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Preface

Scientific progress depends on good methods, and in order to try to accomplish the
developments in our days, it urges to explore and develop methodologies involving
risk analysis and statistical modeling. Trying to minimize or even avoid risks and
to have good ways to be prepared to future results based on real data observed in
the past is in fact mandatory. With recent advances in these areas from theoretical,
computational, and practical points of view, the problems analysis has become
more complex, and yet there is a need for guidance to get into the more advanced
literature. Most of this literature can be found in scientific journals and proceedings.
Besides some books cover a few methods very well, most of them do not do it in
a comprehensive way, mainly to the practitioners in these areas. From this point of
view, our volume detaches the difference. This book tries to overcome that problem
by covering an essential part of the quantitative approach in risk analysis, where
statistical models and/or mathematical methods are linked with some phenomenon
under investigation. Along the book, applications to real data are observed in several
areas, like engineering, medicine, health sciences, education sciences, economy,
finances, and industry.

At the same time modeling issues provide the methodology to gather a compact
structure for the data. In the first stage of risk analysis, data were studied from
the decision theory point of view. However, nowadays data analysis is expanded
to medical and biological models, and moreover, it covers economical, industrial,
environmental, and management problems. Very general definition could be that:
risk analysis is the review of (estimation of) the risks associated with a particular
event or action, resulting in another one. That is why in principle, risk management
is the process of planning, organizing, leading, and controlling activities to minimize
the adverse effects of accidental losses on the organization, such as a firm or
an industrial unit. Similar is the definition of the environmental risk assessment
(ERA): it aims at assessing the effects of stressors, often chemicals, on the
local environment. But risk assessment is concerned with the determination of
quantitative or qualitative estimate of the associated risk related to a well-defined
situation and a recognized threat: thus, the hazard function is an essential “tool” for
the threat evaluation.

v
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The common target for risk assessment studies, either for toxicology/medicine
or for biology/environmental, was the cancer risk assessment. Thus, interest was
focused on the design of experiments and mixtures of experiments at the early
stages, and later the study of tumor was through the “birth-death” stochastic process.
Here the “risk” was the cell to be transformed to a tumor! The experiments of
performing on rats were restricting from the “size of the experiment” for ethical
and economic reasons. But such studies of risk cannot be applied on economic
problems which need the estimation of the involved risk. Actuary mathematics is
another approach to reduce the risk for insurance companies and others.

Our previous Springer volume in Theory and Practice of Risk Assessment reflects
a first step to extend the applications of risk analysis, to obtain a broader area of
research, rather than the one centered on biostatistics, as an extension (political)
from game theory.

Needless to say, at the first stage of using risk methods, from a mathematical
point of view relative risk was really a simple index, but so useful (distance)
measure. We adopt this line of thought in this volume, thanks to Springer, and
we include more areas of applying risk theory. Thus, we believe that we cement
our point of view that risk analysis can be considered an independent branch of
statistics, tackling areas of interest such as management, industry, and economics.

The problem of data is always at the first line of interest, not only if it exists
or not. We must recall that in cases where the data set is small, less than 30
observations, or for big data sets, we need a special treatment of the data. In some
cases (due to cost!) only very few observations can be obtained. We moved from the
“data of status” that is statistics to analyzing data sets from a number of areas, when
we were developing Data Analysis (thanks to John Tukey, who named the method)
and, now dealing with big data sets and high-tech computers, we are moving to Data
Analytics (subset of Business Intelligence). But always the source of data we try to
analyze is very essential and related to the risk we try to eliminate, minimize, or
estimate.

It was essential to create biological data sets. Molecular biology through
genomics, proteomics, and metabolomics increased our knowledge of biological
processes, and several databases are now accessible through the Internet. Similar
databases, not so easy accessible, were developed on cancer. Studies on risk analysis
were therefore based on more reliable data sets, as far as cancer was concerned.
Statistical modeling also tackles the data analysis problem. That is why this book is
divided into two parts:

Part I. Risk Methodologies and Applications
Part II. Statistical Modeling and Risk Issues in Several Areas

The papers submitted to this volume were carefully reviewed by referees. The
selected papers were placed appropriately and offer the readers the opportunity to
look for a number of different approaches and a broad range of areas of application.
We believe that this book will offer solutions to the existing problems, will provide
the appropriate framework and background to real-life problems, and will cover a
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gap that usually exists: some more time is needed for new theoretical results to be
published in one book.

The book reflects contributions from invited experts, providing the reader with
a comprehensive overview of the main areas by fostering links with several related
disciplines, exploring computational issues, and presenting some research future
trends. As this volume is multiauthor, multinational and covers different areas of
applications, it offers a chance to the researchers working in different areas of having
it as a reference book.

Lisboa, Portugal Teresa A. Oliveira
Athens, Greece Christos P. Kitsos
Lisboa, Portugal Amílcar Oliveira
Tomar, Portugal Luís Grilo



Introduction

Doubt is the beginning, not the end, of wisdom.

—George Iles, 1852–1942.
In fact, doubt raises the notion of hazard, promotes risk research and fosters new

knowledge. This book tries to cover an essential part of the quantitative approach
in Risk Analysis, where statistical models and/or mathematical methods are linked
with some phenomenon under investigation. The general topic RISK is explored in
order to understand, simulate, design and promote the analysis of real problems,
fostering new challenges in several areas, such as Engineering, Medicine, Health
Sciences, Education Sciences, Economy, Finances and Industry.

In an attempt to recognize the role that statistics and computation play in
risk analysis, the International Committee on Risk Analysis of the International
Statistical Institute, the ISI-CRA, decided to select a series of interesting papers in
order to attempt as this book chapters, consisting of some of the most important and
current methodologies under the Risk topic. With this book we aim to reinforce
the bridge connecting theoretical topics and new methodologies to the practical
applications, fostering a deep insight among the practitioners of several areas.

The book is presented into two main parts based on the subject matter covered:

Part I is devoted to Risk Methodologies and Applications

Part II is focused on Statistical Modeling and Risk Issues in Several Areas

Part I: Risk Methodologies and Applications

The papers in Part I mainly cover Risk theoretical issues and methodologies,
with focus on applications in Health Sciences, Medicine, Economics, Finance,
Engineering and on special issues in the main areas of Mathematics and Statistics.

ix



x Introduction

The chapters are organized into sections based on the primary focus of the papers
included. Some briefly description of the topics covered in these sections follows:

Section 1 The first section deals with Risk Analysis in Health Sciences and
Medicine.

Chapter “Assessment of Maximum A Posteriori Image Estimation Algorithms for
Reduced Acquisition Time Medical Positron Emission Tomography Data” considers
a study to examine the effects of reduced radioactive dosage data collection on
positron emissions tomography reconstruction reliability. The efficiency of various
reconstruction methods is also investigated.

Chapter “On Mixed Cancer Risk Assessment” consider both mammary cancer
and Wilms tumors, as two typical examples from oncology generating difficult
multicriterial decision problems. The authors fit mixture models to box-counting
fractal dimensions in order to better understand the variability, they explore the
effect of chemotherapy and present a discussion on the shape analysis for Wilms
tumors.

Section 2 The second section is devoted to Risk Analysis in Economics and
Finance applications.

Chapter “Traditional Versus Alternative Risk Measures in Hedge Fund Invest-
ment Efficiency” deals with the Hedge funds which are financial institutions aiming
at generating absolute rates of return, that is at realizing profits regardless of the
market situation. Some measures of investment are explored and compared in a
particular period.

Chapter “Estimating the Extremal Coefficient: A Simulation Comparison of
Methods”. Tail dependence is an important issue to evaluate risk and the multivari-
ate extreme values theory is the most suitable to deal with the extremal dependence.
The extremal coefficient measures the degree of dependence between the marginals
of max-stable distributions, a natural class of models in this framework. The authors
address the estimation of the extremal coefficient and a new estimator is compared
through simulation with existing methods. An illustration with real data is also
presented.

In Chapter “On a Business Confidence Index and Its Data Analytics: A Chilean
Case” a methodology on a novel Chilean business confidence index is presented,
which allows the description of some aspects of the market at a global level, as
well as at industrial and sector levels of Chilean great brands. Some issues related
to business intelligence, customer and business surveys, market variables and of the
mentioned confidence index are discussed. Descriptive and Inferential results on this
index are presented, as well as results on the competitiveness of the Chilean great
brands.

In Chapter “On the Application of Sample Coefficient of Variation for Managing
Loan Portfolio Risks” the application of Sample Coefficient of Variation for
Managing Loan Portfolio Risk is presented. The authors obtain the lower and upper
bounds for sample Coefficient Variation and study the possibility of using it for
measuring the risk concentration in a loan portfolio. The capital adequacy and
the single borrower limit are considered and some theoretical results are obtained.
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Finally the implementation and illustration for this approach is presented using a
real data set.

Section 3 The third section focuses on Risk Analysis considering Statistical
Process Control (SPC) with Applications to Industrial and Environmental problems.

In Chapter “Acceptance-Sampling Plans for Reducing the Risk Associated
with Chemical Compounds” a research study on acceptance—sampling plans for
reducing the risk associated with chemical compounds is presented. The authors
highlight the adequacy of the inflated Pareto distribution to model measurements
obtained by chromatography, and define and evaluate acceptance-sampling plans
under this distributional setup for lots of large dimension. Some technical results
associated with the construction and evaluation of such sampling plans are provided
as well as an algorithm for an easy implementation of the sampling plan that exhibits
the best performance.

In Chapter “Risk of Return Levels for Spatial Extreme Events” a study on Risk
of Return Levels for Spatial Extreme Events is presented and the authors illustrate
it with an application, using real data on environmental issues.

In Chapter “Nonparametric Individual Control Charts for Silica in Water” non-
parametric individual Control Charts for silica in water are presented. The authors
present a comparison of the control limits obtained with different approaches and
emphasize that the analysis with(out) outliers is very important for technicians, since
the value of silica should be as small as possible.

Section 4 The fourth section focuses on Risk Analysis using Statistical and
Mathematical methodologies. Chapters X, XI and XII are devoted to Risk issues
on Extreme Theory and on Distribution Theory. In Chapter “Revisiting Resampling
Methods in the Extremal Index Estimation: Improving Risk Assessment” the authors
revisit resampling methods in the extremal index estimation, with the aim of
improving risk assessment and, in Chapter “Improving Asymptotically Unbiased
Extreme Value Index Estimation”, a research on improving Asymptotically Unbi-
ased Extreme Value Index Estimation is presented. Moreover, in this section the
Hazard Rate and Future Lifetime for Generalized Normal Distribution is explored
and discussed in Chapter “Hazard Rate and Future Lifetime for the Generalized
Normal Distribution”.

Part II: Statistical Modeling and Risk Issues in Several Areas

Section 1 The first section of Part II deals with Statistical Modeling and Applica-
tions in Time Series.

Chapter “Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series”
deals with the Wavelet-based detection of outliers in Poisson INAR(1) time series.
The authors give special emphasis to the problem of detecting outliers, additive
or innovational, single, multiple or in patches, in count time series modelled by
first-order Poisson integer-valued autoregressive, PoINAR(1), models. In order to



xii Introduction

address this problem, two wavelet-based approaches that allow the identification
of the time points of outlier occurrence are proposed and the effectiveness of the
proposed methods is illustrated with synthetic as well as with an observed dataset.

Chapter “Surveillance in Discrete Time Series” is devoted to the problem of
surveillance in Discrete Time Series. The principles for the construction of optimal
alarm systems are discussed and their implementation is described. As there is no
unifying approach to the modelling of all integer-valued time series, the focus of
attention is on the class of observation-driven models and the implementation of the
optimal alarm system is described in detail for a particular non-linear model in this
class.

In Chapter “On the Maxima of Integer Models Based on a New Thinning
Operator” the authors present their work on the maxima of integer models based
on a new thinning operator. A non-negative integer-valued process is introduced
and studied, referred as Y-INARMA(1,1), which is an extension of the well-known
geometric ARMA(1,1) process.

Section 2 The second section of Part II is devoted to Statistical and Mathematical
issues considering Risk and Modeling.

Chapter “Exact and Approximate Probabilities for the Null Distribution of
Bartels Randomness Test”, under the main topic of Distribution Theory, explores
the exact and approximate probabilities for the null distribution of Bartels Ran-
domness Test. A new approximation based on the Edgeworth series is presented
for the null distribution of the Bartels randomness statistic, and the precision of
this new approximation is discussed. Under this topic, Chapter “Gamma-Series
Representations for the Sum of Independent Gamma Random Variables and for
the Product of Independent Beta Random Variables” discusses the Gamma-series
representations for the sum of independent gamma random variables and for the
product of independent beta random variables. Still under the topic of Distribution
Theory, in Chapter “Likelihood Ratio Tests for Equality of Mean Vectors with
Circular Covariance Matrices” the likelihood ratio tests for equality of mean
vectors with circular covariance matrices is presented. Numerical studies show the
extreme closeness of these near-exact distributions to the exact distributions.

Chapter “Optimal Estimators in Mixed Models with Orthogonal Block Struc-
tures” is devoted to Mixed Models, namely the optimal estimators in such models
with Orthogonal Block Structures are explored. Finally, in Chapter “Constructing
Random Klein Surfaces Without Boundary”, algebraic curves are explored. Random
oriented 3-regular graphs with big number of vertices provide surfaces of large
genera and an experimental model to claim important geometrical properties of such
surfaces. For instance the existence of a low bound for systoles when the genus
tends to infinity. The construction of random Klein surfaces without boundary is
then discussed.

Section 3 Modeling applications to Engineering and Economics.
Chapter “Performance Analysis of a GPS Equipment” considers the perfor-

mance analysis of a GPS Equipment. The aim is to evaluate GPS SRP regarding
accuracy, as the equivalent of a real time kinematic (RTK) network and to address
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the practicality of using either a continuously operating reference stations (CORS)
or a passive control point for providing accurate positioning control. Chapter
“Multivariate Generalized Birnbaum-Saunders Models Applied to Case Studies
in Bio-Engineering and Industry” presents a methodology based on multivariate
generalized Birnbaum-Saunders models applied to case studies in bio-engineering
and industry.

Chapter “Energy Prices Forecasting Using GLM” looks at energy prices
forecasting using GLM. The aim of the problem is the short term forecast of
hourly energy prices and an application is performed using real data proposed by
the company EDP - Energy Solutions Operator, in the framework of ESGI 119th,
European Study Group with Industry. The application was developed taking into
account data concerning hourly electricity prices from 2008 to 2016 and these data
were explored using different statistical software, namely IBM SPSS, Statistics,
Matlab and R Statistical Software. In Chapter “Pseudo Maximum Likelihood and
Moments Estimators for Some Ergodic Diffusions” the authors consider the pseudo
maximum likelihood and moments estimators for some ergodic diffusions.

Section 4 Statistical modeling applications to Health Sciences, Education Sciences
and Informatics.

In Chapter “Statistical Modelling of Counts with a Simple Integer-Valued
Bilinear Process” the authors explore the Statistical Modelling of Counts with a
Simple Integer-Valued Bilinear Process and present an empirical application to real
epidemiological count data to attest for its practical applicability in data analysis.
Chapter “A Comparative Study of the Estimators for the Demand of Engineering
Courses in Portugal” presents a comparative study of the estimators with the
purpose of modeling the demand of Engineering Courses in Portugal. The authors
explore an application which is based on a data set that covers the results of
the national contest from 1997 to 2015 provided by the Portuguese Ministry of
Education and Science. Multivariate methodologies were performed in order to
allow a better understanding of the students’ allocation behavior. Finally in Chapter
“Statistical Methods for Word Association in Text Mining” the authors present a
research on statistical methods for word association in Text Mining. Some general
techniques for text data mining, based on text retrieval models that can be applicable
to any text in any natural language are explored.

In conclusion, papers selected for this volume are mostly focused on the
development of methodologies to face problems related to the main proposed topics
of Risk Analysis and Statistical Modeling. A considerable number of them establish
a bridge between these two main topics, and illustrate the methodologies with
applications using real data sets and exploring several computational approaches.
Thus, the book covers applications in a broad range of areas and will be very
useful not only to researchers and students but also for practitioners. Thanks to
the straightforward nature of the book presentation, we believe that it will help
a new generation of statisticians and practitioners to solve complex problems in
risk analysis. Moreover, many models and methods used in Risk Analysis were
developed recently and have yet to reach their largest possible audience. We assist to
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the slip of results which are scattered in various journals and proceeding volumes. In
that sense this book fills a gap in the market and it can easily serve as a textbook for
a special topics courses both on risk analysis and statistical modeling. We sincerely
hope that this book publication will enhance the spread of ideas that are currently
trickling through the scientific literature.

All of the papers included in this volume were reviewed by two referees and by
the editors.

We would like to extend our heartfelt thanks to all the reviewers who devoted
their time to allow us to improve the quality of the submitted papers, and in turn
the quality of the volume. At the same time, we express our sincere thanks to all
the authors, not only for the submission of the papers, but also for their expeditious
revisions and for incorporating the reviewers’ suggestions.

Last but not least, the editors would like to express their heart-felt thanks and
gratitude to SPRINGER for their help and support with this volume, particularly we
are deeply grateful to Dr Eva Hiripi without whose valuable assistance we could
never have realized this manuscript.

Lisboa, Portugal Teresa A. Oliveira
Athens, Greece Christos P. Kitsos
Lisboa, Portugal Amílcar Oliveira
Tomar, Portugal Luís Grilo
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Assessment of Maximum A Posteriori
Image Estimation Algorithms for
Reduced Acquisition Time Medical
Positron Emission Tomography Data

Daniel Deidda, Robert G. Aykroyd, and Charalampos Tsoumpas

Abstract This study examines the effects of reduced radioactive dosage data col-
lection on positron emission tomography reconstruction reliability and investigates
the efficiency of various reconstruction methods. Also, it investigates properties
of the reconstructed images under these circumstances and the limitations of
the currently used algorithms. The methods are based on maximum likelihood
and maximum a posteriori estimation, but no explicit solutions exist and hence
iterative schemes are obtained using the expectation-maximisation and one-step-late
methods, while greater efficiency is obtained by using an ordered-subset approach.
Ten replicate real datasets, from the Hoffman brain phantom collected using a
Siemens Biograph mMR scanner, are considered using standard deviation, bias
and mean-squared error as quantitative output measures. The variability is very
high when low prior parameter values are used but reduces substantially for higher
values. However, in contrast, the bias is low for low parameter values and high for
high parameter values. For individual reconstructions, low parameter values lead to
detail being lost in the noise whereas high values produce unacceptable artefacts at
the boundaries between different anatomical regions. Considering the mean-squared
error, a balance between bias and variability, still identifies high prior parameter
values as giving the best results, but this is in contradiction to visual inspection.
These findings demonstrate that when it comes to low counts, variability and bias
become significant and are visible in the images, but that improved reconstruction
can be achieved by a careful choice of the prior parameter.
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1 Introduction

Positron emission tomography (PET) is a non-invasive imaging technique used
in the clinical setting for routine diagnosis, dose delivery and treatment response
evaluation. The use of medical imaging technologies is now commonplace in the
clinical setting. Positron emission tomography leads the way in the detection of
abnormalities such as cancer since, although it has low spatial resolution, it provides
unrivalled functional information. As with all radiation-based methods, however,
there is a risk of tissue damage which could lead to cancer at a later date. Hence there
is a constant demand for decreases in radioactive dosages. Positrons are emitted by
a radioactive-tracer, travelling a few millimetres before interacting with electrons.
As soon as the interaction takes place a pair of photons, of identical energies, are
emitted in opposite directions. The detection of the two photons allows a line-of-
response to be defined which is characterised by an angle and the shortest distance
between the line and the centre of the detector system—see Fig. 1a where four events
are shown. When a large number of lines-of-response are plotted the resulting graph
is half of a sine wave—hence the motivation for this type of graph being called
a “sinogram”. With complex objects the data will consist of a large number of
overlapping sine waves [5]—see the real data example in Fig. 1b.

If this were a non-random system, then the data, Y say, would be a simple
linear function of the radio-isotope concentrations, Λ say, and coefficients, C say,
that is Y = CΛ. In principle, this can be inverted as Λ = C−1Y , or the usual
linear regression estimate Λ = (CT C)−1CT Y . In a typical data collection system,
however, there are about 256×642 ≈ 16 million data values and a 3D reconstruction
space of 2563 ≈ 16 million voxels. This means that C is a 16 million by 16 million
matrix with high multicollinearity. This is a highly ill-conditioned, and possibly ill-
posed, big-data inverse problem which requires careful analysis.

Several iterative algorithms are currently used to estimate the radioactive-tracer
distribution based upon the principles of maximum likelihood and maximum a pos-
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Fig. 1 PET data acquisition: (a) events recorded as a line-of-response, and (b) total counts shown
in a sinogram
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teriori estimation. These have been widely studied using both simulated and clinical
data, but less well for anatomically realistic measured phantom data, as is the theme
here. This investigation will consider quantitative voxel-by-voxel output analysis,
rather than the more common region-of-interest based approach, in terms of bias,
standard deviation and mean squared error. A further novelty is the use of low count
data and hence it will be the first to make the quantitative comparison of algorithm
accuracy for such low count phantom data acquired with a PET-MR scanner.

This paper is organised as follows. A summary of the basic physical and
statistical modelling is given in Sect. 2 with estimation discussed in Sect. 3. The data
are described in Sect. 4 along with details of the investigation design. Numerical
results are presented in Sect. 5 with discussion in Sect. 6.

2 Statistical Modelling for PET Data

Suppose that the 3D reconstruction space, R ⊂ R3, is partitioned into small
cubic voxels with the true radioactive-tracer concentration in voxel j labelled as
λj giving the discretised unknown image Λ = {λj : j = 1, . . . ,M}. Note that
this partitioning is arbitrary and hence can be tailored to the application or chosen
for computational convenience. Let the data sinogram be denoted Y = {yi : i =
1, . . . , N} which depends on the radioactive-tracer concentration through a Poisson
model with

yi ∼ Poisson

⎛
⎝

M∑
j=1

cij λj

⎞
⎠ , i = 1, . . . , N, (1)

where cij represents the, assumed known, probability that an event occurring in
voxel j produces a coincidence in the i-th pair of detectors and takes into account
attenuation and normalisation corrections. Before moving on it is worth noting
that, for computational efficiency, the full summation over all N voxels is never
performed. Instead, for each sinogram element the sum is only taken over voxels
with non-negligible contribution, that is with cij above some threshold. The set of
voxels with non-negligible contribution to yi is denoted Ii and hence the model
becomes

yi ∼ Poisson

⎛
⎝∑
j∈Ii

cij λj

⎞
⎠ , i = 1, . . . , N. (2)

Based on this model the corresponding data log-likelihood, l(Y,Λ) = lnL(Y,Λ),
is given by

l(Y,Λ) =
∑
i∈N

⎡
⎣yi

∑
j∈Ii

ln(cij λj )−
∑
j∈Ii

(cij λj )− ln(yi !)
⎤
⎦ (3)
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and the maximum likelihood estimates of Λ given by

Λ̂ = max
Λ

l(Y,Λ) (4)

with the usual asymptotic approximations available for calculating a covariance
matrix and construction of confidence intervals, etc. However, given that M is
typically very large, e.g. M = 16 million, any direct solution of (4) is impractical.
An alternative approach is to use an iterative method, such as the EM algorithm
which is discussed in the next section.

Given that this is an inverse problem, stable solution of the maximum likelihood
problem is unlikely, especially when the number of unknowns is large compared
to the amount of data. One approach is to incorporate additional information into
the maximisation step creating a penalised likelihood approach. This can equally
be posed in a Bayesian setting with the penalty forming a prior distribution which
is combined with the above likelihood to produce the posterior distribution and the
maximum a posteriori (MAP) solution used as the reconstruction. Consider a prior
distribution defined in terms of a Gibbs distribution

f (Λ) = 1

Z(β)
exp {−βV (Λ)} (5)

where β > 0 is a prior parameter and V (Λ) is chosen so that f is large for values of
Λ believed to be likely and small for implausible values. In particular, the following
functional forms will be considered: (i) a Gaussian prior model on local differences

V1(Λ) =
∑
<j,k>

wjk(λj − λk)
2/λj , (6)

where <j, k> denotes all voxel neighbours, {wjk} are positive constants that
define a weight value for each neighbouring voxel (in general, 1 for first-order
interactions between orthogonal nearest neighbours, and 1/

√
2 for second-order

diagonal interactions), and (ii) a Gaussian prior on local variability

V2(Λ) =
∑
j

(λj − λ̄j )
2/λ̄j , (7)

were λ̄j is the median of the values in the neighbourhood of voxel j . This is
considered to be a more robust alternative allowing occasional sharp changes, or
jumps, between neighbouring radioactive-tracer values. For further details of these
prior distributions see, for example, [2] and [3].

The posterior distribution is then produced by combining the likelihood and the
prior density using Bayes’ Theorem resulting in the following log-posterior function
(and ignoring constant terms)

p(Λ | Y ) =
∑
i∈N

⎡
⎣yi

∑
j∈Ii

ln(cij λj )−
∑
j∈Ii

(cij λj )− βV (Λ)

⎤
⎦ , (8)
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with resulting definition of the maximum a posteriori (MAP) estimate as

Λ̂ = max
Λ

p(Y,Λ). (9)

Again, this cannot be solved easily and hence iterative algorithms can be used, one
of which, based on the OSL algorithm [6], is described in the next section.

3 Maximum Likelihood and Maximum a Posteriori
Estimation Using an EM Algorithm

In general, it is difficult to directly find the maximum of the log-likelihood in (3),
recalling that there are millions of data points and millions of unknown parameters,
and instead an iterative approach is used which considers single parameter updates
one-by-one. The algorithms currently used in the clinical setting for PET are
based on the approach originally proposed in [12], that is the maximum likelihood
expectation maximisation (MLEM) algorithm, see also [4] and [10], which can be
explained and derived as follows based on a “missing data” argument.

Suppose that instead of only Y being recorded, it had been possible to observe
where all events originated, then this leaves a simple task of estimating the
radioactive-tracer concentration. Hence a “complete dataset”, X = {Xij : i =
1, . . . , N, j = 1, . . . ,M}, is considered where Xij is defined as the number of
photon pairs emitted from j and detected at i and is related to yi by yi =∑j∈Ii Xij .
The complete data log-likelihood is then:

l(X,Λ) =
∑
i∈N

⎡
⎣Xij

∑
j∈Ii

ln(cij λj )−
∑
j∈Ii

(cij λj )− ln(Xij !)
⎤
⎦ . (10)

In order to obtain the algorithm updating formula, the following two steps are
necessary. In these n is the iteration number and Λ̂(n) is the estimated radioactive-
tracer concentration at iteration n.

• E-STEP: During this step the algorithm estimates the conditional expectation
of l(X,Λ), E(l(X,Λ)|Y, Λ̂(n)). The expected value for l(X,Λ), given the
measured data Y and Λ̂(n), is:

E(l(X,Λ) | Y, Λ̂(n)) =
∑
i,j

[
cij λ̂

(n)
j yi

∑
k∈Ii cikλ̂

(n)
k

ln(cij λ̂
(n)
j )− cij λ̂

(n)
j

]
+ Const.

(11)

In the first iteration the image can consist of any non-negative solution, to assure
the non-negativity constraint [10], though often an initial homogeneous image is
used.
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• M-STEP: In this step the algorithm finds the image that maximises the log-
likelihood computed in the previous step by considering the partial derivatives:

∂E(l(X,Λ) | Y, Λ̂(n))

∂λj

∣∣∣∣∣
Λ=Λ̂(n)

=
∑
i∈Jj

[
cij λ̂

(n)
j yi

∑
k cikλ̂

(n)
k

λ−1
j − cij

]
= 0, (12)

where Jj is the set of projections to which voxel j contributes. Dempster et al. [4]
showed that Eq. (12) is equal to ∂l(Y, Λ̂(n))/∂λj . The resulting formula describes
the MLEM algorithm:

λ
(n+1)
j = λ̂

(n)
j∑

i∈Jj cij

∑
i∈Jj

cij yi∑
k∈Ii cikλ̂

(n)
k

, j = 1, . . . ,M. (13)

The resulting value for Λ̂(n+1) is then used in the E-STEP of the next iteration
and the procedure is repeated until convergence is reached.

The MLEM algorithm is demonstrated to be a convergent algorithm and appropri-
ately takes into account the random behaviour of the emission process. Nevertheless,
it is computationally demanding and takes many iterations to converge. An acceler-
ated version of MLEM was developed in [8] using ordered subsets (OS) of the data.
The resulting OSEM converges in fewer iterations and is widely used in clinical
practice because it is easily implemented and provides good images more quickly.

The OSEM algorithm provides acceleration of convergence, proportional to the
number of subsets, by simply processing only the data within a subset at each
sub-iteration. The data is organised in ordered subsets and the MLEM method is
applied to each subset in turn. The reconstruction after each sub-iteration becomes
the starting point for the following subset. In this way every iteration passes through
every subset.

These subsets are usually chosen so that the projections within a subset corre-
sponds to the projections of the image with down-sampled projection angles. The
number of subsets has to be a divisor of the number of detector blocks in a ring
(the Siemens mMR has 63 blocks per ring with 8 × 8 detectors per block and
consequently, the choice could be one of 3, 9, 21 and 63). Following the same
approach as for MLEM, the OSEM algorithm is obtained by substituting the sum
over i by the sum over s ∈ Sm in (13), where Sm is the chosen subset of detector
pairs and m = 1, . . . ,M , where M is the number of subsets:

λ̂
(n,m+1)
j = λ̂

(n,m)
j∑
s∈Sm csj

∑
s∈Sm

csj ys∑
k cskλ̂

(n,m)
k

, j = 1, . . . ,M, (14)

where λ̂(n,m)j is the estimate of λj at sub-iteration m in the n-th full iteration. The

resulting value for Λ̂(n+1) is then used in the next iteration and the procedure is
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repeated until convergence is reached. The final solution then yields the maximum
likelihood estimate, Λ̂, which will later be referred to as the MLE.

The OSEM method has been proven to converge quickly if the subset balance is
respected [8]. However, with this method the MLEM noise artefacts are magnified
after every iteration. For this reason, in the clinical practice it is often stopped
at early iterations. Further, to remove the effects of noise in the reconstruction a
Gaussian smoothing filter is applied as a post-processing step—later this will be
referred to as the MLE+G.

To reduce the effects of noise in reconstruction in the final stages of the maximum
likelihood algorithm, smoothing can be introduced through a prior distribution
which then leads to the maximum a posteriori estimate. As with the log-likelihood,
the log-posterior function in (9) cannot be maximised directly and hence an EM-
based algorithm is again considered.

The OSMAPOSL algorithm is an extension of the OSEM algorithm which itera-
tively maximises the posterior distribution

l(λ | Y ) =
∑
i∈N

⎡
⎣yi

∑
j∈Ii

ln(cij λj )−
∑
j∈Ii

(cij λj )− βV (λ)

⎤
⎦ , (15)

to produce the MAP estimate with the following updating equation:

λ̂
(m+1)
j = λ̂

(m)
j⎡

⎣∑
s∈Sm

csj − β
∂V (Λ)

∂λk

∣∣∣∣
Λ=Λ̂(m)

⎤
⎦

∑
s∈Sm

csj ys∑
k cskλ̂

(m)
k

, j = 1, . . . ,M.

(16)

This uses the same ordered-subset approach and hence has faster convergence than
the original one-step-late algorithm [6]. The final solution then yields the maximum
a posteriori estimate, Λ̂, which will later be referred to as the MAP. Further, the
choice of prior function will be indicated as either V1 or V2 as defined in (6) and (7)
respectively, and finally the value of the prior parameter will be given, for example
β = 100, to give a full labelling such as MAP, V1, β = 100.

4 Data Description and Assessment Criteria

The data used in this study were acquired with a 3D PET-MR system (Biograph
mMR, Siemens Healthcare) by colleagues at the Institute of Nuclear Medicine
of University College London Hospital. The Biograph mMR has 8 rings, each
one divided in 63 blocks. The detector blocks have 8 × 8 LSO crystals, each
8 × 8 × 20 mm3 in size. Experiments were carried out using the Hoffman 3D
Brain Phantom [7], which can provide a realistic approximation of the radioactive-
tracer distribution found in the normal brain. The phantom consists of a robust
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Fig. 2 MLEM image chosen
as our high quality reference

plastic cylinder (diameter: 20.8 cm, height: 17.5 cm, fillable volume: ∼1.2 l) and
19 independent plates within the cylindrical phantom. It was filled with 60 MBq
18F-fluorodeoxyglucose and the acquisition time was 3600 s giving a total number
of events of about 109, which represents a standard for brain acquisitions. The
numerical procedures have been developed within the Collaborative Computational
Project in Positron Emission Tomography and Magnetic Resonance imaging (CCP-
PET-MR)—see www.ccppetmr.ac.uk and make extensive use of STIR [13] for data
correction (attenuation, scatter, normalisation and random matches) and reconstruc-
tion. The image size after the reconstruction is 289 × 289 × 127 with voxel size
2.04 × 2.04 × 2.03 mm3.

With real data the activity concentration is unknown and hence a gold standard
is defined as a reference, using maximum likelihood estimation from the MLEM

algorithm with the full 3600 s phantom data. The reconstructed image, as MLEM

is globally convergent and because of the very high level of counts, is sufficient in
terms of noise, bias and so on. The image, later denotedΛ∗, used as the “true” image
was obtained after 126 iterations (see Fig. 2), to ensure convergence. Both “gray
matter” and “white matter” voxel values can be distinguished well with substantial
detail of the undulating and folded structure.

To ensure exactly equal experimental conditions, ten samples with roughly the
same number of counts have been created, by sub-sampling from the 3600 s data,
so as to mimic different acquisition times and to allow reconstruction assessment.
The effective acquisition time was reduced from 3600 s to 36 s in order to simulate
low count datasets. To analyse the low-count reconstructed images, different figures
of merit have been chosen that are standard deviation (SD), Bias and Root Mean
Squared Error (RMSE).

To define a general quantitative analysis design, suppose that K replicate
datasets are available, {Y k : k = 1, . . . ,K} and that the corresponding results
of the algorithm are estimated radioactive-tracer concentration images {Λ̂k : k =
1, . . . ,K}. These can be used to define a mean image, Λ̄ = ∑K

k=1 Λ̂
k/K . Further,

www.ccppetmr.ac.uk
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recall that a “gold standard”, Λ∗ is available from the 3600 s dataset reconstructed
using the MLEM algorithm. The SD, Bias and RMSE are then defined as follows:

SD =
√√√√ 1

K

K∑
n=1

(Λ̂k − Λ̄)2; Bias = Λ̄−Λ∗; RMSE =
√

SD2 + Bias2.

(17)

The ideal reconstruction algorithm would produce low values for each of these
measures indicating high reproducibility from the replicate datasets and lack of
overall bias.

5 Experimental Results

A preliminary investigation was carried out to choose the number of sub-iterations in
the ordered-subset algorithms, OSEM and OSMAP. To do so, two regions of interest
(ROI) were chosen as representative of gray and white matter. Figure 3a, b shows
the average value within each ROI as a function of sub-iteration from the OSEM

reconstruction based on the 3600 s and 36 s datasets, respectively. This shows that at
the 5-th iteration for 21 subsets (corresponding to 105 sub-iterations), the ROI values
in both white and gray matter have stabilised. Although in the clinical setting, with
21 subsets, 63 sub-iteration are often used, here 105 is chosen as more appropriate
for our datasets. In the rest of the analysis, 21 subsets and 5 complete iterations (105
sub-iterations) are used without further comment.

The results of the main statistical investigation with the 36 s dataset over the
ten replicate datsets are represented in Figs. 4 and 5. These show a single dataset
reconstruction (Individual), Mean, SD, Bias and RMSE images for six different
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Fig. 3 Convergence of activity concentration values for white and gray matter using 21 subsets
with OSEM. (a) 3600 s acquisition time. (b) 36 s acquisition time
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Fig. 4 Transverse view of images reconstructed with 21 subsets at the 105-th sub-iteration: 36 s
acquisition

cases. Figure 4 shows the MLE from the OSEM algorithm, the corresponding image
after the Gaussian smoothing post-processing, then the MAP estimate using the
Gaussian prior on local differences,V1, with β = 100. Figure 5 shows the remaining
results for MAP estimates using the Gaussian prior on local differences, V1, with
β = 1000 and then MAP estimates using the Gaussian prior on local variability, V2,
with β = 100 and finally β = 500. The values of the prior parameters were chosen
to give a range of reconstruction quality.

The SD images summarise the variability of the individual estimates over the ten
samples, and show that the MLE and MAP estimates with small prior parameter
have SD which is very high. Using a filter for the MLE to produce the MLE+G
estimate, and a higher prior parameter for MAP estimation, helps to reduce the
SD. Overall the Bias is higher in regions with the lowest activity concentration. In
addition, too high a prior parameter leads to artefacts around the border between
different anatomical features, this is the effect of over-smoothing.
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Fig. 5 Transverse view of images reconstructed with 21 subsets at the 105-th sub-iteration: 36 s
acquisition

The RMSE images should take into account both Bias and SD, but here they show
the same trend as the SD images. That is the variability between the ten samples
swamps the Bias. With β higher than 500 and 1000 respectively for Gaussian prior
on differences and Gaussian prior on variability, the Bias will become higher and
more artefacts will be created. Table 1 shows the mean pixel values for two ROI,
representing typical gray and white matter with each made up of three circles. Each
number in the table is accompanied by the standard deviation over all the pixels
within the ROI for each image in Figs. 4 and 5.
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6 Discussion

The purpose of this work was to check the feasibility of image reconstruction when a
short acquisition time or a low radioactive-tracer dosage is used and to compare the
performance of various estimation methods in this situation. The study has used real
data to assess how low-count conditions affect image reconstruction reliability, and
in particular has compared different prior assumptions and different prior parameter
values in terms of bias, standard deviation and mean squared error. The results show
that good estimation can be achieved by a careful choice of the prior parameter.
From a global perspective, low-count reconstructions show high noise and bias
with all the methods showing the need for improvement. Moreover, it is clear that
the convergence rate of OSEM is smaller in regions with lower pixel intensity; in
fact, early-stopped OSEM images show a systematic bias in regions with lower
activity concentration such as white matter and the background. In contrast, MAP
methods with the right prior parameter value show better performance as low
activity regions have less bias. This is due to the fact that they maximise the
posterior distribution introducing prior information to remove the ill-conditioning.
The maximum likelihood and MAP estimates with low prior parameter values have
very high RMSE while it decreases with higher prior parameter values. Purely in
terms of the RMSE, the best estimation occurs with the post-filtered maximum
likelihood, and MAP estimation with the higher values of prior parameter. On visual
inspection, however, these estimates are not completely acceptable as there is high
bias across the boundary of grey and white matter, and further within a region it is
overly smooth. These would make it challenging to recognise small abnormalities,
such as cancers. Hence, a global goodness-fit measure which gives greater weight
to bias, than does the RMSE, would be more suited to such medical investigations.

A key contribution of this study is to show the difficulty in the choice of a
suitable prior parameter with low-count data. Even though the MAP estimates with
the highest prior parameter values have low RMSE the images appear to be over-
smoothed. In contrast, the maximum likelihood estimate with Gaussian smoothing,
which is the preferred method in the clinic, produces results at least as well as any
of MAP estimates. Hence, to achieve substantially better results with the MAP
estimation methods will need careful choice of prior parameters. Recent studies,
such as [1] and [9], have demonstrated that regularisation can significantly improve
quantification and detectability compared to post-filtered maximum likelihood. The
results of this investigation confirm what was suspected about low-count data, that
is, under this special circumstance reconstruction is more greatly affected by bias
and high levels of noise. Under this point of view, our results are in agreement with
the results in [15]. The use of anatomical information from MR will result in the
development of new hybrid reconstruction methods. This should help to preserve
sharp contrast between adjacent anatomical features and avoid partial volume effects
[11, 14].
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This investigation and the procedures for iterative image reconstruction consid-
ered will be a useful guide for researchers who wish to study and extend image
reconstruction and correction methods for PET data.
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Multifractal Analysis on Cancer Risk

Milan Stehlík, Philipp Hermann, Stefan Giebel, and Jens-Peter Schenk

Abstract Here we consider retroperitoneal tumors in childhood as examples
from oncology generating difficult multicriterial decision problems. Inter-patient
heterogeneity causes multifractal behavior of images for mammary cancer. Here we
fit mixture models to box-counting fractal dimensions in order to better understand
this variability. In this context the effect of chemotherapy is studied. The approach of
Shape Analysis, proposed already in the work of Giebel (Bull Soc Sci Med Grand
Duche Luxemb 1:121–130, 2008; Zur Anwendung der Formanalyse. Application
of shape analysis. University of Luxembourg, Luxembourg, 2011), is used. This
approach has considered a small number of cases and the test according to Ziezold
(Biom J 3:491–510, 1994) is distribution free. Our method here is parametric.

1 Introduction

Most of the theories of tissue image analysis can be perspectively useful for better
diagnostics of cancer. In this paper we address mainly multifractal phenomenon,
observed in several recent studies (see, e.g., [9] and the references therein). In the
last years, fractal and multifractal objects are largely used for modeling multiscale
phenomena in several fields, including physics, geoscience, chemistry, and image
processing. For theoretical background on multifractal approach to cancer, see [12].
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Data of landmarks are calculated according to the procedure, see [5]. As it was
already discussed, this procedure is useful, if there are no landmarks in consequence
of medical or theoretical aspects.

Shape analysis approach is applied on retroperitoneal tumors in childhood. Anal-
ysis is based on 2D images of magnetic resonance images with nephroblastomas
(Wilms tumors). A platonic body C60 for 3D is constructed by using 2D images
for 3D Shape Analysis. Additionally 3D Shape Analysis is performed for patients
with neoadjuvant chemotherapy of the guidelines of the SIOP/GPOH study group
for renal tumors in childhood.

2 Indication for Shape Analysis Approach for Wilms Tumors

Image recognition and classification of objects according to images is very impor-
tant for medicine [1, 10, 11]. Important aspects when producing similarly processed
images are, on the one hand, automated data entry, and on the other hand, its
manageable evaluation. Mathematical procedures can support the applicants in their
evaluation of magnetic resonance imaging, which is proposed in the example of
nephroblastomas.

Nephroblastoma (Wilms tumor) is the most common tumor type in childhood
and occurs in the majority of cases in the first decade of life [17, 18]. Genetic
predisposition is suspected to increase the risk of nephroblastomas. The chance of
curing cancer has been increased in the last decades depending on tumor stage and
histological subtype. Tumor stage is dependent on primary imaging surgical and
pathological findings. Modification of chemotherapy depends on multiple factors,
e.g. tumor volume and volume regression under chemotherapy.

Nephroblastomas, limited on the kidneys, in early stages are a huge tumor mass,
defined by a pseudocapsula. In higher stages this capsula is often penetrated from
tumor tissue. The pseudocapsula helps to define the tumor shape and tumor tissue
shows lower contrast enhancement than renal tissue, so tumor can be differentiated
in MRI (magnetic resonance images). All the following conclusions refer to images
and not to histological tumor extent. The differentiation of a nephroblastoma from
other retroperitoneal tumors is complicated and multiple factors influence the radi-
ological decision, e.g. tumor structure, tumor origin, displacement of neighboring
anatomical structures, tumor volume, patients age [5], or presence of metastasis.
Also the tumor shape is an aspect in the radiological decision.

In the radiological experience a huge round or oval mass is expected and a
decision is performed empirically. The aspect of tumor shape should be studied
on the basis of the theories of Ziezold [19] and the studies of Giebel et al. using 2D,
3D, and 4D Shape Analysis on medical data (see [5]).
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Based on the data pool of [5] the statistical differences for shape of a nephrob-
lastoma study group and a study group of non-Wilms tumors will be demonstrated
using fractal analysis. All patients data in this paper are anonymized.

Magnetic resonance images deliver 2D images after being prescribed due to
suspicion of Wilms tumor. Images of these screenings are basis for constructing
a three-dimensional object of the renal tumor. Physicians have a huge interest to
find markers for a good differentiation to avoid misclassifications. Especially with
regard to automatic diagnosis in the next stage of future technologies all aspects
of a tumor must be statistically analyzed. For this we can develop decision making
techniques with probability of a tumor diagnosis.

Shape analysis allows to form more-dimensional objects with the aid of math-
ematical procedures, characterizing objects on the basis of key points, called
landmarks. Standardization and centralization regarding size and position of the
object allow comparing objects and differentiating between stages of tumors. In
total 60 landmarks are taken as the cut-points between the surface of the tumor and
the vector of the edge of the platonic body C60 [5, 6].

The size is eliminated by standardization, thus all objects are comparable from
the point of statistics. We aim to differentiate tumors, not to detect them like in [14].
Therapy is organized with respect to therapy-optimizing studies of the Society of
Pediatric Oncology and Hematology (SIOP). On the basis of radiological findings
and reports indication of neoadjuvant chemotherapy is given. Since other tumors
exist, we compare our nephroblastoma group with non-Wilms tumors, including
tumors, which are difficult to differentiate [16]. See also [3, 7, 15].

2.1 Differentiation Between Different tumor Groups

Theoretical concepts of a group of objects like in anatomy enable to select
landmarks describing these objects. Lack of theoretical concepts require other
procedures to find landmarks. Here, 3D landmarks are obtained by constructing
a three-dimensional object of the tumor, when every landmark consists of an x-,
y-, and a z-coordinate. Then landmarks are taken as in Sect. 2. The data should be
differentiated only on the basis of these three coordinates. This enables to compare
the values of each of the coordinates between the two groups of tumors. The sample
size (n = 37) comprised of 30 nephroblastomas and 7 non-Wilms tumors. The
number of measured points in order to get the exact location of the landmarks varies
to a greater extent (between 186 and 6638) due to the explorative approach based on
geometric methods. Wilcoxon- and t-test yield evidence for statistical significance
of recognized differences in descriptive statistics (mean, median) between the two
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Fig. 1 Left: density estimators of the coordinates and groups; right: density estimators of the
centered coordinates and groups

groups, for densities of the estimators of the coordinates, see Fig. 1. By graphical
inspection of these figures (after centering of the non-representative small sample)
we can see less variability in the group of non-Wilms tumors.

2.2 4D-Shape Analysis

By including the time after and before chemotherapy we have a 4D-approach to
Shape Analysis. In ten patients a pre- and post-therapeutical MRI has been inves-
tigated in order to test the change in the landmarks before and after chemotherapy.
This results to 20 observations. For analysis of the change of the tumor shape
we suggest the term 4D Shape Analysis. For allowance of comparison of size of
the object, each landmark was centered according to its center value in advance.
A decrease in the mean of the standard deviation can be observed for y- and z-
coordinate after therapy. Moreover, mean and median are close to zero. However,
minima and maxima are smaller for all coordinates after therapy, which allows us
for our sample to investigate the effects of the therapy. In order to have a graphical
comparison of the data before and after chemotherapy, density estimators were given
like in [8].

Figure 2 contains 3D-scatterplots in order to compare the standardized size of
the object for three of the patients before and after therapy. Plots of the landmarks
before therapy can be found in the first line and the corresponding plots after therapy
are beneath. Apparently, by graphical inspection of the standardized volume of the
object we can conclude that volume decreased for displayed patients 1 and 2 (all
axes have same scale). This result is expectable from the point of medicine.
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Fig. 2 Scatterplot for three patients before and after therapy

2.3 Mixed Distribution Estimation

Since our sample size is small in order to check for heterogeneity we use mixtures
to model different modes in the data. One of the advantages of this approach
is to recognize outliers in the sample. We estimate parameters of mixed normal
distributions, obtained via the function normalmixEM of the package mixtools
[2]. We use the following notation for later presentation of the results.

f (x) =
2∑
i=1

λipi(x), i = 1, 2, (1)

where pi ∼ N(μi, σ
2
i ), i = 1, 2, and λi, i = 1, 2 being the weights. We

will investigate the distributional behavior, i.e. affections on the distribution for
every coordinate, for both, different groups of malignancy and the impact of
chemotherapy.

2.3.1 4D Shape Analysis

We have conducted the same computations on different differential diagnosis,
Wilms and non-Wilms tumors as for data on pre- and post-chemotherapy. Here,
the data of ten patients, observed before and after chemotherapy is considered (see
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Table 1 Mixture estimates of mean μi , standard deviation σi , and weighting parameter λi,
i = 1, 2 for x-, y-, and z-coordinate

Coordinate Status μ1 μ2 σ1 σ2 λ1 λ2

x Before −19.65 20.46 17.52 20.10 0.49 0.51

After −10.26 21.95 18.93 12.68 0.81 0.19

Before-centered −6.41 33.41 24.22 8.83 0.84 0.16

After-centered −10.40 9.57 16.70 16.22 0.47 0.53

y Before −32.57 85.27 41.91 17.32 0.92 0.08

After −58.32 −10.12 27.75 18.47 0.54 0.46

Before-centered −15.32 20.97 24.17 20.70 0.61 0.39

After-centered 0.04 −0.91 23.13 13.08 0.63 0.37

z Before −19.65 20.46 17.52 20.10 0.49 0.51

After −10.20 22.05 18.96 12.64 0.82 0.18

Before-centered −6.41 33.41 24.22 8.83 0.84 0.16

After-centered −0.60 21.40 19.12 4.30 0.96 0.04

Estimates are reported separately with respect to status of chemotherapy and whether original or
centered (transformed) data is investigated

Sect. 2.2). The mixture distribution of the data is estimated via normalmixEM
function and the corresponding estimated parameters are reported in Table 1.
The first two columns represent the coordinate of interest, whereby for each
coordinate four estimations were performed. These distinguish between the status
of the chemotherapy (before/after) as well as between the constitution of the data
(original/centered; note that original data does not have an extra label). These
descriptors are followed by mean, standard deviation, and weighting parameters. As
we can see in Table 1 at least one of both standard deviations of estimated mixture
individual densities decreased after chemotherapy.

Figure 3 shows the estimated density estimates of the Gaussian mixture. Every
plot contains the results for the x-, y-, and z-coordinate in black, red, and green,
respectively. On the left-hand side the plots before therapy are provided with those
containing the estimates after therapy on the right-hand side. The first row represents
estimates based on original data and the second row those of the centered data. Plots
in one column have the same scales for the sake of comparability. In the analysis
of the coordinates the highest complexity relates to the coordinate z (see bimodal
distribution of z coordinates (green color) in Fig. 3). This could be a result of the
survey since in every MRI you can measure directly x and y coordinates, however z
coordinate depends on thickness of the slides.

2.3.2 Checking of Consistency

The estimation procedure for mixed normal distribution leads to different results
for every computation. The estimation of normal mixtures for small samples is not
an easy task from the statistical perspective and it depends on starting values of
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Fig. 3 Mixture density estimates for x-, y-, and z-coordinates before and after chemotherapy for
original and centered data

parameters. Since we have not defined any starting values, one can expect that in
cases of consistency, the same estimates (or slightly different) will be computed for
the different (because randomly chosen by the program) starting values. Therefore,
we have conducted a sensitivity study, where each computation is repeated 1000
times. Hence, the estimates for μ1, μ2, σ1, σ2 and λ1, λ2 are saved for every run
and summarized by standard descriptive statistics in Table 2. These computations
have been applied for both data sets, i.e. before and after therapy. We have obtained
these values with statistics software R [13].

Table 2 shows the effects of the therapy on the obtained estimates in our
small sample for μi, σi , λ1, i = 1, 2 in addition to the behavior of the estimates
themselves. We only provide the estimated weight λ1, because of λ2 = 1 − λ1.
If the results of the parameters vary to a greater extent, it can be assumed that the
estimates are not consistent. Since before therapy tumor tissue is larger, we can try
to understand this that more than one distribution is needed to model the irregular
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Table 2 Descriptive statistics of the estimates of the location, scale, and weighting parameter for
the mixture distribution based on 1000 replicates of the sensitivity study

Coordinate Parameter Status Min. 1st Qu. Median Mean 3rd Qu. Max. IQR SD

x μ1 Before −34.94 −34.75 −34.75 −34.21 −34.74 −4.91 0.01 3.83

After −42.75 −41.58 −41.58 −41.35 −41.58 −1.85 0.00 4.42

μ2 Before −4.87 51.25 51.25 50.22 51.25 53.79 0.00 7.43

After −1.83 39.84 39.84 33.92 39.84 39.84 0.00 10.67

σ1 Before 22.55 23.82 23.82 24.36 23.82 52.39 0.00 3.88

After 12.09 18.87 18.87 17.66 18.87 45.08 0.00 4.24

σ2 Before 36.44 36.55 36.55 36.85 36.55 52.39 0.00 2.16

After 19.83 19.83 19.83 25.33 19.83 45.08 0.00 9.73

λ1 Before 0.00 0.35 0.35 0.34 0.35 0.49 0.00 0.03

After 0.00 0.49 0.49 0.44 0.49 0.49 0.00 0.08

y μ1 Before −32.57 −31.55 −31.55 −31.72 −31.55 −24.24 0.00 0.58

After −58.33 −58.33 −58.33 −58.28 −58.32 −54.72 0.01 0.42

μ2 Before −18.20 −18.20 −18.20 1.69 −18.19 85.27 0.01 40.76

After −36.03 −10.13 −10.13 −10.49 −10.12 −10.12 0.01 3.05

σ1 Before 2.86 25.29 25.29 23.70 25.30 25.30 0.01 3.34

After 0.42 18.47 18.48 18.22 18.48 18.48 0.01 2.12

σ2 Before 41.91 62.63 62.63 58.62 62.63 62.63 0.00 8.17

After 27.74 27.74 27.74 27.83 27.75 34.04 0.01 0.74

λ1 Before 0.04 0.41 0.41 0.35 0.41 0.41 0.00 0.13

After 0.01 0.46 0.46 0.45 0.46 0.46 0.00 0.05

z μ1 Before −19.66 −19.66 −19.66 −18.59 −19.65 0.54 0.01 4.27

After −39.17 −10.51 −10.21 −10.84 −10.21 −4.25 0.30 3.14

μ2 Before 0.63 20.45 20.45 21.26 20.46 35.12 0.01 3.44

After −4.25 21.45 22.02 19.68 22.04 22.19 0.59 6.79

σ1 Before 0.82 17.52 17.52 16.94 17.52 27.52 0.00 2.43

After 0.57 12.64 12.64 12.35 12.78 21.88 0.14 2.90

σ2 Before 20.10 20.10 20.11 20.50 20.11 27.58 0.01 1.60

After 16.84 18.89 18.95 19.09 18.95 22.07 0.06 0.86

λ1 Before 0.00 0.49 0.49 0.47 0.49 0.49 0.00 0.10

After 0.00 0.49 0.49 0.47 0.49 0.49 0.00 0.10

These statistics are reported for x-, y-, and z-coordinates as well as status of the chemotherapy
(before/after)

tissue growth with the aid of the landmarks. However, after therapy, this chaos seems
to be reduced and can occasionally be estimated adequately with the aid of a normal
distribution.

Boxplots are presented in Figs. 4, 5 and 6 providing the estimates of the
parameters of the mixture distribution. These figures build on the same pattern:
leftmost group of boxplots contains the location parameters, μi, i = 1, 2; middle
representations provide information on the scale parameters, σi, i = 1, 2; right
graphs contain the weightings, λi, i = 1, 2. The reason for presenting two different
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Fig. 4 (continued)

plots is the impact of “outliers,” strongly affecting the comparability with respect
to therapy status. Hereafter, outlier detection is based on the “boxplot-rule,” which
has more extreme values than q0.25 − 1.5 · IQR or q0.75 + 1.5 · IQR. Note that IQR
is the interquantile range as q0.75 − q0.25 and qα is the α-quantile. Moreover, the
number of outliers of both groups is reported as the main caption for each plot.
Hence, the information provided in the middle plots of Fig. 5 indicates that 195
outliers are detected for σ1 before therapy and 14 candidates for outliers resulted
for the after therapy data. These numbers show that there is a very strong variation
present in the estimates. However, when comparing the results of the boxes there are
different estimates for mean for every coordinate. In contrast to that, only for y- and
z-coordinates the estimates of standard deviation and weightings differed, whereas
x-coordinate shows overlapping boxes before and after therapy. Generally, the
boxplots show that especially after therapy the parameters vary stronger, wherefore
the possibility of mixture distribution of the landmarks after therapy has to be
doubted. We do not claim this in general.

As we can see in Figs. 4, 5 and 6, even in the small non-representative sample
of ten patients, statistically significant heterogeneity can be observed. This large
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y-coordinate with and without candidates for outliers based on 1000 replicates
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Fig. 5 (continued)

heterogeneity makes possible automatic decision procedure very complicated and
thus an experienced oncologist and radiologist will always be necessary. From the
statistical point of view we need also a bigger sample to prove this heterogeneity by
means of statistics.

2.3.3 Estimation to Differentiate tumors

We have conducted the same computations on different diagnosis, Wilms and non-
Wilms, as for the data on pre- and post-chemotherapy. Table 3 reports the estimated
parameters for the mixture distributions differentiating between the groups and the
constitution of the data.

As we can see in Table 3, after centering, there is a higher variance of normal
bimodal mixture for non-Wilms in comparison with Wilms tumors. Centering is
non-avoidable in order to stabilize the variance.

Figure 7 follows the same structure as Fig. 3 in terms of coordinates. Note that
hereafter the different columns represent the groups Wilms (first column) and Non-
Wilms (second column), differing between the original (first row) and the centered
data (second row).
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Table 3 Mixture estimates of mean μi , standard deviation σi , and weighting parameter λ1,

i = 1, 2 for x-, y-, and z-coordinate

Coordinate Status μ1 μ2 σ1 σ2 λ1 λ2

x Non-Wilms 9.92 47.47 31.64 1.14 0.98 0.02

Wilms −24.54 50.09 27.95 19.40 0.78 0.22

Non-Wilms-centered 2.93 −0.99 26.74 11.45 0.39 0.61

Wilms-centered 0.09 −85.39 17.35 21.09 0.97 0.03

y Non-Wilms −43.12 1.47 15.84 18.54 0.06 0.94

Wilms −9.00 13.63 15.97 15.09 0.57 0.43

Non-Wilms-centered 0.24 −0.79 22.37 8.23 0.67 0.33

Wilms-centered −16.20 5.15 13.80 15.66 0.28 0.72

z Non-Wilms −18.40 0.61 25.33 3.02 0.81 0.19

Wilms 4.99 −2.33 3.00 28.94 0.14 0.86

Non-Wilms-centered 0.31 −0.57 27.62 11.11 0.44 0.56

Wilms-centered 1.47 −35.21 17.35 8.88 0.96 0.04
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Fig. 7 Mixture density estimates for x-, y- and z-coordinate for original and centered data

3 Conclusion

Shape analysis and fractal analysis are tools in order to analyze cancer data.
The standardly used mathematical procedure of constructing the platonic body
C60 (see [4]) for the renal tumor allowed us to differentiate on the basis of
distributions and means between the groups in our small sample volume with
limited number of patients which cannot be representative for all nephroblastoma
patients. Medical staff can be a support in the diagnosis decision process with
this geometrical approach built on MR images. However in its current stage the
analysis is preliminary. Limitations of the study are the primary approach with 2D
images and a secondary reconstruction of 3D images. With primary 3D images in
MRI a better reconstruction of tumor shape can be expected. Not all histological
tumor risk groups are represented in this study and the Non-Wilms-tumor study
group is a mixed group of retroperitoneal tumors including non-renal tumors, so
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the statistical results are dependent on the composition of the study groups. All
results are dependent on the primary radiological decision, where the tumor edge
can be defined, so with higher image resolution in modern MRI scanners, it could
be more difficult to define the tumor edge in single cases. To mark the tumor edge
only early local tumor stages are suitable for this method because in late tumor
stages tumor shape changes because of ruptures of the pseudocapsula and infiltrating
tumor tissue. But even in the case of transversal images the Wilms tumors and the
non-Wilms tumors showed a different statistical behavior in our results. Hence our
results give a further development of the results of [6] and a possible support for
decision making in a non-empiric way of a diagnosis in imaging when anatomical
shape is a criterion for diagnosis.

In contrast to [6] minimization of variance by using a neural network is not
necessary anymore. The test results in our original centered data using fractal
analysis confirm already the differentiability of Wilms to non-Wilms tumors.
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Traditional Versus Alternative Risk
Measures in Hedge Fund Investment
Efficiency

Izabela Pruchnicka-Grabias

Abstract The author presents results of the research conducted for hedge funds
for the period of 1990–2014. They were divided into ten investment strategies
and net asset values calculated for indexes created for them were used. Chosen
alternative risk-return ratios (Calmar, Sterling and Burke ratio) were calculated and
their values were compared with the Sharpe ratio for the same period of time. The
main conclusion is that these alternative measures give different results from the
traditional Sharpe ratio, that is hedge fund rankings made with these two kinds of
measures are not the same. This in turn indicates that arguments of opponents of
using traditional efficiency ratios in the hedge fund analysis may not be exaggerated.

1 Introduction

Hedge funds are financial institutions which aim at generating absolute rates of
return, that is at realizing profits regardless of the market situation. They are the
subject of a wide scientific discussion concerning the rates of return generated
compared with other forms of investments. However, some scientists claim that
although hedge funds really achieve attractive rates of return, at the same time,
they generate high risk level. Another problem which has not been solved so far
is what is the most adequate measure or group of measures for this type of risk
(sometimes called the extreme risk). The most typical risk measure used both
by hedge funds and investment funds when they present results of their portfolio
management is the standard deviation and the risk-return measure is the Sharpe
ratio. Opponents of using it say that it requires the assumption that the rates of
return are normally distributed which doesn’t have to be true. Assuming that it
would be true, one can apply the whole range of alternative risk-return measures.
Needless to say that they are more complex, require more advanced knowledge of
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finance, mathematics, and statistics, and generate risk of making a mistake during
calculations. It is hard to answer the question if the above named disadvantages are
worth getting higher accuracy of results. It requires giving an answer to the question
if the results achieved with the use of alternative measures are much different from
those based on traditional ratios. If they are different, another question arises, if they
are more adequate.

The author presents the results of the research conducted for hedge funds for the
period of 1990–2014. They were divided into ten investment strategies and net asset
values calculated for indexes created for them were used. The database used in the
research comprises more than 2200 hedge funds, so it can be treated as a sufficient
source. One hedge fund can use more than one strategy. Data were provided by
Hedge Fund Research (www.hedgefundresearch.com) and generally they consider
hedge funds from all over the world which report their results in American Dollars.
However, the majority of hedge funds have their domiciles in the United States.
The database prepared by Hedge Fund Research is one of the most acknowledged
databases on hedge funds. The author did not divide hedge funds into strategies
on her own but used classifications applied by the data provider which because of
its high clarity, is often used in scientific research. Chosen alternative risk-return
ratios (Calmar, Sterling, and Burke ratio) were calculated and their values were
compared with the Sharpe ratio for the same period of time. As the minimum rate of
return accepted by an investor, the risk-free interest rate was used. Mathematically
it was reflected by the interest rate of 10Y American treasury bonds at the end of
the research period, that is at the end of 2014 (2.16%). The main conclusion is
that these two kinds of risk-return measures (traditional and alternative ones) give
different results, that is hedge fund rankings made with them are not the same. This
in turn indicates that arguments of opponents of using traditional efficiency ratios in
the hedge fund analysis may not be exaggerated.

2 Literature Overview

The most spectacular example of the hedge fund extreme risk profile was the Long
Term Capital Management bankruptcy in 1998. Many hedge fund investors achieved
huge losses then. The hedge fund which existed for so many years suddenly was
not able to operate any more. Many scientists blamed insufficient regulations of
such entities created by governments [8]. Such a disaster has shown that hedge
funds investments can be risky and that there is a need to monitor risk generated
by these institutions with proper risk measures. Some others say that these were
inadequate risk measures which are used to assess their results and look for some
alternative ones [6, 9, 10, 13–15, 17, 20, 31]. Some measures of systematic risk
made by them are also proposed in the literature [16]. Some authors stress that
rates of return achieved by hedge funds are not normally distributed and in fact
they are characterized by fat tails [18]. They find the fat tail risk is one of the most
important factors influencing hedge fund performance. Cao et al. [4] pay attention

www.hedgefundresearch.com
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to the market liquidity which impacts hedge fund assets and question if hedge
funds can make adjustments when it changes. Authors conclude that it is important
to take the market liquidity into account while the process of decision making.
Moreover, market liquidity makes that asset valuation is more difficult and thus is
the assessment of hedge fund performance. Besides, it is not taken into consideration
by the majority of models created by the theory of finance such as CAPM (Capital
Asset Pricing Model) [29] or APT [26] (Arbitrage Pricing Theory) which means
that it creates the model risk. Simultaneously, Sadka [27] reports that liquidity in
the hedge fund world can be a good predictor of their prospective performance.

Another problem with hedge funds investment results assessment is that they start
to report to databases when their returns are abnormally attractive and terminate to
report when they are not so impressive anymore or when they suffer from capital
outflows. The research shows that rates of return done by self-reporting funds are
usually higher than those taken by non-reporting ones [1].

According to the Survey conducted by Ernst and Young [11], it is the asset growth
which is the top priority for 57% of hedge fund managers, second priority for 20%
of them, and third priority for 10% of managers. Talent management and operational
efficiency are after that. It clearly shows that risk control is not the thing which they
are worried about. Such an attitude towards investments creates not only high risk
level to potential investors, but also high systemic risk which may result in financial
system destabilization. This is why risk created by hedge funds should be monitored
by financial market authorities.

Another aspect of hedge fund risk posed in the literature is the financial leverage
used by these institutions. Duffie et al. [7] show that there is some optimal level of
hedge fund leverage which should not be exceeded. McGuire et al. [23], Schneeweis
et al. [28], AIMA [2] and FCA [12] show different financial and economic leverage
definitions. No matter how it is understood, it is undoubtedly an important source of
hedge fund risk.

There are many difficulties with analyzing hedge funds and monitoring risk
generated by them because they use the whole variety of investment strategies.
There are different classifications of them in the literature. For example, FCA [12]
gives the following depicted in Table 1.

FCA [12] stresses that Long/Short Equity and Multi-strategy are the most popular
strategies and they account for about 40% of the total number of hedge funds in their
sample. Contrary to the above-mentioned classification, Tran [33] and Guizot [15]
provide the following kinds of hedge fund investment strategies:

• Convertible Arbitrage—focused on investments in convertible bonds (long) and
at the same time underlying stocks (short), looking for arbitrage opportunities
aiming at generating profits higher that risk-free interest rate.

• Dedicated Short Bias—aimed at long and short positions in different securities,
however with the majority of short ones. They concentrate on companies which
are in a bad financial situation.

• Emerging Markets—targeting at investments in different securities, commodi-
ties, or currencies coming from so-called emerging economies.
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Table 1 Hedge fund
strategies classification

Strategies Sub-strategies

Equity hedge Long bias

Long/Short

Market neutral

Short bias

Relative value Convertible bond arbitrage

Fixed income arbitrage

Volatility arbitrage

Event driven Distressed/Restructuring

Equity special solutions

Risk arbitrage/Merger acquisition

Credit Asset backed lending

Long/Short

Macro Global macro

Active trading

Commodity

Currency

Managed futures/CTA Fundamental

Quantitative

Multi-strategy

Other

Source: Financial Conduct Authority, Hedge Fund Survey, June
2015, pp. 14–15

• Long/Short Equity—taking long positions in stocks, as well as conducting short
sale transactions without any assumption on the dominance of any of them. They
can also use derivatives.

• Equity Market Neutral—constructing the risk-free stock portfolio which is not
sensitive to chosen risk factors and at the same time trying to realize profits form
chosen group of stocks.

• Fixed Income Arbitrage—the purpose is to take positions in fixed income securi-
ties and generate arbitrage profits at the low risk level. They use inefficiencies in
their valuations. Interest rate swaps, futures, contracts, and mortgage securities
can be also applied here.

• Event Driven—based on taking advantage of different market events like merg-
ers, acquisitions, or restructuring.

• Global Macro—investing in various macroeconomics events. They often use high
financial leverage.

• Managed Futures—actively managed accounts, with the use of commodity and
currency futures contracts, stocks, or bonds high risk is generated and high rates
of return are possible.

• Multistrategy—any strategy which can come into manager’s mind on any market
and in any securities.

The second classification is more transparent, so the author used it in the research.
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3 Problems of Hedge Funds Efficiency Measurement

For the purpose of this study investment efficiency should be understood as the
relation between the rate of return and risk. According to the [22] portfolio theory,
investors choose higher rate of return at the same risk level and lower risk level if the
rate of return is the same. A special situation arises if an investor is not punished for
taking high risk level. It tempts them to generate high risk level because thanks to
that high rate of return can be achieved. At first glance it seems to be an impossible
situation, however it takes place in hedge funds investments in relation to their
managers. The reason is that the system of their wages is based on commissions
depending on the rates of return, not on the risk level taken by them. Besides, they
are assessed on the basis of historical rates of return regardless of risk taken. Ethical
matters are not taken into consideration. They are generally difficult to measure.
Until high rates of return are generated by the manager, even high risk level is
not a problem. The situation changes if the risk materializes. Investors start to
withdraw their capital from such institutions. Hedge fund risk measurement is tricky
because traditional risk measures are based on standard deviation which requires the
assumption that rates of return are normally distributed. The research conducted in
this field shows that they are not only abnormal, but they are usually far away from
normality [24].

4 Basic Hedge Funds Statistics

Table 2 depicts basic statistics for all analyzed hedge fund strategies. Rates of return
should be understood as the income generated on the invested capital in the analyzed
period of time. The highest risk measured with standard deviation is generated by
Short Bias strategy, then Emerging Markets and Equity Hedge. Short Bias strategy
achieves the lowest average rate of return (0.01) at the same time, so according to
the Sharpe ratio it is the least efficient strategy applied by hedge fund managers. The
highest average rate of return in the examined period was done by Equity Hedge,
however simultaneously the strategy generated one of the highest risk levels of all
strategies. The least risky strategy is the Equity Market Neutral and simultaneously
its average rate of return is not the lowest of all presented beneath. This suggests
that it is quite efficient.

Rates of return fluctuations for hedge fund investment strategies can also be
observed in Fig. 1.

Standard deviation is often used as a risk measure in the hedge fund industry. It
is depicted in the following way:

Standard Deviation =
∑N

i=1(ri − rdi )
2

N − 1
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Table 2 Basic statistics on hedge funds rates of return

Strategy Valid N Mean Minimum Maximum Standard deviation

Merger arbitrage 300 0.66 −6.46 3.12 1.14

Equity market neutral 300 0.54 −2.87 3.59 0.91

Short bias 300 0.01 −21.21 22.84 5.21

Emerging markets 300 0.99 −21.02 14.80 3.99

Equity hedge 300 1.00 −9.46 10.88 2.59

Event driven 300 0.90 −8.90 5.13 1.92

Macro 300 0.92 −6.40 7.88 2.12

Relative value 300 0.79 −8.03 5.72 1.23

Fixed income convertible arbitrage 300 0.68 −16.01 9.74 1.85

Multistrategy 300 0.67 −8.40 5.34 1.23

Source: Author’s calculations
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Fig. 1 Box and whisker plot for hedge fund strategies. Source: Author’s study

whereN is the number of observations of rates of return and rdi is the average value
of the rate of return on the portfolio of hedge fund assets.

It is an important part of the Sharpe ratio, the most popular ratio to be used
by hedge funds for their historical results [5]. It was created by W. Sharpe to be
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used for measuring investment funds effectiveness. It is presented in the following
way [30]:

Sharpe Ratio = rdi − rf

σ (ri)

where Sharpe Ratio is the investment result on the portfolio of hedge fund assets,
σ(ri) is the standard deviation on rates of return on the portfolio of hedge fund
assets, and rf is the risk-free interest rate.

As far as the average rate of return (mean) is concerned, it is the highest for
Equity Hedge and Emerging Markets strategies. Such values greatly show that
strategies with higher risk levels let generate higher average rates of return. This
in turn suggests that hedge fund managers should be paid not only for rates of
return but also that their wages should depend on the risk which was necessary
to be undertaken to achieve them. However, this poses the question, how risk
should be measured. There are no doubts how rates of return can be interpreted,
but there is not any risk measure which is widely acknowledged both by scientists
and hedge fund practitioners. Standard deviation is the most popular one and quite
easy to be calculated, but hedge funds generate risk similar to insurance companies.
They may have good results for a very long time and suddenly because of some
reason there appears one huge loss which decreases the capital dramatically. In the
theory of finance this type of risk is called extreme risk. It has two features [19]:

• Low probability of appearance
• Huge loss if it appears anyway.

Stulz [32] reasonably compares the risk generated by hedge funds to the risk of
a company which sells an earthquake insurance.

It is worth emphasizing that rates of return for all hedge fund strategies are
correlated. Some of the Pearson correlation coefficients are low, some average, some
high, however all of them are statistically significant at p < 0.05 (see Table 3). It
confirms that hedge funds create high systemic risk.

5 Maximum Drawdown Measures and Their Definitions

Some scientists try to introduce alternative risk measures, however there are so many
of them that nobody has proved if any is better than another one. In this paper
maximum drawdown measures are being analyzed. To be exact, the author checks
if their results differ from the results given by the traditional risk measure that is the
Sharpe ratio. The typical maximum drawdown measures are the following [35–37]:
Calmar ratio, Sterling and Burke ratio. The Calmar ratio is reflected by the following
formula [9, 34]:

CR = rdi − rf

−MDi
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where rf is the risk-free interest rate, rdi is the average value of the rate of return
on the portfolio of hedge fund assets, and MDi is the lowest rate of return on hedge
fund assets in the assumed period.

Thus Calmar ratio considers the worst scenario from the given period, which
can be both an advantage and a disadvantage. It is safe but at the same time it is
sensitive to some random values of low rates of return generated in the past and
hardly probable to be repeated in the future. Similarly to the Sharpe ratio, the aim
of the manager is to maximize it. Therefore, the optimum efficiency is when:

CR −→ max

Theoretically speaking, there is no maximum value for Calmar ratio. The same
applies to Sterling or Burke ratio. All of them are ratios that measure the efficiency
only compared with their other values for other investments, not on their own.
One of the possibilities of making Calmar ratio less sensitive to some random loss
is using the Starling ratio which considers the average value of a few maximum
negative rates of return. The Sterling ratio can be depicted as [9, 21]:

SR = rdi − rf
1
N

∑N
j=1(−MDij )

where N is the number of maximum negative rates of return.
A manager or an investor who wants to check the effectiveness of some

hedge fund can choose an exact number of maximum negative rates taken into
consideration depending on its preferences.

The Sterling ratio is also the higher the better. The optimal investment effective-
ness is when:

SR −→ max

The third measure mentioned above is the Burke ratio which relates the excess
rate of return to the square root of the powered sum of maximum negative rates of
return generated in the researched period.

The mathematical formula for the Burke ratio can be presented as [3, 9]:

BR = rdi − rf

2
√∑N

j=1 MD2
ij

Similarly to the above presented ratios, the optimal investment effectiveness is
assured when:

BR −→ max
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6 Research Results of the Hedge Fund Risk Return Profile

Values of various risk return measures presented in Table 4 were applied to prepare
hedge fund rankings depicted in Table 5. The risk-free interest rate used in the
research is the interest rate of American 10Y treasury bonds at the end of the
research period, that is from December 2014 (2.16%). If one compares the Sharpe
ratio with alternative ratios, some differences can be seen. Only Short Bias strategy
is always on the last position, no matter what measure is used. The biggest difference
in the efficiency depending on if the traditional or alternative measure is used is seen
for the Macro strategy. It is the sixth one in the case of the Sharpe ratio whereas it
is the first one for the 5-period Sterling, 10-period Sterling, 5-period Burke, and
the 10-period Burke ratio and the second one for the Calmar ratio. For example
Merger Arbitrage is the second strategy for the Sharpe ratio whereas it is the sixth
one for the Calmar, 5-period Sterling, and 5-period Burke ratio. For the 10-period
Sterling it takes the fourth position and for the 10-period Burke the fifth one. As far
as the Emerging Markets strategy is concerned, there is not a big difference between
rankings made with the Sharpe ratio and alternative measures (1 up to 2 positions).
Rankings for other strategies differ from each other by 1–4 positions (see Table 5)
which is quite a lot. Generally, differences are rather important, so there raises the
question of which ranking reflects the efficiency in the best way. Spearman’s rank
correlation coefficients (Table 6) between Sharpe ratio and alternative effectiveness
measures are not significant for the majority of cases. It is only the 10-period
Sterling ratio which is highly and significantly (at p < 0.05) correlated with the
Sharpe ratio. At the same time correlation coefficients among alternative measures
are high.

Data depicted in Appendix, Figs. 2 and 3, show that the majority of hedge fund
strategies have negative skewness (apart from Short Bias and Macro) and high
kurtosis. Thus, if these two central moments of the distribution are not considered

Table 4 Values of various risk return measures

Strategy Sharpe Calmar Sterling5 Sterling10 Burke5 Burke10

Merger arbitrage 0.42 0.07 0.11 0.15 0.04 0.04

Equity market neutral 0.40 0.12 0.15 0.19 0.06 0.06

Short bias −0.03 −0.01 −0.01 −0.01 −0.004 −0.004

Emerging markets 0.20 0.04 0.11 0.08 0.02 0.02

Equity hedge 0.32 0.09 0.11 0.14 0.05 0.04

Event driven 0.38 0.08 0.11 0.14 0.05 0.04

Macro 0.35 0.12 0.17 0.21 0.07 0.06

Relative value 0.50 0.08 0.12 0.19 0.05 0.05

Fixed income
convertible arbitrage

0.27 0.03 0.06 0.10 0.02 0.02

Multistrategy 0.40 0.06 0.10 0.14 0.04 0.04

Source: Author’s calculations
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Table 6 Spearman’s rank correlation coefficients

Ratios Sharpe Calmar Sterling5 Sterling10 Burke5 Burke10

Sharpe 1 0.44 0.47 0.76 0.54 0.59

Calmar 0.44 1 0.95 0.75 0.95 0.91

Sterling5 0.47 0.94 1 0.83 0.99 0.95

Sterling10 0.76 0.75 0.83 1 0.88 0.93

Burke5 0.54 0.95 0.99 0.88 1 0.98

Burke10 0.59 0.91 0.95 0.93 0.98 1

Underlined correlations are significant at p < 0.05
Source: Author’s calculations

by the Sharpe ratio, the results achieved with it may not be appropriate. It will be
the subject of author’s further studies.

7 Conclusions

• The research shows that hedge fund strategies are characterized by negative
skewness and high kurtosis in the examined period of 1990–2014.

• Because of that, the Sharpe ratio may not be a good measure of investment
results, because it takes only the standard deviation into consideration while
ignoring the third and the fourth central moment of the distribution.

• Rankings of hedge fund strategies made with the Sharpe ratio and with alternative
measures are quite different, which shows that the Sharpe ratio may not be an
adequate efficiency measure in the case of hedge fund strategies.

• Spearman’s rank correlation coefficients between the Sharpe ratio and alternative
efficiency measures are not statistically significant (with the exception of the
correlation coefficient between the Sharpe ratio and the 10-day Sterling ratio).

• Results are surprising because the analysis done for the period of 1990–March
2011 or the one for January 2005–April 2011 have shown high correlations
between the Sharpe ratio and alternative measures (e.g., [25]). It may be not
only due to the different study period, but also to the substantial change of the
risk-free interest rate.

• All in all, the need of further studies exists. The results suggest that alternative
measures show different results in some circumstances than the Sharpe ratio,
however it does not mean that they are more adequate.

Appendix

See Figs. 2 and 3.
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Fig. 2 Source: Author’s study

Fig. 3 Source: Author’s study
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Estimating the Extremal Coefficient:
A Simulation Comparison of Methods

Marta Ferreira

Abstract Tail dependence is an important issue to evaluate risk. The multivariate
extreme values theory is the most suitable to deal with the extremal dependence. The
extremal coefficient measures the degree of dependence between the marginals of
max-stable distributions, a natural class of models in this framework. The estimation
of the extremal coefficient is addressed and a new estimator is compared through
simulation with existing methods. An illustration with real data is presented.

1 Introduction

The Extreme Value Theory (EVT) is viewed with particular interest in several areas
such as finance, insurance, engineering, environment, among others, where it is
important to evaluate the risk of occurring extreme events.

The distinguishing feature of EVT is that it provides us a framework to compute
the probability of events more extreme than any that have already been observed.
See, for instance, [1] and [8].

Let {Xi}i≥1 be an i.i.d. sequence of random variables (r.v.’s) with common
distribution function (d.f.) F . If there exist real constants {bn}n≥1 and positive
{an}n≥1 such that the limit

lim
n→∞P(max(X1, . . . , Xn) ≤ anx + bn) = lim

n→∞F
n(anx + bn) = G(x) . (1)
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exists for all continuity points of nondegenerate G(x), then G(x) is Generalized
Extreme Value distribution (GEV), and has standard representation:

G(x) = exp
{− (1 + ξx)−1/ξ} , 1 + ξx > 0.

Under the limit (1) we say that F belongs to the max-domain of attraction
of G(x), which resumes all the possible limit distributions: (reversed) Weibull
(ξ < 0 - light tail and finite right-end-point), Gumbel (ξ = 0 - exponential tail)
and Fréchet (ξ > 0 - heavy tail and infinite right-end-point). Observe that the
result can be easily formulated for the minimum based on min(X1, . . . , Xn) =
−max(−X1, . . . ,−Xn).

In a multivariate context we have to deal with dependence between marginals.
The current Pearson’s correlation may not describe well the dependence structure on
the tails (see, e.g., [4] for examples). The multivariate EVT offers itself as a natural
instrument to develop tail measures. The univariate result above can be expanded
to a d-variate setting, where the maximum of a sequence of random vectors is
the vector of componentwise maxima. Let {(X(n)

1 , . . . , X
(n)
d )}n≥1 be i.i.d. copies

of (X1, . . . , Xd), with common d.f. F . If there exist real constants {b(n)j }n≥1 and

positive {a(n)j }n≥1, j = 1, . . . , d , and a d.f. G with non-degenerate margins, such
that,

P( max
1≤i≤nX

(i)
1 ≤ a

(n)
1 x1 + b

(n)
1 , . . . , max

1≤i≤nX
(i)
d ≤ a

(n)
d xd + b

(n)
d )

= Fn(a
(n)
1 x1 + b

(n)
1 , . . . , a

(n)
d xd + b

(n)
d ) −→

n→∞G(x1, . . . , xd) , (2)

exists for all continuity points of G(x1, . . . , xd), then it must be a multivariate
extreme value (MEV) distribution (in the two-dimensional case it is denoted BEV),
given by

G(x1, . . . , xd) = exp[−	{− logG1(x1), . . . ,− logGd(xd)}],

where 	 : R
d+ → R+ is the stable tail dependence function. This function

characterizes the dependence of a multivariate extreme value distribution, which
is no longer parametrically defined as in the univariate case. The function 	 must be
convex (	(υv+(1−υ)w) ≤ υ	(v)+(1−υ)	(w), υ ∈ [0, 1]), homogeneous of order
1 (	(s·) = s	(·), 0 < s < ∞) and bounded by max(x1, . . . , xd) ≤ 	(x1, . . . , xd) ≤
x1 + . . .+xd , ∀(x1, . . . , xd) ∈ [0,∞)d (upper bound corresponds to independence;
lower bound means complete dependence). If the result (2) holds, we also say that
F belongs to the max-domain of attraction of G. This function is max-stable, in the
sense of Gn(a

(n)
1 x1 + b

(n)
1 , . . . , a

(n)
d xd + b

(n)
d ) = G(x1, . . . , xd), also valid for the

univariate case. Indeed, the marginalsGj , j = 1, . . . , d , of G are GEV functions.
We can formulate (2) based on a copulas’ approach which allows us to look

only on the dependence structure. A copula C is a d.f. whose margins are



Estimating the Extremal Coefficient: A Simulation Comparison of Methods 53

uniformly distributed on [0, 1], namely, if CF is the copula of (X1, . . . , Xd), then

CF (u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F
−1
d (ud)

)
, assuming that F−1

j , j = 1, . . . , d ,

are continuous [13]. Thus, formulation (2) implies for the respective copulas, CF
and CG:

CnF (u
1/n
1 , . . . , u

1/n
d ) −→

n→∞CG(u1, . . . , ud),

where

CG(u1, . . . , ud) = exp{−	(− logu1, . . . ,− logud)} (3)

is called a multivariate extreme value (MEV) copula (or BEV copula in case d = 2).
However, the reciprocal is not true since each marginal must also belong to some
max-domain of attraction.

Observe that extreme value models/copulas are fully identified by the tail
dependence function. Formulation in (3) is not unique and other tail dependence
functions can be used, for instance, the Pickands dependence function A, such that,
for (u1, . . . , ud) ∈ (0, 1]d \ {(1, . . . , 1)},

CG(u1, . . . , ud) = exp

⎛
⎝
⎛
⎝

d∑
j=1

loguj

⎞
⎠ A

(
logu1∑d
j=1 loguj

, . . . ,
logud−1∑d
j=1 loguj

)⎞
⎠ .

Function A : Sd−1 → [1/d, 1] is a restriction of 	 to the unit simplex Sd−1 =
{(w1, . . . , wd) ∈ [0, 1]d :∑d

j=1 wj = 1}. It also satisfies convexity and is such that
A(ej ) = 1 for j = 1, . . . , d , and max(w1, . . . , wd) ≤ A(w) ≤ 1, ∀w ∈ Sd−1. The
Pickands dependence function relates with 	 through

A(w1, . . . , wd−1) ≡ A

(
x1∑d
j=1 xj

, . . . ,
xd−1∑d
j=1 xj

)
= 	(x1, . . . , xd)∑d

j=1 xj
.

Other formulations of the dependence function within MEV models were also
considered in literature. A complete survey on this topic can be found in [2].

Estimation of the Pickands dependence function and the stable tail dependence
function has been largely addressed in literature. Non-parametric methods can be
seen in [5, 9] and the references therein. Reference [2] includes parametric methods.

The extremal coefficient [14, 15] measures the degree of dependence between
the marginals of a MEV G, being given by

CG(u, . . . , u) = uε.

Observe that 1 ≤ ε ≤ d , with the bounds ε = 1 and ε = d , respectively
meaning complete dependence and independence between the marginals. If we
apply logarithms to both members, by the homogeneity property of 	, we arrive
at

ε = 	(1, . . . , 1),
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and thus

ε = dA(1/d, . . . , 1/d).

The extremal coefficient is a possible measure to evaluate tail dependence. It
relates with other measures, namely, the bivariate tail dependence coefficient (TDC),
usually denoted λ, often used in financial contexts to assess markets risk (see, e.g.,
[12] and the references therein). The TDC measures the probability of occurring
extreme values for one random variable (r.v.) given that another assumes an extreme
value too:

λ = lim
u↑1

P(F1(X1) > u|F2(X2) > u) = lim
u↑1

P(∩i∈{1,2}{Fi(Xi) > u})/(1 − u).

We have that λ = 2 − l(1, 1) = 2(1 − A(0.5)) = 2 − ε.
Here we address the estimation of the extremal coefficient and compare a new

estimator with existing ones, based on a simulation study. We apply the procedures
to real stock market indexes, in order to evaluate the contagion risk of large losses
and gains.

2 Examples and Estimators

In the sequel we list some MEV models and respective coefficients (see, e.g., [2]
and [7]):

• Logistic model

	(x, y) = (x1/α + y1/α)α,

where 0 < α ≤ 1; ε = 2α and we have independence if α = 1 and complete
dependence if α → 0;

• Asymmetric Logistic model

	(x, y) = (1 − ψ1)x + (1 − ψ2)y + ((ψ1x)
1/α + (ψ2y)

1/α)α,

where 0 < α ≤ 1, 0 ≤ ψ1, ψ2 ≤ 1; ε = 2 − ψ1 − ψ2 + ((ψ1)
1/α + (ψ2)

1/α)α

and we have independence if either α = 1, ψ1 = 0 or ψ2 = 0 and complete
dependence if α → 0 and ψ1 = ψ2 = 1; (we obtain the logistic model whenever
ψ1 = ψ2 = 1);

• Hüsler-Reiss model

	(x, y) = xΦ(β−1 + 0.5β log(x/y))+ yΦ(β−1 + 0.5β log(y/x)),
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where β > 0; ε = 2Φ(β−1) and we have independence if β → 0 and complete
dependence if β → ∞;

• Negative Logistic model

	(x, y) = x + y − (x−β + y−β)−1/β,

where β > 0; ε = 2 − 2−1/β and we have independence if β → 0 and complete
dependence if β → ∞;

• Asymmetric Negative Logistic model

	(x, y) = x + y − ((ψ1x)
−β + (ψ2y)

−β)−1/β,

where β > 0, 0 < ψ1, ψ2 ≤ 1; ε = 2 − ((ψ1)
−β + (ψ2)

−β)−1/β and we have
independence if either β → 0, ψ1 → 0 or ψ2 → 0 and complete dependence
if ψ1 = ψ2 = 1 and β → ∞; (we obtain the negative logistic model whenever
ψ1 = ψ2 = 1);

• Bilogistic model

	(x, y) = xr1−γ + y(1 − r)1−δ,

where r is the root of (1 − γ )x(1 − r)δ − (1 − δ)yrγ = 0, 0 < γ, δ < 1;
ε = r1−γ + (1 − r)1−δ and we have independence if γ = δ → 1 and complete
dependence if γ = δ → 0;

• Negative bilogistic model

	(x, y) = x + y − xr1+γ − y(1 − r)1+δ,

where r is the root of (1 + γ )xrγ − (1 + δ)y(1 − r)δ = 0, γ, δ > 0; ε =
2 − r1+γ − (1 − r)1+δ and we have independence if γ = δ → ∞ and complete
dependence if γ = δ → 0;

• Dirichelet model

	(x, y) = x(1 − B(q; α + 1, β))+ yB(q; α, β + 1),

where q = αy/(αy+βx) andB(q; α, β) is the beta d.f. evaluated at q and having
shape parameters α and β, α, β > 0; ε = 1−B(q; α+1, β)+B(q; α, β+1) and
we have independence if α = β → 0 and complete dependence if α = β → ∞;

• Asymmetric mixed model

	(1 − t, t) = 1 − (α + β)t + αt2 + βt3,

where α, α + 3β ≥ 0 and α + β, α + 2β ≤ 1; ε = 2 − α/2 + 3β/4 and we have
independence if α = β = 0 and complete dependence cannot be achieved (the
dependence increases for increasing α and fixed β).
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• d-dimensional logistic model and asymmetric logistic, respectively,

	(x1, . . . , xd) =
⎛
⎝

d∑
j=1

x
1/α
j

⎞
⎠
α

	(x1, . . . , xd) =
∑
J∈D

⎛
⎝∑
j∈J

(ψJ,j xj )
1/αJ

⎞
⎠
αJ

,

where D is the set of non-empty subsets of D = {1, . . . , d}, 0 < α, αJ ≤ 1
are the dependence parameters and ψJ,j ≥ 0 are the asymmetry parameters such
that

∑
J�j ψJ,j = 1, for j ∈ D and J ∈ D . We have for the non and asymmetric

cases, respectively, ε = dα and ε =∑J∈D
(∑

j∈J (ψJ,j )1/αJ
)αJ

, with a similar

discussion for dependence/independence as in the bivariate form.

Non-parametric estimators avoid the parametric specification of the tail depen-
dence function. The most known estimators in literature are the Pickands [11] and
Capéraà-Fougéres-Genest [3], respectively given by

ε̂ P = d

(
1

n

n∑
i=1

η̂i

)−1

,

and

ε̂ CFG = d exp

{
−γ − 1

n

n∑
i=1

log(̂ηi )

}
,

with γ = 0.5772 . . . representing the Euler-Mascheroni constant,

η̂i = d

d∧
j=1

− log Ûi,j

and where Ûi,j = Fn,j (Xi,j ), with

Fn,j (x) = 1

n+ 1

n∑
i=1

1(Xi,j ≤ x), j = 1, . . . , d,

where 1(·) denotes the indicator function. The empirical d.f. estimates the unknown
marginals where denominator n+ 1 instead of n relates accuracy (see [2]).
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Corrected versions of these estimators correspond to, respectively,

ε̂ Pc = d

⎛
⎝ 1

ε̂ P
− 1

d

d∑
j=1

(
1

n

n∑
i=1

(− log Ûi,j
)− 1

)⎞
⎠

−1

and

ε̂ CFGc = dε̂ CFG exp

⎧⎨
⎩− 1

d

d∑
j=1

(
−γ − 1

n

n∑
i=1

log
(− log Ûi,j

))
⎫⎬
⎭ .

These corrections concern tail dependence function endpoint constraints, A(0) =
A(1) = 1. For large sample sizes, the end-point corrections are negligible. See [2]
and [9].

The Hall and Tajdivi estimator [10] consists in another correction of the Pickands
formula and is defined by

ε̂ HT =
1
n

∑n
i=1 (log(n+ 1)/i)

̂̂ε P .

More details can also be found in [9].
More recently, the work in [6] allows the derivation of a new estimator for ε,

given by

ε̂ FF = d

(
1

1 − n−1
∑n

i=1
∨d
j=1 Û

d
i,j

− 1

)
.

In the next section, we analyze the performance of this new method. More
precisely, we conduct a simulation study and compare ε̂ FF with estimators ε̂ CFGc ,
ε̂ Pc and ε̂ HT , based on the MEV models listed above.

3 Simulation Study

The simulation study was based on the generation of 1000 random samples of
size n = 100, 1000 of each of the models listed in Sect. 2. In the multivariate
models, we considered dimension d = 3. The root mean squared error (rmse)
and absolute bias were obtained and are reported in Tables 1, 2, 3 (the numbers in
brackets correspond to the rmse). The three-dimensional Logistic and Asymmetric
Logistic were denoted, respectively, 3-Log and 3-Alog. The values of the parameters
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were chosen in order to cover the cases of complete dependence (ε ≈ 1), tail
independence (ε ≈ d) and ε ≈ (d + 1)/2, whether d = 2 or d = 3. In the
unit bound case in Table 3, the asymmetric models coincide with the respective
symmetric versions and thus are omitted. The asymmetric mixed model was also
excluded in this case since it cannot reach complete dependence (the largest value
is 1.5 already reported in Table 1). Under the unit bound case, the estimators also
present a global better performance. Among the existing methods, the CFG has an
overall upper performance. We can see that the new estimator is competitive with
the CFG. Particularly, it presents the smallest bias in most cases.

4 Application to Real Data

The data correspond to the daily closing prices of the stock indices, Germany
DAX, Switzerland SMI, France CAC and UK FTSE, collected in the period 1991–
1998 (weekends and holidays are omitted). The negative/positive log-returns are
considered so as to evaluate the contagion risk that large losses/gains occurring
in one market may cause in another. More precisely, in order to obtain a sample
which could be modeled by a MEV law, it is considered the monthly maximum.
The scatterplots in Figs. 1 and 2 exhibit some dependence, specially in the negative
log-returns. This can also be corroborated with the estimates in Tables 4 and 5.
The largest contagion risk for gains (positive log-returns) appears between SMI and
CAC, whilst, for losses (negative log-returns), we found it between DAX and SMI.
When considering the groups of three, the largest influence occurs in the triple DAX-
SMI-CAC concerning gains and, for losses, in the triple DAX-SMI-FTSE.

Appendix

See Figs. 1 and 2 and Tables 1, 2, 3, 4, and 5.



Estimating the Extremal Coefficient: A Simulation Comparison of Methods 59

Table 1 Absolute bias and root mean squared error (in brackets) of estimators ε̂ CFGc , ε̂ Pc , ε̂ HT ,
and ε̂ FF

CFG P HT FF

n = 1000

Log 0.00217 (0.01553) 0.00038 (0.01966) 0.00102 (0.01971) 0.00276 (0.01688)

Alog 0.00260 (0.02569) 0.00208 (0.02751) 0.00277 (0.02764) 0.00266 (0.02546)

HR 0.00659 (0.02462) 0.00533 (0.03243) 0.00550 (0.03256) 0.00053 (0.02691)

Neglog 0.00627 (0.02263) 0.00468 (0.02787) 0.00543 (0.02807) 0.00129 (0.02238)

Aneglog 0.00265 (0.02319) 0.00052 (0.03424) 0.00085 (0.03435) 0.00300 (0.02637)

Bilog 0.00164 (0.01576) 0.00145 (0.01896) 0.00288 (0.01915) 0.00002 (0.01586)

Negbilog 0.00205 (0.01041) 0.00136 (0.01296) 0.00294 (0.01323) 0.00081 (0.01065)

Dir 0.00455 (0.02425) 0.00439 (0.02857) 0.00532 (0.02879) 0.00075 (0.02406)

Amix 0.00724 (0.02093) 0.00714 (0.02377) 0.00833 (0.02420) 0.00456 (0.02163)

3-Log 0.00562 (0.03052) 0.00438 (0.02888) 0.00686 (0.02937) 0.00164 (0.02776)

3-Alog 0.00909 (0.04706) 0.00512 (0.04803) 0.00674 (0.04833) 0.00092 (0.04412)

n = 100

Log 0.01240 (0.04573) 0.00778 (0.05174) 0.01720 (0.05441) 0.00354 (0.04824)

Alog 0.02865 (0.08808) 0.01443 (0.09597) 0.01918 (0.09842) 0.00384 (0.09157)

HR 0.04421 (0.08385) 0.02900 (0.10808) 0.03051 (0.11063) 0.00436 (0.08688)

Neglog 0.02656 (0.08330) 0.02380 (0.09701) 0.02906 (0.09990) 0.00295 (0.08359)

Aneglog 0.05350 (0.10369) 0.03904 (0.12079) 0.04189 (0.12393) 0.01619 (0.10488)

Bilog 0.00778 (0.04537) 0.00131 (0.05773) 0.01081 (0.05924) 0.00710 (0.04876)

Negbilog 0.00234 (0.03473) 0.00388 (0.03962) 0.00659 (0.04021) 0.00688 (0.03577)

Dir 0.02390 (0.07276) 0.01013 (0.08243) 0.01637 (0.08467) 0.00200 (0.07490)

Amix 0.01564 (0.05846) 0.00303 (0.06632) 0.01092 (0.06793) 0.00271 (0.06259)

3-Log 0.02483 (0.09143) 0.00688 (0.08689) 0.02336 (0.08999) 0.00068 (0.08671)

3-Alog 0.05250 (0.14449) 0.01240 (0.14227) 0.02324 (0.14551) 0.00815 (0.14088)
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Table 2 Absolute bias and root mean squared error (in brackets) of estimators ε̂ CFGc , ε̂ Pc , ε̂ HT ,
and ε̂ FF , for tail independence

CFG P HT FF

n = 1000

Log 0.00386 (0.02591) 0.00023 (0.04239) 0.00023 (0.04253) 0.00325 (0.03326)

Alog 0.00747 (0.02386) 0.00768 (0.03595) 0.00771 (0.03607) 0.00174 (0.02878)

HR 0.00845 (0.02525) 0.00697 (0.03702) 0.00699 (0.03714) 0.00120 (0.02938)

Neglog 0.00867 (0.02597) 0.00910 (0.03678) 0.00913 (0.03691) 0.00153 (0.02970)

Aneglog 0.00952 (0.02775) 0.00917 (0.03617) 0.00920 (0.03629) 0.00357 (0.03202)

Bilog 0.00541 (0.02460) 0.00116 (0.03519) 0.00121 (0.03531) 0.00232 (0.02909)

Negbilog 0.00948 (0.02803) 0.00571 (0.03975) 0.00573 (0.03988) 0.00211 (0.03272)

Dir 0.00953 (0.02588) 0.00713 (0.03755) 0.00719 (0.03769) 0.00278 (0.02886)

Amix 0.01102 (0.02685) 0.01545 (0.03920) 0.01550 (0.03933) 0.00677 (0.03077)

3-Log 0.01268 (0.03734) 0.00390 (0.05210) 0.00392 (0.05228) 0.00949 (0.04686)

3-Alog 0.02744 (0.05073) 0.01868 (0.05886) 0.01879 (0.05907) 0.01283 (0.05309)

n = 100

Log 0.04730 (0.08707) 0.02791 (0.11714) 0.02839 (0.11968) 0.00177 (0.09559)

Alog 0.04820 (0.08334) 0.03416 (0.10896) 0.03480 (0.11138) 0.00705 (0.08834)

HR 0.06330 (0.09536) 0.05111 (0.11442) 0.05212 (0.11686) 0.02667 (0.09329)

Neglog 0.04914 (0.09052) 0.03213 (0.11853) 0.03269 (0.12108) 0.00718 (0.09614)

Aneglog 0.04892 (0.08751) 0.03848 (0.12238) 0.03918 (0.12501) 0.00906 (0.09609)

Bilog 0.04349 (0.08276) 0.03238 (0.11475) 0.03327 (0.11733) 0.00372 (0.09310)

Negbilog 0.05521 (0.08761) 0.03953 (0.10945) 0.04029 (0.11181) 0.01684 (0.08927)

Dir 0.04606 (0.08456) 0.03251 (0.10908) 0.03341 (0.11152) 0.00696 (0.08659)

Amix 0.05057 (0.08892) 0.03649 (0.12328) 0.03715 (0.12591) 0.01117 (0.09550)

3-Log 0.16173 (0.20723) 0.09853 (0.22673) 0.10037 (0.23158) 0.05838 (0.19029)

3-Alog 0.14043 (0.18638) 0.08810 (0.19677) 0.09013 (0.20104) 0.03478 (0.16397)
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Table 3 Absolute bias and root mean squared error (in brackets) of estimators ε̂ CFGc , ε̂ Pc , ε̂ HT ,
and ε̂ FF , for ε ≈ 1

CFG P HT FF

n = 1000

Log 0.00068 (0.00076) 0.00227 (0.00233) 0.00058 (0.00079) 0.00053 (0.00061)

HR 0.00068 (0.00078) 0.00227 (0.00234) 0.00058 (0.00080) 0.00050 (0.00059)

Neglog 0.00070 (0.00079) 0.00238 (0.00244) 0.00069 (0.00086) 0.00056 (0.00064)

Bilog 0.00070 (0.00079) 0.00223 (0.00228) 0.00054 (0.00071) 0.00056 (0.00065)

Negbilog 0.00071 (0.00080) 0.00229 (0.00234) 0.00060 (0.00076) 0.00054 (0.00062)

Dir 0.00046 (0.00199) 0.00215 (0.00344) 0.00046 (0.00273) 0.00036 (0.00212)

3-Log 0.00107 (0.00118) 0.00319 (0.00327) 0.00092 (0.00117) 0.00083 (0.00095)

n = 100

Log 0.00178 (0.00299) 0.01319 (0.01353) 0.00194 (0.00356) 0.00193 (0.00275)

HR 0.00205 (0.00319) 0.01278 (0.01318) 0.00152 (0.00358) 0.00205 (0.00293)

Neglog 0.00166 (0.00273) 0.01247 (0.01276) 0.00121 (0.00297) 0.00188 (0.00254)

Bilog 0.00215 (0.00313) 0.01355 (0.01398) 0.00229 (0.00413) 0.00239 (0.00311)

Negbilog 0.00193 (0.00316) 0.01306 (0.01348) 0.00180 (0.00380) 0.00205 (0.00297)

Dir 0.00258 (0.00764) 0.01155 (0.01457) 0.00033 (0.00890) 0.00344 (0.00782)

3-Log 0.00226 (0.00352) 0.01693 (0.01726) 0.00177 (0.00377) 0.00254 (0.00355)
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Fig. 1 Scatterplots of monthly maxima of the positive log-returns
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Fig. 2 Scatterplots of monthly maxima of the negative log-returns
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Table 4 Estimates based on the positive log-returns

CFG P HT FF

DAX-SMI 1.51065 1.43912 1.42864 1.53281

DAX-CAC 1.53758 1.42372 1.41307 1.52922

DAX-FTSE 1.62908 1.57516 1.56645 1.63566

SMI-CAC 1.51419 1.42021 1.40952 1.51232

SMI-FTSE 1.66818 1.58037 1.57175 1.63858

CAC-FTSE 1.59196 1.59800 1.58964 1.60489

DAX-SMI-CAC 1.93313 1.73183 1.71288 1.91667

DAX-SMI-FTSE 2.10582 1.96864 1.95110 2.09493

DAX-CAC-FTSE 2.06665 1.96696 1.94940 2.07494

SMI-CAC-FTSE 2.06946 1.97731 1.95984 2.06701

DAX-SMI-CAC-FTSE 2.46149 2.28181 2.25646 1.91667

Table 5 Estimates based on the negative log-returns

CFG P HT FF

DAX-SMI 1.40796 1.46971 1.45958 1.45277

DAX-CAC 1.45738 1.47093 1.46082 1.48521

DAX-FTSE 1.42637 1.48738 1.47747 1.43936

SMI-CAC 1.62382 1.67586 1.66879 1.66517

SMI-FTSE 1.52124 1.56141 1.55251 1.53641

CAC-FTSE 1.51582 1.51732 1.50780 1.51055

DAX-SMI-CAC 1.86354 1.96386 1.94627 1.95163

DAX-SMI-FTSE 1.74872 1.84216 1.82375 1.81324

DAX-CAC-FTSE 1.80315 1.88928 1.87116 1.84349

SMI-CAC-FTSE 1.97593 2.00136 1.98408 2.02286

DAX-SMI-CAC-FTSE 2.13619 2.25712 2.23169 1.95163
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On a Business Confidence Index and Its
Data Analytics: A Chilean Case

Víctor Leiva, Camilo Lillo, and Rodrigo Morrás

Abstract In this work, we present a methodology based on a Chilean business
confidence index, which allows us to describe aspects of the market at a global level,
as well as at industrial and sector levels of Chilean great brands. We introduce some
issues related to business intelligence, customer surveys, market variables, and the
confidence index mentioned. In addition, we carry out analytics of real-world data
using this index, whose results show the competitiveness of some Chilean great
brands.

1 Introduction

The concept of customer confidence is difficult to define, but it is highly linked to the
service quality, and more currently, to business intelligence (BI). There is no con-
sensus among different areas (such as economics, marketing, or psychology) about
the definition of confidence [15]. However, recently some authors have defined
confidence as a multidimensional construct that is often related to characteristics,
such as benevolence, competence, honesty, and integrity [29, 36].

Consumer confidence also is defined as the degree of optimism that consumers
are expressing for the state of the economy, through their saving and spending
activity [31]. The first measures of consumer confidence were developed by [20],
who mentioned that it is a broad measure of expected changes in income. It was
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not simply the expected size of a consumer future income, but the certainty or
uncertainty that was associated with those expectations.

Consumer confidence is present and is of interest in diverse areas, from fast
food brands to government institutions at local and international scales. This is
because consumer confidence provides valuable information for business, financial,
and political sectors, making it an important aspect to be kept in mind. For some
industrial sectors, the consumer confidence is associated with her(his) satisfaction,
but it is not possible to state a causal relationship between confidence and
satisfaction. Furthermore, consumer satisfaction and confidence are key aspects
to determine customer loyalty and commitment [17, 38]. Some studies show that
consumer confidence has an impact on her(his) spending [2]. In service quality,
these variables play an important role, where consumer confidence is affected
directly by the experience with the brand (buyer–seller relationship). In addition,
consumer confidence is the main determinant of relationship commitment between
buyer and seller [8]. However, consumer confidence also can be affected by political
factors or financial crises, among others [12]. USA, China, and some countries
of the European Union, such as Germany and Portugal, have already advanced
in consumer confidence and service quality topics [14, 18, 28, 34]. In Chile,
services have been one of the fastest growing sectors in the economy. Furthermore,
projections are showing a growing which will remain over time. For this reason,
establishing methodologies about consumer confidence in the context of service
quality for the Chile case is needed.

BI is a set of tools and methods related to statistics, informatics, mathematics,
optimization, and business, which transform data into information. Then, this
information is transformed into knowledge to optimize the process of decision-
making in business. In this context, BI can be oriented to service, which is known
as service oriented to business intelligence (SOBI). SOBI is based on customer
requirements that were captured usually through periodic surveys, but also through
unstructured data collected in real-time from the internet (for example, by means of
e-mails, tweets, and comments in social networks). These unstructured data must be
transformed into structured data and then analyzed with BI tools, for example using
machine learning and/or statistical methods [3, 11].

The main objectives of this work are (i) to present the Chilean Business
Confidence Index (CBCI) of the Center of Experience and Services (CES) of the
Universidad Adolfo Ibáñez (UAI), CES-UAI in short, Chile, which we introduce in
the next section; and (ii) to carry out analytics of real-word data related to the CBCI
and collected by the CES-UAI. This analytics is useful for BI.

Section 2 mentions aspects about BI and its connection with services. Section 3
introduces the methodology based on the CBCI. Section 4 presents empirical results
of the CBCI for Chilean industries by case studies. Section 5 conducts the mentioned
analytics using BI tools. Section 6 discusses our conclusions and future research.
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2 Business Intelligence

In this section we provide some details related to BI and its connection with the area
of services.

BI can be summarized in a one word: data (datum in Latin) which means “what
is given.” Data are a symbolic representation of a qualitative or quantitative variable,
whose symbol may be alphabetic or numeric, respectively. The data alone are
useless. Only when they are transformed into information, we can extract reasonable
conclusions from them. This information obtained from the data must be mixed with
the experience to generate knowledge that allows us to make useful decisions [37].

In the modern times, the data transformation process into information is per-
formed through computers [27]. In this way, alphabetic characters or symbols
related to data of qualitative variables must be changed by numerical characters.
This conversion is known technically as “coding.” However, summarizing a com-
plex concept as BI through one word as “data” can be confused, because “data” are
strongly associated with “statistics,” but BI is not restricted only to statistics. This
concept considers a wider spectrum that involves several other sub-concepts related
to informatics, statistics, and mathematics, such as detailed below.

First, the original data sources are often formed by several databases. These
can have different formats and be stored into different servers. Even more, these
databases may be: (i) structured (consisting of non-numeric or numeric characters
stored in tables); (ii) non-structured (consisting of text, videos, pictures, tweets,
among others); or (iii) semi-structured (consisting by structured and non-structured
data). This structural aspect of the data is closely linked to “big data” (or massive
data) concept, on which many people is calling big data revolution, but that we
will not discuss in this article in detail. However, we can say that big data are
information assets, characterized by their large volume, velocity and variety (3Vs),
requiring innovative and efficient solutions to improve the knowledge process when
decision making in organizations. The objective of big data is to provide high
technology (hardware and software) to store, process, and analyze large amounts
of data (mega, giga, tera, peta, exa, zetta, and yottabyte) and to create value in an
organization. Thus, with today’s technologies, such as digital equipment, analytical
sensors and radio frequency identification, big data are collected efficiently, rapidly,
and automatically [5]. In summary, the big data term is used frequently to describe
large, diverse, and complex data sets, which are generated from different types
of instruments, sensors, or computer-based transactions. This results in great
opportunities for knowledge discovery. Nevertheless, facing the incoming big data
era, many important concepts need to be updated, particularly, service quality. The
reader interested in big data can find for more details in [25, 33]. Thus, BI begins
(first stage) with the identification of the databases that will allow the structured data
set to be analyzed and stored in the “data warehouse.” The second stage of BI is the
way of forming the data set (stored in the data warehouse), which will be used to
carry out the analytics (data processing) and to generate knowledge discovering in
databases (KDD). Then, once the databases are identified, the data must be extracted
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Fig. 1 Scheme of BI

to be then analyzed. This second stage of BI requires the use of a concept known
as extract, transform, and load (ETL). It corresponds to a process which allows the
organizations to move data from multiple sources, reformat, clean (or purge) and
load them into the data warehouse to form the data set to be analyzed. The third
stage of BI is to build the data warehouse. Thus, once we have it, the fourth stage
of BI is to perform the data analytics. This concept corresponds to a generic term
used in the context of BI and refers to a set of techniques that allow structured data
to be processed and analyzed with the aim of transforming them into information.
The fifth and final stage of BI is to make decisions that support the business
process based on the information obtained from the data (quantitative aspect) and
the experience of the decision makers (qualitative aspect). Figure 1 illustrates the
steps of BI. For more information about these and other concepts, see [37].

The elements of BI are the following:

– Data: primary elements of the information, which do not have meaning for
themselves, but they are useful to support the decision-making process.

– Information: processed data with meaning (relevance, purpose, and context).
– Knowledge: mixture of experience and information that is useful for decision

making.

In BI, the focus of analysis is the customer (client), which it does not occur with
other similar concept to BI known as “data science,” where the customer is not
necessarily the focus of analysis. Thus, in BI, the concept of customer relationship
management (CRM) arises naturally [6]. CRM analytic combines businesses and
technologies to analyze data of customers, discovering new patterns of behavior or
market trends. The CRM analytic identifies problems in consumer service quality,
for example confidence problems. When the levels of confidence explained by the
CBCI are high, the attitude and predisposition of the customers towards the brand
is positive. That is, the interactions and service experience are easier to achieve,
responding to the expectations of customers. Then, the CBCI is a measure that
allows the brands to anticipate when image and credibility in the company must
be taken into account for improving its performance. The steps of BI are applied in
the methodology defined in Sect. 3.
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3 Methodology of the Chilean Business Confidence Index

In this section, we present the methodology used for the CBCI, from the collection
of data to the construction of the index.

3.1 Target Population and Sample Design

When the CBCI is estimated, the target population under study is composed of
all Chilean people older than 18 years, who live in cities with at least 130,000
inhabitants. The size of statistical sample is determined for each brand, which
correspond a number of 128 brands in 2016. Each brand belongs to a sector, while
each sector corresponds to a type of industry. Due to reasons of confidentiality,
brand names are kept as anonymous. Chilean industries and sectors used to calculate
the CBCI are shown in Fig. 2. A sample size of n = 300 customers is established
considering statistical aspects. The survey is carried out annually to evaluate brands.
However, the survey is also replicated semiannually at global, industrial, and sector
levels. Note that the questions of the questionnaire used to calculate the CBCI are
taken from the first semester of 2012.

Fig. 2 Structure of Chilean industries and sectors used to calculate the CBCI in 2016
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3.2 Data, Interview and Re-interview

The data are collected by using the computer-assisted telephone interviewing
(CATI) method. This method has the advantage of immediate availability of results,
which can be quickly analyzed and interpreted. By using the CATI method, it is
possible to detect measurement errors easily, whereas coverage and non-response
errors are more frequent. For more details about the CATI method, see [21].

Through phone calls by using the CATI method, customers respond to a
structured questionnaire regarding a brand. However, a customer can be interviewed
more than once in the sample and respond to the questionnaire repeatedly, which
is known as re-interview. The re-interview concept corresponds to a procedure
of replicating the questionnaire to the same consumer in another instant of time,
which saves time and costs. In our case, the re-interview is aimed to another
brand that belongs to another sector and industry than the previous brand for
which the consumer was interviewed. The fact that a same customer responds the
questionnaire more than once it can produce a statistical bias and the respondents
may also repeat the type of response due to exhaustion. This usually happens in
questionnaires sent by mail [7]. The errors associated with the re-interview may be
quantified by means of statistical models; see [9, pp. 264–265]. In a survey with
re-interviews, two assumptions must be considered: (i) the mean and variance of
the response error associated with the re-interviews and the original interview are
identical; and (ii) the covariance between the errors in the different occasions is
zero. In our study, we have checked by means of statistical hypotheses testing that
both assumptions are fulfilled. We will leave a more elaborated study of this topic
for another work. For more information about the re-interviews, see [9, Chapters 11
and 15].

3.3 Customer Survey

The CBCI reported by the CES-UAI is composed by four questions. These questions
and their corresponding random variables are detailed in Algorithm 2. Note that
questions 1 and 2 are related to confidence and transparency, respectively. Then,
they correspond to a rational perception and are based on the customer experience
with the brand. However, questions 3 and 4 are related to concerns and compliance,
respectively. Thus, they correspond to an emotional aspect and are based on the
feelings of the consumer.
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3.4 Building the CBCI

Due to the complexity of the confidence concept, it is usually measured through a
consumer confidence index (CCI), which is built based on non-related and related
questions from business and consumer surveys. A CCI is helpful because it captures
consumer buying patterns [10]. There are currently two important and well-known
CCIs: (i) the University of Michigan Consumer Sentiment Index (UMCSI) and (ii)
the Conference Board Consumer Confidence Index (CBCCI). For definitions and
comparison between these indices, the interested reader is referred to [26].

Algorithm 1 Thinking exclusively about {the name of the brand is indicated},
mention with a score from 1 to 7 how much you agree with the following statements:

1: I can trust on it (Y1).
2: It is transparent, it does not deceive me and it does not hide anything (Y2).
3: It cares about the well-being of its customers (Y3).
4: When it promises anything, it complies (Y4).

Such as in the case of UMCSI and CBCCI, responses to questions for the
CBCI can be categorized as negative, neutral, or positive [19]. In order to build
the confidence index on a brand, Algorithm 2 must be followed. Furthermore, we
may calculate the sector, industrial, and global CBCI following Algorithms 3, 4,
and 5, respectively. Note that these three algorithms are nested in Algorithm 2. In
order to calculate the confidence index in the sector h, we need to calculate the index
on each brand that belongs to the sector h. This also happens for the industries, that
is, in order to calculate the confidence index in the industry t , we need to calculate
the index on each sector that belongs to the industry t . For the global CBCI, it is
necessary to calculate the index in each sector. This procedure can be replicated
each year, obtaining a time series of the CBCI (global, sector or brand); see Sect. 4.
Then, through the BI framework, each data set stored annually in the data warehouse
should be treated by an ETL.

4 Case Study I: CBCI on 2016

In this section we present some current results of the CBCI.
We analyze the CBCI for the second semester of 2016 to global, industrial, and

sector levels, which is shown in Fig. 3. From this figure, note that the values above
the black points correspond to the CBCI in the sectors. In addition, we can change
expression given in (2) of Algorithm 2 by the proportion of positive (or negative)
responses to obtain an indicator of positivism (or negativity) using the CBCI. These
values are displayed in the extremes of the bars of Fig. 3. In order to compare the
sectors with the global CBCI, a dashed horizontal line is sketched. Observe that
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Algorithm 2 Constructing the CBCI for the brand k
1: For the brand k and the question Yi , with i = 1, . . . , 4, encode as follows:

Ui =
⎧⎨
⎩

−1, if Yi = 1, 2, 3 or 4, indicating a negative response;
0, if Yi = 5, indicating a neutral response;
1, if Yi = 6 or 7, indicating a positive response.

(1)

2: Calculate the percentage of positive responses and subtract the percentage of
negative responses. This is analogous to calculating

Ui = 1

nk

nk∑
j=1

Uij × 100, (2)

where Uij is defined in (1) and corresponds to the encoded variable Yi for the
customer j , with nk being the sample size of the brand k.

3: Repeat steps 1 and 2 for i = 1, 2, 3, 4.
4: Compute the CBCI composed by the four variables through the average, that is,

by

Bk = 1

4

4∑
i=1

Ui, (3)

where Uij is defined in (2).

Algorithm 3 Constructing the CBCI for the sector h
1: Repeat Algorithm 2 for each brand that belongs to the sector h.
2: Calculate the CBCI as the average of the brand index, that is, as

Sh = 1

bh

bh∑
k=1

Bk, (4)

where Bk is defined in (3) and bh is the number of brands that belong to the
sector h.

sectors may be grouped into two classes: (i) the membership sectors (dark gray) and
(ii) transactional sectors (light gray). The membership class corresponds to sectors
where the relationship between customer and company is contractual. However, in
the transactional class, a contract is not needed. In general, for transactional sectors,
there is a lower relationship between customer and brand, and then a lower level of
satisfaction and confidence from customers. However, this does not happen in the
Chilean reality; for more details on the membership and transactional sectors and
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Algorithm 4 Constructing the CBCI for the industry t
1: Repeat Algorithm 3 for each sector that belongs to the industry t .
2: Calculate the CBCI as the average of the sector index, that is, as

It = 1

st

st∑
h=1

Sh,

where Sh is defined in (4) and st is the number of sectors that belong to the
industry t .

Algorithm 5 Constructing the global CBCI
1: Use Algorithm 3 for all sectors.
2: Compute the global CBCI as the average of all sector indices, that is, as

CBCI = 1

s

s∑
h=1

Sh,

where Sh is defined in (4), using now all sectors which are denoted by a
number s.

Fig. 3 Values of the CBCI during the second semester of 2016 to global and sector levels
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Fig. 4 Semiannual time series of the global CBCI for the indicated date

brands, see [16]. Observe that the worst evaluated sector is the public transport, with
an value of −18 for the CBCI, which corresponds to Transantiago’s problem [30].

In addition to a static result, it is necessary to evaluate the evolution of the
behavior detected previously. Figures 4 and 5 show semiannual results over time of
the CBCI at global and industrial levels; respectively. From Fig. 4, note that, since
the first half of 2015, there has been a downward trend in the CBCI, behavior which
is identical for industries related to financial, logistic, public, residential, retail,
telecommunication and transport services. Also, we present the behavior over time
of the financial industry in Fig. 6. Observe that, in the financial industry, there is also
a general declination since 2015, where credit cards, clearing houses, retail banking
and retirement pension system follow this pattern. Observe that the most notorious
changes are found in the retirement pension system, with a jump of 27 points (from
24 to −3) in the CBCI between the first semester of 2015 and the second semester
of 2016. Due to a confidentiality issue, we do not present the results at a brand level.
Despite using only descriptive statistics in this section, note that some results can
be already obtained as market trends. Through the same procedure shown in this
section, we compare brands of a sector in order to establish new service policies in
the businesses of these brands.
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Fig. 5 Semiannual time series of the industrial CBCI for the indicated date

5 Case Study II: Regression Modeling of the CBCI

Market behavior can be described by partial least squares regression models and/or
structural equation models [1, 13, 32]. However, these models commonly have
several random variables and it is difficult to verify all their assumptions (for
example: constant variance and/or normality of the response variable). In this
section, we show an illustration about the CBCI at brand level (Y ), which is modeled
by a service covariate (X). This covariate is also measured in the customer survey
of the CES-UAI as follows: “Regarding to {the name of the brand is indicated}, how
well do you agree with the sentence: was it a pleasant experience?”. Use a score
from 1 to 7. Note that this covariate is directly related to the experience that the
customer had with the brand. This type of service covariate is an excellent predictor
of confidence. To determine X at the brand level, we use Algorithm 2.

In this case study, we consider a data set corresponding to 2016, with n = 128
Chilean brands and 30,000 clients. We obtain the CBCI for each brand based on the
30,000 clients, which provides us n = 128. Table 1 presents a descriptive summary
on the data of the CBCI for the brands, whereas Fig. 7 displays the histogram (left),
box-plot (center), and scatter-plot (right) of the CBCI for brands. From Table 1 and
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Fig. 6 Semiannual time series of the CBCI in financial sector for the indicated date

Table 1 Descriptive summary of the CBCI for 128 brands with data of 2016 from the CES-UAI

Coefficient Excess
n Min. Median Mean Max. Standard deviation of skewness of kurtosis

128 −17 37.5 37.81 83 22.23 −0.02 −0.70
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Fig. 7 Histogram (left), box-plot (center) and scatter-plot (right) of the CBCI for 128 brands with
data of 2016 from the CES-UAI
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Fig. 7, note that the empirical distribution of the CBCI is symmetrical and similar
to the normal distribution, although more platykurtic (the normal distribution is
mesokurtic with excess of kurtosis equal to 0, while brands have a CBCI with an
excess of kurtosis equal to −0.7). Observe also that there is a linear relationship
between X and Y . In addition, note that as the CBCI increases, its variability
decreases. Thus, we are dealing with a heteroscedastic model. The simple linear
regression model based on the normal distribution is one of the most used. However,
it is well known that this model does not allow for heteroscedasticity (non-constant
variance). Then, we describe both mean and variance with generalized additive
models of location, scale and shape (GAMLSS) as detailed below [35].

The model to be considered is given by

g1(μi) = η1i = β10 + β11xi, g2(σi) = η2i = β20 + β21xi, i = 1, . . . , n,
(5)

where μi, σi are the mean and standard deviation of the CBCI and xi the value of
the service covariate, all of them for the customer i, whereas βjls are the regression
coefficients. We compare the performance of different distributions of GAMLSS.
Specifically, we consider the normal, generalized-t and skew exponential power
type 1 (SEP1) distributions. We use for g1 the identity link function, whereas the
logarithmic and identity link functions are used for g2. Once the models are fit, we
compare them through model selection criteria based on loss of information such
as Akaike (AIC) and Bayesian (BIC) information criteria. AIC and BIC allow us to
compare models for the same data set and they are given by

AIC = −2	(̂θ)+ 2p, BIC = −2	(̂θ)+ p log(n),

where 	(̂θ) is the logarithm of the likelihood function (log-likelihood) of the model
with vector of parameters θ evaluated at θ = θ̂ , n is the sample size, and p is
the number of model parameters. AIC and BIC correspond to the log-likelihood
function plus a component that penalizes such a function as the model has more
parameters, making it more complex. A model with a smaller AIC or BIC is
better; for more information about AIC and BIC, see [22]. Values for AIC and
BIC considering the data are presented in Table 2. Note that a model with a
lower information criterion, for both AIC and BIC, corresponds to the SEP1 with
identity link function for g2. The probability density function (PDF) of the SEP1
distribution, denoted by SEP1(μ, σ , ν, τ ), is given by

fY (y;μ, σ, ν, τ ) = 2

σ
fZ1(z)FZ1(νz); y ∈ R, μ ∈ R, σ > 0, ν ∈ R, (6)
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Table 2 Values of AIC and BIC for the indicated model fitted to the CBCI data for 128 brands in
2016 from the CES-UAI

Distribution

Normal Generalized-t SEP1

Link function (g2(σi)) Identity Log Identity Log Identity Log

AIC 927.86 932.78 931.67 936.79 927.20 933.88

BIC 944.31 944.19 948.78 953.90 939.27 951.00

where z = (y−μ)/σ , fZ1 and FZ1 are the PDF and cumulative distribution function
(CDF) of Z1 ∼ PE2(0, τ 1/τ , τ ), a power exponential type 2 distribution with PDF
given by

fZ1(z) = 2τ (1−τ )/τΓ (1/τ) exp
(−|z|τ /τ ) ; z ∈ R, τ > 0.

The mean and variance of the PE2 distribution is given by E[Y ] = μ+ σE[Z] and
Var[Y ] = σ 2Var[Z] = σ 2(E[Z2] − (E[Z])2), respectively, where Z = (Y − μ)/σ ,

E[Z] = sign(ν)τ 1/τ Γ (2/τ)

Γ (1/τ)
pBEo(ντ /(1 + ντ ), 1/τ, 2/τ),

and

E[Z2] = τ 2/τΓ (3/τ)

Γ (1/τ)
,

with pBEo being the CDF of a beta distribution; for more information of SEP1 and
EP2 distributions, see [4]. The SEP1 distribution parameters are estimated with the
maximum likelihood (ML) method. Then, for the model formulated in (5), using
g1 = g2 based on identity link functions and the PDF given in (6), we obtain the
following ML estimates (with estimated asymptotic standard errors in parenthesis)
for the corresponding parameters: β̂10 = −24.68(6.16), β̂11 = 1.15(0.07), β̂20 =
24.37(6.71), β̂21 = −0.24(0.06), ν̂ = 0.53(0.18), and τ̂ = 1.31(0.67). Note that
all coefficients are significant at 5%. The assumptions of the model given in (5) are
verified with the randomized quantile (RQ) residual, often used in GAMLSS models
[24], defined as

r
RQ
i = Φ−1(FY (yi; β̂10 + β̂11xi, β̂20 + β̂21xi, ν̂, τ̂ )

)
, i = 1, . . . , 128, (7)

where FY (y;μ, σ, ν, τ ) =
∫ y

0 fY (u;μ, σ, ν, τ )du andΦ−1 is the inverse function of
the standard normal CDF (quantile function), with fY (y;μ, σ, ν, τ ) being defined
in (6). Note that the RQ residual expressed in (7) must be compared to the normal
distribution to evaluate its fitting to the data of 2016 from the CES-UAI for 128
brands. We use a theoretical probability versus empirical probability (PP) plot
to do this evaluation. In addition, observe that the PP plot can be linked to the
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Kolmogorov-Smirnov (KS) test, by means of which acceptance bands may be
constructed inside of this plot. Algorithm 6 summarizes this construction [23].
Figure 8 (left) sketches a PP plot with 95% acceptance bands to verify the
distributional assumption of the model given in (5). Note that KSp-value = 0.7318,
which supports the normality assumption of the RQ residuals obtained from the
heteroscedastic SEP1 regression model. This figure does not show unusual features
and assumption that the response follows an SEP1 distribution seems to be suitable.
From Fig. 8 (right), observe that no outlying observations are detected.

Algorithm 6 Goodness of fit to any distribution
1: Consider data y1, . . . , yn and order them as y1:n, . . . , yn:n.
2: Estimate parameters θ of the distribution by θ̂ with y1, . . . , yn and the ML

method.
3: Compute v̂j :n = F(yj :n; θ̂), for j = 1, . . . , n, with F being the corresponding

CDF.
4: Calculate ŝj = Φ−1(̂vj :n).
5: Obtain ûj :n = Φ(̂zj ), with ẑj = (̂sj − s̄)/ds , s̄ = ∑n

j=1 ŝj /n and ds =
(
∑n

j=1 (̂sj − s̄)2/(n− 1))1/2.
6: Draw the PP plot with pointswj :n = (j − 0.5)/n versus ûj :n, for j = 1, . . . , n.
7: Specify a significance level α.
8: Construct acceptance bands according to (max{w− k1−α+0.5/n, 0},min{w+
k1−α − 0.5/n, 1}), where k1−α is the (1 − α) × 100th percentile of the KS
distribution (adapted) and w is a continuous version of wj :n.

9: Determine the p-value of the KS statistic and reject the null hypothesis of the
corresponding distribution for the specified significance level α based on this
p-value.

10: Corroborate coherence between steps 8 and 9.
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Fig. 8 PP plot with 95% acceptance bands for RQ residual (left), plot of index values against
RQ residual (right) based on CBCI data for 128 brands in 2016 from the CES-UAI and the
heteroscedastic SEP1 regression model
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Figure 9 (left) shows a scatter-plot of the CBCI against pleasant experience
indicator for Chilean brands, with the estimated model given in (5). Note that the
fitted line (proposed model) has a good agreement with the data. In addition, from
Fig. 9 (right), observe how the model captures heteroscedasticity. In summary, the
proposed model allows us to categorize the competitiveness of a sector. Thus, brands
with high competitiveness struggle to be the best, delivering good services, and
consequently, the sector has a higher level of confidence. Then, a brand with a
high competitiveness has a small variance in confidence, while a brand with low
competitiveness has a large variance. Figure 10 shows a scatter-plot with the fitted
model using fifth and 95th percentiles. This figure also presents brands in grey dots.
In particular, as an example, black triangles correspond to brands in the internet
sector, while black dots are related to brands in the gas sector. Due to reasons of
confidentiality, as mentioned, we do not mention the name of these brands. Note
that the gas sector is modeled with a low variability, because it is a sector with a
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Fig. 9 Scatter-plot of CBCI data for 128 brands in 2016 from the CES-UAI with fitted SEP1
model (left) and predicted median CBCI brands and 5th and 95th percentiles (right)
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Fig. 10 Scatter-plot of CBCI data for 128 brands in 2016 from the CES-UAI with fitted SEP1
model and competitiveness of the sectors
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high competitiveness. Figure 10 displays brands associated with the internet sector,
from which is detected that this sector has a low competitiveness and therefore a
large variance; see also Fig. 3. By a matter of confidentiality, the rest of the sectors
are not shown and neither the name of the brand. From the point of view of BI, note
that this result is totally related to the management and investment of new market
plans to increase the competitiveness of a brand using SOBI.

6 Conclusions and Future Research

In this work we have presented a methodology related to a Chilean business
confidence index, which is used to describe aspects of the market at global,
industrial, and sector levels for Chilean brands. We have commented some issues
related to business intelligence, customer and business surveys, market variables
and of the mentioned confidence index. We have illustrated the methodology by
business intelligence analytics related to a Chilean business confidence index, from
the collection of data, characteristics of the business survey, calculation of the index,
data analytics and decision making in service oriented to business intelligence.
Two case studies have been considered in this illustration, which have provided
a good idea about how the Chilean business confidence index works. The survey
measures rational and emotional characteristics, which are related to brand empathy
and customer experience, characteristics currently used in business intelligence for
the analysis of sentiments. These characteristics are used to generate an index that
can be used as an economic descriptor in the Chilean market. We have considered
a heteroscedastic regression model to predict CBCI data, which is an evident aspect
frequently did not considered in other analyses. This heteroscedasticity is described
by generalized additive models of location, scale, and shape, which is employed
to predict the Chilean business confidence index and its variability, which allowed
us to determine whether a sector is highly competitive or not. This is important in
service oriented to business intelligence and service quality, since it allows a direct
reaction by the board of a brand to develop business management increasing its
competitiveness and being the best in the local or international markets.

For future research, we propose to develop more sophisticated models for
describing confidence, through partial least squares regression models, structural
equation models, and/or mixtures of them. In addition, because the Chilean business
confidence index was first generated during 2012, we do not have the appropriate
sample size to perform time series. However, generalized additive models of
location, scale, and shape allows us to describe this temporal structure of confidence,
which is under study by the authors. Also, multivariate aspects and artificial
intelligence models, as well as diagnostic methods, are being considered by the
authors in future research.

Acknowledgements The authors thank the editors and reviewers for their constructive comments
on an earlier version of this manuscript. This research work was partially supported by FONDE-
CYT 1160868 grant from the Chilean government.



84 V. Leiva et al.

References

1. Aktepe, A., Ersöz, S., Toklu, B.: Customer satisfaction and loyalty analysis with classification
algorithms and structural equation modeling. Comput. Ind. Eng. 86, 95–106 (2015)

2. Allenby, G., Jen, L., Leone, R.: Economic trends and being trendy: the influence of consumer
confidence on retail fashion sales. J. Bus. Econ. Stat. 14, 103–111 (1996)

3. Aufaure, M., Zimányi, E.: Business Intelligence. Springer, Berlin (2012)
4. Azzalini, A.: Further results on a class of distributions which includes the normal ones.

Statistica 46, 199–208 (1986)
5. Baesens, B.: Analytics in a Big Data World: The Essential Guide to Data Science and its

Applications. Wiley, New York (2014)
6. Brijs, B.: Business Analysis for Business Intelligence. Auerbach Publications, Boca Raton-FL

(2012)
7. Bushery, J.M., Royce, M., Kasprzyk, D.: The schools and staffing survey: how reinterview

measures data quality. Proc. Surv. Res. Methods Sect. Am. Stat. Assoc. 23, 458–463 (1992)
8. Chumpitaz, R. Paparoidamis, N. Service quality, relationship satisfaction, trust, commitment

and business to business loyalty. Eur. J. Mark. 41, 836–867 (2007)
9. Cox, B., Binder, D., Nanjamma, B., Christianson, A., Colledge, M., Kott, P.: Business Survey

Methods. Wiley, London (1995)
10. Curtin, R.: Consumer sentiment surveys: worldwide review and assessment. J. Bus. Cycle

Meas. Anal. 1, 7–42 (2007)
11. Daniel, M., Ferreira, R., Horta, N.: Company event popularity for financial markets using

twitter and sentiment analysis. Expert Syst. Appl. 71, 111–124 (2017)
12. Dees, S., Brinca, P.B.: Consumer confidence as a predictor of consumption spending: Evidence

for the united states and the euro area. Int. Econ. 134, 1–14 (2013)
13. Fornell, C., Johnson, M.D., Anderson, E.W., Cha, J., Bryant, B.E.: The American customer

satisfaction index: nature, purpose, and findings. J. Mark. 60, 7–18 (1996)
14. Hartmann, M., Klink, J., Simons, J.: Cause related marketing in the German retail sector:

exploring the role of consumers trust. Food Pol. 52, 108–114 (2015)
15. Hobbs, J., Goddard, E.: Consumers and trust. Food Pol. 52, 71–74 (2015)
16. Hultén, B.: Customer segmentation: the concepts of trust, commitment and relationships. J.

Target. Meas. Anal. Mark. 15, 256–269 (2007)
17. Hunneman, A., Verhoef, P.C., Sloot, L.M.: The impact of consumer confidence on store

satisfaction and share of wallet formation. J. Retail. 91, 516–532 (2015)
18. Jiang, H., Zhang, Y.: An investigation of service quality, customer satisfaction and loyalty in

China’s airline market. J. Air Transp. Manag. 57, 80–88 (2016)
19. Katona, G.: Psychological Analysis of Economic Behavior. McGraw Hill, New York (1951)
20. Katona, G.: The Powerful Consumer: Psychological Studies of the American Economy.

McGraw-Hill, New York (1960)
21. Kenett, R., Salini, S.: Modern Analysis of Customer Surveys with Applications using R. Wiley,

London-UK (2012)
22. Konishi, S., Kitagawa, G.: Information Criteria and Statistical Modeling. Springer, New York

(2008)
23. Leiva, V., Saunders, S.C.: Cumulative damage models. Wiley StatsRef: Statistics Reference

Online (2015)
24. Leiva, V., Ferreira, M., Gomes, M.I., Lillo, C.: Extreme value Birnbaum-Saunders regression

models applied to environmental data. Stoch. Environ. Res. Risk. Assess. 30, 1045–1058
(2016)

25. Liebowitz, J.: Big Data and Business Analytics. Auerbach Publications, New York (2013)
26. Ludvigson, S.: Consumer confidence and consumer spending. J. Econ. Perspect. 18, 29–50

(2004)
27. Maheshwari, A.: Business Intelligence and Data Mining. Business Expert Press, New York

(2015)



Business Confidence Index: A Chilean Case 85

28. McGuckin, R.H.: Business Cycle Indicators Handbook. The Conference Board, New York
(2001)

29. Moriuchi, E., Takahashi, I.: Satisfaction, trust and loyalty of repeat online consumer within the
Japanese online supermarket trade. Aust. Mark. J. 24, 146–156 (2016)

30. Muñoz, J.C., Batarce, M., Hidalgo, D.: Transantiago, five years after its launch. Res. Transp.
Econ. 48, 184–193 (2014)

31. Nekrasova, D.: Emotion and reason in making financial decisions. Int. J. Interdisc. Soc. Sci. 5,
10 (2011)

32. Picón-Berjoyo, A., Ruiz-Moreno, C., Castro, I.: A mediating and multigroup analysis of
customer loyalty. Eur. Manag. J. 34, 701–713 (2016)

33. Prajapati, V.: Big Data Analytics with R and Hadoop. Packt Publishing, Birmingham-UK
(2013)

34. Ramalho, E., Caleiro, A., Dionfsio, A.: Explaining consumer confidence in Portugal. J. Econ.
Psychol. 32:25–32 (2011)

35. Rigby, R., Stasinopoulos, D.: Generalized additive models for location, scale and shape. J. R.
Stat. Soc. C 54, 507–554 (2005)

36. Rubio, N., Villaseñor, N., Yagüe, M.: Creation of consumer loyalty and trust in the retailer
through store brands: the moderating effect of choice of store brand name. J. Retail. Consum.
Serv. 34, 358–368 (2017)

37. Sherman, R.: Business Intelligence Guidebook: From Data Integration to Analytics. Morgan
Kaufmann, New York (2014)

38. Stathopoulou, A., Balabanis, G.: The effects of loyalty programs on customer satisfaction, trust,
and loyalty toward high- and low-end fashion retailers. J. Bus. Res. 69, 5801–5808 (2016)



On the Application of Sample Coefficient
of Variation for Managing Loan Portfolio
Risks

Rahim Mahmoudvand and Teresa A. Oliveira

Abstract Banks and financial institutions are exposed with credit risk, liquidity
risk, market risk, operational risk, and others. Credit risk often comes from undue
concentration of loan portfolios. Among the diversity of tools available in literature
for risk measurement, in our study the Coefficient of Variation (CV) was chosen
taking into account that it reveals a very useful characteristic when loan portfolios
comparison is desired: CV is unitless—it is independent of the unit of measure
associated with the data. We obtain the lower and upper bounds for sample CV and
the possibility of using it for measuring the risk concentration in a loan portfolio
is investigated. The capital adequacy and the single borrower limit are considered
and some theoretical results are obtained. Finally, we implement and illustrate this
approach using a real data set.

1 Introduction

Providing loans, banks are exposed with many risks: credit risk, liquidity risk,
market risk, operational risk, and others. Usually, the most important risk is credit
risk. Credit risk is a critical area in banking and is of concern to a variety of
stakeholders: institutions, consumers, and regulators. It has been the subject of
considerable research interest in banking and finance communities, and has recently
drawn the attention of statistical researchers, see [26]. Often credit risk comes
from undue concentration of loan portfolios. Concentration risk in loan portfolios
arises from uneven distribution of credit across sectors or providing large loans to
individual borrowers, see [20]. The effects of crisis are still persistently reflected
in the accompanying slow and weak Gross Domestic Production (GDP) growth
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performance of most economies around the world, see [12]. The economic weakness
in a region impacts the job market, the availability of credit, the price of consumer
goods and services, wages, and a host of other items. This also might produce a
large increase in the demands for loans. Therefore, modeling concentration risk in
order to avoid default event is necessary for banks and financial systems.

Among the diversity of tools available in literature for risk measurement, in
our study the Coefficient of Variation (CV) was chosen taking into account that
it reveals a very useful characteristic when loan portfolios comparison is desired:
CV is unitless—it is independent of the unit of measure associated with the
data. CV has been often used in diverse areas as a measure of precision of data
dispersion, once it allows comparing numerical distributions measured on different
scales. In the literature it is easy to find studies in a big range of areas, such as
Medicine, Agriculture, Industry, Insurance and Business, in which computation and
or comparisons of CVs play a key rule for data behavior interpretation and modeling.
We will refer some of these studies in which CV was used in the context of Risk
Analysis and Risk Assessment, as well as some previous theoretical achievements
under this topic, see [21].

Confidence intervals for CV in normal and log-normal populations were pre-
sented by [22] and [23]. Later on, [24] reports a meta-analysis of data for human
and animal decision making under risk that uses the coefficient of variation (CV)
as a measure of risk sensitivity. Forkman [10] presented results on the statistical
inference for the CV in normally distributed data and [5] presented a paper on the
coefficient of variation asymptotic distribution in case of non-iid random variables.
In the context of Medicine [6] explored some closed-form confidence intervals for
functions of the normal mean and standard deviation, and CV was considered.
Banik and Kibrie [3] also used confidence intervals for estimating the population
coefficient of variation.

More recently, [17] explored confidence intervals for the Coefficients of Variation
with Bounded Parameters, and proposed an evaluation for such intervals in terms
of coverage probability and of expected length via Monte Carlo simulation. These
authors point out that if there is a presence of outliers in the data set, the width of the
confidence interval obtained by including the bounds of the parameter space will be
less effect from observations with extreme values.

Albatineh et al. [1] presented a simulated study considering the confidence
interval estimation for the population coefficient of variation using ranked set
sampling. An evaluation of the performance of several confidence interval esti-
mators of the population coefficient of variation was presented, using ranked set
sampling compared to simple random sampling. Simulation studies were based on
normal, log-normal, skew normal, Gamma, and Weibull distributions with specified
population parameters and for several sample sizes.

Hayter [13] presents the construction of two different kinds of confidence
intervals for the coefficient of variation of a normal distribution, which were
developed using inferences on the non-centrality parameter of a non-central t-
distribution. The author considered:
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1. the construction of a confidence interval that bounds the reciprocal of the
coefficient of variation away from zero;

2. the construction of a confidence interval that provides an upper bound on the
absolute value of the reciprocal of the coefficient of variation.

Several applications were considered by Hayter [13], such as financial analyses
with Sharpe ratios and the measurement of signal-to-noise ratios, with specific
attention being directed towards assessing win-probabilities for comparing two
normal treatments.

In this paper we explore CV properties and application in the context of Credit
Risk and we organized this paper as follows. In Sect. 2 some bounds for sample
CV are obtained. In Sect. 3 one simple theoretical model for credit risk in portfolio
of loans is presented. Also measures and inequalities for concentration risk, capital
adequacy, and single obligor limit, based on sample CV are proposed. The empirical
results are presented in Sect. 4. Section 5 presents a summary and some concluding
comments.

2 Properties of Sample Coefficient of Variation

Recall that the coefficient of variation of a distribution with meanμ and variance σ 2

is defined as the ratio σ/μ. In practice, the coefficient of variation and the dispersion
will be replaced by its estimator. If X̄ and S2 be mean and variance of sample, we
use cv for sample CV and define by cv = S/X̄.

2.1 Bounds for cv

We consider four different cases and find bounds for each one.

Case 1
Let X1, . . . , Xn be nonnegative random variables. It is obvious that:

(
n∑
i=1

Xi

)2

≥
n∑
i=1

X2
i . (1)

Using the Cauchy- Schwarz inequality, we have

(
n∑
i=1

Xi

)2

≤ n

n∑
i=1

X2
i . (2)
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Equations (1) and (2) give

nX̄2 ≤
n∑
i=1

X2
i ≤ n2X̄2. (3)

Considering the definition of sample variance and (3), we get

0 ≤ cv ≤ √
n (4)

The case cv=0 in (4) occurs when all the observations are equal and the case cv =√
n occurs when all the observations, except one of them, are zero.

Case 2
Let X1, . . . , Xn be nonpositive random variables. In this case, we can similarly get
the following bounds for cv:

−√
n ≤ cv ≤ 0. (5)

Case 3
Let X1, . . . , Xn be random variables, for which we have

∑
i �=j XiXj ≥ 0. Then,

we get:

(
n∑
i=1

Xi

)2

=
n∑
i=1

X2
i +

∑
i �=j

XiXj . (6)

Using the condition
∑

i �=j XiXj ≥ 0 the equality (6) implies the inequality (1) and
we obtain the following bound for cv:

|cv| ≤ √
n. (7)

Case 4
Let X1, . . . , Xn be random variables, in which we have

∑
i �=j XiXj ≤ 0. Then, a

similar conclusion provides us the following bound for cv:

√
n ≤ |cv| . (8)
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Table 1 Probability of out of
range estimates by cv when
samples come from
distribution b(5, p)

n

10 20 50 100

p 0.01 0.601 0.363 0.093 0.004

0.05 0.091 0.005 0.000 0.000

0.10 0.191 0.090 0.009 0.001

0.15 0.436 0.371 0.307 0.238

It is worth mentioning that under the conditions for cases 1–3, the bounds for sample
cv of the mean can be written as below:

0 ≤ ∣∣cv(X̄)∣∣ ≤ 1, (9)

where we mean cv(X̄) = cv/
√
n.

2.2 Efficiency of cv

Considering the coefficient of variation and some main concepts on probability
theory the authors recommend [9], where some applications are also explored.
Albercher et al. [2] showed that cv is an unbiased and consistence estimator for
CV. However, [15] showed that in some cases cv provides a poor estimates for
the population CV. As an example, assume that X1, · · · ,X5 is a random sample
from an N(0, 1). Then, they showed that P(−3 < cv < 3) = 0.50 whereas
the population CV is infinite. Let us consider some examples from the Binomial
distribution. Assume thatX1, . . . , Xn are i.i.d random variables from a b(m,p). It is
easy to see that the population CV is equal to

√
(1 − p)/mp. Therefore, population

CV is larger than 1 when p < 1/(n + 1). But, using case 1, we can conclude that
0 ≤ cv ≤ √

n. This means that there is a positive probability that sample cv produce
poor estimates for population CV. Table 1 shows the probability P(cv < 1) when
we sample from b(5, p). As it indicated, this probability decreases by sample size,
but surprisingly, it decreases by p when p increases from 0.01 to 0.05 and then it
increases again.

3 Application of cv for Measuring Concentration Risk
in Loan Portfolio

One of the operational works in banks is paying loans to applicants. In approving
each loan application, the Bank considers the purpose of the loan, assesses the
repayment ability from the applicant’s operating cash flows, business feasibility,
capability of management, and collateral. However, usually there are some loans
which are not paid back to bank. Credit risk is a risk where the borrower may not be
able or willing to repay the debt he or she owes to the Bank, see [16].
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Although these capitals may be a small percentage of the financial resources of
banking institutions, it plays a crucial role in their long-term financing and solvency
position and therefore in public credibility. This fact would justify the existence
of a capital adequacy regulation in order to avoid bankruptcies and their negative
externalities on the financial system although banks may respond to this regulation
by increasing their risk exposure. On the other hand, too tight a regulation may lead
banks to reduce their credit offer and, as a result, give rise to a fall in productive
investment.

Risk measurement and management methods are still at an early stage and
quite far from providing exact pictures of a bank’s actual risk exposure. This is
particularly true for credit risk models, which have been developed and applied
only recently, see [26]. Regulators and academics alike have pointed out that the
existing methods have to be improved before they can be used to determine a bank’s
regulatory capital, see [8, 11].

As it was mentioned, many credit risk models have been introduced for loan
portfolios and one of the main problems in these models is determination of
minimum capital adequacy. Bank management can apply the value at risk (VaR)
concept to set capital requirements, see, e.g., [7, 14, 18]. VaR is a risk management
tool which allows controlling for the probability of bankruptcy [4]. VaR is an
estimate of total exposure to the various market risks interest rate, inflation,
exchange rates, share prices, etc., see [19]. There are some methods for measuring
VaR. But in this paper VaR is calculated by means of cv.

It should be mentioned that [25] used the method of coefficient of variation to
assess the portfolio of loan in one of Iranian banks.

3.1 Capital Adequacy and Concentration Risk in the Loan
Portfolios

Denote by n the number of demands for loan and denote by li the amount of loan for
the applicant i. In a simple model of default risk, each obligor has only two possible
end-of-period states, default and non-default. In the event of default, the lender
suffers a loss of fixed size li for the applicant i. If Li is a random variable which
shows the total of the loss for applicant i, then we have Li = liBi , where Bi is a
Bernoulli random variable with parameter pi (in fact, pi is the probability of default
for loan i). For simplicity, suppose that pi = p for i = 1, . . . , n and L1, . . . , Ln

are independent. Denote by L =
n∑
i=1

Li the total loss in the loan portfolios, we can

show that the distribution of L is asymptotically normal (see Appendix). Thus, we
can get VaRα = E [L] + zα

√
var(L). For a quantity CL to be the minimum capital

adequacy, it must satisfy the following condition:

CL ≥ VaRα ⇒ CL ≥ E [L] + zα
√
var(L). (10)
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Using the definition of population cv for L, it is easy to show

CL ≥ p(1 + zαCV )

n∑
i=1

li . (11)

Note that the right side of (11) is VaR. Therefore, VaR depends on three components:
probability of default, level of confidence, and Coefficient of Variation. It means
that we can control VaR by controlling these components. We can get the following
equivalent formula for checking capital adequacy of bank by definition of sample
CV.

cv2 ≤
((

CL− p
∑n

i=1 li

zα
√
p(1 − p)

∑n
i=1 li

)2

− 1

n

)
n2

n− 1
(12)

Let us see another application of cv for concentration risk in the loan of portfolios.
Assume bank make loans by total volume l = ∑n

i=1 li to n applicants. Consider
three scenarios:

1. Bank decide to pay total volume to one applicant,
2. Bank decide to pay the same loan to all of applicants and
3. Bank decide to pay to all of the applicants, but not equally (maybe even some of

them equal zero).

Let us see the behavior of cv for scenarios 1–3. For the first case, cv = √
n. This

corresponds to the maximum possible value of cv, see Eq. (4). It is clear that the first
scenario is the riskiest decision for bank which coincides with the maximum cv.
Scenario 2 produces cv = 0, i.e. the minimum possible value. It is also evident that
the second decision has the minimum risk of default for bank. The last one depends
on the value of cv and accordingly we can conclude the scenario has a high/low risk.
We provide some interesting application of cv in the next two theorems.

Theorem 1 Let X1, . . . , Xn be nonnegative random variables and
∑n

i=1 Xi = T .
In addition, suppose m (< n) is a natural number and Xi ≤ T/m. Then, we have:

cv ≤
√
n(n−m)

m(n− 1)

and the upper bound is obtained if m observations are equal to T/m and the
remaining are zero.

Proof We have

cv2 = n2

n− 1

∑n
i=1 X

2
i(∑n

i=1 Xi
)2 − n

n− 1
≤ n2

n− 1

∑n
i=1 XiT/m

T 2 − n

n− 1
= n(n−m)

m(n− 1)

Getting upper bound is straightforward by substitution.
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Theorem 2 Assume cv ≤ γ <
√
n, which γ is an arbitrary positive real value.

Then

Xi < X̄

√
(n− 1)γ 2 + n , i = 1, 2, . . . , n.

Proof It is sufficient to note that

X2
i <

n∑
i=1

X2
i = X̄2

(
(n− 1)cv2 + n

)
≤ X̄2

(
(n− 1)γ 2 + n

)
.

Theorem 3 Assume cv ≤ γ <
√
n and

∑n
i=1 Xi = T . Then we have

Xi ≤ X̄

(
1 + (n− 1)γ√

n

)
, i = 1, 2, . . . , n.

Proof Let Xmax be the maximum value satisfying conditions of this theorem. It is
easy to see that cv is an increasing function of

∑n
i=1 X

2
i . So, we get cv = γ when∑n

i=1 X
2
i attains its maximum possible value. Thus, set cv = γ to obtain Xmax. We

have:

n∑
i=1

X2
i = T 2

n2

[
(n− 1)γ 2 + n

]

⇒ X2
max +

∑
i �=max

X2
i = T 2

n2

[
(n− 1)γ 2 + n

]

Using the results of Case 1 in Sect. 2,
∑

i �=max X
2
i is minimized (and then Xmax is

maximized) when Xi = (T −Xmax) /(n− 1) , i �= max. So, we have

X2
max + (T −Xmax)

2

n− 1
= T 2

n2

[
(n− 1)γ 2 + n

]

⇒ nX2
max − 2TXmax + T 2

n2

[
n− (n− 1)2γ 2

]
= 0

⇒ Xmax = T

n

[
1 + (n− 1)γ√

n

]

which completes the proof.

Let us justify the importance of these theorems. Beside we know that the upper
bound for cv is

√
n, in many situations it may occur the need to consider a more strict

restriction for the risk assumption. For those cases, consideration of γ instead of
√
n

is useful and to attain this aim we need to consider the conditions in Theorems 2
and 3.
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4 An Example

One of Iranian Banks provided some information about loan portfolios during the
year 2006. This information was the amount and the number of paid loans in
during this period for four types of loans: Mozarebeh, Joaleh, Forosh Aghsati, and
Gharzolhasaneh. The capitals of Bank for these loans are 10 Billion IRR, 1.5 Billion
IRR, 0.50 Billion IRR, and 0.30 Billion IRR, respectively. According to the history
of loan portfolio in this bank, we estimated the probability of defaults in four types.
The results are as below for the above-mentioned type of loans:

pmoz = 0.0618 pjoa = 0.0153
pforo = 0.0011 pghar = 0.0143

Calculated cv for four types are 0.97, 1.03, 0.32, and 0.72 respectively. Hence we
can say type of Joaleh has a big concentration risk (comparing with others) and
Forosh Aghsati has a small risk or concentration risk.

Using Eq. (12) the maximum cv obtained are 0.62, 1.35, 0.86, and 2.52 for these
loan types, respectively. Then, according to Theorem 3 all loans must be less than
426,245,884, 229,508,199, 457,119,506, and 70,141,729 in four types of loans,
respectively. There were not any loans in portfolios with greater than these amounts.

5 Conclusion

In this paper the boundary feature of sample is discussed and some bounds for
different cases are obtained. As an interesting application of this discussion, some
problems in credit risk models in loan portfolios were studied. Some inequalities
for checking the adequacy of capital in banking systems were obtained. Numerical
study showed that this approach can easily evaluate the concentration risk in
portfolio of loans.

Appendix

Let us first recall the Lyapanov Theorem.

Theorem 4 Let X1, . . . , Xn be independent random variables with different distri-
bution. If

(a) E
[|Xi − E(Xi)|3

]
< ∞

(b) lim
n→∞

∑n
i=1 E

[|Xi−E(Xi)|3
]

(
∑n

i=1 var(Xi))
3/2 = 0,
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then, we have

∑n
i=1 Xi −

∑n
i=1 E(Xi)√∑n

i=1 var(Xi)

→ N(0, 1).

Proof See, e.g., Feller [9].

In order to apply this Theorem for L, we must check conditions (a) and (b). For the
first condition, we have:

E
[
|Li − E(Li)|3

]
= E

[
|liBi − lip|3

]
= l3i p(1 − p)

(
p2 + (1 − p)2

)
< ∞.

For condition (b), we have:

lim
n→∞

∑n
i=1 E

[|Li − E(Li)|3
]

(∑n
i=1 var(Li)

)3/2

= lim
n→∞

∑n
i=1 l

3
i p(1 − p)

(
p2 + (1 − p)2

)
(∑n

i=1 l
2
i p(1 − p)

)3/2

=
(
p2 + (1 − p)2

)
√
p(1 − p)

lim
n→∞

∑n
i=1 l

3
i(∑n

i=1 l
2
i

)3/2

≤
(
p2 + (1 − p)2

)
√
p(1 − p)

lim
n→∞

nmax li
(nmin li)3/2 = 0.

Therefore, using Lyapanov theorem, we can conclude that

L− E (L)√
var(L)

→ N(0, 1).
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Acceptance-Sampling Plans for Reducing
the Risk Associated with Chemical
Compounds

Fernanda Figueiredo, Adelaide Figueiredo, and M. Ivette Gomes

Abstract In various manufacturing industries it is important to investigate the
presence of some chemical or harmful substances in lots of raw material or final
products, in order to evaluate if they are in conformity to requirements. In this work
we highlight the adequacy of the inflated Pareto distribution to model measurements
obtained by chromatography, and we define and evaluate acceptance-sampling plans
under this distributional setup for lots of large dimension. Some technical results
associated with the construction and evaluation of such sampling plans are provided
as well as an algorithm for an easy implementation of the sampling plan that exhibits
the best performance.

1 Introduction and Motivation

The presence of some chemical or harmful substances in many consumer or
manufacturing products, such as haloanisoles that can cause musty or moldy off-
flavors and, consequently, deteriorate the quality of the products, but also fumes,
gases, vapors, or even dust, usually present in all workplaces, can endanger the
health or safety of persons. To ensure the proper management of the risks associated
with these substances, some of them have been prohibited, or at least, subject to a
tight inspection, apart from being intensively controlled. See, for instance, [5, 10]
and [14]. As it is said in Montgomery [9, p. 629] and Ryan [12, p. 101], acceptance
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sampling (AS) is not a substitute for adequate process monitoring and control, and
its purpose is not quality improvement but only decide about the acceptance or
rejection of products (lots) based on conformity to requirements. In particular, in
several manufacturing industries, sensory analysis together with analytical methods
based on chromatography measurements is usually done for identification and
quantification of these chemical compounds in lots of raw material, and in some
cases along the different phases of the process production.

In this study we consider three data sets with chromatography measurements
associated with the concentrations of a chemical substance, performed on samples
of items taken from large batches from a process production. Usually the chro-
matography instruments have small precision to measure with accuracy very low or
very high concentrations of such chemical substances, and a common practice is to
truncate the results below or above a certain threshold, which happens in the case of
our data sets. Apart from being truncated, the type of data under analysis suggests
an underlying inflated continuous distribution with a heavy right-tail, which leads us
to the consideration of inflated Pareto models (which provide a reasonable nice fit to
all data sets under analysis, discussed in Sect. 2.3). Inflated distributional models, in
particular containing many zero values, have been commonly used in many areas
of application, including agriculture, biology, ecology, environment, fishery and
medicine, among others. For details on applications of this type of models, see,
for instance, the pioneer works of [1] and [10], and other more recent works, such
as [2, 5, 7, 8, 11, 13] and [15], among others. Then, we develop AS plans for lots of
large dimension under this distributional setup. Acceptance control charts cannot be
applied to our case, and it was not at all our purpose to use total control techniques,
which would increase drastically the size of the article.

The most common AS plans are classified as plans for variables or attributes,
being the quality characteristics measured on a numerical scale or the inspected
items expressed as defective or non-defective, respectively. Both types of AS plans
can be single, double, multiple and sequential, and designed so that they produce
equivalent results. Given that the different types of AS plans have advantages and
disadvantages to each other, when selecting the type of sampling procedure, one
must consider the particular problem to solve and the desired efficiency taking
into consideration the restrictions associated with its implementation. Here we
point out that a variables sampling plan usually requires a sample of smaller size
than an attributes sampling plan for the same level of protection, although the
sampling/observation unit costs can be higher in the variables sampling plan. It is
also important to refer that the main disadvantage of variables AS plans is that the
distribution of the quality characteristic under study has to be known (or estimated).
Other details about AS plans can be found in [3, 6, 9, 14] and [12].

The previous considerations lead us to consider and evaluate single AS plans for
inflated Pareto models. Due to the long time needed to perform chromatography
analysis, double or sequential sampling plans do not seem adequate. Moreover, the
simple sampling plans are easier to implement than the others, and as we will see
later in Sect. 3.3, lead to quite satisfactory results. In a previous work (see [5]), using
a real data set with measurements obtained from chromatography analysis, similar
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to the ones here considered, we compared the performance of specific and complex
variables AS plans, using the bootstrap methodology (see [4] for details) to construct
replicates of the lots combined with Monte Carlo simulations. Although the results
obtained in the aforementioned study were quite satisfactory, being possible to
design and evaluate the performance of AS plans under a specific distributional
setup, we still think sensible to define other AS plans.

The paper is organized as follows. After presenting a small introduction and the
motivation for the study, Sect. 2 presents the problem under study and the available
data sets. It is also provided some information about the inflated Pareto distribution,
including the maximum likelihood estimation of its parameters, and the p-values
obtained with the chi-square goodness of fit test, which lead us to conclude that this
distributional model provides a good fitting for the data. In Sect. 3, two variables
AS plans are developed for lots of items, assuming that the quality characteristic
is a random variable (rv) with inflated Pareto distribution, and their performance
when applied to a real data set is analyzed. Some distributional results about the
Pareto and the inflated Pareto distributions used in the construction and evaluation
of the previous sampling plans are also presented, as well as an algorithm for an
easy implementation of the AS plan that exhibits the best performance. The paper
ends with some conclusions in Sect. 4.

2 Modeling Chromatography Measurements
with an Inflated Pareto Distribution

Next we will present the real problem under study, the available data of chromatog-
raphy measurements associated with the concentrations of a chemical substance,
and some results of goodness of fit tests that lead us to the consideration of an
inflated Pareto distribution to model such type of data.

2.1 A Brief Description of the Problem and the Data Sets

Consider a company that wants to design and evaluate AS plans for lots of raw
material. Let X be a continuous rv with unknown distribution, associated with
the measurements of the quality characteristic, in our case the concentration of a
chemical substance in an item of raw material. Suppose that the company establishes
that all the items must have values of X ≤4, and that, due to the sensitivity and
precision of the measurement instrument, a chromatograph, all the observed values
will be greater than or equal to 0.5. Assume that the lots for inspection are of very
large size, N , say thousands of items.

To implement and compare different AS plans, in order to choose the one that
best fits the objectives of the company, suppose we only have access to a historical
data set of measurements of the concentration of the chemical substance. Here, for
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Table 1 Measurements of the concentration of the chemical substance in three different types of
raw material, given in data sets A, B, and C of size 1600, 752, and 848 items respectively

Classes of Set A Set B Set C
measurements number of items (%) number of items (%) number of items (%)

0.5 908 (56.7%) 403 (53.6%) 505 (59.6%)

]0.5,1.0] 357 (22.3%) 157 (20.9%) 200 (23.6%)

]1.0,2.0] 187 (11.7%) 91 (12.1%) 96 (11.3%)

]2.0,3.0] 53 (3.3%) 31 (4.1%) 22 (2.6%)

]3.0,4.0] 16 (1.0%) 12 (1.6%) 4 (0.5%)

]4.0,5.0] 20 (1.3%) 13 (1.7%) 7 (0.8%)

]5.0,7.5] 17 (1.1%) 12 (1.6%) 5 (0.6%)

]7.5,10.0] 16 (1.0%) 10 (1.3%) 6 (0.7%)

]10.0,20.0] 10 (0.6%) 8 (1.1%) 2 (0.2%)

>20.0 16 (1.0%) 15 (2.0%) 1 (0.1%)

illustration of the type of data under study, we consider three data sets, A, B, and
C, presented in Table 1, corresponding to the measurements of the concentration
of the chemical substance in three different types of raw material. Then, when
analyzing the performance of the proposed sampling plans, developed in Sect. 3,
we only consider set A, the larger sample.

From Table 1 we observe that 95%, 92.3%, and 97.6% of the items type A, B, and
C, respectively, have a concentration level of this chemical substance smaller than
or equal to 4.0, and therefore, approximately 5%, 7.7%, and 2.4% of these items
do not satisfy the requirements of the company. It is also important to refer that
56.7%, 53.6%, and 59.6% of the measurements in set A, B, and C respectively, are
equal to 0.5, which means either the absence of the chemical substance or wrong
quantification due to the low sensitivity of the equipment. Finally all sets of data
reveal an underlying distribution with a heavy right tail. This preliminary analysis of
the data samples leads us to the consideration of inflated Pareto models to describe
such type of data.

2.2 Inflated Pareto Model and ML Estimation

Let X be a mixed rv from an inflated Pareto distribution, with cumulative distribu-
tion function (cdf) given by

F(x;p, ξ, δ) = p + (1 − p)(1 − (x/δ)−1/ξ ), x ≥ δ, (1)

and probability density function (pdf) given by

f (x;p, ξ, δ) =
{
(1 − p)(ξδ)−1(x/δ)−1/ξ−1, x > δ,

p, x = δ,
(2)
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Fig. 1 Probability density function of inflated Pareto distributions with parameters p = 0.25
(left), 0.5 (right), δ = 0.5 and ξ = 0.5, 1, 1.5

where δ and ξ are, respectively, the scale and the shape parameter, both positive, and
the parameter p is the probability associated with the singular distribution at x = δ.
Note that if p and δ are fixed, as larger ξ is, larger is the weight of the right-tail, and
higher the probability of getting high values. Look, for instance, for the shape of the
inflated Pareto pdf represented in Fig. 1.

To estimate the parameters of an inflated Pareto distribution, with f (x;p, ξ, δ)
given in (2), consider a random sample (X1,X2, . . . , Xn) of size n. The maximum
likelihood (ML) estimates of the parameters p, ξ , and δ maximize the logarithm of
the likelihood function, defined by

lnL(p, ξ, δ) = n1 lnp+n2 ln(1−p)−n2 ln(ξδ)− (1/ξ +1)
n2∑
i=1

ln(xi/δ), (3)

where n1 and n2 denote the number of observations, respectively, equal and greater
to δ in the overall sample of size n. Thus, these estimates are the solution of the
system of likelihood equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ lnL(p, ξ, δ)

∂p
= n1

p
− n2

1 − p
= n1 − np

p(1 − p)
= 0

∂ lnL(p, ξ, δ)

∂ξ
= ξn2 −

n2∑
i=1

ln(xi/δ) = 0

∂ lnL(p, ξ, δ)

∂δ
= n2

ξδ
> 0

⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p̂ = n1

n

ξ̂ = 1

n2

n2∑
i=1

ln(xi/δ)

δ̂ = min xi ,

given that these values maximize the logarithm of the likelihood function, and
consequently, the likelihood function.
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2.3 Inflated Pareto Models Fitted to the Historical Data Sets

According to the historical data, we have fitted inflated Pareto models to the data,
with cdf given in (1). We have considered δ = 0.5, because the equipment has no
precision to measure with accuracy values below this threshold, and for this reason
all the observations smaller or equal to 0.5 were registered as 0.5. We have further
estimated the other parameters, ξ and p, by ML. Thus, we proceeded as follows: we
split the sample of size n into observations equal to δ = 0.5 (subsample of size n1),
and greater than δ (subsample of size n2);

• To estimate p, we considered the proportion of observations equal to δ = 0.5 in
the overall sample, i.e., p̂ = n1/n; we have got p̂ = 908/1600 = 0.5675 for set
A, p̂ = 403/752 = 0.5359 for set B, and p̂ = 505/848 = 0.5955 for set C.

• To estimate ξ , we considered ξ̂ = ∑n2
i=1 ln(xi/δ)/n2 = y, with yi = ln(xi/δ);

we have got ξ̂ = 0.9288 for set A, ξ̂ = 1.1035 for set B, and ξ̂ = 0.7507 for
set C.

In Fig. 2, we present the histograms associated with the measurements of data
sets A, B, and C, and the estimated pdf curves corresponding to the inflated Pareto
distributions fitted to the data. As we can observe, these models with cdf given
in (1) seem to be adequate to fit such type of measurements. The application
of the chi-square goodness of fit test led us to a similar conclusion, taking into
consideration the obtained p-values, equal to P(χ2

7 > 13.18) = 0.0678 for set A,
P(χ2

7 > 5.26) = 0.6271 for set B, and P(χ2
5 > 7.03) = 0.2184 for set C, where χ2

k

denotes an rv with a chi-square distribution with k degrees of freedom. According
to the fitted model, the estimated probability of occurrence of a value higher than
4.0 is 4.61%, 7.05%, and 2.53% for items of raw material of type A, B, and C,
respectively.
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Fig. 2 Histograms and estimated pdf of the inflated Pareto distributions fitted to the A, B, and C
data sets
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3 Acceptance Sampling Plans for Inflated Pareto Data

Suppose large lots of items, of size N , coming from an inflated Pareto process X,
with cdf given in (1), and assume that we have only one upper specification limit
USL, for the quality characteristic X. After a prior estimation of p and δ, on the
basis of a historical data set, assume these parameters fixed and known. In case of
having only one lower specification limit, LSL, or instead, two specification limits,
USL and LSL, the development of AS plans is similar but with more computations.

3.1 Some Preliminaries

The most common AS plans are outlined for controlling the fraction of defective
items, in our case θ , given by

θ = P(X > USL) = (1 − p)(δ/USL)1/ξ , (4)

or a process parameter associated with the production of defectives, such as the
parameter ξ , that can be written as function of θ and USL, through the expression

ξ = ln(δ/USL)/ ln(θ/(1 − p)). (5)

Note that for δ and p fixed, θ will be small if ξ is small.
To develop AS plans, we must consider consistent estimators for θ or ξ ,

with known distribution. Noting that the ML estimate of ξ is obtained with the
observations of the sample greater than δ, the Pareto distribution has a crucial role
in the development and implementation of such sampling plans.

First, consider a random sample of size n taken from the lot, (X1, . . . , Xn), and
then, consider the subsample of the observations greater than δ, say (X1, . . . , Xn2),

of size n2. The rv’s Xi, 1 ≤ i ≤ n2 of this subsample follow a Pareto distribution
with cdf given by F(x; ξ, δ) = 1 − (x/δ)−1/ξ , x > δ. Note that the size n2 of the
subsample is an rv with a binomial distribution, B(n, 1−p), being the mean size of
this subsample, E(n2), given by n× (1 − p).

Based on the subsample (Yi = ln(Xi/δ) , 1 ≤ i ≤ n2), where the rv’s Yi, 1 ≤
i ≤ n2 are distributed as an exponential distribution with cdf FY (y) = 1 −
e−y/ξ , y > 0, we will consider the following consistent estimators of ξ to develop
variables AS plans: the sample mean statistic (the ML estimator of ξ ),

Y = 1

n2

n2∑
i=1

Yi, (6)
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with 2n2Y/ξ following a χ2
2n2

distribution, and the statistic T , defined by

T = Yn2:n2

logn2 + γ
, (7)

where γ = 0.5772 is the Euler constant and Yn2:n2 denotes the maximum of the
sample. This statistic has a cdf given by

P(T ≤ t) = P
(
Yn2:n2 ≤ t (logn2 + γ )

) = (1 − exp (−t (log n2 + γ )/ξ))n2 , t > 0.

(8)

The motivation for considering this statistic is the following: being the lots of very
large size (thousand of items), the size of the samples taken for inspection is also
large (for a standard level of control, the sampling rate is 1 per 10,000 items), and
consequently, the value of the sample mean, y, can be very small even when we have
several items above the upper specification limit; the statistic T is also a consistent
estimator, related to the maximum of the sample, and therefore, we have decided to
investigate if it is a better option to develop AS plans.

3.2 Design of Variables AS Plans

Designing a single sampling plan usually consists of determining the values of the
sample size and the acceptance constant which allow us to obtain a sampling plan
with a specified performance, in general, predetermined producer’s and consumer’s
risks, or a specific operating characteristic (OC) curve. Sometimes, imposed by
operational and cost constraints, as happens in our case study, it is necessary
to design sampling plans for a fixed sample size and in order to obtain a fixed
producer’s risk. In this case we only have to determine the acceptance constant.

Let P(A|θ) denote the probability of acceptance of a lot with a fraction defective
θ. The acceptable quality level (AQL) is the poorest level of quality for the
supplier’s process that the producer would consider to be acceptable as a process
average. The producer’s risk, α, is defined by

α = P(A|θ = AQL). (9)

Thus, AS plans designed for a fixed sample size n and to obtain a fixed α-risk for a
given quality level AQL are designed such that

P(A|θ = AQL) = P

(
A|ξ = ln(δ/USL)

ln(AQL/(1 − p))

)
= 1 − α. (10)
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In our case, as referred before, for a fixed sample size n, the number n2 of
observations in the sample that will be greater than δ is an rv. Thus, the acceptance
value of the plan, k, is not constant, but depends on the observed value of n2.
To analyze the performance of the following sampling plans in Sect. 3.3, we will
consider, for a fixed n and p (remember that after a prior estimation of p and δ, on
the basis of an available historical data set, these parameters are assumed fixed and
known), some possible values of n2 around its mean value, and we determine the
associated acceptance constant value k ≡ k(n2).

The AS plans we are going to consider and evaluate are the following ones:

Plan I Accept the lot if Y = 1
n2

∑n2
i=1 Yi ≤ k. From (6), the parameter k ≡ k(n2)

of this plan must satisfy the condition

P

(
Y ≤ k|ξ = ln(δ/USL)

ln(AQL/(1 − p))

)
= 1 − α,

and is given by

k = 1

2n2

ln(δ/USL)

ln(AQL/(1 − p))
F−1
χ2

2n2

(1 − α), (11)

where F−1
χ2

2n2

denotes the inverse of the cdf of a χ2
2n2

distribution.

Plan II Accept the lot if T = Yn2:n2/(logn2 + γ ) ≤ k, γ � 0.5772, with Yn2:n2

denoting the maximum of the sample. From (7) and (8), the parameter k ≡ k(n2) of
this plan must satisfy the condition

P(T ≤ k|ξ) =
(

1 − exp

(
−k(lnn2 + γ ) ln(AQL/(1 − p))

ln(δ/USL)

))n2

= 1 − α,

and is given by

k = − ln(δ/USL) ln
(
1 − (1 − α)1/n2

)

(lnn2 + γ ) ln (AQL/(1 − p))
. (12)

3.3 Performance of the Previous Sampling Plans

In the context of the problem in Sect. 2.1, we assume lots of very large size N ,
and an upper specification limit USL = 4 for the items. Thus, items associated
with measurements of concentration of the chemical substance above 4 are con-
sidered defective (or nonconforming). To illustrate the performance of the previous
sampling plans I and II, we only consider the larger historical data set A of the
measurements of the chemical substance in items of one type of raw material. To
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Table 2 Acceptance constant k ≡ k(n2) for some possible values of n2 according to the
sample size n of the sampling plans implemented to obtain an α-risk = 5% for a given AQL
(2.5% or 1%)

AQL = 1% AQL = 1% AQL = 2.5% AQL = 2.5%

(n, n2) Plan I Plan II Plan I Plan II

(50, 10) 0.86695 1.14383 1.14561 1.51149

(50, 15) 0.80545 1.07072 1.06434 1.41488

(50, 20) 0.76949 1.02892 1.01682 1.35964

(50, 25) 0.74527 1.00087 0.98482 1.32257

(50, 30) 0.72757 0.98029 0.96144 1.29538

(100, 35) 0.71392 0.96430 0.94340 1.27426

(100, 40) 0.70299 0.95139 0.92895 1.25720

(100, 45) 0.69398 0.94066 0.91704 1.24301

(100, 50) 0.68639 0.93153 0.90701 1.23095

(100, 55) 0.67988 0.92364 0.89842 1.22052

determine AS plans for the fraction of defective items in the batches, we assume δ
known, equal to 0.5, and p fixed, equal to the obtained ML estimate, p̂ = 0.5675,
computed with the available historical data set that mimics the quality of the process
production. We consider that the deterioration of the quality of the lots of items is
essentially due to changes in the parameter ξ of the distribution. As we referred
before, for fixed p, the probability of occurring very high values of X increases
with ξ .

The previous sampling plans I and II, based on the statistics Y and T defined
in (6) and (7), respectively, were designed for some fixed possible values of n2
around its mean value E(n2) = n × (1 − p), taking into account a sample of size
n = 50,100 and the estimated value of p, equal to 0.5675. The acceptance constants
k ≡ k(n2), presented in Table 2, were determined through the Eqs. (11) and (12), in
order to obtain a predetermined α-risk for a given AQL level. We note that values of
n2 above or below the ones presented in Table 2 occur with a probability near zero,
i.e., P(10 ≤ n2 ≤ 30|n = 50) � 100% and P(35 ≤ n2 ≤ 55|n = 100) � 100%.

To compare the performance of these sampling plans we analyzed the OC curve,
i.e., the curve fitted to the points (θ, P (A|θ)), for θ = 0, 1/N, . . . , 1. This curve
shows the discriminatory power of the sampling plan. Comparing the OC curves,
the most severe plan is the one associated with the OC curve that decreases faster.

For illustration, we represented in Figs. 3 and 4, the OC curves of the plans I
and II designed to have an α-risk = 5% when AQL = 2.5% and AQL = 1%. When
analyzing the OC curves in these figures we observe that plan I, for the desired
levels of protection, is significantly better than plan II, and its performance increases
with the value of n2 and n, as expected. As n increases, the OC curves become
closer for the different possible values of n2. For smaller AQL values we get similar
conclusions, with improvements in the performance of the sampling plans.
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Fig. 3 OC curves of the sampling plans I (solid line) and II (dashed line) designed for n = 50 and
α-risk = 5% for AQL = 2.5% (left) and AQL = 1% (right), being n2 the number of observations
greater than δ in the sample

Fig. 4 OC curves of the sampling plans I (solid line) and II (dashed line) designed for n = 100
and α-risk = 5% for AQL = 2.5% (left) and AQL = 1% (right), being n2 the number of observations
greater than δ in the sample

3.4 Algorithm for the Implementation of Plan I, for Inflated
Pareto Data

To promote the use of the acceptance-sampling plan I developed for inflated Pareto
data, we provide the following algorithm for an easy implementation of the sampling
plan, designed to obtain a fixed α-risk for a given quality level AQL and a fixed
sample size n.
Algorithm:

1. Consider a prior sample that mimics the quality of the process, and estimate the
parameters of the model with cdf given in (1);

2. Fix the acceptable quality level AQL, the α-risk, and the sample size n;
3. Sample from the process until obtaining n observations; then, determine the

number of observations greater than δ in the sample, say n2.
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4. Determine the acceptance constant k ≡ k(n2), using Eq. (11);
5. Compute the values Yi = ln(Xi/δ), 1 ≤ i ≤ n2;
6. Compute the control statistic Y using Eq. (6);
7. Take the decision: if Y ≤ k(n2), accept the lot; otherwise, reject the lot.

4 Conclusions

In this paper we refer the importance of inflated models in applications, and in
particular, we present some motivation for the use of the inflated Pareto distribution,
that is a very manageable mixture-type model, with simple distributional properties.
We derive variables AS plans for inflated Pareto data, assuming that the deterioration
of the quality of the lots is essentially due to changes in the shape parameter of the
distribution, and considering the other parameters of the model fixed and known.
Simple analytical expressions are provided to determine the acceptance constant
for a fixed sample size that allow to achieve the desired performance in terms of
the producer’s risk for a given AQL level. We illustrate the performance of such
sampling plans in terms of the obtained OC curves. To promote and facilitate the
use of the sampling plan with the best performance by practitioners, an algorithm
for its implementation is provided. Finally, the implementation of control charts to
monitor inflated Pareto data is also of great interest, as well as the design of AS
plans for inflated Pareto models in the case of all the parameters unknown. These
topics will be addressed in a future work.
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Risk of Return Levels for Spatial
Extreme Events

Luísa Pereira and Cecília Fonseca

Abstract The impact of environmental extreme events, ranging from disturbances
in ecosystems to economic impacts on society and losses of life, motivated the study
of extremes of random fields.

In this paper the main question of interest is about risk: if occurs one exceedance
of a high level in a given location, x ∈ R2, and the maximum over a neighborhood
of x does not exceed the level then, what will be the probability that an exceedance
occurs in another location? We define a coefficient as a measure of this probability
which allows us to evaluate the risk of return levels. This coefficient is independent
of the univariate marginal distribution of the random field and can be related to
well-known dependence coefficients, which will provide immediate estimators. The
performance of the proposed estimator is analyzed with a max-stable maxima of
moving maxima random field. We illustrate the results with an application to annual
maxima temperatures over Texas.

1 Introduction

Extreme Value Theory is the branch of probability and statistics aimed at character-
izing the behavior of extremes in series of observations. It has its beginnings in the
early to middle part of the last century.

Although there are well-developed approaches to model univariate and multi-
variate extremal processes, in recent years, there have been significant advances in
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the modeling of extreme events in the spatial and space-time domains. Perhaps,
one reason for this is the realization among stakeholders (climate scientists,
environmental engineers, insurance companies, etc.) that in an evolving climate
there may be changes in the sizes and frequencies of rare events, rather than in
the averages, which can lead to the most devastating losses of life, damage to
infrastructure, and so forth.

There are many geostatistical tools and methods for modeling and interpreting
spatial attributes. However, their basis in Gaussian distributions makes them
unsuitable for extremal modeling, because the Gaussian density function has a light
tail and therefore can badly underestimate probabilities associated with extreme
events. So, it is natural to ask what distributions can arise as limits for maxima
of independent variables?

Fisher and Tippett [8] show that the suitably rescaled maxima of independent
random variables, and a wide variety of random processes, follow the generalized
extreme value distribution (GEV) defined as

H(y) =
{

exp
[− (1 + ξ(y − μ)/τ+)−1/ξ ] , ξ �= 0

exp
[− exp (−(y − μ)/τ)

]
, ξ = 0

, (1)

where a+ = max(a, 0), μ ∈ R is the location parameter, τ > 0 is the scale
parameter, and ξ ∈ R is the shape parameter which determines the weight of the
upper tail of the density, with increasing ξ corresponding to higher probabilities of
large events.

The Eq. (1) satisfies the max-stability property, that is, for anym ∈ N there exist
real numbers am > 0 and bm such that

Hm(amx + bm) = H(x), x ∈ R.

This necessary condition for a limiting distribution for maxima is satisfied only
by GEV, giving it strong mathematical support as a suitable distribution for fitting
to maxima of scalar random variables.

The subfamilies of the GEV distribution defined by ξ = 0, ξ > 0 and ξ < 0
correspond, respectively, to the Gumbel, Fréchet, and Weibull distributions, also
known as type I, II, and III extreme value distributions.

Next, we will introduce the mathematical tools to modeling spatial extreme
events.

In what follows Z(x) is a random field defined over a discrete subset of R2

(Fig. 1, on right) or over a regular grid identified with Z2 (Fig. 1, on left).
Figure 2 illustrates a realization of a random field of maxima precipitation in

different locations of Bourgogne. The data are from Naveau et al. [13].
The natural statistical models for spatial extremes are the max-stable random

fields. They are the natural analogues of the GEV distribution for modeling extreme
events in the spatial and space-time domains. It relies on extensions of GEV
distribution that satisfy an appropriate generalization of the max-stability property.
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Fig. 1 Regular grid (on left) and random pattern (on right)

Fig. 2 51-year maxima of daily precipitation in Bourgogne of France

Briefly, a max-stable random field
{
Z(x) : x ∈ Rd

}
, d ∈ N, is the limit

process of maxima of independent and identically distributed random fields Y (j)(x),
x ∈ Rd, j = 1, 2, . . . , n. Namely, for suitable {an(x) > 0}n≥1 and {bn(x)}n≥1
sequences of real constants,

Z(x) = lim
n→+∞

∨n
j=1 Y

(j)(x)− bn(x)

an(x)
, x ∈ Rd,

provided the limit exists, where
∨k
i=1 ai denotes the maximum of {a1, a2, . . . , ak}.
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For each choice of x1, . . . , xk , the distribution of (Z(x1), . . . , Z(xk)) is a
multivariate extreme value distribution Gx1,...,xk , where its margins are univariate
extreme value distribution functions themselves.

Max-stable random fields have been widely applied to real data in environmental,
atmospheric, and geological sciences [2–4, 18, 19].

Here Z = {Z(x) : x ∈ R2} denotes a max-stable random field over R2. Since
one can transform one max-stable distribution into another one by a monotone
transformation we assume, without loss of generality, that the margins of {Z(x) :
x ∈ R2} have a unit Fréchet distribution, F(x) = exp(−x−1), x > 0 (Resnick
[14]).

The tail dependence function of Gx1,...,xk ,

lx1,...,xk (w1, . . . , wk) = lim
u↓0

1 −Gx1,...,xk
(
G−1

x1
(1 − uw1), . . . ,G

−1
xk (1 − uwk)

)

u
,

(w1, . . . , wk) ∈ Rk+, characterizes fully the dependence among its marginals
distributions Gxj , j = 1, . . . , k (Resnick [14], Beirlant et al. [1]), but it cannot be
easily inferred from data. So, several dependence coefficients have been considered
in order to resume the dependence among the marginals of Gx1,...,xk : extremal
coefficients, tail dependence coefficients, and madogram (Li [12], Smith [18],
Schlather and Tawn [15], Cooley et al. [5], Naveau et al. [13], Fonseca et al. [9, 10],
Ferreira and Ferreira [6, 7], among others).

The scalar lx1,...,xk (1, . . . , 1), denoted by ε{x1,...,xk}, is the extremal coefficient
defined in Schlater and Tawn [15], which summarizes the extremal dependence
between the variables of the max-stable random field Z indexed in the region
{x1, . . . , xk}. This coefficient is equal to k for the independent case, and to 1 for
the full dependence case. Otherwise, its value varies between 1 and k depending
on the degree of dependence. Its value can be thought as the number of effectively
independent locations among the k under consideration.

Another way to assess the amount of extremal dependence is through the concept
of tail dependence. Multivariate tail dependence coefficients have been used to
describe the amount of dependence in the orthant tail of a multivariate distribution
(Schmid and Schmidt [16], Li [12], Ferreira and Ferreira [6], among others).
Recently, the most referred in literature is the upper tail dependence coefficient of
Li [12], defined as

λA,B = lim
u↑1

P

⎛
⎝⋂

x∈A
{F(Z(x)) > u}

∣∣∣∣∣
⋂
y∈B

{F(Z(y)) > u}
⎞
⎠ ,

provided the limit exists, whereA and B are discrete subsets of R2. This coefficient
is a generalization of the upper tail dependence coefficient of Sibuya [17] corre-
sponding to A = {x} and B = {y},

λ{x},{y} = lim
u↑1

P (F(Z(x)) > u|F(Z(y)) > u) .
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It characterizes the dependence in the tail of the random pair (Z(x), Z(y)),
i.e., λ{x},{y} > 0 corresponds to tail dependence and λ{x},{y} = 0 means tail
independence.

In this paper the main question concerns the risk of return levels. Thereby, in
Sect. 2 we introduce a coefficient as a measure of the probability of occurring
an exceedance of a high level u, in a location y ∈ R2, given that also occurs
an exceedance of u in a location x ∈ R2 but the maximum over a neighborhood
of x does not exceed the level u. Its main properties are presented, namely its
relation with the extremal and upper tail dependence coefficients mentioned above.
In Sect. 3 we present an estimator for the risk coefficient of return of a high level
and its performance is analyzed with a max-stable maxima of moving maxima (M4)
random field. Finally, Section 4 illustrates our approach through an application to
annual maxima temperatures over Texas.

2 Risk of Return Levels and Dependence of Spatial Extreme
Events

The next definition introduces the risk coefficient of return of a high level and then
we present its relations with the dependence coefficients mentioned above.

Definition 1 Let {Z(x), x ∈ R2} be a max-stable random field with unit Fréchet
margins, F , and Rx a surrounding region of x with a finite number of locations. The
risk coefficient of return of a high level at the location x+ h, h ∈ R2, is defined by

δ∨(x+ h|x, Rx) = lim
u↑1

P

⎛
⎝F(Z(x+ h)) > u

∣∣∣∣∣∣
F(Z(x)) > u,

∨
y∈Rx

F(Z(y)) ≤ u

⎞
⎠ ,

provided the limit exists.

Remark 1 We can define the risk coefficient of return of a low level in a similar
way, i.e.,

δ∧(x+ h|x, Rx) = lim
u↓0

P

⎛
⎝F(Z(x+ h)) ≤ u

∣∣∣∣∣∣
F(Z(x)) ≤ u,

∧
y∈Rx

F(Z(y)) > u

⎞
⎠ ,

where
∧k
i=1 ai denotes the minimum of {a1, . . . , ak}.

Remark 2 When applied to stationary sequences of random variables {Z(i) : i ∈
N}, the risk coefficient δ∨(i + h|i, Ri), with Ri = {i + 1, i + 2, . . . , i + h− 1},
h ∈ N, is the probability of a return period.
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Remark 3

1. If the random variables Z(x) and Z(y) with y ∈ Rx are totally dependent, then
the risk coefficient of a return level is not defined since for each y ∈ Rx we have

lim
u↑1

P (F(Z(x)) > u, F (Z(y)) ≤ u) = lim
u↑1

P (F(Z(y)) ≤ u)

−Pε{x,y} (F (Z(y)) ≤ u)

= 0.

2. If the random variables Z(x), Z(x + h) and Z(y) with y ∈ Rx are independent,
we have δ∨(x+ h|x, Rx) = 0.

The next result highlights the connection between δ∨(h+ x|x, Rx) and the
extremal and multivariate upper tail dependence coefficients.

Proposition 1 Let {Z(x), x ∈ R2} be a max-stable random field with unit Fréchet
margins, F , and Rx a surrounding region of x with a finite number of locations.
Then,

1.

δ∨(x+ h|x, Rx) = εRx∪{x} + εRx∪{x+h} − εRx∪{x,x+h} − εRx

εRx∪{x} − εRx

;

2.

δ∨(x+ h|x, Rx) =
(
2 − ε{x,x+h}

)× 1 −∑∅�=J⊆Rx
(−1)|J |+1λJ,{x,x+h}

1 −∑∅�=J⊆Rx
(−1)|J |+1λJ,{x}

.

Proof

1. We have

P

⎛
⎝F(Z(x+ h)) > u, F (Z(x)) > u,

∨
y∈Rx

F(Z(y)) ≤ u

⎞
⎠

= P

⎛
⎝∨

y∈Rx

F(Z(y)) ≤ u

⎞
⎠− P

⎛
⎝∨

y∈Rx

F(Z(y)) ≤ u,
∧

y∈{x,x+h}
F(Z(y) ≤ u

⎞
⎠

= uεRx

(
1 − uεRx∪{x} − εRx − uεRx∪{x+h} − εRx + uεRx∪{x,x+h} − εRx

)
. (2)
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On the other hand, it holds

P

⎛
⎝F(Z(x)) > u,

∨
y∈Rx

F(Z(y)) ≤ u

⎞
⎠

= P

⎛
⎝∨

y∈Rx

F(Z(y)) ≤ u

⎞
⎠− P

⎛
⎝ ∨

y∈Rx∪{x}
F(Z(y)) ≤ u

⎞
⎠

= uεRx

(
1 − uεRx∪{x} − εRx

)
. (3)

Therefore, dividing (2) by (3), the result follows from the L’Hôpital’s rule.
2. Since

P

⎛
⎝F(Z(x+ h)) > u, F (Z(x)) > u,

∨
y∈Rx

F(Z(y)) ≤ u

⎞
⎠

= P (F(Z(x+ h)) > u, F (Z(x)) > u)

×
⎛
⎝1 − P

⎛
⎝⋃

y∈Rx

{F(Z(y)) > u} |F(Z(x+ h)) > u, F (Z(x)) > u

⎞
⎠
⎞
⎠

= (
1 − 2u+ uε{x,x+h})

⎛
⎝1 −

∑
∅�=J⊆Rx

(−1)|J |+1λJ,{x+h,x}

⎞
⎠ ,

and

P

⎛
⎝F(Z(x)) > u,

∨
y∈Rx

F(Z(y)) ≤ u

⎞
⎠

= P (F(Z(x)) > u)

⎛
⎝1 − P

⎛
⎝⋃

y∈Rx

{F(Z(y)) > u} |F(Z(x)) > u

⎞
⎠
⎞
⎠

= (1 − u)

⎛
⎝ ∑

∅�=J⊆Rx

(−1)|J |+1λJ,{x}

⎞
⎠ ,

the result follows. ��
In the following, we present the expression of the risk coefficient of return levels

for random fields with known distribution functions for its margins.
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Example 1 Consider the M4 random field defined in Fonseca et al. [10], as

Z(x) =
+∞∨
l=1

+∞∨
m=−∞

almxYl,1−m, x ∈ Z2,

where {Yl,n}l≥1,n∈Z is a family of independent unit Fréchet random variables
and, for each x ∈ Z2, {almx}l≥1,m∈Z are non-negative constants such that
+∞∑
l=1

+∞∑
m=−∞

almx = 1.

The distribution function of (Z(x1), . . . , Z(xp)) is characterized by the copula

C(ux1, . . . , uxp ) =
+∞∏
l=1

+∞∏
m=−∞

∧
x∈{x1,...,xp}

ualmxx , uxi ∈ [0, 1], i = 1, . . . , p.

For each pair of regions A = {x1, . . . , xk} and B = {yk+1, . . . , yk+s} we have

lA,B(w1, . . . , wk,wk+1, . . . , wk+s ) =
+∞∑
l=1

+∞∑
m=−∞

k∨
i=1

w−1
i almxi ∨

k+s∨
i=k+1

w−1
i almyi ,

wi ∈ R, i = 1, . . . , k + s.

Therefore,

δ∨(x+ h|x, Rx) =
∑+∞

l=1
∑+∞

m=−∞
∨

y∈Rx
almy ∨ almx +∨y∈Rx

almy ∨ alm(x+h)∑+∞
l=1
∑+∞

m=−∞
∨

y∈Rx
almy ∨ almx −∨y∈Rx

almy

−
∑+∞

l=1
∑+∞

m=−∞
∨

y∈Rx
almy ∨∨z∈{x,x+h} almy +

∨
y∈Rx

almy∑+∞
l=1

∑+∞
m=−∞

∨
y∈Rx

almy ∨ almx −∨y∈Rx
almy

Example 2 Let us consider the symmetric logistic model, introduced in Gumbel
[11], one of the oldest parametric models of tail dependence. Its distribution function
with unit Fréchet margins is defined by

F (w1, . . . , wk; θ) = exp

⎧⎪⎨
⎪⎩
−
⎛
⎝

k∑
j=1

w
− 1
θ

j

⎞
⎠
θ
⎫⎪⎬
⎪⎭
, f or w1, . . . , wk > 0 and θ ∈ [0, 1] ,

and the corresponding tail dependence function is given by

lA(w1, . . . , wk; θ) =
(
w

− 1
θ

1 + . . .+ w
− 1
θ

k

)θ
, A = {x1, . . . , xk} .



Risk of Return Levels for Spatial Extreme Events 121

Therefore,

δ∨ (x+ h |x, Rx ) = 2 (1 + |Rx|)θ − (2 + |Rx)|θ − |Rx|θ
(1 + |Rx|)θ − |Rx|θ

,

where |A| denotes the cardinality of the event A.

3 Estimation

Let (Z(i)(x1), . . . , Z
(i)(xk)), i = 1, . . . , n, be independent copies of (Z(x1), . . . ,

Z(xk)). Proposition 1 gives rise to the following estimator for the risk coefficient of
a return level:

δ̂∨(x+ h|x, Rx) = ε̂Rx∪{x} + ε̂Rx∪{x+h} − ε̂Rx∪{x,x+h} − ε̂Rx

ε̂Rx∪{x} − ε̂Rx

,

where

ε̂A = M(A)

1 −M(A)
,

M(A) is the sample mean,

M(A) = 1

n

n∑
i=1

∨
x∈A

F̂x(Z
(i)(x))

and F̂x, x ∈ R2 is the (modified) empirical distribution of Fx,

F̂x(u) = 1

n+ 1

n∑
i=1

1{Z(i)(x)≤u}.

The estimator is strongly consistent given the consistency of the estimator ε̂A
already stated in Ferreira and Ferreira [6].

To assess the performance of the estimator of the risk coefficient of a return
level, we shall consider the Example 1 with a finite number of signature patterns
and a finite range of sequential dependencies, as is presented in Fonseca et al. [9].
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Example 3 Let us consider that for each location x = (x1, x2) ∈ Z2 we have

(1) x1 > x2 ∧ x1 even ∧ x2 odd ,
a11x = a12x = a21x = a22x = 1

8

a31x = a32x = a41x = a42x = 1
8

(2) x1 ≤ x2 ∧ x1 even ∧ x2 odd ,
a11x = a12x = 2

17 , a21x = 5
17 , a22x = 4

17

a31x = a32x = a41x = a42x = 1
17

(3) x1 > x2 ∧ x1 odd ∧ x2 even ,
a11x = 1

20 , a12x = 2
20 , a21x = 3

20 , a22x = 4
20

a31x = 5
20 , a32x = 3

20 , a41x = a42x = 1
20

(4) x1 ≤ x2 ∧ x1 odd ∧ x2 even ,
a11x = 1

36 , a12x = 2
36 , a21x = 3

36 , a22x = 4
36

a31x = 5
36 , a32x = 6

36 , a41x = 7
36 , a42x = 8

36

(5) x1 > x2 ∧ x1 even ∧ x2 even ,
a11x = 1

40 , a12x = 2
40 , a21x = 3

40 , a22x = 4
40

a31x = 5
40 , a32x = 6

40 , a41x = 7
40 , a42x = 12

40

(6) x1 ≤ x2 ∧ x1 even ∧ x2 even ,
a11x = 1

45 , a12x = 2
45 , a21x = 3

45 , a22x = 4
45

a31x = 6
45 , a32x = 8

45 , a41x = 9
45 , a42x = 12

45

(7) x1 > x2 ∧ x1 odd ∧ x2 odd ,
a11x = 1

50 , a12x = 7
50 , a21x = 3

50 , a22x = 4
50

a31x = 6
50 , a32x = 8

50 , a41x = 9
50 , a42x = 12

50

(8) x1 ≤ x2 ∧ x1 odd ∧ x2 odd ,
a11x = 1

60 , a12x = 7
60 , a21x = 3

60 , a22x = 14
60

a31x = 6
60 , a32x = 8

60 , a41x = 9
60 , a42x = 12

60 .
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Fig. 3 Simulation of the M4 as defined in Example 3 (left) and the contour at x(i,j) = 15.3417,
the 95% quantile (right)

Table 1 Results of the risk
coefficient, δ∨(x + h |x, Rx ),
where x = (2, 2) and
Rx = {(2, 3), (3, 3), (3, 2)}

x2 + h2

x1 + h1 2 3 4 5

2 – – 1 −1.5e−15

3 – – 0.576923 −1.5e−15

4 0.634615 0 1 −1.5e−15

5 −1.5e−15 0.553846 −1.5e−15 −1.5e−15

The values of (al1x, al2x), l = 1, . . . , 4, define the four signature patterns of the
random field (Fig. 3).

For x = (2, 2) and Rx = {(2, 3), (3, 2), (3, 3)} we obtain the risk coefficients
given in Table 1.

The results of the application of the estimator δ̂∨(x+ h |x, Rx ) are presented in
Table 2.

As we can see from the values of the mean square error (MSE) the estimates
obtained from our estimator are quite close to the true values of δ∨(x+ h |x, Rx )

which highlights the good performance of our estimator.

4 Application

We compute the estimates for the risk coefficient of a return level, for maxima
temperatureZ(x) recorded over Texas. We focus on a subset of 12 locations (Fig. 4)
covering a common period from 1948 up to 2015, without substantial interruptions.

For each location the maximum for the temperatures in warm season (April
to September) and cold season (October to March) are extracted for the whole
period, from the National Climatic Data Center of NOAA (National Oceanic and
Atmospheric Administration).
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Fig. 4 Locations of the stations where temperature data were collected, obtained from the NOAA’s
National Climatic Data Center (left) and their representation in Lambert coordinates (right)

Table 3 Estimates of the risk coefficient, where x denotes the location Wichita Falls and
Rx ={Lubbock, Dallas, Abilene, Midland}

h x+h d(x, x + h) δ̂∨(x+ h |x, Rx )(WS) δ̂∨(x + h |x, Rx ) (CS)

(1.308,−3.338) Amarillo 339 0.1826 0.3107

(−2.155,−7.994) El Paso 785 0 0.1148

(−3.647, 0.75) Austin 412 0 0.1574

(−6.113, 1.097) C. Christi 689 0 0

(−8.012, 0.996) Brownsville 897 0.01059 0

(−4.49; 0.000) S. Antonio 500 0 0.1481

(−4.15; 3.13) Houston 549 0 0

In what follows x denotes the location Wichita Falls and Rx ={Lubbock, Dallas,
Abilene, Midland}. Our analysis indicates that the risk of a return level varies
according to the following factors: the distance between the locations x and x + h
and the season (cold or warm).

From Table 3 we conclude that the risk of a return level is almost always higher
in cold season than in warm season and for greater distances between the locations
x and x+ h, there is lower risk of a return of a high temperature.
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Nonparametric Individual Control
Charts for Silica in Water

Luís M. Grilo, Mário A. Santos, and Helena L. Grilo

Abstract The soluble silica content in the demineralized water is a continuous
variable measured and controlled in the Chemical Laboratory of a Portuguese
thermoelectric central, in order to keep the equipment operating under the best
conditions, allowing, in particular, to extend its useful life. In this case study, this
variable could be considered approximately normal distributed and because we just
have one measure, for each group of the sample, an individual control chart to
monitor the silica content is obtained based on average moving range. Once the
available sample size is small and it is hard to fit a model, robust control limits
using a nonparametric method based on empirical quantiles (which according to
some simulations studies perform also well under the normality of the observations)
are also estimated with the bootstrap procedure. The comparison of the control
limits obtained with different approaches and with(out) outliers is very important
for technicians since the value of silica should be as small as possible. The process
capability study, also developed, shows that the process does not stay within the
engineering specification limits, although it seems stable.

1 Introduction

Demineralized water is indispensable for the energy production process in a
Portuguese thermoelectric central, since the formation of high pressure water steam
is obtained by heat transfer between the boiler and demineralized water, which
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circulates in adjacent pipes. This water steam provides the movement of the turbine
blades producing mechanical energy, which is then converted into electricity in a
generator. The variable silica (in μg SiO2/ L), soluble in water, has to be removed
because this chemical compound has a tendency to form deposits on the walls of
the equipment and piping. Furthermore, when water boils in the boiler, this silica
has a high abrasive effect on its metal walls and being entrained in the steam duct
will cause wear on turbine blades. The water is taken directly from a river close to
the thermoelectric central, which is subjected to a set of unit operations in water
treatment facility. The treatment occurs in the passage through anion exchange
resins. These same resins are specifically selected to adsorb the required species.
The treatment process works by passing the water through a column, where it
comes into contact with the active material (resins). The unwanted ionic species
which are dissolved in the solution are adsorbed selectively to the surface. The
concentration of soluble silica in demineralized water depends on the concentration
of soluble silica in water collected in the river and on the saturation level of the
anionic exchange resins. To monitor eventual changes in this industrial process we
just have, namely for economic reasons (considering time and money), a sample of
one measurement (one data point is collected at each point in time). Thus, in order
to determine whether the process is operating normally or needs to be adjusted,
Shewhart individual control charts (X) for the variable “silica” are obtained with
individual observations stem from a process which is statistically in-control (as
in [3–7, 9, 10]), computing the control limits based on the average moving range
(AMR), since the empirical distribution of this variable could be considered
approximately normal. Because the sample size is small, we also estimate robust
control limits using a nonparametric method based on empirical quantiles (EQ),
to turn the X control charts into more sensitive ones to persistent assignable causes.
These alternative control charts are a special case of the bootstrapping control charts
and are not only quite robust against deviations from normality but also perform
reasonably well under normality of the observations [9, 11]. After removing the
outliers, control limits are also estimated and compared. A capability study is also
developed, with(out) two outliers, in order to analyze the process ability to produce
outputs within specification limits.

2 Data Analysis

In Table 1 we have the available dataset, which is a small sample size of n = 10
measurements of soluble silica content in the demineralized water (μg SiO2/ L).

Table 1 The measurements of soluble silica content in the demineralized water (μg SiO2/ L)

Subject 1 2 3 4 5 6 7 8 9 10

Dataset 4.0 4.9 5.4 8.3 7.8 5.7 3.0 4.6 3.7 4.4
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Table 2 Some descriptive
statistics of silica (μg
SiO2/ L)

Silica Statistic Std. error

Mean 5.180 0.540

5% trimmed mean 5.128

Median 4.750

Std. deviation 1.709

Variation coef. (%) 32.992

Minimum 3.000

Maximum 8.300

Skewness 0.907 0.687

Kurtosis 0.059 1.334

Silica soluble in demineralised water (mg SiO2/L)

3,0 4,0 5,0 6,0 7,0

O4

8,0 9,0

Fig. 1 Box-plot of silica in water (μg SiO2/ L)

Some descriptive statistics obtained with the sample of 10 individual measure-
ments of the silica in water are shown in Table 2. The mean, the trimmed mean, and
the median (location measures) are close, although the median stays below. There is
a considerable dispersion given by the variation coefficient (i.e., the ratio between
the standard deviation and the mean), which is approximately 33%. The shape of
the empirical distribution is approximately mesokurtic, since the coefficient value
is very close to zero, and it is positive skewed (the skewness coefficient value is
positive and higher than 0.5), where a moderate outlier is also identified (Fig. 1).
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Table 3 The Shapiro-Wilk
normality test of silica (μg
SiO2/ L)

Silica Shapiro-Wilk

Statistic df p-value

Dataset 0.910 10 0.278

Here we consider that the moderate outliers are between 1.5 and 3 interquartile
ranges down from the first quartile or up from the third quartile.

The p-value obtained with the Shapiro-Wilk normality test (Table 3) led us to not
reject the null hypothesis of normality, for the usual significance levels considered.

3 Control Limits Methods

The X control chart is obtained to monitor changes that modify the silica mean.
In this type of control charts we have the solid central line as the average value and
the two dashed lines representing the lower and upper control limits, respectively,
denoted by LCL and UCL. The control limits reflect the expected amount of varia-
tion in the sample means when only common causes of variation are presented. If the
process is in-control, nearly all of the sample points will fall between those limits.

When the cumulative distribution function (c.d.f.) F is associated with normal
model, usually represented byΦ, with mean μ and standard deviation σ , the control
limits of the Shewhart X chart are

LCL = μ− Φ−1(
α
2

)σ, UCL = μ+Φ−1(
1−α

2

)σ, (1)

where Φ−1 is the standard normal quantile function and the α level represents the
false alarm rate. The parameters μ and σ in (1) are usually unknown. However, if
an independent and identically distributed (i.i.d.) random sample (X1,X2, . . . , Xn)

is available, we can estimate these parameters using the classical estimators, which
are, respectively, the sample mean and the sample standard deviation,

μ̂ = X = 1

n

n∑
i=1

Xi, σ̂ = S′ =
√√√√ 1

n− 1

n∑
i=1

(
Xi − X

)2
.

The sample standard deviation, S′, is asymptotically efficient for an i.i.d. normal
random sample, but it is also sensitive to trends and oscillations, which is a disadvan-
tage. An estimator less sensitive is the AMR (average moving range), where the
difference between each data point, Xi , and its predecessor, Xi−1, is calculated as
|Xi − Xi−1| and for m individual values, there are m − 1 ranges. The arithmetic
mean of these values is computed as

MR = 1

n− 1

n∑
i=2

|Xi −Xi−1| , (2)
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which can be scaled by d2(2) = 2/
√
π , in order to obtain an unbiased estimator for

σ under normality, i.e.

σ̂ = MR

d2(2)
= 1

d2(2)

n∑
i=2

|Xi −Xi−1|

n− 1
=

√
π

2
MR. (3)

3.1 Control Limits Based on Average Moving Range

The control limits based on the AMR, in (2) and (3), for the traditional X control
charts are [2]

LCLAMR = X − Φ−1(
α
2

)
√
π

2
MR, UCLAMR = X +Φ−1

(1− α
2 )

√
π

2
MR. (4)

To avoid an excessive number of false alarms, that occurs in most industrial
processes, Shewhart proposed the value of 0.0027 for the α level which corresponds
to Φ−1(

1−α
2

) = 3 and considering d2 = 2/
√
π we can rewrite (4) as

LCLAMR = X − 3
MR

d2(2)
≈ X − 2.66MR, (5)

and

UCLAMR = X + 3
MR

d2(2)
≈ X + 2.66MR. (6)

According to [10], independently of the observations probability distribution,
the AMR control charts tend to perform reasonably well for moderate sample sizes,
which is not a situation of this case study, where we just have a small sample size.

3.2 Control Limits Based on Empirical Quantiles

The control limits of the EQ (empirical quantiles) for X chart will be defined
according to [9], where a natural estimator of the q-quantile of the unimodal
unknown c.d.f. F is the empirical quantile F̂−1

n (q), defined as

F̂−1
n (q) = inf

{
x | F̂n(x) ≥ q

}
, 0 < q < 1
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where F̂n is the empirical c.d.f. that puts mass 1/n at each Xi , 1 ≤ i ≤ n, i.e.,

F̂n(x) =
1

n

n∑
i=1

I{Xi≤x}, −∞ < x < +∞,

where I represents the indicator function, i.e. I{x≤y} equals 1 if x ≤ y and 0
otherwise. Thus, the obvious estimators of the lower and upper control limits based
on the EQ are, respectively,

LCLEQ = F̂−1
n

(
α
2

) = X� α2 n+1 and UCLEQ = F̂−1
n

(
1 − α

2

) = X"(1− α
2 )n#.

(7)

Here X(1) ≤ X(2) ≤ · · · ≤ X(n) denotes the order statistics of X1,X2, . . . , Xn
which is the initial sample, �· denotes the floor of the argument (that is the largest
integer that does not exceed the argument) and "·# denotes the ceiling of the
argument (that is the smallest integer not less than the argument). The nonparametric
control charts become attractive if large datasets are available, i.e. we need at
least 1000 observations in order to attain reasonably performance. Nevertheless,
this may be surpassed with the bootstrap approach which is a computational
intensive technique based on the philosophy that the unknown c.d.f. F of a random
variable will be replaced by an empirical c.d.f. F̂n. Thus, we apply the bootstrap
procedure to obtain, for example, UCLEQ = F̂−1

n

(
1 − α

2

)
as an estimate of

the UCLEQ = F−1
n

(
1 − α

2

)
in control charts for individual observations (as in

[4, 7]). This nonparametric method has the advantage of being easy to compute and
distribution-free when there is an in-control situation as we have here.

There are some new interesting and elaborate methods about control charts for
individual observations/measurements [1, 8], but they are not so easy to implement
computationally and to interpret by non-statisticians. Nevertheless, these methods
might be used for comparison in future work.

4 Comparison of Control Limits for X Charts

An X control chart, as Fig. 2, is used to detect trends and shifts in the data,
and thus in the process. The data is time-ordered; that is, the data appear in the
sequence in which they were generated. The bilateral control chart for silica displays
the individual measurements, the estimates control limits obtained with the AMR
method,LCLAMR andUCLAMR, as well as the lower and upper specification limits
(respectively, LSL and USL).
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Fig. 2 Individual control chart of silica in water (μg SiO2/ L)

4.1 Control Limits Computed with Outliers

To calculate the control limits with AMR method we use (5) and (6), the mean value
in Table 2 and the average moving range value, MR ≈ 1.422, applying (2) to the
data in Table 1. Merely one point violates the control rules (Table 4 and Fig. 2). In
Table 5 we have the estimates of the control limits for X chart of silica, considering
both methods (AMR and EQ), the equations in (5), (6), and (7), respectively, and
the usual α level of 0.0027. To obtain the control limits based on the EQ method,
we simply draw 5000 bootstrapped samples, with the same size as the dataset (n =
10), with replacement from a population made up of the observed dataset. Then,
we determine the mean of each sample, which creates the sampling distribution of
the mean, and using (7) we obtain the control limits. These control limits, more
sensitive to small shifts in the mean, could be superimposed in Fig. 2 to see how
narrower these limits are and to visualize the number of individual values outside
the limits. To compare how relevant are the different results we can take into account
the range of limits in Table 5, for both methods (AMR and EQ), where the one that
corresponds to the EQ control limits is considerably smaller.
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Table 4 Rule violations for
run of silica(μg SiO2/ L)

Rule violations for run

Case number Violations for points

5 2 points out of the last 3 above +2 sigma

1 point violates control rules

Table 5 Control limits for
individual charts of silica (μg
SiO2/ L)

Control limits

Method LCL UCL Range of limits

AMR 1.399 8.961 7.562

EQ 3.877 6.860 2.983

In Fig. 2, a considerable part of the control limits obtained with the AMR method
is outside of the specification limits (where the ideal lower specification limit should
be LSL = 0 μg SiO2/ L and the upper specification limit should never surpass the
USL = 5 μg SiO2/ L, according to the established company’s specifications limits
for this variable). A similar situation occurs with control limits estimated with the
EQ method (Table 5). Note that we have six points within the specification limits
(i.e., 60%).

In the moving range charts, not presented here, all points are within the control
limits and no pattern is identified.

4.2 Control Limits Computed Without Outliers

The company’s upper specification limit for the soluble silica in demineralized water
is 5 μg SiO2/ L, but some higher values were obtained. However, it is important
to note that when this situation occurs the responsible department proceed to the
regeneration of anion exchange resins. In fact, if we remove the moderate outlier
(with value 8.3), visible in Fig. 1, then another observation appears as a moderate
outlier (with value 7.8). According to the laboratory technicians both atypical
observations should be removed, because although the outliers could not be a
measurement error, the experts consider that they should not appear, because the
process must be monitored rigorously. Thus, we decide to remove them and with
the smaller sample of 8 individual measurements of silica in water we obtain the
descriptive statistics in Table 6. The central tendency measures (mean, trimmed
mean and median) are almost equal to 4.5 and the dispersion is now smaller,
as expected, given the value of variation coefficient (approximately 20%). The
empirical distribution is approximately symmetric (slight skewed, as we can see in
the box-plot of Fig. 3) and mesokurtic, since the coefficients values of skewness and
kurtosis are, respectively, within the interval −0.5 to 0.5). In Table 7 we confirm
with the Shapiro-Wilk test that we can consider the distribution approximately
normal (with p-value = 0.984 and for the significance levels usually considered
we do not reject the null hypothesis of normality).
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Table 6 Some descriptive
statistics of silica, without
outliers (μg SiO2/ L)

Silica Statistic Std. error

Mean 4.463 0.315

5% trimmed mean 4.475

Median 4.500

Std. deviation 0.891

Variation coef. (%) 19.964

Minimum 3.000

Maximum 5.700

Skewness −0.233 0.752

Kurtosis −0.489 1.481

Silica soluble in demineralised water,without outliers (mg SiO2/L)

3,0 3,5 4,0 4,5 5,0 5,5 6,0

Fig. 3 Box-plot of silica in water (μg SiO2/ L), without outliers

Table 7 The Shapiro-Wilk
normality test of silica,
without outliers (μg SiO2/ L)

Silica Shapiro-Wilk

Statistic df p-value

Dataset 0.985 8 0.984
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Fig. 4 Individual control chart of silica in water (μg SiO2/ L), without outliers

Table 8 Control limits for
individual charts of silica (μg
SiO2/ L), without outliers

Control limits

Method LCL UCL Range of limits

AMR 1.576 7.349 5.773

EQ 3.588 5.331 1.743

In Fig. 4 we have the X control chart for silica in water after removing two
outliers, where the estimates of control limits LCLAMR and UCLAMR are obtained
using the mean value in Table 6 and the average moving range value MR ≈ 1.086
(applying (2) to the data in Table 1, after removing the two outliers mentioned
before). Now, the average line is inside of specification limits and we do not have
points violating the control rules. Moreover, two points are outside the specification
limits (i.e., 25%). In Table 8 we also have the estimates of the control limits using
the method EQ, where we draw 5000 bootstrapped samples, with the same size of
8. As expected, when we compare the results obtained with outliers (Table 5), the
range of the estimated control limits decreases (Table 8).
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5 Process Capability

To analyze the ability of the process to produce outputs within specification limits
we consider some statistics measures of process capability. In Table 9 we have the
values computed with the following well-known capability indices, which are ratios
of the process spread and specification spread:
Cp—capability of the process is the ratio of the difference between the specification
limits and the observed process variation whose estimate is obtained by

Ĉp = USL − LSL

6 × MR
d2(2)

;

Cpk—capability of the process related to both dispersion and centeredness whose
estimate is given by

Ĉpk = min

⎧⎪⎪⎨
⎪⎪⎩
USL− x

3 × MR

d2(2)

,
x − LSL

3 × MR

d2(2)

⎫⎪⎪⎬
⎪⎪⎭

;

k—measure the deviation of the process mean from the midpoint of the specification
limits which is given by

k̂ = |m− x|
(USL− LSL)/2

where m = USL+ LSL

2
.

Since these ratios are unitless values we use them to compare the capability of
the process with or without outliers (Table 9). Given that Cp < 1 in both cases, the
process is too variable (in particular for the original dataset). Note that, according to
many practitioners a value of Cp less than 1 is unacceptable (usually they consider
1.33 as a minimum acceptable).

When k = 0 the process is perfectly centered, once the mean is the same as
the midpoint. Thus, we can consider that “k” quantifies the amount of which a
distribution is centered (the minimum value of “k” is 0). The large value of k,

Table 9 The capability indices estimated for individual charts of silica (μg SiO2/ L)

Capability indices Original dataset Dataset without outliers

Ca
p 0.661 0.866

k 1.072 0.785

Ca
pk −0.048 0.186

The normal distribution is assumed. LSL = 0 and USL = 5
aThe estimated capability sigma is based on the mean of the sample moving ranges
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especially for the original dataset, combined with a small value of Cp (estimated),
indicates that the process does not stay within the specification.

Since the estimates of Cpk are very small for both cases (the value obtained
with the original dataset is negative), then the process mean falls outside of the
specification limits.

Processes that are in control should have a process capability that is near the
process performance and although we know that it is possible to have data that falls
outside the specification limits (LSL,USL) and still have a capable process, here
the process is barely capable of consistently meeting the requirements (even for the
case of the dataset without outliers).

6 Final Remarks

As in all processes, in the measurement of silica in water there is also some
variability. This way, the control charts allow for quick identification of irregularities
and possible intervention and correction, reducing costs and extending the useful life
of equipment. The individual control charts and the approaches considered here to
obtain different control limits (with average moving range and empirical quantiles
methods) are very important for the members of the Chemical Laboratory of the
thermoelectric central, once they allow to evaluate the silica variable, despite the
small sample size available.

The process capability also gives considerable information on how much the
process should be improved, since here it is necessary to continually try to minimize
the variation of the process.

The comparison of results, with(out) outliers in dataset, shows their impact in the
values of the control limits and also in the capability indices.

Given the results achieved and their importance to reduce the expenses on
the maintenance of the equipment and piping, it was possible to sensitize the
thermoelectric technicians to collect measurements of silica with higher frequency
in the future (despite the involved costs), making possible to check the results
obtained here in order to have a better control of the entire process.
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Revisiting Resampling Methods
in the Extremal Index Estimation:
Improving Risk Assessment

D. Prata Gomes and M. M. Neves

Abstract Extreme value theory is an area of primordial importance for modelling
extreme risks, allowing to estimate and predict beyond the range of data available.
Among several parameters of interest, the extremal index is a crucial parameter in a
dependent set-up, characterizing the degree of local dependence in the extremes of a
stationary sequence. Its estimation has been addressed by several authors but some
difficulties still remain. Resampling computer intensive methodologies have been
recently considered in a reliable estimation of parameters of rare events. However
classical bootstrap cannot be applied and block bootstrap procedures need to be
considered. The block size for resampling strongly affects the estimates and needs to
be properly chosen. Here, procedures for the choice of the block size for resampling
are revisited and an improvement of the methods used in previous works for that
choice is also considered. A simulation study will illustrate the performance of the
aforementioned procedures. A real application is also presented.

1 Introduction and Basic Notions

Extreme risks are associated to very bad outcomes, have disastrous impact and
occur with a low probability. They appear in areas such as natural disasters, security,
ecology, market risks, as a few examples. These events are by definition unusual, so
they are a challenge for statisticians that look for adequate models for quantifying
the intensity, the extent of extreme data, eventually beyond the range of available
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data. Extreme Value Theory (EVT) is an area of primordial importance providing
models that allow to estimate and predict beyond the range of data available.

In its beginnings EVT found applications in areas such as structural engineering,
environment, climate, hydrology, ocean engineering, material strength. Nowadays
many other areas such as finance, internet traffic, biology, ecology have revealed the
importance of using EVT for modeling extreme occurrences and for assessing the
associated risks.

The central result in classical EVT states that given the sample (X1, . . . , Xn)

of independent and identical (i.i.d.) random variables, with a distribution function
(d.f.) F , if there are sequences {an > 0} e {bn} such that

lim
n→∞P ((Xn:n − bn) /an ≤ x) = lim

n→∞Fn(anx + bn) = G(x) (1)

∀x ∈ R, where Xn:n ≡ max(X1, . . . , Xn) and G is a nondegenerate distribution
function. Then G ≡ EVξ is the so-called Extreme Value (EV) d.f., given by

EVξ (x) =
{

exp(−(1 + ξx)−1/ξ ), 1 + ξx > 0 if ξ �= 0
exp(− exp(−x)), x ∈ R if ξ = 0.

(2)

The EV d.f., in (2), incorporates the three Fisher–Tippett types: the Gumbel for
ξ = 0, the limit for exponentially-tailed distributions; the Fréchet family, for ξ > 0,
the limit for negative polynomial heavy-tailed distributions and the Weibull family
for ξ < 0, the limit for short-tailed distributions. The shape parameter ξ is called
the extreme value index and it measures the heaviness of the right-tail, F := 1 − F .
As ξ increases the right tail becomes heavier.

Other parameters are also of great interest such as: the probability of exceedance
of a high level, the return period of a high level, the right endpoint of an underlying
model F or a high quantile of probability 1 − p (p small).

The limit result in (1) was derived for i.i.d random variables. However, in
many practical applications a more realistic situation is the one where dependent
observations can appear, e.g. extremes conditions often persist over several con-
secutive observations. The most natural generalization of an independent case is
the dependent setup—where the variables may be mutually dependent, but whose
stochastic properties are homogeneous through time.

Suppose that {Xn}n≥1 is a strictly stationary sequence of random variables with
marginal d.f. F and {Yn}n≥1 is an i.i.d. sequence with the same parent d.f. F . From
[27] a strictly stationary sequence, {Xn}n≥1, is said to have an extremal index (EI),
θ ∈ (0, 1], if for all τ > 0, there exists a sequence of thresholds un ≡ un(τ )n≥1
such that

P (Yn:n ≤ un) = Fn(un) −→
n→∞ e−τ and P (Xn:n ≤ un) −→

n→∞ e−θτ ,

where Yn:n ≡ max(Y1, . . . , Yn).
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Fig. 1 One realization of an i.i.d. process and a 3-dependent process

For illustration of the behaviour of a stationary process for some values of θ let
us consider the following examples:

Example 1 A Moving Maximum Process I, [10].
Let {Yn}n≥−2 be a sequence of i.i.d. uniform variables on [0, 1[ with F the

common d.f.. Let {Xn}n≥1 be the 3-dependent moving maxima sequence, defined
as

[M1] Xn = max(Yn−3, Yn−1, Yn), n ≥ 1. (3)

The marginal underlying distribution for Xn is F 3 and for Xn we have θ = 1/3.
Consider also {Zn}n≥1 an i.i.d. sequence with the same d.f. F 3.

Figure 1 shows one realization ofXn andZn. Three-sized clusters of exceedances
of high levels can be seen.

See a shrinkage of the largest observations for the 3-dependent sequence.

Example 2 : A Max-Autoregressive Process I, [2].
Let {Yn}n≥1 be a sequence of i.i.d., with d.f. standard Fréchet. For 0 < θ ≤ 1, let

[M2] X1 = Y1, Xn = max{(1 − θ)Xn−1, θYn} n ≥ 2. (4)

For un = nx, x > 0, P (Xn:n ≤ un) → exp
(− θ/x

)
, as n → ∞, so the EI of the

sequence is θ .

Figure 2 shows partial realizations of the process M2 with θ = 0.9; 0.5 and 0.1,
respectively. The maxima show increasing clustering as θ → 0.

A result relating the limiting distribution of the maxima of a stationary sequence
{Xn}n≥1, provided that it has limited long-range dependence at extreme levels, and
the associated independent sequence, {Yn}n≥1, was established in Theorem 2.5, [27].
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Fig. 2 One realization of the M2 process with θ = 0.9; 0.5 and 0.1

It states that under the D(un) condition (see [26, 29]), with un = anx + bn, as
n → ∞,

P (Yn:n ≤ un) −→ G1(x) if and only if P (Xn:n ≤ un) −→ G2(x),

where G2 = Gθ
1, for a constant θ such that 0 < θ ≤ 1.

So, given that G1 = EVξ , an EV d.f., with location, scale and shape parameters
(μ, σ, ξ), the limit law G2 = EVθ

ξ , is also an EV d.f. with location, scale and shape
parameters (μθ , σθ , ξθ ) given by

μθ = μ− σ
1 − θξ

ξ
, σθ = σθξ , ξθ = ξ.

This parameter, θ , affects then other parameters of extreme events, but it has its own
importance because it measures the relationship between the dependence structure
of the data and the behaviour of the exceedances over a high threshold un, being
directly related to the clustering of exceedances. Actually, θ = 1 for i.i.d. sequences
and θ → 0 whenever dependence increases. Notice a “shrinkage of maximum
values” as dependence increases in Fig. 2.

The EI estimation, such as the estimation of other parameters of extreme values,
is usually done in a semi-parametric approach based on the probabilistic asymptotic
results in the tail of the unknown distribution. However several difficulties appear.
Those semi-parametric estimates are usually performed on the basis of the largest
k order statistics in the sample, and the estimators show strong dependence on that
value k, with a high variance for small values of k and a high bias for large values
of k. This brings a real need for the adequate choice of k, one of the problems here
addressed.

Jackknife and Bootstrap procedures have revealed to give good results in the
reduction of the bias of an estimator allowing to obtain more stable paths of the
estimates for improving the estimation of the parameters of extreme events, see
[5, 13, 15, 16, 36–38], to mention a few works.

After a brief reference to some EI estimators and their asymptotic properties,
the goal of this work is to improve the performance of those estimators through
computational procedures based on resampling blocks of observations, that need
to be adequately chosen. Actually, the i.i.d. nonparametric bootstrap needs to be
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adapted to the dependent context. One of the procedures proposed for the bootstrap
resampling in this situation, see, for example, [24], consists of defining blocks for
resampling, instead of resampling the individual observations. But the performance
of the bootstrap estimator crucially depends on the block size that must be supplied
by the user. Several authors such as [3, 19] and [25] proposed ways of estimating
the optimal block size. Here we follow [25], who proposed a nonparametric plug-
in (NPPI) method for the empirical choice of the optimal block size for the block
bootstrap estimation of some characteristics of an estimator. Some simulation results
and applications have been shown in [36, 37] and [38], for the bias and [39], for
the variance of an estimator. Here, the bias and the variance are dealt together
considering the Mean Squared Error. Some improvements on the previous works
have been obtained. Some results from a complete simulation study are shown as
well a real application in an important area of risk analysis—the financial area.

2 Semiparametric Estimation of the EI

Several interpretations of θ have appeared, providing several suggestions for its esti-
mation. The most common interpretation of θ is that as being the reciprocal of the
“mean time of duration of extreme events”, i.e., θ = 1/limiting mean cluster size,
which is directly related to the exceedances of high levels, see [22, 28].

Identifying clusters by the occurrence of downcrossings or upcrossings, we can
write

θ = lim
n→∞P

(
X2 ≤ un|X1 > un

) = lim
n→∞P

(
X2 > un|X1 ≤ un

)
. (5)

Given a sample, (X1, . . . , Xn), the empirical counterpart of the above interpreta-
tion led to the classical up-crossing (down-crossing) estimator,UC-estimator, Θ̂UC ,
(DC-estimator, Θ̂DC ), see [11, 12, 31],

Θ̂UC(un) :=
∑n−1

i=1 I (Xi ≤ un < Xi+1)∑n
i=1 I (Xi > un)

≡
∑n−1

i=1 I (Xi > un,Xi+1 ≤ un)∑n
i=1 I (Xi > un)

:= Θ̂DC(un), (6)

for a suitable threshold un, where I (A) denotes, as usual, the indicator function
of A. Consistency of this estimator is obtained provided that the high level un is a
normalized level, i.e. if with τ ≡ τn > 0, the underlying d.f. F verifies

F(un) = 1 − τ/n+ o(1/n), n → ∞ and τ/n → 0.
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Other forms of identifying clusters have motivated other estimators. Let us mention
two very popular estimators: the blocks estimator and the runs estimator. For the
definition, properties and detailed study of these estimators, see [20, 21, 41, 42].

2.1 Improving the Estimation of the EI Through
the Generalized Jackknife Methodology

Let us focus our attention in the Θ̂UC in (6). This estimator shows a very strong bias
and a very sharp Mean Squared Error

MSE
(
Θ̂UC

)
= E

[
(Θ̂UC − θ)2

]
= Bias2

(
Θ̂UC

)
+ Var

(
Θ̂UC

)
,

which reveals a need for a very accurate way of choosing k in order to obtain a
reliable estimate of θ .

Gomes et al. [14] considered the Generalized Jackknife methodology (see [18])
that uses properties of the bias and the variance of any estimator for developing
estimators with bias and mean squared error often smaller than those of an initial set
of estimators and proposed reduced biased estimators of the EI. Given the sample
(X1, . . . , Xn) and the associated ascending order statistics, X1:n ≤ · · · ≤ Xn:n,
these authors considered the deterministic level u ≡ un substituted by the stochastic
one, Xn−k:n, and wrote the UC-estimator, in (6), as a function of k,

Θ̂UC ≡ Θ̂UC(k) := 1

k

n−1∑
i=1

I (Xi ≤ Xn−k:n < Xi+1). (7)

For some dependent structures, [14] showed that the bias of Θ̂UC has two dominant
components of orders k/n and 1/k,

Bias[Θ̂UC(k)] = ϕ1(θ)

(
k

n

)
+ ϕ2(θ)

(
1

k

)
+ o

(
k

n

)
+ o

(
1

k

)
, (8)

whenever n → ∞ and k ≡ k(n) → ∞, k = o(n).
Using that information on the bias of Θ̂UC in (7), [14] considered first a

generalized jackknife EI estimator of order 2, based on Θ̂UC computed at the three
levels, k, �k/2 + 1 and �k/4 + 1, where �x denotes, as usual, the integer part
of x. They got the estimator

Θ̂GJ ≡ Θ̂GJ (k) := 5Θ̂UC([k/2] + 1)− 2
(
Θ̂UC([k/4] + 1)+ Θ̂UC(k)

)
. (9)

This is an asymptotically unbiased estimator of θ , in the sense that it can remove the
two dominant components of bias referred to in (8).
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Fig. 3 MSE, Var and Bias2 of Θ̂UC and Θ̂GJ for θ = 0.9, 0.5, 0.1 in the Max-Autoregressive
Process, Example 2

More generally, [14] considered the levels k, �δk + 1 and �δ2k + 1, depending
on a tuning parameter δ, 0 < δ < 1, and the class of estimators,

Θ̂GJ(δ)(k) := (δ2 + 1) Θ̂UC ([δk] + 1)− δ
(
Θ̂UC

([δ2k] + 1
)+ Θ̂UC(k)

)

(1 − δ)2
.

(10)

Actually Θ̂GJ (1/2)(k) ≡ Θ̂GJ , in (9). Among the members of the class in (10), those
authors have been heuristically led to the choice δ = 1/4. Distributional properties
of Θ̂GJ(1/4)(k) have been obtained by [14] through simulation techniques, see also
[17, 32] for a review.

In Fig. 3 the simulated bias, variance and MSE obtained through a Monte Carlo
simulation with 1000 replicas, of Θ̂UC and Θ̂GJ estimators, for a sample size n =
1000 from a Max-Autoregressive Process, Example 2, with extremal indexes θ =
0.9; θ = 0.5 and θ = 0.1 are plotted.

Remark 1 A few remarks, also presented in [14, 33, 37–39] regarding these
estimators can be pointed out:

• The Θ̂UC estimator shows a very strong bias, that is the dominant component of
the MSE.

• MSE(Θ̂UC) is very sharp, which reveals a need for a very accurate way of
choosing k in order to obtain a reliable estimate of θ .

• MSE(Θ̂GJ ) is not so sharp as MSE(Θ̂UC), suggesting less dependence on the
value k for obtaining the estimate of θ .

• Θ̂GJ shows a more stable simulated mean value (not shown here, see, for
example, [14, 32]), near the target value of the parameter but at expenses of a
very high variance.

Recently, bootstrap procedures and the choice of the sample fraction for the semi-
parametric estimation of parameters of extreme events have been considered. Let us
refer to some recent works such as [5, 7, 13, 15, 17], to cite only a few.
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3 Resampling Techniques for Stationary Sequences

In its classical form, the bootstrap methodology [8] has proven to be a powerful
nonparametric tool when based on i.i.d. observations. But [40] showed that it could
be inadequate under dependence. So the two different situations need to be taken
into account: resampling from an i.i.d. sequence or resampling from a dependent
sequence.

Several attempts have been made to extend the bootstrap procedure to the depen-
dent case. The main result was achieved when resampling of single observations
was replaced by block resampling. The motivation for this scheme is to preserve
the dependence structure of the underlying model within each block. Several ways
of blocking have been proposed: Nonoverlapping Block Bootstrap (NBB), [4];
Moving Block Bootstrap (MBB), [23, 30]; Circular Block Bootstrap (CBB), [34] and
Stationary Bootstrap (SB), [35]. The first three methods consider to resample blocks
of observations with nonrandom block length. The last one considers a random
block length and hence, has a slightly more complicated structure.

For each way of blocking it is necessary to consider a length b ≡ b(n) to
resample blocks of observations, but the accuracy of block bootstrap estimators
depends critically on the block size for resampling that must be supplied by the
user (see [25]).

The nonparametric plug-in (NPPI) method for the empirical choice of the optimal
block size for the block bootstrap estimation, proposed by [25], is used. The method
employs nonparametric resampling procedures to estimate the relevant constants in
the leading term of the “optimal” block length, so it does not require the knowledge
and/or derivation of explicit analytical expressions for those constants. The method
applied here is based on the Jackknife-After-Bootstrap (JAB) of [9] and [24].

In previous works the method was applied to control the bias and the variance
through the block bootstrap estimator. Here it was extended to the MSE of the
estimators Θ̂UC and Θ̂GJ in (7) and (9), respectively.

3.1 The NPPI Procedure: A Brief Overview

Given the random sample (X1, . . . , Xn), let Θ̂n be an estimator of θ . Let us consider
now the parameter φn ≡ MSE(Θ̂n) and the corresponding block bootstrap estimator
based on blocks of size b (we shall consider here the MBB),

φ̂∗
n(b) = MSE∗

(
Θ̂∗
n(b)

)
,

where MSE∗ denotes the conditional mean squared error, given the data.
Lahiri et al. [25], Section 2, remember that for many population parameters

(denoted here by φn), the variance of the corresponding block bootstrap estimator
is an increasing function of the block size, b, while its bias is a decreasing function
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of b, and that under suitable regularity conditions, the variance and the bias of the
block bootstrap estimator admit expansions of the form

n2a Var
(
φ̂∗
n(b)

) = C1n
−1b + o

(
n−1b

)
, (11)

na Bias
(
φ̂∗
n(b)

) = C2b
−1 + o

(
b−1
)
, (12)

as n → ∞ and over a suitable set κn ⊂ {2, . . . , n} of possible block length b. C1,
C2 and a are constants depending on the characteristics of EI estimator under study.
As for the bias and the variance of an estimator, [25] suggested a = 1, so C1 and
C2, from (11) and (12), can be approximately given by

C1 ∼ nb−1Var
(
φ̂∗
n(b)

)
and C2 ∼ b Bias

(
φ̂∗
n(b)

)
.

A consistent estimation of Var
(
φ̂∗
n(b)

)
and Bias

(
φ̂∗
n(b)

)
was proposed, see [19, 25],

as

V̂arn ≡ V̂ARJAB(φ̂
∗
n(b)) and B̂iasn = 2

(
φ̂∗
n(b)− φ̂∗

n(2b)
)
,

where V̂ARJAB is the Jackknife-After-Bootstrap variance estimator. Parameters C1
and C2 can be consistently estimated by

Ĉ1 = nb−1V̂ARJAB(φ̂
∗
n(b)) and Ĉ2 = 2b

(
φ̂∗
n(b)− φ̂∗

n(2b)
)
.

References [19] and [25] showed that the optimal block size b0
n has the form

b0
n =

(
2C2

2

C1

)1/3

n1/3(1 + o(1)),

so the NPPI estimator of the optimal block size is then given by

b̂0
n =

(
2Ĉ2

2

Ĉ1

)1/3

n1/3. (13)

The JAB methodology, allowing to assess the accuracy of bootstrap estimators for
dependent data, was derived by [24]. The key step is to delete resampled blocks
instead of blocks of original data values.

If φ̂∗
n(b) is the MBB estimator of φn and 	 = n−b+1 the number of “observable”

blocks of length b:

• Let m be an integer such that m → ∞ and m/n → 0 as n → ∞, denoting the
number of bootstrap blocks to be deleted.
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• Write M = 	 − m + 1 and for i = 1, . . . ,M let us define the set Ii =
{1, . . . , 	}\{i, . . . , i + m − 1}, denoting the index set of all blocks obtained by
deleting the m blocks.

• Resample [n/b] from the reduced collection {Bj : j ∈ Ii} and compute the ith
jackknife block-deleted estimate, φ̂∗i

n ≡ φ̂∗i
n (b), i = 1, . . . ,M .

The JAB variance estimator for φ̂∗
n(b) is then defined as

V̂ARJAB(φ̂
∗
n(b)) =

m

(	−m)M

M∑
i=1

[
φ̃∗i
n (b)− φ̂∗

n(b)
]2
, (14)

where φ̃∗i
n (b) = m−1

[
	φ̂∗

n(b)− (	−m)φ̂∗i
n (b)

]
is the ith block-deleted jackknife

pseudo-value of φ̂n(b), i = 1, . . . ,M .
According to suggestions given in [25] to obtain Ĉ1 and Ĉ2, as a first approach

we used b = "n1/5# and m = "n1/3b2/3#.

4 Finite Sample Behaviour for Simulated Data and a Real
Data Set

From the models described below, samples of sizes of n = 500 and n = 1000 were
generated for some values of the parameters. We have performed a simulation study
on the bases of 1000 replicates. Table 1 shows, for each model and values of the
parameters considered in the simulation, the results obtained from the application of
the NPPI procedure and the bootstrap estimates θ̂ �UC and θ̂ �GJ calculated through
an adaptive procedure that chooses the sample fraction for obtaining the estimated
EI based on a stability criterion, for the choice of a kopt, see the description and
some illustrative examples in [33].

Table 1 θ̂ �UC and θ̂ �GJ estimates of θ for samples simulated from models M1, M2, M3 and M4,
bopt block size and the associated block bootstrap estimates (with bopt), calculated through the
stability criterion, for n = 500, and n = 1000

n = 500 (bini = 3) n = 1000 (bini = 4)

Models bopt for θ̂ �UC bopt θ̂ �GJ bopt for θ̂ �UC bopt θ̂ �GJ

M1 (θ = 1/3) 32 – 19 0.8345 74 – 48 0.5804

M2 (θ = 0.5) 49 – 28 0.5718 73 – 30 0.4981

M2 (θ = 0.9) 20 – 5 0.9018 16 – 15 0.8177

M3 (θ = 0.5) 58 – 40 0.5260 91 – 70 0.5047

M3 (θ = 0.909) 21 – 4 0.8975 16 – 13 0.9570

M4 (θ = 0.5) 46 – 23 0.5846 77 – 26 0.4987

M4 (θ = 0.9) 18 – 8 0.9880 29 – 34 0.8941
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When applying the NPPI method, the estimated “optimal” block length depends
on the value of k. So, the mode of the estimated block size values was adopted as the
“optimal” block length, bopt, for resampling and the block bootstrap estimates were
obtained using the sample generated and that value, bopt. The first values for b ≡ bini
to initialize the NPPI procedure were bini = 3(n = 500) and bini = 4(n = 1000),
as previously referred to.

• Models M1 and M2 defined in (3) and (4), respectively.
• Model M3, Moving Maximum Process II, [6].

Let {Yn}n≥0 be a sequence of i.i.d., with d.f. standard Fréchet. For a ≥ 0, let

[M3] X0 = Y0, Xn = (a + 1)−1 max
{
aYn−1, Yn

}
, n = 1, 2, . . . .

(15)

If a ≤ 1 we have θ = 1/(a + 1), otherwise θ = a/(a + 1). Then θ =
max{1, a}/(a + 1) and 1/2 ≤ θ ≤ 1.

• Model M4, Max-Autoregressive Process II, [1].
Let {Yn}n≥1 be a sequence of i.i.d., with d.f. standard Fréchet andX0 a random

variable with d.f. H0(z) = exp
(− z−1(β−1 − 1)

)
. For 0 < β < 1, let

[M4] Xn = β max
{
Xn−1, Yn

}
, n = 1, 2, . . . . (16)

The EI of this process is θ = 1 − β.

θ̂UC estimates show a very strong bias, so the block bootstrap estimates, although
revealing a more smooth pattern, cannot remove such a heavy bias (see Fig. 4 as an
illustration). For this reason estimates will not be given. On the other side, the block
bootstrap estimator Θ̂�GJ reveals itself as a very promising one, with more stable
paths around the true value of the parameter, in the most situations (see Fig. 4 (left,
center)).

A real data set, in the field of Finance was also used for illustrating the
procedures. The data refers to the Daily Adjusted Closing Price for S&P 500 index,
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Fig. 4 Sample paths (estimates and bootstrap estimates with bopt) for θ in Model 2 (θ = 0.5),
Model 3 (θ = 0.9090) and for the real data set of log-returns, from left to right. θ̂ �GJ represented
were calculated through the stability criterion. For the real data set of log-returns, θ̂ �GJ (kopt) =
0.974(1294)
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xt from October 21, 1982, until October 2, 1990 (n = 2000). As usual, in these
studies, we will deal with the Log-Returns, rt = ln xt − ln xt−1.

Figure 4 (right) shows the estimates θ̂GJ and θ̂UC sample paths, the associated
θ̂ �GJ and θ̂ �UC calculated with bopt = 15 and bopt = 16, respectively, and is
represented the estimate calculated with the procedure mentioned above.
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Improving Asymptotically Unbiased
Extreme Value Index Estimation

Frederico Caeiro, Ivanilda Cabral, and M. Ivette Gomes

Abstract The extreme value index characterizes the tail behaviour of a distribution,
and indicates the size and frequency of certain extreme events under a given
probability model. In this work, we are interested in improvements attained through
the reduction of bias of the extreme value index estimators related to Lehmer’s
mean of the log-excesses. A comparison with other reduced bias estimators, namely
the corrected-Hill estimator, in Caeiro et al. (Revstat 3(2):111–136, 2005), is also
performed.

1 Introduction

Let X1,X2, . . . , Xn be a sample of independent and identically distributed (iid)
random variables (rv’s) with a common distribution function (df) F with a Pareto
type right tail. Then the survival function F := 1−F is a regularly varying function
with an index of regular variation equal to −1/ξ , ξ > 0, i.e., limt→∞ F(tx)/F (t) =
x−1/ξ , and we write F ∈ R−1/ξ . Consequently F is in the max domain of attraction
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of the general extreme value model, with df given by

EVξ (x) =
{

exp(−(1 + ξx)−1/ξ ), 1 + ξx > 0, if ξ �= 0
exp(− exp(−x)), x ∈ R, if ξ = 0,

(1)

with ξ > 0, and we use the notation F ∈ DM
(
EVξ

)
. In this paper we deal with the

estimation of the shape parameter ξ , the so-called extreme value index (EVI) which
characterizes the weight of the right tail. Relevant literature on the estimation of the
EVI can be found in [1, 2, 10].

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the associated non-decreasing order
statistics from the sample of size n. For these Pareto-type models, we refer
the classic maximum likelihood Hill EVI-estimator [15], the average of the log-
excesses, Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n, above a high random
threshold Xn−k:n,

ξ̂H(k) = H(k) := 1

k

k∑
i=1

Vik, k = 1, 2, . . . , n− 1. (2)

Hill’s estimator is consistent for intermediate high thresholds, or equivalently, for
intermediate k, i.e. for a non-decreasing sequence of integers k ≡ kn, 1 ≤ k < n,
such that

k → ∞ and k/n→ 0, as n → ∞. (3)

Due to the high variance for high thresholds, high bias for low thresholds, the
mean square error (MSE) has usually a very peaked pattern. As a consequence it is
difficult to determine the optimal k, under a minimum mean square error criterion.
To mitigate the problem of the choice of k, crucial in applications, other estimators
have been introduced by several authors. Here we shall consider a simple class
of semi-parametric estimators of ξ related to the Lehmer’s mean [14] of the log-
excesses. Such class of estimators is given by

ξ̂Lα (k) ≡ Lα(k) :=
M

(α)
k,n

αM
(α−1)
k,n

,

[
M

(α)
k,n :=

k∑
i=1

V α
ik, M(0)

n (k) ≡ 1

]
(4)

parameterized in the tuning parameter α > 0.5 and is consistent for all ξ > 0.
Notice that since Lehmer’s mean is a generalization of the arithmetic mean, Lα(k)
in (4) is a generalization of the classic Hill estimator in (2) (L1(k) ≡ H(k)). The
class of estimators in (4) was already studied in [13, 16, 17] and, if α ≥ 1, belongs
to the class of EVI-estimators introduced in [4] (see also [6, 11]) with functional
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expression

ξ̂ (δ,α)(k) := Γ (α)

M
(α−1)
k,n

(
M

(δα)
k,n

Γ (δα + 1)

)1/δ

, δ > 0, α ≥ 1, k = 1, 2, . . . , n− 1,

(5)

where Γ denotes the complete Gamma function. Indeed, if we choose δ = 1, in (5),
we obtain Lα(k) in (4). As noticed in [4], if δ > 1 there is a value α ∈ [1,∞[
such that the dominant component of the asymptotic bias of ξ̂ (δ,α)(k), in (5), is
null. If δ ≤ 1, the dominant component of asymptotic bias of ξ̂ (δ,α)(k) is always
non-null. For δ = 2 in (5), we obtain a class studied in [3]. Since Lα(k) in (4)
is biased for every α we also play with the direct reduction of the dominant
bias component, working with the reduced bias (RB) Lehmer’s EVI-estimators
introduced in [13],

ξ̂LRB
α (k) = LRB

α (k) := Lα(k)

(
1 − β̂(n/k)ρ̂

(1 − ρ̂)α

)
, α > 0.5 (6)

with (β̂, ρ̂) an adequate estimator of the vector of second-order parameters (β, ρ),
to be defined in Sect. 2. Details on the estimation of second-order parameters (β, ρ)
can be found in [9] and the references therein. When α = 1, LRB

1 (k) is the Corrected
Hill (CH) EVI-estimator in [7], defined by

ξ̂CH(k) = CH(k) ≡ LRB
1 (k) := H(k)

(
1 − β̂(n/k)ρ̂

1 − ρ̂

)
. (7)

For adequate levels k and an adequate external estimation of the vector of second-
order parameters, (β, ρ), the use of CH(k) enables us to eliminate the dominant
component of asymptotic bias of the EVI-estimator H(k), keeping its asymptotic
variance (see [5, 12] for further details).

The remainder of this paper is organized as follows: In Sect. 2, after the
introduction of a few technical details in the field of extreme value theory, we deal
with the asymptotic non-degenerate behaviour of the EVI-estimators. We further
proceed with the study of the RB EVI-estimators, in (6), providing information on
the dominant non-null asymptotic bias, under a third-order framework. Section 2
ends with the asymptotic comparison at optimal levels of the RB EVI-estimators.
Some overall conclusions are drawn in Sect. 3.
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2 Asymptotic Properties of the EVI-Estimators

2.1 A Brief Review of Several Conditions for Heavy Tailed
Models

The model F underlying the data is heavy-tailed whenever F ∈ R−1/ξ , ξ > 0,
or equivalently, U ∈ Rξ where U is the tail quantile function defined by U(t) =
F←(1 − 1/t), t ≥ 1, with F←(x) = inf{y : F(y) ≥ x}. We thus assume the
validity of any of the common first-order conditions for any ξ > 0:

F ∈ DM
(
EVξ

) ⇐⇒ F ∈ R−1/ξ ⇐⇒ U ∈ Rξ . (8)

The second-order parameter ρ rules the rate of convergence in (8) and can be
defined as the non-positive parameter appearing in the limiting relation

lim
t→∞

lnU(tx)− lnU(t)− ξ ln x

A(t)
= ψρ(x) :=

{(
xρ − 1

)
/ρ, if ρ < 0,

ln x, if ρ = 0,
(9)

often assumed to hold for every x > 0, with A ∈ Rρ ultimately decreasing.
This second-order condition is required for the derivation of the non-degenerate
asymptotic bias of the EVI-estimators, under a semi-parametric framework.

To obtain information on the normal asymptotic behaviour of estimators of
second-order parameters and on the asymptotic bias of RB EVI-estimators, it is
sensible to further assume a third-order condition, ruling the rate of convergence
in (9), and which guarantees that

lim
t→∞

lnU(tx)−lnU(t)−ξ ln x
A(t)

− ψρ(x)

B(t)
= ψρ+ρ′(x), (10)

where B ∈ Rρ′ , and ρ′ ≤ 0 is a third order parameter. Notice that the previous
conditions hold for most heavy-tailed models used in applications, such as the
EVξ (x), in (1), the generalized Pareto, GPξ (x) = 1+ln EVξ (x), x ≥ 0, the Fréchet,
F(x) = exp(−x−1/ξ ), x > 0, (ξ > 0) the Burr, F(x) = 1 − (1 + x−ρ/ξ )1/ρ , x ≥ 0
(ξ > 0, ρ < 0) and the Student’s t , among others. In this paper we shall assume
that (10) holds with ρ = ρ′ < 0 and that we can choose

A(t) = ξβtρ , B(t) = β ′tρ′ = ζA(t)

ξ
, ζ = β ′

β
, (11)

with β and β ′, the scale second and third order parameters, respectively.
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2.2 Asymptotic Behaviour of the Estimators at a Level k

To study the asymptotic behaviour of the EVI estimators, let us first introduce the
auxiliary rv

ξ̂LRB∗
α (k) = LRB∗

α (k) := Lα(k)

(
1 − β(n/k)ρ

(1 − ρ)α

)
, (12)

related to the EVI estimator in (6) and depending on the vector of second-order
parameters (β, ρ). If F ∈ DM

(
EVξ

)
and k is intermediate, the EVI estimators

in (2), (4), (6), (7) and the rv in (12) are consistent for ξ > 0. Under the
validity of the second-order condition in (9), and with intermediate k such that
λA := limn→∞

√
kA(n/k) is finite, trivial adaptations of the results in [7] and

[16] enable us to guarantee the asymptotic normality of all the aforementioned rv’s.
More precisely, ξ̂•(k) with • denoting H, Lα, LRB

α , CH and LRB∗
α , respectively given

in (2), (4), (6), (7) and (12), are asymptotically normal, i.e.

√
k
(
ξ̂•(k)− ξ

)
d−→

n→∞ N
(
λAb•, σ 2•

)
,

where N
(
μ, σ 2

)
stands for a normal rv with mean value μ and variance σ 2. For

the non-RB EVI-estimators, b• is given by

bH = 1

1 − ρ
, bLα = 1

(1 − ρ)α
, bLRB∗

α
= 0,

σ 2
H = ξ2, σ 2

Lα = ξ2Γ (2α − 1)

Γ 2(α)
, σ 2

LRB∗
α

= σ 2
Lα .

(13)

Moreover, if β and ρ are consistently estimated through β̂ and ρ̂, with ρ̂ − ρ =
op(1/ lnn), we get a null dominant component of bias for the RB EVI-estimators
LRB
α and CH, that is bLRB

α
= bCH = 0. The variance is kept at the same level of the

associated non-RB EVI-estimators, that is σ 2
LRB
α

= σ 2
Lα

and σ 2
CH = σ 2

H.

We shall next proceed with the study of the estimators under the third order
condition.

Theorem 1 If we assume that the third order condition, in (10), holds for interme-
diate levels k, then we can write,

√
k
(
ξ̂ •(k)− ξ

)
d−→

n→∞ N (0, σ 2• ) + b•
√
kA(n/k) + c•

√
kA2(n/k)(1 + op(1)),
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where • can denote H, Lα or LRB∗
α , b• and σ 2• are given in (13) and c• is given by

cH = cL1 = 1

ξ(1 − 2ρ)
, cLα = 1

ξρ

(
ζρ + 1 − 2ρ

(1 − 2ρ)α
− 1 − ρ(1 − ρ)α−1

(1 − ρ)2α−1

)
,

cLRB∗
α

= 1

ξρ

(
ζρ + 1 − 2ρ

(1 − 2ρ)α
− 1 − ρ(1 − ρ)α

(1 − ρ)2α

)
.

(14)

Theorem 2 Under the conditions of Theorem 1 and if we consider consistent
estimators (β̂, ρ̂) of (β, ρ) both computed at a level k1 such that k = o(k1), assume

that (ρ̂ − ρ) lnn = op(1) and (β̂ − β)/β
p∼ −(ρ̂ − ρ) ln(n/k1), a condition that

holds for several estimators of β, then

ξ̂LRB
α (k)− ξ̂LRB∗

α (k)
p∼ − A(n/k)

(1 − ρ)α

(
ρ̂ − ρ

)
ln(k/k1).

Consequently, ξ̂LRB
α (k) is consistent if

(
ρ̂ − ρ

)
ln(k/k1) = op(1/A(n/k)) and has

asymptotic normal distribution if
(
ρ̂ − ρ

)
ln(k/k1) = op(1/

√
kA(n/k)).

The proof of the two previous theorems is identical to the proof of Theorems 2, 3
and 4 in [9].

2.3 Asymptotic Comparison of the RB EVI-Estimators
at Optimal Levels

Since RB estimators have a null dominant component of asymptotic bias and keep
the same variance as the associated non-RB EVI-estimator, we shall next proceed to
the comparison of RB estimators, at their optimal levels. An asymptotic comparison,
at their optimal levels, between ξ̂Lα (k) and ξ̂H can be found in [16].

The comparison is again done in a way similar to the one used in [8, 16, 17],
among others, for the classical EVI-estimators and in [9] for specific sets of RB
EVI-estimators. Let ξ̂•n (k) denote any arbitrary RB semi-parametric estimator of the
EVI, ξ , for which we have

ξ̂•(k) d= ξ + σ•√
k
Z•
k + c• A2(n/k)+ op(A

2(n/k)), (15)

for any intermediate sequence of integers k, and where Z•
k is asymptotically

standard normal. Then,
√
k(ξ̂•(k) − ξ) → N(λc•, σ 2• ) provided that k is such that√

k A2(n/k) → λ, with λ finite, as n → ∞. We then write Bias∞(ξ̂•n (k)) :=
c• A2(n/k), and Var∞(ξ̂•n (k)) := σ 2• /k. The so-called asymptotic mean square
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error (AMSE) is then given by AMSE
(
ξ̂•n (k)

)
:= σ 2• /k + c2• A4(n/k). Regular

variation theory enables us to show that, whenever c• �= 0, there exists a function
ϕ(n) = ϕ(n, ξ, ρ), such that

lim
n→∞ ϕ(n) AMSE

(
ξ̂•n0

)
=
(
σ 2•
)− 4ρ

1−4ρ
(
c2•
) 1

1−4ρ =: LMSE
(
ξ̂•n0

)
,

with LMSE standing for limiting mean square error, ξ̂•n0 := ξ̂•
n,k•0 (n)

and

k•0(n) := arg inf
k

AMSE
(
ξ̂•n (k)

)
.

It is then sensible to consider the following: Given two biased estimators ξ̂ (1)n (k)

and ξ̂ (2)n (k), for which a distributional representation of the type of the one in (15)
holds, with constants (σ1, c1) and (σ2, c2), c1, c2 �= 0, respectively, both computed
at their optimal levels, the Asymptotic Root Efficiency (AREFF) of ξ̂ (1)n0 relatively to

ξ̂
(2)
n0 is

AREFF1|2 ≡ AREFF
ξ̂
(1)
n0 |ξ̂ (2)n0

:=
√√√√LMSE

[
ξ̂
(2)
n0

]

LMSE
[
ξ̂
(1)
n0

] =
((σ2

σ1

)−4ρ∣∣∣b2

b1

∣∣∣
) 1

1−4ρ
. (16)

The AREFF indicator, in (16), has been conceived so that the highest the AREFF
indicator is, the better is the first estimator. We have

AREFFLRB
α |CH =

{(
Γ 2(α)

Γ (2α−1)

)−2ρ ∣∣∣ ζρ(1−ρ)2α(1−2ρ)α−1−ρ(1−ρ)2α−2(1−2ρ)α

(ζρ+1−2ρ)(1−ρ)2α−(1−ρ(1−ρ)α)(1−2ρ)α

∣∣∣
} 1

1−4ρ

Since AREFFLRB
α |CH depends on the value of the parameters α, ρ and ζ , for

technical simplicity we shall consider ζ = 1, the value of ζ for the generalized
Pareto and Burr models. In Fig. 1 we picture the values of AREFFLRB

α |CH in the
(α, ρ)-plane.

As can be seen in Fig. 1, for models with ζ = 1 the gain in efficiency is not very
high. For every ρ in (−2, 0), and independently of ξ , there exists always a region
of α-values where ξ̂LRB

α is asymptotically more efficient than ξ̂CH estimator, both
computed at their optimal levels. To have AREFFLRB

α |CH > 1, the figure suggests
that we should choose 0.5 < α ≤ 1 if ρ > −1.9 and α ≥ 1 otherwise. The optimal
choice of α, for a given ρ, can only be computed with a numerical approach, and is
outside the scope of this paper.
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Fig. 1 Contour plot of AREFFLRB
α |CH in the (α, ρ)-plane

3 Conclusions

As concluded in [16], the optimal ξ̂Lα can beat the optimal Hill estimator, ξ̂H,
in the whole plane (ξ, ρ). The same conclusion holds when we compare ξ̂LRB

α

to the ξ̂CH EVI-estimator. In the simulation study presented in [16], for ξ̂Lα , the
authors noticed that the highest efficiency was obtained for large values of α, away
from the asymptotically optimal α. Therefore, further research on the choice of the
parameters α for the class of estimators ξ̂LRB

α is needed. It is important to compare
the simulated and asymptotically optimal α and to study heuristics to select the value
of the tuning parameter α.
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Hazard Rate and Future Lifetime
for the Generalized Normal Distribution

Thomas L. Toulias and Christos P. Kitsos

Abstract The target of this paper is to discuss a generalized form of the well-
known Law of Frequency Error. This particular Law of Frequency of Errors is
what is known as “Gaussian” or “Normal” distribution and appeared to have an
aesthetic appeal to all the branches of Science. The Generalized Normal Distribution
is presented as a basis to our study. We derive also the corresponding hazard function
as well as the future lifetime of the Generalized Normal Distribution (GND), while
new results are also presented. Moreover, due to some of the important distribution
the GND family includes, specific results can also be extracted for some other
distributions.

1 Introduction

The evolution of the well-known Normal Distribution (or Gaussian) from the well-
known Law of Frequency Error is essential. Galton in 1889 pointed out that: “I
know of scarcely anything so apt to impress the imagination as the wonderful form
of cosmic order expressed by the ‘Law of Frequency of Error’. The law would have
been personified by the Greeks and deified, if they had known of it.”, [5, pg.66]. This
particular Law appeared to have an aesthetic appeal to all the branches of Science,
since the time was first discussed in [2].

Gauss, not only in astronomical measurements, but also in geodesy (studying
the systematic errors of angle measurements) worked with what was latter named
“Gaussian” or “Normal” distribution [6]. The first attempt on the so important
Central Limit Theorem was by Abraham de Moivre in 1733 in [2] but, as usual,
this work did not receive special interest. Later in 1920, George Polya named the
method, [15]. Edgeworth, although more philosopher than a statistician, published
some work on Ethics and then his first paper on Statistics was in 1833 [3]. That was
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the basis of his work “The philosophy of chance” in 1884 in the 11th edition of
Encyclopedia Britannica, [4]. He introduced the terms “modulus” and “fluctuation”
(the

√
2σ and 2σ 2, respectively).

This short discussion is to prove the importance on the Normal distribution, even
in the early days. There were certainly attempts to provide a more general form
for the Normal, see [13], but these attempts were rather “technical” generalizing of
what a normal distribution includes, i.e. generalizing the coefficient or generalizing
the exponent. Only recently a generalized form emerged through the theoretical
background of the Logarithm Sobolev Inequalities.

Indeed, this generalized form of the Law of Frequency Error can be expressed
through an exponential power generalization of the usual multivariate Normal
distribution introduced by Kitsos and Tavoularis in [8], which has an information
theoretic background as it is derived through the study of a generalized Fisher’s
entropy type information measure.

This three-parameter distribution, called the γ -order Normal distribution (or
GND), is discussed in Sect. 2, while in Sect. 3, the hazard rate and the future lifetime
of the GND distribution family are derived and discussed.

2 The Generalized Normal Distribution

New entropy type information measures were introduced in [8], generalizing the
known Fisher’s entropy type information measure; see also [9–11, 16]. In principle,
the information measures are divided into three main categories: parametric (a
typical example Fisher’s information), non-parametric (with Shannon information
measure to be the most well known) and entropy type, see [11]. The information-
theoretic extraction of the p-variate γ -order Generalized Normal distribution (or
GND) is based on the generalized form of the well-known Fisher’s entropy type
information measure, see [8, 10] for details. Recall now the definition of the
probability distribution function (p.d.f.) of the GND family of distributions, [8]:

Definition 1 The p-variate random variable X follows the γ -order Generalized
Normal distribution, i.e. X ∼ N

p
γ (μ,Σ), with location parameter vector μ ∈ Rp,

shape parameter γ ∈ R \ [0, 1] and positive definite scale parameter matrix
Σ ∈ Rp×p, when the density function fX of X is of the form

fX(x) = fX(x; μ,Σ, γ, p) := CX exp
{
− γ−1

γ
QX(x)

γ
2(γ−1)

}
, x ∈ Rp, (1)

whereQX is the p-quadratic formQX(x) := (x −μ)Σ−1(x −μ)T, x ∈ Rp, while
the normalizing factor CX is defined as

CX = CX(Σ, γ, p) :=  
(p

2 + 1
)

πp/2  
(
p
γ−1
γ

+ 1
)√|Σ|

( γ−1
γ

)p γ−1
γ , (2)

where |A| := det A denotes the determinant of any A ∈ Rp×p.
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From the p.d.f. fX as above, notice that the location vector ofX is essentially the
mean vector of X, i.e. μ = μX := E(X). Moreover, for the shape parameter value
γ = 2, N p

2 (μ,Σ) is reduced to the well-known multivariate normal distribution,
where Σ is now the covariance of X, i.e. CovX = Σ . Recall that

CovX =
 
(
(p + 2) γ−1

γ

)

p  3
(
p
γ−1
γ

) ( γ
γ−1

)2 γ−1
γ Σ, (3)

for the positive definite scale matrix Σ; see [11]. In order to parameterize the GND
family such that the scale parameter matrix Σ to be the always the covariance of
each γ -order Normal distribution, i.e. N p

γ (μX,ΣX) with μX = E(X) and ΣX =
CovX, like the usual multivariate Normal distribution is expressed, the p.d.f. should
be of the form

fX(x) = fX(x; μX,ΣX, γ, p) := CX exp
{
−kpγ QX(x)

γ
2(γ−1)

}
, x ∈ Rp,

(4)

with QX(x) := (x − μX)Σ
−1
X (x − μX)

T, x ∈ Rp, where

kpγ :=
⎡
⎣ 
(
(p + 2) γ−1

γ

)

p  
(
p
γ−1
γ

)
⎤
⎦

γ
2(γ−1)

, (5)

while the normalizing factor CX should be then written in the form

CX = CX(ΣX, γ, p) := 1
2  (p/2)

√√√√√  
(
(p + 2) γ−1

γ

)

pπp  
(
p
γ−1
γ

)|ΣX|
( γ−1

γ

)(p−1) γ−1
γ −1

.

(6)

Various attempts to generalize the usual Normal distribution are known. The
introduced univariate γ -order Normal Nγ

(
μ, σ 2

)
coincides with the existent gener-

alized normal distribution in [13, 18]. Recall also the univariate power exponential
distribution PE (μ, σ, β), [1], with p.d.f.

f (x) = f (x; μ, σ, β) :=
exp

{
− 1

2

∣∣x − μ
σ

∣∣ 2
1+β
}

2
β+3

2 σ  
(β+3

2

) , x ∈ R. (7)

The multivariate case of the γ -order Normal N p
γ (μ,Σ) coincides with the existent

multivariate power exponential distribution PE p(μ,Σ ′, b), as introduced in [7],
where Σ ′ := 22(γ−1)/γΣ and b := 1

2γ /(γ − 1). See also [17].
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Note that the family of the N
p
γ distributions acts to the generalized form

of the Information Inequality just like the usual Normal distribution acts on the
usual Information Inequality, i.e. by providing the corresponding equality; see [8,
Cor. 3.2], [10, 16].

The family of N
p
γ (μ,Σ) distributions, i.e. the family of the elliptically con-

toured γ -order Generalized Normals, provides a smooth bridging between some
important multivariate (and elliptically countered) distributions. Indeed, [11]:

Theorem 1 For the elliptically contoured p-variate γ -order Normal distribution
N

p
γ (μ,Σ) with μ ∈ Rp and Σ ∈ Rp×p, we obtain the following special cases:

Case γ := 0. For the limiting case of the shape parameter γ → 0−, the
degenerate Dirac distribution D(μ) with pole at μ is derived in dimensions
p := 1, 2, while for p ≥ 3 the p.d.f. of N0(μ,Σ) is flattened (p.d.f. is everywhere
zero).

Case γ := 1. For the limiting case of γ → 1+, the elliptically contoured Uniform
distribution U p(μ,Σ) is obtained, which is defined over the p-ellipsoid A :
(x − μ)Σ−1(x − μ)T ≤ 1, x ∈ Rp.

Case γ := 2. For the “normality” case of γ := 2 the usual p-variate Normal
distribution N p(μ,Σ) is obtained.

Case γ := ±∞. For the limiting case of γ → ±∞, the elliptically contoured
Laplace distribution L p(μ,Σ) is derived.

We clarify that, according to Probability Theory, the term “elliptically contoured”
distributions refers to multivariate distributions where their corresponding density
functions are formed by quadratic functions, like QX as in the definition (1).
This means that the “sliced” intersection of the p-dimensional hyper-surface of an
elliptically contoured p.d.f., embedded in a (p + 1)-dimensional Euclidean space,
with a p-dimensional hyper-plane corresponding each time to the probability level
p ∈ [0, 1], forms a (p − 1)-ellipsoid. For the special case of Σ := σ 2Ip, the
p-ellipsoids above are reduced to p-spheres and the corresponding multivariate
distribution is said to be a “spherically contoured” distribution.

One of the merits of the Nγ family is that it can provide “heavy-tailed”
distributions as the change of shape parameter γ influences the “probability mass” at
the tails. This makes the introduced shape parameter important to the Risk Analysis,
as the “risk” is known relevant to the shape parameter. Practically, it is easy to
understand that only in case γ = 2 the confidence intervals are “confidence” at the
chosen significant level. Otherwise we have to adjust the confidence interval, with
the appropriate new standard deviation, for the chosen shape parameter; see [11].

Throughout this paper we shall use the notation g = g(γ ) := (γ − 1)/γ , γ ∈
R \ [0, 1].

The cumulative distribution function (c.d.f.) of the GND, as in (1), can be
calculated as, [12],

FX(x) = 1 −  
(
g, gz1/g

)
2 (g)

, z = z(x; μ, σ) := x − μ
σ , x ∈ R. (8)
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Alternatively, using positive arguments for the upper (complementary) incomplete
gamma function  (a, x), x ∈ R, a ∈ R+ (which is more computationally oriented
approach), it holds that

FX(x) = 1+sgn z
2 − (sgn z)

 
(
g, g|z|1/g)
2 (g)

, x ∈ R. (9)

In such a case, the quantile function is then given by

QX(P) := inf
{
x ∈ R : FX(x) ≥ P

}

= sgn(2P − 1)σ
[

1
g
 −1(g, |2P − 1|)

]g
, P ∈ (0, 1). (10)

Table 1 provides the probability valuesFX(x) = Pr{X ≤ x}, x = −3,−2, . . . , 3,
of an r.v. X ∼ Nγ (0, 1) for various shape parameter γ values. The column
for x = 0 is omitted as FX(0) = 1/2 for every X ∼ Nγ (0, 1) (recall that
Nγ (0, 1) is a symmetric distribution around its mean 0). Moreover, the last two
columns provide the 1st and 3rd quartile points QX(1/4) and QX(3/4) of X, i.e.
Pr
{
X ≤ QX(k/4)

} = k/4, k = 1, 3, for various γ values. Indeed, ‘heavy-tailed”
distributions are obtained, as γ value increases towards +∞, with the probability
mass increasing until it reaches the corresponding probability values of the Laplace
distribution L (0, 1); see, for example, the FX(k), k = −3,−2,−1, values in
Table 1 which correspond to the left tail probability mass values of Nγ>0(0, 1).
Such comments might be proved helpful to a researcher who tries to see the Risk

Table 1 Probability mass values FX(x) for various x ∈ R as well as the 1st and 3rd quartiles
QX(1/4), QX(3/4), for certain r.v. X ∼ Nγ (0, 1)

γ FX(−3) FX(−2) FX(−1) FX(1) FX(2) FX(3) QX

( 1
4

)
QX

( 3
4

)

−50 0.0260 0.0690 0.1846 0.8154 0.9310 0.9740 −0.6936 0.6936

−10 0.0304 0.0742 0.1869 0.8131 0.9258 0.9696 −0.6951 0.6951

−5 0.0357 0.0802 0.1895 0.8105 0.9198 0.9643 −0.6967 0.6967

−2 0.0502 0.0950 0.1958 0.8042 0.9050 0.9498 −0.7004 0.7004

−1 0.0699 0.1131 0.2030 0.7970 0.8869 0.9301 −0.7042 0.7042

−1/2 0.0970 0.1361 0.2116 0.7884 0.8639 0.9030 −0.7082 0.7082

−1/10 0.1656 0.1889 0.2299 0.7701 0.8111 0.8344 −0.7142 0.7142

1 0 0 0 1 1 1 −0.5 0.5

2 0.0013 0.0228 0.1587 0.8413 0.9772 0.9987 −0.6745 0.6745

3 0.0071 0.0402 0.1699 0.8301 0.9598 0.9929 −0.6833 0.6833

4 0.0112 0.0480 0.1742 0.8258 0.9520 0.9888 −0.6865 0.6865

5 0.0138 0.0523 0.1765 0.8235 0.9477 0.9862 −0.6881 0.6881

10 0.0193 0.0604 0.1805 0.8195 0.9396 0.9807 −0.6909 0.6909

50 0.0238 0.0663 0.1833 0.8167 0.9337 0.9762 −0.6927 0.6927

±∞ 0.0249 0.0677 0.1839 0.8161 0.9323 0.9751 −0.6931 0.6931
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for some “heavy tailed” data set. He has, firstly, to evaluate the appropriate shape
parameter, and then form confidence intervals and risk levels. Moreover, as γ
value decreases towards 0, the probability mass is further increasing towards the
degenerate Dirac distribution D(0); see, for example, the corresponding FX(k),
k = −3,−2,−1, values for the left tail probability mass values of Nγ<0(0, 1).

We shall try now to clarify to practitioners, and not only, how the GND “includes”
a number of other distributions. This is not very common in practice, where “one”
distribution is assumed. That is, the benefit here—depending on the data set—is
that the shape parameter “forms” the appropriate distribution which fits the data.
Figure 1 illustrates Theorem 1 withXγ ∼ Nγ (0, 1) in a compact form, by depicting
a surface formed by all the c.d.f. curves FXγ (x), x ∈ [−3, 3], for every γ ∈
[−10, 0) ∪ [1, 10]. The known c.d.f. of the Uniform (γ = 1) and Normal (γ = 2)
distributions are also depicted. The c.d.f. of Nγ=±10(0, 1), which approximates the
Laplace distribution L (0, 1) = N±∞(0, 1), as well as the c.d.f. of N−0.005(0, 1),
which approximates the degenerate Dirac distribution D(0), are clearly presented.
Notice the smooth-bringing of FXγ between these significant distributions which are
included into the Nγ family of distributions for γ ∈ R ∪ {±∞} \ (0, 1). Moreover,
upon the formed surface, the quantile functions QXγ (P ) are depicted as curves
parameterized by γ ∈ [−10, 10], for P := 0.05, 0.1, . . .0.95, while the 1st and 3rd
quartile curves QXγ (1/4) and QXγ (3/4) are distinguished.

Fig. 1 Surface graph of all the c.d.f.-s FXγ (x) along x ∈ [−3, 3] and γ ∈ [−10, 10], where
Xγ ∼ Nγ (0, 1), as well as the quantile curves QXγ (P ), P ∈ [0, 1]
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3 Hazard Rate and Future Lifetime for the GND

Consider a continuous random variable Y having c.d.f. G(y) and p.d.f. g(y), such
that G(0) := 0. The conditional p.d.f. of Y given that Y > y, say h(y), is

Pr(Y |Y > y) = h(y) = g(y)

1 −G(y)
, y > 0, (11)

is known as the hazard rate or Failure rate, so that to give emphasis that this
conditional p.d.f. describes survival time distributions, given that an individual
survey occurs at time y. Two are the classified distributions:

1. ICR = Increasing Failure Rate, and
2. DFR = Decreasing Failure Rate.

Typical example of IFR is the half-Normal distribution with failure rate equal to

1
σ φ(x/σ)

[
1 −!(x/σ)

]
, x > 0. (12)

When σ := 1 the reciprocal failure is known as Mill’s ratio. For a list of p.d.f.-s and
the corresponding risk in Benchmark Dose Analysis, applied in Cancer problems,
see [14]. Based on this introductory comments we try to extend the failure rate to
the introduced GND. It is clear that the evaluation of the hazard rate of the GND
will include, due to Theorem 1, the hazard rates of all the related distributions with
it. Indeed, for the hazard rate and the cumulative hazard rate of the GND we have
the following:

Proposition 1 The hazard rate hX of a univariate γ -order normally distributed r.v.
X ∼ Nγ

(
μ, σ 2

)
is given by

hX(x) = gg−1 e−g|z|1/g

σ  
(
g, gz1/g

) , x ∈ R. (13)

The corresponding inverse hazard function hinv
X , of r.v. X is given by

hinv
X (x) = gg−1 e−g|z|1/g

σ  (g)+ σγ
(
g, gz1/g

) , x ∈ R, (14)

where γ (·, ·) denotes the lower incomplete gamma function. Alternatively, using
positive arguments for the upper/lower incomplete gamma function we obtain

hX(x), h
inv
X (x) = gg−1 e−g|z|1/g

σ  (g)± (sgn z)σγ
(
g, g|z|1/g) , x ∈ R, (15)

where the minus sign corresponds to the hazard rate function while the plus sign to
the inverse hazard rate function.
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Proof From the definition of the hazard rate hX := fX/(1 − FX) and the inverse
hazard rate hinv

X := fX/FX of an r.v. X, we derive through (1), (8), and the fact that
γ (a, x) :=  (a) −  (a, x), x ∈ R, a ∈ R+, the requested forms (13) and (14),
respectively. Moreover, using positive arguments for the upper/lower incomplete
gamma function through (9), we finally obtain (15).

Based on Proposition 1, the cumulative hazard function can be evaluated. Recall
that the reliability function is the ratio f/h. Therefore a generalized form of
reliability R(t) = f (t)/h(t), t ∈ R+, can be produced. This needs further
investigation, and we shall produce it elsewhere. Our target here is the study of
the hazard function of the GND.

Proposition 2 The cumulative hazard function HX of an r.v. X ∼ Nγ (μ, σ
2) is

given by

HX(x) = − log
 
(
g, gz1/g

)

2 (g)
, x ∈ R. (16)

Alternatively, we derive that

HX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− log

{
1 −  

(
g, g|z|1/g)
2 (g)

}
, for x ≤ μ,

− log
 
(
g, gz1/g

)
2 (g)

, for x > μ.

(17)

See Appendix for the proof.
As a result the average hazard rate of X ∼ Nγ

(
μ, σ 2

)
between the points x1 <

x2 can then be given, through (16). Indeed:

h
avg
X (x1, x2) := avg(h)x2

x1
= 1
x2 − x1

∫ x2

x1

hX(x) d x = − 1
(x2 − x1)

log
 
(
g, gz

1/g
2

)

 
(
g, gz

1/g
1

) ,

where zi = zi(xi) := (xi − μ)/σ , i = 1, 2.
The following two examples clarify our claim that the hazard rates of some

well-known distributions have been evaluated, due to Proposition 1. In particular,
the hazard rates of the Laplace and the Uniform distributions are provided in the
following.

Example 1 For the Laplace distributed r.v. X ∼ N±∞
(
μ, σ 2

) = L (μ, σ ), using
the fact that  (1, x) = e−x , x ∈ R, the corresponding hazard and inverse hazard
rates, as in (13) and (14), for γ → ±∞, or g → 1+, can be written as

hX(x) =
⎧⎨
⎩

1
σ

e2(x−μ)/σ , for x ≤ μ,

1/σ, for x > μ,

and (18)
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hinv
X (x) =

⎧⎪⎪⎨
⎪⎪⎩

e2(x−μ)/σ

2σ e(x−μ)/σ − σ
, for x ≤ μ,

1

2σ e(x−μ)/σ − σ
, for x > μ,

(19)

respectively, which are the hazard and inverse hazard rates of the Laplace distribu-
tion, as expected, while the corresponding cumulative hazard function is then given,
through (17), by

HX(x) =

⎧⎪⎨
⎪⎩
− log

{
1 − 1

2 e(x−μ)/σ
}
, for x ≤ μ,

log 2 + x − μ
σ , for x > μ.

(20)

Notice that the value of z = z(x) := (xμ)/σ , x ∈ R, is essential for the above
formulas.

Example 2 The hazard function of the Uniform distribution can be derived as
special case from (13). For the uniformly distributed r.v. X ∼ U (a, b), recall
from Theorem 1 that X ∼ N1

(
μ, σ 2

) := limγ→1+ Nγ

(
μ, σ 2

) = U (a, b),
where μ := (a + b)/2 and σ := (b − a)/2. Recall also the p.d.f. of a p-
variate Uniform distributed r.v. X ∼ U p(μ,Σ), which is formulated by fX(x) :=
π−p|Σ|−1/2  

(
1+p/2), x ∈ A, whereA : Q(x) ≤ 1, which is the area inside a p-

ellipsoid defined by the quadratic function Q as in (1); see [10]. The corresponding
p.d.f. of univariate (p := 1) r.v. X is then fX(x) = 1/(2σ), x ∈ [μ − σ, μ + σ ].
The above p.d.f. can be written alternatively as fX(x) = 1/(b − a), x ∈ [a, b],
which is the usual formulation of the uniform distribution U (a, b). Moreover, the
c.d.f. of X ∈ U (a, b) can be found from (8) for γ → 1+, i.e. for g → 0+. In order
to extract the c.d.f., consider the following limit:

lim
z→0

γ (a, z)

za
= 1
a , z ∈ R, a ∈ R+. (21)

Through the known relation between upper and lower incomplete gamma function,
i.e.

γ (a, z) =  (a)−  (a, z), z, a ∈ R, (22)

(21) implies that

 (a, z)
z→0≈  (a)− 1

a z
a, z ∈ R, a ∈ R+, (23)

and thus

g  
(
g, gz1/g) gz1/g→0≈  (g + 1)− ggz, z ∈ R, a ∈ R+. (24)
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Assuming that |z| := |(x − μ)|/σ ≤ 1, or equivalently x ∈ [μ − σ, μ + σ ], then
g → 0+ implies that gz1/g → 0+. Therefore, (24) yields

lim
g→0+g  

(
g, gz1/g) = 1 − z, z := x − μ

σ ∈ R. (25)

Let Xγ ∼ Nγ (μ, σ
2), γ ∈ R \ [0, 1]. From Theorem 1 we can then be reduced

from r.v. Xγ to X ∼ U (a, b) in limit, as FX = limγ→1+ FXγ . Hence from (8) we
obtain, through (25), that

FX(x) = 1− 1
2 lim
g→0+

g  
(
g, g

(x − μ
σ

)1/g) = 1− 1
2

(
1− x − μ

σ

)
, x ∈ [μ−σ, μ+σ ],

and since μ := (a + b)/2 and σ := (b − a)/2, the above expression gives the
well-known formula of the c.d.f. of a uniformly distributed r.v. X ∼ U (a, b), i.e.

FX(x) = x − μ+ σ

2σ
= x − a

b − a
, x ∈ [a, b]. (26)

Therefore, the hazard rate of X ∼ U (a, b) is finally of the form

hX(x) = fX(x)

1 − FX(x)
= 1

μ+ σ − x
= 1

b − x
, x ∈ [a, b], (27)

while the inverse hazard rate is then given by

hinv
X (x) = fX(x)

FX(x)
= 1

x − μ+ σ
= 1

x − a
, x ∈ [a, b]. (28)

Notice the symmetry in (27) and (28), and the already well-known result in (26),
as these results are reduced from the generalized form in (8), since the GND family
includes also the Uniform distribution.

Figure 2 illustrates the surface formed by all the hazard rates curves hXγ (x),
x ∈ [−3, 3], for every γ ∈ [−10, 0) ∪ [1, 10] where Xγ ∼ Nγ (0, 1). The
hazard rate of the Uniform (γ = 1) and Normal (γ = 2) distributions is clearly
depicted. Moreover, the hazard rate of Nγ=±10(0, 1), which approximates the
Laplace distribution L (0, 1) = N±∞(0, 1), as well as the one of N−0.005(0, 1),
which approximates the degenerate Dirac distribution D(0), is also distinguished.

Another essential measure in Risk Analysis is the future lifetime. The future
lifetime is the time remaining until death, given survival to age x0. In reliability
theory the terminology holds for humans, animals and machines. Given age x0 = 0
(i.e. the age of birth, or the time someone just bought a new machine) it is clear that
the expected future lifetime equals to the expected lifetime (for the human or for the
machine). Sometimes in Industry, the Reliability term of “expected future lifetime”
is replaced by “mean residual time”. We proceed the application for the GND.
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Fig. 2 Surface graph of all the hazard rates hXγ (x) along x ∈ [−3, 3] and γ ∈ [−10, 10], where
Xγ ∼ Nγ (0, 1)

Proposition 3 The future lifetime r.v.X0 at point x0 ∈ R of an r.v.X ∼ Nγ

(
μ, σ 2

)
has a density function of the form

fX0(x) =
gg−1 exp

{
−g ∣∣ xσ + z0

∣∣1/g}

σ  
(
g, gz

1/g
0

) , z0 := x0 − μ
σ , x ∈ R, (29)

while the c.d.f. is given by

FX0(x) = 1 −
 
(
g, g

( x
σ + z0

)1/g)

 
(
g, gz

1/g
0

) , x ∈ R, (30)

The corresponding expected future lifetime is then given by

E(X0) = 2(μ− x0)  (g)

 
(
g, gz

1/g
0

) . (31)

See Appendix for the proof.
However, for a more physical meaning it is preferable to consider future lifetime

which is related to an r.v. T with a (left) threshold at point 0, in order T − t0 to
represent the time remaining until failure given survival until time t0 ∈ R+. The
following proposition calculates the future lifetime of a generalized half-normal r.v.
(having zero threshold) which is related to the GND. For this reason, we define the
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γ -order half-normal generalized distribution (GHND) to be the distribution of an
r.v. |X| when X ∼ Nγ

(
0, σ 2

)
. We can then write that |X| ∼ HN γ

(
σ 2
)
. Trivially,

HN 2
(
σ 2
)

is the usual half-normal distribution denoted here with HN
(
σ 2
)
. Note

that, in case the mean of X is not zero, i.e. when X ∼ Nγ

(
μ, σ 2

)
, then |X| ∼

FN γ

(
μ, σ 2

)
meaning that r.v. |X| follows now the Folded Normal distribution.

For the future lifetime of a GHND we obtain the following.

Proposition 4 The future lifetime r.v. T0 at time t0 ∈ R+ of a γ -order half normally
distributed r.v. T ∼ HN γ

(
σ 2
)

has a density function of the form

fT0(t) =
2gg−1 exp

{
−g
(
t0 + t
σ

)1/g
}

σ  
(
g, g(t0/σ)1/g

) , t ∈ R+, (32)

while the c.d.f. is given by

FT0(t) = 1 −
 
(
g, g

( t0 + t
σ

)1/g)

 
(
g, g(t0/σ)1/g

) , t ∈ R+, (33)

The corresponding expected future lifetime is then given by

E(T0) = σ  
(
2g, g(t0/σ)1/g

)

gg  
(
g, g(t0/σ)1/g

) − t0. (34)

See Appendix for the proof.

4 Discussion

In this paper, we study and calculated the hazard rate and the future life time, as well
as the functions related to them, for the GND. The evaluated functions in (11), (12),
(14), and (15) hold for all shape parameters γ . Certain values of the shape parameter
lead to Laplace and Uniform distributions, and this is discussed in Examples 1 and 2.
In Example 1 we came across well-known results, as it is a “simple” case of the
GND family. The future lifetime, and the relevant material, is essential also in Risk
Analysis, as well as in Reliability Theory. More general results were obtained, while
the procedure is: choose the shape parameter, along with the appropriate mean and
variance, and then calculate the corresponding produced results.
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Appendix

Proof (of Proposition 2) Considering the definition of the cumulative hazard
functionHX := ∫ hX for an r.v. X, and the fact that

d
d x

(
log SX

) = S′
X

SX
= −fX

SX
= −hX,

where SX := 1 − FX denotes the survival function for a r.v. X, we obtain that

HX(x) :=
∫ x

−∞
hX(u) d u = [− log SX(u)

]x
u=−∞ = − log SX(x), x ∈ R,

and applying (8) and (9) we finally derive (16) and (17), respectively.

Proof (of Proposition 3) Recall that the future lifetime at time t0 ∈ R+ is defined to
be the time remaining until failure (or death), given survival until time t0. Let Xt0 ,
or X0, be an r.v. describing the future lifetime of a system described by an r.v. X
at time t0, i.e. X0 := X − t0 provides the time to failure (of a system with r.v. X)
at, or before, time t + t0 given survival until time t0. The c.d.f. of X0, which is the
probability of failure at, or before, time t + t0 given survival until time t0, is then
written in the form

FX0(t) := Pr
(
X ≤ t + t0

∣∣ X > t0
) = Pr

(
t < X ≤ t + t0

)

Pr
(
X > t0

) = FX(t0 + t)− FX(t0)

SX(t0)
,

(35)

for t ∈ R+, while the future lifetime probability density of X0 is then

fX0(t) := d
d t FX0(t) =

fX(t + t0)

SX(t0)
, t ∈ R+. (36)

Assuming now that X ∼ Nγ

(
μ, σ 2

)
and t0 := x0 ∈ R, the expressions (29)

and (30) are derived from (36) and (35), through (1) and (8), respectively.
The corresponding expected future lifetime of X0 at x0 ∈ R is then given,

according to (36), by

E(X0) :=
∫

R

xfX0(x) d x = 1

SX(x0)

∫

R

xfX(x + x0) d x. (37)

Using the linear transformation u = u(x) := x + x0, x ∈ R, we obtain

E(X0) = 1

SX(x0)

∫

R

(u− x0)fX(u) d u = μ− x0

SX(x0)
,

and thus (31) is derived by substituting (8) to the above.
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Proof (of Proposition 4) The p.d.f. fT of r.v. T := |X| can be easily expressed
as fT = 2fX, where fX denotes the p.d.f. of the r.v. X ∼ Nγ

(
0, σ 2

)
. The

corresponding c.d.f. FT can also be expressed through the c.d.f. FX, as

FT (t) :=
∫ t

0

fT (u) d u = 2
∫ t

−∞
fX(t) d t − 2

∫ +∞

−∞
fX(t) d t = 2FX(t)− 1, t ∈ R+,

(38)

and through (8) we obtain

FT (t) = 1 −  
(
g, g(t/σ )1/g

)

 (g)
, t ∈ R+, (39)

while the survival function ST of T is given by

ST (t) =  
(
g, g(t/σ )1/g

)

 (g)
, t ∈ R+. (40)

According now to (36) and (35) we easily derive respectively, through (1), (39),
and (40), the requested expressions (32) and (33).

The corresponding expected future lifetime of T0 at t0 ∈ R is given, similarly
to (37), by

E(T0) = 1

ST (t0)

∫

R+
tfT (t + t0) d t = 1

ST (t0)

∫ +∞

t0

(u− t0)fT (u) d u,

where u = u(t) := t + t0. t ∈ R+. Integrating by parts, the above is written as

E(T0) = 1

ST (t0)

[
(t − t0)FT (t)

]+∞
t=t0 − 1

ST (t0)

∫ +∞

t0

FT (t) d t

= 1

ST (t0)

(
lim

t→+∞t
)

− t0 − 1

ST (t0)

∫ +∞

t0

FT (t) d t

= 1

ST (t0)

∫ +∞

t0

1 − FT (t) d t = 1

ST (t0)

∫ +∞

t0

ST (t) d t = I (t0)

 
(
g, g(t0/σ)1/g

) ,
(41)

where

I (t0) :=
∫ +∞

t0

 
(
g, g(t/σ )1/g

)
d t = g1−gσ

∫ +∞

u0:=u(t0)
ug−1  (g, u) d u,
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and u = u(t) := g(t/σ )1/g , t ∈ R+. Integration by parts yields

I (t0) = g−gσ
[
ug  (g, u)

]+∞
u=u0

− g−gσ
∫ +∞

u0

ug d  (g, u). (42)

Recall the known limit

lim
u→+∞

 (g, u)

ug−1 e−u
= 1, (43)

which implies that

lim
u→+∞u

g  (g, u) = lim
u→+∞

u2g−1

eu
= 0,

and through (22), the definite integral I (t0) in (42) can be written successively as

I (t0) = −(u0/g)
gσ  (g, u0)− g−gσ

∫ +∞

u0

ug d γ (g, u)

= −(u0/g)
gσ  (g, u0)− g−gσ

∫ +∞

u0

u2g−1 e−u d u. (44)

Splitting now the definite integral of (44) into
∫ +∞

0 − ∫ u0
0 and apply the definitions

of the gamma and the lower incomplete gamma functions respectively, we obtain

I (t0) = −(u0/g)
gσ  (g, u0)+ g−gσ

[
 (2g)− γ (2g, u0)

]
,

and using (22) again,

I (t0) = −(u0/g)
gσ  (g, u0)+ g−gσ  (2g, u0). (45)

Finally, substituting u0 := u(t0) = g(t0/σ)
1/g into (45), and then applying (45)

into (41), the requested expected future lifetime of T0 at time t0 ∈ R+ is then given
by (34).
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Wavelet-Based Detection of Outliers
in Poisson INAR(1) Time Series

Isabel Silva and Maria Eduarda Silva

Abstract The presence of outliers or discrepant observations has a negative
impact in time series modelling. This paper considers the problem of detecting
outliers, additive or innovational, single, multiple or in patches, in count time series
modelled by first-order Poisson integer-valued autoregressive, PoINAR(1), models.
To address this problem, two wavelet-based approaches that allow the identification
of the time points of outlier occurrence are proposed. The effectiveness of the
proposed methods is illustrated with synthetic as well as with an observed dataset.

1 Introduction

Time series, as any other data, may contain outliers which are observations that look
discordant from most of the observations in the dataset. Neglecting the presence of
outliers in a time series hinders statistical inference, leading to model misspeci-
fication and biased parameter estimation. Since the seminal work of Fox [7] two
major approaches for dealing with outliers in time series may be distinguished. One
approach advocates the use of robust estimators to reduce the effect of the outlying
observations. However, this approach often leads to ignoring observations hence
eventually masking the presence of important underlying phenomena, precluding
risk analysis. Alternatively, several methodologies for detecting and estimating
outliers and other intervention effects have been established for ARMA models.
The emphasis has been on iterative procedures and likelihood based statistics, see,
for instance, Chang et al. [5], Chen and Liu [6] and Tsay [17]. Also several tailored
procedures have been proposed to some nonlinear time series models. However, the
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problem of detection and estimation of outliers in time series of counts has received
less attention in the literature. Count time series occur in many areas such as
telecommunications, actuarial science, epidemiology, hydrology and environmental
studies where the detection of outliers may be invaluable in risk assessment.

One of the most popular classes of models for time series of counts is the class of
INAR models proposed by Al-Osh and Alzaid [1] and McKenzie [11], extensively
studied in the literature and applied to many real-world problems because of its
easiness of interpretation. These models are apparently autoregressive models in
which the usual multiplication has been replaced by a random operation, called
thinning operation (for details, see Scotto et al. [13]) and the innovations are
discrete-valued random variables. Barczy et al. [2, 3] proposed Conditional Least
Squares estimation of the INAR(1) model parameters contaminated with outliers
additive and innovational, assuming that the time points of the outliers occurrence
are known, but their sizes are unknown. Recently, Silva and Pereira [15] suggested
a Bayesian approach in order to detect additive outliers in PoINAR(1) models.

In this work, procedures to identify the times of outlier occurrence in PoINAR(1)
time series using wavelets are proposed. Wavelets are basis functions that combine
properties such as localization in time and scale, orthonormality, different degrees of
smoothness, compact support and fast implementation, for details see Percival and
Walden [12]. In particular, Discrete Wavelet Transform (DWT), which is a powerful
tool for a time-scale multi-resolution analysis, is applied. DWT can be considered as
filters of different cut-off frequencies used to analyse a signal at different scales. In a
first approach, similar to that of Grané and Veiga [8], the so-called detail coefficients
derived from DWT, using the Haar wavelet, are compared with a threshold. In a
second approach, the parametric resampling method of Tsay [18] is used in order to
obtain the empirical distribution of these detail coefficients.

The remainder of this work is organized as follows. Section 2 presents the first-
order Poisson Integer-valued AutoRegressive model contaminated with additive and
innovational outliers. A brief description of wavelets and DWT is given in Sect. 3.
The proposed wavelet-based procedures to detect time of outlier occurrence are
explained in Sect. 4. The proposed procedures are illustrated and compared with
synthetic data in Sect. 5. Furthermore, the methods are also applied on an observed
dataset. Finally, Sect. 6 concludes the paper.

2 Poisson INAR(1) Model Contaminated with Outliers

Motivated by the need of modelling correlated series of counts, several models
for integer-valued time series were proposed in the literature. One of them is the
INteger AutoRegressive model proposed by Al-Osh and Alzaid [1] and McKenzie
[11]. This model is based on the binomial thinning operation, proposed by Steutel
and Van Harn [16], which is defined on a non-negative integer-valued random

variable X by α ◦ X =
X∑
k=1

Yk, where α ∈ [0, 1] and {Yk}, k = 1, . . . , X,
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is a sequence of independent and identically distributed (i.i.d.) Bernoulli random
variables, independent of X, with P(Yk = 1) = 1 −P(Yk = 0) = α. This sequence
is called the counting series of α◦X.Note that, α◦X|X ∼ Bi(X, α). For an account
of the properties of the thinning operation, see Silva and Oliveira [14].

Let {Xt } be a discrete time, positive integer-valued stochastic process. It is said
to be a PoINAR(1) process if it satisfies the following equation,

Xt = α ◦Xt−1 + et , (1)

where et ∼ Poisson(λ), is the so-called arrival process, 0 < α < 1, and for each t,
all counting series of α ◦ Xt−1 are mutually independent and independent of {et }.
Under these conditions, the process is strictly stationary and Xt ∼ Poisson( λ

1−α ) if

X0 ∼ Poisson( λ
1−α ).

A time series is affected by an additive outlier (AO) if an external error or
exogenous change occurs on a certain time point, affecting only this observation and
not entering the dynamics of the process. Formally, a contaminated PoINAR(1)with
I ∈ N additive outliers with magnitude ωi ∈ N at time points si ∈ N, i = 1, . . . , I
can be defined as follows:

Yt = Xt +
I∑
i=1

δi,si ωi ,

where Xt is a PoINAR(1) model satisfying (1) and δk,m = 1, if k = m; δk,m = 0,
if k �= m, is an indicator function.

On the other hand, an innovational outlier (IO) can be considered as an
internal change or endogenous effect on the noise process, affecting all subsequent
observations. Thus, the observed time series Y1, . . . , Yn is a PoINAR(1) process
contaminated with I ∈ N innovational outliers with size ωi at time points si , i =
1, . . . , I if it satisfies the following equation

Yt = α ◦ Yt−1 + ηt ,

with ηt = et +
I∑
i=1

δi,siωi , where et ∼ Poisson(λ) and I, si , ωi and δk,m are defined

as before.
Note that in both cases, the underlying outlier free process Xt is unobserved.

3 Brief Description of Discrete Wavelet Transform

A wavelet is a function that can be considered as a small wave which grows and
decays in a limited time period, for details see Percival and Walden [12]. Similarly
to Fourier analysis that uses sinusoidal functions to find the frequency components
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contained in a signal, wavelet analysis uses shifted and scaled versions of a so-
called wavelet mother to provide the time localization of each spectral component.
Formally, a (mother) wavelet is any real-valued function ψ(·) defined on R

satisfying
∫∞
−∞ ψ(u) du = 0,

∫∞
−∞ ψ2(u) du = 1, and 0 <

∫∞
0

|Ψ (f )|2
f

df <∞,

where Ψ (f ) = ∫∞
−∞ ψ(u) e−i 2π f u du is the Fourier transform of ψ(·).

Following Percival and Walden [12], let X = {Xt, t = 0, . . . , N − 1} be a time
series (or signal), with N = 2J , J ∈ N. The DWT coefficients W = {Wn, n =
0, . . . , N − 1} are defined by

W = W X ⇔ [W1 . . .WJ VJ ]T = [W1 . . .WJ VJ ]TX,

where W is an N × N orthonormal matrix of dilations and translations of the

mother wavelet ψ(·), defined as
1√
d
ψ

(
u− t

d

)
with dilation d and translation t

parameters taking dyadic values, i.e., d = 2j and t = k2j , for j, k ∈ Z. Note that,
for j = 1, . . . , J, Wj is a column vector with N/2j elements that contains all the
DWT coefficients for scale τj = 2j−1, VJ contains the scaling coefficients WN−1,

associated with average on scale dJ = 2J , Wj has dimension N/2j ×N and VJ is
1 ×N.

The wavelet coefficients of white noise or Gaussian data are themselves white
noise or Gaussian random variables, respectively, see Percival and Walden [12].
Furthermore, as referred by Bilen and Huzurbazar [4] and Percival and Walden
[12], wavelet coefficients in Wj are approximately uncorrelated even when the
data is highly correlated and they allow the reconstruction of the time series. The
synthesis of X (inverse DWT) is given by X = W TW =∑J

j=1 W
T
j Wj +V T

J VJ =∑J
j=1 Dj + AJ , where Dj is called the j th level wavelet detail and AJ has all its

elements equal to the sample mean of the time series. For 1 ≤ j ≤ J − 1, the
j th level wavelet smooth is Aj = ∑J

k=j+1 Dk + AJ , and can be considered as an
approximation (smoother version) of X.

In practice, the discrete wavelet transform (DWT) matrix W is computed through
a so-called pyramid algorithm introduced by Mallat [9] that uses linear filtering
and downsampling operations. More specifically, for a even width L, consider a
wavelet filter {hl : l = 0, . . . , L − 1}, which is a high-pass filter, and a scaling
filter gl = (−1)l+1hL−1−l , that is a low-pass filter. In the first step of the pyramidal
algorithm, two sets of coefficients are produced by the convolution of X with the
low-pass filter {gl} (producing the first level approximation coefficients cA1) and
with the high-pass filter {hl} (deriving the first level detail coefficients cD1), and
then a downsample is performed (retain every other filtered value). The next step
divides the first level approximation coefficients in two sequences using the same
procedure, replacing X by cA1 and computing cA2 and cD2. Therefore, at level j,
the decomposition of X has the following structure [cAj , cDj , cDj−1, . . . , cD1].

The detail coefficients capture certain features of the time series, such as
sudden changes, peaks, or spikes, presenting large values in the presence of these
singularities, and therefore they can be used to detect outliers. In general, the first
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level of decomposition is enough to analyse time series contaminated with outliers
Bilen and Huzurbazar [4] and Grané and Veiga [8].

There are many mother wavelets. In this work, the Haar wavelet (among the many
mother wavelets) is used. Since it can be considered as a square wave defined by

ψ(t) =
⎧⎨
⎩

−1/
√

2, −1 ≤ t ≤ 0
1/

√
2, 0 < t ≤ 1

0, otherwise,

the Haar wavelet is more suitable for count data. In this case, low-pass filters
correspond to moving averages of the observations and high-pass filters correspond
to moving differences of the observations.

4 Procedures to Detect the Time of Outliers Occurrence

In this section, two wavelet-based methods for detecting the time of occurrence of
outliers in PoINAR(1) processes are described. The procedures can be summarized
in the following steps:

Step 1 Given an observed time series of counts, Y = {Yt , t = 0, . . . , N}, fit a
PoINAR(1) model and compute the resulting Pearson residuals1 Z = {ẑt , t =
1, . . . , N − 1}, given by ẑt = Yt − (α̂Yt−1 + λ̂)√

α̂(1 − α̂)Yt−1 + λ̂

.

Step 2 The DWT is applied to the Pearson residuals to obtain the first level detail
coefficients, cD1 = (d1, d2, . . . , dN/2).

Step 3a Threshold approach:

(i) Set the threshold ka1 (discussed in Sect. 4.1).
(ii) The set of (ordered) indices, S = {s1, . . . , sI }, containing the positions of the

detail coefficients which are above the threshold ka1 is obtained. As in Grané
and Veiga [8], the problem of masking2 is avoided by searching the outliers
recursively. This means that for each outlier detected, Z is reconstructed
applying the inverse discrete wavelet transform (IDWT) to modified detail
coefficients where the largest (in absolute value) detail coefficient above
the threshold is set to zero. The procedure ends when no more outliers are
detected.

1Zt = Yt−E[Yt |Yt−1]√
Var(Yt |Yt−1)

.

2Masking occurs when one outlier prevents others from being detected.
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Step 3b Parametric resampling approach:

(i) Compute the acceptance envelope (discussed in Sect. 4.2).
(ii) The set of (ordered) indices, S = {s1, . . . , sI }, containing the positions of the

detail coefficients which are outside of the acceptance envelope is calculated.

Step 4 The exact position of the outlier in the residual series is obtained as in
Grané and Veiga [8]: let s be a generic element of S, compute the sample mean of

Z without the observations 2s and 2s − 1, given by z̄N−2 = 1

N − 2

∑
i �=2s,2s−1

ẑi;

the time of the outlier occurrence in the residual series is 2s if |ẑ2s − z̄N−2| >
|ẑ2s−1 − z̄N−2|, or equal to 2s − 1 otherwise.

As noted by Bilen and Huzurbazar [4] and Grané and Veiga [8], the first
level coefficients detect only the beginning of an outliers patch and therefore,
when searching for patches of outliers it is necessary to use the second level
detail coefficients, cD2. Thus, in Step 3a there are two thresholds ka1

1 and k
a2
2 ,

corresponding to the first and second levels of detail coefficients, respectively.
Similarly, there are two acceptance envelopes, one for cD1 and one for cD2, in
Step 3b.

4.1 Setting the Threshold

In the non-Gaussian context of this work, there are no results available for the
distribution of the detail coefficients. Thus Monte Carlo simulations are used to
obtain the empirical distribution of the maximum of the detail coefficients (in
absolute value) for the Pearson residuals of PoINAR(1) models. Then a threshold is
computed as follows. For each (α, λ) in the set {(α, λ) : α = (2k + 1)× 10−1, k =
0, . . . , 4; λ = 2k + 1, k = 0, . . . , 14}, 20000 replications of the corresponding
PoINAR(1) process are generated for each sample size N = 2J + 1, for J =
7, . . . , 10. The model is fitted, the Pearson residuals, ẑi , for i = 1, . . . , N − 1,
are computed and the maximum of the first and second level detail coefficients are
obtained. The thresholds ka1

1 and ka2
2 are set as the 100(1 − a)th percentiles of the

corresponding empirical distributions, for a = a1 or a = a2. The results3 indicate
that the thresholds vary not only with the sample size N but also with the specific
combination of the parameters α and λ. Therefore, adopting a conservative strategy,
for each sample size N the thresholds are set to the minimum obtained for all the
combinations of parameters in each level of decomposition. The obtained thresholds
are shown in Table 1.

3Available from the authors.
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Table 1 Empirical threshold values corresponding to 90th and 95th percentiles of the maximum
of the detail coefficients (first and second level), in absolute value, for PoINAR(1) Pearson
residuals

N 128 256 512 1024

k0.05
1 3.469 3.694 3.886 4.118

k0.1
1 3.182 3.450 3.657 3.840

k0.05
2 3.157 3.347 3.518 3.691

k0.1
2 2.936 3.138 3.320 3.504

4.2 Computing the Acceptance Envelope

Tsay [18] proposed to obtain the empirical distribution of a chosen functional using
bootstrap samples generated from a fitted model, and then compare the observed
value for the series with this distribution. For this purpose, an acceptance envelope
is obtained from the 100(1 − a/2)th and 100a/2th percentiles of this empirical
distribution. If the fitted model is adequate, the functional of interest of the original
data should be within the envelope. In this work, the functionals of interest are
the first and second level detail coefficients of the Pearson residuals of PoINAR(1)
model. Thus, for several sample sizesN = 2J+1, J = 7, 8, 9, and parameter values
{(α, λ) : α ∈ {0.1, 0.5, 0.9}; λ ∈ {1, 5, 9, 13}}, 20000 realizations of PoINAR(1)
process are generated and the corresponding Pearson residuals are estimated. For
each series of Pearson residuals, the DWT is applied to obtain the first and second
level detail coefficients, cD1 and cD2, and the acceptance envelopes are constructed
from the 0.01th and 99.99th percentiles4 of the empirical distribution of cD1 and
cD2, respectively. Once again, the results5 show that the acceptance envelopes vary
not only with the sample size N but also with the combination of the parameter
values (α, λ). Therefore, assuming a conservative strategy, for each sample size,
an acceptance envelope with the minimum amplitude is chosen. The acceptance
envelopes are available from the authors upon request.

5 Simulation Study and Illustration

This section presents the results of a simulation study designed to evaluate and
compare the performance of the procedures described above (implemented in
Matlab [10]). For these purposes, the percentage of correct detections and the
average number of false outliers detected in 1000 repetitions are computed. In each

4In the performed simulation study, the detail coefficients present a large variability. Therefore, as a
compromise between correct and false detection of outliers, it is found that a reasonable acceptance
envelope is constructed from the 0.01th and 99.99th extreme percentiles.
5Available from the authors.
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repetition, a realization of a PoINAR(1) process with parameters in the set {(α, λ) :
α ∈ {0.1, 0.5, 0.8}; λ ∈ {1, 3, 5}} is contaminated with single (1) or multiple
(3) outliers either additive or innovational, randomly placed, with integer-valued
magnitude ω = "5σX#, "10σX#, where "x# is the smallest integer greater than or
equal to x. The Pearson residual series are obtained and the procedures described
in Sect. 4 are applied. Several sample sizes are considered, N = 128, 256, 512.
Some of the results are shown in Tables 2 and 3 for the threshold k0.05

1 and the
acceptance envelope constructed from the 0.01th and 99.99th percentiles of the
empirical distribution of cD1.

For the case of contamination with 1 outlier (Table 2), the complete set of results
shows that the procedures are sensitive to the increasing of the magnitude of the
outlier (AO or IO) but none of the approaches presents better performance than
the other. The percentage of correct detection is similar for both types of outliers.
When the outlier magnitude is equal to "10σX#, for the threshold approach the
minimum percentage of correct detections is 98.2% and 99.1% for AO and IO cases,
respectively; while for the parametric resampling approach, the minimum values are
97.8% for the AO case and 98.8% for the IO case. The average number of false
outlier detection is slightly bigger for the AO cases, where the maximum average
number of false outliers detected is 0.794 for the threshold approach and 0.985 for

Table 2 Percentage of correct detections and average number of false outliers detected, in 1000
repetitions of PoINAR(1) models with sample sizesN+1 for some parameter values, contaminated
with 1 additive outlier or 1 innovational outlier, with magnitude "5σX# and "10σX#

1 additive outlier 1 innovational outlier

% correct Average false % correct Average false

(α, λ) N ω Thresh. Env. Thresh. Env. Thresh. Env. Thresh. Env.

(0.1, 1) 128 "5σX# = 6 81.8 72.5 0.088 0.05 69.9 63.4 0.092 0.069

"10σX# = 11 98.2 97.8 0.07 0.05 99.7 98.8 0.094 0.061

256 "5σX# = 6 64 81.8 0.114 0.128 67.4 63.6 0.168 0.147

"10σX# = 11 98.7 99.1 0.102 0.105 99.9 99 0.122 0.144

512 "5σX# = 6 78.1 91.8 0.185 0.268 60.3 66.7 0.163 0.293

"10σX# = 11 100 100 0.166 0.239 100 100 0.18 0.284

(0.5, 3) 128 "5σX# = 13 73 99 0.047 0.03 73.6 63.4 0.096 0.046

"10σX# = 25 100 99.9 0.002 0.013 99.9 100 0.077 0.049

256 "5σX# = 13 64.7 99.6 0.064 0.059 67.4 84.2 0.098 0.086

"10σX# = 25 99.8 99.9 0.085 0.143 100 100 0.132 0.103

512 "5σX# = 13 98.5 99.3 0.095 0.152 64.9 86.1 0.123 0.26

"10σX# = 25 99.7 100 0.158 0.087 100 100 0.113 0.225

(0.8, 5) 128 "5σX# = 25 97.9 97.7 0.023 0.026 98.1 95.7 0.049 0.04

"10σX# = 50 100 100 0.51 0 100 100 0.053 0.028

256 "5σX# = 25 91.5 94.4 0.391 0.404 97.2 96.1 0.071 0.064

"10σX# = 50 100 100 0 0 100 100 0.059 0.067

512 "5σX# = 25 92.5 96.5 0.524 0.087 98.7 98.9 0.068 0.156

"10σX# = 50 100 100 0.001 0.004 100 100 0.077 0.12
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Table 3 Percentage of correct detections and average number of false outliers detected, in 1000
repetitions of PoINAR(1) models with sample sizesN+1 for some parameter values, contaminated
with 3 additive outlier or 3 innovational outlier, with magnitude "5σX# and "10σX#

3 additive outliers 3 innovational outliers

% correct Average false % correct Average false

(α, λ) N ω Thresh. Env. Thresh. Env. Thresh. Env. Thresh. Env.

(0.5, 1) 128 "5σX# = 8 80.9 30.3 0.021 0.041 83.1 73.7 0.082 0.05

"10σ# = 15 100 99.9 0.009 0.002 99.8 99.9 0.039 0.02

256 "5σX# = 8 79.9 77.4 0.032 0.052 77.8 78.6 0.124 0.146

"10σX# = 15 66.1 100.0 0.078 0.011 99.9 99.9 0.09 0.096

512 "5σX# = 8 88.2 79.5 0.085 0.158 69.9 66.1 0.198 0.383

"10σX# = 15 99.9 99.9 0.031 0.055 99.6 100.0 0.171 0.282

(0.8, 3) 128 "5σX# = 20 99.6 89.6 0.011 0.026 97.2 97.3 0.021 0.01

"10σX# = 39 100 100 0.011 0.006 100 100 0.011 0.003

256 "5σX# = 20 90.0 90.5 0.165 0.199 99.3 98.6 0.05 0.056

"10σX# = 39 100 100 0.087 0.077 100 100 0.028 0.022

512 "5σX# = 20 91.4 94.3 0.384 0.576 97.7 97.0 0.062 0.128

"10σX# = 39 100 100 0.833 0 100 100 0.063 0.083

(0.1, 5) 128 "5σX# = 12 57.5 44.0 0.026 0.013 54.7 47.7 0.042 0.026

"10σX# = 24 99.6 99.5 0.034 0.021 99.8 99.8 0.027 0.012

256 "5σX# = 12 54.2 50.7 0.039 0.043 51.2 51.9 0.057 0.054

"10σX# = 24 99.9 99.9 0.027 0.025 99.9 99.8 0.058 0.062

512 "5σX# = 12 39.9 57.3 0.07 0.114 43.6 29.5 0.062 0.129

"10σX# = 24 99.8 99.9 0.028 0.098 99.9 99.8 0.057 0.112

the parametric resampling approach. In the IO cases, the values are 0.184 and 0.379
for the first and second approaches, respectively.

In the case of contamination with 3 outliers, the results presented in Table 3
show that the percentage of correct detections decreases marginally with respect to
Table 2. The analysis of the complete set of results for multiple outliers shows that
in general for IO case the threshold approach seems preferable since it leads to a
higher percentage of correct detections while the mean number of false detections
is comparable to the parametric approach. On the other hand, for AO case the
parametric approach leads to a higher percentage of correct detections but also to an
increase of 70% in the mean number of false detections.

Finally, to examine the performance of the procedures to detect patches of
outliers, Table 4 presents the percentages of correct (complete) detections and partial
detections and the average number of false patches detected, in 1000 repetitions. As
before, in each repetition, the Pearson residuals series are obtained from a realization
of a PoINAR(1) model, for several samples sizes and combinations of parameter
values. In each realization, a patch with 3 additive outliers, with magnitude equal
to "10σX#, is placed randomly. The threshold approach has been applied with
the 90th percentiles of the empirical distribution of the maximum of the absolute
value of cD1 and cD2, respectively k0.1

1 and k0.1
2 (see Table 1). For each level of
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Table 4 Percentage of correct and partial detections and average number of false outliers detected,
in 1000 repetitions of PoINAR(1) models with sample sizes N+1 for some parameter values, with
a patch of 3 additive outliers, with magnitude "10σX#

% correct % partial Average false

(α, λ) ω N Thresh. Env. Thresh. Env. Thresh. Env.

(0.8, 1) "10σX# = 23 128 100 63.9 0 34.7 0.001 1

256 100 71.3 0 0 0 0.779

512 100 99.9 0 0.1 0.001 0.986

(0.1, 3) "10σX# = 19 128 69.1 60.8 0.1 38.5 0.077 1

256 98.8 100 0 0 0.053 0.313

512 99.5 99.9 0 0.1 0.02 0.616

(0.5, 5) "10σX# = 32 128 100.0 99.9 0 0 0.023 0.999

256 100.0 99.7 0 0 0.011 0.012

512 99.8 100 0 0 0.01 0.167

decomposition, in the parametric resampling approach, the acceptance envelopes are
constructed from the 0.01th and 99.99th percentiles of the empirical distribution of
cD1 and cD2, respectively. The results indicate that the threshold approach presents
a better performance. However, the percentage of the partial detection obtained in
the parametric resampling approach indicates that the results can be improved by
tuning the acceptance envelope of the second level of decomposition of DWT.

Note that, since the outliers (single, multiple or patch) are placed randomly, if
they appear in the first observation, both approaches have a poor performance. The
same happens when two outliers are placed in subsequent observations, since it can
be considered as a patch.

As a final illustration of the described procedures, consider the real dataset with
2416 observations concerning the number of different IP addresses (in periods
of 2 min length) at the server of the Department of Statistics of the University
of Würzburg on November 29th, 2005, between 10 a.m. and 6 p.m., represented
in Fig. 1 and studied by Silva and Pereira [15] and Weiß[19]. The values of
sample mean (x̄ = 1.32) and sample variance (σ̂ 2 = 1.39) and the analysis
of the sample autocorrelation and partial autocorrelation functions indicate that a
PoINAR(1) model can be fitted to this dataset. By applying both approaches to
outlier occurrence time detection to this dataset, an outlier is detected at t = 224
(corresponding to S = {112}). Figure 2 represents the threshold and the acceptance
envelope for this illustration. The detection of the outlier at t = 224 agrees with the
results in Weiß[19] and Silva and Pereira [15]. The former reference indicates as true
value X224 = 1 while in the latter reference the authors use a Bayesian approach
that detects an outliers at t = 224 with probability 0.99 and estimates α̂ = 0.27,
λ̂ = 0.89 and ω = 7.

6Since 241 is not a power of two, by default Matlab extends the signal by using symmetric-padding
(symmetric boundary value replication).
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Fig. 1 Chronogram of the IP
dataset
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Fig. 2 Results of threshold approach (left panel) and parametric resampling approach (right panel)
on the IP dataset

6 Final Remarks

Parametric wavelet-based methods for the detection of outlier occurrences are
described. The procedures use the Haar DWT of the Pearson residuals of the
PoINAR(1) model. In a first approach, a threshold based on the empirical dis-
tribution of the maximum of the (first and second levels) detail coefficients is
used. In a second approach, an acceptance envelope constructed from the empirical
distribution of these detail coefficients is obtained through parametric resampling
methods. The procedures do not require previous knowledge on the number of
outliers and are adequate to detect one or multiple outliers, of different types,
additive or innovational and patches of additive outliers. However, an open issue
is the discrimination of the two types of outliers.

DWT can only be applied when the sample size of the time series is a power
of two. To overcome this limitation, the proposed approaches to outlier detection
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can use the modified version of DWT, designated by Maximum Overlap DWT
(MODWT), introduced by Percival and Walden [12], since MODWT can be applied
for a time series of any length.

The performance of the proposed procedures is illustrated with synthetic and
real count data. The results show that the methods are efficient and reliable. As far
as it is known, this is the first work that treats patches of outliers in the counting
time series context. Improvements are still possible by calibrating the percentiles of
the empirical distributions used to detect the time of outlier occurrence, either in the
threshold approach or in the parametric resampling approach. Different applications
may need different significance levels.

The procedures proposed can be applied in other contexts and can also be
extended to detect changes in the structure and dynamics of the processes.
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Surveillance in Discrete Time Series

Maria da Conceição Costa, Isabel Pereira, and Manuel G. Scotto

Abstract The analysis of low integer-valued time series is an area of growing
interest as time series of counts arising from many different areas have become
available in the last three decades. Statistical quality control, computer science,
economics and finance, medicine and epidemiology and environmental sciences are
just some of the fields that we can mention to point out the wide variety of contexts
from which discrete time series have emerged.

In many of these areas it is not just the statistical modelling of count data that
matters. For instance, in environmental sciences or epidemiology, surveillance and
risk analysis are critical and timely intervention is mandatory in order to ensure
safety and public health. Actually, a major issue in the analysis of a large variety
of random phenomena relates to the ability to detect and warn the occurrence of a
catastrophe or some other event connected with an alarm system.

In this work, the principles for the construction of optimal alarm systems are
discussed and their implementation is described. As there is no unifying approach
to the modelling of all integer-valued time series, we will focus our attention in
the class of observation-driven models. The implementation of the optimal alarm
system will be described in detail for a particular non-linear model in this class, the
INteger-valued Asymmetric Power ARCH, or, in short, INAPARCH(p, q).

M. C. Costa (�) · I. Pereira
Departamento de Matemática and CIDMA, University of Aveiro, Aveiro, Portugal
e-mail: lopescosta@ua.pt; isabel.pereira@ua.pt

M. G. Scotto
Departamento de Matemática and CEMAT, Instituto Superior Técnico, University of Lisbon,
Lisboa, Portugal
e-mail: manuel.scotto@tecnico.ulisboa.pt

© Springer International Publishing AG, part of Springer Nature 2018
T. A. Oliveira et al. (eds.), Recent Studies on Risk Analysis
and Statistical Modeling, Contributions to Statistics,
https://doi.org/10.1007/978-3-319-76605-8_14

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76605-8_14&domain=pdf
mailto:lopescosta@ua.pt
mailto:isabel.pereira@ua.pt
mailto:manuel.scotto@tecnico.ulisboa.pt
https://doi.org/10.1007/978-3-319-76605-8_14


198 M. C. Costa et al.

1 Introduction

An alarm system is an algorithm which, based on current information, predicts
whether a level-crossing event is going to occur at a specified time in the future.
As to remind that level-crossings do sometimes have very drastic consequences,
the designation catastrophe is commonly used. Considering level-crossing events,
we can distinguish between an exceedance and an up-crossing event. An exceedance
is a one-dimensional level-crossing event where some critical level or threshold u is
exceeded by a process at one single time point. An up-crossing is a two-dimensional
level-crossing event involving two adjacent time points: the process is below the
critical threshold at the first time point and above the threshold at the second time
point. Throughout this work a catastrophe will thus be considered as the up-crossing
event Ct,j = {Xt+j−1 ≤ u < Xt+j } for some j ∈ N and some real u. At each
moment, the algorithm of the alarm system signals whether or not a catastrophe
is bound to happen j time steps ahead. An alarm is a false alarm if, after an
alarm signal, no catastrophe occurs at the specified time; a catastrophe is said to
be undetected if the catastrophe occurs without the previous alarm signalling. The
success of the alarm system is measured by its false alarm rate and by its detection
probability and the definition of optimal alarm involves a compromise between
these two characteristics, referred to as the operating characteristics of the alarm
system.

Lindgren [7] and de Maré [5] set the principles for the construction of optimal
alarm systems. Establishing the analogy between alarm systems and hypothesis
testing, [5] developed a general context optimal alarm system based on a likelihood-
ratio argument. The alarm problem can be thought of as an hypothesis test where
one has to choose whether to give an alarm or not. de Maré [5] showed that the
Neyman-Pearson lemma gives a condition for this test to be optimal. Lindgren [7]
restated this condition, giving an explicit formulation of the optimal alarm system
in terms of the pair predicted value/predicted growth rate, for a Gaussian stationary
process. The optimal alarm system is bound to give an alarm when the prediction
exceeds a variable alarm level that adjusts according to the expected growth rate of
the process. The optimal alarm condition is then, fundamentally, an alarm region
(or decision boundary) that is defined by the likelihood ratio between predicted
value and growth rate. Further developments on the construction of optimal alarm
systems, recent applications and some alternative approaches on the analysis of risk
can be found in [3].

The remaining part of this introductory section briefly presents basic definitions
and the theoretical fundamentals of the method, for reader’s convenience. In Sect. 2
the Integer-valued APARCH model is presented and the construction of the optimal
alarm system is carried out for the particular INAPARCH(1,1) case. In Sect. 3 an
application to the number of transactions in stocks is presented. The conditional
maximum likelihood (CML) estimation procedure is used to model two real data
series concerning the number of transactions per minute of two different stocks and
the application of the optimal alarm system is illustrated. Section 4 concludes the
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paper with a few remarks we would like to point out, some open questions and ideas
for further work.

1.1 Optimal Alarm Systems: Basic Definitions

Let (Yt )t∈N be a discrete time stochastic process with parameter space Θ ⊂ Rk, for
some fixed k ∈ N. The time sequel {1, 2, . . . , t − 1, t, t + 1, . . . } is divided into
three sections, {1, 2, . . . , t − q}, {t − q + 1, . . . , t}, and {t + 1, . . . }, namely, the
past, the present and the future. For some q > 0, the sets Dt = {

Y1, . . . , Yt−q
}
,

Y2 = {Yt−q+1, . . . , Yt } and Y3 = {Yt+1, . . . } represent, respectively, the data or
informative experience, the present experiment and the future experiment, at time
point t .

Definition 1 The catastrophe1 is defined as the up-crossing event of the fixed level
u, at time point t + j , for some j ∈ N and for some real u:

Ct,j = {Yt+j−1 ≤ u < Yt+j }.

Definition 2 Any event At,j in the σ -field generated by Y2, predictor of Ct,j , will
be an event predictor or alarm.

It is said that an alarm is given at time t for the catastropheCt,j , if the observed value
of Y2 belongs to the predictor event or alarm region. In addition, the alarm is said
to be correct if the event At,j is followed by the event Ct,j . Thus, the probability
of correct alarm will be defined as the probability of catastrophe conditional on
the alarm being given. Conversely, a false alarm is defined as the occurrence of
At,j without Ct,j . If an alarm is given when the catastrophe occurs, it is said that
the catastrophe is detected and the probability of detection will be defined as the
probability of an alarm being given conditional on the occurrence of the catastrophe.

Definition 3 The alarm region At,j is said to have size αt,j if αt,j = P(At,j |Dt).

Note that αt,j can be understood as the proportion of time spent in the alarm state.

Definition 4 The alarm region At,j is optimal of size αt,j if

P(At,j |Ct,j ,Dt ) = sup
B∈σY2

P(B|Ct,j ,Dt ), (1)

where the supreme is taken over all sets B ∈ σY2 such that P(B|Dt ) = αt,j .

In other words, Definition 4 states that the alarm region At,j of size αt,j is optimal,
if it has the highest detection probability, among all regions with the same alarm
size.

1A catastrophe is generally defined as any event of interest in the σ -field generated by Y3.
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Definition 5 An optimal alarm system of size αt,j is a family of alarm regions
(At,j ) in time, satisfying (1).

The following lemma enables to obtain the optimal alarm region as a ratio of two
conditional probabilities, which is very useful when one turns into the practical
construction of the alarm system.

Lemma 1 Let p(y2|Dt) and p(y2|Ct,j ,Dt ) be the predictive density of Y2 and the
predictive density of Y2 conditional on the event Ct,j , respectively. Then, the alarm
system (At,j ) with alarm region given by

At,j =
{
y2 ∈ Rq : p(y2|Ct,j ,Dt )

p(y2|Dt)
≥ kt,j

}
,

or, equivalently,

At,j =
{
y2 ∈ Rq : P(Ct,j |y2,Dt )

P (Ct,j |Dt)
≥ kt,j

}
,

for a fixed kt,j such that P(Y2 ∈ At,j |Dt) = αt,j is optimal of size αt,j .

If (Yt ) is an integer-valued process, simple adaptations of the previous lemma are
required. In the discrete case, p(y2|Dt) represents the predictive probability of Y2
and p(y2|Ct,j ,Dt ), the predictive probability of Y2 conditional on the event Ct,j .
In this case, y2 ∈ Nq0 , also. This lemma ensures that the alarm region defined above
renders the highest detection probability. Moreover, to enhance the fact that the
optimal alarm system depends on the choice of kt,j , it is important to stress that,
due to the fact that P(Ct,j |Dt) does not depend on y2, the alarm region can be
rewritten in the form

At,j = {y2 ∈ Rq : P(Ct,j |y2,Dt ) ≥ k}, (2)

where k = kt,jP (Ct,j |Dt) is chosen in some optimal way to accommodate
conditions over the operating characteristics of the alarm system.

Definition 6 The following probabilities are called the operating characteristics of
an alarm system:

1. P(At,j |Dt)—Alarm size,
2. P(Ct,j |At,j ,Dt )—Probability of correct alarm,
3. P(At,j |Ct,j ,Dt )—Probability of detecting the event,
4. P(Ct,j |At,j ,Dt )—Probability of false alarm,
5. P(At,j |Ct,j ,Dt )—Probability of undetected event.

The choice of k will depend on a compromise between maximizing the probabilities
of correct alarm and of detecting the event. As it is not possible, in general, to
maximize both alarm characteristics simultaneously, some criteria must be found in
order that the alarm system achieves a satisfactory behaviour. Several criteria have
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already been proposed in the literature and this issue will be addressed further on,
when dealing with the application of the alarm system to a particular situation.

2 Optimal Alarm Systems: Application to the INAPARCH
(1,1) Model

The INteger-valued Asymmetric Power ARCH model, or, in short,
INAPARCH(p, q) is a non-linear model in the class of observation driven
models for time series of counts. It is the integer-valued counterpart for the
APARCH representation for the volatility introduced by Ding et al. [6] and is
able to accommodate asymmetric responses relative to the mean of the process.
Asymmetric responses on the volatility are also commonly observed in the analysis
of time series representing the number of intra-day transactions is stocks, (see [2],
e.g.) and this feature could not be addressed by any of the other non-linear models
in the class previous to the development of the INAPARCH(p, q). The probabilistic
properties and asymptotic theory related to maximum likelihood estimation for
this model have already been addressed by the authors and can be found in [4].
Regarding reader’s convenience the INAPARCH(1, 1) process is defined as follows.
It is an integer-valued process (Yt ) such that

Yt |Ft−1 ∼ Po(λt )

λδt = ω + α(|Yt−1 − λt−1| − γ (Yt−1 − λt−1))
δ + βλδt−1, t ∈ Z

with ω > 0, α ≥ 0, β ≥ 0, |γ | < 1 and δ ≥ 0.
The application to the INAPARCH(1, 1) model will be done for the particular

case q = 1 and j = 2. Thus, the time sequel is divided in the following manner:

Dt = {y1, y2, . . . , yt−1} y2 = {yt } y3 = {yt+1, yt+2, . . . }.

The event of interest or the catastrophe is defined as the up-crossing of some fixed
level u two steps ahead,

Ct,2 = {(yt+1, yt+2) ∈ N2 : yt+1 ≤ u < yt+2}.

The optimal alarm region of size α2 is given by

At,2 =
{
yt ∈ N : P(Ct,2|yt ,Dt )

P (Ct,2|Dt)
≥ kt,2

}
= {yt ∈ N : P(Ct,2|yt ,Dt ) ≥ k

}
,

where k = kt,2P(Ct,2|Dt). The first step in the construction of the alarm system
consists of the calculation of both probabilities: the probability of catastrophe



202 M. C. Costa et al.

conditional on Dt and y2, i.e., P(Ct,2|yt,Dt ), and the probability of catastrophe
conditional on Dt , P(Ct,2|Dt). Indeed

P(Ct,2|yt ,Dt ) = P(Yt+1 ≤ u < Yt+2|yt ,Dt )

=
u∑

yt+1=0

p(yt+1|yt )
⎛
⎝1 −

u∑
yt+2=0

p(yt+2|yt+1)

⎞
⎠

=
u∑

yt+1=0

e−λt+1λ
yt+1
t+1

(yt+1)!

⎛
⎝1 −

u∑
yt+2=0

e−λt+2λ
yt+2
t+2

(yt+2)!

⎞
⎠

and

P(Ct,2|Dt) = P(Yt+1 ≤ u < Yt+2|Dt)

=
u∑

yt+1=0

p(yt+1|yt−1)

⎛
⎝1 −

u∑
yt+2=0

p(yt+2|yt+1)

⎞
⎠

=
∑
yt

e−λt λytt
(yt)!

u∑
yt+1=0

e−λt+1λ
yt+1
t+1

(yt+1)!

⎛
⎝1 −

u∑
yt+2=0

e−λt+2λ
yt+2
t+2

(yt+2)!

⎞
⎠.

Having calculated these probabilities it is then possible to explicit all the operating
characteristics.

1. Alarm size
Since y2 = {yt}, the alarm size is simply

αt,2 = P(At,2|Dt) =
∑

yt∈At,2
P(Yt = yt |Dt) =

∑
yt∈At,2

e−λt λytt
(yt )! , (3)

with At,2 being the alarm region which depends on the choice of kt,2.
2. Probability of correct alarm

P(Ct,2|At,2,Dt ) = P(Ct,2
⋂
At,2|Dt)

P (At,2|Dt)
= P(Yt+1 ≤ u < Yt+2, Yt ∈ At,2|Dt)

P (Yt ∈ At,2|Dt)

=

∑
yt∈At,2

p(yt |yt−1)P (Ct,2|yt ,Dt )

∑
yt∈At,2

p(yt |yt−1)
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and given P(Ct,2|yt ,Dt ) it follows that

P(Ct,2|At,2,Dt ) =
∑

yt∈At,2

⎡
⎣e−λt λ

yt
t

(yt )!
u∑

yt+1=0

e−λt+1λ
yt+1
t+1

(yt+1)!

×
⎛
⎝1 −

u∑
yt+2=0

e−λt+2λ
yt+2
t+2

(yt+2)!

⎞
⎠
⎤
⎦
⎡
⎣ ∑
yt∈At,2

e−λt λytt
(yt )!

⎤
⎦

−1

.

3. Probability of detecting the event

P(At,2|Ct,2,Dt ) = P(At,2
⋂
Ct,2|Dt)

P (Ct,2|Dt)
= P(Yt ∈ At,2, Yt+1 ≤ u < Yt+2|Dt)

P (Ct,2|Dt)
.

Once again, the numerator in this expression is the same as the numerator in
the expression for the probability of correct alarm, and, given the probability of
catastrophe, P(Ct,2|Dt), the above expression can be rewritten as

=
∑

yt∈At,2

⎡
⎣e−λt λ

yt
t

(yt )!
u∑

yt+1=0

e−λt+1λ
yt+1
t+1

(yt+1)!

⎛
⎝1 −

u∑
yt+2=0

e−λt+2λ
yt+2
t+2

(yt+2)!

⎞
⎠
⎤
⎦

×
⎡
⎣∑

yt

e−λt λytt
(yt )!

u∑
yt+1=0

e−λt+1λ
yt+1
t+1

(yt+1)!

⎛
⎝1 −

u∑
yt+2=0

e−λt+2λ
yt+2
t+2

(yt+2)!

⎞
⎠
⎤
⎦

−1

.

4. Probability of false alarm

P(Ct,2|At,2,Dt ) = 1 − P(Ct,2|At,2,Dt ).

5. Probability of undetected event

P(At,2|Ct,2,Dt ) = 1 − P(At,2|Ct,2,Dt ).

3 Real Data Example

The application of the alarm system was done to two time series of count data
generated from stock transactions, namely, the tick-by-tick data for Glaxosmithkline
and Astrazeneca for one trading day. Data was downloaded from www.dukascopy.
com and treated as explained in [4]. Each series consists of 501 observations
and contains a reasonably high number of zeros. The CML estimation procedure
considering the INAPARCH(1,1) model was applied (see [4] for details) and the

www.dukascopy.com
www.dukascopy.com
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application of the alarm system was done using the CML estimates. All necessary
programs and routines were developed in Matlab. The analysis was done for the
time instants t = 450 to t = 460. A preliminary study was carried out in order
to choose the fixed value u. The probabilities P(Ct,2|yt ,Dt ) and P(Ct,2|Dt) and
also the alarm region were calculated for different values of u, for all the time
instants mentioned. As a result of this preliminary study and in order to have
reasonable probabilities of catastrophe, two different values of u were chosen for
each data series: the 39th percentile (Q0.39) and the 50th percentile (Q0.50). It is
worth mentioning that as these time series have many zero counts the probability of
catastrophe for higher percentiles is very low. Hence, the fixed levels u considered
in this application cannot be understood as a catastrophe in the sense that it should
be related to a relatively rare event, but it is simply a fixed level for which the
probability of up-crossing is not negligible.

In order to obtain the optimal alarm region for each case, it is necessary to obtain
the alarm region for several values of k, according to expression (2). For each value
of k, the alarm size αt,2, the probability of correct alarm P(Ct,2|At,2,Dt ), and the
probability of detecting the event P(At,2|Ct,2,Dt ) are then calculated. For every
fixed value of k, the alarm region has to be obtained through a systematic search
in a three-dimensional region for {yt, yt+1, yt+2}. We considered yt taking all the
integer values from 0 to 150 and determined, for each value of yt , if P(Ct,2|yt ,Dt )

exceeds or not k. This procedure is repeated for all the values of k tested. The step
and range of variation in k were chosen for each case in order to have as many
different situations as possible. Although the analysis was done from t = 450
to t = 460 for both time series, to illustrate the procedure described, Tables 1
and 2 show the operating characteristics just for time points t = 456 and t = 458
for Astrazeneca and Glaxosmithkline time series, respectively. The alarm system
shows the same behaviour for both time series not only in what concerns the general
tendencies of the operating characteristics but also in what concerns the comparison
of the level crossings of the 39 and 50th percentiles. Generally speaking we can say
that, comparing the level crossings of both percentiles, alarm size always starts at
lower values for the 50th percentile than for the 39th percentile, for corresponding
time instants. Another general conclusion is that for the level crossing of the 39th
percentile, the probability of detection is similar to the alarm size, having the same
variation with k. In the case of the 50th percentile, although the probability of
detection is slightly higher than the alarm size, the variation with k is also similar. It
is not surprising that the probability of detection has the same behaviour as the alarm
size, because as the alarm size decreases with the increase in k, the number of alarms
decreases, leading directly to a lower probability of detecting the event. On the
other hand, as k increases, the probability of the alarm being correct increases. This
behaviour is not also unexpected: as the number of alarms decreases, the probability
of false alarm also decreases, and, consequently, the probability of the alarm being
correct is expected to increase.

As is obvious from the remarks above it is not possible to maximize simulta-
neously P(Ct,2|At,2,Dt ) and P(At,2|Ct,2,Dt ). A compromise must be reached
between these operating characteristics by a proper choice of k. Several criteria
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have already been proposed in the literature. For instance, [1] suggested that k
should be chosen so that the alarm size is about twice the probability of having
a catastrophe given the past values of the process, P(Ct,2|Dt) � 1

2P(At,2|Dt),
meaning that in this situation the system spends twice the time in the alarm state than
in the catastrophe region. The first criterion used in this application is a variation of
the former. Since the alarm size is given by P(At,2|Dt) and, as was seen above, the
probability of detecting the event has the same behaviour of the alarm size with the
variation in k, taking also similar values, we decided to substitute the alarm size with
the detection probability. Moreover, we also found that the probability of correct
alarm is always of the same order of the probability of catastrophe given past values
of the process, P(Ct,2|Dt): the difference between these two probabilities never
exceeds 0.02. As such, we also substituted P(Ct,2|Dt) by P(Ct,2|At,2,Dt ), the
probability of correct alarm. Therefore, our Criterion 1 relates directly to operating
characteristics and is P(At,2|Ct,2,Dt ) � 2P(Ct,2|At,2,Dt ).

Another criterion found in the literature is the one suggested by Svensson et al.
[8], in which k should be chosen so that the probability of correct alarm and the
probability of detecting the event are approximately equal. Our Criterion 1 is already
related with these two operating characteristics. Also, because the probability of
detection is directly dependent on the alarm size, it can be chosen to be as high
as desired. Thus, it seems wise to look for the best set of operating characteristics
in a different perspective, looking towards minimizing the number of false alarms,
which is the same as maximizing the probability of the alarm being correct. As the
probability of the alarm being correct increases, the detection probability decreases
and, in order not to have too small detection probability we state the Criterion 2 as:
Maximum P(Ct,2|At,2,Dt ), as long as P(At,2|Ct,2,Dt ) ≥ 0.001.

The online prediction is illustrated in Tables 3 and 4. The informative experience
evolves as the time instant varies from t = 450 to t = 460 andDt is updated at each
time instant. The probability of catastrophe given the past experience, the alarm
region and respective operating characteristics are presented, for each criteria. The
analysis was done for the level crossings of both 39th and 50th percentiles but only
the results for the first case are shown here. Table 3 refers to the fixed level crossing
u = Q0.39 = 19 for the Astrazeneca series and Table 4 to the fixed level crossing
u = Q0.39 = 13 for the Glaxosmithkline series. One general remark regarding the
online prediction system is that Criterion 2, which tends to minimize the number
of false alarms, is always satisfied for a higher value of k, when compared with
Criterion 1. As was already discussed from previous results, a higher value of k
implies smaller alarm size and smaller probability of detection, which in turn results
in greater probability of correct alarm. This observation is not surprising since a
greater probability of correct alarm is actually the main goal of Criterion 2.

In order to test the alarm system, three extra values of both time series were
simulated: (y2, y3)= (yt , yt+1, yt+2). This procedure was repeated 100,000 times
with the same informative experience, Dt , for each series. Considering the alarm
regions obtained before for u = Q0.39 and for u = Q0.50 and for the two
criteria already mentioned, it was observed for each of the 100,000 samples
whether an alarm was given or not and whether a catastrophe occurred or not. The
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Table 5 Results for the Astrazeneca series, with u = Q0.39 = 19

Alarms Catastrophes

Time instant Criterion False Total Detected Total

t = 456 1 21,011 (0.6369) 32,992 11,981 (0.3755) 31,906

2 4381 (0.5886) 7443 3062 (0.0948) 32,315

t = 457 1 17,464 (0.7505) 23,271 5807 (0.3105) 18,705

2 249 (0.5818) 428 179 (0.0095) 18,761

t = 458 1 19,618 (0.6958) 28,193 8575 (0.3523) 24,340

2 1820 (0.5938) 3065 1245 (0.0504) 24,713

t = 459 1 20,963 (0.6449) 32,508 11,545 (0.3798) 30,396

2 1417 (0.5984) 2368 951 (0.0313) 30,389

t = 460 1 16,254 (0.7655) 21,233 4979 (0.2914) 17,089

2 464 (0.6097) 761 297 (0.0170) 17,433

Percentages in parenthesis

Table 6 Results for the Glaxosmithkline series, with u = Q0.39 = 13

Alarms Catastrophes

Time instant Criterion False Total Detected Total

t = 454 1 20,607 (0.5452) 37,794 17,187 (0.3786) 45,399

2 9873 (0.5449) 18,119 8246 (0.1819) 45,340

t = 457 1 25,776 (0.5397) 47,761 21,985 (0.4496) 48,898

2 10,609 (0.5401) 19,641 9032 (0.1848) 48,867

t = 458 1 21,062 (0.5429) 38,795 17,733 (0.3638) 48,742

2 21,062 (0.5429) 38,795 17,733 (0.3638) 48,742

t = 459 1 24,280 (0.5499) 44,152 19,872 (0.4338) 45,814

2 12,447 (0.5510) 22,589 10,142 (0.2198) 46,145

t = 460 1 22,415 (0.5663) 39,583 17,168 (0.4169) 41,183

2 5918 (0.5408) 10,944 5026 (0.1226) 41,006

Percentages in parenthesis

operating characteristics can then be estimated with these counts. This procedure
was repeated for several time instants and results for the fixed level crossing
u = Q0.39 are presented in Tables 5 and 6 for the Astrazeneca and Glaxosmithkline
series, respectively. The time instants were chosen for their better set of operating
characteristics and particularly for the higher values of P(Ct,2|At,2,Dt ).

Regarding these results a few conclusions can be outlined. First of all, the
results obtained from the application overestimate the operating characteristic of
the probability of correct alarm (given as 1 − P(Ct,2|At,2,Dt ), in Tables 5 and 6),
whose theoretical value (in Tables 3 and 4) is always around a half of the estimated
one. Alarm size and probability of detection are the operating characteristics better
estimated with this application. Particularly, the alarm size (not shown directly in
Tables 5 and 6, but easily obtainable dividing the total number of alarms by the
number of samples, 100,000) always follows the theoretical value up to the second
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or third decimal place. Overall, Criterion 1 seems to provide better estimates of the
operating characteristics than Criterion 2.

4 Conclusion

In this work the implementation of an optimal alarm system was carried out for
the first time for the INAPARCH(1,1) model. It was possible to demonstrate online
prediction, which contributes to the minimization of the number of false alarms
with the constant update of the informative experience. An application was done
with reasonable estimation of the theoretical operating characteristics. This work
also establishes new criteria for the optimization of the operating characteristics.
Regarding this new criteria, we cannot conclude which one leads to better results.
That is something that must be chosen in agreement with the particular application.
If one is interested in having a very small number of false alarms, then Criterion
2 should be chosen. If the risk analysis situation demands for a higher probability
of detection instead, then Criterion 1 should be preferable, as this criterion looks
for the alarm region for which the detection probability is approximately twice the
probability of the alarm being correct.

An overall remark we feel necessary is that a theoretical probability of correct
alarm that does not exceed 20% may not be enough in many situations. We believe,
from previous experience in the application of optimal alarm systems to real-valued
time series, that this result is related to the very nature of these particular data sets
with small counts and a significant number of zeros. As such, future work involves
application of optimal alarm systems to other real data time series, also exhibiting
a significant number of zero counts. We would like to explore if rare events can
actually be detected in this kind of data series.
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On the Maxima of Integer Models Based
on a New Thinning Operator

Sandra Dias and Maria da Graça Temido

Abstract This paper introduces and studies a non-negative integer-valued pro-
cess referred to as Ψ -INARMA(1,1), an extension of the geometric ARMA(1,1)
process, introduced by McKenzie (Adv Appl Probab 18:679–705, 1986). The Ψ -
INARMA(1,1) process is obtained by replacing the binomial thinning operator,
proposed in Steutel and van Harn (Ann. Probab. 7:893–899, 1979), by a generalized
thinning operator, introduced in Aly and Bouzar (REVSTAT Stat J 6:101–121,
2005). We prove its strictly stationarity and specify its asymptotic independence
and local dependence behaviour. As a consequence, we conclude that the sequence
of maxima converges in distribution to a discrete Gumbel distribution, when the
sequence of innovations belongs to Anderson’s class (J Appl Probab 7:99–113,
1970).

1 Introduction

The analysis of non-negative integer-valued time series has received increasing
attention of the probabilistic and statistical literature, during the last three decades.
This fact is due to the wide applicability of the underlying models in many different
areas, where count data arises. In particular the amount of new integer-valued
models proposed and studied in the last few years illustrates a great interest in
this subject. Some examples of such series include applications in medicine [2],
environmental processes [19] and alarm systems [18], among others. However, for
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almost all those models very little is known about their extremal behaviour, because
many integer-valued distributions do not belong to the domain of attraction of any
max-stable distribution. In this context, in the literature of extremes, we refer to
[6, 10, 11] and [12, 13].

The approach, followed by many authors in order to obtain models for integer-
valued or count data, consists in replacing the usual multiplication in real classical
models by a random thinning operator, which maintains the discrete pattern of
the process. This procedure, initially based on the binomial thinning operator,
introduced by Steutel and van Harn [20], leads to the first class of INARMA models
proposed by McKenzie [15, 17] and Al-Osh and Alzaid [3, 4].

In this paper, we propose a model based on a thinning operator whose details we
describe in what follows.

Given an integer random variable (r.v.) Z and η ∈]0, 1[, [5] introduced the
thinning operator 'Ψ , which assigns to the pair (η, Z) the r.v.

η'Ψ Z ≡ Y1 + Y2 + · · · + YZ,

where {Yn} is a sequence of independent and identically distributed (i.i.d.) random
variables (r.v.’s), independent of Z. The probability generating function (p.g.f.) of
{Yn}, denoted by Ψt(z), t = − ln η, belongs to the family defined by

Ψt1+t2(z) = Ψt1(Ψt2(z)), |z| ≤ rY

with Ψt (0) �= 0, that is, P(Y = 0) > 0. In this work, rY represents the convergence
ratio of the p.g.f. of the r.v. Y . The solution of the previous functional equation is
(besides the identity function)Ψt (z) = g−1(g(z)±t),where g is a strictly increasing
function (see [1]). In particular, we have the specific family of probability generating
functions (p.g.f.’s)

Ψ
(θ)
t (z) = 1 − θe−θt (1 − z)

θ + θ
2 (1 − e−θt )(1 − z)

, (1)

for |z−1| < 2θ/(θ(1−e−θt )),with t ≥ 0, θ ∈ [0, 1[ and θ = 1−θ . This particular
family of p.g.f.’s is associated with a mixture of an integer-valued distribution
function (d.f.) over N0 with the Dirac d.f. over {0}. This kind of mixtures renders
appropriate to model zero-inflated count data, for example data associated with the
phenomena with structural zeros as well as zeros resulting in the non-occurrence of
the underlying event. If θ = 0, then Ψ (0)

t (z) = 1 − e−t + e−t z, that is the r.v.’s of
{Yn} have a Bernoulli distribution. In this case 'Ψ coincides with the well-known
binomial thinning operator, denoted here by �.

Aly and Bouzar [5] studied the Ψ -INAR(1) process described by the equation
Xn = η 'Ψ Xn−1 + εn, where 0 < η < 1 and {εn} is a sequence of i.i.d. integer
r.v.’s, independent from the r.v.’s of the sequence {Yn}.

McKenzie [16] introduced the Geometric ARMA(1,1) process defined by Xn =
β � Zn + VnWn−1, with Wn = η � Wn−1 + UnZn, where {Zn}, {Un} and {Vn}
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Fig. 1 Two sample paths of 200 observations simulated from a Ψ -INARMA(1,1) process with
η = β = 0.5, θ = 0.1 and Zn has a geometric distribution with parameter 0.7 (left) and 0.4 (right)

are sequences of i.i.d. r.v.’s, {Un} and {Vn} both have a Bernoulli distribution (with
parameters 1 − η and 1 − β, respectively) and W0 is independent of all other r.v.’s.

In this work we consider an extension of McKenzie’s process in the form

Xn = β 'Ψ Zn + VnWn−1, where Wn = η'Ψ Wn−1 + UnZn,

with {Zn}, {Un} and {Vn} under the same assumptions, which we denote by
Ψ -INARMA(1,1) process. In Fig. 1 we include two sample paths from this process,
when the family Ψ θ

t given by (1) is taken. We observe that if the common
distribution of {Yn} is zero-inflated then the distribution of {Wn} and {Xn} also
tends to be zero-inflated when an appropriate distribution for {Zn} is consid-
ered. This pattern (zero-inflated and not) is illustrated in the sample paths of
Fig. 1.

Looking for a well-defined limit in distribution for the sequence of maxima of
the process under consideration is the aim of this paper. We start by proving some
useful properties of the operated variable η'Ψ Z, that will be used henceforth. This
is the content of Sect. 2. In Sect. 3 we present the proof of the strict stationarity of the
process and Sect. 4 contains the main result of this work, which is a generalization
of the well-known Leadbetter’s Extremal Types Theorem. Then we analyse the
asymptotic independence and local dependence of the process driven by conditions
Dkn(un) and D′

kn
(un), introduced in [22], where {kn} is a non-decreasing sequence

of integers such that

lim
n→+∞

kn+1

kn
= r > 1. (2)

We now recall such conditions. Let {kn} be an increasing sequence of positive
integers satisfying (2) and {un} a real sequence. The sequence {Xn} satisfies
condition Dkn(un) if for any integers 1 ≤ i1 < . . . < ip < j1 < . . . < jq ≤ kn,

with j1 − ip > 	n and Aj := {Xj ≤ un}, we have
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∣∣∣P
( p⋂
s=1

Ais ,

q⋂
m=1

Ajm

)
− P

( p⋂
s=1

Ais

)
P
( q⋂
m=1

Ajm

)∣∣∣ ≤ αn,	n ,

where lim
n→+∞ αn,	n = 0, for some sequence 	n = on(kn).

Taking into consideration strictly stationary processes, [22] proved that, under
Dkn(un), the limit in distribution for Mkn = max(X1,X2, . . . , Xkn), under linear
normalization, whenever it exists, is max-semistable. Following [9] we say that a d.f
G on R is max-semistable if there are reals r > 1, γ > 0 and β such that G(x) =
Gr(x/γ +β), x ∈ R, or equivalently, if there is a sequence of i.i.d. r.v.’s with d.f. F
and two real sequences {an > 0} and {bn} such that lim

n→+∞Fkn(x/an + bn) = G(x),

for each continuity point of G, with {kn} satisfying (2). The analytical expressions
of these d.f.’s can be found in [9].

Furthermore, condition D′
kn
(un) holds, if there exists a sequence of positive

integers {sn} such that kn/sn → +∞, snαn,	n → 0, n → +∞, and

lim
n→+∞ kn

[kn/sn]∑
j=2

P
(
X1 > un,Xj > un

) = 0. (3)

These conditions are adaptations to the max-semistable context of the
well-known Leadbetter’s conditions D(un) and D′(un) [14]. So the limit
in distribution of the maximum Mkn of strictly stationary processes which
satisfy these two conditions is equal to that of the i.i.d. associated process. Then,
taking the results of [22] also into account, we present the following lemma.

Lemma 1 Let {Xn} be a strictly stationary process and {kn} a positive integer-
valued sequence satisfying (2). UnderDkn(un) andD′

kn
(un) for some real sequence

{un}, the sequences {P(Mkn ≤ un)} and {Fkn
X (un)}, when convergent, have the same

limit which is max-semistable.

Regarding the marginal distribution of the process {Xn}, we assume that
{Zn} belongs to Anderson’s class [6] that is, to the class of d.f.’s F

satisfying (1 − F(n− 1))/(1 − F(n)) → r > 1, n → +∞. More specifically, to a
subclass consisting of d.f.’s that satisfy

1 − F(z) ∼ A[z]ξ r−[z], z → +∞, (4)

where ξ ∈ R, A > 0 and r > 1, which will be denoted by CA (r). Under this
hypothesis, we prove that the same happens with {Wn} and {Xn}. Moreover, [21]
proved that if {Zn} belongs to Anderson’s class, then there is a sequence {kn}
satisfying (2), such that the sequence {Fkn(x+bn)} converges to the discrete Gumbel
d.f., given by G(x) = exp(−r−[x]), x ∈ R, which is max-semistable.
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Once established the assumptions of Lemma 1, we conclude that the sequence
of maxima of the Ψ -INARMA(1,1) process is attracted in distribution to a discrete
Gumbel d.f.

2 Properties of the Operated Variable

In this section we characterize the p.g.f., Pη'Ψ Z , assuming that the p.g.f. Ψt ,
associated with the random operator 'Ψ , has a convergence ratio greater than one.
From the second order Taylor’s expansion in the neighbourhood of the point z = 1,
we have

Ψt (z) = Ψt(1)+ Ψ
′
t (1)(z− 1)+ Ψ

′′
t (ϑ)

2 (z − 1)2

= 1 + E(Y )(z− 1)+ Ψ
′′
t (ϑ)

2 (z− 1)2,

where |ϑ − 1| < |z − 1| and ϑ := ϑ(z). Taking h = z − 1 and ξ := Ψ
′′
t (ϑ)

2 , we
obtain

Ψt(1 + h) = 1 + E(Y )h+ ξh2 = 1 + E(Y )f (h),

with f (h) = h(1 + ξh/E(Y )). In [5] it is established that E(Y ) = ηδΨ , with
δΨ = − lnΨ

′
1(1), so we get E(η'Ψ Z) = ηδΨ E(Z).

Lemma 2 Consider the operated r.v. X = η 'Ψ Z and suppose that PZ has
convergence ratio rZ > 1.

1. If 1 + E(Y )f (h) < rZ , then

a. PX(1 + h) = PZ(Ψt(1 + h)) = 1 + E(Y )E(Z)h(1 + oh(1)), h → 0;
b. PX(1 + h) ≤ (1 + C1E(Y )f (h))

2, where C1 is a constant dependent on rZ
and E(Z).

2. E((1+h)η1'Ψ Z+η2'Ψ Z) = PZ(1+(η1η2)
δΨ f1(h)f2(h)+ηδΨ1 f1(h)+ηδΨ2 f2(h)),

where fi(h) = h(1 + ξh/E(Y (i))), i ∈ {1, 2}, and 1 + (η1η2)
δΨ f1(h)f2(h) +

η
δΨ
1 f1(h)+ η

δΨ
2 f2(h) < rZ.

Proof

1. a. Let SZ be the support of Z. We have

PX(1 + h) = E((1 + h)X) = E(E((1 + h)X|Z))

=
∑
k∈SZ

k∏
i=1

E((1 + h)Yi )P (Z = k)
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=
∑
k∈SZ

(Ψt (1 + h))k P (Z = k)

= E
[
(Ψt (1 + h))Z

]
= PZ(Ψt (1 + h)), (5)

where

∑
k∈SZ

(Ψt (1 + h))k P (Z = k) =
+∞∑
k=1

(1 + E(Y )f (h))k P (Z = k)

= (1 + E(Y )f (h))P (Z = 1)

+
+∞∑
k=2

(1 + kE(Y )f (h))P (Z = k)

+
+∞∑
k=2

k∑
j=2

Ckj (E(Y )f (h))
j P (Z = k) (6)

= 1 + E(Y )f (h)E(Z)

+
+∞∑
k=2

k∑
j=2

Ckj (E(Y )f (h))
j P (Z = k).

On the other hand, as Ckj+2 = k(k−1)
(j+2)(j+1)C

k−2
j , we get

k∑
j=2

Ckj (E(Y )f (h))
j = (E(Y )f (h))2

k−2∑
j=0

Ckj+2 (E(Y )f (h))
j

≤ (E(Y )f (h))2 k2 (1 + E(Y )f (h))k−2 ,

whereby the series in (6) does not exceed

(E(Y )f (h))2
+∞∑
k=2

k2 (1 + E(Y )f (h))k−2 P(Z = k). (7)

Since 1 + E(Y )f (h) < rZ, by D’Alembert criterion for the convergence of
positive series, we conclude that this last series in (7) is convergent.
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Finally, due to (5), (6) and (7), it follows that

PX(1+h) = 1+E(Y )E(Z)f (h)

⎛
⎜⎜⎜⎝1 +

+∞∑
k=2

k∑
j=2

Ckj (E(Y )f (h))
j P (Z = k)

E(Y )E(Z)f (h)

⎞
⎟⎟⎟⎠

with

0 ≤

+∞∑
k=2

k∑
j=2

Ckj (E(Y )f (h))
j P (Z = k)

E(Y )E(Z)f (h)

≤
(E(Y )f (h))2

+∞∑
k=2

k2 (1 + E(Y )f (h))k−2 P(Z = k)

E(Y )E(Z)f (h)

≤ C1f (h) → 0, h → 0+,

where C1 is a positive constant. As f (h) ∼ h, h → 0+, we complete the
proof of 1.a.

b. As the series in (7) is convergent we have

PX(1 + h) ≤ 1 + E(Y )E(Z)f (h)+ C(E(Y )f (h))2

≤ (1 + C1E(Y )f (h))
2,

where C1 = max{√C/E(Z), 1}.
2. Assuming that the two counting sequences {Y (1)j } and {Y (2)j } are independent, we

get

E
(
(1 + h)η1'Ψ Z+η2'Ψ Z

)
= E

(
E
(
(1 + h)η1'Ψ Z+η2'Ψ Z

)
|Z
)

= E
(
E
(
(1 + h)η1'Ψ Z

)
E
(
(1 + h)η2'Ψ Z

)
|Z
)

=
+∞∑
i=1

(Ψ− ln η1(1 + h))k(Ψ− lnη2(1 + h))kP (Z = k)

=
+∞∑
i=1

(1 + η
δΨ
1 f1(h))

k(1 + η
δΨ
2 f2(h))

kP (Z = k).

��
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3 Strictly Stationarity of the Process

Since the p.g.f.’s of Wn and UnZn, denoted here by PWn and PUZ ,
respectively, satisfy PWn(z) = PWn−1(Ψt (z))PUZ(z), n ∈ N, with t = − ln η,
assuming that the p.g.f. Ψt(z) satisfies Ψt1(Ψt2(z)) = Ψt1+t2(z), |z| ≤ rY , the
process {Wn} has the representation

Wn
d= ηk 'Ψ Wn−k +

k−1∑
i=0

ηi 'Ψ Un−iZn−i , ∀ n ∈ N, ∀ k ≥ 1.

Then, for all n ∈ N,

Xn
d= β 'Ψ Zn + Vn

(
ηk 'Ψ Wn−1−k +

k−1∑
i=0

ηi 'Ψ Un−1−iZn−1−i

)
.

We prove the strict stationarity of the process following some of the arguments
of [7] and [8].

Proposition 1 If E(Z) < +∞, then the sequence {Xn} is strictly stationary.

Proof Let us remember that if {Qn} is a sequence of r.v.’s with finite mean and
+∞∑
n=1

E(|Qn|) is convergent then the series
+∞∑
n=1

Qn is almost surely (a.s.) absolutely

convergent. As
+∞∑
i=0

E(ηi 'Ψ Un−iZn−i ) = E(UZ)
+∞∑
i=0

ηiδΨ < +∞, we get

W(k)
n =

k−1∑
i=0

ηi 'Ψ Un−iZn−i
q.c.−→
k

W ′
n :=

∞∑
i=0

ηi 'Ψ Un−iZn−i .

On the other hand, due to the fact that the r.v.’s of the sequence {UnZn} are i.i.d., the
p.g.f.’s of the vectors (W(k)

n ,W
(k)
n+1, . . . ,W

(k)
n+t ) and (W(k)

n+	,W
(k)
n+1+	, . . . ,W

(k)
n+t+	)

coincide, for any 	 > 1, and so {W(k)
n } is strictly stationary.

As the almost surely convergence of a vector is equivalent to the almost
surely convergence of its margins, we prove that those two vectors converge
almost surely to (W

′
n,W

′
n+1, . . . ,W

′
n+t ) and (W

′
n+	,W

′
n+1+	, . . . ,W

′
n+t+	).

As almost surely convergence implies convergence in distribution and the
limit is unique, we conclude that the vectors (W ′

n,W
′
n+1, . . . ,W

′
n+t ) and

(W ′
n+	,W ′

n+1+	, . . . ,W ′
n+t+	) are identically distributed. Since ηk'Ψ Wn−k

a.s.−→
k

0,
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we deduce that Wn
d=

+∞∑
i=0

ηi 'Ψ Un−iZn−i as well as

Xn
d= β 'Ψ Zn + Vn

+∞∑
i=0

ηi 'Ψ Un−1−iZn−1−i ,

due to the independence of sequences {Zn} and {Vn}. Then it is proven that {Wn}
and {Xn} are strictly stationary. ��

4 Limit Distribution of the Maximum

Let us begin by characterizing the tails of the marginal distribution of the process in
study. The next lemma, due to [11], is a key result for this work.

Lemma 3 Let Y1 and Y2 be independent r.v.’s. If Y1 ∈ CA (rY1) and Y2 has finite
p.g.f. for some z > rY1 , then Y1 + Y2 ∈ CA (rY1), with A replaced by AE((rY1)

Y2).

The tail marginal distribution of {Wn} and {Xn} is related to the distribution of
the innovations {Zn} by the following result. Before, we should clarify that if the
d.f. of any r.v. Z belongs to Anderson’s class, then r is the convergence ratio of PZ
because

P(Z = z)

P (Z = z+ 1)
=

1−FZ(z−1)
1−FZ(z) − 1

1 − 1−FZ(z+1)
1−FZ(z)

→ r, z → +∞.

Theorem 1 If the margins of {Zn} belong to CA (rZ), then FWn and FXn belong to
the same class with

P(Wn > z) ∼ A∗[z]ξ r−[z]
Z , n → +∞,

and

P(Xn > z) ∼ A
′ [z]ξ r−[z]

Z , n → +∞,

where A∗ = AE(r

∑+∞
i=1 η

i'Ψ Un−1−iZn−1−i
Z ) and A

′ = A∗E
(
(Ψ− lnβ(rZ))

Z
)
.

Proof Since we have

Xn
d= β 'Ψ Zn + VnUn−1Zn−1 + Vn

+∞∑
i=1

ηi 'Ψ Un−1−iZn−1−i
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and VnUn−1Zn−1 ∈ CA (rZ), in order to apply Lemma 3, we first prove that the r.v.
β'Ψ Zn+Vn∑+∞

i=1 η
i'Ψ Un−1−iZn−1−i has finite p.g.f., for some z > rZ. Choose

M ≥ 1 such that for i > M , 1 + ηiδΨ f (h) < rZ < 1 + h. Indeed, by Lemma 2, we
deduce

+∞∏
i=M

E
(
(1 + h)η

i'Ψ Un−1−iZn−1−i
)
<

+∞∏
i=M

(
1 + C1η

iδΨ f (h)
)2

≤ exp

(+∞∑
i=M

ln
(

1 + C1η
iδΨ f (h)

)2
)

≤ exp

(+∞∑
i=M

2C1η
iδΨ f (h)

)
< +∞.

As β 'Ψ Zn also has finite p.g.f., for some z > rZ , Lemma 3 establishes the
conclusion.

The approximation for P(Wn > z) follows trivially. ��
Remark 1 We observe that the double inequality 1 + ηiδΨ f (h) < rZ < 1 + h is
satisfied by a large spectrum of values of (θ, η, rZ). For instance, for (θ, η, rZ) =
(0.5, 0.5, e) or (0.8, 0.4, 1.34) we can choose 1 + h = 2.75 (or 1 + h = 1.35)
and obtain 1 + ηiδΨ f (h) < 2.64 (or 1 + ηiδΨ f (h) < 1.33), respectively. Similar
comments can be stated concerning the inequality 1 + θ2i+j−1f 2(h) + θ i(1 +
θj−1)f (h)< rZ , which is an assumption of Lemma 2 and is applied in the proof of
the next theorem. Indeed, for the same values of (θ, η, rZ)we can choose 1+h = 1.5
(or 1 + h = 1.18) and get, respectively, the upper bounds 1.77 and 1.32 for
1 + θ2i+j−1f 2(h) + θ i(1 + θj−1)f (h), both less than the considered values of
rZ .

The next theorem is the expected generalization of the Leadbetter’s Extremal
Types Theorem, when a Ψ − INARMA(1, 1) process is considered.

Theorem 2 If Z ∈ CA (rZ), then exist {bn}, with bn ∈ N, and {kn} satisfying (2)
such that the strictly stationary sequence {Xn} satisfiesDkn(x+bn) andD′

kn
(x+bn).

Therefore

P(Mkn ≤ x + bn) → exp(−r−[x]
Z ), n → +∞,∀ x ∈ R.

Proof Consider the positive integer values i1, . . . , ip, j1, . . . , jq and the positive
integer-valued sequence {	n} specified in the definition of Dkn(x + bn). Let be
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un = x + bn and

X∗
j = β 'Ψ Zj + Vj

	n−1∑
i=1

ηi 'Ψ Uj−1−iZj−1−i .

Use the notations Aj := {Xj ≤ un} and A∗
j := {X∗

j ≤ un}. As Aj ⊆ A∗
j and

(X∗
i1
, . . . , X∗

ip
) and (X∗

j1
, . . . , X∗

jq
) are independent, we have, with εn > 0,

P

(
p⋂
s=1

Ais ,

q⋂
t=1

Ajt

)
≤ P

(
p⋂
s=1

A∗
is

)
P

(
q⋂
t=1

A∗
jt

)

≤ P

(
p⋂
s=1

{Xis ≤ un + εn}
)
P

(
q⋂
t=1

{Xjt ≤ un + εn}
)

+3knP

⎛
⎝V1

+∞∑
i=	n

ηi 'Ψ U−iZ−i > εn

⎞
⎠ (8)

where, by Markov’s inequality, the last term does not exceed

3(1 − β)kn

E

⎛
⎝

+∞∑
i=	n

ηi 'Ψ U−iZ−i

⎞
⎠

εn
= 3(1 − β)E(UZ)

kn

εn

ηδΨ 	n

1 − ηδΨ
. (9)

Taking 	n = [kαn ], εn = k
−β
n ,with α ∈]0, 1[ and β > 0, we get kn

εn
ηδΨ 	n → 0, n →

+∞. The mutual inequality of (8) is obtained similarly.
To prove that D′

kn
(un) occurs, let us begin by splitting the sum of its definition

into two sums in accordance with j ≤ γn − 1 and j ≥ γn. Since Xj ≤ Xj |{Vj =
1}, j ≥ 1, it holds

X1 +Xj ≤ Tj := β 'Ψ Z1 + β 'Ψ Zj + ηj−2 'Ψ U1Z1

+
j−2∑
i=1

ηi−1 'Ψ Uj−iZj−i

+
+∞∑
i=0

(ηi 'Ψ U−iZ−i + ηi+j−1 'Ψ U−iZ−i ).
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Then, by Markov’s inequality, it follows that

kn

γn−1∑
j=1

P(X1 > un,Xj > un) ≤ knγn max
j≥2

P(X1 + Xj > 2un)

≤ knγn max
j≥2

P((1 + h)Tj > (1 + h)2un) (10)

≤ knγn(1 + h)−2un max
j≥2

E((1 + h)Tj ),

where

E((1 + h)Tj ) = PZ(Ψ− lnβ(1 + h))PZ(Ψ− lnβ(1 + h)Ψ− lnηj−2(1 + h))

×
j−2∏
i=1

PUZ
(
Ψ− ln ηi−1(1 + h)

)+∞∏
i=0

PUZ
(
Ψ− lnηi+j−1 (1 + h)Ψ− lnηi (1 + h)

)
.

We only prove the convergence of the last product operator, given the similarity of
the convergence of the other factors. Let θ := ηδΨ . Consider h such that

Ψ− ln ηi+j−1(1 + h)Ψ− ln ηi (1 + h) = 1 + θ2i+j−1f 2(h)+ θ i(1 + θj−1)f (h) < rZ.

Using the arguments of [11] (page 372–373) and applying properties 1.b and 2 from
Lemma 2, we get

PUZ
(
Ψ− lnηi+j−1(1 + h)Ψ− ln ηi (1 + h)

)

= PUZ

(
1 + θ2i+j−1f 2(h)+ θ i(1 + θj−1)f (h)

)

≤ PUZ

(
1 + θ if (h)

) (
1 + C1θ

iθj−1f (h)
) (

1 + C2θ
2i+j−1f 2(h)

)

≤
(

1 + C3θ
if (h)

)2 (
1 + C1θ

iθj−1f (h)
) (

1 + C2θ
2i+j−1f 2(h)

)
,

whereby

+∞∏
i=0

PUZ
(
Ψ− lnηi+j−1(1 + h)Ψ− ln ηi (1 + h)

)

≤ exp

(
(2C3 + C1θ

j−1)f (h)

+∞∑
i=0

θ i + C2θ
j−1f 2(h)

+∞∑
i=0

θ2i

)
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which is uniformly bounded in j . Now consider bn = n, kn = [ 1
A′n−ξ rnZ], sn =

[kαn ], with α ∈ ]0, 1[, γn = [( kn
sn
)μ], with μ ∈ ]0, 1[, and (1 + h)2 = r

φ
Z , with

φ ∈]1, 2[, so that μ(1 − α) < φ − 1. Then, due to (10), the sum correspondent to
j ≤ γn − 1 converges to zero, when n → +∞. Moreover, we have

kn

kn/sn∑
j=γn

P (X1 > un,Xj > un) ≤ k2
n

sn
P (X1 > un)

×P
(
β 'Ψ Zj + Uj−1Zj−1 +

γn∑
i=1

ηi 'Ψ Uj−1−iZj−1−i > un − ε

)
(11)

+k
2
n

sn
P

⎛
⎝

+∞∑
i=γn+1

ηi 'Ψ Uj−1−iZj−1−i > ε

⎞
⎠ .

Since Uj−1Zj−1 ∈ CA (rZ), applying once again Lemma 3, we conclude that the
r.v.X∗∗

j := β'Ψ Zj+Uj−1Zj−1+∑γn
i=1 η

i'Ψ Uj−1−iZj−1−i belongs to the same

class. Then we have knP (X1 > un) → r
−[x]
Z , n → +∞, as well as knP (X∗∗

j >

un − ε) → r
−[x−ε]
Z , n → +∞. Dividing by sn we deduce that the first sum of the

second member of (11) goes to zero, when n → +∞. On the other hand, Markov’s
inequality enables the assertion that the second sum does not exceed

k2
n

sn

E

(
+∞∑

i=γn+1
ηi 'Ψ Uj−1−iZj−1−i

)

ε
≤ k2

n

sn

θγn

ε(1 − θ)
→ 0, n → +∞. (12)

This finalizes the proof. ��
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Exact and Approximate Probabilities
for the Null Distribution of Bartels
Randomness Test

Ayana Mateus and Frederico Caeiro

Abstract In this work we revisit the statistical properties of the Bartels randomness
test. The exact distribution of the statistic, under the randomization hypothesis, can
only be obtained when the sample size (n) is small, since it requires the full set
of permutations of the first n positive integers. Here, we present the exact null
distribution without ties, for samples of size 10 ≤ n ≤ 17, extending the results
available in the literature. Since the null distribution is asymptotically normally
distributed, but at a slow rate, Bartels concluded that the null distribution is well
approximated by a Beta distribution, for samples of size 10 ≤ n ≤ 100. We present
a new approximation, based on the Edgeworth series, for the null distribution of
the Bartels randomness statistic. The precision of this new approximation is also
discussed.

1 Introduction

We shall consider and study the statistical properties of the Bartels nonparametric
randomness test [3]. This test is the rank version of the ratio test for randomness
developed by von Neumann [12] and is a linear transformation of the rank serial
correlation coefficient introduced by Wald and Wolfowitz [13].
Let (X1,X2, . . . , Xn) be a sample from a population with continuous distribution
andRi = rank(Xi), i = 1, . . . , n, the rank of the i-th observation. Then, Bartels test
statistic (or the Rank Version of von Neumann’s ratio, RVN) for testing randomness
is given by

RVN =
∑n−1

i=1 (Ri − Ri+1)
2

∑n
i=1(Ri − R̄)2

, (1)
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with R̄ = ∑n
i=1 Ri/n. The support of RVN is asymptotically the interval (0, 4).

By using a two-tailed test, the null hypothesis of randomness is tested against either
a positive or negative serial correlation. But if we consider the existence of positive
(negative) serial correlation in the alternative hypothesis, the null hypothesis is
rejected if RVN is very small (large). If the sample has no ties, all ranks are distinct
and we have

∑n
i=1(Ri − R̄)2 = n(n2 − 1)/12. Consequently the numerator (NM)

of RVN in (1) is an equivalent test statistic. The computation of the exact null
distribution of NM is a very computational intensive process, except for small values
of n, since it requires the full set of n! permutations of (1, 2, . . . , n). Selected values
of the exact null distribution of NM, when the sample has no ties, can be found in
Bartels [3], for 4 ≤ n ≤ 10. Bartels also derived the exact expression for the first
four moments of RVN, in (1), and concluded that RVN converges in distribution
slowly to the normal distribution. To be able to use the test of randomness for
moderated sample sizes (10 ≤ n ≤ 100), Bartels also considered an approximation
based on the Beta distribution (see [2, 3, 6, 8] for further details).

The remainder of this paper is organized as follows. In Sect. 2 we provide the
exact null distribution of NM for samples of size 10 ≤ n ≤ 17. In Sect. 3, after
describing the approximations to the exact null distribution of RVN provided by the
normal and the Beta distributions, we consider a new approximation based on the
Edgeworth series. Next we evaluate the performance of all approximations to the
exact null distribution function of RVN and present the main conclusions of this
work.

2 Exact Probabilities for Bartels Statistic Test

As far as we know, the largest sample size for which the exact null distribution
of NM is available is n = 10 and the results are presented in Bartels paper.
To obtain the exact null distribution, we implemented a computer program in C
programming language and use it to compute the null distribution of NM up to
n = 17. In Tables 1, 2, and 3, we present values of the exact tail probabilities
LT = P(NM ≤ x) and RT = P(NM ≥ y) for samples of size 10 ≤ n ≤ 17.
Those values can be used to obtain critical values. Due to the extensive numerical
data, we only present selected values of both tail probabilities. For each n, we
present select values of LT and RT in [0.005, 0.01] and the two probabilities
adjacent to the previous interval. Missing values associated with probabilities in
[0.005, 0.01] can be computed via interpolation. The complete null distribution for
n ≤ 17 can be obtained from the authors.
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3 Approximations to the Distribution Function of RV N

and Conclusions

Since several approximation methods for the distribution function (df ) of random
variables involve matching a finite set of moments, we first present the first four
moments of RVN available in Bartels:

μ = 2

σ 2 = 4(n− 2)(5n2 − 2n− 9)

5n(n+ 1)(n− 1)2

μ3 = 96(n− 4)(n+ 2)(n+ 4)

35n(n+ 1)2(n− 1)3
(2)

μ4 = 48k

175n3(n+ 1)3(n− 1)4
where

k = 175n8 − 931n7 + 1090n6 + 3146n5

−10445n4 + 761n3 + 34380n2 + 7104n− 17640

Those moments were computed by using the formulas developed by Young [14] for
the null distribution of 1 − (1/2)RVN .
For large sample sizes, the limit distribution is:

RVN − 2√
4(n−2)(5n2−2n−9)

5n(n+1)(n−1)2

d−→
n→∞N(0, 1), (3)

but the rate of convergence to the normal distribution is slow. In order to have
simple and accurate approximations to the exact null distribution function of RVN ,
required to compute for example the p-value of the test, we shall study the following
approximations: the beta distribution, the normal distribution, and the Edgeworth
series. All the approximations were implemented in R [10] and the computer code
is available in the Appendix. Bartels already considered that the null distribution of
RVN/4 can be approximated by a Beta distribution with density

f (x) = xp−1(1 − x)q−1

B(p, q)
, 0 < x < 1

where B(., .) is the beta function and p = q = 5n(n+1)(n−1)2

2(n−2)(5n2−2n−9)
− 1

2 . By using these
expressions for p and q , the first two moments of the exact and the approximated
distribution are equal. Critical values, computed with the approximation provided
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by the Beta distribution, for samples of size 10 ≤ n ≤ 100, are available in [3]. The
approximation to the null distribution of RVN by the normal law follows from the
result in (3). This test, with the approximations mentioned above, can be performed
by the use of the following R packages: EnvStats [9], lawstat [7], and randtests [4].
The new approximation based on the Edgeworth series [1, 11], using the first four
moments, is given by

P(RVN ≤ x) ≈ Φ(z)− φ(z)

{
γ1

6
(z2 − 1)+ (γ2 − 3)

24
(z3 − 3z)

+ γ 2
1

72
(z5 − 10z3 + 15z)

}

where z = (x − μ)/σ , φ and Φ are, respectively, the density and distribution
functions of the standard Normal distribution and γ1 = μ3/σ

3 and γ2 =
μ4/σ

4 are, respectively, the third and fourth standardized moments (coefficients
of skewness and kurtosis). In addition, we can apply the continuity correction (cc)
to all approximations, since the test statistic RVN is discrete. In other words, the
continuity correction factor 0.5 is applied to the value of NM and x in P(RVN ≤ x)

should be modified to x + 0.5 × 12/(n(n2 − 1)).
Next we study the precision of the different approximations. In Fig. 1, we present

an illustration of the error of the beta and the Edgerworth approximations for
samples of size 5 and 10, i.e., the values of the errorx∈S = (F̃ (x) − F(x)) where
F̃ and F are, respectively, the approximate and exact null df of RVN (the exact df
of RVN is obtained straightforwardly from the exact df of NM) and S denotes the
support of RVN . We also studied the approximations with a continuity correction
factor. Figure 1 suggests that the continuity correction factor usually reduces the
absolute error.
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Fig. 1 Error of the beta and the Edgerworth approximations for samples size of n = 5, 10
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To evaluate the precision of the normal, the beta, and the Edgeworth approxima-
tions, for finite samples of size n, we computed the maximum absolute error of the

approximations, i.e., the values of ε = maxx∈S
∣∣∣F̃ (x)− F(x)

∣∣∣ (computed with and

without continuity correction in the approximation F̃ (x)). In Table 4 we present the
values of ε for different sample sizes. Note that for sample sizes greater or equal to
25 the exact df was not available and was obtained by computer simulation, based
on 5 × 107 samples. The standard error of the probabilities F̃ (x) is smaller than
7.1 × 10−5.

From Table 4, we can conclude that for moderate sample sizes, the beta and
the Edgeworth approximations provide accurate approximations for the exact null
distribution of RVN . The best results are underlined and mainly obtained with the
Edgeworth approximation with continuity correction. The limit normal distribution
presents greater values of ε than the beta and Edgeworth approximations, even
for large sample sizes. This result is not surprising since it is known that the
convergence in distribution to normality of this kind of statistics is quite slow[5].
We do not need to use these approximations for small sample sizes since we provide
the exact null distribution for samples of sizes 10 ≤ n ≤ 17. For moderate and large
sample sizes we advise the use of the Edgeworth approximation with continuity
correction.
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Appendix

R function for the evaluation of the first four moments (mean, variance, skewness,
and kurtosis)

# Mean, Variance, skewness and kurtosis coefficients of
# the Bartels Statistic RVN
mbartels <- function(n){

mu <- 2
sigma2<- 4*(n-2)*(5*n^2-2*n-9)/(5*n*(n+1)*(n-1)^2)
sigma <- sqrt(sigma2)
gm1 <- 96*(n-4)*(n+2)*(n+4)/(35*n*(n+1)^2*(n-1)^3)/sigma^3
k <- 175*n^8-931*n^7+1090*n^6+3146*n^5-10445*n^4+761*n^3+

34380*n^2+7104*n-17640
gm2 <- 48*k/(175*n^3*(n+1)^3*(n-1)^4)/sigma^4
return(c(mu, sigma2, gm1, gm2))

}

R function for the evaluation of the approximations to the null Distribution Function
of the Bartels Statistic

# Approximation to the null Distribution Function
# of the Bartels Statistic
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pbartels <- function(x, n, approx = "edge", cc=T){
if (approx == "normal"){

if (cc) x <- x+.5/(n*(n^2-1)/12)
y <- mbartels(n)
z <- (x-y[1])/sqrt(y[2])
pp <- pnorm(z)

}
# compute approximate $F(x)$ using the Edgerworth expansion
if (approx == "edge"){

if (cc) x <- x+.5/(n*(n^2-1)/12)
y <- mbartels(n)
z <- (x-y[1])/sqrt(y[2])
pp <- pnorm(z)-dnorm(z)*(y[3]*(z^2-1)/6)
pp <- pp-dnorm(z)*((y[4]-3)*(z^3-3*z)/24+(y[3]^2)*
(z^5-10*z^3+15*z)/72)

}
# compute F(x) with the beta approximation
if (approx == "beta"){

if (cc) x <- x+.5/(n*(n^2-1)/12)
btp <- (5*n*(n+1)*(n-1)^2)/(2*(n-2)*(5*n^2-2*n-9))-1/2
pp <- pbeta(x/4, shape1=btp, shape2=btp)

}
return(pp)

}
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Gamma-Series Representations
for the Sum of Independent Gamma
Random Variables and for the Product
of Independent Beta Random Variables

Filipe J. Marques

Abstract In this work it is shown that using well-known series expansions it is
possible to represent a single gamma distribution and also the logarithm of a single
beta distribution, as an infinite mixture of gamma distributions. Then, using these
representations, it is possible to derive simple gamma-series representations for
the distribution of the sum of independent gamma random variables and for the
sum of independent logbeta random variables, which by simple transformation
may be used to represent also the distribution of the product of independent
beta random variables. These representations may be used to develop accurate
asymptotic approximations for corresponding distributions.

1 Introduction

The gamma and beta distributions are widely used in most different applications,
and as such, applications involving sums or products of these distributions may
arise naturally in the multivariate context. For example, the distribution of the sum
of independent gamma random variables is very important in problems related to
wireless communications [1, 3, 15]. On the other hand, the distribution of many
likelihood ratio test statistics used in multivariate analysis may be represented as a
product of independent beta random variables [12] and as such this distribution is
of crucial importance for those who need to apply testing procedures in multivariate
analysis. Given their huge importance in many statistical procedures there is a vast
literature on the distribution of the sum of independent gamma random variables
and on the product of independent beta random variables; in what follows, we have
selected only some of those results. Concerning the sum of independent gamma
random variables, there is one first result, for a particular case, given in exercises
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12 and 13 of [9], for the sum of independent exponential random variables (with
different parameters); also for a particular case in [2, 5] the authors developed
results for the sum of integer gamma random variables, and finally in [14] a result
is derived, for the general case, based on an infinite mixture of gamma distributions.
For the distribution of the product of independent beta random variables there are
also many results that may be referred, from Tukey and Wilks [17] to Tang and
Gupta [16] and Moschopoulos [13], this last reference is about representations for
the distribution of a class of likelihood ratio statistics but the results obtained may be
used to address the product of independent beta random variables, and more recently
[7]. Most of the results are based on the H or Meijer G functions or infinite mixtures
representations, which in our days may still be difficult to implement or to use in
modern softwares. On the other hand, some of the known approximations are based
on a single χ2 distribution [18], on Box method [4], which is usually presented in
the form of mixtures of gamma distributions, on saddle point approximations [8],
and on Edgeworth expansions or Cornish-Fisher series approximations. However,
most of these approximations reveal lack of precision in extreme cases, for example
when one has a large number of variables. More recently, there are some advanced
results that can be used to improve these approximations, the so-called near-exact
approximations [6, 7].

Our aim in this work is to show how it is possible to obtain, in a very simple way,
gamma-series representations for the density and cumulative distribution functions
of a gamma random variable and of a logbeta random variable. These gamma-
series representations are obtained, mainly, by using the binomial and exponential
expansions and are derived in such a way that it is possible to choose the rate
parameter of all the gamma distributions involved in these representations. This
feature is of extreme importance since it will allow us to obtain single gamma-series
representations for the sum of independent gamma random variables and for the sum
of independent logbeta random variables. Using these representations it is possible
to derive simple and accurate asymptotic approximations for these distributions by
simple truncation of the series and/or equating moments.

2 The Sum of Independent Gamma Random Variables

Let Yi ∼ Γ (ri, λi), i = 1, . . . , p be p independent gamma random variables, with
density function of Yi given by

fYi (y) =
λ
ri
i

Γ (ri)
yri−1 exp{−λiy}, y > 0, ri > 0, λi > 0, i = 1, . . . , p
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which, for δ > 0 and δ �= λi for all i, may still be represented as

fYi (y) =
λ
ri
i

Γ (ri)
yri−1 exp{−λiy}exp{(λi − δ)y}

exp{(λi − δ)y}

= λ
ri
i

Γ (ri)
yri−1 exp{−δy}

∞∑
j=0

(δ − λi)
j

j ! yj

=
∞∑
j=0

(δ − λi)
j

j !
λ
ri
i

Γ (ri)

Γ (ri + j)

δri+j
δri+j

Γ (ri + j)
yri+j−1 exp{−δy}

=
∞∑
j=0

pi,j fXi,j (y)

which represents a mixture of gamma distributions, Xi,j ∼ Γ (ri + j, δ), with
weights given by

pi,j = 1

j !
(
δ − λi

δ

)j (λi
δ

)ri Γ (ri + j)

Γ (ri)
. (1)

As one may observe from the above expressions the parameter δ �= λi , for all i, may
be the same in all the series representations of the densities of Yi , and thus we have
gamma-series representations, which are infinite mixtures of Γ (ri+j, δ) for each of
the Yi , i = 1, . . . , p. This is an essential feature which together with the appealing
properties of the mixtures allows us, for example, to obtain a representation for the
sum of independent gamma random variables in the form of a single gamma-series
representation.

The characteristic function of W =∑p

i=1 Yi with Yi
ind∼ Γ (ri , λi), i = 1, . . . , p

may be written as

ΦW(t) =
p∏
i=1

⎧⎨
⎩

∞∑
j=0

pi,jΦXi,j (t)

⎫⎬
⎭ , t ∈ R (2)

for δ > 0 and δ �= λi , for all i, with pi,j in (1) and where ΦXi,j (t) is the
characteristic function of Xi,j ∼ Γ (ri + j, δ) which is given by

ΦXi,j (t) =
(

δ

δ − it

)ri+j
.

with i = √−1. As already mentioned, given the fact that all Xi,j have the same rate
parameter and using simple results available for the product of series (please see



244 F. J. Marques

[10]), the characteristic function in (2) may be written as

ΦW(t)=
∞∑
j0=0

⎧⎨
⎩

j0∑
j1=0

j1∑
j2=0

. . .

jp−2∑
jp−1=0

{
p∏
i=1

pi,jp−i−jp−i+1

}⎫⎬
⎭

︸ ︷︷ ︸
p�j0

(
δ

δ − it

) p∑
i=1

ri+j0

(3)

with jp = 0, and which may still be simplified as

ΦW(t) =
∞∑
j0=0

p�j0

(
δ

δ − it

) p∑
i=1

ri+j0

(4)

with p�j0
in (3) and which is a gamma-series representation, corresponding to an

infinite mixture of gamma distributions, Γ
(∑p

i=1 ri + j0, δ
)
, with weights p�j0

. As

a result, the density and cumulative distribution functions of W = ∑p

i=1 Yi are,
respectively, given by

fW(w) =
∞∑
j0=0

p�j0
f
Γ

(
p∑
i=1

ri+j0,δ

)(w), w > 0,

FW(w) =
∞∑
j0=0

p�j0
F
Γ

(
p∑
i=1

ri+j0,δ

)(w), w ∈ R

where f
Γ

(
p∑
i=1

ri+j0,δ

) and F
Γ

(
p∑
i=1

ri+j0,δ

) are, respectively, the density and

cumulative distribution functions of a random variable with gamma distribution,

Γ

(
p∑
i=1
ri+j0,δ

)
.

Although there is a high computational investment required for the imple-
mentation of these last expressions, it is possible to use them to obtain accurate
approximations. We should also note that the parameter δ can be chosen in order
to increase the speed of convergence of the series representations. Based on our
empirical knowledge we propose the use of δ equal to the rate parameter of a
mixture of two gamma distributions which match the first four moments of the
exact distribution of W . The results in [11] also suggest the replacement of the
original weights by the ones obtained by the method of matching moments, this
procedure leads to a considerable reduction of the number of terms in the mixture.
There are other more elaborate techniques that will not be subject to our attention
in this work and that may be used to obtain even more accurate approximations,
for example the so-called near-exact distributions (please see, [11]). In [14] it is
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also presented, using a different approach, a gamma-series representation for the
sum of independent gamma random variables. We should note that our results are
equivalent to the ones in [14] if in expression (2.9), in [14], we consider β1 = δ. In
[14] the weights of the mixture are defined using recurrence formulas.

Let us consider a simple illustration with two scenarios:

(i) ri =
{

5

7
, 3,

8

5

}
and λi =

{
8

5
,

3

4
,

1

3

}

(ii) ri =
{

10,
11

3
,

9

5
,

15

2

}
and λi =

{
4

3
,

5

3
,

15

2
,

14

4

}
.

The approximating probability density function is given by

f �W (w) =
m�∑
j=0

π�j f
Γ

(
p∑
i=1

ri+j,δ
)(w), w > 0

where δ is equal to the rate parameter of a mixture of two gamma distributions which
match the first four moments of the exact distribution of W , that is δ is obtained as
solution of

∂h

∂th
ΦW (t)

∣∣∣∣
t=0

= ∂h

∂th

{
l(δ)r1(δ − it)−r1 + (1 − l)(δ)r2(δ − it)−r2

}∣∣∣∣
t=0

,

h = 1, . . . , 4

and the new weights, π�j , are determined in order to ensure the matching of the first
m� exact moments, that is by solving the system of equations

∂h

∂th
ΦW (t)

∣∣∣∣
t=0

= ∂h

∂th
Φ�
W (t)

∣∣∣∣
t=0

, h = 1, . . . ,m� (5)

with ΦW in (4),

Φ�
W (t) =

m�∑
j=0

π�j

(
δ

δ − it

) p∑
i=1

ri+j

and

π�m� = 1 −
m�−1∑
j=0

π�j .

In Fig. 1, we present the smooth empirical probability density function (solid
line) obtained from a simulated data of dimension 1,000,000, the approximating



246 F. J. Marques

(i)
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Fig. 1 The smooth empirical probability density function (solid line) and the approximating
probability density functions for m� = 1, 2, and 4, respectively the dotted, dashed, and dot-dashed
lines, for scenarios (i) and (ii)

probability density function, f �W , for m� = 1, 2, and 4 (respectively, the dotted,
dashed and dot-dashed lines). As it is possible to observe from Fig. 1, by matching
four moments, which means that the mixture will have five terms, one obtains a
fair agreement between the empirical and the approximating distribution in the two
scenarios considered. Clearly, for other cases, it may be necessary to match more
moments or to consider more advanced techniques such as near-exact distributions
[11] in order to have good approximations.
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3 The Sum of Independent Logbeta Random Variables
and the Product of Independent Beta Random Variables

Using a similar approach to the one used in Sect. 2, we show that it is also possible to
obtain a gamma-series representation for a single logbeta random variable, and that
this representation may be used to derive a gamma-series representation for the sum
of independent logbeta random variables. Clearly, these results may also be used to
obtain a representation for the product of independent beta random variables. Thus,
let Yi ∼ Beta(ai, bi), i = 1, . . . , p be p independent beta random variables, then
the density function of Yi is given by

fYi (y) =
1

B(ai, bi)
(1 − y)bi−1 yai−1, 0 < y < 1, ai > 0, bi > 0 .

We say that the random variable Wi = − logYi has a logbeta distribution with
parameters ai > 0 and bi > 0, and we denote this fact by Wi ∼ Logbeta(ai, bi).
The probability density function of Wi is given by

fWi (w) =
1

B(ai, bi)
exp{−aiw}(1 − exp{−w})bi−1, w > 0 .

If we expand the factor (1 − exp{−w})bi−1 we obtain

fWi (w) =
∞∑
j=0

(−1)j
⎛
⎝bi − 1

j

⎞
⎠

B(ai, bi)
exp{−(ai + j)w}, w > 0,

where
⎛
⎝bi − 1

j

⎞
⎠= Γ (bi)

Γ (j + 1)Γ (bi − j + 1)
.

From this last expression we obtain a well-known result which mentions that a
single logbeta random variable may be represented as a mixture of exponential
distributions with parameters ai + j and weights

(−1)j
⎛
⎝bi − 1

j

⎞
⎠

B(ai, bi)(ai + j)
.
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Now, if we consider a similar procedure to the one used for the sum of independent
gamma random variables we have, for δ > 0 and δ �= j + ai for all j and all i,

fWi (w) =
∞∑
j=0

(−1)j
⎛
⎝bi − 1

j

⎞
⎠

B(ai, bi)
exp{−(ai + j)w}exp{(ai + j)w − δw}

exp{(ai + j)w − δw}

=
∞∑
j=0

∞∑
k=0

(−1)j
⎛
⎝bi − 1

j

⎞
⎠(−j−ai+δ)k

B(ai, bi)k! wk exp{−δw}

=
∞∑
j=0

∞∑
k=0

(−1)j
⎛
⎝bi − 1

j

⎞
⎠(−j−ai+δ)kΓ (k+1)

B(ai , bi)k!δk+1

δk+1

Γ (k + 1)
wk exp{−δw}

=
∞∑
k=0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
j=0

(−1)j
⎛
⎝bi − 1

j

⎞
⎠(−j−ai+δ)kΓ (k+1)

B(ai , bi)k!δk+1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

δk+1

Γ (k + 1)
wk exp{−δw}

=
∞∑
k=0

pi,kfXk (w)

which represents a mixture of gamma distributions with Xk ∼ Γ (k + 1, δ) and
weights given by

pi,k =
∞∑
j=0

(−1)j
⎛
⎝bi − 1

j

⎞
⎠(−j−ai+δ)kΓ (k+1)

B(ai, bi)k!δk+1 . (6)

Again, for all Wi , we have a gamma-series representation with the same rate param-
eter δ, and this will allow us to obtain a representation for the sum of independent
logbeta random variables in the form of a single gamma-series representation.
Clearly, by simple transformation, we may derive a series representation for the
product of independent beta random variables.

The characteristic function of Wi = − logYi is given by

ΦWi (t)=
∞∑
k=0

pi,kΦXk (t), t ∈ R
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with pi,k in (6) and whereΦXk (t) is the characteristic function ofXk ∼ Γ (k+1, δ),
for δ > 0, which is given by

ΦXk (t) =
(

δ

δ − it

)k+1

, t ∈ R .

The characteristic function of W = ∑p

i=1 Wi with Wi
ind∼ logBeta(ai, bi), i =

1, . . . , p may be written as

ΦW(t)=
∞∑
k0=0

⎧⎨
⎩

k0∑
k1=0

k1∑
k2=0

. . .

kp−2∑
kp−1=0

{
p∏
i=1

pi,kp−i−kp−i+1

}⎫⎬
⎭

︸ ︷︷ ︸
p�k0

(
δ

δ − it

)p+k0

(7)

with kp = 0, which, in a simplified way, can be written as follows:

ΦW(t) =
∞∑
k0=0

p�k0

(
δ

δ − it

)p+k0

which is a gamma-series representation, corresponding to an infinite mixture
of gamma distributions, Γ (p + k0, δ). As a result, the density and cumulative
distribution functions of W =∑p

i=1 Wi , are, respectively, given by

fW (w) =
∞∑
k0=0

p�k0
fΓ (p+k0,δ)(w), w > 0,

FW (w) =
∞∑
k0=0

p�k0
FΓ (p+k0,δ)(w), w ∈ R

where fΓ (p+k0,δ)(w) and FΓ (p+k0,δ)(w) are, respectively, the density and
cumulative distribution functions of a random variable with gamma distribution
Γ (p + k0, δ) . We should note that, similar to what happens in Sect. 2, for the sum
of independent gamma distributions, in these last representations the parameter
δ can be chosen in order to increase the speed of convergence of the series
and to improve the approximation obtained by truncation of the series and by
matching a given number of the exact moments. By simple transformation the
density and cumulative distribution functions of the product of independent beta



250 F. J. Marques

random variables, Y =∏p
i=1 Yi , are given by

fY (y) =
∞∑
k0=0

p�k0
fΓ (p+k0,δ)(− log(y))

1

y
, 0 < y < 1,

FY (y) = 1 −
∞∑
k0=0

p�k0
FΓ (p+k0,δ)(− log(y)), y ∈ R .

Let us consider the following two scenarios:

(i) ai =
{

3

2
,

8

3

}
and bi =

{
7

5
, 2

}

(ii) ai =
{

13

2
,

15

3
,

9

5

}
and bi =

{
6

5
,

3

2
, 1

}
.

The approximating probability density functions, for W = ∑p

i=1 Wi and for Y =∏p

i=1 Yi , are, respectively, given by

f �W (w) =
m�∑
k=0

π�k fΓ (p+k,δ)(w), w > 0

f �Y (y) =
m�∑
k=0

π�k fΓ (p+k,δ)(− log(y))
1

y
, 0 < y < 1 .

In the above expressions, the parameter δ and the weights π�k are determined by
a method analogous to the one used in Sect. 2. In Fig. 2 we present the smooth
empirical probability density function (solid line) obtained from a simulated data
of dimension 1,000,000, the approximating probability density function, f �Y , of the
product of independent beta random variables, for m� = 1, 2, and 4 (respectively,
the dotted, dashed, and dot-dashed lines) in scenario (i), and the approximating
probability density function, f �W , of the sum of independent logbeta random
variables, for m� = 1, 2, and 4 (respectively, the dotted, dashed, and dot-dashed
lines) in scenario (ii). Similar to what happens in Sect. 2 one may observe, from
Fig. 2, that whenm� = 4, which corresponds to a case with five terms in the mixture,
one obtains a better fit in both scenarios considered. However, we should mention
that this feature may not happen in other scenarios for which the matching of more
moments and/or the use of more technical and elaborated approximations as the ones
developed in [7] may be needed. We should also note that, in Fig. 2, for m� = 1, the
density in some intervals has negative values, this is due to the fact that, for the cases
considered, when only one moment is matched, we have a mixture of two Gamma
distributions, where one of the weights is negative and the other weight is bigger
than one, and this leads to this strange behavior.
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(i)

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

(ii)

1 2 3 4 5

0.2

0.4

0.6

Fig. 2 The smooth empirical probability density function (solid line) and the approximating
probability density functions for m� = 1, 2, and 4, respectively, the dotted, dashed, and dot-dashed
lines, for the product of independent beta random variables in scenarios (i) and for the sum of
independent logbeta random variables in scenario (ii)

4 Conclusions

Using the binomial and exponential expansions, simple gamma-series representa-
tions were obtained for the density of a gamma random variable and for the density
of a logbeta random variable. In the gamma-series representations, all the gamma
distributions have the same rate parameter which makes possible to derive gamma-
series representations for the sum of independent gamma distributions and for the
sum of independent logbeta distributions. By simple transformation it was also
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possible to obtain a gamma-series representation for the product of independent beta
random variables. The illustrations provided suggest that the truncation of the series
and determination of the weights by matching a given number of the exact moments
is an effective technique for the development of simple and accurate approximations
for the distribution of the sum of independent gamma distributions and for the sum
of independent logbeta distributions.
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Likelihood Ratio Tests for Equality
of Mean Vectors with Circular
Covariance Matrices

Carlos A. Coelho

Abstract While the likelihood ratio test for the equality of mean vectors, when the
covariance matrices are assumed to be only positive-definite, is a common test in
multivariate analysis, similar likelihood ratio tests are not available in the literature
when the covariance matrices are assumed to have some common given structure. In
this compact paper the author deals with the problem of developing likelihood ratio
tests for the equality of mean vectors when the covariance matrices are assumed
to have a circular or circulant structure. The likelihood ratio statistic is obtained
and its exact distribution is expressed in terms of products of independent Beta
random variables. Then, it is shown how for some particular cases it is possible
to obtain very manageable finite form expressions for the probability density and
cumulative distribution functions of this distribution, while for the other cases,
given the intractability of the expressions for these functions, very sharp near-exact
distributions are developed. Numerical studies show the extreme closeness of these
near-exact distributions to the exact distributions.

1 Introduction

The likelihood ratio test for the equality of mean vectors, when the covariance
matrices are assumed to be just positive-definite is a well-known test in multivariate
analysis, and the distribution of the associated test statistic has been extensively
studied, often associated with the one-way MANOVA model [9, Chap. 9], [2,
Chap. 8], [12, Chap. 10], [6, 11].

However, similar tests for the cases where some common given structure
is assumed for the covariance matrices are not available in the literature.
Let Xk (k = 1, . . . ,m) be p-variate random vectors, with expected value and
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covariance matrix, respectively

E(Xk) = μ
k

and Cov(Xk) = Σk .

In this paper we will be interested in the test to the hypotheses

μ
1
= · · · = μ

k
= · · · = μ

m
, (1)

and

μ
1
= · · · = μ

k
= · · · = μ

m
= 0p×1, (2)

when Σ1, . . . ,Σk, . . . ,Σm are assumed to be equal and have a common circular
structure. Initially the idea was to address: (1) the circular or circulant structure, (2)
the compound symmetric structure, and (3) the spherical structure, but due to space
limitations only the structure in (1) will be addressed. Tests when assuming one of
the other structures will be addressed in a later paper.

The interest in these tests comes from the fact that such covariance structures
are quite common or quite commonly assumed for covariance matrices in many
situations, and, in case the assumption of such structures for the covariance matrices
is correct, then not accounting for them when carrying out the tests for the mean
vectors will lead to losses in power. The circular or circulant covariance structure is
commonly assumed for real circulant stationary processes [14], cyclic designs [7],
and in serially correlated time series [1], as well as in a wealth of other applications
[8]. Therefore it is of interest to investigate tests for equality of mean vectors when
assuming this structure for the covariance matrices. Since in these tests one assumes
the equality of the covariance matrices, likelihood ratio tests for the equality of
covariance matrices when assuming one of these structures are also of interest and
will be addressed in a later publication.

2 Tests for the Equality and Simultaneous Nullity
of Mean-Vectors When the Covariance Matrices
Are Circular

2.1 Likelihood Ratio Test Statistic for the Equality of Mean
Vectors

Let us assume that Xk ∼ Np
(
μ
k
,Σk

)
, k = 1, . . . , q , where Σk are assumed to be

equal and circular or circulant.
The p×p matrix Σ is said to be circular or circulant if Σ = Σcp, with

Σcp = [σij ], i, j = 1, . . . , p, where σi,i+k = σi+k,i = Cov(Xi,Xi+k) = σ 2
0 ρk,

(3)
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with ρ0 = Corr(Xi,Xi) = 1 and ρk = ρp−k = Corr(Xi,Xi+k), for i =
1, . . . , p − 1 and k = 1, . . . , p − i. For example, for p = 5 and p = 6 we have,
respectively,

Σc5 = σ 2
0

⎡
⎢⎣

1 ρ1 ρ2 ρ2 ρ1
ρ1 1 ρ1 ρ2 ρ2
ρ2 ρ1 1 ρ1 ρ2
ρ2 ρ2 ρ1 1 ρ1
ρ1 ρ2 ρ2 ρ1 1

⎤
⎥⎦, Σc6 = σ 2

0

⎡
⎢⎢⎢⎣

1 ρ1 ρ2 ρ3 ρ2 ρ1
ρ1 1 ρ1 ρ2 ρ3 ρ2
ρ2 ρ1 1 ρ1 ρ2 ρ3
ρ3 ρ2 ρ1 1 ρ1 ρ2
ρ2 ρ3 ρ2 ρ1 1 ρ1
ρ1 ρ2 ρ3 ρ2 ρ1 1

⎤
⎥⎥⎥⎦.

Let us further suppose that we have a sample of size nk > p from Xk (k =
1, . . . , q) and that these q samples are independent, with n =∑q

k=1 nk .
Then the (2/n)-th power of the likelihood ratio test (LRT) statistic to test the null

hypothesis

H0 : μ
1
= . . . μ

q

assuming Σ1 = · · · = Σq(= Σcp non-specified)
(4)

where Σcp represents a circular matrix of order p, is

Λ =
p∏
j=1

v∗j
v∗∗j

, (5)

where, for m = �p/2 ,

v∗j =
{
a∗∗jj , j = 1 and j = 1 +m if p is even(
a∗∗jj + a∗∗p−j+2,p−j+2

)
/2, j = 2, . . . , p −m,m+ 2, . . . , p,

(6)

and

v∗∗j =
{
c∗∗jj , j = 1 and j = 1 +m if p is even(
c∗∗jj + c∗∗p−j+2,p−j+2

)
/2, j = 2, . . . , p −m,m+ 2, . . . , p,

(7)

with v∗j = v∗p−j+2 and v∗∗j = v∗∗p−j+2 for j = 2, . . . , p −m. In (6) and (7) a∗∗jj and
c∗∗jj represent the j -th diagonal elements, respectively, of

A∗∗ = UAU ′ and C∗∗ = U(A+ B)U ′, (8)

where

A =
q∑
k=1

(nk − 1)Sk and B =
q∑
k=1

nk
(
Xk −X

)(
Xk −X

)′ (9)
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are, respectively, the “within” and “between” sum of squares and sum of products
matrices, with Sk and Xk, respectively, the sample covariance matrix and mean
vector of the k-th sample and

X = 1

n

q∑
k=1

nk Xk . (10)

The matrix U in (8) is an orthogonal symmetric matrix with running element

uij = 1√
p

{
cos
(
2π(i − 1)(j − 1)/p

)+ sin
(
2π(i − 1)(j − 1)/p

)}
, (11)

for i, j ∈ {1, . . . , p}.
There are a number of different ways in which the LRT statistic in (5) may be

obtained. Likely, the easiest one is to derive it from the LRT statistic used to test
the equality of mean vectors under the simple assumption of positive definiteness
of the covariance matrices. We will use a similar statistic, to which we will now
have to add the fact that the matrices Σk are assumed to be circular, by adequately
computing the MLEs of the covariance matrices involved.

It is indeed not too hard to obtain explicit expressions for the MLEs ofΣcp in (4)
both under the null hypothesis and under the alternative hypothesis. If we take into
account which are the elements in Σcp that are equal to σ 2

0 ρk , for k = 0, 1, . . . ,m,
and that there are 2p of each of these elements, except for k = 0 and, when p is
even, also for k = m, in which cases there are p of these elements, by the invariance
property of the MLEs, the MLE of Σcp, under the alternative hypothesis

H1 : ∃j, j ′ ∈ {1, . . . , q} : μ
j
�= μ

j ′
assuming Σ1 = · · · = Σq(= Σcp non-specified),

(12)

is A∗ = [a∗ij ], with

a∗j+k,j = a∗j,j+k = ̂σ 2
0 ρk H1

= 1

2p

p∑
j=1

(
aj,mod∗(j+k,p) + amod∗(j+k,p),j

)
, (13)

for k = 0, . . . , p−1 and j = 1, . . . , p−k, where aij represents the running element
of the matrix A in (9), and

mod∗(a, b) =
{
mod(a, b), mod(a, b) �= 0
b, mod(a, b) = 0,
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while the MLE of Σcp under the null hypothesis in (4) is C∗ = [c∗ij ], with

c∗j+k,j = c∗j,j+k = ̂σ 2
0 ρk H0

= 1

2p

p∑
j=1

(
aj,mod∗(j+k,p) + bj,mod∗(j+k,p)

+amod∗(j+k,p),j + bmod∗(j+k,p),j
)
,

(14)

for k = 0, . . . , p− 1 and j = 1, . . . , p− k, where aij and bij represent the running
elements of the matrices A and B in (9).

Then, the LRT statistic to test H0 in (4) may be written as

Λ = |A∗|
|C∗| (15)

where

|A∗| = a∗∗11

(
a∗∗1+m,1+m

)(p+1)⊥⊥2
p−m∏
j=2

(
a∗∗jj + a∗∗p−j+2,p−j+2

2

)2

= v∗1
(
v∗1+m,1+m

)(p+1)⊥⊥2
p−m∏
j=2

v∗j

(16)

and

|C∗| = c∗∗11

(
c∗∗1+m,1+m

)(p+1)⊥⊥2
p−m∏
j=2

(
c∗∗jj + c∗∗p−j+2,p−j+2

2

)2

= v∗∗1

(
v∗∗1+m,1+m

)(p+1)⊥⊥2
p−m∏
j=2

v∗∗j

(17)

with

(p + 1) ⊥⊥ 2 = mod(p + 1, 2) =
{

1, for odd p + 1
0, for even p + 1,

and, as in (6) and (7), a∗∗jj and c∗∗jj represent, respectively, the j -th diagonal element
of the matrices A∗∗ and C∗∗ in (8), so that Λ in (15) may be written as in (5).

We may note that v∗j and v∗∗j , defined in (6) and (7), are the MLEs of the
eigenvalues δj in (18), respectively underH1 in (12) and H0 in (4).
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2.1.1 Characterization of the Exact Distribution

In order to obtain the distribution of the LRT statistic Λ in (5) one only has to notice
that

UΣcpU
′ = Ψ = diag(δ1, δ2, . . . , δp), (18)

where δj = δp−j+2 for j = 2, . . . , p −m, so that, since we know that the matrices
A and B are independent, with

A ∼ Wp(n− q,Σcp) and B ∼ Wp(q − 1,Σcp), (19)

we have A∗∗ and B∗∗ = UBU ′ independent, with

A∗∗ ∼ Wp(n− q,Ψ ) and B∗∗ ∼ Wp(q − 1, Ψ ), (20)

so that

C∗∗ = A∗∗ + B∗∗ ∼ Wp(n− 1, Ψ ) . (21)

As such, we know that the diagonal elements of A∗∗ are independent, as well as
the diagonal elements of B∗∗ and C∗∗, with

a∗∗jj
δj

∼ χ2
n−q ,

b∗∗jj
δj

∼ χ2
q−1,

c∗∗jj
δj

= a∗∗jj
δj

+ b∗∗jj
δj

∼ χ2
n−1, (22)

for j = 1, . . . , p.
But then, from (16), (17), and (22) we see that

Λ
d≡ Y1

(
Y ∗)(p+1)⊥⊥2

p−m∏
j=2

Y 2
j (23)

where all r.v.’s are independent, with

Y1
d≡ Y ∗ ∼ Beta

(
n− q

2
,
q − 1

2

)
and Yj ∼ Beta (n− q, q − 1) . (24)

2.1.2 Exact Distribution for an Odd Number of Samples

As such, using

Γ (n+a)
Γ (a)

=
n−1∏
k=0

(a + k), (25)
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for any complex a and integer n, the h-th moment of Λ, for odd q , may be written
as

E
(
Λh
)
=
⎛
⎝Γ

(
n−1

2

)

Γ
(
n−q

2

)
Γ
(
n−q

2 + h
)

Γ
(
n−1

2 + h
)
⎞
⎠
1+(p+1)⊥⊥2

p−�p/2 ∏
j=2

Γ (n− 1)

Γ (n− q)

Γ (n− q + 2h)

Γ (n− 1 + 2h)

=

⎧⎪⎨
⎪⎩

q−3
2∏

k=0

(
n− q

2
+ k

)1+(p+1)⊥⊥2(n− q

2
+ k + h

)−(1+(p+1)⊥⊥2)

⎫⎪⎬
⎪⎭

×
⎧⎨
⎩
p−�p/2 ∏
j=2

q−2∏
k=0

(n− q + k)(n− q + k + 2h)−1

⎫⎬
⎭

=
q−1∏
	=1

(
n− q + 	− 1

2

)r	 (n− q + 	− 1

2
+ h

)−r	
,

valid for any real or complex h > −(n− q)/2, and where for 	 = 1, . . . , q − 1,

r	 =
⌊p

2

⌋
+1−(1 + (p+1)⊥⊥2) ((	−1)⊥⊥2) =

{�p/2 +1, odd 	
p−�p/2 −1, even 	 .

(26)

So that, for W = − logΛ, we have

ΦW(t) = E
(
eitW

)
= E

(
Λ−it

)
=
q−1∏
	=1

(
n− q + 	− 1

2

)r	 (n− q + 	− 1

2
− it

)−r	

which is the c.f. of a Generalized Integer Gamma (GIG) distribution of depth q − 1,
with rate parameters (n− q+ 	− 1)/2 and shape parameters r	 (	 = 1, . . . , q − 1),
thus yielding the exact distribution of Λ in (5) and (23) as an Exponentiated GIG
(EGIG) distribution of depth q−1 with rate parameters (n−q+	−1)/2 and shape
parameters r	 (	 = 1, . . . , q − 1), given by (26), with probability density function
(p.d.f.) and cumulative distribution function (c.d.f.) given, respectively, by

fΛ(z) = f EGIG
(
z

∣∣∣
{
r	

}
	=1:q−1

;
{
n−q+	−1

2

}
	=1:q−1

; q − 1

)

and

FΛ(z) = FEGIG

(
z

∣∣∣
{
r	

}
	=1:q−1

;
{
n−q+	−1

2

}
	=1:q−1

; q − 1

)
.

See [4] for a reference on the GIG distribution and [3] for a reference on the EGIG
distribution and the expressions of their p.d.f.’s and c.d.f.’s.
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2.1.3 Near-Exact Distribution for an Even Number of Samples

For even q , using a similar technique to the one used in the previous subsection, one
may write

E
(
Λh
)
=
⎛
⎝Γ

(
n−1

2

)

Γ
(
n−2

2

)
Γ
(
n−2

2 + h
)

Γ
(
n−1

2 + h
)
Γ
(
n−2

2

)

Γ
(
n−q

2

)
Γ
(
n−q

2 + h
)

Γ
(
n−2

2 + h
)
⎞
⎠
1+(p+1)⊥⊥2

×
p−�p/2 ∏
j=2

Γ (n)Γ (n− q + 2h)

Γ (n− q) Γ (n+ 2h)

=
⎛
⎝Γ

(
n−1

2

)

Γ
(
n−2

2

)
Γ
(
n−2

2 + h
)

Γ
(
n−1

2 + h
)
⎞
⎠
1+(p+1)⊥⊥2

×

⎧⎪⎨
⎪⎩

q−4
2∏

k=0

(
n− q

2
+ k

)1+(p+1)⊥⊥2(n− q

2
+ k + h

)−(1+(p+1)⊥⊥2)

⎫⎪⎬
⎪⎭

×
⎧⎨
⎩
p−�p/2 ∏
j=2

q−2∏
k=0

(n− q + k)(n− q + k + 2h)−1

⎫⎬
⎭

=
⎛
⎝Γ
(
n−1

2

)

Γ
(
n−2

2

)
Γ
(
n−2

2 + h
)

Γ
(
n−1

2 + h
)
⎞
⎠
1+(p+1)⊥⊥2

q−1∏
	=1

(
n−q+	−1

2

)r	(n−q+	−1

2
+ h

)−r	

where, for 	 = 1, . . . , q − 1,

r	 =
{�p/2 +1, odd 	, 	 �= q − 1
p−�p/2 −1, even 	 and 	 = q − 1 .

(27)

Thus, for even q we may write

ΦW(t) =
⎛
⎝Γ
(
n−1

2

)

Γ
(
n−2

2

)
Γ
(
n−2

2 − it
)

Γ
(
n−1

2 − it
)
⎞
⎠
1+(p+1)⊥⊥2

︸ ︷︷ ︸
ΦW,1(t)

q−1∏
	=1

(
n−q+	−1

2

)r	(n−q+	−1

2
− it

)−r	

︸ ︷︷ ︸
ΦW,2(t)

where we will leave ΦW,2(t) unchanged and will asymptotically approximate
ΦW,1(t) by

Φ̃1(t) =
m∗∑
k=0

πk(λ
∗)1/2(1+(p+1)⊥⊥2)(λ∗ − it)−1/2(1+(p+1)⊥⊥2),
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which is the c.f. of a finite mixture of Γ (1/2, λ∗) or Γ (1, λ∗) distributions,
according to p being odd or even, and where λ∗ is the rate parameter in

Φ∗(t) = θ(λ∗)r1(λ∗ − it)−r1 + (1 − θ)(λ∗)r2(λ∗ − it)−r2

which will be computed together with θ , r1 and r2 in such a way that

∂h

∂th
Φ∗(t)

∣∣∣∣
t=0

= ∂h

∂th
ΦW,1(t)

∣∣∣∣
t=0

, h = 1, . . . , 4 .

The weights πk , k = 0, . . . ,m∗ − 1, will then be computed in such a way that

∂h

∂th
Φ̃1(t)

∣∣∣∣
t=0

= ∂h

∂th
ΦW,1(t)

∣∣∣∣
t=0

, h = 1, . . . ,m∗ − 1,

with πm∗ = 1 −∑m∗−1
k=0 πk .

This approach is based on the fact that ΦW,1(t) is the characteristic function
(c.f.) of a single Logbeta

(
n−2

2 , 1
2

)
distribution, for odd p, or the c.f. of a sum

of two independent Logbeta
(
n−2

2 , 1
2

)
distributions, for even p, and on the results

in Section 5 of [15] which show that we can, for increasing values of a, replace
asymptotically a Logbeta(a, b) distribution by an infinite mixture of Γ (b +
k, a) (k = 0, 1, . . . ) distributions. Then, using a somewhat heuristic approach, we
truncate this mixture to a finite one and define λ∗ and the weights πk as above. This
is an approach which, as it will be seen shortly ahead, gives in practice extremely
good results.

By proceeding this way we will obtain

Φ∗
W(t) = Φ̃1(t) ΦW,2(t)

as a near-exact c.f. for W , which will yield as near-exact distributions for W
mixtures with m∗+1 components, each of which is either a GIG or a Generalized
Near-Integer Gamma (GNIG) distribution [5] of depth q , according to p being
even or odd, with rate parameters r	 (	=1, . . . , q−1) and a q-th one either
equal to 1 or 1/2, according to p being even or odd, and rate parameters
(n−q+	−1)/2 (	=1, . . . , q−1) and λ∗.

This gives near-exact distributions for Λ with p.d.f.

fΛ(z) =
m∗∑
k=0

f GNIG

(
log z

∣∣∣
{
r	

}
	=1:q−1

, r;
{
n−q+	−1

2

}
	=1:q−1

, λ∗; q
)

1
z

and c.d.f.

FΛ(z) =
m∗∑
k=0

(
1−FGNIG

(
log z

∣∣∣
{
r	

}
	=1:q−1

, r;
{
n−q+	−1

2

}
	=1:q−1

, λ∗; q
))
,
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where

r =
{

1, even p
1/2, odd p,

being the case that when r = 1, the GNIG distribution becomes indeed a GIG
distribution. See [5] and [11] for the expressions of f GNIG( · ) and FGNIG( · ), the
p.d.f. and c.d.f. of the GNIG distribution.

This yields both for W and Λ very manageable distributions, which will match
the first m∗ exact moments of W and which may be shown to lie very close to the
exact distribution.

In order to evaluate the proximity of these near-exact distributions to the exact
distribution we will use the measure

Δ = 1

2π

∫ +∞

−∞

∣∣∣∣
ΦW(t)−Φ∗

W(t)

t

∣∣∣∣ dt (28)

with

Δ ≥ max
w>0

∣∣FW (w)− F ∗
W(w)

∣∣ and Δ ≥ max
0<z<1

∣∣FΛ∗(z)− F ∗
Λ∗(z)

∣∣ ,

and where ΦW(t) and Φ∗
W(t) represent, respectively, the exact and the near-exact

characteristic functions of W and FW ( · ) and F ∗
W( · ) the corresponding cumulative

distribution functions.
In Table 1 we may analyze the values of the measure Δ in (28) for different

sample sizes and different values of p and q , with smaller values of Δ showing a
better agreement between the near-exact and the corresponding exact distribution.
We may see how all the near-exact distributions exhibit extremely low values of the
measureΔ and how they display a clear asymptotic behavior not only for increasing
sample sizes but also for increasing values of p, the number of variables involved,
as well as for increasing values of q , the number of samples involved. Noticeably,
even for very small sample sizes the near-exact distributions exhibit extremely low
values of Δ. As expected, near-exact distributions with higher values of m∗ show
lower values of the measureΔ, given that the near-exact distributions match the first
m∗ exact moments of W .

2.2 Likelihood Ratio Test Statistic for the Simultaneous Nullity
of Mean Vectors

Let us consider a similar setting to the one in the previous Sect. 2.1. In the present
section we are concerned with testing the hypothesis

H0 : μ
1
= . . . μ

q
= 0p×1

assuming Σ1 = · · · = Σq(= Σcp non-specified) .
(29)
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Table 1 Values of the measure Δ for near-exact distributions that match the first m∗ exact
moments of W , for increasing values of p and q and samples of size n = (p + 1)q + 0, 100, 500

m∗

p q n 2 4 10 20

3 6 24 1.05×10−8 1.70×10−11 4.65×10−18 7.15×10−26

124 1.21×10−11 6.93×10−16 1.48×10−26 5.01×10−41

524 3.65×10−14 1.15×10−19 4.10×10−34 8.57×10−55

10 6 66 5.96×10−11 4.45×10−15 3.56×10−25 1.60×10−38

166 1.42×10−12 1.65×10−17 5.22×10−30 5.39×10−47

566 1.02×10−14 1.01×10−20 1.99×10−36 1.03×10−58

30 6 186 1.78×10−13 5.91×10−19 5.52×10−33 3.10×10−52

286 3.16×10−14 4.41×10−20 3.10×10−35 2.47×10−56

686 9.44×10−16 2.28×10−22 8.32×10−40 1.07×10−64

3 16 64 2.92×10−11 2.25×10−15 2.05×10−25 1.15×10−38

164 7.59×10−13 9.60×10−18 3.85×10−30 5.56×10−47

564 5.64×10−15 6.18×10−21 1.58×10−36 1.14×10−58

3 36 144 2.85×10−13 1.82×10−18 1.21×10−31 1.67×10−49

244 3.99×10−14 9.72×10−20 3.50×10−34 3.84×10−54

644 9.18×10−16 3.44×10−22 4.42×10−39 3.92×10−63

Following a similar approach to the one used in the previous section, we may
obtain the (2/n)-th power of the LRT statistic to test this null hypothesis as

Λ =
p∏
j=1

v∗j
v∗∗∗j

, (30)

where v∗j are given by (6), and

v∗∗∗j =
{
c∗∗∗jj , j = 1 and j = 1 +m if p is even(
c∗∗∗jj + c∗∗∗p−j+2,p−j+2

)
/2, j = 2, . . . , p −m,m+ 2, . . . , p,

(31)

with c∗∗∗jj representing the j -th diagonal element of

C∗∗∗ = U(A+ B∗)U ′, (32)

where

B∗ =
q∑
k=1

nkXkX
′
k . (33)
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While the MLE of Σcp under the alternative hypothesis is the same as it is in the
previous section, the MLE of Σcp under the null hypothesis in (29) is now C̃∗ =[
c̃ ∗
ij

]
, with the elements c̃ ∗

ij given by (14), with bij replaced by b∗ij , the running
element of the matrix B∗ in (33). As such, the LRT statistic to test H0 in (29) may
be written as

Λ = |A∗|
|C̃∗| (34)

where |A∗| is given by (16) and

|C̃∗| = c∗∗∗11

(
c∗∗∗1+m,1+m

)mod(p+1,2)
p−m∏
j=2

(
c∗∗∗jj + c∗∗∗p−j+2,p−j+2

2

)2

= v∗∗∗1

(
v∗∗∗1+m,1+m

)mod(p+1,2)
p−m∏
j=2

v∗∗∗j

(35)

where c∗∗∗jj is the j -th diagonal element of the matrix C∗∗∗ in (32), so that Λ in (34)
may be written as in (30).

We may note that v∗∗∗j and v∗j , defined in (6) and (31), are the MLEs of the
eigenvalues δj in (18), respectively under H0 in (29) and under the alternative
hypothesis, where the matrices Σk are still assumed to be circular.

2.2.1 Characterization of the Exact Distribution

In order to obtain the distribution of the LRT statistic Λ in (30) and (34) one only
has to notice that now the matrices A and B∗ are independent, with

A ∼ Wp(n− q,Σcp) and B∗ ∼ Wp(q,Σcp),

so that A∗∗ in (8) and B∗∗∗ = UB∗U ′ are independent, with

A∗∗ ∼ Wp(n− q,Ψ ) and B∗∗∗ ∼ Wp(q,Ψ ),

for Ψ given by (18), and thus,

C∗∗∗ = A∗∗ + B∗∗∗ ∼ Wp(n,Ψ ) .

Therefore, the diagonal elements of A∗∗ are independent, as well as the diagonal
elements of B∗∗∗ and C∗∗∗, with

a∗∗jj
δj

∼ χ2
n−q ,

b∗∗∗jj

δj
∼ χ2

q ,
c∗∗∗jj

δj
= a∗∗jj

δj
+ b∗∗∗jj

δj
∼ χ2

n , (36)
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so that, from (16), (34), (35), and (36) we see that

Λ
d≡ Y1

(
Y ∗)(p+1)⊥⊥2

p−m∏
j=2

Y 2
j (37)

where all r.v.’s are independent, with

Y1
d≡ Y ∗ ∼ Beta

(
n− q

2
,
q

2

)
and Yj ∼ Beta (n− q, q) .

2.2.2 Exact Distribution for an Even Number of Samples

Using (25) and an approach in all similar to the one used in Sect. 2.1.2, we may
write for even q the h-th moment of Λ as

E(Λh) =
q∏
	=1

(
n− q + 	− 1

2

)r	 (n− q + 	− 1

2
+ h

)−r	

with r	 still given by (26), now for 	 = 1, . . . , q . This yields for Λ its exact
distribution as an EGIG distribution of depth q , with rate parameters (n−q+	−1)/2
and shape parameters r	 (	 = 1, . . . , q), with p.d.f. and c.d.f. similar to the ones in
Sect. 2.1.2 with q − 1 replaced by q .

2.2.3 Near-Exact Distribution for an Odd Number of Samples

Using a similar technique to the one used in the previous section and also in
Sect. 2.1.3, we may write for odd q , the h-th moment of Λ as

E(Λh) =
⎛
⎝ Γ

(
n
2

)

Γ
(
n−1

2

)
Γ
(
n−1

2 + h
)

Γ
(
n
2 + h

)
⎞
⎠
1+(p+1)⊥⊥2

︸ ︷︷ ︸
ΦW,1(t)

q∏
	=1

(
n−q+	−1

2

)r	(n−q+	−1

2
+ h

)−r	

︸ ︷︷ ︸
ΦW,2(t)

where now, for 	 = 1, . . . , q ,

r	 =
{ �p/2 + 1, odd 	, 	 �= q

p − �p/2 − 1, even 	 and 	 = q .

Then, taking a similar approach to the one used in Sect. 2.1.3, we will obtain as
near-exact distribution for Λ a mixture ofm∗ + 1 exponentiated GNIG distributions
of depth q + 1, with shape parameters r	 (	 = 1, . . . , q) and r = 1/2 and rate
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parameters (n− q + 	− 1)/2 and λ∗, for odd p, or a mixture of EGIG distributions
of the same depth and with similar parameters, except for the shape parameter r
which will have the value 1, for even p.

The performance of these near-exact distributions will be in all similar to that of
the near-exact distributions in Sect. 2.1.3, with values of Δ of similar magnitudes
for similar values of n, p, and q , with the only difference that now the values of q
will be odd.

3 Concluding Remarks

The results obtained enable a quite simple implementation of both tests addressed,
which are the test of equality of mean vectors and the test of simultaneous nullity
of mean vectors, when the covariance matrices are assumed equal and with a
circular symmetric structure. The fact that it was possible to express the exact
distribution of the likelihood ratio statistics associated with these tests as EGIG
distributions when q , the number of populations or samples involved, is odd in
the test of equality of mean vectors, or when it is even in the test of simultaneous
nullity of mean vectors, enables an extremely easy computation of quantiles and
p-values from the c.d.f. of this distribution, which may be easily obtained from
the c.d.f. of the GIG distribution. Mathematica R© modules for the computation of
the p.d.f. and the c.d.f. of the GIG distribution are available from a file placed
on the web-page https://sites.google.com/site/nearexactdistributions/GIG-dist. For
the construction of the near-exact p.d.f.’s and c.d.f.’s, the reader can find the
Mathematica R© modules for the p.d.f. and c.d.f. of the GNIG distribution on the
web-page https://sites.google.com/site/nearexactdistributions/GNIG-dist.

A question that may arise in the mind of the reader interested in applying the
tests addressed may then be: “but how can one test for circularity of the covariance
matrices?”. The LRT for circularity of the covariance matrix was developed by
Olkin and Press [13] and for odd p, that is, for an odd number of variables involved,
Marques and Coelho [10] have shown the exact distribution of the likelihood ratio
statistic to be a GIG distribution. The same authors also developed near-exact
distributions for the likelihood ratio statistic of this test for even p. However, in
order to duly implement any of the two tests addressed in this paper, one would
then still need to test the equality of the covariance matrices, assuming their circular
structure. The LRT for such hypothesis, as well as near-exact distributions for the
associated statistic are being developed by the same authors and are expected to be
published shortly.

However, the use of this newly developed tests seems to entail rather slim
systematic gains in power, when compared with the results obtained by using the
common tests for positive-definite covariance matrices. But, the author believes that

https://sites.google.com/site/nearexactdistributions/GIG-dist
https://sites.google.com/site/nearexactdistributions/GNIG-dist
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by using the “trimmed” versions

"(p+1)/2#∏
j=1

v∗j
v∗∗j

and
"(p+1)/2#∏

j=1

v∗j
v∗∗∗j

instead of the statistics in (5) and (30), very large gains in power may be obtained.
This is intended for future research, which due to space limitations is not undertaken
here.
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Optimal Estimators in Mixed Models
with Orthogonal Block Structures

Dário Ferreira, Sandra S. Ferreira, Célia Nunes, and João T. Mexia

Abstract Mixed models whose variance–covariance matrices are the positive
definite linear combinations of pairwise orthogonal orthogonal projection matrices
have orthogonal block structure. Here, we will obtain uniformly minimum-variance
unbiased estimators for the relevant parameters when normality is assumed and we
show that those for estimable vectors are, in general, uniformly best linear unbiased
estimators. This is, they are best linear unbiased estimators whatever the variance
components.

1 Introduction

A linear mixed model is an extended multivariate linear regression method of
analysis for fixed and random effects. That kind of model is used for statistical
modeling in a wide variety of fields. There have been extensive studies in estimation
in mixed models, see, for example, [2, 16] and [15] or, in more recent years, [8]
and [5].

In what follows, let us consider mixed models

Y =
w∑
i=0

Xiβi (1)
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where Y is a vector of n random variables, β0 is a fixed vector, and β1, . . . ,βw are
random and uncorrelated vectors, with null mean vectors and variance–covariance
matrices σ 2

1 I c1, . . . , σ
2
wI cw , with I ci the ci × ci identity matrix and, possibly, cw =

n. Thus, these models will have mean vectors

E(Y ) = X0β0 (2)

and variance–covariance matrices

V ar(Y ) =
w∑
i=1

σ 2
i M i (3)

where M i = XiX
-
i , i = 1, . . . , w. We are interested in the case in which matrices

M i , i = 1, . . . , w, commute.

2 Estimators

When M1, . . . ,Mw commute they belong, see [10], to a commutative Jordan
algebra, CJA, A . This algebra will be a linear space constituted by symmetric
matrices that commute and containing the squares of its matrices, see [11] and [12].
Moreover, A will have a unique basis, pb(A ) = {

Q1, . . . ,Qw

}
, whose matrices

are pairwise orthogonal orthogonal projection matrices so that

M i =
m∑
j=1

bi,jQj , i = 1, . . . , w, (4)

see [17]. Therefore the model has variance–covariance matrices

V (σ 2) =
w∑
i=1

σ 2
i M i =

m∑
j=1

γjQj = V (γ ) (5)

with γ = B-σ 2, where B = [bi,j ]. When M1, . . . ,Mw is a basis for A , the
family M = {M1, . . . ,Mw} will be called perfect, see [6], and matrix B will be
invertible with m = w. This is important for what follows since otherwise there
would be linear restrictions on the γ1, . . . , γw . Then we may assume that γ ∈ Γ ,
with Γ an open set in

Rw> = {v : vj > 0, j = 1, . . . , w} (6)

so that, see [19], the model has orthogonal block structure, OBS. We must point out
that this is not the original definition of OBS given by Nelder [13, 14], since we now
assume the variance–covariance matrices to be positive definite, which is necessary
to have densities. These models play an important role in design of experiments, see
[7, 9] and [1], and in the theory of randomized block designs, see [3] and [4].
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Let us now consider matrices Aj , j = 1, . . . , w, such that their row vectors
constitute an orthonormal basis for the range space of Qj , R(Qj ), j = 1, . . . , w.
Then we may define the sub-models

Y j = AjY , j = 1, . . . , w, (7)

which will have mean vector μj = X0,jβ0, with

X0,j = AjX0, j = 1, . . . , w, (8)

and variance–covariance matrix γjQj , j = 1, . . . , w. Then

P j = X0,jX
+
0,j , j = 1, . . . , w, (9)

where + denotes MOORE-PENROSE inverse, will be the orthogonal projection
matrix on the range space of X0,j , R(X0,j ), j = 1, . . . , w. Moreover, with gj =
rank(Qj ), j = 1, . . . , w,

P c
j = I gj − P j , j = 1, . . . , w, (10)

will be the orthogonal projection matrices on the orthogonal complement of
R(X0,j ).

We put pj = rank(P j ) and pcj = rank(P c
j ), j = 1, . . . , w. Then, since

Q1, . . . ,Qw are pairwise orthogonal orthogonal projection matrices, we have

X0 =
w∑
j=1

QjX0 =
w∑
j=1

A-
j X0,j

=
w∑
j=1

A-
j P jX0,j =

w∑
j=1

(A-
j P jAj )X0. (11)

With

Q̇j = A-
j P jAj , j = 1, . . . , w, (12)

and

T̄ =
w∑
j=1

Q̇j , (13)

we have

X0 = T̄ X0. (14)
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So, since T̄ is an orthogonal projection matrix, with T = X0X
+
0 the orthogonal

projection matrix on Ω = R(X0), and Ω̄ = R(T̄ ) we have

Ω ⊂ Ω̄, (15)

as well as

T T̄ = T̄ T = T , (16)

so that

X+
0 T = X+

0 T T̄ = X+
0 T̄ , (17)

since

X+
0 T = X+

0 X0X
+
0 = X+

0 . (18)

Thus the least square estimator

β̃ = X+
0 T Y , (19)

of β may be rewritten as

β̂ = X+
0 T̄ Y . (20)

Besides this, whenever pcj < gj , we have the unbiased estimators

γ̃ j = Y-
j P c

jY j

pcj
= Sj − Y-

j P jY j

gj − pj
, (21)

where Sj = ‖Y j‖2, j = 1, . . . , w, and we also have

σ̃ 2 = (B-)−1γ̃ . (22)

Let the row vectors of W j constitute an orthogonal basis for R(X0,j ), then, with
Zj = W jY j and ηj = W jμj , j = 1, . . . , w, we have

Y-
j P jY j = ‖Zj‖2. (23)

We now establish

Theorem 1 If the model has OBS and rank(X0) = ∑w
j=1 pj then, for pcj <

gj , β̃ and γ̃ j , j = 1, . . . , w, will be minimum variance unbiased estimators,
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UMVUE, when normality is assumed, while β̃ will be uniformly best linear unbiased
estimator, UBLUE, in general.

Proof The first part of the thesis follows from, when normality is assumed, Y having
density

n(y) = e
− 1

2

∑w
j=1

(
ϑj Sj−2ξ-

j Zj+ 1
ϑj

‖ξ j ‖2
)

∏w
j=1

( 2π
ϑj

) gj
2

(24)

with ϑj = γ−1
j and ξ j = 1

γj
ηj , j = 1, . . . , w, so the (Sj ,Zj ), j = 1, . . . , w, will

constitute a sufficient statistic. Moreover, with k = ∑w
j=1 pj , the parameter space

will be Γ ×Rk , which will be open and so, see [18, p. 31], our estimators are derived
from complete and sufficient statistics.

The second part of the thesis follows from the variance covariance of linear
estimators HY of β depending only on H and V (Y ) and not on the distribution
of Y . Thus the proof is complete. ��

Thus, if a model has OBS and rank(X0) = ∑w
j=1 pj then, see [19], it is an

orthogonal model. A necessary and sufficient condition for a model with OBS to
be orthogonal is that T commutes with the M1, . . . ,Mw , which is equivalent to T

commuting with the Q1, . . . ,Qw .

3 Final Remarks

We considered mixed models with orthogonal block structure and showed that,
when normality is assumed, our treatment leads to complete sufficient statistics and
thus to UMVUE estimators for both variance components and estimable vectors.
Besides this, we also showed that the estimators for estimable vectors are also
UBLUE in general, since they only depend on the algebraic structure of the models.
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Constructing Random Klein Surfaces
Without Boundary

Antonio F. Costa and Eran Makover

Abstract We describe a method to construct some non-compact Klein surfaces
without boundary from 3-regular oriented graphs with a bicoloration of edges. These
Klein surfaces are in fact Belyi Klein surfaces where we pinch the preimages of
branched points. We can complete such surfaces to compact ones and these surfaces
are the random Klein surfaces (without boundary). The consideration of random
3-regular graphs with orientation and a bicoloration of edges give us a method for
computing the probability of satisfying a given geometrical property for random
Klein surfaces. The relation between random Klein surfaces and random Riemann
surfaces allows to claim new properties for random Klein surfaces.

1 Introduction

In [4] and using a probabilistic model, the authors obtain information about
geometrical properties of typical Riemann surfaces of large genera (see also [3, 6]
and the recent work [8] by B. Petri). For this purpose they construct Riemann
surfaces from 3-regular graphs with orientation. Random oriented 3-regular graphs
with big number of vertices provide surfaces of large genera and an experimental
model to claim important geometrical properties of such surfaces. For instance, the
existence of a low bound for systoles when the genus tends to infinity.

In this article we adapt a similar procedure for Klein surfaces without boundary.
Klein surfaces are surfaces with a dianalytic structure instead as an analytic one.

In dianalytic structures the changes of charts may be analytic or antianalytic (see
[1]). These surfaces were introduced by Klein for the study of real algebraic curves
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(there is a functorial equivalence between the category of Klein surfaces and the
category of real algebraic curves). Klein surfaces may be non-orientable and with
boundary, in this work we shall restrict our attention to the case of surfaces without
boundary.

First we shall describe a method to construct some non-compact Klein surfaces
without boundary from 3-regular oriented graphs with a bicoloration of edges
and we shall call such surfaces open random Klein surfaces. The open random
Klein surfaces are in fact Belyi Klein surfaces where we pinch the preimages of
branched points (see Theorem 2). Using the completion method of Brooks [2] we
can complete such surfaces to compact ones and these surfaces will be the random
Klein surfaces. The consideration of random 3-regular graphs with orientation and a
bicoloration of edges give us a method for computing the probability of satisfying a
given geometrical property for random Klein surfaces. The relation between random
Klein surfaces and random Riemann surfaces allows to claim interesting properties
for random Klein surfaces (see Sect. 6).

2 Combinatorial Model

In this section we shall define a combinatorial object that we shall use to define
the random Klein surfaces without boundary: oriented 3-regular graphs with a
bicolouration of edges. An oriented 3-regular graph (G,O) is a pair consisting of
a 3-regular (pseudo-multi) graph G (multiple edges and loops are allowed) and an
orientation O of G. Let us recall the definition of orientation for a 3-regular graph
G. Let v ∈ V (G) and ev1, e

v
2 , e

v
3 be the three adjacent to v edges. There are two

cyclic orderings (orientations) of {ev1, ev2, ev3}: ov1 and ov2, where

(ev1, e
v
2, e

v
3) ∈ ov1, (ev1, ev3, ev2) ∈ ov2.

Let ov = {ov1, ov2} be the set of orientations in v. An orientation of G is a map
O : V (G) → {ov : v ∈ V (G)}. Finally a bicoloration of the edges of G is a map:

ε : E(G) → {0, 1}.
We shall denote (G,O, ε), where (G,O) is an oriented 3-regular graph and ε is a
bicoloration of the edges of G.

3 Construction of Random Klein Surfaces Without
Boundary

Now we describe the method of construction of an open Klein surface without
boundary from (G,O, ε). First we construct γv : {ev1, ev2, ev3} → {0, 1,∞} such that

(
γ−1
v (0), γ−1

v (1), γ−1
v (∞)

) ∈ O(v), for each v ∈ V (G).
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Now, for each v ∈ V (G), we consider a copy of the ideal triangle with vertices
0, 1,∞: Tv . Let v, w be two adjacent vertices of G and e ∈ E(G) connecting v
with w. Let e ∈ E(G). If ε(e) = 0, we identify the side opposed to γv(e) of Tv with
the opposed side to γv(e) of Tw by the identity map Tv → Tw or using a power of the
rotation z → 1

z−1 . This corresponds to make the identification between edges given
by the map that sends the midpoint of the edge of Tv to the midpoint of the edge of
Tw and preserves the orientation of T . If ε(e) = 1, we identify the side opposed to
γv(e) of Tv with the side opposed γv(e) of Tw using one of the reflections:

z → 1

z
; z → 1 − z,

or one of the above reflections composed with a power of the rotation z → 1
z−1 .

In this case the identification preserves the midpoints but reverses the orientation
from Tv to Tw. With the above construction we obtain a triangular map on a finite
area open Klein surface SO(G,O, ε) without boundary that is orientable or not.
The surfaces SO(G,O, ε) obtained from all (G,O, ε) are the open random Klein
surfaces.

4 Probability Measure

For each n let G2n denote the finite set of 3-regular multigraphs with 2n vertices.
We begin with a graph consisting only of 2n vertices {v1, . . . , v2n}. We consider
a set W of 6n elements partitioned in 2n subsets labelled v1, . . . , v2n of 3 points
each one. A perfect matching of the elements of W into 3n sets of two elements is
called a pairing. From each pairing we construct a multigraph with n vertices in the
following way: if {x, y} is a set of pairing, x ∈ vi , y ∈ vj , we add to the graph
an edge joining the vertex vi with the vertex vj . If PW is the set of pairings of
W , we have a surjective map φ from PW to the G2n. Giving to all partitions the
same probability and using the map φ we have a probability measure on G2n. For
each element in G2n we consider all the orientations and bicolorations of edges with
uniform probability. This procedure produces a probability space for the set of 3-
regular oriented and bicolored multigraphs (note that G2n is not a uniform space,
see [9]).

Remark 1 The graph G obtained in this way may be non-connected, but

lim
n→∞ Probn[(G,O, ε) whenG is a simple graph, G connected] → 1

(see [9] section 2.6).

Note There is other method to obtain a probability measure on the set of open ran-
dom Klein surfaces. The open random Klein surfaces without boundary are orbifold
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coverings of the orbifold H/ 〈Λ〉, where Λ is the hyperbolic crystallographic group
generated by the reflections in the sides of the hyperbolic triangle T in Sect. 3
and H is the complex upper half-plane. Such coverings of 2n sheets are given by
three permutations that are products of n disjoint 2-cycles. Then each such covering
is given by a set of three partitions of {1, . . . , 2n} in sets of two elements. This
procedure gives a probability measure on the set of open random Klein surfaces that
is different from the one described before.

5 Belyi Klein Surfaces and Random Riemann Surfaces

A compactification SC(G,O, ε) of an open random Klein surface SO(G,O, ε)
is called random Klein surface. In this way we obtain a very important family of
surfaces: Belyi Klein surfaces without boundary. Recall the following theorem by
Kock and Singerman (see [7]).

Theorem 1 A Klein surface S admits a Belyi map, i.e. an orbifold covering β :
S → Δ, where Δ is a hyperbolic compact triangle, if and only if S is isomorphic to
the compactification of the quotient surface H/L for some surface (non-cocompact)
subgroup L of finite index of the extended modular group Γ ∗ acting on the upper
half-plane H.

A Klein surface admitting a Belyi map is called a Belyi Klein surface. Note that
if S is a Belyi Klein surface with non-empty boundary, S can be represented by an
algebraic curve defined in Q ∩ R, but this result is unknown in the case of non-
orientable Klein surfaces without boundary, precisely the surfaces considered in the
present work. We have the following theorem that is the analogous to Lemma 2.1
in [5]:

Theorem 2 The surface S is a Belyi Klein surface without boundary if and only
if S is a random Klein surface, i.e. the compactification of an open random Klein
surface.

Proof Let S be a Belyi Klein surface without boundary. By Theorem 3.2 in [7]
S is the compactification of H/L for some surface subgroup L of finite index of
the extended modular group Γ ∗. Note that Γ ∗ is a triangular group of signature
(2, 3,∞). There is an orbifold covering β : H/L → Δ where Δ is a hyperbolic
triangle of angles π/2, π/3 and a vertex in the infinity line with angle 0. The
lifting of the side of Δ from the vertex with angle π/3 to the vertex with angle
π/2, produces a 3-regular graph G in H/L and the lifting of the orientation in Δ
gives an orientation on G. Now consider a spanning tree T for G and let R be the
edges of G that are not in T . The surface S is obtained from a hyperbolic polygon,
where T is embedded, pairwise identifying sides that are traversed by the edges in
R. Then we give coloration 0 to the sides in T and the sides of R traversing sides
of the hyperbolic polygon to be identified by orientation preserving isometries. We
give coloration 1 to the sides of R through sides of the hyperbolic polygon to be
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identified by orientation reversing isometries. The oriented 3-regular graph with this
edge coloration produces the surface H/L, then S is a random Klein surface.

Let now SO(G,O, ε) be an open random Klein surface. Since O is a orientation
of the graph G we can construct γv : {ev1, ev2, ev3} → {1, 2, 3} such that

(
γ−1
v (1), γ−1

v (2), γ−1
v (3)

) ∈ O(v),

for each v ∈ V (G). An orbifold covering of the hyperbolic triangle Δ(2, 3,∞)

is given by its monodromy ω : π1O(2, 3,∞) → Σh, where π1O(2, 3,∞) is the
orbifold fundamental group, h is the degree of the covering and Σh is the group
of permutations of {1, . . . , h}. If m is the number of vertices of G, we consider
h = 6m and we label the elements of {1, . . . , h} by {(i, j, k) : i ∈ {1, . . . ,m}, j ∈
{1, 2, 3}, k ∈ {0, 1}}. The group π1O(2, 3,∞) has a presentation:

〈
c1, c2, c3 : c2

i = (c1c2)
2 = (c2c3)

3 = 1
〉
.

We define

ω(c1)(i, j, k) = (i ′, j ′, k′)

if there is an edge e ofG joining the vertices vi with vi′ , γvi (e) = j and γv′i (e) = j ′,
k = k′ if ε(e) = 0 and k = (k′ + 1)mod2 if ε(e) = 1;

ω(c2)(i, j, k) = (i, j, (k + 1)mod2),

and

ω(c2)(i, j, k) = (i, (j + 1)mod3, (k + 1)mod2).

The covering of Δ with monodromy ω is precisely SO(G,O, ε), then SO(G,O, ε)
has a Belyi surface as compactification.

The following proposition tells us that with our method and for big random Klein
surfaces the non-orientability is the usual situation:

Proposition 1 limn→∞ Probn[SO,C(G,O, ε) is orientable] → 0.

Proof Consider a spanning tree T ofG and let R be the sides ofG that are not in T .
For each bicoloration of the sides of T there is only a coloration of the elements of
R producing an orientable surface SO(G,O, ε). Since the number of elements of R
is n+1, the probability of having an orientable random surface → 0 when n → ∞.
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6 From Random Klein Surfaces to Random Riemann
Surfaces

If (G,O) is an oriented 3-regular graph we shall denote SO(G,O) to the open
random Riemann surface constructed from (G,O) following the construction in
[7], note that SO(G,O) = SO(G,O, ε0) where ε0 is the trivial 0 coloration of
the sides of G. The usual way relating Klein with Riemann surfaces is using the
complex double, see, for instance, [1]. Given a non-orientable Klein surface K
without boundary, a complex double of K is a Riemann surface S such that S → K

is a two-fold unbranched covering. Assume that SO(G,O, ε) is non-orientable.
The complex double DSO(G,O, ε) of SO(G,O, ε) is the finite area non-compact
random Riemann surface SO(G′,O ′), where (G′,O ′) is a two-fold covering of
(G,O). The two-fold covering c : G′ → G is given as follows: for each cycle γ of
G the lift c−1(γ ) has two components if and only ifΣε(ei)mod(2) = 0, where ei are
the edges of the cycle γ . From the case of open random Klein surfaces follows the
relation between compact non-orientable random Klein surfaces without boundary
and compact random Riemann surfaces using complex doubles: Let SC(G,O, ε)
be a compactification of SO(G,O, ε). There is a compactification SC(G′,O ′)
of the complex double SO(G′,O ′) of SO(G,O, ε) and a two-fold covering p :
SC(G′,O ′) → SC(G,O, ε). Using this relation we can control the hyperbolic
metric of the compactification SC(G,O, ε) from the metric in SO(G,O, ε) as in
the case of random Riemann surfaces (see 3.2 of [4] or [2]).

In addition to the complex double there is other natural way of associating a
random Riemann surface with a random Klein surface: given a random Klein surface
SO(G,O, ε) simply consider SO(G,O) = SO(G,O, ε0). Note that SO(G,O, ε)
and SO(G,O) have many common properties, in fact all the properties coming from
properties of the graph G as the length of closed geodesics. As a difference a left-
hand-turns path is not the boundary of a region containing a cusp in SO(G,O, ε),
when the sum Σε(ei)mod(2) = 1, where ei are the edges of the path. In this case
to obtain the boundary of a region containing a cusp it is necessary to consider two
left-hand-turns paths. In any case from Theorem 2.1A of [4] there is some L such
that, when n → ∞, Probn[SO(G,O, ε) has cusps of length ≥ L] → 1, where we
are considering the probability measure described in Sect. 4. Also as a consequence
of this relation there exists a constant C such that

lim
n→∞ Probn

[
syst(SC(G,O, ε)) ≥ C

]→ 1.

As conclusion, with the model presented in this article we open the possibility of
the study of geometric properties of random Klein surfaces without boundary, these
surfaces correspond to a special type of real algebraic curves.
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Performance Analysis of a GPS
Equipment

M. Filomena Teodoro, Fernando M. Gonçalves, and Anacleto Correia

Abstract In emerging economies the easiest way to ensure the geodetic support
still is the static relative positioning (SRP) using a single reference station. This
technique provides surveyors the ability to determine the 3D coordinates of a new
point with centimeter-level accuracy. The objective of this work is to evaluate GPS
SRP regarding accuracy, as the equivalent of a real time kinematic (RTK) network
and to address the practicality of using either a continuously operating reference
stations (CORS) or a passive control point for providing accurate positioning
control. The precision of an observed 3D relative position between two global
navigation satellite systems (GNSS) antennas, and how it depends on the distance
between these antennas and on the duration of the observing session, was studied.
We analyze the performance of the software for each of the six chosen ranges
of length in each of the four scenarios created, considering different intervals of
observation time. An intermediate inference level technique (Tamhane and Dunlop,
Statistics and data analysis: from elementary to intermediate, Prentice Hall, New
Jersey, 2000), an analysis of variance, establishes the evidence of relation between
observing time and baseline length.
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1 Introduction

RTK networks are common in Europe but this is not the case in emerging economies
where huge construction projects are running requiring geodetic support. In such
cases, the easiest way to ensure that kind of support still is the SRP using a single
reference station. This technique provides surveyors the ability to determine the
3D coordinates of a new point with centimeter-level accuracy relative to a control
point located several hundred kilometers away, which in turn can be associated with
another GNSS receiver of a CORS operated by some institution.

Today the global navigation satellite systems play a fundamental role in the way
that surveyors measure positional coordinates. It is now possible to determine the
3D coordinates of a new point with centimeter-level accuracy relative to a control
point located several hundred kilometers away, which in turn can be associated with
another GNSS receiver of a CORS operated by some institution. Examples of such
networks are the ordnance survey (OS) Network across the UK [14] or, globally, the
International GNSS Service Network [7].

With the implementation of real time networks (RTN), particularly across Europe
and North America, the way surveyors work has dramatically changed over the
last few years. Certainly, the growth of RTN will continue and it is expected that
in the near future the work taking place in areas covered by these infrastructures
will be dominated by RTK techniques. However, in other regions of the world
which can become, or already are, of interest for scientific or industry projects,
this type of infrastructure does not exist. Consequently, “old” methods such as the
static observation and post processing continue to play a prominent role in GNSS
surveying in order to provide accurate position solutions without support of network
corrections. Furthermore, when surveyors decide which GNSS methods to use,
they must consider several aspects of a project. Besides specific requirements from
clients, other important factors to be considered are budget, schedule, accuracy, and
control over how data is managed.

In this research the coordinates of the OS active stations were used as “true”
values to address the practicality of using either a CORS or a passive control point
for providing accurate positioning control and, implicitly, the performance of the
software used. The precision of an observed 3D relative position between two
GNSS antennas, and how it depends on the distance between these antennas and
on the duration of the observing session, was studied. These results were attained
through using commercial software LGO to process 105 single baselines, ranging
from 61 to 898 km, according to observing sessions of varying lengths. ABEP was
used as a reference station, with fixed coordinates, and the values obtained for the
rover stations compared with those provided by OS. Also, to address the differences
between using broadcast or precise ephemerides and computing the tropospheric
effects or for simply applying a tropospheric model, the data processing was
repeated for all different strategies.

Generally results show, whatever the strategy followed, that the length of the
baseline matters, regarding the rate of successful baselines processed for a priori
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given values of 1D (ellipsoidal height accuracy) and 2D (compound of longitude and
latitude accuracy). While distance matters, under the conditions of this experiment,
the results also indicate that the duration of the observing session does not present
the same pattern for 1D and 2D. In addition to the length of the baseline and the
duration of the observing session, positioning precision depends on several other
factors, including the methodology and the software used for processing GPS data,
in this case the LGO. Biases associated with meteorological effects (ionosphere
and troposphere) also play an important role in the total error budget of positioning
precision.

This work investigates the performance of commercial software LGO when
processing baselines in static mode. The parameter to be tested is the time of
observation needed to achieve a given accuracy (1D and 2D) for a set of ranges
of baseline lengths. Four different scenarios were created, as follows:

• Broadcast ephemerides and Hopfield model (BH);
• Broadcast ephemerides and Computing the troposphere (BC);
• Precise ephemerides and Hopfield model (PH);
• Precise ephemerides and Computing the troposphere (PC).

Summarizing, the present work is comprised of introduction and conclusion
sections, a section with background information, another describing the data and
the methodology adopted and two sections containing specific tests and results.

2 GNSS Overview

In this section, we provide an introduction of GPS, the navigation system used in
this research. As there are a number of relevant references available, e.g. [4, 9, 10],
only a very brief discussion on the basics of the system will be given, with
particular emphasis on the parts which are relevant to observation modeling of
systematic biases and errors affecting GPS measurements. The various types of
GPS observables of interest on baseline determination in SRP are also described,
as are some of their possible combinations. The possible usefulness of Precise
Ephemerides, in terms of the increased accuracy in long baselines, is also evaluated.

There are numerous sources of measurement errors that influence GPS perfor-
mance. Both observables types, code and phase, are affected by many systematic
biases and errors, different in their source and suitable method of treatment. The
most important of these biases and errors are briefly reviewed here. The orbital
errors and tropospheric effects will be discussed later with more detail.

Finally, because tropospheric delay is a dominant factor for the relative posi-
tioning accuracy in GPS/GNSS long baselines, as the LGO strategy using the
“ionospherically-free observable” almost removes all first-order ionospheric biases,
a description of the different strategies available to mitigate tropospheric biases is
also provided. Differences between the Hopfield model and tropospheric computing
techniques are highlighted.
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2.1 Systematic Biases and Errors

There are numerous sources of measurement errors that influence GPS performance.
Both observables types, code and phase, are affected by many systematic biases
and errors, different in their source and suitable method of treatment. The most
important of these biases and errors are briefly reviewed here. The orbital errors and
tropospheric effects will be discussed later with more detail.

The sum of all systematic biases and errors contributing to the measurement error
is referred to as a range bias. Bingley in [2] argues that this bias is caused by a phys-
ical phenomenon, as is the case, for example, in ionospheric or tropospheric delays,
and error is the quantity remaining after the bias has been mitigated to some extent,
which is the case, for example, for errors in broadcast ephemerides. According to
the same author, the systematic biases and errors affecting GPS measurements can
be grouped into three main categories: satellite related, atmospheric related, and
station related.

2.2 Satellite Related Biases and Errors

Satellite related biases consist of biases of satellite ephemerides (orbital errors),
satellite clock offsets and satellite antenna phase centers, as the selective availability
(SA) was internationally terminated by the US Government in May 1, 2000.

The error in satellite coordinates is the difference between the predicted and the
“true” satellite position. The predicted position is estimated by the Master Control
Stations (MCS), using data collected by Master Stations (MS), and uploaded to the
satellites, which in turn broadcast that information to users through the navigation
message. The predicted satellite position is currently on the order of 1 m [2]. Besides
broadcast ephemerides, precise ephemerides are available from IGS [7], providing
an accuracy of 2.5 cm in their rapid and final format.

Although, precise as they are, satellites clocks are not perfect. The satellite clock
error is defined as the difference between satellite clock time and true GPS time. The
MCS computes and broadcasts to the users the parameters to correct the satellite
clock error, according to the equation in [4, p. 52].

Because GPS orbit is calculated with respect to the satellite’ center of mass but
the observation refers to the antenna phase center (point of transmission), which are
not coincident, the offset between these two centers has to be known. In addition
to this, at the point of transmission, the electrical center is not the geometrical
center. By applying Phase Center Offsets (PCO) and Phase Center Variations (PCV)
corrections it is possible to relate the measurements consistently to the satellite’s
center of mass. In [11] the author states that in global networks absolute PCVs have
to be taken into account due to the fact that the GPS satellites are normally seen at
different elevations from the ends of a baseline.



Performance Analysis of a GPS Equipment 289

2.3 Atmospheric Related Biases and Errors

Atmospheric biases are due to ionospheric and tropospheric delays. The ionospheric
bias is caused by the propagation of the GPS signals in the ionosphere, which is the
region of the atmosphere between about 50 and 1000 km above the Earth surface.
Within this region ions and free electrons, originating in sun radiation, are present
in quantities that affect the propagation of electromagnetic signals. In the GPS case,
the code (pseudo-range) is delayed and the carrier phase is advanced. Because this is
a dispersive medium at GPS frequencies, i.e., the propagation speed depends on the
carrier frequency, resolution of ionospheric delays can be accomplished by using a
dual-frequency receiver. However, according to Wells in [18], during a high solar
activity cycle (e.g., solar maximum between 2011 and 2013) and in mid afternoons
this technique may not be adequate for certain applications. The ionospheric delay
depends on the Total Electron Content (TEC) along the signal path and on the
frequency used [6]. The ionospheric bias may range from 5 (at night, the satellite at
the zenith) to 150 m (at midday and the satellite at low elevation) [18].

The troposphere is the lowest atmosphere layer, from the Earth’s surface to
50 km. The tropospheric delay is caused by the refraction of the GPS signal in
this layer. This bias depends on parameters such as the temperature, humidity, and
pressure. It varies with the height of the station. Unlike the ionosphere, this is a
non-dispersive medium for GPS frequencies, that is, the delay is independent from
the carrier frequency, so that dual-frequency receivers cannot be used to eliminate
it. In GPS case both pseudo-range and carrier phase will experiment the same delay.
Usually, the tropospheric bias is broken in two components [5]:

A hydrostatic component, including about 80–90% of the error and highly
predictable, according to atmospheric pressure and temperature, and satellite’
elevation angle.
A wet component, including about 10–20% of the error, is more difficult to
predict, due to variations of the partial water vapor on the atmosphere.

A number of studies have been performed to create tropospheric models to
mitigate the influence of this bias, among them the Hopfield model, used in this
research. The hydrostatic, or dry, component can be precisely described by these
models with an accuracy of ±1%, while the wet component can be modeled by
surface weather data to within 3–4 cm [18]. Besides using models, usually based
on meteorological parameters, other approaches to determine the wet component
include direct measurement with water vapor radiometers and the use of a station-
dependent zenith scale factor for each satellite pass [12].
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2.4 Station Related Biases and Errors

Station related biases and errors to be considered include those related to the
equipment (receiver clock offset and receiver antenna phase centers) and location
of the station (multipath and geophysical phenomena).

The receiver clock error is the difference between the time maintained by the
receiver clock and the reference GPS time. Differencing observations between
satellites can eliminate the receiver dock error. This procedure is based on the
assumption that the clock bias is independent at each measurement time. “In the case
of relative positioning, such as static positioning using carrier phase, the receiver
clock offsets are eliminated, with the assumption that a receiver appears to make
observations to all satellites at the same time” [2].

Receiver Antenna Phase centers biases are the compound of PCOs and PCVs.
PCO is the offset between the point of reception (mean phase center), at the antenna,
and the physical Antenna Reference Point (ARP). This offset is constant, for each
antenna and frequency, whereas PCVs vary depending on the direction (azimuth and
elevation of the satellite) and frequency of the transmitting signal. According to [2],
if not accounted for, the bias due to these variations can reach several centimeters in
the observed carrier phase for some types of antenna. For high accurate applications,
in static positioning using carrier phase, these biases have to be mitigated. Some
procedures should then be followed, in order to eliminate or reduce this type of
bias, such as the use of similar antennas (choke ring, if possible), directed north on
both sides of the baseline. Nevertheless, even in the case of similar antennas being
used, models for receiver antenna phase centers (particularly PCVs) must be applied
for baselines greater than 100 km [2].

Multipath is the phenomena whereby a signal arrives at a receiver from more than
one path because of the reflections during the signal propagation. As the bias due to
multipath is wavelength dependent, code and carrier phase are affected in different
ways. Pseudo-range multipath can reach up to one chip length of the PRN codes
(293 m for C/A code and 29.3 m for P code). Carrier phase measurements are not
free from multipath either, although the effect is about two orders of magnitude
smaller than in pseudo-ranges (e.g. 5 cm for L1), it contributes to the phase
measurement noise [3]. Furthermore, because multipath affects L1 and L2 signals
differently, this can cause problems during cycle slip detection and correction
[2]. For static positioning using carrier phase, as demonstrated in [13], multipath
signature can be detected through the analysis of strong correlation present in
the adjustment’ residuals of two consecutive sidereal days, due to the geometry
repetition of satellite-antenna-reflector.

Applying models for geophysical phenomena, such as the solid earth tides
(SET) or ocean tide loading (OTL) is important when striving for centimeter-level
accuracies using carrier phase relative positioning over long baselines lengths.
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3 Data and Methodology

OS’ active stations were used to investigate the relation between time of observation
and length of the baseline. A total of 105 baselines were processed using LGO,
separated into six range groups (Ri, i = 1, . . . , 6) according to their lengths in
kilometers:

• R1 = [000 − 100] →(5 baselines)
• R2 = [100 − 200] →(14 baselines)
• R3 = [200 − 300] →(27 baselines)
• R4 = [300 − 400] →(29 baselines)
• R5 = [400 − 500] →(14 baselines)
• R6 = [500 − 900] → (16 baselines)

All the stations are permanent stations of clear sky visibility and with low
multipath conditions. The quality of the data is therefore expectantly high. Day
13/06/2013 of receiver independent exchange (RINEX) data of GPS week 1744
was downloaded from the data archive of the active GPS network of Ordnance
Survey (OS Net) for each of the 106 stations [15]. These RINEX data include phase
measurement of the carrier waves L1 and L2, P1, P2 and C/A pseudo-range code at
a 30 s interval.

For this experiment, 24 h of dual-frequency GPS carrier phase observations for
each of 105 baselines formed by ABEP, chosen as reference station, and all the
other active stations, designated as rover, from OS Network were used. These 105
baselines range in length from 61 to 898 km and correspond to all active stations
considered “healthy” on 13/06/2013. The data for each baseline comprised the
same 24-h session that was further subdivided into periods of time of 1, 2, 3, 4,
6, 8, 12, and 24 h as follows, where the two first digits represent the beginning of
the observation period and the last two the end:

• 1 h periods: [0001], [0607], [1213], [1819];
• 2 h periods: [0002], [0608], [1214], [1820];
• 3 h periods: [0003], [0609], [1215], [1821];
• 4 h periods: [0004], [0408], [0812], [1216], [1620], [2024];
• 6 h periods: [0006], [0612], [1218], [1824];
• 8 h periods: [0008], [0816], [1624];
• 12 h periods: [0012], [1224];
• 24 h period: [0024].

The division of time in this way was done in order to evaluate the performance
of the software for different lengths of observation time.
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The criteria followed to select the reference station were primarily based on
location. Thus ABEP, on the west coast of England, was chosen, because of its high
altitude and location, providing a well-distributed range of radial vectors to all the
other active stations, either in latitude and longitude. Its 3D positional coordinates
were fixed to the official values adopted by OS.

In order to evaluate at what range of baseline lengths the use of precise
ephemerides becomes worthwhile, both results using broadcast and precise
ephemerides are presented as well. The corresponding SP3 files were downloaded
from the data archive of IGS [8]. These include precise ephemerides at a sampling
interval of 15 min and the high-rate precise satellite clocks with a sampling of 30 s.

Hence, the four different scenarios can be compared as follows:

• Direct comparison of the results obtained using the broadcast ephemerides and
the precise ephemerides (BH versus PH and BC versus PC);

• Direct comparison of the results obtained using Hopfield model and computing
the troposphere (BH versus BC and PH versus PC).

At starting points 1D, 2D, and 3D accuracy criteria were established for each
baseline, as only successful processed baselines are of interest for this research.
The chosen values were set to 1D and 2D accuracies to be better than 3 cm and
3D better than 4.5 cm. These are realistic values, as the OS active stations have 1D
accuracy of about 2 cm in magnitude and close to 1 cm in 2D. Therefore, assuming
the 3 cm as 1D and 2D threshold seems to be reasonable due to the fact that this
tolerance allows for the “absorption” of errors inherent to the coordinates of the
stations. Despite how perfectly the baseline was calculated an error of up to 4 cm
in height and 2 cm in plan could arise due to the uncertainty associated with the
coordinates.

The published coordinates of each of these stations (in Cartesian format on the
header of the corresponding RINEX file) are assumed as “true” and used to compute
the errors (1D, 2D, and 3D) in the solutions processed by LGO.

Figure 1 presents the percentage of successful baselines per range in 1D (black)
and 2D (blue). There is a clear trend for fewer successful baselines as the length
increases, either in 1D or 2D.

In Fig. 2, where the results are organized in a detailed form (each rectangle
contains the eight box-plots, relatively to four strategies for 1D and 2D per range
length), the trend is evident in all cases. In Table 1 we present the percentage of
successful baselines per range in 1D (black) and 2D (blue) and per strategy. It is also
easily to detect such behavior. That is a clear trend for a lower quantity of successful
baselines as the length increases, regardless of the strategy adopted, either in 1D or
2D.
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Table 1 Averaged percentage of successful baselines in 1D and 2D for total (T ) and distinct
ranges (Ri , i = 1, . . . , 6)

Strategies Processed Pass T R1 R2 R3 R4 R5 R6

BH 2940 880 29.932 77.143 53.571 37.434 27.094 13.520 1.339

2940 1756 59.728 97.145 83.418 71.296 60.099 44.643 20.537

BC 2940 1379 46.905 82.857 70.663 57.804 38.424 34.949 22.321

2940 1875 63.776 98.571 82.908 76.190 65.394 49.235 25.000

PH 2940 840 28.571 72.857 50.510 37.302 25.739 11.990 0.223

2940 2055 69.898 97.143 84.184 81.746 73.153 59.694 32.143

PC 2940 1206 41.020 84.286 66.582 54.365 28.818 27.296 16.518

2940 2087 70.986 100.000 84.439 83.466 73.522 59.184 35.045

Strategies BH, BC, PH, and PC. Percentage of success for 1D in black; for 2D in blue
Four strategies considering 1D and 2D

In a preliminary approach, it was found that the different ranges led to signifi-
cantly different results. Were used parametric tests to compare proportions (t-test).
With some small samples in certain ranges, were also applied some nonparametric
tests that allow us to compare location measures, or a chi-square test and a Kruskal-
Wallis to evaluate if the proportions of success are the same in the different ranges;
a chi-square independence test was also used to evaluate the relation between the
proportion of success and range. In Table 2 are the p-values obtained when the
differences of the proportions of success for different ranges and strategies are
tested.

In general, different strategies conduce to similar results: almost all comparisons
have the same conclusion—the proportions of success in different ranges are not
equal except when the ranges are sequential of each other. Also were performed
similar tests comparing different strategies considering the same range. Generally,
the proportions of success for the same range, but with different strategies conducted
to significant tests, meaning that there is statistical evidence of different proportions
of success per different strategies for same range. These conclusions are visible in
Fig. 2.

We also performed an analysis of variance with four factors (parametric and
non-parametric approach). The results of such analysis are similar for both cases:
generally each factor is significant, meaning that the probability for success is not
equal for each level of the considered factor. The intersection of each factor with the
other considering secondary and third level intersections was not significant. The
resume of that analysis can be found in Fig. 3. In this study we have merged the
classes with smaller exposure time. The level 3 of factor duration means exposure
time until 3 h.

We also performed the Scheffe’s S procedure, derived from F Distribution. This
technique provides a simultaneous confidence level for comparisons for all linear
combinations of means, namely for comparisons of simple differences of pairs.
Figure 4 illustrates such comparisons for all levels of each factor. The conclusions
are similar.
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Table 2 Tests for difference of success probability for distinct ranges

Strategies Ranges R2 R3 R4 R5 R6

BH R1 0.3204 0.0679 0.0204 0.0073 0.0008

0.1129 0.3127 0.6257 0.9886 0.5567

R2 0.3271 0.0988 0.0200 0.0007

0.1115 0.0096 0.0126 0.0004

R3 0.4097 0.0745 0.0006

0.2769 0.1261 0.0099

R4 0.2767 0.0052

0.4756 0.0827

R5 0.2140

0.3991

BC R1 0.5652 0.2053 0.0267 0.0367 0.0065

0.1864 0.0291 0.0029 0.0032 0.0000

R2 0.4100 0.0395 0.0530 0.0054

0.6076 0.1981 0.0545 0.0005

R3 0.1452 0.1585 0.0158

0.3743 0.0934 0.0005

R4 0.8250 0.2491

0.3190 0.0060

R5 0.4492

0.1698

PH R1 0.3640 0.1159 0.0357 0.0122 0.0017

0.3059 0.1534 0.0383 0.0237 0.002

R2 0.4222 0.1208 0.0229 0.0008

0.8434 0.3924 0.1420 0.0019

R3 0.3533 0.0538 0.0003

0.4418 0.1514 0.0009

R4 0.2541 0.0033

0.3896 0.0063

R5 0.1900

0.1278

PC R1 0.4018 0.1237 0.0048 0.0116 0.0018

0.1266 0.0278 0.0028 0.0064 0.0000

R2 0.4451 0.0168 0.0320 0.0034

0.9360 0.3946 0.1339 0.0033

R3 0.0502 0.0844 0.0071

0.3645 0.1125 0.0012

R4 0.9174 0.3316

0.3598 0.0110

R5 0.4812

0.1845

Strategies BH, BC, PH, and PC. P -values for 1D in black; P -values for 2D in blue
Four strategies considering 1D and 2D
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Fig. 3 Analysis of Variance (four factors)—Percentage of successful baselines distinct ranges
(Ri , i = 1, . . . , 6); Duration of Exposure; Strategies BH, BC, PH, PC; Precision (1D and 2D)

4 Discussion of Results, Conclusions, and on Going Work

This work studies the relation for single baselines between lengths ranges and
between the different ranges and the observation time required to obtain high-
accurate positioning, using commercial software LGO. A brief analysis for different
amplitudes of time interval of exposure, considering the four strategies is reproduced
partially in this paper. The results are valid for this specific software and under
the conditions of the experiments. Four different strategies were established and
evaluated through the processing of a total of 11,760 baselines. The data processing
and testing used several options concerning the best thresholds for accuracy. The
LGO results were compared with the published coordinates by Ordnance Survey
and the baselines passing the accuracy criteria were isolated. The division of time in
this way was done in order to evaluate the performance of the software for different
lengths of observation time. It revealed that the largest amplitude of time exposure
interval, the bigger percentage of success.

Clearly was shown the dependence of success in 1D regarding the baseline
length. No matter the strategy adopted, broadcast or precise ephemerides, Hopfield
model or computing the troposphere, the rate of successful baselines processed
decreases as the baseline length increases, following a linear trend. Generally, when
looking at the range 1 to range 3 baseline length classes, BC performance is slightly
better than PC but it is absolutely certain that computing the troposphere leads to
higher rates of success for these three classes (BC vs BH and PC vs PH). Using
LGO to process individual longer baselines (range 4 to range 6 classes), without
any kind of redundancy, represents a risk, as the percentage of success is always
less than 50 %.

A preliminary experiment shows that to obtain high accurate relative positioning
3D coordinates for long baselines in static mode with LGO at least 4 h of observation
are recommended. Therefore, it is important to give, in a short time, a special focus
to periods of this magnitude and over. These cover the whole day in nonoverlapping
periods, whereas for the 1, 2 and 3 h intervals only representative samples were
chosen. It is still need to analyze the results from similar lengths but at different
times of the day experiencing diverse atmospheric conditions. Other tests and
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techniques, inquiring about the significance of the hour of the day, the amplitude
of time interval of exposure, considering the four strategies.

An Analysis of Variance with several factors [16] (range, strategies, amplitude
of interval time of exposure) was applied. Another possible approach is to model
the data by General Linear Models [1, 17]. Such statistical approach details will be
found in a future continuation of this manuscript.
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Multivariate Generalized
Birnbaum-Saunders Models Applied
to Case Studies in Bio-Engineering
and Industry

Víctor Leiva and Carolina Marchant

Abstract Birnbaum-Saunders models are receiving considerable attention in the
literature. Multivariate regression models are a useful tool in the multivariate
analysis, which takes into account the correlation between variables. Diagnostic
analysis is an important aspect to be considered in the statistical modeling. In this
work, we formulate a statistical methodology based on multivariate generalized
Birnbaum-Saunders regression models and their diagnostics. We implement the
obtained results in the R software, which are illustrated with two real-world
multivariate data sets related to case studies in bio-engineering and industry to show
their potential applications.

1 Introduction

The univariate Birnbaum-Saunders (BS) distribution is unimodal, positively
skewed, and has two parameters that modify its shape and scale. The BS distribution
has been widely studied because of its good properties, its relation with the normal
distribution, and its diverse applications. A logarithmic version of the BS (log-BS)
distribution is often used to formulate regression models. For more details of the BS
distribution, see the recent book by Leiva [11]. The family of elliptically contoured
(EC) distributions has the Laplace, logistic, normal and Student-t (hereafter called
“t”) cases as some of its members. The interested reader is referred to [4–7, 10, 12]
for more details on EC distributions and their modeling. EC distributions provide
a flexible framework to model extreme cases which are often found in data
following distributions of heavy-tails. Particularly, some authors [10] suggested
the t distribution as an alternative to the normal distribution, permitting atypical
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data to be accommodated. Robust estimation of parameters is reached when the
t distribution is used. This distribution has shown to provide robust estimation
in several regression models. Indeed, the t distribution includes an additional
parameter which allows the kurtosis to be modeled in a flexible way. This flexibility
of the t distribution permits outliers to be accommodated suitably, which is the main
difference between the t and normal distributions, because in the normal distribution
its kurtosis is fixed. Therefore, the maximum likelihood estimators under normality
are sensitive to outliers, even when the number of them is small, for example,
less than 1% [10]. Note that [3] proposed a generalized version of the BS (GBS)
distribution based on the EC family of distributions. Univariate log-linear regression
models for GBS distributions were studied by [1, 14, 19]. For multivariate versions
of GBS distributions and their modeling, diagnostics and applications based on
a logarithmic version of the GBS (log-GBS) distribution, the interested reader is
referred to [8, 15–17].

The objectives of this work are (1) to derive a methodology based on multivariate
GBS regression models and their diagnostics, as well as (2) to illustrate this
methodology with two real-world multivariate data sets related to bio-engineering
and industry to show their potential applications. The numerical results were
obtained with a programming code implemented in the R software (www.R-project.
org).

The contents of the work are organized as follows. In Sect. 2, we formulate
the multivariate GBS log-linear regression models. Also, we discuss the maximum
likelihood method for estimating the corresponding parameters. In Sect. 3, we derive
diagnostics for multivariate GBS log-linear regression models considering local
influence, as well as global influence by the Mahalanobis distance (MD). In Sect. 4,
we summarize the proposed methodology based on multivariate GBS regression
models. In Sects. 5 and 6, we conduct two case studies with real-world multivariate
data sets. Finally, in Sect. 7, we discuss some conclusions and future research related
to the topic of this work.

2 Multivariate GBS Regression Models

Consider the multivariate GBS log-linear regression model

Y = Xβ + E, (1)

where Y = (Yij ) ∈ R
n×m is the log-response matrix, and X = (xis) ∈ R

n×p
represents the model matrix of rank p containing the values of p covariates. Here,
X and Y are linked by a coefficient matrix β = (βsj ) = (

β
1
, . . . , β

m

) ∈ R
p×m

to be estimated, whereas E = (εij ) ∈ R
n×m is the error matrix. In addition, in the

model given in (1), let Y-
i , x-i , and ε-i be the ith rows of Y , X, and E, respectively.

Thus, we can write

Y i = μ
i
+ εi = β-xi + εi , i = 1, . . . , n,

www.R-project.org
www.R-project.org
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where ε1, . . . , εn are independently and identically log-GBSm
(
α1m×1, 0m×1,

Ψ , g(m)
)

distributed, with 1m×1 being a vector of ones for the indicated dimension,
0m×1 being a vector of zeros, Ψ = ('rs) ∈ R

m×m being the correlation matrix, and
g(m) being the multivariate EC density generator. For details about the m-variate
GBS and log-GBS distributions, denoted by GBSm and log-GBSm respectively, see
[15, 17] and the references therein.

Let Y = (Y 1, . . . , Y n)
- be a sample from a multivariate log-GBS distribution

with E[Y i] = β-xi (multivariate GBS log-linear regression structure), and

y = (
y

1
, . . . , y

n

)- their observations. Then, the log-likelihood function for θ =(
α, vec(β)-, svec(Ψ )-

)-, with “vec” and “svec” denoting the vectorization and
vectorization of a symmetric matrix, respectively, is given by

	(θ; y) =
n∑
i=1

	i(θ) =
n∑
i=1

log
(
fECm

(
φ
i
;Ψ , g(m)

))+
n∑
i=1

m∑
j=1

log(ξij ), (2)

where fECm is the probability density function of an m-variate EC distribution [6]
and φ

i
= (φi1, . . . , φim)

-, with

φij = 2

α
sinh

(
yij − μij

2

)
, ξij = 2

α
cosh

(
yij − μij

2

)
,

and μij = β-
j
xi , for i = 1, . . . , n, j = 1, . . . ,m. The log-likelihood function

defined in (2) can be specified for different EC distributions based on the probability
density functions defined in Table 1. We compare the BS and BS-t models, both
particular cases of GBS models. Results for other members of the EC family, as the
BS-Laplace, BS-Cauchy, BS-power-normal, and BS-logistic models, are directly
obtained from the methodology proposed in this work. We focus on the BS-t model
due to its interesting robustness property in the parameters estimation.

3 Diagnostics

Global influence in the multivariate regression model defined in (1) can be assessed
by the MD expressed as

MDi = φ-
i
Ψ −1φ

i
, i = 1, . . . , n, (3)

where φ
i

is given in (2). Based on [9, 10]: (1) MDi ∼ χ2(m), that is, the MD defined

in (3) follows the central χ2 distribution with m degrees of freedom, when g(m) is
the multivariate normal density generator, and (2) MDi/m ∼ F (m, ν), that is, it is
related to the central F distribution withm degrees of freedom in the numerator and
ν in the denominator, if g(m) is the multivariate t density generator, for i = 1, . . . , n.
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Table 1 Normalizing constant (c(m)), density generator (g(m)(u)) for u > 0 and probability

density function (fECm(u) = c(m)|Ψ |− 1
2 g(m)(u)), for the indicated distribution

Distribution c(m) g(m)(u) fECm(u)

Normal (2π)− m
2 exp

(−u
2

)
(2π)− m

2 |Ψ |− 1
2 exp

(−u
2

)

t Γ
(
ν+m

2

)

(νπ)
m
2 Γ
(
ν
2

)
(

1 + u

ν

)− (ν+m)
2 Γ

(
ν+m

2

) |Ψ |− 1
2

(νπ)
m
2 Γ
(
ν
2

)
(

1 + u

ν

)− (ν+m)
2

ν > 0
Symmetric Γ (ξ)

Γ
(

2ξ−m
2

)
(θπ)m/2

(
1 + u

θ

)−ξ
Γ (ξ)|Ψ |− 1

2

Γ
(

2ξ−m
2

)
(θπ)

m
2

(
1 + u

θ

)−ξ
Pearson type VII

ξ > m/2; θ > 0

Symmetric
δΓ
(
m
2

)
λ
(2η+m−2)

2δ

π
m
2 Γ
(

2η+m−2
2δ

)
uη−1 exp(−λ uδ) δΓ

(
m
2

)
λ
(2η+m−2)

2δ uη−1 exp(−λ uδ)
π

m
2 Γ
(

2η+m−2
2δ

)
|Ψ | 1

2
Kotz type

δ > 0; λ > 0; 2η +m > 2

Laplace 1

2
(m−2)

2 π
m
2 σmΓ (m2 )

K
(
(2u)

1
2

σ

)
|Ψ |− 1

2K
(
(2u)

1
2

σ

)

2
m
2 −1π

m
2 σmΓ (m2 )

σ > 0
Symmetric π

m
2 κ

Γ (m2 )

exp(−u)
(1 + exp(−u))2 π

m
2 κ |Ψ |− 1

2

Γ (m2 )

exp(−u)
(1 + exp(−u))2logistic

Where Γ and K denote, respectively, the gamma function and the modified Bessel function of the
third kind, whereas the constant κ = ∫∞

0 z
m
2 −1(exp(−z)/(1 + exp(−z))2) dz

Consider the log-likelihood function 	(θ) for the parameter θ of the model
defined in (1), which we call the non-perturbed model. In addition, consider a
perturbation vector w ∈ R

q in the model, for q being a generic value which can
correspond to the sample size n or the number of responses m, and w ∈ Ω ,
with Ω ⊂ R

q being a set of perturbations. Then, 	(θ |w) is the log-likelihood
function of the perturbed model, with θ̂w being the maximum likelihood estimate
of θ obtained from 	(θ |w). Furthermore, let w0 ∈ Ω ⊂ R

q be a non-perturbation
vector with w0 = 0-

q×1, or w0 = 1-
q×1, or a possible third choice, so that 	(θ) =

	(θ |w0). Assuming that 	(θ |w) is a twice continuously differentiable function in
a neighborhood of

(̂
θ,w0

)
, we compare the maximum likelihood estimates θ̂ and

θ̂w by the local influence method to investigate how inference is affected by the
corresponding perturbation. The likelihood distance (LD) is given by

LD(w) = 2
(
	
(̂
θ
)− 	

(̂
θw
))
, (4)
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which is used to detect the influence ofw. Large values of LD(w) in (4) indicate that
θ̂ and θ̂w differ considerably in relation to the contours of the non-perturbed log-
likelihood function 	(θ ). We study the local behavior of the influence plot a(w) =
(w-, LD(w))- around w0. The direction in which the LD locally changes most
rapidly is evaluated, that is, the maximum curvature of the surface a(w). For LD(w)
given in (4), this maximum curvature is read to be

Cmax = max||d||=1
Cd, (5)

where Cd = 2|d-Fd|, with the matrix F ∈ R
n×n and d being the unit-length

direction vector. To compute Cmax given in (5) and the corresponding direction
vector dmax, we must calculate

F = −Δ
(̂
θ,w0

)-

̈
(̂
θ
)−1

Δ
(̂
θ,w0

)
, (6)

where −
̈(̂θ) ∈ R
p∗×p∗

is the observed information matrix for the non-perturbed
model and Δ(θ,w) ∈ R

p∗×n is a matrix partitioned accordingly for the perturbed
model obtained from (1), called perturbation matrix, with elements defined as

Δij = ∂2	(θ |w)
∂θi∂wj

, i = 1, . . . , n, j = 1, . . . , p∗,

evaluated at θ = θ̂ andw = w0, wherep∗ = pm+l+1, with l = m(m−1)/2. Then,
dmax is a unit-length eigenvector associated with the largest absolute eigenvalue
Cmax given in (5). If the absolute value of dmaxi is large, it indicates that the case i is
potentially influential. In addition to dmaxi , another direction of interest is di = ein,
which is related to the direction of the case i, where ein ∈ R

n is a vector of zeros
and a one at the ith position. Thus, the normal curvature is Ci(θ) = 2|fii |, for
i = 1, . . . , n, where fii is the ith diagonal element of F given in (6), evaluated at
θ = θ̂ . The case i is considered as potentially influential if Ci (̂θ) > 2C(̂θ), for
i = 1, . . . , n, where

C
(̂
θ
) = 1

n

n∑
i=1

Ci
(̂
θ
)
. (7)

The diagnostic method defined in (7) is called total local influence.
By using the model formulated in (1) and its perturbed version, we determine

normal curvatures for local influence. We compute the observed information matrix
−
̈(̂θ), find the perturbation matrix Δ(̂θ, w0), and then obtain the eigenvector
associated with the largest absolute eigenvalue of F given in (6) as a local influence
measure. Next, we detail the perturbation matrices for different schemes.

For the scheme of case-weight (ca) perturbation, let w = (w1, . . . , wn)
- ∈ R

n

be the perturbation vector, where the wis are positive values denoting the weight
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corresponding to the case i, and 	ca(θ |w) is the perturbed log-likelihood function.
Let w0 = 1-

1×n be the non-perturbation vector such that 	ca(θ |w0) = 	(θ). Then,
the log-likelihood function for the perturbed model under this scheme is read to be

	ca(θ |w) =
n∑
i=1

wi	i(θ), (8)

with 	i(θ) defined from (2). Hence, we establish the matrix Δca(θ,w) by taking the
derivatives of 	ca(θ |w) given in (8) with respect to θ and w, evaluating it at θ = θ̂

and w = w0. For details about these derivatives, see [16].
For the scheme of correlation matrix (cm) perturbation, letw = (w1, . . . , wn)

- ∈
R
n − {0} be the perturbation vector and 	cm(θ |w) the corresponding perturbed log-

likelihood function. Let w0 = 1-
1×n be the non-perturbation vector such that

	cm(θ |w0) = 	(θ). Then, the log-likelihood function for the perturbed model under
this scheme is read to be

	cm(θ |w) =
n∑
i=1

⎛
⎝log

(
fECm

(
φ
i
;w−1

i Ψ , g(m)
))+

m∑
j=1

log(ξij )

⎞
⎠ . (9)

Again we establish the matrix Δcm(θ,w) by taking the derivatives now of 	cm(θ |w)
given in (9) with respect to θ , and then with respect to w, evaluating it at θ = θ̂ and
w = w0. For details about these derivatives, see [16].

In the scheme of covariate (co) perturbation, we replace the value of a continuous
covariate xil by xil + wi , where xil ∈ R

n is the lth column of xi and w =
(w1, . . . , wn)

- ∈ R
n is the perturbation vector. Here, w can be expressed as a

proportional value to the standard deviation (SD) of the perturbed covariate and
w0 = 0-

1×n is the non-perturbation vector such that 	co(θ |w0) = 	(θ). Then, the
log-likelihood function for the perturbed model under this scheme is read to be

	co(θ |w) =
n∑
i=1

⎛
⎝log

(
fECm

(
φ
i
(w);Ψ , g(m)

))+
m∑
j=1

log(ξij (w))

⎞
⎠ . (10)

Here, we establish Δco(θ,w) by taking the derivatives of 	co(θ |w) given in (10)
with respect to θ and w, evaluating it at θ = θ̂ and w = w0. For details about these
derivatives, see [16].

In the scheme of response (re) perturbation, we replace y
i

by y
i
+ wi , with

wi = (wi1, . . . , wim)
- ∈ R

m denoting the corresponding perturbation to the case
i. Here, wi can be expressed as a proportional value to the SD of the response and
w0 = 0-

1×m is the non-perturbation vector such that 	re(θ |w0) = 	(θ). Then, the
log-likelihood function for the perturbed model under this scheme is read to be

	re(θ |w) =
n∑
i=1

⎛
⎝log

(
fECm

(
φ
i
(w);Ψ , g(m)

))+
m∑
j=1

log(ξij (w))

⎞
⎠ . (11)
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Again, Δre(θ,w) is obtained by taking the corresponding derivatives now of
	re(θ |w) given in (11) with respect to θ and w, and evaluating it at θ = θ̂ and
w = w0. For details about these derivatives, see [16].

4 Summary of the Proposed Methodology

The proposed statistical methodology based on multivariate GBS log-linear regres-
sion models and their diagnostics is summarized in Algorithm 1.

5 Case Study I: Bio-Engineering Data

In this case study, we investigate four types of bone densities: (1) bulk density,
which considers the mass of the intact core, including fat and water; (2) dry density,
which also considers the mass of the intact core, but excluding fat and water; (3)
ash density, which is related to the mineral content into the mass of the core; and (4)
computed tomography (CT) density, which is obtained from a calibration equation
that is derived from known bone mineral content phantoms. Clinical CT scans are
used to assess their application in inferring physical properties of human trabecular
bone. The prediction of apparent density from ash density allows for estimation of

Algorithm 1 Methodology based on multivariate GBS regression models and their diagnostics

Step 1. Collect a data set of size n with m responses and p covariates for regression modeling.

Step 2. Make an exploratory data analysis based mainly on correlations to justify the use of
multivariate distributions and regression models, as well as discarding possible multicollinearity
problems among the covariates.

Step 3. Propose a multivariate GBS log-linear regression model for the data set collected in Step 1
based on the information obtained from Step 2.

Step 4. Estimate the model parameters using maximum likelihood and non-linear optimization
methods, for example Newton and quasi-Newton methods [18].

Step 5. Fit the multivariate regression model to the data set collected in Step 1 using goodness-of-
fit tools, for example, the MD and probability versus probability (PP) plots with acceptance bands
based on Kolmogorov-Smirnov (KS) test for the transformed MD [2]. If the model fits adequately
the data, then to go to Step 6. Otherwise, others models must be considered to describe the data.

Step 6. Use the local influence method in the fitted model given in Step 4 to identify potentially
influential cases. Here, it is necessary to compute the observed information matrix −
̈(̂θ ) and
obtain the perturbation matrix Δ(̂θ , w0) for the four perturbation schemes.

Step 7. Carry out an analysis to evaluate whether removal of potentially influential cases detected
in Step 6 produces inferential changes or not. If no inferential changes are detected, then to use the
model obtained in Step 4 for prediction. Otherwise, potentially influential cases should be removed
and a new estimated model should be obtained.
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mechanical properties of bone, which can subsequently be used in a finite element
analysis/model of bone [20]. The data set is presented in Table 5 of the appendix. In
this table, “Age,” “Gender,” and “ID” correspond to age, gender, and identification
of the bone core for a patient under study, respectively, whereas “Voxels” is the
number of volumetric pixels (voxels), “HU mean,” “HU SD,” and “HU CV” are the
mean, SD, and coefficient of variation for the voxel Hounsfield units (HUs) within
a bone core. In addition, also in Tables 4 and 5, “ρbulk” is the bulk density, “ρdry”
is the dry density, ρash is the ash density, and “ρct” is the CT density, all of these
four densities measured over the specimen bulk volume. Next, we describe the data
analytic following the steps of Algorithm 1.

Step 1 We consider as responses: (1) bulk density (T1, in mg/cm3) and (2) dry
density (T2, in mg/cm3). The covariates that can affect these responses are: (1)
CT density (X1, in mg/cm3) and (2) ash density (X2, in mg/cm3). We illustrate
the proposed multivariate models with real-world bone density data associated with
these variables. We work with the log-responses Yj = log(Tj ), for j = 1, 2.

Step 2 We make an exploratory data analysis computing correlations for Y1,
Y2, X1 and X2. Figure 1 displays the scatter-plots for these variables and their
corresponding correlations. From this figure, we detect that exist: (1) large cor-
relations between (Y1, Y2), justifying the use of a multivariate distribution; (2)
large correlations between (X1,X2), indicating a possible collinearity problem;
and (3) medium correlations between (X1, Y1), and (X1, Y2), and large correlations
between (X2, Y1) and (X2, Y2), which supports the elimination of X1. This must be
confirmed by the inferential analysis.

Step 3 We propose a multivariate regression model for describing (Y1, Y2) in
function ofX2 (becauseX1 is discarded due to collinearity—see Step 2). Therefore,
the proposed multivariate log-linear regression model is given by

Y i = β-xi + εi , i = 1, . . . , 74,

where εi = (εi1, εi2)
- ∼ log-GBS2

(
α12×1, 02×1,Ψ 2×2, g

(2)
)
.

Step 4 We estimate the parameters of the multivariate BS and BS-t regression
models via the maximum likelihood method using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) quasi-Newton method [18], which we have implemented in R code.

Starting values, θ̂ (0) say, used in the maximization procedure are: α̂(0) = 0.077963,

β̂
(0) =

(
6.677099 4.682944
0.001157 0.004538

)
, Ψ̂

(0) =
(

1.000000 0.378761
0.378761 1.0000

)
.

In addition, we have used the value ν = 4 for the t distribution and verified that
it corresponds to the value that maximizes the log-likelihood function within a
range of values for ν. For details about starting values for the maximum likelihood
estimation procedure used in this illustration, see [16].

Table 2 displays the parameter estimates, the value of the maximized log-
likelihood function, estimated asymptotic standard error of the corresponding
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Fig. 1 Scatter-plots with their corresponding correlations for the indicated variable with bone
density data

Table 2 Maximum likelihood estimate of the indicated parameter and model, with its correspond-
ing estimated asymptotic standard error, p-value and log-likelihood function with bone density
data

BS2 model BS-t2 model

Parameter Estimate Standard error p-value Estimate Standard error p-value

ρ 0.377034 0.050354 <0.001 0.373313 0.059365 <0.001

β01 6.676328 0.025193 <0.001 6.678921 0.029402 <0.001

β02 4.679009 0.025101 <0.001 4.687253 0.032067 <0.001

β11 0.001159 0.000097 <0.001 0.001151 0.000110 <0.001

β12 0.004550 0.000097 <0.001 0.004526 0.000120 <0.001

α 0.072004 0.003628 <0.001 0.071836 0.004840 <0.001

Log-likelihood 165.3831 – – 169.3681 – –
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maximum likelihood estimators for both models, and p-values of each t-test. As
usual, we use the square root of the diagonal elements of the observed Fisher
information inverse matrix to approximate the corresponding estimated standard
errors [19]. From this table, and for a 5% significance level, we obtain the
following conclusions: (1) estimated correlation from the BS2 and BS-t2 log-linear
models results to be statistically significant, corroborating our conjecture from
the exploratory analysis; and (2) the regression coefficients β0 (constant term of
the model) and β1 (slope) must be considered in the prediction of T1 and T2 because
β0 and β1 are statistically significant at 5%. We can also see that the value that
maximizes the log-likelihood function is greater for the BS-t2 model than for the
BS model, indicating a better fit with the BS-t2 model.

Step 5 As mentioned, m-variate log-GBS model checking can be conducted by
using the MD. Here, this distance follows the χ2(m = 2) or 2F (m = 2, ν = 4)
distribution if g(2) is the bivariate normal or t2 density generator, respectively.
We substitute the maximum likelihood estimator of θ in MDi (̂θ), which has
asymptotically the same distribution of MDi (θ). We use the Wilson-Hilferty
(WH) approximation for transforming this distance, which should follow now a
normal distribution. Then, we check normality of the transformed distances with
the WH approximation using goodness-of-fit techniques. Figure 2a, b shows the
corresponding PP plots with acceptance bands for a significance level of 5%. From
this figure, we detect that the BS-t2 log-linear regression model provides a better
fit than the BS2 model, which is corroborated by the p-values 0.4068 and 0.0227,
respectively, of the KS test associated with these PP plots. Therefore, we can
conclude that the multivariate BS-t2 log-linear regression model fits better the bone
density data. The MD is a global influence measure to detect multivariate outliers.
Figure 2c, d displays the index plots of this distance for the BS2 and BS-t2 log-linear
regression models. In addition, Fig. 2e presents the plot of estimated weights versus
MDi for the BS-t2 log-linear regression model, with i = 1, . . . , 74. From Fig. 2c, d,
note that the cases {#20, #48, #55, #69, #70} appear as possible multivariate outliers
in the BS2 model, but not in the BS-t2 model. In Fig. 2e, observe that these cases
have smaller weight in the BS-t2 model than in the BS2 model, which confirms the
inherent robustness of the maximum likelihood procedure against possible outlying
observations.

Step 6 In order to identify possible influential cases in the fitted models, we present
some diagnostic graphs for total local influence (Ci ). Figure 3 shows these plots
under the case-weight, correlation, covariate and response perturbation schemes for
θ̂ . From this figure, note that the cases {#20, #48, #55, #69, #70} appear with a large
influence in the BS2 model, but not in the BS-t2 model. These cases coincide with
those detected by the MD in Step 5.
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Fig. 2 PP plots with KS acceptance regions at 5% for transformed MDs in BS2 (a) and BS-t2 (b)
models; index plots of MDs for the BS2 (c) and BS-t2 (d) models; and plot of estimated weights
of MDs for BS-t2 (e) and BS2 models (straight line at a value equal to one) with bone density data
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Fig. 3 Total local influence index plots of case-weight (a, b), correlation (c, d), covariate (e, f),
and response (g, h) perturbations for θ̂ in the indicated model with bone density data
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Fig. 3 (continued)

6 Case Study II: Industry Data

In this case study, we analyze die fracture, which is a typical metal fatigue caused
by cyclic stress in the course of the service life cycle of dies (die lifetime). Although
this fatigue can be mainly determined by die lifetime, other random variables can
also be considered as responses to this fatigue. The purpose of this illustration is to
model fatigue in a metal forming process. The data set is presented in Table 5 of the
appendix. Next, we describe the data analytic following the steps of Algorithm 1.

Step 1 We consider as responses: (1) Von Mises stress (T1, in N/mm2) and (2)
manufacturing force (T2, in Newton –N–). The covariates that can affect these
responses are: (1) friction coefficient (X1, dimensionless) and (2) work temperature
(X2, in oC).

Step 2 Figure 4 displays the scatter-plots for all log-responses and covariates, from
which we detect that: (1) no correlations exist between (X1,X2), discarding any
possible collinearity problem in our model; (2) large correlation between (Y1, Y2),
justifying the use of a multivariate distribution; (3) small correlations between
(X1, Y1) and (X1, Y2); (4) large correlations between (X2, Y1) and (X2, Y2).

Step 3 We propose a multivariate regression model for describing (Y1, Y2) in
function of X2 (because X1 is discarded due to its small correlations with the
responses—see Step 2). Therefore, the proposed multivariate log-linear regression
model is given by

Y i = β-xi + εi , i = 1, . . . , 15,

where εi = (εi1, εi2)
- ∼ log-GBS2

(
α12×1, 02×1,Ψ 2×2, g

(2)
)
.
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Fig. 4 Scatter-plots with their corresponding correlations for the indicated variables with die
lifetime data

Step 4 We estimate the parameters of the multivariate BS and BS-t log-linear
regression models via the maximum likelihood method and the BFGS approach.

Starting values, θ̂
(0)

say, used in the maximization procedure are: α̂(0) = 0.184808,

β̂
(0) =

(
10.825491 15.448092
−0.005546 −0.005823

)
, Ψ̂

(0) =
(

1.000000 0.972114
0.972114 1.000000

)
.

Once again, we use the value ν = 4 for the t distribution, which we verify that
corresponds to the value that maximizes the log-likelihood function within a range
of values for ν.

Table 3 displays the model parameter estimates, the estimated asymptotic stan-
dard errors of the corresponding maximum likelihood estimators for both models,
and p-values of each t-test. From this table, and for a significance level of 1%,
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Table 3 Maximum likelihood estimate of the indicated parameter and model with its correspond-
ing estimated asymptotic standard error, p-value and log-likelihood function with die lifetime data

BS2 model BS-t2 model

Parameter Estimate Standard error p-value Estimate Standard error p-value

ρ 0.972392 0.005219 <0.001 0.975965 0.004694 <0.001

β01 10.897981 0.236175 <0.001 10.759766 0.234839 <0.001

β02 15.524423 0.235865 <0.001 15.432361 0.242804 <0.001

β11 −0.005647 0.000333 <0.001 −0.005438 0.000334 <0.001

β12 −0.005930 0.000333 <0.001 −0.005779 0.000344 <0.001

α 0.147407 0.014813 <0.001 0.101474 0.009816 <0.001

Log-likelihood 26.9665 – – 23.6383 – –

we can obtain the following conclusions: (1) estimated correlation from the BS2
and BS-t2 log-linear models results to be statistically significant, corroborating our
conjecture from the exploratory analysis; and (2) the regression coefficients β0 and
β1 must be considered in the prediction of T1 and T2 because they are significant
at 1%. We can also see that the value that maximizes the log-likelihood function is
greater for the BS2 model than for the BS-t2 model, which is a conclusion different
from the another case analysis, indicating a better fit of the BS2 model.

Step 5 Figure 5a, b shows the corresponding PP plots for the transformed MDs
with acceptance bands for a significance level of 5%. From this figure, we detect
that the BS2 model provides a better fit than the BS-t2 model, which is corroborated
by the p-values 0.2480 and 0.0736, respectively, of the KS test associated with these
PP plots. Therefore, we can conclude that the BS2 log-linear regression model fits
better the die lifetime data. Figure 5c, d displays the index plots of this distance
for the BS2 and BS-t2 log-linear regression models. In addition, Fig. 5e presents the
plot of estimated weights versus MDi for the BS-t2 log-linear regression model,
with i = 1, . . . , 15. From Fig. 5c, d, note that the case #1 appears as possible
multivariate outlier in the BS2 model, but not in the BS-t2 log-linear regression
model. In Fig. 5e, observe that these cases have smaller weight in the BS-t2 log-
linear regression model than the BS2 log-linear regression model.

Step 6 Figure 6 shows the index plots of Ci under the case-weight, correlation,
covariate, and response perturbation schemes for θ̂ . From this figure, note that the
case #1 appears with a large influence in the BS2 log-linear regression model under
all perturbation schemes, but not in the BS-t2 model. These cases coincide with
those detected by the MD in Step 5. In addition, the case #14 appears with a large
influence in the BS2 log-linear regression model under case-weight and correlation
perturbation schemes.
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Fig. 6 (continued)

7 Conclusions and Future Research

We have derived a methodology based on generalized multivariate Birnbaum-
Saunders log-linear regression models and their diagnostics. We have considered the
Mahalanobis distance for evaluating the suitability of the distributional assumption
by transforming this distance with the Wilson-Hilferty approximation and then
by using goodness-of-fit techniques. In addition, the Mahalanobis distance has
been employed as a global influence measure to detect multivariate outliers.
Furthermore, we have developed local influence under perturbation schemes of case-
weight, correlation matrix, response variable, and a continuous covariate. We have
implemented the obtained results in the R software. These results have been applied
to case studies in bio-engineering and industry to illustrate their good performance.

Some aspects to be studied in a future research are related to exploring the
effect of considering different shape parameters in each response. In addition,
heterogeneity presented in the observations can also be modeled. Furthermore, other
estimation methods and robustness aspects may be studied. Moreover, a residual
analysis should be derived for these regression models, whose appropriateness is
usually detected by residuals. Also, random effects may be inserted in the modeling
considered in this work. All of these aspects provide us future challenging issues to
be analyzed.
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Appendix: Bio-Engineering and Industry Data Sets

See Tables 4 and 5.

Table 4 CT scan data to study the bone quality

Density (mg/cm3)

Age Gender ID Voxels HU mean HU SD HU CV ρct ρbulk ρdry ρash

68 F 213 2311 144 153 1.060 105 801 161 125

68 F 231 1811 154 177 1.150 116 988 338 227

68 F 233 2214 260 262 1.010 195 1156 526 359

68 F 234 2447 327 205 0.626 235 1094 422 292

68 F 235 2026 272 227 0.832 205 1045 376 263

87 F 411 1902 230 132 0.573 156 1006 347 238

87 F 412 1902 329 121 0.368 228 1187 519 359

87 F 413 2059 401 132 0.330 282 1107 352 246

87 F 421 1376 104 122 1.173 71 1073 310 212

87 F 422 1791 232 115 0.497 156 1116 373 261

87 F 423 1862 284 123 0.433 195 1175 391 279

87 F 424 1761 213 111 0.520 143 1214 472 332

87 F 425 2267 349 123 0.352 244 1063 286 193

87 F 426 1614 88 89 1.010 55 869 160 129

87 F 427 1833 425 159 0.374 301 1226 527 366

86 F 511 4250 180 157 0.870 132 1061 275 197

86 F 512 3231 121 117 0.967 83 980 210 145

86 F 521 3047 129 140 1.080 95 996 249 169

86 F 522 3083 148 136 0.922 105 958 179 138

86 F 523 3618 45 95 2.130 33 1027 160 123

86 F 524 3750 131 136 1.040 94 1036 267 196

86 F 525 3623 140 142 1.020 103 1084 377 257

86 F 526 3256 232 179 0.770 171 1089 404 278

86 F 531 4972 149 167 1.120 116 1090 268 194

86 F 532 4740 128 155 1.210 97 984 164 122

86 F 534 5141 125 153 1.220 94 1042 253 167

86 F 535 4170 74 138 1.860 61 974 204 154

86 F 536 4413 116 151 1.300 90 978 188 138

81 F 611 2487 193 102 0.529 127 977 254 169

81 F 613 2891 324 116 0.360 224 1066 414 264

81 F 621 1448 211 110 0.521 140 958 290 197

81 F 622 2688 297 136 0.457 204 1126 401 274

81 F 624 3210 329 125 0.380 228 1162 442 305

(continued)
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Table 4 (continued)

Density (mg/cm3)

Age Gender ID Voxels HU mean HU SD HU CV ρct ρbulk ρdry ρash

77 F 712 3109 377 161 0.428 265 1179 556 373

77 F 713 2462 280 116 0.415 192 1124 446 302

77 F 714 2319 102 107 1.052 66 837 163 112

77 F 722 3817 361 160 0.442 254 1088 352 231

77 F 724 2922 234 136 0.580 158 955 348 244

77 F 726 3112 422 195 0.463 299 1162 568 379

79 M 311 1668 260 118 0.454 177 1142 391 275

79 M 312 1952 450 125 0.278 319 1224 488 344

79 M 321 1554 278 101 0.364 189 1171 394 284

79 M 322 1612 465 147 0.317 330 1185 479 320

79 M 323 1601 417 146 0.349 294 1208 494 333

79 M 324 1542 309 104 0.336 212 1205 501 342

79 M 325 1755 377 137 0.365 264 1206 501 343

79 M 326 1520 223 112 0.501 150 1014 324 224

79 M 327 1625 564 187 0.332 404 1285 672 456

79 M 331 1900 374 174 0.466 262 1174 487 325

79 M 332 1781 355 122 0.344 247 1139 464 314

79 M 333 1486 284 145 0.512 195 1090 363 256

79 M 334 1368 227 124 0.549 152 1100 355 252

79 M 335 1448 299 106 0.353 205 1134 355 251

79 M 336 1225 252 145 0.577 171 1115 304 213

79 M 337 1333 524 164 0.313 374 1300 667 453

66 M 811 2394 258 129 0.500 174 905 205 153

66 M 812 3029 310 162 0.522 214 1065 415 282

66 M 821 2270 273 93 0.339 186 1119 430 293

66 M 822 2207 337 98 0.290 234 1162 526 356

66 M 823 2307 287 99 0.384 196 962 325 232

66 M 824 2838 358 117 0.328 249 938 242 169

66 M 825 2168 403 91 0.227 283 992 250 177

66 M 826 1893 146 64 0.441 90 975 220 156

66 M 827 2001 320 124 0.387 221 1080 379 254

66 M 831 2045 287 120 0.418 196 1032 325 212

66 M 832 2029 147 87 0.589 91 973 250 162

66 M 833 885 93 53 0.573 51 1063 237 186

66 M 834 2500 177 84 0.477 113 806 159 109

66 M 835 3000 220 88 0.401 146 739 135 97

66 M 836 3334 190 75 0.396 123 776 125 98

66 M 837 2172 155 81 0.523 97 910 272 187

66 M 838 1942 172 88 0.514 110 1052 437 304

66 M 839 3428 416 182 0.439 293 1008 380 258

66 M 8310 3477 405 127 0.313 285 1188 656 435

Source: [20]
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Table 5 Fatigue data for the indicated variable

Friction Von Misses Maximum Manufacturing
coefficient Angle Temperature stress deformation force Lifetime

0.07 23.00 581.08 1850 1.260 144,000 6420

0.07 23.00 818.92 470 1.349 36,700 33,700

0.07 31.96 581.08 1830 1.532 156,000 9430

0.07 31.96 818.92 523 1.614 39,900 36,600

0.13 23.00 581.08 2030 1.801 181,000 12,100

0.13 23.00 818.92 581 1.824 46,900 32,000

0.13 31.96 581.08 2230 1.939 203,000 13,200

0.13 31.96 818.92 632 1.928 52,300 32,100

0.05 27.50 700.00 889 1.275 78,600 19,900

0.15 27.50 700.00 1410 1.921 125,000 15,000

0.10 20.00 700.00 1060 1.692 92,100 20,900

0.10 35.00 700.00 1390 1.888 111,000 21,200

0.10 27.50 500.00 2430 1.666 213,000 9170

0.10 27.50 900.00 243 1.685 19,500 74,800

0.10 27.50 700.00 1130 1.651 96,900 19,900

Source: [13]
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Energy Prices Forecasting Using GLM
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Abstract The work described in this article results from a problem proposed by
the company EDP—Energy Solutions Operator, in the framework of ESGI 119th,
European Study Group with Industry, during July 2016. Markets for electricity
have two characteristics: the energy is mainly no-storable and volatile prices at
exchanges are issues to take into consideration. These two features, between others,
contribute significantly to the risk of a planning process. The aim of the problem
is the short-term forecast of hourly energy prices. In the present work, GLM is
considered a useful technique to obtain a predictive model where its predictive
power is discussed. The results show that in the GLM framework the season of
the year, month, or winter/summer period revealed significant explanatory variables
in the different estimated models. The in-sample forecast is promising, conducting
to adequate measures of performance.
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1 Introduction

The objective of the present work is the short term forecast of hourly energy prices.
Electricity Price Forecasting (EPF) is a difficult purpose. A wide number of methods
have been proposed to EFP. In [14] is described an almost complete review about the
enormous quantity of available methods, analyzing their strengths and weaknesses.
The author proposes the classification of such methods in four categories: multi-
agent models, fundamental models, reduced-form models, statistical models and
computational intelligence models.

Most of the statistical approaches consist in methods that forecast the current
electricity price by using a mathematical combination of the previous prices
and/or previous or current values of exogenous factors, such as consumption and
production figures or weather variables (see [14] for further detail).

Statistical EPF models are mainly inspired from economics literature such as
game theory models and time-series econometric models, as explained also by [8],
where they present an extremely relevant summary of selected finance and econo-
metrics inspired literature on spot electricity price forecasting (see Table 3 in [8]).

Considering the short-term forecasting in an EPF context, the more frequent tech-
niques are the ones which take into account the autoregression and moving average
models ARMA, that can be combined with the stationary form of time series, the
ARIMA models. When seasonality is an important issue, the extended form of such
models results in the SARIMA approach. The forecasting of ARMA-type models
can be conducted via the Durbin-Levinson algorithm or the innovations algorithm,
or by the Kalman filter for models in space state form. ARX, ARMAX, ARIMAX,
and SARIMAX are the extension of these models when some exogenous factors
[14] are considered (e.g., generation capacity, load profiles, and meteorological
conditions).

Multivariate time series analysis is used when one wants to model and explain
the interactions and co-movements among a group of time series variables. In this
scope [3, 4, 11] have proposed some techniques: VAR, MAR, VARMA, GARCH,
ARFNN (fusion of VAR and fuzzy neural networks), Extended Kalman Filter, Poly-
nomial fitting. A vector autoregressive structure (VAR) approach has been recently
proposed [14]. Temporal Distribution Extrapolation is another possible approach. It
considers the kernel density estimation taking into account, for example, pseudo-
points. It is a nonparametric technique which estimates the distribution of a random
(univariate or multivariate) variable minimizing some measure. Quite interesting
work is presented in [9, 12].

Another method that can be found in literature is the GLM approach. For
example, a semi-parametric model for electricity spot prices [5] is built applying
GLM where an unknown link function is estimated together with the linear part of
the model, followed by a Principal Components Analysis and cross validation to
reduce the dimensionality of the problem, avoiding the over-fitting. Also in a GLM
setting [10], a Gausss-Laplacian mixture model was used as a basis for stochastic
optimization of electricity market.
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In 1972, was born the idea of GLM as a powerful method in Statistics, stan-
dardizing the different theoretical and applied points of view about all the structure
of linear regression developed until then. Due to the large number of models, and
simplicity of development associated with rapid computational analysis, the GLM
have been playing an important role in statistical analysis. The idea is the establish-
ment of a functional relation between the variable to predict (dependent variable)
and a set of other exogenous variables (explanatory variables or covariates). This
relation allows to predict the dependent variable. The dependent variables and
the explanatory variables can be of any type: continuous, discrete, dichotomous,
quantitative, qualitative, stochastic, non-stochastic. The response variable can also
be a proportion, be positive, have a non-normal random component. In 1935, Bliss
proposed the probit model to proportions; in 1944, Berkson developed the logistic
regression, log-linear models for contingency tables were introduced by Birch at
1963. In 1972, Nelder and Wedderbrun proved that all these models are particular
cases of a general family: the generalized linear models. In GLM, the random
component belongs to exponential family and a transformation of expected value
of response variable is related with explanatory variables. The simplest models,
where the explanatory variables are nonrandom and the disturbances are Gaussian
white noise, which are estimated by ordinary least squares, can be extended for
more general models in which the disturbances are auto-correlated, heteroskedastic,
not Gaussian, etc., or when some of the explanatory variables are stochastic.
Recently, data mining methodology has increased its influence mostly by its fast
computational performance. It does not mean that data mining shall replace the
proven effective techniques such as GLM. The advantages of both techniques can
be combined (see, e.g., [6]).

In the present work, GLM is considered a useful technique to obtain a predictive
model where its predictive power is discussed.

The outline of this article is developed in four sections. In Sect. 2 are given
more details on the challenge proposed by EDP and on the data provided. Will be
presented a summary about exploratory analysis of the data sets provided by EDP
and continues with the study on the co-variables that may predict the hourly prices
pattern. In Sect. 3 is presented a GLM approach. Finally in Sect. 4 conclusions are
drawn and suggestions for future work are pointed.

2 Exploratory Analysis

Taking into consideration the challenge proposed by EDP, the available data consists
in the daily market electricity prices as a strip of prices (one for each hour of the
day), all simultaneously observed once at a given time of each day:

Yt = [y1t , y2t , . . . , ynt ], n = 1, . . . , 24 (or 23 or 25), t = 1, 2, . . . .
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Fig. 1 Boxplot diagrams (rescaled data 01.01.2008–31.12.2016)

In the present work we consider the disaggregated data, i.e., hourly prices and
average day price, from January 2008 to June 2016, in a total of 3102 observations
of the 24 (23 or 25) h of the day.

In a preliminary exploratory analysis, the data originally provided consisted in
a transformed ratio (in what follows named rescaled data) and revealed serious
problems which can be visualized in the boxplot diagrams (Fig. 1). The rescaled
data has different distributions and a great number of anomalies per hour. These
details are also confirmed in Table 1 where some descriptive statistics and tests are
summarized.

From Table 1, we can see the different patterns of dispersion (observe the
standard deviation and inter-quartile range columns, respectively). Also we confirm
that the data does not have normal distribution when we check the Kolmogorov-
Smirnov and Jarcke and Bera normality tests.

Consequently, we consider a new data set with the real data. In a preliminary
analysis, we have taken the period from 1st January 2008 to 31st December 2010,
to exemplify some details and issues and to estimate the initial models considering
several covariates of interest.

Since we have a huge dimensional data set, to compare graphically the rescaled
data set and the real data set we restrict to the year 2010 graphics in Fig. 2. We can
conclude that rescaled data present a huge quantity of “uncommon” observations
each hour of the day with exception of hours 4, 5, and 6. The rescaled data also
presents different patterns of dispersion. On the other hand, the real data displays
unusual observations but in a fewer quantity than in rescaled data. The dispersion of
real data presents more homogeneous patterns each hour.
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Fig. 2 Boxplot diagrams of rescaled (left) and real data (right). Time interval: 01.01.2010–
31.01.2010

Fig. 3 Real data (01.01.2008–31.01.2008). Left: Different patterns per day. Right: Mean price per
hour

Considering the real data, for example from January 2008, we found different
patterns per day and per hour (see Fig. 3, left).

The same behavior was found in Fig. 3 (right), where, for example, we can see
that 22 groups (hours) have mean ranks significantly different from group 1 (hour 1).

Electricity prices may be influenced by the present and past values of various
exogenous factors, such as generation capacity, load profiles, and meteorological
conditions [14]. In a preliminary stage we have selected defined and code the follow-
ing candidates to co-variables: Day of the week—C1 = 0, 1, 2, 3, 4, 5, 6 (Mon, . . . ,
Sunday); Weekday/Saturday/Sunday—C2 = 0, 1, 2; Weekday/Weekend—C3 =
0, 1; Regular day/ holiday—C4 = 0, 1; Season—C5 = 0, 1, 2, 3 (Winter, Spring,
Summer, Autumn); Month—C6 = 0, . . . , 11 (Jan, . . . , Dec); Summer/Winter
Hour—C7 = 0, 1.
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3 GLM Approach

3.1 General Linear Models

In the classical linear model, a vector X with p explanatory variables X =
(X1,X2, . . . , Xp) can explain the variability of the variable of interest Y (response
variable), where Y = Zβ + ε. Z is a specification matrix with size n × p (usually
Z = X, considering a unitary vector in first column), β a parameter vector and
ε a vector of random errors εi , independent and identical distributed to a reduced
Gaussian.

The data are in the form (yi, xi), i = 1, . . . , n, as a result of observation of (Y,X)
n times. The response variable Y has expected value E[Y |Z] = μ.

GLM is an extension of classical model where the response variable, following
an exponential family distribution [13], does not need to be Gaussian. Another
extension from the classical model is that the function which relates the expected
value and the explanatory variables can be any differentiable function. Yi has
expected value E[Yi |xi] = μi = b′(θi), i = 1, . . . , n.

It is also defined a differentiable and monotone link function g which relates
the random component with the systematic component of response variable. The
expected value μi is related with the linear predictor ηi = zTi βi using the relation

μi = h(ηi) = h(zTi βi), ηi = g(μi) (1)

where h is a differentiable function; g = h−1 is the link function; β is a vector of
parameter with size p (the same size of the number of explanatory variables); Z is
a specification vector with size p.

There are different link functions in GLM. When the random component of
response variable has a Poisson distribution, the link function is logarithmic and the
model is log-linear. In particular, when the linear predictor ηi = zTi βi coincides
with the canonical parameter θi , θi = ηi , which implies θi = zTi βi , the link
function is denominated as canonical link function. Sometimes, the link function
is unknown, for example, in [5] the link function is estimated simultaneously with
the linear component of the semi-parametric model for electricity spot prices. A
detailed description of GLM methodology can be found in several references such
as [7, 13].

3.2 Model Estimation

Initially, to estimate the model as described before, we considered the time interval
from 01/01/2008 to 31/12/2010. The first approach using IBM SPSS Statistics
(version 22) was performed with difficulty due to the high dimensionality of data.
A question that arose was: “Can we reduce the number of components of Yt?”, e.g.,
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Fig. 4 Data representation—prices per hour (time interval from 01/01/2008 to 31/12/2010)

Are there significant differences between Yi and Yj , for i �= j? To solve partially
such issue, we try to reduce the 24 h of a day to fewer reference hours. First of all, an
analysis of data plot per hour was performed. The graphical representation of data
(see Fig. 4) shows similar behavior in some distinct time intervals. Identified such
similar hours we merge them into a unique interval of similarity. In this way the
dimension of data can be reduced, by taking the mean or median or other measure
of response variable.

We have selected and defined some time intervals which conduced to the best
model performance. In this way, it was reduced the dimension defining the following
time intervals: aurora, lunch time, and dinner time. Aurora corresponds to the hours
3, 4, and 5 respectively. Lunch time merges the hours 11, 12, 13, and 14. Dinner time
takes into account hours 17, 18, and 19. When the data is graphically overlapped for
each hour in the defined time intervals (see Fig. 5) no significant differences were
found.

We studied some possible explanatory variables which can contribute to the
explication of energy price per hour. In a preliminary stage of the study, using the
initial explanatory variables proposed in Sect. 2, an analysis of variance with second
order interaction was performed. The best candidates to explanatory variables of a
GLM model were chosen: C1, C4, C5, C6, C7.

It was also considered the fare defined by EDP as possible explanatory variable
but it was not significant.

The best models were obtained for log or square root link function. The
diagnostic analysis and selection of the order of the models was done but we do
not reproduce with detail such work. The significant explanatory variables were
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Fig. 5 Overlapped data:
aurora time (top), lunch time
(center), and dinner time
(bottom). Time interval from
01/01/2008 to 31/12/2010
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C4, C6, C7, H2, H7, H8, H16, H20, H22, H23, H24 and lunch time (link function:
square root). When we consider the log as link function, the best explanatory
variables were C4, C6, C7, H2, H7, H8, H16, H20, H22, H23, H24. Notice that other
transformations should be considered taking into account the time series nature of
the data. Eventually, we could get models with better performance.

Considering the obtained results as indicators, we can conclude that some of the
explanatory variables proposed initially were not relevant for dependent variable,
such as EDP fares, Portuguese holidays (maybe the Iberian holidays can have some
relevance, and not just the Portuguese ones). Also, some periods of time can be
dropped off as relevant explanatory variables, such as dinner time or some others.
The season, month, or winter/summer time period revealed significant explanatory
variables in the different estimated models.

Using this preliminary model estimation as starting point, we repeated all
estimation process considering a more recent sample so we could compare with the
results published in [1]. The GLM model was estimated using hourly prices from
10/03/2014 to 29/5/2016. The remaining sample, from 30/05/2014 to 28/06/2016,
was used to evaluate the forecasting performance of the selected model. To assess
the in-sample prediction quality of the model, we use the Mean Absolute Percentage
Error (MAPE) and the Root Mean Square Error (RMSE).

Following the preliminary model estimation, in models formulation, we consid-
ered the response variable with a Gamma distribution and selected the link function
with options: 1-log, 2-square root, 3-identity. We have selected as preliminary
explanatory variables the same used earlier also considered in [1], where its done
a VAR approach. There were estimated the model parameters and analyzed the
suitability measures of estimates. The selection and validation of models such as
selection of variables, diagnostics, residual analysis and interpretation was con-
cluded. All models obtained good significant results in Likelihood Ratio Chi-Square
test, Pearson Chi-Square test, etc. The best models in the sense of performance
(estimation and forecasting) are the models with the identity link function. The
model A (with higher dimensionality), where each hour of the day is considered,
has lower performance in sense of residual analysis and forecasting than model B,
where we consider the aurora time, lunch time and dinner time, and the remaining
hours (lower dimensionality).

When we analyze the graphics in Fig. 6, we can conclude that model B presents
better performance estimation than model A.

From Table 2 we can analyze the quality of prediction in-sample using the MAPE
and RMSE. We can conclude that the forecasting quality is promising. In both
models (A and B) the prediction performance measures are close, but model B
gets better results. Notice that the RMSE values are in accordance with the results
obtained using the VAR approach [1].



Energy Prices Forecasting Using GLM 331

5,000

,000

–5,000

–10,000

–15,000

–20,000

1,000

,500

–,500

–1,000

,000

DATE

R
es

id
u

al
_4

R
es

id
u

al
_5

01–Jul–2014 01–Jan–2015 01–Jul–2015 01–Jan–2016 01–Jul–2016

DATE

01–Jul–2014 01–Jan–2015 01–Jul–2015 01–Jan–2016 01–Jul–2016

Fig. 6 Residuals representation (×0.01). Left: model A. Right: model B. Estimation period:
10/03/2014 to 29/5/2016



332 M. F. Teodoro et al.

T
ab

le
2

M
A

PE
an

d
R

M
SE

M
A

PE
(%

)
R

M
SE

M
A

PE
(%

)
R

M
SE

M
A

PE
(%

)
R

M
SE

30
/0

5/
20

16
7.

86
3.

45
09

/0
6/

20
16

7.
62

3.
85

19
/0

6/
20

16
39
.9

1
12
.4

4

31
/0

5/
20

16
5.

75
2.

61
10

/0
6/

20
16

9.
52

4.
94

20
/0

6/
20

16
7.

24
4.

03

01
/0

6/
20

16
8.

41
3.

58
11

/0
6/

20
16

14
.6

6
7.

08
21

/0
6/

20
16

8.
41

4.
24

02
/0

6/
20

16
8.

16
3.

76
12

/0
6/

20
16

14
.2

0
6.

94
22

/0
6/

20
16

9.
28

4.
09

03
/0

6/
20

16
4.

70
2.

52
13

/0
6/

20
16

8.
38

3.
83

23
/0

6/
20

16
11
.2

1
4.

88

04
/0

6/
20

16
3.

48
1.

79
14

/0
6/

20
16

15
.1

4
6.

43
24

/0
6/

20
16

10
.2

0
4.

43

05
/0

6/
20

16
11
.7

9
5.

08
15

/0
6/

20
16

15
.9

4
6.

19
25

/0
6/

20
16

29
.3

6
11
.5

8

06
/0

6/
20

16
4.

04
2.

07
16

/0
6/

20
16

26
.2

1
9.

55
26

/0
6/

20
16

55
.7

5
14
.1

7

07
/0

6/
20

16
8.

44
4.

73
17

/0
6/

20
16

20
.4

2
10
.4

7
27

/0
6/

20
16

16
.5

5
6.

44

08
/0

6/
20

16
4.

75
2.

91
18

/0
6/

20
16

15
.6

9
7.

12
28

/0
6/

20
16

18
.4

1
10
.1

8

Fo
re

ca
st

in
g

pe
ri

od
:3

0/
05

/2
01

6
to

28
/0

6/
20

16
.M

od
el

B



Energy Prices Forecasting Using GLM 333

4 Conclusions and Recommendations

The challenge proposed by EDP consisted in simulating electricity prices not only
for risk measures purposes but also for scenario analysis in terms of pricing and
strategy. Data concerning hourly electricity prices from 2008 to 2016 were provided
by EDP.

The data were explored using different statistical software, namely IBM SPSS
Statistics, Matlab, and R Statistical Software. In this work a GLM approach was
considered. The different link functions and the identity case were performed. The
season of the year, month, or winter/summer period revealed significant explanatory
variables in the different estimated models. We got better results when is considered
the reduced form of day hours (aurora time, lunch time, dinner time). From
Table 2 we can analyze the quality of prediction in-sample by MAPE and RMSE.
We can conclude that the forecasting quality is promising. When compared with
multivariate approach using the VAR approach [1] for the same period (from
30/05/2016 to 28/06/2016) the RMSE values are in accordance with the RMSE
computed using the VAR method. Although the forecast do not exactly replicate
the real price the results are quite promising. The introduction of other co-variables,
such as oil price, gas price, wind energy production, other meteorological variables,
would certainly improve the model and the forecast. The GLM approach still needs
to be improved in the sense of trying other link functions or some differentiation
of data. Other methods should be explored. Longitudinal modeling is an approach
which has not yet been addressed in Electricity Price Forecasting and deserves our
future attention. Univariate time series is other possible future work.

EPF literature has mainly concerned on models that use information at daily
level, however this particularly problem proposed is interested in forecasting intra-
day prices using hourly data (disaggregated data), maybe it is necessary to consider
models that explore the complex dependence structure of the multivariate price
series. The problem of modeling distributional properties of energy prices can be
classified in three main classes: reduced form models, forward price models, and
hybrid price models [2]. Temporal Distribution Extrapolation is another possible
idea for our future work.
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Pseudo Maximum Likelihood
and Moments Estimators for Some
Ergodic Diffusions

Pedro Mota and Manuel L. Esquível

Abstract When (Xt)t≥0 is an ergodic process, the density function ofXt converges
to some invariant density as t → ∞. We will compute and study some asymptotic
properties of pseudo moments estimators obtained from this invariant density, for a
specific class of ergodic processes. In this class of processes we can find the Cox-
Ingersoll & Ross or Dixit & Pindyck processes, among others. A comparative study
of the proposed estimators with the usual estimators obtained from discrete approx-
imations of the likelihood function will be carried out.

1 Introduction

Ergodic diffusion processes like the Cox-Ingersoll & Ross [3], the geometric
Ornstein-Uhlenbeck or Dixit & Pindyck [4] are widely used in the mathematical
finance context, see [2] or [4].

Many times, for ergodic diffusions, the transition density is not known and
the parameter estimation is made using approximations of the likelihood function
based in some kind of discretization or using martingale estimating functions,
see, for instance, [1, 5–7, 12]. In [10], a new parameter estimation technique was
presented and applied to the stochastic processes satisfying the following stochastic
differential equation,

dXt = b(a −Xt)X
γ
t dt + σ

√
X
γ+1
t dBt , a, b, σ > 0, γ ≥ 0, (1)

and for the combination of parameters that makes this processes ergodic.
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The idea was that if (Xt )t≥0 is an ergodic process then as t → ∞ the density
function of Xt converges to the invariant density and then the process parameters
can be estimated from the invariant density as if the observations, X1, . . . , Xn, of
the process were independent and identically distributed (i.i.d.) random variables,
all of them with the same invariant distribution.

Also in [10], pseudo maximum likelihood estimators were deduced from the
invariant density and in the present work we will compute pseudo moments estima-
tors and their asymptotic properties will be studied. In the final section a comparative
study, through simulation, will be implemented to compare the pseudo moments
estimators with the pseudo maximum likelihood estimators already mentioned
and also with the usual estimators obtained from discrete approximations of the
transition density.

2 Ergodicity

A continuous time diffusion process

dXt = μ(Xt ; θ)dt + σ(Xt ; θ)dBt ,

with state space R, is said to be ergodic (see, for instance, [9]), if

S(x; θ) =
∫ x

x0

exp

(
−2
∫ y

x0

μ(v; θ)

σ 2(v; θ)
dv

)
dy → ±∞, as x → ±∞,

and

M(θ) =
∫ +∞

−∞
1

σ 2(x; θ)
exp

(
2
∫ x

x0

μ(v; θ)

σ 2(v; θ)
dv

)
dx < ∞,

with x0 an interior point of the state space.
The invariant density is then given by

fθ (x) = 1

M(θ)σ 2(x; θ)
exp

(
2
∫ x

x0

μ(v; θ)

σ 2(v; θ )
dv

)
.

Theorem 1 The processes satisfying the stochastic differential equation (1) are
ergodic, when 2ab > σ 2(γ + 1), with invariant density,

f(α,β)(x) = xα−1e−βxβα

Γ (α)
∼ Gamma(α, β), with α = 2ab

σ 2 − γ, β = 2b

σ 2 .
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Proof The processes have state space ]0,∞[ and with, θ = (a, b, γ, σ ), we have

S(x; θ) =
∫ x

x0

s(y, θ)dy =
∫ x

x0

exp

(
−2
∫ y

x0

b(a − v)vγ

σ 2vγ+1 dv

)
dy

= x
2ab
σ2

0 e
− 2b
σ2 x0

∫ x

x0

y
− 2ab

σ2 e
2b
σ2 ydy → ±∞, x → +∞, x → 0,

and

M(θ) =
∫ +∞

0

1

σ 2xγ+1 exp

(
2
∫ x

x0

b(a − v)vγ

σ 2vγ+1 dv

)
dx

= x
− 2ab

σ2

0 e
2b
σ2 x0

σ 2

∫ ∞

0
x

2ab
σ2 −γ−1

e
− 2b
σ2 xdx < ∞, if 2ab > σ 2(γ + 1).

The invariant density is then given by

fθ (x) = x
− 2ab

σ2

0 e
2b
σ2 x0

σ 2 x
2ab
σ2 −γ−1

e
− 2b
σ2 x

⎛
⎜⎝x

− 2ab
σ2

0 e
2b
σ2 x0

σ 2

∫ ∞

0
x

2ab
σ2 −γ−1

e
− 2b
σ2 xdx

⎞
⎟⎠

−1

= xα−1e−βxβα

Γ (α)
∼ Gamma(α, β), with α = 2ab

σ 2 − γ, β = 2b

σ 2 ,

completing the proof.

3 Estimators and Consistency

If we are working with a strictly stationary ergodic process (for instance, if X0
have already the invariant distribution), then for any t > 0 the random variable
Xt will have the invariant distribution. In this framework we propose to deal with
the observations of the process like if they were identically distributed with the
invariant distribution and then use the invariant density for estimation purposes.
From the previous section we know that the processes satisfying the stochastic
differential equation (1) with 2ab > σ 2(γ+1) are ergodic with the invariant density
Gamma(α, β), where α = 2ab

σ 2 − γ, β = 2b
σ 2 .

In the following, let us suppose that we have observations X1, . . . , Xn of the
process, collected at equally spaced times t1 < . . . < tn and that γ and σ are known
parameters, that is, the only parameters of interest for estimation purposes are a
and b.
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3.1 Pseudo Maximum Likelihood Estimators

We can compute pseudo maximum likelihood estimators, that is, defining the
likelihood function

fX1,...,Xn(α, β; x1, . . . , xn) :=
n∏
i=1

fXi (α, β; xi)

just like in the case of i.i.d. observations and where fXi is theGamma(α, β) density
of Eq. (1).

Since

∀i = 1, . . . , n, fXi (α, β; xi) =
xα−1
i e−βxiβα

Γ (α)

we get the likelihood function,

L(α, β;X1, . . . , Xn) =
n∏
i=1

Xα−1
i e−βXiβα

Γ (α)

and the log-likelihood,

log(L(α, β;X1, . . . , Xn)) = (α−1)
n∑
i=1

log(Xi)−β
n∑
i=1

Xi+nα log(β)−n log(Γ (α)).

From differentiating the log-likelihood function and equating to zero, we get (with
ψ(.) the digamma function),

1

n

n∑
i=1

log(Xi)+ log

(
2b

σ 2

)
− ψ

(
2X̄nb

σ 2

)
= 0 (2)

with X̄n = 1
n

∑n
i=1 Xi and

a = X̄n + σ 2γ

2b

getting the estimator b̂n of b as the solution of the Eq. (2) and the estimator of a, as

ân = X̄n + σ 2γ

2b̂n
.
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Theorem 2 If 2ab > σ 2(γ +1), the pseudo maximum likelihood estimators ân and
b̂n are almost sure (a.s.) consistent estimators for a and b.

Proof The proof of the theorem can be found in [10].

3.2 Pseudo Moments Estimators

We can obtain the moments estimators for a and b, using the invariant gamma
density and by solving the equations,

{
X̄n = α

β

M2,n = α+α2

β2

,

with X̄n = 1
n

∑n
i=1 Xi the sample mean and M2,n = 1

n

∑n
i=1 X

2
i the empirical

second moment.
Solving these equations we get the moments estimators for the parameters a

and b,

ãn = X̄n + M2,n − X̄2
n

X̄n
γ ∧ b̃n = σ 2X̄n

2(M2,n − X̄2
n)

or using the (non-central) sample variance S2
n = 1

n

∑n
i=1(Xi − X̄n)

2,

ãn = X̄n + S2
n

X̄n
γ ∧ b̃n = σ 2X̄n

2S2
n

.

We have the following result about the consistency of the pseudo moments
estimators.

Theorem 3 If 2ab > σ 2(γ + 1), the pseudo moments estimators ãn and b̃n are a.s.
consistent estimators for a and b.

Proof Suppose that ξ is a random variable with the invariant gamma density
Gamma(α, β), where α = 2ab

σ 2 − γ, β = 2b
σ 2 . It is straightforward to prove the

consistency of both estimators, since, using the ergodic theorem, we have that

lim
n→∞ X̄n = E[ξ ] = α0

β0
, a.s.

and

lim
n→∞ S2

n = lim
n→∞

1

n

n∑
i=1

(Xi − X̄n)
2 = V[ξ ] = α0

β2
0

, a.s.
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Then,

lim
n→∞

(
X̄n + S2

n

X̄n
γ

)
= α0

β0
+ γ

β0
= a0 a.s.

and

lim
n→∞

σ 2X̄n

2S2
n

= β0σ
2

2
= b0 a.s.

proving the consistency of the estimators.

Remark 1 We have assumed that σ is known, if σ is unknown the problem of
estimating σ can be solved using the quadratic variation of the process, and
following [11] we get, a estimator for σ 2,

σ̂ 2
1,n =

∑n−1
i=1 (Xi+1 −Xi)

2

∑n−1
i=1 X

γ+1
i Δn

,

or following [12]

σ̂ 2
2,n = 1

T

n−1∑
i=1

(Xi+1 − Xi)
2

X
γ+1
i

.

4 Simulation and Data Analysis

In this section, we will compare through simulation the moments estimators with the
approximate maximum likelihood estimators presented in [10] and the estimators
based in discrete approximations of the log-likelihood function. We will suppose
that the observations are equally spaced, that is, ti+1 − ti = Δ, i = 1, . . . , n.

The estimators for a and b based on the discretized continuous-time likelihood
function, see [1] or [7], ǎn and b̌n, are given by:

ǎn =
∑n−1

i=1
Xi+1−Xi

Xi

∑n−1
i=1 X

γ+1
i − (Xn −X1)

∑n−1
i=1 X

γ

i∑n−1
i=1

Xi+1−Xi
Xi

∑n−1
i=1 X

γ

i − (Xn − X1)
∑n−1

i=1 X
γ−1
i

and

b̌n = 1

Δ

∑n−1
i=1

Xi+1−Xi
Xi

∑n−1
i=1 X

γ
i − (Xn −X1)

∑n−1
i=1 X

γ−1
i

∑n−1
i=1 X

γ−1
i

∑n−1
i=1 X

γ+1
i −

(∑n−1
i=1 X

γ
i

)2 .
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For simulation purposes, we will perform the generation of the trajectories of the
processes using the approximation strong Taylor scheme of order 1.5, see [8].

The iterative scheme used is the following:

Yi+1 = Yi + b(a − Yi)Y
γ

i Δ+ σY
γ+1

2
i ΔB

+ σ 2(γ + 1)

4
Y
γ

i ((ΔB)
2 −Δ) + σb(γ (a − Yi)− Yi)Y

3γ−1
2

i ΔZ

+ 1

2

(
b2(a − Yi)(γ (a − Yi)− Yi)+ 1

2
bγ σ 2(γ (a − Yi)− a − Yi)

)
Y

2γ−1
i Δ2

+
(
σb

2
(a − Yi)+ σ 3(γ − 1)

8

)
(γ + 1)Y

3γ−1
2

i (ΔBΔ−ΔZ)

+ σ 3γ (γ + 1)

4
Y

3γ−1
2

i

(
1

3
(ΔB)3 −Δ

)
ΔB,

where ΔB = √
ΔU1, ΔZ = 1

2Δ
3/2(U1 + U2/

√
3) and U1 and U2 are independent

N(0, 1) random variables.
We simulated 500 trajectories and for the estimation of the parameter a we

present the results when n = 500 in each trajectory, for the parameter b we
considered n = 250, 500, and 1000 observations in each trajectory. We estimated a
and b using the pseudo moments estimators ãn and b̃n and we compared them with
the pseudo maximum likelihood estimators ân and b̂n and the estimators ǎn and b̌n
obtained from the discretized likelihood function.

We considered σ = 0.1, we present Table 1 for γ = 0 and Table 2 for γ = 1 (for
other values of γ we get very similar results), the true value for a is always 1 and
for b we considered the values 0.1, 0.5, 1, and 2.

Table 1 Mean and S.D. (standard deviation) for the estimators of a and b when γ = 0

b = 0.1 b = 0.5 b = 1 b = 2

Num. obs. Estimator Mean S.D. Mean S.D. Mean S.D. Mean S.D.

500 ãn 0.9997 0.0447 1.0001 0.0091 1.0001 0.0047 1.0001 0.0026

ân 0.9997 0.0447 1.0001 0.0091 1.0001 0.0047 1.0001 0.0026

ǎn 0.9997 0.0455 1.0001 0.0092 1.0001 0.0047 1.0001 0.0026

250 b̃n 0.1207 0.0347 0.5147 0.0734 1.0136 0.1151 2.0182 0.2033

500 0.1099 0.0228 0.5051 0.0512 1.0015 0.0819 1.9986 0.1469

1000 0.1037 0.0150 0.4981 0.0351 0.9927 0.0565 1.9851 0.1029

250 b̂n 0.1215 0.0338 0.5228 0.0724 1.0293 0.1137 2.0480 0.2009

500 0.1111 0.0223 0.5125 0.0504 1.0157 0.0809 2.0253 0.1452

1000 0.1050 0.0147 0.5051 0.0347 1.0060 0.0558 2.0099 0.1017

250 b̌n 0.1125 0.0308 0.4048 0.0495 0.6400 0.0573 0.8705 0.0611

500 0.1045 0.0211 0.4007 0.0354 0.6375 0.0406 0.8683 0.0428

1000 0.0995 0.0138 0.3967 0.0249 0.6342 0.0284 0.8657 0.0300
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Table 2 Mean and S.D. (standard deviation) for the estimators of a and b when γ = 1

b = 0.1 b = 0.5 b = 1 b = 2

Num. obs. Estimator Mean S.D. Mean S.D. Mean S.D. Mean S.D.

500 ãn 0.9988 0.0462 1.0001 0.0093 1.0001 0.0048 1.0001 0.0026

ân 0.9980 0.0461 0.9999 0.0093 1.0000 0.0048 1.0000 0.0026

ǎn 0.9978 0.0469 1.0000 0.0093 1.0001 0.0048 1.0001 0.0027

250 b̃n 0.1213 0.0350 0.5169 0.0722 1.0182 0.1143 2.0273 0.2038

500 0.1104 0.0227 0.5075 0.0505 1.0061 0.0816 2.0074 0.1474

1000 0.1041 0.0148 0.5007 0.0347 0.9976 0.0564 1.9943 0.1034

250 b̂n 0.1233 0.0349 0.5253 0.0717 1.0342 0.1131 2.0573 0.2013

500 0.1125 0.0230 0.5150 0.0500 1.0204 0.0807 2.0343 0.1457

1000 0.1059 0.0151 0.5079 0.0346 1.0110 0.0558 2.0192 0.1022

250 b̌n 0.1141 0.0322 0.4035 0.0496 0.6356 0.0572 0.8615 0.0609

500 0.1051 0.0217 0.3994 0.0357 0.6330 0.0410 0.8588 0.0430

1000 0.0997 0.0141 0.3955 0.0250 0.6296 0.0285 0.8561 0.0300

In all the outputs, we can see that the proposed estimators for a and b give good
results, very close to the approximate maximum likelihood estimators and we can
also see that the estimator for b, b̌n based in the score function only produce good
results when the true value of b is 0.1 (small).

5 Conclusion

In this paper we proposed moments estimators for some ergodic processes. The
consistency proof of the proposed estimators and a simulation study to show the
applicability of the estimators were provided. For future research, we have the open
problem of proving the normality of the asymptotic distribution of the estimators.
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Statistical Modelling of Counts
with a Simple Integer-Valued Bilinear
Process

Isabel Pereira and Nélia Silva

Abstract The aim of this work is the statistical modelling of counts assuming low
values and exhibiting sudden and large bursts that occur randomly in time. It is
well known that bilinear processes capture these kind of phenomena. In this work
the integer-valued bilinear INBL(1,0,1,1) model is discussed and some properties
are reviewed. Classical and Bayesian methodologies are considered and compared
through simulation studies, namely to obtain estimates of model parameters and
to calculate point and interval predictions. Finally, an empirical application to real
epidemiological count data is also presented to attest for its practical applicability
in data analysis.

1 Introduction

In the analysis of stationary integer-valued time series the class of INARMA models
plays a central role. However, such models are unlikely to provide a sufficiently
broad class capable of accurately capturing features often exhibited by data sets
such as sudden burst of large values. For that purpose and using the concept of
thinning operator, introduced by [12], conventional bilinear models can be adapted
to the integer case leading to the class of integer-valued bilinear models. Doukhan
et al. [3] proposed the first-order INBL(1,0,1,1) model

Xt = α ◦Xt−1 + β ◦ (εt−1Xt−1)+ εt . (1)
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where the thinning operators “α◦” and “β◦”1 are mutually independents, {εt }t∈Z is a
sequence of i.i.d. non-negative integer-valued random variables with finite mean and
finite variance, independent of the operators. Doukhan et al. [3] derived conditions
guaranteeing strictly and second-order stationarities of INBL(1,0,1,1) model. Drost
et al. [4] also provided sufficient conditions for the existence of higher order
moments of Xt , considering the superdiagonal INBL(p, q,m, n). One step towards
the application of bilinear models to real data sets is the estimation of parameters.
Considering Poisson thinning operators [3] have obtained moments estimators and
derived their asymptotic distribution. In contrast, Bayesian analysis of INBL has not
received much attention in the literature neither diagnostic analysis.

In this paper we consider the INBL(1,0,1,1) given in (1), with the following
assumptions: the operators “α ◦ ” and “β ◦ ” are mutually independents such as
α ◦Xt−1|Xt−1 * Bi(Xt−1, α), β ◦ (εt−1Xt−1)|Xt−1, εt−1 * Bi(εt−1Xt−1, β) and
{εt }t∈Z is a sequence of i.i.d. Poisson random variables with mean λ, independent
of the operators.

The class of stationary models defined in (1) is useful for representing time series
that assume low values with high probability and exhibit sudden bursts of large
values that occur randomly in time, hence can produce heavy-tailed data. As an
illustration of this kind of data we present in Fig. 1 two time series of count data in
epidemiology, originally studied by [3]. Data consist of the weekly number of E. coli
infections and meningitis cases, both starting in January 1990 and corresponding
to 143 observations for each series. Counts are typically small, skewed and both
series contain a large quantity of zeros. Hereafter the weekly number of E.coli
infections and weekly number of meningitis cases are denoted by the E.coli data
and meningitis data, respectively.

In time series analysis we usually are interested in estimating the underlying
model and in predictive capabilities of that model. Thus, the aim of this study is
to establish a comparison between classical and Bayesian approaches in order to

Fig. 1 Time series plots for E. coli data (left) and meningitis data (right)

1Steutel and van Harn operator “φ ◦ ” is defined by φ ◦X =∑X
i=1 Yi where {Yi}, i = 1, . . . , X, is

a sequence of independent and identically distributed (i.i.d.) counting random variables with mean
φ and X is a non-negative integer-valued random variable, independent of Y . If Yi is a Bernoulli
random variable, we have the binomial thinning operator.
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conduct inference for model parameters and obtain predictions for future values.
The rest of the paper is organized as follows. Classical and Bayesian methodologies
are presented to obtain estimates of the model parameters in Sect. 2 and forecasting
is addressed in Sect. 3. The performance of the above procedures is illustrated
through a simulation study in Sect. 4. Section 5 provides applications of this model
to real data sets. Finally, Sect. 6 contains some concluding remarks.

2 Parameters Estimation

One step forward the application of INBL models in practice is the estimation
of their corresponding parameters θθθ = (θ1, θ2, θ3) = (α, β, λ). The classical
estimators studied are grouped according to two broad categories: regression-
based and likelihood-based estimators. Furthermore, Bayesian estimation is also
considered. In any estimation procedure, it is required to estimate the r.vs εt since
they are not observable. From (1), the innovations εt can be recursively calculated
through εt = Xt − α ◦Xt−1 + β ◦ (εt−1Xt−1), t = 1, . . . , n., using an initial value
for ε1.

2.1 Conditional Least Squares Estimators

The CLS-estimators of θθθ are obtained by minimizing

Q(θθθ) =
n∑
t=2

[Xt − E(Xt |Xt−1, εt−1)]
2 =

n∑
t=2

[Xt − αXt−1 − βXt−1εt−1 − λ]2 ,

yielding to the following expressions for the parameters estimators

β̂CLS = St;t−1St−1;(t−1,ε−1)−St−1;t−1St;(t−1,ε−1)

S2
t−1;(t−1,ε−1)−St−1,ε−1St−1;t−1

,

α̂CLS = (n−1)St;t−1−β̂CLSSt−1;(t−1,ε−1)
St−1;t−1

,

and

λ̂CLS =
∑n

t=2 Xt−α̂CLS
∑n

t=2 Xt−1−β̂CLS
∑n

t=2 Xt−1εt−1
n−1 ,

with i, j = 0, 1,

X̄j = 1
n−1

∑n
t=2 Xt−j

St−i,t−j =∑n
t=2(Xt−i − X̄i)(Xt−j − X̄j )

St−i;(t−1,ε−1) =∑n
t=2(Xt−i − X̄i)(Xt−1εt−1 − X̄1ε̄1), ε̄1 = 1

n−1

∑n
t=2 εt−1,

St−1,ε−1 =∑n
t=2(Xt−1εt−1 − X̄1ε̄1)

2.
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2.2 Conditional Maximum Likelihood Estimators

For fixed values of x1 and ε1, the conditional log-likelihood function for the
INBL(1,0,1,1) model is given by

l(θθθ) := lnL(xn;θθθ |x1, ε1) =
n∑
t=2

ln(p(xt |xt−1, εt−1)),

with xn = (x1, . . . , xn) and transition probabilities

p(xt |xt−1, εt−1) =
mt∑
k=0

exp(−λ) λxt−k
(xt−k)!

×
mtk∑
j=Mt

(
xt−1
j

)
αj (1 − α)xt−1−j (xt−1εt−1

k−j
)
βk−j (1 − β)xt−1εt−1−k+j ,

mt = min(xt , xt−1 + xt−1εt−1), Mt = max(0, k − xt−1εt−1) and mtk =
min(k, xt−1), since the r.v. Xt |xt−1, εt−1 is the convolution between binomial dis-
tributions with parameters (Xt−1, α) and (εt−1Xt−1, β), respectively, and Poisson
distribution with parameter λ. The CML-estimators are obtained by maximizing
the conditional log-likelihood function. Due to the complexity of log-likelihood
expression it is not possible to give explicit forms to the CML-estimators of α, β,
and λ, thus it is necessary to use numerical procedures. The initial estimates required
by such numerical procedures can be obtained by the method of least squares or
using moment estimates given by [3] procedure.

2.3 Bayesian Approach

To implement the Bayesian version of the INBL(1,0,1,1) model we need to consider
prior distributions for the parameters.Thus, for the parameters 0 < α, β < 1 we
choose Beta priors with hyperparameters (a, b) and (c, d), respectively while for
the positive parameter λ we choose a Gamma prior with hyperparameters (e, f ).
These priors are traditionally used for the PoINAR(1) by [11].

Given the particular sample xn, the updated information about θθθ is expressed
through Bayes theorem by the posterior distribution π(θθθ |xn) given by

π(θθθ |xn) = L(xn;θθθ |x1, ε1)π(θθθ)∫
ΘΘΘ
L(xn;θθθ |x1, ε1)π(θθθ)dθθθ

∝ L(xn;θθθ |x1, ε1)π(θθθ) ,

with π(θθθ) representing the prior distribution.
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Assuming independence assumptions on the parameters the posterior distribution
is given by

π(θθθ |xn) ∝ λe−1e−fλαa−1(1 − α)b−1βc−1(1 − β)d−1
(

n∏
t=2

mt∑
k=0

exp(−λ)

λxt−k
(xt−k)!

mtk∑
j=Mt

(
xt−1
j

)
αj (1 − α)xt−1−j (xt−1εt−1

k−j
)
βj (1 − β)xt−1εt−1−k+j

)
,

with λ > 0, 0 < α, β < 1, mt = min(xt , xt−1 + xt−1εt−1),Mt = max(0, k −
xt−1εt−1), and mtk = min(k, xt−1).

Thus given the complexity of the posterior distribution, Markov Chain Monte
Carlo (MCMC) techniques are required for sampling purposes. For the simulations
we need the full conditional distributions for each parameter θi , denoted by
π(θi|θθθ−i , xn), which is the posterior distribution of θi conditional on all other
parameters and the data xn. The full conditional distributions of α, β, and λ are,
respectively:

π(α|β, λ, xn) ∝ αa−1(1 − α)b−1L(xn;θθθ |x1, ε1),

π(β|α, λ, xn) ∝ βc−1(1 − β)d−1L(xn;θθθ |x1, ε1)

and

π(λ|α, β, xn) ∝ λe−1e−fλL(xn;θθθ |x1, ε1).

From the above expressions it is easy to conclude that the full conditional
distributions will not be standard distributions and therefore a componentwise
Metropolis- Hastings algorithm is used, particularly the Adaptive Rejection
Metropolis Sampling (ARMS), as described in [7]. After having generated samples
θθθ(1), . . . , θθθ(N) sample central tendency measures are used to estimate the model
parameters.

3 Prediction Future Observations

In this section we consider the problem of predicting the values of Xn+h, h ∈ N

for INBL (1,0,1,1) process based on the observed series up to time n. The usual
way of producing forecasts is via the conditional predictive distribution and the
most common procedure for obtaining predictions in time series models is to use
conditional expectations, since we pretend to minimize the mean square error.
Throughout this section we consider Bn = {X1, . . . , Xn; ε1, . . . , εn}.
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3.1 Classical Approach

3.1.1 Point Predictions

For h ≥ 1 the h-step-ahead predictor can be obtained in a recursive way through

X̂n+h = E(Xn+h|Bn) = αX̂n+h−1 + βE(εn+h−1Xn+h−1|Bn)+ λ (2)

with

E(εn+h−1Xn+h−1) = E[εn+h−1(α ◦Xn+h−2 + β ◦ (εn+h−2Xn+h−2)+ εn+h−1)|Bn]
= αλX̂n+h−2 + λβE(εn+h−2Xn+h−2)+ λ2 + λ.

For the particular cases h = 1 and h = 2 we have, respectively,

X̂n+1 = αXn + β(Xnεn)+ λ,

X̂n+2 = α2Xn + αβ(Xnεn)+ αλ + αβλXn + β2λ(Xnεn)+ β(λ2 + λ)+ λ.

We can easily prove that

lim
h−→+∞ X̂n+h = βλ2 + βλ+ λ(1 − λβ)

(1 − λβ)(1 − α) − αβλ
. (3)

Since these predictors based on conditional expectation hardly produce integer-
valued forecasts, we can alternatively use the median of h-step-ahead conditional
distribution of Xn+h|Bn, denoted by M̂n+h, to obtain coherent predictions of Xn+h,
as suggested in [5].

3.1.2 Prediction Intervals for One-Step-Ahead Observation

The one-step-ahead prediction error

en+1 = Xn+1 − X̂n+1 = Xn+1 − α̂Xn − β̂(Xnεn)− λ̂

is a discrete variable with probability function

P(en+1 = xn+1 − g) = P(Xn+1 = xn+1|Bn) = f (xn+1|Bn; θ)

=
m1∑
k=0

exp(−λ) λx−k
(x − k)! ×

m2∑
l=M1

(
xn

l

)
αl(1 − α)xn−l ×

(
xnεn

k − l

)
βk−l (1 − β)xnεn−k+l

where g = α̂Xn + β̂(Xnεn) + λ̂. Hence the γ level confidence interval for Xn+1
is given by: (X̂n+1 + l1, X̂n+1 + l2) where l1 is the largest value of en+1 such as
P(en+1 ≤ l1) ≤ (1 − γ )/2 and l2 the smallest value of en+1 such as P(en+1 ≤ l2) ≥
(1 + γ )/2.
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3.2 Bayesian Predictions

The Bayesian predictive probability function is based on the assumption that both
the future observation Xn+h and θθθ are unknown. The conditional distribution of
Xn+h given Bn which can be viewed as containing all the accumulated information
about the future, represents the h-step-ahead Bayesian posterior predictive distribu-
tion. It is defined by

π(xn+h|Bn) =
∫
ΘΘΘ
f (xn+h|Bn;θθθ)π(θθθ |xn)dθθθ,

with θθθ ∈ ΘΘΘ being the vector of unknown parameters, π(θθθ |xn) the posterior density
of θθθ , and f (xn+h|Bn;θθθ) the (classical) predictive distribution.

3.2.1 Point Predictions for the Future Observation

In the particular case of h = 1 the one-step-ahead Bayesian predictive distribution
is given by

π(xn+1|Bn) == ∫
α

∫
β

∫
λ
f (xn+1|Bn;θθθ)π(θθθ |xn)dαdβdλ,

with m1 = min(xn+1, xn + εnxn), m2 = min(xn, k), M1 = max(0, k − xnεn).
The Bayesian predictor of Xn+1 can be obtained by any location measure of the

predictive distribution. Its complexity does not allow work with it directly. However
we can adapt to the integer case the Tanner composition method (as reported in
[13]), to get an estimate of Xn+h using the sample mean or sample median of the
generated values (Xn+h,1, . . . , Xn+h,m). Similarly to the classical case we can use
the recursive expression

E(Xn+h|Bn) = E[E(Xn+h|θθθ,Bn)] = E
[
E
(
α ◦Xn + β ◦ (εnXn)+ εn+1

∣∣∣θθθ,Bn
)]

= α̂BX̂n+h−1 + β̂BE(εn+h−1Xn+h−1|Bn)+ λ̂B

(4)

where α̂B , β̂B , and λ̂B are the Bayesian estimates of the parameters. It is worth to
mention that there is no need to do any plug-in as happened in classical approach.

3.2.2 HPD Predictive Intervals

We use an adaptive generalization of the method used to obtain Highest Posterior
Density (HPD) intervals of model parameters, considering predictive distribution
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instead of the posterior. Hence the 100 γ% HPD predictive interval for Xn+1 is
defined by R(γ ) = (XL,XU) if

P(XL ≤ Xn+1 ≤ XU) =
XU∑

xn+1=XL
π(xn+1|Bn) ≥ Kγ ,

with Kγ being the largest constant such as P [Xn+1 ∈ R(γ )] ≥ γ .
We can obtain an approximation to the HPD predictive interval for Xn+1 using

the algorithm developed by [1]. After computing the 100 γ% credible intervals

R̂i (γ ) =
(
Xn+1,i , Xn+1,i+[mγ ]

)
, 1 ≤ i ≤ m− [mγ ],

where [mγ ] is the integer part of mγ , the 100 γ% HPD interval, denoted by R̂(γ )
is the one with the smallest amplitude.

4 Simulation Study

In this section we study the performance of the above classical and Bayesian
procedures with count time series simulated by choosing various combinations of
the parameters of INBL(1,0,1,1) model under stationarity conditions.

4.1 Inference

Through the simulation study we want to highlight the following issues: (a) how
the results depend on the underlying bilinear parameter β; (b) what is the impact of
sample size on the simulation results, and (c) what is the influence of the variance
of the innovation process.

We simulated samples from INBL(1,0,1,1) model of length n = 50, 100, and 500
with 100 independent replicates.2 In the absence of prior information we consider
non-informative priors letting the hyperparameters equal to 0.0001. The MCMC
algorithm was used with starting values based on the CLS-estimates and was run
with 31,000 iterations in total, the 11,000 initial burn-in iterations were discarded
and only the 20th value of the last iterations is kept to reduce the autocorrelation
within the chain. Nevertheless, the stationarity of the chain and the convergence
of the algorithm were duly analyzed with the usual diagnostic tests, respectively,

2The computation of Bayesian estimates is very demanding in terms of CPU time. Using an Inter
Core i5 @ 1.8 GHz-4 GB RAM, the average computation time for producing the estimates of the
parameters for samples with size n = 100 is approximately 3 days.
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Fig. 2 Boxplots of the biases for θθθ = (α, β, λ) in models A:=(0.2,0.2,1), B:= (0.1,0.6,1),
C:=(0.7,0.2,1) and D:=(0.2,0.2,2), with n = 50, 100, 500

[8] and [6] tests, which are available in package CODA. Figure 2 displays the
boxplots of the biases of CLS-estimates, CML-estimates, and Bayesian estimates
for θθθ , considering each model and the variation of sample size. Concerning the
estimation of α a closer look at the figure reveals that classical estimators tend to
overestimate the autoregressive parameter, in particular for the models A and D.
On the other hand, β is underestimated by any methodology in models A, B, and
D. Nevertheless considering all the parameters β is the one that is estimated more
accurately. A comparison of the dispersion for the classical and Bayesian estimators
shows the similarity for both small and large sample sizes. An important conclusion
is that the value of the underlying bilinear parameter does not seem to interfere
with the quality of the point estimates for this model. However the variance of the
innovation process has large biases, which increases when the theoretical value of
λ parameter rises, showing a significant degree of variability. As expected, both the
bias and the skewness are also reduced when the sample size increases.
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4.2 Prediction

To compare and analyze the different h-step-ahead predictors previously mentioned
in Sect. 3 we simulated samples with sizes n = 50, 100, 200 from model (1). In
order to obtain point or interval forecasts from classical approach the CML estimates
were plugged in in (2) or in the predictive probability functions. To obtain Bayesian
predictions, we used the expression (4) and Tanner algorithm [13]. It is worth to
notice that the forecast performance depends on one hand, on the difference between
xn and xn+h, h ≥ 1, similarly to what happens in INAR(1) model as described by
[11] and on the other hand, on the prediction errors en. This situation is illustrated
as follows: the forecasts of x168 = 8 are x̂168,CML = 12.684, x̂168,B = 13.010,
M̂

(CML)
168 = M̂

(B)
168 = 13 are closer to x167 = 13, when α = 0.7, β = 0.2, λ = 1.

In Fig. 3 the h-step-ahead predictions, considering two particular sets of param-
eters and n = 100, are plotted. These plots indicate that the obtained results for
the predictions using the classical approach with CML-estimates and the Bayesian
methodology are very similar. It must be emphasized that these predictions are
closed to the limit values given by (3), corresponding to 5.33 for θθθ = (0.1, 0.6, 1)
and to 12 when θθθ = (0.7, 0.2, 1). Figures 4 and 5 represent the amplitude means of
the prediction intervals or the HPD predictive intervals for the future value and the
frequencies of the simulatedXn+1 belonging to the prediction interval, respectively.
We observe that in general classical prediction intervals based on CML-estimates
present smaller amplitude means than the Bayesian correspondents. Another

Fig. 3 h-step-ahead predictions for future observations

Fig. 4 Means of the prediction interval amplitudes of Xn+1
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Fig. 5 Frequencies of Xn+1 belonging to the prediction intervals

important feature exhibited is that the percentage of the simulated observation
Xn+1 belonging to the classical interval is greater than 96.

5 Application to Real Data

In this section, we illustrate the modelling procedure with the motivating examples
presented in Fig. 1. It could be pointed out that both data sets are asymmetric with
significant overdispersion in E.coli data, with empirical mean and variance being
2.3 and 13.03, respectively.

We should check the adequacy of the distributional assumptions of the model.
For this purpose we use the nonrandomized version of PIT histogram, proposed
by [2] (see [9], for further models evaluation based in its predictive performance).
The graphical tools represented in Fig. 6 are the PIT histograms and the mean PIT
charts applied to the data sets. From left to right, the PIT histograms are U-shaped
and uniform indicating underdispersed and well-calibrated predictive distributions,
respectively. These plots indicate that the probability structure addressed to the
INBL(1,0,1,1) is misspecified in the E.coli data despite the Pearson residuals exhibit
mean 0.0002, variance 0.9999 and no significant serial correlation. Results of the
parameter estimates for the meningitis data are presented in Table 1. However the
bilinear component β in the model seems to be very small, which may question
its interest in the model. Finally, in order to evaluate and compare the different

Fig. 6 PIT histograms and charts of mean PIT (denoted by F̄ (u)), applied to E.coli data (left) and
meningitis data (right)
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Table 1 Estimated model for the meningitis data

Data α̂CLS β̂CLS λ̂CLS α̂CML β̂CML λ̂CML α̂B β̂B λ̂B

Meningitis data 0.151 0.027 0.296 0.201 0.026 0.288 0.181 0.029 0.290

Table 2 h-step-ahead
predictions using meningitis
data

h 1 2 3

X̂
(CML)
140+h 0.296 0.357 0.369

X̂
(B)
140+h 0.308 0.361 0.368

x140+h 0 0 0

predictions methodologies, h-step-ahead forecasts (h = 1, 2, 3) are produced for
the last 3 observations. From inspection of Table 2 it can be seen that the forecasts
obtained by classical and Bayesian approaches are very similar (and close to the real
values) which is not a surprising result since the correspondent parameter estimates
are very closed. Regarding the predictions one step ahead of x141 and using the
coherent predictions given by the medians M̂(CML)

141 or M̂(B)
141 we obtain the value 1.

6 Concluding Remarks

In this work classical and Bayesian approaches to time series analysis and forecast-
ing are applied to INBL (1,0,1,1) model. However much of the work for INBL
processes remains to be done. We can point out some issues that are still open
questions: invertibility conditions and the probabilistic structure of the process. This
class of models, due to the cross term, can generate extreme observations and hence
is suitable for modelling series of counts showing heavy tailed phenomena. However
these features increase the difficulty in obtaining good predictions. Throughout this
work we have seen that statistical modelling of INBL processes leads to likelihood
functions based on convolutions. The difficulty of computing these functions
exactly points towards the development of likelihood estimation by saddlepoint
approximation, as suggested by [10], and the improvement of MCMC algorithms.
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Abstract For the purpose of modeling the demand of Engineering Courses in
Portugal we analyzed the possible regression models for panel count data models
by establishing a comparison between the estimators obtained and then finding the
most appropriate ones for our dataset. A precise quantification of the demand for
each academic program is facilitated by the rules of access to higher education, in
National Contest for Access and Admission to Higher Education, where candidates
must list up to six preferences of institution and program. The data used in this
paper covers the results of the national contest from 1997 to 2015 provided by
the Portuguese Ministry of Education and Science. Multivariate methodologies
were performed in order to allow a better understanding of the students’ allocation
behavior. The results seem to indicate that the negative binomial estimates fit better
the dataset analyzed.
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1 Introduction

The idea of creating a European Higher Education Area (EHEA) was shared for
the first time in the 800th anniversary of the University of Paris, Sorbonne Joint
Declaration, in 1998 and was signed by the ministers of four countries: France,
Germany, UK and Italy [7].

The decision to formalize this idea occurred 1 year later in Bologna, by 29–30
countries who expressed their willingness to commit to increase the competitiveness
of EHEA through the 1999 Bologna Declaration [8], highlighting the need to further
the independence and autonomy of all Institutions of Higher Education (IHE). These
steps were followed by Ministerial Conferences in Prague in 2001, in Berlin in
2003, in Bergen in 2005, in London in 2007, in Leuven/Louvain-la-Neuve in 2009,
in Budapest-Vienna in 2010, in Bucharest in 2012, and in Yerevan in 2015.

The aim of the Bologna Process (BP) was to “strengthen the competitiveness
and attractiveness of European higher education and to foster student mobility and
employability through the introduction of a system based on undergraduate and
postgraduate studies with easily readable programs and degrees. Quality assurance
has played an important role from the outset too” [13].

The Ministerial Conferences above mentioned provided more precise tools
for implementing BP, such as modifying the structure of the undergradu-
ate/postgraduate degrees, into a three-cycle system including the concept of
qualifications frameworks, with an emphasis on learning outcomes, and introducing
the concept of the social dimension of higher education and the recognition of
qualifications as central to the European higher education policies. In Portugal, the
first steps for BP implementation were given in 2005 by means of laws:

• nr 42/2005 which defines the regulatory instruments for the creation of the Euro-
pean Area of Higher Education. This law regulates the structure of the cycles of
studies, the comparability of the degree structure, further to a comparable degree
structure, the creation of a system of academic credits, whose accumulation and
transferability across countries is guaranteed; this law also defines the mobility
of students during and after their graduation;

• nr 49/2005, consisting of an amendment to the Law of the Education System
Bases, including new areas and objectives of university education and polytech-
nic education.

Only in 2006, with decree nr 74/2006, changes were made to the existing
law of the educational system bases that enable BP implementation, particularly
the adoption of a new degree structure based on three cycles: the first cycle is
bachelor degree (licenciatura—L), with a normal duration of 3 years, the second
cycle is master (mestrado—M), with a normal duration of one-half or two years,
and the third cycle is doctorate (doutoramento). The universities were also given
the opportunity to offer a combined degree called integrated master (mestrado
integrado—MI), with a duration of 5 or 6 years [1].
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As part of the reorganization and rationalization of the European higher educa-
tion system [10], BP implementation in Portugal was carried out by the Portuguese
Ministry of Science Technology and Higher Education (MSTHE), the current
Ministry of Education and Science (MES), which led to profound changes in the
Portuguese higher education system.

The MSTHE determined that higher education institutions could restructure their
study programs according to the Bologna principles beginning in 2006/2007 or in
one of the two following years. Full implementation was achieved by 2009. This
means that up to 2009 we had a variety of cases in IHE.

For the purpose of modeling the demand of Engineering Courses in Portugal, in
this study we analyzed the possible regression models for panel count data models
by establishing a comparison between the estimators obtained, and then finding the
most appropriate ones for our dataset.

This study is organized in six sections: besides the “Introduction”, the next
section, “The Portuguese Higher Education System”, presents the organization of
higher education both in terms of the nature of the institutions and their tutelage;
section “The Portuguese Higher Education System Access” explains the procedures
put in place to access higher education and how this works for the public and
private subsystems; section “Data and Descriptive Statistics” describes the data used
in this study based in descriptive analysis; section “Statistical Analysis” expounds
on the explanatory variables, specifies the models used to estimate the demand of
Engineering Courses in Portugal, and presents the results obtained, exploring the
significance of the work; finally, the last section presents the conclusions of the
work and proposes suggestions for future research.

2 The Portuguese Higher Education System

Portugal has a binary higher education system, consisting of university and poly-
technic education, each with distinct purposes that translate into specific curricular
concepts [1].

University education, guided by a constant perspective of promoting research
and knowledge creation, aims at ensuring a solid scientific and cultural preparation,
by providing a technical training that qualifies for the exercise of professional
and cultural activities and by promoting the development of design capabilities,
innovation, and critical analysis.

Polytechnic education, guided by a constant perspective of applied research and
development, aims at understanding and solving specific problems, at providing a
solid cultural and technical level, and at developing the capacity for innovation,
critical analysis, and its applications in the pursuit of professional activities.

University education is offered by public and private university institutions while
polytechnic education is offered by public and private non-university institutions.
Private higher education institutions must be subject to the previous recognition of
the Ministry of Education and Science (The higher education system also comprises
a concordatary institution) [1].
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Both university and polytechnic institutions confer the degree of licenciado
(bachelor). In polytechnic education, the cycle of studies leading to the degree of
licenciado has a duration of 3 years of students’ work and 180 credits. In certain
cases, namely those covered by internal legislation or by European legislation, the
cycle of studies can have up to 240 credits with a normal length of up to seven
or eight curricular semesters of students’ work. In university education, the cycle
of studies that lead to the degree of licenciado has from 180 to 240 credits and a
normal length of six to eight curricular semesters of students’ work.

Both university and polytechnic institutions confer the degree of mestre (master).
The cycle of studies leading to the degree of mestre has from 90 to 120 credits
and a normal length of three to four curricular semesters of students’ work or, in
exceptional circumstances, 60 credits and a duration of two semesters, resulting
from a stable and consolidated practice in that specific field at international level.

In university education, the degree of mestre may also be conferred after an
integrated cycle of studies (integrated master), with 300–360 credits and a normal
length of 10–12 curricular semesters of students’ work, for cases in which access
to the practice of a certain professional activity depends on that length of time
established by legal European Union (EU) standards or resulting from a stable
practice consolidated in the EU. In this cycle of studies, the degree of licenciado
is conferred to those who have obtained 180 credits corresponding to the first six
semesters of work. The degree of doutor (doctor) is conferred by universities and
university institutes.

This study focuses on the publicly-funded higher education system that offers
engineering study programs of bachelor or integrated master, since these programs
include the majority of candidates; they are also representative in terms of supply
of land area and their access is regulated by the Department of Higher Education
(Direcção Geral do Ensino Superior—DGES).

3 The Portuguese Higher Education System Access

The MSTHE (MES), and more specifically the DGES, is in charge of the higher
education sector and regulates access to the higher education system. Currently,
access to higher education is conditioned by a system of numerus clausus, which
defines the maximum number of students for each study program in both the public
and private sectors. This number is defined by each institution, in fixed dates, and is
subject to the approval of MES.

Numerus clausus works as a restriction on the supply side of the system, affecting
the size and composition of the tertiary education sector [11]. Access to academic
programs of bachelor or integrated master is done differently, whether in the public
or in the private sector. Figure 1 illustrates the organization of access to higher
education at this level.

Access to higher education for the public sector is done annually through a
national contest based on the students’ revealed preferences in their application.
The national contest has two major phases: the first one takes place in July/August
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Fig. 1 Organization of higher education access

and the second one in September and includes the vacancies that have not been filled
in the first phase.

Each student ranks a maximum of six study program/institution pairs, from the
most preferred (the first one) to the least preferred (the last one) alternative. The
ensuing nationwide competition allocates the candidates based on their grade point
average and the stated ranking of preferences. At each phase the applicant can only
get a placement.

Students not allocated in the first phase, or allocated but not in the pro-
gram/institution they want or those who had not applied in the first phase, may
apply in the second phase.

4 Data and Descriptive Statistics

Due to differences in higher education access, most of the data available is related
to the public sector disseminated by DGES according to the results of the different
phases of the national contest. So, this study focuses on the publicly-funded higher
education system that offers engineering study programs of bachelor or integrated
master, since these programs include the majority of the candidates and they are
also representative in terms of supply of land area and their access is regulated by
DGES.

The data used is available online [6] and directly collected from the DGES
archives. The data was collected for the period between 1997 and 2015, regarding
the first phase, the most significant one, and the following variables are available:

• number of total applicants (representing the demand of pair institution/program);
• type of institution (University or Polytechnic);.
• academic program size (3 years program—Bachelor, 5 years program—

Graduate, and 3+2 years program degree in two cycles—Graduate until 2006
and after 2006 the first cycle or integrated master);

• field of education and training courses (CNAEF) [5];
• number of vacancies available for pair institution/program;
• number of academic programs available for each institution;
• number of total allocated applicants in each program (total number of allocated

students in pair institution/program, irrespective of their ranking);
• number of applicants by choice (1–6 preferences of pair institution/program);
• number of allocated applicants by choice (1–6 preferences of pair institu-

tion/program);
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• grade point of the last place (GPLP);
• grade point average: applicants (GPAA), admission exams (GPAE), last year of

secondary school, 12th year, 10th/11th year;
• number of male applicants;
• number of female applicants;
• number of men allocated;
• number of women allocated.

In Fig. 2 we present the number of IHE by period of time: Pre Bologna period
(1997–2006) and Post Bologna period (2007–2015).

The number of IHE in both periods is similar: the minimum of IHE is 26 and the
maximum is 30, which is not the case in its variation: it has an opposite variation.

Figures 3 and 4 represent, respectively, the total of applicants and the total of
allocates for the national contest also by period.

Despite the higher number of applicants in the Post Bologna period (2008),
generally the number of applicants has decreased over the years.

In relation to the allocated, the maximum and minimum values have been
achieved in the Post Bologna period, and the most extreme variations occurred at
the end of the two periods under observation.
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Fig. 4 Number of total allocated

Fig. 5 Number of total applicants by IHE type

Fig. 6 Number of engineering programs by HEI type

Figures 5 and 6 illustrate, respectively, the number of total applicants and the
number and engineering academic programs by IHE type.

To better understand the evolution of the degree (size of the program) of
engineering academic programs offered over the years, we present the results in
Fig. 7.

In 2006 coexisted all kinds of degrees. It was a “hybrid” year because IHE
could choose to start implementing the BP curricula changes in 2006 or until
2008. However, we find that with regard to Engineering academic programs the
restructuring of curricula changes was complete in 2007.
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Fig. 7 Number of engineering programs by degree

Table 1 Summary of
variables: number of male
applicants, number of female
applicants, number of men
allocated, and number of
women allocated

Applicants Allocated

Years Male Female Men Women

1997 31,436 14,140 6287 2855

1998 36,907 17,111 7100 3187

1999 28,584 12,848 5954 2825

2000 32,409 15,534 6869 3404

2001 27,298 11,802 5953 2686

2002 30,811 12,983 6554 3009

2003 26,693 10,962 5903 2665

2004 29,436 10,955 6318 2393

2005 22,336 6692 4818 1573

2006 20,595 7001 4636 1553

2007 31,438 12,277 6538 2660

2008 44,962 18,391 7601 3049

2009 38,645 14,589 7427 2932

2010 35,712 13,654 7162 2716

2011 30,649 11,798 6477 2440

2012 25,454 10,116 5252 2068

2013 22,191 8991 4605 1732

2014 20,234 7383 4258 1554

2015 31,095 10,692 5655 2070

The summary of variables—number of male applicants, number of female
applicants, number of men allocated and number of women allocated—is presented
in Table 1.
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5 Statistical Analysis

Statistical analysis was performed using the SPSS statistic software and STATA
statistical data analysis software [3]. A Kolmogorov-Smirnov test was used to
verify data normality (p-value < 0.001), for which the results indicated that non-
parametric tests should be used for all comparisons.

In order to analyze if the number of applicants to Engineering programs
(demand) depends on the type of institution or degree (size of program), some tests
were performed, Tables 2 and 3 [9, 12].

The demand (number of applicants) of Engineering programs depended on the
size of the programs for the two periods, but if we only consider the type of IHE
then there is no dependency during the Pre Bologna period from 1999 to 2002.

5.1 Modeling Approach

The purpose of this study is to establish a comparison between the estimators for
regression models by finding the most appropriate ones for our dataset, and so we
describe the possible models to explain the number of applicants.

Table 2 Mann-Whitney and Kruskal-Wallis tests for the Pre Bologna period

Mann-Whitney Kruskal-Wallis

Pre Bologna IHE type Size of program

1997 Test statistics −4.068 16.552

p-value <0.0001 <0.0001

1998 Test statistics −3.245 20.686

p-value 0.001 <0.0001

1999 Test statistics −0.165 15.939

p-value 0.869 <0.0001

2000 Test statistics −0.346 11.503

p-value 0.729 0.003

2001 Test statistics −0.331 7.746

p-value 0.741 0.021

2002 Test statistics −1.397 8.095

p-value 0.162 0.017

2003 Test statistics −2.229 10.31

p-value 0.026 0.006

2004 Test statistics −3.19 16.367

p-value 0.001 <0.0001

2005 Test statistics −5.351 33.03

p-value <0.0001 <0.0001

2006 Test statistics −3.257 45.001

p-value 0.001 <0.0001

Bold: not statistically significant
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Table 3 Mann-Whitney tests for the Post Bologna period

Mann-Whitney Mann-Whitney

Post Bologna IHE type Size of program

2007 Test statistics −6.438 −7.324

p-value <0.0001 <0.0001

2008 Test statistics −7.287 −7.493

p-value <0.0001 <0.0001

2009 Test statistics −7.99 −8.367

p-value <0.0001 <0.0001

2010 Test statistics −8.761 −8.914

p-value <0.0001 <0.0001

2011 Test statistics −9.143 −9.014

p-value <0.0001 <0.0001

2012 Test statistics −10.352 −9.023

p-value <0.0001 <0.0001

2013 Test statistics −8.897 −8.24

p-value <0.0001 <0.0001

2014 Test statistics −8.697 −7.926

p-value <0.0001 <0.0001

2015 Test statistics −8.841 −7.537

p-value <0.0001 <0.0001

Since the response variable is a nonnegative integer and since its distribution
is skewed to the left, a count data type of model is appropriate [2]. As already
mentioned the data for nineteen academic years is available, and so we have a panel
structure with repeated observations on the same academic program and institution,
which allows controlling for study program characteristics that are not observable
but are assumed constant over time.

The starting point model for count data is the Poisson regression model with the
exponential mean function [2]

μ = exp (x
′ · β). (1)

In our data, descriptive statistics show that the dependent variable presents
overdispersion, so the Negative Binomial regression model might be more appropri-
ate for the data. Since we have repeated measures in individuals i over time t data for
i = 1, . . . , n and t = 1, . . . , T , and yit are nonnegative integer-valued outcomes.
So our data is in a panel structure. As established by [4], a major advantage of
panel data is increased precision in estimation. This is the result of an increase in
the number of observations owing to combining or pooling several time periods of
data for each individual. However, for valid statistical inference one needs to control
for likely correlation of regression model errors over time for a given individual. A
second attraction of panel data is the possibility of consistent estimation of the fixed
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effects model, which allows for unobserved individual heterogeneity that may be
correlated with regressors.

Most disciplines in applied statistics treat any unobserved individual heterogene-
ity as being distributed independently of the regressors. Then the effects are called
random effects, though a better term is purely random effects. Compared to fixed
effects models, this stronger assumption has the advantage of permitting consistent
estimation of all parameters, including coefficients of time invariant regressors.
However, random effects and pooled estimators are inconsistent if the true model
is one with fixed effects [4]. Therefore we performed the Hausman test with the null
hypothesis: individual effects are uncorrelated with other regressors in the model
that is the most appropriate for the data under study. We rejected the null hypothesis,
meaning that we should use the fixed effects model.

Therefore, we estimated the data according to [12], following these regression
models for panel count data:

1. Pooled Poisson and Negative Binomial regression models population-averaged
(PPA and NBPA),

yit = αi + x
′
it βi + μit

where yit is the scalar dependent variable, xit is a k × 1 vector of independent
variables, and uit is i.i.d. with mean 0 and variance σ 2

u .
2. Negative Binomial regression model with Fixed Effects (NBFE) and Random

Effects (NBRE),

yit = x
′
it βi + (αi + εit )

(a) Fixed effects:
αi is a random variable possibly correlated with xit .

(b) Random effects:
αi is purely random (usually i.i.d. N(0, σ 2

α )) uncorrelated with xit . Being

(i) Poisson,

Pr(Y = y|μ) = e−μμy

y!

where y is the count for our dependent variable, μ = exp (x
′ · β).

(ii) Negative Binomial,

Pr(Y = y|μ, α) = Γ (y + α−1)

Γ (y + 1)Γ (α−1)

(
α−1

α−1 + μ

)α−1 (
μ

α−1 + μ

)y
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where y is the count for our dependent variable, μ(x) = exp (x · β),
α ≥ 0 is the overdispersion parameter, Γ (.) is the gamma function, and
x is a vector of regressors. This form assumes constant dispersion within
groups, equal to 1 + αμ(x). The mean and variance of Y are defined as
μ(x) and (1 + αμ(x))μ(x), respectively.

We performed these models, the Poisson model was considered as reference, and
the results are presented in Table 4.

Since we used the Poisson regression model as a starting point and since it cannot
be applied because of overdispersion, we only analyzed the results from the negative
binomial regression models. As one can be seen in Table 4, results can vary across
models. For example, the significant predictors of the number of applicants for all
the models are: IEH type, size of program, vacancies, number of allocated, grade
point of the last place, number of applicants in 2nd, 3th, 4th, 5th, and 6th choices,
number of allocated in 1st and 2th choices, number of female applicant, and finally
the number of men and women allocated. These results indicate that the NBFE
model most accurately explained the data, confirming the results obtained by the
Hausman test [4].

When we performed in STATA a Negative Binomial regression model for panel
count data it automatically computed a Wald test that evaluates the null hypothesis
that the coefficients are equal to zero. In the presented analysis this test was
statistically significant, p-value< 0.0001. Therefore, we could conclude that at least
one coefficient differs significantly from zero.

6 Conclusions and Future Work

The aim of this paper was to understand the impact of the Bologna Process on the
demand of Engineering courses in Portugal. Since the major changes caused by the
Bologna Process were in the degrees attributed by the two types of Institution of
Higher education (Universities or Polytechnics), first it was tested if the demand
was influenced by these characteristics. To this end, we have performed the Mann-
Whitney and Kruskal-Wallis tests, and found that there is a change in the behavior
of the demand during the Pre Bologna (1997–2006) and Post Bologna (2007–
2015) periods. Since 2007 the demand depends, without exception, on the type
of degrees attributed (Graduate, Master, Doctor) or on the type of institution
(Universities or Polytechnics). These results point to a behavioral change of the
variable response under study (demand for Engineering courses in Portugal),
showing that is effectively necessary to further deepen the study of the Bologna
Process impact.

Furthermore, we have also estimated the demand during a 19 years period (1997–
2015) by applying the models (Pooled Poisson and Negative Binomial regression
models population-averaged, Negative Binomial regression model with fixed effects
and random effects) deemed more suitable for the variables under study. The results
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seem to indicate that the best model for our data is the Negative Binomial regression
model with fixed effects.

In future work, we intend to explore this model with more explanatory variables
and to evaluate the model behavior during the Pre and Post Bologna periods in order
to better assess the impact of the Bologna Process.
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Statistical Methods for Word Association
in Text Mining

Anacleto Correia, M. Filomena Teodoro, and Victor Lobo

Abstract Text data has been growing dramatically in the last years, mainly due
to the advance of web related technologies that enable people to produce an
overwhelming amount of data. Many knowledge about the world is encoded in text
data available through blogs, tweets, web pages, articles, and books.

This paper introduces some general techniques for text data mining, based on
text retrieval models, that can be applicable to any text in any natural language.
The techniques are targeted to problems requiring minimum or no human effort.
These techniques, which can be used in many applications, allow the measurement
of similarity of contexts, as well as the co-occurrence of terms in text data with
different levels of granularity.

1 Introduction

The Web accelerated the textual revolution and made available a great amount of on-
line information. Information and knowledge about almost any subject is encoded
in text data available on-line, in articles or books. Text mining refers to the process
of extracting high quality information from text data. The quality of the information
derived is concerned with elicited patterns and trends. Text mining usually involves
the process of structuring the input text (through parsing, and adding or removing
linguistic features), deriving patterns within the structured data, and eventually
analyzing and interpreting the output.
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Text mining, as an interdisciplinary field, benefits from contribution of several
correlated disciplines, namely information retrieval, data mining, machine learning,
probability, statistics, and computational linguistics. These various disciplines are
combined together to build the text-mining process workflow. Through information
retrieval (IR), documents that match submitted queries are collected. IR systems
allow filtering the collection of documents to attain the most relevant of them to
address a specific topic. IR is concerned on reducing the number of documents
for text mining analysis in order that the processing of computationally-intensive
algorithms can be sped up. On the other hand, natural language processing (NLP),
a field of artificial intelligence, addresses the analysis of human language so
that computers can understand natural languages in a similar way as humans
do. Techniques from NLP includes shallow parsers, which identify the main
grammatical elements in a sentence (e.g., noun phrases and verb phrases), as well as
deep parsers for generation of sentences’ grammatical structure. NLP contribution
to text mining is on providing linguistic data (e.g., documents’ annotations, part-of-
speech tags, parsing results) on the information extraction phase.

Data Mining (DM) is the subprocess that allows the identification of patterns
in large sets of data. The aim of DM is to uncover previously unknown, useful
knowledge for decision making. When used in text mining, DM is applied to the
facts generated by the information extraction phase. The results extracted by DM
techniques can then be queried and visually represented. Using the information
extraction (IE) subprocess is possible to automatically obtain structured data from
unstructured natural language documents. Often this involves defining templates,
which are used to guide the extraction process. The IE process relies itself on the
data generated by the NLP process [11].

When looking at text data in any support, people may have expectations
regarding its content, which can be: (1) to discover aspects about a specific natural
language, its usage, as well as the patterns on it; (2) to mine knowledge from
content of text data about the observed world, getting the essence of it or extracting
information about relevant aspects of the world; (3) to mine knowledge about an
observer, which means using text data to infer properties of a person; and (4) to make
predictive analytics using text mining to infer real-world variables. When real-world
variables are inferred they can also use intermediate results of other predictions. So,
multiple types of knowledge can be mined from text in general [3, 8, 15].

As previously referred, information retrieval [9, 10] and text mining are very
related domains for leveraging text data. However, whereas information retrieval
aims fundamentally to turn raw text data into a smaller and relevant text data, for
handling a specific problem or supporting a particular decision, text mining deals
with processing text data to extract knowledge or synthesize information in order
to be more easily processed by people. Text mining techniques are surveyed in
several works [1, 2, 5, 6, 12–14]. In this paper we focus on statistical approach word
associations used for extracting specific knowledge from documents [7].

So, Sect. 2 introduces the preliminaries of mining techniques from text data for
word associations. Sections 3 and 4 describe word association as a form of analyzing
the content of text in search of paradigmatic relation (context similarity) and the
syntagmatic relation (co-occurrence of terms). In Sect. 5 we get some conclusions.
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2 Word Associations

This section presents on mining associations of words from text data, following the
presentation of the subject in [16]. In general there are two basic word relations:
the paradigmatic relation and the syntagmatic relation. These two kind of relations
are fundamental and they can be generalized to capture basic relations between units
in arbitrary sequences. Also, they can be generalized to describe relations of any
items in a language, such as words and even complex phrases.

The elements A and B are said to have paradigmatic relation if they can be
substituted one for each other. This means that the two words are in the same
semantic class, or syntactic class. In general, they can be replaced one by the other
without affecting the understanding of the sentence, which means that the result
would still be a valid sentence. In the case of a syntagmatical relation, on the other
hand, the two words can be combined with each other. Therefore the elements A
and B can be combined with each other in a sentence, since they are semantically
related. However, in general, they cannot be replaced one by the other, since the
sentence would become meaningless.

In another perspective, the relations can be seen as: (1) relations that occur in
similar locations relative to the neighbors in the sequence (paradigmatic relation)
or; (2) relations concerning co-occurrent elements that tend to show up in the
same sequence (syntagmatical relation). These two basic relations of words are
complementary.

For discovering paradigmatic relation, one can assume that words that have high
context similarity also have paradigmatic relation. So, the context similarity of
each word must be computed. To discover syntagmatic relation, one must search
for words with high co-occurrences but relatively low individual occurrences. The
justification is that those words tend to occur together. To compute the syntagmatic
relation one must count how many times two words occur together in a context (a
sentence, a paragraph, or even a document). Then a comparison should be made
between the co-occurrences and their individual occurrences.

Both paradigmatic and syntagmatic relations are closely related since paradig-
matically related words tend to have syntagmatic relation with the same word. They
tend to be associated with the same word, which suggests that the discovery of the
two relations can be done together. In the following sections some of the statistical
methods used for discovering those kind of relations are introduced.

3 Paradigmatic Relations

The idea of discovering paradigmatic relations is to look at the context of each word
and try to compute the similarity of those contexts. This can be done through two
steps: 1—formally representing the context and; 2—defining a similarity function.
The context contains in general lot of words usually regarded as bag of words.
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The similarity function is, in general, a combination of similarities on different
contexts [16].

Thinking in a bag of words is a useful mean for representation of vectors in a
vector space model. The subjacent idea for this approach is to define each word in
the vocabulary as one of the dimensions of the high dimensional space. Since there
areN words in the vocabulary, then, there are alsoN dimensions in the space model.
So, the context of a word, w1, can be represented as a vector d1, and a different
word w2, by another context d2. The paradigmatic relation between the two words
can then be measured computing the similarity of the two vectors. Therefore, by
representing the context in the vector space model, the problem of paradigmatical
relation discovery is converted into the problem of computing similarity of the
vectors. For referring each vector we use the expression (1):

d1 = (x1, . . . , xN) where each xi is given by xi = c(wi, d1)

|d1| , (1)

where c(wi, d1) represents the total count of word w1 in pseudo document d1 and
|d1| is the total amount of words in d1.

Regarding the computation of similarity, there are several approaches developed
for information retrieval that can be adapted to text mining. One of the approaches
is to try to match the similarity of context based on the Expected Overlap of Words
in Context (EOWC) method. The idea is to represent a context by a word vector
where each word has a weight equal to the probability that a randomly picked word
wi , from the document vector, is the specific word wi . In other words, xi is defined
as the normalized count of word wi in the context, and this can be interpreted as
the probability of randomly picking this word from the document dj . Since these
are normalized frequencies, the sum of x ′is is one, which means the vector is in
fact a probability of words distribution. According to this method each context is
represented by a vector that specifies the probability of each word in the context.
Consequently, the similarity is defined (2) as the dot product of the two vectors:

Sim(d1, d2) = d1 · d2 = x1 y1 + · · · + xn yn =
N∑
i=1

xi yi. (2)

With this similarity function one can compute the probability of two randomly
words from the two contexts being identical with EOWC approach measuring the
overlap of words in the contexts.

The EOWC method, however, has two problems, namely: 1—it favors matching
frequent terms over matching distinct terms; 2—it treats every word equally,
meaning that even a common word would contribute equally as others more relevant
to the current content.

Retrieval heuristics, used in the text retrieval domain, can be used to solve these
problems. To address the first problem, a sublinear transformation named Term
Frequency (TF) is used, instead of the raw frequency count of the terms, to represent
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the context. In the TF transformation, denoted by TF(w, d), the raw count of a word
is converted into a weight that reflects the belief about the importance of the word.
An implementation of the transformation in (3), called a BM25 transformation,
was used in information retrieval to solve the same problem of overemphasizing
a frequent word. This transformation

TF(w, d) = (k + 1) x

x + k
, (3)

where k ∈ [0,+∞[ is a parameter and x is the raw count of a word, has an upper
bound of k + 1, which puts a constraint on high frequency.

To solve the second problem, one must penalize popular terms and put more
weight on rare terms. The heuristic (4) used in text retrieval is called Inverse
Document Frequency (IDF) term weighting. Document frequency means the count
of the total number of documents that contain a particular word. The IDF measure
is defined as a logarithm function of the document frequency

IDF(W) = log
(M + 1)

k
, (4)

where k is the document frequency and M is the total number of documents in the
collection. The IDF function gives a higher value for lower k, which means that it
rewards a rare term. It reaches the maximum value on log(M + 1), for a very rare
term that occurs just once in the context. The lowest value of IDF, close to zero, is
when k reaches its maximum of M .

TF and IDF heuristics are used to improve the similarity function for paradig-
matic relation mining. The document vector is defined as containing elements
representing normalized BM25 values. The new weight reflects now the frequency
of occurrence of the word in the context. In the document vector (1), each xi is now
given by (5):

xi = BM25(wi, d1)∑N
j=1 BM25(wj , d1)

. (5)

The weight of each word is normalized by the sum of the weights of all the words.
This ensures that all the xi’s will sum to 1 in the vector that represents now the word
distribution.

The formula in (6) allows the definition of the document vector, giving to high
frequency terms lower weight. This helps to control the influence of the high
frequency terms. So, in (5) the weight computed for each word xi in document
d1 is

BM25(wi, d1) = (k + 1) c(wi, d1)

c(wi, d1)+ k
(

1 − b + b∗ |d1|
avdl

) , (6)
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with k ∈ [0,+∞[ and b ∈ [0, 1]. c(wi, d1) is the counting of word wi in document
d1, and is introduced to achieve the sublinear normalization. The parameter k is
generally a positive number that controls the upper bound and the extent of the
linear transformation. The parameter b controls the length of the normalization.
The normalization formula has also the average document length avdl, which is
computed by taking the average of the lengths of all the context documents. This
average is constant for any given collection of documents and only affects the
context document length |d1| and the parameter b.

The similarity function in (2) becomes the one in (7), when the IDF function is
included, weighting the importance of each specific word wi and a common word
worthing less than a rare word

Sim(d1, d2) =
N∑
i=1

IDF(wi) xi yi . (7)

With this modification, the new function similarity function based on BM
addresses the two mentioned problems regarding EOWC method.

Summarizing, when a document vector is used to represent the context, it turns
out that some words will have higher weights, and other lower weights. This allows
to use the weights to discover the words that are strongly associated with the context.
Applying IDF weighting allows to re-weigh the words in order that highly similar
word pairs can be treated as having paradigmatic relations, which means these words
share similar contexts,

IDF-weighted d1 = (x1 ∗ IDF(w1), . . . , xn ∗ IDF(wn)). (8)

The term vector presented in previous expression to represent the context some
terms would have higher weights, while others have lower weights. Depending on
how weights are assigned to these terms, the expression in (8) might be used to
discover the words that are strongly associated with a candidate of word in the
context.

The context presented in expression (8) can also be used to discover syntagmatic
relations. The claim is that if a term is highly scored in the document vector, then it
is strongly related with other terms highly weighted. To understand such conclusion
one may bear in mind that when IDF is applied to frequent terms they are re-
weighted. This means that common words are penalized so the highest weighted
terms in the final document vector will not be the common terms because they have
lower IDFs. Instead, highest weighted terms will be the ones that are frequent in the
context but not frequent in the overall collection. Those are the words more relevant
in the context. For this reason, the highly weighted terms of the weighted vector (8)
can also be considered as candidates for syntagmatic relations.

This conclusion regarding syntagmatic relation discovery is a complementary
result raised up from the study of paradigmatic relations. In the following section
specific methods concerning syntagmatic relation are presented.
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4 Syntagmatic Relations

As previously mentioned in Sect. 2, syntagmatic relations hold between words that
have correlated co-occurrences. The concept of entropy, introduced in information
theory [4], is used for discovering syntagmatic relations.

For the purpose of text mining, the entropy function is treated as a function
defined on a random variable XW . So, the problem can be formally defined as
predicting the value of a binary random variable XW , with W denoting a word.
Each random variable is associated only with one word. The degree of randomness
of the stochastic variable XW indicates the difficulty on predicting the word W in
a segment of words. When the value of the variable XW = 1, it means the word is
present. WhenXW = 0, it means the word is absent. The randomness of the variable
XW is quantified by measuring the entropy. So, the entropy expression in (9) is a way
of quantitatively measuring whether a word is hard or easy to predict in a segment.
A higher entropy (9) is expected for words hard to predict

H(Xw) =
∑

v∈{0,1}
−p(XW = v) log2 p(XW = v) (9)

= −p(XW = 0) log2 p(XW = 0)− p(XW = 1) log2 p(XW = 1). (10)

When a different kind of scenario is addressed, and a prior information about
the text segment is known, the concept of conditional entropy is used. Supposing
the presence of word W2, this means having knowledge regarding another random
variable XW2 , which allows the use of conditional probability. As a consequence,
using the conditional probabilities in the entropy function, we’ll get the conditional
entropy (11):

H(XW1 |XW2) =
∑

u∈{0,1}
[p(XW2 = u)

∑
v∈{0,1}

[−p(XW1 = v|XW2 = u)

log2 p(XW1 = v|XW2 = u)]]. (11)

Conditional entropy helps to capture syntagmatic relation, because it gives a way
to measure directly the association of two words. This is because it measures the
extent in which a word can be predicted, given the knowledge about the presence or
absence of another word.

In general, for any discrete random variables XW1 and XW2 , the following
relation is verified:

H(XW1) ≥ H(XW1 |XW2).

H(XW1 |XW2) reaches its minimum 0 when XW1=XW2 , and its maximum
H(XW1) when there is no relation betweenXW1 andXW2 . The algorithm for mining
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syntagmatic relations using conditional entropy has the following steps: For each
word W1:

• enumerate all other words W2 and compute for each one H(XW1 |XW2).
• sort all the candidate in ascending order of H(XW1 |XW2).
• take the top-ranked candidate words, below a certain a threshold, as words that

have potential syntagmatic relations with W1.

However, this algorithm does not help mining the strongest k syntagmatical
relations, irrespective of the words, for a complete word segment. To achieve it,
comparability between conditional entropies of different words is required, such as
in H(XW1 |XW2) and H(XW1 |XW3). However,H(XW1 |XW3) and H(XW3 |XW2) are
not comparable because they have different outer bounds. That is why comparability
of conditional entropy among different pairs of words is needed, in order to discover
the k syntagmatical relations. This can be achieved through the concept of mutual
information, I (XW1 ;XW2), which measures the entropy reduction of XW1 obtained
from knowing XW2 , or, conversely, the entropy reduction of XW2 obtained from
knowingXW1 ,

I (XW1 ;XW2) = H(XW1)−H(XW1 |XW2) = H(XW2)−H(XW2 |XW1). (12)

The properties of mutual information function are summarized by relations
(13)–(15):

• Non-negativity:

I (XW1 ;XW2) ≥ 0; (13)

• Symmetry:

I (XW1 ;XW2) = I (XW2 ;XW1); (14)

• Independence:

I (XW1 ;XW2) = 0 iff XW1 and XW2 are independent. (15)

The ranking obtained through mutual entropy is the same as got with the
conditional entropy of XW1 given XW2 . However, the mutual information function
is more general since it can also be used to compare different pairs ofXW1 andXW2 .
This makes mutual information more useful, from a practical point of view.

To compute the mutual information a method from information theory [4] is
used, which allows to mathematically rewrite the mutual information into the
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Kullback–Leibler divergence (KL-divergence). This method measures the diver-
gence between two joint distributions. The numerator in (16)

I (XW1 ;XW2) =
∑
u∈0,1

∑
v∈0,1

p(XW1 = u,XW2 = v) log2
p(XW1 = u,XW2 = v)

p(XW1 = u)p(XW2 = v)
.

(16)

gives the observed joint distribution of the two random variables. On the other hand,
the denominator can be interpreted as the expected joint distribution of the two
random variables, if they are independent. The larger this ratio (or divergence), the
higher the mutual information.

The intuition for using mutual information for syntagmatical relation mining is
that words that are strongly associated have a high mutual information, whereas
words that are not related have lower mutual information.

5 Conclusions

Word association is a form of analyzing the content of text data in search of relations
between terms. In paradigmatic relations, a particular kind of word associations, the
aim is to compute similarity of candidate words context documents, after collecting
these context through a bag of words. The highly similar word pairs can then be
treated as having paradigmatic relations, i.e. those words share similar contexts.
From the several different approaches to implement the notion of paradigmatic
relation, some related with text retrieval models were introduced, in order to help
designing similarity functions to compute the paradigmatic relations. Specifically
the BM25 and IDF weighting were used to discover paradigmatic relation.

For syntagmatic relations, the general idea is counting how many times two
words occur together in a context.The co-occurrences of words must be compared
with their individual occurrences. The assumption is that words with high co-
occurrences but relatively low individual occurrences have syntagmatic relations.
Conditional entropy and mutual information are the two approaches introduced for
discovering syntagmatic relations.

The two mentioned relations are in fact closely related, since paradigmatic
related words tend to have syntagmatic relation with the same word. This allows
both relations being jointly searched.
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