The
main penalty-based model selection strategy uses the least absolute shrinkage and
selection operator (LASSO) (Tibshirani 1996).
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For additive models, there are penalty-based model selection algorithms similar
to the LASSO that are available in several R packages, cosso (Zhang and Lin 2013)
which uses the component selection and smoothing operator (COSSO) (Lin and
Zhang 2006), gamsel (Chouldechova et al. 2018), mgcv, and SAM (Zhao et al. 2014).
We will discuss the first three of these starting with cosso.

At the time of this writing, the cosso package was not installable on all
operating systems supported by R due to a problem with another package, Rglpk,
on which it depends. This may require the GNU Linear Programming Kit to be
installed. The News, Software Updates and Errata page on the book website
(semiparametric-regression-with-r.net) contains instructions for installing
the GNU Linear Programming Kit. This serves as a reminder that this website
should be consulted regularly for news and updates on the examples and software
in this book.

To understand the essential idea behind model selection by penalization, we
begin with a quick introduction to the LASSO approach. Consider the linear model

yi = β0 +
d∑

j=1

βj xji + εi, 1 ≤ i ≤ n,

where xji denotes the ith observation for predictor xj . Suppose that estimates
β̂0, . . . , β̂d are obtained by minimizing

n∑

i=1

⎛

⎝yi − β0 −
d∑

j=1

βj xji

⎞

⎠
2

+ λ

d∑

j=1

|βj |q,

for some λ > 0 and q > 0. Penalty-based model selection is based on the rule:

xj is selected if β̂j �= 0.

If q = 2, then we are using an �2 penalty and the β̂j , 1 ≤ j ≤ d, correspond to ridge
regression which shrinks each of β̂1, . . . , β̂d towards zero. However, the �2 penalty
does not shrink any of the coefficients exactly to zero and therefore selects all of the
predictors. If q = 1, so that an �1 penalty is used, then some of β̂1, . . . , β̂d will be
exactly zero for large enough λ. The larger the value of λ, the fewer the number of
selected variables. In summary, with an �2 penalty there is shrinkage but no useful
model selection, whereas with an �1 penalty we have both shrinkage and a plausible
model selection strategy.

The penalized least-squares estimators used so far in this book for semiparamet-
ric regression have used �2 penalties. In contrast, COSSO uses an �1-type penalty to
select and shrink component functions. Consider the additive model

yi = β0 + f1(x1i ) + · · · fd(xdi) + εi .
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For this model, COSSO minimizes the objective function

n−1
n∑

i=1

⎛

⎝yi − β0 −
d∑

j=1

fj (xji)

⎞

⎠
2

+ τ 2
d∑

j=1

‖fj‖COSSO, (3.6)

where τ ≥ 0 is a smoothing parameter and ‖ · ‖COSSO is the following �1-type norm:

‖fj‖COSSO ≡
[(∫ 1

0
fj (t) dt

)2

+
(∫ 1

0
f ′

j (t) dt

)2

+
∫ 1

0
{f ′′

j (t)}2 dt

]1/2

,

where we assume that xj has been scaled so that fj is defined on the interval [0, 1].
It can be shown that ‖fj‖COSSO = 0 if and only if fj is identically zero.

Note that in (3.6) the penalty uses the sum of the norms, not squared norms, of the
component functions. To minimize (3.6), Lin and Zhang (2006) minimize instead

n−1
n∑

i=1

⎛

⎝yi−β0−
d∑

j=1

fj (xji)

⎞

⎠
2

+λ0

d∑

j=1

θ−1
j w2

j‖fj‖2
COSSO, such that

d∑

j=1

θj ≤ M.

(3.7)
Here λ0 > 0, θ1, . . . , θd > 0, and M > 0 are smoothing parameters and w1, . . . , wd

are weights with default values of 1. It is not necessary to have both smoothing
parameters λ0 and M , but they are introduced for computational reasons.

Minimizing (3.7) is equivalent to minimizing

n−1
n∑

i=1

⎛

⎝yi − β0 −
d∑

j=1

fj (xji)

⎞

⎠
2

+ λ0

d∑

j=1

θ−1
j w2

j‖fj‖2
COSSO + λ

d∑

j=1

θj , (3.8)

where λ depends on M . Assume now that wj = 1 for all j . Notice that (3.8) is
minimized over θ1, . . . , θd by θj = ‖fj‖COSSOλ

−1/2, so replacing the θj by their
minimizing values yields objective function (3.6) for some τ .

The COSSO algorithm to minimize (3.7) starts with θj = 1 for all j , so that the
constraint

∑d
j=1 θj ≤ M is superfluous and not imposed, and selects λ0 by five-fold

cross-validation. Then λ0 is fixed at this value and M can be selected by GCV using
the function tune.cosso().

For fixed λ0 and M , objective function in (3.7) is minimized over f1, . . . , fd with
θj replaced by ‖fj‖COSSOλ

−1/2. The cosso package uses an efficient algorithm for
implementing this minimization. For details, see the references in Sect. 3.7.

An alternative to COSSO is available in the mgcv package where the function
gam() will select variables if the argument select is set to TRUE. Another
alternative is provided by the gamsel package. The functions for fitting GAMs
in this package use an ingenious penalty that allows shrinkage either to zero or
to a linear function. See Chouldechova and Hastie (2015) for a description of this
penalty and its implementation in an extremely fast algorithm.
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Neither COSSO nor gam() are fast enough to work well with high-dimensional
datasets, say, datasets with more than 10–20 predictors. We recommend the gamsel
package when the number of predictors is large.

3.4.2.1 Example: Tests Scores of California School Children

We will use the dataset of test scores of school children in California to illustrate
variable selection by the cosso package, the function gam() with model selection,
and the gamsel package.

Model Selection with cosso()

First we define a matrix X of predictor variables.

library(Ecdat) ; data(Caschool)

Caschool$log.avginc <- log(Caschool$avginc)

mathScore <- Caschool$mathscr

X <- data.frame(Caschool$calwpct,Caschool$log.avginc,

Caschool$mealpct,Caschool$elpct,

Caschool$expnstu,Caschool$str)

names(X) <- c("percent qualifying for CalWORKs",

"log(average district income)",

"perc. qualif. for reduced price lunch",

"percent of English learners",

"expenditure per student",

"student:teacher ratio")

Next COSSO is applied using the function cosso() in the cosso package and
selected output is printed. Because random five-fold cross-validation is used to
select λ0, the seed is fixed so that the results are reproducible. The selected value of
λ0 is returned as fitCOSSO$tune$OptLam. With this value of λ0, the components
functions are estimated at each value of M on the grid fitCOSSO$tune$Mgrid.
The norms of the estimated component functions at each grid-value of M are in
fitCOSSO$tune$L2norm. A norm equal to zero indicates a variable that was not
selected. The values of M and the corresponding norms were put into a matrix
COSSOoutMat which is printed below.

> library(cosso) ; set.seed(3)

> fitCOSSO <- cosso(X,mathscr,scale = TRUE)

> COSSOoutMat <- data.frame(fitCOSSO$tune$Mgrid,

+ fitCOSSO$tune$L2norm)

> fitCOSSO$tune$OptLam

[1] 7.258344e-05

> names(COSSOoutMat) <- c("M","calwpct","log.aveinc","mealpct",

+ "elpct","expnstu","str")

> print(round(COSSOoutMat,1))
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M calwpct log.aveinc mealpct elpct expnstu str

1 0.0 0.0 0.0 0.0 0.0 0 0

2 0.2 0.0 0.0 15.5 0.0 0 0

3 0.4 0.0 0.0 15.6 0.0 0 0

4 0.7 0.0 0.0 15.7 0.0 0 0

5 1.0 0.0 0.0 15.7 0.0 0 0

6 1.2 0.0 0.0 15.7 0.0 0 0

7 1.4 0.0 0.0 15.7 0.0 0 0

8 1.7 0.0 0.0 14.9 2.4 0 0

9 2.0 0.0 4.4 11.6 3.6 0 0

10 2.2 2.9 5.0 10.1 4.5 0 0

11 2.5 3.2 5.4 9.8 4.6 0 0

12 3.0 3.5 5.8 9.5 4.8 0 0

13 3.5 3.6 6.1 9.4 4.8 0 0

14 4.0 3.7 6.3 9.3 4.9 0 0

We see that the predictors expenditures per student (expnstu) and student to
teacher ratio (str) are never selected, since their norms are always zero. The
predictor percentage qualifying for a reduced-price lunch (mealpct) enters first.
If M is 2.20 or greater, then all of the first four predictors are in the model.

We now use tune.cosso() to select M . The output of this function includes
OptM which is the location of a local minimum of GCV.

> tuneCOSSO <- tune.cosso(fitCOSSO) ; print(tuneCOSSO)

$OptM

[1] 1.45

$M

[1] 0.200 0.450 0.700 0.775 0.850 0.950 1.200 1.450 1.700

[10] 3.950

$cvm

[1] 111.0006 110.0570 109.6784 109.6116 109.5581 109.5028

[7] 109.4186 108.0508 108.2666 99.4271

$cvsd

[1] 8.464088 8.448788 8.447729 8.448858 8.450390 8.452898

[7] 8.460558 8.364579 8.178194 7.463247

The component $cvm is the minimum value of the CV estimate of mean-squared
error for a given value of M , that is, the minimum of (3.7) over θ1, . . . , θd with M

fixed. (Recall that λ0 has already been fixed as well.) Also, $cvsd is the standard
deviation of the estimate in $cvm.
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Fig. 3.8 Output from tune.cosso() for mathematics test scores of California school children.
Left panel: cross-validation squared error for each value of M on a grid. Right panel: trace plot of
the norms of the component functions.

In the output above, the function tune.cosso() selects M by k-fold cross-
validation. The default value 5 of k is used. Figure 3.8 was produced by
tune.cosso(). In the left panel of this figure we see that the cross-validated
squared norm has its global minimum at the largest value of M on the grid, 3.95.
There is a local minimum at 1.45.

The value of OptM returned by tune.cosso() is a local minimum of the cross-
validated squared error. In our experience, it is better to use the global minimum of
GCV rather than OptM. One should check the plot of the cross-validated squared
error, e.g., the left panel of Fig. 3.8, to see if the global minimum occurs far from
OptM. If it does, one can select the global minimum, e.g., by using the following
code, which finds the global minimum, called globalMinM, of the cross-validated
squared error:

> globalMinLocation <- which(tuneCOSSO$cvm

+ == min(tuneCOSSO$cvm))

> globalMinM <- tuneCOSSO$M[globalMinLocation]

Model selection should not be completely automated. It is recommended that one
investigate the fits from both OptM and the global minimum of the cross-validated
squared error whenever they are different. For this dataset and the particular seed
that we have used, OptM is not the location of the global minimum, as can be seen
from $cvm in the output above as well as Fig. 3.8. With some experimentation with
the same data but the seed varying, we found that OptM is sometimes the location
of the global minimum, e.g., if the seed is 1 instead of 3. The location of the global
minimum itself is stable and remains at 3.95 as the seed varies, but OptM varies
considerably.
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Fig. 3.9 Estimated component functions selected by COSSO for mathematics test scores of
California school children. Expenditures per student and student teacher ratio were not selected.

The component functions estimated with the value of M achieving the global
minimum are plotted using:

> plot.cosso(fitCOSSO,M = globalMinM,plottype = "Func")

and the result is displayed in Fig. 3.9. We see that four predictors were selected. If
we used M equal to OptM, that is 1.45, instead of the global minimizer, 3.95, then
only one predictor, percent qualifying for reduced-price lunch, would have been
selected. Selecting only one predictor seems drastic and does not agree with the
results below using gam() or cv.gamsel() to select the predictors; both of these
functions select five of the six predictors, although they disagree on which predictor
is not selected.

Model Selection with gam()

The mgcv function gam() will select variables if its argument select is set to TRUE

as illustrated by the following code:

> library(mgcv) ; library(HRW)

> fitGAM <- gam(mathscr ~ s(calwpct) + s(log.avginc)

+ + s(mealpct) + s(elpct) + s(expnstu)

+ + s(str),data = Caschool,select = TRUE)
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Fig. 3.10 Components of the GAM fit to the California schools data with GCV smoothing
parameter selection using the function gam() in the mgcv package and with variables selected
using the argument select = TRUE. The sixth component function was shrunk to zero. The bands
around the fits correspond to approximately 95% pointwise confidence intervals. Each component
function is vertically centered about zero. The tick marks at the base of each panel show the
predictor data.

A type of penalty-based model selection, described in Marra and Wood (2011),
is used. The fitted functions are in Fig. 3.10. We see that, like with COSSO,
student:teacher ratio is not selected. Unlike COSSO, expenditure per student is
selected, although its effect is small.

Model Selection with cv.gamsel()

Finally, we explain model selection using the function cv.gamsel() in the gamsel
package. First issue the commands:

> library(gamsel) ; set.seed(919)

> fitCVgamsel <- cv.gamsel(X,y = mathScore)

Because cross-validation is a random algorithm, a seed has been set so that the
results are reproducible, although the fitted functions do not vary much if the seed is
changed. The cv.gamsel() fit object, fitCVgamsel, contains a path of solutions
parameterized by a regularization parameter λ which, in this case, takes values in a
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geometric sequence of length 50 between λ = 7.899 and λ = 789.9. A numerical
summary of the path of fits is obtained using:

> print(fitCVgamsel$gamsel.fit)

The first and last five rows of the resulting data frame are:

NonZero Lin NonLin %Dev Lambda

[1,] 0 0 0 0.0000 789.900

[2,] 1 1 0 0.1161 719.000

[3,] 1 1 0 0.2122 654.500

[4,] 1 1 0 0.2919 595.800

[5,] 1 1 0 0.3580 542.400

. . . . . .

. . . . . .

. . . . . .

[46,] 6 4 2 0.7312 11.500

[47,] 6 3 3 0.7320 10.470

[48,] 6 3 3 0.7328 9.532

[49,] 6 3 3 0.7337 8.677

[50,] 6 1 5 0.7346 7.899

For example, λ = 595.8 results in only one of the predictors being selected and that
predictor having a linear effect. Towards the other end of the spectrum, λ = 9.532
leads to all six predictors being selected of which three are linear and three are
nonlinear.

Figure 3.11 shows the estimated functions for four different λ values with the
color-coding:

blue indicating a zero effect,

green indicating a linear effect, and

red indicating a nonlinear effect.

We see from Fig. 3.11 that, depending on the value of λ, some predictors can be in
or out of the model and, if in the model, may have a linear or nonlinear effect.

With a view to selecting a single model objectively from the full λ-parameterized
path we issue the command:

plot(fitCVgamsel)

This leads to the plot shown in Fig. 3.12, in which the cross-validation estimate
of mean-squared error (CV-MSE) is plotted against log(λ) over the 50 λ values. The
numbers above the plotting frame in Fig. 3.12 indicate the numbers of predictors in
the model for varying values of λ. The solid vertical lines with stems indicate plus
and minus one standard error and conveys the variability inherent in CV-MSE. The
two dashed vertical lines indicate the values of λ for which:

• the overall minimum of CV-MSE occurs, and
• the largest value of λ for which CV-MSE is within one standard deviation of its

minimum.
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Fig. 3.11 Plots of the estimated functions from the cv.gamsel() fit object, with each column
corresponding to a different value along the λ regularization path. The curves are color-coded
according to: blue signifies a zero effect, green signifies a linear effect, and red signifies a nonlinear
effect.
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Fig. 3.12 Cross-validation estimate of mean-squared error (CV-MSE) from cv.gamsel(). CV-
MSE is minimized at index 46 from largest to smallest. The largest value of λ where CV-MSE is
within one standard error of its minimum has index 31.

The numbers at the top of the vertical dashed lines correspond to the row numbers of
the data frame fitCVgamsel$gamsel.fit. These numbers can be extracted from
the cv.gamsel fit object via the code:

print(fitCVgamsel$index.min) ; print(fitCVgamsel$index.1se)

The corresponding λ values are given by:

print(fitCVgamsel$lambda.min) ; print(fitCVgamsel$lambda.1se)

Figure 3.13 shows the fitted functions when λ is set to its largest value such
that CV-MSE is within one standard deviation of its minimum. This corresponds
to λ = 47.1 and the right-hand vertical dashed line of Fig. 3.12. The code that
produced Fig. 3.13 is:

par(mfrow = c(2,3))

for (iPred in 1:6)

plot(fitCVgamsel$gamsel.fit,newx = X,which = iPred,

index = fitCVgamsel$index.1se,col.main = "navy",

main = names(X)[iPred],rugplot = TRUE,bty = "l",

ylim = c(-8,16))
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Fig. 3.13 Components of the fit from the cv.gamsel() function when λ equals fitCVgam-

sel$lambda.1se (which is 47.1 in this example). The green curves have been shrunk to a linear
fit and the blue curve has been shrunk to zero. The red curve is the only nonlinear effect for this
selected value of λ.

Five of the six predictors are selected. The predictor not selected is expenditure
per student. The student:teacher ratio is selected but its effect is small. Of the
five selected predictors, four of the fitted functions are shrunk to a linear fit. Only
log(average district income) has a nonlinear effect. We see that the effect is convex
with its derivative increasing especially in the middle range of that variable. This
is in agreement with the fits by cosso() and gam(). Therefore, the effect on the
mathematics score of increasing log(average district income) is strongest at higher
values of log(average district income). One needs to be cautious about interpreting
this effect. If the predictor is average district income rather than log(average district
income), then the fitted function is concave rather than convex.

In summary, the results from cosso(), gam(), and gamsel() agree that the
effects of expenditure per student and student:teacher ratio are all small, although
they disagree about which of these effects are exactly zero. Of course, this is not
unexpected. It is difficult to distinguish a small effect from one that is exactly
zero.
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3.5 Extension to Vector Responses

The function vgam() in the package VGAM (Yee 2010, 2017) extends the types of
GAMs handled by the gam and mgcv packages in a number of ways. In particular, it
supports vector responses. An example is:

> library(VGAM) ; library(Ecdat) ; data(Caschool)

> Caschool$log.avginc <- log(Caschool$avginc)

> fitVGAMCaschool <- vgam(cbind(mathscr,readscr) ~ mealpct

+ + elpct + s(calwpct,df = 3) + s(compstu,df = 3)

+ + s(log.avginc,df = 4),family = gaussianff,data = Caschool)

This fit extends the model fit to the California schools test scores data in Sect. 3.4
but with the scalar response mathscr (average mathematics score) replaced by
the vector response (mathscr, readscr). The second component of the response
vector is average reading score. In generic notation with, for example, y1i denoting
the average mathematics score for the ith district, y2i denoting the average reading
score, and x1i denoting the percentage qualifying for a reduced priced lunch in the
same district, the model corresponding to fitVGAMCaschool has the form

[
y1i

y2i

]
=

[
β10 + β11 x1i + β12 x2i + f13(x3i ) + f14(x4i ) + f15(x5i )

β20 + β21 x2i + β22 x2i + f23(x3i ) + f24(x4i ) + f25(x5i )

]
+

[
ε1i

ε2i

]

where

[
ε1i

ε2i

]
ind.∼ N(0,Σε), 1 ≤ i ≤ 420.

Here f1j and f2j , j = 3, 4, 5, are smooth functions and Σε is an unstructured
2 × 2 covariance matrix. The extension to vector responses with more than two
components has an analogous form.

Unlike gam() in the package mgcv, vgam() does not support automatic
smoothing parameter selection via GCV or REML. Here we have used effective
degrees of freedom values similar to those chosen for the scalar response GAMs.
The command:

> summary(fitVGAMCaschool)

leads to the output

Call:

vgam(formula = cbind(mathscr, readscr) ~ mealpct + elpct

+ s(calwpct, df = 3) + s(compstu, df = 3)

+ s(log.avginc, df = 4), family = gaussianff,

data = Caschool)

Number of linear predictors: 2
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Names of linear predictors: mathscr, readscr

(Estimated) Dispersion Parameter for gaussianff family: 79.41081

Residual deviance: 65752.15 on 813.999 degrees of freedom

Log-likelihood: -28264306 on 813.999 degrees of freedom

Number of iterations: 2

DF for Terms and Approximate Chi-squares for Nonparametric

Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept):1 1

(Intercept):2 1

mealpct:1 1

mealpct:2 1

elpct:1 1

elpct:2 1

s(calwpct, df = 3):1 1 2 381.69 0.0000e+00

s(calwpct, df = 3):2 1 2 166.08 8.6474e-37

s(compstu, df = 3):1 1 2 568.89 0.0000e+00

s(compstu, df = 3):2 1 2 229.67 0.0000e+00

s(log.avginc, df = 4):1 1 3 3099.17 0.0000e+00

s(log.avginc, df = 4):2 1 3 1685.84 0.0000e+00

which shows significance of all terms via approximate chi-squared tests.
The plot.vgam() function for vgam() facilitates comparisons by putting the

additive fits corresponding to different responses on the same sets of axes. This is
illustrated in Fig. 3.14. One can see that the effects of the predictors are similar for
the two responses. See CaSchoolVGAMfit.R in the HRW package for the code that
produced Fig. 3.14. It can be run and located using:

> library(HRW) ; demo(CaSchoolVGAMfit,package = "HRW")

> system.file("demo","CaSchoolVGAMfit.R",package = "HRW")

The commands:

> plot(residuals(fitVGAMCaschool),col = "dodgerblue",bty = "l",

+ xlab = "mathematics score residuals",

+ ylab = "reading score residuals",

+ cex.lab = 1.5,cex.axis = 1.5)

> abline(h=0,col = "slateblue") ; abline(v=0,col = "slateblue")
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Fig. 3.14 Estimated smooth function components for the vector GAM fit to the California
schools data obtained via the R function vgam() in the package VGAM and stored in object
fitVGAMCaschool according to code given in the text. The response variables are average
mathematics score and average reading. Each component function is vertically centered about zero.
The dashed curves indicate approximately 95% pointwise confidence intervals. The tick marks
indicate the values of the predictors.
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Fig. 3.15 Scatterplot of the bivariate residuals from the vector GAM fit stored in fitVGAM-

Caschool.

lead to scatterplots of the bivariate residuals shown in Fig. 3.15. This plot is
indicative of strong correlation between the two response variables and a vector
GAM approach being appropriate.
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A quick estimate of Σε is:

> var(residuals(fitVGAMCaschool))

[,1] [,2]

[1,] 91.31114 54.96917

[2,] 54.96917 65.61523

This estimate does not adjust for the degrees of freedom lost due to mean function
estimation but since the sample size is 420, such an adjustment has a very minor
effect. The corresponding correlation coefficient is:

> cor(residuals(fitVGAMCaschool))[1,2]

[1] 0.7101579

which confirms the high positive correlation between average mathematics and
reading scores even after removing the effects of predictors.

3.6 Extension to Factor-by-Curve Interactions

We now return to the Warsaw apartment data described in Chaps. 1 and 2. In
Sect. 2.12.3 we modeled the dependence of the area/price ratio on year of construc-
tion using a simple factor-by-curve interaction with one curve for the Srodmiescie
(central business) district and another curve for the other three districts. Stated
differently, we used a factor-by-curve interaction model where the factor had two
levels: Srodmiescie and the other three districts aggregated.

We now generalize this model by letting each of the four districts have its own
curve, so that for the ith apartment

(area/price)i =
4∑

�=1

f�(construction.datei ) I (districti = �) + εi,

εi
ind.∼ N(0, σ 2

ε ), 1 ≤ i ≤ 409, (3.9)

where fj is a smooth function describing the relationship between the construction
date and the ratio of floor area to price in district �, � = 1, 2, 3, 4. Model (3.9) can
be fit easily using the function gam() via:

> library(HRW) ; library(mgcv) ; data(WarsawApts)

> fit1GAMWarsaw <- gam(areaPerMzloty ~ as.factor(district) +

+ s(construction.date,by = as.factor(district), k = 25),

+ data = WarsawApts,method = "REML")

The argument “by = as.factor(district)” inside “s()” specifies a sepa-
rate smooth fit for each level of the factor district so that model (3.9) is used. We
use REML smoothing parameter selection since, in this case, GCV tends to overfit
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Fig. 3.16 Estimated smooth function components for the simple factor-by-curve interaction model
fit to the Warsaw apartments data obtained via the R function gam() in the package mgcv and
stored in object fit1GAMWarsaw according to code given in the text. The response variable is
area (square meters) per million złoty. The panels correspond to functions of construction date
for each district. Each component function is vertically centered about zero. The shaded regions
indicate approximately 95% pointwise confidence intervals. The tick marks indicate the values of
the predictor.

the data. We now print the summary and plot the fitted curves. The fitted curves are
shown in Fig. 3.16.

Family: gaussian

Link function: identity

Formula:

areaPerMzloty ~ as.factor(district) + s(construction.date,

by = as.factor(district), k = 25)

Parametric coefficients:

Estimate Std. Error t value

(Intercept) 113.491 1.275 89.037

as.factor(district)Srodmiescie -11.968 2.250 -5.320

as.factor(district)Wola 2.527 2.811 0.899

as.factor(district)Zoliborz -3.869 3.710 -1.043

Pr(>|t|)

(Intercept) < 2e-16
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as.factor(district)Srodmiescie 1.78e-07

as.factor(district)Wola 0.369

as.factor(district)Zoliborz 0.298

Approximate significance of smooth terms:

edf

s(construction.date):as.factor(district)Mokotow 7.676

s(construction.date):as.factor(district)Srodmiescie 11.358

s(construction.date):as.factor(district)Wola 2.072

s(construction.date):as.factor(district)Zoliborz 3.616

Ref.df

s(construction.date):as.factor(district)Mokotow 9.366

s(construction.date):as.factor(district)Srodmiescie 13.593

s(construction.date):as.factor(district)Wola 2.542

s(construction.date):as.factor(district)Zoliborz 4.442

F

s(construction.date):as.factor(district)Mokotow 17.473

s(construction.date):as.factor(district)Srodmiescie 5.233

s(construction.date):as.factor(district)Wola 4.612

s(construction.date):as.factor(district)Zoliborz 6.362

p-value

s(construction.date):as.factor(district)Mokotow < 2e-16

s(construction.date):as.factor(district)Srodmiescie 1.48e-08

s(construction.date):as.factor(district)Wola 0.00492

s(construction.date):as.factor(district)Zoliborz 2.99e-05

R-sq.(adj) = 0.458 Deviance explained = 49.5%

-REML = 1737.5 Scale est. = 265.47 n = 409

Next, we expand the model to include a second continuous predictor, surface
area, and another factor: number of rooms. The expanded model is additive,
with a penalized spline for surface area and district-specific penalized splines for
construction date. We do not include an interaction between surface area and district
or interactions between the number of rooms and either of the continuous predictors,
although these effects could be added easily. The fit is displayed in Fig. 3.17 and the
output is as follows:

> fit2GAMWarsaw <- gam(areaPerMzloty ~ as.factor(district) +

+ s(construction.date,k = 25,by = district)

+ + as.factor(n.rooms) + s(surface,k = 25),

+ data = WarsawApts,method = "REML")

Family: gaussian

Link function: identity

Formula:

areaPerMzloty ~ as.factor(district) + s(construction.date, k = 25,

by = district) + as.factor(n.rooms) + s(surface, k = 25)
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Fig. 3.17 Estimated smooth function components for the expanded factor-by-curve interaction
model fit to the Warsaw apartments data obtained via the R function gam() in the package
mgcv and stored in object fit2GAMWarsaw according to code given in the text. The response
variable is area (square meters) per million złoty. The upper four panels correspond to functions
of construction date for each district and the bottom panel is the estimated function of surface
area. Each component function is vertically centered about zero. The shaded regions indicate
approximately 95% pointwise confidence intervals. The tick marks indicate the values of the
predictor.

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 116.417 2.965 39.269 < 2e-16

as.factor(district)Srodmiescie -10.997 2.234 -4.922 1.29e-06

as.factor(district)Wola 3.388 2.956 1.146 0.2525

as.factor(district)Zoliborz -2.202 3.647 -0.604 0.5464

as.factor(n.rooms)2 -5.635 3.400 -1.658 0.0982

as.factor(n.rooms)3 -3.738 4.713 -0.793 0.4283

as.factor(n.rooms)4 -1.976 7.016 -0.282 0.7784
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Approximate significance of smooth terms:

edf Ref.df F p-value

s(construction.date):districtMokotow 6.770 8.308 14.363 < 2e-16

s(construction.date):districtSrodmiescie 11.581 13.831 4.847 2.04e-08

s(construction.date):districtWola 2.483 3.068 5.449 0.00108

s(construction.date):districtZoliborz 3.511 4.309 6.829 1.57e-05

s(surface) 5.743 7.201 3.728 0.00052

R-sq.(adj) = 0.492 Deviance explained = 53.7%

-REML = 1720.4 Scale est. = 248.7 n = 409

The results suggest that the area/price ratio does not depend on the number of
rooms. A small p-value for surface suggests that the area/price ratio depends on
the surface area. As seen in Fig. 3.17, area/price increases with surface area, at least
for values of surface up to about 70 square meters. The data are sparse for values of
surface above 70 square meters and the variability band widens, so the effect of
surface above 70 square meters is uncertain.

We used REML to select tuning parameters for both examples in this section.
If the default method, GCV, is used, then there is less smoothing and noticeably
wigglier fitted curves. Figure 3.17 can be reproduced by running the code in the
script WarsawAptsGAMfit.R, which is part of the HRW package. These commands
run the script:

> library(HRW) ; demo(WarsawAptsGAMfit,package = "HRW")

and these commands locate the script for possible copy and editing:

> system.file("demo","WarsawAptsGAMfit.R",package = "HRW")

3.6.1 Example: Mortgage Applications in Boston

We now illustrate factor-by-curve interactions for the Boston mortgage applications
data and allow the smooth function effects of debt payments to income ratio (dir)
and loan size to property value ratio (lvr) to depend on the level of the binary
variable indicator of self-employed (self). The required R code is:

> fitFacByCurvBostMort <- gam(deny ~ black + factor(self)

+ + s(dir,by = factor(self))

+ + s(lvr,by = factor(self)) +

+ + pbcr + self + single + s(ccs,k = 4),

+ family = binomial,data = BostonMortgages)

> summary(fitFacByCurvBostMort)

Family: binomial

Link function: logit
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Formula:

deny ~ black + factor(self) + s(dir, by = factor(self)) + s(lvr,

by = factor(self)) + +pbcr + self + single + s(ccs, k = 4)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.8284 0.1219 -23.203 < 2e-16

blackyes 0.6273 0.1721 3.646 0.000266

factor(self)yes 0.5548 0.2443 2.271 0.023143

pbcryes 1.2457 0.2014 6.184 6.26e-10

selfyes 0.0000 0.0000 NA NA

singleyes 0.3844 0.1452 2.648 0.008090

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(dir):factor(self)no 4.767 5.740 75.321 5.19e-14

s(dir):factor(self)yes 1.000 1.000 5.252 0.0219

s(lvr):factor(self)no 3.936 4.898 38.622 2.35e-07

s(lvr):factor(self)yes 3.650 4.528 12.434 0.0188

s(ccs) 1.635 1.990 55.924 5.53e-13

Rank: 44/45

R-sq.(adj) = 0.222 Deviance explained = 23.2%

UBRE = -0.42042 Scale est. = 1 n = 2380

Plots of smooth effects of dir and lvr for the two levels of self are shown
in Fig. 3.18, and are produced by the script BostMortFacByCurv.R in the HRW

package. The two sets of curves look somewhat similar. To see if there is a
statistically significant difference, we compare the new model and the old with a
chi-squared test.

> anova(fit2GAMBostMort,fitFacByCurvBostMort,test = "Chisq")

Analysis of Deviance Table

Model 1: deny ~ black + s(dir) + s(lvr) + pbcr + self + single

+ s(ccs, k = 4)

Model 2: deny ~ black + factor(self) + s(dir, by = factor(self))

+ s(lvr, by = factor(self)) + pbcr + self

+ single + s(ccs, k = 4)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2360.4 1343.3

2 2356.8 1339.4 3.5731 3.9068 0.3553

The results of the test suggest that the incorporation of this interaction did not
improve the fit much if at all.



3.7 Further Reading 119

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

debt to income ratio

pr
ob

ab
ili

ty
 o

f m
or

tg
ag

e 
ap

pl
ic

'n
 d

en
ie

d

self employed
not self−employed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

loan size to property value ratio

pr
ob

ab
ili

ty
 o

f m
or

tg
ag

e 
ap

pl
ic

'n
 d

en
ie

d

Fig. 3.18 Estimated smooth function components for the simple factor-by-curve interaction model
fit to the Boston mortgages data obtained via the R function gam() in the package mgcv and stored
in object fitFacByCurvBostMort according to code given in the text. The response variable is
indicator of denial of mortgage application. The factor-by-curve plot for debt payments to income
ratio in the left panel is such that loan size to property value ratio and credit score are set to their
average and each of the other predictors is set to “yes.” The right panel plot is analogous except that
debt payments to income ratio and loan size to property value ratio are interchanged. The shaded
regions indicate approximately 95% pointwise confidence intervals. The tick marks indicate the
values of the predictor.

We see that in every model with confounders that has been considered, the
variable black is still significant. However, its effect is considerably smaller than
when it is the only predictor, in agreement with the results of Munnell et al. (1996).
After adjusting for confounders, the odds ratio for denial comparing a Black or
Hispanic applicant to an applicant who is not Black or Hispanic is between 1.8 and
1.9, depending upon the model. We saw in Sect. 3.2.1 that if there is no adjustment
for confounders, then the odds ratio is about 3.9. Thus, the data provide substantial
evidence of racial discrimination during the period 1997–1998 when they were
collected.

The script BostMortFacByCurv.R can be run from the command line as
follows:

> library(HRW) ; demo(BostMortFacByCurv,package = "HRW")

It can be copied and edited from the location given by:

> system.file("demo","BostMortFacByCurv.R",package = "HRW")

3.7 Further Reading

There are many books on GLMs. Some of the main ones are McCullagh and Nelder
(1989), Faraway (2006), Fahrmeir and Kneib (2011), Fahrmeir and Tutz (1994),
and McCulloch et al. (2008). Books that provide good coverage of GAMs include
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Faraway (2006), Hastie and Tibshirani (1990), Ruppert et al. (2003), and Wood
(2006a). The Faraway (2006) book is also geared towards implementation in R.

The gamlss package has far more functionality than we have room to describe
here. A detailed account of this package is given by Stasinopoulos and Rigby (2008).

The component selection and smoothing operator were proposed by Lin and
Zhang (2006) and sparse additive models by Ravikumar et al. (2009). Hastie et al.
(2015) is a comprehensive introduction to sparse models.

Often, subject-matter considerations suggest that one or more of the component
functions of a GAM satisfy a shape constraint such as being monotonically
increasing. Using the scam (Pya 2017), a user can require a component function
to be monotonically decreasing, monotonically increasing, convex, concave, or a
combination of these constraints such as monotonically increasing and concave.

3.8 Exercises

1. Ensure that the package AER (Kleiber and Kleiber 2017) is installed in your R
environment.

a. Issue the following commands to fit a Gaussian GAM with price as the
response variable and each of the other variables as predictors:
> library(AER) ; data(HousePrices) ; library(mgcv)

> fitGaussAM <- gam(price ~ s(lotsize,k = 27) + bedrooms

+ + factor(bathrooms) + factor(stories)

+ + factor(driveway)

+ + factor(recreation)

+ + factor(fullbase) + factor(gasheat)

+ + factor(aircon) + garage + factor(prefer),

+ data = HousePrices,family = gaussian)

b. Issue the command gam.check(fitGaussAM) to check whether or not the
residuals are consistent with the model assumptions.

c. Obtain the Gamma GAM fit with the same response and predictors as used
to obtain fitGaussAM in part a. This involves specifying family = Gamma

in the call to gam(). Let fitGammaAM be the corresponding fit object.
d. Issue the command gam.check(fitGammaAM) to check whether or not the

residuals are consistent with the model assumptions.
e. Choose between fitGaussAM and fitGammaAM according to which model

has the better residual plots. Then obtain numerical and graphical summaries
based on the chosen model.

f. Consider a house with a lot size of 5000 square feet, three bedrooms, two
bathrooms, two stories, a driveway, no recreation room, a finished basement,
hot water heating, no air conditioning, two garage places, and located outside
of the preferred neighborhood of Windsor, Canada. Use the model from part
e. to predict the price of the house if sold during the same period that the
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data were collected (July–September, 1987). Assume that the price data are
in Canadian dollars.

g. Obtain an approximately 95% confidence interval for the mean price of
houses with the same features as the house described in part f.

2. Ensure that the package gam (Hastie 2017a) is installed in your R environ-
ment.

a. Issue the following R commands to generate data from a Gaussian GAM:
> set.seed(1) ; n <- 500 ; error <- rnorm(n,0,0.5)

> x1 <- runif(n) ; x2 <- runif(n) ; x3 <- runif(n)

> x4 <- runif(n) ; x5 <- runif(n) ; x6 <- runif(n)

> x7 <- runif(n) ; x8 <- runif(n) ; x9 <- runif(n)

> f4 <- function(x) return(x + dnorm(x,0.5,0.25))

> f5 <- function(x) return(x + 0.5*dnorm(x,0.5,0.25))

> f6 <- function(x) return(x + 0.1*dnorm(x,0.5,0.25))

> y <- x1 + x2 + x3 + f4(x4) + f5(x5) + f6(x6) + error

The code dnorm(x,0.5,0.25) corresponds to evaluation of the function
φ(x; 0.5, 0.25) where φ(·;μ, σ) is the Normal density function with mean
μ and standard deviation σ . Note that the model contains x1, x2 and x3 as
linear effects, x4, x5, and x6 as smooth function effects. The model does not
contain x7, x8, or x9.

b. Issue the following commands to perform step.Gam() model selection:
> library(gam)

> gamObj <- gam(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7

+ + x8 + x9)

> stepFit <- step.Gam(gamObj,scope =

+ list("x1" = ~ 1 + x1 + s(x1,df = 2),

+ "x2" = ~ 1 + x2 + s(x2,df = 2),

+ "x3" = ~ 1 + x3 + s(x3,df = 2),

+ "x4" = ~ 1 + x4 + s(x4,df = 2),

+ "x5" = ~ 1 + x5 + s(x5,df = 2),

+ "x6" = ~ 1 + x6 + s(x6,df = 2),

+ "x7" = ~ 1 + x7 + s(x7,df = 2),

+ "x8" = ~ 1 + x8 + s(x8,df = 2),

+ "x9" = ~ 1 + x9 + s(x9,df = 2)))

c. Issue the following command to view the selected model:
> print(names(stepFit$"model")[-1])

For example, if the printed object is
"x1" "x2" "x3" "s(x4,df = 2)" "s(x5,df = 2)" "x6" "x9"

then step.Gam() has correctly chosen x1, x2 and x3 as entering the model
linearly and has also correctly chosen x4 and x5 as entering the model
nonlinearly. However, step.Gam() has incorrectly chosen x6 as entering
the model linearly and has incorrectly chosen x9 as being in the model.

d. Replicate 100 random datasets according to the code in part a. and, for
each one, apply the code in parts b. and c. to obtain the model chosen by
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step.Gam(). Record the proportions of correct choices for each of the nine
candidate predictors.

e. Repeat part d. but with error <- rnorm(n,0,1), corresponding to a
doubling of the error standard deviation.

f. Make numerical and graphical summaries of the results from the simulation
studies conducted in parts d. and e.

3. The dataset ozone in the gss (Gu 2017) package contains data on ozone
concentration and eight meteorological quantities in the Los Angeles area for
330 days of 1976.

a. Ensure that gss is installed in your R environment and enter the commands:
> library(gss) ; data(ozone) ; pairs() ; help(ozone)

to make the ozone data frame available to the current R session, visualize
the data, and to show the variable names and their definitions. The variable
of interest is upo3, corresponding to daily ozone concentrations in Upland,
California, USA

b. Ensure that the package gam (Hastie 2017a) is installed in your R environ-
ment. Use the function step.Gam() to select predictors and their forms (i.e.,
linear versus nonlinear) among Gaussian GAMs with upo3 as the response
variable.

c. Based on the form of the model chosen in part b., use the function gam() in
the package mgcv (Wood 2017) to fit the model with GCV-based smoothing
parameter selection.

d. Apply the function gam.check() to the fit object from part c. to ensure
the number of basis functions is sufficient. Increase the numbers of basis
functions until the k-index test is passed. Also check the residuals and
comment on their behavior.

e. Obtain numerical and graphical summaries of the final fit from part d.

4. Ensure that the packages aplore3 (Braglia 2016) and gam (Hastie 2017a) are
installed in your R environment.

a. Issue the following commands to load and obtain a listing of the variables in
the data frame icu:
> library(aplore3) ; data(icu) ; help(icu)

The data frame consists of 21 variables for 200 patients admitted to an
intensive care unit (ICU).

b. Use the function step.Gam() in the gam package to select a logistic GAM
with the response variable being the indicator of the patient dying.

c. Use the function gam() in the mgcv package to re-fit the model selected
in part b. with GCV used for selection of the smoothing parameters of the
penalized spline components of the model. Obtain numerical and graphical
summaries of the selected model.

d. Consider a 79-year-old white woman who enters the ICU as an emergency
patient in a coma. The woman has no history of previous ICU admis-
sion, cancer, chronic renal failure, and is free of infection at the time of
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admission. Cardiopulmonary resuscitation is not needed and she has no
fractures. Finally, at the time of admission she has the following medical
measurements:

Systolic blood pressure 228 millimeters of mercury

Heart rate 94 beats per minute

PO2 from initial blood gases 49.8 millimeters of mercury

pH from initial blood gases 7.27 units

PCO2 from initial blood gases 55.3 millimeters of mercury

Bicarbonate from initial blood gases 16.1 millimoles per liter

Creatinine from initial blood gases 2.2 milligrams per deciliter.

Estimate the woman’s survival probability.
5. Ensure that the package rstan (Guo et al. 2017) and its dependencies are

installed in your R environment.

a. Using the package rstan, fit a Bayesian version of the GAM fit in part d. of
Exercise 3. The script WarsawAptsBayes.R from Chap. 2 may be of use.

b. Obtain MCMC convergence diagnostic plots for key model components and
adjust the MCMC sample sizes if warranted.

c. Obtain Bayes estimates and 95% credible sets for the coefficients of the
predictors that enter the model linearly.

d. For each predictor plot the Bayes estimates of the additive model component
with each other predictors set at its average. Include corresponding 95%
pointwise credible sets.

6. The gam() function in the mgcv package can also be used to perform
nonparametric density function estimation (e.g. Eilers and Marx 1996). This
exercise provides illustration.

a. Load a univariate sample of flow cytometry data via the commands:
> library(HRW) ; data(plankton)

> x <- plankton$redFluorBlueLight

b. Issue the following commands to bin the data into 500 equally spaced bins
and then plot the bin counts against the bin centers:
> numBins <- 500

> xLow <- 1.05*min(x) - 0.05*max(x)

> xUpp <- 1.05*max(x) - 0.05*min(x)

> binLims <- seq(xLow,xUpp,length = numBins + 1)

> binCenters <- (binLims[-(numBins + 1)]

+ + 0.5*diff(binLims)[1])

> binCounts <- as.vector(table(cut(x,binLims)))

> binData <- data.frame(binCenters,binCounts)

> plot(binCenters,binCounts,col = "dodgerblue")
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c. Fit a Poisson penalized spline model to the data plotted in part b. Obtain
the estimated mean function over a fine plotting grid. Then obtain a
nonparametric density function estimate via trapezoidal rule normalization.
The justification for use of the Poisson distribution is explained in Sect. 8 of
Eilers and Marx (1996). Use the following R code to achieve this:
> library(mgcv)

> fitGAM <- gam(binCounts ~ s(binCenters,k = 47),

+ family = poisson,data = binData)

> ng <- 1001

> xg <- seq(xLow,xUpp,length = ng)

> phatUnng <- exp(predict(fitGAM,

+ newdata = data.frame(binCenters = xg)))

> phatg <- 2*phatUnng/(sum(phatUnng[-ng]

+ + phatUnng[-1])*diff(xg)[1])

> plot(xg,phatg,type = "n",xlim = range(xg),

+ ylim = range(phatg),bty = "l",

+ xlab = "red fluorescence under blue light",

+ ylab = "estimated density function")

> lines(xg,phatg,col = "darkgreen",lwd=2)

> abline(h=0,col = "slateblue")

> rug(x,col="dodgerblue")

d. Use the same approach as in parts b. and c. to obtain and plot density
estimates for the samples in each of the objects

i. plankton$greenFluorBlueLight and
ii. plankton$redFluorRedLight.

7. Ensure that the packages kernlab (Karatzoglou et al. 2016) and mgcv (Wood
2017) are installed in your R environment.

a. Issue the following commands to load the spam data frame and to print out
its variable names:
> library(kernlab) ; data(spam) ; help(spam)

> print(names(spam))

The dataset consists of 58 variables on 4601 e-mail messages. The variable
type codes whether or not the e-mail message is spam. Classification rules
for the type of message based on the other variables are of interest.

b. Issue the following commands to divide the spam data frame into test and
training samples:
> set.seed(1) ; nTest <- 1000

> indsTest <- sample(1:nrow(spam),nTest,replace = FALSE)

> indsTrain <- setdiff(1:nrow(spam),indsTest)

> spamTest <- spam[indsTest,]

> spamTrain <- spam[indsTrain,]

c. Fit the following logistic GLM, which includes all possible predictors of
type, to the training data and summarize the fit:
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> fitTrainFullGLM <- glm(type ~ .,family = binomial,

+ data = spamTrain)

> print(summary(fitTrainFullGLM))

d. The summary table produced by the code in part c. shows that not all
candidate predictors are significant. Use a model selection strategy such as
that provided by the function step.Gam() in the gam package to select a
subset of predictors. Fit the logistic GLM based on this subset.

e. Consider the rule for which a new e-mail message is classified as being spam
if and only if the message’s estimated probability of type = spam, according
to the logistic GLM from part d., exceeds 1/2. Obtain the confusion matrix
based on the test data in spamTest and estimate the misclassification rate.
(The confusion matrix is a two-way tabulation of actual and predicted class
and is also called the error matrix.)

f. Using the function gam() in the mgcv package, fit a logistic GAM to the
training data with the same variables as used in part d., but with each variable
entering the model as a penalized spline. Define the classification rule based
on the GAM analogously to that defined in part e. for the GLM fit. Obtain
the confusion matrix and estimate the misclassification rate.

g. Is one rule significantly better than the other?

8. As in Exercise 7, this exercise is concerned with classification of e-mail
messages based on the data frame spam. Ensure that the package gamsel

(Chouldechova et al. 2018) is installed in your R environment.

a. Many of the variables are highly right-skewed and so benefit from the
concave transformation such as the log function. The variables also have
zero values so a positive number should be added before taking logs. Issue
the following commands to transform the predictor variables and to divide
the spam data frame into test and training samples:
> transfSpam <- spam

> transfSpam[,-58] <- log(transfSpam[,-58] + 1)

> set.seed(1) ; nTest <- 1000

> indsTest <- sample(1:nrow(transfSpam),nTest,

replace = FALSE)

> indsTrain <- setdiff(1:nrow(transfSpam),indsTest)

> transfSpamTest <- transfSpam[indsTest,]

> transfSpamTrain <- transfSpam[indsTrain,]

b. Use a model selection strategy based on the function cv.gamsel() in the
gamsel package to select a subset of predictors.

c. Use the function glm() to fit a logistic GLM regression model with response
variable type and the predictors selected in part b.

d. Consider the rule for which a new e-mail message is classified as being spam
if and only if the message’s estimated probability of type = spam, according
to the logistic GLM from part c., exceeds 1/2. Obtain the confusion matrix
based on the test data in transfSpamTest and estimate the misclassification
rate.
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e. Repeat part d. using the fit from cv.gamsel(). Is one rule significantly
better than the other?

f. Suppose that e-mail messages classified as spam are likely to be discarded
before being read and that you are particularly concerned about failing to
read messages that are not spam. In this case, which rule would you prefer?
(Find the proportion of nonspam messages that are misclassified by each
rule and compare.)

g. The results in parts d. to f. depend on the random split of the dataset
into training and test data. Repeat ten times the random splitting of the
dataset, the calculation of misclassification rates, and the calculation of the
proportion of nonspam messages that are misclassified by each rule. How
consistent are the results?

9. Ensure that the packages Ecdat (Croissant 2016) and polspline (Kooperberg
2015) are installed in your R environment.

a. Consider the problem of selecting a GAM fit to the California schools data
analyzed in Sects. 3.3.1 and 3.4 with mathscr as the response variable and
the following candidate predictors: calwpct, mealpct, compstu,expnstu,
str, log.avginc, and elpct. Issue the following command to select the
model using the polymars() function in the polspline package:
> library(polspline) ; library(Ecdat) ; data(Caschool)

> Caschool$log.avginc <- log(Caschool$avginc)

> y <- Caschool$mathscr

> X <- Caschool[,c(7,8,11,12,13,18)]

> fit <- polymars(y,X,knots = 15,additive = TRUE)

The polymars() fit is selected from the set of all possible models with
an overall intercept and each predictor being modeled according to a linear
combination of the predictor and 15 truncated line functions of the predictor.
The command:
> print(fit$model)

leads to the output:
pred1 knot1 pred2 knot2 coefs SE

1 0 NA 0 NA 671.1796944 7.88319588

2 2 NA 0 NA -0.4853888 0.02870374

3 6 NA 0 NA 0.8854078 2.68204476

4 6 2.905972 0 NA 23.3997860 4.29266210

which means that the selected model is:

671.1796944−0.4853888 x2+0.8854078 x6+23.3997860 (x6−2.905972)+

where x2 is the second predictor (mealpct) and x6 is the sixth predictor
(log.avginc).

b. Issue the following commands to obtain plots of the fitted functions of
mealpct and log.avginc with the other predictor set to its average:
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> f2hat <- predict(fit,cbind(0,X[,2],0,0,0,mean(X[,6])))

> f6hat <- predict(fit,cbind(0,mean(X[,2]),0,0,0,X[,6]))

> par(mfrow=c(1,2))

> plot(X[,2],f2hat,

+ xlab = "percent qualifying for reduced-price lunch",

+ ylab = "mean average mathematics score",

+ ylim = range(c(f2hat,f6hat)))

> plot(X[,6],f6hat,xlab = "log average income",

+ ylab="mean average mathematics score",

+ ylim = range(c(f2hat,f6hat)))

c. The gcv argument in the function polymars() controls the parsimony of
the selected model and is set to 4 by default. Obtain and graphically display
the models selected by polymars() with

i. gcv set to 3,
ii. gcv set to 2,

iii. gcv set to 1.

d. Repeat the tasks of Exercise 7 for classification of the spam data from the
kernlab package, but with polymars() used to select the additive model.
Set classify = TRUE in the call to polymars().

10. Recall that, in Sect. 3.3.3, a factor-by-curve extension of a GAM was fit to the
Boston mortgages data via the code:

> library(mgcv) ; library(HRW) ; data(BostonMortgages)

> fitFacByCurvBostMort <- gam(deny ~ black

+ factor(self)

+ + s(dir,by = factor(self))

+ + s(lvr,by = factor(self)) + pbcr

+ + self + single + s(ccs,k = 4),

+ family = binomial,data = BostonMortgages)

a. Fit a similar model, but with factor-by-curve interactions for the factor
black, which equals yes if the mortgage applicant has black ethnicity and
no otherwise.

b. Using predict() function with type = "response" obtain a plot show-
ing, for both black and non-black applicants, the estimated probability of
denial as a function of dir (debt payments to income ratio) ranging between
0 and 1, lvr set to its average value, pbrc, self, and single all set to “yes”
and ccs set to its average value.

c. Do the same as in part b. but as a function of lvr (loan size to property value
ratio) ranging between 0 and 1 and dir set to its average value.

d. Make some interpretational remarks based on the plots in parts b. and c.

11. a. Issue the following commands to load and describe the data frame ragweed:

> library(HRW) ; data(ragweed) ; help(ragweed)
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Of interest are regression models that explain pollenCount, which is a
count variable.

b. Fit a Poisson GAM, with a factor-by-curve extension, using the following
commands:
> fit1 <- gam(pollenCount ~ factor(year)

+ + s(dayInSeason,k = 27,by = factor(year))

+ + temperatureResidual + rain + s(windSpeed,k = 27),

+ data = ragweed,family = poisson)

Then issue the following commands to obtain residual plots for the fitted
model:
> gam.check(fit1)

> qqnorm(residuals(fit1,type = "scaled.pearson"))

> abline(0,1,col = "red")

The second residual plot, which uses scaled Pearson residuals, rather
than the unscaled residuals supported by gam.check(), to better assess
approximate standard normality.

c. Obtain alternative fit objects fit2 and fit3 as follows:

i. using the same response, pollenCount, as for fit1 but with family

= quasipoisson corresponding to the quasi-likelihood extension of the
Poisson response GAM,

ii. using the response sqrt(pollenCount), corresponding to the square-
root transformation applied to pollenCount, and with the specification
family = gaussian in the call to gam().

d. Obtain residual plots, analogous to those obtained for fit1 in part b. for
each of fit2 and fit3.

e. Choose among the three models according to best agreement between resid-
ual plots and model assumptions. Make numerical and graphical summaries
of chosen model fit.

f. For the selected model, use the predict() function to make a plot showing
the four penalized spline fits for the effect of dayInSeason on the mean
response together on the same set of axes.



Chapter 4
Semiparametric Regression Analysis
of Grouped Data

4.1 Introduction

Grouped data arise in several diverse contexts in statistical design and analysis.
Examples include medical studies in which patients are followed over time and
measurements on them recorded repeatedly, educational studies in which students
grouped into classrooms and schools are scored on examinations, and sample
surveys in which the respondents to questionnaires are grouped within geographical
districts. Major areas of Statistics such as longitudinal data analysis, panel data
analysis, multilevel models, and small area estimation are concerned with analysis
of grouped data.

Books concerned with analyzing grouped data include Baltagi (2013), Diggle
et al. (2002), Fitzmaurice et al. (2008), Frees (2004), Gelman and Hill (2007),
Goldstein (2010), and Rao and Molina (2015). Longitudinal data analysis is
the branch of grouped data analysis that has had the biggest interplay with
semiparametric regression. One of the five parts of Fitzmaurice et al. (2008) is titled
Non-Parametric and Semi-Parametric Methods for Longitudinal Data and contains
five chapters on various aspects of semiparametric longitudinal data analysis.

Mixed models are central to the analysis of grouped data, with random effects
used to account for within-group dependence. Penalized splines with mixed model
representations allow for natural extension from parametric to semiparametric
grouped data models. The mixed model functionality of R can be used for fitting
quite elaborate semiparametric models to grouped data. Relevant packages are mgcv
(Wood 2017), which directly supports a wide range of semiparametric regression
models for grouped data, and nlme (Pinheiro et al. 2017) which allows more
elaborate models to be fit using user-specified design matrices. However, not all
models of interest can be handled using mixed model packages such as nlme, and
occasionally we need to call upon the package rstan (Guo et al. 2017) for MCMC-
based fitting and inference.
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4.2 Additive Mixed Models

Additive mixed models have emerged as a popular vehicle for semiparametric
grouped data analysis. An early reference is Donnelly et al. (1995). Here we follow
the approach described in Sect. 9.2 of Ruppert et al. (2003).

The ideas of additive mixed models are nicely illustrated using the spinal bone
mineral density data. These data are from Bachrach et al. (1999) and involve
longitudinal measurements for US-based female and male cohorts with recruitment
during 1992–1996. We will restrict attention to the female data, which are stored
in the data frame femSBMD in the package HRW. The data can be visualized using
graphics from the package lattice (Sarkar 2017) via the commands:

> library(lattice) ; library(HRW); data(femSBMD)

> femSBMDvis <- xyplot(spnbmd ~ age|factor(ethnicity),

+ group = idnum,as.table = TRUE,

+ data = femSBMD,

+ strip = strip.custom(par.strip.text

+ = list(cex = 1.5)),

+ par.settings = list(layout.heights

+ =list(strip=1.6)),

+ scales = list(cex = 1.25),

+ xlab = list("age (years)",cex = 1.5),

+ ylab = list(expression(paste(

+ "spinal bone mineral density (g/c",m^2,")")),

+ cex = 1.5),

+ panel = function(x,y,subscripts,groups)

+ {

+ panel.grid()

+ panel.superpose(x,y,subscripts,groups,

+ type = "b",pch = 16,lwd = 2)

+ })

> plot(femSBMDvis)

and produce the plot shown in Fig. 4.1. Here idnum is an array having the
same length as the response vector femSBMD$spnbmd. It contains the subject
identification number corresponding to each response measurement. We will not
delve deeply into the specifics of the xyplot() within lattice and refer the reader
to the detailed documentation provided by the R commands:

> library(lattice) ; help(xyplot)

and the book Sarkar (2008) dedicated to lattice graphics. Briefly, however, we
note that

spnbmd ~ age|factor(ethnicity)
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Fig. 4.1 Visualization of the female subset of the spinal bone mineral density data, broken down
by ethnicity. Points for the same subject are connected by lines.

specifies plotting spinal bone mineral density values against age with a separate
panel for each ethnicity category. The panel argument of xyplot() permits panel-
level specifications. As we will see in this chapter, lattice is very useful for
displaying grouped data and fits from semiparametric regression analyses. A more
recent package, ggplot2 (Wickham and Chang 2016), has similar functionality.

The number of subjects is m = 230. Let ni , 1 ≤ i ≤ m, denote the number
of measurements for the ith subject. One question of interest concerns differences
in mean spinal bone mineral density among the four ethnic groups, Asian, Black,
Hispanic, and White, after accounting for age. Define the indicator variable:

blacki ≡
{

1 if the ith subject is black,

0 otherwise

and let hispanici and whitei be defined analogously. An appropriate additive
mixed model is
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spnbmdij = Ui + f (ageij ) + β1 blacki + β2 hispanici

+β3 whitei + εij , 1 ≤ j ≤ ni, 1 ≤ i ≤ m,

Ui
ind.∼ N(0, σ 2

U), εij
ind.∼ N(0, σ 2

ε ).

(4.1)

where, for example, spnbmdij is j th the spinal bone mineral density measurement
on the ith subject. With this formulation the Asian subjects comprise the reference
group and β1, β2, and β3 represent mean differences in spinal bone mineral density
between the other ethnic groups and Asians. The additivity assumption in (4.1)
is somewhat tenuous and a more flexible model that allows for a factor-by-curve
interaction between ethnicity and age is considered in Exercise 1.

Model (4.1) can be fitted in R using the function gamm() within the package
mgcv (Wood 2017) as follows:

> library(mgcv)

> fit <- gamm(spnbmd ~ s(age) + black + hispanic + white,

+ random = list(idnum = ~1),data = femSBMD)

The fitted penalized spline for the age effect can be viewed using:

> plot(fit$gam,shade = TRUE,shade.col = "palegreen",bty = "l")

The resulting plot is shown in Fig. 4.2. The shaded region corresponds to pointwise
approximate 95% confidence intervals. Note that default plotting of the estimate of
f (age) in mgcv involves vertical centering about zero.
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Fig. 4.2 The fitted penalized spline for the age effect in the fit of the additive mixed model (4.1)
to the female spinal bone mineral density data. The function estimate is vertically centered about
zero. The shaded region corresponds to pointwise approximate 95% confidence intervals.
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Fig. 4.3 Standardized residuals versus fitted values for the fit of the additive mixed model (4.1) to
the female spinal bone mineral density data.

A standardized residual plot is produced from:

> plot(fit$lme)

The residual plot, shown in Fig. 4.3, shows reasonable accordance with the model
assumptions.

A summary of the additive model aspects of the fit is produced using:

> summary(fit$gam)

Family: gaussian

Link function: identity

Formula:

spnbmd ~ s(age) + black + hispanic + white

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.92538 0.01243 74.444 < 2e-16

black 0.08191 0.01718 4.769 2.13e-06

hispanic -0.01516 0.01754 -0.864 0.388

white 0.01503 0.01748 0.860 0.390

Approximate significance of smooth terms:

edf Ref.df F p-value

s(age) 7.201 7.201 225.6 <2e-16
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R-sq.(adj) = 0.519

Scale est. = 0.0013551 n = 1003

Note that the fitted age effect involves 7.201 effective degrees of freedom. The
effects of other variables can be gleaned from this output as well, but a more direct
assessment is available from:

> intervals(fit$lme)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

X(Intercept) 0.90101757 0.92538331 0.94974906

Xblack 0.04821097 0.08190524 0.11559951

Xhispanic -0.04956727 -0.01515680 0.01925366

Xwhite -0.01925714 0.01503146 0.04932006

Xs(age)Fx1 0.02267288 0.07541370 0.12815452

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: g

lower est. upper

sd(Xr - 1) 0.01371071 0.04113408 0.1241885

Level: idnum

lower est. upper

sd((Intercept)) 0.1138351 0.1222052 0.1311908

Within-group standard error:

lower est. upper

0.03474367 0.03681208 0.03900364

This output shows that an approximate 95% confidence interval for β1 in (4.1) is
(0.0482,0.116), which indicates a statistically significant difference between the
Asian and Black females in terms of mean spinal bone mineral density. However,
there is no significant difference between Hispanic or White females and Asian
females. An approximate 95% confidence interval for σU is (0.114, 0.131), which
implies significant within-subject correlation. The confidence interval for σε is
(0.0347, 0.0390). The output also contains a confidence interval for the standard
deviation of the penalized spline coefficients, which is less interpretable.

We can also perform omnibus tests for multiparameter hypotheses concerning
ethnicity. For example, a test for the overall effect of ethnicity, corresponding to

H0 : β1 = β2 = β3 = 0, (4.2)
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can be performed using the code:

> fitReduced <- gamm(spnbmd ~ s(age),random = list(idnum = ~1),

+ data = femSBMD)

> logLRstat <- 2*(fit$lme$logLik - fitReduced$lme$logLik)

> pValue <- 1 - pchisq(logLRstat,df = 3) ; print(pValue)

[1] 6.14458e-08

The approximate p-value is 0.0000000614, and based on twice the log-likelihood
ratio having an approximate χ2 distribution with three degrees of freedom,
since (4.2) involves three parameters (e.g. McCulloch et al. 2008). Note anova()

function used in Chap. 3 to compare models fit via gam() is not applicable to
gamm() fit objects.

4.2.1 Bayesian Approach

An alternative route for additive mixed model analysis in R involves adopting a
Bayesian approach and using MCMC for approximate inference. As discussed in
Sect. 2.10, MCMC-based inference is supported in R by the package rstan (Guo
et al. 2017). In this section we explain how to fit a Bayesian version of (4.1). Unless
you are a hardcore Bayesian there is a sense in which this analysis is redundant,
since we have just shown that mgcv supports the additive mixed model needed here.
However, the Bayesian analysis takes into account the uncertainty in the smoothing
parameters, which for a non-Bayesian would requiring bootstrapping. In addition, it
is useful to see how to fit such models in rstan because it is the only option for R
implementation of more elaborate semiparametric grouped data models given later
in this chapter.

The Bayesian model we consider here is:

spnbmdij |β, Ui, u1, . . . , uK, σU , σu, σε
ind.∼ N

(
β0 + Ui + βageageij

+∑K
k=1 uk zk(ageij ) + β1 blacki + β2 hispanici + β3 whitei , σ

2
ε

)
,

Ui |σU
ind.∼ N(0, σ 2

U), uk|σu
ind.∼ N(0, σ 2

u ),

β0, βage, β1, β2, β3
ind.∼ N(0, σ 2

β ), σU ∼ Half-Cauchy(AU),

σu ∼ Half-Cauchy(Au), σε ∼ Half-Cauchy(Aε).

(4.3)
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where, as in Sect. 2.10, the notation σ ∼ Half-Cauchy(A) means that σ has the prior
density function p(σ) = 2A/{π(σ 2 + A2)} for σ > 0. We impose noninformative
priors via the hyperparameter settings σβ = AU = Au = Aε = 105. However,
we work with the standardized spnbmd and age values in our Bayesian fitting and
revert to the original units at the very end of the analysis. This guarantees that the
hyperparameter settings are scale invariant. The assumption that uk|σu

ind.∼ N(0, σ 2
u )

is appropriate if, for example, we use O’Sullivan splines. Such a spline basis is
used here.

The R script femSBMDbayes.R facilitates fitting of (4.3) via MCMC and rstan.
The Stan code is stored in the object addMixModModel which is assigned inside
the script femSBMDbayes.R as shown below. It is a computer code representation
of model (4.3).

> addMixModModel <-

+ 'data
+ {

+ int<lower=1> numObs; int<lower=1> numGrp;

+ int<lower=1> ncX; int<lower=1> ncZ;

+ real<lower=0> sigmaBeta; real<lower=0> AU;

+ real<lower=0> Aeps; real<lower=0> Au;

+ vector[numObs] y; int<lower=1> idnum[numObs];

+ matrix[numObs,ncX] X; matrix[numObs,ncZ] Zspl;

+ }

+ parameters

+ {

+ vector[ncX] beta; vector[numGrp] U;

+ vector[ncZ] u; real<lower=0> sigmaU;

+ real<lower=0> sigmau; real<lower=0> sigmaEps;

+ }

+ model

+ {

+ y ~ normal(X*beta + U[idnum] + Zspl*u,sigmaEps);

+ U ~ normal(0,sigmaU); u ~ normal(0,sigmau);

+ beta ~ normal(0,sigmaBeta) ; sigmaEps ~ cauchy(0,Aeps);

+ sigmaU ~ cauchy(0,AU) ; sigmau ~ cauchy(0,Au);

+ }'

To run this script issue:

> library(HRW) ; demo(femSBMDbayes,package = "HRW")

Its location for possible copying and modifying is determined by:

> system.file("demo","femSBMDbayes.R",package = "HRW")
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parameter trace lag 1 acf density summary
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posterior mean: 0.0815

95% credible interval: 

(0.0484,0.113)
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vs. Asian
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posterior mean: −0.0167

95% credible interval: 

(−0.054,0.0173)
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vs. Asian
−0.05 0 0.05

posterior mean: 0.0124

95% credible interval: 
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σU
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posterior mean: 0.123

95% credible interval: 

(0.115,0.132)

σε
0.034 0.036 0.038 0.04 0.042

posterior mean: 0.037
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Fig. 4.4 Summary of MCMC-based inference for parameters in the fitted Bayesian model for the
spinal bone mineral density data. The columns are: parameter, trace plot of MCMC sample, plot
of sample against 1-lagged sample, sample autocorrelation function, kernel estimates of posterior
density, and basic numerical summaries.

Figure 4.4 summarizes the MCMC output for the model parameters. The
difference between the Black and Asian subjects is apparent from the estimated
posterior densities and 95% credible sets. Some of the MCMC samples are “sticky”
in that they have high autocorrelation. Nevertheless, the trace plots are suggestive
of convergence to a reasonable degree.

Figure 4.5 shows the fitted curves and pointwise 95% credible sets for the age
effect.

4.2.2 Serial Correlation Extension

Additive mixed models such as (4.1) assume that the errors are independent, as
conveyed by the

εij
ind.∼ N(0, σ 2

ε ).

Often such an assumption is not reasonable and it is more appropriate to assume
that the errors are serially correlated. One of the simplest types of serial correlation
is order 1 autoregression, usually denoted by the abbreviation AR(1):
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Fig. 4.5 The female subset of the spinal bone mineral density data with the Bayes estimates of the
mean function for each ethnicity group overlaid. The Bayes estimates are based on MCMC via the
rstan package. The shaded regions correspond to pointwise 95% credible sets.

εij = ρεi,j−1 + ξij

where |ρ| < 1 and the ξij are independent. Illustration of the serial correlation
extension is provided by Exercise 9.

4.3 Models with Group-Specific Curves

Figure 4.6 shows data on adolescent somatic growth obtained from a study of
the mechanisms of human hypertension development conducted at the Indiana
University School of Medicine, Indianapolis, Indiana, USA Pratt et al. (1989)
contains a full description of the study. In Fig. 4.6 we restrict attention to the
black males in the study. The full dataset, which is stored in the data frame
growthIndiana in the HRW package, includes adolescents of both genders and
categorized according to being black or white. The R code that produced Fig. 4.6 is:

> library(lattice) ; library(HRW)

> data(growthIndiana)
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Fig. 4.6 Indiana adolescent growth data for black male adolescents subset. The panels show height
versus age for each of the 28 subjects.

> growthINblackMales <- growthIndiana[(growthIndiana$male == 1)

+ &(growthIndiana$black == 1),]

> figBlkMalRaw <- xyplot(height ~ age|idnum,groups=idnum,

+ data = growthINblackMales,

+ layout = c(4,7),

+ strip = FALSE,scales = list(cex = 1.25),

+ xlab = list("age (years)",cex = 1.5),

+ ylab = list("height (centimeters)",

+ cex = 1.5),as.table = TRUE,

+ panel = function(x,y,subscripts,groups)

+ {

+ panel.grid()

+ panel.superpose(x,y,subscripts,groups,

+ col = "dodgerblue",type = "b")

+ })

> plot(figBlkMalRaw)
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The shapes of the curves for each adolescent differ quite markedly and the simple
additive mixed models of Sect. 4.2 would not capture such behavior very well.
Instead we should consider models of the form

heightij = f (ageij ) + gi(ageij ) + εij , 1 ≤ j ≤ ni, 1 ≤ i ≤ 28,

εij
ind.∼ N(0, σ 2

ε )

(4.4)

where ni is the number of measurements for the ith adolescent and gi is a function
that represents that adolescent’s departure from the overall mean function f . We
call (4.4) a group-specific curves semiparametric mixed model. A mixed-model
based penalized spline formulation of (4.4) is given in Sect. 9.3 of Ruppert et al.
(2003) and embellished in Durbán et al. (2005). Briefly, it involves modeling f and
the gi according to

f (x) = β0 + β1 x +
Kgbl∑

k=1

ugbl,kzgbl,k(x), ugbl,k| σgbl

ind.∼ N(0, σ 2
gbl),

gi(x) = U0i + U1i x +
Kgrp∑

k=1

ugrp,ik zgrp,k(x),

[
U0i

U1i

]
ind.∼ N(0,Σ), ugrp,ik| σgrp

ind.∼ N(0, σ 2
grp)

(4.5)

where zgbl,k and zgrp,k are suitable spline bases of sizes Kgbl and Kgrp respectively.
In the examples we use canonical O’Sullivan splines as described in Sect. 2.2.
Typically, Kgrp is smaller than Kgbl since fewer basis functions are needed to handle
group-specific deviations.

Model (4.5) can be fit in R using the function lme() from the package nlme.
However, before the call to lme(), a fair amount of setting up is required. First, we
need to extract the main variables from the growthINblackMales data frame and
then create an array with identification numbers matching the i subscript of (4.5):

> library(nlme)

> age <- growthINblackMales$age

> height <- growthINblackMales$height

> idnum <- growthINblackMales$idnum

> idnumBM <- rep(NA,length(idnum))

> uqID <- unique(idnum)

> for (i in 1:length(uqID))

+ idnumBM[idnum == uqID[i]] <- i

> growthINblackMales$idnum <- idnumBM
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Next, set up design matrices Zgbl, containing the zgbl,k , and Zgrp, containing the zgrp,k:

> numObs <- length(height)

> numGrp <- length(unique(idnum))

> numIntKnotsGbl <- 20

> intKnotsGbl <- quantile(unique(age),

+ seq(0,1,length=numIntKnotsGbl+2))[-c(1,numIntKnotsGbl+2)]

> range.age <- c(5.5,20)

> Zgbl <- ZOSull(age,range.x=range.age,intKnots=intKnotsGbl)

> numIntKnotsGrp <- 10

> intKnotsGrp <- quantile(unique(age),

+ seq(0,1,length=numIntKnotsGrp+2))[-c(1,numIntKnotsGrp+2)]

> Zgrp <- ZOSull(age,range.x=range.age,intKnots=intKnotsGrp)

The next chunk of code sets up the random effect structure for the call to lme(),
corresponding to (4.5):

> dummyId <- factor(rep(1,numObs))

> Zblock <- list(dummyId = pdIdent( ~ -1 + Zgbl),

+ idnumBM = pdSymm( ~ age),

+ idnumBM = pdIdent( ~ -1 + Zgrp))

Note that we need the dummy identification variable dummyID, an array of length
numObs, the total number of observations, with all entries equal to one to trick
lme() into accommodating the global penalized spline component. The list entry
dummyId = pdIdent(~-1+Zgbl) invokes the multiple of identity matrix structure
ugbl ∼ N(0, σ 2

gbl I ) across the entire dataset regardless of within-subject grouping.
The list item idnumBM = pdSymm(~age) invokes the block-diagonal unstructured
2 × 2 covariance matrix form on the [U0i U1i]T , 1 ≤ i ≤ 28, as required by (4.5).
Similarly pdIdent(~-1+Zgrp) accommodates ugrp,ik| σgrp

ind.∼ N(0, σ 2
grp).

We are now ready to call lme() with the random argument set to
Zblock:

> blkMalGD <- groupedData(height ~ age|rep(1,length = numObs),

+ data = data.frame(height,age,Zgbl,Zgrp,idnumBM))

> fit <- lme(height ~ age,data = blkMalGD,random = Zblock)

We are not aware of any R packages that handle group-specific curves directly.
This is the reason for using lme() with explicit construction of spline basis
functions.

The code for the lattice graphics display of the fits, shown in Fig. 4.7, is:

> ng <- 101

> ageg <- seq(range.age[1],range.age[2],length = ng)

> Xg <- cbind(rep(1,ng),ageg)

> Zgblg <- ZOSull(ageg,range.x = range.age,

+ intKnots = intKnotsGbl)

> Zgrpg <- ZOSull(ageg,range.x = range.age,
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Fig. 4.7 Fitted group-specific curves for the data shown in Fig. 4.6 and model (4.5). The fits are
obtained via lme() as described in the text.

+ intKnots = intKnotsGrp)

> betaHat <- as.vector(fit$coef$fixed)

> uHat <- as.vector(fit$coef$random[[1]])

> fHatg <- as.vector(Xg%*%betaHat + Zgblg%*%uHat)

> curvEsts <- vector("list",numGrp)

> for (i in 1:numGrp)

+ {

+ uLinHati <- as.vector(fit$coef$random[[2]][i,])

+ uSplHati <- as.vector(fit$coef$random[[3]][i,])

+ ghati <- Xg%*%uLinHati + Zgrpg%*%uSplHati

+ curvEsts[[i]] <- fHatg + ghati

+ }

> figBlkMalFit <- xyplot(height ~ age|idnumBM,

groups = idnumBM,

+ data = growthINblackMales,

+ strip = FALSE,scales = list(cex = 1.25),

+ xlab = list("age (years)",cex = 1.5),
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+ ylab = list("height (centimeters)",cex = 1.5),

+ as.table = TRUE,layout = c(4,7),

+ panel = function(x,y,subscripts,groups)

+ {

+ panel.grid()

+ adolNum <- idnumBM[subscripts][1]

+ panel.superpose(x,y,subscripts,groups,

+ col = "dodgerblue",type = "b")

+ panel.xyplot(ageg,curvEsts[[adolNum]],

+ col = "blue",type = "l")

+ })

> plot(figBlkMalFit)

Finally, we can check the standardized residuals from the fit shown in Fig. 4.7
simply by issuing the command:

> print(plot(fit))

Result is shown in Fig. 4.8. It indicates no distinct patterns or outliers.
Figure 4.9 is similar to Fig. 4.6, but now has the growth data for 88 white male

adolescents in addition to those for the black males.
Of primary interest is the contrast function:

c(age) ≡ fB(age) − fW(age)

where fB is the global mean function for black adolescents and fW is its counterpart
for white adolescents. We now consider the group-specific curves extension of
the factor-by-curve interaction models discussed in Sect. 3.6. Coull et al. (2001)

Fig. 4.8 Standardized
residuals for the lme()-based
group-specific curves fit
shown in Fig. 4.7.
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Fig. 4.9 Indiana adolescent growth data for the male adolescents subset, categorized according to
black and white ethnicity. The panels show height versus age for each of the 116 subjects.

advocate symmetry in the random effects-based spline models for fB and fW as
follows:

fW(x) = βW
0 + βW

1 x +
Kgbl∑

k=1

uW
gbl,kzgbl,k(x) and

fB(x) = βW
0 + βBvsW

0 + (βW
1 + βBvsW

1 ) x +
Kgbl∑

k=1

uB
gbl,kzgbl,k(x),
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where uW
gbl,k| σW

gbl

ind.∼ N(0, (σW
gbl )

2), uB
gbl,k| σB

gbl

ind.∼ N(0, (σB
gbl)

2),

leading to the contrast function

c(x) ≡ fB(x) − fW (x) = βBvsW
0 + βBvsW

1 x +
Kgbl∑

k=1

(uB
gbl,k − uW

gbl,k)zgbl,k(x).

(4.6)
An alternative model, that is asymmetric in fB and fW , differs from (4.6) in that

fB(x) = βW
0 + βBvsW

0 + (βW
1 + βBvsW

1 ) x +
Kgbl∑

k=1

(uB
gbl,k + uBvsW

gbl,k )zgbl,k(x),

where uW
gbl,k| σW

gbl

ind.∼ N(0, (σW
gbl )

2), uBvsW
gbl,k | σ BvsW

gbl

ind.∼ N(0, (σ BvsW
gbl )2),

and induces the contrast function model

c(x) ≡ fB(x) − fW(x) = βBvsW
0 + βBvsW

1 x +
Kgbl∑

k=1

uBvsW
gbl,k zgbl,k(x). (4.7)

In model (4.6) the effective degrees of freedom for the estimates fW and fB are an
increasing function of the estimates of

(σW
gbl )

2/σ 2
ε and (σB

gbl)
2/σ 2

ε .

However, in model (4.7) they are an increasing function of the estimates of

(σW
gbl )

2/σ 2
ε and {(σW

gbl )
2 + (σ BvsW

gbl )2}/σ 2
ε .

This implies that the estimate of fW must have fewer effective degrees of freedom
than that of fB regardless of their relative curviness. Therefore, model (4.6)
is preferable since it does not impose such a ranking on the effective degrees
of freedom values although in practice this will often not matter a great deal.
Model (4.7) has the advantage that fitting and standard error estimation is easier
via lme() and the script maleGrowthIndiananlme.R in the HRW package contains
the required code. To run it type:

> library(HRW) ; demo(maleGrowthIndiananlme,package = "HRW")

Its location is determined by the command:

> system.file("demo","maleGrowthIndiananlme.R",package = "HRW")

The resulting fits are shown in Fig. 4.10 and are seen to be very good.
Figure 4.11 shows the estimated contrast function produced by the R script

maleGrowthIndiananlme.R and corresponding approximate pointwise 95% con-
fidence intervals. It should be noted that the lme() fit object does not provide the
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Fig. 4.10 Fitted group-specific curves for the data shown in Fig. 4.9 and model (4.7). The fits are
obtained via lme() within the script maleGrowthIndiananlme.R.

covariance matrix of the estimated random effects and, hence, the approximate
confidence interval computations have to be programmed in R using theory
laid out in Chap. 4 of (Ruppert et al. 2003). The required code is given in
maleGrowthIndiananlme.R.

An alternative approach that (a) allows the theoretically more appealing sym-
metric group-specific curves model (4.6) to be fitted and (b) involves considerably
less R programming is to adopt a Bayesian approach and use an MCMC-based
package such as rstan, albeit at the cost of increased computing time. The script
maleGrowthIndianaBayes.R in the HRW achieves this and produces the fitted
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Fig. 4.11 Estimated contrast function and approximate pointwise 95% confidence intervals for
the mean height of black adolescents minus mean height of white adolescents for the Indiana
adolescent growth data. The estimate is obtained using lme() as described in the text.

curves shown in Fig. 4.12 and the estimated contrast function shown in Fig. 4.13. In
each of these figures pointwise 95% credible sets are added to the curve estimates.
Unlike the lme() approach, obtaining such variability bands in rstan is quite easy.
The script can be run using:

> library(HRW) ; demo(maleGrowthIndianaBayes,package = "HRW")

and located on the computer on which HRW resides using:

> system.file("demo","maleGrowthIndianaBayes.R",package = "HRW")

Visual inspection of Figs. 4.10 and 4.13 shows that inference for the contrast
function based on model (4.7) and lme() and that based on model (4.6) and rstan

produce similar results. A direct comparison is left as an exercise (Exercise 3).
Both inferences show that black adolescents have a significantly higher mean height
between 7 and 14 years of age with a peak difference at about 13 years of age. This
is evidence of black males experiencing an earlier pubertal spurt compared with
white males. The difference then decreases and becomes nonsignificant for 14 years
old and older.

We finish up with a check of the MCMC output in Fig. 4.14. It shows that good
MCMC convergence is achieved for the error standard deviation and three vertical
slices of the contrast function fit.

With simplicity in mind, we have focused on the male subset of the Indiana
adolescent growth data throughout this section. Exercise 8 is concerned with
analysis of the full dataset.

The group-specific curves analyses performed in this section are based on the
low-rank penalized spline mixed model approach developed in Durbán et al. (2005).
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Fig. 4.12 Fitted group-specific curves for the data shown in Fig. 4.9 and model (4.6). The shading
corresponds to pointwise 95% credible sets. The fits are obtained via rstan within the script
maleGrowthIndianaBayes.R.

There are some earlier articles that develop similar models such as Donnelly et al.
(1995), Brumback and Rice (1998), Zhang et al. (1998), Wang (1998), Verbyla et al.
(1999), and Guo (2002). The approach in Durbán et al. (2005), which includes two
authors of this book, was developed to allow direct implementation of group-specific
curves in R as well as the mixed model capabilities of the SAS environment. In this
section we have demonstrated that the same applies to the MCMC functionality of R
via the rstan package. In Sect. 6.9.1 we show how rstan can handle group-specific
curves models in the more challenging binary response situation.



4.3 Models with Group-Specific Curves 149

5 10 15 20

−5
0

5

age (years)

m
ea

n 
di

ffe
re

nc
e 

in
 h

ei
gh

t (
ce

nt
im

et
re

s)

Fig. 4.13 Estimated contrast function and approximate pointwise 95% credible sets for the mean
height of black adolescents minus mean height of white adolescents for the Indiana adolescent
growth data. The inference is based on MCMC via the rstan package.

parameter trace lag 1 acf density summary

σε
0.6 0.65 0.7

posterior mean: 0.656

95% credible interval: 
(0.625,0.684)

contrast function
at 1st quantile

of age
0 5

posterior mean: 3.19

95% credible interval: 
(0.258,6.14)

contrast function
at 2nd quantile

of age
0 5 10

posterior mean: 5.68

95% credible interval: 
(2.32,9.12)

contrast function
at 3rd quantile

of age
−5 0 5

posterior mean: 1.16

95% credible interval: 
(−1.96,4.32)

Fig. 4.14 Summary of MCMC-based inference for parameters in the fitted Bayesian group-
specific curves model (4.6) for the male subset of the Indiana adolescent growth data. The columns
are: parameter, trace plot of MCMC sample, plot of sample against 1-lagged sample, sample
autocorrelation function, kernel estimates of posterior density, and basic numerical summaries.
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4.4 Marginal Models

Marginal models for grouped data differ from the models in the preceding sections
in that there is no modeling of the within-group covariance structure using random
effects. Instead, the mean and covariance matrix of the response vector for each
group are modeled marginally. Marginal models are much more straightforward
for balanced designs, i.e., where the group sizes are the same. In the notation of
Sects. 4.2 and 4.3 this means we have ni = n for 1 ≤ i ≤ m. We will assume the
design is balanced throughout this section.

4.4.1 Marginal Nonparametric Regression

Suppose we observe the two-level grouped regression dataset (xij , yij ), 1 ≤ i ≤ m,
1 ≤ j ≤ n where n is small compared with m. Let yi be the vector of responses for
the ith group.

The marginal nonparametric regression model is

yij = f (xij ) + εij , Cov(εi ) = Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n (4.8)

where εi ≡ [εi1, . . . , εin]T is the vector of residuals for the ith group. The
mean function f is assumed to be smooth, while the covariance matrix Σ is an
unstructured n × n covariance matrix.

Figure 4.15 displays longitudinal data from the Observing Protein and Energy
Nutrition study (conducted in the USA during 1999–2000) that is amenable to
model (4.8). The data are in the dataset protein in the HRW package and their source
is Kipnis et al. (2003). The code needed to produce Fig. 4.15 is:

> library(HRW) ; library(lattice)

> data(protein)

> femInds <- (1:nrow(protein))[protein$female == 1]

> femProtein <- protein[femInds,]

> rawFemProtein <- xyplot(proteinBioM ~ BMI,groups = idnum,

+ data = femProtein,type = "b",

+ xlab = list("body mass index", cex = 1.5),

+ ylab = list("log(protein biomarker)",

+ cex = 1.5),

+ scales = list(x = list(cex = 1.5),

+ y = list(cex = 1.5)))

> plot(rawFemProtein)

To illustrate (4.8) we use body mass index (x) as a predictor of a logarithmically
transformed protein biomarker (y) for the females in the study. The sample sizes are
m = 130 and n = 2 with j = 1, 2 corresponding to visit number. Also, note that
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Fig. 4.15 Protein biomarker versus body mass index for females in data from a nutritional
epidemiology study (source: Kipnis et al. 2003). The vertical lines join measurements on the same
subject.

the body mass index measurement does not vary between visits so, in the notation
of (4.8), xi1 = xi2.

In Fig. 4.16 we have assessed the trend in the data by fitting a five degrees of
freedom smoothing spline. The code to produce this figure is:

> BMI <- femProtein$BMI

> proteinBioM <- femProtein$proteinBioM

> fitSS <- smooth.spline(BMI,proteinBioM,df = 5)

> BMIg <- seq(min(BMI),max(BMI),length = 101)

> fHatg <- predict(fitSS,BMIg)$y

> smooBMI <- xyplot(proteinBioM ~ BMI,groups = idnum,

+ data = femProtein,type = "b",

+ subscripts = TRUE,

+ panel=function(x,y,subscripts,groups)

+ {

+ panel.superpose(x,y,subscripts,groups,type="b")

+ panel.xyplot(BMIg,fHatg,lwd = 3,

+ type = "l",col = "darkgreen")

+ }
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Fig. 4.16 The data from Fig. 4.15 with a five degrees of freedom smoothing spline added to assess
trend.

+ )

> plot(smooBMI)

A nonlinear trend is apparent in Fig. 4.16.
The residuals can then be extracted using:

> residsSS <- residuals(fitSS)

Figure 4.17 displays the residuals for each subject as follows:

ε̂i2 versus ε̂i1, 1 ≤ i ≤ 130.

The scatterplot in Fig. 4.17 allows for an appreciation of Σ = Cov(εi ). In particular,
it shows a substantial positive correlation between measurements on the same
subject. Therefore, model (4.8) is worth entertaining for these data.

4.4.1.1 Comparison with Random Intercept Model

In Sect. 4.2 we considered the random intercept model.

yij = Ui + f (xij ) + εij (4.9)

Ui
ind.∼ N(0, σ 2

U) independent of εij
ind.∼ N(0, σ 2

ε ).
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Fig. 4.17 The residual for the second visit versus that of the first visit for each subject.

If yi ≡ [yi1, yi2]T is the vector of responses for the ith subject then, under
model (4.9),

Cov(yi ) =
[

σ 2
U + σ 2

ε σ 2
U

σ 2
U σ 2

U + σ 2
ε

]
.

It follows that model (4.9) imposes the restriction

Cov(yi ) ∈
{[

σ 2 ρσ 2

ρσ 2 σ 2

]
: σ 2 > 0, 0 < ρ < 1

}
.

Compare this with the marginal model (4.8) where Cov(yi ) is unrestricted:

Cov(yi ) ∈
{[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
: σ 2

1 , σ 2
2 > 0,−1 < ρ < 1

}
.

For this n = 2 case marginal model allows for (a) non-equal variances between
visits, and (b) negative within-group correlation. For larger n the marginal model
offers considerably more flexibility.
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4.4.1.2 Approaches to Marginal Nonparametric Regression

Estimation and inference for model (4.8) have been the subject of intense research
since about 2000, although it was first studied by Zeger and Diggle (1994). A survey
of most of the literature on the topic is given in Sect. 3.9 of Ruppert et al. (2009).
The approach that is most in keeping with this book is that of Al Kadiri et al. (2010),
in which mixed model-based penalized splines are used. Hence, we will focus on
that approach for the remainder of the section.

Assume that f takes the form

f (x) = β0 + β1 x +
K∑

k=1

ukzk(x), uk|σ ind.∼ N(0, σ 2). (4.10)

This assumption is appropriate if we use O’Sullivan splines.
Then the model can be written as

y = Xβ + Zu + ε (4.11)

where

y =

⎡

⎢⎢⎣

y1
...

ym

⎤

⎥⎥⎦ , X =

⎡

⎢⎢⎣

1 x1
...

...

1 xm

⎤

⎥⎥⎦ , Z =

⎡

⎢⎢⎣

z1(x1) · · · zK(x1)

...
. . .

...

z1(xm) · · · zK(xm)

⎤

⎥⎥⎦ , ε =

⎡

⎢⎢⎣

ε1
...

εm

⎤

⎥⎥⎦ ,

β =
[

β0

β1

]
and u =

⎡

⎢⎣
u1
...

uK

⎤

⎥⎦ .

The random vectors on the right-hand side of (4.11) have mean zero and covariance
matrix:

Cov

[
u

ε

]
=

[
σ 2I 0

0 Im ⊗ Σ

]
. (4.12)

In principle, we could fit (4.10–4.12) using (restricted) maximum likelihood
(REML) and best linear unbiased predictor (e.g., McCulloch, Searle, and Neuhaus).
Al Kadiri et al. (2010) provide some of the details of this approach. However,
implementation in lme() is not straightforward and we are yet to succeed in this
regard. On the other hand, a Bayesian version of the model can be fit in Stan. The
following function fits the Bayesian version of (4.10)–(4.12) with priors:

β ∼ N(0, 1010), σ ∼ Half-Cauchy(105)
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parameter trace lag 1 acf density summary

mean function
at 1st quartile

of BMI
5.5 5.6 5.7

posterior mean: 5.64

95% credible interval: 
(5.58,5.7)

mean function
at 2nd quartile

of BMI
5.6 5.65 5.7 5.75 5.8 5.

posterior mean: 5.71

95% credible interval: 
(5.66,5.77)

mean function
at 3rd quartile

of BMI
5.7 5.8 5.9

posterior mean: 5.79

95% credible interval: 
(5.72,5.86)

Σ11
0.04 0.06 0.08 0.1

posterior mean: 0.0632

95% credible interval: 
(0.0502,0.0804)

Σ12
0.01 0.02 0.03 0.04 0.05 0.

posterior mean: 0.0273

95% credible interval: 
(0.0156,0.0408)

Σ22
.04 0.06 0.08 0.1 0.1

posterior mean: 0.0744

95% credible interval: 
(0.0577,0.0962)

Fig. 4.18 Summary of MCMC-based inference for the mean function at the quartiles of body
mass index (BMI) and entries of Σ in the fitted marginal nonparametric regression model (4.10)–
(4.12). The columns are: parameter, trace plot of MCMC sample, plot of sample against 1-lagged
sample, sample autocorrelation function, kernel estimates of posterior density, and basic numerical
summaries.

and Σ has a marginally noninformative prior of the type described in Huang and
Wand (2013). Specifically,

Σ |a1, a1 ∼ Inverse-Wishart(3, 4 diag(a1, a2)
−1),

where a1, a2
ind.∼ Inverse-Gamma( 1

2 , 10−10)

with support from the package rstan (Guo et al. 2017). The required Stan
code is contained in the object margNPRegnModel, listed below, within the script
proteinMargNPRegn.R in the package HRW. Note that the Stan code stores the
predictor and response data in m × n matrices named xMat and yMat. The code in
proteinMargNPRegn.R produces Figs. 4.18 and 4.19.

> margNPRegnModel <-

+ 'data
+ {

+ int<lower=1> m; int<lower=1> n;
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Fig. 4.19 Fitted Bayesian marginal parametric regression model for the protein data. The solid
curve is the posterior mean. The dashed curves correspond to pointwise 95% credible sets.

+ int<lower=1> ncZ; real<lower=0> sigmaBeta;

+ real<lower=0> Au; real<lower=0> ASigma;

+ matrix[m,n] xMat; matrix[m,n] yMat;

+ matrix[m*n,ncZ] Z;

+ }

+ parameters

+ {

+ real beta0; real beta1;

+ vector[ncZ] u; real<lower=0> sigma;

+ cov_matrix[n] Sigma; vector[n] a;

+ }

+ transformed parameters

+ {

+ matrix[m,n] meanFunc;

+ for (i in 1:m)

+ for (j in 1:n)

+ meanFunc[i,j] = beta0 + beta1*xMat[i,j]

+ + dot_product(u,Z[(i-1)*n+j]);

+ }

+ model

+ {

+ vector[n] scaleSigma;

+

+ for (i in 1:m)
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+ yMat[i] ~ multi_normal(meanFuncFull[i],Sigma);

+

+ u ~ normal(0,sigma);

+

+ a ~ inv_gamma(0.5,pow(ASigma,-2));

+ for (j in 1:n) scaleSigma[j] = 4/a[j];

+ Sigma ~ inv_wishart(n+1,diag_matrix(scaleSigma));

+

+ beta0 ~ normal(0,sigmaBeta) ; beta1 ~ normal(0,sigmaBeta);

+ sigma ~ cauchy(0,Au);

+ }'

4.4.2 Additive Model Extension

Now suppose that two predictor values are observed for each value of the response.
Denote these by x1ij and x2ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then the marginal
additive model for grouped data is

E(yij ) = β0 + f1(x1ij ) + f2(x2ij ), Cov{yi |f1(x1i ), f2(x2i )} = Σ . (4.13)

The smooth functions f1 and f2 can be estimated using the penalized spline models:

f1(x) = β11 x +
K1∑

k=1

u1kz1k(x), u1k|σ1
ind.∼ N(0, σ 2

1 )

f2(x) = β21 x +
K2∑

k=1

u2kz2k(x), u2k|σ2
ind.∼ N(0, σ 2

2 )

where {z1k(·) : 1 ≤ k ≤ K1} and {z2k(·) : 1 ≤ k ≤ K2} are spline basis functions
over the range of the x1 and x2 values, respectively.

The script margAddMod.R illustrates fitting of (4.13) for some simulated data,
generated according to

f1(x) = sin{2π(x2 − 0.1)} and f2(x) = sin{3π(0.05 − x)}

and

Σ =

⎡

⎢⎢⎢⎢⎢⎣

0.97 0.83 0.77 0.41 0.18
0.83 0.97 0.83 0.77 0.41
0.77 0.83 0.97 0.83 0.77
0.41 0.77 0.83 0.97 0.83
0.18 0.41 0.77 0.83 0.97

⎤

⎥⎥⎥⎥⎥⎦
.
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The margAddMod.R can be run using:

> library(HRW) ; demo(margAddMod,package = "HRW")

and copied and modified from the location given by:

> system.file("demo","margAddMod.R",package = "HRW")

The extension of (4.13) to more than two predictors is straightforward.

4.4.3 Incorporation of Interactions

Now suppose that we also observe values on a categorical predictor x3. Let x3ij

denote the observation partnering yij . Then the model

E(yij |xi1, xi2, xi3) = β0 + fx3ij
(x1ij ) + f2(x2ij ), Cov(yi |xi1, xi2, xi3) = Σ,

1 ≤ i ≤ m, 1 ≤ j ≤ n

(4.14)
is an extension of (4.13) that allows for an interaction between x1 and x3. The
notation fx3ij

(x1ij ) signifies that we have a separate function for each value of x3ij .
For example, if the x3ij are restricted to the set {female, male}, then we would have
two functions: ffemale and fmale. Model (4.14) is an instance of a factor-by-curve
interaction, which is the focus of Sect. 3.6.

We now illustrate R fitting of (4.14) for a fuller version of the nutritional
epidemiology data (source: Kipnis et al. 2003). The sample sizes are m = 294
and n = 2 and each penalized spline fit involved K = 25 basis functions. In the
notation of (4.14), the variables are

y = logarithm of intake of protein as measured by the biomarker urinary

nitrogen,

x1 = body mass index,

x2 = logarithm of intake of protein as measured by a 24-hour recall

instrument,

x3 = gender.

The script proteinMargAddInt.R contains R code for the full additive/interac-
tion model analysis. Figure 4.20 summarizes the MCMC-based inference for ffemale,
fmale and f2 at the median of the relevant predictor, and the unique entries of Σ .
Excellent chain mixing is observed. The within-group covariance is significantly
positive, as indicated by the 95% credible set for Σ12.

Figure 4.21 shows the estimates of fmale, ffemale and f2 and corresponding 95%
pointwise credible sets.
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parameter trace lag 1 acf density summary

mean function
at median

of BMI (males)
5.9 5.95 6 6.05

posterior mean: 5.96

95% credible interval: 
(5.92,6.01)

mean function
at median

of BMI (females)
5.6 5.8 6

posterior mean: 5.73

95% credible interval: 
(5.62,5.85)

mean function
at median

of protein recall
5.7 5.8 5.9

posterior mean: 5.79

95% credible interval: 
(5.71,5.87)

Σ11
0.05 0.06 0.07 0.08

posterior mean: 0.0597

95% credible interval: 
(0.0504,0.0702)

Σ12
0.02 0.03 0.04 0.05

posterior mean: 0.0327

95% credible interval: 
(0.0245,0.0422)

Σ22
0.05 0.06 0.07 0.08 0.09 0.1

posterior mean: 0.0708

95% credible interval: 
(0.0596,0.0836)

Fig. 4.20 Summary of MCMC-based inference for parameters in the fitted additive/interaction
model for the nutritional epidemiology data. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function, kernel estimates
of posterior density, and basic numerical summaries.
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Fig. 4.21 Estimated functions for the additive/interaction model (4.14) for the protein data
described in the text. The dashed curves correspond to 95% pointwise credible sets.
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4.5 Extension to Non-Gaussian Response Variables

Each of the examples given so far in this chapter have made the assumption that
the response variable is approximately Gaussian. However, longitudinal datasets
having non-Gaussian response variables abound. Binary and count responses are
the most common type of non-Gaussian response, although skewed and/or heavy-
tailed continuous distributions may also be appropriate for modeling the response
in some circumstances. Clearly, there are numerous possibilities and not all can be
covered here. Instead, we will restrict attention to a binary response additive mixed
model for a single dataset. Exercises 2 and 10 are also concerned with non-Gaussian
response situations.

Figure 4.22 plots respiratory infection (0 = absent, 1 = present) versus age in
years for a cohort of 275 Indonesian children. The study that produced these data
is referred to as the Indonesian Children’s Health Study in Diggle et al. (2002).
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Fig. 4.22 Respiratory infection indicator (0 = absent, 1 = present) versus age in years for the
Indonesian Children’s Health Study data. The indicator is jittered to aid visualization. Repeated
measures on same child are connected by lines. Each panel corresponds to a different combination
of three predictors: vitamin A status, gender, and height for age.
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The original source of the data is Sommer (1982). The data frame indonRespir

in the HRW package contain the Indonesian Children’s Health Study data. Besides
age, data are available on height, vitamin A status (sufficient or deficient), gender,
stunted (indicator of short for age), and number of visits for each child. The panels
correspond to the three binary variables: vitamin A status, gender, and stunted. In
our analyses we work with indicators for visit number. Five such indicators are
required since there can be as many as six visits. Let xij be the 9 × 1 vector
containing values of these predictors, which will be modeled as having linear effects.
Here 1 ≤ i ≤ 275 indexes child and 1 ≤ j ≤ ni indexes the repeated measures for
each child. Then a generalized additive mixed model of interest is:

logit{P(respir. infec.ij = 1| Ui, xij , ageij )} = Ui + βT xij + f (ageij ),

Ui |σ 2
grp

ind.∼ N(0, σ 2
grp).

(4.15)

If a mixed model O’Sullivan penalized spline is used for the f (ageij ) component:

f (x) = βage x +
K∑

k=1

ukzk(x), uk
ind.∼ N(0, σ 2

spl) (4.16)

then (4.15) reduces to a generalized linear mixed model. The difficulty of fitting
and inference for such non-Gaussian response models is well documented and
approximations need to be used. Chapter 10 of McCulloch et al. (2008) provides
access to some of this approximation literature, although it continues to grow.

The following subsections describe two different ways of fitting variants of (4.15)
in R, via:

1. penalized quasi-likelihood (e.g. Breslow and Clayton 1993) via the package
mgcv (Wood 2017),

2. MCMC via the package rstan (Guo et al. 2017).

Penalized quasi-likelihood is less computationally demanding, but is often criticized
(e.g. McCulloch et al. 2008) for being too crude. MCMC can be made quite accurate
by using a higher number of MCMC samples and becomes exact in the limit as the
number of samples increases to infinity, but can be quite slow. It is also the most
extendible to other non-Gaussian responses.

4.5.1 Penalized Quasi-Likelihood Analysis

The function gamm() in the package mgcv (Wood 2017) uses penalized quasi-
likelihood (PQL) for binary response models. Note that gamm() actually calls the
generic generalized linear mixed model function glmmPQL(), of the package MASS

(Ripley et al. 2015), to carry out the PQL computations.
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To fit model (4.15) via gamm() we issue the commands:

> library(mgcv) ; library(HRW) ; data(indonRespir)

> fit <- gamm(respirInfec ~ s(age) + vitAdefic + female + height

+ + stunted + visit2 + visit3 + visit4

+ + visit5 + visit6,

+ random = list(idnum = ~1),

+ family = binomial,data=indonRespir)

Maximum number of PQL iterations: 20

A summary of the additive model aspects of the fit is produced using:

> summary(fit$gam)

Family: binomial

Link function: logit

Formula:

respirInfec ~ s(age) + vitAdefic + female + height + stunted +

visit2 + visit3 + visit4 + visit5 + visit6

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.16519 0.26765 -8.090 1.46e-15

vitAdefic 0.66979 0.47263 1.417 0.15670

female -0.46434 0.24454 -1.899 0.05783

height -0.03091 0.02544 -1.215 0.22462

stunted 0.40793 0.43277 0.943 0.34608

visit2 -1.06311 0.38877 -2.735 0.00634

visit3 -0.55626 0.36500 -1.524 0.12777

visit4 -1.23521 0.44846 -2.754 0.00597

visit5 0.43218 0.30730 1.406 0.15987

visit6 -0.01073 0.33938 -0.032 0.97477

Approximate significance of smooth terms:

edf Ref.df F p-value

s(age) 2.302 2.302 12.38 4.66e-06

R-sq.(adj) = 0.0585

Scale est. = 1 n = 1200

Note that the fitted age effect involves 2.302 effective degrees of freedom. Differ-
ences among the categories can be obtained from this. A more direct assessment is
available from:

> intervals(fit$lme,which="fixed")
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Approximate 95% confidence intervals

Fixed effects:

lower est. upper

X(Intercept) -2.68826653 -2.16519109 -1.64211566

XvitAdefic -0.25389718 0.66979454 1.59348626

Xfemale -0.94375879 -0.46434375 0.01507128

Xheight -0.08063775 -0.03091272 0.01881231

Xstunted -0.43786332 0.40792745 1.25371821

Xvisit2 -1.82290211 -1.06310891 -0.30331572

Xvisit3 -1.26959339 -0.55625846 0.15707647

Xvisit4 -2.11166707 -1.23520952 -0.35875196

Xvisit5 -0.16839380 0.43217841 1.03275061

Xvisit6 -0.67399803 -0.01073369 0.65253066

Xs(age)Fx1 -1.53419404 -0.49355253 0.54708899

attr(,"label")

[1] "Fixed effects:"

This output shows that an approximate 95% confidence interval for the coefficient of
vitAdefic in (4.15) is the insignificant (−0.254, 1.593), while that for visit2 is
the significant (−1.823,−0.303) although these need to be interpreted conditionally
on the Ui value for each subject. Marginal interpretation requires adjustments such
as that developed by Zeger et al. (1988). The row labeled Xs(age)Fx1 corresponds
to the coefficient of the linear component of the penalized spline model for age, but
the values do not have a simple interpretation.

A plot of the estimated f (age) curve can be obtained via:

> plot(fit$gam,shade = TRUE,shade.col = "palegreen")

The vertical axis of the resulting plot is on the logit scale. The following R code
produces a plot of the age effect on the probability scale, and with each of the other
predictors set at their average values:

> ng <- 101

> ageg <- seq(min(indonRespir$age),max(indonRespir$age),

+ length = ng)

> aveOthers <- apply(indonRespir[,4:12],2,mean)

> newDataDF <- as.data.frame(cbind(ageg,

+ matrix(rep(aveOthers,each = ng),

+ ng,length(aveOthers))))

> names(newDataDF) <- names(indonRespir)[-c(1,2)]

> newDataList <- as.list(newDataDF)

> predObj <- predict(fit$gam,newdata = newDataList,se = TRUE)

> muHatg <- 1/(1+exp(-predObj$fit))

> stdErrg <- predObj$se*muHatg*(1-muHatg)

> lowerg <- muHatg - 2*stdErrg ; upperg <- muHatg + 2*stdErrg

> ylimVal <- range(c(lowerg,upperg))
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Fig. 4.23 The fitted penalized spline for the age effect in the fit of the gamm()-based logistic
additive mixed model (4.15) to the Indonesian children’s health study data. The shaded region
corresponds to pointwise approximate 95% confidence intervals.

> plot(ageg,muHatg,type="n",,ylim=ylimVal,xlab="age in years",

+ ylab="estimated probability of respiratory infection",

+ cex.lab = 1.5,cex.axis = 1.5,bty = "l")

> polygon(c(ageg,rev(ageg)),c(lowerg,rev(upperg)),

+ col = "palegreen",border = FALSE)

> lines(ageg,muHatg,lwd = 2,col = "forestgreen")

> rug(jitter(indonRespir$age),col = "dodgerblue")

The result is shown in Fig. 4.23. The code stdErrg <- predObj$se

*muHatg*(1-muHatg) computes a delta-method standard error and uses the result
that L′(x) = L(x){1 − L(x)} where L(x) ≡ {1 + exp(−x)}−1.

4.5.2 Markov Chain Monte Carlo Analysis

Our final analysis of the Indonesian respiratory data involves MCMC fitting via the
package rstan. This involves adopting a Bayesian approach. We supplement (4.15)
and (4.16) with the prior specifications:

σgrp, σspl

ind.∼ Half-Cauchy(105), βage ∼ N(0, 1010) and β ∼ N(0, 1010 I ).

The IndonRespirBayes.R carries out the full analysis using rstan. The Stan
code in this script is contained in:

> logistAddMixModModel <-

+ 'data
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+ {

+ int<lower=1> numObs; int<lower=1> numGrp;

+ int<lower=1> ncX; int<lower=1> ncZspl;

+ real<lower=0> sigmaBeta; real<lower=0> Agrp;

+ real<lower=0> Aspl; matrix[numObs,ncX] X;

+ int<lower=1> idnum[numObs]; matrix[numObs,ncZspl] Zspl;

+ int<lower=0,upper=1> y[numObs];

+ }

+ parameters

+ {

+ vector[ncX] beta; vector[numGrp] U;

+ vector[ncZspl] u; real<lower=0> sigmaGrp;

+ real<lower=0> sigmaSpl;

+ }

+ model

+ {

+ y ~ bernoulli_logit(X*beta + U[idnum] + Zspl*u);

+ U ~ normal(0,sigmaGrp); u ~ normal(0,sigmaSpl);

+ beta ~ normal(0,sigmaBeta) ; sigmaGrp ~ cauchy(0,Agrp);

+ sigmaSpl ~ cauchy(0,Aspl);

+ }'

Figure 4.24 summarizes the MCMC output for the parametric components
of (4.15). Figures 4.25 and 4.26 show the fitted curve and MCMC summaries for
the nonparametric function of age. The findings are similar to those in the previous
analyses in this section. Zhao et al. (2006) give further details on MCMC-based
analysis for these data.

4.6 Further Readings

Part Two of Fitzmaurice et al. (2008) provides access to the wider literature on
semiparametric grouped data analysis in the context of longitudinal data. Many of
the models in this chapter are described in Chap. 9 of Ruppert et al. (2003). Similar
models are treated by Wu and Zhang (2006). Pinheiro and Bates (2000) provide
details on early versions of the package nlme. Wood (2006a) performs a similar
service for the package mgcv.

Background material on longitudinal data analysis may be found in the books
by Diggle et al. (2002), Fahrmeir and Kneib (2011), Fitzmaurice et al. (2004), and
Verbeke and Molenberghs (2000).

Gelman and Hill (2007) and Goldstein (2010) are major references for multilevel
models. Chapter 15 of the latter reference combines nonparametric regression with
multilevel model concepts.

Panel data analysis is very similar to longitudinal and multilevel data analysis,
but has been mainly developed within the Econometrics literature. Summaries are
provided by Baltagi (2013) and Frees (2004). Small area estimation has evolved
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parameter trace lag 1 acf density summary

vitamin A

deficiency
−2 −1 0 1 2

posterior mean: 0.593

95% credible interval: 
(−0.464,1.56)

male
−0.5 0 0.5 1 1.5

posterior mean: 0.537

95% credible interval: 
(−0.0214,1.08)

height
−0.15 −0.1 −0.05 0 0.05

posterior mean: −0.0366

95% credible interval: 
(−0.0919,0.0156)

stunted
−1 0 1 2

posterior mean: 0.477

95% credible interval: 
(−0.509,1.38)

2 visits
−3 −2 −1 0

posterior mean: −1.18

95% credible interval: 
(−1.97,−0.414)

3 visits
−2 −1 0 1

posterior mean: −0.567

95% credible interval: 
(−1.35,0.184)

4 visits
−4 −3 −2 −1 0 1

posterior mean: −1.35

95% credible interval: 
(−2.32,−0.42)

5 visits
−1 0 1 2

posterior mean: 0.494

95% credible interval: 
(−0.0966,1.13)

6 visits
−1 0 1

posterior mean: −0.0126

95% credible interval: 
(−0.716,0.695)

σgrp
0 0.5 1 1.5 2

posterior mean: 0.938

95% credible interval: 
(0.486,1.4)

Fig. 4.24 Summary of MCMC-based inference for parameters in the fitted Bayesian model for
the Indonesian children’s respiratory data. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function, kernel estimates
of posterior density, and basic numerical summaries.

within the sample survey literature but also involves similar concepts and models.
References include Longford (2005) and Rao and Molina (2015). Even though the
examples and exercises are geared towards longitudinal and multilevel data analysis,
the concepts described in this chapter apply equally well to panel data analysis and
small area estimation.
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Fig. 4.25 Estimated age effect on probability scale, with shaded region corresponding to point-
wise 95% credible sets.

parameter trace lag 1 acf density summary

logit probab.

respir. infec.
at 1st quart. age

−3 −2.5 −2 −1.5

posterior mean: −2.19

95% credible interval: 
(−2.64,−1.76)

logit probab.

respir. infec.
at 2nd quart. age

−4 −3.5 −3 −2.5 −2

posterior mean: −2.73

95% credible interval: 
(−3.31,−2.2)

logit probab.

respir. infec.
at 3rd quart. age

−5 −4 −3

posterior mean: −3.86

95% credible interval: 
(−4.62,−3.26)

Fig. 4.26 Summary of MCMC-based inference for parameters in the fitted Bayesian logistic
additive mixed model for the Indonesian children’s health study data. The columns are: parameter,
trace plot of MCMC sample, plot of sample against 1-lagged sample, sample autocorrelation
function, kernel estimates of posterior density, and basic numerical summaries.

Many of the mixed model theoretical results that underpin grouped data analysis
may be found in McCulloch et al. (2008).
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4.7 Exercises

1. Model (4.1) for the female spinal bone mineral density data assumes that the
mean functions for each ethnicity category differ only by vertical shifts. A more
flexible model is

spnbmdij = Ui + fethnicityi
(ageij ) + εij , 1 ≤ j ≤ ni, 1 ≤ i ≤ m,

Ui
ind.∼ N(0, σ 2

U), εij
ind.∼ N(0, σ 2

ε ),

(4.17)
where

ethnicityi ∈ {asian, black, hispanic, white}, 1 ≤ i ≤ m,

is a categorical variable that signifies the ethnicity of the ith subject. Write an
R script that uses Stan, via the package rstan, to:

a. Fit a Bayesian version of (4.17) with each of fasian, fblack, fhispanic, and
fwhite modeled using a separate Bayesian mixed-model based penalized
spline as described in Sect. 2.10. The script should plot the Bayes estimates
of each mean function and corresponding 95% pointwise credible sets.

b. Obtain and plot the estimated contrast functions for each ethnicity pair along
with corresponding 95% pointwise credible sets.

2. Simulate data according to the model

yij |Ui
ind.∼ Poisson[exp{Ui + f (sij ) + βx xij }]

Ui
ind.∼ N(0, σ 2), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(4.18)

where f (s) = cos(4πs)− s2, βx = 0.83, σ = 0.37, m = 50, n = 10. Generate
the sij to be uniformly distributed on (0, 1) and the xij to take 0 or 1 with equal
probabilities.

a. Fit the data using the function gamm() in the package mgcv and compare
the results with the true parameters and function from which the data were
generated.

b. Write an R script that uses Stan, via the rstan package, to fit a Bayesian
version of (4.18). For estimation of f , use a mixed model-based penalized
spline model of the form

f (s) = β0 + βs s +
25∑

k=1

ukzk(s), uk|σ ind.∼ N(0, σ 2),
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where the zk , 1 ≤ k ≤ 25, are O’Sullivan splines. Use noninformative prior
distributions for β0, βs and βx and σ .

c. Compare the results produced by gamm() with those produced by rstan.

3. In Sect. 4.3 we pointed out that the first group-specific curves analysis of
the male Indiana adolescent growth data has an unattractive asymmetry in
the mean functions for each ethnicity group. As discussed there, this asym-
metry is convenient when using lme() in the package nlme. The R script
maleGrowthIndianaBayes.R in the HRW package performs a Bayesian anal-
ysis with symmetry between the ethnicity groups using MCMC via Stan
and rstan. Compare the estimated contrast function and the pointwise 95%
confidence intervals from the lme() analysis with the estimated contrast
function and the pointwise 95% credible sets obtained from the MCMC-based
Bayesian analysis.

4. The data frame Dialyzer in the package nlme contains measurements on 20
high-flux hemodialyzers to assess their in vivo ultrafiltration characteristics.
The ultrafiltration rates (milliliters per hour) were measured at seven different
transmembrane pressures (decimeters of mercury). The evaluation of the
dialyzers used two different bovine flow rates: 200 deciliters per minute and
300 deciliters per minute. Further details and references can be obtained from
the R commands library(nlme) ; help(Dialyzer).

a. Plot the data by issuing the R commands:
> library(nlme) ; data(Dialyzer)

> x <- Dialyzer$pressure ; y <- Dialyzer$rate

> idnum <- as.numeric(as.character(Dialyzer$Subject))

> typeIsB <- as.numeric(Dialyzer$QB == "300")

> plot(x,y,type = "n",bty = "l",

+ xlab = "transmembrane pressure (dmHg)",

+ ylab = "ultrafiltration rate (ml/hr)")

> for (i in 1:20)

+ {

+ currInds <- (1:length(x))[idnum == i]

+ xCurr <- x[currInds] ; yCurr <- y[currInds]

+ if (typeIsB[currInds[1]] == 0) colCurr <- "blue"

+ if (typeIsB[currInds[1]] == 1) colCurr <- "deeppink"

+ lines(xCurr[order(xCurr)],yCurr[order(xCurr)],

+ type = "b",col = colCurr)

+ }

> legend("bottomright",lty = rep(1,2),

+ legend = c("low bovine blood flow rate",

+ "high bovine blood flow rate"),

+ col = c("blue","deeppink"))
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b. The graphic produced in a. suggests that a good model for these data is

yij = (1 − IB
i ) f A(xij ) + IB

i f B(xij ) + U0i + U1i xij + εij ,
[

U0i

U1i

]
ind.∼ N(0,Σ) independently of εij

ind.∼ N(0, σ 2
ε ),

(4.19)

where (xij , yij ) is j th ultrafiltration rate/transmembrane pressure pair for
the ith hemodialyzer (1 ≤ i ≤ 20, 1 ≤ j ≤ 7) and IB

i is an indicator
of measurements for the ith hemodialyzer being at a bovine flow rate
of 300 deciliters per minute. Write an R script to fit a Bayesian version
of (4.19) with penalized spline modeling similar to that used in the R script
maleGrowthIndianaBayes.R from Exercise 3. The number of O’Sullivan
spline basis functions should be reduced to about 5 or 6 since there are only
seven unique predictor values. The script should produce a plot showing the
fitted curves for each hemodialyzer and an estimate of the contrast function
c(x) ≡ f B(x) − f A(x). Pointwise 95% credible sets should accompany
each curve estimate.

c. Assess the statistical significance of the diagonal entries of Σ , which
correspond to the variability in the random intercepts U0i and slopes U1i .

5. The data frame Milk in the package nlme contains measurements of the protein
content of milk versus time since calving for each of 79 cows. The cows are
divided into three diet groups: barley, barley+lupin, and lupin. Perform a group-
specific curves analysis of these data. In particular, obtain contrast functions for
(a) barley versus barley+lupins, (b) barley+lupins versus lupins, and (c) barley
versus lupins.

6. Consider the frequentist approach to group-specific curve fitting described in
Sect. 4.3, and its application to the analysis of the Indiana adolescent growth
data via the function lme() in the nlme package. These data are available in
the data frame growthIndiana within the HRW package.

a. Estimate the speed of growth for both black and white adolescents as well
as their difference.

b. Estimate the group-specific speed for each individual growth curve.
c. Is there evidence for a difference in the timing of the pubertal growth spurt

between black and white adolescents?

7. The data frame schoolResults in the HRW package contains assessment results
for 1905 school children in 73 different schools in a region of the United
Kingdom (source: Creswell 1991). Consider a group-specific curves model
with groups corresponding to schools, the predictor variable corresponding
to the scores from teacher-evaluated coursework, and the response variable
corresponding to the scores on a written paper. The model should have separate
global mean curves for boys and girls. Using code similar to that contained in
the maleGrowthIndianaBayes.R (see Exercise 3) fit a Bayesian version of
the model using Stan via rstan. The script should produce a plot showing
the fitted curves for each school and an estimate of the contrast function of
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mean written paper score for boys versus girls, conditional on the score for
teacher-evaluated coursework. Pointwise 95% credible sets should accompany
each curve estimate.

8. In Exercise 3, the maleGrowthIndianaBayes.R fits a Bayesian group-
specific curves model data for the male subjects within the data frame
titled growthIndiana in the HRW package. Create a new R script that
analyses both genders together using a model similar to that fit in the script
maleGrowthIndianaBayes.R. The model should have separate global mean
curves for black females, black males, white females and white males. The
script should produce a plot or plots showing the fitted curves for each subject
and an estimated contrast functions for comparison of

a. black females versus white females,
b. black males versus white males,
c. black males versus black females, and
d. white males versus white females.

9. The data frame UtahPEF in the HRW contains data from a study on respiratory
health involving 41 Utah Valley, USA, schoolchildren as described in Pope
et al. (1991). Data on peak expiratory flow (PEF), amount of particulate matter
with an aerodynamic diameter less than or equal to 10 micrometers (PM10),
and weather were recorded for 109 consecutive days. The variable devPEF in
UtahPEF corresponds to

ΔPEFij ≡ deviation of the ith child’s PEF on day j from the child’s

average PEF, 1 ≤ i ≤ 41, 1 ≤ j ≤ 109.

The variable PM10withMA5 is the 5-day moving average value of PM10 for
each day and lowTemp is the lowest temperature recorded on that day. Use
the function gamm() in the mgcv package to conduct an additive mixed model
analyses of the data in UtahPEF with devPEF as the response variable. Allow
for the possibility of serial correlated errors, as described in Sect. 4.2.2.

10. The data frame BanglaContrac in the HRW package contains data from the
1988 Bangladesh Fertility survey (source: Huq and Cleland 1990). The data
comprise information on contraception use, family size, age, and rural/urban
residential status for 1934 women grouped in 60 districts of Bangladesh. The
age data have had the average age subtracted from them.

a. Use the gamm() in the R package mgcv to fit the logistic additive mixed
model

logit{P(useContraceptionij = 1)} = Ui + β1oneChildij

+β2twoChildrenij + β3 moreTwoChildrenij

+β4isUrbanij + f (ageMinusAveij ), Ui
ind.∼ N(0, σ 2

U),

(4.20)
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where, for the j th woman in the ith district, useContraceptionij is an
indicator of contraception use and ageMinusAveij is her age in years minus
the average age. The other variables appearing in (4.20) are indicators of the
woman having one child, two children, more than two children, and living in
an urban area. Your answer should include estimates of βk , 1 ≤ k ≤ 4, and
corresponding standard errors and a plot of the estimate of f with pointwise
approximate 95% confidence intervals.

b. Use rstan to fit a Bayesian version of (4.20) with suitable noninformative
priors placed on the model parameters. Your answer should include MCMC-
based Bayes estimates and 95% credible intervals for βj , 1 ≤ j ≤ 4, σU ,
and f . It should also include some convergence diagnostic checks of the
MCMC.

c. The odds ratio for the effect of dwelling in an urban area, conditional on
the district’s random effect, corresponds to the parameter exp(β4). Use the
MCMC output to approximate the Bayes estimate of exp(β4) along with
a 95% credible set. Do the same for the other binary predictor variables
in (4.20).



Chapter 5
Bivariate Function Extensions

5.1 Introduction

We now focus on models for the joint effect of two continuous predictor variables.
Additive models are convenient, but there is no reason to assume that they are
always adequate. In the general bivariate models studied in this chapter, the joint
effect of the two variables is a smooth, but otherwise unrestricted, function of
these variables. Therefore, these models allow interactions so that the effect of one
predictor depends upon the value of the other predictor.

In keeping with other parts of this book, our approach to handling bivariate
functional effects involves bivariate extensions of penalized splines. We pay par-
ticular attention to the impressive support for bivariate penalized splines provided
by the mgcv package (Wood 2017). This package also allows bivariate functional
effects to be incorporated into generalized additive models via the function gam()

and generalized additive mixed models via the function gamm(). However, bivariate
penalized splines are just one of number of approaches in the literature to fitting
bivariate surfaces and the field known generally as geostatistics also deals with
problems of this type. Instead of penalized splines, geostatistical approaches are
based upon notions such as spatial processes and kriging. Prominent geostatistics
references include Cressie (2015) and Diggle and Ribeiro (2007). Commonalities
and differences between penalized spline and geostatistical approaches are dis-
cussed in Chap. 13 of Ruppert et al. (2003). This multitude of approaches to bivariate
smoothing is also reflected in R. For example, multivariate penalized splines are
supported by the function Tps() in the fields package (Nychka et al. 2017) and
alternative geostatistical approaches are supported by the function ksline() in the
geoR package (Ribeiro and Diggle 2016). Gaussian processes (e.g. Rasmussen and
Williams 2006) is another name for kriging. Kernel machines, which are treated in
detail in Sect. 6.7, are yet another way to approach bivariate smoothing.

The related topics of geoadditive models, varying-coefficient models, and covari-
ance function estimation are also covered in this chapter.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
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5.2 Bivariate Nonparametric Regression

The bivariate nonparametric regression model is

yi = f (x1i , x2i ) + εi,

where, for 1 ≤ i ≤ n, yi is the response for the ith case and (x1i , x2i ) are the
corresponding predictors. The only assumption about the regression function f is
that it is smooth.

There are two commonly used spline bases for estimating f , thin plate splines
and tensor product splines. In principle, both can be readily extended to more than
two dimensions, but for two reasons we will only discuss the bivariate case. The
first reason is simplicity; it is difficult to understand and visualize functions of
three or more arguments. The second is the so-called curse of dimensionality which
dictates that large amounts of data are required for penalized splines in three or more
dimensions to be feasible. In the case of very large sample sizes, penalized splines in
moderate dimensions higher than two may be feasible although the methodological
and applied literature is relatively scant. See, for example, O’Connell and Wolfinger
(1997) and Wood et al. (2017) for some analyses involving trivariate penalized
splines. For moderate sample sizes, when a smooth function is fit to more than two
variables it is typically additive with each component a function of only one or two
of these variables. For example, a model for three variables might be

yi = f1(x1i ) + f2(x2i ) + f3(x3i ) + εi

or

y = f1(x1i ) + f23(x2i , x3i ) + εi .

Neither model requires one to model or visualize a function of more than two
variables. With the second model, for example, we would plot f1 and f23, and f1
would be a univariate spline while f23 would be a bivariate spline of the type we
introduce in this chapter.

A bivariate thin plate spline with a second derivative penalty is an analog of a
univariate cubic regression spline and minimizes

n∑

i=1

{yi − f (x1i , x2i )}2

+λ

∫ ∞

−∞

∫ ∞

−∞

{(
∂2f (x1,x2)

∂x2
1

)2

+ 2
(

∂2f (x1,x2)
∂x1∂x2

)2 +
(

∂2f (x1,x2)

∂x2
2

)2
}

dx1dx2.

where λ ≥ 0 is a smoothing parameter. It can be shown (e.g. Green and Silverman
1994) that the thin plate spline is a linear combination of the basis functions 1, x1, x2,
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and r(‖[x1 x2]T − [x1i x2i]T ‖) where r(x) ≡ x2 log(x) and xi ≡ [x1i x2i]T ranges
over the unique values of the predictor vector. It is shown in Ruppert et al. (2003)
and in Wood (2003, 2006a) that the spline coefficients satisfy three constraints, so
that the number of independent parameters is equal to the number of unique xi .

Computations can become infeasible when the number of unique xi values is
large. To alleviate this problem, low-rank approximations to thin plate splines are
used. Ruppert et al. (2003) use r(‖x − κ∗

k‖) where κk, k = 1, . . . , K , is a selected
subset of the unique xi . Wood (2003, 2006a) uses an eigendecomposition of E

where Eij = r(‖xi −xj‖). Then the K eigenvectors corresponding to the K largest
eigenvalues are used as basis functions along with 1, x1, and x2. Wood calls this
approximation a thin plate regression spline and they are used by the gam() function
in the mgcv package.

A bivariate tensor product spline uses a univariate spline basis in each variable
and takes all possible products. Specifically, the basis is

{z1k(x1)z2k′(x2) : k = 1, . . . , K1, k′ = 1, . . . , K2}

where {z1k : k = 1, . . . , K1} is a basis for the x1 variable and {z2k′ : k′ =
1, . . . , K2} is a basis for the x2 variable.

Thin plate splines have a single penalty parameter, smooth to the same degree in
all directions, and are invariant to rotation of the coordinate axes. This is not true of
tensor product splines. Tensor product splines have a separate smoothing parameter
for each variable and so can smooth one variable more than the other. A tensor
product spline fit depends on the choice of the coordinate axes and is not invariant
to rotations.

Often the two predictors are comparable or, at least, on the same scale. This is
true of geographical or image data where the predictors are locations along two
orthogonal coordinates. In such cases, thin plate and tensor product spline fits are
often similar. For data where the variables are on different scales, a thin plate spline
may not be appropriate, although rescaling may remedy this problem. The same is
true of geographical data in cases where the north-south and east-west directions are
not comparable.

Tensor product splines are generally faster to compute than thin plate splines
(Wood 2006b). For data on regular grids, there are very fast tensor product
algorithms; see Sects. 5.6 and 5.8.

Finally, note that the mgcv package supports other types of bivariate basis
functions such as, for example, the Gaussian process and soap film smooths families.
The R command help(smooth.terms) provides details.

5.2.1 Example: Ozone Levels in Midwest USA

As an example of bivariate nonparametric regression, we will use the ozoneSub

dataset in the HRW package. This dataset is a subset of the ozone2 dataset in
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the fields package (Nychka et al. 2017). There are three variables, longitude,
latitude, and ozone, the 8-hour average ozone concentration; corresponding to
143 monitoring sites in the Midwest region of the USA. We fit the data using the
gam() function in the mgcv package (Wood 2017). A penalized thin plate spline is
specified by bs = "tp" and REML is used to select the amount of smoothing.

> library(HRW) ; data(ozoneSub) ; library(mgcv)

> fitOzoneThinPlate <-

+ gam(ozone ~ s(longitude,latitude,bs = "tp"),

+ data = ozoneSub,method = "REML")

Alternatively, one can use tensor product splines by replacing s() by te() as
follows.

> fitOzoneTensProd <- gam(ozone ~ te(longitude,latitude),

+ data = ozoneSub,method = "REML")

The default for the univariate bases of a tensor product is cr (cubic regres-
sion spline), but other bases can be specified. For example, te(longitude,

latitude, bs = c("ps","cr")) specifies a tensor product spline with a P-
spline basis for the first variable and a cubic regression spline basis for the second
variable.

There are many options for plotting a bivariate gam() fit. For details see
help(plot.gam). Here we use plot() with scheme = 2 and hcolors =

terrain.colors(1000) to produce an image plot with the terrain palette via the
code:

> plot(fitOzoneThinPlate,scheme = 2,

+ hcolors = terrain.colors(1000),

+ main="",bty="l", cex.lab = 2,cex.axis = 2,

+ xlab = "degrees longitude",

+ ylab = "degrees latitude")

We also add blue circles to show the sampling locations using:

> points(ozoneSub$longitude,ozoneSub$latitude,

+ col = "dodgerblue")

The US() function in the fields package (Nychka et al. 2017) adds US state
borders:

> library(fields) ; US(add = TRUE,lwd = 2)

Finally, the names and locations of major cities are added using:

> cityNames <- c("Chicago","Indianapolis","Milwaukee",

+ "St Louis")

> cityLonLatMat <- rbind(c(-87.6298,41.8781),

+ c(-86.1581,39.7694),
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+ c(-87.9065,43.0389),

+ c(-90.1994,38.6270))

> for (iCity in 1:length(cityNames))

+ {

+ points(cityLonLatMat[iCity,1],cityLonLatMat[iCity,2],

+ col = "navy",pch = 16)

+ text(cityLonLatMat[iCity,1] + 0.15,cityLonLatMat[iCity,2],

+ cityNames[iCity],adj = 0,cex = 1.8)

+ }

The resulting plot is in Fig. 5.1 and is interpreted as a terrain map so that the
mean ozone concentration increases as the color changes from green to yellow to
brown to white. The white “snow-capped peaks” show that the region of highest
ozone concentration is near the city of Milwaukee.

To compare the estimates based on thin plate and tensor product splines, we can
examine a scatterplot of the two sets of fitted values—the blue points in Fig. 5.2. We
can see that the thin plate and tensor product fitted values are reasonably similar.
One reason that they are not even more similar is that, as will be discussed next, the
default numbers of thin plate and tensor product basis functions used here are too
small. Increasing the sizes of these bases beyond the default values results in fits
that are more similar—shown by the orange points in Fig. 5.2.

We now apply the function gam.check() discussed in Chap. 2 to produce
some diagnostic output and plots. The following code produces Fig. 5.3 and the
diagnostics that follow the code.

Fig. 5.1 Bivariate penalized
thin plate spline estimate of
mean ozone concentration as
a function of degrees
longitude and degrees latitude
based on data in the
ozoneSub data frame from
the HRW package. The blue
circles mark the locations
where the ozone
concentration was measured,
and corresponds to the
Midwest region of the USA.
The shading indicates the
height of the estimate using
the terrain.colors()

color scheme.
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Fig. 5.2 Fitted values using the thin plate penalized spline and tensor product estimates of ozone
concentration in the U.S. Midwest with default bases and larger bases. The default bases use k =

30 for the thin plate spline and k = c(5,5) for the tensor product spline. The larger bases use
k = 60 for the thin plate spline and k = c(8,8) for the tensor product spline. The 1 : 1 line is
plotted to aid comparison.

> library(mgcv)

> gam.check(fitOzoneThinPlate,cex.lab = 1.5,cex.main = 1.5)

Method: REML Optimizer: outer newton

full convergence after 5 iterations.

Gradient range [-2.581699e-07,4.734945e-09]

(score 611.5318 & scale 178.1712).

Hessian positive definite, eigenvalue range [6.558447,73.64495].

Model rank = 30 / 30

Basis dimension (k) checking results. Low p-value (k-index<1)

may indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value

s(longitude,latitude) 29.0 22.8 0.91 0.075

As discussed in Chap. 2, the k-index diagnostic is the ratio of two estimates
of the residual variance. A k-index that is less than 1 is an indication that k is
not large enough. The p-value is of a test of thenull hypothesis that k is adequate,
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Fig. 5.3 Diagnostic plots for the penalized thin plate spline fit to ozone data based on the default
number of basis functions used by the gam() in the mgcv package. These plots are obtained using
the function gam.check().

meaning that expected value of the k-index is 1. The p-value is calculated by
randomly permuting the data to find the null distribution of the k-index. Note
that here the k-index is less than 1 and the p-value is small. These diagnostics
suggest that the default choice of k for the thin plate spline, which is 30 here, might
be too low. An application of gam.check() to the tensor product fit also indicates
that the default choice of the number of basis functions (25, 5 for each variable)
is also too low. It is useful to compare the number of basis functions k with the
effective degrees of freedom, edf. Note that k is an upper bound for edf, and edf

is generally much smaller than k because of the shrinkage due to the penalty. The
output from gam.check() suggests comparing edf to k’ which is k −1. Although
the difference between k’ and edf is 6.2 and is reasonably large, an even larger
difference between them would add confidence that k is large enough.

Both estimates were recomputed with larger bases and stored as the objects
fitOzoneThinPlate2 and fitOzoneTensProd2. The penalized thin plate spline
has 60 basis functions. The univariate bases of the tensor product basis each have
eight basis functions, so the size of the tensor product basis is 64. Increasing the
number of basis functions changes the fits somewhat, and with the larger bases the
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Fig. 5.4 Comparison of penalized thin plate fits to the ozone data with bases consisting of 30 and
60 basis functions.

thin spline and tensor product fits agree more than before, as can be seen in Fig. 5.2.
Figure 5.4 compares the thin-plate fits with 30 and 60 basis functions. The plot of
the left side of Fig. 5.4 is the same as in Fig. 5.1. The two fits in Fig. 5.4 are similar,
but their details differ.

> gam.check(fitOzoneThinPlate2)

Method: REML Optimizer: outer newton

full convergence after 4 iterations.

Gradient range [-8.108796e-06,1.892707e-06]

(score 606.6715 & scale 138.1293).

Hessian positive definite, eigenvalue range [5.656503,76.2219].

Model rank = 60 / 60

Basis dimension (k) checking results. Low p-value (k-index<1)

may indicate that k is too low, especially if edf is close

to k'.

k' edf k-index p-value

s(longitude,latitude) 59.0 35.5 1.1 0.94

> gam.check(fitOzoneTensProd2)

Method: GCV Optimizer: magic

Smoothing parameter selection converged after 6 iterations.

The RMS GCV score gradient at convergence was 0.00312892.

The Hessian was positive definite.
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Model rank = 64 / 64

Basis dimension (k) checking results. Low p-value (k-index<1)

may indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value

te(longitude,latitude) 63.0 33.3 1.11 0.92

We see from the gam.check() results that for both the thin plate and tensor
product fits, with larger bases, the k-index is greater than 1 and the p-value is
large. Also, the edf values are greater than those using the previous values of k.

With the larger bases, edf is considerably smaller than k. These results suggest
that the default values of k used earlier were too small, but that k is now adequate
for both spline fits.

In Fig. 5.3, the quantile-quantile plot shows that the assumed normal error
distribution is reasonable, but the plot of the residuals against the fitted values shows
some indication of heteroscedasticity—the residuals are more scattered where the
fitted values are larger. The heteroscedasticity is seen more easily if we plot the
absolute residuals versus the fitted values. In fact, the correlation between the fitted
values and absolute residuals is 0.35. The heteroscedasticity could be reduced by
applying a square-root variance-stabilizing transformation to ozone concentration.
A variance-stabilizing transformation is advisable if one is constructing prediction
intervals, because without a constant residual variance the prediction intervals will
be too narrow (wide) where the residual variance is smaller (larger) than typical.
See Carroll and Ruppert (1988) for a full discussion of transformations and for
methods to back-transform results to the original scale, e.g., here to predict ozone
concentration, not its square-root.

The image plots produced by plot() for gam() fit objects switch off pixels
where the spatial data are sparse. If this is not done, then the image plot shades
tend to be dominated by extrapolations of the fitted surface beyond the spatial data,
resulting in a less meaningful display. Having the pixels confined to a user-specified
region is also worthwhile—especially when the spatial data are distributed over a
very complicated region. Figure 5.5 is an alternative image plot of the k = 60
surface with the switched-on pixels confined to the convex hull of the spatial data. It
involves use of the function chull() for convex hull determination and the HRW

package function pointsInPoly() for determining which points are inside the
convex hull. This display also has a legend that conveys the height of the surface,
courtesy of the function image.plot() from the fields package. Exercise 1
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Fig. 5.5 A more sophisticated display of the fit shown in Fig. 5.1 with (a) the image pixels
restricted to the convex hull of the geographical locations at which ozone concentrations were
recorded, (b) a legend bar showing how the image shades relate to mean ozone concentration, and
(c) names and locations of major cities in the region.

provides tuition on image.plot(). The code that produced Fig. 5.5 is in the script
ozoneDisplayConvHull.R and can be run via the following commands:

> library(HRW) ; demo(ozoneDisplayConvHull,package = "HRW")

To access and, if desired, copy and edit ozoneDisplayConvHull.R run the
following code to determine its location on the computer on which HRW is installed:

> system.file("demo","ozoneDisplayConvHull.R",package = "HRW")

The convex hull of the spatial data does not always lead to a good region for
switching on pixels in image plots. Section 5.3.1 and Exercises 2 and 7 deal with
bivariate-component semiparametric regression analyses of the Sydney real estate
data analyzed in Sect. 5.3.1. In this example, the spatial data are distributed over
region that is far from convex and the convex hull is not a good pixel switch-on
boundary. In such circumstances a good boundary needs to be chosen by eye. The
createBoundary() function in the HRW package facilitates manual creation of a
polygonal boundary. The following commands:

> library(HRW) ; data(ozoneSub)

> myOzoneBdry <- createBoundary(ozoneSub$longitude,

+ ozoneSub$latitude)

lead to the opening of a graphics window with points plotted at the locations of the
ozone observations. Using the mouse or touchpad and following the instruction in
the R console, one clicks on the points that will be the vertices of the boundary.
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Fig. 5.6 Left panel: A polygonal boundary for the ozone data running example selected with
interactive graphics and mouse or touchpad clicks using the function createBoundary() in the
HRW package. Right panel: image plot representation of the bivariate penalized spline surface with
pixels confined to selected polygon.

The vertices matrix myOzoneBdry can be stored for possible future use in the file
myOzoneBdry.txt using the command:

> write.table(myOzoneBdry,"myOzoneBdry.txt",col.names = FALSE,

+ row.names = FALSE)

Figure 5.6 provides an illustration of the createBoundary() approach. The left
panel shows a polygon obtained using the createBoundary() graphics window.
The right panel shows the image plot of the surface with switched-on pixels confined
to this polygon.

Other options for displaying a fitted bivariate surface include perspective plots
using the function persp() and three-dimensional spin graphics using the function
rgl.surface() in the package rgl (Adler et al. 2017). These alternative methods
of display are illustrated in Exercises 1 and 3.

5.3 Geoadditive Models

Geoadditive models (e.g. Kammann and Wand 2003) are an extension of additive
models that allow for bivariate function components. For example, the model

yi = β0 +β1 x1i +β2 x2i +f3(x3i )+f4(x4i )+f56(x5i , x6i )+εi, εi
ind.∼ N(0, σ 2),
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for 1 ≤ i ≤ n is a geoadditive model due to the presence of the bivariate
function f56 of the predictors x5 and x6. Often the bivariate function corresponds to
geographical coordinates such as longitude and latitude, which is the reason for the
name “geoadditive.” However, bivariate terms can be used for any pair of continuous
predictors.

5.3.1 Example: House Prices in Sydney, Australia

As an example, we use data on houses that were sold in Sydney, Australia, during
2001. The data are part of an unpublished study by A. Chernih and M. Sherris at the
University of New South Wales, Australia. Several predictors such as geographical
position, socioeconomic status, proximity to amenities, and air pollution levels were
also recorded. There are 37,676 cases and 38 predictors.

The following code loads the libraries that will be needed and processes the
Sydney housing price data:

> library(mgcv) ; library(HRW) ; data(SydneyRealEstate)

> logSalePrice <- SydneyRealEstate$logSalePrice

> longitude <- SydneyRealEstate$longitude

> latitude <- SydneyRealEstate$latitude

> income <- SydneyRealEstate$income

> PM10 <- SydneyRealEstate$PM10

The variables used here are:

logSalePrice natural logarithm of sale price in Australian dollars,

longitude degrees longitude of location of house,

latitude degrees latitude of location of house,

income mean weekly household income in Australian dollars of

the administrative district where the house is located,

PM10 mean daily value of PM10 (particulate matter with a

diameter less than 10 micrometers).

Next we plot a scatterplot matrix of selected predictors. A random subset of 500
cases is used to improve visualization. The plot is in Fig. 5.7. One can see from the
plot that price tends to increase as one moves west to east, as income increases, and,
to a lesser extent, as PM10 decreases.

As an illustration, we fit a geoadditive model with only two predictors, PM10
and income, in addition to the spatial coordinates that are fit with a penalized
thin plate spline. The response is the logarithm of price. An application of
gam.check() to a preliminary run showed that the default choice of k for income
and (longitude,latitude) might be too small. These defaults are 10 and 30,
respectively. Instead, we use 15 and 80.
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Fig. 5.7 A scatterplot matrix of log price, the geographical coordinates, and two additional
variables, PM10 and income from the Sydney real estate data. To aid visualization, this display
involves of a random subset of 500 houses.

> fitGeoadd <- gam(logSalePrice ~ s(income,k = 15) + s(PM10)

+ + s(longitude,latitude,bs = "tp", k = 80),

+ method = "REML")

> summary(fitGeoadd)

Family: gaussian

Link function: identity

Formula:

logSalePrice ~ s(income, k = 15) + s(PM10)

+ s(longitude, latitude,bs = "tp", k = 80)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.079340 0.001742 7510 <2e-16
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Fig. 5.8 Estimated univariate smooth function components for the geoadditive model fit fit-
Geoadd to the Sydney real estate data using the function gam() in the package mgcv. The
effects are vertically centered around zero. The shaded regions indicate 95% pointwise confidence
intervals.

Approximate significance of smooth terms:

edf Ref.df F p-value

s(income) 11.134 12.692 221.42 <2e-16

s(PM10) 6.842 7.688 12.96 <2e-16

s(longitude,latitude) 76.253 78.789 126.78 <2e-16

R-sq.(adj) = 0.668 Deviance explained = 66.9%

-REML = 12813 Scale est. = 0.11427 n = 37676

The results indicate that location, PM10, and income all are highly significant.
Of course, with a sample size of 37,676 it is entirely possible for an effect to be
very small and yet highly significant. Therefore, to examine the size of the effects,
we plot the component functions for income, PM10, and location. These plots were
produced by setting the argument select equal to 1, 2, and 3, respectively, in the
plot() function. See the select argument in help(plot.gam) for details. The
plot showing the effects of PM10 and income is in Fig. 5.8. The third plot, a contour
plot, did not show detail adequately, so it is not shown here and an alternative plot
is constructed below.

The estimated effect of PM10 is not monotonic, which is counter-intuitive. The
non-monotonicity might be due to the effects of predictors that have not been put in
the model. We see in Fig. 5.7 that PM10 has a discrete distribution; in fact, it takes
only 12 distinct values and these are somewhat irregularly spaced. These features of
the distribution of PM10 explain why the width of the variability bands for PM10’s
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Fig. 5.9 The joint effect of
longitude and latitude

on mean logSalePrice for
the geoadditive model fit to
the Sydney real estate data.
This plot was produced by the
function vis.gam() in the
package mgcv.

longitu
de

latitude

linear predictor

effect varies greatly. The difference between the minimum and maximum values of
the component function for PM10 is approximately 0.4. Recall that we are modeling
the mean logarithm of price. Since e0.4 ≈ 1.5, the effect of PM10 could be as much
as a 50% net increase in price. No cause-and-effect is implied here. PM10 might
simply be a surrogate for a variable that affects price such as proximity to a major
highway or industrial site. Moreover, the minimum and maximum occur where the
confidence intervals are widest and probably overestimate the difference between
the minimum and maximum. Also, the maximum occurring at a high value of PM10
is somewhat counterintuitive.

The estimated effect of income is monotonic and the difference between the
minimum and maximum values is approximately 1. Since e ≈ 2.7, the effect of
income could be as much as a 170% net increase in price.

As mentioned earlier, the contour plot showing the effect of (longitude,

latitude) produced by plotting the gam object did not show detail adequately.
As an alternative, we produce a perspective plot using the function vis.gam().

> vis.gam(fitGeoadd,c("longitude","latitude"),

+ color = "terrain",n.grid = 60,theta = 320,phi = 35)

The plot is in Fig. 5.9. The value of n.grid, the number of grid points on each axis,
was increased from its default value of 30–60 to show more detail.

The surface in Fig. 5.9 is over the rectangular region defined by the range of the
longitude and latitude values. However, since the geographical data are over a highly
irregular region corresponding to Sydney’s residential areas, surface plots over the
range-defined rectangle can be misleading. In Fig. 5.10 we show the same surface
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Fig. 5.10 The surface from Fig. 5.9 shown as an image plot. The points show locations of random
sample of 10,000 houses from the SydneyRealEstate data frame.

as an image plot but also add points corresponding to a random sample of 10,000
houses from the dataset. It is apparent from this that the surface bends upwards
substantially to the south-east of the data points corresponding to a section of the
Pacific Ocean. Such aberrant extrapolation leads to a misleading display.

As discussed at the end of Sect. 5.2, confining the switched-on pixels to a region
defined by the spatial data leads to a more meaningful image plot. We used the
createBoundary() function in the HRW package to create a suitable polygonal
boundary and stored the vertices in the data frame SydneyRealEstateBdry.

Figure 5.11 improves the Fig. 5.10 image plot by restricting the switched-on
pixels to the SydneyRealEstateBdry polygon. The pointsInPoly() function
used to determine the points inside of the Sydney boundary is in the HRW package.
The locations and names of 15 Sydney suburbs are also plotted and a legend
bar is included. The heights in the legend bar correspond to mean log sale
price as a function of geographic location with the other predictors, PM10 and
income, set to their means. The code that produced Fig. 5.11 is in the script
SydneyDisplaySophis.R within the HRW package and can be run as follows:

> library(HRW) ; demo(SydneyDisplaySophis,package = "HRW")

To locate, and possibly copy and modify, SydneyDisplaySophis.R note that its
location can be found using:

> system.file("demo","SydneyDisplaySophis.R",package = "HRW")
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Fig. 5.11 The effect of longitude and latitude on mean logSalePrice of Sydney houses
when PM10 and income are fixed at their means. A penalized thin plate spline with 80 basis
functions is used for geographic location. The names and locations of 15 Sydney suburbs are also
shown.

From Fig. 5.11 we see that mean house prices reach a peak around the suburb of
Vaucluse, which is near where Sydney Harbor meets the Pacific Ocean. The prices
then drop as one moves from east to west, away from Sydney’s ocean beaches. There
are smaller effects due to north-to-south changes Some localized nonlinear effects
are also apparent.

Next, we run some diagnostics using gam.check(). The resulting plots are in
Fig. 5.12.

> gam.check(fitGeoadd,cex.lab = 1.5,cex.main = 1.5)

Method: REML Optimizer: outer newton

full convergence after 8 iterations.

Gradient range [-7.427945e-06,3.245751e-06]

(score 12813.26 & scale 0.1142656).

Hessian positive definite, eigenvalue range [1.528962,18835.58].

Model rank = 103 / 103

Basis dimension (k) checking results. Low p-value (k-index<1)

may indicate that k is too low, especially if edf is close to k'.
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Fig. 5.12 Diagnostic plots for the geoadditive model stored in the fit object fitGeoadd.

k' edf k-index p-value

s(income) 14.00 11.13 0.97 0.025

s(PM10) 9.00 6.84 1.01 0.850

s(longitude,latitude) 79.00 76.25 0.84 <2e-16

All four plots in Fig. 5.12 show strong evidence of outliers. In particular, the
quantile-quantile plot is concave on the left and convex on the right which is a clear
sign of heavier than Gaussian tails. (The theoretical quantiles are on the horizontal
axis and the residuals are on the vertical axis. If the axes were reversed, as is
often done with quantile-quantile plots, then the pattern would have been convex
on the left and concave on the right. When examining quantile-quantile plots, it is
important to check which variables are on the horizontal and vertical axes.)

There is some evidence of heteroscedasticity. The correlation between the fitted
values and the absolute residuals is 0.22. The residuals are somewhat right-skewed
and the skewness of the residuals decreases as the fitted values increase. The
following code shows that the skewness coefficient of the residuals is 1.87, 1.08,
1.58, 1.01, and 0.05 for fitted values in the first to fifth quintile, respectively.
The skewness coefficient for the entire set of residuals is 0.76, which indicates
only a small amount of right skewness. Also, the standard deviations of the
residuals for these quintiles are 0.24, 0.28, 0.32, 0.35, and 0.46, which reflects the
heteroscedasticity just noted. The skewness coefficient is the third central moment
divided by the standard deviation raised to the 3/2 power. It is location- and scale-
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Fig. 5.13 Normal quantile-quantile plots of the residuals from the geoadditive model conditioned
upon the quintiles of the fitted values. Notice that the skewness decreases and the spread increases
with increasing quintile.

free and a positive (negative) value indicates right (left) skewness with larger
magnitudes indicating more skewness. The function skewness() is in the e1071

package. To further illustrate the changes in skewness and heteroscedasticity, the
quantile-quantile plots of the residuals for each quintile are shown in Fig. 5.13.

> library(e1071) # for the skewness() function

> quintVec <- c(10,quantile(fitted(fitGeoadd),

+ c(0.2,0.4,0.6,0.8)),20)

> quintInds <- cut(fitted(fitGeoadd),breaks = quintVec,

+ labels = FALSE)

> print(round(tapply(residuals(fitGeoadd),quintInds,

+ skewness),2))

> print(round(skewness(residuals(fitGeoadd)),2))

> print(round(tapply(residuals(fitGeoadd),quintInds,sd),2))

In the code above, quintInds indicates the quintile (of the fitted log price) to
which a house belongs, so that quintInds equals 1 for a house at or below the
20th percentile, equals 2 for a house above the 20th percentile and at or below the
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40th percentile, and so forth. Also, tapply() applies the functions skewness()

and then sd() to the residuals separately for each value of quintInds.
We can also construct a Normal quantile-quantile plot of the residuals for each

quintile of the fitted values. The plots are in Fig. 5.13. The qqmath() function in
the lattice package is used so that we can condition on quintInds. One can see
that the skewness decreases and the dispersion increases as we move from the first
to the fifth quantile. See Sarkar (2008) for a complete description of the lattice

package.
We now work through the R code that produced Fig. 5.13. First we obtain

the character array quintIndsFac, corresponding to the panel labels in Fig. 5.13,
using:

> library(lattice)

> quintIndsFac <- rep(NA,length(quintInds))

> quintIndsFac[quintInds==1] <- "1st quintile"

> quintIndsFac[quintInds==2] <- "2nd quintile"

> quintIndsFac[quintInds==3] <- "3rd quintile"

> quintIndsFac[quintInds==4] <- "4th quintile"

> quintIndsFac[quintInds==5] <- "5th quintile"

We then apply the function qqmath() within the lattice package to the residuals
from the geoadditive model fit using:

> library(lattice)

> qqmathObj <- qqmath( ~

+ residuals(fitGeoadd)|factor(quintIndsFac),

+ xlab = list("Normal quantile",cex = 1.5),

+ ylab = list("residual quantile",cex = 1.5),

+ as.table = TRUE,

+ strip = strip.custom(par.strip.text = list(cex = 1.5)),

+ par.settings = list(layout.heights = list(strip = 1.6)),

+ scales = list(cex = 1.25),

+ xlim = c(-4.5,4.5),ylim = c(-4.5,4.5),

+ panel = function(x,...)

+ {

+ panel.grid() ; panel.qqmath(x,...)

+ panel.abline(0,1,col = "darkgreen")

+ })

> print(qqmathObj)

The complex distribution of the residuals implies that standard prediction
intervals will be inaccurate. A remedy to this problem would be semiparametric
quantile regression; see Sect. 6.2.

The residual outliers in Fig. 5.12 might be explained by using additional predic-
tors. The residuals were plotted against all predictors in the dataset (not shown here)
and it was seen that lotSize had a moderate positive relationship (correlation equal
to 0.26) with the residuals.
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Fig. 5.14 The effect of location on log price when PM10 and income are fixed at their means and
a penalized thin plate spline with 200 basis functions is used for (longitude,latitude). Note
the increased detail compared to Fig. 5.11.

When the model was enlarged to include lotSize it was found that lotSize
was highly significant and the adjusted R2 increased slightly from 0.653 to 0.69,
but the residual outliers were still abundant.

Also note that k-index values are closer to 1 than before (not shown here),
but the k-index is still rather small for the spatial coordinates. Increasing k to 120
(200) for (longitude,latitude) further increases the k-index but only to 0.902
(0.917). Because of the very large sample size (37,676), it is possible to estimate the
effect of location with high resolution by using a very large value of k. Whether or
not resolving such fine detail is useful depends on the goals of the analysis. The fit
in Fig. 5.14 is the same as in Fig. 5.11 except that k is 200 instead of 80. It shows
more fine detail in the effect of geography on mean log house price.

In this section we have used only longitude, latitude, and two other
predictors to illustrate geoadditive model analysis in R. Geoadditive model analysis
involving the full set of candidate predictors is treated in Exercise 7.

5.4 Varying-Coefficient Models

A varying-coefficient model has a linear effect for one predictor with the slope and
intercept being smooth functions of other predictors. For example if, for 1 ≤ i ≤ n,
yi is the ith response value and (ti , xi) is the ith predictor vector, then a varying-
coefficient model is
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yi = β0(ti) + β1(ti) xi + εi,

where β0(·) and β1(·) are smooth functions corresponding to varying-intercept and
varying-slope, respectively. The predictor x is called a “by” variable in gam()’s
nomenclature and the model can be fit with code such as:

> fit <- gam(y ~ s(t) + s(t,by = x))

Here s(t) is the varying-intercept and s(t,by = x) is the varying-slope. The
general bivariate nonparametric regression model for these data is

yi = f (ti , xi) + εi .

Hence, the varying-coefficient model is a special case of bivariate nonparametric
regression with the restricted form

f (t, x) = β0(t) + β1(t) x

for smooth functions β0(·) and β1(·).

5.4.1 Example: Daily Stock Returns

To illustrate varying-coefficient models we use data on daily returns on stock of the
General Electric company and the Standard & Poor’s 500 (S&P 500) index. The
data are in the data frame capm in the HRW package. The variable Date runs from
November 1, 1993 to March 31, 2003, so there are over nine years of data. If Pt is
the price of a stock on day t , then the log-return on that day is log(Pt/Pt−1). The
excess log-return is the log-return minus the risk-free interest rate, usually taken to
be the short-term Treasury bill rate. The following code computes the excess log-
return on both General Electric stock and the S&P 500 index:

> library(HRW) ; data(capm) ; n <- dim(capm)[1]

> riskfree <- capm$Close.tbill[2:n]/(100*365)

> elrGE <- diff(log(capm$Close.ge)) - riskfree

> elrSP500 <- diff(log(capm$Close.sp500)) - riskfree

Note that capm$Close.sp500 and capm$Close.ge are the daily closing prices and
capm$Close.tbill is the daily Treasury bill rate expressed as a percentage. In the
code, capm$Close.tbill is first divided by 100 to convert from a percentage to
a fraction and then divided by 365 to convert from a yearly to a daily rate. Hence,
elrGE and elrSP500 are the daily excess log-returns on General Electric stock and
on the S&P 500 index, respectively.
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One of the assumptions of the Capital Asset Pricing Model in finance is that
mean excess log-returns on a stock depend linearly on the excess log-returns on the
market (e.g. Ruppert and Matteson 2015). The return on the S&P 500 index is often
used as a proxy for the return on the market. Usually the simple linear regression
model is fit to only recent data, since the slope is expected to change slowly over
time. An alternative is to fit a varying-coefficient model to all of the data, with the
intercept and slope depending on the date. Doing this would provide evidence as
to whether and how fast the slope is changing. Economic theory predicts that the
intercept is zero, and so the estimated intercept is expected to be negligible.

First, we fit a simple linear regression model to all of the data using:

> library(mgcv) ; fitSLR <- gam(elrGE ~ elrSP500)

> summary(fitSLR)

Family: gaussian

Link function: identity

Formula:

elrGE ~ elrSP500

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0002971 0.0002628 1.131 0.258

elrSP500 1.2441346 0.0227404 54.710 <2e-16

R-sq.(adj) = 0.559 Deviance explained = 55.9%

GCV = 0.00016324 Scale est. = 0.0001631 n = 2362

To check whether a linear model is appropriate, we fit the nonparametric regression
model where the excess log-return on General Electric stock is a smooth, time-
invariant function of the excess log-return on the S&P 500 index. This model is
compared with the simple linear model via an F-test.

> fitNPR <- gam(elrGE ~ s(elrSP500),method = "REML")

> anova(fitSLR,fitNPR,test = "F")

Analysis of Deviance Table

Model 1: elrGE ~ elrSP500

Model 2: elrGE ~ s(elrSP500)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 2360.0 0.38492

2 2352.2 0.37942 7.7743 0.0054985 4.3882 3.497e-05

The F-test rejects the simple linear regression model. However, the sample size is
quite large since there were 2362 days of returns and, hence, there is substantial
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Fig. 5.15 Penalized spline fit of the excess log-returns of General Electric stock on the excess
log-returns of the S&P 500 index using the function gam() in the package mgcv. The pale green
shaded region shows 95% pointwise confidence intervals.

power to detect departures from linearity. The plot of the nonparametric regression
fit (fitNPR) is in Fig. 5.15 and deviates only slightly from a straight line, at least
over the range of the bulk of the data. Moreover, the smooth fit has only a slightly
larger adjusted R2, 56.4%, compared with that of the linear model, 55.9%. When
we turn to varying-coefficient models, as a working assumption we will assume that
the regression of General Electric excess log-returns on market excess log-returns
is linear, but with the intercept and slope varying with time.

Now, we fit and plot the varying-coefficient model and compare it the linear,
constant-coefficient model by an F-test. In the varying-coefficient model, the
intercept and slope of the linear regression of the excess log-return of General
Electric stock on the excess log-return of the S&P 500 index are smooth functions
of time in years, stored as the variable t:

> dayNums <- (1:(n-1))/(n-1)

> startTime <- 1993 + 11/12 ; endTime <- 2003 + 3/12

> t <- startTime + (endTime - startTime)*dayNums

> fitVCM <- gam(elrGE ~ s(t) + s(t,by = elrSP500),

+ method = "REML")

> anova(fitSLR,fitVCM,test = "F")

Analysis of Deviance Table



5.4 Varying-Coefficient Models 197

1994 1996 1998 2000 2002

−1
e−

03
−5

e−
04

0e
+0

0
5e

−0
4

1e
−0

3

time (year)

in
te

rc
ep

t

1994 1996 1998 2000 2002

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

time (year)

sl
op

e

Fig. 5.16 Varying-intercept and varying-slope for the fitted varying-coefficient model of General
Electric excess log-returns on S&P 500 excess log-returns. The shaded regions correspond to
pointwise 95% confidence intervals.

Model 1: elrGE ~ elrSP500

Model 2: elrGE ~ s(t) + s(t, by = elrSP500)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 2360.0 0.38492

2 2350.9 0.37953 9.0903 0.0053875 3.6744 0.0001309

The intercept and slope functions are plotted in Fig. 5.16. The argument select
of the gam() is used to select which component to plot. The code plot(fitVCM)

without the use of select would plot both the intercept and slope but would use
the same scale on the y-axis and would not allow us to specify separate values of
ylab for the two plots. The argument seWithMean = TRUE is used to specify that
the confidence intervals should include uncertainty about the mean. Basic versions
of the plots in Fig. 5.16 are achieved via:

> par(mfrow=c(1,2))

> plot(fitVCM,select = 1,ylim = c(-0.001,0.001),

+ seWithMean = TRUE)

> plot(fitVCM,select = 2,ylim = c(0.5,1.6),seWithMean = TRUE)

The estimate of the intercept suggests that the intercept was zero, or nearly so,
during the entire period, which agrees with economic theory. The estimated slope
varies between approximately 1.0 and 1.4 over this period. The simple linear
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regression model is rejected in favor of the varying-coefficient model, although the
latter provides only a small improvement in fit measured by the adjusted R2.

A generalization of the varying-coefficient model is the bivariate nonparametric
regression model where the excess log-return of General Electric stock is modeled
as an unrestricted function of time and the excess log-return on the S&P 500 index.
The following code fits this bivariate nonparametric regression model with a tensor
product basis consisting of 25 basis functions in each direction:

> fitBivNPR <- gam(elrGE ~ te(t,elrSP500,k = rep(25,2)),

+ method = "REML")

Next, we compare the varying-coefficient and bivariate nonparametric regression
models via an F-test:

> anova(fitVCM,fitBivNPR,test = "F")

Analysis of Deviance Table

Model 1: elrGE ~ s(t) + s(t, by = elrSP500)

Model 2: elrGE ~ te(t, elrSP500, k = rep(25, 2))

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 2350.9 0.37953

2 2341.9 0.37903 8.9655 0.00050177 0.347 0.9588

The F-test indicates that there is little difference between the two models, and this
is apparent in Fig. 5.17 which compares the two surfaces via image plots. Here we
use the topo.colors() palette since it shows the slight differences better than
terrain.colors(). This color scheme corresponds to topographical maps. For
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Fig. 5.17 Image plots of fitted surfaces for the varying-coefficient and bivariate nonparametric
regression models. In the former, the mean response is linear in the excess log-return of S&P 500
stock with a slope that is a smooth function of time. In the latter, the mean response is a unrestricted
bivariate function of excess log-return and time.
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Fig. 5.18 Left panel: the slope of the fitted surface of the varying-coefficient model as a function
of time, with corresponding 95% pointwise confidence interval. Right panel: the slope of the fitted
surface of the bivariate nonparametric regression model at the slice corresponding to excess log-
return of S&P 500 stock equaling zero.

example, lighter blue corresponds to “near sea-level” and darker blue corresponds
to “below sea-level.”

Both the varying-coefficient and bivariate fits in Fig. 5.17 suggest that the slope
of the regression of elrGE on elrSP500 might increase over time, although perhaps
not monotonically, but it is difficult to tell for sure from these plots alone. To
compare the estimated slopes more clearly, we create additional plots with the code
below. Unlike the case of the varying-coefficient model, for the bivariate fit the
slope (partial derivative) with respect to elrSP500 is not constant as elrSP500

varies with t fixed. Therefore, we plot a numerical partial derivative with respect
to elrSP500 at elrSP500 set to zero, which is approximately the mean of this
variable. The plots are in Fig. 5.18; the left panel is the same as the right panel
in Fig. 5.16. The bivariate nonparametric regression model suggests that there is a
change in the slope over time, but if there is a change at all it seems to be very small.
The estimated slope from the varying-coefficient model varies considerably and is
non-monotonic. Code for production of Fig. 5.18 is in the script returnsDrvFig.R
within the HRW package. The script can be run and located on the computer where
HRW is stored by issuing the commands:

> library(HRW) ; demo(returnsDrvFig,package = "HRW")

> system.file("demo","returnsDrvFig.R",package = "HRW")

Occam’s razor states that among competing hypotheses that are consistent with
the data, one should choose the least complex. Since the varying-coefficient model
is a special case of the bivariate nonparametric regression model and fits the data as
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well as the latter, Occam’s razor implies that we should adopt the varying-coefficient
model. That model suggests that the regression of the excess log-return of General
Electric stock on the market excess log-return is linear with the slope changing over
the time period from 1-Nov-93 to 31-Mar-03.

5.5 Additional Semiparametric Regression Models

Each of the models covered in Chaps. 3 and 4 can be extended to the situation
where one or more of the components is a bivariate function of a pair of continuous
predictors. Specifically, each of the models given so far in this chapter can be
extended to the generalized response and grouped data situations. In R, the function
gam() supports bivariate function components regardless of whether the response is
in the Gaussian family, as in each of the examples of Sects. 5.2–5.4, or other families
such as the Binomial, Poisson, or Gamma families. The gamm() also supports non-
Gaussian response distributions with bivariate function components for grouped
data models. Similar comments apply to approaches based on R’s mixed model
and Markov chain Monte Carlo software.

5.6 Covariance Function Estimation

Functional data analysis is the field of statistics where the data are functions. We
will discuss only two topics in functional data analysis. The first topic, estimation of
covariance functions including principal components analysis, is discussed in this
section and the next. The second topic is presented in Chap. 6 and is regression
where either the responses, the predictors, or both are functions. Examples of
functional data include electroencephalography signals which are functions of time,
temperatures which can be functions of time of day or date of the year, and spectra
which are functions of wavelength. An example of the latter are the near-infrared
reflectance spectra of 60 gasoline samples in the gasoline dataset of the refund

package (Goldsmith et al. 2016).
As will be explained shortly, functional data analysis generalizes many tech-

niques of multivariate analysis from vectors to functions. A reader who is not
familiar with multivariate analysis would benefit from reading one of the many
excellent textbooks on this subject before reading this section, Sect. 5.7, and
Sects. 6.3–6.6. Here, we briefly introduce principal components analysis for mul-
tivariate data, since this section is concerned with its generalization to functional
data. Let yi = (y1i , . . . , ydi)

T , i = 1, . . . , n, be an independent sample from a
multivariate distribution of dimension d. The sample mean is y = n−1 ∑n

i=1 yi and
the d × d sample covariance matrix is

Σ = (n − 1)−1
n∑

i=1

(yi − y)(yi − y)T .
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The kth eigenvalue/eigenvector pair, (λk, ψk), where k = 1, . . . , d, λk is a scalar,
and ψk is a d-dimensional vector, satisfies

Σψk = λkψk. (5.1)

We will assume that the eigenvalues are distinct and order them from largest to
smallest, that is, λ1 > · · · > λd . We also assume that the eigenvectors have been
normalized to have length one, that is, ‖ψk‖ = 1 for k = 1, . . . , d. The first
eigenvector, ψ1, is the direction of maximum variation of the data. More specifically,
the variance of (xT y1, . . . , x

T yn) is maximized over all vectors x of length one
by ψ1. Also, ψ2 is the direction of maximum variance orthogonal to ψ1, and, in
general, ψk is the direction of maximum variance orthogonal to ψ1, . . . , ψk−1.
The eigendecomposition (5.1) is called principal components analysis. Principal
components analysis is often used for dimension reduction by retaining only K

eigenvalue and eigenvector pairs for some K less than d.
As just mentioned, functional data analysis is in many ways a generalization

of multivariate analysis. For example, in functional data analysis, the mean vector
and covariance matrix of a random vector are generalized to the mean function
and covariance function of a random function. In this section, we apply bivariate
smoothing to estimation of covariance functions. Estimation of a covariance
function is important for dimension reduction by principal components analysis of
functional data and for regression analysis with functional data.

Suppose that y1(t), . . . , yn(t) are independent and identically distributed random
functions defined on some interval T . Let y(t) be a generic version of these
functions, that is, y(t) has the same distribution as each yi(t). The mean function
of y is f (t) = E{y(t)} and can be estimated by using nonparametric regression
approaches such as penalized splines discussed in Chap. 2. The covariance function
of y is

Σ(s, t) = E[{y(s) − f (s)}{y(t) − f (t)}], (s, t) ∈ T × T .

The standard deviation function is
√

Σ(t, t).
Functional data are necessarily observed at a finite number of points. For exam-

ple, the near infrared reflectance spectra are only observed at the 401 wavelengths
that range from 900 to 1700 nanometers by 2 nanometers.

Suppose for now that for all i, yi(t) is observed on an equally spaced grid t1 <

. . . < td in T . Given an estimate f̂ of f we define the sample covariance matrix Σ̂

to be the d × d matrix with (j, k)th entry

Σ̂jk = 1

n − 1

n∑

i=1

{yi(tj ) − f̂ (tj )}{yi(tk) − f̂ (tk)}, j, k = 1, . . . , d,

and Σ̂jk is an estimate of Σ(tj , tk).
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Fig. 5.19 Top left panel: Plots of near infrared reflectance spectra versus wavelength for 60
gasoline samples. These functions are very close to each other and mostly overprint. Top middle
panel: The mean function. Top right panel: Plots of mean-centered near infrared reflectance spectra
versus wavelength. Bottom left panel: The standard deviation function. Bottom middle panel: The
standard deviation plotted against the mean.

The 60 near infrared functions are plotted against wavelength in the top left
panel of Fig. 5.19. The other panels of Fig. 5.19 show the mean function, the mean-
centered spectra, the standard deviation function, and a plot of the standard deviation
versus the mean, respectively. Interestingly, the plot of standard deviation versus
mean shows a complex and almost deterministic pattern. Such behavior can be
expected when most of the variation in functional data occurs in a low-dimensional
space, that spanned by only a few principal components (eigenvectors). As we will
see, that is the case here. This phenomenon is also observed in other functional
datasets such as that on fat content of meat samples analyzed in Sects. 6.3 and 6.5.

Since they are only observed on a discrete set of points, functional data might
be analyzed by the same methods that are applied to multivariate data. However,
functional data differ from multivariate data in at least two ways. First, with
functional data the dimension d of the observations is often considerably larger than
the number n of observations, e.g., d = 401 and n = 60 for the gasoline spectra.
Second, although functional data might be noisy due to random variation in the
observed functions as well as possible measurement error, the mean and covariance
functions are usually smooth. Therefore, the extension of multivariate techniques
such as principal components analysis, canonical correlation analysis, and linear
regression to functional data usually involves both dimension reduction and some
type of smoothing, for example, using splines.
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Although the covariance function Σ(s, t) is usually assumed to be smooth, the
sample covariance matrix Σ̂ will be rough because of estimation error which can
be large when n is small. The estimation error can be reduced by smoothing Σ̂ .
Moreover, the sample covariance Σ̂ estimates Σ(s, t) only on the grid (t1, . . . , td )2

in T × T , but smoothing with, say, a spline extends this estimate to all s and t in
T × T .

Although the bivariate smoothers introduced earlier in this chapter are applicable
to the smoothing of Σ̂ when d is small, the dimension of Σ̂ is d × d and d is often
so large that these smoothers would take minutes or even hours to compute. Also,
one can easily run out of computer memory when attempting to use enough spline
basis functions to avoid serious bias. Fortunately, (Xiao et al. 2016) have developed
the FAst Covariance Estimator (FACE) that is feasible for d as large as 100,000 and
allows a large number of basis functions. FACE is a tensor product spline smoother
with a special choice of penalty and an implementation that significantly speeds
computations and reduces memory requirements in a number of ways. FACE is
implemented by the fpca.face() function in the refund R package (Goldsmith
et al. 2016).

When d � n, Σ̂ is singular with a relatively low rank that does not exceed
n − 1. Moreover, a principal components analysis of Σ̂ often shows that most of
the variation in the data occurs in the space spanned by a small number, say K , of
principal component eigenvectors with K � d and often K is between 3 and 10. In
this case, Σ̂ can be approximated by a matrix of rank K .

The function fpca.face() does not return the entire estimated covariance
matrix, which could be too large to fit in memory. Instead, fpca.face() returns
the first (in decreasing order) K eigenvalues and smooth versions of the corre-
sponding eigenvectors of the estimated covariance matrix. The tuning parameter
K is determined by pve, an argument of fpca.face(). K is selected so that the
estimated fraction of the total variation of the data in the space spanned by the first
K eigenvectors is at least pve. In practice, pve is typically in the range 0.95–0.99,
but might be even larger.

If λk and ψk are these eigenvalues and eigenvectors of the smoothed covariance
matrix, and if the eigenfunction ψk(t) is extension of the eigenvector ψk from the
grid (t1, . . . , td ) to T , say, by spline interpolation, then the covariance function is
estimated by

K∑

k=1

λkψk(t)ψ
T
k (t), s, t = t1, . . . , td .

In addition to the eigenvalues and eigenfunctions, fpca.face() also returns
an n × K matrix of scores, which are the loadings of the observations on the
eigenvectors. For simplicity of notation, assume for the remainder of this paragraph
that the estimated mean function has been subtracted from yi(t). The loading of the
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ith observation on the kth eigenfunction is denoted by βik and is defined as the value
of β that minimizes ‖yi(t) − βψk(t)‖2. Then,

ŷi (t) =
K∑

k=1

βikψk(t), t = t1, . . . , td (5.2)

is an approximation to yi(t). More precisely, it is the projection of yi onto the space
spanned by ψ1(t), . . . , ψK(t). Using the loadings enables a dimension reduction
since the d-dimensional (yi(t1), . . . , yi((td)) can be summarized by (βi1, . . . , βiK)

and K is often much smaller than d.

5.6.1 Example: Gasoline Near-Infrared Spectra

The following code computes (1) the sample covariance matrix SigmaSamp of the
spectral data; (2) the eigendecomposition eigenSigmaSamp of SigmaSamp using
the function eigen(); (3) a tensor product smooth fitTE of SigmaSamp using
gam(); and (4) a FACE smooth fitFACE of SigmaSamp: The objective here
is to compare the computation of the eigenvalues and smoothed eigenvectors of
the sample covariance using the functions eigen() and gam() with the same
computation using fpca.face(). We will see that fpca.face() is much faster
and much more accurate.

> library(refund) ; data(gasoline)

> wavelength <- seq(900,1700,by = 2)

> SigmaSamp <- cov(gasoline$NIR)

> eigenSigmaSamp <- eigen(SigmaSamp)

> mesh <- expand.grid(1:401,1:401) ; library(mgcv)

> fitTE <- gam(as.vector(SigmaSamp) ~ te(mesh[,1],mesh[,2],

+ k = c(25,25)))

> NIRcentered <- apply(gasoline$NIR,2,

+ function(x){x - mean(x,na.rm = TRUE)})

> fitFACE <- fpca.face(NIRcentered,knots = 300,pve = 0.998)

> cumVariance <- cumsum(fitFACE$evalues)

Let Ek be the space spanned by the first k eigenvectors. Nine eigenvalues were
returned, so, since pve was set to 0.998, at least 99.8% of the variability is in E9.
The vector cumVariance contains the cumulative sums (the partial sums) of the
first nine eigenvalues of the sample covariance matrix. Therefore, the kth element
of cumVariance is the amount of variance in the subspace Ek . For interpretability,
it is useful to convert these values to percentages of variance. This is done next by
multiplying by pve and dividing by the cumVariance[9]. We see that over 99% of
the total variance is in E6.
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Fig. 5.20 The first four eigenvectors of the sample covariance matrix compared with the cor-
responding eigenvectors of sample covariance matrix smoothed by FACE and by gam() with a
tensor product spline. The wavelength is restricted to the range 1600–1700 nanometers to show
detail.

> print(0.998*cumVariance/cumVariance[9])

[1] 0.7522813 0.8671441 0.9359032 0.9823560 0.9891529

[6] 0.9929274 0.9952780 0.9969302 0.9980000

In this application, when computing the bivariate fit fit_TE, gam() ran out of
memory on a laptop with 8 gigabytes of random access memory when 30 × 30
basis functions were used, but ran successfully when 25 × 25 basis functions were
used. In contrast, fpca.face() had no trouble with 300 × 300 basis functions. In
addition, while gam() with 25×25 basis functions took over 7 minutes, FACE with
300 × 300 basis functions took about half a second, showing that FACE can speed
computations by several orders of magnitude.

Figure 5.20 compares the first four eigenvectors of the sample covariance matrix
with the corresponding eigenvectors of the fpca.face() smooth and of the gam()

smooth of this matrix. To show detail, the eigenvectors are plotted over only the
limited range of wavelengths between 1600 and 1700 nanometers. The first panel of
Fig. 5.20 is generated by the code:



206 5 Bivariate Function Extensions

> SigmaTensProd <- matrix(fitTE$fitted.values,nrow = 401)

> eigenSigmaTensProd <- eigen(SigmaTensProd)

> plot(wavelength,eigenSigmaSamp$vectors[,1], type="l",

+ col="darkgreen",xlim = c(1600,1700),bty="l",cex.lab = 2,

+ cex.axis = 1.8,lwd = 2,xlab = "wavelength (nanometers)",

+ ylab = "1st eigenvector",ylim = c(-0.1, 0.4))

> lines(wavelength,fitFACE$efunctions[,1],col="indianred3",

+ lwd = 2)

> lines(wavelength,-eigenSigmaTensProd$vectors[,1],col = "blue",

+ lwd = 2)

> legend("topleft",c("sample","FACE","gam()"),,lwd = 2,

+ col = c("darkgreen","indianred3","blue"),cex = 1.8)

The other panels were obtained with similar code but for the second, third, and
fourth eigenvectors. We see that fpca.face() smooths the sample covariance
matrix with little bias whereas the gam() result appears to be seriously biased
because the number of basis functions cannot be made large enough. Of course,
the bias is not known since the true covariance matrix is unknown, but the large
discrepancies between the estimate from gam() and the sample covariance matrix
(which is unbiased) suggest a large bias. Eigenvalues are determined only up to the
sign, and in this case the gam() eigenvector needed a sign change to be comparable
to the other eigenvectors.

5.7 Estimating a Covariance Function with Sparse Data

Sometimes each individual function is observed only at a small set of points that
varies between functions. An example is the female spinal bone mineral density
data introduced in Sect. 4.2. When data from all subjects are combined, spinal bone
mineral density is observed at a dense set of ages from roughly 9 to 26 years.
However, each subject is observed at only a few ages within a relatively short range.

As in Chap. 4, suppose that m denotes the number of subjects and ni is the
number of measurements on subject i. Then the data are

(tij , yij ), 1 ≤ i ≤ m, 1 ≤ j ≤ ni

where yij is the j th response measurement on the ith subject and tij is the time
when yij was measured. Let f (t) denote the mean response at time t and let f̂ (t) be
an estimate of f (t). To estimate the covariance function with sparse and irregularly
sampled data, one forms all products of the form

Ci;j,k ≡ {yij − f̂ (tij )}{yik − f̂ (tik)}, 1 ≤ i ≤ m, 1 ≤ j, k ≤ ni. (5.3)
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Then the point cloud

{(tij , tik, Ci;j,k) : 1 ≤ i ≤ m, 1 ≤ j, k ≤ ni} (5.4)

is smoothed as a function of the (tij , tik).

5.7.1 Example: Spinal Bone Mineral Density Data

As an illustration, we will use the subset of black subjects in the femSBMD dataset
from the HRW package. The following code reads the femSBMD data, extracts the
subset of black subjects, and centers the variable spnbmd using a smooth estimate
of the mean obtained from gam().

> library(HRW) ; library(mgcv) ; data(femSBMD)

> SBMDblack <- femSBMD[femSBMD$black == 1,]

> fit <- gam(spnbmd ~ s(age),data = SBMDblack)

> SBMDblack$spnbmdCent <- residuals(fit)

Next, we create a dataset called covPointCloud with rows (tij , tij , Ci;j,k). In the
code below, there are three loops. The outer loop is over the subject index, i, and
the inner loops are over j and k. Each iteration of the third loop computes one row
of covPointCloud.

> uniqueID <- unique(SBMDblack$idnum) ; covPointCloud <- NULL

> for (i in uniqueID)

+ {

+ currSamp <- SBMDblack[SBMDblack$idnum == i,]

+ for (j in 1:dim(currSamp)[1])

+ for (k in 1:dim(currSamp)[1])

+ covPointCloud <- rbind(covPointCloud,

+ c(currSamp$age[j],currSamp$age[k],

+ currSamp$spnbmdCent[j]*currSamp$spnbmdCent[k]))

+ }

Finally, we smooth these data to estimate and plot the covariance function.
Because of the relatively small amount of data, smoothing can be done quickly and
satisfactorily with gam().

> fitCov <- gam(covPointCloud[,3] ~ s(covPointCloud[,1],

+ covPointCloud[,2]),method = "REML")

A plot of the fit is in Fig. 5.21. The covariance function Σ(s, t) cannot be
estimated when s is a young age, say less than 12, and t is an older age, say
greater than 20 (or vice versa), since no individual subject is observed over a wide
range of ages; see Fig. 4.1. Consequently, much of Fig. 5.21 is blank. Looking at the
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Fig. 5.21 Estimated covariance function for black subjects in the femSBMD dataset. The estimate
is obtained by smoothing the point cloud given by (5.3) and (5.4) using bivariate penalized splines
via the function gam() in the package mgcv.

diagonal in Fig. 5.21 we see that spinal bone mineral density is most variable at ages
around 16. This effect is probably due to differences in the timing of the children’s
developments, for example, variation in the ages when growth spurts start during
the teen years.

5.8 The Sandwich Smoother

Often two-dimensional data are observed on a rectangular grid. For example, a
digitized two-dimensional image is a matrix giving the intensity, or intensities for
color images, at each pixel. Data on a rectangular grid can be smoothed by any
bivariate smoother. However, the so-called sandwich smoother (Xiao et al. 2013)
is implemented by the fbps() function in the refund package (Goldsmith et al.
2016) and can smooth data on a rectangular grid extremely rapidly. The sandwich
smoother uses a penalty that has a tensor product form similar to the tensor product
form of the spline basis. This compatibility between the penalty and the spline basis
allows the two-dimensional smoother to be implemented as two one-dimensional
smoothers, which reduces computational time considerably.
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5.8.1 Example: Brain Imaging

As an example of image smoothing using the sandwich smoother, we will use the
coronal slice of a functional magnetic resonance imaging brain image. The data are
from Landman et al. (2010) and are publicly available.

The code below reads the data and smooths the image with a penalized thin
plate spline with 625 basis functions and a tensor product spline with 35×18 basis
functions, both using gam(). The thin plate and tensor product splines took 84.2 and
51.9 seconds, respectively.

> library(mgcv) ; library(HRW) ; data(brainImage)

> imageData <- as.matrix(brainImage)

> mesh <- expand.grid(1:80,1:37)

> mesh[,1] <- mesh[,1]/80 ; mesh[,2] <- mesh[,2]/37

> fitThinPlate <- gam(as.vector(imageData) ~

+ s(mesh[,1],mesh[,2],k = 625))

> fitTensProd <- gam(as.vector(imageData) ~

+ te(mesh[,1],mesh[,2],k = c(35,18)))

The code below computes the sandwich smoother with 50 × 35 basis functions
using the fbps() function in the refund package (Goldsmith et al. 2016). The
computation took only 2.7 seconds, an order of magnitude faster than gam(), which
is unsurprising since gam() is a general purpose smoother, not specifically designed
for images and other data on rectangular grids.

> library(refund)

> knotsSS <- list(seq(0,1,length = 50),seq(0,1,length = 35))

> fitSS <- fbps(imageData,knots = knotsSS)

Plots of the raw (unsmoothed) image and the three smooths are in Fig. 5.22.
Here we use the heat.colors() palette, which leads to heat map image plots with
higher values of brain activity corresponding to shades of red, then orange, then
yellow, and then white. The sandwich smooth appears to provide more resolution
compared to the gam() smooths, since the latter tend to blur the edges of features
seen in the raw image.

The FACE smoother discussed in Sect. 5.6 is an implementation of the sandwich
smoother designed specifically for covariance function estimation. For that purpose,
FACE is much faster than the sandwich smoother, but fpca.face() represents
special-purpose software and is not applicable to image smoothing.

5.9 Further Reading

Ruppert et al. (2003) and Wood (2006a) cover bivariate smoothing using splines.
Fahrmeir and Kneib (2011) discuss spatial smoothing and geoadditive regression.
Spatial smoothing is but one aspect of spatial data analysis. See Bivand et al. (2008)
for an introduction to the analysis of spatial data using R. Ramsay and Silverman
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Fig. 5.22 Top right panel: The raw (unsmoothed) image of the coronal slice of a functional
magnetic resonance image corresponding to a slice of the data frame. Top right panel: Image
smoothed with a 625 basis function penalized thin plate spline. Bottom left panel: Image smoothed
with a tensor product penalized spline with 35 by 18 basis functions. Bottom right panel: Image
smoothed using the sandwich smoother with a 50 by 30 tensor product basis.

(2006) is an excellent introduction to functional data analysis and Ramsay et al.
(2009) discuss functional data analysis in R and MATLAB, including the use
of R’s fda package (Ramsay et al. 2017). Horváth and Kokoszka (2012) is a
more theoretically advanced treatment of functional data analysis. Recent books
on geostatistics include Diggle and Ribeiro (2007), Cressie and Wikle (2011), and
Cressie (2015).

5.10 Exercises

1. Visualization of bivariate penalized spline fits is of fundamental importance. As
demonstrated in this exercise, there are numerous options for displaying such
fits. The packages fields (Nychka et al. 2017) and HRW are required for this
exercise.
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a. Issue the following commands to load data on scallop abundance:
> library(HRW) ; data(scallop)

> x1 <- scallop$longitude ; x2 <- scallop$latitude

> y <- asinh(scallop$totalCatch)

b. Obtain a rudimentary visualization of the data using the following com-
mands:
> library(lattice) ; cloud(y ~ x1 + x2)

c. Issue the following commands to obtain the mgcv package’s gam() function
default bivariate penalized spline fit, summarize the fit, examine the
residuals, and check adequacy of the spline basis dimension:
> library(mgcv) ; fit <- gam(y ~ s(x1,x2))

> summary(fit) ; gam.check(fit)

d. Three different visualizations of the fitted surface are provided by the
following commands. The first involves contour display and the second
involves perspective plot display. The third and fourth involve image display
with two different color schemes.
> par(mfrow = c(2,2)) ; plot(fit) ; plot(fit,scheme = 1)

> plot(fit,scheme = 2) ; plot(fit,scheme = 3)

e. The HRW supports customization of the boundary region in which contour
lines and image pixels are shown. This is useful for applications where
geographical regions containing the data have highly irregular shapes. Issue
the following command and follow the instructions shown on the screen to
create a suitable boundary polygon for the scallop data, corresponding to the
geographical region of the observed longitude and latitude data:
> scallopBdry <- createBoundary(x1,x2)

Then issue these commands to list and then save the polygon matrix
scallopBdry that you just obtained:
> print(scallopBdry)

> write.table(scallopBdry,"scallopBdry.txt",

+ row.names = FALSE,col.names = FALSE)

The last of these commands saves the boundary information in the file
scallopBdry.txt for future use.

f. Obtain a contour plot restricted to the personalized boundary stored in
scallopBdry via the commands:
> ngrid <- 101

> x1grid <- seq(min(x1),max(x1),length = ngrid)

> x2grid <- seq(min(x2),max(x2),length = ngrid)

> x1x2mesh <- expand.grid(x1grid,x2grid)

> names(x1x2mesh) <- c("x1","x2")

> fitmesh <- matrix(predict(fit,newdata = x1x2mesh),

+ ngrid,ngrid)

> outInds <- (1:ngrid^2)[pointsInPoly(x1x2mesh,scallopBdry)

+ == FALSE]

> fitmesh[outInds] <- NA

> xlimVal <- c(1.1*min(x1) - 0.1*max(x1),
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+ 1.1*max(x1) - 0.1*min(x1))

> ylimVal <- c(1.1*min(x2) - 0.1*max(x2),

+ 1.1*max(x2) - 0.1*min(x2))

> contour(x1grid,x2grid,fitmesh,xlab = "degrees longitude",

+ ylab = "degrees latitude",xlim = xlimVal,

+ ylim = ylimVal,bty = "l")

> lines(scallopBdry,col = "navy")

> points(x1,x2,col = "dodgerblue",cex = 0.5)

g. Next issue the following commands to obtain an image display of the fitted
surface with the pixels confined to the personalized boundary stored in
scallopBdry:
> image(x1grid,x2grid,fitmesh,xlab = "degrees longitude",

+ ylab = "degrees latitude",xlim = xlimVal,

+ ylim = ylimVal,bty = "l")

> lines(scallopBdry,col = "navy")

> points(x1,x2,col="dodgerblue",cex=0.5)

h. The image plot produced in part g. uses the default heat map color scheme.
However, there are many other possibilities. The following commands show
the fitted surface using the terrain.colors() color scheme corresponding
geographical maps, with green corresponding to grassy plains, shades of
yellow and brown corresponding to altitudes about the tree-line and white
indicating snow-capped peaks.
> image(x1grid,x2grid,fitmesh,col = terrain.colors(1000),

+ xlab = "degrees longitude",

+ ylab = "degrees latitude",xlim = xlimVal,

+ ylim = ylimVal,bty = "l")

> lines(scallopBdry,col = "navy")

> points(x1,x2,col="dodgerblue",cex=0.5)

i. The image() function has the disadvantage of not linking the image shades
with heights of the surface being displayed. A remedy is to use the function
image.plot() in the package fields (Nychka et al. 2017). Ensure that
this package is available in your R environment and issue the following
commands to obtain a legend bar for the image shades:
> library(fields)

> image.plot(x1grid,x2grid,fitmesh,

+ col = terrain.colors(1000),

+ xlab = "degrees longitude",

+ ylab = "degrees latitude",

+ legend.args = list(text = "arcsinh(total catch)"),

+ xlim = xlimVal,ylim = ylimVal,bty = "l")

> lines(scallopBdry,col = "navy")

> points(x1,x2,col="dodgerblue",cex=0.5)
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j. The last display uses the persp() function in R for showing the surface as
a perspective plot. The arguments theta and phi control the visualization
angles and can be twiddled to obtain other views of the surface. Exercise 3
illustrates the used of three-dimensional spin graphics to view such a surface
dynamically.
> persp(x1grid,x2grid,fitmesh,col = "green3",theta = 15,

+ phi = 45,xlab = "degrees longitude",

+ ylab = "degrees latitude",

+ zlab = "arcsinh(total catch)")

2. Make sure that the package HRW is available in your R environment and start an
R session.

a. Extract data on location and price of houses in Sydney, Australia:
> library(HRW) ; data(SydneyRealEstate)

> x1 <- SydneyRealEstate$longitude

> x2 <- SydneyRealEstate$latitude

> y <- SydneyRealEstate$logSalePrice

b. Issue the command:
> plot(x1,x2,col = "dodgerblue",cex = 0.1)

This plot shows that the geographical region over which the data were
observed is highly irregular, with houses located between waterways and
national park boundaries around Sydney. This dataset is also very large, with
recordings for 37,676 houses.

c. Next enter:
> data(SydneyRealEstateBdry)

> print(SydneyRealEstateBdry)

> lines(SydneyRealEstateBdry,col = "navy",lwd = 2)

These commands load, print, and draw the boundary polygon, stored in
SydneyRealEstateBdry and consisting of 202 vertices, that encompasses
the main part of the geographical data.

d. Issue the following commands to obtain the a bivariate penalized spline with
150 basis functions, using the function gam() in the mgcv package:
> library(mgcv) ; fit <- gam(y ~ s(x1,x2,k = 150))

> summary(fit)

e. Now enter these commands to obtain an image plot of the fitted surface using
the terrain.colors() palette:
> plot(fit,scheme = 2,hcolors = terrain.colors(1000),

+ xlab = "longitude",ylab = "latitude")

However observe that this image plot is dominated by meaningless parts of
the fitted surface that are beyond the location of the data. For example, the
right region corresponds to a section of the Pacific Ocean to the east of the
city of Sydney.

f. The following code uses SydneyRealEstateBdry to make another image
plot of the fitted surface:
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> ngrid <- 201

> x1grid <- seq(min(x1),max(x1),length = ngrid)

> x2grid <- seq(min(x2),max(x2),length = ngrid)

> x1x2mesh <- expand.grid(x1grid,x2grid)

> names(x1x2mesh) <- c("x1","x2")

> fitmesh <- predict(fit,newdata = x1x2mesh)

> outInds <- (1:ngrid^2)[pointsInPoly(x1x2mesh,

+ SydneyRealEstateBdry) == FALSE]

> fitmesh[outInds] <- NA

> fitmesh <- matrix(fitmesh,ngrid,ngrid)

> image(x1grid,x2grid,fitmesh,col = terrain.colors(1000),

+ xlab = "longitude",ylab = "latitude",bty = "l")

> lines(SydneyRealEstateBdry,col = "navy",lwd = 2)

This is a better plot of the fitted surface, with the image colors corresponding
to the locations of Sydney’s residential areas. As expected, the higher-priced
parts of Sydney are near the ocean beaches and harbor on the east side.

g. This part is concerned with learning how to obtain new boundary
polygons—even though a good one for the Sydney real estate data is
stored as SydneyRealEstateBdry in the HRW package. Issue the following
commands to obtain a new boundary file for Sydney:
> SydneyRealEstateBdryNew <- createBoundary(x1,x2)

> write.table(SydneyRealEstateBdryNew,

+ "SydneyRealEstateBdryNew.txt",

+ row.names = FALSE,col.names = FALSE)

h. Repeat the commands of part f. with SydneyRealEstateBdry replaced by
SydneyRealEstateBdryNew.

3. R also supports visualization of bivariate penalized spline fits via three-
dimensional spin graphics supported by the package rgl (Adler et al. 2017).
Illustration for the ozone concentration example is provided in this exercise.
Ensure that rgl is available in your R environment.

a. Issue the following commands to obtain a bivariate penalized spline fit to
ozone concentration as a function of longitude and latitude based on the
dataset ozoneSub:
> library(HRW) ; data(ozoneSub)

> x1 <- ozoneSub$longitude ; x2 <- ozoneSub$latitude

> y <- ozoneSub$ozone

> library(mgcv) ; fit <- gam(y ~ s(x1,x2,k = 60))

> ngrid <- 201

> x1grid <- seq(min(x1),max(x1),length = ngrid)

> x2grid <- seq(min(x2),max(x2),length = ngrid)

> x1x2mesh <- expand.grid(x1grid,x2grid)

> names(x1x2mesh) <- c("x1","x2")

> fitmesh <- matrix(predict(fit,newdata = x1x2mesh),

+ ngrid,ngrid)
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b. For a rudimentary display via rgl we transform the data and fit objects to
the unit cube via the following commands:
> x1UC <- (x1 - min(x1))/(max(x1) - min(x1))

> x2UC <- (x2 - min(x2))/(max(x2) - min(x2))

> yUC <- (y - min(y))/(max(y) - min(y))

> x1gridUC <- (x1grid - min(x1))/(max(x1) - min(x1))

> x2gridUC <- (x2grid - min(x2))/(max(x2) - min(x2))

> fitmeshUC <- (fitmesh - min(y))/(max(y) - min(y))

c. Now issue these commands:
> library(rgl) ; rgl.bg(col = "white")

> rgl.spheres(x1UC,x2UC,yUC,col = "dodgerblue",

+ radius = 0.015)

> rgl.surface(x1gridUC,x2gridUC,fitmeshUC,

+ color = "darkgreen",alpha = 0.4)

This leads to a three-dimensional spin graphics display, which is best viewed
with the graphics window maximized. The mouse or touchpad on your
computer can be used for rotation and zooming to aid visualization of the
bivariate penalized spline fit.

d. Running the script ozone3Dspin.R in the HRW package produces a more
elaborate display with axes, base, and locations of cities in the region being
studied. This script can be run as follows:
> library(HRW) ; demo(ozone3Dspin,package = "HRW")

To locate, and possibly copy and modify, ozone3Dspin.R note that its
location is determined by:
> system.file("demo","ozone3Dspin.R",package = "HRW")

4. The dataset LakeAcidity in the R package gss (Gu 2017) has data collected
by the United States Environmental Protection Agency on 112 lakes in the
states of Virginia, North Carolina, South Carolina, Tennessee and Georgia
in the Blue Ridge region of the USA. The main variables are ph (power of
hydrogen), cal (calcium concentration), lon (longitude), and lat (latitude)
respectively. Since the calcium concentration data are heavily skewed we work
with their logarithms, which roughly mimics the ph variable for hydrogen
concentration.

a. Ensure that the package gss is installed in your R environment and issue the
following commands:
> library(gss) ; data(LakeAcidity)

> x1 <- LakeAcidity$lon

> x2 <- LakeAcidity$lat

> chullInds <- chull(x1,x2)

> chullInds <- c(chullInds,chullInds[1])

> LakeAcidityConvexHullBdry <- cbind(x1,x2)[chullInds,]

> plot(x1,x2,bty="l",xlab = "longitude",ylab = "latitude",

+ col = "dodgerblue")

> lines(LakeAcidityConvexHullBdry,col = "navy")
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The boundary matrix LakeAcidityConvexHullBdry is the convex hull of
the longitude/latitude data. The convex hull is a reasonable boundary in this
case since the geographic region corresponding to the LakeAcidity dataset
is approximately convex.

b. Use the function gam() from the package mgcv to obtain bivariate penalized
spline fits of mean log calcium concentration as a function of longitude and
latitude, with both

i. thin plate spline basis functions,
ii. tensor product spline basis functions

and all other spline parameters set to their defaults.
c. Obtain image plots of the thin plate spline basis and tensor product

spline basis fits with the pixels restricted to the polygon defined by
LakeAcidityConvexHullBdry. Which regions have the highest values
of mean calcium concentration?

d. Compare the fits from the two bivariate penalized spline approaches.
e. Build an appropriate model geoadditive for predicting pH from log calcium

concentration and geographical location.
f. How does calcium concentration affect mean pH?
g. Describe the effect of location on mean pH.

5. This exercise is concerned with bivariate nonparametric density estimation via
penalized splines.

a. Issue the following R commands to obtain a scatterplot of two of the
variables from the plankton data frame:
> library(HRW) ; data(plankton)

> x1 <- plankton$redFluorBlueLight

> x2 <- plankton$greenFluorBlueLight

> plot(x1,x2,col = "dodgerblue",bty = "l",cex = 0.2,

+ xlab = "red fluorescence under blue light",

+ ylab = "green fluorescence under blue light")

b. Use a bivariate extension of the approach used in Exercise 6, based on gam()

function in the mgcv package, to obtain and plot a bivariate nonparametric
density estimate for these data.

6. Transformations of the response variable are commonly used to ameliorate
regression model assumptions. However, summaries on the original response
scale often are of interest.

a. Issue the following commands from Exercise 1 to load the scallop data, fit
bivariate penalized spline to total catch as a function of location, and check
the residuals:
> library(HRW) ; data(scallop) ; library(mgcv)

> fitOrdinary <- gam(totalCatch ~

+ s(longitude,latitude,k = 50),data = scallop)

> gam.check(fitOrdinary)
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b. The residual plots from part a. indicate a strong departure from the assump-
tions of normality and homoscedasticity of the residuals. Next issue the
following commands in which the response variable is transformed:
> fitTransResp <- gam(asinh(totalCatch)

+ ~ s(longitude,latitude,k = 50),data = scallop)

> gam.check(fitTransResp)

The transformation applied to the response data, corresponding to the R
function asinh(), is sinh−1(x) ≡ log(x+√

1 + x2). The residual plots have
good accordance with the normality and homoscedasticity assumptions.

c. The fitted surface can be visualized via:
> plot(fitTransResp,scheme = 2,

+ hcolors = terrain.colors(1000))

Parts e.–i. of Exercise 1 provide R code for various other visualizations of
this fit including those with the image plot pixels confined to the region
encompassed by the data.

d. Back-transformation of the surface, via the function sinh(x) ≡ (ex −e−x)/2
gives a biased estimate of mean total catch. The smearing estimate of Duan
(1983) attempts to reduce the bias. Compute the smearing estimates of the
mean response surface and compare it to surface obtained via naïve back-
transforming.

7. Section 5.3.1 illustrates geoadditive model analysis for the Sydney real estate
data with geographic location and two additional predictors. We now consider
the full set of available predictors. Ensure that the packages gam (Hastie 2017a)
and HRW are available in your R environment.

a. Issue the following commands to fit a bivariate penalized spline to logarithm
of sale price as a function of longitude and latitude and save the residuals of
this fit:
> library(HRW) ; data(SydneyRealEstate) ; library(mgcv)

> fitGeog <- gam(logSalePrice

+ ~ s(longitude,latitude,k = 50),

+ data = SydneyRealEstate)

> geogResids <- residuals(fitGeog)

b. Use the function step.Gam() in the package gam to select a suitable additive
model for prediction of geogResids with each of the 38 remaining variables
in the data frame SydneyRealEstate considered as possible predictors.

c. Now use the function gam() in the package mgcv, to fit the geoaddi-
tive model containing a bivariate function of longitude and latitude and
non-geographic component dictated by the model selected in part b. and
with GCV smoothing parameter selection for all penalized spline compo-
nents. Produce numerical and graphical summaries of the fitted geoadditive
model.
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8. Varying-coefficient model analysis via R was demonstrated in Sect. 5.4. This
exercise is concerned with a similar analysis for data from a study on
exhaust emissions from ethanol fuel (Brinkman 1981) and used by Hastie and
Tibshirani (1993) to illustrate varying-coefficient models.

a. Issue the following R commands to load and visualize the ethanol data
frame:
> library(lattice) ; data(ethanol) ; pairs(ethanol)

There are three variables NOx, E, and C which are, respectively, the concen-
tration of NOx (nitric oxide and nitrogen dioxide) normalized to the work
performed by the engine, the equivalence ratio that measures the richness of
the air/ethanol mixture, and the compression ratio. The number of records is
n = 88.

b. The varying-coefficient model in Hastie and Tibshirani (1993) is

NOxi = f0(Ei ) + f1(Ei ) Ci + εi, 1 ≤ i ≤ n.

where εi
ind.∼ N(0, σ 2). Fit this model using gam() and obtain numerical and

graphical summaries of the fit.
c. Fit the bivariate nonparametric model

NOxi = f (Ei , Ci ) + εi, 1 ≤ i ≤ n

using bivariate penalized splines. Obtain numerical and graphical summaries
of the fit.

d. Compare the two models for these data.

9. Exercise 6 was concerned with semiparametric longitudinal data analysis of the
dataset Milk from the package nlme. Here we revisit these data in the context
of covariance function estimation. Ensure that the package fields (Nychka
et al. 2017) is in your R environment.

a. Enter the following commands to load, and visualize the Milk data.
> library(nlme) ; data(Milk)

> plot(Milk,strip = FALSE,type = "l",as.table = TRUE)

The data consist of weekly protein contents of milk from 79 cows over 19
consecutive weeks since calving. About 10% of the protein measurements
are missing. There are also dietary data but these are left aside for this
exercise concerning covariance function estimation.

b. Issue these commands to obtain a matrix of protein values with the rows
corresponding to cows and the columns corresponding to number of weeks
since calving:
> uniqueID <- unique(as.character(Milk$Cow))

> proteinMatrix <- matrix(NA,79,19)

> for (i in 1:79)
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+ (proteinMatrix[i,Milk$Time[Milk$Cow == uniqueID[i]]]

+ <- Milk$protein[Milk$Cow == uniqueID[i]])

c. Enter the following commands to obtain and visualize the sample covariance
function:
> sampCovMat <- var(proteinMatrix,na.rm = TRUE)

> library(fields)

> image.plot(1:19,1:19,sampCovMat,

+ col = terrain.colors(1000),

+ xlab = "time since calving (weeks)",

+ ylab = "time since calving (weeks)",

+ legend.args = list(text="sample cov. func."))

d. Estimate the sample covariance function using bivariate penalized spline
smoothing of the sample covariance matrix.

10. The variable cca in the dataset DTI2 in the refund package (Goldsmith et al.
2016) has diffusion tensor imaging profiles of 340 subjects. Each tract has 93
observations, some with missing values. Make sure that the packages refund
and fields (Nychka et al. 2017) are in your R environment.

a. Issue the following commands to store the data in the standard longitudinal
format and visualize it using lattice graphics:
> library(refund) ; data(DTI2) ; ccaLongitDF <- NULL

> for (i in 1:340)

+ ccaLongitDF <- rbind(ccaLongitDF,cbind(rep(i,93),

+ 1:93,DTI2$cca[i,]))

> ccaLongitDF <- as.data.frame(ccaLongitDF)

> names(ccaLongitDF) <- c("idnum","pixel", "diffusion")

> library(lattice)

> ccaLongitVis <- xyplot(diffusion ~ pixel|idnum,

+ group = idnum,data = ccaLongitDF,

+ strip = FALSE,layout = c(20,17),

+ as.table = TRUE,

+ panel = function(x,y,subscripts,groups)

+ {

+ panel.grid()

+ panel.superpose(x,y,subscripts,groups,

+ col = "darkgreen",type = "l")

+ })

> print(ccaLongitVis)

The panels in this plot correspond to the diffusion tensor imaging profiles of
the 340 subjects.

b. Enter these commands to obtain and display the sample covariance matrix:
> sampCovMat <- var(DTI2$cca,na.rm = TRUE)

> library(fields)

> image.plot(1:93,1:93,sampCovMat,

+ col = terrain.colors(1000),
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+ xlab = "pixel number",ylab = "pixel number",

+ legend.args = list(text="sample cov. func."))

c. Obtain estimates of the covariance matrix using:

i. thin plate penalized splines,
ii. tensor product penalized splines,

iii. the sandwich smoother.



Chapter 6
Selection of Additional Topics

6.1 Introduction

Chapters 2–5 deal with the most fundamental semiparametric regression topics and
implementation in R. There are numerous other topics but, of course, not all of them
can be covered in a single book. Instead we cover a selection of additional topics
in this final chapter that we feel are worthy of some mention. These concern robust
and quantile regression, functional data, kernel machines and classification, missing
data, and measurement error. Other themes with some semiparametric regression
overlap, such as survival analysis, time series analysis, and wavelet regression are
not covered, but we give some pointers regarding R implementation in the further
readings at the end of the chapter.

Towards the end of this chapter we describe the graphical models approach to
semiparametric regression. This paradigm allows arbitrarily complicated Bayesian
semiparametric regression analyses to be entertained, using so-called Bayesian
inference engines. R now provides good access to some of the most versatile
Bayesian inference engines, such as BUGS (Lunn et al. 2013) and Stan (Carpenter
et al. 2017). Use of Stan for semiparametric regression was introduced in Sect. 2.10.

6.2 Robust and Quantile Semiparametric Regression

It is well known that regression methods based on least squares are prone to erratic
behavior when outliers are present in the data. Methods that down-weight the effect
of outliers are usually called robust, whereas those that ignore gross outliers are also
labeled as resistant. An introduction to parametric robust regression is provided by
Maronna et al. (2006).

Quantile regression is another alternative to least-squares regression and is
summarized by Koenker (2005). Rather than targeting mean functions, quantile
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regression targets quantile functions. In certain applications such functions are more
appealing and interpretable. However, quantile regression methods could also be
classified as robust or resistant due to their imperviousness to outliers in the response
data.

The principles behind robust and quantile regression extend to semiparametric
regression and many such methods are supported in R. We give a flavor of robust
and quantile regression in R in this section.

6.2.1 Robust and Resistant Scatterplot Smoothing

We now introduce the notions of robust and quantile semiparametric regression in
the simple scatterplot smoothing setting. We use this informal term, rather than
nonparametric regression, since the target function may be a mean function but,
instead, could be a median function.

As a running example we will use data from the 1987 cross-section of the Michi-
gan Panel Study of Income Dynamics, which is in the data frame Workinghours

in the R package Ecdat. The data consist of several measurements on 3382
households. Further details are given in Sect. 3 of Lee (1995). The following code
extracts and plots data with the predictor data (stored in x) set to wife’s age (years)
and the response data (stored in y) set to household income that is not from the
wife’s work. Note that Workinghours$income is in hundreds of dollars. We divide
this by 10 so that the income data are in thousands of U.S. dollars.

> library(Ecdat) ; data(Workinghours)

> x <- Workinghours$age ; y <- Workinghours$income/10

> plot(x,y,col = "dodgerblue",cex = 0.2,bty = "l",

+ xlab = "wife's age (years)",

+ ylab = "other household income (thousands of U.S. dollars)")

The R function loess() is one of the oldest functions for smoothing a scatterplot,
and based on local polynomial ideas. An ordinary fit to data (xi, yi), 1 ≤ i ≤ n,
stored in x and y can be achieved via:

> fitOrdinary <- loess(y ~ x,span = 0.25)

> xg <- seq(min(x),max(x),length = 201)

> fitOrdinaryg <- predict(fitOrdinary,xg)

> lines(xg,fitOrdinaryg,col = "darkgreen",lwd = 2)

The designation span = 0.25 means that one quarter of the data are used in each
local polynomial fit. A robust alternative is obtained and plotted via:

> fitRobust <- loess(y ~ x,family = "symmetric",span = 0.25)

> fitRobustg <- predict(fitRobust,xg)

> lines(xg,fitRobustg,col = "indianred3",lwd = 2)
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Fig. 6.1 Left panel: default and robust loess() fits to data from the 1987 cross-section of the
Michigan Panel Study of Income Dynamics. Middle panel: zoomed view of the left panel fits.
Right panel: fits when the largest response observation is replaced by a value 1000 times larger, as
a test of resistance.

and replaces the least-squares criterion by one based on M-estimation with Tukey’s
biweight function (e.g. Huber 1981). The plot produced by this code is in the first
panel of Fig. 6.1.

The following code produces a zoomed view of the same fits so that the
differences are more easily seen:

> plot(x,y,col = "dodgerblue",cex = 0.2,bty = "l",

+ xlab = "wife's age (years)",

+ ylab = "other household income (thousands of U.S. dollars)",

+ ylim = c(0,100))

> lines(xg,fitOrdinaryg,col = "darkgreen",lwd = 2)

> lines(xg,fitRobustg,col = "indianred3",lwd = 2)

The robust fit is considerably lower for wife’s ages in the range of about 40–55
years due its robustness against the high income outliers. This zoomed view is in
the middle panel of Fig. 6.1.

Finally, we carry out a resistance test. This involves conversion of the largest
outlier, another household income value of 722,000 U.S. dollars, into a gross outlier
by multiplying it by 1000. The following code does this test:

> y[which.max(y)] <- 1000*y[which.max(y)]

> fitOrdinary <- loess(y ~ x,span = 0.25)

> fitOrdinaryg <- predict(fitOrdinary,xg)

> fitRobust <- loess(y ~ x,family = "symmetric",span = 0.25)

> fitRobustg <- predict(fitRobust,xg)
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> plot(x,y,col = "dodgerblue",cex = 0.2,bty = "l",

+ xlab = "wife's age (years)",

+ ylab = "other household income (thousands of U.S. dollars)",

+ ylim = c(0,100))

> lines(xg,fitOrdinaryg,col = "darkgreen",lwd = 2)

> lines(xg,fitRobustg,col = "indianred3",lwd = 2)

and the result is shown in the right panel of Fig. 6.1. As expected, the loess()

least-squares fit is severely affected by this one observation. More surprising is that
the Tukey’s biweight fit is also adversely affected. However, the documentation of
loess() admits to this lack of resistance since M-estimation is applied iteratively
with initialization based on the least-squares fit.

In Fig. 6.2 we instead used the commands:

> library(quantreg) ; fitRobust <- rqss(y ~ qss(x,lambda = 5))

> fitRobustg <- as.vector(predict(fitRobust,

+ data.frame(x = xg)))

corresponding to the R functions qss() and rqss() from the package quantreg

(Koenker 2017). This is a quantile smoothing spline (Koenker et al. 1994) fit to
the data, with smoothing parameter λ = 5. The default quantile is the median,
corresponding to tau = 0.5 inside qss(). Hence curves in Fig. 6.2 correspond to
an estimate of the
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Fig. 6.2 Left panel: rqss() conditional median fit to data from the 1987 cross-section Middle
panel: zoomed view of the left panel fit. Right panel: fit when the largest response observation is
replaced by a value 1000 times larger, as a test of resistance.
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median other household income, given the wife’s age.

Note that rqss() passes the resistance test with flying colors. This is due to medians
being unaffected by gross outliers.

6.2.2 Robust Semiparametric Regression

Robust semiparametric regression is an extension of robust and resistant scatterplot
smoothing, as described in Sect. 6.2.1, in which

• the fits are robust and/or resistant to outliers,
• models for handling multiple predictors (e.g., additive models) are included,
• and, ideally, automatic selection of smoothing parameters is included in the

methodology.

R packages such as rgam (Salibian-Barrera et al. 2014) and robustgam (Wong
et al. 2013) provide some support for robust semiparametric regression models.
However, their current releases are restricted to binary response and Poisson
response models, so cannot handle data from the Michigan Panel Study of Income
Dynamics with a continuous response such as other household income.

Another approach to robust semiparametric regression in R involves modeling
the response variable to have a heavy-tailed distribution. The VGAM (Yee 2017)
supports responses having a (Student’s) t distribution, which has arbitrarily heavy
tails depending on the degrees of freedom parameter. As explained in Lange
et al. (1989), the likelihood corresponding to the t distribution induces a type of
robustness on the regression fitting. Note that the t distribution with location μ,
scale σ > 0, and degrees of freedom ν > 0 has density function

p(x;μ, σ, ν) =
Γ

(
ν+1

2

)

σ
√

πν Γ (ν/2)[1 + {(x − μ)/σ }2/ν] ν+1
2

. (6.1)

We write x ∼ t (μ, σ, ν) for a random variable x having this density function.
We now work through an example t distribution response fit, via the vgam()

function in VGAM. First load in the data frame Workinghours via:

> library(Ecdat) ; data(Workinghours)

Next create the data frame MichInc via use of the transform() function:

> MichInc <- data.frame(husbandManager=as.numeric(

+ as.character(Workinghours$occupation) == "mp"))
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> MichInc <- transform(MichInc,

+ otherIncome = Workinghours$income/10,

+ nonWhite = Workinghours$nonwhite,

+ homeOwned = Workinghours$owned,

+ unemployRate = Workinghours$unemp,

+ wifeAge = Workinghours$age,

+ wifeEducationYears = Workinghours$education,

+ numChildren = with(Workinghours,

+ child5 + child13 + child17))

The fit is then obtained using:

> library(VGAM)

> fit <- vgam(otherIncome ~ s(wifeAge,df=10)

+ + s(unemployRate,df = 4)

+ + s(wifeEducationYears, df = 4)

+ + s(numChildren,df = 4) + nonWhite

+ + homeOwned + husbandManager,

+ family = studentt3,data = MichInc)

Here family = studentt3 specifies that the response is a t distribution with
location parameter corresponding to the additive model on the right-hand side of
the ∼. The default in studentt3() of zero = -(2:3) specifies that the scale and
degrees of freedom parameters are constants. The data are created from the data
frame Workinghours in the Ecdat, corresponding to the 1987 cross-section of the
Michigan Panel Study of Income Dynamics. Details of the variable creation are in
the R script MichInctAddMod.R in the HRW package. The definitions are:

otherIncome = household income from sources other than the

wife in thousands of U.S. dollars,

wifeAge = age of wife in years,

unemployRate = local unemployment rate as a percentage,

wifeEducationYears = wife’s number of years of education,

numChildren = number of children in the household,

nonWhite = indicator that the wife is not white,

homeOwned = indicator that the household home is owned

and husbandManager = indicator that the husband is a manager.

The estimate of the degrees of freedom parameter is

ν̂ = 2.56,
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Fig. 6.3 Estimated additive components from a robust additive model fit to data from the 1987
cross-section of the Michigan Panel Study of Income Dynamics. The fit was obtained via
the package VGAM with family = studentt3, which models the response variable to be a t

distribution. The dashed curves correspond to ±2 standard errors.

corresponding to a t distribution with tails decaying at the rate |y|−3.56. Such tails
are quite heavy, in keeping with the large positive outliers in the response (e.g.,
Fig. 6.1, left panel). Figure 6.3 shows the estimated additive model components with
±2 standard errors. The R code for this plot is

> plotvgam(fit,se = TRUE,noxmean = TRUE,bty = "l",

+ lcol = c("darkgreen"),scol = "green3",

+ rcol = "dodgerblue",llwd = 2,slwd = 2,

+ ylab = "",cex.axis = 1.5,cex.lab = 1.8)

and the arguments of plotvgam() are explained via help(plotvgam). The effect
of wife’s age is seen to be similar to that of the median regression fit in Fig. 6.2. The
other effects are as one might expect. For example, the husband being a manager
has a positive effect on other household income.

A drawback of t distribution response semiparametric regression via vgam()

is the requirement to specify vgam() the effective degrees of freedom for each
smooth function in the additive model. One way to have smoothing parameter
selection automated is to adopt a Bayesian approach with mixed model-based
penalized splines, and then use one of R’s Markov chain Monte Carlo (MCMC)
packages for fitting. Automatic smoothing parameter selection is encompassed in



228 6 Selection of Additional Topics

20 30 40 50 60

0
20

0
40

0
60

0

wife's age in years

ot
he

r h
ou

se
ho

ld
 in

co
m

e 
(th

ou
sa

nd
s 

$U
S

)

20 30 40 50 60
0

20
40

60
80

10
0

wife's age in years

ot
he

r h
ou

se
ho

ld
 in

co
m

e 
(th

ou
sa

nd
s 

$U
S

)

Fig. 6.4 Left panel: Bayesian t distribution response nonparametric regression fit to data from the
1987 cross-section of the Michigan Panel Study of Income Dynamics. Right panel: zoomed view
of the fit shown in the left panel.

the Bayesian fitting and inference. In this vein, a class of Bayesian t distribution
response semiparametric regression models is:

yi | β,u, σε, ν
ind.∼ t

(
(Xβ + Zu)i, σε, ν

)
,

β ∼ N(0, σ 2
β I ), u1, . . . ,ud | σu1, . . . , σud

ind.∼ N(0, blockdiag
1≤j≤d

(σ 2
uj I )),

σε ∼ Half-Cauchy(Aε), σuj
ind.∼ Half-Cauchy(Auj ), 1 ≤ j ≤ d,

ν ∼ Uniform(νlow, νupp).

(6.2)
The standard deviation parameters σu1, . . . , σud control the amount of smoothing

for each of the d functions. The hyperparameters σβ , Aε and Auj are set, nominally,
to large values to impose noninformativity. A reasonable choice for the prior on ν

is Uniform( 1
100 , 100) since it encompasses a wide range of heavy-tailed and light-

tailed distributions. An alternative family of degrees of freedom priors is described
by Verdinelli and Wasserman (1991).

Figure 6.4 shows the results of fitting a d = 1 version (6.2) to the Michigan panel
study of Income Dynamics data with wife’s age as the only predictor. The stan()

function in the rstan is used for MCMC-based fitting and inference. The Stan
code for model specification is:
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parameter trace lag 1 acf density summary

est. mean funct.
at first quartile
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−0.35 −0.3 −0.25 −0.2
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at second quartile

of age
−0.15 −0.1 −0.05 0

posterior mean: −0.0792

95% credible interval: 
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est. mean funct.
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of age
0
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posterior mean: 0.0788

95% credible interval: 
(0.0195,0.145)

σε
0.38 0.4 0.42 0.44

posterior mean: 0.42

95% credible interval: 
(0.404,0.437)

ν
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posterior mean: 2.71
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(2.47,2.95)

Fig. 6.5 Plots and summaries of MCMC samples for parameters of interest from the t distribution
response nonparametric regression example: trace plot, lag-1 plot, estimated autocorrelation
function, estimated posterior density function, and numerical summary.

model

{

y ~ student_t(nu,X*beta+Z*u,sigmaEps) ;

u ~ normal(0,sigmaU); beta ~ normal(0,sigmaBeta);

sigmaEps ~ cauchy(0,Aeps); sigmaU ~ cauchy(0,Au);

nu ~ uniform(nuLow,nuUpp);

}

Note that Stan uses the ordering (ν, μ, σ ) in its t distribution designation, rather
than the ordering (μ, σ, ν) used in our t distribution notation introduced in (6.1).

Figure 6.5 summarizes the MCMC samples corresponding to the fit shown in
Fig. 6.4. Note that the Bayes estimate of ν is 2.71, with a corresponding 95%
credible interval of (2.47, 2.95). The R package HRW contains a script named
MichIncMCMCt.R that carries out the analysis corresponding to Figs. 6.4 and 6.5.
To run this script and obtain the relevant file issue:

> library(HRW) ; demo(MichIncMCMCt,package = "HRW")

Its location can be obtained from the commands:

> system.file("demo","MichIncMCMCt.R",package = "HRW")
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Fig. 6.6 Histogram of the residuals from the quantile smoothing spline fit to 1987 cross-section
of the Michigan Panel Study of Income Dynamics shown in the left and middle panels of Fig. 6.2.

Figure 6.6 is a histogram of the residuals from the quantile smoothing spline fit
shown in the left and middle panels of Fig. 6.2. It shows that the outliers tend to be
positive-valued, which suggests that an asymmetric error distribution is appropriate
as opposed to the symmetric t (0, σε, ν) distribution used in (6.2).

The skewed t density function with νleft and νright degrees of freedom, devised by
Jones and Faddy (2003), is

pJF(x; νleft, νright) = Γ (νleft+νright)
Γ (νleft)Γ (νright)2

νleft+νright−1√νleft+νright

×
(

1 − x+Mνleft,νright√
νleft+νright+(x+Mνleft,νright )

2

)νleft+ 1
2

×
(

1 + x+Mνleft,νright√
νleft+νright+(x+Mνleft,νright )

2

)νright+ 1
2

(6.3)

where

Mνleft,νright ≡ (νright − νleft)
√

νright + νleft√
(2νright + 1)(2νleft + 1)

.



6.2 Robust and Quantile Semiparametric Regression 231

−4 −2 0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

de
ns

ity

νleft = 10, νright = 4.1
νleft = 10, νright = 2.7
νleft = 10, νright = 1.5

Fig. 6.7 Jones–Faddy skewed t density functions with degrees of freedom pairs (νleft, νright) =
(10, 4.1), (10, 2.7), (10, 1.5).

Note that (6.3) is a centered version of the density function given in Jones and Faddy
(2003) so that pJF(x; νleft, νright) has its mode at x = 0. The left and right tail decay
rates are, respectively,

|x|−(2νleft+1) and |x|−(2νright+1) if νleft ≥ νright.

The tail decay rates are reversed if νleft < νright. If νleft = νright = ω, then (6.1) reduces
to the ordinary t distribution with 2ω degrees of freedom. Figure 6.7 shows three
different versions of pJF(·; νleft, νright), with νleft fixed at 10, but νright ∈ {4.1, 2.7, 1.5}.
The differing tail behavior on the left and right sides of the densities when νleft and
νright differ is apparent.

Since Fig. 6.6 is strongly suggestive of differing tail decay rates, we investigate
R fitting of the model:

yi |β,u, σε, νleft, νright

ind.∼ 1

σε

pJF

(
yi − (Xβ + Zu)i

σε

; νleft, νright

)
. (6.4)

The full Bayesian model that we consider is analogous to (6.2), although we put the
following uniform priors on the degrees of freedom parameters:

νleft, νright

ind.∼ Uniform
(

1
100 , 100

)
.

However, for MCMC fitting in rstan, we need to work around the fact that
the family of density functions described by (6.3) is not one of the families
supported by Stan. We overcome this by using the target += facility, in which
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the log-likelihood is incremented via the logarithm of (6.3), up to additive constants.
The relevant Stan code is:

transformed parameters

{

real JFmode; real logNormFac;

vector[n] arg;

JFmode = (nuLft-nuRgt)*sqrt((nuLft+nuRgt)/

((2*nuLft+1)*(2*nuRgt+1)));

arg = JFmode + (y - X*beta - Z*u)/sigmaEps;

logNormFac = (nuLft+nuRgt-1)*log(2) + 0.5*log(nuLft+nuRgt)

- lgamma(nuLft+nuRgt) + lgamma(nuLft)

+ lgamma(nuRgt);

}

model

{

for (i in 1:n)

target += (nuLft+0.5)*log1p(arg[i]/

sqrt(nuLft+nuRgt+square(arg[i])))

+ (nuRgt+0.5)*log1m(arg[i]/

sqrt(nuLft+nuRgt+square(arg[i])))

- log(sigmaEps) - logNormFac;

u ~ normal(0,sigmaU); beta ~ normal(0,sigmaBeta);

sigmaU ~ cauchy(0,Au); sigmaEps ~ cauchy(0,Aeps);

nuLft ~ uniform(0.01,100); nuRgt ~ uniform(0.01,100);

}

Note that, in Stan, log1p and log1m are, respectively, the functions log(x + 1) and
log(x − 1) in x.

Figure 6.8 shows the estimated mode function according to the Jones–Faddy
skewed t response nonparametric regression model (6.4) to the same data. The curve
is lower than that for the t distribution model, shown in Fig. 6.4, since the mode is
below the mean for right-skewed distributions.

Figure 6.9 shows the summaries of the MCMC samples for the (6.4) fit. The
Bayes estimates of νleft and νright are 7.4 and 1.7, respectively. This corresponds to tail
decay rates of |y|−15.8 on the left and |y|−4.4 on the right. This difference reflects
the propensity for income data to have positive outliers that are much more extreme
than outliers in the negative direction.

The script MichIncMCMCskewt.R in the HRW package carries out the analysis
corresponding to Figs. 6.8 and 6.9. To run MichIncMCMCskewt.R and obtain the
relevant file issue:

> library(HRW) ; demo(MichIncMCMCskewt,package = "HRW")

> system.file("demo","MichIncMCMCskewt.R",package = "HRW")
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Fig. 6.8 Left panel: Bayesian Jones–Faddy skewed t response nonparametric regression fit to
data from the 1987 cross-section of the Michigan Panel Study of Income Dynamics. Right panel:
zoomed view of the fit shown in the left panel.

6.2.3 Quantile Semiparametric Regression

Versions of quantile semiparametric regression are supported by R packages such
as quantreg (Koenker 2017) and VGAM (Yee 2017). We now describe some of
their capability via additional examples from the 1987 cross-section of the Michigan
Panel Study of Income Dynamics.

First we address the fitting of multiple quantile functions to a single predictor.
There are two general approaches to multiple quantile regression:

• applying single quantile regression methodology several times with the quantile
value set to various values.

• fitting functions of the predictor corresponding to transformation parameters,
such as those for the Box–Cox family of transformations. The transformed
responses then have a fixed distribution such as the standard Normal. The back-
transformations of the quantiles of this fixed distribution are then estimates of the
conditional quantiles of the original response.

The second approach, which goes back to Cole and Green (1992), is more elaborate
and has the advantage that the fitted quantile curves cannot cross each other. These
authors dubbed it the LMS method after the initials of the Box–Cox transformation
parameters: λ, μ, and σ . The generic form of the 100τ% quantile curve, for 0 <

τ < 1, is

μ̂(x){1 + λ̂(x) σ̂ (x)Φ−1(τ )}1/̂λ(x), (6.5)
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Fig. 6.9 Plots and summaries of MCMC samples for parameters of interest from the Jones–
Faddy skewed t response nonparametric regression example: trace plot, lag-1 plot, estimated
autocorrelation function, estimated posterior density function, and numerical summary.

where λ̂(x), μ̂(x) and σ̂ (x) are the estimated Box–Cox transformation parameters
at x. Further details are given in Yee (2004).

Both approaches are supported in R. The first approach can, of course, be accom-
plished by calling rqss() from Sect. 6.2.1 and Fig. 6.2, with its tau parameter set
to each of the desired quantile values. The upper panels of Fig. 6.10 show the result
corresponding to the 1, 5, 25, 50, 75, 95, and 99% quantiles. The relevant code is
given in the MichIncMultQSS.R, and involves looping through tau set to entries
of the vector

(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99).

To run MichIncMultQSS.R issue:

> library(HRW) ; demo(MichIncMultQSS,package = "HRW")

Its location for possible copying and modifying is determined by:

> system.file("demo","MichIncMultQSS.R",package = "HRW")
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Fig. 6.10 Upper panels: full data and zoomed views of quantile smoothing spline fits to data
on other household income versus wife’s age from the 1987 cross-section of the Michigan Panel
Study of Income Dynamics. The fits were obtained using the function rqss() from the package
as described in the text. Lower panels: full data and zoomed views of quantile fits according to the
LMS method for the same data. The fits were obtained using the functions vgam() and lms.bcn()

from the package VGAM as described in the text.

The lower panels of Fig. 6.10 are obtained from the implementation of the LMS
method within the function vgam() of the package vgam() VGAM (Yee 2017). The
relevant sub-function of vgam() is named lms.bcn(). However, the LMS fits
shown in Fig. 6.10 took some effort, as we now explain. First, suppose that the
scatterplot data are stored in R arrays x and y as follows:

> library(Ecdat) ; data(Workinghours)

> x <- Workinghours$age ; y <- Workinghours$income/10

The data used in the call to lms.bcn() within vgam() involves the arrays xLMS and
LMS obtained via:

> npi <- which(y<=0) ; yLMS <- y[-npi]/100 ; xLMS <- x[-npi]
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The [-npi] leads to omission of the 0.56% of the households with non-positive
other household income values. Working with responses divided by 100 overcomes
numerical instability issues. The quantile curves were then multiplied by 100 after
fitting. It is also necessary to obtain a simple initial fit to generate good starting
values. This involves:

> fitLMSinit <- vgam(yLMS ~ s(xLMS,df = 4),

+ lms.bcn(zero = c(1,3)),maxit = 50)

The zero = c(1,3) specification inside lms.bcn() forces the λ̂ and σ̂ functions
in (6.5) to be constant functions. It follows that μ̂ is the only function allowed to
vary over the predictor space and the df=4 dictates that it has four effective degrees
of freedom. Thus fitLMSinit is a simplistic LMS fit that provides starting values
for the more elaborate final LMS fit. The latter involves:

> fitLMS <- vgam(yLMS ~ s(xLMS,df = c(3,10,3)),

+ lms.bcn(zero = NULL),

+ etastart = predict(fitLMSinit),

+ maxit = 500)

with the specification etastart=predict(fitLMSinit) important for achieving
convergence. The df = c(3,10,3) combined with zero = NULL leads to λ̂

having three effective degrees of freedom, μ̂ having ten effective degrees of freedom
and σ̂ having three effective degrees of freedom. The lower panels of Fig. 6.10 show
the resulting quantile curves. Note that the fits from fitLMS had to be multiplied
by 100 to match the original response data. The details are given in the R script
MichIncLMS.R in the HRW package. To run and locate the script on the computer on
which HRW resides issue:

> library(HRW) ; demo(MichIncLMS,package = "HRW")

> system.file("demo","MichIncLMS.R",package = "HRW")

Our final quantile regression example involves the additive model extension
of quantile smoothing splines for multiple predictors, via rqss() in the package
quantreg. We use the same predictors as those used for the vgam(family =

studentt3) example given in Sect. 6.2.2. An example call to rqss() for an
additive model 5% quantile fit is:

> library(quantreg) ; library(Ecdat) ; data(Workinghours)

> rqss(otherIncome ~ qss(wifeAge,lambda = 3.5)

+ + qss(unemployRate,lambda = 3.5)

+ + qss(wifeEducationYears,lambda = 3.5)

+ + qss(numChildren,lambda = 3.5) + nonWhite

+ + homeOwned + husbandManager,tau = 0.05,

+ data = Workinghours)

Figure 6.11 shows the fitted 5, 50, and 95% quantile curves. In each panel, the
quantile curves are the slices of the quantile surfaces for the panel predictor, with
all other predictors set to their averages. The quantile curves are consistent with
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Fig. 6.11 Estimated additive components from 5, 50, and 95% quantile smoothing spline-based
additive model fits to data from the 1987 cross-section of the Michigan Panel Study of Income
Dynamics. The fit is via the function within the package. In each panel, the quantile curves are the
slices of the quantile surfaces for the panel predictor, with all other predictors set to their averages.

intuition, such as median income increasing with the wife’s number of education
years. The vertical axis range is fixed across all panels so that visual comparisons
can be made regarding the relative effects of the predictors.

The VGAM package also has LMS quantile regression functions, lms.yjn() and
lms.yjn2(), using the Yeo and Johnson (2000) family of transformations instead
of the Box–Cox family. Yee (2004) contains relevant details. Exercise 9 is concerned
with Yeo–Johnson LMS quantile regression.

6.3 Scalar-on-Function Linear Regression

It has become increasingly common for either the response or the predictor variable
in a regression model to be a function. Consider first the case where the response
y is scalar and the predictor is a function x(t) defined on an interval [a, b]. The
scalar-on-function linear model is

yi = β0 +
∫ b

a

xi(t)β1(t) dt + εi, 1 ≤ i ≤ n, (6.6)
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where yi and xi(t) are the response and predictor for the ith case, β0 is an intercept,
and β1(t) is a smooth coefficient function. The integral in (6.6) is the inner product
of xi(t) and β1(t) in a space of functions and is the analog of the dot or inner
product of the vector of predictor variables and the coefficient vector in a multiple
linear regression model.

To understand model (6.6), consider first a simple linear regression model with
predictors

xi ≡
∫ b

a

xi(t) dt, 1 ≤ i ≤ n,

so that

yi = β0 + β1xi + εi, (6.7)

where β0 and β1 are the intercept and slope. Integration of a function is the analog
of summation of the elements of a vector, so xi/(b − a) is the average value of xi

over the interval (a, b). The factor 1/(b − a) can be subsumed into β1, so (6.7) uses
only the average value of xi(), rather than the entire function, as the predictor.

Notice that model (6.7) is a special case of (6.6) with β1(t) ≡ β1. The model
implies that the effect of xi(t) on yi is constant, that is, it does not depend on t .
Suppose one suspects that the effect of x(t) depends on t in a smooth way, so that
it does not change much over any short interval. Then one might use J predictors
where the ith value of the j th predictor xji is either

xji ≡
∫

Ij

xi(t) dt, where Ij ≡
[
a + (j − 1)(b − a)

J
, a + j (b − a)

J

]
,

1 ≤ j ≤ J,

or, as an approximation to this integral,

xji ≡ xi(Mj )

(
b − a

J

)
where Mj ≡ mid-point of Ij = a + (j − 1

2 )(b − a)

J
.

Then the model is

yi = β0 +
J∑

j=1

β1,j xji + εi (6.8)

with slopes β1,1, . . . , β1,J . Model (6.8) is the special case of (6.6) with

β1(t) ≡ β1,j on Ij .
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Model (6.8) is sensitive to the choice of J and is prone to overfitting if J is large.
Also, it is not realistic to assume that the effect of x(t) is constant on intervals and
jumps between intervals. A better approach is to use model (6.6) with a roughness
penalty to keep β1(t) smooth and prevent overfitting.

In practice, functional variables are not observed continuously but instead only
at a finite set of points. We will only consider the so-called “dense data” case where
all functions are observed on the same equally spaced, fine grid. Regression with
sparsely observed functional predictors requires that the unobserved values of the
function on a dense grid be predicted from the sparsely observed values; doing this
is beyond the scope of this book.

6.3.1 Example: Diffusion Tensor Imaging Data

As an example, we will use the DTI data frame in the refund package (Goldsmith
et al. 2016). The scalar response is the Paced Auditory Serial Addition Task (PASAT)
score, which is a test of cognitive ability. Subjects are given a number every 3
seconds and are asked to add the number just heard to the previous number. The
score is the number of correct answers out of 60.

The predictor function is cca which is fractional anisotropy along the corpus
callosum tract of the brains of multiple sclerosis patients and t is location along
the tract, with t = 0 and t = 1 indicating the two ends of the tract. Diffusion
tensor imaging is a magnetic resonance imaging technique used to locate and study
white matter tracts in the brain. A white matter tract consists of axons that connect
different parts of the brain and are insulated by myelin, a white, fatty substance. The
corpus callosum is the largest white matter tract and connects the left and right
hemispheres of the brain. Diffusion tensor imaging measures diffusion of water
along a white matter tract. The result is a tensor that can be expressed as a 3×3 sym-
metric, positive-definite matrix. If diffusion was isotropic, then this matrix would be
a multiple of the identity matrix with all three eigenvalues equal. Fractional isotropy
measures the variation in the eigenvalues (relative to their sizes) and is

[
3
{
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

}

2(λ2
1 + λ2

2 + λ2
3)

]1/2

(6.9)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of this matrix and λ = (λ1 + λ2 + λ3)/3.
The numerator of (6.9) measures the variation between the three eigenvalues and
the denominator serves to make fractional anisotropy scale free.

In a healthy patient, the myelin should insulate the axons so that diffusion
is mostly parallel to them and fractional anisotropy is high. Multiple sclerosis
is a disease of the myelin that degrades the ability of myelin to insulate and,
consequently, of white matter tracts to conduct signals. Since the corpus callosum
is involved with cognition, one might hypothesize that higher values of fractional
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anisotropy along the corpus callosum tract would indicate healthier patients who
would have higher PASAT scores. The DTI data frame also includes controls, but
PASAT was not measured on them. We will study the relationship between PASAT
scores and fractional anisotropy along the corpus callosum in multiple sclerosis
patients.

The scalar-on-function linear model can be fit by several R functions. In this
example, we will use the function pfr() in the refund package (Goldsmith
et al. 2016). Penalized functional regression (Goldsmith et al. 2011) is a sim-
ple yet efficient scalar-on-function regression method that utilizes the principal
components analysis eigendecomposition of Σ to provide the low-dimensional
representation (5.2) of xi(t) in (6.6), noting that ŷi (t) in (5.2) corresponds to xi(t)

in (6.6), and models β1(t) with a spline basis. Penalized functional regression can be
implemented by the pfr() function in the refund package (Goldsmith et al. 2016).
The pfr() function fits both scalar-on-function linear regression models and their
generalized additive model extensions, which will be introduced in Sect. 6.4 and
include the scalar-on-function linear model as a special case.

The following code fits a scalar-on-function linear model using the subjects
where PASAT is not missing, i.e., multiple sclerosis patients. Here lf() in
y ~ lf(X) specifies a scalar-on-function linear model fit of y to X.

> library(refund) ; data(DTI) ; indsNonMiss <- !is.na(DTI$pasat)

> y <- DTI$pasat[indsNonMiss] ; X <- DTI$cca[indsNonMiss,]

> fitlf <- pfr(y ~ lf(X),method = "REML")

A plot of β̂1(t) is obtained using:

> plot(fitlf,xlab = "tract location",

+ ylab=expression(paste(widehat(beta)[1],"(tract location)")),

+ shade= TRUE,col = "darkgreen",bty = "l",

+ cex.lab = 1.5,shade.col = "palegreen",

+ cex.axis = 1.5)

> abline(h = 0,col = "slateblue")

and is shown in Fig. 6.12. We see that this estimated coefficient function is positive,
which is consistent with our hypothesis that higher values of fractional anisotropy
should indicate healthier myelin and better performance on PASAT. Given the width
of the variability band, it is reasonable to hypothesize that β1(t) is constant so that
model (6.7) holds. It is easy to fit model (6.7):

> library(mgcv) ; meanx <- rowMeans(X)

> fitMeanx <- gam(y~meanx) ; print(summary(fitMeanx))

Family: gaussian

Link function: identity

Formula:

y ~ meanx
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Fig. 6.12 Estimate of β1(t) when Paced Auditory Serial Addition Task (PASAT) score is regressed
on fractional anisotropy in the corpus callosum tract.

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.2577 6.0520 -0.043 0.966

meanx 95.6330 12.1214 7.890 4.43e-14

R-sq.(adj) = 0.155 Deviance explained = 15.8%

GCV = 131.96 Scale est. = 131.17 n = 334

Next, we compare models (6.6) and (6.7) using AIC.

> fitlf$aic

[1] 2582.062

> fitMeanx$aic

[1] 2580.585

From the results, we see that the simpler model (6.7) has a smaller (better) AIC.
Thus, in this example, one really does not need to use scalar-on-function linear
regression, but of course this would not be known unless a scalar-on-function linear
model fit was tried.
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6.3.2 Example: Fat Content of Meat Samples

The next example requires a scalar-on-function linear regression model that is more
complex than (6.7) where the predictor function can be replaced by its integral (or
average). We will use the tecator data frame in the fda.usc package (Bande and
de la Fuente 2016). The data were obtained on 215 finely chopped meat samples
using a Tecator Infratec Food and Feed Analyzer, a product of the company Foss
(www.fossna.com). The analyzer recorded the absorbance of infrared light at 100
equally spaced wavelengths from 850 to 1050 nanometers in the near infrared
spectrum. In addition, three responses, percentages of water, fat, and protein, were
determined by analytical chemistry.

The data are obtained using:

> library(fda.usc) ; data(tecator)

> X <- tecator$absorp.fdata$data

Next, we set the grid of wavelength values corresponding to the absorbance function
ordinates, which were just stored as rows in X:

> wavelength <- seq(850,1050,length = 100)

We will use percentage of fat as the response and the absorbance spectrum, or
one of its first two derivatives, as the predictor. As shown below, derivatives can be
computed using the functions:

create.bspline.basis(), smooth.basisPar() and eval.fd()

in the fda package (Ramsay et al. 2017). The first of these three functions creates
a B-spline basis and smooth.basisPar() fits these splines to the data with a
small amount of smoothing; the argument “2” specifies a penalty on the second
derivative and “1e-09” is the value of the smoothing parameter. Then eval.fd()

differentiates the spline fits. The third argument of eval.fd() specifies the order of
the derivative. Details on usage of the fda package are given in Ramsay et al. (2009).
The matrices Xderiv and Xderiv2 containing the first and second derivatives,
respectively, of the functions in X are then obtained via:

> library(fda)

> bbt <- create.bspline.basis(rangeval = range(wavelength),

+ nbasis = 20)

> Xfd <- smooth.basisPar(wavelength,t(X),bbt,2,1e-9)

> Xderiv <- t(eval.fd(wavelength,Xfd$fd,1))

> Xderiv2 <- t(eval.fd(wavelength,Xfd$fd,2))

Figure 6.13 displays the first 10 of these absorbance functions and their derivatives.
We see that the first and, especially, the second derivatives have sharp peaks and
valleys that might have useful information for the prediction of fat concentration.
The script absorbFuncsDrvs.R contains the code that produced Fig. 6.13. It can
be run and located using:

www.fossna.com
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Fig. 6.13 Left panel: Plot of the first ten absorbance functions. Middle panel: Plot of their first
derivatives. Right panel: Plot of their second derivatives.
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Fig. 6.14 Left panel: β̂1(t) using the absorbance functions as predictors. Middle panel: β̂1(t)

using their first derivatives of the absorbance functions as predictors. Right panel: β̂1(t) using
their second derivatives of the absorbance functions as predictors.

> library(HRW) ; demo(absorbFuncsDrvs,package = "HRW")

> system.file("demo","absorbFuncsDrvs.R",package = "HRW")

We fit scalar-on-function linear models with the zero-order, first and second
derivatives as predictors using the pfr() function as in Sect. 6.3.1. The estimates
of β1(t) for the three predictors are shown in Fig. 6.14. The code that produced the
estimates and plots is in the script absorbScalOnFuncAna.R in the HRW package.
To run the script issue the commands:

> library(HRW) ; demo(absorbScalOnFuncAna,package = "HRW")

Its location is determined by:

> system.file("demo","absorbScalOnFuncAna.R",package = "HRW")
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Table 6.1 AIC values for four scalar-on-function regression estimators: linear, additive in the
original predictor variable, additive in the transformed predictor, and additive in the principal
component scores of the predictor.

Derivative Additive in Additive in Additive in princ.
order Linear orig. predic. transf. predic. compon. scores

0 1046 1034 1292 822

1 1035 712 854 816

2 1056 655 865 588

Derivatives of the absorbance functions of orders 0, 1, and 2 were used as predictors of percentage
of fat in the Tecator dataset

An object returned by pfr() contains the AIC of the fitted model and allows
us to compare different models. The column labeled “linear” in Table 6.1 contains
the AIC for linear scalar-on-function regression using zero-order, first and second
derivatives. We see that the first derivatives provide the best fit when the model is
linear. The models corresponding to the other columns of Table 6.1 are discussed in
Sects. 6.4 and 6.5. They produce considerably better fits than the linear model when
the predictors are first or second derivatives. The additive in principal component
scores model has the lowest AIC with each of the three predictors and, when
used with the second derivatives as predictors, has the lowest AIC among all
model/predictor combinations tried.

6.3.3 Example: Octane and Near Infrared Spectra

The gasoline dataset contains octane and near infrared spectra measured on 60
samples of gasoline. Octane is expensive to measure directly, so a method for
estimating octane using near infrared spectra could save money. We will use pfr()

to estimate the octane of gasoline from near infrared spectra.

> library(refund) ; data(gasoline)

> wavelength <- seq(900,1700,by = 2)

> fitPFR <- pfr(octane ~ lf(NIR,argvals = wavelength,

+ presmooth = "fpca.face",

+ presmooth.opts = list(knots=50)),

+ data = gasoline)

Because the argument presmooth in lf() was set to fpca.face, fast covari-
ance estimation (FACE) (see Sect. 5.6) was used for principal components analysis
and was, in fact, extremely fast, taking less than 1 second.

A plot of the estimated coefficient function is obtained using:

> wavelength <- seq(900,1700,by = 2)

> plot(fitPFR,xlab="wavelength (nanometers)",

+ ylab = expression(paste(beta[1](t))),
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Fig. 6.15 Estimate of the coefficient function for predicting octane from NIR and 95% pointwise
confidence bounds.

+ shade = TRUE,shade.col = "palegreen",rug = FALSE,

+ cex.axis = 1.5,cex.lab = 1.5,bty = "l")

> abline(h = 0,col = "slateblue")

and is shown in Fig. 6.15.
We see in Fig. 6.15 that the coefficient function is estimated with considerable

uncertainty as the variability band contains zero except around 1000, 1200, and
1400 nanometers. Lower values of the variable NIR around 1200 nanometers and,
to a lesser extent, higher values around 1000 and 1400 nanometers predict higher
octane values.

Dr. Luo Xiao (personal communication) conducted a cross-validation study of
the prediction of octane by NIR. In that study, penalized functional regression using
FACE had a sum of squared prediction errors equal to 280. In contrast, penalized
functional regression using a penalized thin plate spline to smooth the covariance
function had a sum of squared prediction errors equal to 410. Penalized functional
regression with FACE predicted more accurately than penalized functional regres-
sion with a penalized thin plate spline, because FACE could accommodate a much
higher dimensional basis for smoothing the covariance matrix and estimating the
eigenvectors used to represent the NIR functions. The lower dimensional basis used
by the gam()-default, which is a penalized thin plate spline, causes substantial bias
in this example.
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6.4 Scalar-on-Function Additive Models

So far we have only considered scalar-on-function linear models. Just as linear
models with scalar predictors can be extended to additive models, scalar-on-function
linear models can be extended to scalar-on-function additive models. There are two
distinct types of additive functional regression models. The first type is additive in
the predictive functions themselves and is introduced in this section. The second
type is additive in the principal component scores of the predictors and is discussed
in Sect. 6.5.

Recall that the linear model (6.8) was used to motivate the scalar-on-function
linear model. Model (6.8) generalizes to the additive model

yi = β0 +
d∑

j=1

fj (xji) + εi . (6.10)

The functional analog of (6.10) is

yi = β0 +
∫ b

a

f
(
xi(t), t

)
dt + εi, (6.11)

where f (x, t) is smooth in both x and t . Summation over the index j in (6.10) is
replaced by integration over the variable t in (6.11).

To accommodate Binomial, Poisson, and other non-Gaussian responses, one
can use a scalar-on-function generalized additive model which assumes that the
conditional distribution of yi given xi is in an exponential family and

g{E(yi |xi)} = β0 +
∫ b

a

f
(
xi(t), t

)
dt

for some monotonic link function g. Model (6.11) is the special case of the scalar-
on-function generalized additive model with an identity link function and, at least
as a working assumption, a Gaussian response.

If model (6.11) holds for the functions x(t), then it also holds with x(t)

replaced by Gt {x(t)} for any smooth (in t and x) function Gt(x) that is strictly
monotonically increasing in x for each t . The reason this is true is that f (x, t) can
be replaced by f (G−1

t (x), t) for any Gt(x) that is smooth in (t, x) since f (x, t)

is nonparametric. We have found it often useful to transform x(t) by its empirical
cumulative distribution function, since then the range of Gt {x(t)} is the interval
[0, 1] and so the range does not depend on t . The empirical cumulative distribution
function is not smooth in x, but we have not found that to be a problem. Moreover,
the cumulative distribution function could be smoothed if that were desired.
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A scalar-on-function generalized additive model can be fit using pfr() by
replacing lf(), which is used for a linear fit, by af(), which specifies an additive
fit. If the argument Qtransform is FALSE, then the functions are not transformed
by the empirical cumulative distribution functions.

6.4.1 Example: Fat Content of Meat Samples

Next we fit additive models to the Tecator data without and with transformation of
the second derivatives of the absorbances. The code is:

> fitPFRnoTrans <-pfr(y ~ af(Xderiv2,argvals=wavelength,

+ bs = "ps",k = c(7,7),m = list(c(2,2),c(2,2)),

+ Qtransform = FALSE), method = "REML")

> fitPFRtrans <- pfr(y ~ af(Xderiv2,argvals=wavelength,

+ bs = "ps",k = c(7,7),m = list(c(2,2),c(2,2)),

+ Qtransform = TRUE),method = "REML")

The default, which is used here, is a tensor product spline model for f (x, t), k
specifies the dimension of each basis, and m specifies the orders of the bases and
penalties. Here each basis is a cubic (order = 2) B-spline of size (number of basis
functions) 7 and a second-order difference penalty is imposed.

Perspective and heat map plots of the fitted functions are in Fig. 6.16. Setting
the argument scheme of plot.gam() to one or two produces a perspective or a
heat map plot, respectively, for two-dimensional smooths. The code that produced
Fig. 6.16 is in the script absorbBivarFigs.R in the HRW package. This script can
be run and located using:

> library(HRW) ; demo(absorbBivarFigs,package = "HRW")

> system.file("demo","absorbBivarFigs.R",package = "HRW")

Recall that in Table 6.1, the linear model fit was compared via AIC with additive
model fits. It can be seen in that table that the additive model using untransformed
second derivatives of any of the three predictors produced a noticeable smaller AIC
than the corresponding linear model. However, the additive model to be introduced
next has an even smaller AIC.

6.5 Additive Models Using Principal Component Scores

Another approach to scalar-on-function additive model analysis is to transform the
functions to a small number of principal component scores and then fit a linear or
additive model to the scores.
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Fig. 6.16 Top left panel: heat map of the estimate of f (x, t) with rug = FALSE. Top right panel:
heat map of the estimate of f (x, t) with rug = TRUE. Having rug = TRUE results in the locations
of the data being shown. Bottom panels: Similar to the top panels but with Qtransform = TRUE.
In the case where x is transformed, the rug obscures the heat map but serves to show that the
transformed data are nearly uniform on a rectangular region.

A model that is additive in the original functions is not additive in the principal
component scores. Therefore, fitting an additive model to the scores is potentially
much different than fitting an additive model to the original functions. Which model
fits best will depend on the data, so it is worthwhile trying both.

6.5.1 Example: Fat Content of Meat Samples

We now illustrate fitting an additive model to the principal component scores with
the Tecator data. We will use the second derivatives of the absorbances. First we
do a principal components analysis and create a scree plot which is in Fig. 6.17. A
scree plot is a bar graph of the eigenvalues from a principal components analysis.
Recall that the kth eigenvalue is the percentage of the total variance attributed to the
direction of the kth eigenvector.
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Fig. 6.17 Scree plot second derivatives of the absorbances in the Tecator data.

> pc <- prcomp(Xderiv2)

> plot(pc,cex.lab = 1.5,cex.main = 1.8,col.main = "navy",

+ main = "",xlab = "component")

We see from the scree plot that much of the variation is in the first three principal
component directions and nearly all of it is in the first six or seven directions.

Next we fit an additive model using the first six scores:

> PCscores <- pc$x[,1:6] ; PCscore1 <- PCscores[,1]

> PCscore2 <- PCscores[,2] ; PCscore3 <- PCscores[,3]

> PCscore4 <- PCscores[,4] ; PCscore5 <- PCscores[,5]

> PCscore6 <- PCscores[,6]

> fitPCaddMod <- gam(y ~ s(PCscore1) + s(PCscore2)

+ + s(PCscore3) + s(PCscore4) + s(PCscore5) + s(PCscore6))

> summary(fitPCaddMod) ; print(fitPCaddMod$aic)

Family: gaussian

Link function: identity

Formula:

y ~ s(PCscore1) + s(PCscore2) + s(PCscore3) +

s(PCscore4) + s(PCscore5) + s(PCscore6)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.14233 0.06035 300.6 <2e-16

Approximate significance of smooth terms:

edf Ref.df F p-value

s(PCscore1) 6.618 7.722 3861.091 < 2e-16

s(PCscore2) 6.919 7.994 216.237 < 2e-16

s(PCscore3) 7.627 8.476 23.705 < 2e-16
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s(PCscore4) 2.363 2.963 15.426 4.14e-09

s(PCscore5) 3.411 4.255 6.229 7.57e-05

s(PCscore6) 3.352 4.177 7.035 2.19e-05

R-sq.(adj) = 0.995 Deviance explained = 99.6%

GCV = 0.91628 Scale est. = 0.78293 n = 215

[1] 588.2958

We see from the summary that all six scores are statistically significant and R2 is
0.995. Also, AIC for this model is about 588.3, lower than for any of the models
previously examined. (The value of AIC for this model was already reported in
Table 6.1.)

The following commands lead to a plot of the fitted functions, as displayed in
Fig. 6.18:

> par(mfrow=c(2,3),mai = c(0.55,0.55,0.05,0.05));

> plot(fitPCaddMod, bty="l",cex.lab = 1.5,lwd = 2,

+ cex.axis = 1.5,col = "darkgreen",shade = TRUE,

+ shade.col="palegreen")

We see from Fig. 6.18 that the first three scores have large effects, especially the
first two. Also, the effect of the first score is clearly nonlinear, which shows the need
for an additive model.

Finally, to further illustrate this excellent fit, we plot the fitted values versus the
responses. The plot is in Fig. 6.19 and is produced using the commands:

> xylimVal <- range(c(fitPCaddMod$fitted,tecator$y[,1]))

> plot(fitPCaddMod$fitted,tecator$y[,1],xlim = xylimVal,

+ ylim = xylimVal,xlab = "fitted values",

+ ylab = "responses",bty = "l",cex.lab = 1.5,

+ cex.axis = 1.5,col = "dodgerblue")

> abline(0,1,col = "darkgreen")

The responses range from 0 to 50% and the fitted values follow the responses
very closely. We have not looked at out-of-sample prediction errors; this is left as an
exercise (Exercise 4.)

6.6 Function-on-Function Linear Regression

Suppose now that both the predictor and the response are functions with domains S

and T , respectively. The predictor function is x(s), s ∈ S, and the response function
is y(t), t ∈ T . How can we predict y(t) from x(s)? To gain insight, let us first fix t

to obtain a scalar response y(t). Then we can use the scalar-on-function regression
model

yi(t) = β0 +
∫

S

β1(s)xi(s) ds + εi, t ∈ T . (6.12)
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Fig. 6.18 Component functions of an additive model fit to the first six principal component scores
of the second derivatives of the absorbances in the Tecator data.

Of course, β0 and β1(s) will change as we change t , so it is better to rewrite (6.12) as

yi(t) = β0(t) +
∫

S

β1(s, t)xi(s) ds + εi, t ∈ T . (6.13)

One could estimate β0(t) and β1(s, t) by scalar-on-function regression on a grid of
values of t and then interpolate to all values of t . However, β0(t) should be a smooth
function, and β1(s, t) should be smooth in both t and s. Using repeated scalar-on-
function regression in this way imposes smoothness on β1(s, t) only as a function
of s and no smoothness on β0(t). Function-on-function regression is a methodology
that imposes smoothness in both s and t and can be implemented in R with several
functions. We will use the function linmod() within the fda package (Ramsay
et al. 2017) and the function pffr() within the refund package in the upcoming
example.
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Fig. 6.19 Plot of fitted values from a model additive in the principal component scores and
responses for the Tecator data. The fit uses the first six principal component scores of second
derivatives of the absorbances.

6.6.1 Example: Yield Curves

As an illustration of function-on-function regression, we will predict changes in the
U.S. daily interest-rate yield curves using changes in the European yield curves on
the same day as the predictor functions. The yield curve at maturity t is the average
continuously compounded interest rate that will be earned on a bond that matures at
time t . The yield curve depends on the type of bond and changes each day as bond
prices change; the market determines bond prices and the yield curve is computed
from prices.

6.6.1.1 Implementation Using the fda Package

Daily observations of yield curves are in the dataset yields in the HRW package.
This file has 91 columns. The first column is the date, columns 2–31 are European
yields at maturities from 1 to 30 years, columns 32–61 are Japanese yields at these
maturities, and columns 62–91 are U.S. yields at the same maturities.

The following code reads the data file, deletes the first column of dates,
differences the yields, and creates vectors EUdiffs and USdiffs of changes in
European and U.S. yields, respectively. The vector t contains the maturities.

> library(HRW) ; data(yields)

> diffs <- apply(as.matrix(yields[,-1]),2,diff)

> diffs <- na.omit(diffs)



6.6 Function-on-Function Linear Regression 253

0 5 10 15 20 25 30

0
1

2
3

4
5

6

maturity (years)

yi
el

d

Fig. 6.20 14 U.S. yield curves spaced 100 days apart.

> EUdiffs <- as.matrix(diffs[,1:30])

> USdiffs <- as.matrix(diffs[,61:90]) ; t <- 1:30

The shapes of the yield curves change with time. This can be seen in Fig. 6.20
which contains 14 U.S. yield curves spaced 100 days apart and was produced using:

> yieldsCleaned <- na.omit(yields)[,-1]

> plot(t,yieldsCleaned[1,61:90], type="l",ylim = c(0,6),

+ lwd = 2,xlab = "maturity (years)",ylab = "yield",

+ bty = "l",cex.lab = 1.5,cex.axis = 1.5)

> for (i in 2:14) lines(t,yieldsCleaned[100*i+1,61:90],

+ col = i,lwd = 2)

The yield curves in this dataset were smoothed using the six-parameter Svensson
(1994) model. Raw data or yield curves that were spline-smoothed would be
preferable, but such data are difficult to find in standard repositories.

Figure 6.21 contains time series plots of U.S. yields with 1-, 15-, and 30-year
maturities. The code for the first panel of Fig. 6.21, for 1-year maturities, is:

> year <- 2006 + (1:1406)*6/1406

> plot(year,yieldsCleaned[,61],type = "l",col = "darkgreen",

+ xlab = "year",ylab = "yield",ylim = c(0,5.5),

+ main = "maturity = 1 year",bty = "l",col.main = "navy")

The other panels are similar but with ordinates yieldsCleaned[,75] for 15-year
maturities and yieldsCleaned[,90] for 30-year maturities.
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Fig. 6.21 Time series plots of U.S. yields with maturities of 1, 15, and 30 years.

First we use scalar-on-function regression to predict the changes in the 1-, 15-,
and 30-year U.S. yields using changes in the European yield curve. The relevant
code is:

> library(refund) ; yscalar1 <- USdiffs[,1]

> fitSF1 <- pfr(yscalar1 ~ lf(EUdiffs,argvals = 1:30),

+ method = "REML")

> yscalar15 <- USdiffs[,15]

> fitSF15 <- pfr(yscalar15 ~ lf(EUdiffs,argvals = 1:30),

+ method = "REML")

> yscalar30 <- USdiffs[,30]

> fitSF30 <- pfr(yscalar30 ~ lf(EUdiffs,argvals = 1:30),

+ method = "REML")

The coefficient functions are plotted in Fig. 6.22. The code for the first panel is:

> plot(fitSF1, shade = TRUE, shade.col = "palegreen",

+ xlab = "maturity",ylab = expression(widehat(beta)[1](s)),

+ main = "response is y(1)",bty = "l",ylim = c(-0.05,0.15),

+ rug = TRUE,col.main = "navy")

The other two panels are similar, with fitSF1 replaced by fitSF15 and then
fitSF30.

Notice that changes in 1-year U.S. yields are affected positively by changes in
short-term European yields but are not affected significantly by changes in medium-
to long-term European yields. Changes in 15-year and 30-year U.S. yields are
positively affected by changes in European yields of all maturities, although the
effect is larger for changes in short-term European yields.

Next, we use the fda package (Ramsay et al. 2017) to perform function-on-
function regression for model (6.13) and obtain an estimate of the coefficient
function β1(s, t) that is smooth in both European and U.S. maturities (s and t ,
respectively). The intercept function β0(t) will also be estimated. First, we use the
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Fig. 6.22 Estimated coefficient functions β̂1(s) when predicting changes in 1-, 15-, and 30-year
U.S. yields from changes in the European yield curve.

function create.bspline.basis() in the fda package to set up a B-spline basis
called yieldBetaBasis with 20 basis functions over the interval [0, 30]. This basis
is used for β0(t), and β1(s, t) is modeled as a tensor product of this basis with itself.
We begin with:

> library(fda)

> yieldBetaBasis <- create.bspline.basis(c(0,30),20)

The first line of next code chunk uses the function fdPar() to create
yieldBeta0Par, a functional parameter object, to use the language of the fda

package. As explained in the help files for that package, functional parameter
objects are used as arguments to functions that estimate functional parameters. After
estimation, yieldBeta0Par will contain the spline coefficients of the functional
parameter β0(t) in model (6.13). The arguments “2” and “0.00001” specify a
penalty on the second derivative and a smoothing parameter equal to 0.00001,
which implies minimal smoothing. The second line uses the function bifd() to
create a bivariate functional data object yieldBeta1fd, that will contain the
20 × 20 coefficients of the tensor product of yieldBetaBasis with itself. The
third line uses bifdPar() to create a “bivariate functional parameter object” with
second derivative penalties on both of its bases and both penalties equal to 500.
After estimation, yieldBeta1fd will contain spline coefficients of the estimate of
β1(s, t) in (6.13). The code is:

> yieldBeta0Par <- fdPar(yieldBetaBasis,2,0.00001)

> yieldBeta1fd <- bifd(matrix(0,20,20),yieldBetaBasis,

+ yieldBetaBasis)

> yieldBeta1Par <- bifdPar(yieldBeta1fd,2,2,500,500)
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Next we create a list that, after estimation, will contain the coefficients of estimates
of β0(t) and β1(s, t):

> yieldBetaList <- list(yieldBeta0Par,yieldBeta1Par)

The elements in this list have just been discussed.
With the following code, a function parameter object D2fdPar is created that

will be used for both EUdiffs and USdiffs, the changes in the European and U.S.
yields. There is minimal smoothing since the argument lambda is only 0.00001.
Since the curves in the dataset have already been pre-smoothed, the objective here
is not smoothing but rather to convert the matrices EUdiffs and USdiffs into
functional data objects called x2 and y2 using smooth.basis(). The function
linmod() in the fda package that is used below for estimation requires that the
predictor and response function be functional data objects, not matrices. Recall that
the first argument, t, of smooth.basis() was computed earlier and contains the
maturities of the yields, which are the arguments of these functions.

> D2fdPar <- fdPar(yieldBetaBasis,lambda = 0.00001)

> x2 <- smooth.basis(t,t(EUdiffs),D2fdPar)$fd

> y2 <- smooth.basis(t,t(USdiffs),D2fdPar)$fd

Finally, we use the function linmod() to fit model (6.13) and the function
eval.bifd() to extract the estimate of β1(s, t) as a 30 × 30 matrix:

> linmodSmooth <- linmod(x2,y2,yieldBetaList)

> yieldbeta1mat <- t(eval.bifd(t,t,linmodSmooth$beta1estbifd))

We plot the estimated coefficient function β̂1(s, t) via:

> library(fields)

> xlab1 <- "s (argument of predictor function"

> xlab2 <- "= change in European yields)"

> ylab1 <- "t (argument of response function"

> ylab2 <- "= change in U.S. yields)"

> image.plot(t,t,yieldbeta1mat,col = terrain.colors(1000),

+ cex.main = 1.8, col.main = "navy",

+ xlab = paste(xlab1,xlab2),

+ ylab = paste(ylab1,ylab2),

+ legend.args = list(text =

+ expression(widehat(beta)[1](s,t)),adj = 0.8))

Figure 6.23 shows the result. As in Chap. 5, we use terrain colors. White indicates
the largest values of β̂1(s, t) and green corresponds to smallest values of this
function. The bottom of this plot corresponds to t = 1 (change in U.S. yield at
1-year maturity). We see there that β̂1(s, 1) assumes large positive values for small
s and decreases as s increases, in agreement with the left panel of Fig. 6.22. There
is also reasonably good agreement of Fig. 6.23 with the middle and right panels of
Fig. 6.22.
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Fig. 6.23 Plot of estimated coefficient function β̂1(s, t) when predicting changes in U.S. yield
curve (a function of t) using changes in the European yield curve (a function of s).

We see in Fig. 6.23 that changes in U.S. yields at any maturity depend little on
changes in European yields at long maturities, e.g., greater than 15 years. Changes
in short-term (under 5 years) U.S. yields depend most highly on changes in short-
term European yields. Changes in long-term (over 20 years) U.S. yields depend
most highly on medium-term (5–10 years) European yields.

The estimated intercept β̂0(t) is plotted in Fig. 6.24 using:

> par(mai = c(1,1.2,0.2,0.1))

> plot(linmodSmooth$beta0estfd,xlab = "s",

+ ylab = expression(widehat(beta)[0](s)),bty = "l",

+ lwd = 2,col = "darkgreen",cex.lab = 1.5,

+ cex.axis = 1.5,ask = FALSE)

To see how well function-on-function regression can predict changes in U.S.
yield curves, we divided the dataset into training and test data, so, for example
EUdiffsTrain and EUdiffsTest are the changes in the European yield curves
in the training and test data, respectively. The training data consisted of the first
1000 days and the test data the next 100 days.
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Fig. 6.24 Plot of estimated intercept function β̂0(t) when predicting changes in U.S. yield curve
(a function of t) using changes in the European yield curve (a function of s).

The function-on-function regression model just fit to the entire dataset was refit
using only the training data. The new fitted model is in the object linmodSmooth.

The following code predicts the changes in yields in the test data using the fit to
the training data. Thus, these are out-of-sample predictions, and, unlike in-sample
predictions could have a negative R2. The object RsqFDA contains the out-of-sample
R2 using the changes in the European yield curves as predictors. We see that RsqFDA
is 0.128, which is small but, at least, positive indicating some predictive power.

First we set up a new basis for prediction:

> xtextEU <- smooth.basis(t,t(as.matrix(EUdiffsTest)),

+ D2fdPar)$fd

Then we set up linear predictors bivariate functional data object coefficients:

> C <- linmodSmooth$beta1estbifd$coef

The basis inner product with xtextEU is:

> B <- inprod(yieldBetaBasis,xtextEU)

C%*%B are the coefficients for the linear part of the functional prediction. We
need to replicate the beta0 coefficients over the columns of C%*%B and add the
matrices:
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> predCoefs <- C%*%B + matrix(linmodSmooth$beta0estfd$coef,20,

+ nTest,byrow = FALSE)

Now we create the functional data object:

> predFDA <- fd(predCoefs,yieldBetaBasis)

The object fittedFDA contains the prediction of the U.S. yields test data:

> fittedFDA <- t(eval.fd(1:30,fdobj = predFDA))

The prediction errors are

> errors <- fittedFDA - USdiffsTest

and an out-of-sample R2 is

> RsqFDA <- 1 - sum(errors^2)/sum((USdiffsTest

+ - colMeans(USdiffsTrain))^2)

> print(round(RsqFDA,3))

[1] 0.128

Figure 6.25 shows every ninth change of the U.S. yield curve in the test dataset
and the prediction of that change using the European yield curve change.

6.6.1.2 Implementation Using the refund Package

For function-on-function regression, the linmod() function of the fda package
is limited to a single function predictor. In contrast, the pffr() function in the
refund package also performs function-on-function regression and is built upon
functions in the mgcv package and so, like the gam() function in that package, can
fit additive models. The predictors in the additive model can be functional or scalar.
As with gam(), the scalar predictors can enter linearly, as smooth functions of a
single predictor, or as smooth functions of multiple predictors. Another advantage
of pffr() is that it is easy to use, especially if one is already familiar with gam().

The function pffr() can use either ff() or ffpc() to construct a function-
on-function term. These differ in that ff() represents the coefficient function
β1(s, t) as a tensor product of cubic B-splines whereas ffpc() represents both
the functional predictor and β1(s, t) using the principal components basis, i.e.,
the eigenfunctions of the covariance operator of the functional predictors. As an
example, suppose y is a functional response, x1 and x2 are functional predictors, and
z1, z2, z3, and z4 are scalar predictors. Then the code y <- pffr(y ~ ff(x1) +

ffpc(x2) + s(z1) + z2 + s(z3,z4)) fits an additive model with the effect of
x1 modeled by ff(), the effect of x2 modeled by ffpc(), z1 having a smooth effect,
z2 entering linearly, and z3 and z4 entering as a bivariate effect. The function pffr()

implements penalized function-on-function regression (Ivanescu et al. 2015).
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Fig. 6.25 Prediction of changes in every ninth U.S. yield curve in the test dataset. The color-
coding of the curves is according to the predicted changes, the actual changes, and the historic
means, i.e., mean changes in the training data. The predictions are somewhat closer to the true
curves compared to the historic means, because the out-of-sample R2 is positive.

In this section, we illustrate pffr() with a single functional predictor using again
changes in the European and U.S. yield curves. The following code fits the function-
on-function mode to the training data using ff(), predicts the yield changes in the
test data, and computes an out-of-sample R2 called RsqFonF. We see that the R2 is
0.150, somewhat better than R2 using linmod(), which, as we just saw, is 0.128.

A function-on-function regression is fit via:

> fitFonF <- pffr(USdiffs ~ ff(EUdiffs), data = dataTrain)

> predsFonF <- predict(fitFonF,newdata = dataTest)

> RsqFonF <- 1 - mean((dataTest$USdiffs - predsFonF)^2) /

+ mean((t(dataTest$USdiffs) - colMeans(dataTrain$USdiffs))^2)

with the R2 given by:

> print(round(RsqFonF,3))

[1] 0.15
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When estimating the function-on-function regression model using ff(), a
warning was issued that the predictors have a very low effective rank and that
ffpc() might be a better choice. However, when we reran the code above with ff()

replaced by ffpc(), the out-of-sample R2 did not improve and, in fact, dropped
slightly to 0.145:

> fitFFPC <- pffr(USdiffs ~ ffpc(EUdiffs),data = dataTrain)

> predsFFPC <- predict(fitFFPC,newdata = dataTest)

> RsqFFPC <- 1 - (mean((dataTest$USdiffs - predsFFPC)^2)/

+ mean((t(dataTest$USdiffs) - colMeans(dataTrain$USdiffs))^2))

> print(round(RsqFFPC,3))

[1] 0.145

6.7 Kernel Machines

Kernel machines form a very general class of function estimation procedures that
includes many of the estimators treated in the earlier chapters as special cases.
One of the main uses of kernel machines is classification and the subclass known
as support vector machines comprises the most common approach. Thus far we
have not discussed the important problem of classification, so we will focus on this
particular use of kernel machines in the examples. Since their inception in the 1990s,
the kernel machine literature has grown enormously. Books on the topic include
Cristianini and Shawe-Taylor (2000) and Schölkopf and Smola (2002). Gaussian
processes (e.g. Rasmussen and Williams 2006) are also closely related to kernel
machines.

There are various ways by which kernel machines can be derived. Perhaps the
most elegant approach is that based on the functional analytic structure known
as a reproducing kernel Hilbert space, and details can be found in the references
mentioned in the previous paragraph. In addition, Pearce and Wand (2006, 2009)
explain how many of the semiparametric regression estimators considered in this
book are kernel machines within the reproducing kernel Hilbert space framework.
From now on we focus on the concrete aspects of kernel machines and their
implementation in R.

Suppose we observe the pairs (xi , yi), 1 ≤ i ≤ n, where xi ∈ R
d and yi ∈ R.

A kernel machine fit to such data is a real-valued function f̂ (x), x ∈ R
d , that

has the following ingredients: a loss function L , a set of linearly independent
functions h0(x), . . . , hp(x) on R

d and kernels K1, . . . ,Kq with corresponding
penalties λ1, . . . , λq > 0. A kernel is a symmetric, positive definite, function that
maps Rd ×R

d into R. There are numerous options for their choice. Some examples
of kernels are
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K (x, x′) = (1 + xT x′)7,

K (x, x′) = exp{−20‖x − x′‖}

and K (x, x′) = 1

1 + ‖x − x′‖13 .

Given the aforementioned ingredients, the corresponding kernel machine is chosen
from the class of functions

f (x) =
p∑

j=0

βj hj (x) +
n∑

i=1

{α1iK1(xi , x) + . . . + αqiKq(xi , x)} (6.14)

with the coefficients β ≡ (β0, . . . , βp) and α� ≡ (α�1, . . . , α�,n), 1 ≤ � ≤ q,
obtained by solving the optimization problem

(β̂, α̂1, . . . , α̂q) = argminβ,α1,...,αq

[∑n
i=1 L (yi, f (xi ))

+λ1α
T
1 K1α1 + . . . + λqαT

q Kqαq

] (6.15)

where K� = [K�(xi , xj )]1≤i,j≤n are known as Gram matrices. The kernel
machine f̂ takes the form of (6.14) with the coefficients replaced by their estimated
values (6.15). In many kernel machine applications q = 1, in which case there
is a single kernel K1 and a single penalty λ1. However, many useful kernel
machines, such as those corresponding to generalized additive models (Chap. 3)
and longitudinal data analysis (Chap. 4), require the more general infrastructure
described here.

The penalized spline scatterplot smoother, introduced in Chap. 2, for univariate
predictor data is a q = 1 kernel machine. Let (xi, yi), 1 ≤ i ≤ n, denote a d = 1
regression dataset. Set the loss function to be

L (a, b) = (a − b)2, a, b ∈ R,

known as squared-error loss, and put

h0(x) ≡ 1, h1(x) ≡ x and K1(x, x′) ≡
K∑

k=1

zk(x)zk(x
′) (6.16)

where {zk : 1 ≤ k ≤ K} is an appropriate spline basis such as the linearly
transformed cubic O’Sullivan splines described in Sect. 2.2. Then the resulting least-
squares kernel machine is

f̂ (x) = β̂0 + β̂1 x +
n∑

i=1

α̂1i K1(xi, x) (6.17)
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where, from (6.15) and some algebra,

α̂1 = {(I − H )K1 + λ1I }−1(I − H ) y

and

[
β̂0

β̂1

]
= (XT X)−1XT (y − K1α̂1) .

(6.18)

Here K1 ≡ ZZT is the Gram matrix, H ≡ X(XT X)−1XT is the linear component
‘hat’ matrix, with

X ≡ [1 xi]1≤i≤n and Z ≡ [zk(xi)
1≤k≤K

]1≤i≤n (6.19)

denoting the linear component and spline basis design matrices. Note that (6.17) can
be shown to coincide with the standard penalized spline estimator given in Chap. 2.

If we replace (6.16) by

h0(x) ≡ 1 and K1(x, x′) ≡ exp{−γ (x − x′)2}, for some γ > 0, (6.20)

then we arrive at a different kernel machine for fitting the same data. The K1
in (6.20) is known as the radial basis function kernel. The fitted kernel machine
is given by (6.17) and (6.18) but with

K1 ≡ [K1(xi, xj )]1≤i,j,≤n = [ exp{−γ (xi − xj )
2}]1≤i,j,≤n, X ≡ 1

where 1 is the n × 1 vector of ones. In this case, H = 1(1T 1)−11T = 1
n

11T .

Figure 6.26 shows kernel machine fits to the data on area per million złoty
versus construction date for the Warsaw apartment data described in Chap. 2, for the
penalized spline and radial basis function kernel machines, with ingredients (6.16)
and (6.20). The zk correspond to O’Sullivan cubic spline basis functions, as
described in Sect. 2.2, and K = 25. The radial basis function scale parameter
is γ = 0.1. The penalty parameters are such that there are 16 effective degrees
of freedom for each fit. The two kernel machine fits are similar, but with some
noticeable differences—especially where the predictor data are sparse.

Figure 6.26 illustrates the fact that kernel machines provide an alternative
approach to the semiparametric regression models treated in the earlier chapters
with the loss function L corresponding to the log-likelihood of the response model.
However, kernel machines also provide an elegant framework for the construction
of classification methods, via a different choice for L . Such is the focus of the
remainder of this section.
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Fig. 6.26 Two different least-squares kernel machine fits to data on price per square meter versus
construction date for the Warsaw apartment data described in Sect. 2. The effective degrees of
freedom of each fit is 16.

6.7.1 Support Vector Machine Classification

A support vector machine is a kernel machine with the loss function set to

L (a, b) = (1 − ab)+, a, b ∈ R,

commonly known as hinge loss. This particular loss is tailored towards classification
rather than standard regression analysis, with details provided in, e.g., Moguerza and
Muñoz (2006). Since the late 1990s, support vector machines have become one of
the most popular “off-the-shelf” classifiers and have proven to be very successful in
a variety of applications. As before, the data are (xi , yi), 1 ≤ i ≤ n, where xi ∈ R

d ,
but now the yi are coded according to xi belonging to one of two classes, C− and
C+, via:

yi =
{−1 if xi belongs to C−,

1 if xi belongs to C+.
(6.21)

In this classification context, the (xi , yi) are usually referred to as the training data.
The kernel machine fit to these data, f̂ , classifies a new xnew ∈ R

d according to
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xnew classified as belonging to C− if f̂ (xnew) < 0
xnew classified as belonging to C+ if f̂ (xnew) ≥ 0.

Figure 6.27 shows a dataset for which classification is of interest. It is a color-
coded scatterplot matrix of data on several variables pertaining to cars sold at
auction. The scatterplot point colors denote whether a car bought at auction by
an automobile dealership is considered a good or bad buy. The origin of the data
is a classification competition titled “Don’t Get Kicked!” that ran on the kaggle
platform (www.kaggle.com) during 2011–2012. The data are stored in the data
frame carAuction within the HRW package. For display purposes, only 300 cars
and 15 predictor variables are shown in Fig. 6.27 and jittering has been applied to

Fig. 6.27 Color-coded scatterplot matrix of 15 predictors and 300 cars from the kaggle platform’s
“Don’t Get Kicked!” competition.

www.kaggle.com
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the 0/1 indicator variables (e.g., compact= 1 if the car is compact and compact= 0
otherwise). There are 11 indicator variables in total, corresponding to whether or not
the car:

was auctioned by the company Manheim, is a 2005 vehicle,
is a Chevrolet, is a Chrysler,
has alloy wheels, has covered wheels,
was made in the USA, is compact,
was purchased in Texas, was purchased in Florida
and was purchased in North Carolina.

(6.22)

There are also four continuous variables:

age at sale (years),
odometer reading (miles),
acquisition price for this vehicle in average
condition at time of purchase (U.S. dollars), and
acquisition cost paid for the vehicle at
time of purchase (U.S. dollars).

(6.23)

In Fig. 6.27 the abbreviated names “acquis’n price” and “acquis’n cost” are used for
the last two variables.

Figure 6.27 shows a fair degree of overlap between the “good buy” and “bad
buy” classes. However, close inspection reveals some differences. For example,
there is a tendency for cars with higher cost at purchase values to be good buys.
The problem at hand is: if a new car is to be auctioned with data on each of these
features available, then should it be classified as a good or bad buy? Support vector
machines based on the training data can be used to address the problem. We now
describe their implementation in R.

There are several R packages that include support vector machine classification,
such as probsvm (Zhang et al. 2013) and svmpath (Hastie 2016). One of the oldest
is e1071 (Meyer et al. 2017), a package that is named after a research group at
Vienna University of Technology, Austria. The svm() function of this package
provides an interface to LIBSVM (Chang and Lin 2011)—a well-established library
of C++ routines for support vector machines and, hence, we use this particular
support vector machine R function for illustration. The e1071 vignette titled
“Support Vector Machines” by David Meyer provides useful details on svm() and
related functions. In the notation of (6.14) and (6.15), svm() enables fitting of q = 1
support vector machines with a single penalty λ and kernel K . The default kernel
of svm() is

K (x, x′; γ ) = exp{−γ ‖x − x′‖2}, x, x′ ∈ R, γ > 0,



6.7 Kernel Machines 267

the family of d-dimensional radial basis function kernels. Some other kernel
families are also supported by svm(). Lagrange multiplier theory can be used to
show that solving (6.15) with hinge loss reduces to the quadratic programming
problem

min
α

[
1
2αT {(yyT ) � K(γ )}α − 1T α

]

subject to 0 ≤ αi ≤ C, 1 ≤ i ≤ n and yT α = 0

where K(γ ) ≡ [K (xi , x
′
j ; γ )] is the Gram matrix and C > 0, known as the cost

parameter, is a monotone transformation of the penalty λ. Here, and throughout this
section, A � B denotes the element-wise product of matrices A and B having the
same dimensions.

Our specific illustration of the svm() involves taking all 8976 “bad buy” cars in
the original kaggle dataset and adding the same number of randomly chosen “good
buy” cars. We then hold back 1000 randomly selected cars for misclassification
rate estimation, resulting in a training data sample size of n = 16,952. Working
with such a “balanced” training dataset aids exposition, but also circumvents the
problem that svm() does not scale well to very large n. See Exercise 8 for one
possible remedy.

In R, set yTrain to be the array containing the 16,952 indicators of whether
a car is a good buy (coded as −1) or a bad buy (coded as 1). Then construct
predMatTrain to be the 16,952 × 15 R data frame containing the training sample
values of each of the d = 15 predictors (6.22) and (6.23), corresponding to
Fig. 6.27. If gammaVal and costVal are set to positive numbers, then a support
vector machine fit is achieved via the commands:

> trainDF <- data.frame(yTrain,predMatTrain)

> fitSVM <- svm(factor(yTrain) ~ .,data = trainDF,

+ gamma = gammaVal,cost = costVal)

If predMatTest is the 1000 × 15 data frame defined analogously to the data frame
predMatTrain, but containing the held back predictor values, then the vector of
classifications is obtained from the command:

> yHat <- 2*as.numeric(predict(fitSVM,predMatTest)) - 3

Note that the linear transformation used in this command maps the {1, 2} values,
produced from as.numeric(predict(fitSVM,predMatTest)), to values in the
set {−1, 1} corresponding to the coding convention of (6.21).

As pointed out by, e.g., Hastie and Zhu (2006), the Gaussian kernel machine
parameter vector (γ, C) ∈ R

2+ can have a pronounced effect on the classification
performance of a radial basis function support vector machine. The svm() function
is accompanied by function named tune.svm() that aids good selection of (γ, C),
defaulted to be ten-fold cross-validation. An example call to tune.svm() is:

> estParamVec <- tune.svm(factor(yTrain) ~ ., data = trainDF,

+ gamma = 10^(-5:-1),
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+ cost = 10^seq(1,2,length=5)

+ )$best.parameters

which conducts a search over the grid

(γ, C) ∈ {10−5, 10−4, . . . , 10−1} × {101, 105/4, 106/4, 107/4, 102}.
For the n = 16,952 car auction data with 15 predictors tune.svm() was found to
be very slow, so a random subsample of size 1000 is used instead. This resulted in
the choice

(γ̂ , Ĉ) = (10−2, 105/4) ≈ (0.01, 17.7828).

These values were used for gammaVal and costVal in the above call to svm(). The
resulting confusion matrix is

Classified good buy Classified bad buy

Actual good buy 385 121

Actual bad buy 181 313

and the estimated misclassification rate is

181 + 121

1000
= 30.2%.

Even though about 30% of cars are misclassified according to the support vector
machine, it is much better than 50% from a random guess. We have carried out
more detailed analyses involving other variables from the original kaggle “Don’t
Get Kicked!” dataset but found that it is very difficult to improve, significantly,
beyond a 30% misclassification rate for such balanced training data.

The R scripts carAucRadialSVMtune.R and carAucRadialSVM.R in the HRW

package carry out the full radial basis function support vector machine analysis
presented here. These scripts can be run by issuing the following R commands:

> library(HRW) ;demo(carAucRadialSVMtune,package="HRW")

> demo(carAucRadialSVM,package = "HRW")

The locations of these script files can be determined using:

>system.file("demo","carAucRadialSVMtune",package="HRW")

>system.file("demo","carAucRadialSVM",package = "HRW")

The “Support Vector Machines” vignette in e1071 by David Meyer concludes by
pointing out that svm() “scales rather badly with the data size,” and this had been
our experience when trying to fit support vector machines to all 72,983 cars in the
full car auction dataset. One remedy to this problem is to use a low-rank support
vector machine, such as the penalized spline versions that we discuss next.
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6.7.1.1 Penalized Spline Support Vector Machines

The radial basis kernel is the most commonly used kernel in support vector machine
classification and typically produces a high quality classifier when properly tuned.
However, such classifiers are “black boxes,” in that they provide little or no insight
into the effects of the predictors and their relative importance. Penalized spline sup-
port vector machines (Pearce and Wand 2006) combine the ideas of additive models,
as described in Sect. 3.3, and support vector machine classification to produce
interpretable classifiers. As alluded to earlier, their low-rank aspect can overcome
problems with more common support vector machine methodology. Ormerod et al.
(2008) provide a detailed description and computational details of penalized spline
support vector machines. The corresponding R package, LowRankQP (Ormerod and
Wand 2018), allows straightforward implementation in R.

We now describe fitting a penalized spline support vector machine to the n =
16,952 car auction data in R. The first steps are to set up linear and spline basis
design matrices X and Z, in exactly the same way as the mixed model approach
to nonparametric regression in Sect. 2.7. The X matrix is the 16,952 × 16 matrix
with a column of ones followed by columns containing the values of the indicator
predictors (6.22) and continuous predictors (6.23). The Z matrix is

Z = [Zage | Zodom. | Zave. acq. | Zcost]

where

Zage ≡ [ zk(agei )
1≤k≤Kage

]1≤i≤16,952

contains the spline basis function {zk : 1 ≤ k ≤ Kage} evaluated at each of the age
at sale observations. The matrices Zodom., Zprice and Zcost are defined analogously for
the other continuous predictors given at (6.23). Each of the continuous predictors
require smoothing parameters

λage, λodom., λprice, λcost > 0.

Once these have been set, then forms the vector

λ = [λage1T
Kage

, λodom.1T
Kodom.

, λprice1T
Kprice

, λcost1T
Kcost

]T (6.24)

where Kodom., Kprice and Kcost are the numbers of spline basis functions for each of the
other continuous predictors and 1d denotes the d × 1 vector of ones. Then construct

Z̃ ≡ Z {2 diag(λ)}−1/2.
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In our analysis the smoothing parameters are set to be equal to λ = 44.7 after
transforming each of the continuous predictors to the unit interval. The R script
carAucPenSplSVMtune.R in the HRW package uses two-fold cross-validation to
justify the choice of λ. This script can be run and located using:

> library(HRW);demo(carAucPenSplSVMtune,package = "HRW")

> system.file("demo","carAucPenSplSVMtune.R",package = "HRW")

Having equal smoothing parameters means that diag(λ) is multiple of the identity
matrix. The quadratic programming problem is then

min
α

[
1
2αT {(yyT ) � (Z̃Z̃

T
)}α − 1T α

]

subject to 0 ≤ αi ≤ 1, 1 ≤ i ≤ n and XT (y � α) = 0
(6.25)

with n = 16,952 in the current example. Since the Gram matrix Z̃Z̃
T

has rank
equal to the number of columns of Z̃, (6.25) is a low-rank quadratic programming
problem. Section 3 of Ormerod et al. (2008) describes a streamlined solution
strategy. We used Kodom. = 5 and Kodom. = Kave. acq. = Kcost = 15 which corresponds to
a rank of 50. The classifier is then

xnew classified as being a good buy if Xnewβ̂ + Znewû < 0

xnew classified as being a bad buy if Xnewβ̂ + Znewû ≥ 0.

where Xnew and Znew are the design matrices formed from xnew and û = Z̃
T
(̂α � y).

The β̂ vector is obtained from Karush–Kuhn–Tucker conditions of the quadratic
programming problem, as described in Sect. 6 of Pearce and Wand (2006).

Suppose that the array lambda is set up in R according to (6.24). Then the main
R commands for fitting the penalized spline support vector machine are:

> Ztilde <- Z*(1/sqrt(2*lambda))

> yX <- as.matrix(y*X) ; yZtilde <- as.matrix(y*Ztilde)

> library(LowRankQP)

> LowRankQPobj <- LowRankQP(yZtilde,rep(-1,n),t(yX),

+ rep(0,ncX),rep(1,n),niter=500)

> betaHat <- as.vector(LowRankQPobj$beta)

> uHat <- as.vector(crossprod(yZtilde,LowRankQPobj$alpha))

The classifications for the held-back data are found via:

> yHat <- sign(Xnew%*%betaHat + Znew%*%uHat)

where Xnew and Znew are the R matrices containing Xnew and Znew, respectively.
The R script carAucPenSplSVM.R in the HRW package contains the full set of

commands for obtaining the penalized support vector machine classification vector
yHat for the same training and held-back data used in Sect. 6.7.1. The ensuing
confusion matrix is:
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Fig. 6.28 Plot of penalized spline support vector classifier fit to the car auction training data of size
n = 16,952 described in the text. In each panel, the classifier is evaluated over a grid corresponding
to that panel’s predictor and all other predictors are set at their averages. In the rug plots at the base
of each panel, jittering has been added to the binary predictor data to aid visualization.

Classified good buy Classified bad buy

Actual good buy 404 102

Actual bad buy 205 289

and the estimated misclassification rate is

205 + 102

1000
= 30.7%,

which is very close to that obtained from the radial basis function support vector
machine. However, we can visualize, and possibly interpret, this penalized spline
support vector machine fit by plotting the additive components. This is done in
Fig. 6.28. In each panel, a grid corresponding to that panel’s predictor is created
and all other predictors are set at their averages. The vertical axis limits are fixed at
(−0.5, 0.5).
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Perusal of Fig. 6.28 shows the relative importance of the predictors and the
nature of their effect on the classifier. For example, the presence of alloy wheels
is seen to be strongly indicative of the car being a good buy. The effect of being
a compact car is weaker. Out of the four continuous predictors, two (“age at sale”
and “acquisition cost”) have linear effects. The other two (“odometer reading” and
“acquisition price”) have nonlinear effects. The odometer reading does not ramp up
for classification of a bad buy at auction until about 40,000 miles.

To run and locate carAucPenSplSVM.R on the computer on which HRW is
installed issue the commands:

> library(HRW) ; demo(carAucPenSplSVM,package = "HRW")

> system.file("demo","carAucPenSplSVM.R",package = "HRW")

6.8 Missing Data and Measurement Error

All of the examples given so far in this book have been for complete datasets and
with the assumption that the variables of interest have been measured accurately.
Unfortunately, many applications are plagued by data with missingness and/or
measurement error. For example, in a nutritional study in which much of the data
comes from questionnaires filled out by members of the study group, it is common
for questions involving smoking and alcohol intake to be skipped or under-reported.
A potentially important biomarker, such as Vitamin D intake, will not be measured
by the questionnaire process but a surrogate could be formed from some of the
questionnaire responses. The problems of how to best account for such impurities
in the data have spawned major areas of statistical research. Books devoted to
handling missing data and/or measurement error include Fuller (1987), Little and
Rubin (2002), Carroll et al. (2006), and Daniels and Hogan (2008).

While the missing data and measurement error literatures are large and varied,
many of its tenets, models, and methodologies apply to semiparametric regression.
In this section we will give a flavor for ways by which missing data and measure-
ment error can be accommodated, in a principled fashion, in R-based analyses. This
involves couching semiparametric regression in a graphical models framework and
using Bayesian inference engines for fitting and inference.

6.8.1 Graphical Models Approach to Bayesian Semiparametric
Regression

Complicated semiparametric regression models and analyses benefit from prob-
abilistic graphical representations of Bayesian semiparametric models. Before
returning to the handling of missing data and measurement error, we discuss the
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Fig. 6.29 An elementary
probabilistic directed acyclic
graph.

x1 x2

x3 x4

x5

graphical models approach to Bayesian semiparametric regression in general terms.
A more detailed exposition is given in Wand (2009).

Figure 6.29 shows a directed graph. The circles in the graph are known as
nodes. The arrows, known as directed edges, impose “parent”–“child” relationships
between the nodes that they join. For example, the node labeled x3 is a parent of
x5. Conversely, x5 is a child of x3. The directed graph is also acyclic since there
are no cycles—that is, one cannot follow the arrows away from a given node and
eventually return to that node.

Now suppose that x1, . . . , x5 are continuous random variables with joint density
function satisfying

p(x1, x2, x3, x4, x5) = ∏5
i=1 p(xi |parents of xi)

= p(x1) p(x2) p(x3|x1, x2) p(x4|x2) p(x5|x3, x4).
(6.26)

Then the graph in Fig. 6.29 is a probabilistic directed acyclic graph with respect
to p(x1, x2, x3, x4, x5). This definition applies to general directed acyclic graphs
having nodes corresponding to random vectors x1, . . . , xk , with (6.26) replaced by

p(x1, . . . , xk) =
k∏

i=1

p(xi |parents of xi ).

For the remainder of this book, all directed acyclic graphs are assumed to be
probabilistic and this adjective is omitted.

Next, consider the Bayesian nonparametric regression model

y| x,β,u, σε ∼ N(Xβ + Zu, σ 2
ε I ), xi |μx, σ

2
x

ind.∼ N(μx, σ
2
x )

u ∼ N
(
0, σ 2

u I
)
, β ∼ N

([
0
0

]
,

[
100 10
10 100

])
,

μx ∼ N(0, 100), σε, σx, σu
ind.∼ Half-Cauchy(25),

(6.27)
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Fig. 6.30 Directed acyclic
graph corresponding to
model (6.27). The shaded
nodes correspond to the
observed data. u

u

y

x

μx

x

with prior mutual independence assumed among each of β, u, μx , σε, σx , and σu.
The vectors in (6.27) are

x ≡
⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ , y ≡
⎡

⎢⎣
y1
...

yn

⎤

⎥⎦ , β ≡
[

β0

β1

]
and u ≡

⎡

⎢⎣
u1
...

uK

⎤

⎥⎦ .

The design matrices X and Z are given by (6.19). The joint density function of the
random variables in (6.27) is

p(y, x,β,u, σu, σε, μx, σx) = p(y|x,β,u, σε) p(x|μx, σx)p(β)

×p(u|σu) p(σu) p(μx) p(σε) p(σx)

(6.28)
where, for example,

p(y|x,β,u, σε) = (2πσ 2
ε )−n/2 exp

{
− 1

2‖y − Xβ − Zu‖2/σ 2
ε

}

and

p(x|μx, σx) = (2πσ 2
x )−n/2 exp

{
− 1

2‖ x − 1μx‖2/σ 2
x

}
.

Here 1 is the n × 1 vector of ones. Then Fig. 6.30 is a directed acyclic graph
representation of (6.28). The shading of the x and y nodes signifies that they
correspond to observed data.

There are several advantages to such graphical representations of semiparametric
regression models. First, graphs such as the one in Fig. 6.30 provide a visualization
of the hierarchical structure of its corresponding Bayesian model—in this case
model (6.27). Another advantage is that graph theoretic results can be used to
determine parts of the model that can be separated from other parts. For example,
the result

{β,u, σu, σε} is independent of {μx, σx}
∣∣∣ {x, y} (6.29)
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Fig. 6.31 Moral graph of the
directed acyclic graph in
Fig. 6.30.
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asserts that, given the data, the regression parameters are independent of the
predictor parameters. This implies that

p(β,u, σu, σε|x, y,μx, σx) = p(β,u, σu, σε, |x, y),

meaning that the values of the predictor distribution parameters have no effect
on Bayesian inference for the regression parameters via the posterior density
p(β,u, σu, σε|x, y). Proposition (6.29) can be proven using Corollary 3.23 of
Lauritzen (1996). The essence of the proof is that the x node blocks all paths
between {β, σε} and {μx, σx} in the moral graph (e.g. Lauritzen 1996) of Fig. 6.30.
The moral graph is shown in Fig. 6.31 and is formed from the directed acyclic
graph in Fig. 6.30 by drawing an edge between all parent nodes that have a child
node in common and then removing all arrows. (For propositions similar to (6.29)
but involving a subset of the nodes then the appropriate moral graph applies to a
particular subgraph of the directed acyclic graph; Corollary 3.23, Lauritzen 1996).

Bayesian inference in the graphical model given by (6.27) and depicted in
Fig. 6.30 involves determination of posterior density functions such as

p(σε|x, y), p(μx |x, y), p(σx |x, y) and p(aT β + bT u|x, y),

for arbitrary constant vectors a and b. However, these density functions are difficult
to obtain and approximation methods, based on either Monte Carlo sampling or
deterministic calculations for simplified versions of the moral graph, are typically
employed in practice. These approximation methods also benefit greatly from theo-
retic results such as Markov blanket simplification of full conditional distributions
(e.g. Pearl 1988). In recent years, Bayesian inference engines have emerged for
facilitating such approximate inference for general classes of graphical models.
Examples include BUGS (Lunn et al. 2013) and Stan (Carpenter et al. 2017)
based on Monte Carlo sampling, and Infer.NET (Minka et al. 2014) based on mean
field variational Bayes and expectation propagation (e.g. Bishop 2006). Currently,
the Monte Carlo packages have limitations regarding computational speed and the
deterministic packages have versatility limitations. These drawbacks are likely to
be alleviated in the future by the emergence of new Bayesian inference engines and
improved versions of existing ones.
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The BUGS engine can be accessed from R using the wrapper packages BRugs

(Ligges et al. 2017) and R2WinBUGS (Gelman et al. 2015). Similarly, Stan is well
supported by the R package rstan (Guo et al. 2017). Crainiceanu et al. (2005b)
and Marley and Wand (2010) illustrate the use of the BUGS wrapper packages for
a selection of semiparametric regression models. The remaining examples of this
book are in a similar vein.

6.8.2 Nonparametric Regression with a Partially Observed
Gaussian Predictor

We now introduce a useful class of models for conveying the main ideas of
semiparametric regression with missing data and/or measurement error, via the
graphical models approach and with implementation in R. It is called nonparametric
regression with a partially observed Gaussian predictor.

First consider Bayesian nonparametric regression with Gaussian predictors:

y| x,β,u, σε ∼ N(Xβ + Zu, σ 2
ε ), xi | μx, σ

2
x

ind.∼ N(μx, σ
2
x ),

u|σu ∼ N(0, σ 2
u I )

where X and Z are given by (6.19) and appropriate priors are placed on μx , σx , β,
σε and σu. In model (6.27), corresponding to directed acyclic graph (Fig. 6.30), the
xis are completely observed. Now, instead, suppose that we only observe xobs where

x =
[

xobs

xunobs

]

is a partition of the n × 1 predictor vector into components of dimensions nobs × 1
and nunobs × 1. The xunobs either corresponds to predictor data that are missing or
measured with error. In the missing data case we define the vector

r ≡
⎡

⎢⎣
r1
...

rn

⎤

⎥⎦ where ri =
{

1 if xi is observed,
0 if xi is missing.

In the measurement error case, we observe a surrogate

w =
[

wx,obs

wx,unobs

]

where wx,obs partners the validation sample xobs and wx,unobs contains the surrogates
for xunobs.
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Table 6.2 Various missing data and measurement error models for partially observed predictor
data.

Model for missingness

or measurement error Verbal description

ri |p ind.∼ Bernoulli(p) Missing completely at random

ri |φ0, φ1
ind.∼ Bernoulli

(
logit−1(φ0 + φ1 yi)

)
Missing at random

ri |φ0, φ1
ind.∼ Bernoulli

(
logit−1(φ0 + φ1 xi)

)
Missing not at random

wi
ind.∼ N(xi, σ

2
w), xi

ind.∼ N(μx, σ 2
x ) Classical measurement error

xi
ind.∼ N(wi, σ

2
x ) Berkson measurement error

Table 6.2 lists various models for the unobserved predictor vector xunobs. Appro-
priate priors should be placed on the missingness and measurement error param-
eters. The verbal descriptions match common usage in the literature and standard
texts on the topics such as Little and Rubin (2002) and Carroll et al. (2006). The
distinction between “missing at random” and “missing not at random” is subtle. In
the former case, the missingness depends on completely observed data and graph
theoretic results (e.g. Lauritzen 1996) can be used to show that

{β,u, σu, σε, μx, σx} is independent of {φ0, φ1}
∣∣∣ {x, y}.

Such is not the case for data missing not at random, and the missingness mechanism
impinges on inference for the regression parameters.

Figure 6.32 shows directed acyclic graphs corresponding to the models listed in
Table 6.2. We see that nonparametric regression with partially observed predictor
data corresponds to making inference for a more elaborate graphical model.
According to this approach, the unobserved predictor data vector xunobs has a
similar status to the regression parameters: another hidden node for which infer-
ence is sought. Similar comments apply to the auxiliary parameters such as
φ ≡ (φ0, φ1).

The HRW package contains R scripts for demonstrating fitting of each of the
models in Table 6.2 via Stan. The scripts are named:

npReg.R npRegMCAR.R

npRegMAR.R npRegMNAR.R

npRegClassicMeaErr.R npRegBerksonMeaErr.R

Simulated data are used in each of these scripts, which allows comparison of the
estimates with the true model parameters and functions. They can be modified for
real data and related models. Sections 6.8.3 and 6.8.4 provide illustrations.

There is insufficient space here to describe each of the aforementioned scripts
and the output that they produce. Instead we encourage the reader to study and
run those scripts that are of interest. We will provide details on just one of
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complete predictor
 data

l
y

βu

σε

σxμx

lx

σu

predictor missing
 completely at random

l
y

βu

σε

σxμx

lxobs xunobs

lr p

σu

predictor missing
 at random

l
y

βu

σε

σxμx

lxobs xunobs

lr φ

σu

predictor missing
 not at random

l
y

βu

σε

σxμx

lxobs xunobs

lr φ

σu

predictor subject to
 classical measurement error

l
y

βu

σε

σxμx

lxobs xunobs

lwx,obs l wx,unobs

σw

σu

predictor subject to
 Berkson measurement error

l
y

βu

σε

σx

lxobs xunobs

lwx,obs l wx,unobs

σu

Fig. 6.32 Directed acyclic graphs for nonparametric regression with complete predictor data and
five partially observed Gaussian predictor data models.

them, npRegClassicMeaErr.R, for nonparametric regression subject to classical
measurement error.

The data in npRegClassicMeaErr.R are simulated according to the model

yi ∼ N(f (xi), 0.352), wi
ind.∼ N(xi, 0.12), xi

ind.∼ N( 1
2 , 1

36 ), 1 ≤ i ≤ n,
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where

f (x) = 3 exp{−78(x − 0.38)2} + exp{−200(x − 0.75)2} − x

and n = 1000. The wi are fully observed surrogates for the xi . Only 10% of the xis
are observed, giving a validation sample of size nobs = 100.

The full Bayesian model in npRegClassicMeaErr.R is

yi | β0, β1, u1, . . . , uk, σε, xi
ind.∼ N

(
β0 + β1 xi + ∑k

k=1 uk zk(xi), σ
2
ε

)
,

xi | μx, σx
ind.∼ N(μx, σ

2
x ), wi | xi, σw

ind.∼ N(xi, σ
2
w),

μx ∼ N(0, σ 2
μ), σx ∼ Half-Cauchy(Ax),

β0, β1
ind.∼ N(0, σ 2

β ), u1, . . . , uk | σu
ind.∼ N(0, σ 2

u ),

σε ∼ Half-Cauchy(Aε), σu ∼ Half-Cauchy(Au),

σw ∼ Half-Cauchy(Aw)

(6.30)

where σu, σβ, Aε, Au, Ax, Aw > 0 are hyperparameters which are all set to 105.
Note that npRegClassicMeaErr.R uses the simple truncated line spline basis with

zk(x) = (x − κk)+, 1 ≤ k ≤ K,

where the κk are knots placed at the quantiles of the xis. This is because the spline
basis functions have to be constructed inside the Bayesian inference machine code.
This creates difficulties if using O’Sullivan splines. The input data are

xobs, w =
[

wx,obs

wx,unobs

]
and y =

[
yx,obs

yx,unobs

]

where, for example, yx,obs is the 100×1 vector of yis that are partnered by an exactly
observed xi and yx,unobs is the 900×1 vector of yis with no such xi partner. The Stan
code for the model specification is:

model

{

yxObs ~ normal(XxObs*beta+ZxObs*u,sigmaEps);

xObs ~ normal(muX,sigmaX);

wxObs ~ normal(xObs,sigmaW);

yxUnobs ~ normal(XxUnobs*beta+ZxUnobs*u,sigmaEps);

xUnobs ~ normal(muX,sigmaX);

wxUnobs ~ normal(xUnobs,sigmaW);

u ~ normal(0,sigmaU) ; beta ~ normal(0,sigmaBeta);
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Fig. 6.33 Bayes estimate of the regression function for data simulated according to the nonpara-
metric regression model (6.30) with partially observed predictor data, and the remaining predictor
data subject to classical measurement error. The shaded region corresponds to pointwise 95%
credible sets. The true mean function from which the data were generated is also shown.

muX ~ normal(0,sigmaMu); sigmaX ~ cauchy(0,Ax);

sigmaW ~ cauchy(0,Aw); sigmaEps ~ cauchy(0,Aeps);

sigmaU ~ cauchy(0,Au);

}

where the design matrices for the unobserved predictor data XxUnobs and ZxUnobs

are constructed according to the Stan code:

for (i in 1:nUnobs)

{

XxUnobs[i,1] = 1 ; XxUnobs[i,2] = xUnobs[i];

for (k in 1:ncZ)

ZxUnobs[i,k] = (xUnobs[i]-knots[k])

*step(xUnobs[i]-knots[k]);

}

Figure 6.33 shows the estimated function and pointwise 95% credible set based
on a burn-in of size 2000 and a kept sample of size 1000. In this figure notice that
only the 100 dark-colored points are scattered about the true regression function.
For the other 900 light-colored points no such visual alignment occurs due to
measurement error affecting their horizontal axis values. Despite this mismatch
between much of the observed data and the signal, the MCMC-based Bayesian
fitting procedure is able to estimate the signal very well.
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parameter trace lag 1 acf density summary

μx
0.49 0.5 0.51 0.52 0.53 0.5

posterior mean: 0.511

95% credible interval: 
(0.5,0.523)

σx
0.15 0.16 0.17 0.18

posterior mean: 0.167

95% credible interval: 
(0.158,0.176)

σε
0.35 0.4 0.45

posterior mean: 0.388

95% credible interval: 
(0.354,0.424)

σw
9 0.095 0.1 0.105 0.11 0.115

posterior mean: 0.104

95% credible interval: 
(0.0982,0.11)

mean function
at 1st quantile

of obs'd predictor
2.2 2.4 2.6 2.

posterior mean: 2.52

95% credible interval: 
(2.38,2.65)

mean function
at 2nd quantile

of obs'd predictor
0.4 0.6 0.8

posterior mean: 0.567

95% credible interval: 
(0.416,0.723)

mean function
at 3rd quantile

of obs'd predictor
8 −0.6 −0.4 −0.2

posterior mean: −0.44

95% credible interval: 
(−0.598,−0.274)

Fig. 6.34 Plots and summaries of MCMC samples for parameters of interest from the classical
measurement error example: trace plot, lag-1 plot, estimated autocorrelation function, estimated
posterior density function, and numerical summary.

Figure 6.34 shows the MCMC samples, lag-1 plots, autocorrelation function,
estimated posterior density function, and numerical summaries for several key
parameters, including the regression function estimates at quartiles of the observed
predictor data. The true values are also shown as dashed vertical lines on the
posterior density plots.

Figure 6.35 is a similar graphic for the first five unobserved xi values. One
interesting aspect of the posterior density functions of some of these xunobs,i is that
they are bimodal. This is because of two-peaked nature of the regression curve. A
particular (wi, yi) pair could correspond to two distinct regions for its unobserved
corresponding xi .

To run and locate npRegClassicMeaErr.R issue the commands:

> library(HRW) ; demo(npRegClassicMeaErr,package = "HRW")

> system.file("demo","npRegClassicMeaErr.R",package = "HRW")
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parameter trace lag 1 acf density summary

xunobs,1
.2 0.3 0.4 0.5

posterior mean: 0.4

95% credible interval: 
(0.29,0.468)

xunobs,2
.4 0.5 0.6 0.7 0.8

posterior mean: 0.59

95% credible interval: 
(0.477,0.773)

xunobs,3
0.4 0.5 0.6 0.7 0.8 0.9

posterior mean: 0.636

95% credible interval: 
(0.506,0.787)

xunobs,4
0.25 0.3 0.35 0.4 0.45 0.5

posterior mean: 0.371

95% credible interval: 
(0.301,0.449)

xunobs,5
0.4 0.45 0.5 0.55

posterior mean: 0.467

95% credible interval: 
(0.429,0.5)

Fig. 6.35 Plots and summaries of MCMC samples for the first five unobserved predictors from
the classical measurement error example: trace plot, lag-1 plot, estimated autocorrelation function,
estimated posterior density function, and numerical summary. The dashed vertical lines in the
density plots indicate true values of the unobserved predictor values (known due to data being
simulated).

6.8.3 Example: Pima Indians Diabetes Study

This example involves a well-known dataset from a diabetes study on Pima
Indians, available on the University of California at Irvine, USA, Machine Learning
Repository, and also available as PimaIndiansDiabetes in the mlbench (Leisch
and Dimitriadou 2010). The original source of the data is the U.S. National Institute
of Diabetes and Digestive and Kidney Diseases. The response variable is presence
or absence of diabetes, and eight predictors are available. The repository website
mentions that it seems very likely that zero values encode missing data even though
the dataset donors did not indicate this. We make that assumption here. Specifically,
11 of the body mass index records are coded as zero and we take those to be missing.

Let

xi ≡ body mass index (kilogram/meter2)
and yi ≡ indicator of having diabetes, 1 ≤ i ≤ n,

(6.31)

where n = 786. A logistic nonparametric regression model with predictors not
missing at random is:
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yi | β0, β1, xi
ind.∼ Bernoulli

(
logit−1(β0 + β1 xi + ∑k

k=1 uk zk(xi))
)
,

xi | μx, σx
ind.∼ N(μx, σ

2
x ), ri ≡ I (xi observed),

ri | φ0, φ1
ind.∼ Bernoulli

(
logit−1(φ0 + φ1 xi)

)

μx ∼ N(0, σ 2
μ), σx ∼ Half-Cauchy(Ax), β0, β1

ind.∼ N(0, σ 2
β ),

u1, . . . , uk | σu
ind.∼ N(0, σ 2

u ), φ0, φ1
ind.∼ N(0, σ 2

φ ),

σu ∼ Half-Cauchy(Au).

(6.32)

The R script PIDana.R, in the HRW package, facilitates fitting of (6.32) via rstan.
The script stores the data in arrays xObs (the observed xis), yxObs (the yis
corresponding to observed xis) and yxUnobs (the yis corresponding to unobserved
xis). The array xUnobs, corresponding to the unobserved xis, is a hidden node in the
model’s directed acyclic graph and is a parameter with the same status as regression
model parameters such as β0, β1, and σu. The Stan code for the model specification
is:

transformed parameters

{

matrix[n,2] X; matrix[n,ncZ] Z;

for (i in 1:nObs)

{

X[i,1] = 1 ; X[i,2] = xObs[i] ;

Z[i] = ZxObs[i] ;

}

for (i in 1:nUnobs)

{

X[i+nObs,1] = 1 ; X[i+nObs,2] = xUnobs[i];

for (k in 1:ncZ)

Z[i+nObs,k] = (xUnobs[i]-knots[k])

*step(xUnobs[i]-knots[k]);

}

}

model

{

y ~ bernoulli_logit(X*beta+Z*u);

r ~ bernoulli_logit(X*phi);

col(X,2) ~ normal(muX,sigmaX);

u ~ normal(0,sigmaU) ; beta ~ normal(0,sigmaBeta);

muX ~ normal(0,sigmaMu); phi ~ normal(0,sigmaPhi);

sigmaX ~ cauchy(0,Ax); sigmaU ~ cauchy(0,Au);

}

Figure 6.36 summarizes the MCMC output, based on a burn-in of size 1000 with
5000 kept samples and a thinning factor of 5. Convergence is seen to be excellent in
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parameter trace lag 1 acf density summary

μx
31.5 32 32.5 33 33.5

posterior mean: 32.5

95% credible interval: 
(31.9,33)

σx
6 6.5 7 7.5

posterior mean: 6.94

95% credible interval: 
(6.58,7.31)

φ0
0 5 10

posterior mean: 3.88

95% credible interval: 
(1.14,6.68)

φ1
2 −0.1 0 0.1 0.2

posterior mean: 0.0136

95% credible interval: 
(−0.0656,0.101)

probability at

1st quart. BMI
1 0.15 0.2 0.25 0.3 0.35

posterior mean: 0.237

95% credible interval: 
(0.18,0.3)

probability at

2nd quart. BMI
0.3 0.4 0.5 0.6

posterior mean: 0.421

95% credible interval: 
(0.356,0.487)

probability at

3rd quart. BMI
0.3 0.4 0.5 0.6

posterior mean: 0.436

95% credible interval: 
(0.367,0.506)

1st unobserved

predictor
20 40 60

posterior mean: 35.4

95% credible interval: 
(25,48.2)

Fig. 6.36 Plots and summaries of MCMC samples for parameters of interest from the example
involving the nonparametric logistic regression, with predictor missing not at random, model (6.32)
applied to data from the diabetes study on Pima Indians: lag-1 plot, estimated autocorrelation
function, estimated posterior density function, and numerical summary.

this case. The 95% credible set for φ1 is (−0.0646, 0.116) which indicates that the
missingness is not significantly related to the missing predictor.

Figure 6.37 shows the fitted probability curve, corresponding to the pointwise
posterior means. As expected, prevalence of diabetes is seen to increase with body
mass index. However, the curve has an interesting plateau corresponding to body
mass index values ranging from about 33 to 39.

The following commands can be used to run PIDana.R and obtain its location
on the computer on which HRW is installed:

> library(HRW) ; demo(PIDana,package = "HRW")

> system.file("demo","PIDana.R",package = "HRW")
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Fig. 6.37 Posterior mean and pointwise 95% credible set for the probability of diabetes as function
of body mass index for the Pima Indians dataset, based on the missing not at random nonparametric
logistic regression model (6.32). The observed data and Bayes estimates of the missing data are
shown with some vertical jittering.

6.8.4 Example: Mental Health Clinical Trial

We now illustrate rstan fitting of a semiparametric regression model where the
data are subject to measurement error. These data have been analyzed previously by
Berry et al. (2002) and are from a 6-week clinical trial of a drug versus a placebo.
The response is a physician-assessed score of the patient’s mental health, and the
predictor is the same score at baseline. A transformed and rescaled form of the data
is in the BCR data frame of the HRW package.

Of central interest is the contrast function

c(x) ≡ f1(x) − f0(x)

where, respectively, f0 and f1 are the mean response scores, conditional on the
baseline scores, for the placebo and drug populations. To capture c we work with
the model

yi ∼
{

N(f0(xi), σ
2
ε ) for the placebo group

N(f1(xi), σ
2
ε ) for the drug group

, 1 ≤ i ≤ n,

where (xi, yi) is the ith baseline and end of treatment mental health score pair.
The measurement error in the yis is subsumed into the variability about the f�(xi),
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� = 0, 1. Following Berry et al. (2002) we assume that the xis are not observed
exactly but, instead, are only available via a surrogate wi such that

wi | xi ∼ N(xi, 0.35).

The unobserved xis are assumed to be Gaussian.
We model the regression curves via mixed model-based penalized splines as

follows:

f0(x) = β0 + β1 x +
K∑

k=1

u0kzk(x), u0k
ind.∼ N(0, σ 2

u0) and

f1(x) = β0 + β
drug

0 + (β1 + β
drug

1 ) x +
K∑

k=1

u1kzk(x), u1k
ind.∼ N(0, σ 2

u1)

where the zk , 1 ≤ k ≤ K , form a suitable spline basis, such as the O’Sullivan spline
basis described in Sect. 2.2. The full Bayesian model is

y| β,u0,u1 ∼ N(Xβ + Z0u0 + Z1u1, σ
2
ε ),

u0| σ 2
0 ∼ N(0, σ 2

u0), u1| σ 2
1 ∼ N(0, σ 2

u1),

wi | xi
ind.∼ N(xi, 0.35), xi

ind.∼ N(μx, σ
2
x ), μx ∼ N(0, σ 2

μx
),

σx ∼ Half-Cauchy(Ax), β ∼ N(0, σ 2
β I ),

σu0 ∼ Half-Cauchy(Au), σu1 ∼ Half-Cauchy(Au),

σε ∼ Half-Cauchy(Aε).

(6.33)

The σμx , Ax , σβ , Au, and Aε are positive-valued hyperparameters. In the analyses
described below, each of these are set to 105, corresponding to noninformativity.
In (6.33), the coefficient vectors are

β ≡

⎡

⎢⎢⎣

β0

β1

β
drug

0
β

drug

1

⎤

⎥⎥⎦ , u0 ≡
⎡

⎢⎣
u01
...

u0K

⎤

⎥⎦ and u1 ≡
⎡

⎢⎣
u11
...

u1K

⎤

⎥⎦ .

The design matrices X and Z0 are

X ≡
⎡

⎢⎣
1 x1 1 − I1 (1 − I1)x1
...

...
...

...

1 xn 1 − In (1 − In)xn

⎤

⎥⎦ and Z0 ≡
⎡

⎢⎣
I1 z1(x1) · · · I1 zK(x1)

...
. . .

...

In z1(xn) · · · In zK(xn)

⎤

⎥⎦
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Fig. 6.38 Estimated contrast function and pointwise 90% credible sets, according to the Bayesian
model (6.33), for the mental health clinical trial data used in Berry et al. (2002).

where

Ii ≡
{

1 if (xi, yi) is from the placebo group,

0 if (xi, yi) is from the drug group.

The design matrix Z1 is defined analogously to Z0, but with Ii replaced by 1 − Ii .
According to this model, the contrast function is

c(x) = β
drug

0 + β
drug

1 x +
K∑

k=1

(u1k − u0k) zk(x).

The R script BCRana.R fits (6.33) using Stan via the rstan package. The results
displayed in Figs. 6.38 and 6.39 are based on a burn-in of size 5000, kept samples
of size 5000, and a thinning factor of 5. Figure 6.38 shows the fitted contrast
function with 90% pointwise credible sets. Here we use credible sets at the 90%
level, rather than at the 95% level, since the former level is used in Fig. 5 of Berry
et al. (2002). Inspection of that figure shows good correspondence between the two
contrast function estimates, although note that Berry et al. (2002) work with the
negative of our contrast function. The drug is seen to exhibit borderline efficacy for
higher values of the true baseline score. The script BCRana.R can be run via:

> library(HRW) ; demo(BCRana,package = "HRW")

and located by running the code:

> system.file("demo","BCRana.R",package = "HRW")

In Fig. 6.39 we display some MCMC diagnostics for key parameters such as the
contrast function estimates at the quartiles of the true baseline scores. The chains
are seen to be well behaved.
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parameter trace lag 1 acf density summary

μx
0.2 0.3 0.4 0.5 0.6

posterior mean: 0.419

95% credible interval: 

(0.32,0.518)

σx
0.7 0.8 0.9 1

posterior mean: 0.875

95% credible interval: 

(0.788,0.963)

σε
1.4 1.6 1.8 2

posterior mean: 1.73

95% credible interval: 

(1.55,1.88)

contrast funct.
at 1st quart. of

true base. score
−1 0 1 2 3

posterior mean: 1.15

95% credible interval: 

(−0.167,2.13)

contrast funct.
at 2nd quart. of

true base. score
−1 0 1 2

posterior mean: 0.729

95% credible interval: 

(−0.309,1.52)

contrast funct.
at 3rd quart. of

true base. score
−1 0 1 2 3

posterior mean: 0.624

95% credible interval: 

(−0.339,1.78)

Fig. 6.39 Various plots and summaries for the contrast function MCMC samples at the quartiles of
the predictor variable: trace plot, lag-1 plot, estimated autocorrelation function, estimated posterior
density function, and numerical summary. The MCMC samples are produced by the R script
BCRana.R, which uses Stan to fit model (6.33) to the mental health clinical trial data from Berry
et al. (2002).

Figure 6.40 summarizes the MCMC output of 5 of the true baseline scores that
are observed with measurement error in model (6.33). It provides, for example, a
Bayes estimate of 0.95 for the 44th true baseline score, and corresponding 95%
credible set of (0.0184, 1.89).

6.8.5 Extension to Finite Mixture Models

Partially observed Gaussian predictor models such as (6.30) and those depicted in
Fig. 6.32 can be useful for handling missingness and measurement error, but also
suffer from the limitation that the partially observed predictor is assumed to be
Gaussian. Carroll et al. (1999) and Richardson et al. (2002) describe extensions
of (6.30) in which the partially observed predictor has a finite mixture distribution
such as the partially observed predictors xi , 1 ≤ i ≤ n, being independent with
density function



6.8 Missing Data and Measurement Error 289

parameter trace lag 1 acf density summary

x10
−1 0 1 2 3

posterior mean: 0.791

95% credible interval: 
(−0.17,1.76)

x18
−1 0 1 2

posterior mean: 0.221

95% credible interval: 
(−0.657,1.11)

x27
−1 0 1 2

posterior mean: 0.608

95% credible interval: 
(−0.394,1.53)

x44
0 1 2 3

posterior mean: 0.977

95% credible interval: 
(0.0728,1.95)

x59
2 −1 0 1 2

posterior mean: 0.324

95% credible interval: 
(−0.579,1.3)

Fig. 6.40 Various plots and summaries for MCMC samples of five true baseline scores that are
observed with measurement error according to model (6.33): trace plot, lag-1 plot, estimated
autocorrelation function, estimated posterior density function, and numerical summary. The
MCMC samples are produced by the R script BCRana.R, which uses Stan to fit model (6.33)
to the mental health clinical trial data from Berry et al. (2002).

p(xi |ωx1, . . . , ωxK,μx1, . . . , μxK, σ 2
x1, . . . , σ

2
xK)

=
K∑

k=1

ωxk (2πσ 2
xk)

−1/2 exp{−(xi − μxk)
2/(2σ 2

xk)}.

Here (ωxk, μxk, σ
2
xk), 1 ≤ k ≤ K , are mixture parameters such that

∑K
k=1 ωxk = 1

and σ 2
xk > 0. Another extension covered in Richardson et al. (2002) is the linear

regression classical measurement error model

wi
ind.∼ N(α0 + α1 xi, σ

2
w)

rather than

wi
ind.∼ N(xi, σ

2
w)

as treated in (6.30). This model can be used because validation data are available.
We now provide an illustration of these extensions via an example from a coronary
heart disease study.
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6.8.5.1 Example: Cholesterol and Coronary Heart Disease

Section 6 of Richardson et al. (2002) describes data from a study concerning the
impact of blood cholesterol level on occurrence of coronary heart disease. The data
are from Roeder et al. (1996). Fuller details are given there. They are stored in CHD

in the HRW package. The dataset has sample size n = 256, with response variable

yi ≡
{

1 ith subject is a coronary heart disease case,

0 otherwise,

1 ≤ i ≤ n, where a coronary heart disease case equates with having a previous heart
attack, a history of angina pectoris, or an abnormal exercise electrocardiogram. The
predictor of primary interest is

x ≡ low density lipoprotein cholesterol level

which is difficult to measure. Its easier-to-measure surrogate is

w ≡ total cholesterol level

of which xi is a component. A secondary predictor is v ≡ age in years. Let
(xi, wi, vi), 1 ≤ i ≤ 256, denote the full set of predictor data.

Following Richardson et al. (2002) we formed a dataset for which most of the
xis, 184 out of 256, are not observed but all of the wis are observed. A validation
set, for which both xi and wi are observed, was obtained by selecting 32 coronary
heart disease cases and 40 controls at random. As in Richardson et al. (2002) and
Roeder et al. (1996) the data are analyzed as if they had come from a cohort study.

The model is

yi | β0, β1, β2, xi
ind.∼ Bernoulli

(
logit−1(β0 + β1 xi + β2 vi)

)
,

xi |ω,μx1, μx2, σx1, σx2
ind.∼ ω N(μx1, σ

2
x1) + (1 − ω)N(μx2, σ

2
x2),

ω ∼ Uniform(0, 1),

μx1, μx2
ind.∼ N(0, σ 2

μ), σx1, σx2
ind.∼ Half-Cauchy(Ax),

wi
ind.∼ N(α0 + α1 xi, σ

2
w), σw ∼ Half-Cauchy(Aw),

β0, β1
ind.∼ N(0, σ 2

β ), α0, α1
ind.∼ N(0, σ 2

α ).

(6.34)

Note that the Finite Normal Mixture component of the model

xi |ω,μx1, μx2, σx1, σx2
ind.∼ ω N(μx1, σ

2
x1) + (1 − ω)N(μx2, σ

2
x2)

is equivalent to
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xi |μx1, μx2, σx1, σx2, ai ∼
{

N(μx1, σ
2
x1

), ai = 1

N(μx2, σ
2
x2

), ai = 0
(6.35)

where ai |ω ∼ Bernoulli(ω), 1 ≤ i ≤ n, are auxiliary variables. Representa-
tion (6.35) allows easier implementation in a Bayesian inference engines such as
BUGS or Stan. Only the former allows for discrete unobserved random variables,
so we used it for fitting (6.34) via the script RLJGana.R, available in the HRW

package. This script uses the package BRugs (Ligges et al. 2017) to access BUGS
from within R. However, not all operating system that support R also support BRugs.
Stan fitting of (6.34) is possible using target += applied to the logarithm of
the Finite Normal Mixture density function. The hyperparameters were set to be
σβ = Ax = Aw = 105. All predictor data were standardized before being fed into
BUGS. The MCMC output was then back-transformed to correspond to the original
data. The script RLJGana.R can be run and located using:

> library(HRW) ; demo(RLJGana,package = "HRW")

> system.file("demo","RLJGana.R",package = "HRW")

Figure 6.41 shows the MCMC samples for the regression coefficients in (6.34).
To match Richardson et al. (2002) we work with the cholesterol variables divided
by 100. Low density lipoprotein cholesterol level is seen to have marginal statistical
significance, while age is very significant.

In Fig. 6.42 we plot the Bayes estimate of the low density lipoprotein cholesterol
level density function based on the two-component Finite Normal Mixture model.
A slight departure from normality is apparent, which is consistent with the analysis
in Richardson et al. (2002).

Finally, we note that Richardson et al. (2002) worked with a more elaborate
model in which the number of components in the Finite Normal Mixture is a model
parameter. R implementation of such models is more challenging since Bayesian
inference engines such as BUGS and Stan do not yet have post-development
versions that can handle models of this type.

6.9 Arbitrarily Complicated Bayesian Semiparametric
Regression

As witnessed in the previous section, the graphical models approach to semipara-
metric regression in combination with Bayesian inference engines such as Stan is
an effective means by which missing data and measurement error can be accounted
for in R-based analyses. However, this paradigm is even more powerful and, at
least in theory, allows arbitrarily complicated Bayesian semiparametric regression
models to be entertained. In practice, the viability of effective fitting and inference
for particular model is limited by factors such as the versatility and speed of the
Bayesian inference engine. Fortunately, there are auspicious developments on the
Bayesian inference engine front. For example the Stan engine, and its interface
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parameter trace lag 1 acf density summary

α0
0.4 0.6 0.8 1 1

posterior mean: 0.764

95% credible interval: 
(0.61,0.932)

α1
0.8 1 1.2

posterior mean: 0.968

95% credible interval: 
(0.854,1.07)

β0
−20 −15 −10 −5 0 5

posterior mean: −7.49

95% credible interval: 
(−14.2,−1.59)

β1
−1 0 1 2

posterior mean: 0.58

95% credible interval: 
(−0.182,1.35)

β2
−0.1 0 0.1 0.2 0.3

posterior mean: 0.0999

95% credible interval: 
(0.00976,0.203)

Fig. 6.41 Various plots and summaries for the contrast function MCMC samples at the quartiles of
the predictor variable: trace plot, lag-1 plot, estimated autocorrelation function, estimated posterior
density function, and numerical summary. The MCMC samples are produced by the R script
RLJGana.R, which uses Stan to fit model (6.34) to the coronary heart disease data from Roeder
et al. (1996).
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Fig. 6.42 Bayes estimate of the density function of low density lipoprotein cholesterol level based
on the MCMC samples produced by the R script RLJGana.R, which uses Stan to fit model (6.34)
to the coronary heart disease data from Roeder et al. (1996). The shaded region corresponds to
pointwise 95% credible sets.
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with R via the rstan package, emerged just five years before the completion of this
book and generally is more flexible and faster than previous such engines. BUGS,
Stan, and future Bayesian inference engines are putting more and more complicated
semiparametric regression models within reach of R users. In this final section,
we provide some illustrations of complicated models that are currently feasible in
Stan. However, the underlying principles extend to numerous other models, some
of which are explored in the exercises.

6.9.1 Binary Response Group-Specific Curves Model

The data in Fig. 6.43 show the alive/dead status for corals of two different taxa,
Pocillopora and Porites, as a function of initial size at 25 different study sites.
The source of the data is Kayal et al. (2015), which contains a fuller description

log(initial size (cm) +1)
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Fig. 6.43 Raw coral data. Alive/dead status versus log(initial size (cm) + 1) for corals of taxa
Pocillipora and Porites at 25 study sites. The ordinates of the data are jittered to aid visualization.
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of the study. The data frame coral in the HRW package contains these data. There is
ecological interest in comparing the survival probabilities of the two coral taxa.

An appropriate semiparametric regression model, which benefits from the
graphical models approach and Bayesian inference engines such as Stan, is one
that caters for group-specific curves when the response is binary. In this case the
group corresponds to study site. The Gaussian response case was treated in Sect. 4.3
but in that case the lme() function was seen to handle the problem well. The binary
response case is more challenging due to the intractability of the likelihood. The R
function glmmPQL(), from the package MASS (Ripley et al. 2015), can accommodate
this extension to some extent but the standard error approximations can be quite
inaccurate.

The generic form of the binary response group-specific curves model is

yij ∼ Bernoulli(logit−1(f (xij ) + gi(xij )), 1 ≤ i ≤ m, 1 ≤ j ≤ ni

where (xij , yij ) is the j th predictor/response measurement on the ith group. As in
Sect. 4.3, the global mean function is

f (x) = β0 + β1 x +
Kgbl∑

k=1

ugbl,kzgbl,k(x), ugbl,k| σgbl

ind.∼ N(0, σ 2
gbl) (6.36)

where β0 and β1 are fixed effects. The deviation from f for the ith group is the
function

gi(x) = U0i + U1i x +
Kgrp∑

k=1

ugrp,ik zgrp,k(x),

where

[
U0i

U1i

]
ind.∼ N(0,Σ) and ugrp,ik| σgrp

ind.∼ N(0, σ 2
grp).

The coral data can be divided into two categories:

A ≡ Pocillopora and B ≡ Porites,

so for contrasting the two types we should extend (6.36) to

f A(x) = βA
0 + βA

1 x +
Kgbl∑

k=1

uA
gbl,kzgbl,k(x)

gA
i (x) = U A

0i + U A
1i x +

Kgrp∑

k=1

uA
grp,ikzgrp,k(x)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for type A
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and

f B(x) = βA
0 + βBvsA

0 + (βA
1 + βBvsA

1 ) x +
Kgbl∑

k=1

uB
gbl,kzgbl,k(x)

gB
i (x) = U B

0i + U B
1i x +

Kgrp∑

k=1

uB
grp,ikzgrp,k(x)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for type B.

This allows us to estimate the contrast function

c(x) ≡ fB(x) − fA(x) = βBvsA

0 + βBvsA

1 x +
Kgbl∑

k=1

(uB
gbl,k − uA

gbl,k)zgbl,k(x). (6.37)

In this binary response situation with a logit link c corresponds to the log odds ratio
of B compared with A. Define

IA
ij ≡

{
1 if (xij , yij ) is of type A,

0 if (xij , yij ) is of type B.

The full Bayesian model is

y| β,uA
gbl,u

B
gbl,U ,ugrp ∼ Bernoulli(logit−1(Xβ + ZA

gblu
A
gbl

+ZB
gblu

B
gbl + ZUU + ZA

grpu
A
grp + ZB

grpu
B
grp)),

uA
gbl| σA

gbl ∼ N(0, (σA
gbl)

2), uB
gbl| σB

gbl ∼ N(0, (σB
gbl)

2),

U | Σ ∼ N(0, Im ⊗ Σ), β ∼ N(0, σ 2
β I ),

uA
grp| σgrp ∼ N(0, σ 2

grp), uB
grp| σgrp ∼ N(0, σ 2

grp)

σA
gbl ∼ Half-Cauchy(Agbl), σB

gbl ∼ Half-Cauchy(Agbl),

σgrp ∼ Half-Cauchy(Agrp), Σ is 4 × 4 with

Σ | a1, a2, a3, a4 ∼ Inverse-Wishart
(
5, 4 diag(a1, a2, a3, a4)

−1
)
,

a1, a2, a3, a4
ind.∼ Inverse-Gamma( 1

2 , 1/A2
U)

(6.38)

where the coefficient vectors are
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β ≡

⎡

⎢⎢⎣

βA
0

βA
1

βBvsA

0
βBvsA

1

⎤

⎥⎥⎦ , uA
gbl ≡

⎡

⎢⎢⎣

uA
gbl,1
...

uA
gbl,Kgbl

⎤

⎥⎥⎦ , U ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

UA
01

UA
11

UB
01

UB
11
...

UA
0m

UA
1m

UB
0m

UB
1m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and uA
grp ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uA
grp,11
...

uA
grp,1Kgrp

...

uA
grp,m1
...

uA
grp,mKgrp

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with uB
gbl defined analogously to uA

gbl and uB
grp defined analogously to uA

grp. The design
matrices X, ZA

gbl and ZU are

X ≡
⎡

⎢⎣
1 x1 1 − IA

1 (1 − IA
1 ) � x1

...
...

...
...

1 xm 1 − IA
m (1 − IA

m) � xm

⎤

⎥⎦ ,

ZA
gbl ≡

⎡

⎢⎣
IA

1 � zgbl,1(x1) · · · IA
1 � zgbl,Kgbl(x1)

...
. . .

...

IA
m � zgbl,1(xm) · · · IA

m � zgbl,Kgbl(xm)

⎤

⎥⎦

and ZU ≡ blockdiag
1≤i≤m

[
IA

i IA
i � xi (1 − IA

i ) (1 − IA
i ) � xi

]

with xi equaling the ni × 1 vector containing the xij , 1 ≤ j ≤ ni , and IA
i equaling

the ni × 1 vector containing the IA
ij , 1 ≤ j ≤ ni . The matrix ZB

gbl is defined in a

similar manner to ZA
gbl, but with IA

i replaced by 1−IA
i . The design matrices ZA

grp and
ZB

grp have block diagonal structure similar to ZU with blocks analogous to ZA
gbl and

ZB
gbl but there is allowance for a different, typically smaller, spline basis of size Kgrp.

The prior on Σ , in terms of the auxiliary vector a ≡ (a1, a2, a3, a4), has entries that
are marginally noninformative, as explained in Huang and Wand (2013). A directed
acyclic graph representation of (6.38) is given in Fig. 6.44.

We now describe R fitting of (6.38) with

xij = log(initial size (cm) +1), yij =
{

0 if coral dead,
1 if coral alive,
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Fig. 6.44 Left panel: Directed acyclic graph corresponding to the binary response group-specific
curves model with contrasting, given by (6.38). Right panel: Directed acyclic graph corresponding
to the heteroscedastic additive with missing predictor data model (6.41).

and the IA
ij being indicators of the coral have taxon Pocillopora. For these variables

i ranges over {1, . . . , 25} corresponding to the sites and j indexes the measurement
within the ith site. The R script coralAna.R fits (6.38) to the coral data of Fig. 6.43
using the rstan package. The main part of the Stan code is:

vector[numObs] fmean; vector[numObs] fullMean;

fmean = (Xbase*beta + XB*betaBvsA + ZA*uGblA + ZB*uGblB);

for (iAll in 1:numObs)

fullMean[iAll] = (fmean[iAll]

+ U[idnum[iAll],3]*XA[iAll,1]

+ U[idnum[iAll],4]*XA[iAll,2]

+ U[idnum[iAll],1]*XB[iAll,1]

+ U[idnum[iAll],2]*XB[iAll,2]

+ dot_product(uGrpA[idnum[iAll]],ZgrpA[iAll])

+ dot_product(uGrpB[idnum[iAll]],ZgrpB[iAll]));

}

model

{

matrix[2*ncXbase,2*ncXbase] scaleSigmaGrp;

y ~ bernoulli_logit(fullMean);

for (i in 1:numGrp)

U[i] ~ multi_normal(zeroVec,SigmaGrp);

uGblA ~ normal(0,siguGblA); uGblB ~ normal(0,siguGblB);

for (i in 1:numGrp)
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{

for (k in 1:ncZgrp)

{

uGrpA[i,k] ~ normal(0,siguGrp);

uGrpB[i,k] ~ normal(0,siguGrp);

}

}

scaleSigmaGrp = rep_matrix(0,4,4);

for (k in 1:(2*ncXbase))

{

a[k] ~ inv_gamma(0.5,pow(AU,-2));

scaleSigmaGrp[k,k] = 4/a[k];

}

SigmaGrp ~ inv_wishart(5,scaleSigmaGrp);

beta ~ normal(0,sigmaBeta); betaBvsA ~ normal(0,sigmaBeta);

siguGblA ~ cauchy(0,AuGbl); siguGblB ~ cauchy(0,AuGbl);

siguGrp ~ cauchy(0,AuGrp);

The fitted group-specific curves are shown in Fig. 6.45. Specifically, we plot
pointwise posterior means and 95% credible sets. The fitted curves are seen to vary
quite markedly between sites.

Figure 6.46 shows the estimated contrast function defined by (6.37), correspond-
ing to the log odds ratio of Porites as a function of log(initial size + 1), compared
with coral of taxon Pocillopora. The pointwise 95% credible sets, shown by the
shaded region, show that there is a significant difference between the two taxa at
any one initial size.

Finally, we show that the convergence of MCMC is excellent for the main
quantities of interest in Stan fitting of (6.38). Figure 6.47 shows various aspects
of the MCMC samples for the contrast function at the quartiles of the predictor.

To run coralAna.R issue the commands:

> library(HRW) ; demo(coralAna,package = "HRW")

To locate, and possibly copy and modify, coralAna.R use:

> system.file("demo","coralAna.R",package = "HRW")

6.9.2 Heteroscedastic Additive Model with Missingness

The data shown in Fig. 6.48 is part of the data frame Ozone in the R package
mlbench (source: Breiman and Friedman 1985). Subsets of these data have been
analyzed previously using ordinary Gaussian additive models (e.g. Hastie and
Tibshirani 2000). A version of these data appears in Exercise 3 of Chap. 3.
However,



6.9 Arbitrarily Complicated Bayesian Semiparametric Regression 299

log(initial size (cm) +1)

in
di

ca
to

r t
ha

t c
or

al
 is

 a
liv

e

0.0

0.5

1.0

1 2 3 1 2 3 1 2 3

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

1 2 3 1 2 3
Pocillopora Porites

Fig. 6.45 Fitted group-specific probability function estimates, based on model (6.38), for the two
coral taxa Pocillopora and Porites as a function of log(initial size (cm) + 1). The dashed curves
represent pointwise 95% credible sets. Each panel corresponds to a different study site.

• there is pronounced heteroscedasticity in the data, implying that the constant
variance assumption is questionable;

• as shown in Table 6.3, there is a substantial amount of missingness in the data.
Most analyses ignore this aspect and perform a complete case analysis—which
involves omitting each record of the data frame containing at least one missing
value. For the data in Fig. 6.48 this involves omission of 151/366 ≈ 41% of the
records.

We now describe the setting up a R-based fitting of a heteroscedastic additive model
that includes all of the observed data.
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Fig. 6.46 Estimated contrast function corresponding to the log odds ratio of coral of taxon Porites
being alive as a function of log(initial size (cm) + 1), compared with coral of taxon Pocillopora.
The shaded region corresponds to pointwise 95% credible sets.

parameter trace lag 1 acf density summary

contrast function
at 1st quartile

of log(init. size +1)
−0.2 0 0.2 0.4 0.

posterior mean: 0.175

95% credible interval: 
(−0.00904,0.346)

contrast function
at 2nd quartile

of log(init. size +1)
0.2 0.4 0.6 0.8

posterior mean: 0.514

95% credible interval: 
(0.327,0.693)

contrast function
at 3rd quartile

of log(init. size +1)
1 1.5 2

posterior mean: 1.46

95% credible interval: 
(1.18,1.76)

Fig. 6.47 Various plots and summaries for the contrast function MCMC samples at the quartiles of
the predictor variable: trace plot, lag-1 plot, estimated autocorrelation function, estimated posterior
density function, and numerical summary. The MCMC samples are produced by the R script
coralAna.R, which uses Stan to fit model (6.38) to the coral data from Kayal et al. (2015).

A heteroscedastic additive model (e.g. Rigby and Stasinopoulos 2005) with three
predictors is

yi ∼ N
(
β0 + f1(x1i ) + f2(x2i ) + f3(x3i ),

exp
(
γ0 + h1(x1i ) + h2(x2i ) + h3(x3i )

))
, 1 ≤ i ≤ n,

(6.39)
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Fig. 6.48 Marginal effects scatterplots for the California ozone data example.

Table 6.3 Missingness
percentages for the variables
shown in Fig. 6.48, which are
part of the Ozone data frame
in the R package mlbench.

Variable Missingness

Max. 1-hour-average ozone level 1.36%

El Monte temperature 37.95%

Daggett pressure gradient 0.27%

Inversion base height 4.10%

where fj and hj , j = 1, 2, 3, are smooth but otherwise arbitrary functions. Mixed
model-based penalized spline models for these functions are

fj (x) = βj x +
Kj∑

k=1

ujk zjk(x), ujk
ind.∼ N(0, σ 2

uj )

and hj (x) = γj x +
Kj∑

k=1

vjk zjk(x), vjk
ind.∼ N(0, σ 2

vj ).

(6.40)

The {zjk : 1 ≤ k ≤ Kj }, j = 1, 2, 3, are O’Sullivan cubic spline bases of sizes Kj

respectively (Sect. 2.2).
Our aim is to fit the model given by (6.39) and (6.40) to the data depicted in

Fig. 6.48 with

yi = maximum 1-hour average ozone level (parts per million) at

Sandburg Air Force Base

and the three predictors’ variables

x1i = temperature (degree Fahrenheit) in El Monte, California, USA

x2i = pressure gradient (millimeters of mercury) from Los Angeles

International Airport to Daggett, California, USA

and x3i = inversion base height (feet),
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each on the ith day, 1 ≤ i ≤ n, where n = 366, but with the missingness completely
at random assumption for the unobserved data. The full model is then

y | β,u, γ , v ∼ N
(
Xβ + Zu, exp(Xγ + Zv)

)
,

u | σu ∼ N(0, σ 2
u I ), v | σv ∼ N(0, σ 2

v I ), β ∼ N(0, σ 2
β I ),

γ ∼ N(0, σ 2
γ I ),

⎡

⎣
x1i

x2i

x3i

⎤

⎦
∣∣∣∣μ,Σ

ind.∼ N(μx,Σx), 1 ≤ i ≤ n,

ryi
| py

ind.∼ Bernoulli(py), py ∼ Uniform(0,1), 1 ≤ i ≤ n,

rxji
| pj

ind.∼ Bernoulli(pj ), pxj
∼ Uniform(0,1), 1 ≤ i ≤ n, 1 ≤ j ≤ 3,

σuj
ind.∼ Half-Cauchy(Au), σvj

ind.∼ Half-Cauchy(Av), 1 ≤ j ≤ 3,

(6.41)
μx ∼ N(0, σ 2

x I ), Σx | a ∼ Inverse-Wishart(4, 4 diag(a1, a2, a3)
−1),

a ≡ (a1, a2, a3), a1, a2, a3
ind.∼ Inverse-Gamma( 1

2 , 1/A2
x)

where

ryi
≡

{
1 if yi is observed,
0 if yi is unobserved

and rxji
≡

{
1 if xji is observed,
0 if xji is unobserved

for 1 ≤ i ≤ 366, 1 ≤ j ≤ 3.
The corresponding directed acyclic graph is the right panel of Fig. 6.44. Note that

this figure uses vector notation such as σ u ≡ (σu1, σu2, σu3).
The R script ozoneAna.R in the HRW package facilitates fitting of (6.41) to

the ozone data with the Stan inference engine. Figure 6.49 shows the resulting
estimated mean and standard deviation functions with pointwise 95% credible sets.
The first two predictors, El Monte temperature and Daggett pressure gradient, are
shown to contribute nonlinear components to the overall standard deviation.

Figure 6.50 summarizes the MCMC output for the first unobserved response
and predictor variables. It shows, for example, that the first unobserved El Monte
temperature value has a 95% credible set of (46.1, 82.9) degree Fahrenheit.

To run and locate ozoneAna.R issue the commands:

> library(HRW) ; demo(ozoneAna,package = "HRW")

> system.file("demo","ozoneAna.R",package = "HRW")

6.9.3 Practical Aspects of Graphical Models Approach to
Bayesian Semiparametric Regression

This final section has explored the notion that, with a graphical models approach
to Bayesian semiparametric regression and a Bayesian inference engine accessible



6.9 Arbitrarily Complicated Bayesian Semiparametric Regression 303

30 40 50 60 70 80

5
10

15
20

El Monte temperature (oF)

m
ax

. 1
−h

ou
r−

av
e.

 o
zo

ne
 le

ve
l

mean functions

30 40 50 60 70 80

2
4

6
8

10

El Monte temperature (oF)

m
ax

. 1
−h

ou
r−

av
e.

 o
zo

ne
 le

ve
l

standard deviation functions

−50 0 50 100

5
10

15
20

Daggett pressure gradient (mm Hg)

m
ax

. 1
−h

ou
r−

av
e.

 o
zo

ne
 le

ve
l

−50 0 50 100

2
4

6
8

10

Daggett pressure gradient (mm Hg)

m
ax

. 1
−h

ou
r−

av
e.

 o
zo

ne
 le

ve
l

0 1000 2000 3000 4000 5000

5
10

15
20

inversion base height (feet)

m
ax

. 1
−h

ou
r−

av
e.

 o
zo

ne
 le

ve
l

0 1000 2000 3000 4000 5000

2
4

6
8

10

inversion base height (feet)

m
ax

. 1
−h

ou
r−

av
e.

 o
zo

ne
 le

ve
l

Fig. 6.49 Mean and standard deviation function estimates for the Bayesian heteroscedastic
additive model with data missing completely at random model (6.41), applied to the data frame
Ozone in the R package mlbench. The fits for each predictor are slices with the other two
predictors set to their average values. The shaded regions correspond to pointwise 95% credible
sets.

parameter trace lag 1 acf density summary
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ozone level
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posterior mean: 8.61

95% credible interval: 
(−1.79,21.6)
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El Monte
temperature

40 60 80 100

posterior mean: 63.2

95% credible interval: 
(46.1,82.9)

1st unobserved
Daggett pressure

gradient
−100 0 100

posterior mean: 17.3

95% credible interval: 
(−54.6,88.1)
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inversion base
height
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posterior mean: 3390

95% credible interval: 
(−673,6930)

Fig. 6.50 Trace, lag-1 plots, estimated autocorrelation function, estimated posterior density
function, and numerical summaries for the first unobserved response and predictors for the Stan
fit of model (6.41) to the ozone data.
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from R, the sky is the limit in terms of the complexity of models that can be
entertained and analyses that can be carried out in R. Examples in Sects. 6.2.2, 6.8,
and 6.9 have illustrated the benefits of such an approach. However, the practicalities
of late-2010s computing, as well as some aspects of Bayesian inference engines
currently accessible from R, need to be taken into account when contemplating
analyses of this type.

Computational speed is a major factor. Some of the MCMC examples in this
chapter take several hours to run on a common office computer in 2018. This
makes model criticism and tweaking difficult. A series of overnight runs or, if
available, the use of multiple machines may be required for a thorough analysis.
Some good news is that, for a given dataset and model, the time taken for doing a
Bayesian inference engine-based semiparametric regression analysis is constantly
improving as office computers enjoy increased capacity and Bayesian inference
engine software evolves. Model (6.38) for the coral data was unacceptably slow
when one of the authors first tried to fit it with BUGS via BRugs in 2013. When
he revisited the problem with Stan via rstan in 2016, the computational times had
become reasonable and led to the analysis reported here. If you are reading this book
during the year 2030, or later, then it may be that computing speed is no longer an
issue for this example.

A last piece of advice is to regularly check the BUGS and Stan development
websites for updates and to work with latest versions. This is particularly the case
for Stan which, at the time of writing, is still in its early years.

Despite these downsides, the graphical models approach to semiparametric
regression in R is a very advantageous and auspicious paradigm.

6.10 Further Reading

There is a very large literature on functional linear regression. See Cardot and Sarda
(2011) for a survey and further reference. Sparse functional data is a topic beyond
the scope of this chapter. For an introduction to sparse functional data, including
functional regression, see James (2011). Ramsay and Silverman (2006) is a well-
known and excellent introduction to functional data. Ramsay et al. (2009) provide an
introduction to the fda package. Horváth and Kokoszka (2012) is a theoretical study
of functional data analysis. The handbook by Ferraty and Romain (2011) contains
recent survey articles, two of which have just been cited and are most relevant to this
chapter. Fitting an additive model to the principal component scores was proposed
by Müller and Yao (2008) and called the functional additive model. The functional
generalized additive model was proposed by McLeanet al. (2013) and, under the
name “continuous additive model” by Müller et al. (2013). Nonadditive models can
be fit by a generalization of kernel regression to functional data; see Ferraty and
Vieu (2006).

Survival analysis is a major topic having some overlap with semiparametric
regression, but not covered in this book. The R package survival (Therneau and



6.11 Exercises 305

Lumley 2015) supports semiparametric Cox proportional hazard regression models
via the function pspline(). Similar comments apply to the function hare()

in the package polspline (Kooperberg 2015). Other pointers to R software for
semiparametric survival analysis models are provided in the Comprehensive R
Archive Network Task View: Survival Analysis. At the time of this writing the
relevant website is cran.r-project/web/views/Survival.html.

Time series analysis also has significant overlap with semiparametric regression,
although the support within R is not very strong at the time of writing. The
most relevant package is tsDyn (Di Narzo and Stigler 2016) which has additive
autoregressive models as one capability. The function stl() uses nonparametric
regression methodology to decompose a time series into seasonal, trend, and
irregular components.

Wavelet regression is another major topic having strong connections with semi-
parametric regression. Nason (2008) is the definitive book on wavelet regression
via R. As explained in Wand and Ormerod (2011), wavelets can be used instead
of splines in semiparametric regression to handle jagged and jumpy effects. The
R function ZDaub(), available within supplemental materials on the Electronic
Journal of Statistics web-page for Wand and Ormerod (2011) is the wavelet
equivalent of ZOSull() in the HRW package. Apart from the predictor data, its main
argument is numLevels which is an integer L between 2 and 10 which leads to a
wavelet basis of size 2L − 1. The underlying wavelet calculations are carried out in
wavethresh (Nason 2016). The appropriate penalization for wavelets is different,
with �1-type penalties being more suitable and is facilitated by R packages such
as lars (Hastie and Efron 2013). This basis requires only a constant term as its
unpenalized companion, as opposed to cubic O’Sullivan splines which have a linear
companion. Apart from these differences, every model treated in this book is such
that wavelets can be used instead of splines if it is believed that certain effects are
jagged and/or jumpy (Wand and Ormerod 2011).

6.11 Exercises

1. Obtain quantile regression plots analogous to those shown in Fig. 6.10 for price
(złoty) per square meter as a function of construction date for the Warsaw
apartment data in the data frame WarsawApts of the HRW package. As in
Fig. 6.10, the quantile function estimates can be obtained individually via the
rqss() function in the package quantreg or using the LMS method via the
functions vgam() and lms.bcn() in the package VGAM. Use four degrees of
freedom for the λ and σ function fits and ten degrees of freedom for the
μ function fit. For stability of lms.bcn(), the predictor data should be pre-
transformed to the interval [0, 1] and the response data be pre-transformed
to the interval [0.01, 1], since lms.bcn() requires strictly positive response
data. The fitted quantile functions should then be transformed to the original
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units. The scripts MichIncMultQSS.R and MichIncLMS.R in the HRW package,
corresponding to Fig. 6.10, provide further guidance.

2. As explained in Sect. 6.2.2, the t distribution provides a mechanism by which
semiparametric regression models can be made robust to response data outliers.
A related issue concerns whether such an approach is resistant to gross outliers
in the response data, and is explored in this exercise.

a. Write an R script that simulates data according to the model

yi | xi
ind.∼ t

(
f (xi), 0.35, 1.5

)
, xi

ind.∼ Uniform(0, 1), 1 ≤ i ≤ n

with f (x) ≡ sin(4π x) and n = 300 and then fit the Bayesian t response
penalized spline model given by the d = 1 special case of (6.2) using Stan,
via the package rstan. The script should compare the fitted function with
the true mean function f (x).

b. Select a yi at random and replace its value by 10,000. Rerun the script and
assess the effect of this gross outlier on the penalized spline fit.

c. Repeat part b. with a single gross outlier set to 100,000 and then set
to 1,000,000. Comment on the extent to which the Bayesian t response
penalized spline model is resistant to gross outliers.

3. Section 6.2.2 contains a demonstration of use of the function vgam(), within
the package VGAM, for fitting t response additive models of the form

yi
ind.∼ t

( d∑

j=1

fj (xji), σε, ν
)
, 1 ≤ i ≤ n,

where we are using the t distribution notation defined just after (6.1). The R
script MichInctAddMod.R in the HRW package contains code for this analysis.
Commands for running and locating MichInctAddMod.R are:

> library(HRW) ; demo(MichInctAddMod,package = "HRW")

> system.file("demo","MichInctAddMod.R",package = "HRW")

The d = 1 special case is

yi
ind.∼ t

(
f (xi), σε, ν

)
, 1 ≤ i ≤ n, (6.42)

based on the sample of predictor/response pairs (xi, yi), 1 ≤ i ≤ n. Consider
the following extension of (6.42):

yi
ind.∼ t

(
f (xi), g(xi), h(xi)

)
, 1 ≤ i ≤ n, (6.43)
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where both g and h are smooth positive-valued functions. Use the vgam()

and studentt3() functions in VGAM to fit (6.43) to predictor/response data
corresponding to x and y generated by:

> library(Ecdat) ; data(Workinghours)

> x <- Workinghours$age ; y <- Workinghours$income/10

4. In Sect. 6.3 an additive model was fit to the principal component scores
computed from the second derivatives of absorbances in the Tecator dataset.
Repeat this analysis using the first derivative.

a. If you use the first k scores, which value of k gives the smallest AIC?
b. Compare using first and second derivative by AIC values. Which is best?
c. Divide the dataset into training and test samples. Do first derivatives provide

a better or inferior out-of-sample prediction performance compared to
second derivatives?

5. The dataset yields used in Sect. 6.6 contains Japanese yield curves in columns
31–60.

a. Repeat the analysis in that section except use Japanese instead of European
yield curves to predict U.S. yield curves. As a predictor of USA yield curves,
which seems better, Japanese or European yield curves?

b. Use both European and Japanese yield curves to predict U.S. yield curves.
Does this bivariate model provide better predictions compared to using either
European or Japanese yield curves alone?

6. Starting with the data frame PimaIndiansDiabetes in the mlbench R pack-
age creates a training dataset consisting of a random subset of 668 observations
on the 9 variables and save the remaining 100 observations as a test dataset.
Ignore the fact that, for some variables, 0 is used to code missing observations.
Using the functions tune.svm() and svm() in the package e10701 builds
a support vector machine for classifying subjects into presence or absence of
diabetes. The parameter search should be conducted over

(γ, C) ∈ {10−5, 10−4, . . . , 105} × {10−5, 10−4, . . . , 105}.

Obtain the confusion matrix and estimated misclassification rate using the test
dataset.

7. The data frame plankton in the HRW package contains 4000 flow cyto-
metric measurements on 5 species of plankton Dunaliella, Hemiselmis,
Isochrysis, Pavlova, and Pyramimonas (source: Boddy et al. 2001). The
total number of records in the data frame is 4000. This exercise is concerned
with building a multi-class support vector machine for classification of plankton
species via the R function svm() in the e1071. To aid visualization of the
classifier we will first work with just two features: forward scatter and red
fluorescence under red light.
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a. Start an R session and issue the following commands to make the plankton
data available to the current session:
> library(HRW) ; data(plankton)

b. Issue the following commands to divide the row indices into a training
sample of size 3000 and a test sample of size 1000:
> set.seed(1)

> indsTrain <- sample(1:4000,3000)

> indsTest <- setdiff(1:4000,indsTrain)

> planktonTrain <- plankton[indsTrain,]

> planktonTest <- plankton[indsTest,]

c. Next, plot the training data by issuing these commands:
> speciesNames <- as.character(unique(plankton$species))

> pointCols <- c("red","blue","green3","orange","purple")

> plot(plankton$forwScatt[indsTrain],

+ plankton$redFluorRedLight[indsTrain],

+ col = pointCols[plankton$species[indsTrain]],

+ cex = 0.5,xlab = "forward scatter",

+ ylab = "red fluorescence under red light")

> legend("topleft",legend = speciesNames,col = pointCols,

+ pch = rep(1,5),pt.cex = 0.5,cex = 1.5)

d. Fit a radial basis function support vector machine with (γ, C) = (1, 1) via
the commands:
> library(e1071)

> fitSVM <- svm(factor(species) ~ forwScatt

+ + redFluorRedLight,data = planktonTrain,

+ gamma = 1,cost = 1)

e. Display the support machine classifier as an image plot via the commands:
> meshSize <- 201

> forwScattGrid <- seq(min(plankton$forwScatt),

+ max(plankton$forwScatt),

+ length = meshSize)

> redFluorRedLightGrid <-

+ seq(min(plankton$redFluorRedLight),

+ max(plankton$redFluorRedLight),

+ length = meshSize)

> pixelMesh <- expand.grid(forwScattGrid,

+ redFluorRedLightGrid)

> names(pixelMesh) <- c("forwScatt","redFluorRedLight")

> classMat <- matrix(as.numeric(predict(fitSVM,pixelMesh)),

+ meshSize,meshSize)

> imageCols <- c("tomato","cyan","palegreen",

+ "navajowhite","thistle")

> image(forwScattGrid,redFluorRedLightGrid,classMat,

+ col = imageCols,xlab = "forward scatter",

+ ylab = "red fluorescence under red light")
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f. Add the test data to the image plot:
> points(plankton$forwScatt[indsTest],

+ plankton$redFluorRedLight[indsTest],cex = 0.5,

+ col = pointCols[plankton$species[indsTest]])

g. Compute the confusion matrix and estimated misclassification rate using the
R commands:
> predsTest <- cbind(plankton$forwScatt[indsTest],

+ plankton$redFluorRedLight[indsTest])

> names(predsTest) <- c("forwScatt","redFluorRedLight")

> predClasses <- predict(fitSVM,predsTest)

> trueClasses <- plankton$species[indsTest]

> confusMat <- table(predClasses,trueClasses)

> dimnames(confusMat)[[1]] <- speciesNames

> dimnames(confusMat)[[2]] <- speciesNames

> print(confusMat)

> estMisclassRate <- (sum(confusMat)

+ - sum(diag(confusMat)))/1000

> print(paste(100*estMisclassRate,"%",sep = ""))

h. Fit a radial basis function support machine with (γ, C) = (1, 1) to the
same training data, but with all six predictors included. Obtain the confusion
matrix and estimated misclassification rate.

i. Re-do h., but instead using tune.svm() to select (γ, C) from the set

{10−4, 10−3, . . . , 104} × {10−4, 10−3, . . . , 104}.

Obtain the confusion matrix and estimated misclassification rate.

8. The data frame carAuction in the R package HRW contains data on 49
features of 72,983 cars sold at auction in the USA (source: “Don’t Get
Kicked” competition, www.kaggle.com). Also in the data frame are indicators
of whether each car was considered a bad buy. The breakdown of bad buy and
good buy cars is:

Bad buy Good buy

8976 64,007

A subset of these data is used to illustrate support vector machine classification
in Sect. 6.7.1.

a. Randomly select 2983 of the cars to hold back as a test dataset. The
remaining 70,000 cars form a training dataset.

b. Using the R package LowRankQP, obtain some penalized spline support
vector machine classifiers based on the training dataset obtained in a. In
each case, obtain the estimated misclassification rate, based on the test

www.kaggle.com
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data, and compare it with the estimated misclassification rate with naïvely
classifying all cars as good buys: 8976/(8976 + 64,007) ≈ 12.3%. The
R script carAucPenSplSVM.R, corresponding to the illustration given in
Sect. 6.7.1.1, provides some guidance.

c. Investigate the feasibility of radial basis function support vector machine
classifiers in R based on the training dataset obtained in a.

9. The Yeo–Johnson family of density functions is given by

p(x;μ, σ, λ) ≡ (2πσ 2)−1/2 exp

{−{ψ(λ, x) − μ}2

2σ 2

}
(|x| + 1)sign(x)(λ−1),

λ, μ ∈ R, σ > 0.

where

ψ(λ, x) ≡

⎧
⎪⎪⎨

⎪⎪⎩

{(x + 1)λ − 1}/λ, x ≥ 0, λ �= 0,

log(x + 1) x ≥ 0, λ = 0,

{1 − (1 − x)2−λ}/(2 − λ), x < 0, λ �= 2,

− log(1 − x), x < 0, λ = 2.

(Yeo and Johnson 2000).

a. Consider the variables wifeAge and otherIncome, defined by
> library(Ecdat) ; data(Workinghours)

> wifeAge <- Workinghours$age

> otherIncome <- Workinghours$income/10

and corresponding to wife’s age in years and other household income in
thousands of U.S. dollars from the 1987 cross-section of the Michigan Panel
Study of Income Dynamics (e.g. Lee 1995). Out of the 3382 wife’s age
and other house income pairs, 1017 correspond to households for which the
wife’s age is in the range 20–29 years old. Let

si, 1 ≤ i ≤ 1017,

be the subset of otherIncome values for the 20–29 wife’s age bracket
and consider the following Bayesian model in which the si are modeled as
being a random sample from a member of the Yeo–Johnson family density
functions:

si |μ, σ, λ are independent with density function p(si;μ, σ, λ)

λ ∼ N(0, σ 2
λ ), μ ∼ N(0, σ 2

μ), σ ∼ Half-Cauchy(A).

(6.44)

Write an R script that fits (6.44) using Stan via the package rstan. Set
the hyperparameters to be σλ = σμ = A = 105. The target += facility,
illustrated in Sect. 6.2.2, is required for model specification since the Yeo–
Johnson family is not supported in Stan.



6.11 Exercises 311

b. Repeat a. but for otherIncome values corresponding to the wifeAge values
in the age brackets 30–39, 40–49, and 50–59.

c. Now consider the mixed model-based penalized spline model applied to the
predictor/response pairs (xi, yi), 1 ≤ i ≤ n, as follows:

yi |β,u, γ , v, δ,w are independent with

density function p(xi;μ(xi), σ (xi), λ(xi))
(6.45)

where

μ(x) ≡ β0 + β1 x + ∑K
k=1 uk zk(x), uk ∼ N(0, σ 2

u ),

σ (x) ≡ γ0 + γ1 x + ∑K
k=1 vk zk(x), vk ∼ N(0, σ 2

v )

and λ(x) ≡ δ0 + δ1 x + ∑K
k=1 wk zk(x), wk ∼ N(0, σ 2

w).

(6.46)

In (6.46), zk , 1 ≤ k ≤ K , is an O’Sullivan cubic spline basis over the range
of the xis. The priors are:

β0, β1
ind.∼ N(0, σ 2

β ), γ0, γ1
ind.∼ N(0, σ 2

γ ), δ0, δ1
ind.∼ N(0, σ 2

δ ),

σu ∼ Half-Cauchy(Au), σv∼Half-Cauchy(Av) and σw∼Half-Cauchy(Aw).

Use Stan and rstan to fit model (6.45) and (6.46) to the n = 3382
predictor/response pairs stored in the arrays wifeAge and otherIncome.
For the MCMC fitting in Stan, work with input predictor data xi , 1 ≤ i ≤ n,
pre-transformed to the unit interval. Do the same for the response data yi ,
1 ≤ i ≤ n. Put σβ = σγ = σδ = Au = Av = Aw = 105 and set the number
of spline basis functions to be K = 17.

d. Based on the fit in c. obtain the Bayes estimates of the 100τ% quantile curves
for τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. For a fixed τ ∈ (0, 1) this is given by

ψ−1(λ(x) μ(x) + σ(x)Φ−1(τ ))

where

ψ−1(λ, x) ≡

⎧
⎪⎪⎨

⎪⎪⎩

(λ x + 1)1/λ − 1, x ≥ 0, λ �= 0,

ex − 1, x ≥ 0, λ = 0,

1 − {1 − (2 − λ) x}1/(2−λ), x < 0, λ �= 2,

1 − e−x, x < 0, λ = 2.

Transform the quantile function estimates back to the original units and plot
them with the original data.
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10. The data frame lidar in the package HRW contains data from a light detection
and ranging experiment (source: Sigrist 1994). The dataset consists of the
predictor/response pairs (xi, yi), 1 ≤ i ≤ n, where

xi = distance traveled before the light is reflected back to its source,

yi = logarithm of the ratio of received light from two laser sources

and n = 221. In the data frame, these variables are named range and
logratio, respectively.

a. Use the R function plot() to create a scatterplot of the response data versus
the predictor data.

b. The scatterplot shows a strong nonlinear signal, but is also strongly het-
eroscedastic. Write an R script that uses Stan, via the package rstan, to fit
the Bayesian heteroscedastic nonparametric regression model

yi
ind.∼ N(f (xi), g(xi)), 1 ≤ i ≤ n,

where

f (x) = β0 + β1 x +
K∑

k=1

uk zk(x), uk|σu
ind.∼ N(0, σ 2

u )

and

g(x) = exp

(
γ0 + γ1 x +

K∑

k=1

vk zk(x)

)
, vk|σv

ind.∼ N(0, σ 2
v )

are penalized spline models for f and g, with

zk(x) = (x − κk)+, 1 ≤ k ≤ K,

being the truncated line basis with knots

κk = {(k + 1)/(K + 2)}th sample quantile of the xis, 1 ≤ k ≤ K,

and K = 35. Suitable noninformative priors should be placed on β0, β1,
γ0, γ1, σu, and σv . It is advisable to standardize the data for the Bayesian
analysis and then backtransform the results to correspond to the original
data. The script should plot the scatterplot of the input data with the
Bayes estimate of f and corresponding 95% pointwise credible sets added.
Another plot should show the Bayes estimate of g with corresponding 95%
pointwise credible sets.
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c. Randomly select 20 predictor observations to be fictitiously unobserved.
Write another R script that is similar to the script from part b. in that it fits the
Bayesian heteroscedastic model using Stan but now treats the unobserved
data as missing completely at random with missingness probability p having
a Uniform prior distribution on (0, 1). The script should also obtain Bayes
estimates and 95% credible sets for the unobserved predictor data and
compare them with their actual values.

d. Randomly select 200 predictor observations to be fictitiously observed with
Gaussian measurement error. Specifically, for these xis we instead observe
wi ∼ N(xi, σ

2
w) for some σw > 0. Set the true value of σw to be 50. Obtain a

scatterplot of the observed data with different colors used for the (xi, yi) that
are observed exactly and the (wi, yi). Write another R script that is similar
to the scripts from part b. and c. in that it fits the Bayesian heteroscedastic
model using Stan but now accounts for the measurement error in all but 21
of the predictor values. The script should also obtain Bayes estimates and
95% credible sets for σW the unobserved exact predictor data and compare
them with their actual values.

11. The data frame ragweed in the R package HRW contains data on daily
ragweed pollen counts for Kalamazoo, Michigan, USA, during that pollen’s
seasons for the years 1991–1994. Also available are data on temperature in
degree Fahrenheit, wind speed in knots, and indicator of occurrence of rain.
An additional variable, named temperatureResidual in ragweed, are the
residuals from fitting five effective degrees of freedom smoothing splines, via
the base R function smooth.spline(), to temperature versus day number
for each annual ragweed pollen season. Of interest is the following Negative
Binomial factor-by-curve additive/interaction model:

pollenCounti

ind.∼ Negative-Binomial
(

exp
{
fyear(dayInSeasoni )

+g(temperatureResiduali )

+h(windSpeedi )

+β raini

}
, κ

)
(6.47)

where x ∼ Negative-Binomial(μ, κ) denotes that x has the Negative Binomial
probability mass function

p(x;μ, κ) = κκΓ (x + κ)μx

Γ (κ)(κ + μ)Γ (x + 1)
, x = 0, 1, . . . , μ, κ > 0,

(6.48)
the fyear are smooth functions for year ∈ {1991, 1992, 1993, 1994}, repre-
senting a factor-by-curve interaction between year and day in season, and g

and h are also smooth functions. Using Stan via the R package rstan fit
a Bayesian mixed model-based penalized spline version of (6.47). Note that
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the built-in Stan distribution negative_binomial_2 is appropriate for the
parametrization of the Negative Binomial distribution given by (6.48). Use
priors and hyperparameters similar to those used in the examples of this chapter.
For κ , use a noninformative Half-Cauchy prior. Plot the Bayes estimates of all
functions with corresponding pointwise 95% credible sets and obtain Bayes
estimates and 95% credible sets for β and κ .
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