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Preface

G protein-coupled receptors (GPCRs) have enormous physiological and biomedical impor-
tance, being the primary site of action of approximately 40% of prescribed drugs. Although
the human genome encodes more than 850 different GPCR proteins, to date drugs have
only been developed against 50 of these. Thus, there is a unique opportunity to design new
therapies for a huge number of unexploited but potentially tractable targets. Recent
advances in GPCR pharmacology and structural biology together with developments in
computational modeling have resulted in a resurgence in the number of GPCR drug
discovery campaigns.

This book provides a unique overview of modern computational strategies and techni-
ques employed in the field of GPCR drug discovery, including structure- and ligand-based
approaches and cheminformatics. It is demonstrated how these computational approaches
can be used to address key issues in drug discovery such as receptor structure modeling,
protein-ligand interactions, GPCR function, flexibility and dynamics, ligand binding kinet-
ics, positions of water molecules and their role in ligand binding, calculation of the free
energy of binding (affinity), prediction of the effects of mutations on ligand binding,
interconversion between agonists and antagonists, deorphanization of GPCRs, and discov-
ery of biased and allosteric modulators. A review of these techniques will allow a diverse
audience, including structural and molecular biologists, computational and medicinal che-
mists, pharmacologists and drug designers, to navigate through and effectively deploy these
advances.

Abingdon, Oxfordshire, UK Alexander Heifetz
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Chapter 1

Current and Future Challenges in GPCR Drug Discovery

Sid Topiol

Abstract

GPCRs play a pervasive physiological role and, in turn, are the leading target class for pharmaceuticals.
Beginning with the determination of the structure of rhodopsin, and dramatically accelerating since the
reporting of the first ligand-mediated GPCR X-ray structures, our understanding of the structural and
functional characteristics of these proteins has grown dramatically. Deploying this now rapidly emerging
information for drug discovery has already been extensively demonstrated through a watershed of studies
appearing in numerous scientific reports. Included in these expositions are areas such as sites and char-
acteristics of ligand to GPCR binding, protein activation, effector bias, allosteric mechanisms, dimerization,
polypharmacology and others. Computational chemistry studies are demonstrating an increasing role in
capitalizing on the structural studies to further advance our understanding of these proteins as well as to
drive drug discovery. Such drug discovery activities range from the design of orthosteric site inhibitors
through, for example, allosteric modulators, biased ligands, partial agonists and bitopic ligands.
Herein, these topics are outlined through specific examples in the hopes of providing a glimpse of the
state of the field.

Key words GPCR, Structure-based drug discovery, X-ray structure, Allosteric modulators,
Receptor bias

1 Introduction

As early as 50 years ago, when the first computer software programs
were being written, computational chemistry tools were being
developed to understand and guide drug properties and discovery.
Ligands for G-protein coupled receptors [GPCRs], such as endog-
enous amines, and psychotropic drugs such as LSD acting on these
receptors, were a common focus of these research efforts. Electro-
static point charge representations of ligands were often used,
followed by molecular mechanics, low level quantum chemical
(e.g., semi-empirical), and later ab initio methods. Calculations of
static properties such as atomic point charges, electrostatic fields,
and electron densities of small molecules pushed the envelope of
computational hardware and software wherein LSD was a “large”
molecule and the structure of its GPCR target receptors, such as

Alexander Heifetz (ed.), Computational Methods for GPCR Drug Discovery, Methods in Molecular Biology, vol. 1705,
https://doi.org/10.1007/978-1-4939-7465-8_1, © Springer Science+Business Media LLC 2018
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the 5-HT receptors, could only be imagined. Computational stud-
ies involving the target GPCR proteins were beyond reach both
because of the computational limitations presented by such large
systems and the lack of useful structural information about these
proteins. For decades following this, computational chemistry soft-
ware and the available hardware capabilities grew dramatically
allowing for far more sophisticated, accurate, and rapidly generated
information. On the experimental side, significant advances in areas
such as molecular biology, protein crystallography and structure
determination, and NMR provided the means for detailed investi-
gations of proteins at the atomic level. These experimental
approaches have been successfully applied to soluble proteins for
many years so that both small molecule and protein computational
methods were deployed and advanced extensively for these targets.
For membrane bound proteins such as GPCRs, the powerful
approach of X-ray structure determination remained elusive, thus
limiting computational drug discovery to ligand-based methods
such as pharmacophore studies. While ligand-based methods have
indeed been very successful, the much sought atomic level struc-
tural information, with its more powerful and far-reaching capabil-
ities, remained a much sought after goal. The first glimpse of the
architecture of these proteins came from electron microscopy stud-
ies of the related 7 transmembrane protein, bacterio-rhodopsin
[1, 2]. While efforts were made to use this structure as a template
for homology models of GPCRs of interest, the distal relationship
between them did not allow for the suitable accuracy of models
needed for drug discovery. It was not until 2000 that the first X-ray
structure of a GPCR, the class A GPCR rhodopsin, was reported
[3]. Although this was not a ligand-mediated GPCR, it provided a
significant advance in the information needed for understanding
the structure and function of GPCRs, especially for class A GPCRs.
Extensive use was made of the structure of the transmembrane
region of rhodopsin as a template for homology models for
ligand-mediated GPCRs, but the greater structural accuracy
needed for the most efficient drug design was still not achieved.
This was exacerbated by the far more varied structure of the extra-
cellular loops of these proteins which contributed to the differential
involvement of this extracellular loop region which generally inter-
acted directly with bound ligands at the orthosteric sites. The
biggest informational breakthrough for ligand-mediated GPCRs
came with the X-ray structure determinations of the first ligand-
mediated (class A) GPCR, those of the β2-adrenergic receptor
(β2AR) [4, 5]. These first detailed atomic level structure reports
of a ligand-mediated GPCR heralded the beginning of a new era of
computer-aided drug discovery for GPCRs. The details of the
orthosteric ligand’s binding, including the involvement of residues
from the extracellular loops, were seen in these first examples as well
as in various functional features of GPCRs such as the so-called
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“ionic lock” and “tryptophan switch” which had previously been
characterized and/or hypothesized by other experimental studies.
Computational methods that had matured over years as applied to
mostly soluble proteins were directly and instantly deployed toward
these targets. The determination of these GPCR X-ray structures,
and others solved since then, has involved a number of methods to
overcome the challenges of crystallizing membrane bound pro-
teins. Prominent among these for facilitating crystallization were
the use of companion proteins which were either covalently bound
(e.g., T4L, BRIL) at either side of the 7-TM (e.g., spliced into IC3
or attached at N-terminus) or non-covalently bound (e.g., antibo-
dies and nanobodies), selective stabilizing mutations, bound high-
affinity ligands, and the lipidic cubic phase methods. The power of
structure-based drug-discovery (SBDD) when applied to these first
structures was quickly demonstrated. In the now 10 years since
those structures were reported, there have been numerous other
X-ray structures reported covering examples of a number of class A
subclasses, various activation states, other classes of GPCRs (B, C,
and F) and yielding a watershed of tools for drug discovery and
understanding of the detailed molecular mechanisms and para-
meters governing a host of physiological roles. Among the many
class A X-ray structures, that of LSD bound to 5-HT2b is now
added to the arsenal [6] and begins to satisfy the imagination that
has stirred over many years.

2 GPCR Structure: A Bottoms-Up Guided Tour

The term GPCRs refers to a broad range of proteins with a com-
mon architectural feature, i.e., a domain consisting of seven alpha
helices which traverse the cell membrane alternatively from the
extracellular (EC) side to the intracellular (IC) side (helix 1 or H1
or TM1) and back again (helix 2) etc. Helices 1 and 2 are connected
on their intracellular side by an intracellular loop (IC1) while
helices 2 and 3 are connected on their extracellular side by extracel-
lular loop 2 (EC2) with corresponding connecting loops and
nomenclature for all the helices. This description generally defines
class A GPCRs, whereas non-class A GPCRs (classes B, C, and F)
contain an additional extracellular domain. The most well-
established effector proteins to which these proteins couple are
G-proteins, which is the source of the name “GPCR.” As it is
now well established that an important role of these proteins is to
couple to other effectors besides G-proteins a more universal name
seems called for. Often, the name “7TM” is used for all of these
proteins, owing to their common architectural feature. Neverthe-
less, as the name GPCR remains widely used and recognized for all
of these proteins, we will use it herein.

Current and Future Challenges in GPCR Drug Discovery 3



As the primary role of GPCRs is by definition to couple with
G-proteins, or more generally with effectors, on the intracellular
side of the membrane bound GPCRs, we begin our tour of the
architecture of GPCRs there. Various regions are highlighted which
have gained recognition for their structural, functional, or ligand
binding roles.

2.1 The

Intracellular Rim

With the role of 7TM proteins to induce signal propagation to the
intracellular region via interaction with their various effectors, this
region serves as the initial conduit for this information transmission
mechanism. The structures of the 7TM proteins and their changes
in this region determine whether fruitful interactions with the
effectors will take place (activation), to what extent these effective
interactions will occur (intrinsic activity), and with which effectors
these will occur (biased agonism). The various X-ray structures now
available, together with a wealth of molecular biological, biophysi-
cal, and biochemical studies, include examples spanning these vari-
ous possibilities. At the fully active protein extreme is the X-ray
structure of the fully activated β2AR receptor [7] in complex with a
high-affinity agonist BI-167107 and its effector, the hetero-
trimeric GTP binding protein Gs. As with many of the 7TM
X-ray structures, companion proteins used to aid in the crystalliza-
tion are included in the structure. Here, there are two such pro-
teins, the camelid nanobody Nb35 and T4L (replacing the
N-terminus of the 7TM). In this case, the role of the camelid
nanobody in helping to stabilize the active form of the 7TM protein
was demonstrated through molecular dynamics simulations [8] an
approach playing an increasing role in complementing X-ray struc-
tural information. In comparison with structures of the inactive
state, this structure reveals a more extended conformation for
helix 5 and an outward shift of helix 6 from the central helical
transmembrane axis while helices 3 and 7 move slightly inward.
Similar structural information for the transmembrane region is
available for the fully inactive protein extreme which has generally
been more accessible due to the greater availability of high affinity
antagonists (versus agonists) to facilitate protein crystallization as
illustrated by an X-ray structure of the adenosine 2a receptor
(A2aAR) [9]. Rhodopsin X-ray structures of the inactive state pro-
vide other, earlier examples. In addition to the X-ray structures of
the active and inactive extremes, there are now a number of exam-
ples of various intermediate states including complexes with partial
agonists, and demonstrating intermediate structural features. It is
noteworthy that the first X-ray structures of GPCR proteins were
those of rhodopsin, due in large part to the availability of large
quantities of the protein for crystallization. Thus, while ligand-
mediated GPCR (non-rhodopsin) proteins hold a central focus
for much of the interest in this area because of their pharmacologi-
cal role as drug targets, rhodopsin has played an early and
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continued role in unraveling structure/function information about
7TM proteins. A recent example of this is the reporting of an X-ray
structure of rhodopsin bound to the β-arrestin effector [10] which
starts to shed light on the GPCR structural differences
corresponding to differential effector interaction, i.e., biased sig-
naling. Compared to the β2AR /Gs active structure, H6 in the
Rhodopsin/arrestin active structure exhibits a 4A lesser outward
shift (10A vs. 14A). Supporting the relevance of this difference not
being an artifact of the difference in GPCRs (rhodopsin versus
β2AR) smaller differences are also seen in TM1, TM4, TM5, and
TM7 when comparing the rhodopsin/arrestin active structure to
the active state structure of rhodopsin bound to a C-terminal
peptide of Gα.

2.2 The Most

Intracellular Ligand

Site—To Date

While the role of these proteins is to communicate information
from the extracellular region, generally via ligand (or light, in the
case of rhodopsin) mediated signaling, to the intracellular region
via interaction with various effectors, the location for the signal
modulating ligand has traditionally been understood to be in the
upper region of the protein for orthosteric as well as sites bordering
these orthosteric sites (acting as selectivity sources or allosteric
sites). In striking contrast to this, chemokine receptor X-ray struc-
tures for CCR2 and CCR9 demonstrate that inhibitor binding in
the extreme IC region of the protein and immediately proximal to
the effector binding region occurs [11, 12]. The CCR9 X-ray
structure has only one bound ligand, the inhibitor vercirnon,
which is bound at this site and juts out at the IC domain. Two
simultaneous inhibitor ligands are bound in the CCR2 X-ray struc-
ture. The first inhibitor, CCR2-RA-[R], is bound in the same
location as vercirnon in the CCR9 X-ray structure (see Fig. 1),
whereas the second ligand, BMS-681, is bound in the assumed
orthosteric site. The inhibitory role of the ligands at this extreme
IC location is reflected in the protein structure wherein the out-
ward movement of H6, required for the effector binding to the
7TM protein, is prevented by the inhibitor. Additionally, the inhi-
bitor’s position directly precludes effector binding. This IC region
allosteric site uncovered in these studies is not known to have any
endogenous role, and can be considered an illustration of a man-
made site [15].

2.3 The B Site The X-ray crystal structure of corticotropin-releasing factor recep-
tor 1 (CRF1R), a member of the secretin like class B GPCRs, in
complex with the antagonist CP-376395 [16] revealed yet another
man-made 7TM ligand binding site (B site) which is also much
deeper than the classical orthosteric site. The location of
CP-376395, a compound identified through screening studies, is
further away from the IC region of the protein toward the EC
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region than that of the ligands in the CCR2 and CCR9 X-ray
structures described above (see Fig. 1). Nevertheless, it is still far
removed from the orthosteric binding sites expected for this class of
proteins wherein peptide-like ligands are expected to bind in, e.g.,
an open, v-shaped EC cavity as found in the X-ray structure of the
related class B receptor whose X-ray structure has also been solved
[17]. CP-376395 is selective for CRF1R over CRF2R. Two char-
acteristics of this site would suggest conflicting predictions regard-
ing its potential as a source of selectivity. Pervasive dogma argues
that allosteric sites offer greater opportunities for selectivity than
orthosteric sites, a principle based on the expected conservation of
residues among related proteins for common ligands at their
orthosteric sites. In contrast, there is generally expected to be less
variation in structure and sequence of 7TM proteins in the IC
direction than the EC direction. In this case, differences in just
two residues at this binding site between CRF1R and CRF2R could
provide the explanation for the greater preference observed with
CP-376395 for CRF1R. Analysis of this structure also suggests that
CP-376395 prevents the activating outward motion of TM6,
thereby explaining its inhibitory effect and offering clues for design
of ligands with desired intrinsic activity [16, 17].

Fig. 1 Illustration of the range of GPCR ligand binding sites. Examples of binding sites of selected ligands in the
7TM domain, as seen from the side of the α-helical barrel. The ligands are superimposed with a ribbon
representation of the 7TM domain using the X-ray structure of β2AR. The identity of each ligand, the protein to
which it is bound, and the Protein Data Bank (PDB) [13] accession number of the complex are as follows:
vercirnon (purple carbon atoms) in CCR9 (PDB:5LWE); CP-376395 (yellow carbon atoms) in CRF1R (PDB:4K5Y);
sodium/water cluster (black sodium atom, red water molecules) in the A2aAR (PDB:4EIY); mavoglurant (spring
green carbon atoms) in mGluR5 (PDB:4OO9); iperoxo (plum carbon atoms) in the M2 receptor (PDB:4MQT);
carazolol (aqua carbon atoms) in the β2AR (PDB:2RH1); LY2119620 (gray carbon atoms) in the M2 receptor
(PDB:4MQT). Two views are shown at 90� rotation as indicated. The molecular graphics were generated in
Maestro [14]
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2.4 The Ionic Lock

(“D(E)RY”)

As with a much of the early understanding of 7TM structure/
function relationships, evidence for this feature as a characterization
of the inactive state has its origins in rhodopsin X-ray structures.
Using the Ballesteros-Weinstein numbering scheme [18], the ionic
lock describes the structure of the cluster of residues D3.49, R3.50,
Y3.51 (“DRY”), and E6.30 as a means for establishing the inactive
state of the protein. In the structure of the inactive state of rhodop-
sin, R3.50 interacts with D3.49, E6.30, and T6.34. The ionic
interaction of R3.50 with E6.30 forms the lock between helices
3 and 6 which is associated with the inactive state. X-ray structures
of the inactive state of ligand-mediated class A GPCRs, e.g., the D3
dopamine receptor [19] have been found to include this ionic lock.
Interestingly, similar ionic and/or polar hydrogen bonding net-
works are found in X-ray structures of inactive forms of class B
[16, 17], class C [20, 21], and class F [22, 23] GPCRs. In active
state structures of rhodopsin and the β2AR [7, 24] the interaction
of R3.50 with E6.30 is no longer present, but R3.50 interacts with
Y5.58 instead. A number of X-ray structures with common ligands
but varying ionic cluster interactions, along with X-ray structures
with ligands of varying intrinsic activity, and molecular dynamics
simulations, lead to an emerging picture that these active/inactive
state ionic lock indicators are not guarantees of the activation state
but serve as indicators of their propensities for the given state
[15]. Moreover, they seem to contribute to the induction of the
structural changes more proximal to the effector.

2.5 Internal Water

Network and Its

Sodium Site

Sodium has been shown to act as an allosteric modulator of 7TM
proteins. A 1.8-Å high-resolution X-ray structure of the A2aAR
with the inhibitor ZM241385 bound [25] shows the position of
a sodium atom at the center of a network of water molecules which
traverse much of the transmembrane region and has three clusters
whose central cluster contains the sodium atom (Fig. 1). This
cluster is situated between the ionic lock and the so-called toggle
switch (see below). This site can potentially serve as a ligand binding
site as supported by a crystal structure of the 7TM region of a class
C GPCR, the mGluR5 receptor [21] containing the bound nega-
tive allosteric modulator (NAM) mavoglurant whose lower portion
overlaps spatially with this sodium/water cluster (Fig. 1). In the
case of the A2aAR, the orthosteric site is located in the more
common upper region of the transmembrane as is the inhibitor
also seen in the A2aAR X-ray structure. For mGluR5 however, the
orthosteric site resides in an extracellular domain separated from
the 7TM domain by a “cysteine-rich” protein linker. The mavo-
glurant site in mGluR5 is thus another example of aman-made site
[26]. The role of this sodium/water-cluster region to serve as an
allosteric site to two very differently located orthosteric sites is
more uniformly understood when viewed as serving a common
function to modulate the same local transmembrane region.
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In the case of the A2aAR, active state structures are available for
comparison [27, 28] and show that the hydrated sodium-ion
induces a kinking in helices VI and VII. Ameloride is known to
compete with this site for the A2aAR and it has been used for
structure-based design [29–33].

2.6 The CWxP

“Toggle Switch”

Analogous to the ionic lock, a highly conserved CWxP motif con-
tains tryptophan W6.48 whose orientation had been hypothesized
as a marker for the activation state of 7TM proteins. This has now
been verified extensively in numerous GPCR X-ray structures
where there is a shift in the position of the indole of W6.48 between
the active and inactive state structures, albeit not a flipping of the
indole ring as originally hypothesized. Interestingly, the driving
forces for this indole positioning are varied. In the inactive state
structures of rhodopsin [3], the histamine H1 receptor [34], and
the muscarinic M2 receptors [35], the inhibitors (retinal in the case
of rhodopsin) hold the corresponding indole of W6.48 in the same
position by directly interacting with it. In other instances, such as
the inhibitor bound inactive state X-ray structures of the β2AR
[4] or the dopamine D3 receptor [19], ligand interaction is with
an aromatic ring of an intervening residue. Whereas this region is
proximal to the endogenous ligand’s binding sites in class A 7TM
proteins, that is not the case for class C 7TM proteins such as
mGluRs. It is thus interesting that X-ray structures of the 7TM
domains of mGluRs show that allosteric inhibitor bound proteins
with ligands at this man-made site (for mGluRs) [20, 21] have their
corresponding tryptophan rings displace outward from the 7TM
core by the bound ligand. The role of the differences in the struc-
tural features in this region in protein activation is becoming
clearer. Comparing the active and inactive states of the A2aAR
[27, 36] shows that the agonist sits much deeper in the pocket
forming a series of hydrogen bonds with the protein as well as a
steric clash with W6.48 which collectively induce more active like
orientations and positions of H5 and H6.

2.7 The

“Orthosteric”

Pocket—The HUB

The approximately upper third region of the 7TM core generally
serves as the binding site for endogenous ligands, particularly for
class A 7TM proteins and, in turn, for most synthetic ligands;
herein referring to this as the “HUB” region. In considering all
GPCRs, many more ligands are accommodated at the HUB than
effectors at the IC region. It is therefore intuitive that there is
considerable diversity at this HUB site as described above. This
diversity is rooted in multiple sources including significant amino
acid variability between 7TM proteins in the EC direction, still
greater variability in the 7TM connecting extracellular loops and
greater structural variation (such as degree of openness) in this
region.
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The architecture of this HUB region makes it the region of first
choice for ligands in general and for endogenous ligands for similar
reasons. In addition to its relative diversity, it is for the most part an
enclosed cavity, yet not as narrow as the more internal section of the
7TM which is therefore more limiting in the scope of ligands it can
accommodate. It is also generally accessible from the extracellular
side—the source of most modulators.

Relative to the 7TM helical axis, ligands are found to span a
considerable vertical depth and lateral breadth of this HUB region,
which may reasonably be considered as comprised of sub-regions.
In some cases, such as inhibitors of the histamine H1 receptor [34]
and the muscarinic M2 [35] and M3 [37] receptors, ligands reside
at the extreme depth of this region (see Fig. 1), having no direct
interaction with the extracellular loops that are often a source of
selectivity as well as affinity. Nevertheless, single-residue differences
in this region can account for selectivity of inhibitors between
closely related proteins such as M2 and M3 [15]. More generally,
ligands binding in the HUB region interact with the extracellular
loops as well (see, e.g., the many structures for the β2AR or the
A2aAR) and interactions with portions of the N-terminal regions
are also seen (see, e.g., Ref. 38). In the lateral direction, small
molecules can bind in nonoverlapping positions at the same depth
within the 7TM domain (see Fig. 2). For example, the inhibitor
AZD1283 in a P2Y12 X-ray structure [39] where AZD1283 lat-
erally spans the TM region interacting with helices III-VII, and the
inhibitor in the CB1 X-ray structure [38] occupy nonoverlapping
locations as shown in Fig. 2.

Fig. 2 Illustration of laterally parallel sub-sites at the orthosteric HUB site.
Locations of two ligands which bind in the HUB site of the 7TM domain, as
seen from the side of the α-helical barrel. The ligands are superimposed with a
ribbon representation of the 7TM domain using the X-ray structure of β2AR. The
identity of each ligand, the protein to which it is bound, and the Protein Data Bank
(PDB) [13] accession number of the complex are as follows: taranabant (orange
carbon atoms) in CB1 (PDB:5 U09); AZD1283 (green carbon atoms) in the P2Y12
receptor (PDB:4NTJ). The molecular graphics were generated in Maestro [14]
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While the structural characteristics of the orthosteric site are
clearly related to the affinities of ligands at these sites, the more
subtle sources of the varying intrinsic activities of these ligands are
becoming clearer. Based on reported protein X-ray structures in
different states for the same proteins, e.g., the adenosine and
adrenergic GPCR proteins, the more inactive states are associated
with more open pockets in this region containing slightly larger
ligands, with increasing activating influence and decreasing open-
ness of the site as one proceeds from inverse agonists through
partial agonists to full agonists [40]. The relative openness here
plays a role in structural changes propagating to the IC region
related to the relevant active/inactive state. This trend is not uni-
versal as the ultimate criteria lie in the induced changes in the IC
direction. Yet more subtle than understanding of intrinsic activity is
the understanding of the mechanism of ligand bias for ligands
binding here and inducing different effector interaction profiles.
The structural bases for underlying biased agonism are emerging.
For example, a comparison of the X-ray structure complexes of
5-HT1b and 5-HT2b [41, 42], each bound with ergotamine, a
compound having bias for β-arrestin over G-protein at 5-HT1b

shows differences at the binding site in conformations of residues
at helix 6 which, in turn, correspond to a less active like conforma-
tion of helix 6 in the IC region. The crystal structure of LSD bound
to 5-HT2b [6] adds to this picture and, coupled with molecular
dynamics studies, indicates interaction with extracellular loop
2 (ECL2) modulates the LSD off rate thereby providing a kinetic
component to enhanced β-arrestin interaction.

2.8 The EC Rim

(Vestibule, Address

Site, Etc.)

The upper rim of the 7TM domain has the most diverse features
that are reflected in the variability in the types of ligands residing
there as well as the nature of its usage. Ligands binding here range
from small molecules to relatively large peptides. Small ligands are
found occupying this region as seen, e.g., for the A2aAR and
CXCR4 receptors. This region serves as an allosteric “vestibule”
as in the case of muscarinic receptors [35, 37, 43] (Fig. 1). Regions
above or below this region can combine with it to form binding
sites for ligands. Together with the region below it, it is thus
utilized as an “address” pocket in conjunction with ligands binding
their “message” portions more deeply into the 7TM such as has
been seen for structures of the opioid receptors [44–47]. Alterna-
tively, ligands bound here can be found to also interact with por-
tions of the protein in the N-terminus direction for class A (e.g.,
CB1 [38]) and, e.g., class B proteins where structural and muta-
tional evidence indicates that endogenous ligand binding straddles
the 7TM and EC domains [17].
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2.9 Binding To and

Through the External

7TM Wall

The overall barrel-like shape of the transmembrane region of the
7TM proteins, whose most commonly accepted orthosteric bind-
ing site lies inside the barrel-like structure, is consistent with a
simple model for the trajectory of ligands engaging in interactions
with these proteins. An alternate model for this trajectory has been
considered for some time, wherein a ligand approaches and enters a
7TM protein from the outer side of the barrel [48–50]. With
examples of X-ray structures showing ligands completely buried
within the 7TM and covered by EC loops now available for, e.g.,
rhodopsin [3], S1p1 [51], and PAR1 [52], an external trajectory
becomes a more plausible explanation for ligand entry. Indeed,
there is now proof of ligands actually binding partially external to,
or even completely external to the 7TM region (see GPR40 [53]
and P2Y1 [54] respectively). External interactions as modulators of
GPCR activity are supported by other types of data. Both homo-
and hetero-dimerization is known to play a role in the functioning
of various GPCRs [55–58]. Binding of cholesterol to the external
transmembrane region has been shown by X-ray structures (see,
e.g., [4, 59]) as well as electron microscopy [60] and is believed
to play a role in dimerization. Long time frame molecular dynamics
investigations are helpful in examining these potential interactions
[61] and new mass spectrometry-based tools are emerging to mea-
sure the dependence and degree of protein oligomerization due to
membrane lipid binding mediation [62]. As GPCR signaling is
dependent on changes in their helical positions and conformation
in the IC regions to prepare for effector interaction, it is not
surprising to find evidence that modulating such changes from
the external side of their transmembrane region is possible. Taken
together, the collection of structural information that is now avail-
able for 7TM proteins indicates that all regions of 7TM proteins,
inside and out, appear to provide potential sites for ligand
modulation.

2.10 EC Domains for

GPCR Classes B, C,

and F

The class B, C, and F 7TM receptor subgroups are differentiated in
part from class A 7TM receptors by an additional domain at their
N-terminus, the EC domain. X-ray structures for the 7TM domains
have been determined for examples of all three of these protein
subgroups and confirm their generally similar architecture to the
class A GPCR proteins. While peptidic ligands for the class B 7TM
proteins bind in between the 7TM and EC domains, the EC
domains of the class C and F 7TM proteins contain structurally
separated binding sites. Class C receptors contain a cysteine-rich
linker region that connects the 7TM domain to the so-called Venus
“flytrap” (VFT) domain to which the endogenous ligands bind,
such as glutamate in the case of mGluR receptors. X-ray structures
of the EC domains of class C and class F receptors with ligands
bound have been determined. For the EC domain, the structural
changes associated with the active versus inactive state of the VFT,
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as modulated by ligands, are understood. While X-ray structures of
the VFT domains of mGluRs were first reported in 2000 [63], they
have not been used extensively for structure-based design, albeit
SBDD studies including additional X-ray structures are still being
reported [64]. The belief that the transmembrane region offers an
advantageous environment for drug discovery is responsible for
this, although the rationales given, such as greater sequence varia-
tion in the 7TM domains, have been challenged [65]. There is no
full-length structure of a Class C GPCR protein available at this
time to establish the interplay between these domains. For the class
F 7TM proteins, full-length structures have now been determined
for the example of the smoothened receptor [66]. The smoothened
proteins have a cysteine-rich C terminal domain which is connected
through a linker to its 7TM domain. Structural insights into ligand-
mediated communication from the 7TM to the EC domains have
emerged and the stage is set for understanding the EC to 7TM
communication mechanism as well.

3 Computational Drug-Discovery Approaches/Capabilities

The exploitation of X-ray structures of ligand-mediated 7TM pro-
teins through computer-aided drug discovery followed rapidly and
with striking successes after these structures became available and
have been reviewed extensively. Three major factors have contrib-
uted to the precipitation and rapid growth of 7TM SBDD work.
First, experimental tools and strategies, such as the use of compan-
ion proteins, lipidic cubic phase methods, and targeted stabilizing
mutations, enabled the crystallization and X-ray structure determi-
nation of 7TM (and other classes of membrane bound) proteins.
Second, computational chemistry and modeling methods, notably
for protein structure studies, had been honed over many years with
the available protein targets. While these targets were primarily
soluble proteins, many of the computational approaches were inde-
pendent of the differences. Third, the inherent architecture and
most commonly targeted HUB ligand binding site are highly suit-
able for small molecule binding and modulation. The enclosed
nature, probably not coincidentally, is essentially ideal for occu-
pancy by a small molecule and in striking contrast to other extremes
such as surface binding sites, inter-domain sites, etc. The “drugg-
ability” of this HUB site, the broad range of endogenous ligand
modulators utilizing this HUB, the prominence of GPCR targeted
drugs, and the pervasive role of GPCR proteins can all be argued to
stem from these GPCR architectural characteristics.
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3.1 Virtual

Screening, High-

Throughput Docking

As was demonstrated soon after the first X-ray structures for GPCR
proteins were reported, high-throughput docking (HTD) cam-
paigns using X-ray structure models for compounds acting at
those targets, and in the same fashion (site, active/inactive state,
etc.) are extremely effective for GPCR proteins. From a drug
discovery perspective, there is little doubt that this is an extremely
efficient and striking approach to begin studies of a target protein.
Screening of large databases of preexisting compounds, from com-
mercial or proprietary sources, can rapidly jump start a drug dis-
covery program with identification of potent compounds and
structure activity information. In silico HTD screening of large
databases containing millions of compounds, using a number of
different software systems, is already routinely conducted and used
to rank and select as few as tens or hundreds of compounds for
in vitro testing. Hit rates above 30% and yielding compounds with
activities in the single-digit nanomolar range are common
[15]. Integration of HTD methods with ligand-based methods or
protein-based pharmacophore methods often further improves
these successes. As expected, the success of these approaches
depends on how close to this optimal paradigm one operates.
Within a subgroup of closely related targets for proteins with
common endogenous ligands (e.g., adrenergic or dopaminergic
receptors) homology models based on X-ray structures of other
members of the subgroup yield comparable results to those where
the X-ray structure of the target of interest is used. However, in
silico screening for an agonist using an antagonist bound structure
of the same protein as a template is often more challenging than for
an antagonist using a homology model based on an X-ray structure
template of another protein in an inactive state within the same
subgroup. This is because differing states of a protein have greater
deviation in their binding site structures from their templates than
common states within a subgroup where there are few amino acid
changes. As one progresses to create and deploy homology models
based on templates of X-ray structures outside a target sub-group
the reliability of the homology model decreases. In part, this is due
to the reduction in sequence identity, and consequentially reduc-
tion in structural similarity in the transmembrane helices. More
elaborate protocols such as the use of multiple templates help
improve the accuracy of the homology models. More significantly,
the extracellular loops, and in some instances sections of the
N-terminal, vary much more significantly in shape, length, fold
etc., while contributing significantly to ligand binding at the HUB.

3.2 Structure-Based

Drug Design

The strengths and weaknesses described for HTD pertain more
generally to computational drug discovery for GPCR proteins. It
has become commonplace to employ models of 7TM proteins in
drug discovery activities as evidenced by the extensive reporting of
these approaches in the medicinal chemistry literature. Unlike
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HTD studies where the sheer number of ligand structures being
investigated necessitates invoking considerable restrictions and
approximations on the methodologies employed, studies of indi-
vidual complexes allow for more sophisticated approaches to be
employed leading to more accurate results. Thus, while most HTD
studies use frozen, or nearly frozen protein structures in calcula-
tions with highly approximate models for the interaction energet-
ics, this is not the case otherwise. Considerable protein flexibility
ranging from the active site to the entire protein complex structure
is common using molecular mechanics based approaches. More
accurate quantum chemical ab initio methods are possible for
more accurate evaluations of, e.g., ligand protein interactions,
albeit this has not been as extensively reported. To explore pro-
cesses such as conformational changes associated with activation,
molecular mechanics-based molecular dynamics methods for
extended time frame simulations are being reported more regularly.
Additionally, complementing the increasing structural information
on the involvement of explicit water molecules in various regions of
GPCRs such as orthosteric sites or the sodium binding site seen in
A2aAR crystal structures [25], computational methods are now
more reliably examining the various roles of these waters. Finally,
the increased capabilities of GPCR modeling are opening up new
types of opportunities such as the use of homology modeling of
orphan receptors to identify ligands for use in de-orphanizing these
receptors [67].

4 Scope of Information: Lessons and Emerging Opportunities

The evermore rapidly emerging structural and functional informa-
tion for GPCRs, especially from X-ray structure determinations,
translates into various properties and processes of these systems of
relevance to drug action and is now becoming more amenable to
investigation and exploitation by computational approaches. The
various aspects of drug discovery dominate the general interests
here, with protein structure/function insights sought as well and
these two goals are often inseparable. It is interesting to consider
the range in scope, and potential already realized as well as
anticipated.

4.1 Allosteric Sites:

Another Look at the

Other Site

The use of X-ray structures of GPCRs for discovery and design of
ligands in the simplest approach, i.e., for the same site and same
activity as the X-ray structure, is now well established and remark-
ably effective. As noted, at the most common (for class A) 7TM
orthosteric HUB site, structural differences observed between
inactive and active state structures provide a clear explanation for
the deterioration of results when inactive structures are used (with-
out other moderations or considerations) to identify activating
compounds. It is reasonable to assume that similar differences
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would occur at other ligand binding sites, i.e., allosteric sites, such
as those described herein, but there is as yet not much data available
to test this. The HUB site serving as the orthosteric site for class A
proteins, however, serves as an allosteric site for non-class A pro-
teins. X-ray structures for the smoothened class F GPCR, with
activators or inhibitors bound reveal differences between their
binding sites [22, 23]. For the mGluRs, while X-ray structures in
the 7TM domain are only available with inhibitors bound, SAR
data finds that very small ligand changes result in the switch
between activating and inactivating ligands [21, 26, 68]. Whether
this apparent sensitivity is inherent in the role of this site as an
allosteric site or simply a consequence of the still limited informa-
tion is unclear. Relatedly, whereas by definition an allosteric site is a
site other than that where the endogenous ligand binds (the
orthosteric site), other implications for the allosteric nomenclature,
e.g., the modulation of the orthosteric binding site events, may
point to a different perspective. GPCRs are a category of proteins
whose architecture and prominent functioning can be described as
proteins whose communication with intracellular effectors is gen-
erally modulated by ligand interaction at the control-center/HUB
site. It therefore seems logical to re-consider the EC domain sites of
non-class A GPCRs as operationally allosteric sites as compared to
their more unifying (with respect to class A GPCRs) HUB. By
analogy to class A GPCRs, these 7TM sites would be directly
involved in signal transmission in the IC direction as opposed to
the usual indirect model wherein these 7TM sites modulate signal-
ing in the EC direction (at the EC domain) which must then
propagate back through the same 7TM domain—where they
began. Evidence for both perspectives exists vis. the X-ray structure
of the complete smoothened protein [66] shows evidence for
ligand binding in the 7TM domain resulting in interactions from
the 7TM with the EC domain which influence EC ligand binding
whereas evidence for the direct ligand control at the IC region of
non-class A GPCR proteins is provided by reports of a truncated
mGluR5 protein without its EC domain which can be activated by a
TM binding ligand [69]. The inherent machinery of GPCRs thus
questions whether the usual roles, experimental analyses, and
ligand design of allosteric modulators should be treated differently
for non-class A GPCRs.

4.2 Multi-Target

Tuning: Within and

Between Subgroups,

to Other Classes,

Tuning In Vs. Out,

Polypharmacology

A critical factor in the action of drugs is the profile of their activity at
varying targets. This target profile is important even when only
simple inhibition is considered at multiple targets and extends to
considerations of varying activities at different sites of different
proteins such as activators with respect to one site and inhibitors
with respect to another. Indeed, poly-pharmacology has grown as a
medicinal approach. The growing structural information that has
become available now introduces a broad selection of opportunities
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to aid in the tuning (in or out) of various targets’ activities ranging
from closely related to distally related targets. Even at the extreme
of very closely related targets for which selectivity design is particu-
larly challenging, for example target proteins with common endog-
enous ligands, powerful structural data is now available. Thus, the
available X-ray structures of four opioid receptors were used in
SBDD studies to optimize selectivity [70, 71], as well as to explore
effector bias. Similarly, the X-ray structure of one target among
such closely related GPCRs can be used to optimize activity profiles
[72]. Similar structure-based selectivity design is possible at the EC
domains of class C mGluRs [64]. The use of X-ray structures for
protein targets having a common endogenous ligand can now take
on a broader scope as illustrated by the recent reports of X-ray
structures for endogenous amine transporters such as the 5-HT
transporter [73] which can also be used for drug discovery
[74, 75]. Thus, the search for incorporating various activity profiles
at 5-HT receptors along with SERT activity [76] lends itself to
SBDD at both the GPCRs and the transporters of the
corresponding endogenous ligands. More traditional considera-
tions of drug profiles among different GPCRs is now rapidly
becoming a more fruitful area for SBDD involvement. Such pairing
of SBDD approaches is also being invoked when considering
actions on a GPCR together with unrelated proteins such as the
design of dual inhibitors of HIV Integrase and CCR5 [77]. More-
over, these types of pairing of structural information of GPCRs
with one or more other proteins are an emerging area in SBDD
studies of ligands with disparate activities (e.g., activators versus
inhibitors) at their respective targets.

4.3 Site and Roles:

Alternative Pressure

Points

Considering the breath of non-HUB sites for which there is now
evidence for ligand binding and protein modulation, it appears that
almost any site is a possible site for effective ligand binding and
protein action modulation. Driven by ligand binding at these sites,
or pressure points, GPCRs seem to operate through a model some-
what akin to a collection of 7 chop sticks. Relatively rigid trans-
membrane helices adjust their positions, with additional localized
(e.g., ionic lock) structural changes in specific residue conforma-
tions and interactions, which mediate signaling. From a drug dis-
covery perspective, the primary criteria for selecting a site of ligand
intervention may be less a question of whether a site is technically
orthosteric or allosteric but which site(s) provides the optimal
pressure point. Understanding the interplay among these sites will
be helpful here as well and is an area where computational investi-
gations can play an important role [78]. The HUB site seems
intuitively the most common, opening gambit—probably inherent
in the GPCR architecture. While distal from the effector, the HUB
seems to benefit from a leveraging mechanism (chop stick model).
The inner most IC region, with its proximity to the incoming
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effector, may have advantages for inhibition of GPCR-effector
interaction but may be difficult, albeit not inconceivable, to use as
enhancers of GPCR-effector interactions by virtue of the potential
for such a ligand to “get in its own way.” As structural information
with effectors continues to become more available, direct ligand
interaction in this region may offer particular advantages for biased
inhibition favoring specific effectors. The emerging structural infor-
mation exemplified by the β2AR /Gs and rhodopsin/β-arrestin
structures may prove very effective here. Sites on the external
surface of the transmembrane would seem at first to be more
challenging as sites for small molecule binding because they are
less enclosed, but could be advantageous in, e.g., blocking dimer-
ization. At the other end of GPCR’s TM region, proteins with
significant interactions from above (EC direction) the HUB site,
such as EC loops or N-terminus, may play a valuable role in the
kinetics of ligand binding and have even been examined through
X-ray structure determinations [79] to aid in rationally introducing
desirable kinetic features into drug design. If we similarly consider
the many non-HUB sites already determined (even for class A
GPCRs) from the body of structural information available, they
provide an increasing number of examples of man-made operation-
ally allosteric sites. For the most part, ligands acting at these
man-made sites were not a result of design. Rather, there were
obtained through means such as in vitro screening and only subse-
quently characterized for their site of action. This is in contrast to
the EC binding sites of non-class A GPCRs which offer examples of
natural operationally allosteric sites as defined herein. Using the
mounting body of structural information of the many potential
sites/pressure points, an important future direction for structure-
based drug discovery may be the targeting of these sites a priori,
based on information from other targets or purely structural in
nature, rather than after their discovery rooted in experimentally
identified compounds/structures. Moreover, as the structural infor-
mation for GPCRs grows, we are moving toward a situation where we
exploit this emerging structural knowledge to select the specific target
sites of a given GPCR most likely to be effective for a given function/
role.

4.4 Multiple Sites

Within and Between

Proteins, Bivalent,

Bitopic, Linked

An underlying theme in the search for a number of alternate modes
of action of ligands is the incorporation of components of ligands
acting at two sites into a single ligand. The various sites available for
ligand modulation to be paired may be relegated to structure-based
design in many cases. Pairing can occur within or between GPCRs.
More traditional pairing of adjoining sites such as for opioid ligands
having an “address” and “message” component now has available
X-ray structures revealing the corresponding sites on the proteins
[44–47]. As structural information becomes available it would be
promising to expand the use of this structural information in the
design of bitopic ligands linking together allosteric and orthosteric
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moieties such as was reported for M1 partial agonists [80]. Compu-
tational approaches to identifying possible sites where endogenous
ligands may bind weakly and/or transiently as they migrate to the
orthosteric sites provide a source for actually predicting new sites
that can be paired with orthosteric sites in the targeting of bitopic
ligands [81]. The dimerization of GPCRs offers the potential for
ligands simultaneously binding to two GPCR monomers via link-
ing of their binding moieties. Illustratively, structure-based models
have accordingly been used to design bivalent ligands linking two
oxytocin mimetics to bind to oxytocin receptor dimers with
increased potency compared to the individual ligand [82]. How-
ever, to deploy such strategies most efficiently will require consid-
erably more structural information regarding the dimers involved.
Finally, it has even been suggested that bivalent ligands can be used
to identify non-constitutive heterodimeric GPCR formation with
novel physiological functions [83].

5 Concluding Remarks

The central physiological and pharmaceutical roles of GPCRs have
generated an extensive history of investigations and understanding
about these proteins and their actions. The start of detailed
X-ray structure determinations of these proteins is now providing
us with the ability to see and use GPCR structural information at an
atomic level. Many hypotheses are now being validated and in some
cases modified. The structural detail is effectively being deployed
through computational methods to yield highly efficient drug dis-
covery results for traditional strategies of protein targeting. More
interestingly, this expanding information base affords opportunities
to pursue novel design strategies and ways of thinking such as the
use ofman-made binding sites and operationally allosteric sites. The
increasing supply of these structural studies promises to further
advance our understanding and drug discovery capabilities.
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Chapter 2

Characterization of Ligand Binding to GPCRs Through
Computational Methods

Silvana Vasile, Mauricio Esguerra, Willem Jespers, Ana Oliveira,
Jessica Sallander, Johan Åqvist, and Hugo Gutiérrez-de-Terán

Abstract

The recent increase in available G protein-coupled receptor structures now contributes decisively to the
structure-based ligand design. In this context, computational approaches in combination with medicinal
chemistry and pharmacology are extremely helpful. Here, we provide an update on our structure-based
computational protocols, used to answer key questions related to GPCR-ligand binding. All combined,
these techniques can shed light on ligand binding modes, determine the molecular basis of conformational
selection, for agonists and antagonists, as well as of subtype selectivity. To illustrate each of these questions,
we will consider examples from existing projects on three families of class A (rhodopsin-like) GPCRs: one
small-molecule (nucleotide-like) family, i.e., the adenosine receptors, and two peptide-binding receptors:
neuropeptide-Y and angiotensin II receptors. The successful application of the same computational proto-
cols to investigate this diverse group of receptor families gives an idea of the general applicability of our
methodology in the characterization of GPCR-ligand binding.

Key words Homology modeling, Molecular dynamics, Free energy perturbation, Structure-based
drug design

1 Introduction

The outstanding interest from the biopharmaceutical industry in G
protein-coupled receptors (GPCRs) is usually illustrated with data
that have not changed for decades: approximately one third of the
current FDA-approved drugs target a GPCR to some extent,
including many blockbusters in the pharmaceutical industry
[1]. The oldest drugs in this group have been on the market even
before the first receptor was cloned, as a result of a more traditional
phenotypic screening. Since the late 1980s, the functional charac-
terization of GPCRs through advances in molecular biology and
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pharmacology has guided drug discovery in the field. With the new
century, structural characterization of the targeted receptors started
to be an accessible reality, allowing for the alluring perspective of
GPCR structure-based drug design [2, 3]. The signature of GPCR
ligand design and functional characterization has been a blend of
biochemical studies, pharmacology, medicinal chemistry efforts,
and computational modeling. In this framework, computer-aided
ligand design for GPCRs has evolved from an era dominated by
ligand-based techniques to the use of mature structure-based
methods, such as virtual screening or free energy calculations
[4, 5].

1.1 Structural

Biology of GPCRs:

Implications in Ligand

Design

The superfamily of GPCRs is comprised of almost 900 members in
humans and is clustered into five classes [6]. The most populated
class A (rhodopsin-like) is further subdivided into four branches
(α�δ), containing more than 50 families (defined by the nature of
the endogenous ligand), approximately 300 olfactory receptors
(sensitive to odorant molecules), and a number of orphans (for
which no endogenous ligand has yet been identified). Nowadays,
20 of these class-A families have at least one structure solved, where
a few privileged families stand out with several members and/or
several conformations of the same receptor crystallized (i.e.,
opioids, muscarinic, adenosine). Lately, the structural biology
map of GPCRs has been enriched with representatives of
classes B, C, and F (see http://gpcrdb.org/structure/statistics).
As opposed to the sequence diversity within the GPCR superfamily,
the conserved topology of seven transmembrane helices (7TM)
connected by three extracellular (EL) and three intracellular loops
(IL) is an important aid in the 3Dmodeling of GPCRs. When none
or very few structures were available, a popular strategy to build 3D
models of GPCRs was based on ab initio modeling of the 7TM
helices and subsequent packing onto the conserved 7TM topology.
Though this method is still valid, the growing number of experi-
mental GPCR structures now allows for the generation of high-
quality homology-based 3D models [7–9]. As a result, both the
experimentally determined structures and high-quality computer
models are nowadays used in structure-based programs for ligand
design [5].

Long before the crystal structure determination of GPCRs
started to blossom, site-directed mutagenesis (SDM) was widely
used to explore the binding sites of GPCRs, alone or in combina-
tion with computational modeling [10]. Here, one evaluates the
experimental shift in binding affinity for one (or multiple) com-
pounds upon a given mutation, which allows an indirect mapping
of the residues that are important for binding of the molecule(s) of
interest. Far from being an obsolete approach, SDM has proved
itself very useful to map the precise protein-ligand interactions and
is also applicable in cases where a crystal structure is available.
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A paradigmatic example in real drug design projects is the system-
atic evaluation of an alanine scan of eight residue positions in the
A2A adenosine receptor on an array of ligands. This pipeline was
designed by the company Heptares and denoted as biophysical
mapping (BPM) [11]. Altogether, the accumulated data on struc-
tural and molecular biology on some receptors is allowing the
structure-based discovery of novel compounds in the pharmaceuti-
cal industry [3].

1.2 Case Studies We recently documented a combination of structure-based and
ligand-based design techniques, as a strategy to assess the growth
of a chemical library of adenosine receptors antagonists [12]. In this
chapter, we provide an update on the related structure-based
computational protocols, used in our lab to answer key questions
related to GPCR-ligand binding: elucidation of ligand binding
mode(s), determining subtype selectivity, molecular determinants
of conformational selection for agonists and antagonists, and ligand
optimization.

To illustrate each of these questions, we will consider examples
from existing projects on three families of class-A (rhodopsin-like)
GPCRs: one small-molecule (nucleotide-like) family, i.e., adeno-
sine receptors (ARs), and two families of peptide binding receptors:
neuropeptide-Y (NPY) and angiotensin II (AT) receptors (Fig. 1).
The structural knowledge of these families is also diverse; with one
representative subtype being crystallized for adenosine and angio-
tensin receptors1 while no crystal structure is available for any NPY
receptor. The application of the same computational protocols to
this wide range of receptor families should give an idea of its general
applicability in characterization of GPCR-ligand binding. We will
here briefly describe each of the receptor families considered in this
chapter.

1.3 Adenosine

Receptors

Adenosine is the signaling molecule that activates four subtypes of
class A GPCRs: A1, A2A, A2B and A3 adenosine receptors (ARs)
[13]. These are highly demanded therapeutic targets, ubiquitously
expressed in the human body and associated with several diseases
such as several inflammatory processes (A2A and A3); respiratory
pathological events such as allergic asthma (A2B and A3); vascular
diseases (A2A) as well as arrhythmias and stroke (A1). Because of the
widespread of the adenosine signaling system, and the high homol-
ogy among the four ARs, the development of selective ligands is
challenging. Traditionally, ligand design toward ARs has utilized
ligand-based techniques, such as QSAR, as well as on modification
of complex heterocycles with poor pharmacokinetic properties.

1During the processing of this manuscript one structure for the AT2 receptor (5UHN) and 2 structures for the A1

adenosine receptor (PDB codes 5N2S and 5UEN) were released.
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The field has dramatically changed with the crystallization of the
A2AAR, which stands as one of the best-characterized GPCRs at the
structural level. The 12 crystal structures in the PDB include the
inactive form co-crystallized with antagonists of three scaffolds:
triazolopyrimidines (ZM241385), xantines (Caffeine, XAC), and
triazines (T4G and T4E), as well as active-like conformations
revealed in complex with adenosine and related agonists NECA
and UK432097, and recently the fully active receptor in complex
with a G-protein mimic [3].

The lack of X-ray structures of A1, A2B, and A3 ARs and the
high sequence similarity within the four subtypes prompt for the
use of homology modeling techniques, as a basis to compute the
determinants of high affinity and selectivity within the family mem-
bers, as we described recently [12].

Fig. 1 Phylogenetic tree of GPCRs, indicating the location of the receptors considered in this chapter. Red dots
denote families with at least one crystal structure. The insets show the 3D structure of the binding site of each
receptor considered in this chapter, as obtained with the methodology here described
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1.4 Neuropeptide Y

Receptors

The next case study belongs to the neuropeptide-Y (NPY) system
of signaling peptides and receptors mediating important physiolog-
ical and behavioral processes, such as appetite regulation, anxiety,
pain or learning, and memory control [14]. As a consequence,
there is increasing interest from the pharmaceutical sector in the
regulation of this system, in particular in the search of anti-obesity
drugs [15]. Neuropeptide Y (NPY), peptide YY (PYY), and pancre-
atic polypeptide (PP) are each 36 residues peptides, arranged as a
proline-rich N-terminus followed by a conserved α-helical central
fold and an unwound amidated C-terminal pentapeptide. The three
peptides are the natural ligands for the four Y receptors expressed in
humans (Y1, Y2, Y4 and Y5; more subtypes are found in other
species) [14]. While the modification of these peptides can lead to
more selective agonists for any of the Y receptors, most antagonists
are peptidomimetics of the C-terminal tail of the natural agonists.

During the past years, we have used and developed the compu-
tational protocols described here in the search for antagonists of Y1

and agonists for the Y2 receptors. With no crystal structure available
for any of the Y receptors (Fig. 1), homology models of the two
receptors were built, and used to define the antagonist and agonist
binding modes respectively. The hY1 receptor in complex with
antagonist BIBP3226 was further used to develop our free energy
perturbation (FEP) protocol, which we apply to characterize the
effect of protein mutations and ligand SAR for different GPCRs
[16]. As for the hY2 receptor, the homology model of the active-
like conformation was used to define the binding mode of the
natural agonists NPY and PYY [17], in an example of receptor-
peptide docking illustrated below.

1.5 Angiotensin

Receptors

The renin-angiotensin system (RAS) produces hormonal peptides,
which signal through the angiotensin receptors. The system is
critical for cardiovascular control, impacting normal physiology
and disease pathogenesis [18]. Although several biologically active
peptides are generated by this system, its major actions are
mediated by the peptide hormone angiotensin II (sequence
DRVYIHPF) acting through its type 1 (AT1) and type 2 (AT2)
receptors. Recent elucidation of crystal structures of human AT1

receptor bound with the antagonists ZD7155 [19] andOlmesartan
[20] facilitates discussion of the AT1 receptor, though for the AT2

receptor we still have to rely on homology models [21]. Further-
more, when studying interactions between agonists or antagonists
these receptors need to be modeled in both their active-like and
inactive conformations by means of homology-based modeling. In
a collaborative study addressing the structural determinants of
subtype and functional selectivity of AT receptors, we generated
homology-based models of the two subtypes in the two relevant
conformations [22]. These models were used to characterize the
binding mode of the natural peptidic agonist ATII, and of four
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synthetic ligands that display different receptor subtype and con-
formational selectivities. The details of the multiple-template
homology modeling and the characterization of selectivity will be
discussed in further sections of this chapter.

2 Theory/Materials

2.1 Homology

Modeling and MD

Refinement with

GPCR-ModSim

Despite the steady increase in the number of GPCR crystal struc-
tures, the reality is that the majority of receptors have yet unknown
structure. In these cases, homology (or comparative) modeling
remains one of the most important techniques for obtaining a
reasonable 3D structural model to use in rational ligand design
[7–9]. As a result, homology modeling is implemented in a number
of specific web-servers, among which GPCR-ModSim emerges as a
complete tool for the modeling and simulation of GPCRs [23, 24]
(see Note 1 for alternative solutions).

We will describe here the use of the last version of
GPCR-ModSim [24], freely accessible at the web address
http://gpcr-modsim.org (see Note 2 about optional academic
accounts). The only input required is a FASTA sequence or the
UNIPROT code of the GPCR to be modeled. Thereafter, the
modeling process consists of consecutive steps, which are illu-
strated below for the case of the AT2 angiotensin receptor [22]
(see Note 3 for additional examples).

1. Identification of the best template and generation of a template
(s)/target pairwise sequence alignment. This is done by
performing a multiple sequence alignment (MSA) of the
query sequence against a profile of available templates of
known 3D structure. While in the case of a random protein
this step involves a BLAST search against a large database of
non-redundant protein sequences or available PDB structures,
in GPCR-ModSim we restrict this search to a carefully curated
structure-based profile-alignment of crystallized receptors.
These are classified into three categories depending on receptor
conformation: inactive (22 structures), active-like (8 struc-
tures), and fully active conformations (3 structures). The
default criterion is to select the template with highest sequence
identity in the transmembrane region (seeNote 4 for additional
considerations). However, in cases of moderate sequence iden-
tity the overall structural similarity between the obtained
model and the single template used can be artificially high, a
problem that can be counterbalanced with the choice of addi-
tional templates [25, 26]. To use this option, a pairwise
sequence identity (SI) is provided for each of the topological
regions, aiding in the selection of the best template(s) for each
region. Since the whole modeling process is based on the
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accuracy of the assignment of topologically equivalent posi-
tions, the user can manually edit the MSA and produce a
refined pairwise-sequence alignment. Here, one should
account for the relatively infrequent distortions within the
TM segments (which should be translated in terms of align-
ment gaps) and the high variability within loop regions.

2. Model building: the generation of the 3D structure of the query
sequence is done by satisfying the set of spatial restraints,
following the routines in Modeller [27], and dictated by the
pairwise alignment with the target sequence. The models gen-
erated are ranked on the basis of a scoring function, and further
evaluated for their stereochemical quality and other subjective
criteria such as agreement with available mutagenesis data.

3. Membrane insertion and Molecular Dynamics: The resulting
3D–model can be further refined by molecular dynamics
(MD) simulations, a process that can also be applied once a
receptor-ligand complex has been generated (see Subheading
3.2.1). GPCR-ModSim uses a fully automated pipeline for
membrane insertion and equilibration protocol called PyMem-
Dyn [28]. The receptor (or the receptor-ligand complex) is
automatically embedded into a pre-equilibrated lipid bilayer of
POPC lipids in a way that its principal axis will be aligned with
the vertical axis of the membrane. After the insertion in the
membrane the whole system is placed in a hexagonal-prism
shaped box, which is then solvated with water. If necessary
the whole system is neutralized with counterions. Then a
short steepest descent energy minimization is performed,
before MD equilibration under periodic boundary conditions
(PBC). The MD equilibration protocol consists of a recipe
where position restraints on all heavy atoms are gradually
released from a force constant of 1000 to 200 kJ/mol· nm2

during 2.5 ns. Then another 2.5 ns simulation follows where
NMR-style distance restraints are applied between pairs of
residues, which have been identified to be interacting in a
conserved way, forming an interhelical contact network as
derived from the analysis of a non-redundant set of X-ray
structures [28].

2.2 Ligand Docking Once the 3D structure of the GPCR of interest is available, either
from crystallography or from molecular modeling, the next step in
the ligand design process is to define the binding mode of the
ligand(s) of interest. The goal here is to describe the protein–ligand
interactions at the physicochemical level and use this information to
validate the structural model to guide further ligand optimization
and establishment of the SAR. Depending on the chemical nature
of the ligand (e.g., a small molecule or peptide), the number of
ligands, and the quality of the 3D structural model of the receptor,
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the docking process can to a certain extent be automated. A num-
ber of docking algorithms are available today, which aim to identify
the best binding mode for a given ligand. This is based on an
exhaustive search of the rotational, translational, and internal
degrees of freedom of the ligand around the binding site explored,
in combination with the evaluation of the binding affinity of the
candidate binding modes identified using a mathematical scoring
function. The following software is used for GPCR-ligand docking
in our lab:

l For small-molecule ligand projects, we mainly used the GOLD
software [29] available (under license) from CCDC (see Note 5
for alternative docking tools).

l The Protein Preparation Wizard workflow of the Schrödinger
suite (Schrödinger LCC, New York, under license) is used to
prepare the protein prior to the docking experiments [30].

l Peptide–protein docking can be considered a protein-protein
problem. Thus, we selected the program HADDOCK for this
purpose in one of our strategies. This program is available from
the author’s webpage (http://www.bonvinlab.org/software/
haddock2.2/), where it can be freely downloaded and installed.
However, the routines followed in our projects can also be
reproduced using the latest web server edition at http://milou.
science.uu.nl/services/HADDOCK2.2/. This docking algo-
rithm is driven by constraints, originating from a list of “active”
residues elaborated by the user for each of the two proteins. The
program then generates a second list of residues defining the
docking-surface contact of each protein (“passive” residues),
and a list of “ambiguous distance restraints” is defined between
the “active” residues of one protein and the “passive” residues
from the other. During the docking search, an energy penalty is
assigned for any of the ambiguous distance restraints not
satisfied.

l Docking analysis, as well as manual docking adjustments that are
part of our peptide-docking strategy, is performed with the
molecular packages from the Schrödinger suite (through the
Maestro graphical interface) and PyMOL (Version 1.4.1, free
academic license) [30].

We will illustrate two different docking approaches in the next
section with examples from docking of a series of small molecules in
adenosine receptors and incremental peptide docking for the neu-
ropeptide Y receptors. The files needed to reproduce some steps are
available at the web address http://gpcr-modsim.org/tutorials.

2.3 Computation of

Binding Free Energies

While docking provides a useful tool for the generation of possible
binding poses, scoring functions generally fail to accurately predict
the free energy of ligand binding. Therefore, rescoring with more
elaborate methods for the estimation of free energy of binding is
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advised [31]. The most theoretically rigorous method is free energy
perturbation (FEP), sometimes referred to as “computational
alchemy” [32]. Here, one can estimate relative binding affinities
of pairs of compounds or compare binding affinities between the
wild-type (wt) and single-mutant versions of the same receptor. A
historical limitation of FEP was that the compared complexes could
not be too dissimilar in order to achieve accurate and converged
results. An increase in computational power allowed overcoming
these limitations, and we can affirm that nowadays FEP methodol-
ogies can be applied in the assessment of GPCR-ligand binding
affinities in a systematic fashion. This is done in our lab from a
double perspective: the evaluation of SAR for ligand series and,
thanks to an appropriate redesign of the thermodynamic cycles
involved, the estimation of SDM effects on ligand binding affinities.
We will illustrate such applications from our extensive applications
on the adenosine A2A receptor [33, 34].

The FEP pipeline described here is implemented in our molec-
ular dynamics package Q, which is available from the web address
http://www.icm.uu.se/cbbi/aqvist-lab/q/. The current distribu-
tion of the program,Open source under theGPLVersion 2 License,
includes the necessary files to perform in silico SDM, based on the
protocol recently described in detail in [16, 34]. The protocol
applies a smooth and progressive annihilation of the atoms in the
wt aminoacid sidechain to convert it into alanine (Ala-mutant). The
transformation is by definition run in two parallel molecular
dynamics (MD) simulations of the binding site, i.e., in presence
(holo) and absence (apo) of the ligand. Then the binding free
energy difference between the wt and Ala-mutant receptors can
be calculated solving a standard thermodynamic cycle (left cycle in
Fig. 2). The sidechain atoms are grouped following the definition
of charge groups in the OPLS-AA forcefield (used in our MD
simulations), and each group will undergo three consecutive trans-
formations (a) annihilation of partial charges, (b) transformation of
regular van der Waals (Lennard-Jones) potential to a soft-core
potential to prevent singularities, and (c) annihilation of the soft-
core potential. A given mutation is thus divided into a series of
smaller subperturbations, each of which is in turn divided into
50 FEP windows (commonly known as λ-steps). Each λ-step is
sampled with several short MD simulations. Using this scheme
one can mutate basically any residue to alanine (proline is more
difficult due to its cyclic backbone bonding). Moreover, by joining
two thermodynamic cycles describing the reduction of a sidechain,
for wt and mutant, to a common fragment (Ala-mutant), we can
simulate the effect of any non-alanine mutation (see the extended
cycle in Fig. 2). Since the number of amino acid residues is limited,
the library provided in the Q distribution, containing all protocols
for wt ! Ala-mutant, is sufficient to sample the chemical space of
any peptide or protein. The smooth annihilation ensures high
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precision, fidelity, and a minimum hysteresis, which is the measure
of convergent results.

The change in free energy between the final (f) and initial (i)
states is calculated for each subperturbation by applying the FEP
formula

ΔG ¼ Gf � Gi ¼ �RT
Xn�1

m¼1

ln exp � Umþ1 �Umð Þ=RT½ �h ii

where

Um ¼ 1� λmð ÞUi þ λmU f

Thus, concatenation of the energy change obtained upon each
subperturbation gives the total free energy change for the given leg
in the thermodynamic cycle (i.e., ΔGholoWT, ΔGapoWT, etc.). This
analysis is performed for both the forward and the reverse (pro-
jected) pathways of the transformation, and the difference in the
two values is used to assess the convergence of the simulations, by
means of the hysteresis

Hysteresis ¼ ΔG fwdh i � ΔGrevh ij j
where hΔGi are the average values of Gibbs free energies over
several replicate MD trajectories (i.e., same conditions but different

Fig. 2 Thermodynamic cycle used to perform in silico SDM. For a mutation of glutamine to leucine, one needs
to perform four independent MD simulations (horizontal arrows in the figure) to transform each sidechain into
alanine, both in the presence (top panels) and in the absence (bottom panels) of the ligand. The figure
illustrates the quantification of the effect of Gln (wt) to Leu (mut) in the binding affinity of the PYY peptide into
the Y2 receptor (vertical arrows)
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initial velocities) in the forward (fwd) and reverse (rev) directions.
The total hysteresis is the sum of the hysteresis values for each
subperturbation of the transformation taken into account.

We calculate the errors for the relative binding free energies as
the standard error of the mean (s.e.m.).

The same stepwise annihilation of functional groups to a core
scaffold is applied to study the SAR of ligands. However, as
opposed to the residue mutations, the ligand chemical space is
practically infinite, and the generation of a unified library or pertur-
bation of functional groups is not possible. Here, one has to design
the perturbation route to connect initial and ending states in each
specific case.

3 Methods

3.1 Homology

Modeling of the AT2
Receptor

This example, extracted from our ligand design project for the AT2

receptor, illustrates the capacity of both single template and
multiple-template homology modeling. The full process has been
adapted to be followed using the last version of GPCR-ModSim,
and consists of the following steps:

l The native sequence for this receptor (P50052) can be down-
loaded from the Uniprot portal and manually edited in order to
remove the long N-terminus (1–32) and C-terminus (336–360)
fragments, because of the lack of templates for these regions
among the crystallized GPCRs.

l The edited sequence is then uploaded to GPCR-ModSim. Select
“Model a GPCR,” and paste the edited sequence into the win-
dow. Leave the “inactive” templates as we will model the inactive
conformation of the receptor in this example and press “Sub-
mit.” The next window shows a range of options to select
templates. We will illustrate both single and multiple template
options in parallel modeling stages.

l Option 1: Single-template modeling. The server will offer as the
best template the AT1 receptor (PDB code 4YAY), which has a
sequence overall/TM identity of 31/42% respectively. Click on
“Model,” select “10” number of models and click on “Submit.”
Once the process is finished, we will select the model with high-
est DopeHR score.

l Option 2: multiple-template modeling. In the “Model” window,
one can select additional templates for different topological
regions. The choice of templates is indicated in Table 1, and is
based on dual criteria: the matrix of partial similarities provided
by GPCR-ModSim, plus the consideration of phylogenetic rela-
tionships. The overall idea is to preserve the sequences with
higher homologies for each topological region of the receptor.
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Once the additional templates have been indicated, proceed to
model the receptor as in the previous option.

l MD refinement: the homology model created with either option
can then be submitted to our molecular dynamics
(MD) equilibration protocol, by clicking on the corresponding
frame of the selected model and select “Run MD.” After 24 h,
the output from MD simulations comes in a downloadable
bundled compressed file (MD_output.tgz), including a PyMol
script (load_gpcr.pml) to load the trajectory in PyMol, and two
folders with detailed outputs (GROMACS format) and reports
as plots in xmgrace formatted xvg files. Finally, a README file is
included which explains the steps to isolate, minimize, and
export a selected frame from the MD simulation.

The model built using “Option 2: multiple templates” is an
adaptation to that recently reported by us, and will be used in the
next sections to explain the selectivity of AT2-specific ligands as
compared to the crystallized AT1 receptor [22] (see Note 6 about
active-like homology models).

3.2 Ligand Docking

and Initial Screening

We illustrate here our docking protocols for small molecules as well
as peptide docking to GPCRs. Small-molecule docking protocols
are used to elucidate common binding mode of series of ligands in
the adenosine receptors, and to identify the binding mode of AT2

receptor agonists and antagonists. The peptide-docking protocols,
on the other hand, allow us to identify the binding mode of the
peptidic natural agonists of the AT receptors and NPY receptors.

3.2.1 Protein Preparation Regardless of whether we are exploring the binding of a small
molecule, a peptide, or a protein, the first step is to prepare the
conformation of the receptor considered. As we have discussed, this
might have been generated by homology modeling (see the AT2

Table 1
Templates selected, indicating the topological regions where each
template is considered, for the multiple template homology modeling of
the AT2 inactive receptor

PDB code Name Regions

4YAY hAGTR1 TM1-H8

4MBS hCCR5 TM1-H8

4DJH hOPRK IL1

4DKL mOPRM1 TM3

2Z73 sRHO TM5

3VW7 hPAR1 TM6
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receptor modeled as illustrated above, or the neuropeptide Y recep-
tors) if there is no crystal structure available. But even if this is the
case, like for the A2A adenosine receptor, we need to prepare the
receptor structure for docking. In this example, we will
use the inactive conformation of the A2AAR with PDB code 4EIY
(see Note 7).

The initial protein structurewill be in thePDB format. Import this
file into Maestro, and prepare it with the Protein Preparation Wizard
workflow using default settings. At this stage, one has to pay attention
to the protonation state of titratable residues and histidines, as well as
the configuration of polar sidechains, and the crystallographic struc-
tural waters to retain. For the 4EIY structure, His6.52250 and
His7.43278 should be modeled as neutral and protonated at Nδ1,
based onour earlyworks on this receptor [35]. The resulting structure
is then saved in MOL2 format, and is ready to use in any of the
following docking protocols (see file A2AAR_dock.mol2).

3.2.2 Small-Molecule

Docking

l The ligands are drawn in the Maestro suite in 2D format, or
alternatively imported into this program from a database (i.e.,
SDFile). Thereafter, a 3D structure is obtained with the LigPrep
utility in the Schrödinger package considering the following
options: the ionizable groups are protonated at physiological pH
with the Epik extension, and all stereoisomers and tautomers are
saved separately to be considered for parallel docking runs. A data-
base of ligands is saved in SDF format (see file ligands_A2A.sdf).

l We check if there is evidence for considering water molecules as
part of the binding site. If so, two parallel docking calculations
are computed: one without any water molecule, and a second
run where we include selected water molecules. The waters
should have been extracted in the protein-preparation stage,
saved as a separate PDB file, and considered for docking with
the corresponding option in GOLD “toogle” option from
GOLD Suite 5.2. With this flag, only the water molecules that
improve the binding score are retained and considered for the
binding (no water molecules are considered in this example).

l A typical docking run with GOLD in our lab considers the
following parameters: each ligand is docked 20 times with
default (high accuracy) genetic algorithm search parameters,
using the scoring function Chemscore. The ligand is fully flexi-
ble, including the consideration of amide bond flipping and
rotation of protein hydroxyl groups. We typically consider a
sphere of 15 Å radius defining the binding pocket of the recep-
tor, which in the AR projects is centered on the sidechain (CD1)
of Ile7.39. As a second example, in the AT projects a docking
sphere of the same size is centered on an equidistant point
between residues K5.42, R4.64, and Y7.43.

l The selection of the docking pose is done by a combination of
three criteria. (a) The binding mode proposed for a congeneric
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series of ligands should be conserved, (b) good internal Chem-
score ranking should be achieved (e.g., being within the top 25%
poses) and (c) the population of the selected solution (according
to a RMSD clustering criteria of 1 Å) should be as high as
possible (see Note 8 for additional considerations).

l MD equilibration of the complex. Optionally, the selected
docked complex can be refined with the MD equilibration pro-
tocol in GPCR-ModSim. The receptor and ligand coordinates
can be uploaded to the web server under the menu “Model a
GPCR”! “Upload your GPCR pdb file” (seeNote 9 about the
files needed).

The example that illustrates this protocol is the docking of
7-(Prolinol-N-yl)-2-phenylamino-thiazolo[5,4-d]pyrimidines to
the A2AAR, extracted from reference [36]. The results, which can
be reproduced with the files provided, are summarized in Fig. 3.
This conserved binding mode was found among the top three
ranking poses in more than 78% of the compound series. In this
pose, the ligand is anchored by a hydrogen bond interaction
between the conserved Asn6.55 and N4 of the ligand scaffold.
Even if the docking is performed in the inactive structure of the
receptor, it becomes evident by superposition with the agonist-like
structure (PDB code 2YDO, in complex with adenosine) that the
compounds bearing a 2-hydroxymethyl pyrolidine at R2 can mimic
the interactions of the ribose in the active-like structure.
Re-docking onto the active-like structure converged into the
same binding pose, which reinforced the hypothesis of the hydroxyl
mimicking. A hypothesis that was experimentally tested when the
compounds were confirmed in vitro as partial agonists.

Fig. 3 Binding mode of the A2AAR partial agonist used in this example [36] (magenta) in the crystal structure of
the receptor (rainbow color, TM1-blue ! TM7-red), superimposed on the crystallographic conformation of
adenosine bound to the A2AAR (gray)
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3.2.3 Peptide Docking The protocols for peptide dockingwill be illustratedwith the docking
of the NPY peptide into the homology model built for the hY2
receptor, as described in reference [17]. Two parallel strategies are
considered:

Automated Docking with

HADDOCK

This is a two-step strategy: first, the C-terminal dipeptide [CH3C
(O)-R35-Y36-NH2] is docked into the TM crevice of the homol-
ogy model, and the selected docking pose is used in a second stage
to define distance restraints that guide the automated protein–pro-
tein docking.

l The 2D structure of the dipeptide is drawn with the help of the
Maestro suite and the 3D version is obtained with LigPrep
(Schrödinger LCC, New York, NY).

l Docking is performed with GOLD, using the same parameters
as for small-molecule docking except for the following: sphere of
25 Å radius centered in the middle point between residues
Thr2.61 and Gln6.55; 50 docking runs; clustering according
to a 5 Å RMSD.

l Building of the initial structure of the NPY peptide: this is done
with default homology modeling settings in Modeller, using as a
template the structure of the aPP peptide (PDB code 2BF9, 53%
seq ID), and selecting the best model according to the DOPE-
HR scoring function.

l Docking with HADDOCK: based on mutagenesis data and the
contacts estimated from the docking of the dipeptide with
GOLD, residues Y36, R35, and R33 from the peptide and
residues Tyr2.64, Tyr3.30, Gln3.32, Tyr5.43, Asp6.59, and Leu6.51

from the receptor are selected as active residues to define the
“ambiguous distance restraints” guiding the docking. The best
200 structures are subjected to a rigid-body energy minimiza-
tion (2000 runs) in explicit solvent, selecting DMSO to better
represent the membrane environment of GPCRs.

Automated Docking of the

C-Terminus and Manual

Elongation

This is also a two-step strategy, where the automated docking is
performed on a larger fragment (five residues) of the unwound
C-terminal tail of the peptide, and the adjustment of the full
α-helical structure of the NPY is done at a second stage by manual
docking followed by geometry optimization and MD.

l The structure of the pentapeptide [CH3C(O)-32TRQRY36-
NH2] is obtained as described previously (Subheading “Auto-
mated Docking with HADDOCK”).

l The Induced Fit Docking in Schrödinger Suite 2011 (Schrödin-
ger LCC, New York, NY) is used to dock the pentapeptide with
default settings. The grid of 30x30x30 points is centered in the
same point as described in the “Haddock” protocol.
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l MDequilibration of the resulting top-scored pose, following the
MD protocol in GPCR-ModSim as we also indicated in the
“small molecule docking” section.

l The fragment of the NPY peptide with a defined secondary
structure (residues 1–31) is then attached to the equilibrated
pose of the 32TRQRY36-NH2 pentapeptide using Maestro. The
Y2-NPY complex follows 1000 steps of energy minimization
with Macromodel, with positional constraints to preserve the
secondary structure of peptide and the protein (see Note 10).

3.3 Analyzing

Subtype Selectivity

As stated in the introduction, the overall protein fold around the
TM binding site is well conserved among GPCRs, though the
meta-analysis of crystal structures reveals some differences in helical
bending and orientation [37]. Earlier analyses revealed that the
phylogenetic relationship within the GPCR superfamily could be
reproduced by multiple sequence alignment of the pseudosequence
comprising the residues in the binding crevice [38]. Such a pseu-
dosequence alignment is the starting point for our exploration of
selectivity issues. Here, one can map the ligand affinity data on
receptor subtypes and receptor mutagenesis studies, with structural
and sequence differences. A first inspection at this level might give
some hints for the topologically equivalent positions that are
responsible for selectivity, which can be further examined by the
in silico mutagenesis protocol described in the next section.

In the angiotensin project, we modeled the two AT receptors in
both the active-like and inactive conformations (see Subheading 3.1
andNote6). Twopairs of agonists and antagonists, derived from the
same chemical scaffold, were docked as explained in Subheading
3.2.1. A conserved binding mode was defined, which is shown in
Fig. 4. Themain anchoring points are salt-bridge interactions of the
sulfonyl carbamate groupwith residuesK5.42 andR4.64, conserved in
all cloned angiotensin receptors. The imidazole ring, which is the
only structural difference in selective compounds, is pointing toward
the extracellular side of transmembrane regions TM1-TM2 and
TM7. The pseudosequence alignment of the binding crevice
(Fig. 4) revealed differences in the hydrophobic cluster composed
by the residues F/L2.53, L2.57,W2.60, T/Y2.64, Y2.65, V/L3.32, P7.36,
and I7.39 (note the notation AT1/AT2 for differing amino acid
positions between the two receptors), as illustrated in Fig. 4.

3.4 Binding Free

Energy Simulations: In

Silico Mutagenesis

and SAR

Our FEP protocol is here illustrated to reproduce the effect of a
single-point mutation H2506.52N in the A2AAR, which slightly
favors the binding affinity of the agonist NECA, and is extracted
from our extensive in silico characterization of this system [34].

l The receptor complex, which is obtained in this case from a
crystal structure (PDB code 2YD0), is embedded in a lipid
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bilayer, solvated, and equilibrated using the PyMemDyn proto-
col implemented in GPCR-ModSim.

l A spherical system of 25 Å radius centered on the C2 adenine
carbon in NECA is defined and used for MD simulations with
the program Q. We used the same force field as above (OPLS-
AA). Ionizable residues within 5 Å of the spherical boundaries
are neutralized, while those within 20 Å from the center were
assigned their most probable protonation state at pH 7. Proton-
ation states of histidines should be kept as indicated in

Fig. 4 The selective AT2 antagonist (compound 2 in Ref. 22) docked to the AT2 receptor model built in
Subheading 3.1 is superimposed on the crystal structure of the AT1 receptor (dark gray). The residues
identified as selectivity hotspots are labeled and shown in sticks in the 3D picture, and identified in black on
the pseudo-sequence alignment between AT1 and AT2 (bottom)
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Subheading 3.2. The reader is referred to the Q manual and to
our detailed description on how to set up MD simulations with
spherical boundary conditions using this program [39].

l Initial models of mutant receptor (H2506.52N) are created by
modeling the structurally most probable rotamer of the mutated
residue using PyMol (seeNote 11). An additional 0.61 ns equil-
ibration phase is then applied, which involved stepwise heating
of the spherical system to 298 K concomitant with release of
heavy atom positional restraints (from an initial force constant of
25 kcal/mol/Å2).

l The apo structures are produced by removing the ligand and
solvating the created cavity with waters; thereafter, the same
equilibration procedure should be applied.

l All the production runs are done with the following parameters:
temperature of 298 K using a separate thermal bath coupling for
solute and solvent and 1 fs MD time step. Four independent
production runs are needed: two account for the H2506.52A
transformation (holo and apo), which are divided into seven
subperturbations, while another pair of holo/apo simulations
is set up for the N2506.52A transformation. The so-called FEP
files for H to A and N to A mutations (available in the Q
repository) dictate how the transformation is performed. Each
λ-step is sampled for 10–30 ns in MD simulations, which should
be replicated several times with different initial velocities to
obtain an appropriate statistical sampling (see Note 12).

l Analysis: for each perturbation, we calculate the associated
change in free energy from the energy files (*.en) provided
in Q, with a python script provided in the Q distribution. This
script extracts and concatenates the energy change upon each
subperturbation, to provide the free energy change for each leg
in the thermodynamic cycle (see Fig. 2). Calculated relative
binding free energies ΔΔGcalc

bind

� �
are obtained from a series of

small, convergent FEP calculations as

ΔΔGcalc
bind ¼ ΔG wt

holo � ΔG wt
apo

� �
� ΔGmut

holo � ΔGmut
apo

� �
: The

s.e.m. and hysteresis values are calculated from independent
replicates as indicated in Subheading 2.

4 Notes

1. For a complete list of tools and servers, we refer to the GPCR
database GPCRdb (http://gpcrdb.org/), which contains a
number of GPCR-dedicated modeling web servers, which
together with GPCR-ModSim are partners of the European
Network for GPCRs GLISTEN (COST action CM1207):
GPCRM [40], GPCR-SSFE [25], and GOMoDo [41].
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2. GPCR-ModSim is completely free and anonymous through
the option “Model a GPCR.” However, academic users can
create a free account, where they can store their projects and
navigate through the folders that store the alignments, models,
and MD trajectories, which can be accessed and modified (i.e.,
creating subbranches of the project. etc.) during a limited time.

3. Other examples concerning the use of GPCR-ModSim can be
found in the tutorial of the webserver, which includes model-
ing of the orexin-2 receptor (http://gpcr-modsim.org/static/
docs/tutorial.pdf) and the MD simulation of the A2AAR in the
complex with the antagonist caffeine (https://www.youtube.
com/channel/UCQP49VirtLEPZQ264qkLodg/videos). In
addition, our participation in the last edition of the GPCR-
Dock competition provides an example on the successful use of
GPCR-ModSim to model a GPCR-antagonist complex [9].

4. Other criteria to consider when selecting the best template
include: (a) proximity of the sequences in the phylogenetic
tree; this sometimes reveals common structural areas, as is the
case for peptide binding receptors, which share common sec-
ondary structural elements within the EL regions, or aminergic
receptors, which have a common binding site motif. (b) The
sequence identity of topological regions (i.e., TM or loops) or
similarities in the binding pocket regions. In general, manual
adjustment of alignments is possible (and often advisable), and
can be done by downloading, editing, and uploading the mod-
ified alignment, or using the JalView visualizer implemented in
GPCR-ModSim.

5. Alternatively we have also used the GLIDE docking software,
from the Schrödinger suite [30], using default settings and a
grid box typically of 30x30x30 Å, using and selecting the best
pose as ranked by GLIDE-SP.

6. Using a similar procedure one can build active-like conforma-
tions of the two angiotensin receptors, as reported in reference
[22]. This way, not only subtype but also functional selectivity
can be analyzed for similar ligands that differ in their agonist/
antagonist profile.

7. While the homology model is a minimized structure that does
not need further refinement, a crystal structure of a GPCR
(as is the case of 4EIY) requires some treatment. Fragments
added for crystallization purposes are removed (i.e., the BrIL
protein fused to the N-terminus) and the missing loops are
remodeled. This is particularly important if one wants to run
MD of the complex generated during docking, while this step
can be avoided otherwise.

8. In the AT projects, since the ligands are designed as mimics of
the HPF C-terminal fragment of tripeptide the natural agonist,
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ATII, the criteria have been substituted by a reliable superposi-
tion to this fragment of ATII as docked into the receptor.

9. The corresponding parameters for the ligand must be obtained
by the user. One strategy is to generate OPLS-AA parameters
with the Schrödinger suite (academic license FFLD), and use
the python script that we provide in the web server to translate
them into the GROMACS format needed.

10. A docking pose of the PYY peptide can be easily created from
the Y2-NPY complex, by mutation of the residues that differ
between the two peptides with Maestro, followed by the same
energy minimization protocol described for NPY.

11. If more than one side chain rotamer could be modeled, all
possibilities were subjected to MD simulation and the most
stable one was selected as the initial rotamer.

12. The system is usually more sensible to the first subperturba-
tion, in particular in polar sidechains, since this step induces
annihilation of charges from the equilibrated structure, there-
fore sampling is increased to 30 ps per λ-step; analogously, the
last subperturbation includes annihilation of the Cβ and
replacement to H (in the case of a pure Ala mutation), which
again needs a higher sampling (in this case we set to 20 ps /
λ-step). In the remaining subperturbations, we found that
10 ps/ λ-step is enough, but this default can be changed by
the user. Depending on the sidechain, the transformation to
Ala considers 4–9 subperturbations, thus the total sampling
per replicate simulation is 3.5 to 6 ns. Considering ten replicate
simulations, each leg of the thermodynamic cycle is sampled for
around 50 ns.
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Chapter 3

Breakthrough in GPCR Crystallography and Its Impact
on Computer-Aided Drug Design

Antonella Ciancetta and Kenneth A. Jacobson

Abstract

Recent crystallographic structures of G protein-coupled receptors (GPCRs) have greatly advanced our
understanding of the recognition of their diverse agonist and antagonist ligands. We illustrate here how this
applies to A2A adenosine receptors (ARs) and to P2Y1 and P2Y12 receptors (P2YRs) for ADP. These X-ray
structures have impacted the medicinal chemistry aimed at discovering new ligands for these two receptor
families, including receptors that have not yet been crystallized but are closely related to the known
structures. In this Chapter, we discuss recent structure-based drug design projects that led to the discovery
of: (a) novel A3AR agonists based on a highly rigidified (N)-methanocarba scaffold for the treatment of
chronic neuropathic pain and other conditions, (b) fluorescent probes of the ARs and P2Y14R, as chemical
tools for structural probing of these GPCRs and for improving assay capabilities, and (c) new more drug-
like antagonists of the inflammation-related P2Y14R. We also describe the computationally enabled molec-
ular recognition of positive (for A3AR) and negative (P2Y1R) allosteric modulators that in some cases are
shown to be consistent with structure-activity relationship (SAR) data. Thus, computational modeling has
become an essential tool for the design of purine receptor ligands.

Key words Adenosine receptor, P2Y receptor, Structure-based drug design, X-ray crystallography,
Nucleosides, Nucleotides

1 Introduction

GPCR ligands represent 33% of the small-molecule drugs that
target major protein families [1]. The study of GPCR structure
and function has been revolutionized as a result of new X-ray
crystallographic findings and correlation with the structure activity
relationships (SAR) and pharmacology of their ligands [2–5]. We
present purine receptors as examples of GPCR families that have
benefited enormously from these new high-resolution receptor
structures.

Purinergic signaling is an element in the control of many
human physiological functions. The signaling interactions asso-
ciated with extracellular purines and pyrimidines, loosely referred
to as the “purinergic signalome,” consist of twelve G protein-
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coupled receptors (GPCRs), i.e., activated by adenosine (four aden-
osine receptors, ARs) and nucleotides (eight P2YRs), and seven
distinct subunits of multimeric ATP-gated P2X ion channels
[6, 7]. Among the GPCRs, the ARs respond principally to adenine
nucleosides and the P2YRs respond to adenine and uracil nucleo-
tides. These receptors can be activated or blocked with small-
molecule modulators, some of which have entered clinical trials or
been approved as diagnostic probes and agents for treating chronic
diseases. In addition to orthosteric ligands, i.e., binding in the same
site as native ligand, allosteric modulators, which bind at a separate
site, are being explored for the purine receptors.

Furthermore, inhibition, by small molecules, of the enzymes
that regulate the levels of the native AR agonists (Fig. 1a) and native
P2YR agonists (Fig. 1b) and inhibitors of nucleoside transporters
adds another dimension to the exogenous control of this system [8].

Fig. 1 Structures of ligands described in the text for the: (a) AR and (b) P2YR families. The native agonists are
adenosine (1) and inosine (2), to a lesser extent, for ARs and ADP (26), ATP (27), UDP-glucose (30), and UDP
and UTP (not shown) for the P2YRs
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Some of these extracellular enzymes are: CD39 (ectonucleoside
triphosphate diphosphohydrolase 1, ENTPD1), which hydrolyzes
ATP 27b to ADP 27a and to AMP; CD73 (ecto-50-nucleotidase,
50-NT), which hydrolyzes AMP to adenosine 1, and adenosine
deaminase, which converts adenosine to inosine 2. Adenosine
kinase that forms AMP is an intracellular enzyme, but it tends to
reduce the pool of available adenosine both inside and outside the
cell, because of nucleoside transporters such as the equilibrative
ENT1 that allow adenosine to cross the cell membrane [9]. The
overall importance of the purinergic signalome is consistent with its
being well conserved throughout evolution as indicated by the
phylogenetic relationships of the receptor family members
[10, 11]. We use convergent approaches, i.e., medicinal chemical,
pharmacological, and structural, to discover new agonists, antago-
nists, and inhibitors to modulate the purinergic signalome (Fig. 1)
[12–14].

Fig. 1 (continued)
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There are four subtypes of ARs: Gi-coupled A1 and A3ARs and
Gs-coupled A2A and A2BARs. Caffeine 11, the most widely con-
sumed psychoactive drug, acts as a competitive, nonselective inhib-
itor of adenosine binding at the ARs. There are two subfamilies of
P2YRs: five Gq-coupled P2Y1-like receptors (P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11) and three Gi-coupled P2Y12-like receptors (P2Y12,
P2Y13, P2Y14). However, the diversity of endogenous nucleotide
agonists does not follow the division of subtypes based on G
protein coupling. P2Y2, P2Y4, P2Y6, and P2Y14Rs can be activated
by uracil nucleotides, while P2Y1, P2Y2, P2Y11, P2Y12, and P2Y13

are activated by adenine nucleotides. The only subtype that is
associated with well-validated therapeutics is P2Y12R, for which
antagonists act as antithrombotic agents by blocking the action of
ADP 27a on platelets [15].

Since 2007, numerous high-resolution X-ray structures of the
human (h) A2AAR and P2Y1 and P2Y12Rs have been reported
(Table 1) [16, 17, 20, 23, 29–32]. Recently, the structure of the
hA1AR was also solved [19]. These structural advances have
opened up new opportunities to rationally design ligands, both by
structural enhancement of known agonists and antagonists and
through the in silico screening and modeling of novel chemotypes.
Research based on these GPCR X-ray structures has also led to
advances regarding the other two AR subtypes that have not yet
been crystallized but are closely related to the known A2AAR and
A1AR structures. Similarly, closely related homology models are
predictive of ligand recognition at P2YR subtypes other than
P2Y1 and P2Y12Rs. Chemical tools for the crystallized receptors
and related subtypes, such as high affinity fluorescent probes, were
designed with the aid of molecular modeling and applied to drug
discovery, including homology modeling, docking, and molecular
dynamics (MD) simulations. The importance of molecular model-
ing in the discovery of new purinergic ligands has therefore
increased in recent years.

2 Materials

2.1 X-Ray Structures

of Complexes of Purine

Receptors

The pace of reports on X-ray crystallographic GPCR structures,
which are membrane-bound, has recently accelerated due to meth-
odological advances [33–36]. Although it is not yet a routine
process, and not amenable to the high-throughput methods
applied to X-ray crystallography of soluble proteins, the several
hundred structures, corresponding to dozens of GPCRs in differ-
ent complexes, have already turned the tide in drug discovery
approaches for this important superfamily of drug targets. We
analyze the current state of knowledge of purine receptors as an
illustration.
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Table 1
Reported X-ray crystal structures of purine receptors (all human) and methods used in the
determination

Receptor, ligand Method,a Resolution (Å) PBD ID: References

Adenosine A2AAR agonists

Adenosine (1) StaR (5), 3.0 2YDO Lebon et al. [16]

NECA (3) StaR (5), 2.6 2YDV Lebon et al. [16]

UK432097 (4) T4L(IL3)-ΔC, 2.71 3QAK Xu et al. [17]

CGS21680 (3) StaR (5), 2.6 4UG2 Lebon et al. [18]

StaR (5), 2.6 4UHR Lebon et al. [18]

Adenosine A1AR antagonist c

DU172 (12b) bRIL(IL3)-ΔC (9)b, 3.2 5UEN Glukhova et al. [19]

Adenosine A2AAR antagonists

ZM241385 (13) T4L(IL3), 2.6 3EML Jaakola et al. [20]

StaR (8), 3.3 3PWH Doré et al. [21]

Fab2838 (1), 2.7 3VG9 Hino et al. [22]

Fab2838 (1), 3.1 3VGA Hino et al. [22]

bRIL(IL3)-ΔC (3), 1.8 4EIY Liu et al. [23]

StaR2-bRIL(IL3) (11), 1.72 5IU4 Segala et al. [24]

Caffeine (11) StaR (8), 3.6 3RFM Doré et al. [21]

XAC (12a) StaR (8), 3.31 3REY Doré et al. [21]

T4E (14) StaR (8), 3.34 3UZC Congreve et al. [25]

T4G (15) StaR (8), 3.27 3UZA Congreve et al. [25]

12c (17) StaR2-bRIL(IL3) (10), 1.9 5IU7 Segala et al. [24]

12f (18) StaR2-bRIL(IL3) (12), 2.0 5IU8 Segala et al. [24]

12b (16) StaR2-bRIL(IL3) (12), 2.2 5IUA Segala et al. [24]

12x (19) StaR2-bRIL(IL3) (10), 2.1 5IUB Segala et al. [24]

Cmpd-1 (26) bRIL(IL3), 3.5 5UIG Sun et al. [26]

Adenosine A2AAR – other

Engineered G protein StaR (18), 3.4 5G53 Carpenter et al. [27]

na SAD/XFEL (3), 2.5 5K2A Batyuk et al. [28]

na MR/XFEL (3), 2.5 5K2B Batyuk et al. [28]

na SAD/XFEL (3), 1.9 5K2C Batyuk et al. [28]

na MR/XFEL (3), 1.9 5K2D Batyuk et al. [28]

(continued)
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2.1.1 X-ray Structures

of the A1AR and A2AAR

The first structure of any purine receptor was an A2AAR complex
with potent antagonist 4-[2-[7-amino-2-(2-furyl)-1,2,4-triazolo
[1,5-a][1, 3, 5]triazin-5-yl-amino]ethyl]phenol (ZM241385, 13)
reported in 2007 [20]. The overall ligand arrangement was roughly
perpendicular to the membrane plane, in contrast to other GPCR
structures. This general orientation of the various ligands as stretch-
ing from the pharmacophore binding site toward the outer surface
applies to various ligands, such as the A2AAR structure in complex
with the high affinity xanthine amine congener (XAC, 12a) antag-
onist [21]. This ligand arrangement—roughly parallel to the TMs
(transmembrane domains)—was anticipated by earlier modeling
and by the many chain-functionalized analogues of agonists and
antagonists, which suggested that the distal tethered portions of
the molecules were exposed to the medium. There is more freedom
of substitution on the distal portions, because they are not
limited by the steric constraints of the pharmacophore binding
site [14, 37, 38].

Coordination of triazolo-triazine ZM241385 13 and other
antagonists in the A2AAR binding site (Fig. 2a) occurs through
both H-bonding and interactions with hydrophobic sidechains,
such as Leu6.51 (using Ballesteros-Weinstein convention for
amino acid numbering in the TMs [39]). The heterocyclic ring
forms π–π stacking with Phe168 (EL2). A conserved Asn6.55
(Asn253 in the A2AAR) forms bidentate H-bonds with the

Table 1
(continued)

Receptor, ligand Method,a Resolution (Å) PBD ID: References

P2Y1R antagonists

MRS2500 (31) rub(IL3) (1), 2.7 4XNW D. Zhang et al. [29]

BPTU (34) bRIL(N-term) (1), 2.2 4XNV D. Zhang et al. [29]

P2Y12R antagonist

AZD1283 (35) bRIL(IL3) (4), 2.62 4NTJ K. Zhang et al. [30]

P2Y12R agonists

2-MeSADP (28) bRIL(IL3) (4), 2.5 4PXZ K. Zhang et al. [31]

2-MeSATP (partial agonist, 29) bRIL(IL3) (4), 3.1 4PY0 K. Zhang et al. [31]

a Construct or stabilization method. Number of mutations, if present, is given in parentheses, and if StaR or fusion

construct (protein and location). T4L, cysteine-free phage T4 lysozyme; bRIL, thermostabilized apocytochrome
b562RIL (e.g., A23-L128); ΔC, truncated C-terminus. Fab, antibody Fab fragment; N-term, N-terminus; rub,

M1–E54 of rubredoxin; XFEL, X-ray free-electron laser; MR, molecular replacement method; sulfur phasing with

SAD, single-wavelength anomalous dispersion; na, not applicable
b Construct is substituted with N159A (glycosylation site) and residues of the A2AAR at 220–228 (“to optimize bRIL
insertion sites”) [19]
c A1 and A2A receptor structures (StaRs stabilized with b562RIL) in complex with three xanthine antagonists were

recently reported by Chen et al. [100]
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exocyclic amine and a triazole ring nitrogen atom, and the exocyclic
amine also H-bonds with Glu169 in EL2 (Fig. 2b). There are
differences in the position of the 2-(4-hydroxyphenyl)ethyl side-
chain of ZM241385 between different reported structures [16,
30], which suggests that this moiety, which approaches the recep-
tor’s exofacial side, has more conformational freedom than the

Fig. 2 Left panel: High-resolution X-ray crystallographic structures of the hA2AAR [23] with (a) ZM241385
(13) and (b) NECA [16] (3). Right panel: Contacts between four cocrystallized ligands and the hA2AAR are
depicted
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heterocyclic pharmacophore. This is consistent with greater flexi-
bility expected for the EL region of the receptor.

The highest resolution structure (1.8 Å) of an A2AAR in the
complex with ZM241385 13 was recently reported and shows
unprecedented detail of bound water molecules and the conserved
site for sodium ion binding at Asp2.50 in TM2 [23]. This sodium
ion is proposed to act as a negative allosteric modulator of agonist
binding at GPCRs in general [40]. This structural knowledge has
been recently exploited to design new 50-substituted amiloride
analogues binding at the sodium site that resulted in potent
hA2AAR allosteric modulators [41]. Moreover, the role of the
energetic contributions of water molecules in A2AAR antagonist
binding had been anticipated in a study aimed at rationalizing the
SAR of triazolylpurine analogues using the WaterMap software
package [42]. The role of waters in GPCR ligand recognition
represents a challenge for accurate prediction of ligand binding
mode during virtual screening campaigns [43].

GPCRs with numerous stabilizing mutations (StaRs) have been
developed as a core technology for structural biology and drug
discovery [44]. These mutations are usually placed outside the
binding site to avoid disruption of the drug-receptor interaction.
Using multiple stabilizing mutations, many GPCRs can be crystal-
lized with a wide range of agonist and antagonist ligands. Separate
mutation sets were found to stabilize the conformation needed for
binding either agonist or antagonist; thus, the StaRs can be custo-
mized for discovery of each ligand type. Furthermore, biophysical
mapping of the binding site contour for a given class of congeneric
ligands, such as chromones and triazines, can be performed
[32, 45, 46]. Biophysical mapping has led to the structure-based
optimization of new A2AAR antagonists, such as a 1,2,4-triazine
T4E 14, of which the most advanced analogues are on a transla-
tional path for the treatment of attention-deficit/hyperactivity dis-
order (ADHD) and cancer. This effort has resulted in a candidate
molecule for cancer co-therapy HTL1071 (AZD4635, structure
not disclosed) that is in a Phase 1 trial in combination with durva-
lumab, targeting programmed death ligand-1, in patients with
advanced solid malignancies (ClinicalTrials.gov identifier:
NCT02740985). The StaRs are sufficiently stable to be studied in
biophysical experiments at room temperatures, including incor-
poration into HDL particles for biosensor studies [47] or cova-
lently immobilization on gold surfaces or in a lipid bilayer for
measuring binding using surface plasmon resonance [48]. StaRs
may also be used for NMR studies, specifically target-immobilized
NMR screening (TINS) for fragment-based drug discovery
(FBDD) of very small molecules that bind to the A2AAR with
relatively low affinity [49]. These biophysical techniques have
been useful in the discovery of new A2AAR ligands, despite the
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presence of mutations in the receptor. Other A2AAR antagonists are
being developed for treating Parkinson’s disease (PD) [20].

An advanced crystallographic technique that was recently
applied to the A2AAR in the absence of bound ligand is native
phasing of X-ray data determined with a pulsed free-electron laser
(XFEL) [28]. The data is collected using serial femtosecond crys-
tallography (SFX) using microcrystals that are delivered in a con-
tinuous hydrated stream and subsequently destroyed by the beam.

The conformational differences between the multiple agonist-
bound and antagonist-bound structures of the A2AAR present a
consistent picture of the reorganization of the orthosteric site to
accommodate nucleosides [16, 17]. Furthermore, the predicted
binding of nucleosides that vary greatly in efficacy at the A3AR,
particularly after ribose modification [50, 51], provides insights
into residues implicated in the activation process.

We have collaborated with Ray Stevens and colleagues in the
structural characterization of an agonist-bound A2AAR structure,
antagonist-bound P2Y1R structures as well as agonist- and
antagonist-bound P2Y12R structures containing stabilizing fusion
proteins in the third intracellular loop (IL3) or at the N-terminus
[17, 29–31]. The receptor constructs contain few if any mutations
in the TM regions, so they tend to preserve the native structures.

This first X-ray structure of an agonist-bound A2AAR used a
bulky adenosine agonist with extended C2 and N6 groups on the
adenine moiety (UK432097, 6-(2,2-diphenylethylamino)-9-
((2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxytetrahydro-
furan-2-yl)-N-(2-(3-(1-(pyridin-2-yl)piperidin-4-yl)ureido)ethyl)-
9H–purine-2-carboxamide, 4) [17]. This substituent combination
on the adenine and ribose moieties sufficiently stabilized the recep-
tor complex as indicated by a rise in Tm (melting temperature). The
4-A2AAR structure and a subsequent report on structurally simpler
agonists, 1 and 3, bound to A2AAR StaRs [16, 18] feature a deep
hydrophilic pocket. This forms the ribose moiety’s binding site,
while the upper regions of the binding site where the nucleobase
resides are largely surrounded by hydrophobic residues (Fig. 2b).
The hydrophobic regions accommodate the adenine moiety and its
typically bulky hydrophobic substituents at the C2 and N6 posi-
tions (Figs. 2b and 3 left). Among the interactions that stabilize the
bound nucleobase is a π–π interaction between Phe168 (EL2) and
the heterocyclic ring, which is conserved for diverse AR ligands
(Fig. 2b). However, the adenine moiety also has polar interactions
with the A2AAR; similar to the coordination of ZM241385, the
sidechain of conserved Asn6.55 is H-bonded to both the adenine
exocyclic secondary amine and N7. The various adenine substitu-
tions, particularly at C2 and N6 positions, are often responsible for
the subtype selectivity of the nucleosides, and the ribose with its
multiple H-bonding groups is required for AR activation. His7.43
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acts as an H-bond donor to the ribose 20-hydroxyl group (Fig. 2b).
The latter interaction and the proximity of the A2AAR residue
Thr3.36 to the ribose moiety of bound agonists were determined
earlier using a neoceptor approach, which is based on complemen-
tary structural changes of the ligand and its targeted receptor
[53, 54], having now been confirmed in the X-ray structures.
Both of these residues and the residues coordinating the adenine
ring have identical or homologous functionality among the ARs.
Thus, there is much conservation of the recognition pattern for
agonists across the AR family.

However, there are some differences in interactions of nucleo-
side ligands between the A2AAR and A3AR that account for phar-
macological differences of such ligands, with respect to their
affinity, selectivity, and efficacy. For example, His6.52 in A2AAR,
which H-bonds to the 50-carbonyl group of NECA 3 (Fig. 2b), is
replaced with Ser6.52 and is not in direct contact with docked
nucleosides in the A3AR. The role of Thr3.36 in A2AAR, which
H-bonds to the 50-amide NH group of NECA, is maintained in the
A3AR. The chemical “removal” of this NH, by alkylation or trun-
cation of the amide, leads to A3AR nucleoside antagonists, possibly
suggesting a role for TM3 in A3AR activation [17, 27]. Some water
molecules deep in the binding site of the antagonist-bound A2AAR
are displaced by the ribose moiety of agonists when bound, which
contributes to the favorable energetics of agonist binding. Unlike
various other GPCRs, the native agonist binds to the several sub-
types (except A2BAR) with near nanomolar affinity. AR activation
by agonists is thought to involve a side-chain rotation of Trp6.48,
which, however, has not been captured in the X-ray structures
[16, 27, 55]. The agonist-bound and agonist-bound A2AAR struc-
tures, including the surrounding membrane, were subjected to
unbiased molecular dynamics and metadynamics simulations to
predict conformational transitions upon activation, including rota-
mers of Trp6.48 [56].

In general, the ribose or ribose-like moiety of adenosine is
involved in AR activation and increase affinity at the four ARs,
and the substituted adenine moiety mainly determines the subtype
selectivity. These two domains—hydrophilic for ribose and hydro-
phobic for adenine were recognized even in early AR modeling
based on rhodopsin [57]. This suggests that the binding site of
adenosine derivatives in the ARs can be divided into separate func-
tional domains: ribose as the message (facilitating the receptor
activation) moiety and adenine (directing the ligand to a receptor
or receptor subtype) as the address moiety [37]. The same distinc-
tion has been applied to peptide GPCR ligands, i.e., they are con-
ceptually divided into separate address and message sequences.

An engineered G protein segment (mini-Gs) was used to stabi-
lize the A2AAR (NECA 3 complex) in an active-like state [27]. The
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observed conformational changes associated with binding of the
mini-Gs as a GDP complex were similar to but not identical to
those observed for the β2 adrenergic receptor active state, which
was stabilized by a nanobody mimic of Gs protein. The most
dramatic change in the overall structure in the NECA-A2AAR-
mini-Gs complex was a shift of the cytoplasmic end of TM6 away
from the receptor core by 14 Å with respect to the inactive state,
with only slight changes for TMs 5 and 7. Furthermore, TMs 3, 5,
and 7 underwent rotations. Thus, in the earlier active-intermediate
state with only bound agonist UK432097 4, the conformational
changes in the overall receptor structure, with respect to the cyto-
solic side, were underestimated [17]; in opsin, the corresponding
outward movement of TM6 was 6–7 Å.

Most of the above approaches help define the recognition of
ligands in the orthosteric binding site. In addition, allosteric mod-
ulators are well explored for A1AR and A3AR, but the case for
A2AAR remains unresolved [26]. Bitopic ligands of the A1AR that
bridge the allosteric and orthosteric binding site have been
reported. At the A2AAR, a bitopic antagonist 26, which addition-
ally antagonizes the N-methyl D-aspartate (NMDA) receptor sub-
type 2B, was cocrystallized with the hA2AAR and shown to access
the orthosteric site as well as a distal binding region on A2AAR
(potentially an allosteric site) [58]. This defined a previously
uncharacterized binding pocket of the A2AAR that could be
exploited for allosteric modulation. Antagonizing both A2AAR
and NMDA2BR with a single bifunctional compound might be a
fruitful approach to treating PD.

Until recently, the A2AAR was the only AR with a structure
determined. However, a recent report featured the A1AR structure
in complex with an irreversibly bound antagonist DU172 (12b)
[19]. The ligand’s reactive fluorosulfonyl group was linked to the
hydroxyl group of Tyr7.36. The extracellular cavity was more
exposed than in the A1AR due to a distinct conformation of EL2,
and a secondary binding pocket suggests that it could accommo-
date both orthosteric and allosteric ligands.

2.1.2 X-ray Structures

of the P2Y1R and P2Y12R

Unlike AR molecular modeling, early P2YR molecular modeling
based on the structure of bovine rhodopsin and other templates was
less successful in predicting the position and key interactions of
agonists and antagonists [59]. Ligands that have been cocrystallized
in P2YR X-ray structures include both agonists and antagonists
(Fig. 1b). The subsequent P2Y1 and P2Y12R X-ray structures
[29–31], representing each of the two P2YR subfamilies, brought
many surprises, i.e., features that were unlike any GPCR structures
previously determined (Figs. 3 and 4). Comparison of agonist-bound
and antagonist-bound P2Y12R indicates unprecedented structural
plasticity in the outer TM portions and the extracellular loops
(Fig. 4). There is a major difference in conformation needed to
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bind nonnucleotide antagonists (AZD1283, ethyl 6-(4-((benzylsul-
fonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate, 35)
[60] and nucleotide partial agonists (such as 2-methylthio-ATP,
2-MeSATP 29) [30, 31]. One of the most unusual features of the

Fig. 3 High-resolution X-ray crystallographic structure of the hA2AAR with high affinity agonist UK432097 (4)
bound (left, green carbon atoms) [17], and comparison with a hybrid homology model of the hA3AR with potent
C2-arylethynyl agonist MRS5980 (8) bound (right, magenta carbon atoms) [52]

Fig. 4 Left panel: High-resolution X-ray crystallographic structures [29] of the hP2Y1R showing the binding
sites for orthosteric antagonist MRS2500 (31) (yellow carbon atoms) and allosteric antagonist (NAM) BPTU (34)
(gray carbon atoms). Right panel: Contacts between two cocrystallized ligands and the hP2Y1R
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AZD1283-P2Y12R complex is the apparent lack of a disulfide bridge
between EL2 and TM3 (otherwise conserved), but the presence of a
disulfide between TM7 and the N-terminus (conserved for P2YRs).
The outer TMportions and the ELs are also rich in positively charged
Lys and Arg residues. Consequently, these residues close around the
nucleotide ligands in both complexes with 2-methylthio-ADP (full
agonist, 28) and 2-methylthio-ATP, and the conserved disulfide
bridge (TM3 to EL2) is present. The variation in the presence of
this disulfide bond between different complexes suggests that this
bond is dynamic in the P2Y12R.

Although P2Y1R, like P2Y12R, is activated by ADP, it belongs
to a structurally distinct subset of the rhodopsin-like GPCR
δ-branch. Structural comparison of the P2Y1R with bound nucleo-
tide (orthosteric) and nonnucleotide (allosteric) antagonists indi-
cates that completely different residue sets are involved, i.e., no
amino acids were shared by the two sites (Fig. 5) [29]. The orthos-
teric nucleotide antagonist MRS2500 31 binds at a location involv-
ing the ELs that is more external than most small molecule
orthosteric ligands of other GPCRs. Positively charged EL residues
coordinate the phosphate groups at the 50 and 30-positions of the
bisphosphate antagonist (Fig. 5). The overall effect of bound
MRS2500 31 is to constrain two receptor domains, i.e.,
TM1-TM4 and TM5-TM7, which would be expected to have a
relative movement during activation. The negative allosteric mod-
ulator BPTU (1-(2-(2-(tert-butyl)phenoxy)pyridin-3-yl)-3-

Fig. 5 Left panel: Superimposition between X-ray crystallographic structures of the hP2Y12R in complex with
2-MeSADP (28) (yellow ribbon representation for the receptor and yellow carbon atoms for the ligand) [31] and
AZD1283 (35) (dark cyan ribbon representation for the receptor and dark cyan carbon atoms for the ligand)
[30]. Right panel: Contacts between two cocrystallized ligands and the hP2Y12R
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(4-(trifluoromethoxy)phenyl)urea, 34) [61] surprisingly bound to
the outer P2Y1R surface in contact with the hydrophobic phospho-
lipid membrane components and with residues in TMs 1–3. The
binding site was shallow with the urea group of BPTU forming
H-bonds with a TM2 backbone carbonyl group (Fig. 5). The
placement of this allosteric antagonist would constrain relative
TM3 movement with respect to TM2, which is also characteristic
of GPCR activation [17]. The mechanism for the propagation of
the conformational effects of 34 binding to other P2Y1R regions
might involve the characteristic interactions of conserved hydro-
phobic and aromatic residues in TMs 3, 5, and 6 of various GPCRs
[62]. The molecular recognition of other negative P2Y1R allosteric
modulators can be modeled and is shown to be consistent with SAR
data [29]. Curiously, the P2Y1R conformations present in com-
plexes with the allosteric and orthosteric antagonists are nearly
identical, and no agonist-bound structure is yet reported.

3 Methods

3.1 Structure-Based

Medicinal Chemistry

of the ARs

Early molecular modeling and site-directed mutagenesis of the ARs
based on the bovine rhodopsin structure was relatively successful in
predicting the position of agonists and antagonists in the orthos-
teric binding site and their interacting residues, as was subsequently
validated in the X-ray structures of antagonist-bound and later
agonist-bound A2AARs. The ARs are members of Family A
rhodopsin-like GPCRs, which is very close in overall structure to
rhodopsin itself, although the sequence homology is low. Conse-
quently, AR molecular modeling based on a rhodopsin template
gave favorable results prior to and during the initial A2AAR struc-
tural determination [37, 54, 55, 63]. The binding mode of nucleo-
sides observed in the agonist-bound A2AAR structures was
generalized to be consistent with the SAR of other known ligands,
leading to their structural modification guided by predicted favor-
able interactions with the receptor [64].

3.1.1 Medicinal

Chemistry of the A2AAR

The A2AAR structures have been utilized for virtual screening
(VS) campaigns to discover novel chemotypes that bind to the
ARs [65] and to modify known ligands [61, 65–67].

Previous efforts to model GPCR ligands were focused on an
overlay of common structures in different ligands to generate a
pharmacophore hypothesis of the molecular features needed for
binding [68], and these hypotheses often did not take into account
the receptor structure. Docking of 751 known antagonists in the
A2AAR structure to create a refined pharmacophore model
improved the predictive ability of subsequent quantitative SAR
statistical models [69]. The pharmacophore hypothesis was vali-
dated with new test set of 29 A2AAR antagonists related to
ZM241385 13.
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Kinetic parameters of binding, as well as affinity, may be studied
using modeling approaches. The dissociation kinetics of antago-
nists derived from ZM241385, i.e., 16–19, has been studied by
X-ray crystallography of A2AAR StaRs [24]. A salt bridge involving
EL residues of the A2AAR controlled the antagonist dissociation
kinetics of analogues that had chemical modifications at the termi-
nal phenol, as is present in ZM241385. Metadynamics investiga-
tions revealed that the salt bridge was readily broken in the
simulations for ligands exhibiting short residence times, whereas
it was maintained for ligands with longer residence times. The X-ray
structures of the ligand-receptor complexes highlighted that long
residence time ligands established stabilizing interactions with
His264 (EL3) that were not detected instead for ligands with
shorter residence times.

The EL structure of a given GPCR is not only important for
ligand affinity and binding kinetics, but can be utilized as the site of
covalent modification by reactive, bitopic ligands. A2AAR agonists
that modify the receptor irreversibly by acylating a specific residue,
Lys153, in EL2 were designed through docking to the agonist-
bound receptor structure [70]. The terminal position of the C2
chain contained a chemically reactive group, i.e., an active ester, and
its proximity to Lys153 (EL2) facilitated this covalent modification
of the receptor.

A2AAR structures have guided the design of A3AR agonists and
antagonists as well.

3.1.2 Medicinal

Chemistry of the A3AR

Originally, it was thought that A3AR antagonists might have
broader application in the clinic than agonists, because of proin-
flammatory effects associated with acute agonist administration
[71]. A3AR antagonists have been proposed for the treatment of
glaucoma or kidney fibrosis [71–73]. However, it is now recog-
nized that A3AR agonists have shown efficacy in various animal
models of inflammatory disease, cancer and chronic neuropathic
pain [71, 74–76]. Thus, the improvement of the affinity and selec-
tivity of A3AR agonists has clear clinical relevance. Furthermore,
prototypical agonists IB-MECA 5 and Cl-IB-MECA 6 have
demonstrated safety and efficacy in Phase 2 and 1/2 clinical trials,
respectively, and are now progressing to more advances trials in
rheumatoid arthritis, psoriasis, hepatocellular carcinoma, and non-
alcoholic steatohepatitis (NASH) [71, 75].

The three-dimensional GPCR structures and related homology
models have been used for improving the affinity and selectivity of
known ligands as needed. For example, the design of A3AR agonists
has benefited from iterative cycles of ligand docking to A3AR
homology models followed by synthesis of new ligand analogues
and model refinement. Differences between the structures of the
AR subtypes are identified in the modeling process and can be used
advantageously to increase selectivity.
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The ribose moiety is the core of AR agonists that establishes the
spatial relationship of important ligand recognition elements. We
have substituted ribose in A3AR agonists with a variety of sterically
constrained, bicyclic rings, to mimic the conformation of native
tetrahydrofuryl ring of ribose when bound to the receptor. In
particular, novel A3AR agonists are being refined, based on a highly
rigidified (N)-methanocarba (a [3.1.0]bicyclohexane) scaffold,
with computational approaches based on A2AAR X-ray structures
as essential components, leading to nM binding affinities, excep-
tionally high selectivities and improved in vivo efficacy [13]. For
example, MRS5698 7 is one such selective agonist that maintains
consistent affinity across species (Ki ¼ 3 nM at hA3AR and mouse
A3AR). A hybrid A3AR model, based on the active or active-like
structures of different GPCRs, was found most suitable for these
new agonists [13]. High specificity (~10,000-fold selectivity for the
A3AR) and clean ADME-tox and off-target properties were
achieved.

In addition to the ongoing clinical trials of A3AR agonists for
cancer and inflammation, they also have potential in pain treatment
[76]. Novel A3AR agonists for pain control were designed and
screened using an in vivo phenotypic model, which reflected both
pharmacokinetic and pharmacodynamic parameters. This close
coupling of structure-based ligand design and in vivo testing per-
mitted multiple parameters to be enhanced during the choice of
synthetic target molecules. Activation of the A3AR in peripheral
neurons, spinal cord, and brain by highly specific C2-arylalkynyl
agonists, e.g., MRS5980 8, as well as less selective A3AR agonists
was found to reduce chronic neuropathic pain in vivo. This protec-
tion was dependent on GABAA receptor modulation, oxidative
pathways, astrocytic activation, and cytokine levels in the
spinal cord.

Although the AR binding site has two domains for ribose and
adenine, there are examples of compensation for the loss of an
otherwise important recognition element in one domain by fea-
tures of a different domain of the ligand. For 40-truncated A1AR
agonists, a particular N6-dicyclopropylmethyl bound precisely in
two subpockets of the N6 region to compensate for the absence of
receptor binding stabilization at the 50 position and activated the
receptor [77]. In theMRS5980 8 chemical series of A3AR agonists,
the N6 methylamino group could be group truncated to H or
substituted with CH3 with retention of high affinity [52]. Thus,
the exocyclic amine of adenosine derivatives was not essential for
high affinity and selectivity at the A3AR, although the Asn6.55
sidechain in A3AR models is similar to its position with more
conventional agonists docked (Fig. 3) [52]. The other stabilizing
groups on these truncated analogues of MRS5980, e.g., at 50 and
C2, could partly compensate for the lack of H-bond stabilization
between the exocyclic amine and this residue.
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Biased agonists for a given GPCR display a preference for one
or more signaling pathways [78, 79], and such an action has been
explored for AR agonists. Biased agonism is based on the concept
that a GPCR active state is associated with multiple conformations,
and different activated conformations a given GPCR depend on
which agonist is bound. More importantly, each conformation in
theory has its own profile of preferred signaling, such as G-protein
dependent vs. arrestin-dependent signaling. This is based on a
particular receptor conformation resulting from agonist binding
that is more effective in the preferred pathway compared to others.
Biased A3AR agonism was detected in (N)-methanocarba analo-
gues [80]. Conformational plasticity of the A3AR, especially with
respect to the orientation of TM2, was proposed to accommodate
bulky groups and correlate with signaling bias within this agonist
class. Within a set of rigid C2-arylalkynyl and C2-polyarylalkynyl
derivatives, the degree of bias for A3AR-dependent cell survival was
directly proportional to the length of this substituent on the ago-
nist. Hypothetically, this bias would correspond to the degree of
outward displacement of the upper TM2 portion in the A3AR
agonist-bound state. Thus, conformational A3AR plasticity was
proposed to accommodate bulky groups and correlate with signal-
ing bias within this class of agonists. However, it is to be noted that
nucleoside A3AR antagonists with extended C2 substituents would
also require TM2 displacement in the inactive receptor state
[72]. Consistent with the prediction of an outward movement of
TM2 to accommodate known A3AR ligands, the recently deter-
mined structure of an antagonist-bound A1AR features TM2 dis-
placed in the same direction by ~5 Å [19], relative to the A2AAR
structure. Like the A3AR, the A1AR has only one disulfide bridge in
the EL region; thus, TM2 is not constrained as in the A2AAR.

3.1.3 Virtual Screening

to Discover AR Ligands

in General

In silico screening of diverse chemical libraries has identified
numerous novel chemotypes for GPCR modulation. In silico
screening has identified chemically diverse ligands at each of the
AR subtypes. This structure-based drug design approach has been
applied using the A2AAR X-ray structures resulting in typical hit
rates of up to 40% with Ki values �10 μM [65, 74, 81]. In many
cases, the hits displayed not only A2AAR affinity but also affinity at
the closely related A1AR and/or A3AR. Thus, VS is a means of
discovering novel chemotypes for binding to other AR family
members because of the close structural homology.

Furthermore, nearly all of the hit molecules in VS of ARs were
found to be AR antagonists, using as a template either an
antagonist-bound A2AAR structure (as expected) or an agonist-
bound structure (unexpected) [74, 81, 82]. This illustrated the
close structural tolerance needed for AR activation and that non-
ribosides were highly unlikely to be suitable. Instead, the challenge

Computer-Aided Drug Design for Adenosine and P2Y Receptors 61



of discovering novel agonists for the AR family was approached by
screening within a set of ~7000 diverse nucleobases available com-
mercially [65]. The screening was accomplished by first virtually
attaching the ribose moiety before docking in an agonist-bound
A2AAR structure—and finally by chemically synthesizing the ribo-
sides from the nucleobase hits. In this manner, the pool of candi-
date molecules in the database was greatly expanded. Because the
number of pre-formed ribosides in the databases was quite limited,
the resulting hit rate for riboside products that activated one or
more AR subtypes was greatly enhanced.

Modeling approaches have also facilitated the design of tool
compounds for drug discovery, such as high affinity fluorescent
ligands. Selective fluorescent agonist and antagonist probes of the
A3AR have been reported [83]. For example, agonist MRS5218
(structure not shown) binds to the A3AR with high affinity
(Ki 17 nM). The fluorophore (AlexaFluor488), attached through
a functionalized alkynyl chain at C2, is thought to participate in the
recognition when bound to the receptor’s outer loop region. Thus,
the same functionalized AR ligand can vary enormously in affinity,
with both increases and decreases with respect to the parent ligand.
The affinity can depend strongly on the nature of the tethered
fluorophore, because this moiety can contribute to the affinity by
interacting with the receptor’s EL region.

Agonist discovery at other AR subtypes has also benefited from
the high-resolution A2AAR structures, in some cases unexpectedly
through lateral hits. The structure-guided chemical modification of
AR agonists at the adenosine 50-amide position resulted in an
oxetane derivative 9 that achieved high affinity at the A1AR instead
of the A2AAR, and this gain of function was interpreted in terms of
a different A1AR geometry in the ribose region that allowed
H-bonding of conserved Asn5.42 to the oxetane ether [66]. The
bulky presence of the Trp5.46 sidechain in A1AR, compared to
Cys5.42 in A2AAR, creates a cavity for the oxetane ring to lodge
between TM5 and TMs 3 and 4. The binding region of the A1AR
around the N6 group was predicted to accommodate two hydro-
phobic groups, e.g., dicyclopropyl, consistent with the previously
explored recognition of α-branched substituents demonstrating a
diastereomeric preference [77].

Ligand docking at an A2BAR homology model based on an
antagonist-bound A2AAR structure has aided the design of
3,4-dihydropyrimidin-2(1H)-ones, such as 20 (Ki

hA2BAR ¼ 3.49 nM), as novel antagonist chemotypes that display
high selectivity [84]. Compounds 21 and 24 arose from A2AAR
screens and were found to bind selectively to the A1AR
[81, 85]. Compounds 22 and 23 were identified in a screen using
A1AR homology models and bound selectively to the A3AR
[74]. Compound 25 was identified using the agonist-bound
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A2AAR, but was found to be a mixed antagonist at the A1AR and
A2AAR [86]. Thus, there is considerable activity of screening hits at
related receptors. In silico screening and structure-based design
strategies have also led to the identification of nonnucleoside atypi-
cal partial agonists of the ARs based on a 7-prolinol-thiazolo
[5,4-d]-pyrimidine scaffold [87]. 2-Amino-3-cyanopyridines
appeared as hits in VS based on agonist-bound A2AARs, but they
were AR antagonists [86], unlike related 2-amino-3,5-dicyanopyr-
idines that act as atypical AR agonists [88]. Docking studies helped
in rationalizing the binding of these compounds at the A2AAR and
in identifying surrogates for the ribose ring that afforded receptor
activation. Indeed, a 2-furylmethanol moiety in the 2-amino-3-
cyanopyridine series was predicted to establish H-bond interaction
with Ser 7.42, whereas the 2-hydroxylmethyl pyrrolidine moiety in
the 7-prolinol-thiazolo[5,4-d]-pyrimidine series was predicted to
establish H-bond interaction with His 7.43.

3.1.4 A3AR Allosteric

Modulators

Nearly all of the AR X-ray structures reported contained orthosteric
ligands, but modeling has been applied to the binding of allosteric
ligands as well. Several classes of nitrogen heterocyclic molecules
have been shown to be positive allosteric modulators (PAMs) for
the A3AR, but no X-ray structures to firmly establish their binding
site on the receptor. One such allosteric enhancer is N-
(3,4-dichloro-phenyl)-2-cyclohexyl-1H-imidazo[4,5-c]quinolin-
4-amine (LUF6000, 10). Nevertheless, site-directed mutagenesis
andmodeling approaches, including SupervisedMolecular Dynam-
ics (SuMD), have attempted to determine the residues involved in
their allosteric binding vs. the residues needed for orthosteric bind-
ing [89]. In the SuMD study, LUF6000 was found to engage in
interactions with a putative meta-binding site located at the inter-
face between EL2 and the upper region of TM5 and TM6, prior to
reaching the orthosteric site. A π–π stacking interaction established
with Phe168 (EL2) triggered the allosteric modulator to reach the
orthosteric binding site occupied by the agonist adenosine (1). In
the final ternary complex, LUF6000 established hydrophobic con-
tacts with residues in the upper region of the orthosteric binding
site, thus acting as “pocket cap.”

3.2 Structure-Based

Medicinal Chemistry

of the P2YRs

P2Y12R antagonists display potent anti-thrombotic activity by pre-
venting the action of ADP on the platelet surface, which is the basis
of blockbuster drugs such as clopidopgrel. P2Y1R antagonists, such
as the orthosteric antagonist MRS2500 31 of 0.8 nM affinity, also
have potent anti-thrombotic activity by antagonizing ADP at plate-
let receptors, but this therapeutic concept has not yet resulted in
clinical trials [90]. Thus, there is continuing interest in designing
ligands of the ADP-activated P2Y1R and P2Y12R as antithrombotic
agents and also to explore clinical potential of other P2YR ligands.
Although there is not yet an X-ray structure for any of the other
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P2YRs, much insight can be gained from homology modeling, as
we illustrate below for the P2Y14R. We have used P2YR structures
to understand the recognition of numerous antagonists at these
receptors [91, 92].

3.2.1 Medicinal

Chemistry of the P2Y1R

Because there is no agonist-bound P2Y1R structure, the extension
of the P2YR structures to binding of diverse agonists is best justi-
fied for the P2Y12R. Nevertheless, a P2Y1R nucleotide agonist
2-MeSADP 28 was found to dock in a similar position, at least
with respect to adenine and ribose moieties, as the nucleotide
orthosteric antagonist 31. For allosteric antagonists, such as
BPTU 34, the docking of other urea and related derivatives [15]
that were reported to have the same antagonistic effect on P2Y1R
explains some observed SAR in this series. These allosteric antago-
nists are predominantly hydrophobic molecules, consistent with
the required passage through the phospholipid bilayer in order to
reach the structurally defined binding site. Attempts to introduce
polar groups while retaining P2Y1R affinity were only partially
successful [93].

The environments surrounding the hydrophilic nucleotide
MRS2500 31 binding site of the P2Y1R structure and the hydro-
phobic allosteric binding site have very different properties and
would require separate treatment in VS. An in silico screen was
performed using the MRS2500-P2Y1R structure to identify com-
pounds from medicinal plants related to Chinese traditional med-
icines that might have potential as antithrombotic drugs [94].

3.2.2 Medicinal

Chemistry of the P2Y12R

The first step in extending the reported P2YR structures to novel
ligands and subsequently to other P2YR subtypes was an effort to
explain the known ligand SAR. Representative P2Y12R ligands
from different chemical classes were docked in the structures
[58]. The P2Y12R X-ray structures with nucleotides bound
(2-MeSADP and the corresponding triphosphate) differ greatly in
conformation from the complex with nonnucleotide antagonist
AZD1283 35 bound (Fig. 4). Therefore, the question arose as to
which structure could best serve as a suitable template for modeling
the binding of various known P2Y12R ligands. The nucleotide
complex(es) were found to be a suitable template for various ago-
nists and diverse antagonists, many of which contain negatively
charged groups. These diverse anionic groups were predicted to
interact with Lys7.35—similar to its interaction with the partial
negative charge of a sulfonyl oxygen of 35 in its P2Y12R complex
(Fig. 4). The binding of nucleotide Cangrelor 32, which is now an
approved antithrombotic drug, was well accommodated in the
same orientation as 2-MeSADP 28 in its P2Y12R complex (Fig. 6
left). The adenine moiety forms π�π stacking with Tyr3.33, sug-
gesting that nonaromatic nucleobase substitution is not possible at
P2Y12R (Fig. 4). Although bulkier than the corresponding
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substitutions in 28, the C2 andN6 substituents fit in small pockets
delimited, respectively, by TMs 3, 4, and 5 and at the base of the
binding site toward TM6. The binding of Ticagrelor 33, which was
the first competitive P2Y12R antagonist [95] to be approved as an
antithrombotic drug, required a P2Y12R hybrid model to accom-
modate the extended C2 and N6 groups. However, SuMD simula-
tion did not predict the proposed position of 33 in the orthosteric
binding site of P2Y12R [58].

3.2.3 Medicinal

Chemistry of the P2Y14R

The P2Y14R is activated by UDP-sugars and is the focus of
structure-based ligand design studies. Homology modeling based
on the closely related nucleotide-P2Y12R structure (with 45%
sequence identity), docking and MD predicted the position of the
nucleotide P2Y14R agonists [96]. The uridine moiety of
UDP-glucose 30 is bound in the same region as the adenosine
moiety of ADP 27a in the P2Y12R (Fig. 6 left), and a similar
analogy applies to the 50-diphosphate moieties. The uracil ring is
located in a smaller hydrophobic region of the binding site than the
corresponding region in P2Y12R, which is consistent with this
receptor’s strong preference for uracil nucleotides. The glucose
moiety is predicted to bind in the second subpocket of the bifur-
cated orthosteric binding site of P2Y14R, which is present yet
vacant in the P2Y12R. Because of its predicted position facing the
ELs, this glucose moiety is amenable to structural modification
without impairing receptor binding and is used as an attachment
site to produce a high affinity fluorescent agonist of P2Y14R,
MRS4183 (structure not shown) [96]. In that fluorescent ana-
logue, a boron-dipyrromethene TR (BODIPY TR) fluorophore is
coupled by amide linkage to the distal carboxylate of
UDP-glucuronic acid.

Fig. 6 High-resolution X-ray crystallographic structures of the hP2Y12R with agonist 2-MeSADP (28) bound
(purple carbon atoms, left), and comparison with a homology model of the hP2Y14R with potent nonnucleotide
antagonist MRS4217 (37) bound (pink carbon atoms, right) [14]
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These new advances in understanding P2Y14R structure, based
on P2Y12R X-ray structures and computational approaches, are
now being applied to the synthesis of more drug-like antagonists.
4-(4-(Piperidin-4-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-
naphthoic acid (PPTN, 36) [97, 98] is a naphthoic acid derivative
that was determined to be highly potent and selective for the
P2Y14R. PPTN was originally prepared by a pharmaceutical indus-
trial laboratory based on a high throughput screening hit [97], and
later demonstrated a high potency and selectivity for P2Y14R
[98]. This compound has poor physical properties and low bio-
availability, but was used as a lead compound for the structure-
based design of novel antagonists in which the naphthalene moiety
was substituted with less hydrophobic bioiosteres [14]. A compu-
tational pipeline was used to compare P2Y14R recognition of pro-
posed analogues and led to the identification of 40-(piperidin-4-yl)-
5-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-[1,1-
0-biphenyl]-3-carboxylic acid (MRS4217, 37), which was only six-
fold less potent than PPTN in a fluorescence-based binding assay in
whole cells. Docking and MD simulation suggested that the com-
pound was able to establish an H-bond network with Lys2.60,
Lys7.35 and Tyr3.33 along with a π–π tacking interaction with
His5.36 (Fig. 6 right). These interactions were stably maintained
during 30 ns of MD simulations.

Chemical tools for structural probing of these GPCRs and
improving assay capabilities, such as fluorescent probes of the
inflammation-related P2Y14R [96, 99], were designed with the
aid of docking and MD. This was especially important for drug
discovery at the P2Y14R, because there are no high affinity radi-
oligands. The high affinity fluorescent antagonist MRS4174 (struc-
ture not shown, Ki 0.08 nM) was designed as a PPTN analogue, in
which a fluorophore (AlexaFluor488) is strategically tethered
through the alkylation of the piperidine ring’s amino group. The
location of the functionalized chain was planned at this position
based on a prediction from docking of the parent antagonist, which
featured the piperidine moiety exposed to the extracellular
medium. The affinity gain with respect to PPTN is predicted to
be from polar interactions of the charged fluorophore moiety with
specific amino acids of the P2Y14R ELs.

4 Notes

Recent breakthroughs in computational modeling approaches have
impacted the medicinal chemistry aimed at discovering new ligands
for adenosine and P2Y receptors. Purine receptor structures and an
interdisciplinary approach have enabled the elucidation of their
biological role, the conceptualization of future therapeutics, and
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novel ligand discovery. Computational approaches based on A2AAR
X-ray structures guided the identification and refinement of novel
A3AR agonists for treating chronic neuropathic pain, on the basis of
a highly rigidified (N)-methanocarba scaffold. Molecular docking
and MD aided the design of fluorescent AR and P2Y14R probes as
chemical tools for structural exploration of these GPCRs and for
improving assay capabilities. Computational approaches based on
P2Y12R structures guided the design of more drug-like antagonists
of the inflammation-related P2Y14R. The molecular recognition of
positive (for A3AR) and negative (P2Y1R) allosteric modulators has
also been modeled to shed light on ARs and PYRs allosteric modu-
lation. Thus, computational modeling based on physically deter-
mined structures is now an essential tool for GPCR ligand design.
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Chapter 4

A Structural Framework for GPCR Chemogenomics:
What’s In a Residue Number?

Márton Vass, Albert J. Kooistra, Stefan Verhoeven, David Gloriam,
Iwan J.P. de Esch, and Chris de Graaf

Abstract

The recent surge of crystal structures of G protein-coupled receptors (GPCRs), as well as comprehensive
collections of sequence, structural, ligand bioactivity, and mutation data, has enabled the development of
integrated chemogenomics workflows for this important target family. This chapter will focus on cross-
family and cross-class studies of GPCRs that have pinpointed the need for, and the implementation of, a
generic numbering scheme for referring to specific structural elements of GPCRs. Sequence- and structure-
based numbering schemes for different receptor classes will be introduced and the remaining caveats will be
discussed. The use of these numbering schemes has facilitated many chemogenomics studies such as
consensus binding site definition, binding site comparison, ligand repurposing (e.g. for orphan receptors),
sequence-based pharmacophore generation for homology modeling or virtual screening, and class-wide
chemogenomics studies of GPCRs.

Key words G protein-coupled receptors, GPCRs, Crystal structures, Chemogenomics, Drug discov-
ery, Ligand repurposing, Numbering schemes, Mutations

1 Crystal Structures Reveal Common and Specific Features of GPCRs

G protein-coupled receptors (GPCRs) are the largest family of cell
membrane embedded proteins. GPCRs recognize and bind endog-
enous ions, small molecules such as neurotransmitters, lipids, car-
bohydrates, nucleotides, amino acids, and taste and odorant
molecules as well as larger molecules such as peptide hormones
and proteins. Upon binding these molecules from the extracellular
space, a signal is relayed to the intracellular space by activating
various signaling pathways [1, 2]. Because of their abundance,
specific expression patterns, biological function, and druggability
at least one-third of all marketed drugs act on GPCRs [3–6], and
these receptors are implicated in many medical conditions includ-
ing immunological, cardiovascular, and neurological disorders,
cancer and obesity. There are 825 human GPCRs including

Alexander Heifetz (ed.), Computational Methods for GPCR Drug Discovery, Methods in Molecular Biology, vol. 1705,
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olfactory receptors [7], however, surprisingly only 108 of them are
already exploited targets by approved drugs and 66 additional tar-
gets are being evaluated in clinical trials. Furthermore, 100–160
GPCRs (depending on the definition) are currently undercharac-
terized (so-called orphan receptors) with no or only a few known
ligands and unknown endogenous ligands, which are potentially
exploitable drug targets with novel mechanisms of action
[8–10]. GPCRs are classified into the classes A-F for all human
and nonhuman GPCRs [11, 12] (A: Rhodopsin-like receptors
divided into 19 subfamilies, B: Secretin receptor family divided
into B1: Secretin receptors, B2: Adhesion receptors, B3: Insect
Methuselah-like proteins, C: Metabotropic glutamate/pheromone
receptors divided into five subfamilies, D: Fungal mating phero-
mone receptors, E: Slime mold cAMP receptors, F: Frizzled/
Smoothened receptors, and Taste2, which are now considered as
their own class), or according to the alternative GRAFS (Gluta-
mate, Rhodopsin, Adhesion, Frizzled, Secretin and additionally
Taste2) system [13, 14] for the human receptors.

GPCRs feature a conserved seven transmembrane spanning
helical fold connected by intra- and extracellular loops. In the past
two decades, advances in membrane protein engineering and struc-
ture elucidation have facilitated an outset followed by an exponen-
tial increase in the number of solved GPCR crystal structures.
Altogether over 213 crystal structures are now available (25 Sep-
tember 2017) for 43 unique receptors (47 including orthologs)
belonging to all of the human classes (A-C, F) [15–20] and
families, with the exception of the Taste type 2 and Adhesion
families (Fig. 1). These crystal structures comprise GPCRs in com-
plex with small molecule, peptide, and protein ligands, activity
modulating (sodium) ions, and stabilizing membrane lipids (cho-
lesterol), in active and inactive states, and also in complex with
signaling proteins or surrogates, as shown in Fig. 1. The structures
have greatly enhanced our understanding of GPCR protein struc-
ture, ligand binding, and signaling [38, 39]. Moreover, they have
revealed shared as well as receptor-specific information on ligand
binding sites [40–42] and conformational changes during receptor
activation and signaling protein interactions [43]. The transmem-
brane domain is responsible for endogenous ligand binding and
signal transduction in class A receptors as well as comprising part of
the binding site of peptide ligands in class B1 receptors. Class
B2, C, and F receptors furthermore feature large extracellular
domains involved in protein-protein interactions or ligand binding,
whereas the transmembrane domain may be targeted by allosteric
modulators in these receptors [44, 45].

Given the large body of comparative research carried out on
GPCRs, the need arose for a framework for referring to specific
structural elements over all GPCRs, GPCR classes, subfamilies, or
unique receptors. Structural alignment is feasible for the
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Fig. 1 GPCR phylogenetic tree with crystallized receptors and number of publicly available crystal structures
with unique ligands indicated. The alignment of representative class A and all class B, C and F GPCR X-ray
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well-conserved fold of the transmembrane domain (Fig. 1) and
various naming conventions and numbering schemes have been
proposed in the literature to facilitate the identification of
corresponding residues using generic residue numbers [46]. Such
generic residue numbers allow, for example, for the construction of
sequence alignments, identification of structural features across
receptor subtypes, evolutionary analysis, mutant effect analysis,
definition of canonical ligand binding sites, etc. [47, 48]. The cur-
rent chapter will focus on generic numbering schemes and the way
they enable structural chemogenomics analyses aimed to identify
links between features of GPCR ligands and their binding sites, and
it will discuss how generic numbering schemes have facilitated
knowledge transfer and the elucidation of common features
among GPCRs.

2 Consistent GPCR Residue Numbering Framework for Comparative Structural
Analysis

This section provides an overview of the various sequence-based
numbering schemes applied for describing residue positions in the
different GPCR classes and the more recently introduced structure-
based generic numbering schemes. It will furthermore draw atten-
tion to the advantages and caveats of the individual GPCR residue
numbering schemes.

2.1 Sequence

Conservation-Based

GPCR Numbering

Schemes

Class A or Rhodopsin-like GPCRs comprise the largest family of
receptors including opsins, aminergic, nucleotide, carboxylic acid,
lipid, opioid, chemokine, hormone, and olfactory receptors.
Generic numbering schemes were first introduced for this family.
The Ballesteros-Weinstein (BW) numbering [49] was introduced in
1995 and is the most frequently used scheme for class A GPCRs
throughout the literature. The BW numbering scheme is based on
the sequence alignment of all class A GPCR sequences and the
identification of the most conserved residue in each transmembrane
helix (TMs). A generic residue number consists of the number of
the helix (1–7), a dot separator, and a two-digit number. The
two-digit number denotes the relative position (upstream or down-
stream) to the most conserved TM residue, which is denoted with

�

Fig. 1 (continued) structures reveals the conserved transmembrane heptahelical fold as well as large
differences in the extra- and intracellular loop regions and in the structures co-crystallized in complex with
Gs-protein or Arrestin-1. Moreover, the diversity of ligand binding sites is also highlighted. The aligned
structures are Rhodopsin (PDB: 1F88 [21], 5DGY [22] co-crystallized with Arrestin-1), β1 (PDB: 2Y00 [23]),
β2 (PDB: 3SN6 [24] co-crystallized with trimeric Gs-protein), H1 (PDB: 3RZE [25]), CXCR4 (PDB: 3ODU [26]),
CCR2 (PDB: 5T1A [27]), GCGR (PDB: 4L6R [28], 5EE7 [29]), CRF1 (PDB: 4K5Y [30], 4Z9G [31]), mGlu1 (PDB:
4OR2 [32]), mGlu5 (PDB: 4OO9 [33], 5CGC [34], 5CGD [34]), SMO (PDB: 4JKV [35], 4N4W [19], 4O9R [36],
4QIM [19], 4QIN [19], 5L7D [37] truncated before S190, 5L7I [37])
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50. R3.50, for example, is the most-conserved residue located in
TM3 (it is conserved in 94% of the class A GPCRs) and is part of the
so-called D[E]RY motif involved in an ionic lock stabilizing the
inactive receptor state. C3.25 is also located in TM3, but 25 posi-
tions before R3.50 and is also highly conserved (in 87% of class A
GPCRs and 83% in all GPCRs), and forms a characteristic disulfide
bridge with a cysteine located in extracellular loop 2. For a com-
plete overview of conserved positions in the different GPCR clas-
ses, see Table 1.

Alternative sequence-based numbering schemes have been pro-
posed by Oliveira [50], and Baldwin [51, 52] and Schwartz
[53, 54] (BS) a few years earlier but they did not gain such wide-
spread usage in the literature. These numbering schemes attempted
to assign similar numbers to the amino acids located at the same
height of the membrane based on the structure of bacteriorhodop-
sin (PDB: 1BRD [55]), bovine [56], and frog rhodopsin [57]
determined by electron cryo-microscopy. Oliveira et al. used an
iterative profile alignment method that was based on knowledge
about the function of key residues to align 225 rhodopsin-like
GPCRs and in each helix the number of the most conserved residue
is a multiple of 10 while the start of the helix is at the same time as
close as possible to 100 times the number of the helix. Baldwin and
Schwartz used an alignment of 105 sequences and defined each
helix to include 26 amino acids based on hydrophobicity profile
analysis. The central position numbers (13 and 14) of each helix
were assigned to the middle of the region that had the most sites
that could be in contact with lipid. In these numbering schemes the
orders of TM2, TM4, and TM6 sequences are reversed and fur-
thermore the variations in length and inclination of the helices,
which were uncovered later by the novel crystal structures, render
them inefficient to use. The original format of these schemes also
differs, the Oliveira numbering does not use a separator, while the
BS numbering uses roman numerals for the TM helix and a colon as
a separator, for example, R3.50 according to the BW scheme is
denoted as 340 according to Oliveira and III:26 according to the
BS scheme.

2.2 Comparison of

Conserved Residues

and Motifs within

GPCR Classes

Numbering schemes using a similar logic to the BW numbering
have later been proposed by Wootten for class B [58], Pin for class
C [59], and Wang for class F GPCRs [19]. However, the reference
positions for these numbering schemes are chosen to be the most
conserved residues within each of these classes and therefore differ
from the ones used by the class A-specific BW scheme. Although
the reference residues in the Wootten numbering were derived
from the sequence alignment of the B1/secretin subclass, they are
also the most conserved residues for five TMs of the B2/adhesion
receptor TM helices and highly conserved in the remaining two
TMs [60]. Class F is a small class of receptors and in cases where a
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helix had more than one fully conserved position, the one closest to
the class A BW numbering was used by Wang et al. as the reference
position. Since these numbering schemes share the same format-
ting, it was proposed to use the class designation as a lower case
letter after the residue number if there is possible ambiguity [16].

Different GPCR classes share reference positions in TM1
(S1.50b/G1.50c), TM3 (R3.50a/W3.50f, E3.50b/K3.50c), TM4
(W4.50a50b50f), TM5 (P5.50a/L5.50c), and TM7 (P7.50a/I7.50f), as
shown in Table 1. The most conserved residue in TM3 in class B
GPCRs, for example, is E3.50b that structurally aligns with the con-
served K3.50c in class C GPCRs and corresponds to positions 3.46a
and 3.46f in class A and class F GPCRs, respectively. For class F
GPCRs the most conserved residue in TM3 is W3.50f, which struc-
turally overlaps with the class A R3.50a. Consequently, the conserved
cysteine in the TM3-ECL2 cysteine bridge gets the number C3.25a/
C3.25f in class A and F GPCRs, and C3.29b/C3.29c in class B and C
GPCRs. The most conserved residues in the seven transmembrane
helices are also often part of larger conserved motifs in the different
receptor classes and are implicated in signal transduction. Classes A
(CW6.48axP6.50a), B1 (W6.53b), and C (W6.50c) for example share a
conserved tryptophan residue that is part of the so-called toggle
switch that is implicated in the activation of class A GPCRs
[61]. The rearrangement of conserved hydrophobic contacts
between hydrophobic residues in TM3 (including I/L/M3.46a)
and TM6 (including L/V/I6.37a) connects the toggle switch with
the ionic lock between TM3 (D[E]R3.50aY) and TM6 (D/E6.30a)
and the intracellular end of TM7 (NP7.50axxY7.53a) along the activa-
tion pathways of class A GPCRs [62]. Motifs with a different com-
position but possibly a similar function have been identified in
class B, C, and F receptors as well and are shown in Fig. 2. The
ionic locks in Class B (H2.50b and E3.50b) and class C (K3.50c and
E6.35c) GPCRs for example form H-bond networks with conserved
residues in TM7 (FQG7.50bxxVxxxY7.75b, FxP7.50cKxY7.53c) that
have been proposed to facilitate conformational changes of TM7
associated with receptor activation in these GPCR classes [16].

2.3 From Gapless to

Structure-Based GPCR

Sequence Numbering

Although the sequence conservation between the different GPCR
classes is low, the structural fold is well conserved and the elucida-
tion of multiple crystal structures from all the major classes has
made it possible to construct structure-based cross-class sequence
alignments. Such alignments are currently easily available in an
interactive manner in GPCRdb [66, 67]. Although TM helices
are known to deviate laterally, and by their tilt angles and kinks in
the helices, local helix alignments are still possible and do not
complicate generic numbering attempts. However, the former
assumption that sequences should always be aligned without gaps
within the TM helices is no longer valid. Bulges and constrictions
have been identified that are localized to one π-helical (additional
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Fig. 2 Conserved structural motifs in class A, B, C, and F GPCRs: β1 (PDB: 2Y00 [23]), GCGR (PDB: 4L6R [28]
for TMD, 4ERS [63] for ECD, 5EE7 [29] for alternative W4.50b rotamer), mGlu1 (PDB: 4OR2 [32] for TMD, 1EWK
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residue) or 310-helical turn (absent residue), respectively. This
results in shifted generic numbering for receptors containing the
bulges and constrictions relative to the receptors that have standard
α-helices, thereby offsetting the comparison of residue positions for
such receptors. Isberg et al. identified nine bulges and six constric-
tions in all TMs except in TM3 [46]. These were found across all
classes A, B, C, and F; and two constrictions in TM4 and TM7 were
even found in both classes A and B. Some helical distortions affect
only a specific receptor subtype, whereas others are shared by the
majority of receptors in a GPCR class. In the same paper, a new
structure-based generic numbering scheme was proposed that cor-
rects for the bulges and constrictions by comparing the affected
structures to standard α-helices, and assigns the same number as the
preceding residue followed by the digit 1 for the most protruding
residue in the bulge and skips a number for the constrictions. This
method also future-proofs the residue numbers in case more dis-
tortions are discovered later. To distinguish it from the former
numbering schemes the character “x” is used as a separator and
may be used together with the sequence-based numbering. The
usage of both is recommended as the structure-based numbering
can only be transferred to non-crystallized receptors through
sequence motif matching. In the current overview, we have
assigned the structure-based number in case these are different
from the BW number. The examples of the use of this structure-
based GPCR residue numbering scheme are described below and
presented in Fig. 3.

Bulges and constrictions also affect which amino acids are
projected toward the core of the TM domain and toward the
membrane. In some cases, this also affects the composition of the
binding pocket and it is very important to take this fact into
consideration for homology modeling or chemogenomic studies
on GPCRs. Figure 3 shows several examples of distortions around
experimentally determined binding modes of GPCR ligands. For
example, a bulge in TM2 denoted by the structure-based generic
number 2x551 is present in all the aminergic GPCR crystal struc-
tures and in a few peptide receptors as well, but it is not present in,
for example, chemokine receptors and thus orienting D2.63x63a to
the minor binding pocket of CXCR4. TM4 shows constrictions in
several class A receptors and, for example, in the histamine H1

receptor (H1R) this directly affects the orientation of W4.56x57a

into the major aminergic binding pocket forming aromatic stacking
interaction with the butterfly-shaped tricyclic system of doxepin
and other similar H1R ligands. A bulge located in TM5 in the

�

Fig. 2 (continued) [64] for VFD, 2E4U [65] for CRD from mGlu3), SMO (PDB: 5L7D [37]). TMD transmembrane
domain, ECD extracellular domain, CRD cysteine-rich domain, VFD Venus flytrap domain, LD linker domain
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Fig. 3 Bulges and constrictions in GPCR crystal structures determining the structure of ligand binding sites: H1
(PDB: 3RZE [25]), CXCR4 (PDB: 3ODU [26]), β1 (PDB: 2Y00 [23]), SMO (PDB: 4N4W [19]), mGlu1 (PDB: 4OR2
[32]), CRF1 (PDB: 4Z9G [31]), mGlu5 (PDB: 5CGD [34]). Class specific continuous and gapped structure-based
generic numbers are indicated by colored/gray and black numbers, respectively
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class F smoothened receptor orients F5.46x461f toward the mem-
brane and projects the smaller V5.47x47f toward the binding pocket
of one of the cocrystallized ligands, SANT-1. Finally, though the
list is longer, both a constriction and a bulge in TM7 cause this helix
to adopt very different shapes in class C receptors affecting the
binding sites of allosteric modulators located deep in the trans-
membrane bundle. The constriction between 7x47b and 7x49b is
conserved in class A and B receptors but not in class C receptors.
Furthermore, the bulge M/L7x471c in mGlu receptors cause the
extracellular half of TM7 to be perpendicular to the membrane and
the intracellular half tilting outward, while in class A and B recep-
tors it is the opposite. The binding site of the cocrystallized ligands
in the CRF1 structure and the mGlu1/5 structures is located next to
the kink in TM7 explaining the strict SAR of mGlu allosteric
modulators.

2.4 Residue

Numbering in Loops

and Helix 8

On top of the numbering of the transmembrane helices now helix
8 and ICL1/2 and ECL1/2—which contain conserved secondary
structure elements—are also numbered in GPCRdb denoting the
most conserved residue with 50 and upstream and downstream
residues by continuously decreasing and increasing numbers. For
example, the conserved cysteine bridge in ECL2 gets the number
45x50 (45 for the loop between TM4 and TM5) and the well-
conserved phenylalanine in H8 gets the number 8x50. ICL1 often
features a single-turn helix, ICL2 a double-turn helix, and ECL1 a
bend (aromatic-proline-hydrophobic). However, amino acids out-
side these conserved motifs can still only be referred to by their
UniProt sequence numbers. The generic GPCR numbering
scheme has also inspired the definition of numbering schemes for
other transmembrane protein families [68, 69].

2.5 Assigning and

Comparing Different

Residue Numbering

Schemes

All of the aforementioned numbering schemes are available in
GPCRdb [66, 67] through the web interface or the GPCRdb
REST API. GPCRdb also provides a service to assign generic
numbers to GPCR structures uploaded by the user. Furthermore,
the various numbering schemes returned by the GPCRdb REST
API are easily retrieved and utilized in chemogenomics workflows
in KNIME [70] using the 3D-e-Chem GPCRdb KNIME nodes
[71, 72] which are discussed in more detail in Subheading 3.6.

3 Applications of GPCR Residue Numbering to Structural Chemogenomics Studies

3.1 Consensus

Binding Site

Definitions and Ligand

Repurposing

After the elucidation of the first rhodopsin crystal structure in 2000
there was a surge of GPCR chemogenomics studies primarily aimed
at comparative modeling and binding site characterization of other
GPCRs and defining common motifs or motifs conveying selectiv-
ity in the receptors. The identification of the common binding site
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in different GPCR classes was one of the most common endeavors.
For example, Bondensgaard et al. docked previously identified
privileged GPCR scaffolds (i.e., molecular substructures that
occur frequently in active ligands of different receptor subtypes,
Fig. 5) to rhodopsin-based homology models of their respective
targets to identify common binding site features of class A receptors
[73]. They furthermore extracted conservation entropy informa-
tion of a sequence alignment of 111 class A GPCRs and identified a
highly conserved hydrophobic core in GPCRs. The authors identi-
fied a binding pocket of 35 residues using the BW numbering and
three conserved aromatic residues (F5.47a, F6.44a, and W6.48a)
involved in the binding of the investigated privileged scaffolds.
From the new crystal structures, we know that W6.48a indeed con-
tacts most of the ligands bound in the TM binding pocket but the
two other residues are generally located below the major binding
pocket. Residues F5.47a and F6.44a do not interact with any of the
class A GPCR crystal structures that have been reported so far, but
have been shown to play an important role in the activation mech-
anism of class A GPCRs [38, 43, 62].

In another study a consensus binding pocket was identified
with 22 amino acids given by their BS numbers and possible ligand
interaction features (hydrophobic, aromatic, charged, polar) were
encoded in a fixed length fingerprint to facilitate binding site simi-
larity assessment of class A GPCRs by the physicogenetics method
[74, 75]. The binding site similarity analysis revealed the AT1/

2 receptors as evolutionary distinct receptors but possessing a simi-
lar binding pocket to the DP2 receptor (also known as CRTH2),
which was the target of investigation. Therefore, a set of angioten-
sin ligands was screened against DP2 and also a commercial library
was screened against a pharmacophore model derived from the
rhodopsin-based DP2 homology model and AT1/2 mutagenesis
and SAR data mapped on the homology model. Using the repur-
posing methodology, two AT1 ligands were found to possess
micromolar activity at DP2, whereas screening of the commercial
library yielded several nanomolar ligands (Fig. 5). The anchor point
the authors identified for the negatively charged tetrazole ligands
was K V:08 (BS numbering) or K5.42x43a (BW and generic number-
ing) which is close in the AT1 crystal structures (Fig. 6, PDB: 4YAY
[77] and 4ZUD [76]) to the tetrazole ring but R4.64x65a is the
residue directly interacting with it, which is also conserved in the
DP2 receptor. Several amino acids of the binding pocket were
correctly predicted by the study (S3.29a, F3.32a, F3.33a, W6.48a,
Y6.51a, F7.43x42a using BW and generic numbers) but some others
were located deeper in the TM bundle, which are known to contact
ligands in other receptors but not in the AT1 crystal structures. As
Frimurer and Högberg later point out the BW and BS numbering
schemes were gaining similar popularity and it was a matter of
preference of the authors which scheme was used in publications.
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They also gave a numbering conversion table for the 22 amino acids
constituting the consensus binding site [75]. Using the same phy-
sicogenetics method the MCHR1 receptor was identified to pos-
sess similar features in its binding site as the dopamine D2 and D3

receptors and therefore dopamine antagonist scaffolds were utilized
in identifying novel MCHR1 ligands with D3.32a hypothesized to
interact with the basic ligand moieties similarly to aminergic recep-
tors [75, 78]. Finally, CCR2 was found to have similar features in its
binding site to serotonin receptors with E7.39x38a anchoring the
positively charged ligands, which was verified by the recently pub-
lished CCR2 crystal structure.

The consensus binding pocket approach was extended to class
C receptors in a similar analysis as the previous ones but using a
robust alignment algorithm based on functional amino acid con-
servation indices, able to cope with the low sequence similarities
between GPCR classes [79, 80]. Using this method an alignment
between bovine rhodopsin and rat mGlu1 and mGlu5 and human
CaSR TM helices was possible and a consensus binding pocket of
35 residues given by their class A BW numbers. Converting the
residue maps of the consensus binding pocket to pharmacophore
models allowed the prediction of ligand binding modes and the
identification of key interacting residues for mutational studies. The
authors correctly predicted that ligands like EM-TBPC (such as the
cocrystallized FITM) interact with T7.32x33c in a more extracellular
pocket in mGlu1 than the acetylene ligands MPEP (such as the
cocrystallized Mavoglurant, PDB: 4OO9 [33], Fig. 4) deep in the
TM bundle in mGlu5 contacted by e.g., P3.40c, Y3.44c, L5.44c,
W6.50c, and F6.53c. Although the ligands that have been later
cocrystallized with the human mGlu1 and mGlu5 are not exactly
the ones studied there, they are structurally similar and the identi-
fied interacting residues are also in contact with the cocrystallized
ligands (except for N5.37c).

Surgand et al. provided a systematic and detailed overview of
the TM sequence alignments of all non-olfactory receptors and
compared binding sites based clustering into 22 clusters to the full
sequence-based phylogenetic tree for all the GPCR classes
[136]. They analyzed the composition of binding sites for all the
GPCR clusters and related it to the physico-chemical parameters
of their known ligands and receptor mutagenesis studies. Further-
more, one of the first attempts was made to relate orphan GPCRs
to similar, well-studied GPCRs and to propose ligand repurposing
for orphans (this approach is further discussed in the following
section). GPR88, for example, was identified to be close to dopa-
mine D1 and D5 receptors when considering the TM domain, but
clustered with class C GPCRs based on the 30 residues designated
by the authors to form the binding site. The binding site
definition was used by the authors to construct a fixed-length
protein-ligand fingerprint (PLFP) consisting of 240 bits
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describing the pharmacophore properties of the binding pocket
(8 bits per residue) concatenated with MACCS fingerprints of the
associated ligands [137]. Machine learning methods such as ran-
dom forest (RF) and support vector machines (SVM) were trained
to predict ligand-target associations and were found to outper-
form earlier methods in retrospective validation.

3.2 Binding Site

Comparison Aids Tool

Discovery for Orphan

Receptors

A similar large-scale analysis of sequence alignments and meta-
analysis of the previously reported binding site definitions was
performed by Gloriam et al. [47]. In this review seven previously
published binding site definitions were compared and analyzed in
light of the available rhodopsin, β1/2 and A2A structures and muta-
tional data, and a new consensus binding pocket residue superset
was proposed using the BW numbering scheme consisting of
44 amino acids contacting ligands in any known complexes at the
time. Furthermore, clustering was also performed based on the
conservation or these 44 residues. In this clustering for example,
lipid receptors were grouped into larger clusters than in previous
phylogenetic analyses and also several orphan receptors were pro-
posed to be activated by lipid ligands. For example, the orphan
receptors GPR3, GPR6, and GPR12 had been proposed to bind
sphingosine 1-phosphate and were grouped to the lysophospholi-
pid receptors. GPR23 and GPR92 had been proposed to be acti-
vated by lysophosphatidic acids and grouped close to lipid receptors
with similar ligands. GPR37 had been proposed to be activated by
the neuropeptide head activator and was grouped adjacent to
endothelin receptors in a large peptide binding receptor cluster. A
binding site similarity analysis was also performed for the GPR139
orphan receptor over the 44 identified contact residues
[138]. Besides other orphan receptors, the human MC2/4 and
TRH1 receptors were found to possess the highest similarity in
their binding pockets and therefore peptide ligands of these recep-
tors and related peptides were tested against GPR139 (Fig. 5). The
peptide hormones β-MSH and ACTH and several truncated pro-
ducts of the latter (α-MSH, α-MSH1–9, α-MSH1–10, and the core
tetrapeptide α-MSH6–9 ¼ HFRW) were indeed found to activate
GPR139 with 0.3–6 μM EC50. Furthermore, α-MSH1–9 was pre-
dicted to originate from the pre-pro-protein POMC via a putative
new cleavage site.

The class C GPRC6A receptor was recently discovered and
deorphanized and found to be activated by basic L-α-amino acids
L-Arg, L-Lys, and L-ornithine [139]. Another ligand repurposing
study from the closely related CaSR receptor identified Calindol
and NPS2143 as nonselective negative allosteric modulators of
GPRC6A binding in the TM domain anchored by E7.32x33c

[140]. Chemogenomics studies revealed that while the similarity
of the GPRC6A receptor to class A receptors based on the full TM
region is low, it is substantially similar in its binding site. This
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finding allowed repurposing of the privileged 3-substituted 2-phe-
nyl-indole scaffold from class A receptors to the class C GPRC6A
receptor and the discovery of micromolar but selective GPRC6A
negative allosteric modulators [141].

Scaffold 1
5-HT6R/MC4R

Scaffold 2
Grehlin/MC4R

Scaffold 3
Grehlin/AT1R

Bondensgaard et al.73

Privileged scaffolds

Candesartan (AT1) 
DP2R pIC50 = 5.7

TM3170
DP2R pIC50 = 5.7

MPEP
mGlu5R pKd= 3.1 nM

EM-TBPC
mGlu1R pKd= 3.1 nM

Kratochwil et al.79/Malherbe et al.80

Binding site residues identification

Frimurer et al.74, 75

Repurposing AT1 ligands

5-HT2BR pKi=6.0
κ-opioid pKi=6.0

Y5R pKi=8.1
CB2R pEC50=6.9

Y5R pKi=5.7
MT2R pEC50=4.8

Ngo et al.148

Orphan receptor ligand discovery

Lin et al.147

Predicted ligand associations

SHA-68 (NPS)
GPR37L1 pIC50 = 5.6

Sanders et al.153

Ligand and structure-based virtual screening

β2R 
pKi = 6.1

A2AR 
pKi = 5.9

S1P1R 
pEC50 = 4.7

Klabunde et al.155

Sequence-based pharmacophore models

C3aR 
pEC50 = 6.5

β2R
pEC50 = 5.4

Kooistra et al.159, 160

Function-specific structure-based virtual screening

β2R
pEC50 = 5.0

C3aR 
pEC50 = 5.7

JNJ-10397049 (OX2R)
GPR37L1 pIC50 = 5.3

Fig. 5 Selected examples of ligands used in, or identified by structural chemogenomics studies as discussed in
Subheading 3. Where available the affinities or potencies of the ligands for the targeted GPCRs are provided
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Sequence-based clustering was compared to clustering by simi-
larity of known ligands of the receptors (thus naturally excluding
orphans) by van der Horst et al. [142]. GPCR ligands were col-
lected from ChEMBL [143], GLIDA [144], and the KiDB [145]
and were compared using frequent substructure mining. The orga-
nization of the resulting ligand-based receptor classification tree is
overall similar to the sequence-based one, however, receptor sub-
families were more scattered revealing evolutionary distinct recep-
tors recognizing similar ligands and vice versa. For example,
purinergic and adenosine ligands cluster together, while the mus-
carinic M2 receptor and histamine receptors cluster together with
chemokine, opioid, and peptide receptors. In another study, the
Similarity Ensemble Approach (SEA) [146] was used to cluster
GPCRs by their ligand similarities to obtain the pharmacological
organization of the receptors with a similar outcome as the previous
study [147]. The general organization of the map was similar to the
sequence-based one but the muscarinic receptors shifted away from
the other biogenic amine GPCRs and toward the chemokine recep-
tors, β-adrenergic receptors separated from the α-adrenergic recep-
tors moving closer to the cannabinoid lipid receptors and
melatonin receptors, cysteinyl leukotriene, and leukotriene B4
receptors clustered together with lipid GPCRs, and so on. Several
new ligand associations from this map were experimentally tested
and verified such as between 5-HT2B and the κ-opioid receptor,
and between the NPY5 and the CB2 and MT2 receptors (Fig. 5).

With the elucidation of crystal structures from a number of
different class A receptors another approach incorporating also a
scaling by the interaction strength of each contact residue with
cocrystallized ligands was used to update the pharmacological
organization map of GPCRs [148]. In this method termed CoIN-
Pocket crystal structures of 27 unique class A GPCRs were analyzed
and a superset of 61 residue positions given by their GPCRdb
numbers were used to define the class A TM binding pocket. It
was successful in recapitulating several previously known GPCR
associations such as the similarity between, among others, sst5
and various biogenic amine receptors, the MT2 and NPY5 recep-
tors, the muscarinic receptors and MCH1, and between CCR5 and
the δ opioid receptors. The method was used to identify pharma-
cological neighbors of the orphan GPR37L1 receptor (also called
Endothelin B receptor-like protein 2) and it was found that
endothelin receptors were in fact not good candidates for ligand
repurposing studies. Important ligand contacting residues were
predicted to be E3.32a, V3.33a, E6.51a, N6.55a, G7.35x34a, Q7.39x38a,
and F7.43x42a for GPR37L1, thus comprising a more acidic binding
site instead of the more basic one found in closely related receptors.
Instead, ligands of the pharmacologically related OX1/2, BB1–3 and
the NPS receptors were purchased and tested against GPR37L1
with three of the ten ligands displaying inverse agonistic effects in a
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concentration-dependent manner (Fig. 5). Thus, it can be seen that
chemogenomics methods can aid pharmacological tool discovery
for studying orphan GPCRs.

The currently available 213 GPCR crystal structures reveal
various binding pockets for small-molecule ligands (see Fig. 1).
Most of them are located between the transmembrane helices,
which allows for the definition of a consensus transmembrane
binding pocket based on experimentally observed contacts between
residues and small-molecule ligands. A comparison of such a bind-
ing site definition using the current GPCRdb protein-ligand inter-
action annotations and previous binding site definitions is shown in
Table 2, while ligand-contacting residues in noncanonical binding
sites and class B, C, and F receptors are shown in Table 3. Figure 4
lists all the small-molecule ligands cocrystallized with GPCRs and
important polar interactions between the ligands and pocket resi-
dues. However, given the large variations already observed in the
small-molecule binding pockets in GPCRs this list is likely to
further expand with the elucidation of novel GPCR structures.

3.3 Sequence-Based

Pharmacophore

Methods

A large-scale alignment of 13,324 sequences from UniProt [149]
and Ensembl [150] covering most of the species homologues of the
human set of GPCRs was used to predict residues involved in ligand
binding for any G protein-coupled receptor using the ss-TEA
method [151]. The subfamily-specific two entropy analysis
(ss-TEA) method identifies ligand binding residues by comparing
the conservation level of a residue position within a subfamily to the
level of conservation for this residue outside the subfamily. Resi-
dues highly conserved within but not outside of a subfamily are
likely to be involved in ligand binding or other specific functions of
the receptors within the subfamily. The method was tested on ten
cases with structural ligand binding information or abundant muta-
tional data and was found to correlate well with the known infor-
mation on ligand binding residues. The FFAR1 and CCR5 GPCR
crystal structures have since been elucidated and the key interacting
residues predicted by ss-TEA were indeed found to interact with
cocrystallized ligands: R5.39x40a, N6.55a and R7.35x34a with
TAK-875 in FFAR1 (Fig. 4, PDB: 4PHU [109]), and Y1.39,
W2.60a, Y3.32a and E7.39x38a with Maraviroc in CCR5 (Fig. 4,
PDB: 4MBS [110]) using the BW and generic numbering.

The large-scale alignment and entropy analysis were later used
in the Snooker method for automatic homology model creation,
binding site selection, and pharmacophore generation for the pre-
diction of ligand binding modes in GPCRs with yet no experimen-
tally determined structure [152]. The usefulness of the method was
demonstrated in binding mode reproduction of known beta-2-
adrenergic receptor ligands, the prospective prediction of the D3

receptor– Eticlopride complex in the community-wide GPCR
DOCK 2010 assessment, and in retrospective virtual screening
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Table 2
Consensus transmembrane binding pocket definitions for class A receptors. The number of crystal
structures in which amino acids at the specific positions (based on the GPCRdb structure-based
numbers) are contacting the cocrystallized small molecule are indicated out of a total of 134 class A
GPCR crystal structures (not including extrahelical and intracellular binding pockets or structures
with peptide/protein ligands; contacts defined by GPCRdb). Positions defined as comprising the
consensus transmembrane binding pocket in previous studies are marked with an X (data taken from
Refs. 24 and 77)
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against 15 diverse GPCRs. Snooker pharmacophore models were
successfully used in prospective virtual screening against the β2,
A2A, and S1P1 receptors affording 6, 18, and 3 novel active mole-
cules (Fig. 5) against these targets, respectively [153]. The pro-
posed ligand interacting amino acids R3.28a, E3.29a, Y5.39a, and
L6.55a (BW and generic numbering) for S1P1 were confirmed by
the experimentally determined complex structure with the ligand
ML056. Finally, the Snooker method was also extended to the class
of taste 2 receptors [154]. A structure-based pharmacophore of the
hTAS2R39 was built using Snooker, and revealed putative interac-
tion of flavonoid agonists and blockers with the residues N3.36a,
T5.45a, F6.55a, Q7.35, and N7.39a (BW and generic numbering). As
there are no bitter taste receptor structures solved yet, the valida-
tion of these predictions remains to be elucidated.

Another sequence-to-pharmacophore method called Pharma
was developed by Klabunde et al. [155]. In this method, pharma-
cophore features originating for clusters of amino acids in 13 refer-
ence GPCR crystal structures or homology models called
chemoprints were identified and a sequence alignment of

Table 3
Ligand contacting residues of noncanonical binding pockets in class A GPCRs and all class B, C, and
F GPCR crystal structures. The number of crystal structures in which amino acids at the specific
positions (based on the GPCRdb structure-based numbers) are contacting the cocrystallized small
molecule are indicated (contacts defined by GPCRdb)
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270 GPCRs by the BW numbering allowed for the creation of
sequence-derived 3–7 point pharmacophores for all of the studied
receptors. This method was prospectively applied to the comple-
ment component 3a receptor 1 (C3AR1), for which the pharma-
cophore model was based on an AT1 homology model resulting in
four hits with 0.3–3 μM EC50. The important pharmacophore
features from V3.32a, S3.29a, K5.42x43a and W6.48 for AT1 were
correctly defined in retrospect based on the AT1 crystal structures
(Fig. 6, PDB: 4YAY [77], 4ZUD [76]), however, F5.47a was pre-
dicted to contact the ligand but later it was found to be located
deeper in the TM bundle facing the membrane, and other impor-
tant interactions with Y1.39a and R4.64x65a were missed by the
method. The lower resolution of pharmacophore-based models,
however, still affords useful models for virtual screening as shown
by successful applications of the Snooker and Pharma methods.

Gloriam et al. developed a pharmacophore generation method
based on the available protein-ligand interaction information in
crystallized GPCRs [156, 157]. First, the cocrystallized ligands
from all class A GPCR structures were fragmented and specific
fragments were assigned to the amino acid(s) they are interacting
with. Then for any non-crystallized GPCR the closest homolog
with a crystal structure is selected and the fragments from other
X-ray structures are superimposed on this template (after correcting
residue positions for helix bulges and constrictions). Finally, the
pharmacophore points associated with the superimposed fragments
are clustered and representatives are selected to create the final
pharmacophore. The fragment sets are available in GPCRdb
[66, 67]. The method was validated in retrospective virtual screen-
ing against the H1 and H3 receptors, for which good ROC AUC
values (0.88 and 0.82 respectively) were achieved.

3.4 Structural

Determinants of

Ligand Functional

Effects

Not only the prediction of ligand binding but also of the functional
effects of specific ligands is of great interest for drug discovery.
Chemogenomics methods were also used to uncover specific
GPCR features responsible for the agonistic and antagonistic
effects. Wichard et al. used mutual information analysis of coupled
GPCR sequence and ligand descriptor data to extract features in
agonist and antagonist ligands responsible for their specific func-
tional effects, significant molecular features in GPCRs for recogniz-
ing these ligands, and furthermore for their interactions with
specific G protein coupling partners [158]. Positions extracted for
selective agonistic effects in the helices were mainly located between
TM1, TM2, and TM3 (e.g., 1.31a, 1.36a, 2.40a, 2.44a, 3.33a),
while selective antagonistic sensitive positions were located mainly
between TM5 and TM6 (e.g., 5.36x37a, 5.40x41a, 5.57a). Ligand
descriptors were not so sensitive for separating antagonists and
agonists but presence of alcohols and phenols, and larger polar
surface area were related to agonists while, for example, a larger
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Fig. 6 (a) General chemogenomics workflow scheme and (b) a specific workflow designed using the KNIME
analytics platform [70] that exploits and integrates heterogeneous data sources for the prediction of GPCR-
ligand interactions. The KNIME analytical workflow makes use of the 3D-e-Chem GPCRdb KNIME nodes
[71, 72] to collect phylogenetic and sequence information from GPCRdb on all class A GPCRs, then uses the
structure-based generic numbering scheme to construct a sequence alignment (Pivoting node), and performs
an ss-TEA analysis using the 3D-e-Chem ss-TEA score KNIME node for the prediction of hot spots in the
C3AR1 receptor. Finally, the top 15 predicted hot spot residues are selected for sequence comparison
(Similarity Search node) and a list of related receptors is returned of which the top 20 are shown, including
the crystallized AT1 receptor also identified to be similar in terms of binding pocket composition to C3AR1 in
Ref. 53. (c) The AT1 receptor binding pocket with co-crystallized Olmesartan (PDB: 4ZUD [76]). (d) Bioactivities
of the co-crystallized Olmesartan, the most potent C3AR1 ligand identified in Ref. 53 and the most similar AT1
ligand from ChEMBL. (e) Alignment of binding pocket residues of AT1 and C3AR1 from GPCRdb based on the
structure-based numbering scheme
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number of H-bond acceptors, total surface area, and number of
rings and aromatic bonds were related to antagonists. Interestingly,
residues that had a high correlation with specific G protein binding
were distributed across the TM bundle.

Kooistra et al. used protein-ligand interaction fingerprints
(IFPs) from 31 known β1 and β2 adrenoceptor crystal structures
for postprocessing docking poses of known β1/2 partial/full ago-
nists, antagonists/inverse agonists, and physicochemically similar
decoys [159]. 47 residues within 4.5 Å of any cocrystallized ligand
were determined as the consensus binding pocket given by their
BW numbers and a fixed length IFP was derived from all crystal
structures and docking poses. The authors found that selective
enrichment of partial/full agonists could be achieved by using
agonist IFPs to post-process docking poses in crystal structures
and furthermore the predicted IFP for the small full agonist nor-
epinephrine gave the highest retrieval rate of agonists over antago-
nists in all the structures. Moreover, it was found that IFPs of
ligands with the same functional effect were more similar to each
other than those of the different effect. The analysis showed that
the most specific feature for partial/full agonists was the H-bond
interaction with S5.46x461a. Furthermore, specific interactions lead-
ing to higher propensity for β-arrestin-biased ligand signaling were
found with L/H2.64x63a, D45.51, and V/I7.36x35a, and aromatic
stacking with W3.28a. The method was applied in prospective
function-specific virtual screening studies resulting in the identifi-
cation of several novel (also non-ethanolamine) β2 agonists (Fig. 5)
with a high hit-rate (53%) [160].

3.5 GPCR Class-Wide

Chemogenomics

Studies

From the recent literature it is evident that integrated use of differ-
ent types of data in chemogenomics applications—protein
sequence and structural data, ligand structural and biochemical
data, mutational effect data, etc.—leads to a performance improve-
ment of such methods. Several reviews have focused on gathering
and integrating these data for the different GPCR classes. A review
on aminergic GPCRs combined ligand affinity data, receptor muta-
genesis studies, amino acid sequence, and high-resolution struc-
tural analyses of GPCR-ligand interactions to highlight correlations
and differences between ligand similarity and ligand binding site
similarity of different aminergic receptors [48]. The study analyzes
the composition of the major bioamine and the minor allosteric
binding site, the latter of which is exploited by appendages of
dualsteric ligands and allosteric ligands experimentally determined
for the muscarinic M2 receptor but postulated for many other
aminergic receptors as well. The authors review homology model-
ing and virtual screening efforts against aminergic receptors and
collected a large body of mutational effect data (1420 single-point
mutations for 128 individual amino acid positions given by their
BW numbering) for the histamine receptor subfamily and the
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crystallized aminergic receptors and related these data to protein-
ligand interaction features. Finally, by comparing binding site and
ligand similarity and receptor-ligand selectivity profiles, the authors
report affinity and selectivity cliffs in aminergic ligands.

Integrated chemogenomics analyses for class B1 secretin-like
receptors were performed by Hollenstein and De Graaf et al.
[16]. While extracellular domains (ECDs) of these receptors in
complex with peptide ligands had been available since 2007, there
was a delay in obtaining a structure of the TMD of any class B
receptor owing to the inherent instability of these receptors and the
limited availability of small-molecule ligands capable of stabilizing
them. The authors analyze the crystal structures of GCGR and
CRF1 which have a pronounced opening toward the extracellular
side. In the CRF1 structure the ligand CP-376395 was surprisingly
located very deep in the TM domain anchored by the conserved
N5.50b and in the GCGR structure solved later in complex with the
antagonist MK-0893 an even more unexpected extra-helical bind-
ing mode was revealed, located outside the 7TM-bundle on the
intracellular side of TM6 anchored by R6.37b, S6.41b and N8.47b

from the transition between TM7 and H8 [29]. In the review the
authors also give a detailed overview of the ECDs and their peptide
ligands as well. Furthermore, the elucidation of both ECD and
TMD crystal structures of the receptors as well as incorporation
of mutagenesis and photo-crosslinking data allowed the construc-
tion of a full GCGR-glucagon model in which an extended flexible
conformation of the first seven residues of glucagon is proposed to
reach deep into the TMD binding pocket [28]. Finally, the authors
discuss potential druggability of the elucidated class B1 GPCR
binding pockets. Combined structure-based comparative model-
ing, site-specific mutational studies (66 novel mutants comple-
menting 76 mutants from literature), and molecular dynamics
simulations facilitated the construction of a full-length GLP-1R
bound to multiple truncated or mutated variants of the peptide
ligands GLP-1 and exendin-4 [161]. The model was validated by
concerted mutations of the receptor and ligands, and molecular
dynamics simulations of the wild-type and mutant systems revealed
conserved and receptor-specific ligand interaction hot spots in the
binding modes of GLP-1R—GLP-1 and GCGR—glucagon com-
plexes. Furthermore, the relative flexibility of the TMD and the
ECD (swinging and rotational motion) was shown to accommo-
date binding of the different peptide ligand variants demonstrating
the complexity of ligand recognition by class B GPCRs.

Despite the breakthroughs in the elucidation of GPCR crystal
structures, a structure of a member of the class B2 adhesion GPCR
family has not yet been solved. Nijmeijer et al. recently presented a
comparative sequence and structure-based analysis of the TM
domain of adhesion GPCRs [60]. Conserved sequence motifs pres-
ent both in class B1 and B2 receptors suggest that their TM
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domains share a similar structural fold and that the conserved
residues in both families may be involved in similar intermolecular
interaction networks. Adhesion GPCRs consist of a large ECD, and
a TM domain followed by an intracellular domain (ICD). The ECD
contains a GPCR autoproteolysis inducing (GAIN) domain that
cleaves it to an N-terminal fragment (NTF) and a membrane-
spanning C-terminal fragment (CTF) that are non-covalently asso-
ciated. The β-13 strand (or Stachel) sequence, which is the remain-
ing part of the GAIN domain after cleavage, has been recently
shown to be a tethered agonist sequence capable of activating
adhesion GPCRs. Several conserved motifs between adhesion and
other GPCRs were analyzed. Since they are most similar to secretin-
like receptors, the class B Wootten numbering scheme was pro-
posed to be used also for adhesion GPCRs. For example, the
transmission switch including W6.53b is conserved in adhesion
GPCRs corresponding to the highly conserved W6.48a in the rho-
dopsin family and W6.50c in glutamate family GPCRs. Bulges in
TM4 induced by the GW/Y4.50bGxP motif, in TM5 by P5.42b and
in TM7 by G7.50b suggest a similar helix arrangement to secretin-
like receptors. At the intracellular side of the TM domain, H2.50b

and E3.50b are conserved in secretin family GPCRs and are present
in most adhesion GPCRs, suggesting the presence of a putative
ionic lock in this family as well. However, alternative polar/ionic
networks are also observed in some adhesion receptor subtypes.
Finally, the authors analyze the conservation of the TM binding site
residues and the extra-helical one found in GCGR and conclude
that the druggability of these sites is probably lower than in class A
or B1 receptors.

Gloriam et al. have reported integrated chemogenomics analyses
of the TM domain of class C GPCRs [18, 162]. Allosteric modula-
tors binding the TM domain have been discovered for all
non-orphan class C GPCR families. The authors collected 1670
single-point mutation data points covering 99 TM and several extra-
cellular loop positions and analyzed sequence conservation, the
available mGlu1/5 crystal structures, and ligand information.
Although all crystal structures were solved in complex with negative
allosteric modulators (NAMs), mutagenesis data suggests that
NAMs and PAMs bind a common allosteric site in all class C
GPCRs. Most mutations have similar influence on PAM and NAM
effects, and modeling suggests that functional effects may be deter-
mined by subtle variations in the structure such as disturbing the
water network around Y3.44c, T6.46c, and S7.39x40c. Not only the
mutation of TM residues but that of several residues in extracellular
loop 2 also had a significant effect on allosteric modulator binding.
Finally, as only the mutation of F1.46c out of 22 positions had a
significant effect on the ligand CPPHA while not affecting other
PAMs or NAMs, this suggests the presence of a distinct, possibly
extra-helical binding site for this ligand in mGlu1/5 receptors.
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3.6 Structural

Cheminformatics

Workflows to Integrate

and Analyze GPCR

Chemogenomics Data

The combination of cheminformatics and bioinformatics tools can
facilitate the systematic analysis of GPCR chemogenomics data, as
exemplified by the KNIME nodes and data analytics workflows that
enable efficient data mining from established structural (PDB
[163]) and bioactivity (ChEMBL [143]) databases as well as cus-
tomized G Protein-Coupled Receptor (GPCRdb [66, 67]) focused
data resources. It should be noted that for the efficient use of such
data resources these have to comply with the FAIR data principles
(the data should be Findable, Accessible, Interoperable, and Reus-
able) [164]. The GPCRdb KNIME nodes [71, 72] facilitate the
extraction and analysis of structure-based annotation of GPCR
sequence alignments of 14805 sequences of 414 receptor subtypes
and of 3547 species, analysis of 203 GPCR crystal structures and
GPCR-ligand interactions, and 28126 mutational data points,
stored in the GPCRdb repository (http://gpcrdb.org, accessed
10 March 2017) [66]. Current GPCRDB KNIME node function-
alities include: (a) The extraction of protein family information,
including the protein names and classifications of all GPCRs based
on class, ligand type, subfamily, subtype (GPCRDB Protein families
node). (b) The retrieval of source, species, and sequence data from
UniProt identifiers or protein family identifier (GPCRDB Protein
information node). (c) The retrieval of residues and numbering
schemes (GPCRDB Protein residues node). (d) The retrieval of
experimental GPCR structures with literature references, PDB
codes, and ligands (GPCRDB Structures and Structures of a pro-
tein nodes). (e) The retrieval of single-point mutations in GPCRs,
including the sequence position, mutation, ligand, assay type,
mutation effect, protein expression information, and publication
reference (GPCRDB Mutations of a protein node). (f) The
sequence numbers of amino acid residues interacting with ligands
in the specified PDB entry (GPCRDB Structure-ligand interactions
node). (g) The sequence identity and similarity of a query receptor
versus a set of receptors, based on the full sequence or a specified set
of residues (GPCRDB Protein similarity node). A general
integrated chemogenomics workflow scheme and a specific
KNIME workflow utilizing GPCRdb and 3D-e-Chem resources
are shown in Fig. 6. The latter workflow can be used to obtain all
GPCR sequences stored in GPCRdb, create an alignment based on
the structure-based numbering scheme, perform a double entropy
analysis (ss-TEA) [151] of C3AR1 receptor orthologs against all
other GPCRs, and assess the similarity of C3AR1 with other
GPCRs based on the hot spot residues identified by ss-TEA identi-
fying overlapping neighbors with the study based on binding
pocket composition in Ref. 53.
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4 Conclusions

The increasing amount of structural information on GPCRs com-
bined with comprehensive sequence, ligand bioactivity, and muta-
tion data facilitates the construction of integrated chemogenomics
workflows to gain new insight into this important target family.
Crystal structures from class A, B1, C, and F GPCRs revealed a
well-conserved transmembrane fold but large variations in extracel-
lular domain structures, loop regions, and ligand binding pockets.
Cross-family and cross-class studies have pinpointed the need for a
common reference framework for referring to specific structural
elements and conserved or specific residues across all GPCRs,
GPCR classes, subfamilies, or unique receptors. Various class-
specific numbering schemes have been proposed over the years, of
which the Ballesteros-Weinstein scheme became the primarily used
scheme for class A GPCRs and formed the basis for the similar
Wootten, Pin, and Wang schemes for class B, C, and F GPCRs,
respectively. However, these schemes used consecutive numbering,
whereas the bulges and constrictions discovered in transmembrane
helices of specific receptors urged the construction of a structure-
based numbering system by GPCRdb that is more suitable for the
comparison of structurally equivalent residues. The recent efforts
to standardize the residue numbering schemes based on the
increasing insights in GPCR structure have facilitated many che-
mogenomics studies such as consensus binding site definitions,
binding site comparisons, ligand repurposing for orphan receptors,
sequence-based pharmacophore generation for homology model-
ing or virtual screening, and GPCR class-wide analysis studies.
Moreover, standardized resources such as GPCRdb and automated
data retrieval and analysis using the 3D-e-Chem cheminformatics
tools in the popular workflow management software KNIME
enable the efficient integration of different data types in chemoge-
nomics workflows. Elucidation of adhesion, taste, and olfactory
receptor crystal structures, full-length receptor crystal structures,
and novel ligand binding modes will probably further impact the
use of numbering schemes in chemogenomics studies in the future.
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Chapter 5

GPCR Homology Model Generation for Lead Optimization

Christofer S. Tautermann

Abstract

The vast increase of recently solved GPCR X-ray structures forms the basis for GPCR homology modeling
to atomistic accuracy. Nowadays, homology models can be employed for GPCR-ligand optimization and
have been reported as invaluable tools for drug design in the last few years. Elucidation of the complex
GPCR pharmacology and the associated GPCR conformations made clear that different homology models
have to be constructed for different activation states of the GPCRs. Therefore, templates have to be chosen
accordingly to their sequence homology as well as to their activation state. The subsequent ligand
placement is nontrivial, as some recent X-ray structures show very unusual ligand binding sites and solvent
involvement, expanding the space of the putative ligand binding site from the generic retinal binding pocket
to the whole receptor. In the present study, a workflow is presented starting from the selection of the target
sequence, guiding through the GPCR modeling process, and finishing with ligand placement and pose
validation.

Key words GPCR, Homology models, Lead optimization, Docking

1 Introduction

Homologymodeling of GPCRs used to be a quite approximate task
until a decade ago, because dark state rhodopsin was the only
template available [1]. Advanced methods have been developed to
overcome the shortcomings of the very narrow, buried binding site
of retinal to make best use of the rhodopsin template [2]. The
situation changed a lot, when the structure of β2 was reported in
2007 [3, 4] because several important features of GPCR structures
already became obvious. While the orientation and arrangement of
the 7 transmembrane helix (7TM) region was quite similar in the
structures, the geometry of the extracellular loops (EL) as well as
the ligand binding sites were quite different. For the next upcom-
ing structure (A2AR) in 2008 a prospective competition for the
scientific community was set up to predict the ligand/receptor
complex structure [5]. The results showed that the prediction of
the geometry of the 7TM region was quite satisfying, but the
prediction of ligand binding was very hard and the EL regions
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were not satisfying at all. Two more contests were held in 2010 and
2013 to predict the structures of CXCR4, D3 and SMO, 5-HT2B,
and 5-HT1B receptors respectively [6, 7]. In a nutshell, for the class
A receptors the overall topology and structure of the 7TM region
was predicted quite well. When it comes to the ligand binding pose
and the prediction of the structure of EL2 the performance was
much worse, unless a very close template (like β2 for D3) was
available. Recent quantitative investigations confirmed the strong
model quality dependence on the distance to the template [8]. Alto-
gether these three GPCR structure prediction exercises showed
that even the world-leading groups in GPCR modeling had a
hard time to predict a quantitatively correct ligand/receptor struc-
ture for a distant receptor.

Lead optimization (LO) is a late and decisive phase in preclini-
cal research of a drug. During LO the overall profile of a compound
class is optimized for multiple parameters, such as selectivity, phar-
macokinetics, potency, toxicity, and pharmacodynamics, to name a
few. Therefore the optimization of affinity, which is discussed as the
most essential parameter in most studies, is only one goal among
others within LO phases. The other parameters obviously depend
on the ligand structure as well and can directly be addressed by
ligand modifications. Therefore, the knowledge of the ligand/
receptor complex structure is of high interest, especially when
modifications of the ligand have to be performed while preserving
a high affinity to the receptor. One quite common goal is to
decrease the clogP of a ligand, which is in many cases directly
related to an increased metabolic stability and solubility [9]. If the
structure of the ligand/receptor complex is not known, it is not
clear which ligand positions allow higher polarity without being
detrimental to the affinity. Such optimization efforts often become
very demanding, because at the end drugs with a balanced profile
are required to be moved into clinical development.

Having said this, it is not surprising that LO support demands
high-quality ligand binding poses in a quite accurate binding site of
a receptor [10, 11]. However, it is not hopeless to get a decent
homology model for a GPCR target supported by the structure
revolution taking place over the last few years. Since 2012 every
year on average more than six new receptors have been structurally
solved and have been reported to the RSBC Protein Data Bank
[12] and the coverage of the GPCR phylogenetic tree increases
steadily. This means that for many GPCRs of interest at least one
appropriate template is available and the model generation may be
quite accurate in many cases. The very rich pharmacology of
GPCRs, however, adds another layer of complexity to the modeling
problem. It has been realized that often quite subtle differences in
the binding site of inactive and active state GPCRs are most impor-
tant for ligand binding [13]. In several cases agonists and inverse
agonists (or likewise PAMs and NAMs or ligands with different
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biases) are structurally highly related, but the pharmacology
displayed at the receptor is contrary [14]. Thus, very small changes
in the binding site can lead to unwanted effects and slightly incor-
rect modeled pockets and binding modes can generally result in
wrong hypotheses. Therefore, experimental validation of ligand/
receptor complexes is crucial—be it by mutagenesis, extensive SAR,
or a combination of these approaches. There is a strong difference
in the required accuracy and quality of homology models used for
LO vs. models which are used for virtual screening (VS). The
objective of a VS campaign is to enrich active compounds in a
small fraction of a very large library. This means that also filtering
out inactive compounds will lead to enrichment over random selec-
tion. This in turn makes also approximate homology models well-
suited tools for VS, because also the approximate shape of the
binding pocket can reject most molecules which do not fit
[15]. For LO support the requirement is a correct atomistic
description of ligand/receptor interactions and the ability to sug-
gest ligand modifications in order to optimize various parameters
(as mentioned above). Therefore, the second obstacle concerns the
correct placement of the ligand into the receptor. In a very insight-
ful study by Beuming and Sherman plain docking was shown to be
useful for X-ray structures of GPCRs, although the involvement of
water in ligand binding, such as in A2AR, leads to significantly worse
docking performance [16]. When docking into homology models,
the performance of docking was rather poor, yielding less than 20%
of the poses to be useful for further modeling efforts. In further
studies the importance of water has been thoroughly investigated,
showing that the GPCR ligands often replace clusters of water
which are in an unfavorable state of free energy in the binding
site [17].

There are several reports in the literature, where GPCR homol-
ogy models have been successfully used for ligand optimization. In
recent studies Heifetz et al. were able to optimize and delineate the
very subtle selectivity of ligands on serotonin receptors by employ-
ing accurate models generated through a hierarchical modeling
approach [18, 19]. In another study by the same research group
on the orexin receptor family, receptor models have been generated
and validated based on a set of site-directed mutagenesis experi-
ments [20]. Moreover, a new method for assessing GPCR model
quality has been introduced—going far beyond the usual assess-
ment methods of general homology models [21]. In GPCRs a
network of conserved residues is known to connect the seven
helices [22]. Based on the conservation of these contacts, the
quality and integrity of models or MD-snapshots have been
performed.

In addition to the mentioned examples of GPCR modeling in
LO, there are several reviews that describe methods and examples
of recent successful studies [23, 24]. In the following, a general
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method for generating accurate homology models and ligand bind-
ing modes which suffice the need of lead optimization is described
in detail.

2 Methods

2.1 General

Requirements

and Resources

2.1.1 Required

Computational Resources

and Programming Skills

The procedure described herein requires the presence of a high
performance computer environment, ideally based on a Linux
operating system. Shell scripting skills as well as basic programming
skills are advantageous, but not a prerequisite. The sound knowl-
edge of protein sequence and structure datatypes is highly
recommended.

2.1.2 GPCR Resources

in the Internet—Data

and Web Services

GPCR resources in the Internet have become crucial for the daily
life of researchers in the field—for sequences, structures, and phar-
macology several well-curated databases exist which are well kept
up to date. In addition, for many steps in the procedures described
herein, Internet resources (web services) are available, which can
perform similar or identical tasks. The resources listed neither
provide an exhaustive overview, nor are only limited to GPCRs,
but most common tools are described. (For a more thorough
overview excellent reviews are available [25].) In many cases all
the databases cross-link to more detailed databases, but these are
often too detailed for usual GPCR modeling efforts.

1. UniProt [26] (http://www.uniprot.org/): “The mission of
UniProt is to provide the scientific community with a compre-
hensive, high-quality, and freely accessible resource of protein
sequence and functional information” is stated on the home-
page. This is the gold-standard of databases to retrieve the
correct protein sequence for a protein of interest.

2. GPCRdb [27] (http://gpcrdb.org/): The GPCRdb is a
resource which combines databases such as repositories of
GPCR sequences, structures, and mutagenesis data with tools
which enable the user to generate sequence alignments, phylo-
genetic trees, and snake plots, allows structure retrieval, tem-
plate selection, and enable the prediction of mutagenesis sites.

3. IUPHAR/BPS Guide to PHARMACOLOGY [28] (http://
www.guidetopharmacology.org/): This is a tertiary database of
expert curated data of pharmacological targets and the sub-
stances that act on them. This database is extremely useful to
get a very condensed overview about a target and its most
important ligands.
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4. ChEMBL [29] (https://www.ebi.ac.uk/chembl/): This is a
literature curated chemical database of bioactive molecules
with drug-like properties. The retrieval of several active com-
pounds from ChEMBL can be very useful to validate a receptor
model or derive a pharmacophore model.

5. RSBC Protein Data Bank [12] (http://www.rcsb.org/): The
generic repository containing all published protein X-ray struc-
tures. Some basic web-services such as similarity searches are
also available.

6. GPCR-ModSim [30] (http://open.gpcr-modsim.org/): This
is a web-service for computational modeling and simulation of
GPCRs. It is a multi-step procedure which takes a sequence as
input, chooses the best templates, models the GPCR, assesses
the models by the internal conserved contacts, and eventually
performs a molecular dynamics (MD) simulation on the best
model. In principle, this pipeline can substitute the whole
manual model generation process and it is recommended to
use this web-service in addition to manual modeling efforts as a
complementary approach.

2.2 Software The modeling process is a multi-step process and for every step a
specialized software tool is available. There are also companies
(such as Schrödinger inc.—https://www.schrodinger.com/) offer-
ing integrated software packages, which are able to perform every-
thing starting from the sequence alignment to the model
generation and ligand docking steps and the subsequent MD sim-
ulation within one environment. The huge advantage of such a
one-stop-shop solution is that the user does not need to worry
about file formats and input files and in addition these programs are
optimized for usability. However, there are reasons to keep the
multi-stage modeling process modular by using different tools for
different modeling steps. One important reason is the high degree
of specialization of various tools, where the expert user can choose
myriads of different settings, which may increase the result quality.
In the following various tools are presented for the different mod-
eling steps.

1. Tool for sequence alignment and modification: To get a first
good guess for an alignment the GPCRdb web-service [31] can
be used. For further refinement a tool should be used which
allows applying alignment position restraints and manually
modifying and moving residues. The molecular operating envi-
ronment (MOE) by Chemical Computing Group (https://
www.chemcomp.com/) can be used.

2. Generating homology models: A plethora of homology mod-
eling programs is available. One state-of-the-art standard pro-
gram is Modeller, [32] where homology models are built by
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obeying spatial restraints derived from the templates. As input
files the templates in pdb format as well as the sequence align-
ment in the pir format are required.

3. Structural clustering of models: Homology modeling pro-
grams do generate a set of models which may be ranked by an
internal energy score. Clustering based on structural features
such as the χ-angles of the putative binding site or the RMSD
of selected amino acids helps to identify representative models
which enter further investigation. RMSD-based clustering can
be directly done within MOE, clustering of χ-angles or other
structural parameters is preferentially done in MATLAB
(http://www.mathworks.com/).

4. Water placement and energy assessment: The putative binding
sites should be assessed by the propensity of hosting ordered
networks of water. The WaterMap [33] method was one of the
first tools, which was able to perform water placement and
classification into “happy” and “unhappy” waters. The method
is based on short MD simulations and the analysis of water
mobility in the binding site. A complementary approach is
3D–RISM [34] which is based on the rigid protein structure
and water placements and energy assessment are done through
statistically modeling of the solvent.

5. Detection of consensus ligand features: The Cresset suite of
programs (http://www.cresset-group.com/) allows the ligand-
based derivation of the bioactive conformation by generating
pharmacophores and QSAR models.

6. Ligand docking: Several docking programs are available, the
performance of the state-of-the-art tools, such as Glide, [35]
Gold, [36] and Autodock [37], is similar [38]. In the present
study Gold is used as docking tool.

7. A software suite covering broadly most required steps is
provided by the Schrödingers suite of programs (https://
www.schrodinger.com/), thus allowing an easier kick-start to
non-expert modelers. Most importantly, sequence alignment,
homology modeling, water placement, pharmacophore gener-
ation, ligand docking, and MD simulation can be triggered
from one common frontend.

3 Methods

The overall procedure is displayed in Fig. 1 and can be divided into
three main steps: The generation of the model, the preparation of
ligand data, and the combination of both, i.e., the placement of the
ligands into the receptor ensuring the compatibility of ligand-
derived SAR.
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3.1 Generation

and Preparation

of Representative

Homology Models

Themost commonmethod to generate GPCRmodels is by homol-
ogy modeling. In this procedure the target sequence is aligned to a
homologous protein, of which the structure is known. The main
assumption of this approach is that the structure of a protein family
is more conserved than its sequence, which in turn means that
sequentially homologous proteins are of similar structure. The
so-called twilight zone, where this assumption starts to break
down is usually reported to be around 25–30% sequence identity
of target and template [39]. For GPCRs this threshold is even lower
because all so far reported crystal structures share a common fold;
however, the sequence conservation drops as low as 10% (see Note
1). What makes GPCRs so special is the presence of conserved
sequence motifs in the TM domains [22] and conserved packing
patterns between the helices. Based on these observations, the
sequence alignment and model assessment can be reliably done
for quite distantly related receptors still yielding good results.

Fig. 1 Workflow to generate GPCR homology models useful for lead optimization
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3.1.1 Target Sequence

Selection/Modification

It may sound trivial, but the retrieval of the correct target sequence
is crucial. Usually, sequences of high quality are retrieved from
UniProt if the target sequence is annotated as “reviewed.” The
protein sequence is downloaded in fasta-format. In addition to
the sequence other important information, such as the location of
the TM-region, splice variants, and common SNPs are denoted in
UniProt as well. This information is crucial in order to modify the
downloaded sequence in a way that it fits the biological rationale
(splice variant, SNP) of the project. In addition to that it is advisable
to remove long intracellular regions, where no ligand binding is
expected, in order to allow better sequence alignments and there-
fore appropriate template selections. The generic steps of this
sequence modification and template selections are as follows:

1. Download the target sequence (ensure correct species) in fasta
format from UniProt.

2. Check on the UniProt entry page for SNPs, splice variants, and
long loops—as an example the long intracellular loop 3 (IL3)
from the human muscarinic acetylcholine receptor 3 (M3) is
shown in Fig. 2. In general, long loops (>30 amino acids)
should be removed because of two reasons: First, the template
selection can be misled by spurious alignments in these
regions (see Note 2), and second the modeling of such long
loops does not work reasonably anyway.

3.1.2 GPCR Template

Selection and Template/

Target Alignment

1. Search for templates: The easiest method to select best tem-
plates is a web-service provided by GPCRdb [31]. Under
“Receptors” > “Template selection” the user pastes the Uni-
Prot identifier of the target protein and the most closely related

Fig. 2 Predicted topology for M3 in UniProt. The very long IL3 at positions 253–491 is easily to be spotted
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templates are presented for download. This procedure only
works for unchanged human UniProt sequences as a query. If
the user prefers to look for templates for a modified GPCR
sequence, a BLAST sequence search in the RSBC Protein Data
Bank is most straightforward. In addition, one has to pay
attention to choose the correct activation states of the tem-
plates (see Note 4). Generally, templates with a sequence iden-
tity of >20% and the correct activation state are useful. If the
similarity drops even lower, then the employment of more
templates has proven to be beneficial [40] (seeNotes 1 and 2).

2. Template preparation: GPCR X-ray structures very often carry
fusion protein such as T4L or BRIL, which have shown to be
one of the key success factors for crystallization [41]. For
homology modeling these constructs are not desirable and
therefore the removal of all extra-domains is recommended.
Easiest is the comparison of the UniProt sequence of the
template receptor with the X-ray sequence. This immediately
identifies the regions of discrepancy (as shown in Fig. 3) and
the additional domains can be removed manually in a modeling
program.

Fig. 3 T4L fused structure of the A2AR (pdb code: 3EML)—by sequence
alignment the T4L region can easily be identified (colored in red)
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3. Template/Target alignment: Once the templates have been
prepared, the alignment should be done by a tool which allows
manual intervention. In a first round, a combined structural
(important for the X-ray structures) and similarity-based align-
ment is done. Such functionality is implemented in MOE and
beyond that manual alignment constraints can be applied. It is
essential to ensure that the known conserved features in
GPCRs [22] are aligned properly.

3.1.3 Creation

of Homology Models

and Selection

of Representatives

Once the target/template(s) alignment is done, the homology
modeling step can be performed by many different tools. In this
chapter the Modeller program, which is one of the most widely
used tools for such purposes, is used. The generation of models per
se is not a difficult task for the user, but the consecutive selection of
the “best” models may become very demanding. Usually, a set of
protein-geometry scores is used in order to rank the resulting
homology models, where structural properties such as dihedrals,
rotamers, and clashes are taken into account. These scores are not
designed to predict the usefulness of a binding site for ligand dock-
ing. Therefore, they are only applied to remove the worst models
from potential next steps because of severe deficits in their geome-
try. The best way to identify models for docking is to try to cover a
large area of the conformational space, and this means that cluster-
ing based on geometrical features is a viable way forward. With this
approach the number of models should be reduced to a tractable
number (<50). In the following the individual steps are described.

1. Homology model generation: The template/target
(s) alignment is saved in the pir format. The pdb files of the
targets have to exactly correspond to the sequences in the .pir
file. Modeller requires a python-based script-like input file—
and a good tutorial (https://salilab.org/modeller/tutorial/
basic.html) gives an idea of the input file for model building.
Most importantly, the automodel() function is very powerful,
yet easy to employ, and producing good results. This keeps the
complexity of the input files to a minimum. It is recommended
to generate a large number of models (>200), especially if
various templates are used (see Note 1). Modeller writes the
final structures in pdb format.

2. Homology model assessment: During the model building pro-
cess various internal quality scores from the modeling tool
should be calculated, such as, e.g., the common DOPE score.
The bottom 10% of the ranked models should be directly
discarded.

3. Homology model clustering: The task of identifying structur-
ally diverse models for ligand docking implicitly assumes that
the putative ligand binding site is more or less known. Recently
solved GPCR structures show that the generic class A ligand
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binding site close to the extracellular surface is not the only
druggable site in GPCRs. The sites on the intracellular GPCR/
G-protein interface have been reported and inhibitors are also
reported to bind outside of the GPCR helical bundle. For the
sake of simplicity, we assume that the coarse location of the
ligand binding pocket is known. If no satisfying results are
obtained, the whole procedure should be repeated with other
potential binding sites (which are identified by tools like the
SiteFinder application in MOE). If more than one template is
employed, clustering based on the backbone RMSD (and also
the χ-angles) of the amino acids lining the putative binding
sites is recommended. If only one template is used, clustering
of the χ-angles in the binding site is sufficient. Clustering is
done in MATLAB, employing the k-means clustering algo-
rithm. From each cluster 1–2 representatives with a good over-
all DOPE score are selected for further processing.

4. Check for conserved motifs and interactions: GPCRs are
known to possess a number of conserved interactions between
the transmembrane helices [22]. High-quality homology mod-
els have to show a large fraction of these interactions, otherwise
something has gone wrong in the modelling procedure. Ide-
ally, these checks are done in an automated way by smart scripts
as described in the literature, or they can also be done by hand.
Only the models with the highest numbers of conserved inter-
actions should be kept for final optimization.

5. Protonation and optimization: The final models have to be
protonated and the tautomeric forms of the histidines have to
be checked, a procedure that is implemented in most modeling
packages. Within MOE the “prepare protein” procedure cor-
rects chain breaks, unusual geometric features, and ionizes/
protonates employing a generalized Born methodology.
Finally, the models should be minimized by putting restraints
on the heavy atoms to relax all remaining major clashes.

3.1.4 Water Placement

and Ligand Binding Site

Detection

Ligand binding to a protein causes the replacement of solvent
molecules by the ligand. This means that the ligand has to have a
lower free energy of binding compared to the replaced water mole-
cules. It has been shown that water molecules in GPCR binding
sites have distinctly different free energies of binding, and ligands
usually displace patches of water which are in an unfavorable ener-
getic state, the sometimes called “unhappy” waters. Therefore, the
detection of patches of unhappy water will help to identify potential
locations of the ligand binding site. Different methods for water
placement and energy assessment have been reported, [17] herein
we refer to 3D–RISM, which is applied to a CCR3 model [42] and
the result is shown in Fig. 4. Alternatively to the energetic assess-
ment of water molecules in the binding site, plain methods for
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pocket detection can be used, such as PocketPicker [43] or the site
finder tool as implemented in MOE (seeNote 3). The advantage of
water energy assessment methods is that they are also useful when a
pocket is much bigger than the ligand and the ligand only partly
displaces water molecules.

3.2 Ligand

Preparation

and Overlay

Generating high-quality homology models is a prerequisite for LO
support, but it is not sufficient. The placement of the ligands is also
very critical to enable ligand design. Plain ligand docking into
homology models is not reliable; therefore, a procedure based on
an ensemble of ligands is employed to yield better ligand poses.

3.2.1 Ligand Retrieval

and Generation of Bioactive

Conformations

The goal of this paragraph is to derive a bioactive conformation of
the ligands. The best starting points are highly rigid and potent
ligands, where only few conformations can be adopted. To generate
the bioactive conformations for all chemical classes potent repre-
sentatives are overlaid with the first guess of the bioactive confor-
mation. Tools to do such overlays are included in all major
modeling packages. Importantly, the overlay must not induce strain
in any of the structures (see Note 5).

3.2.2 Generation

of Pharmacophores

Once the bioactive conformation is generated, more ligands span-
ning a large affinity range are overlaid to this geometry. Based on
this overlay, a common pharmacophore is generated, which also
takes the affinity values into account. The tool Forge (http://www.
cresset-group.com/forge/) builds QSAR models based on the
overlay of ligands employing pharmacophore field points. The
output shows exactly which parts around the common scaffold
should be decorated in order to increase/decrease affinity. This
information is also very useful later, for docking mode validation.

Fig. 4 Homology model of CCR3 with docked lead compound [42]. Water placement by RISM as implemented
in MOE. Red spheres indicate energetically unfavorable water positions
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3.3 Ligand Docking

and Final Model

Selection

The prerequisite for ligand docking is that high-quality homology
models are available and the bioactive conformation of the ligands
has been generated. Now the overlaid ligands have to be docked
into the model regions with high-energy waters and the ligand-
derived pharmacophore has to match with the cavity residues.

3.3.1 Rigid Ligand

Docking

Docking programs are designed to generate a large ensemble of
ligand conformations and to place them into the binding site of a
protein followed by an energy scoring of the complex. In the
present case the bioactive conformation has already been generated,
and therefore rigid docking of the ligands into the top scoring
homology models has to be performed. Most docking programs,
such as Gold, allow the setting that the ligand has to be docked in
its input conformation. Ideally, several different docking poses for
the rigid ligand in each homology model are generated. If the
binding cleft is narrow or if sidechains obstruct the putative binding
site it is advisable to allow side-chain flexibility during docking. In
this case, the procedure allows the binding site residues to adopt
various accessible rotamers and the binding site adapts to the ligand
to a certain degree (see Note 7).

3.3.2 Docking Pose

Assessment

Two parameters are important for the assessment of the ligand pose
in a homology model. First, the ligand interactions must agree with
experimental findings. In the best case single-point mutagenesis
results are available and certain interactions are found to be crucial.
All poses that do not show these interactions can be deleted. And
second, the pharmacophore that has been derived by the overlay of
the ligands has to be compatible with the docking pose. If there are
only few pose/model combinations left, this check can be done
manually by overlaying the superimposed bunch of ligands on the
docking pose. Clashes of potent ligands with the receptor are a clear
sign for a problem of the pose/model combination. This step needs
a thorough knowledge of the SAR of a compound class, because
only if the existing SAR can be satisfyingly explained, the model and
the pose are suitable to make predictions for ligand modifications.

3.3.3 Postprocessing

and Stability Assessment

The best way to check the reliability of a docking pose is to perform
molecular dynamics (MD) simulations and observe if the ligand
changes its orientation or if it even moves out of the binding site.
MD simulations should be done for at least 100 ns in triplicate
(with different random seeds) but these calculations are computa-
tionally very expensive. Therefore, only the best poses should
undergo simulation as final means to assess the stability of different
docking poses. The setup of an MD simulation goes beyond the
scope of this chapter; however, fewmodeling suites such as Maestro
allow the setup through an intuitive graphics interface and MD
simulations can also be run by non-experts. For the analysis the
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RMSD of the ligand positions is the most important parameter to
assess the stability of the binding pose. It is best to generate a
2D–RMSD plot, which allows the identification of the most com-
mon binding pose during a simulation. Once the stability of a
binding mode is confirmed, it is advisable to take a step back and
check if the SAR of the compound class is still in line with the
binding mode after the MD. Once this is ensured, the identified
snapshot should be energy minimized and can be used for prospec-
tive modeling.

4 Notes

Obviously, there are many ways to modify the suggested protocol.
However, the largest issues arise, when no close template for
homology modeling is available or if only very flexible ligands are
available. In the following, several issues are described and work-
arounds are proposed.

1. Only remotely homologous templates available (sequence
identity <20%): The combination of multiple templates of
low homology vastly increases the conformational space cov-
ered by the homology models. Therefore, the generation of a
large number of models is recommended. The difficulty is to
identify the most useful models to proceed to the next steps. In
this case model selection by ligand docking can be employed.
All models that are not able to accommodate highly active
ligands should be rejected. The largest variability in the generic
binding site comes from different EL2 geometries, and there-
fore the docking should be done without EL2.

2. The template selection process at GPCRdb also allows the
definition of the regions of a GPCR which should be used for
comparison. Extremely useful are the predefined sets such as
the TM-regions and the class-specific generic ligand binding
pockets.

3. Other binding sites: Without experimental confirmation
(mutagenesis), the ligand binding pocket is a priori unknown.
In many cases, the generic retinal binding site is the correct
one, but if the whole modeling procedure does not yield satis-
fying ligand poses, one should try docking to other pockets. In
recent X-ray structures pockets in the membrane interface or in
the intracellular region are found. As a first guess these loca-
tions can be checked for binding crevices and should be used
for subsequent docking runs.

4. Activation states: For most GPCRs X-rays for only one activa-
tion state are available. If the closest template is in the wrong
state, the addition of additional templates in the correct
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activation state ensures the conformational sampling of the
correct activation state.

5. Ligand flexibility: If the ligands of interest are very flexible and
no unique bioactive conformation can be generated, the use of
ligands from the literature with enhanced rigidity as starting
points may be useful.

6. Automated homology modeling: There are web resources
where GPCR models with a good quality can be built
(GPCR-SSFE [44] and GPCR-ModSim). These procedures
should also be employed because they are based on different
modeling approaches. The ligand placement still has to be done
afterward.

7. Involvement of water in ligand binding: In many GPCR struc-
tures water is involved in ligand binding [45]. To account for
this, highly stable water molecules can be retained during
ligand docking.
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Chapter 6

GPCRs: What Can We Learn from Molecular Dynamics
Simulations?

Naushad Velgy, George Hedger, and Philip C. Biggin

Abstract

Advances in the structural biology of G-protein Coupled Receptors have resulted in a significant step
forward in our understanding of how this important class of drug targets function at the molecular level.
However, it has also become apparent that they are very dynamic molecules, and moreover, that the
underlying dynamics is crucial in shaping the response to different ligands. Molecular dynamics simulations
can provide unique insight into the dynamic properties of GPCRs in a way that is complementary to many
experimental approaches. In this chapter, we describe progress in three distinct areas that are particularly
difficult to study with other techniques: atomic level investigation of the conformational changes that occur
when moving between the various states that GPCRs can exist in, the pathways that ligands adopt during
binding/unbinding events and finally, the influence of lipids on the conformational dynamics of GPCRs.

Key words Simulation, Ligand binding, Computational, Lipid, Metadynamics, Enhanced sampling

1 Introduction

Molecular dynamics (MD) simulations provide an ideal tool to
explore the dynamical aspects of proteins that may otherwise be
difficult to obtain via experimental methods [1, 2]. They enable an
atomistic interpretation of kinetic and thermodynamic properties
of biomolecules while allowing direct control of the parameters of
interest [3].

As a protein family, GPCRs have benefitted tremendously in
recent years from the application of MD simulation approaches. It
is estimated that approximately 40% of all drugs on the market
target GPCRs or GPCR-mediated processes [4, 5] and that annual
revenues for GPCR drugs are around $30 billion [6]. MD simula-
tions can be used to explore a range of dynamic properties includ-
ing receptor flexibility, ligand binding modes, binding kinetics,
mechanism of action, and many others [3, 7, 8].

In recent years, there has been excellent progress in obtaining
high-resolution structural information for GPCRs (see Note 1).
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However, the information from such studies has some limitations.
As well as it being unlikely that every one of the more than
800 human GPCRs [9, 10] will be solved to a high-resolution by
X-ray crystallography, the structures that do exist are often mod-
ified to help crystallization and/or diffraction and usually reflect a
single-conformation state of the protein. Furthermore, they are
often in an environment that does not reflect the natural surround-
ing lipid, an aspect that is receiving increasing attention [11].

MD simulations can provide additional information that can
help address these issues. Even prior to any crystal structures being
available for use in homology modeling, several research groups
focused on acquiring a theoretical understanding of receptor struc-
ture by combining modeling and molecular dynamics simulations:
Strahs and Weinstein identified different receptor microenviron-
ments and concerted motions in the core of the opioid receptors
[12]; Scheer and colleagues investigated the role of Arg143 in
constitutively active homology models of the α1B–adrenergic recep-
tor [13]. This study was also one of the earliest reports on compu-
tational modeling of polar networks; Czaplewski and colleagues
reported on interactions between a model of the human vasopressin
V2 receptor and 2 agonists ([arginine8]vasopressin and [D-argi-
nine8]vasopressin) [14]; and Sansom and Weinstein provided a
detailed look into the role of prolines in helical hinges, further
elucidating the role of helical kinks in the activation of GPCRs
([15], and references therein).

In 2000, Palczewski and colleagues successfully crystallized
bovine rhodopsin (and solved the structure to a resolution of
2.8 Å) [16]. There was a subsequent growth in GPCR MD articles
published since then, as this work paved the way for a myriad of
studies, both experimental and computational, that attempted to
characterize various aspects of rhodopsin function, including intra-
molecular signal transduction [17], the effect of bilayers [18, 19],
and the modulation by cholesterol [20] among other aspects.

The crystallization of bovine rhodopsin also resulted in better
homology models of other rhodopsin-like GPCRs and conse-
quently more studies on these were published. Seeber and collea-
gues used the coordinates of the bovine rhodopsin to create
homology models of the 5-HT1A receptor and subsequently stud-
ied ligand-induced dynamics which may be related to how ligand
binding relays information to the G-protein binding site
[21]. Huang and colleagues used molecular dynamics to gain
insight into the relationship between the binding mechanism of
SDF-1α and signal transduction of the CXCR4 receptor [22] and
Zhang and colleagues built homology models of the μ opioid
receptor based on the bovine rhodopsin structure and identified
critical residues involved in the binding of the opioid antagonist
naltrexone [23]. The latter study was also one of the first to report
MD simulations on an opioid receptor-membrane complex, with

134 Naushad Velgy et al.



1,2-dimiristoyl-SN-glycero-3-phosphocholine (DMPC) serving as
the lipid membrane (see later and Note 2). An earlier article
reported simulations of the κ opioid receptor in complex with the
endogenous ligand, dynorphin, and other benzomorphan ligands,
in a dipalmitoylphosphatidylcholine (DPPC) bilayer [24].

In order to bind an intracellular effector (such as a G protein or
an arrestin), GPCRs undergo structural changes. These changes are
most prominent in the intracellular end of transmembrane helix
6 (TM6; see Fig. 1). Other transmembrane helices, particularly
TM3 and TM7, also undergo conformational changes in different
activity states, though these are not as accentuated as for TM6
[29–33]. Exploring these changes, and in particular the activation
mechanism of GPCRs in the presence of various ligands, has been
the focus of many studies using both conventional long-time scale
MD and methods that employ advanced sampling tricks. These
studies have shown the importance of capturing intermediate con-
formations that otherwise might be inaccessible to X-ray crystal-
lography, and how ligands play a crucial role in modulating the free-
energy surface of receptors. Importantly, these studies have also
highlighted the advances made in both software and hardware

Fig. 1 The predominant movement in GPCR activity is in TM6 (coloured). In the
inactive state (dark blue, PDB: 4N6H [25]), the receptor is unable to bind a G
protein. TM6 moves away from the rest of the protein when bound to arrestin
(light blue, PDB: 4ZWJ [26]), to G protein mimetic nanobodies (peach, PDB:
5C1M [27]) and even further when bound to a G protein (red, PDB: 3SN6 [28])
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associated with MD simulations. The first part of this chapter will
review this progress.

A lot of attention has also been devoted to the use of MD to
develop a deeper understanding of drug binding kinetics. Ligand
entry pathways from the bulk solution into the canonical binding
site have been investigated by both conventional MD and enhanced
sampling methods. Both approaches provide a unique insight into
the molecular mechanism by which ligands access their canonical
binding site and also how this can be modulated. We give an
overview of these aspects in Section 2.2.

The conformational plasticity reported in the intracellular ends
of the transmembrane helices has great implications for GPCR drug
discovery. While static structures, such as the ones obtained from
crystallography experiments, have proven highly effective at aiding
structure-based drug design of new experimental ligands [34, 35]
and potential therapeutic compounds [36], the full potential of
structure-based drug design requires a deeper understanding of
GPCR dynamics.

Several segments of the GPCR topology are highly flexible,
even within a particular conformational state [37]. As such, drug
design studies carried out on a single structure may be restrictive. In
such cases, the ability to study the effects of ligands in multiple
conformations of the same receptor, or to better explore the plas-
ticity of the binding site of one particular conformation, is desirable
in high-throughput drug discovery.

One route to improve the effectiveness of such studies is to add
the information resulting fromMD simulations into drug discovery
protocols. In addition to docking studies performed in static recep-
tors, using software packages such as GOLD [38], Autodock-
VINA [39] (henceforth VINA), and Glide [40], among others
(refer to [41] for a more complete list), it is possible to use MD
to analyze the dynamic behavior of binding pockets and explore
rare conformations, giving researchers the ability to design drugs
that more specifically target the receptor [42].

Another area of recent interest has been in the interaction
between GPCRs and lipids and indeed this is a complicating factor
for thermostability. For example, Gater and colleagues analyzed the
unfolding of the β2AR in the presence or absence of cholesterol,
noting that higher melting temperatures (Tm) are seen with increas-
ing concentrations of cholesterol, saturating at 1 mol% [43]. How-
ever, the precise nature of protein-cholesterol interactions may
be difficult to ascertain using experimental methods alone. MD
simulations have been used recently to explore the molecular
mechanisms behind cholesterol modulation of receptors and we
review this area further in the last part of this chapter.
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2 Methods

2.1 From Long-Time

MD to Enhanced

Sampling

With the most recent advances in processing power, it has become
possible to carry out long-time scale (routinely over 100 ns) MD
simulations of GPCRs embedded in lipid bilayers. A variety of MD
software packages now offer efficient parallelisability providing
excellent performance [44]. The latest versions of popular MD
packages, such as GROMACS [45] and AMBER16 [46], are
equipped to efficiently distribute MD calculations to several CPU
cores, as well as enabling usage of GPU cores for calculations,
taking advantage of the performance boost obtained from integrat-
ing CUDA into the MD code [47]. Novel software packages, such
as Desmond [48], have previously been reported to achieve perfor-
mances of ~470 ns/day on commodity clusters (for a system of
~23,000 atoms on 1024 cores) [49]. In addition to parallelization,
performance can be boosted by utilizing specialized hardware as is
the case with Anton; a supercomputer designed for the purpose of
accelerating MD simulations [50] that can achieve performance of
up to 10 μs/day [49].

The advent of such performance boosts has led many research-
ers to simulate systems for longer time scales. Using Anton, Rose-
baum and colleagues reported the first long-time scale all-atom
MD simulation of the β2AR in a lipid bilayer. The researchers
used both experimental and computational methods to develop
an irreversible agonist for the β2AR, making full use of performance
boosting techniques to simulate ~30 μs of receptor/ligand activity.
Furthermore, Rosebaum and colleagues concluded that, in the
absence of either a G protein or a mimetic nanobody, the receptor
active state spontaneously destabilizes, transitioning to inactive
states [51].

Using a similar approach, and making full use of crystals struc-
tures of the β2AR in the active state, Dror and colleagues studied
the mechanisms by which GPCRs transition from inactive to active
states [52]. The researchers did so by simulating the spontaneous
deactivation of active structures and analyzing motion of key fea-
tures throughout the trajectories. In short, 92 simulations were
performed, totalling approximately 656 μs, of which 76 were based
on the coordinates from the active β2AR in complex with the G
protein mimetic nanobody Nb80 (PDB: 3P0G [53]), five were
based on the coordinates from the active β2AR in the complex
with a G protein (PDB: 3SN6 [28]), and 2 were based on the
coordinates from the inactive structure (PDB: 2RH1 [54]). In
this study, Dror and colleagues highlighted a key structural region
that connects the canonical binding site to the G-protein binding
site, termed the “connector region” (Fig. 2). Consisting of 2 hydro-
phobic residues (Ile3.40 and Phe6.44 that are part of the key struc-
tural PIF motif [55]), this region is one of several key motifs (see
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Note 3) that is thought to allosterically couple ligand binding to
the G-protein binding region. The conformation of the G protein
binding site is thought to be the key determinant of the connector
region’s conformation, as the inactive G protein binding site
restricts the connector to its inactive conformation [52].

Another conclusion from this study was that the activation of
GPCRs may well begin from spontaneous activation of the G
protein binding site, as it transitions to an intermediate state, and
that the presence of an agonist likely shifts the equilibrium of the
ligand binding site to a more active conformation [52].

Kohlhoff et al. [29], in a long-time scale MD study, provided
more support to confirm the hypothesis put forth by Dror and
colleagues. Using the Google Exacycle system [56] they success-
fully simulated a total of 2.15 ms of β2AR dynamics, using both
PDB entries 2RH1 [54] and 3P0G [53] as starting points, aggre-
gated the results using Markov state models, and measured activa-
tion of the receptor in the presence of an agonist and an inverse
agonist using many of the same metrics discussed by Dror and
colleagues. In addition to the root mean square deviation
(RMSD) of the connector region, the RMSD of the NPxxY motif
[57], and the distance between TM3 and TM6, the researchers
expanded the definition of an active conformation of the ligand

Fig. 2 Examining the conformational state of β2AR during simulation (adapted from [52]). (a) Overview of the
allosteric network between the canonical binding site (orange), the connector region (green), and the G protein
binding site (purple). The receptor is represented by silver cartoon; ligand atoms are shown as spheres; key
residues in each region are shown as sticks (hydrogens excluded). (b) Structure of the aforementioned regions
in active and inactive conformations. (c) Metrics used during simulation to determine activity state of receptor
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binding site to include S5.43 and F5.47. Using these metrics, the
study showed two interesting results; the receptor exhibits different
behavior based on the activity of the agonist, and mutual informa-
tion networks differ based on the ligand present [29].

In the absence of any ligand and in the presence of an inverse
agonist, the receptor remained in an inactive conformation
throughout 150 μs of aggregated simulation time. However, in
the presence of a full agonist, the receptor is capable of spontane-
ously transitioning to an active-like state (if only for a short time;
approximately 2.5 μs). Additionally, based on mutual information
networks, the researchers noted that agonists strengthen connec-
tions between the canonical binding site and the G protein binding
site, whereas inverse agonists discourage these connections, limit-
ing them to the intracellular G protein binding site [29].

Using a similar strategy, Schneider and colleagues performed
long-time scale MD simulations on the active state of the μ opioid
receptor (PDB entry 5C1M [27]) to study the differences in
mutual information networks generated in the presence of a full
agonist and in the presence of a biased agonist. With the aid of
performance boosts from Anton, the researchers performed a total
of 50 μs of simulation time, the bulk of which was dedicated to the
binding pathway of the biased agonist (discussed in more detail
below).

Using mutual information networks, Schneider and colleagues
[58] showed that the full agonist morphine produces a much larger
mutual information network compared to that produced by the
biased agonist TRV-130, particularly in key areas of interest, such as
the sodium allosteric site. Their results suggest that biased ligands
allosterically communicate with a smaller set of residues, making it
possible to design experiments to study the nature of the interac-
tions, as well as new drugs with increased therapeutic use that
exploit these contacts.

Long-time scale studies, such as the ones discussed above, have
profound implications for the design of better, more efficient
drugs. Unfortunately, they come at huge computational resource
cost. However, it is worth noting that there are alternatives to
running long-time MD, while enabling the exploration of the
same free energy surface. One of the main drawbacks of conven-
tional (or classical) MD is that simulations can only reliably explore
low-energy events, such as breaking or forming salt bridges, or
perhaps the equilibration of a ligand pose in a binding pocket.
High-energy events, such as a GPCR transitioning from an inactive
to an active conformation, are rarely sampled using conventional
MD techniques [59], unless one has the dedicated resources for
long simulations as described above. These high-energy events also
occur at time scales of milliseconds or more, making conventional
MD unsuitable as a conformational exploration tool [60].
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Many enhanced sampling techniques to explore the free energy
landscape of complexes have been developed including metady-
namics [61, 62], targeted MD [63–65], steered MD [65, 66],
biased MD [65, 67, 68], accelerated MD (aMD) [69, 70], and
dual-boost aMD [69, 71] among others. Some of these tools have
been directly implemented in the aforementioned MD packages, as
is the case with aMD and dual boost aMD being implemented in
AMBER (since version 12), while others have been developed as
plugins, as is the case with metadynamics and PLUMED
[72]. Using such techniques and novel protocols enables us to
explore similar dynamic properties with reduced computational
resources.

The guiding principle behind enhanced sampling tools, such as
metadynamics, is to use one or more collective variables (CVs) to
describe the evolution of the system over time [59] (see Note 4).
Upon choosing collective variables (some examples given below), a
history-dependent bias is added to the original force-field para-
meters, discouraging the system from visiting states that have
already been explored [73]. Subsequently, a free-energy surface
can be calculated using a re-weighing algorithm [74] as a function
of system variables [73].

These principles can be used to find metastable conformations
of receptors that might otherwise be inaccessible experimentally,
which is of particular importance given that the presence of certain
ligands might stabilize such conformations. The first reported case
of the use of biased MD to explore the activation pathway of
GPCRs was reported in 2010 [75]. In later studies, using a variant
of metadynamics, well-tempered metadynamics [76], Provasi and
colleagues showed how ligands with different physiological proper-
ties (agonists, neutral antagonists, and inverse agonists) modulate
the free energy landscape of the receptor [73].

After ascertaining binding poses for ligands in the β2AR, either
by positioning them according to an experimentally determined
structure or by calculating their pose via docking, Provasi and
colleagues used the Cα RMSD as a basis for computing their CVs,
simulating the systems until convergence (300 ns). Then, using the
distance between R3.50 and E6.30 (the “ionic lock”; known to break
upon activation of the receptor [77]), the rotameric angle of W6.48

(the “toggle switch” [78], or sometimes “micro-switch,” thought
to influence receptor activation [57]), and the displacement of TM6
(showing the biggest change upon receptor activation; see Fig. 1),
the researchers used the previously mentioned re-weighing algo-
rithm to estimate the free-energy of the system.

The results of this study, using well-tempered metadynamics as
an approach to sample the free-energy surface, provide quantitative
descriptions for the dynamics of receptors. In the absence of ligands
and in the presence of neutral antagonists, receptors explore both
inactive and active-like intermediate conformations. Inverse
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agonists appear to destabilize active-like intermediate states, sub-
stantially increasing the energy required for receptors to transition
to said states; and agonists appear to stabilize active-like states, both
disrupting the ionic lock and influencing the rotameric angle of
W6.48. Results from further studies into the rotameric angle of this
critical residue, also by implementing metadynamics tools, postu-
late that rotation of the sidechain of W6.48 results in disruption of
the hydrophobic core within GPCRs, weakening connections
between TM3 and TM6, and allowing waters to inundate the
receptor core [79]. It is worth noting that the partial agonists and
very weak partial agonists appear to be less capable of disrupting the
ionic lock compared to full agonists [73].

Zia et al. also used an acceleratedMD approach [80]. Using the
crystal structure of the A2A adenosine receptor (PDB: 4EIY [81]),
they designed and implemented a strategy using steered MD to
identify regions where structural waters might be located, and to
subsequently identify the role of each region. Water molecules have
been implicated in many roles within GPCRs, including strength-
ening interactions between helices [82], affecting ligand affinity
and binding kinetics [80, 83] andmay act as “low-energy molecular
switches” that stabilize active and inactive conformations of GPCRs
[27]. While multiple software packages have been developed to
predict their location within receptors (such as WaterDock [84],
GCMC [85], and grid cell theory (GCT) [86, 87] among others
[88–90]), the results don’t often match and in certain situations
convergence may be hard to achieve [80]. Zia et al. designed a
protocol to force desolvation of particular areas of interest based on
a specifically designed collective variable (CV). In this case, a bias is
implemented that actively repulses water oxygen atoms via fictitious
charges. In addition, the behavior of water molecules in the recep-
tor was analyzed in the presence of a diversity of ligands, the
positions of which were obtained from other crystal structures.
The resulting apo simulation was compared to a 100 ns simulation
of the apo-receptor using conventional MD methods.

One of the key outcomes from this study was how implement-
ing novel strategies, aided by enhanced sampling methods, can help
reduce simulation time required to find the same results one would
find using conventional MD. Compared to the 100 ns required by
conventional MD, the researchers reported simulations times as
low as 1.2 ns per receptor [80].

Taken together, these studies show how the recent innovations
in hardware architecture and software programming have enabled
the sampling of longer-timescale events, ultimately allowing
researchers to have a better, more detailed understanding of impor-
tant processes that affect GPCRs (and, indeed, many other larger
systems).
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2.2 Ligand Binding

Pathways

MD simulations can be used to study several aspects of ligand-
protein interactions. Ligand binding modes and the influence of
ligands on protein dynamics are some of the properties that can
easily be studied using MD simulations. One aspect of protein-
ligand interactions that is not very easily probed by experimental
techniques is what are the precise pathways a ligand takes to gain
access to its fully bound state? The growing interest in kinetic
properties of drugs means that this question is becoming increas-
ingly important, especially as the kinetics of drug binding are
intimately connected to therapeutic effects [91]. For example, it
has been suggested that slow unbinding may enhance therapeutic
effects [92–96].

Unfortunately, little is known about how the ligand moves
from bulk solvent into the canonical binding site (see Note 5).
One of the earliest studies used all-atom MD simulations of the
β1- and β2-adrenoceptor (β1AR and β2AR, based on PDB entries
2VT4 [97] and 2RH1 [54], respectively), each in complex with a
variety of ligands (Fig. 3a). The authors showed that there is a
dominant binding pathway for ligands in the adrenoceptors char-
acterized by 2 energetic barriers that hinder ligand binding from
the bulk solution. These barriers reflect a dewetting of the ligand as
it enters the vestibule region [91] (Fig. 3b).

Fig. 3 Identification of the critical “vestibule region” within the β2AR. (a) Ligands used by Dror and colleagues
[91]. (b) Ligand entry pathway from bulk solution. Receptor shown as tan ribbon and ligands shown as pins,
where the aromatic pharmacophore is represented by the round end and the positively charged nitrogen atom
is represented by the pin point (as per (a)). Ligands are colored based on the RMSD from the crystal structure
(red: in bulk solvent; green: in vestibule region; blue: in canonical binding site). Reproduced from [91] with
permission
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In this work, 21 of 82 unbiased all-atom MD simulations
resulted in spontaneous binding events, a total of 232 μs of simula-
tion time [91]. A similar protocol was applied in a recent study of
the μ opioid receptor, where researchers randomly inserted 10 Oli-
ceridine (TRV-130) molecules in the extracellular bulk and studied
the binding pathway to the canonical active site. Analysis of approx-
imately 50 μs of simulation revealed a similar binding pathway
where TRV-130 ligands first visited the vestibule region before
entering the canonical binding site [58]. Contrary to the approach
by Dror and colleagues, the researchers reduced the computational
time by implementing exclusion criteria: all simulations in which all
ligands were bound to the lipid bilayer after a certain amount of
simulation time were discontinued.

Both studies are examples of how classical MD can help eluci-
date ligand binding into the canonical binding site, and may be
used to discover new binding sites for small molecules and mod-
ulators (also see the GPCR-lipid interactions section below). How-
ever, simulating 50 μs or more is computationally very expensive
and time consuming and not generally available to most research
groups. It is therefore always useful to develop new protocols to
decrease the computational time and increase performance.

One way this can be achieved involves “shepherding” of ligands
in classical MD simulations. An example of this, termed Supervised
MD (SuMD), is capable of reducing the total simulation time from
the microsecond timescale to the nanosecond timescale [98]. In
short, the distance between the center of mass (CoM) of the ligand
and the residues constituting the binding site is monitored over a
predefined timestep. If the distance decreases, the simulation is
continued; if the distance increases, the simulation is restarted
from the previous checkpoint (see Fig. 4).

This method was subsequently used to analyze the binding
pathway of several ligands to the human A2A adenosine receptor:
ZM241385 (PDB: 3EML [99]); T4G, (PDB: 3UZA [100]); T4E
(PDB: 3UZC [100]); and Caffeine (PDB: 3RFM [101]). The
authors report that the binding pathway of ZM241385 reproduces
the crystallographic pose in less than 60 ns, the T4G simulations
reproduce the crystallographic pose in less than 65 ns, and the T4E
system reproduces the crystallographic pose in less than 110 ns.
The authors reported that caffeine also enters the canonical site but
do not report how long the binding event takes [98].

In a later study, the SuMD protocol was applied to the identifi-
cation and recognition of possible allosteric pathways of LUF6000,
an A3 adenosine receptor (A3AR) positive allosteric modulator
[102]. This study used SuMD to identify 2 distinct mechanisms
by which LUF6000 mediates agonist-receptor interactions, partic-
ularly interactions between the A3 adenosine receptor and adeno-
sine. Briefly, adenosine was supervised into the binding pocket of
the A3AR (taking just over 20 ns to reach this configuration) and
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the subsequent adenosine-A3AR complex was used to observe how
LUF6000 enters the receptor and how this translates to possible
allosteric modulation mechanisms. The authors report that
LUF6000 either (a) alters the conformation state of the second
extracellular loop, thus resulting in more energetically favorable
interactions between adenosine and residues deeper in the canoni-
cal binding site (Fig. 5a), or (b) acts as an “orthosteric pocket cap,”
reducing adenosine exposure to bulk solvent (Fig. 5b) [102].

Fig. 4 Schematic representation of SuMD. Notice the decrease in time taken compared to previously reported
β2AR ligand entry times. The ligand, ZM241385, is shown as spheres, and A2AAR is shown as tan ribbons.
Reproduced from [98] with permission

Fig. 5 Possible allosteric mechanisms of LUF6000. (a) Conformation changes in EL2 induced by LUF6000
(orange sticks) resulting in more favorable interactions between adenosine (tan sticks) and A3AR (silver
ribbons). (b) LUF6000 working as an “Orthosteric pocket cap,” shielding adenosine from bulk solvent.
Reproduced with permission from Deganutti et al. [102]
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However, the idea of using distance constraints to drive a small
molecule to a binding pocket is not new. Combined with some
previously discussed enhanced sampling techniques, the distance
between the CoM of a ligand and the CoM of the accepted binding
pocket can be used as a CV to calculate the free energy of a
receptor-ligand complex, as the ligand moves from the bulk solu-
tion to the canonical binding pocket. Using this distance as a
primary CV and the distance between the CoM of the canonical
pocket and the CoM of heavy atoms of the extracellular loop
2 (ECL2) as a secondary CV, Provasi and colleagues used well-
tempered metadynamics to explore the free energy of the δ opioid
receptor antagonist Naltrexone as it moved from the solution to the
accepted opioid binding site [103]. Based on their results, the
researcher calculated an equilibrium constant (Keq) of 80�13 nM,
a value close to the experimentally determined Ki values from the
radiolabeled ligand binding assays.

2.3 GPCR-Lipid

Interactions

In addition to modulation by small organic molecules, G proteins,
peptide ligands, and ions, lipids can also influence the function
GPCRs. Cholesterol, and a number of other key lipid species,
have become the focus of extensive in vitro and in silico studies
and have been shown tomodulate the stability, oligomerization and
ligand binding activity of GPCRs [104, 105].

Early attempts to identify potential cholesterol sites in GPCRs
used long time scale classical MD simulations of adenosine-bound
A2AAR (PDB:2YDO [106]) embedded in a POPC:cholesterol
(7:3) bilayer to identify three binding sites (see Note 6). One site
was located in the intracellular end of the receptor, linking TM3
and TM6, while two sites were identified in the extracellular end of
the receptor, one linking TM1 and TM7, and one linking TM2 and
TM3 [107]. This third cholesterol site showed good agreement
with a subsequently determined X-ray crystallographic structure of
the same receptor (PDB: 4EIY [81]).

Long time scale MD can also be used to elucidate the mecha-
nism by which certain lipids may modulate receptor structure and
function. One such example came from simulations of the β2AR
embedded in either simple zwitterionic or mixed zwitterionic:
anionic lipid bilayers [108]. Employing over 0.25 ms of simulation
the authors found that embedding the apo receptor in these two
bilayer environments had distinct effects on the stability of the
active states and on the critical salt bridge between Arg3.50 and
Glu6.30, the “ionic lock” [108].

Their discoveries were twofold. Starting from different crystal
structures (PDB: 3SN6 [28] with G protein removed, and PDB:
3P0G [53] with nanobody removed), Neale and colleagues found
that the structures derived from the nanobody-stabilized crystal
were statistically more likely to deactivate based on the
TM3-TM6 distance (as measured by the distance between Arg3.50
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and Leu6.34) and ionic lock formation (defined as the distance
between Nη-Oϵ of Arg

3.50 and Glu6.30, respectively). The authors
estimate an active state half-life of 2.9�0.3 μs for the G protein-
derived structure, and a significantly shorter half-life of 0.6�0.2 μs
for the nanobody-derived structure. This could suggest that the
conformational state required to bind to a nanobody is distinct to
that required to bind the canonical G protein [108].

The second major discovery pertained to the insertion of lipids
into the G protein binding site. The reported simulations suggest
that phospholipids are capable of competing with Glu6.40 for the
interaction with Arg3.50, effectively preventing the formation of the
ionic lock, and thus conferring additional stability to the active
states. The simulations also suggest that this effect is more pro-
nounced in the presence of anionic lipids, which more strongly
compete with Glu6.40, resulting in a threefold increase in the half-
life of active states. Critically, the simulations suggested that lipid
binding in the intracellular end of the receptor might sterically
hinder G protein binding, leading the researchers to propose a
novel mechanism explaining the modulation of GPCRs by phos-
pholipids (Fig. 6).

The conclusion that the active state of β2AR is preferentially
stabilized by anionic lipids was later confirmed in electron paramag-
netic resonance (EPR)-based experiments employing spin-labeled
β2AR embedded in nanodiscs to monitor TM6 movements in the
presence of a range of different lipid species [109]. Taken together,
these two studies provide a key example of how MD can be applied
predictively, in complement to experiment. Another such example
of how MD can shed some light into processes, otherwise difficult
to capture experimentally, came from investigations into the
all-atom allosteric mechanism of cholesterol (and analogues) mod-
ulation of the β2AR. Manna et al. [110] performed simulations of
the β2AR (totalling ca. 100 μs) embedded in a 1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPC) bilayer of varying cholesterol
content (ranging from 0 to 40% cholesterol). The authors found
that the receptor exhibited a decrease in conformational flexibility,
adopting fewer intermediate conformations (conformations
between active and inactive states) over the simulated time course
when the concentration of cholesterol was between 10 and 40%.
This effect, measured by the distance between key atoms in the
ligand binding site (Cα atoms of Asp3.32 and Ser5.46) and the
G protein binding site (Cα atoms of Arg3.50 and Glu6.30), was
seen regardless of starting receptor conformation. Critically, in the
active state cholesterol was found at the interface between TM5
and TM6, restricting the movement of the latter helix toward
its inactive conformation and thus preventing spontaneous
deactivation [110].

As discussed in the sections above, capturing rare events can be
achieved by very long time scale conventional MD simulations or
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by exploiting advanced sampling strategies. Another route to acces-
sing longer time and length scale events is to employ coarse-grained
(CG) simulations. By mapping several non-hydrogen atoms (typi-
cally 4) into a single bead, the properties of which correspond to
the properties of the mapped atoms (Fig. 7), the number of parti-
cles in the system is reduced and the computations involved at each
step of the simulation are simplified. This approach thus allows
access to longer time and length scales. The ability to simulate
large timescales is of crucial importance, as most biologically inter-
esting phenomena, such as higher-order protein complexes, pro-
tein folding, and signal transduction, are beyond the capabilities of
atomistic MD simulations, despite the advances previously men-
tioned. Details of the design principles and particle interactions
using the MARTINI force field have previously been
reviewed [112].

Periole and colleagues employed the CG MARTINI model to
investigate visual rhodopsin association in a range of bilayers with
varying hydrophobic thickness [111]. They reported on systems of
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Fig. 6 Schematic of the proposed “foot-in-door” mechanism to explain receptor modulation by phospholipids.
Only helices 6 and 7 are shown for simplicity. The top pathway depicts the classical view of GPCR activity; an
agonist (represented by a star) binds to the receptor in the canonical active site, resulting in TM6 moving from
an inactive (I) to an active (A) conformation, then binding to the G protein (or another partner protein, such as a
nanobody, shown as a dark green blob). The bottom pathway depicts the receptor undergoing conformations
that are hard to capture via crystallography (I*), to then be partnered with an intracellular signaller and
undergoing further conformational changes to reach the active state (A). The work by Neale and colleagues is
depicted and summarized by the central pathway, upon ligand binding, where the structure stabilized by a
phospholipid (red circle with blue tails) acts as a precursor to intracellular binding. It is worth noting that this
effect might also be possible without the presence of an extracellular ligand. Reproduced from [108] with
permission
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up to 16 rhodopsin receptors embedded in 1600 lipid molecules,
employing 8 μs of simulation. The sizes of the systems were approxi-
mately 200 Å � 200 Å. Their results showed that spontaneous
oligomerization of receptors depends on hydrophobic mismatch
(the difference between the length of the hydrophobic part of a
membrane protein and the equilibrium hydrophobic bilayer thick-
ness [113]), in agreement with previously published atomic force
microscopy (AFM) [114] and FRET [115] data. This work was the
first of its kind reported, and presented exciting new prospects for
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Fig. 7 Schematic of the MARTINI mapping protocol. (a) Examples of lipid (in this case, DPPC), water, and
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shown as a ball-and-stick model, while the coarse-grained representation is shown as van der Waals with
underlying bonds as black sticks. In the helical fragment, the red spheres represent the backbone. Bead types
are shown in transparent gray next to the corresponding bead. (b) Rhodopsin model showing the full atomistic
structure as ribbons (left), and the corresponding CG representation. The bead color represents the property of
the atoms incorporated into it. Adapted from [111] with permission
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understanding oligomerization of receptors based on bilayer proper-
ties [111, 116]. Using a coarse-grained representation facilitates
computing properties for systems of such size and timescale.

The spontaneous oligomerization of rhodopsin, as demon-
strated by Periole and colleagues, has since been demonstrated for
the β2AR [117], opioid receptors [118], and a range of other
GPCRs [118]. Koldsø and Sansom recently reported large simula-
tions of 144 sphingosine 1 (S1P1)-membranes [119] that mimic
the lipidome of a mammalian plasma membrane (Fig. 8). The
authors reported on S1P1 receptors embedded in 59,616 lipid
molecules; a ninefold increase in the number of receptors and a
37-fold increase in the number of lipids compared to the rhodopsin
study published by Periole and colleagues. Their systems measured
approximately 1250 Å � 1250 Å, an approximate 40-fold increase
in surface area simulated [119]. Simulation of such lengths and
timescales are only made feasible by CGMD and, in this case, access
to quite large compute resources.

Of particular interest, they found that, in contrast to the previ-
ous studies of GPCR oligomerization in simple lipid mixtures
[116], the S1P1 remained predominantly monomeric over 10 μs
of CGMD simulation (Fig. 8) [119]. This suggests differences in
receptor oligomerization patterns when including more complex,
biologically relevant membrane compositions [116]. The authors
also identified lipid binding sites for the regulatory lipids

Fig. 8 Oligomerization of S1P1 receptors (PDB: 3V2W [120]) within a complex lipid bilayer over 10 μs of CG
simulation. The lipid composition mimics that of a mammalian plasma membrane. The receptors are shown in
pink (144 in total). Lipid color code: blue—POPC; purple—POPE; dark gray—Sphingomyelin; light blue—
monosialodihexosylganglioside (GM3); green—cholesterol; light grey—phosphatidylserine (PS); and
orange—phosphatidylinositol-4,5-bisphosphate (PIP2) (Based on [119] with permission)
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phosphatidylinositol-4,5-bisphosphate (PIP2) and cholesterol on
the membrane-exposed surface of the S1P1. In addition to increas-
ing lipid complexity, it will be interesting to see how inclusion of
multiple proteins may influence their lateral interactions and oligo-
merization. Other phenomena derived from oligomerization of
receptors (for example, how the potency of analgesia provided by
μ opioid receptor activation is modulated by corresponding δ opi-
oid receptor activation [121]) can also be studied using this
approach.

In recent years, MD simulations have provided extremely useful
insight into the dynamic, ligand binding, and modulatory aspects
of GPCR function. The information obtained is usually comple-
mentary to experimental techniques and indeed can help refine
working hypothesis that can be tested. In this chapter, we have
discussed three main areas where MD simulations have made a
significant impact. There is no doubt that advances, not only in
computer power, but also in algorithmic approaches will help to
provide even more important insight into the function and modu-
lation of GPCRs. A better of understanding of such properties at
the molecular level can surely only increase our chances of develop-
ing better drugs in the future.

3 Notes

1. The GPCR database (http://gpcrdb.org) is an up-to-date
online resource that provides excellent tools for GPCR analysis.
It contains alignment tools, representation tools (such as snake
diagrams for example), protein-ligand interaction diagrams
generators, mutation data, and much more [122].

2. Despite how complex physiological lipid bilayers are simulating
them can become burdensome particularly since receptor activ-
ity is often mediated by lipids (see GPCR-lipid interactions).
In most cases, and depending on the hypothesis being investi-
gated, researchers opt for pure bilayers (typically containing
POPC or DPPC) rather than more complex ones. Recently,
however, more articles have been published with authors using
mixed POPC/cholesterol bilayers, or even more complex lipid
rafts (for examples of such bilayers, consult [119, 123]) in
order to simulate more native-like environments.

3. GPCRs, particularly those belonging to Class A, share many
conserved residues and structural motifs. The most frequently
mentioned motifs include:

(a) The DRY motif, located in TM3;

(b) The CWxP motif, located in TM6, where W is Trp6.48,
believed to be a micro-switch in receptor activation;

(c) The NPxxY motif, of which Asn7.49 has been shown to be
part of an allosteric network connected to a core sodium
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ion in certain GPCRs (see the ultra-high-resolution struc-
ture of the human δ opioid receptor, PDB 4N6H), and
Tyr7.53, a highly flexible residue that is thought to be
involved in G protein binding and;

(d) The PIF motif, connecting TMs 3, 5, and 6.

Some of these motifs are used as metrics to predict the
activity state of receptors (see Fig. 8, where the RMSD of
both NPxxY and IF of the PIF motif are used as indicators
of receptor deactivation).

4. The choice of which CV to use of non-trivial, as it very much
depends on what aspect of the receptor is being studied. One
strategy previously employed was to use dihedral angles of key
residues, such as Trp6.48, as CVs. The dihedral angle of Phe6.44

can also be used, as the position of this residue is closely related
to that of Trp6.48. One could also use the RMSD of the motif as
a whole as a CV. The best strategy to decide on a CV is to first
understand the question from a modeling perspective (e.g.,
what residues are involved in this process), how these can be
exploited in an MD scenario (e.g., what are the most represen-
tative changes you want to explore), and then decide on a
metadynamics/accelerated MD tool to explore those changes.

5. As previously mentioned, software packages such as VINA and
GOLD are used to dock ligands into binding pockets. Docking
provides a good approximation of how ligands are oriented in
the binding pocket. However, one of the main drawbacks of
this method is that the predicted binding affinities calculated
from the various tools are not always compatible (i.e., the
highest scoring binding pose from VINA won’t always match
the highest scoring binding pose from GOLD). With little or
no knowledge of binding site, researchers might be more
inclined to allow ligands to diffuse naturally into the binding
pocket, rather than using docking programs. The tradeoff is, as
mentioned, computational time.

6. Mixed bilayers are now more and more common in the litera-
ture (see also Note 2). Building mixed bilayers usually involves
2 steps:

(a) Building a pure bilayer by either using an equilibrated
patch or by using coarse-grained self-assembly. VMD con-
tains atomistic topologies for equilibrated patches of pure
bilayers and the MemProtMD database (http://sbcb.
bioch.ox.ac.uk/memprotmd/) contains structures
embedded in a pure DPPC bilayer in both atomistic and
coarse-grained representations. It is possible to also use
coarse-grained self-assembly methods to embed GPCRs
into other pure bilayers, and subsequently revert those to
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atomistic representations (using scripts such as CG2AT
[124] or Backward [125]).

(b) Then, pure bilayers can be converted to mixed bilayers
using software packages such as Exchange Lipids
[119]. This script randomly replaces a certain percentage
of lipids from the pure bilayer, and allows users to build
more complex bilayers.

It is worth noting that both the steps can be performed
using the web-based CHARMM-GUI [126], a tool that
also provides input files for GROMACS and other MD
software. Another tool that is now more commonly used
is the insane tool, which allows users to generate complex
bilayers, as discussed above, and also allows users to gen-
erate custom periodic boundary conditions [127]. Typi-
cally, GPCRs are simulated using cubic periodic boundary
conditions.
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Chapter 7

Methods of Exploring Protein–Ligand Interactions
to Guide Medicinal Chemistry Efforts

Paul Labute

Abstract

We present a number of techniques to analyze protein–ligand interactions in the context of medicinal
chemistry: crystal Contract Preferences, Electrostatic Maps and pharmacophore screening using H€uckel
Theory. Contact Preferences is a statistical technique to predict hydrophobic and hydrophilic geometry in
receptor active sites. Electrostatic Maps use the Poisson-Boltzmann Equation to model solvation effects and
are particularly useful for predicting hydrophobic regions. Pharmacophore annotation with H€uckel Theory
provides finer detail of hydrogen bonding interactions, including CH..O interactions. Applications to
AblK:Gleevec and CDK2 virtual screening are presented.

Key words Molecular interactions, Contact statistics, Electrostatic maps, Pharmacophore annotation

1 Introduction

The combination of the widespread availability of X-ray crystal
structure coordinates of macromolecular structures (e.g., as found
in the Protein Data Bank [1] and affordable 3D computer graphics
hardware) has made it possible for scientists to routinely visualize
such structures in their efforts to design better inhibitors and
drugs.

While visually inspecting atomic coordinates and bonding pat-
terns can be revealing, it is often not easy to perceive structures such
as the shape of a receptor’s active site. A molecular surface is drawn
about the receptor (e.g., a Connolly surface [2] can provide such
information in a readily discernable manner). Similarly, a molecular
surface constructed from an iso-contour of the van der Waals
energy between a receptor and a hypothetical “probe” atom can
highlight sterically accessible regions in an active site. Such surfaces
are often useful when contemplating modifications to a ligand in
order to improve activity or selectivity. Receptor properties such as
atom type, electrostatic energy, and hydrogen bond information
can be used to color code the molecular surfaces in an effort to
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further assist with the interpretation of the macromolecular struc-
ture information.

In medicinal chemistry applications, crystal structures of pro-
tein–ligand complexes are used to understand important interac-
tions, such as hydrogen bonds, halogen bonds, ionic and
hydrophobic interactions, in an effort to guide ligand modification
for improved potency, selectivity, or physical properties. Hydrogen
bonding interactions tend to be directional, localized and can be
modulated by ligand substituents, especially the weaker CH. . .O
interactions. Hydrophobic and ionic interactions tend to be more
diffuse and can be affected by solvation/cavitation effects, which
present challenges when attempting to specify a pharmacophore for
a particular active site.

In this chapter, we will examine a number of techniques of
determining and analyzing non-bonded interactions between pro-
teins and ligands with the intended application of guiding ligand
design. This guidance takes the form of understanding existing
interactions, predicting potential new or modulated interactions
and the specification of pharmacophores for virtual screening.

2 Contact Preferences

The x-ray crystal structures in the Protein Databank and the Cam-
bridge Structural Database [3] are a good source of non-bonded
contact information from which statistics can be derived. Meth-
odologies such as X-Site [4] and SuperStar [5] are knowledge-
based techniques that use statistical distributions derived from
crystallographic data to describe or predict non-bonded contacts
between ligands and proteins. The main idea is to describe (statisti-
cally) the geometry of non-bonded interactions and use the statis-
tical descriptions to predict the likelihood of interactions in a
specific protein active site. Knowledge-based methods are appeal-
ing because they rely on experimental data and not molecular
mechanics, precise hydrogen coordinates, or other approximations;
however, they do rely on sufficient experimental data and appropri-
ate a priori classification of interacting atom types (e.g., sp2 donor
vs. sp3 acceptor).

We will describe one example of a statistical method, Contact
Preferences [6], for determining geometric preferences for polar and
hydrophobic atoms given the 3D coordinates of a protein receptor.
Fundamentally, Contact Preference maps are contours of probabil-
ity densities indicating a percentage likelihood of a non-bonded
contact between a protein receptor and a particular ligand atom
type; in other words, the likelihood that a given contact geometry
would be observed in the crystallographic databases. Interactions in
high-probability regions (e.g., donor and acceptor pair at ideal
geometry) are considered good and interactions in low probability
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regions (e.g., hydrophobic atoms covering a hydrogen bond posi-
tion) are considered non-optimal.

We are interested in the probability density

Pr l ; xjsð Þ
the probability of observing a ligand atom of type l at position x in
contact with a structure s consisting of a collection of atoms with
types {ti}. We approximate.

Pr l ; x j sð Þ ¼ Pr x j l ; sð ÞPr l j sð Þ

� cmax
i

Pr x j l ; t ið ÞPr l j t i:ð Þ

where c is a normalization constant and have assumed that we can
compose the distribution over the entire structure from the indi-
vidual receptor atoms.

The Pr (l | ti) term (the probability that a ligand type l is in
contact with a receptor type, ti) is estimated straightforwardly using
relative frequencies of atomic contacts in a training set; for example,
the relative frequency that the (l, t) pair is observed within 4.5 Å
over sidechain-sidechain contacts in the PDB.

Two vectors u and v (see Fig. 1) are used to define a coordinate
system about each receptor atom located at Cartesian coordinates,
y, depending on hybridization and heavy atom coordination num-
ber. In some cases v is taken to be 0 (e.g., 3-coordinated sp2 atoms).
For an interacting atom located at x, we define the spherical-type
coordinates

r ¼ x � yj j a ¼ 180

π
cos �1 u∙

x � y

r

h i
p ¼ 180

π
sin �1 v∙

x � y

r

h i

where r is the distance between l and ti, a is the angle relative to u in
the plane normal to v, and p is angle relative to u in the uv plane.
Assuming independence of the individual coordinates we
approximate

Pr x j l ; t ið Þ � Pr r j l ; t ið Þ Pr a j l ; t ið Þ Pr p j l ; t ið Þ
and estimate the individual one-dimensional probability densities
from a collection of sidechain-sidechain (l, t) contacts found in the
PDB.

For each ligand receptor atom type pair, histograms are col-
lected over the PDB and these histograms are fitted with analytical
distributions. For example, Fig. 2 shows the histograms and fitted
distributions for the receptor atom type “oQ1,” an sp2 oxygen with
one heavy atom neighbor. One can clearly see the directional
preference for the in-plane hydrogen bonding interactions at lone
pair directions (a ¼ 60�) and the out-of-plane hydrophobic inter-
actions (p > 45�).

Figure 3 depicts the 95% probability contour levels for a collec-
tion of receptor atom types created from the analytical probability
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distributions fitted to PDB statistics. Receptor atom types are
denoted by their element (lower case for sp2) and heavy atom
neighbor count. Ligand atom types are either polar (POL) or
hydrophobe (HYD). Hydrogens are displayed for reference; how-
ever, these were not used in the statistical fit, which is why, for
example, the primary amine type “NQ1” does not show direction-
ality with respect to the neighboring hydrogens.

Fig. 1 Two vectors u and v centered on a receptor atom (green) define a local coordinate system; the
directions of these vectors depend on the receptor atom’s hybridization and heavy coordination number

Fig. 2 Distributions of non-bonded contact coordinates between ligand atom types polar (POL in red) and
hydrophobic (HYD in green) and a receptor atom of type “oQ1”, sp2 oxygen with one heavy neighbor. The
dashed lines are the histograms collection from sidechain-sidechain contacts in the PDB and the solid lines
are analytical fitted distributions. The top distribution is for the inter-atom distance, the middle the in-plane
angle, and the bottom is the out-of-plane angle (see the text)
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There are a number of uses for such probability contours.
Composite contour level plots in receptor active sites can indicate
regions of high probability of polar or hydrophobic contacts which
can be useful in structure-based design. The directional preferences
are also useful for annotating ligand atoms’ hypothetical contact
partners in pharmacophore 3D search techniques. Also, the statis-
tical distributions can be used to assess the geometry quality of
hydrogen bonds in graphical interaction displays.

However, there are notable drawbacks to statistical techniques.
First, the method is sensitive to the a priori atom typing which
causes a loss of detail of chemical context; for example, phenol
oxygens (type “OQ1i”) are generally good hydrogen bond accep-
tors except for weakening due to substituent effects in ligands. The
statistics are gathered for all phenol oxygens which conflate the
chemical contexts leading to potentially misleading contact prob-
abilities. Second, because hydrogen atoms are generally not visible
in the PDB there is loss of distinction between donor and acceptor
partners, for example, with hydroxyl oxygens. Third, each receptor

Fig. 3 95% probability contour levels for interactions with a receptor atom type and ligand atom types POL
(red) and HYD (green)
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atom is treated independently; consequently, compositing the maps
in a receptor active site neglects correlation and longer range elec-
trostatic effects. Fourth, the probability maps reflect, in some sense,
only the frequency of occurrence of contacts in crystal structures
and not necessarily a strength or energy value.

3 Electrostatic Maps

Molecular mechanics potentials are one method of addressing some
of the deficiencies of statistical approaches. Forcefield terms such as
Coulomb or Reaction Field electrostatics and Lennard-Jones van
der Waals energies are physically motivated and rely on only a few
parameters per atom. In principle, distinct chemical contexts can be
better described and interaction correlation effects can be better
treated (in contrast to the independent-atom assumption of statis-
tical approaches).

An early example of the use of physical potentials to identify
favorable binding sites in a receptor is Goodford’s GRID [7, 8] in
which iso-energetic surfaces of the van der Waals, electrostatic and
hydrogen bond energy between a small probe atom (or fragment)
and a macromolecular structure are used to identify favorable bind-
ing sites. The surfaces are displayed on a graphics terminal and the
binding regions in space are identified by suitably adjusting the
energy values used to produce the contour surfaces.

Originally, a Coulomb potential was used; however, this
gas-phase model overemphasized the electrostatics interactions.
Moreover, hydrophobic interactions were difficult to quantify due
to the lack of an implicit solvent model. Subsequently, an implicit
solvent model was incorporated based upon spatial differences in
the dielectric of solvent versus solute. Notwithstanding the fact that
the implicit solvent model took only the macromolecular structure
and a particular location of the probe into account, the GRID
methodology has found utility in efforts to understand ligand
binding [9–11]

A more sophisticated treatment of macromolecular electrostat-
ics uses the Poisson–Boltzmann Equation (PBE) which is a partial
differential equation used in the study of electrolytes. Methods to
solve the PBE have been the subject of much research [12–14]
because of their ability to model implicit solvent and buffer effects.
Typically, a macromolecular structure is used to define a region of
low dielectric (e.g., 1) in a certain volume and the remaining points
of space are assigned a high dielectric (e.g., 80). The solution to the
PBE has largely been used to predict pKa values for ionizable
groups or to color code molecular surfaces. Such color coding
can be revealing since it presents a self-consistent view of the
electrostatic field near a solute with solvent screening taken into
account.
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It is tempting to use the PBE electrostatic field in GRID-type
methodology; however, the application of a single solution is
flawed because the electrostatic field depends on the low dielectric
cavity which depends on all particles, including the probe. Either a
prohibitively long calculation would be required (one PBE solution
for every lattice value calculated) or the cavitation effects of the
probe would have to be neglected.

An alternative, called Electrostatic Maps [15], uses solutions of
the PBE to augment the GRID-type methodology. The starting
point is the Poisson equation which is a fundamental equation of
physics that relates the equilibrium electrostatic potential φ at a
point in space and a charge density ρ at that point:

∇∙∇φþ ρ ¼ 0

where ∇ ∙ ∇ ¼ ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian opera-
tor. Given a charge density, ρ, one can calculate the electrostatic
field φ by solving the partial differential equation. In the special case
of a collection of point charges, φ is the familiar Coulomb potential.

Suppose that a charge density (from a protein or small mole-
cule) ρ is interacting with a number of mobile ions (e.g., from salts)
each carrying a formal charge, qI. At thermodynamic equilibrium
these mobile ions will be distributed about ρ according to a charge
density which we will denote by ρI. The electrostatic potential φ
from the combined charge densities must satisfy the Poisson
equation

∇∙∇φþ ρI þ ρ ¼ 0

For multiple types of mobile ions, the foregoing equation is
easily extended by replacing the lone ρI with a sum of similar
densities (one for each type). For the purposes of exposition, only
one mobile ion type will be considered.

If the mobile ions are spatially restricted (e.g., the ions cannot
be inside a protein and must remain in solvent), then such a
restriction can be specified with a spatial potential uI that has high
energy in the forbidden regions of space and low energy in the
allowed regions of space. Taken with the electrostatic potential φ
the potential energy of a mobile ion at a particular point in space
will be, at equilibrium, qIφ + uI qI. We now assume that the ion
location density, ρI, follows a Boltzmann distribution and so the ion
charge density is its formal charge multiplied by the probability it
will be located at a particular point in space

ρI xð Þ ¼ qI c e
� qIφ xð ÞþuI xð Þ½ �=kT

where c is normalization constant, k is Boltzmann’s constant, and
T is the temperature of the system. If φ and uI are zero sufficiently
far from ρ then at such distances the exponential term tends to one
which means that c may be taken as the bulk concentration, CI, of
the mobile ions (e.g., in mol/L). The combination of the previous
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two equations results in a Poisson-Boltzmann type equation,
namely that

∇∙∇φþ qICI e
� qIφ xð ÞþuI xð Þ½ �=kT þ ρ ¼ 0

which specifies not only the resulting electrostatic potential, but
also the ionic charge densities both of which result from an original
charge density ρ.

The Electrostatic Maps methodology consists of the display of
the equilibrium potential energy iso-surfaces of mobile “oxygen”
and “hydrogen” particles carrying partial charges qO and qH,
respectively, and subject to spatial Lennard-Jones van der Waals
potentials uO and uH, respectively. Upon (numerical) solution of
the above PBE, we have that

∇∙∇φþ CqOe
� qOφþuO½ �=kT þ 2CqHe� qHφþuH½ �=kT þ ρ ¼ 0

where C is the bulk concentration of water and ρ is the charge
distribution of a macromolecule under consideration. The potential
function qOφ + uO is the potential energy landscape of the implicit
“oxygen” particle and qHφ + uH is the potential energy landscape
of the implicit “hydrogen” particle. These two potentials represent
the free energy minimizing energy landscapes of the neutralizing,
or screening, solvent particles. In some sense these represent the
energies required to displace solvent at particular points in space
under the assumption that the remaining points in space are ideally
(in a mean field sense) solvated or neutralized. An additional
“hydrophobic” potential, �(qO + qH)φ + uC, is defined (where
uC is a Lennard-Jones potential for carbon) which will have nega-
tive values in neutral regions (absence of “O” or “H” particles).

Fundamentally, Electrostatic Maps are plots of van der Waals
and electrostatic energies of implicit particles and, as such, they are
similar in spirit to the GRIDmethodology with the mobile particles
playing the role of the “probes.” The difference, however, is that a
single, nonlinear, self-consistent calculation is performed in which
each implicit mobile particle feels the effects of the other implicit
mobile particles in order to better model screening effects. This
nonlinearity and self-consistency ultimately manifests itself in a
more localized distribution of implicit particle densities. Approxi-
mate, or even exact ε ¼ 80 solvation models can fail to adequately
screen chemical groups leading to electrostatic domination of a
region because there is a nonlinear screening effect in the buffered
solution that cannot be modeled by linear ε dielectric models.

A simple example will serve to illustrate this point. Figure 4
shows the contour plots of the qOφ + uO and qHφ + uH functions for
two different solvent models. On the left, a linear screening dielec-
tric of ε ¼ 80 outside of a small molecule was used in the PBE
without mobile particles. One can see the large extent of the blue
(preference for positive) contour created by the carboxylate group.
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On the right are the contours of the proposed Electrostatic Map
calculation in which the contours are much more localized; so
much so, that a preference for negative (red) appears next to the
hydrogen in the amide group. Charged groups in aqueous envir-
onments are neutralized by the “oxygen” mobile counter-ions
(modeled in Electrostatic Maps with the “oxygen” and “hydrogen”
particles) that provide nonlinear screening effects and must be
modeled using nonlinear Boltzmann term of the PBE. By using
the mobile self-consistent Boltzmann particles of the PBE, the
carboxylate group will be sufficiently screened so that groups
beyond its first solvation shell will not feel an unrealistically strong
electrostatic field.

We shall now use the AblK:Gleevec complex to show how
Electrostatic Maps can be used to rationalize the activity trends in
a ligand series. The Bcr-Abl chimeric protein has been implicated in
the development of chronic myeloid leukemia (CML) and acute
lymphoblastic leukemia [16, 17] Gleevec (Imatinib) is a small
molecule inhibitor of the dephosphorylated (inactive) form of
Bcr-Abl kinase currently being used clinically as a treatment for
CML. Patients can develop resistance to Gleevec if Bcr-Abl expres-
sion is enhanced or if point mutations occur within the Abl kinase
domain [17] and consequently there is interest in further develop-
ing next-generation Bcr-Abl kinase inhibitors.

It has been shown [18] that the Gleevec piperazine ring fits in
the solvent exposed opening of the pocket and forms hydrogen
bonds to Thr315, Ile360, Asp381, and Met318 (see Fig. 5). One

Fig. 4 (Left) Electrostatic and van der Waals energy contour plots of an anionic small molecule calculated by
solving the Poisson equation in a polar medium (ε ¼ 80). Positive preference is indicated in blue and negative
preference is indicated in red. Notice that the carboxylate dominates the entire region and no red contour is
visible. (Right) Electrostatic with van der Waals contour plots of the same small molecule calculated by solving
the nonlinear PBE with “O” and “H” mobile screening particles (see the text). Notice that the screening effects
are much stronger and that more localized positive and negative preferences are visible
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would expect that an Electrostatic Map calculated from AblK alone
to reproduce these interactions and possibly suggest regions of
possible optimization.

The AblK protein was prepared for electrostatic analysis as
follows. His361 was neutralized according to its immediate envi-
ronment so that it could form hydrogen bonds to the backbone
nitrogen of Asp363 and the backbone oxygen of Ala380. The
remaining residues were assigned standard ionization states and
protons were added in extended conformation. Partial charges
were then calculated using the MMFF94 forcefield [19] and the
electrostatic map was calculated from the receptor structure alone
near the active site. Figure 6 shows the results of the calculation
with the positive (blue) density plotted at �2.5 kcal/mol, the
negative (red) density at �2.0 kcal/mol, and the hydrophobic
(green) density at �3.0 kcal/mol. The calculated Electrostatic
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Fig. 5 A diagram of the interactions of Gleevec with Abl kinase in PDB:1IEP. Residues are represented by discs
with polar residues in pink (acidic residues with a red contour and basic residues with a blue contour) and
hydrophobic residues in green. Dotted arrows indicate hydrogen bonding to sidechain (green) and backbone
(blue) atoms respectively. Blue “clouds” on ligand atoms indicate the solvent-exposed surface area of ligand
atoms (larger means more exposure). Light-blue “halos” around residues indicate the degree of surface area
contact with ligand atoms (larger means more contact). The dotted contour reflects steric room for methyl
substitution.
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Map (see Fig. 6) agrees well with clear positive and negative charge
densities corresponding to all of the important hydrogen bonding
interactions of Gleevec. The predicted hydrophobic regions overlap
well with both the methyl group attached to the phenyl linker as
well as the pyridine ring fragment indicating strong favorable
hydrophobic interactions.

There are two significant regions in the AblK Electrostatic Map
that are not filled by Gleevec and therefore are potential regions of
ligand optimization. The unfilled hydrophobic density (Fig. 6
region A) suggests that a small hydrophobic group such as a halo-
gen, CH3, or CF3 would have favorable interactions with AblK and
could be a location for optimization. This is in fact the case; Asaki
et al. [18] reported biological activity data for a series of
3-substituted benzamide derivatives as Bcr-AblK inhibitors repro-
duced in Table 1; these compounds differ from Gleevec only by the
phenyl ring substituent in the hydrophobic subpocket (created by
Ile293, Leu298, Leu354 and Val379). The IC50 data of Table 1
shows that small hydrophobic substituents improve activity, in
particular, the 3-trifluromethylated benzamide. The same
3-trifluoromethyl moiety is also present in NS-187 [20], a recently
proposed Gleevec analog that not only binds more strongly to AblK
than Gleevec, but maintains potency in the presence of many
known point mutations. It is interesting that the gain in potency
of approximately �2.1 kcal/mol ¼ �kT ln (IC50(CF3)/IC50(Gle-
evec) of the CF3 substituent is in rough agreement with the
�3 kcal/mol hydrophobic contour value of the Electrostatic
Map. This is most likely due to the fact that the Electrostatic Map
(free) energies estimate the solvation effects that largely determine
differences in affinity in this highly homologous series.

Fig. 6 The Electrostatic Map for the active site of AblK:Gleevec (1IEP) calculated from receptor atoms only;
positive preference is indicated in blue, negative in red, and neutral in green. The yellow interaction surface
shows the steric boundary of the pocket. A and B denote map densities not filled by Gleevec (see the text)
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The second unfilled region of the Electrostatic Map for AblK
(Fig. 6 region B) suggests a preference for negative charge. This
negative density (created by the hydroxyl of Tyr253) lies about
1.5 Å from the meta position of the pyridine ring at about 45�

out-of-plane. Consequently, it is a difficult feature to reach. Asaki
et al. [18] synthesized pyrimidine derivatives instead of the pyridine
ring to compensate for the increased hydrophobicity caused by
trifluoromethyl group addition to Gleevec and to avoid interfering
with the Tyr253 (which stabilizes the inactive form of AblK) with
bulky substitutions. Their results show no significant improvement
in activity against Bcr-Abl K562 cell lines (estimated ΔΔG of
0.13 kcal/mol). This experimental conclusion could possibly have
been elucidated by the analysis of the Electrostatic Map around the
pyridine moiety because the negative (red) density is relatively far
from the contemplated pyrimidine nitrogen. A contour level of
�1 kcal/mol begins to show overlap with the contemplated nitro-
gen; however, since the hydroxyl and the nitrogen would be far
from optimal hydrogen bonding geometry it is reasonable to con-
clude that an interaction would be weak, even if mildly favorable.

The Electrostatic Maps methodology has a number of advan-
tages. The method is physically motivated and relies on molecular

Table 1
Activity of Gleevec analogs against K562 cells

N N R

O

NH2

N
H

N

N

N

Compound R IC50 (nM)

Gleevec H 183

1 F 63

2 Cl 10

3 Br 7

4 I 10

5 CF3 5

170 Paul Labute



mechanics parameters (partial charges and van der Waals para-
meters). It is fast to calculate, requiring a few seconds on common
computer hardware. Correlation and solvation effects are taken into
account in a self-consistent way (in contrast to statistical compo-
sites). The method is particularly useful for identifying important
hydrophobic (electrostatically neutral) regions in an active site
(e.g., for pharmacophore specification); this is in contrast to purely
geometric approaches such as Contact Preferences which neglect
longer range interactions. More sophisticated approaches such as
3D–RISM [21] have been the subject of much research and can
deal with higher order correlations and cavitation effects. These
techniques are much slower to calculate but can identify “non-
standard” hydrophobic regions; for example, hydrophobic regions
in the immediate vicinity of polar atoms created by the shape of an
active site.

4 Pharmacophore Screening

The virtual screening of 3D conformation databases using a phar-
macophore as a query is a widely used technique in computer-aided
drug discovery, with hundreds of published accounts of its applica-
tion since its advent in the late 1970s [22, 23] and the first pub-
lished account of a successful virtual screen in 1992 [24]. Typically,
a pharmacophore query (possibly derived from a receptor struc-
ture) specifies a collection of molecular features (hydrogen bond
donor/acceptor, cation, anion, hydrophobe, etc.) intended to cap-
ture the essentials of ligand binding interactions to a receptor,
along with inter-feature distance constraints. The query is applied
to a database of small-molecule conformations to search for
arrangements of features in 3D that match the pharmacophore
query with respect to both feature type and distance constraints.

Commonly, features of ligands are assigned by substructure
searching methods from a fixed template or rules collection. For
example, a typical hydrogen bond donor heavy atom can be
encoded with the SMARTS pattern “[#7,#8;!H0]” meaning
“nitrogen or oxygen with at least one hydrogen.” Assigning hydro-
gen bond acceptor features is not as straightforward—electron
withdrawal and hyper-conjugation must be taken into account
since, among others, conjugated ether oxygen and nitro oxygen
are not good hydrogen bond acceptors [25]. The problem becomes
particularly acute when one attempts to accurately encode CH
hydrogen bond donors (e.g., in kinase inhibitors [26]). Electron
withdrawal and substituent effects are very difficult to consistently
encode in a (small) collection of substructure patterns.

An alternative to substructure patterns for assigning hydrogen
bond donor and acceptor features is to use H€uckel Theory quan-
tum calculation to provide a consistent treatment of electronic
effects. A small organic molecule is specified as a collection of
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atoms, each with an atomic number, Z, a formal charge, Q, and a
collection of bonds {(i,j)} between the atoms. A self-consistent
modified H€uckel Theory calculation is performed on the chemical
graph (without coordinates) using a well-known method [27]; the
calculation produces a partial charge (or electron occupancy) per
atom and a fractional π bond order per bond.

The partial charges and fractional bond orders are used to
determine a hydrogen bond “donor strength,” εdon, and “acceptor
strength,” εacc, per atom using the methods described by Gerber
[28] and are the key component of the non-bonded terms of the
MAB forcefield [27]. In this forcefield, the energy of a hydrogen
bond at ideal geometry is the product of the donor and acceptor
strengths, EHB ¼ εdon � εacc; for example, an ideal water-water
hydrogen bond has an energy of 1.56 kcal/mol. In the develop-
ment of the strength coefficients, Gerber demonstrated their clear
relationship with free energies of hydration.

It seems natural to use strength coefficient thresholds to define
donors and acceptors in small molecules; in other words, a large
enough εacc value would indicate an acceptor and a large enough
εdon value would indicate a donor. Using εacc > 0.83 (a hydrogen
bond energy with water greater than 1 kcal/mol) we find that
indicated oxygen atoms (in red) in the following structures

O O

O
N+

O FF

F

O

are not deemed acceptors, along with other similar cases that
normally would have to be treated as special case exceptions in
rule-based systems, while the carbon atoms in isonitrile and carbon
monoxide were deemed acceptors (e.g., in metal ligation). Con-
ventional alcohols, phenols, alphatic amines, etc. are properly anno-
tated. Generally, there is very good agreement with hand curated
acceptor rules. Using the same principle for the εdon cutoff, we find
very good agreement with hand curated rules. Alcohols, phenols,
conjugated amines, conjugated thiols were deemed donors, while
neutral aliphatic amines and aliphatic thiols were not deemed
donors unless sufficient electron withdrawing groups were present
(e.g., FCH2SH)

Unfortunately, the strength threshold scheme does not pro-
duce satisfactory separation for CH donors: there does not appear
to be any single a priori cutoff value that satisfactorily separates CH
donors from non-CH donors, especially in substituted hetero-
cycles. This is due to the fact that CH hydrogen bonds tend to be
weak and have a rather continuous strength distribution. In fact a
similar issue exists for borderline acceptors; for example, the fol-
lowing structures
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straddle the εacc > 0.83 cutoff line, which in any case is somewhat
arbitrary. These borderline examples highlight that what is required
is to model the interaction between the small molecule and a
hypothetical receptor in the pharmacophore query itself rather
than an isolated small-molecule feature without context. In other
words, the pharmacophore query should contain (hypothesized)
information about the receptor’s hydrogen bonding partner atom.
For example, a strong acceptor in the receptor could match strong
or weak donors in the ligand while a weak acceptor in the receptor
should only match strong donors in the ligand.
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A CH donor interacting with a Tyr OH (above) is an example of a
weak acceptor—weak donor interactionwith εdon¼0.57 εacc¼0.87
and EHB ¼ 0.50 kcal/mol, whereas a backbone carbonyl oxygen
produces a strong acceptor—weak donor interaction with
εdon ¼ 0.57 εacc ¼ 2.00, and EHB ¼ 1.14 kcal/mol. Clearly, the
threshold comparison should take place on the hydrogen bond
energy of the interaction and not the individual ligand strengths.
In other words, a CH is a donor if it interacts with a suitably strong
acceptor, otherwise it is not.

To make use of this concept, a pharmacophore query is aug-
mented with a strength parameter on each hydrogen bond feature.
In this way, the query becomes a kind of receptor model that
contains inter-feature distance constraints, feature types, and a
strength coefficient intended to model the nature of the receptor’s
corresponding hydrogen bond partner.

Figure 7 shows an augmented pharmacophore query; the aug-
mented query (magenta sphere) contains information, either
known or hypothesized, about the strength of the receptor’s accep-
tor: εacc ¼ 2.1 (a typical carbonyl oxygen value). The donor
strength of the ligand is calculated as the search proceeds. If the
geometric and feature type constraints are met, then the strength
product is formed 0.8 � 2.1 ¼ 1.7 kcal/mol. If this interaction
energy is greater than a user-supplied threshold, say 1 kcal/mol, the
structure is emitted as a hit, otherwise it is rejected.
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CH donor interactions are often seen in ligands binding to the
GluPheLeu hinge in kinases. Hinge binders form tridentate bond
interactions with the backbone of the hinge binding in a similar
fashion to ATP. We obtained the crystal coordinates of CDK2 in
complex with pyrazolo[4,3-d]pyrimidine (PDB:3PJ8). The crystal
structure was prepared with Protonate3D [29] and the coordinates
refined. A pharmacophore query was constructed in an attempt to
replace the pyrazolopyrimidine scaffold, while maintaining interac-
tions with the hinge so that the substituent presentation vectors
would be preserved. The query contained four features: two aro-
matic centroids, a donor, and an acceptor feature. The strength
coefficient of the donor feature was set to 1.91 to model the
acceptor strength of the carbonyl oxygen of the backbone of
Glu81 in CDK2. Figure 8 (left) depicts the cocrystallized staring
ligand in CDK2 along with the pharmacophore query.

We searched a 3D fragment database using the modified phar-
macophore search (including the H€uckel strengths) and the result
was 66 hits that satisfied the pharmacophore query and the

Fig. 7 The augmented pharmacophore query for CDK2 hinge binders with CH donors; the magenta sphere is a
query feature with an encoded hydrogen bond acceptor strength of 2.1 of a hypothesized receptor atom. The
small spheres represent potential pharmacophore features calculated from the ligand
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substituent presentation vectors. Among the hits were conven-
tional hydrogen bonding scaffolds (the parenthesized quantities
are the H€uckel hydrogen bond energies to the hinge, in kcal/mol):

N

N

N

N

N
N

N

N
N

N

H H H

pyrazolopyridine
(6,67)

pyrazolopyridine
(6.69)

pyrazolopyrimidine
(6.88)

Note that the search recovered the original pyrazolo-pyrimidine
scaffold. The search also retrieved scaffolds with CH donors that
interacted with the hinge.
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N

H H H

imidazopyridine
(1.25)

imidazopyridin e
(1.21)

imidazopyrimidine
(1.34)

Note that the imidazopyrimidine framework, the top ranking CH
scaffold, results in the compound seliciclib (purvalanol class of
molecules); see Fig. 8 (right). A similar search using conventional
pharmacophore typing and the identical pharmacophore query
resulted in only 35 hits, none of which had the CH donor motif.

Fig. 8 Left: pyrazolo[4,3-d]pyrimidine cocrystallized with CDK2 (PDB:3PJ8) along with the four feature
pharmacophore queries used in a scaffold replacement experiment. Right: top ranking CH donor imidazopyr-
imidine scaffold with attached substituents in a calculated binding mode with CDK2
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5 Conclusion

We have described a number of techniques to analyze protein–li-
gand interactions in the context of medicinal chemistry: crystal
Contract Preferences, Electrostatic Maps, and pharmacophore
screening using H€uckel Theory.

Atom contact statistics extracted from crystal structures the
PDB or the CSD can be used to describe and/or predict the
directional preferences of hydrophobic or hydrophilic ligand
atoms in receptor active sites. Methods such as Contract Prefer-
ences are appealing since they are largely based on an experimental
observation. They are good at determining hydrogen bonding
geometric preferences but poorer at identifying important hydro-
phobic regions in an active site. This failing is largely due to the
neglect of long-range forces and correlation effects.

Methods based upon the Poisson-Boltzmann Equation such as
Electrostatic Maps can capture long-range forces and solvation
effects. These methods require assignment of hydrogen coordi-
nates to crystal structures and atomic partial charges which capture
local chemical context in ligands. The details of polar interactions
are generally in broad agreement with statistical methods; however,
important hydrophobic regions in an active site are more readily
identified. An application to the AblK:Gleevec complex demon-
strated the utility of the Electrostatic Maps method for structure-
based design.

Fine detail of hydrogen bonding interactions, including the
weaker CH donor interactions, requires a more sophisticated treat-
ment. We presented a method based upon H€uckel Theory to assign
hydrogen bond strengths to protein and ligand atoms in the con-
text of 3D pharmacophore search. An application to CDK2 was
presented showing a replacement scaffold including a CH..O inter-
action could be determined with pharmacophore search.
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Chapter 8

Exploring GPCR-Ligand Interactions with the Fragment
Molecular Orbital (FMO) Method

Ewa I. Chudyk, Laurie Sarrat, Matteo Aldeghi, Dmitri G. Fedorov,
Mike J. Bodkin, Tim James, Michelle Southey, Roger Robinson,
Inaki Morao, and Alexander Heifetz

Abstract

The understanding of binding interactions between any protein and a small molecule plays a key role in the
rationalization of affinity and selectivity. It is essential for an efficient structure-based drug design (SBDD)
process. FMO enables ab initio approaches to be applied to systems that conventional quantum-mechanical
(QM) methods would find challenging. The key advantage of the Fragment Molecular Orbital Method
(FMO) is that it can reveal atomistic details about the individual contributions and chemical nature of each
residue and water molecule toward ligand binding which would otherwise be difficult to detect without
using QMmethods. In this chapter, we demonstrate the typical use of FMO to analyze 19 crystal structures
of β1 and β2 adrenergic receptors with their corresponding agonists and antagonists.

Key words GPCR G-protein-coupled receptors, Chemical interactions, Pair-interaction energy,
Drugs, Receptor, Modeling, QM, QuantumMechanics, FMO, Fragment Molecular Orbitals method,
CADD, Computer-Aided Drug Design, SBDD, Structure Based Drug Design, GAMESS, General
Atomic andMolecular Electronic Structure System, PIEDA, Pair Interaction Energies Decomposition
Analysis

1 Introduction

1. G-protein-coupled receptor (GPCR)–ligand interactions are
fundamental to almost all processes occurring in living organ-
isms, and as such it is perhaps unsurprising that they are the
targets of about 40% of all prescribed drugs [1–3]. What is
surprising is that these drugs only target around 50 of the
800 known GPCRs [4]. Thus, there is huge potential with
respect to the number of targets for new therapies to be
designed against [5].

2. Further progress in drug discovery for GPCRs is highly
dependent upon gaining an in-depth understanding of the
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structure-activity relationships (SAR) and the individual
interactions between the receptor and a small molecule (drug
candidate) [4, 6–8]. The efficiency and cost-effectiveness of the
drug-discovery process can be accelerated by the availability of
structural data regarding the target protein, and by the reliabil-
ity of the computational tools for data exploration [6–8]. How-
ever, even with the crystal structure “visual inspection” and
force field-based molecular mechanics (MM) calculations often
used for the rationalization of ligand-protein potency cannot
always explain the full complexity of molecular interactions [9].

3. There is increasing evidence [9–12] that there are a number of
non-intuitive interactions such as CH/π [13, 14], halogen/π
[15], cation/π [16], non-classical H-bonds [17], and others
that play important roles in protein-ligand binding that are not
sufficiently parameterized in the most popular force fields (FF)
[11]. The application of quantum mechanical (QM) methods
has been employed to improve the reliability of the exploration
of protein-ligand interactions [18, 19]. Historically, the appli-
cation of high level ab initio quantum mechanical calculations
was limited to molecular systems consisting of a small number
of atoms, usually low molecular weight organic molecules.
Recent and continuing advances in computer science have
enabled the method to be applied to much larger biological
molecules such as kinases [20].

4. The fragment molecular orbital (FMO) method [14, 19, 21]
offers a considerable mark-up in computational speed over
traditional QM methods [22]. One of the key advantages of
the FMO approach is that the output from these calculations
includes a list of the interactions made between the ligand and
the receptor along with a chemically intuitive breakdown of
these interactions [20]. Such information is essential for medic-
inal chemists to be able to adopt a rational approach in the
modification of lead compounds in order to enhance favorable
interactions. It works by partitioning a large system into small
fragments (Fig. 1). For example, in proteins, each residue can
be represented as a fragment. Similarly, the ligand can be
represented by single or multiple fragments as necessary. By
performing QM calculations on the fragments, one is able to
attain a high level of accuracy with previously untenable
efficiency.

5. The pair interaction energy (PIE) between any two fragments
calculated by FMO is the sum of four energy terms: electro-
static, exchange-repulsion, charge transfer, and dispersion,
provided by pair interaction energy decomposition analysis
(PIEDA) [23]—see Fig. 1. The electrostatic and charge transfer
terms are predominant in salt-bridge, hydrogen bond, and
polar interactions, while the dispersion term generally
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Charge transfer (ΔEct)
Interactions between an occupied orbital 
of a donor and an unoccupied orbital of 
an acceptor.

Exchange repulsion (ΔEex)
Repulsive forces between molecules that 
are close together, mainly due to the 
overlap of occupied orbitals.

Pair Interaction Energy (PIE)
ΔEint

ij = ΔE
es

ij + ΔEex
ij + ΔEct

ij + ΔEdi
ij

Electrostatic (ΔEes)
Forces between point charges, permanent 
and induced.

Dispersion(ΔEdi)
Forces due to instantaneous polariza-
tion multipoles caused by the movement of 
electrons in nearby molecules.

+- δ +δ -δ + δ -

e-

Frag.1

Frag.2

Frag.3

Ligand

Fragmentation of peptide chain

ßAR

Fig. 1 Workflow for FMO calculations and details on each of PIE terms that are computed [20]. The
electrostatic component arises from the Coulomb interaction between polarized charge distributions of
fragments. The exchange repulsion term is derived from the interaction between fragments situated in
close proximity and is always repulsive; it is due to the Pauli repulsion and is related to the overlap of the
two occupied orbitals. The charge transfer term arises from the interaction between the occupied orbitals of a
donor and the unoccupied orbitals of an acceptor. The dispersion arises as the interaction between instanta-
neous dipole moments of two fragments, it is hydrophobic (non-polar) in nature and is obtained in PIEDA from
the correlation energy of electrons
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corresponds to interactions that are predominantly hydropho-
bic in nature. The role of hydrophobic interactions is integral
for biomolecular recognition, but there is still no reliable pre-
dictive method for its quantification [9]. The exchange-
repulsion term is a high level QM term which quantifies the
repulsion between electrons [20].

6. The key differentiator between the FMO and MM methods is
that the former accounts for polarization and charge transfer
effects [14, 24]. The description of electrostatics in most force
fields is based on static charges that neglect polarization and in
polar systems such as proteins they are an approximation to the
actual state. The van-der-Waals forces, despite being generally
well parameterized on average, are not capable of detecting the
directional nature of the dispersion terms involving halogens
[25]. Reported examples [26] comparing FMO and MM have
shown that the FMOmethod clearly outperformed force field-
based scoring functions and demonstrated a high correlation
with experimentally measured values of protein-ligand affinity
[26, 27]. In our recent report [27], we described how FMO
has been applied in the analysis of 18 GPCR-ligand crystal
structures representing different branches of the GPCR
genome. This work revealed key interactions that were often
omitted from structure-based descriptions, including hydro-
phobic interactions, non-classical hydrogen bonds, and the
involvement of backbone atoms.

7. The current state of the art in computer processing enables one
to perform high-level calculations relatively routinely. A typical
FMO-MP2 calculation on a ligand-receptor complex takes
approximately 4 h on a 36 CPU cluster to complete, signifi-
cantly faster than weeks to a month (or more) for traditional
QM approaches that have been used for estimating binding free
energies. Recent developments in FMO methodology and
implementation with density-functional tight binding
(DFTB) method [28] further reduce the high-throughput
capabilities of the method.

8. FMO can be a highly useful tool for rational structure-based
drug design (SBDD) [14, 29, 30], as it provides an accurate
and comprehensive list of strong, weak, or repulsive interac-
tions between the ligand and its surrounding residues. Such
information is highly instructive in rational SBDD in terms of
modifications, scaffold replacement (scaffold hoping) linking
(specifically in case of fragment-based drug discovery), or
extension of chemical moieties to form stronger or new inter-
actions with the protein or alternatively to remove repulsions.
FMO can also be applied in analysis of ligand-water-protein
networks, to distinguish between energetically favorable and
unfavorable water molecules to enable the design of ligands
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that can interact or displace certain waters. As previously
demonstrated [27], significant correlation between protein-
ligand affinity and FMO energy terms [26] indicates that they
can be efficiently used as descriptors in QSAR modeling to
predict the binding affinities of new molecules. FMO has
been successfully applied in the discovery of novel Hsp90
inhibitors [29] and in many of our confidential drug discovery
programs.

9. From our experience, the application of the FMO method in
hit-to-lead and lead optimization stages of drug discovery is a
highly valuable approach for the design, evaluation, and filter-
ing of targets for synthesis which significantly decreases the
effort and cost of chemical synthesis (for more details see
Chapter 19 of this book).

2 Methods

1. FMO [22, 31] is a code implemented in General Atomic and
Molecular Electronic Structure System (GAMESS). In FMO
calculations, a large biological system is partitioned into frag-
ments (Fig. 1) [14, 19]. Each residue is characterized as a
fragment, and the interaction energies reported herein corre-
spond to actual amino acid residues as opposed to residue
fragments. The ligand can also be represented as one fragment
or can be fragmented; some ligands can be very large and
dividing a ligand into several fragments has the benefit of
both reducing the computational cost and providing a more
detailed analysis. The detailed description of the FMO strategy
and methodology can be found in the published reports
[14, 19, 23], including a detailed mathematical formulation
that is beyond the scope of this manuscript.

2. The FMO calculation consists of the following steps:
(a) Fragmentation (i.e., assigning atoms in a system to a frag-
ment); (b) Fragment self-consistent field (SCF) calculations in
the embedding polarizable potential, so that fragments mutu-
ally polarize each other in a self-consistent fashion whereby
intra-fragment charge transfer and other quantum effects are
accounted for; (c) Fragment pair SCF calculations, bringing in
inter-fragment charge transfer; (d) Total property (energy, gra-
dient, etc.) evaluation. By performing QM computations on
fragments one can achieve high efficiency, often resulting from
linear scaling and computational speed. The FMO method has
been parallelized for PC clusters [22]. By default we use the
MP2 method (Second Order Møller-Plesset perturbation the-
ory [32]) with the 6-31G* basis set. This basis set is most
commonly used and is often considered the best compromise
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between speed and accuracy [26]. Residues and water mole-
cules within a radius of �4.5 Å around the ligand atoms were
included in the FMO calculations, since previous work demon-
strated [33] that including these atoms significantly increases
the speed of the calculation without compromising the results.
FMO can be implemented with a polarizable continuum sol-
vent model (PCM), which ameliorates the effect of charged
residues around the system of interest [34].

3. The pair interaction energy (PIE, ΔEint) between fragments
i and j is a sum of four terms: electrostatics (ΔEes), exchange-
repulsion (ΔEex), charge transfer (ΔEct), and dispersion (ΔEdis)
(Eq. 1) as described in Fig. 1.

ΔE int
ij ¼ ΔE es

ij þ ΔE ex
ij þ ΔE ct

ij þ ΔE di
ij ð1Þ

4. The PIE is not a difference between energies of the protein-
ligand complex and the sum of the “free” protein and ligand,
but rather represents the “strength” of the interaction between
the ligand and protein residues in the complex. The Δ denotes
the differences in total QM energy of a fragment pair ij and two
individual fragments i and j, both computed in the receptor-
ligand complex. In the present work, fragment i is the ligand
and the other n fragments are receptor residues and water
molecules. In the equations below there is no self-interaction
(the sums exclude j ¼ i). The total PIE calculated by the FMO
method describes the stability of the receptor-ligand complex.
This stability correlates to, but is not the same as, the binding
energy [26]. The difference lies in the polarization factors—the
ligand is polarized by the protein and vice versa [22]. Based on
previous reports [14], we consider any interaction with an
absolute PIE greater than or equal to 3.0 kcal/mol to be
significant.

5. The difference between PIElig1 and PIElig2 (ΔΔE int
lig1, lig2), and

the corresponding component energy terms, can be calculated
using Eq. 2. This equation allows for a detailed comparison of
the interactions and their composition which potentially gives
rise to the difference in observed activities between any two
ligands.

ΔΔE int
lig1, lig2 ¼ ΔΔE es

lig1, lig2 þ ΔΔE ex
lig1, lig2 þ ΔΔE ct

lig1, lig2

þ ΔΔE di
lig1, lig2 ð2Þ
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6. Structure preparation is performed using MOE (Chemical
Computing Group). Hydrogen atoms are added to crystal
structures at physiological pH (7.4) with the Protonate3D
tool. A constrained minimization procedure, where each
atom was allowed to deviate up to 0.5 Å from its original
position in crystal structure, was applied in order to optimize
the positions of each atom and remove potential steric clashes.
The semi-empirical AMBER10:EHT forced field was used to
model the proteins interatomic potential. Finally, residues
within a radius of �4.5 Å around the ligand atoms were
selected for inclusion in the FMO calculations. The position
of each TM’s amino acid residue was identified by its unique
sequence number as well as by its generic number proposed by
Ballesteros and Weinstein [35, 36] in superscript. Ballesteros
and Weinstein numbering scheme allows comparison between
topologically equivalent residues in different GPCR structures.

3 Notes

1. To illustrate the typical results obtained through FMO (see
Subheading 2, step 1), we performed FMO calculations on
19 β1 and β2 adrenergic receptor-ligand crystal structures
(Table 1) in order to identify conserved interactions and to
investigate their chemical nature. Structures containing agonist
and antagonist ligands were included to explore distinct inter-
action patterns. We focused on the interaction patterns of
agonists versus antagonists, and on the observation that ago-
nists appear to interact preferentially and in a conserved fashion
with residue S5.46, while antagonists with residue W6.48.

2. β1 and β2 adrenergic receptors (βARs) belong to the superfam-
ily of GPCRs [7] and are expressed largely in the tissues of the
cardiac, vascular and respiratory systems [37, 38]. More specif-
ically, β1AR is the predominant subtype in the normal myocar-
dium, representing 75–80% of total βAR density, followed by
β2AR, which comprises approximately 15–18% of the total
cardiomyocyte βARs [39]. β1AR is also located in the kidney
[7]. Indeed, the β1AR subtype is involved in physiological
processes including the heart beat and blood pressure regula-
tion [7, 38], whereas, activation of β2AR notably results in the
dilatation of smooth muscles of the lungs, uterus and blood
vessels [7, 38].

3. Catecholamines, the endogenous agonists of βARs, activate
βARs and stimulate the sympathetic nervous system required
for the regulation of the unconscious actions of the body. The
most well-known catecholamines include epinephrine (adrena-
line), norepinephrine (noradrenaline) [40, 41], and dopamine
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[42]. Adrenaline is a neurotransmitter which is involved in
flight-or-flight response by increasing blood flow to muscles,
cardiac output, pupil dilation, and blood sugar [43]. Noradren-
aline and dopamine are neurotransmitters that widely modulate
brain circuits and behaviors [42]. Noradrenaline is involved in
arousal, attention, memory, and stress, whereas dopamine is
implicated in learning, reward, attention, and movement con-
trol [42]. Catecholaminergic dysfunctions are associated with
cognitive, emotional, and motor disorders [42] and can initiate
cardiac, vascular, respiratory pathologies.

4. Antagonists and inverse agonists of βARs [44], so called
β-blockers, are employed to treat diseases such as hypertension
and heart failure [45], as well as to increase cardiac frequency
and the force of cardiac contraction. In contrast, agonists of

Table 1
Overview of βAR complexes

Receptor Species Ligand Ligand function Year Res (A) PDB-ID

β1 Turkey Carmoterol fAGO 2011 2.60 2Y02 [49]

β1 Turkey Isoprenaline fAGO 2011 2.85 2Y03 [49]

β1 Turkey Dobutamine pAGO 2011 2.50 2Y00 [49]

β1 Turkey Salbutamol pAGO 2011 3.05 2Y04 [49]

β1 Turkey Cyanopindolol ANT 2014 2.10 4BVN [48]

β1 Turkey Arylpiperazine 20 ANT 2013 2.70 3ZPR [51]

β1 Turkey Arylpiperazine 19 ANT 2013 2.80 3ZPQ [51]

β1 Turkey Bucindolol ANT 2012 3.20 4AMI [58]

β1 Turkey Carvedilol iAGO 2012 2.30 4AMJ [58]

β1 Turkey Carazolol iAGO 2011 3.00 2YCW [59]

β2 Human BI-167107 fAGO 2013 2.79 4LDE [50]

β2 Human HBI fAGO 2013 3.10 4LDL [50]

β2 Human Adrenaline (epinephrine) fAGO 2013 3.20 4LDO [50]

β2 Human FAUC37 cAGO 2014 3.30 4QKX [53]

β2 Human Alprenolol ANT 2010 3.16 3NYA [52]

β2 Human Carazolol iAGO 2007 2.40 2RH1 [60]

β2 Human Timolol iAGO 2008 2.80 3D4S [44]

β2 Human ICI-118,551 iAGO 2010 2.84 3NY8 [52]

β2 Human VS hit (Kolb) iAGO 2010 2.84 3NY9 [52]

Abbreviations: fAGO corresponds to full agonist, AGO to agonist, cAGO to covalent agonist, pAGO to partial agonist,

ANT to antagonist and iAGO to inverse agonist
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β2AR, known as β2-sympathomimetics, are most frequently
used for the treatment of respiratory problems caused by
asthma or chronic obstructive pulmonary disease (COPD)
[46]. Moreover, activation of β1ARs increases heart rate and
therefore cardiac output [47]. It is known that βARs can access
a broad spectrum of functional states [41], which can be
modulated through the binding of small molecules. Under-
standing receptor-ligand interactions at the atomic scale can
therefore provide insights into the molecular determinants of
agonists versus antagonist behavior, and contribute toward the
design of the next generation of small-molecule modulators of
βARs.

5. Analysis and comparison of β1AR-cyanopindolol and β1AR-car-
moterol complexes—Herein, we present an application of the FMO
method for the analysis of the β1AR-cyanopindolol crystal struc-
ture (PDB access code 4BVN [48]). FMOhighlighted 14 signifi-
cant interactions (Fig. 2a) between the ligand and the following
residues: D1213.32, V1223.33, F201ECL2, Y2075.38, A2085.39,
S2115.42, S2125.43, W3036.48, F3066.51, F3076.52, N3106.55,
N3297.39, Y3337.43 and HOH3024. The majority of these inter-
actions are consistent with previous reports [48].However, FMO
also reveals some polar interactions that have been previously
reported in the literature, which include the residues A2085.39

and Y3337.43 and the water molecule HOH3024.
In the case of carmoterol (PDB access code 2Y02 [49]) the

FMO calculations reveal 11 significant interactions (Fig. 2b).
Similar interactions were reported in the literature with the
following residues: D1213.32, V1223.33, F201ECL2, S2155.46,
F3076.52, N3106.55, V3267.36, N3297.39, and Y3337.43. Fur-
ther unreported interactions with S2125.43 and HOH2010
were also identified.

We analyzed the differences in the interaction profiles
between the two complexes. FMO reveals ten mutual interac-
tions (Fig. 2c), where six interactions were stronger with the
agonist carmoterol, with residues F201ECL2, S2125.43,
I2135.44, S2155.46, N3106.55 and V3267.35. On the other
hand, four interactions were stronger with the antagonist cya-
nopindolol: with residues T203ECL2, A2085.39, I2095.40, and
S2115.42.

6. βAR complexes reveal conserved ligand-protein interactions—By
analyzing all 19 ligand-receptor βAR complexes we were also
able to demonstrate general trends in ligand binding for both
β1AR and β2AR receptors (Fig. 3). For example, residues D3.32,
V3.33, F201/193ECL2, F6.51, F6.52, N6.55, N7.39, and Y7.43

make a considerable contribution to receptor-ligand binding
and are quite conserved (>70%, Fig. 3). Residues in the other
positions are less frequently involved and are more specific for
particular ligands.
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Fig. 2 Comparison of interactions between an antagonist and an agonist binding to β1AR. (a) Turkey β1AR in
complex with antagonist cyanopindolol (PDB entry 4BVN). (b) Turkey β1AR complex with agonist carmoterol
(PDB entry 2Y02). The carbon atoms of the ligands are shown in light orange and for the receptor are colored
according to PIE values calculated by FMO. Nitrogen atoms are shown in blue, oxygen in red, sulfur in yellow,
and chlorine in light green. The classical hydrogen bonds formed between the receptor and the ligand are
marked as yellow dashed line. The bar charts on the left show the sorted PIE for the residues interacting with
energies larger than �3 kcal/mol, and chart on the right describe the PIEDA of these interactions. PIE terms:
electrostatics, dispersion, charge-transfer and exchange repulsion are colored coded yellow, blue, red and
green respectively. (c) Difference of shared interactions between cyanopindolol and carmoterol-β1AR com-
plexes. In this case, cyanopindolol is shown in light blue and carmoterol in salmon pink, with the residues
interacting more strongly with cyanopindolol shown on a white to light blue spectrum, and residues interacting
more strongly with carmoterol on a white to salmon spectrum, where white means equal interaction energy for
both ligands. Accordingly, on the bar chart on the right, negative ΔΔE values represent a stronger interaction
with carmoterol, while negative ΔΔE values a stronger interaction with cyanopindolol



7. Residues V3.33, F201/193ECL2, F6.51, F6.52, and Y7.43 form
interactions with predominantly hydrophobic in nature
(Fig. 4). While electrostatic and polar interactions are widely
reported in the literature [50–53], hydrophobic interactions
are often neglected, these interactions are difficult to identify
through visual inspection alone. Key hydrophobic residues in
TM3, ECL2, TM6, and TM7 form a consensus core of the
βAR ligand binding pocket, and retain a very similar

TM7TM6TM5TM3TM2ECL1 ECL2

100%
disp

100%
elec+ct

carmoterol (fAGO)

ß1

ß2

dobutamine (pAGO)

isoprenaline (fAGO)

salbutamol (pAGO)

carazolol (iAGO)

arylpiperazine 19 (ANT)

arylpiperazine 20 (ANT)

bucindolol (ANT)

carvedilol (iAGO)

cyanopindolol (ANT)

carazolol (iAGO)

timolol (iAGO)

ICI-118,551 (iAGO)

VS hit (iAGO)

alprenolol (ANT)

BI-167107 (fAGO)

HBI (fAGO)

epinephrine (fAGO)

FAUC37 (cAGO)

Fig. 3 Overview of all significant interactions for each βAR complex. Each row represents a structure, for a
total of 19 rows, where the PDB-IDs are shown on the left of each row. The name and action of the ligands are
shown on the right side of each row. Columns represent the residues interacting with the ligands, identified
through their Ballesteros–Weinstein numbers. In the matrix, the presence of a contact between the ligand and
the residue is illustrated as a colored cell, and the absence of a contact is illustrated as gray cell. Cells
representing a contact are colored according to their PIEDA signature: from dark blue (100% dispersion) to
yellow (100% electrostatic and charge-transfer). A mixed contribution (e.g., 50% dispersion, and 50%
electrostatic and charge-transfer) therefore results in a cell being colored in green to light blue, as indicated
by the spectrum bar on the right. The percentage of consensus for any ligand-residue interaction is shown at
the top of the figure as a histogram, with each bar color-coded according to average PIEDA signature,
following the same scheme as for the individual residue-ligand interactions (blue to yellow)
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conformation in all the structures analyzed (Fig. 4). Published
mutations in these positions frequently decrease ligand
affinity [54].

8. Agonist vs. antagonist—Next, we focused on exploring the
differences in interaction patterns between agonists and
antagonists. We therefore separated and compared the FMO
results calculated for antagonists (Fig. 5b) and agonists
(Fig. 5c). FMO reveals that residues: D3.32, V3.33, F201/
193ECL2, S5.42, F6.51, F6.52, N6.55, N7.39, Y7.43 are important
for binding of both agonists and antagonists. The most striking
difference in the interaction profile between agonists and
antagonists is the presence of a strong polar interaction with
S5.46 (present in 6 out of 8 agonists, Fig. 5a), This interaction is
not observed in the case of the antagonists. In addition to this,
the presence of a hydrophobic interaction with W6.48 for 9 out
11 antagonists (Fig. 5a) is not observed in the agonist cases.

9. Visual inspection of the overlaid structures (Fig. 6a) reveals two
distinct conformers in which S5.46 and W6.48 (Fig. 6b) exist in
the active versus inactive forms of βARs. The “active”

a

b

c

d

e

f

V3.33

F201/193ECL2

F6.51

F6.52

Y7.43

F45.52

V3.33

F6.51
F6.52

Y7.43

Fig. 4 Conserved hydrophobic interactions. (a) Superposition of all 19 βAR complexes showing the residues
(purple) interacting largely through dispersion forces with the ligands (light orange). Oxygen atoms are shown
in red, nitrogen in blue, sulfur in yellow. (b) Detail of the conformations of residue V3.33, (c) F201/193ECL2, (d)
F6.51, (e) F6.52, and (f) Y7.43
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Fig. 5 (a) Histograms showing the consensus of interactions across the complexes containing agonists (AGO)
and antagonists (ANT). The height of each bar represents the percentage of structures in which a strong (larger
than 3 kcal/mol) interaction is present, while its color summarizes the chemical nature of the interaction
(yellow for mainly electrostatic and blue for mainly hydrophobic). (b) Overview heat map for βARs in complex
with an antagonist and (c) with an agonist



conformation of S5.46 (Fig. 6c) allows this residue to form a
hydrogen bond with agonists. Reported mutagenesis studies
[55, 56] support this observation and suggest that TM6
motion in β2AR [57] depends largely on agonists engaging in
polar interactions with S2035.42 and S2075.46 which stabilize a
2 Å inward shift of the extracellular part of TM5. One key
observation in the analysis of the inactive conformation of
βARs is the conformation of residue W6.48 which resides in
closer proximity to the bound antagonist ligands (Fig. 6d)
forming hydrophobic interactions which prevent the motion
of TM6 into the active conformation.

10. We have demonstrated that the FMO approach can be particu-
larly useful for in-depth analysis of crystal-structures and
divulging the exact chemical nature of particular interactions
between a receptor and a ligand. We anticipate that this
approach can be used to provide further insights into many
protein-ligand interactions, with a view to rationally design
novel therapeutic compounds.
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structures are considered to be in an active state (light pink) if with an agonist bound or in an inactive state
(white) if antagonist is bound. (b) Position of residues S5.46 and W6.48 when the receptors are in an active (light
pink) and inactive (white) states. On the right side of the figure are the zoomed-in views of residues (c) S5.46

and (d) W6.48
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Chapter 9

Molecular Basis of Ligand Dissociation from G Protein-
Coupled Receptors and Predicting Residence Time

Dong Guo and Adriaan P. IJzerman

Abstract

G protein-coupled receptors (GPCRs) are integral membrane proteins and represent the largest class of
drug targets. During the past decades progress in structural biology has enabled the crystallographic
elucidation of the architecture of these important macromolecules. It also provided atomic-level visualiza-
tion of ligand-receptor interactions, dramatically boosting the impact of structure-based approaches in drug
discovery. However, knowledge obtained through crystallography is limited to static structural informa-
tion. Less information is available showing how a ligand associates with or dissociates from a given receptor,
whose importance is in fact increasingly recognized by the drug research community. Owing to recent
advances in computer power and algorithms, molecular dynamics stimulations have become feasible that
help in analyzing the kinetics of the ligand binding process. Here, we review what is currently known about
the dynamics of GPCRs in the context of ligand association and dissociation, as determined through both
crystallography and computer simulations. We particularly focus on the molecular basis of ligand dissocia-
tion from GPCRs and provide case studies that predict ligand dissociation pathways and residence time.

Key words Binding kinetics, Molecular dynamics simulations, G protein-coupled receptor, Dissocia-
tion rate, Dissociation pathway

1 Introduction

G protein-coupled receptors (GPCRs) constitute an important
family of integral membrane proteins. These receptors are able to
respond to a divergent array of molecules outside the cell, ranging
from small ions and photons to large glycoproteins, and to subse-
quently trigger a variety of intracellular signaling cascades. To date,
about 800 members of the GPCR family have been identified
[1]. They are of significant interest in pharmaceutical research
owing to their involvement in a plethora of important physiological
and pathophysiological processes [2]. A status quo analysis of major
protein families as drug targets showed that over one-third of drugs
act on GPCRs, hence representing the largest class of drug
targets [3].
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In the past decades dramatic progress toward the discovery of
effective therapeutics for GPCRs has been witnessed. This is partic-
ularly boosted by recent breakthroughs in GPCR structural biol-
ogy. The solved crystal structures are templates for homology
modelling of related GPCRs, and allow comparison of active and
inactive forms of receptors to help understand the mechanistic
details of activation [4]. The atomic-resolution structures also
enable direct visualization of the binding mode of a ligand to its
cognate orthosteric or allosteric binding pockets [5, 6], hence
enhancing structure-based drug design (SBDD) approaches. The
knowledge obtained by understanding the structural basis of
ligand-receptor interactions has critical implications for rational
drug design. However, such information remains limited. First,
the number of available structures is far lagging behind in a com-
prehensive coverage of the entire GPCR superfamily. Second, the
available structures often refer to static and heavily engineered
conformational states, which is in stark contrast with the inherently
dynamic nature of the ligand-GPCR interactions in their natural
lipid environment.

In recent years, there has been a growing interest in linking
structures to binding kinetics, i.e., structure-kinetics relationship
studies (SKRs), next to the classical structure-affinity relationship
studies (SARs) [7, 8]. Kinetic measurements enable an experimen-
tal determination of both molecular recognition (kon) and complex
stability (koff) of a ligand-receptor interaction process. Its impor-
tance in drug discovery is now appreciated and is receiving increas-
ing attention from the drug research community [9]. In particular,
drug-target residence time (RT), the time a target is occupied by a
ligand (RT ¼ 1/koff), is suggested to predict in vivo pharmacologi-
cal activity better than binding affinity per se, as extensively dis-
cussed in several recent reviews [10, 11]. Furthermore, kinetic
characterization of ligand-receptor interactions provides additional
information to aid compound advancement in the hit-to-lead cam-
paign, particularly useful in triaging a series of compounds that are
otherwise biologically or chemically similar [12].

Experimental approaches that enable medium- to high-
throughput screening are available, which greatly enhance kinet-
ics-directed drug design and development [13]. Next to the devel-
opment of experimental approaches for kinetic investigation,
atomic-level molecular dynamics (MD) simulations have become
substantially more powerful in predicting ligand binding/unbind-
ing trajectories and the associated kinetics [14]. Several studies
were reported by colleagues from the D. E. Shaw Research Insti-
tute, in which unbiased molecular dynamics simulations, thanks to
increased computer power and advanced algorithms, were carried
out to capture the full process of a ligand associating to a given
GPCR [15]. As an example, Dror and colleagues reported that
several beta-blockers and a beta-receptor agonist all traverse the
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same well-defined, dominant pathway—without any artificial guid-
ing or biased forces—as they bind to the β1- or β2-adrenergic
receptor [16]. The compound first interacts with a vestibule on
each receptor’s extracellular surface. Such metastate appears to
represent the largest energetic barrier to binding, which includes
substantial dehydration that takes place as the drug associates with
the vestibule. After the initial contact the compound further enters
into the binding pocket assuming the crystallographic ligand bind-
ing pose. Notably, in this second step less energy was needed
although further entry into the binding pocket requires the recep-
tor to deform and the drug to travel through a narrow passage. The
two-step binding mode appears to hold for other GPCRs as well.
For instance, ligands for the muscarinic M3 receptor also “pause” at
a similar alternative binding site at the extracellular vestibule en
route to their binding pockets [17, 18].

The currently accessible time scale for all-atomMD simulations
of proteins is more than a millisecond in length [15]. Such time
scale guarantees reliable prediction of pathways and kinetics of the
association process, as exemplified by the abovementioned studies
on the β-adrenergic receptors [16]. In comparison, the ligand
unbinding process from a given target occurs on timescales that
remain inaccessible to direct all-atom MD simulation—as the resi-
dence time of molecules can be in the order of seconds, minutes, or
even hours [19]. Methods that allow enhanced sampling are there-
fore being developed and optimized to shorten the long time scale
of MD simulations into an accessible range [20]. This can be done
by either simulating a system along a set of predefined collective
variables (metadynamics), applying external forces to the system
(adiabatic, targeted, steered, and accelerated MD), or simulating
multiple parallel replicas at varying temperatures (replica exchange
MD) [21].

In the following sections, we will illustrate the breadth of MD
simulations as a tool to understand ligand unbinding trajectories
and to predict residence time through several case studies.

2 Case Study 1: The Dissociation of Tiotropium from the Muscarinic Receptor
and Its Residence Time

Tiotropium is a long-acting muscarinic antagonist and a first-line
bronchodilator for the treatment of chronic obstructive pulmonary
disease (COPD). Kinetic investigation of this compound revealed
its long receptor residence time (i.e., over 24 h) on the muscarinic
M3 receptor, which was closely linked to its long duration of action
[22, 23]. Recent elucidation of theM3 receptor structure (from rat)
in complex with tiotropium [Protein Data Bank (PDB) ID: 4DAJ]
provided a clear image for the molecular mechanism underling its
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long RT profile [17]. As presented in Fig. 1, tiotropium binds
deeply in the receptor core and is covered by an aromatic “lid”
comprising three conserved tyrosines—Y1483.33, Y5066.51, and
Y5297.39 [Residue superscripts refer to the Ballesteros-Weinstein
numbering [24]]. This aromatic “lid” nearly occludes the ligand
from the solvent thus preventing it from being “wetted” by water
molecules and then “washed” off the binding pocket. In addition,
N5076.52 interacts with the carbonyl and hydroxyl groups of tio-
tropium through H-bonds, while the ligand’s typical quaternary
amine interacts with D1473.32.

The elucidation of the cocrystal structure of tiotropium in the
rat M3 receptor also facilitated molecular dynamics simulations to
characterize the pathway by which tiotropium binds to and dissoci-
ates from the M3 receptor [17]. Naturally, the egress of a ligand
from a receptor can be considered the reverse process of the ligand
en route to its binding pocket. Indeed, the dissociation of tiotro-
pium consists of two steps. First, the compound leaves the orthos-
teric ligand binding pocket and then “pauses” at an extracellular

Fig. 1 The structure of tiotropium in the complex with the rat M3 receptor and an illustrative dissociation
process of the ligand from its binding pocket. This figure was generated with ICM Browser v3.8 (Molsoft) from
PDB code: 4DAJ [17]. Tiotropium (orange) binds within the pocket. Three tyrosine residues, Y1483.33,
Y5066.51, and Y5297.39, together prevent the ligand from moving out of the receptor. N5076.52 interacts
with the carbonyl and hydroxyl groups through H-bonds, while the ligand’s typical quaternary ammonium
group interacts with D1473.32. The movement of the three residues (red arrows) clears a path for tiotropium’s
dissociation from the orthosteric site to the extracellular vestibule and finally from the receptor
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vestibule—the same intermediate binding site as the ligand asso-
ciating to the pocket. After forming the loosely connected metas-
tate, tiotropium finally dissociates from the receptor. The RT of
tiotropium is greatly determined by the first step, which is rate
limiting for the ligand dissociation process. The first step formed
a large energy barrier that involved the movement of the extracel-
lular loop 2 (ECL2), which disrupts the hydrophobic cluster
(Y1483.33, Y5066.51, and Y5297.39) around the charged ligand
head group (Fig. 1). Such motion clears a path for tiotropium’s
dissociation from the orthosteric site to the extracellular vestibule.
In comparison, the increased mobility of ECL2 in another musca-
rinic receptor subtype (i.e., the M2 receptor), as observed in the
simulations, appears to facilitate tiotropium’s traversal of the largest
energetic barrier on the dissociation pathway. This finding is in line
with tiotropium’s different residence times on the M3 and M2

receptors, a phenomenon thought to provide clinically important
“kinetic selectivity” of this drug for M3 receptors despite tiotro-
pium’s similar equilibrium binding affinities for both subtypes [25].

A similar finding was observed in the microsecond MD simula-
tions study by Tautermann and colleagues [26]. They confirmed
that loop flexibility indeed had a strong effect on the dissociation
rate of tiotropium from the human M3 receptor. As evidence,
mutations that give rise to increased flexibility in the upper part of
the exit channel lead to enhanced dissociation rates. The structur-
ally important residues are from the aromatic “lid” topping tiotro-
pium, i.e., Y1493.33, Y5076.51, and Y5307.39—equivalent to the
above-mentioned hydrophobic cluster, i.e., Y1483.33, Y5066.51,
and Y5297.39 in the rat M3 receptor. Mutation of these residues
to alanine significantly accelerated the dissociation by up to two
orders of magnitude. Such observations further corroborate the
role of the aromatic cluster as a mechanical barrier that keeps
tiotropium in the binding pocket. The MD simulations also high-
lighted the role of the double hydrogen bonded interaction of
N5086.52 with tiotropium, which hinders the compound from
moving into the exit channel by reducing the frequency of
tyrosine-lid opening movements. In accordance, the dissociation
of tiotropiumwas accelerated by more than one order of magnitude
upon mutation of N5086.52 to alanine. Apparently, the interaction
with N5086.52 also plays a critical role in the development of slowly
dissociating muscarinic receptor ligands.

3 Case Study 2: The Dissociation of ZM241385 from the Adenosine Receptor and Its
Residence Time

The multi-step dissociation process appears to hold for other
GPCRs as well. In recent research from our laboratory, we discov-
ered that the egress of an adenosine A2A receptor antagonist from
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the receptor also followed a similar dissociation pathway, consecu-
tively interacting with topographically distinct regions of the recep-
tor [27]. In this study, we applied temperature-accelerated
molecular dynamics (TAMD) simulations to the crystal structure
of the A2AR (PDB ID: 4EIY) [6] to probe the structural hotspots
that have potential interactions with the crystallographic ligand,
ZM241385, along its dissociation pathway from the binding
pocket. In total, 16 residues were identified from the MD simula-
tions. These residues are located in the upper part of the receptor,
in either the transmembrane helices or the extracellular loops. The
residues were then mutated to alanine and examined in both equi-
librium and kinetic binding assays. As a result, the binding affinity
of ZM241385 was only marginally influenced, except for E169A
and Y271A, which were known to be involved in direct interaction
with the A2AR ligands [28, 29]. In contrast, ZM241385’s resi-
dence time was dramatically altered. Notably, most of the selected
residues would have gone unnoticed in a more classical site-directed
mutagenesis study with a primary emphasis on loss- or gain-of-
affinity mutations. Here, with the combination of biochemical
and computational studies we discovered two topographically dif-
ferent clusters in the A2AR crystal structure, one formed by
E169ECL2, T2566.58, and H2647.29, the other by I662.63, S672.64,
and L2677.32. Residues in the first cluster are located at the inter-
section of the binding cavity and the extracellular loops. Mutating
these residues into alanine significantly accelerated ZM241385’s
egress from these mutants (less than 5 min vs. 84 min from the
wild-type receptor). The MD simulations of ZM241385’s egress
from the A2AR further support the experimental observations. In
the 4EIY crystal structure from which the simulations were
initiated, the residues whose mutation accelerates dissociation
form a “triad” interacting with ZM241385 through hydrogen
bonding together with a structural water molecule (W2517)
(Fig. 2). The breaking of the interaction between H2647.29,
E169ECL2, and the ligand—a motion loosening the hydrogen
bond network formed by the “triad” and enlarging the opening
of the binding pocket—preceded dissociation. Mutating residues in
this cluster loosens the hydrogen bond network, thus facilitating
further movement of ZM241385 toward the extracellular space.
The important role of residues in the triad was further confirmed in
a follow-up study to improve the understanding of the molecular
mechanism of ligands dissociating from the adenosine A2A receptor
[30]. In this study the A2A receptor was cocrystalized with a series
of ligands related to and including ZM241385. These ligands had
been reported to have high affinities for the human A2AR but with
divergent dissociation rate constants [31]. The elucidation of high-
resolution X-ray structures of these ligands in the complex with the
A2AR highlighted differences in the interactions between the
ligands and the E169�H264 salt bridge, which may contribute to
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the variation in dissociation kinetics. The residence time of the
ligands correlated with the energy required to break the salt bridge
as estimated in silico using a metadynamics protocol. Long resi-
dence time ligands appear to stabilize the E169�H264 ionic inter-
action, while fast off-rate derivatives were generally predicted to
destabilize this salt bridge.

An alternative binding intermediate along the dissociation
pathway in the MD simulations involved ZM241385 interacting
with a hydrophobic pocket formed by I662.63, S672.64, and
L2677.32. This forces ZM241385 to assume a pose similar to the
one observed in another A2AR/ZM241385 crystal structure (PDB
ID: 3PWH) (Dore et al., 2011), where the antagonist’s phenol
group projected into the aforementioned domain (I662.63, S672.64,
and L2677.32). Mutation of these residues into much smaller ala-
nine reduces steric hindrance and increases the ligand’s freedom of
rotation. As a result, ZM241385 displayed significantly increased
RTs at these three mutant receptors.

Taken together, both biochemical and computational results
provide a molecular description of the dissociation of ZM241385
from the A2AR. The ligand appears to follow a multistep pathway,
first breaking the hydrogen bond network formed by the triad of

Fig. 2 The egress of ZM241385 from the human adenosine A2A receptor. This figure was generated with ICM
Browser v3.8 (Molsoft) from PDB code: 4EIY [6]. The ligand appears to follow a multistep pathway, first
breaking the hydrogen bond network formed by the triad of E169ECL2, T2566.58, and H2647.29 and transiently
contacting the quite hydrophobic pocket above Y2717.36 consisting of I662.63, S672.64, and L2677.32 before
moving further away from the binding pocket into the extracellular domain and bulk solvent
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E169ECL2, T2566.58, and H2647.29 and transiently contacting the
quite hydrophobic pocket above Y2717.36 consisting of I662.63,
S672.64, and L2677.32 before moving further away from the bind-
ing pocket into the extracellular domain and bulk solvent (Fig. 2).

4 Conclusion

Molecular dynamics simulations provide atomic-level descriptions
of ligand-GPCR interactions in the context of ligand association to
and dissociation from a given receptor. Such simulations may serve
as a “computational microscope,” uncovering biomolecular
mechanisms at spatial and temporal scales that are difficult to
observe experimentally. Interestingly, experimental confirmation
through mutation studies was obtained in the few available cases.
The two examples highlighted in this chapter indicate that the
simulation approaches are powerful in understanding the molecular
basis of ligand dissociation from GPCRs and provide clues for
predicting residence time. With the rapidly evolving state of the
art for atomic-resolution biomolecular simulations, in combination
with the growing body of structural information, we expect that
MD techniques will be increasingly applied to enhance kinetically
informed structure-based drug design and lead optimization for
GPCRs.
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Chapter 10

Methodologies for the Examination of Water in GPCRs

Andrea Bortolato, Benjamin G. Tehan, Robert T. Smith,
and Jonathan S. Mason

Abstract

The following chapter examines some of the current “state-of-the-art” tools for predicting, scoring, and
examining explicit water molecules in proteins and protein/ligand complexes, highlighting some of the
ways information can be readily examined in a manner that is useful in a drug discovery process.

Key words Water, WaterFLAP,Molecular dynamics, WaterMap,Water energetics, Water perturbation

1 Introduction

1.1 Waters and Drug

Discovery

Water molecules and their networks are now realized to have crucial
functions for both protein function and ligand binding. In terms of
protein function they affect protein plasticity, allosterism, protein-
protein interactions and the mediation of ligand binding, the focus
of this chapter [1–3]. In terms of ligand binding, waters play a key
role in potency, with displacement of “unhappy” (relative to bulk
solvent) waters from lipophilic regions a key driver, but also in the
modulation of selectivity and kinetics. It has been found important
to take into account the perturbation of the remaining water net-
work as well as the displacement of waters. With the richness of new
GPCR structures the importance of waters has been shown com-
putationally, enabled and supported by X-ray structural informa-
tion [4–6]. Water network energetics can explain trends in off-rate
kinetics, with for example trapped “unhappy” waters predicted to
occur in members of a series of adenosine A2A antagonists with fast
off-rates [7]. Waters are a key component of molecular dynamics
(MD) simulations, which enable a physics-based method to predict
binding affinities etc. using FEP (Free Energy Perturbation), a very
exciting method that with the FEPþ software (Schrödinger LLC)
on GPUs can now be done routinely in a timely fashion. MD and
water dynamics have been used for kinetic off-rate prediction,
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which has been a computational chemistry challenge [8]. The role
of waters as the critical third dimension alongside the protein and
ligand is now clear, and that they are important for all aspects of
computational chemistry. This spans from enhancing the docking
process, where the energetic perturbation of the remaining waters
as well as the displaced ones can be visualized and used to evaluate
known or new idea ligands, through the design of potency, selec-
tivity, and kinetics, including FEP calculations, finally a reality in the
drug designer’s toolbox. A powerful druggability assessment is
enabled by an analysis of (pseudo)apo water networks in conjunc-
tion with GRID lipophilic hotspots. We use three complementary
methods WaterFLAP [9, 10] in conjunction with MD, WaterMap
[11–13], and WaterFLAP [9, 10] alone, discussed in this chapter.
All use explicit waters, unlike some other approaches, that are the
key to evaluating network energies and perturbations thereof. The
use of MD in the first WaterFLAP MD method and WaterMap
approach provide a powerful physics-based method to evaluate full
water networks. Furthermore, the WaterMap method delineates
the entropic and enthalpic components from an all-atom explicit
solvent MD simulation followed by a statistical thermodynamic
analysis of water clusters (hydration sites). WaterFLAP alone pro-
vides a fast empirical method that enables routine use for all com-
plexes and docked idea structures with a relatively robust energetic
evaluation, and works well for seeding MD simulations with full
networks including regions with trapped waters in the ligand
complex.

2 Materials

The protocols described in this chapter have been implemented and
tested using the software packages and scripting languages listed
below. It must be noted that the scoring and functions shown
below have been calibrated from our analysis of numerous reference
structures [4] and our own in-house experience of GPCR struc-
tures. All of the code used for these analyses is shown in the
“methods” section and utilizes open-source languages such as
python, and wherever possible open source programs, such as
PyMol [14] & GROMACS [15].

2.1 WaterFLAP MD

Method

1. WaterFLAP is used for the initial placement of the water
molecules.

2. Optimization of the water network utilizes GROMACS.

3. Ligand topology is generated using the GAFF force field [16].

4. GROMACS used for pseudo apo and receptor/ligand complex
water refinement.
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5. PyMol is used for protein alignment.

6. Optimized water network rescored in WaterFLAP.

7. Final classification of water is based upon reference analyses [4].

2.2 WaterMap

Method

1. WaterFLAP used for initial placement of water molecules.

2. WaterMap used for placement and analyses of waters.

3. Final classification of water is based upon reference analyses [4].

2.3 WaterFLAP

Method

1. WaterFLAP (flapvs) used to generate GRIDS for protein.

2. WaterFLAP (flapwater) used to generate water network for
pseudo apo protein.

3. WateFLAP (flapdock) used to generate protein/ligand com-
plex water network.

4. Final classification of water is based upon reference analyses [4].

3 Methods

3.1 WaterFLAP MD

Method

3.1.1 Coupling

WaterFLAP with Molecular

Dynamics

WaterFLAP allows the prediction of the location of water molecules
and the evaluation of their free energy [5, 7]. It is based on GRID
[10] a software to probe a protein binding site using a range of
different functional groups, including water, to identify areas of
attraction (hotspots). The water probe is used to detect favorable
locations for water molecules in a ligand-protein complex. The
energy of the waters is then evaluated combing different probes:
OH2 to evaluate the hydrophilic character of the pocket, CRY
(a combination of DRY and the carbon sp2 C1¼ probe) to evaluate
its hydrophobic/apolar components. Positional entropy of waters
is estimated evaluating the energy landscape around its location.
Trapped (low entropy) water molecules are located in a deep and
narrow energy well, while bulk-like (high entropy) waters corre-
spond to shallow energy basins. Since GRID is based on a united-
atom force field, we introduced a short molecular dynamics step to
generate an all-atoms system including a hydrogen bond network
useful to understand the water network role in the stability of
ligand docked poses.

The final protocol called HepWaterFlap.py is an easy-to-use
python script requiring as input a protein and a docked ligand. It
consists of three steps:

1. Calculation of the water network using WaterFLAP (apo or
protein ligand complex).

2. Short optimization of the water network using a short MD in
GROMACS.

3. Refinement and rescoring of the water network using
WaterFLAP.
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HepWaterFlap.py import os for the execution of the Water-
FLAP/GROMACS and Pymol for the protein alignment since the
MD step will translate the system to another frame of reference.
OptionParser is used to manage the input flags.

1. #!/bin/python
2.
3. import os
4. import time
5.
6. import __main__
7.
8. __main__.pymol_argv = ['pymol', '-qc'] # Pymol: quiet and no GUI
9. import pymol
10.
11. pymol.finish_launching()
12.
13. from optparse import OptionParser
14.
15. ########################################################

The main program is shown below, the steps are:

1. Read the input files.

2. Creation of an unique working directory.

3. Creation of the starting water network.

4. Equilibration using MD in GROMACS.

5. Alignment of the equilibrated system to the original frame of
reference in Pymol.

6. Rescoring of the water network.

7. Preparation of the output.

1. defmain():
2. # read the input files and flags
3. protein, ligand, cpu, mode = readinput()
4. print time.strftime("%c")
5. # create working directory whit unique name
6. # This directory is called with the protein and ligand name and an unique number
7. # this unique number will allow to run the same ligand protein several times without over

writing the results
8. proteinbasename = os.path.splitext(protein)[0]
9. ligandbasename = os.path.splitext(ligand)[0]

210 Andrea Bortolato et al.



40. # we align the translated system after MD to the original frame of reference
41. alignpdb(mode)
42. # rescore waters
43. print "rescoring water network"
44. rescorewaters(mode)
45. # create output
46. createoutput(mode, ligandbasename, workdir)
47.
48.
49. if __name__ == "__main__":
50. main()

11. while os.path.isdir(proteinbasename + "_" + ligandbasename + "_" + str(n)) or os.path.exis
ts(

12. proteinbasename + "_" + ligandbasename + "_" + str(n) + ".tar.g
z"):

13. n += 1
14. os.system('mkdir ' + proteinbasename + "_" + ligandbasename + "_" + str(n))
15. workdir = proteinbasename + "_" + ligandbasename + "_" + str(n)
16. fixbenpdb(protein)
17. # copy the files to the working directory and go there
18. os.system("mv protein.pdb " + workdir + "/protein.pdb")
19. os.system("cp " + ligand + " " + workdir + "/ligand.mol2")
20. print " working directory: " + workdir
21. os.chdir(workdir)
22. # create starting network
23. print "creating starting water network"
24. createwaternetwork(mode)
25. # run md
26. print "equilibrating water network"
27. # we check for the output, in case we try again (max 12 times)
28. t = 0
29. while t < 12 and not os.path.isfile('emFinal.gro'):
30. fixchains()
31. ifmode == "complex":
32. prepareligand()
33. createproteintop()
34. ifmode == "apo":
35. createproteintopAPO()
36. solvatebox()
37. runmin(cpu, mode)
38. runmd(cpu)
39. t += 1

10. n = 1

Methodologies for the Examination of Water in GPCRs 211



The following code uses OptionParser to read the input files.
You need a protein prepared in Maestro (Schrödinger) including
hydrogens and a ligand as mol2 with partial charges. You need to
provide the number of CPUs to use for the MD step and if you want
to calculate the apo water network or in the presence of the ligand.

1. def readinput():
2. usage = "usage: %prog -p protein.pdb -l ligand.mol2 -c CPUnumber -

m apo/complex\nhelp: %prog -h"
3. parser = OptionParser(usage,
4. version="%prog 1.0, March 2015\nAndrea Bortolato\nandrea.bortolato@hep

tares.com\nHeptares Therapeutics - All rights reserved")
5. parser.add_option("-p", "--protein", dest="protein",
6. help="protein pdb alone with H prepared by Maestro")
7. parser.add_option("-l", "--ligand", dest="ligand",
8. help="ligand as mol2 with H")
9. parser.add_option("-c", "--cpu", dest="cpu",
10. help="cpu: number of CPUs")
11. parser.add_option("-m", "--mode", dest="mode",
12. help="mode: apo or complex")
13. (options, args) = parser.parse_args()
14. if len(args) != 0:
15. parser.error("incorrect number of arguments")
16. if str(options.protein) == 'None' or str(options.ligand) == 'None' or str(options.cpu) == 'No

ne' or str(
17. options.mode) == 'None':
18. if str(options.protein) == 'None':
19. parser.error("-p protein.pdb missing in the input")
20. if str(options.bound) == 'None':
21. parser.error("-l ligand.mol2 missing in the input")
22. if str(options.cpu) == 'None':
23. parser.error("-c CPU Number missing in the input")
24. if str(options.mode) == 'None':
25. parser.error("-m apo/complex missing in the input")
26. if str(options.mode) != 'apo' and str(options.mode) != 'complex':
27. parser.error("-m select mode to use: choose apo or complex")
28. return str(options.protein), str(options.ligand), str(options.cpu), str(options.mode)
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The next steps create thewater network usingWaterFLAP. Please
note the path to WaterFLAP executable is hardcoded for Heptares’
cluster and it will need to be changed. The version of WaterFLAP
used is from January 2015, but it should be possible to use newer
versions (please discuss directly with Molecular Discovery).

1. def createwaternetwork(mode):
2. # create a pdb with only the ATOM lines for WaterFLAP
3. os.system("grep ATOM protein.pdb | grep -v ' H' > proteinNoH.pdb")
4. # if the mode is apo, generate the apo network and use the ligand only to define the bindi

ng site around the ligand
5. ifmode == "apo":
6. os.system(
7. "/apps/WaterFLAP/20150122/flapwater -w -i proteinNoH.pdb -o flapWaters.pdb -

gl ligand.mol2 -gr 8 -ms 3 -se -8 -fe -1 -p CRY -cp 0 -sm 0 -rf 1 -O0 -iw 50 -it 5 -wn")
8. # if the mode is complex, generate the water network around the ligand
9. elifmode == "complex":
10. os.system('/apps/WaterFLAP/20150122/flapwater -

lp ligand.mol2 proteinNoH.pdb complex4waterFlap.pdb ')
11. os.system(
12. "/apps/WaterFLAP/20150122/flapwater -w -i complex4waterFlap.pdb -

o flapWaters.pdb -gl ligand.mol2 -gr 8 -ms 3 -se -8 -fe -1 -p CRY -cp 0 -sm 0 -rf 1 -O0 -iw 50 -
it 5 -wn")

13. flap = open('newWaters.pdb', 'w')
14. # write the pdb in a format usable by GROMACS and remove low density waters
15. with open('flapWaters_H2O.pdb', 'r') as w:
16. for i inw:
17. if len(i) > 40:
18. if i.split()[0] == 'HETATM':
19. if float(i[54:60]) <= -8.0: # filter low density waters
20. flap.writelines('ATOM ' + i[6:11] + ' O SOL ' + i[23:54] + ' 1.00 0.00 O\n

')
21. flap.close()

Possible errors in the pdb are corrected:

l The histidine name is changed to be compatible with GRO-
MACS based on the hydrogens present to define the histidine
tautomeric state or protonation state.

l Chains are added to take into account the possibility of missing
residues.
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1. # fix waters and chain name if there is a gap
2. def fixchains():
3. # fix his
4. his = {}
5. with open('protein.pdb', 'r') as p:
6. for i in p:
7. if i.split()[0] == 'ATOM':
8. res = int(i[22:27])
9. if i[13:20] == 'ND1 HIS' or i[13:20] == 'NE2 HIS':
10. if i.split()[-1] == 'N1+':
11. his[res] = 'HIP'
12. elif i[13:20] == 'HD1 HIS' and res not in his:
13. his[res] = 'HID'
14. elif i[13:20] == 'HE2 HIS' and res not in his:
15. his[res] = 'HIE'
16. # else:
17. # his[res] = 'HIS'
18. ou = open('ProteinAmber0.pdb', 'w')
19. chains = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
20. n = 0
21. resbefore = 0
22. with open('protein.pdb', 'r') as p:
23. for i in p:
24. if len(i) > 30:
25. if i.split()[0] == 'ATOM':
26. if i.split()[-1] != 'H':
27. res = int(i[22:27])
28. if resbefore == 0:
29. resbefore = res
30. if res == resbefore or res == resbefore + 1:
31. if i[17:20] == 'HIS':
32. ou.writelines(i[:17] + his[res] + ' ' + chains[n] + i[22:])
33. else:
34. ou.writelines(i[:21] + chains[n] + i[22:])
35. resbefore = res
36. else: # new chain
37. n += 1
38. if i[17:20] == 'HIS':
39. ou.writelines('TER\n' + i[:17] + his[res] + ' ' + chains[n] + i[22:])
40. else:
41. ou.writelines('TER\n' + i[:21] + chains[n] + i[22:])
42. resbefore = 0
43. ou.close()
44. os.system('cat ProteinAmber0.pdb newWaters.pdb > ProteinAmber.pdb')
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Different functions are used for the apo or the complex to
prepare the topology for the MD in GROMACS.

3.1.2 Protein/Ligand

Complex

The ligand topology is generated using the GAFF force field
exploiting the acpype.py script [16] (https://github.com/t-/
acpype). This script requires the net charge of the ligand in the
input to calculate the partial charges correctly. The net charge is
automatically calculated summing atoms partial charges.

1. # prepare ligand topology
2. def prepareligand():
3. # create standard names
4. mol2standard = open('Ligand.mol2', 'w')
5. atoms = False
6. totalcharge = 0.0
7. with open('ligand.mol2', 'r') as mol2:
8. for i inmol2:
9. if i == '@<TRIPOS>BOND\n':
10. atoms = False
11. if atoms:
12. mol2standard.writelines(i[:59] + 'LIG' + i[62:])
13. # get total charge summing partial charges in the mol2
14. totalcharge += float(i.split()[-1])
15. else:
16. mol2standard.writelines(i)
17. if i == '@<TRIPOS>ATOM\n':
18. atoms = True
19. mol2standard.close()
20. # ligand topology
21. print 'preparing ligand topology'
22. os.system("acpype.py -i Ligand.mol2 -c bcc -n " + str(int(round(totalcharge))))

The protein-ligand complex topology including the predicted
WaterFLAP waters is finally created in the following function:

1. def createproteintop():
2. print 'creating protein-waters topology'
3. os.system("pdb2gmx -f ProteinAmber.pdb -ff amber99sb-ildn -water spc -ignh -

o Protein2.pdb -p Protein.top")
4. # Merge Protein2.pdb + updated Ligand_NEW.pdb -> Complex.pdb
5. os.system('grep ATOM Protein2.pdb | grep -v HOH > Protein2only.pdb')
6. os.system('grep HOH Protein2.pdb > Protein2wateronly.pdb')
7. os.system('cat Protein2only.pdb Ligand.acpype/Ligand_NEW.pdb Protein2wateronly.pdb

> Complex.pdb')
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8. # Edit Protein.top -> Complex.top
9. os.system("cp Ligand.acpype/Ligand_GMX.itp Ligand.itp")
10. os.system("cp Protein.top Complex.top")
11. os.system("cat Complex.top | sed \'/forcefield\.itp\"/a\#include \"Ligand.itp\"\' >Complex

2.top")
12. top = open('Complex2.top', 'r')
13. topl = top.readlines()
14. topfix = open('Complex3.top', 'w')
15. totalwater = 0
16. ligandadded = False
17. for i in topl:
18. if i[:3] == "SOL":
19. if not ligandadded:
20. topfix.writelines('Ligand 1\n') # fix the ligand position in the topology
21. ligandadded = True
22. totalwater += int(i.split()[1])
23. else:
24. topfix.writelines(i)
25. topfix.writelines("SOL " + str(totalwater) + "\n")
26. top.close()
27. topfix.close()
28. os.system('mv Complex3.top Complex.top')

3.1.3 Pseudo Apo The code required for the apo protein is instead simple:

1. # protein topology
2. def createproteintopAPO():
3. print 'creating protein-waters topology'
4. os.system("pdb2gmx -f ProteinAmber.pdb -ff amber99sb-ildn -water spc -ignh -

o Protein2.pdb -p Protein.top")
5. os.system("cp Protein.top Complex.top")
6. os.system("cp Protein2.pdb Complex.pdb")

Once the topology is ready, a triclinic box is added and the
system is solvated. Ions are added to create a neutral system before
minimization with constraints on the protein-ligand atoms:

216 Andrea Bortolato et al.



1. def solvatebox():
2. os.system('editconf -bt triclinic -f Complex.pdb -o ComplexBox.gro -d 1.0')
3. os.system('genbox -cp ComplexBox.gro -cs spc216.gro -o Complex_b4ion.gro -

p Complex.top')
4.
5.
6. def runmin(cpu, mode):
7. # create minimization file
8. os.system('cp Complex.top Complex.top_bkup')
9. minimization = open('em0.mdp', 'w')
10. em = ['define = -DPOSRES\n', 'integrator = steep\n',
11. 'nsteps = 1000\n', 'constraints = none\n', 'emtol = 1.0\n',
12. 'emstep = 0.01 ; used with steep\n', 'nstcomm = 1\n',
13. 'coulombtype = PME\n', 'ns_type = grid\n', 'rlist = 1.0\n',
14. 'rcoulomb = 1.0\n', 'rvdw = 1.0\n', 'Tcoupl = no\n',
15. 'Pcoupl = no\n', 'gen_vel = no\n',
16. 'nstxout = 0 ; write coords every # step\n', 'cutoff-scheme = Verlet\n']
17. for i in em:
18. minimization.writelines(i)
19. minimization.close()
20. # Run minimizaton
21. print "initial minimization"
22. os.system('grompp -f em0.mdp -c Complex_b4ion.gro -p Complex.top -o em.tpr -

maxwarn 10')
23. # check that the number of ions is correct
24. ifmode == "complex":
25. os.system('echo 15| genion -s em.tpr -o ComplexIons.gro -neutral -p Complex.top -

conc 0.001')
26. elifmode == "apo":
27. os.system('echo 13| genion -s em.tpr -o ComplexIons.gro -neutral -p Complex.top -

conc 0.001')
28. if not os.path.isfile('ComplexIons.gro'):
29. ('editconf -f Complex.pdb -o ComplexIons.gro')
30. # create posre for the ligand
31. os.system('echo 0 | genrestr -f Ligand.acpype/Ligand_GMX.gro -o Ligandposre')
32. itplig = open('Ligand.itp', 'a')
33. itplig.writelines('\n; Include Position restraint file\n#ifdef POSRES\n#include "Ligandposre.

itp"\n#endif\n')
34. itplig.close()
35. os.system('grompp -f em0.mdp -c ComplexIons.gro -p Complex.top -o em.tpr -

maxwarn 10')
36. os.system('mdrun -v -ntomp ' + cpu + ' -deffnm em -pin auto')
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The water hydrogen bonding network is then optimized dur-
ing a 20 ps MD simulation with positional restrains on the ligand-
protein atoms:

1. def runmd(cpu):
2. # Create md.mdp file
3. mdfile = open('md.mdp', 'w')
4. md = ['integrator = md\n',
5. 'define = -DPOSRES\n',
6. 'nsteps = 10000; 20ps\n',
7. 'dt = 0.002\n',
8. 'constraints = all-bonds\n',
9. 'ns_type = grid\n',
10. 'rlist = 1.1\n',
11. 'rcoulomb = 1.1\n',
12. 'rvdw = 1.1\n',
13. 'vdwtype = Cut-off\n',
14. 'rvdw-switch = 0.9\n',
15. 'coulombtype = PME\n',
16. 'Tcoupl = v-rescale\n',
17. 'tau_t = 0.1 0.1\n',
18. 'tc-grps = protein non-protein\n',
19. 'ref_t = 300 300\n',
20. 'Pcoupl = Berendsen\n',
21. 'Pcoupltype = isotropic\n',
22. 'tau_p = 0.5\n',
23. 'compressibility = 4.5e-5\n',
24. 'ref_p = 1.0\n',
25. 'gen_vel = yes ;;;\n',
26. 'nstxout = 500 ; write coords every # step\n',
27. 'lincs-iter = 2\n',
28. 'DispCorr = EnerPres\n',
29. 'optimize_fft = yes\n',
30. 'refcoord-scaling = com\n',
31. 'cutoff-scheme = Verlet']
32. for i inmd:
33. mdfile.writelines(i)
34. mdfile.close()
35. # Run a short simulation
36. print "short MD"
37. os.system('grompp -f md.mdp -c em.gro -p Complex.top -o md.tpr -maxwarn 10')
38. os.system('mdrun -v -ntomp ' + cpu + ' -deffnm md -pin auto')
39. print "run final minimization"
40. os.system('grompp -f em0.mdp -c md.gro -p Complex.top -o emFinal.tpr -maxwarn 10')
41. os.system('mdrun -v -ntomp ' + cpu + ' -deffnm emFinal -pin auto')
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The resulting MD output is aligned to the original frame of
reference using pymol:

1. def alignpdb(mode):
2. ifmode == 'complex':
3. ndx = open('ndx_input.txt', 'w')
4. ndx.writelines('0 & !a H* & ! 18\nq\n')
5. ndx.close()
6. os.system('make_ndx -f emFinal.gro < ndx_input.txt')
7. os.system('echo 22 | trjconv -f emFinal.gro -s emFinal.tpr -o emFinal.pdb -pbc whole -

n index')
8. os.system('echo 0 | trjconv -f emFinal.gro -s emFinal.tpr -o emFinalH.pdb -pbc whole -

n index')
9. elifmode == 'apo':
10. ndx = open('ndx_input.txt', 'w')
11. ndx.writelines('0 & !a H* & ! 16\nq\n')
12. ndx.close()
13. os.system('make_ndx -f emFinal.gro < ndx_input.txt')
14. os.system('echo 18 | trjconv -f emFinal.gro -s emFinal.tpr -o emFinal.pdb -pbc whole -

n index')
15. os.system('echo 0 | trjconv -f emFinal.gro -s emFinal.tpr -o emFinalH.pdb -pbc whole -

n index')
16. # waters for waterflap:
17. pymol.cmd.load('protein.pdb') # reference protein
18. pymol.cmd.load('emFinal.pdb') # final system
19. pymol.cmd.select('finalprot', 'emFinal and not resn SOL')
20. pymol.cmd.align('finalprot', 'protein')
21. ifmode == 'complex':
22. pymol.cmd.extract('water', 'resn LIG around 8 and resn SOL')
23. elifmode == 'apo':
24. pymol.cmd.load('ligand.mol2') # reference ligand
25. pymol.cmd.extract('water', 'ligand around 8 and resn SOL')
26. pymol.cmd.save('FinalMDwaters.pdb', 'water')
27. pymol.cmd.reinitialize()
28. # waters from MD with H
29. pymol.cmd.load('protein.pdb') # reference protein
30. pymol.cmd.load('emFinalH.pdb') # final system
31. pymol.cmd.select('finalprot', 'emFinalH and not resn SOL')
32. pymol.cmd.align('finalprot', 'protein')
33. ifmode == 'complex':
34. pymol.cmd.select('waterO', 'resn LIG around 8 and resn SOL and element O')
35. elifmode == 'apo':
36. pymol.cmd.load('ligand.mol2') # reference ligand
37. pymol.cmd.select('waterO', 'ligand around 8 and resn SOL and element O')
38. pymol.cmd.select('waterH', 'neighbor waterO')
39. pymol.cmd.extract('water', 'waterO or waterH')
40. pymol.cmd.save('FinalMDwatersH.pdb', 'water')
41. os.system("grep ATOM FinalMDwatersH.pdb > FinalMDwatersHfixed.pdb")
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The optimized water network is then refined and rescored in
WaterFLAP:

1. def rescorewaters(mode):
2. wfwaters = open('FinalMDwatersFixed.pdb', 'w')
3. waternetwork = open('FinalMDwaters.pdb', 'r')
4. waternetworklines = waternetwork.readlines()
5. for w in waternetworklines:
6. fixedline = w.replace("ATOM ", "HETATM").replace("OW SOL", "OH2 HOH")
7. wfwaters.writelines(fixedline)
8. wfwaters.close()
9. ifmode == "complex":
10. os.system('grep ATOM complex4waterFlap.pdb > complex4waterFlapProtein.pdb ')
11. os.system('grep HETATM complex4waterFlap.pdb > complex4waterFlapLigand.pdb ')
12. os.system(
13. "cat complex4waterFlapProtein.pdb complex4waterFlapLigand.pdb FinalMDwatersFix

ed.pdb > system4rescoring.pdb")
14. ifmode == "apo":
15. os.system("cat proteinNoH.pdb FinalMDwatersFixed.pdb > system4rescoring.pdb")
16. # evaluate OH2
17. os.system(
18. "/apps/WaterFLAP/20150122/flapwater -r -i system4rescoring.pdb -o refine-

FinalOutput.pdb -gl ligand.mol2 -gr 10 -fe 9 -p CRY -cp 0 -rf 1 -it 3 -wn")
19. # CRY score without the network
20. os.system(
21. "/apps/WaterFLAP/20150122/flapwater -r -i refine-FinalOutput.pdb -o CRY-

FinalOutput.pdb -gl ligand.mol2 -gr 10 -fe 9 -p CRY -cp 0 -rf 0 -ws")
22. # evaluate entropy
23. os.system(
24. "/apps/WaterFLAP/20150122/flapwater -r -i refine-FinalOutput.pdb -o OH2ENT-

FinalOutput.pdb -gl ligand.mol2 -gr 10 -fe 9 -p ENTR -cp 0 -rf 0 -wn")

The final output is then generated. This includes a pdb with the
optimized MD water network and another pdb with these waters
after refinement from WaterFLAP. This pdb is coded to include
additional information:

l The waters are classified using the element from unhappy (oxy-
gen: red; sulfur: yellow) to bulk-like (carbon: gray) and happy
(nitrogen: blue). The rules for the different classes are shown in
the function dahliawaterscore shown below.

l The total ΔG in kcal/mol is multiplied by ten (to remove the
decimal) and included after the element.
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l The B factor column includes the OH2 probe energy (kcal/mol)
and the occupancy column the CRY probe energy (kcal/mol).

1. def createoutput(mode, ligandbasename, workdir):
2. cry = open("CRY-FinalOutput_H2O.pdb", "r")
3. crylines = cry.readlines()
4. oh2ent = open("OH2ENT-FinalOutput_H2O.pdb", "r")
5. oh2entlines = oh2ent.readlines()
6. # waterflap output
7. finalresult = open('WF' + mode + ligandbasename + '.pdb', 'w')
8. # md ouput with H and energy from waterflap
9. # finalresultwaters = open('HOH' + mode + ligandbasename + '.pdb', 'w')
10. wline = 0
11. n = 1
12. # nmd = 0
13. for i in crylines:
14. if i[:6] == 'HETATM':
15. CRY = float(i[60:66])
16. OH2 = float(oh2entlines[wline][54:60])
17. ENT = float(oh2entlines[wline].split()[-1])
18. element, DG = dahliawaterscore(CRY, OH2, ENT, mode)
19. if DG < 0:
20. if -10 * DG > 100:
21. dgcode = "99N"
22. else:
23. dgcode = str(int(round(-10 * DG))).zfill(2) + 'N'
24. elif DG >= 0:
25. if 10 * DG > 100:
26. dgcode = "99P"
27. else:
28. dgcode = str(int(round(10 * DG))).zfill(2) + 'P'
29. finalresult.writelines('ATOM' + str(n).rjust(7) + ' ' + element + dgcode + 'HOH ' + str(n)

.rjust(4) + i[26:54] + ('%.2f' % OH2).rjust(6) + ('%.2f' % CRY).rjust(6) + '\nTER\n')
30. n += 1
31. wline += 1
32. cry.close()
33. oh2ent.close()
34. finalresult.close()
35. os.system('mv WF' + mode + ligandbasename + '.pdb ../')
36. # os.system('mv HOH' + mode + ligandbasename + '.pdb ../')
37. os.system('cp FinalMDwatersHfixed.pdb ../HOH' + mode + ligandbasename + '.pdb')
38. os.chdir('..')
39. print "WateFlap waters written to: WF" + mode + ligandbasename + ".pdb"
40. print "MD waters written to: HOH" + mode + ligandbasename + ".pdb"
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41. print "you can remove now the working directory: " + workdir
42.
43.
44. def dahliawaterscore(CRY, OH2, ENT, mode):
45. if CRY > 0.0 andmode == "complex":
46. DG = OH2 + 14 + ENT + 1.5
47. # DG = OH2 + 5
48. elif CRY <= 0.0 andmode == "complex":
49. DG = OH2 + 14 + ENT + 1.5 - 1.5 * CRY
50. # DG = OH2 + 5 - CRY
51. elif CRY > 0.0 andmode == "apo":
52. DG = OH2 + 14 + ENT + 3.0
53. # DG = OH2 + 5
54. elif CRY <= 0.0 andmode == "apo":
55. DG = OH2 + 14 + ENT + 3.0 - 1.5 * CRY
56. # DG = OH2 + 5 - CRY
57. if ENT <= -3.0:
58. element = "C"
59. elif DG >= 3.5:
60. element = "O"
61. elif DG < 3.5 and DG >= 2:
62. element = "S"
63. elif DG < 2 and DG >= -2:
64. element = "C"
65. elif DG < -2:
66. element = "N"
67. return element, DG

3.2 WaterMap-Based

Method

3.2.1 Background

WaterMap [9–11] is based on the inhomogeneous solvation theory
of Lazaridis [17] where enthalpy is taken directly from non-bonded
interactions and entropy is computed from a local expansion of
spatial and orientational correlation functions. WaterMap calcula-
tions involve running converging MD simulations with explicit
water molecules, the resultant trajectories are then analyzed to
cluster hydration sites (a region of space where water molecules
aggregate). Entropy and enthalpy are computed for each hydration
site and energy terms are computed relative to bulk solvent. The
results are presented graphically for easy visualization of hydration
sites, with corresponding tables to enable in-depth analysis of the
specific enthalpic or entropic contributions to any specified hydra-
tion site. The technique has been applied to numerous protein
ligand complexes with many successes [4].
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3.2.2 Running WaterMap The default parameters in the WaterMap setup work well in most
cases, and in most pseudo apo simulations these will suffice. Unfor-
tunately in many GPCR structures we often find numerous water-
mediated interactions from the ligand to the protein in addition to
many ligand occluded regions that the grand canonical Monte
Carlo (GCMC) water placement method can sometimes struggle
to hydrate in a manner that is consistent with our in-house crystal
structures, see Fig. 1. Although in the most recent update to the
Schrodinger force field, OPLS3, the number of waters more closely
resembles that seen in our crystal structures.

It should be noted that crystal structures are snapshots of the
protein at temperatures close to absolute zero, and thus may not be
real representations of what is actually happening. Unfortunately,
this is all we have to work with and thus must be pragmatic in our
approach and perhaps not absolutely theoretically correct.

To overcome the issues associated with the GCMC placement
of waters, we have utilized the water placement within WaterFLAP
[9, 10] to place the waters around the ligand. The water placements
around the ligand were generated using the function “createwater-
network” discussed previously in the “3.1.0 WaterFLAP MD

Fig. 1 The round spheres show the waters predicted by the Grand Canonical Monte Carlo (GCMC) method
using the OPLS2005 force field within WaterMap, the red crosses are the location of the crystallographic
waters seen within our structure
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method” section. These water placements are then added to the
starting structure and a standard protein preparation process, from
Schrodinger, is run to incorporate the waters around the ligand into
the protein/ligand/water complex.

The WaterMap process is then run via the command line after
altering the input or command files. This is done by writing out the
command files, or XXX.msj & XXX.maegz files, instead of running
them from the GUI, and editing them so that the “solvate ligand”
step within the XXX.msj file reads “should_skip ¼ true.”

XXX.msj

.

.

.

solvate_pocket {

backend ¼ {

buffer ¼ 10.0

ligand_proximity ¼ 10.0

protein_proximity ¼ 5.0

proximity_resolution ¼ 0.5

}

ligand_file ¼ ?

num_output ¼ 1

should_skip ¼ true

}

.

.

.

At the bottom of the XXX.msj file is the command line job
submission that can be run after altering the file.

# command example:

# $SCHRODINGER/watermap -JOBNAME 3PWH_WM -HOST compchem-node3

-cpu 32 -m 3PWH_WM.msj 3PWH_WM-in.maegz

3.2.3 Processing

WaterMap

To ensure comparable results are obtained for this method as have
been obtained previously, the WaterMap results are analyzed and
the csv file of the energies, from “Export to CSV. . .” in “WaterMap
– Examine Results” (see Fig. 2), in combination with the placement
of the waters, “XXX-watermap.pdb”, are combined.

The following script with a simplified colouring scheme to what
had been discussed earlier in the function “dahliawaterscore,” in
the previous section, is then applied.
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1. #!/usr/bin/python
2.
3. import os,sys
4.
5. def print_help():
6. print ""
7. print " prepareWM.py v0.1"
8. print ""
9. print " python prepareWM.py <wm.pdb> <energy.csv>"
10. print ""

Fig. 2 Tab within maestro for examining the results from a WaterMap calculation, the “Export to CSV. . .”
button is located on this tab
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41. CleanEnergyOne.append(i.split(',')[-6]) #dh
42. if float(dg)>3.5: CleanEnergyOne.append('O') #element
43. elif float(dg)>2.0: CleanEnergyOne.append('S')
44. elif float(dg)<-1.0: CleanEnergyOne.append('N')
45. else: CleanEnergyOne.append('C')
46. CleanEnergyAll.append(CleanEnergyOne)
47.
48.
49. #open output
50. output=open('Prepared_'+wmpdb,'w')
51.
52.

28. #read energycsv
29. energy=open(energycsv, 'r')
30. energy.readline() #skip first line
31. energylines=energy.readlines()
32.
33. CleanEnergyAll=[] #[[occupancy,dg,dh,element], ...]
34.
35. for i in energylines:
36. if len(i)>10:
37. CleanEnergyOne=[]
38. CleanEnergyOne.append(str(int(float(i.split(',')[-8])*100))) #occupancy
39. dg=i.split(',')[-4]
40. CleanEnergyOne.append(dg) #dg

11. print " <wm.pdb> pdb output of watermap waters"
12. print " <energy.csv> csv water energy output of watermap"
13. print ""
14.
15. #This part control the input files
16. narg = len(sys.argv)
17.
18. infiles = []
19. if narg < 3:
20. print_help()
21. sys.exit(1)
22. elif narg >= 3:
23. wmpdb = sys.argv[1]
24. energycsv = sys.argv[2]
25. for i in range(2,narg):
26. infiles.append(sys.argv[i])
27.
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53. #read wm.pdb
54. wm=open(wmpdb,
55. wmline=wm.readline()
56.
57. n=0
58. while wmline:
59. #write starting pdb
60. if wmline[:6]!='HETATM'
61. else:
62. output.writelines(wmline[:12]+str(CleanEnergyAll[n][3]+CleanEnergyAll[n][0]).ljust(5)+w

mline[17:54]+('%.2f'
)).rjust(6)+'\nTER\n'

63. n+=1
64. wmline=wm.readline()

The resultant pdb file has the waters that are classified using the
element from unhappy (oxygen: red; sulphur: yellow) to bulk-like
(carbon: gray) and happy (nitrogen: blue).

3.3 WaterFLAP-

Based Method

3.3.1 Protein GRID

Generation

Typically, we generate the GRID [10] interaction fields for each
protein we dock ligands to, in order to identify hotspots and
understand the energetics of the water molecules and ligand within
the receptor site. To generate the GRID interaction fields, we use
WaterFLAP [9], and execute it using the following command line
option:

(Path to WaterFLAP)/flapvs -d TEMP -gg 0.75 -pp 4 C1¼ C3 H
O -gr 6 -cpu 8 -gl ligand.mol2 protein.pdb

The key command line options we employ are:

-d which defines the directory for FLAP to use (TEMP in the
above case).

-gg which defines the spacing between the GRID points.

-pp which defines the number of probes (4 in the above case),
followed by the probes we wish to run (C1¼, C3, H, O in
the above case).

-gr which defines the distance from the ligand to explore
using GRID.

-cpu which defines how many CPU cores to use for generating the
GRID (maximum of 8).

-gl which defines the ligand around which we want to centre
the GRID.
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An alternative command line for running GRID, without a
ligand is the following:

(Path toWaterFLAP)/flapvs -d TEMP –gg 0.75 -g 5 0 66 12 12 12
-pp 4 C1¼ C3 H O -cpu 8 protein.pdb

Where the key command line options we employ that are
alternative to the -gr and -gl options above are:

-g which defines the centre of the GRID cube to explore, in the
format x y z lx ly lz (where lx, ly, lz is the respective side lengths
of the cube).

Due to the fact we are running GRID around a cube, which we
have defined, we do not require a ligand to be present in the
receptor site.

The key outputs from these commands are the .xplor files,
which either give a shape for the pocket (in the case of the H
probe), or give an energy for the attractive force felt between the
GRID probe and the protein. In the event a position within the
protein is unfavorable for the probe a 0 is recorded in the file.

These GRIDs are calculated and used internally by WaterFLAP
during the apo and complex water network generation described
below.

3.3.2 APO Water Network

Generation

Prior to running WaterFLAP on a protein, we first take it through
the Protein Preparation Wizard within Maestro (by Schrodinger).
After the preparation, we save the protein as protein.pdb, and the
ligand as ligand.mol2.

A new automated flag has been introduced by Molecular Dis-
covery, which captures many of the key options we had previously
set within our Python scripts, making them redundant. For the
more recent versions of WaterFLAP (released during 2016), to
generate an apowater network, we run the following command line:

(Path to WaterFLAP)/flapwater -w-auto -i protein.pdb -o WAT_-
PRED_OCT.pdb -gl ligand.mol2 -gr 6 -cpu 8 >apowaterflap. log
2>apowaterflap.log2

The key command line options we employ are:

-w-auto which runs the automated water protocol, with the default
settings.

-i which defines the protein file.

-o which defines where we want the output to be saved.

-gl which defines the ligand that was present within the pocket.

-gr which defines the distance from the ligand to explore using
GRID (and the resulting waters).

-cpu which defines how many CPU cores to use for generating the
water network (maximum of 8).
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As given in the command line above, we typically fill the pocket
defined within 6 Å from the ligand with water.

The output from the above command is a series of files, with a
separate pdb file for each refinement step as high-energy waters are
iteratively removed. Two key output files from WaterFLAP are
kept, the WAT_PRED_OCT_DG_WAT_H2O_ele.pdb file and
the WAT_PRED_OCT_DG_WAT_COMPLEX.pdb.

The WAT_PRED_OCT_DG_WAT_H2O_ele.pdb file (Fig. 3a)
contains the waters that WaterFLAP has predicted would be present
within the receptor pocket, with different elements for the different
classes of waters present. The classes of waters that can be present are:
bulk waters (by default depicted as iron), high-energy waters
(by default depicted as oxygen), mid energy waters (by default
depicted as sulfur), and low-energy waters (by default depicted as
nitrogen). The energy of the waters is given in the b-factor column
within the pdb.

The WAT_PRED_OCT_DG_WAT_COMPLEX.pdb file
(Fig. 3b) contains the original protein, with waters filling the
pocket which contained the ligand, and is retained for optimizing
the apo water network when an analogue of the reference ligand is
docked, in order to give a complex water network.

Fig. 3 WaterFLAP pseudo apo water network predictions with (a) showing the protein with the predicted
waters from the WAT_PRED_OCT_DG_WAT_H2O_ele.pdb file. The waters are colored gray (depicted as iron)
for bulk waters, red for high-energy waters (depicted as oxygen), yellow for mid energy waters (depicted as
sulfur), and blue for low-energy waters (depicted as nitrogen). The energy of the waters is given in the b-factor
column within the pdb. And (b) showing the WAT_PRED_OCT_DG_WAT_COMPLEX.pdb file which is utilized in
the generation of the protein/ligand complex water network
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3.3.3 Complex Water

Network Generation

Alongside apo water network prediction, WaterFLAP also has the
ability to optimize and score a water network around a docked
ligand. Generally in this process the apo waters overlapping the
ligand are displaced, and several iterations of optimization on the
remaining water network are carried out.

To re-score or convert the apo water network to a complex
water network, we copy the WAT_PRED_OCT_DG_WAT_COM-
PLEX.pdb (generated previously), the protein.pdb file and the
docked ligand (saved as a mol2 file) into a new directory and after
changing to that directory, run the following command:

(Path to WaterFLAP)/flapdock -mol2 ligand.mol2 -gl ligand.mol2
-pdb protein.pdb -wat WAT_PRED_OCT_DG_WAT_COM-
PLEX.pdb -score_wat -refine_wat -wat_iter 20

The key command line options we employ are:

-mol2 which defines the docked ligand we want to optimise the
water network around.

-gl which defines the docked ligand we want to optimise the water
network around.

-pdb which defines the protein pdb we have docked ligand.
mol2 into.

-wat which defines the apo water network with the receptor pdb file
(the WAT_PRED_OCT_DG_WAT_COMPLEX.pdb gener-
ated during the apo prediction).

-score_wat which informs WaterFLAP that we want to score the
waters, post refinement.

-refine_wat which informs WaterFLAP that we want to refine the
waters present within the –wat pdb file.

-wat_iter which defines the number of iterations WaterFLAP
employs when optimising the water network around the
docked ligand.

As with the apo water network generation, this generates a
number of files for output, but the key file we use is WATER-
FLAP_Delta_DG_DG_WAT_H2O_ele.pdb.

The WATERFLAP_Delta_DG_DG_WAT_H2O_ele.pdb file
(Fig. 4) returned contains waters in their perturbed positions relative
to the input apo state from WAT_PRED_OCT_DG_WAT_COMP
LEX.pdb. The element type in the output file gives an indication as to
whether thewatermolecule has been stabilized by the ligands presence
in the receptor, or destabilized. In this file, you can have waters heavily
stabilized by the ligand (depicted as nitrogen atoms), somewhat desta-
bilized by the ligand (depicted as sulfur atoms), destabilized by the
ligand (depicted as oxygen atoms), or unaffected by the ligand
(depicted as iron atoms).
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3.3.4 Final Output The output is then combined into a multi molecule SD file, which
contains the docked ligand, key interactions between the docked
ligand and the protein, a minimized form of the ligand and the
output from WaterFLAP. This combined multi molecule file allows
us to review whether the docked ligand is in a relatively high energy
conformation, if there are a significant number of unfavorable
interactions, and whether the ligand results in a more energetically
favorable water network.

To retrieve the key interactions, we use the poseviewer_interac-
tions.py script supplied within a default Schrodinger install, and this
can be run using the following.

$SCHRODINGER/run poseviewer_interactions.py protein.
pdb ligand.pdb

The output from this command is a file called protein_pv_in-
teractions.txt, which contains details of interactions between the
residues and the ligand atoms.
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Chapter 11

Methods for Virtual Screening of GPCR Targets:
Approaches and Challenges

Jason B. Cross

Abstract

Virtual screening (VS) has become an integral part of the drug discovery process and is a valuable tool for
finding novel chemical starting points for GPCR targets. Ligand-based VS makes use of biochemical data
for known, active compounds and has been applied successfully to many diverse GPCRs. Recent progress in
GPCR X-ray crystallography has made it possible to incorporate detailed structural information into the VS
process. This chapter outlines the latest VS techniques along with examples that highlight successful
applications of these methods. Best practices for increasing the likelihood of VS success, as well as ongoing
challenges, are also discussed.

Key words Virtual screening, G protein-coupled receptor, Molecular docking, Data fusion, Data
mining, Shape search, Pharmacophore search, Homology modeling, Fingerprint similarity, Machine
learning

1 Introduction

The G protein-coupled receptors (GPCRs) represent a pharmaceu-
tically important class of proteins, accounting for approximately
40% of marketed drugs [1]. Situated in the cellular membrane,
these receptors detect chemical signals from outside the cell and
translate these into internal cellular responses, making them ideal
pharmaceutical targets for a variety of therapeutic indications,
including central nervous system (CNS) disorders and pain, inflam-
mation and immune response, cancer, and endocrine dysfunction.
As such, there is considerable and ongoing interest in targeting
GPCRs with small-molecule therapeutics, as evidenced by the
continued efforts to bring these drugs to the market [2]. The
identification of tractable chemical starting points for medicinal
chemistry optimization is a crucial requirement to progress any
GPCR drug discovery program.

Virtual screening (VS) is an increasingly common knowledge-
based approach [3] for separating active molecules from inactive
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ones in a chemical library (Fig. 1). In a practical sense, VS aims to
reduce the number of compounds to be experimentally screened
from millions down to a library of hundreds or thousands, which is
enriched with actives. This smaller library can be prosecuted using
low or medium throughput screening methods, saving time and
resources, and satisfying the primary objective of any screening
effort, which is the identification of novel chemical starting points.
Due to these advantages, VS has become an integral part of the
overall screening strategy at many pharmaceutical and biotechnol-
ogy companies, as well as academic labs, either as a lone screening
technique or as one component in an effort that encompasses other
screening methods, such as high-throughput screening (HTS) and
fragment-based approaches [4, 5].

A general overview of a VS workflow is shown in Fig. 2.
Although there are a wide variety of algorithms and techniques
available to perform the actual in silico screening, the overall work-
flow is essentially the same. This starts with the collection of active
compound information used to informmodel development, library
curation, and method validation (data mining). Protein sequence
and structural data can be included in this category as well, since
bioinformatics analyses and protein models are critical pieces of
information that feed into a structure-based virtual screening
(SBVS) workflow. Generation of a curated compound library to
search against is also a prerequisite for VS andmay take many forms,
from SMILES strings to conformationally expanded databases,
depending on the search method employed. The search methodol-
ogy generally falls into one of two major groups: ligand-based or
structure-based. Ligand-based methods require knowledge of pre-
viously discovered active compounds to build search models, such

400

350

300

250

200

150

100
"V

irt
ua

l S
cr

ee
ni

ng
" 

Jo
ur

na
l A

rt
ic

le
s

50

0
1995 2000 2005

Year

2010 2015

Fig. 1 Results of Google Scholar search for “virtual screening” in journal article
titles, broken down by year (search conducted 1/4/2017)
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as pharmacophore or shape queries. Structure-based methods,
which generally involve molecular docking and require either an
X-ray structure of the protein target or a high-quality homology
model, can also make excellent use of ligand activity data, but have
the advantage of not requiring this type of data. In cases where
more than one search is conducted using either a single method or
multiple techniques, which has become increasingly common, a
scheme to incorporate the output from these methods into a final
“hit list” is required (data fusion). Once this list of compounds is
selected computationally, it is good practice to visually inspect the
output molecules to ensure their suitability for medicinal chemistry
follow-up before experimental testing. All of these topics will be
addressed in the following sections.

While the ultimate success of a VS will be dependent on the
identification of hits amenable to medicinal chemistry optimiza-
tion, it can be difficult to estimate the likelihood of success a priori.
The success of retrospective screens can be neatly quantified, since
the number of actives and decoys are known and can be controlled
as part of the virtual experiment. Public benchmark datasets, such
as the Directory of Useful Decoys (DUD) [6] for SBVS, the
Maximum Unbiased Validation (MUV) set [7] for ligand-based
virtual screening (LBVS), as well as recently curated GPCR-focused
datasets [8, 9], have proven valuable in standardizing method
comparisons. Many articles have been published that attempt to
measure the relative success rates of different VS methods and
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Fig. 2 Streamlined VS workflow, including collection of input data (data mining and compound databases),
ligand and/or structure-based database searching, combination of output from different search methods and
compound selection (data fusion), and procurement of compounds for experimental testing
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software, whether ligand-based [10, 11], structure-based [12–14],
or a combination of the two [15, 16], though there can be dis-
agreement regarding which metrics are most suitable for compari-
son [17]. In earlier publications, the enrichment factor (EF) was
commonly used as a means to measure early retrieval of VS meth-
ods, since it mimics the goal of VS—to select a subset of com-
pounds that are enriched for active molecules. However, EF shows
a strong dependency on the relative sizes of the active and decoy
sets, making it a property not just of the VS method used but also
the experimental design [17], as well as insensitivity to active com-
pound rank near the cutoff value [18]. Use of the receiver
operating characteristic (ROC) [19] eliminates this dependency,
but since ROC considers the ordering of compounds in the entire
library rather than just the highest scoring subset (i.e., the short list
of compounds to be experimentally tested), it is not useful in
evaluating early retrieval. Other methods, such as BED-ROC
[18] and ROC EF [14, 17], seek to balance the focus of the EF
on the top scoring compounds with the rigor of the ROC method-
ology, and are higher quality metrics for evaluating retrospective
VS. An alternate method, Robust Initial Enhancement (RIE) [20],
addresses some issues with EF, but does not have all the advantages
of ROC. Unfortunately, prospective screens cannot be quantified in
exactly the same way as retrospective screens, since the proportion
of actives and inactives is unknown. However, if there are sufficient
known actives to run a small retrospective screen using the same
methodology intended for the prospective screen, it is possible to
obtain an estimate of the likelihood of VS success.

2 Materials

The methods and protocols outlined in this chapter can be imple-
mented on a variety of hardware and operating system platforms,
including *nix (Linux and MacOS being the most common) and
Windows. However, certain compute-intensive applications are
restricted to specific high-performance architectures and platforms.
Many of the programs listed are free of charge or are available at
reduced cost to academics, and open source options have been
included, where available, in addition to commercial products.

2.1 Computer

Hardware

The type of computer hardware recommended strongly depends on
the nature of the computations involved. For example, computa-
tionally expensive calculations, such as molecular dynamics simula-
tions, are best handled by a CPU cluster or GPUworkstation, while
many ligand-based methods and data fusion techniques may
require only a high-performance laptop computer. For those with-
out access to high-performance hardware, the availability of cloud
computing resources (e.g., Amazon Web Services, Microsoft
Azure, Google Cloud Platform) is becoming a viable option.
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2.2 Computer

Software

1. There are several commercial products focused on facilitating
data mining, including GSK BIO’s GoStar database, Jubilant
Life Science’s ChemBioBase, and Clarivate Analytics’
Integrity database. Publicly available resources include ChEMBL
[21] (including GPCR SarFari), PubChem [22], and
BindingDB [23].

2. Most modern molecular modeling suites have workflows for
molecular database preparation. This includes MOE [24],
Schrödinger LigPrep [25], and OpenEye OMEGA [26]. Pipe-
lining software, such as Pipeline Pilot [27] and KNIME [28],
along with standalone tools are also available.

3. Fingerprint methods are available in comprehensive molecular
modeling packages (e.g., MOE [24] and Schrödinger CAN-
VAS [29]) as well as pipelining software and toolkits (e.g.,
RDKit [30]).

4. A variety of pharmacophore-based methods are widely avail-
able, including CATALYST [31], MOE [24], Schrödinger
PHASE [32, 33], and LigandScout [34].

5. Shape-based comparison methods include ROCS [35] from
OpenEye, ShapeScreen [36] from Schrödinger, and PARAFIT
[37]. Molecular field and surface-based software include the
tools from Cresset [38] and Surflex-Sim [39].

6. There are many open source options available that contain
machine learning code, including RDKit [30] and R [40].

7. Molecular docking tools are widely available. Some of the most
popular programs include DOCK [41], AutoDock [42],
GOLD [43], FlexX [44], Surflex [45], Glide [46, 47], and
FRED [48]. Induced-fit docking and interaction fingerprint
analysis are also available as part of many comprehensive soft-
ware packages.

8. There are several high-quality public tools for homology mod-
eling available, including SWISS-MODEL [49] and I-TASSER
[50, 51]. Commercial homology modeling software is also
widely available, including MODELLER [52], Schrödinger
PRIME [53], and MOE [24].

9. Many options are available for running protein simulations.
AMBER [54] and NAMD [55] are common academic choices,
while Desmond [56] is an example of a more recent entry in the
commercial sphere.

10. Several methods for calculating water placement and energetics
are widely available, including GRID [57, 58], SZMAP [59],
Schrödinger WaterMap [60–62], and 3D-RISM [63].

11. Data fusion can be performed by using standard office produc-
tivity software, such as spreadsheets, chemically aware database
management systems in molecular modeling suites, or auto-
mated using pipelining tools, such as Pipeline Pilot [27] or
KNIME [28].
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3 Methods

3.1 Data Mining 1. The success of any VS campaign, as well as the selection of
techniques utilized, is strongly dependent on the quantity,
quality, and type of data available to computational chemist at
its outset. Regardless of the availability of protein structural
information, whether from structural biology or protein mod-
eling, curation of a dataset of known active compounds for the
target of interest, as well as other closely related targets, is a key
first step in enabling VS. This data can be used directly as input
for ligand-based approaches, as a validation set for structure-
based methods, and as a platform for the enumeration of
enriched virtual libraries.

2. Sources of this data depend on the resources available to the
computational chemist. Those in large pharmaceutical compa-
nies may have access to a wealth of proprietary data from
previous HTS campaigns and earlier drug discovery projects.
While researchers in smaller companies or academia may not
have this luxury, public databases are available for compiling
comprehensive databases of bioactive compounds.

3. Privileged structures, or scaffolds that show activity on two or
more receptors yet can be rendered selective using specific
substitution patterns, are powerful tools for drug discovery.
Evans et al. [64] introduced this concept for a benzodiazepine
scaffold that had previously been optimized for CCK1 receptor
antagonism, but could be tuned for activity against CCK2

receptor with certain substitutions. The identification and
application of these privileged structures can be quite useful
within GPCR families. A sampling of these scaffolds, as well as
their substructures (obtained via methods such as RECAP
[65]), can provide starting points not only for 2D searches,
but also for virtual library enumeration in advance of VS.

3.2 Compound

Database Design

and Preparation

1. Compounds in a VS database may come from several sources,
but regardless of the source similar considerations and issues
arise during database construction and preparation. While
pharmaceutical and biotech companies will likely have a pro-
prietary, physical screening library that can serve as a starting
point for building a compound database, there is often a desire
to expand the number of compounds beyond those available
within the company. Likewise, small companies and academics
may not have access to a physical library, but still require a
compound database for VS. Online resources such as ZINC
[66] (zinc.docking.org) can fill this gap by providing an aggre-
gated database of compounds that are readily available for
purchase from commercial vendors. Alternatively, a database
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of “virtual compounds” that are based on available chemical
building blocks and established chemistry can be computation-
ally enumerated; however, this requires commitment of addi-
tional time and resources for the synthesis of VS hits.

2. The quality of hits delivered by VS is necessarily dependent on
the quality of the compound database being screened; hence,
great care should be exercised in the construction and curation
of this resource [67]. Filtering out unwanted chemical struc-
tures based on specific rule sets is an effective way to improve
database quality in a predictable and consistent manner. Filters
such as Rapid Elimination of Swill (REOS) [68] can efficiently
remove the most undesirable compounds from a database
using criteria like physical property and reactive group filters.
Removal of compounds that have a high likelihood of assay
interference, or Pan-Assay INterference compounds (PAINS)
[69] can further improve compound database quality by reduc-
ing the number of false positives. Compound aggregate forma-
tion is another common source of false positives and although
these compounds are very challenging to identify computa-
tionally, making their removal from a compound database dif-
ficult; addition of detergent to assay protocols is often sufficient
to eliminate them from further consideration [70, 71].

3. Additional “drug-like” [72] or “lead-like” [73] physicochemi-
cal property filters can also be applied to improve database
quality (Table 1). The “Rule of 5” [74], which applies to orally
administered drugs, is a useful tool for assessing drug-likeness,
but is more appropriately applied during lead optimization
than compound database design. Since hits are generally
expected to add size and lipophilicity during the optimization
process [75, 76], a “lead-like” compound database with more
stringent limits on molecular weight and clogP is more appro-
priate for screening. Relaxation or modification of these rules

Table 1
Properties of orally administered “drug-like” molecules (Rule of 5) [74], “lead-like” molecules [73],
and molecules able to cross the blood-brain barrier [79]

Rule of 5 Lead-like CNS MPO (most desired)

l MW � 500 Da l MW � 350 Da l MW � 360 Da

l clog P � 5 l clog P � 3 l clog P � 3

l HBD � 5 l Affinity ~0.1 μM l clog D � 2

l HBA (N þ O) � 10 l 40 < TPSA � 90

l HDB � 0.5

l pKa � 8
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may be required if a different route of administration is
targeted (e.g., IV or nasal administration), in order to keep
from unduly limiting the chemical space available for
VS. Furthermore, consideration of the properties required for
a drug or lead to access-specific compartments within the body
can also play a key role during compound database construc-
tion. For example, compounds that need to cross the blood-
brain barrier tend to have a more constrained set of physical
properties than other drugs [77–79], which can be reflected in
the compound database. However, it may not be practical to
apply these “drug-like”, “lead-like”, or compartment-specific
filters at the database construction stage, since there is often a
need to use the compound database for a variety of projects
that may have different needs. In this case, the construction of a
“master” compound database with relaxed physicochemical
properties, maximizing chemical space coverage, is appropriate.
This “master” database can be broken out into an appropriate
sub-library before VS (saving computational resources) or
more stringent filters can be applied to the VS hits post-screen.

4. With the contents of the compound database assembled, it is
necessary to prepare it for use by the software tools that will be
engaged for the VS search process. Commonly, this involves
taking raw compound structure files, often from multiple pro-
prietary, commercial, and public sources, and converting them
into a format, such as canonical SMILES, that is conducive to
duplicate removal. At this point compound property filters,
described in the previous section, can be applied. Generation
of 3D coordinates, saturated ring conformations, and stereo-
isomers (often with a limit on the number of stereocenters
treated) is followed by enumeration of tautomers and proton-
ation states (confined to a limited range centered on pH 7). An
expanded conformer library can then be created for use in
methods such as pharmacophore and shape searching. Most
comprehensive molecular modeling software suites come with
this type of ligand preparation workflow in place, though it may
be necessary to modify default settings to obtain the desired
results.

3.3 Ligand-Based

Methods

1. LBVS has shown immense value in identifying novel chemical
matter, including as a means for scaffold hopping [80]. This
technique requires knowledge of compounds that have the
desired bioactivity, since these serve directly as search queries
or are used to build models that serve this purpose. Many
techniques fall into this category, including fingerprint (FP)
methods, pharmacophores, shape searching, molecular fields
and surface-based methods, and machine learning. Each of
these methods will be explored in this section.
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2. FP-based methods are one of the most common techniques for
performing LBVS due to their simplicity and speed. There are
many excellent review papers that describe the different types of
FPs and the reader is directed to those for further information
[81, 82]. In essence, FPs encode the structure of ligands in a
1D bit string, greatly simplifying either 2D or 3D ligand infor-
mation and enabling rapid comparison with a compound data-
base. Among the major FP types (path-based, circular, and
structural keys), circular FPs, such as ECFP4 and ECFP6,
tend to perform best when ranking compounds with diverse
structures and are recommended for VS [83]. MACCS struc-
tural keys have also shown an ability to distinguish between
target- and family-selective compounds [84].

3. Pharmacophore methods have long been one of the preferred
techniques for GPCRVS due to their ability to encode complex
3D interactions into a simplified set of chemical features and
“scaffold hop” into unexplored chemical space [85]. An excel-
lent overview of recent developments in this field is available
[86]. Pharmacophore models can also be derived from protein
structural information, obviating the need for detailed ligand
activity data as long as a pharmacologically-relevant binding
site is evident, as in the SNOOKER methodology
[87]. Regardless of the source of data for building pharmaco-
phore models, the selection of features to include in the search
model can be difficult; select too many features and very few
hits are found, and include too few features and the model
becomes indiscriminate. The use of a pilot retrospective VS to
validate the model and methodology is recommended if
enough compound activity data is available. In many cases,
pharmacophore screening is applied as part of an overall VS
workflow involving additional techniques (see Subheading 3.5).

4. Inclusion of additional 3D ligand-based methods for VS has
become widespread in pharmaceutical drug discovery. Shape
matching methods use a 3D representation of an active ligand
as a query and compare the molecular shape and chemical
features to a compound database. Due to the successful appli-
cation of shape matching to a wide variety of target classes,
including biogenic amines [88], there has been significant
effort in trying to further advance the performance of these
methods by improving the quality of the input queries [89], as
well as the proper weighting of chemical information
[90]. Molecular field [38] and surface-based [39] methods
are also viable strategies to include 3D information in VS
queries and searches.

5. LBVS has also seen the use of machine learning becomes more
common in recent years [91, 92]. There are many machine
learning methods in regular use for VS, including decision trees

Methods for Virtual Screening of GPCR Targets: Approaches and Challenges 241



(DT), support vector machines (SVM), naive Bayesian, artifi-
cial neural networks (ANN), and trend vectors, to name a few.
No one method has become dominant, since success when
applied to VS appears to be specific to each experiment
[93]. Due to their speed, chemogenomics approaches, or
very large-scale VS across multiple GPCRs, are possible using
machine learning.

3.4 Structure-Based

Methods

1. Although the X-ray crystal structure of bovine rhodopsin was
solved in 2000 [94], it was not until structures of the human
β2-adrenoceptor were released in 2007 [95] that SBVS of
GPCRs became a more productive path for lead identification.
The reason for this delay in truly successful application of SBVS
was due to the presence of key structural differences between
the rhodopsin structure and other Class A GPCRs, particularly
in the second extracellular loop (ECL2), leading to models
with a distorted orthosteric binding site. Since that time,
many additional X-ray crystal structures that cover an ever-
widening region of the GPCR phylogenetic tree have been
solved, making it possible to perform SBVS directly on the
target of interest or by using a high-quality homology model.
In addition, the activated form of β2-adrenoceptor was solved
[96], giving insights into shifts in transmembrane helix
6 (TM6) and rearrangements in TM5 and TM7 that are asso-
ciated with activation. To date, there are more than 100 GPCR
X-ray structures in the Protein Data Bank [97], including those
from pharmaceutically important groups such as chemokine
receptors [98–101], biogenic amine binding receptors
[95, 102–105], and opioid receptors [106–109], among
others. Though fewer in number, there are now several struc-
tures that cover Class B [110], C [111], and F [112] GPCRs.
This recent wealth of structural data has enabled the applica-
tion of structure-based methods to GPCR VS.

2. Molecular docking is the primary engine driving structure-
based drug discovery, but additional methods, such as molecu-
lar dynamics (MD) simulations, solvation analysis, and
advanced scoring methodologies, are finding increased appli-
cation [113]. When docking to GPCR X-ray structures or
homology models, for which there are numerous successful
applications to SBDD in the literature [114, 115], the avail-
ability of mutagenesis data or ligand pharmacophore models
can be extremely helpful in improving docked pose accuracy
[116]. One of the primary issues that still remains for molecular
docking is the quality and predictability of scoring functions.
While modern scoring functions are generally adequate for
selecting low-energy ligand poses, there is still room for
improvement in affinity prediction and ligand ranking, which
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is at the heart of any SBVS operation [117]. Use of alternative
scoring strategies such as interaction fingerprints (IFPs) can
help in this regard. In addition, the GPCR Dock assessments
have served as a valuable benchmark for the modeling commu-
nity [118–120], identifying some best practices as well as lin-
gering deficiencies in methodology. Although not used as the
primary docking engine due to computational cost, the results
of some advanced techniques are now being incorporated into
model development [121] and compound selection
[122]. A sample SBVS workflow is presented in Fig. 3, and of

Fig. 3 Generalized SBVS workflow. This process begins with model selection, which can include X-ray
structures or homology models, single models or ensembles from MD snapshots. Docking site definition
delimits the search space within the protein and involves optimization of residue position and protonation, as
well as location of critical water molecules. A retrospective VS can be run to validate the model, if sufficient
data regarding active compounds is available. Screening of the compound database via molecular docking is
followed by a hit selection procedure, often involving ranking by docking score, IFPs, visual inspection, and
consideration of compound diversity. Selected compounds are then obtained and tested experimentally
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these steps protein structure selection and preparation along
with hit selection strategies have a large influence on success.

3. Protein-ligand IFPs are a simple way to encode 3D information
in a 1D format, making it easy to identify whether critical
interactions are maintained across a large number of docking
poses [123]. It was also found, based on a retrospective VS
analysis of five GPCR targets, that detailed IFPs encoding
atom-atom information perform better than simple amino
acid-based methods that encode residue-ligand contacts
[124]. With enough training data, IFPs have successfully dis-
tinguished partial/full agonists from antagonist/inverse
agonists.

4. Even with the recent and significant advances in GPCR struc-
tural biology, many pharmaceutically important targets do not
have X-ray structures available. To fulfill the desire to use
structure to inform compound design as well as VS, a great
deal of effort has gone into the development of high-quality
homology models. Careful consideration should be given to all
the steps of the homology model building process, including
sequence alignment, location and nature of helical kinks, bias-
ing binding cavities using ligand information, and loop build-
ing, since there is still limited information to guide this process
for GPCRs [125]. Particular care should be taken in the
sequence alignment phase and the incorporation of mutagene-
sis data at this stage can be helpful in orienting helical residues.
Indeed, many VS campaigns that used bovine rhodopsin as a
template for homology modeling, with its structural differ-
ences relative to other Class A GPCRs, likely owe their success
to the use of known ligands and mutation data to guide bind-
ing site shape.

5. The solution of additional GPCR X-ray structures beyond
bovine rhodopsin has resulted in the availability of additional
homology modeling templates spread across more of the
GPCR phylogenetic tree. In fact, many targets now have a
closely related X-ray structure, and even though there are
many templates available, good homology models can be
built from a single nearby structure. However, there are still
many regions with poor structural coverage; in these cases,
multi-template homology modeling can produce superior
results [126]. Prospective VS are now being regularly run
using these improved homology models as well. Several studies
have also directly compared VS hit-rates using X-ray structures
and homology models side by side. Interestingly, these studies
show a range of results, from a CXCR4 X-ray structure giving
better enrichment than a homology model [127], to near
identical results between the two protein structure sources for
D3 receptor [128]. In some circumstances, even though both
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protein structure sources yielded acceptable enrichments, the
overlap between hit compounds is minimal [129]. This sug-
gests that use of X-ray and homology model structures may be
complementary, or at least able to sample different protein
conformations leading to non-overlapping hits.

6. As computer hardware and algorithms have improved, the
application of MD simulations to GPCR structure has become
more commonplace. The use of MD snapshots as structures for
VS is no longer cost prohibitive and prospective studies have
been shown to find quality hits [121]. Retrospective VS studies
of multiple GPCRs have also suggested that MD snapshots can
actually outperform X-ray structures and homology models,
possibly due to the additional conformational sampling and
reduced bias toward a single chemotype [130]. Protein dynam-
ics play a critical role in GPCR activation as well [131], and
given the insights provided by active state structures [96] the
use of MD simulations will likely continue to play a key role in
the refinement of these models and their application to
VS [132].

7. Careful consideration of water molecules in GPCR structures
has become more common, both as the techniques used to do
so gain traction with the wider computational chemistry com-
munity and as higher resolution GPCR structures with visible
water networks become increasingly available. Since there are
relatively few GPCR X-ray structures of sufficiently high reso-
lution to unambiguously assign full water networks, placement
of water molecules often comes from either protein simulations
or other solvation methods.

3.5 Data Fusion 1. Data fusion procedures link data sources to improve the overall
quality of data points, and have shown utility in drug reposi-
tioning [133] as well as polypharmacology and safety profile
analysis [134]. Any of the VS methods described in previous
sections can be used in isolation; however, combining these
techniques can lead to better overall enrichment and a wider
diversity of hit structures. In the VS context, there are two
primary ways data fusion is implemented: sequentially and in
parallel (see Fig. 4). Additionally, there are many alternative
ways of combining methods, especially when hybrid
approaches and machine learning are incorporated [135, 136].

2. Sequential data fusion is commonly used to increase the
throughput of a VS protocol by searching a compound data-
base using a computationally inexpensive technique (e.g., FP
similarity) and progressing the best hits as the input for more
computationally intensive techniques (e.g., docking). This is
particularly useful when computer hardware resources are lim-
ited or when downstream VS methods truly become a
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bottleneck (i.e., induced-fit docking). In theory, any number of
VS techniques can be placed in sequence, though regular prac-
tice often uses only two or three methods in a given screen.
Pipelining tools can be invaluable in designing these workflows
and in standardizing best practices across an institution or for a
given target class. Though often successful, and sometimes
necessary due to limits on computational resources, sequential
workflows can suffer from lack of diversity in hits since false
negatives are lost at each stage and subsequent methods have
no way to retrieve them, even if they would have produced high
scores.

3. The dramatic increase in computing power in recent years has
made it practical to consider running several VS techniques,
scoring strategies, or queries in parallel rather than sequentially,
and then using data fusion methods for the selection of a
combined hit list of compounds for experimental testing.
There are a number of standard methods for combining VS
data in a way that increases the possibility of improving hit
enrichment (e.g., MAX, SUM, EUC), but an in-depth analysis

Compound
Database

Compounds for
Testing

Compounds for
Testing

Compound
Database

2D Ligand-based

Docking

Docking

Data Fusion

2D Ligand-
based

3D Ligand-based

3D Ligand-
based

a b

Fig. 4 Generalized data fusion workflows. (a) Sequential data fusion starts with computationally inexpensive
methods, such as 2D similarity search, and progresses the best scoring compounds to more computationally
costly methods, such as docking. Several methods may be threaded together in this manner to reduce overall
resource cost and improve enrichment. (b) Parallel data fusion takes the output of several independent VS
techniques, or multiple queries from a single technique, and combines them using fusion algorithms to
improve enrichment and diversity. These two paradigms can also be combined into hybrid methods or
modified using machine learning
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of these is beyond the scope of this chapter (see Willett [137]
and Plewczynski et al. [93]). In VS, these methods have been
used very effectively for combining the results of 2D similarity
searches [138, 139] due to the relatively low computational
cost of performing these searches against multiple query mole-
cules. Similar concepts using docking, rather than similarity
searches, are also possible. Consensus scoring uses the same
set of docked poses, but re-evaluates them with different scor-
ing functions and combines them into an aggregate score or
ranking [140]. Consensus docking takes this a step further,
either incorporating docking with a single program against an
ensemble of protein structures [141] or docking with multiple
programs against a single-protein structure [142].

4. Combinations of VS techniques have also been shown to
improve enrichment [143]. Studies combining ligand and
structure-based methods have shown improved enrichment
[144, 145], and in several of these cases [146, 147] parallel
selection of the top ranked hits from each technique or query
produced the best results. Since different VS techniques iden-
tify hit compounds with different structures, parallel selection
offers an advantage by selecting a more diverse set of com-
pounds than some other data fusion methods.

5. Once hit selection is complete, there is typically a final step
before procurement of compounds for testing—visual inspec-
tion. This step involves examining the structure of each com-
pound in the hit list and, preferably, its relationship to the
model or query that was used in its selection. This ensures
that no unwanted chemical structures escaped the filtering
process and that no errors occurred during tautomerization/
protonation. If done in conjunction with medicinal chemistry
colleagues, visual inspection can be a constructive way to pro-
mote ownership of the results by the chemistry team, since
compounds tested experimentally will have already passed
their review.

4 Notes

4.1 Data Mining 1. Additional examples of the privileged structure concept for
GPCRs and other targets have been described
previously [148].

2. There are a number of promiscuous scaffolds that interact with
members of the chemokine receptor family, such as CCR2/
CCR5 aryl sulfonamide antagonists [149], and CCR2/CCR9
antagonists such as PF-4178903 [150] and cencriviroc [151];
since these compounds interact with multiple family members
they may qualify as privileged structures.
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3. A recent example of a successful prospective VS using
substructure-based searching involved A2A receptor antago-
nists and resulted in eight hits found out of 36 compounds
tested [152].

4.2 Ligand-Based

Methods

1. In addition to finding lead matter for medicinal chemistry
optimization, pharmacophore-based VS has been used to find
molecules that allosterically stabilize the R* state of rhodopsin,
based on a peptide template rather than small-molecule
dataset [153].

2. Though not a VS per se, Low et al. [154] used molecular fields
to find two new scaffolds for CCK2 receptor, demonstrating
the applicability of these methods to GPCRs.

3. Retrospective analysis for a set of biogenic amine receptor
targets using an SVM built with 3D pharmacophore FPs was
able to successfully scaffold hop to new core structures [155].

4. Bock and Gough [156] used a chemogenomics approach to
identify putative ligands for 55 orphan GPCRs from a library of
~35,000 compounds, using only the residue properties of the
primary sequence and 2D ligand feature connectivity as input.
Jacob et al. [157] followed a similar approach to demonstrate
the ability of an SVM trained on GPCR-ligand interaction pairs
to find ligands of orphan GPCRs.

4.3 Structure-Based

Methods

1. There are now a growing number of success stories based on
the SBVS of GPCRs [158, 159]. One recent publication out-
lined a retrospective and prospective VS of A2A receptor
[160]. In the end, 9 of 20 predicted agonists turned out to
bind the receptor, which is an excellent result, but the hits
lacked the desired ability to activate A2A receptor. The authors’
conclusion was that it is still difficult to accurately model func-
tional states, though compound database composition may
also play an important role in success or failure.

2. Weiss et al. [161] were able to identify two novel β2-adreno-
ceptor binders with a similar signaling profile to that of the
co-crystallized ligand, illustrating that it is possible to find
compounds with specific functional activity. However, when
this structure was used to build an active form D2 receptor
homology model, VS resulted in only a few marginal hits, once
again demonstrating the difficulty of accurately describing
active states without X-ray structures.

3. A VS of rhodopsin R* focused on the intracellular loop region
rather than the orthosteric site, aimed at interfering with trans-
ducin binding, was able to identify molecules that modulated
signal transduction [162], showing that targeting allosteric or
protein-protein interaction sites is a viable strategy given
enough structural information.
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4. Sato et al. [163] used IFPs to evaluate models used in retro-
spective SBVS and were able to use the protocol to predict
important interactions in 5-HT2A receptor. There are now
several published examples of IFPs being successfully applied
to prospective SBVS of GPCRs [123, 164, 165]. In one study,
the use of IFPs was able to identify novel antagonists/inverse
agonists of H1 receptor and antagonists of β2-
adrenoceptor [166].

5. Differentiation between partial/full agonists and antagonist/
inverse agonists was demonstrated in retrospective studies of
β2-adrenoceptor [167, 168] where the incorporation of IFPs
was critical for the identification of agonists and partial
agonists.

6. Heifetz et al. [169] demonstrated the power of using sugar-
based library hits to refine a MCH1 receptor model, which was
a key step in enabling a subsequent VS that had a 14% hit-rate
and identified 10 novel antagonist chemotypes.

7. Information on known ligands and mutational data was a key
factor in the success of retrospective analyses of mGlu5 receptor
for the identification of negative allosteric modulators (NAMs)
[170] and of CB2 receptor for the detection of antagonists
[171], as well as prospective studies against A2A receptor
(37 of 80 compounds with Ki < 10 μM) [172], MCH1 recep-
tor (6 of 129 compounds with Ki ¼ 7–20 μM) [173], and H4

receptor (28 of 120 compounds with IC50 < ~4 μM) [174].

8. A number of retrospective VS analyses demonstrate the effec-
tiveness of using high-quality homology models [175–177].

9. Even using the human β2-adrenoceptor as a template, McRobb
et al. [178] found that only 6 of 9 biogenic amine binding
receptor models gave reasonable enrichment rates. Binding site
residue and ECL2 placement were cited as explanations for the
failed models.

10. An A2A receptor model based on turkey β1-adrenoceptor tem-
plate yielded a 9% hit-rate [179], while a TA1 receptor model
based on β2-adrenoceptor produced three hits in the μM range
out of 42 compounds tested [180].

11. Although not used directly for VS, WaterMap analysis [60–62]
was applied to the A2A receptor and successfully explained the
SAR of a triazolylpurine series [181]. Mason et al. [182] used
calculated water molecules from WaterMap [60–62], SZMAP
[59], and GRID [57, 58], as part of an assessment of drugg-
ability for GPCRs, which is a useful prelude to a VS campaign.
Recently, it was shown that the inclusion of specific water
molecules in the VS of A2A receptor improved enrichment
relative to a non-solvated model, though careful optimization
of the hydrogen positions was required [183]. It was also not
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necessary for water molecules to come from X-ray structures to
improve enrichment, since those from MD snapshots worked
just as well.

4.4 Data Fusion 1. Tömöri et al. [184] describe a recent large-scale VS success
against PDE5 that used sequential data fusion, starting with FP
similarity on 5 million compounds followed by docking of
~2000 compounds, resulting in 48 hits with >55% inhibition
or IC50 < 1 μM.

2. Hert et al. [185] showed that combining multiple queries and
different similarity metrics for the same query molecule is a
successful strategy for improving recall in retrospective studies.

3. Baber et al. [186] studied the use of multiple ligand-based
methods against four GPCRs and found that enrichment was
improved the most by using sum rank and logistic regression
data fusion. It was concluded that the improved performance
was primarily due to increased sampling as well as the scoring
functions being in approximate agreement regarding ranking
of actives.

4.5 Practical

Integration of Virtual

Screening Methods—

Allosteric Modulators

1. The identification of allosteric modulators of metabotropic
glutamate receptors, which are important pharmaceutical tar-
gets for a variety of CNS disorders, provides an excellent case
study for how VS workflows are used in a practical sense, as well
as how they evolve over time as additional information is
collected about a target family. These Class C GPCRs have an
extracellular orthosteric binding site that is conserved across
the family [187], so targeting an allosteric region in the trans-
membrane domain represents a viable path for the identifica-
tion of selective modulators [188].

2. Advances in LBVS were described by Noeske et al. in a pair of
studies involving the use of topological pharmacophore
descriptors to find mGlu1 receptor NAMs. The first VS [189]
resulted in a 26% hit-rate and identified a coumarin scaffold
with sub-μM Ki, which was subsequently optimized to a com-
pound with improved activity (IC50 ¼ 58 nM) and sub-type
selectivity. The second VS [190] found a quinoline structure as
part of a scaffold hopping exercise, which was then optimized
to a 24 nM compound with >1000-fold selectivity against
mGlu5 receptor.

3. Shape and electrostatics-based VS was used to find imidazo
[1,2-α]pyridine positive allosteric modulators (PAMs) with
nM activity on mGlu2 receptor [191]. VS has also been com-
bined with HTS output to train an ANN to identify mGlu4
receptor PAMs [192]. Using an HTS training set of 434 PAMs
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found within 155,000 compounds screened, the ANNwas able
to find 67 hits from 1100 compounds tested, which was a
22-fold enrichment relative to the HTS campaign.

4. The increased availability of structural information for Class A
GPCRs also represents an opportunity to attempt SBVS on
mGlu1 receptor. A recent report outlined the identification of
novel NAMs for this target using a sequential screening
approach [193]. Initial rounds of screening were performed
using pharmacophore and naive Bayesian models, and the
results were docked against an MD-refined homology model
built from a D3 receptor template. This protocol was tested via
retrospective VS and five hits with μM IC50’s were found out of
35 compounds tested.

5. The identification of allosteric modulators by VS is not limited
to the metabotropic glutamate receptor family. Integrated VS
protocols have been used to find allosteric binders for glucagon
receptor [194], D3 receptor [195], and M2 receptor [196].

6. A glucagon receptor VS campaign started with an extensive
homology model construction and validation effort was per-
formed on CRF1 receptor, due to data availability. The actual
VS against the glucagon receptor [194] started with property
and shape-based similarity filters, followed by docking to a
homology model built from the CRF1 receptor template.
Docking scores and IFPs, followed by visual inspection, were
used to generate a hit list for experimental testing. Of 23 com-
pounds tested, four were allosteric antagonists and two had
different functional activity.

7. A VS against D3 receptor [195] used two structural models: an
apo and a dopamine bound model. Following docking, the apo
model resulted in a 53% hit-rate with antagonists apparently
spanning the orthosteric and extended pockets. The
dopamine-bound model resulted in a 32% hit-rate, but in this
case the compounds were predicted to bind an allosteric site in
the extracellular extension of the pocket and contained no
anchoring amino group; these compounds also exhibited a
variety of functional activities.

8. In a recent study [196], the extracellular vestibule region of M2

receptor was targeted for VS. Starting from the X-ray structure,
a receptor ensemble was constructed fromMD simulations and
used for docking. A combination of docking scores and IFPs
were used to select compounds for testing, which resulted in a
50% hit-rate. Additional compound profiling showed that four
novel NAMs were identified along with one PAM.
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4.6 Challenges 1. There has been a great deal of progress in GPCR VS over the
past ~20 years, but there are still challenges to be met. While
some of these are general issues for VS against any target class,
some are more specific or have an outsized impact in applica-
tion to GPCRs. One fundamental issue is the consistency of
SAR information collected during data mining. Even though
information in a company database may have been collected
using a consistent assay format, the inclusion of public data
sources, with contributions from many different labs, will be
more difficult to reconcile.

2. In LBVS, the weighting of features in pharmacophore and
shape-based methods is also a challenge, and often these set-
tings are chosen not for data-driven reasons, but based on user
experience and anecdotal evidence.

3. There are a number of challenges related to SBVS, including
the fact that even with the impressive progress in X-ray crystal-
lography there is still limited structural coverage of the GPCR
phylogenetic tree, which leads to difficulties in homology mod-
eling. There are also many potential binding regions that
ligands can occupy in addition to the orthosteric site and
information on these sites is still growing. The intracellular
binding of vircirnon to CCR9 is a recent example [101]. Lack
of structural information is also a problem in modeling differ-
ent functional states, especially activated states, of many
GPCRs. Even though there is a growing understanding of the
relationship between structure and function of GPCRs, there
are still very few structural examples with which to build high
quality models that can be used to find functionally relevant
binders.

4. Another set of issues involves the inherent dynamics of GPCRs
and flexibility within the orthosteric site resulting in uncer-
tainty in side chain positions as well as difficulties in loop
modeling. This can also make it difficult to accurately model
allosteric sites (including PAMs and NAMs). The addition of
water molecules adds an additional layer of complexity to VS,
but the inclusion of key water molecules, either from X-ray data
or MD simulations, can be critical to the success of a VS.

5. Improvements in protein-ligand affinity prediction and incor-
poration of desolvation effects into scoring are ongoing issues
not just in the VS of GPCRs, but for structure-based design
generally. Even marginal improvements in scoring can have a
large effect on VS success.

4.7 Best Practices VS has proven to be a valuable tool for GPCR drug discovery and
an effective method for finding novel chemical starting points for
medicinal chemistry optimization. It can be used on its own or in
conjunction with other experimental screening methods (HTS,
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fragment screening) to deliver a larger pool of hit compounds.
LBVS has long been used on GPCR targets, and with the increasing
number of GPCR X-ray structures, SBVS, whether using these
structures or homology models, is a viable VS path. Best practices
and recommendations include:

1. Collect all available SAR from public and private databases,
including for other nearby targets in the GPCR family. There
may be opportunities to use privileged structures or promiscu-
ous ligands to initiate medicinal chemistry.

2. Curation of the ligand screening library will have an effect on
VS success. Remove undesirable compounds during library
construction, but strict physicochemical property filtering
may be applied just in advance of the screening step or during
hit selection.

3. Circular FPs are recommended to maximize enrichment. Pilot
retrospective studies may be necessary to adequately tune phar-
macophore models.

4. Apply multiple ligand-based methods when sufficient data or
models are available. Running multiple queries using the same
technique can lead to complementary hit lists.

5. Use all available protein structural data and include as much
SAR and mutagenesis information as possible to improve dock-
ing models. For close orthologs, a single template may suffice,
but for distant targets multi-template homology modeling may
be required.

6. The treatment of water molecules in SBVS can have a signifi-
cant effect on enrichment. Consider using models with waters
from X-ray structures or multiple MD snapshots.

7. Predicting functional activity of ligands is still difficult. Apply
IFPs, preferably with atom-atom resolution rather than ligand-
residue, to docking results to increase the likelihood of achiev-
ing the desired result.

8. Run as many models and techniques as is computationally
feasible and use data fusion to select a ligand hit list for experi-
mental testing. Sequential workflows can improve throughput,
but at the possible cost of lost diversity. Parallel selection of hits
from different VS methods has been shown to improve
enrichment.

9. Use visual inspection of the final hit list to verify compounds
are chemically acceptable and to create ownership within the
medicinal chemistry team.

There are still challenges in applying VS to GPCRs, such as
complications due to protein dynamics, lack of structural coverage,
and uncertainties in the physical description of binding. However,
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ongoing improvements in computer hardware and the develop-
ment of new algorithms will almost certainly make it possible to
expand the scope of VS against this important class of pharmaceu-
tical targets in the future.
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dinger, LLC, New York, NY

54. Salomon-Ferrer R, Case DA, Walker RC
(2013) An overview of the Amber biomolec-
ular simulation package: Amber biomolecular
simulation package. WIRE Comp Mol Sci
3:198–210. https://doi.org/10.1002/
wcms.1121

55. Phillips JC, Braun R, Wang W, Gumbart J,
Tajkhorshid E, Villa E, Chipot C, Skeel RD,
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Abstract

Predicting the functional preferences of the ligands was always a highly demanding task, much harder that
predicting whether a ligand can bind to the receptor. This is because of significant similarities of agonists,
antagonists and inverse agonists which are binding usually in the same binding site of the receptor and only
small structural changes can push receptor toward a particular activation state. For G protein-coupled
receptors, due to a large progress in crystallization techniques and also in receptor thermal stabilization, it
was possible to obtain a large number of high-quality structures of complexes of these receptors with
agonists and non-agonists. Additionally, the long-time-scale molecular dynamics simulations revealed how
the activation processes of GPCRs can take place. Using both theoretical and experimental knowledge it
was possible to employ many clever and sophisticated methods which can help to differentiate agonists and
non-agonists, so one can interconvert them in search of the optimal drug.

Key words GPCRs, Agonists, Activation, Ligand docking, Fingerprints, Molecular dynamics

1 Introduction

The approaches used for GPCR agonist/antagonist differentiation,
which is a prerequisite for their interconversion, can be divided into
several categories based on specific methods: (1) the molecular
fingerprints; (2) ligand docking to active and inactive receptor
structures; (3) long time-scale molecular dynamics simulations
and network correlation analysis; (4) metadynamics simulations
and free-energy profiles; (5) methods using specific parameters of
the ligand binding site or the vibrational modes; and (6) and meth-
ods based on ligands alone properties. In this chapter the above
approaches will be described and illustrated by usage of several
examples.

G protein-coupled receptors (GPCRs) represent the largest
family of surface receptors, with approximately 800 members in
humans [1]. The participation of GPCRs in numerous
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physiological and pathological processes entails a potential role for
their modulation by ligands of various functions: agonists (increase
receptor activity), antagonists (block the receptor not changing the
activity), and inverse agonists (decrease activity). GPCRs are
extremely important as molecular targets for drugs in medicine
since their ligands are used in the treatment of many diseases,
including cardiovascular and mental disorders [2], cancer [3], and
viral infections [4]. Currently, approximately 30–50% of drugs in
clinical use exert their effects by acting on GPCR-mediated signal-
ing pathways [5]. From the practical point of view, for drug design
purposes, the major need is a differentiation of GPCR ligands into
two groups: agonists and antagonists/inverse agonists, the latter
referred to as non-agonists in the text.

According to the GRAFS classification [6], the human GPCRs
are grouped into five main classes: Glutamate (previous class C),
Rhodopsin (previous class A—the most populated), Adhesion (pre-
vious class G), Frizzled/taste2 (previous class F), and Secretin
(previous class B). From a structural viewpoint, all the members
of the GPCR family share a common architecture represented by
seven membrane-spanning helices connected by three intracellular
and three extracellular loops (ICLs and ECLs, respectively) with the
N-terminal domain exposed toward the EC side (Fig. 1). The EC
area includes N-terminal domain, ECLs, and upper transmembrane

Fig. 1 General scheme showing modularity of GPCRs. Purple ribbon patches highlight highly conserved,
functionally relevant motifs in the TM helices of class A GPCRs. Prolines, which induce kinks in helices, are
shown in ball-and-stick representation
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(TM) region, where the ligand recognition and binding occur. The
IC area includes lower TM region, ICLs, and C-terminal domain—
this area experiences the largest conformational changes during
receptor activation [7].

Our current understanding of the function of GPCRs was
changed from simple On-Off switches to microprocessor-like
action [8]. Especially, the phenomenon of functional selectivity,
whereby certain ligands initiate only portions of the signaling
mechanisms mediated by a given receptor, opened new horizons
for drug discovery. Each receptor undergoes a series of conforma-
tional rearrangements controlled by molecular switches leading to
partial or full activation and the dynamic character of GPCRs is
thought to be essential for their diverse physiological functions.
Transition between these intermediate states involves the disrup-
tion of intramolecular interactions that stabilize the basal state of a
receptor. Such profound changes are evoked by the action of
molecular switches (Fig. 1) [9]. The major switches proposed so
far for different GPCRs include the “Trp rotamer toggle switch”
also called a “transmission switch” involving the CWxP sequence
on transmembrane helix TM6, the “Tyr rotamer toggle switch”
based on the NPxxY sequence on TM7, the “ionic lock” linking
transmembrane helices TM3 and TM6 and employing the (D/E)
RYmotif on TM3, and the “3–7 lock” interaction connecting TM3
and TM7 (involving, e.g., Schiff base-counterion interaction in
rhodopsin).

As a result of their broad influence on human physiology and
behavior, GPCRs are promising candidates for the development of
new and more effective small-molecule therapeutics. However, the
development of selective GPCR drugs is challenging for several
reasons: there is a high degree of homology among many closely
related receptor subtypes that can regulate diverse physiological
functions; additionally, a single GPCR may couple to more than
one G protein, or signal through G protein-independent pathways.
Although this functional versatility is important for normal physio-
logical signaling, it makes identifying effective therapeutics very
challenging. New data support a multi-state activation of GPCRs,
where the receptor can adopt multiple conformations, including
active, inactive, and other intermediate ones. In such multi-state
model the ligands have the propensity to stabilize a unique confor-
mation leading to a specific signaling response.

2 The Molecular Fingerprints

2.1 Definition

of Molecular

Fingerprints

Protein–ligand interaction fingerprints (IFPs) are binary 1D repre-
sentations of the 3D structure of protein–ligand complexes encod-
ing the presence or absence of specific interactions between the
binding pocket amino acids and the ligand [10]. For example, if a
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ligand forms a hydrogen bond (H-bond) with a specific amino acid
of the binding pocket, the respective bit in the fingerprint will be
one, if the interaction is missing, it will be zero. Fingerprints
derived from ligands, proteins, or protein–ligand complexes are
computer-digestible representations of (bio)chemical structures
and are particularly well suited for working with large amounts of
data allowing for rapid processing and comparisons
[10–17]. Machine learning methods are increasingly used to derive
complex relationships between bioactivity data and fingerprint
descriptors of chemical and structural information of protein-
ligand interactions [18]. The fingerprints obtained for docking
poses of certain compounds can be compared with the fingerprints
obtained for other group of ligands with different properties, or a
reference ligand from the crystal structure. Some methods and
coefficients used for the comparison of binary fingerprints are pre-
sented in Table 1. Very often the Tanimoto coefficient (Tc) is used
for that purpose which is the number of common bits in the two
fingerprints divided by the number of bits present in at least one of
the fingerprints. Tc ranges from zero for dissimilar binding interac-
tions to one for identical interactions [11].

The first structural interaction fingerprint (SIFt) algorithm was
developed by Deng et al. in 2004 for the clustering of kinase-
inhibitor complexes [12]. This fingerprint contains seven bits for
each interacting amino acid for predefined interaction types (any,
backbone, sidechain, polar, hydrophobic, H-bond donor/accep-
tor). A more recent implementation of SIFt, was described by
Mordalski et al. extending the interaction fingerprint implementa-
tion by two bits to encode aromatic and charged interactions and

Table 1
Some similarity coefficients and distances used with fingerprints

Measure Expression Range

Tanimoto/Jaccard coefficient c
aþb�c 0–1

Euclidean distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a þ b � 2c

p
0–N

City-block/Manhattan/hamming distance a + b � 2c 0–N

Dice coefficient 2c
aþb

0–1

Cosine similarity cffiffiffiffi
ab

p 0–1

Russell–RAO coefficient c
m 0–1

Forbes coefficient cm
ab 0–1

Soergel distance aþb�2c
aþb�c

0–1

Where, given the fingerprints of two compounds, A and B, m equals the total amount of bits present in the fingerprints,

a equals the amount of bit set to 1 in A, b equals the amount of bits set to 1 in B, and c equals the amount of bits set to 1 in

both A and B [11].
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implementing technical improvements [19]. SIFt allowed pointing
out crucial amino acids involved in interactions with antagonists
docked into serotonin 5-HT7 receptor homology models. LIFt,
a similar method to SIFt, was described by Cao and Wang with
10 bits per amino acid, who used it to predict kinase targets for
ligands [20].

A commonly used variant of a binary interaction fingerprint has
been developed by Marcou and Rognan: a 7-bit fingerprint encod-
ing (1) hydrophobic, (2) aromatic face-to-face, (3) aromatic edge-
to-face, (4) H-bond donor, (5) H-bond acceptor, (6) cationic, and
(7) anionic interaction types [13]. That variant of molecular finger-
print (Fig. 2) has been used for ligands functional activity predic-
tion by Kooistra et al. [21, 22] and the results were compared to
experimental data proving the high accuracy of the obtained
predictions [10].

2.2 Usage

of Molecular

Fingerprints from

Crystal Structures

and Docking Poses

Kooistra et al. [21, 22] employed unique protein-ligand interaction
fingerprints (IFPs) derived from all the ligand-bound β-adrenergic
crystal structure monomers to post-process the docking poses of
known β1AR/β2AR ligands, and physicochemically similar decoys
in each of the β1AR/β2AR structures. The analysis of 1920 unique
IFP-structure combinations using IFP scoring was employed to
virtual screening (VS) for selecting ligands with a specific agonist/
non-agonist functional effect [21]. IFP rescoring was shown to be
essential to obtain high enrichment factors and at the same time a
high selectivity. The analysis showed that the IFPs of non-agonists
were more similar to each other than to agonist IFPs (75% versus
19% similar pairs, respectively). Analogously, the pairwise similarity
between agonist IFPs was higher (62%) than similarity to
non-agonists (21%) (Fig. 3). By using the correctly chosen agonist
reference IFP (a complex with epinephrine), it was possible to
selectively retrieve agonists compared to non-agonists with a high
efficiency (EF1% ¼ 43.6 and 9.4, respectively).

Protein-ligand interaction fingerprints have been successfully
used for post-docking processing of ligand poses, and that method
proved to be superior to the conventional energy-based docking
scores or RMSD calculations. To improve the predictive value of
docking even further, interaction fingerprints are often used

Fig. 2 Exemplary interaction fingerprints of β2AR hits from each of the scoring approaches compared to the
X-ray structure. Adapted from [22]
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together with conventional scoring methods. To test the usefulness
of IFPs for docking results scoring, the three data sets of ligand
poses were generated using popular docking tools: FlexX, Glide,
Gold, and Surflex. In all the cases, scoring by the similarity of
interaction fingerprints to a given reference was statistically superior
to conventional scoring functions. RMSD values are based on the
ligand coordinates only and thus lose information about the kind of
intermolecular interactions which have been reproduced or not. In
many cases, a low RMSD correlates with a high Tc-IFP and vice
versa; however, there are a significant number of cases for which the
RMSD value is misleading. The Tc-IFP metric is clearly better than
the RMSD criterion for handling false positives and false negatives
in virtual screening [13].

2.3 Usage

of Molecular

Fingerprints from MD

Simulations

To address a question on specific requirements for agonist and
antagonist with nearly identical structures, the all-atom molecular
dynamics (MD) simulations were employed to investigate how two
diastereomers (epimers) of dihydrofuroaporphine bind to the sero-
tonin 5-HT1A receptor and exert opposite effects [23]. The POPC
lipids and TIP3P water molecules were used, and 3 � 1.2 μs MD
simulations were performed per each ligand, 7.2 μs in total. It was
discovered that the agonist could mobilize located nearby amino

Fig. 3 Overview of interaction fingerprints of all cocrystallized ligands in β1AR and β2AR. The colors indicate
the presence of a particular interaction according to the 7-bit fingerprints (colors described at the bottom of
the figure). The last two columns describe the amount of times (as a percentage of the total comparisons) an
IFP comparisons having score �0.6 when compared with non-agonist IFPs (ANT/iAGO, antagonist/inverse
agonist, names in blue, a blue background indicates a high percentage), and the f/pAGO IFPs (full/partial
agonists, names in red, a red background indicates a high percentage) [21]
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acid residues to act as molecular switches for the formation of a
continuous water channel. In contrast, the antagonist epimer
remained firmly stabilized in the binding pocket (Fig. 4). The
molecular fingerprints of ligands in the binding site revealed a
difference between antagonist- and agonist-bound receptor and
also the changes in the agonist-bound receptor due to activation
events (Fig. 5). Themethod of molecular fingerprints based onMD
simulations was performed using the IChem toolkit [13]. IChem
converts protein-ligand interactions into a fingerprint (TIFP) of
210 integers/bits registering the corresponding molecular interac-
tion pattern. Because of averaging over 100 snapshots from the
final 50 ns MD simulation the obtained interaction fingerprints are
not 0/1 values but the real numbers from the [0–1] range. Such a

O

intracellular

extracellular

O

N
H+

N
H+

agonist antagonist

agonistic isomer antagonistic isomer

F6.52

W6.48

F6.52

W6.48

a b

Fig. 4 Stereoselective pair of 5-HT1A receptor ligands. (a) agonist and antagonist epimers. (b) Action of
molecular switches and water influx in agonist-bound receptor [23]

Fig. 5 The binding sites and the interaction fingerprints of 5-HT1A receptor ligands. (ABEF) antagonist-bound
receptor. (CDGH) Agonist-bound receptor. Start (ACEG) and end (BDFH) of simulations. Blue, green, and red
areas on spider plots represent the three different MD simulations presented in this work [23]
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representation reflects the dynamic nature of a ligand in the recep-
tor binding site. The 5-HT1A receptor structure was generated
using homology modeling methods. The Biomodeling group
developed the web service GPCRM [24] for construction of
homology models of GPCRs based on multiple templates
(http://gpcrm.biomodellab.eu/). This server proved to be one of
the best among other services of this type so it was selected to be
included into GPCRDB platform [25].

It is of great interest to investigate how the differences in the
ligand scaffold and the receptor state affect the protein-ligand
interactions. To illustrate how each ligand interacts with β2AR,
the interaction fingerprints based on the final 100 frames of
100 ns MD simulations of 12 crystal structures of β2AR with
agonists, antagonists, and inverse agonists were generated
[26]. The analysis of interactions in the binding site and also
between transmembrane helices provided clear clues for differenti-
ation of agonist-bound complexes from other types (Fig. 6).

Fig. 6 (Upper panels) The 16 important residues that form polar and/or hydrophobic interactions with
exemplary ligands in binding site of β2AR. (Lower panels) The relationship of protein-ligand interactions and
the state of β2AR. Thick lines–dominant interactions; thin lines–rare interactions; orange–hydrogen bonds;
black–non-polar interactions. Yellow spheres: water molecules; (a) agonist; (b) antagonist; (c) inverse
agonist [26]
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Protein-ligand interaction fingerprints generated from MD trajec-
tories helped identify the important residues and the type of inter-
actions required for designing ligands with desired properties. In
this study, using the interaction fingerprints, a dynamic behavior of
16 residues important in the binding pockets, among which
D1133.32 and N3127.39 are essential for ligand binding, was ana-
lyzed (the superscript numbers are based on the Ballesteros-Wein-
stein numbering Scheme [27] developed for GPCRs). These
16 residues were selected based on frequency of interactions with
any of the ligands tested (interaction present at least 30 times
among 100 frames). It was demonstrated that the molecular fin-
gerprints can be a powerful tool for capturing the specific profile of
protein-ligand interactions, and can be employed together with
MD simulations in predicting the nature of a ligand. The polar
interactions of ligands with residues in TM5, particularly S2035.42

and S2075.46, were assigned to the agonistic properties, whereas
hydrophobic interactions with residues in TM5 and TM6 helped
stabilize the receptor. Agonists of β2AR which predominantly form
H-bonds with TM5 disrupt the interactions between helices in the
extracellular region and then in the rest of TM area leading to
increasing a flexibility of the receptor. As a result, TM5 as well as
TM6 form frequent nonpolar interactions in the intracellular
region and move away from TM7, causing the expansion of intra-
cellular pocket and a water influx (Fig. 6a). This also explains why
the residues of TM5 and TM6 in this region share the same inter-
action domain. In contrast, antagonists form prominently nonpolar
interactions with both TM5 and TM6 (Fig. 6b), whereas inverse
agonists mainly form nonpolar interactions with TM6 only
(Fig. 6c).

In the above analysis the interaction fingerprints between the
receptor and the ligand were also done with IChem [13]. The
default parameters of IChem were kept and two types of interac-
tions, polar interaction and hydrophobic contacts, were focused
on. The former comprises ionic bonds and H-bonds, while the
latter incorporates hydrophobic contacts, the face-to-face and
edge-to-face between aromatic rings. Using fingerprints it was
possible to characterize interactions specific for differentiation of
not only agonists from non-agonists but also inverse agonists from
antagonists (Fig. 7). In general, the fingerprints have been success-
fully used in three scenarios: (1) interaction-biased alignment of
protein-ligand complexes, (2) postprocessing of docking poses
according to known interaction patterns for a particular target,
and (3) virtual screening for bioisosteric scaffolds sharing similar
interaction patterns. The frame-invariant interaction pattern TIFP
fingerprints have been calculated for ca. 10,000 druggable protein-
ligand complexes enabling a wide comparison of relationships
between interaction pattern similarity and ligand binding site
similarity [14].
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3 Ligand Docking to Active and Inactive Receptor Structures

3.1 Structure-Based

Virtual Screening

The recent abundance of crystal structures of GPCRs has stimu-
lated the structure-based drug discovery studies against these tar-
gets. The increased amount of high-resolution structural
information on GPCRs has opened up new opportunities for the
identification of novel GPCR ligands by structure-based virtual
screening (SBVS). SBVS can be employed for the efficient identifi-
cation of chemically novel ligands with high hit rates and also for
the structure-based prediction of GPCR ligand function. Increased
computational power enabled docking screenings of very large
libraries of small compounds to identify ligands that complement
GPCR binding sites, which may lead to identifying drug-like mole-
cules with tailored pharmacological properties [28]. The recent

Fig. 7 The interaction fingerprints of the twelve ligands with β2AR. (a) The four agonists. (b) The four
antagonists. (c) The four inverse agonists. (Left panels) The normalized frequency of H-bonds/ionic bonds
in the final 100 frames. (Right panels) The normalized frequency of hydrophobic interactions in the final
100 frames [26]
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review on screening of adenosine receptor ligands [29] also
describes SBVS, among other methods, for such purposes. The
determined structures of GPCRs in activated states revealed sur-
prisingly subtle changes in the orthosteric binding sites supporting
the idea that agonist binding and receptor activation require only
small conformational changes in this region. Taking into account
the small differences between the active and inactive binding site
conformations, the obtained high functional fidelity of docking hits
to the state of the receptor was surprising. The first such results
were obtained for four different GPCR families: adrenergic β2AR,
adenosine A2AR, dopamine D3R, and chemokine CXCR4 recep-
tors. It was possible to obtain high hit-rates in each case despite
using several different ligand-docking programs. It could suggest
that SBVS is a fruitful strategy in drug development for other
GPCRs. It was proposed that such success originated from (1) the
druggability of the orthosteric sites and (2) a bias in chemical
libraries toward GPCR ligands. The adrenergic, adenosine, and
dopamine receptors have evolved to recognize small endogenous
ligands and their relatively well-covered orthosteric sites, which
involve only a few polar interactions for ligand binding, which
were proved to be particularly well suited for the molecular docking
algorithms. In contrast, the more open binding site of chemokine
receptor may explain the lower hit-rate and compound affinities
obtained in this particular case. The high hit-rates were also sug-
gested to stem from a biogenic bias in compound libraries together
with the interest in GPCRs as drug targets, which may have led to
an accumulation of “GPCR-like” ligand chemotypes in commer-
cially available chemical space. Kolb et al. [30] estimated that
GPCR ligands were from 3- to 12-fold more common in chemical
libraries compared to other targets such as kinases, proteases, and
ligand-gated ion channels.

3.2 Limitations

of SBVS

and a Combination

of SBVS

with Molecular

Fingerprints

The development of structure-based functions specific to virtual
screening methods is hampered by the fact that for most crystal-
lized GPCRs only one or a few agonist-bound structures are avail-
able which leads to limited diversity of binding modes and the
resulting functional effects. The functional properties of a ligand
bound to the receptor in most cases reflect a bias in the receptor
structure or homology model used in VS [31]. Selective SBVS for
ligands with a specific function (e.g., inverse agonist/antagonist,
partial/full agonist) probably requires a customized modeling pro-
tocol. Recently, Kooistra et al. [22] applied a novel docking scoring
approach for the identification of novel fragment-like GPCR
ligands and the prediction of their functional effect using GPCR
crystal structures. This docking scoring approach combined a con-
ventional docking scoring function (ChemPLP) using PLANTS
[32] docking with the molecular interaction fingerprint (IFP)
rescoring approach [13, 33]. It was assumed that the combination
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of two basically different scoring functions can result in increased
performance by combining the strengths of each scoring function
[34]. ChemPLP is an empirical energy-based scoring function
whereas IFP compares the interaction pattern between a docking
pose of a ligand in the protein to the reference binding mode, most
often the crystal pose of a known ligand. The aim of this idea was to
use the strength of PLANTS to identify compounds with energeti-
cally favorable docking poses with the strength of IFP to select the
most probable binding modes by selecting those with an interac-
tion profile resembling the reference IFP in the crystal structures.
The consensus scoring method was evaluated by: (1) the discovery
of chemically novel, fragment-like, high affinity histamine H1

receptor (H1R) antagonists/inverse agonists, and (2) the selective
structure-based identification of β2-adrenoceptor (β2AR) agonists,
including the experimental validation and comparison of the com-
bined and individual scoring approaches. In the previous studies,
the researchers using SBVS method reported successful prospective
study for H1R [33] and retrospective for β2AR [21]. In the recent
work the VS performances of the different scoring approaches and
combinations for H1R and β2AR were compared in a prospective
manner [22]. The SBVS protocol for the first target, H1R structure
(determined in a complex with doxepin–an inverse agonist [35]),
has been developed and experimentally validated [33]. For both the
PLANTS and IFP approaches the top 500 scoring compounds were
selected and subsequently the compounds matching the combined
approach were removed. The remaining compounds were pro-
cessed in the same fashion as the compounds from the combined
approach. The hits similar to known H1R ligands (ECFP-4 Tani-
moto score [36] >0.4) were excluded. The compounds were visu-
ally clustered based on the scaffold similarity, and compounds with
polar groups that were placed in the hydrophobic parts of the H1R
binding site were discarded. In SBVS of β2AR the same approach
and fragment library was used as for H1R. Based on the cutoffs used
for the H1R study a set of only 318 compounds was selected for the
combined scoring approach. Due to limited chemical diversity of
known β2AR ligands the selected compounds were filtered with -
ECFP-4 (circular Extended Connectivity FingerPrint) Tanimoto
score of �0.5 compared to any known β2AR ligand. The combined
IFP and PLANTS scoring approach proved to be the most success-
ful approach, followed by rankings of IFP-score and PLANTS-
score. For the H1R VS hit rates of 73%, 61%, and 45% were
obtained for the combined, IFP, and PLANTS approach, respec-
tively. For the β2AR VS study the hit rates were 53%, 44%, and 39%
for the combined, IFP, and PLANTS approach, respectively
(Fig. 8).
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3.3 Enhanced

Docking in SBVS

A prospective SBVS using a large library of 3.4 million molecules
aiming at β2AR, as well as dopamine D2 receptor (D2R) agonists,
was done by Weiss et al. [37]. In this study, a library of lead-like and
fragment-like molecules from the ZINC database was screened
against the active state (PDB id: 3P0G) and inactive state, carazo-
lol-bound crystal structure (PDB id:2RH1). Using a set of 30 ago-
nists and 30 inverse-agonists of β2AR, they tested the ability of
receptor’s active structure to recognize known β2AR ligands against
a background of property matched decoys and to preferentially
score agonists over inverse-agonists. To ensure that the reasonable
poses were obtained in docking, the dipole moment of S2035.42,
S2045.43, or S2075.46 was increased to enhance docking scores for
poses in polar contact with these residues. Serine residues were
proposed to be important for interactions with agonists and for
the activation [38], and the largest change between the active and
inactive β2AR structures was associated with those residues. Com-
pounds ranking within the top 0.2% of the active-state structure
and ranking at least 5000 positions higher for the active-state

Fig. 8 Workflow of the virtual-screening approaches performed on the H1R and the β2AR. Only compounds
within the top 500 (H1R) or top 750 (β2AR) compounds were selected for further processing. Figure adapted
from [22]
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compared to the carazolol-bound structure were selected for fur-
ther processing. Compounds that had at least a positive charge, an
ionic interaction with D1133.32, and at least one H-bond with any
of the three aforementioned serines were visually inspected. In
total, five fragment-like and 17 lead-like molecules were experi-
mentally validated resulting in the identification of one fragment-
like and five lead-like β2AR agonists.

3.4 Enrichment

Factor as a Measure

of SBVS-Based

Agonist/Non-agonist

Differentiation

This measure emphasizes early enrichment of ligands, at the first 1%
(EF1%) of the database [39, 40]. For the enrichment metric the
adjusted LogAUC (area under the curve) was used for enrichment
curves, which measures the ranking of true positives (known
ligands) over false positives (decoy molecules) compared to what
would be expected at random—an adjusted LogAUC of 0 repre-
sents the random ranking. The active receptor structure enriched
the 60 known β2AR ligands over decoys, with an enrichment of
23.6% adjusted LogAUC. The active receptor structure also distin-
guished agonists from inverse-agonists, with adjusted LogAUC of
35.4% for agonists and 10.6% for inverse-agonists (Fig. 9). In the

Fig. 9 Semilogarithmic enrichment curves for retrospective enrichment of known GPCR ligands from a set of
computational decoys employing β2AR active structure (top), inactive β2AR with the same set of known
ligands (middle), and the active dopamine D2R model with 100 known ligands (50 agonists and 50 antago-
nists). Figure adapted from [37]
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top 1% of the database, 20% of the agonists were found (6/30
docked agonists), while at 10% of the database, 75% (22/30 ago-
nists) were found. Using the same set of agonists and inverse-
agonists with the same decoys, the inactive crystal structure found
no agonists in the top 1% of the database and 13% (4/30 agonists)
in the top 10% of the database. SBVS of active dopamine D2R
homology model based on the active β2AR structure as a template
predicted only two weak agonists, as well as an inverse-agonist.
These results indicated that despite 42% sequence identity, struc-
tural information from the active β2AR was not transferrable.

3.5 Employing

Induced Fit Docking

for Changing GPCR

Preferences for Ligand

Binding

An important issue to resolve is to what extent the structures solved
with a ligand of a certain class of functionality can be used in
docking studies focused on another class of ligands. Constanzi
and Vilar [41] evaluated crystal structures of β2AR for their ability
to discriminate between agonist and antagonist compounds. The
results clearly showed that inactive crystal structures favored the
retrieval of antagonists, while the active-state crystal structure
prioritized agonists over antagonists. With the aim of evaluating
the effect of a ligand-induced optimization on the receptor’s ability
to recognize agonist or antagonist compounds, they built three
β2AR models by refining the binding site of an inverse agonist-
bound structure (solved in complex with carazolol) with three full
agonists, i.e., epinephrine, isoproterenol, and fenoterol. To opti-
mize the recognition of agonist compounds in VS the induced fit
docking (IFD) protocol has been applied to GPCR crystal struc-
tures. Interestingly, all three agonist-induced β2ARmodels reverted
their initial preferences, being as effective in prioritizing agonists
over antagonists as the active-state crystal structure of the β2AR.
Moreover, Constanzi and Vilar demonstrated that the induced-fit
docking of agonists is a viable way of modifying an inactive crystal
structure and bias it toward the in silico recognition of agonists
rather than blockers.

3.6 The Effect

of Water Molecules

on SBVS Enrichment

Due to the pharmacological importance [42] and availability of
crystal structures solved in both the active and inactive states, the
adenosine A2A receptor has been a widely studied target using
structure-based computational approaches. Once a A2A receptor
crystal structure with a resolution of 1.8 Å was released in 2012
(PDB id:4EIY) [43], it revealed several interesting and novel fea-
tures, including a large number of water molecules located deep in
the binding site. These water molecules have been shown to play a
pivotal role in binding of ligands to the A2A receptor [44]. In
particular, the “unhappy” waters trapped between the ligand and
the protein lead to the short residence time of a ligand and can be
used for ligand binding kinetics prediction and also to generate
working hypotheses how to improve binding in the lead optimiza-
tion program. The effect of presence of water molecules on virtual
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screening enrichment was tested in docking studies by Lenselink
et al. [45]. They showed that including crystal waters greatly
improves VS enrichment but the optimization of water hydrogen
positions is needed in order to achieve the best results. The waters
derived from MD simulations, without any knowledge of crystallo-
graphic waters, can improve enrichments to a similar degree as the
crystallographic waters. They also employed decision trees algo-
rithm to select an ensemble of structures with different water
molecule positions and orientations that outperformed any single
structure with water molecules. In addition to the retrospective
study, the validated protocol was also employed to a prospective
application for virtual screening enrichments against the adenosine
A2A receptor. For the above studies the structural modeling was
performed using tools in the Schrödinger small-molecule discovery
suite. Over 2.5 million drug-like and lead-like compounds from the
commercially available eMolecules database were docked in Glide
[46]. To retrieve novel scaffolds an explicit similarity filter was
included. Tanimoto similarities between all computational hits
and all tested compounds were calculated based on Molprint2D
fingerprints in Canvas (Schrödinger suite). In this study, Lenselink
et al. [45] selected compounds that bore no resemblance to any
compound previously tested against the A2A receptor. Hence, they
explored an unchartered chemical space for this GPCR, despite a
very low hit rate (1.4%). Predicting of function of a ligand could
also benefit from inclusion of water molecules into the binding site.

3.7 Collective

Measure for Agonist/

Non-agonist

Differentiation

To investigate whether a collective measure of ligand fitting in the
receptor binding site using Autodock could be useful for ligand-
functional selectivity we employed the β1- and β2-adrenergic recep-
tors. The molecular docking with Autodock VINA was performed
in two modes, with a rigid receptor and with a partially flexible
receptor with several residues inside the ligand binding site set as
movable. It turned out that for the ligand function recognition the
flexible receptor docking performed much better. All the obtained
results were assessed with the Welch’s t-test with the statistical
significance α equal to 0.05, however, only the β2AR docking
results passed the t-test. In case of β1AR the difference between
the estimated free energy of binding represented by the Autodock
VINA scoring function for agonists and antagonists was not statis-
tically significant. The main reason for this effect is the similarity of
the active and inactive structures of β1AR compared to β2AR, so the
docking to similar β1AR structures gave similar results in terms of
the estimated free energy of binding, regardless the ligand type
(data not shown). In that study two sets of ligands were used.
The first set included 21 ligands from all available crystal structures
of adrenergic receptors. The second set included selected agonists
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and antagonists deposited in the GLIDA database (http://
pharminfo.pharm.kyoto-u.ac.jp/services/glida/) and DrugBank
(https://www.drugbank.ca/)—24 antagonists and 14 agonists of
β1AR, 22 antagonists and 18 agonists of β2AR. For both sets of
ligands Autodock VINA provided the estimated free energy of
ligand binding. In principle, agonists should be better fitted to
the active conformation of the receptor while antagonists should
fit to the inactive receptor conformation. The above statement was
transferred to a mathematical formula which compared free ener-
gies of binding for all the tested ligand/receptor pairs estimated via
scoring function s:

sagonistactive � santagonistactive < sagonistinactive � santagonistinactive ð1Þ
Here, s was selected as the lowest estimated free energy of

binding out of all energies computed for 20 ligand poses obtained
in one docking round for each ligand/receptor pair. Given the
above formula, we computed the percentage of cases for which
Eq. 1 was fulfilled. Here, one case included four docking runs:
docking of agonist and antagonist to an active receptor conforma-
tion, and docking of agonist and antagonist to an inactive receptor
conformation. It was proved that the above formula was indeed
fulfilled in most cases for the β2AR receptor when employing 3P0G
active structure of β2AR (Table 2). Thus, the type of the ligand was
correctly predicted for nearly all β2AR ligands from crystal struc-
tures and for majority of ligands from databases.

4 Usage of Long Time-Scale MD Simulations and Network Correlation Analysis

4.1 Correlation

Analysis of Network

Interactions

Using molecular dynamics (MD) simulations it was possible to
reveal distinct conformational transitions of the adenosine A2A

receptor [47]. It was found that the conserved W2466.48 residue
in transmembrane helix TM6 performs a key rotamer toggle switch

Table 2
The percentage of the β2AR agonist/antagonist pairs for which the Eq. 1 was fulfilled

Inactive β2AR structure

Ligands from crystal structures Ligands from databases

3P0G Active β2AR 3P0G Active β2AR

2RH1 100% 76.3%

3D4S 100% 74.0%

4GBR 100% 75.3%

3NY8 100% 74.5%

3NYA 92.9% 73.7%
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(Fig. 10, left panels). Agonist binding induces the sidechain of
W6.48 to fluctuate between two distinct conformations enabling
the diffusion of water molecules from the bulk into the center of
the receptor. After passing the W6.48 gate, the internal water
molecules induce another conserved residue, Y7.53, to switch to
a distinct rotamer conformation establishing a continuous trans-
membrane water pathway across the receptor. The correlation anal-
ysis of network interactions in antagonist- and agonist-bound
receptor revealed its suitability for ligand function recognition
(Fig. 10, right panels).

Another version of correlation analysis, called the community
residue interaction network or the domain interaction network, was
employed for complexes of β2AR (Fig. 11) [26]. Each node repre-
sents a cluster of residues in close interaction, while the thickness of
the line connecting the nodes is weighed by the correlation values
between the two clusters. It was found that agonist-bound systems
form less domains than the antagonist- or inverse agonist-bound
systems. Noticeably, the position of TM6 in the intracellular region
varies with the state of the receptor, leading to a different interac-
tion network. Based on MD simulation the cross-correlation analy-
sis was done to identify correlated and anticorrelated pairs of
residues. To characterize correlated atomic fluctuations, a second
method, a correlation network analysis, is usually performed as
implemented in the Bio3D package [48, 49]. Community analysis
and node centrality with Bio3D as well as a suboptimal path calcu-
lation with the WISP software [50] were performed on each net-
work to characterize network properties and to identify residues
involved in the dynamic coupling of distant sites.

Fig. 10 Conformational fluctuations of W2466.48 and distribution of water molecules in the complex A2AR/
NECA. (a) 3D structure of A2AR with agonist NECA. (b) W246

6.48 fluctuates between two distinct conformations
but only in complex with agonist. (c) Average water density during MD simulation showing formation of
intrinsic water pathway. Right panels: correlation analysis of network interactions in antagonist- (upper panel)
and agonist-bound (lower panel) A2A receptor. Residues in the helix and in the loop are red and cyan dots,
respectively. Line connections indicate residues’ contacts [47]
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4.2 The Network

of Binary Switches

Another kind of signaling network was proposed by Lee et al.
[51]. Based on 5 μs all-atom MD simulations of A2A adenosine
receptor in its apo, antagonist-bound, and agonist-bound com-
plexes, they examined the corresponding dynamics and correlation
between the 10 key structural motifs that serve as the allosteric
hotspots in the intramolecular signaling network (Fig. 12). For this
purpose they identified 10 molecular interactions that switch
between two distinct states and they called them “binary switches”.
Such switches are able to yield in total 210 microstates and the
communication over the network of binary switches regulates the
activation of A2A adenosine receptor. Their cross-correlation analy-
sis showed that W6.48, located deep inside the binding cleft can
serve as both an agonist sensor and actuator of intramolecular
signaling during the receptor activation. A signal of rotameric
change of W6.48, triggered by a direct hydrophobic interaction
with an agonist was transmitted to six other binary switches (S1, S2,
S3, S5, S8, S9). Statistical analyses on the dynamics of and correla-
tion among the 10 binary switches reveal that the three receptor
states retain distinct dynamic properties. The antagonist- and
agonist-bound form of the receptors explore vastly different con-
formational space, and the apo form lies between them, yet located
closer to the antagonist-bound form.

4.3 Allosteric Effects

of Sodium Ions

in GPCRs

To investigate the activation process of opioid receptors, the MD
studies on μ-opioid receptor (μOR) crystal structure [52] were
performed [53] which revealed distinct consecutive mobility

Fig. 11 Simultaneous view of the community residue interaction network and 3D structure of β2AR. (a)
Agonist-bound β2AR; (b) antagonist-bound β2AR; (c) inverse agonist-bound β2AR [26]
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patterns in the trajectory pathway of the sodium ions entering the
receptor from the extracellular side toward the internal conserved
residue D1142.50. The distinct stages in the pathway of the ions are
correlated with distinct local structural changes within the receptor
as well as the distribution of internal waters. The MD simulations
resolved the experimentally found dual role of sodium ions (1) to
decrease the binding of ligands, and (2) to facilitate G protein
activation (Fig. 13). Sodium ion may be necessary for modulation
of interactions for ligand docking and performing MD simulations
for most of class A GPCRs. It is assumed that sodium ion is present
in its allosteric site in non-agonist-bound receptors and absent in
agonist-bound receptors; therefore, unbinding of sodium ion
could indicate the activation process. However, removal of Na+ by
binding of agonist was not encountered in MD simulations so far.

4.4 Elements of MD

Methodology

The long-time-scale molecular dynamics simulations are usually
performed employing all-atom approach using mostly programs
NAMD [54], GROMACS [55], AMBER [56], ACEMD [57],
and DESMOND [58]. Standard all-atom forcefield CHARMM
[59] is usually employed, which is available in all the above
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programs. For the receptor-membrane system building one can use
a convenient g_membed tool with receptor crystal structure pre-
aligned in the OPM (Orientations of Proteins in Membranes)
database. For GPCR monomers a standard periodic box of
7 nm � 7 nm � 10 nm is usually employed. Number of atoms in
typical MD simulation of single GPCR in the membrane and water
system is about 50,000–70,000. Simulations of empty receptors as
well as complexes with ligands are usually conducted in typical
phospholipid bilayer composed of POPC (1-palmitoyl-2-oleoyl-
phosphatidylcholine). Simulations with antagonists are conducted
to stabilize ligands in the binding site and to show that there is no
action of molecular switches. A simulated annealing method (con-
tinual heating and cooling) is used for the precise determination of
ligand binding modes after the procedure of automatic docking. All
the simulations should be repeated several times (depending on the
system) because activation events are statistical and rather rare so
they do not have to happen in a particular simulation. A whole
process of GPCR activation is completed on a millisecond time
scale; however, using 1–10 μs MD simulations one can see action
of particular switches and movements of helices associated with
initial activation steps of GPCRs.

5 Usage of Metadynamics Simulations and Free-Energy Profiles

5.1 Probing Active,

Inactive, and Meta-

State Conformations

For adenosine A2A receptor it was possible to find that a hydropho-
bic layer of amino acid residues next to the characteristic NPxxY
motif forms a gate that opens to form a continuous water channel

Fig. 13 Sodium ion entrance pathway. (a) Cross-section of μOR showing a pathway of a particular sodium ion
during the initial 200 ns of Apo μOR simulation. Blue dots are consecutive positions of the sodium ion along its
pathway. An arrow indicates a rotamer switch of W2936.48. (b) Distances Na+-D1142.50 (blue) and Na+-
S1543.39 (red) during two separate 500 ns simulations. (c) Superimposed crystal structure of A2AR (light colors)
and final Apo μOR MD structure (bold colors). (d) Positions of second sodium ion (blue crosses) during
simulation of unliganded receptor [53]
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only upon receptor activation. The highly conserved tyrosine
residue Y2887.53 undergoes transitions between three distinct con-
formations (Fig. 14) representing inactive (YI), G protein activated
(YII), and GPCR metastates (YIIIa and YIIIb), respectively
[60]. Additional analyses of the available GPCR crystal structures,
including rhodopsin and β2AR, revealed general principles govern-
ing the functional roles of internal waters in GPCRs. On the basis of
a total of 32 μs all-atom MD simulations for three different recep-
tors of family A of GPCRs, it was found that water from the bulk
can enter into the receptor during activation from two different
directions depending on the receptor type: from the intracellular
side (in case of rhodopsin) and from the extracellular side (A2AR
and β2AR).

Free-energy surfaces (free-energy profiles) for GPCR activation
by agonists can be generated employing well-tempered metady-
namics in GROMACS with Plumed patches [61]. Metadynamics
adds a history-dependent potential V(s,t) to accelerate sampling of
the specific collective variables (CV’s) [62]. V(s,t) is usually con-
structed as the sum of multiple Gaussians centered along the trajec-
tory of the CV’s. Periodically during the simulation, another
Gaussian potential, whose location is dictated by the current values
of the CVs, is added to V(s,t) [63]. For instance, in the simulations
of adenosine A2A receptor the dihedral angles of residue Y2887.53,
χ1 and χ2, were assigned as the CV’s s1 and s2 [60]. It was also
applied to 5-HT3 ion channel to study opening of the hydrophobic
gate upon binding of agonist serotonin [64].
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Fig. 14 Three distinct rotamer states of Y2887.53 at the NPxxY motif of adenosine A2A receptor. (a) Free-energy
surface of the agonist NECA bound to the A2AR in absence of Gα. (b) Free-energy surface of agonist NECA
bound to the A2AR in presence of Gα at the cytoplasmic site [60]
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5.2 Modulation

of the Free-Energy

Landscape

of the Receptor by

the Ligand

Taking advantage of the recently published inactive and active
crystal structures of GPCRs, Provasi et al. [65] developed a compu-
tational strategy that enabled the identification of the specific con-
formations taken by β2AR when interacting with ligands that elicit
different physiological responses. This methodology can be also
used for virtual screening, and possibly lead to the structure-
based rational discovery of novel “biased” ligands that are capable
of selectively activating one cellular signaling pathway over another.
They showed that ligands with different efficacies (either inverse
agonists, neutral antagonists, or agonists) modulate the free-energy
landscape of the receptor by shifting the conformational equilib-
rium toward active or inactive conformations. Using metadynamics
simulations they estimated the free-energy surface of the complexes
as a function of three important descriptors of receptor activation,
namely the distance between R3.50 and E6.30 (the “ionic lock”),
the rotamer of residue W6.48 (the so-called toggle switch), and the
outward displacement of the intracellular segment of TM6. Specif-
ically, the receptor was studied in its unliganded form as well as in
complex with the full agonist epinephrine, the weak partial agonist
dopamine, the very weak partial agonist catechol, the inverse ago-
nist ICI-118-551, the inverse agonist carazolol, and the neutral
antagonist alprenolol. The ligands with varied efficacies are believed
to modulate the free-energy landscape of a GPCR shifting the
conformational equilibrium toward active or inactive conforma-
tions of the receptor, depending on their pharmacological action.

In case of agonist, epinephrine, it was found that full agonist
was capable of stabilizing a state of β2AR presenting structural
features that have been found in the nanobody-stabilized agonist-
bound crystal structure of β2AR. They also obtained a relatively
stable agonist-bound inactive state that was structurally similar to
the inverse agonist-bound crystal structure of β2AR. This is in line
with the absence of outward location of TM6 noted in both the
β2AR crystal structure with a covalently-bound agonist [66], and
the agonist-bound β1AR crystal structures. The obtained relatively
small difference in free energy between the fully active and the
inactive agonist-bound conformations was probably due to the
lack of the G-protein in the simulations because a ligand alone
was not sufficient to stabilize a fully active state of the receptor.

6 Other Methods Based on Receptor Structure

6.1 Usage

of Parameters

of the Ligand Binding

Site (SASA)

To investigate why certain molecules act as activators whereas
others, with similar structures, block GPCR activation, the levallor-
phan and other 69 agonists and antagonists of opioid receptors
κOR and μOR were employed [67]. Using all-atom MD simula-
tions it was found that levallorphan behaved as an agonist for κOR
by inducing unstable binding with D3.32 and subsequent water

Agonist/Antagonist Differentiation 287



penetration owing to the large SASA (solvent accessible surface
area) of the κOR-levallorphan complex. By contrast, levallorphan
was stabilized in the binding site of μOR by residues D3.32 and
Y7.43 (Fig. 15a). It was also found that water molecules
penetrating into the receptor interior mediate the activating versus
blocking effects in a particular ligand-receptor complex. Both the
size and the flexibility of the bound ligand regulated water influx
into the receptor. The SASA values of the binding site were found
to be a parameter that can help predict the function (agonist/
antagonist) of the bound ligand (Fig. 15b). Similar dependences
were found for both κOR and μOR.

6.2 Analysis of a

Volume of G Protein

Binding Site

Another method requiring docking and MD simulations to distin-
guish agonists and antagonists could be the analysis of a volume of
G protein binding site [26]. The analysis of intracellular pockets of
twelve studied ligand-receptor complexes coming from β2AR crys-
tal structures after conducting 100 nsMD simulations revealed that
there is a clear difference in agonist-bound receptor structures
compared to the rest (Fig. 16)–3PDS structure that includes the
whole trimeric G protein was excluded from these calculations.
Since rather long MD simulations are required to obtain the visible
movements of TM helices, this method is of little usefulness; how-
ever, the obtained volume-ligand function correlations indicate
feasibility of using fingerprints or docking score or combined for
the ligand function prediction since the ligand-receptor interac-
tions are allosterically transmitted to the G protein binding site
and change its volume.

6.3 Principal

Component Analysis

of the Ligand-Receptor

Vibrational Modes

This method was used for visualization of helix movements for
agonists, antagonists and inverse agonists bound to β2AR
[26]. Fig. 17 shows the lowest frequency mode calculated for the
ligands using the alpha carbons. The helix movements in the intra-
cellular region are more consistent than in the extracellular region.

Fig. 15 Binding of ligands to opioid receptors. (a) Levallorphan in different receptors. (b) Solvent accessible
surface areas (SASA) values for agonist-bound κOR (left panel) and antagonist-bound κOR (right panel). Error
bars represent standard deviations obtained from statistical evaluation of 200 snapshots extracted from the
final parts of the MD simulations [67]
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In agonist bound systems, TM6 and TM7 move away from each
other and thus a large void space is created. In antagonist and
inverse agonist bound systems, the movement of TM6 is more
diverse and consequently the helix keeps the intracellular pocket
closed. The principal component analysis for the final frames of MD
simulations was calculated in VMD [68].

7 Methods Based on Ligand Properties

7.1 Simple QSAR

Methods

For the particular receptor types it was possible to discriminate
agonists and non-agonists based on ligand properties using even
simple parameters: the molecular weight (MW), calculated loga-
rithm of octanol/water partition coefficient (clogP), molar refrac-
tion, dipole moment, ELUMO (the energy of the lowest unoccupied
molecular orbital, a measure of the electron affinity of a molecule
and its reactivity as an electrophile), EHOMO (the energy of the
highest occupied molecular orbital, related to the ionization

Fig. 16 The volumes of the intracellular pockets in the twelve β2AR studied systems and the cross sections of
selected complexes [26]
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potential of a molecule, and its reactivity as a nucleophile), and the
total number of hydrogen bonds (donors and acceptors) [69].
Such molecular descriptors (among others) were chosen for Quan-
titative Structure-Activity Relationships (QSAR), sometimes com-
bined with machine learning methods; however, such analyses were
done for ligands of single receptors and no VS of ligand databases
were done in search for novel ligands with particular function.

7.2 Classification

of Ligands Using QSAR

and Machine Learning

The problem with the classification methods based on ligands alone
is that the methods are not associated with the receptor, because
they do not include influence of the environment. Some com-
pounds can play different roles depending on the type of receptor
they bind to, and in such cases the ligand-based classification meth-
ods that are not taking into account the environment (the receptor
binding site) will fail. For example, flibanserin is a full agonist of
serotonin 5-HT1A receptor and, with lower affinity, is an

Fig. 17 Principal component analysis of the vibrational modes in the presence of agonists, antagonists, and
inverse agonists of β2AR [26]
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antagonist of 5-HT2A receptor as well as an antagonist or very
weak partial agonist of dopamine D4 receptor. Therefore, lack of
provisions for the ligand environment can, in some cases, lead to
misleading classification of the ligand as an agonist or antagonist. It
should be noted, however, that if the crystal structure of the recep-
tor is not known, the ligand-based differentiation methods may
contribute to the initial classification of the ligand.

More reliable methods employ the impact of the environment
on the ligand. In this case, due to the rapid growth of number of
parameters that describe the system one can use QSAR and
3D-QSAR methods, which from the sea of parameters allow draw-
ing constructive conclusions. These methods are often combined
with neural networks and other machine learning algorithms. To
construct a computational model for the classification of agonists
and antagonists of serotonin 5-HT1A receptor, Zhu et al. [70]
used the support vector machine (SVM), a machine learning
method, to build a prediction model, while the genetic algorithm
(GA) was used to select the most relevant descriptors (among
292 molecular descriptors including topological, graph-theoretical,
quantum-chemical, and electro-topological) and to optimize two
important parameters, C and r of the SVM model. The overall
dataset used in this study comprised 284 ligands of the 5-HT1A
receptor with diverse structures reported in the literature. The
SVM model successfully classified ligands being agonists and
antagonists of 5-HT1A receptor with the predictive accuracy for
training (207 ligands) and test (52 ligands) sets 0.942 and 0.865,
respectively.

7.3 Usage

of Vibrational

Frequency

Calculations

for Ligands

The set of 47 ligands of the histamine receptors H1-H4 was ana-
lyzed [71] by structural similarity and molecular vibrational fre-
quency patterns using by the quantum calculations method, namely
density functional theory (DFT) for geometry optimization, and
vibrational frequency calculations in the GAMESS program. Then,
the radial tree was produced by clustering analysis of molecular
vibrational frequency patterns. The “corralled” intensity of molec-
ular vibrational frequency (CIMVF) allowed creating a hierarchical
clustering of all ligands where eight agonists were located close
together, except impromidine, and all antagonists were clustered
close to each other in the radial tree. The same method was used
later for ligands of adenosine receptors A1R, A2AR, A2BR, and A3R
[72]. The molecular vibrational frequency may play a role in the
classification of agonists/antagonists for GPCR ligands as a possi-
ble molecular descriptor. Employing a larger set of adenosine
receptor ligands they performed molecular vibration calculations
followed by clustering and they employed a novel classification
method based on information gain (IG) function and machine
learning [73]. The IG measures the amount of information (rela-
tive entropy) about the class prediction in bits, if the only
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information available is the presence of a feature and the
corresponding class distribution (Eq. 2).

IG Sx ; xið Þ ¼ H Sxð Þ �
X

v¼values xið Þ

Sxi¼vj j
Sxj j ∙H Sxi¼vð Þ ð2Þ

where H is the entropy function, Sx is the set of training examples,
xi is the vector of the ith variable in the set, and |Sxi ¼ v|/|Sx| is the
fraction of examples of the ith variable having value v. They applied
IG-based feature selection to identify the corrals of molecular
vibrational frequency that were the most informative among the
800 elements for binary classification of adenosine receptor ligands
as agonists or non-agonists. They trained and tested the procedure
by applying leave-one-out cross-validation to each ligand. The
calculation of IG was performed using the Weka machine learning
package [74]. The calculated vibrational spectra in this study did
not simulate actual IR or Raman spectra, but their patterns were
consistent for the molecular properties of each ligand (Fig. 18).
Selecting subsets of highly informative features from different spec-
tra would be beneficial and useful for developing and presenting
new approaches for ligand design and contribute to ligand and
drug discovery.
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Chapter 13

Opportunities and Challenges in the Discovery of Allosteric
Modulators of GPCRs

Damian Bartuzi, Agnieszka A. Kaczor, and Dariusz Matosiuk

Abstract

From the pharmacological point of view, allosteric modulators may present numerous advantages over
orthosteric ligands. Growing availability of novel tools and experimental data provides a tempting oppor-
tunity to apply computational methods to improve known modulators and design novel ones. However,
recent progress in understanding of complexity of allostery increases awareness of problems involved in
design of modulators with desired properties. Deeper insight into phenomena such as probe dependence,
altering signaling bias with minor changes in ligand structure, as well as influence of subtle endogenous
allosteric factors turns out to be fundamental. These effects make the design of a modulator with precise
pharmacological outcome a very challenging task, and need to be taken into consideration throughout the
design process. In this chapter, we focus on nuances of targeting GPCR allosteric sites in computational
drug design efforts, in particular with application of docking, virtual screening, and molecular dynamics.

Key words Allostery, Allosteric modulation, GPCR, Molecular dynamics, Molecular docking, Virtual
screening, Probe dependence, Signal transduction, Structure-based drug design, Protein dynamics

1 Introduction

In recent years, one can observe an enormous advance in under-
standing of protein structure and function. Elucidation of mechan-
isms governing these macromolecules results in novel strategies of
the design of pharmacologically active ligands. There are new
trends, including development of biased compounds, multi-target
drugs, compounds affecting dimerization interfaces, or allosteric
modulators. The latter seem to be a very promising option, with
great practical potential. Although very useful as pharmacological
probes, the most tempting application of allosteric modulators
would be their medicinal use. Allosteric modulators offer several
advantages over more traditional drugs, e.g., spatial and temporal
selectivity or the ceiling effect [1]. However, similarly as in the case
of other medicines, their application encounters a number of pro-
blems, and the more sophisticated the pharmacological agent is, the
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more traps for its safe and efficient use in humans are set. On one
hand, Cinacalcet [2], Maraviroc [3], and Plerixafor [4] serve as an
example of successful application of such strategy into therapy. On
the other hand, an example of LY2033298 underlines the complex-
ity of probe dependence and subtype specificity issues [5], while an
example of Oliceridine (TRV130), a biased ligand of the μ opioid
receptors [6], clearly shows that some sophisticated mechanisms,
like functional selectivity, are strongly dependent on very subtle
influences of number of elusive factors, which manifested itself as
pronounced species-dependent differences in pharmacology of that
agonist [7], and due to similar nature of allostery and biased
signaling, analogical problems can appear in design of allosteric
modulators. Analysis of these cases could suggest that the only
way to prevent such complications would be performing studies
on the target species in vivo, which is obviously impossible. How-
ever, the present in silico techniques, together with growing
amount of experimental data, allow for satisfactory reconstruction
of native conditions to improve quality of computer-aided design
and investigation of allosteric modulators [8–11]. In this chapter,
we are going to highlight some key concepts crucial in planning
in silico studies on allosteric modulation of G protein-coupled
receptors (GPCRs). Although we focus on this particular important
family of receptors, a number of issues apply to other classes of
proteins as well.

2 On Interplay of Allosteric Factors

Allosteric modulation has found itself in the spotlight of the medic-
inal chemistry, which resulted in a large number of reports in the
field. In the present literature, one can often find particular mod-
ulators being described as “positive modulator of an X receptor” or
“negative modulator of an Y receptor”. Although such statements
are intuitively understood, it should be stressed that such nomen-
clature is just an abbreviation, and without appropriate description
it can be misleading [12]. Modulators cannot be simply described
as positive, negative or neutral allosteric factors [1]. This is because
the resultant activity of the entire complex depends on all of its
constituents—a receptor, its orthosteric ligand, an allosteric mod-
ulator and an intracellular coupling partner—and on a subtle inter-
play between all of them. Binding of a modulator can amplify a
receptor’s response to an agonist, which would mean that there is a
positive cooperativity between them. However, the same modula-
tor can affect another agonist in a completely different way, e.g., it
can decrease a regular receptor’s response, or simply not affect the
other agonist’s action at all. In such a situation, the modulator
would exert negative or neutral allosteric cooperativity, respectively.
The effect of the different influence of a modulator on various
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orthosteric ligands is known as probe dependence. It is clearly
visible on the striking example of the LY2033298 compound on
the M2 cholinergic receptor. The modulator does not affect affinity
nor efficacy of the acetylcholine, which is endogenous, native ligand
of the receptor. However, it positively modulates a metabolite of
the acetylcholine—choline, to the considerable extent [5]. This
clearly demonstrates that one has to be more specific when describ-
ing allosteric effects of a ligand. Moreover, some studies indicate
that effects of some allosteric modulators can at least partially result
not only from their influence on the orthosteric ligand, but indi-
rectly, from their interplay with endogenous allosteric modulators.
A compound named BMS986122, which is an allosteric modulator
of μ opioid receptor, can serve as an example—its effect on mor-
phine seems to result from its allosteric interplay with sodium ion
bound at Asp 2.50 (Ballesteros-Weinstein notation [13])
[8, 14]. In such a case, a negative cooperativity between two
allosteric modulators is partially responsible for a modulatory effect
on an orthosteric ligand. Therefore, it can be concluded that prop-
erties of a modulator strongly depend on a context, e.g., features of
a modulated orthosteric ligand or presence of other allosteric
factors.

Underlying mechanisms of cooperativity can be understood
intuitively (Fig. 1). An allosteric factor affects the structure of a
receptor, biasing the conformational space explored by the protein
to a new equilibrium. The structure affected by the modulator has
altered propensity to bind an orthosteric ligand and to undergo
further changes. On the other hand, the same applies to the orthos-
teric agent, in the inverse direction—if the agonist induces altered
conformation of a receptor, this new conformation has altered
affinity to the modulator. The influences are reciprocal—if binding
of one ligand induces a conformation favorable for binding of the
other one, it usually means that binding of the other ligand alone
induces conformation favorable for binding of the first one.

It is well demonstrated by an example provided in a study of by
Azzi et al., who investigated influence of excessive concentrations
of G protein on affinity of GPCR agonists [15]. Also other authors
investigated influence of G proteins or arrestins on interactions of
GPCRs with their ligands [16, 17]. These studies have shown that
the signal between the binding pocket and the receptor—intracel-
lular receiver interface is bidirectional, and that just as agonists
induce increased complexing with G proteins, the excess of the
latter increases binding of agonists. It underlines the allosteric
nature of signal transmission within GPCRs and, as such, it suggests
that action of an allosteric modulator can be understood as addition
of further allosteric factors to a complex intrinsically allosteric
machinery.
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2.1 Allosteric

Spider’s Web

The above-mentioned example brings to mind another reflexion—
there are more allosteric factors in a living cell, than just native
transmitters or G proteins. Membrane receptors float in lipid
bilayers that may vary in fluidness and contain numerous organic
components [18]. A living cell is full of small organic compounds

Fig. 1 The scheme depicting possible mechanisms of probe dependence. It presents interrelationships of
signals transmitted through allosteric pathways. The illustrated mechanism helps to understand the need of
native conditions in studies on allosteric ligands. Central cog represents a hypothetical molecular switch,
upper left cog represent orthosteric binding pocket, upper right cog—allosteric site, lower cog—G-protein
coupling region. (a) In the inactive receptor, all the molecular switches oscillate around their rest positions. (b)
Binding of the red agonist activates the receptor to a certain extent, shifting the equilibrium toward the active
conformation. (c) Additional binding of a brown allosteric modulator allows for shifting the equilibrium even
farther, increasing the maximal activation level. Binding of one of them stabilizes the favorable structure,
facilitating binding of the other, and therefore increasing its affinity. Red and brown compounds present
positive cooperativity. (d) The blue agonist is capable of activating the receptor to similar extent as the red
one. However, its specific structural features induce rearrangements that prevent the brown modulator
binding. (e) The signal is reciprocal. In the presence of the brown modulator, blue agonist has decreased
affinity. Blue and brown compounds present negative cooperativity

300 Damian Bartuzi et al.



that can potentially be modulators. GPCRs can form homo- and
heterodimers and oligomers. All such factors affect the receptor, a
structure of which results from a balance between all influences.
Therefore, regardless of the application of in silico or in vitro
methodology, rational design of allosteric modulators requires con-
sidering a number of variables. Omission of one of the essential
factors in the design of the artificial experimental environment can
result in changes in the receptor behavior, so that the results won’t
reflect the actual in vivo properties of the investigated compound.
This, in turn, can result in both false positives, capable of interact-
ing with receptor in artificial experimental conditions but not in the
native ones, and false negatives—compounds that could present
favorable pharmacological properties in vivo, but were rejected
due to their unsatisfactory performance in the artificial environ-
ment. While orthosteric ligands usually bind in a well-defined
pocket with considerable affinity and their binding can be repro-
duced even in such suboptimal conditions, initial lead compounds
for potential allosteric modulators are likely to present low affinity,
and they often explore the more exposed binding sites, so they are
more sensitive to such subtle changes in conformational ensemble.

There are a number of various endogenous allosteric modula-
tors that can affect the conformation of GPCRs (Fig. 2). Interest-
ingly, in contrast to most of artificial modulators, allosteric factors
affecting GPCR structure can also be intracellular, like G proteins,
arrestins, or phosphate groups attached during phosphorylation, or
lipophilic, affecting the GPCR from the membrane side. It
becomes even more fascinating since the recent reports on GPCR
X-ray structures with drugs bound at the intracellular surface were
published [19, 20], which prove that the intracellular surface can be
druggable.

There are numerous important extracellular endogenous fac-
tors that can potentially affect the GPCR structure and, conse-
quently, result of a study. The most broadly distributed would
probably be the known influence of sodium ions, which are sug-
gested to have their own allosteric pocket in the interior of many
GPCRs, located in the neighborhood of the conserved Asp 2.50
residue [21, 22]. Other ions also can affect GPCR function alloste-
rically. For instance, zinc andmagnesium canmodulate a number of
receptors [23]. Other endogenous allosteric ligands affecting
GPCRs are, for example, glutathione which modulates CaSR
[24], prolinyl-leucyl-glycine tripeptide which positively modulates
agonists action on D2 dopamine receptor [25], and 5HT-moduline
which decreases affinity of serotonin to its receptors [26]. Single
aromatic amino acids are capable of modulating CaSR [27], while
Phe, Leu, and Ile affect baclofen binding at GABAB [28]. Some
amino acid metabolites can also modulate GPCRs, like homocys-
tein modulating D2 receptors [29] or agmatin, which is a factor
influencing α2 adrenergic receptors [30].
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There are known examples of endogenous GPCR modulators
immersed in the cell membrane and modifying action of some of
these receptors. They are, e.g., RAMP and MRAP proteins, which
are single membrane-spanning helices associating with some
GPCRs. For instance, the calcitonin receptor-like receptor (CLR)
can form complexes with RAMP1, which makes it act as a receptor
for the calcitonin gene-related peptide (CGRP), while complexing
with RAMP2 results in affinity to adrenomedulin, and with
RAMP3—to both adrenomedulin and CGRP [31]. RAMP pro-
teins can also form complexes with calcitonin receptors, increasing
their affinity to amylin [32], as well as with CaSR or CRH1R
[23]. MRAP proteins also present specific modulatory activity
toward melanocortin receptors [33].

Similarly to single-helix membrane-spanning proteins, seven-
helix transmembrane-spanning receptors can affect function of
other receptors as well. One has to be aware of possibility of
dimerization and oligomerization, which can affect ligand binding
[34–36] and/or signal processing [37]. As a consequence, a lead
compound presenting favorable properties in vivo may exert its
effect via binding to a functional dimer/oligomer, and its in silico
refinement step should take the dimerization-affected, altered

Fig. 2 Overview of known endogenous allosteric modulators of GPCRs (detailed description in the text)
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receptor structure into consideration. Moreover, sometimes the
allosteric signal can be transmitted between two interacting mono-
mers, so that ligand binding in one of them induces the signaling in
the other [38, 39]. This clearly demonstrates the allosteric nature of
GPCR dimers, and explains the necessity of appropriate in silico
reconstruction of dimeric systems in order to obtain valid results.

Except of proteins, membrane-side modulators can belong to
lipids. Among examples of modulation by lipophilic substances
there would be influence of anandamide on serotonin and musca-
rinic receptors [40], 2-arachidonylglycerol on the adenosine A3
receptor [41] and lipoxin A4 on cannabinoid CB1 receptor
[42]. Moreover, cholesterol content of the membrane is known
to affect a number of GPCR properties. Some data suggest that
there are some cholesterol binding or high-occupancy sites on the
receptor-membrane interface [43, 44]. Such specific sites are
important for two reasons—they are potential allosteric sites that
could be targeted, and binding of a native modulator present in the
membranes and participating in physiological receptor’s function
should be considered during in silico studies.

Except of binding or high occupancy sites of specific lipids,
more general membrane properties can play an important role in
protein behavior [18, 45–47]. The membrane environment can be
characterized by varying thickness and rheological properties
depending on the exact lipid content. It is known that lipid rafts
are present in biological membranes, and it is suggested that they
can be spontaneously formed and destroyed [48, 49]. Lipid rafts
are characterized by more ordered structure, greater density and
thickness, as well as their resistance to some detergents. There were
reports on receptors migrating to lipid rafts upon activation [50],
which could suggest that their active-state conformations exhibit a
more favorable fit to such an environment, which in turn could be
described as positive cooperativity. Since, as mentioned, allosteric
interactions are reciprocal, one can expect that putting such a
receptor into a lipid raft will result in greater affinity to agonists.
Existence of such phenomena should be taken into consideration in
studies on allosteric modulators, just as another allosteric factor
affecting receptor structure.

Taken together, when designing a computational study on
allosteric modulators of GPCRs, except of the orthosteric ligand
and the investigated allosteric modulator one should consider ion
content of the solvent, presence of the allosteric sodium, lipid
content of the membrane, presence of appropriate intracellular
coupling protein, as well as all other known endogenous allosteric
modulators of the investigated system. Oversimplifications at this
step can result in inappropriate receptor structure and, e.g., skip-
ping some druggable allosteric sites that could be revealed in phys-
iological conditions, which can further result in false negative
results in e.g., VS approach.
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3 In Search for a Place to Bind

GPCRs are generally considered a good target for virtual screening
(VS) approaches. Well-defined orthosteric binding pocket of
rhodopsin-like receptors facilitates design of their classical ligands.
Indeed, there are a number of successful VS studies that resulted in
a number of active compounds. There are even some reports on
successful VS for allosteric modulators of GPCRs [51]. This could
result in impression that in silico design would be a relatively
simple, well-defined process with a significant chance for success.
Yet, this would be a dramatic oversimplification. There are a num-
ber of traps set on the path of computer-aided allosteric modulator
design, with some of them being universal and applying to allosteric
modulators in general, while some others being specific for GPCRs.

While members of glutamate, adhesion, frizzled, and secretin
receptor families are characterized by a relatively large extracellular
domain, the largest family of GPCRs, rhodopsin-like receptors have
significantly shorter N-termini and loops, which makes their extra-
cellular solvent accessible surface smaller. This, in turn, should
intuitively result in easier identification of putative ligand binding
sites. However, some reports indicate that ligands can enter GPCRs
from their intracellular side [19, 20] or even from the membrane
side [52–55]. While entrance of orthosteric ligands from the lipid
bilayer would apply only to receptors whose ligands are lipophilic,
things change dramatically when we consider possibility of alloste-
ric modulation. Keeping in mind the possibility of membrane-side
ligand entrance, and considering the fact that there is known influ-
ence of membrane cholesterol on the function of GPCRs with a
number of suggested preferred occupancy sites, possibility of allo-
steric modulation by compounds approaching from the lipid bilayer
should also be taken into consideration.

3.1 Hidden Sites It should be stressed that all the endogenous allosteric factors
described in the previous section can affect a GPCR behavior.
Therefore, their action contributes to mechanisms implied in the
creation of another class of binding sites—the hidden ones. The
receptor structure can be significantly altered under allosteric influ-
ence, so that potential allosteric binding pockets can be revealed. It
is known that proteins are not static entities, but they could be
more appropriately represented by ensembles of structures balanc-
ing around an equilibrium. Therefore, some potential binding sites
can be buried in static snapshots caught in X-ray crystals, but
revealed, e.g., during molecular dynamics simulations
[56–60]. Presence of appropriate endogenous modulators would
affect resultant conformation derived from such simulation, and
could greatly contribute to revealing novel druggable surfaces.
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3.2 Allosteric

Mechanisms within

GPCR Dimers

and Oligomers

The picture of allosteric modulation of GPCRs is even more com-
plex thanks to the possibility of allosteric modulation within dimers
and oligomers and the allosteric effect of membrane components.
It can be thus concluded that allosteric mechanisms enable an
integrative activity to emerge either intramolecularly in G protein-
coupled receptor monomers or intermolecularly via receptor–re-
ceptor interactions in GPCR homodimers, heterodimers, and
receptor mosaics [61].

Allostery can be generally termed a mode of long distance
communication between distal sites in proteins [61]. According
to the classical point of view one binding site influences the activity
of another site via a conformational change. TheMonod–Wyman–-
Changeux model describes allosteric proteins as symmetric oligo-
mers with identical protomers existing in “at least” two
conformational states (tense, T; relaxed, R) with different affinities
for ligands [61]. According to this model the protein interconverts
between two conformations, R and T, in a concerted manner. In
the Koshland–Nemethy–Filmer sequential model subunits change
conformation, one at a time. The new concept allostery assumes
that proteins may have an ensemble of conformations and dynamic
states. Allostery is thus a thermodynamic phenomenon governed
by enthalpy and/or entropy. In the receptor heteromers the allo-
steric communication between the two receptors occurs via the
receptor interface, which has a key role in mediating the receptor–-
receptor interaction. This takes place thanks to modulation of the
orthosteric and allosteric binding sites of the neighboring proto-
mer, its G protein activation and selectivity, its signaling cascades,
and through occurrence of new allosteric pockets which may affect,
e.g., G protein coupling and selectivity [61].

The experimental proofs for allosterism or cooperativity within
homomeric proteins are mainly based on radioligand binding stud-
ies [62]. They can be also derived from receptor heteromers, in that
one of the interacting partners has been changed in such a way that
it can be distinguished from its dimeric partner. Negative coopera-
tivity has been shown by radioligand binding for numerous GPCR
homomers. Changes in ligand binding affinity or dissociation kinet-
ics have been reported in cells and tissues co-expressing pairs of
GPCRs that can form heteromers and supply further evidence of
allosteric communication across GPCRs [62]. The studies on
CXCR2-δ-opioid receptor heteromers demonstrate another phar-
macological effect typical for allosterism at heteromers: increased
signaling of an orthosteric ligand as a result of the presence of
another receptor with or without a bound ligand [62]. However,
more common pharmacological outcome of heteromerization is
the cross-inhibition of signaling in an effect of allosteric
communication.

Discovery of compounds that allosterically modulate GPCR
dimers is problematic as nowadays design of molecules binding to
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GPCR dimers is almost limited to bivalent ligands and to the lesser
extent, dimer-specific monovalent ligands. However, the develop-
ment of GPCR allosteric modulators has supplied an experimental
and conceptual framework for better understanding of allosteric
effects within GPCR complexes. It can be expected that during
next years ligand- and structure-based design methods will be
utilized to design allosteric modulators of GPCR dimers.

The above considerations on possible location of allosteric sites
demonstrate that no GPCR surface should be rejected a priori—
modulators can possibly bind to the extracellular, intracellular, and
membrane-side surfaces, including di/oligomerization interfaces.
Moreover, lack of a visible pocket in a region hypothetically implied
in allosteric signal transmission does not exclude a possibility of
existence of a hidden pocket, which could be revealed during
dynamic protein motion. All these possibilities make the investiga-
tion of allosteric modulators much more complex. However, they
also provide an opportunity of very precise targeting of particular
GPCR functions.

4 Considerations on Applications of Computational Tools

Depending on the desired effect, different computational methods
can be applied to investigate allostery in GPCRs. Dynamic nature of
proteins enforces consideration of their structure as an ensemble of
states. On the other hand, it increases complexity and computa-
tional cost of the in silico investigation. Therefore, combination of
methods should be adjusted depending on the available input data
and the aim of the particular study. Molecular dynamics (MD) is
one of the tools useful for computer-aided drug design. One of its
most important features is providing insights into dynamic protein
behavior. As such, it can be used for discovery of novel modulators
in many different ways. Harnessing MD into a workflow may
significantly improve quality of results. For some applications,
MD can serve as the main component of the protocol. However,
unbiased, all-atom MD is a resource-demanding method, and in
some cases it is better suited as a supplementary tool. For instance,
it can deliver GPCR structures for further processing.

Success of docking and structure-based virtual screening
approaches is strongly dependent on the target structure. Given
all the factors affecting the GPCR conformation, structure refine-
ment together with appropriate modulators can be beneficial.
Molecular dynamics simulation of GPCR structure in adequate
activation state, in complex with its specific endogenous modula-
tors, e.g., sodium ions, immersed in a native-like membrane can
adjust the structure of potential allosteric sites or reveal new ones,
greatly affecting results of VS approach. Except for structure
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refinement, MD and its modifications can also be used as a source
of GPCR conformational ensembles, subsequently targeted by
docking [63].

When computational resources are available and the study
focuses on a small number of ligands, MD and its modifications
can be successfully used for the reconstruction of modulator bind-
ing or refinement of initial docking poses [8, 64, 65]. These appli-
cations, however, are more processor time-consuming and could
not be efficiently used for screening with large library of com-
pounds. Therefore, they are more useful in investigation of
known modulators, e.g., in finding their binding sites, which may
facilitate further refinement of the lead structure. In turn, in a hunt
for novel allosteric lead structures, more processor-saving, high-
throughput methods would be more appropriate. Molecular dock-
ing is one of such methods. Its philosophy allows for various
degrees of simplifications, allowing for efficient screening of large
compound libraries. In the following sections, we will focus on the
application of molecular docking and molecular dynamics in the
design and discovery of allosteric modulators.

4.1 Design of a

Molecular Dynamics

Study

As every study, an investigation of allosteric modulation of a GPCR
should be preceded by collecting available literature data.
Gathering all the possible information on the native receptor’s
environment, including possible complexing/binding partners
and rheological properties of the membrane is especially important
in studies aiming at finding novel, pharmacologically useful mod-
ulators—number of in vitro and in silico studies indicate that
membrane environment and presence of, e.g., allosteric sodium
ions or coupled G protein play an important role in GPCR signal-
ing. Even availability of a solved X-ray structure of the receptor of
interest does not allow for skipping this stage—crystals can be
affected by the crystal packing forces, the protein structure may
contain point mutations facilitating crystallization, while some cru-
cial components affecting the receptor structure might be absent.
For instance, while there are a few known GPCR structures solved
together with arrestin, G-protein or a G-protein-mimicking nano-
body, in most other cases these elements are not cocrystallized.
Therefore, refinement of the homology models or X-ray structures
according to the present state of knowledge, with consideration of
all the components appropriate for the investigated activation state
and signaling pathway, would be very beneficial.

It is worth mentioning that accurate in silico reproduction of
the membrane environment depends not only on introducing
appropriate lipid concentrations, but also on the choice of a well-
performing force field. An excellent recent review by Lyubartsev
and Rabinovich [66] summarizes most important differences
between the most popular currently available lipid force fields.
Notably, CHARMM is supported with convenient CHARMM-
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GUI web-based interface [67]. It also provides parameters for a
large number of various lipids. On the other hand, although Slipids
supports less lipids, it represents them with remarkable quality,
which is reflected in accurate reproduction of such parameters as,
e.g., area per lipid [66, 68, 69]. Moreover, Slipids is compatible
with a popular Amber force field, as well as with General Amber
Force Field, which is useful in ligand parametrization [70–72]. For-
tunately, CHARMM-GUI can produce structure files containing
membranes described mostly by the same atom names as Slipids,
which provides a convenient way for membrane generation for
those researchers who want to use Amber as a protein force field,
or whose membrane would be better represented in Slipids. Minor
differences in atom names between those tools are usually easy to fix
with simple scripts, or even with free text tools capable of batch
string replacement.

Obviously, there are also other automated membrane builders
worth consideration, e.g., MemBuilder II [73] which supports
CHARMM, AMBER/Slipids, and GROMOS force fields. Unfor-
tunately, it does not support automated protein insertion, so
employing this builder would involve subsequent manual receptor
settlement, or utilizing, e.g., Inflategro script [74] or g_membed
command of Gromacs [75]. Among other useful services, Lipid
Builder 3.0 is a handy tool for the generation of parameters for
non-standard lipids In CHARMM [76].

Except for correct membrane composition, its interactions with
a receptor should also be appropriate. Proper insertion of the
receptor into membrane is greatly facilitated by the Orientations
of Proteins in Membranes database [77]. The database contains
crystallographic structures of membrane proteins. The structure
files contain additional dummy atoms representing the membrane
plane. Such atoms can be recognized e.g., by CHARMM-GUI
Membrane Builder. Therefore, preprocessed OPM structures can
serve as an input for further processing, which greatly facilitates
preparation of simulation boxes. Unfortunately, as mentioned
before, X-ray structures often contain point mutations or loop
replacements, which need corrections. Moreover, not all GPCR
structures were elucidated by crystallography, and even if structure
of the receptor of one’s interest was solved, its activation state
might not be appropriate. However, since GPCRs share the same
structural scaffold, and both inactive and active-state receptors are
present in the database, the OPM-derived boxes can serve as a
template and help in the preparation of boxes containing homology
models or refined crystallographic structures.

Particular care should be maintained during the preparation of
ligand parameters. Perfect representation of a novel small-molecule
ligand would be considerably time-consuming and, as such, not
suitable for drug design purposes. Therefore, the best solution
would be careful application of reliable simplified protocols.
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There is a tempting possibility of using freely available on-line
servers or standalone tools capable of generating ligand topologies
on the basis of an input structure file, like PRODRG [78], ATB
[79], ACPYPE [80], or TopolGen. However, one should not trust
unconditionally in their output, which is often stated even by some
of their authors. Manual corrections are usually needed, and in
most cases charge values could be improved by employing addi-
tional software. In particular, calculating RESP charges might
improve ligand representation in simulations [81].

Taken together, MD is a versatile in silico tool useful in alloste-
ric modulator design. Depending on the particular research proto-
col, it can provide refined input protein structures for other
techniques, help in identifying allosteric sites [8, 9, 65] or finding
hidden binding sites [58–60], as well as for investigation of under-
lying mechanisms of allostery [8] or biased signaling [82]. The
latter applications provide significant amount of data, and therefore
require thoughtful analysis [83]. The principal component analysis
(PCA) [8, 84, 85] and information theory-based [86, 87] methods
seem to be most powerful of analysis tools. They are able to sift
relevant information from the plethora of measurable variables
possible to gather from MD trajectories. In particular, PCA is
capable of returning the most apparent relationships as the highest
order results, called principal components. In both cases proper
definition of the examined region is an important issue. In PCA
calculations performed on the entire GPCR structure, together
with termini and loop regions, their chaotic movement is likely to
dominate the entire analysis, and the results may not be conclusive.
In general, decreasing noise is a favorable PCA strategy, so splitting
the receptor and separate analyses of its different regions may be
productive [8]. In all the cases, careful fitting of frames is essential,
and the issue is especially important in analysis of various simula-
tions of the same receptor—lack of appropriate fitting can produce
artifacts, which can easily be over-interpreted. Analogically to PCA,
N-body information theory (NbIT), an information theory-based
method, requires defining functional residue clusters, which also
should be carefully thought out [86].

4.2 Molecular

Docking

Molecular docking to allosteric binding sites of GPCRs is in princi-
ple technically identical as docking to their orthosteric sites,
conditioned that an allosteric site is known and well defined. It is
usually not the case of family A GPCRs which can be allosterically
modulated by ligands bound not only to sites in the upper part of
the transmembrane bundle and the extracellular domain but also to
the sites bordering with the cell membrane (as in the case of GPR40
X-ray structure [52]) or in the intracellular site of G protein as it
was reported for chemokine receptors [19, 20]. One receptor can
contain a number of allosteric sites. It has been suggested that in
case of muscarinic receptors there are at least two sites as certain
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indolocarbazole and androstane derivatives are predicted to bind to
a non-orthosteric site different from that recognized by other
allosteric muscarinic ligands such as gallamine or strychnine
[88]. One allosteric binding site at muscarinic M2 receptor has
been identified using X-ray crystallography [89]. This structure
demonstrates that allosteric modulator LY2119620 interacts in a
largely pre-formed binding site in the extracellular vestibule of the
iperoxo-bound receptor, and induces a slight contraction of this
outer binding pocket [89]. In case of family C GPCRs, the known
allosteric site is situated within the transmembrane bundle as found
in structures of metabotropic glutamate receptors in complex with
allosteric modulators [90–92]. There are also attempts to identify
allosteric sites of family B GPCRs. Bhattacharya et al. modeled the
corticotropin releasing factor receptor (CRF1-R) and identified the
binding sites of representative small-molecule allosteric antago-
nists. The predicted binding sites of the investigated compounds
are located within the transmembrane domain encompassing TM
helices TM3, TM5, and TM6.

There are, however, special tools that are dedicated to improve
molecular docking of allosteric ligands. One of them is Alloscore, a
web server that predicts the binding affinities of allosteric ligand-
protein interactions [93]. The results include the predicted energy
terms, binding affinity, and interactive 3D representation of each
allosteric ligand-protein complex. This method displays good per-
formance in describing allosteric binding and could be useful in
allosteric virtual screening and the structural optimization of allo-
steric agonists/antagonists [93]. There are also a number of tools
for the prediction of allosteric binding sites, such as, e.g., Allosite
[94]. An interesting approach was proposed by Ivetac andMcCam-
mon [59]. In order to facilitate structure-based drug design of
GPCR allosteric modulators they elaborated a fragment-based
molecular dynamics approach to map druggable allosteric space of
GPCRs. They used the FTMAP algorithm to identify “hot spots”
with affinity for a variety of organic probe molecules corresponding
to drug fragments.

In an attempt to dock an unknown GPCR allosteric modulator,
one can consider at least two strategies. The most straightforward is
to perform molecular docking to known allosteric sites, however
without experimental support that a given modulator binds to one
of these sites, this strategy is risky. Thus, at least the whole extracel-
lular region [8, 9] or even the whole receptor surface [95] should
be considered a potential binding site. By considering the whole
receptor Planeseas et al. [95] proposed two different allosteric
binding sites at chemokine CXCR4 receptor, one located in the
intracellular loops 1, 2, and 3 (ICL1, ICL2, and ICL3) which binds
the pepducin allosteric agonist ATI-2341, and the other at a subsite
of the main extracellular orthosteric binding pocket between the
extracellular loops 1 and 2 and the N-terminus, which binds the
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allosteric antagonists AMD11070 and GSK812397. In case multi-
ple allosteric binding sites are found from molecular docking, they
may be ranked on the basis of short molecular dynamics simulations
[8, 9] and/or literature data [96], e.g., mutations [97].

A case of molecular docking of atypical allosteric modulator, a
snake toxin MT7 to dimeric hM1 muscarinic receptor, was
described by Marquer et al. [98]. Their strategy was based on the
combination of double mutant cycle experiments and molecular
modeling calculations. Their docking calculations converged to the
conformation of the MT7-hM1 dimer complex which was in accor-
dance with experimental results: (a) the snake toxin binds at the
extracellular side of the receptor, (b) the tips of MT7 loops II and
III interact with one hM1 protomer, whereas the tip of loop I
contacts with the other protomer, and (c) the hM1dimeric interface
is formed by the transmembrane helices TM6 and TM7 [98].

Ragnarsson et al. [99] identified a novel allosteric site at adren-
ergic β1 receptor which is a site of allosteric modulation by Con-
opeptide ρ-TIA. They found that peptide binding to the
extracellular surface residues on TM6 and TM7 at the base of
extracellular loop 3 (ECL3) is sufficient to allosterically inhibit
agonist signaling at a GPCR.

Another noteworthy example was reported by Mukund et al.
[100]. They identified a monoclonal antibody that inhibits the
glucagon receptor (GCGR), a class B GPCR, through a unique
allosteric mechanism. Moreover, they suggested that receptor inhi-
bition is governed by antibody binding to two distinct sites which
are situated outside of the glucagon binding cleft. One of these sites
is formed by a patch of residues that are surface-exposed on the face
of the extracellular domain (ECD) opposite to the ligand-binding
pocket, while the second binding site consists of residues in the αA
helix of the ECD.

At present structure-based drug design of allosteric modulators
is limited to searching for small molecules which bind to extracel-
lular pockets (family A) or transmembrane bundle (families B and
C). Further studies are needed to determine the druggability of
other allosteric sites identified for GPCRs.

4.3 Ligand-

and Structure-Based

Drug Design

of Allosteric

Modulators

Structure-based drug design of allosteric GPCR ligands has been
hampered by the lack of structural data for allosteric binding sites,
making a strong case for predictive computational methods [59]. In
this context, ligand-based approaches have been often applied, in
particular for designing family C GPCR allosteric modulators.

There are only a few reports of successful computational design
of family A and family B allosteric modulators and a number of
cases referring to family C ligands. Lane et al. [101] reported
structure-based ligand discovery targeting orthosteric and allosteric
pockets of dopamine receptors. In order to identify novel ligands
they used D3 receptor with an empty orthosteric pocket and this
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receptor in complex with dopamine. From the virtual screening
using receptor in complex with dopamine they found compounds
that are predicted to occupy an allosteric site at the extracellular
extension of the pocket, which lack the anchoring amino group.
They discovered that compounds targeting the allosteric site dis-
play a variety of functional activity profiles, and that behavior of at
least two compounds is consistent with non-competitive allosteric
modulation of dopamine signaling in the extracellular signal-
regulated kinase 1 and 2 phosphorylation and β-arrestin recruit-
ment assays [101]. Miao et al. [63] used accelerated structure-
based drug design in order to identify chemically diverse allosteric
modulators of muscarinic M2 receptor. In their approach they used
a combination of accelerated molecular dynamics and Glide
induced fit docking which displayed better enrichment factors
than Glide virtual screening workflow. As a result they identified
12 compounds with affinity of �30 μM. With final functional
experiments on six selected compounds, they confirmed four of
them as new negative allosteric modulators and one as a positive
allosteric modulator of agonist-mediated response at the M2 mus-
carinic receptor [63].

Regarding family B allosteric modulators, de Graaf et al. [102]
used a combination of a ligand-based approach with a docking-
based virtual screening approach to identify novel allosteric ligands
which bind in the transmembrane bundle of the glucagon receptor
(GLR) and the glucagon-like peptide 1 receptor (GLP-1R). They
started from a knowledge-based three-dimensional model of the
GLR, and docked a database of 1.9 million commercially available
drug-like compounds to its transmembrane cavity. Next, they
selected 23 compounds based on protein–ligand interaction finger-
prints, which were then purchased and evaluated for in vitro bind-
ing to GLR and modulation of glucagon-induced cAMP release.
They found that two of the 23 compounds inhibited the effect of
glucagon in a dose-dependent manner, and that one inhibitor
displayed the same potency as L-168049, a reference noncompeti-
tive GLR antagonist, in a whole-cell-based functional assay [102].

As has been mentioned, there are a number of successful
ligand- and structure-based virtual screening for family C GPCRs,
in particular for different subtypes of metabotropic glutamate
receptors. Ligand-based pharmacophore virtual screening was per-
formed by Kubas et al. [103] in order to identify allosteric mod-
ulators of metabotropic glutamate receptor 5 (mGluR5). As a result
they found 2-(m-tolylamino)-7,8-dihydroquinazolin-5(6H)-one
as a moderately active negative allosteric modulator of this receptor
and subjected it to optimization which results in a series of
2-aminoquinazoline derivatives, a structurally novel class of
mGluR5 negative allosteric modulators. A similar approach, based
on a combination of molecule encoding and clustering to predict
compound selectivity which was realized by a topological
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pharmacophore descriptor and the SOM algorithm, was applied to
identify mGluR1 allosteric modulators. Noeske et al. [104] applied
alignment-free topological pharmacophore descriptors (CATS) to
encode the screening compounds in order to search for new
mGluR1 allosteric antagonists and identified one hit based on
coumarine scaffold. Mueller et al. applied artificial neural networks
which were trained based on a recently reported high-throughput
screen in order to find novel allosteric modulators of mGluR4
[105] and mGluR5 receptor [106, 107].

Structure-based virtual screening for family C GPCRs has been
performed by Omer and Prasad [108] and by Jang et al. [109] for
mGluR1 receptor. In particular, Jang et al. used a hierarchical
virtual screening approach and homology model based on dopa-
mine D3 receptor template. Jiang et al. applied ligand- and
structure-based virtual screening and molecular dynamics to iden-
tify negative allosteric modulators of mGlur1 from Chinese herbs
[110]. This study was based on the crystal structure of the seven-
transmembrane domain of mGluR1.

In summary, ligand- and structure-based design of allosteric
modulators of GPCRs is still a relatively unexplored field. Ligand-
based approach is hampered by a number of available modulators
and structure-based technique by limited structural data about
allosteric binding sites. With the increasing availability of both,
the field could become very active in near future.

5 Summary

Application of computer-aided drug design methods to invention
of novel GPCR allosteric modulators brings many benefits, like
possibility of finding novel binding pockets or gaining a deeper
insight into mechanisms underlying allostery, just to mention a
few. However, as in the case of any computational method, an
algorithm can process any input except of dividing by zero, but
processing itself does not guarantee that its results would be con-
clusive. Careful input preparation is particularly challenging in
discovery of allosteric or biased compounds, because of delicate
and elusive nature of mechanisms underlying these phenomena.
Improvements in available force fields, availability of significant
computational power of supercomputers or GPU stations, and
growing amount of experimental data may support in silico mod-
ulator design efforts, as long as all these elements are appropriately
applied. In turn, they may fail when one of essential factors is
omitted and, e.g., signaling bias of a compound is to be calculated.
Awareness of these issues is increasing, and, e.g., including moder-
ate cholesterol concentrations into membrane bilayer constructs
during simulation box preparation becomes a standard. Obviously,
it is most likely that not all the relevant factors affecting the receptor
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of one’s interest are already known. In turn, careful application of
all the known ones to prepare more native-like environment can be
very time-consuming. However, a significantly improved, reliable
outcomemight be a worthy reward. Moreover, besides the practical
meaning, it gives intangible satisfaction of dealing with best-as-
possible reconstruction of actual, tiny portion of the very basic,
living matter.
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75. Pronk S, Páll S, Schulz R et al (2013) GRO-
MACS 4.5: a high-throughput and highly
parallel open source molecular simulation
toolkit. Bioinformatics 29:845–854. https://
doi.org/10.1093/bioinformatics/btt055

76. Home | Lipid builder. http://lipidbuilder.
epfl.ch/home. Accessed 20 Jan 2017

77. Lomize MA, Lomize AL, Pogozheva ID,
Mosberg HI (2006) OPM: orientations of
proteins in membranes database. Bioinfor-
matics 22:623–625. https://doi.org/10.
1093/bioinformatics/btk023

78. Sch€uttelkopf AW, van Aalten DMF (2004)
PRODRG: a tool for high-throughput crys-
tallography of protein-ligand complexes. Acta

GPCR Allosteric Modulators: Opportunities and Challenges 317

https://doi.org/10.1038/ncomms2361
https://doi.org/10.1038/ncomms2361
https://doi.org/10.1021/ct300117j
https://doi.org/10.1021/ct300117j
https://doi.org/10.1111/j.1747-0285.2010.01012.x
https://doi.org/10.1111/j.1747-0285.2010.01012.x
https://doi.org/10.1002/anie.201205676
https://doi.org/10.1002/anie.201205676
https://doi.org/10.3109/10799893.2010.506191
https://doi.org/10.3109/10799893.2010.506191
https://doi.org/10.1124/pr.110.002667
https://doi.org/10.1124/pr.110.002667
https://doi.org/10.1073/pnas.1612353113
https://doi.org/10.1073/pnas.1612353113
https://doi.org/10.1038/nature12595
https://doi.org/10.1038/nature12595
https://doi.org/10.1021/acschembio.5b00712
https://doi.org/10.1021/acschembio.5b00712
https://doi.org/10.1016/j.bbamem.2015.12.033
https://doi.org/10.1016/j.bbamem.2015.12.033
https://doi.org/10.1021/acs.jctc.5b00935
https://doi.org/10.1021/ct300777p
https://doi.org/10.1021/ct300777p
https://doi.org/10.1021/jp212503e
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/ct300342n
https://doi.org/10.1021/ct300342n
https://doi.org/10.1021/ct500419b
https://doi.org/10.1021/ct500419b
https://doi.org/10.1093/bioinformatics/btt680
https://doi.org/10.1093/bioinformatics/btt680
https://doi.org/10.1021/ci3000453
https://doi.org/10.1021/ci3000453
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1093/bioinformatics/btt055
http://lipidbuilder.epfl.ch/home
http://lipidbuilder.epfl.ch/home
https://doi.org/10.1093/bioinformatics/btk023
https://doi.org/10.1093/bioinformatics/btk023


Crystallogr D Biol Crystallogr
60:1355–1363. https://doi.org/10.1107/
S0907444904011679

79. Koziara KB, Stroet M, Malde AK, Mark AE
(2014) Testing and validation of the auto-
mated topology builder (ATB) version 2.0:
prediction of hydration free enthalpies. J
Comput Aided Mol Des 28:221–233.
https://doi.org/10.1007/s10822-014-
9713-7

80. Sousa da Silva AW, Vranken WF (2012)
ACPYPE–antechamber python parser inter-
facE. BMC Res Notes 5:367. https://doi.
org/10.1186/1756-0500-5-367

81. Dupradeau F-Y, Pigache A, Zaffran T et al
(2010) The R.E.D. Tools: advances in RESP
and ESP charge derivation and force field
library building. Phys Chem Chem Phys
PCCP 12:7821–7839. https://doi.org/10.
1039/c0cp00111b

82. Perez-Aguilar JM, Shan J, LeVine MV et al
(2014) A functional selectivity mechanism at
the serotonin-2A GPCR involves ligand-
dependent conformations of intracellular
loop 2. J Am Chem Soc 136:16044–16054.
https://doi.org/10.1021/ja508394x

83. Kaczor AA, Rutkowska E, Bartuzi D et al
(2016) Computational methods for studying
GPCRs. Methods Cell Biol 132:359–399.
https://doi.org/10.1016/bs.mcb.2015.11.
002

84. Ng HW, Laughton CA, Doughty SW (2014)
Molecular dynamics simulations of the aden-
osine A2a receptor in POPC and POPE lipid
bilayers: effects of membrane on protein
behavior. J Chem Inf Model 54:573–581.
https://doi.org/10.1021/ci400463z

85. Ng HW, Laughton CA, Doughty SW (2013)
Molecular dynamics simulations of the aden-
osine A2a receptor: structural stability, sam-
pling, and convergence. J Chem Inf Model
53:1168–1178. https://doi.org/10.1021/
ci300610w

86. LeVineMV,Weinstein H (2014) NbIT–a new
information theory-based analysis of allosteric
mechanisms reveals residues that underlie
function in the leucine transporter LeuT.
PLoS Comput Biol 10:e1003603. https://
doi.org/10.1371/journal.pcbi.1003603

87. McClendon CL, Friedland G, Mobley DL
et al (2009) Quantifying correlations between
allosteric sites in thermodynamic ensembles. J
Chem Theory Comput 5:2486–2502.
https://doi.org/10.1021/ct9001812

88. Wess J (2005) Allosteric binding sites on mus-
carinic acetylcholine receptors. Mol

Pharmacol 68:1506–1509. https://doi.org/
10.1124/mol.105.019141

89. Kruse AC, Ring AM, Manglik A et al (2013)
Activation and allosteric modulation of a mus-
carinic acetylcholine receptor. Nature
504:101–106. https://doi.org/10.1038/
nature12735

90. Christopher JA, Aves SJ, Bennett KA et al
(2015) Fragment and structure-based drug
discovery for a class C GPCR: discovery of
the mGlu5 negative allosteric modulator
HTL14242 (3-Chloro-5-[6-(5-fluoropyri-
din-2-yl)pyrimidin-4-yl]benzonitrile). J Med
Chem 58:6653–6664. https://doi.org/10.
1021/acs.jmedchem.5b00892
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Chapter 14

Challenges and Opportunities in Drug Discovery
of Biased Ligands

Ismael Rodrı́guez-Espigares, Agnieszka A. Kaczor,
Tomasz Maciej Stepniewski, and Jana Selent

Abstract

The observation of biased agonism in G protein-coupled receptors (GPCRs) has provided new approaches
for the development of more efficacious and safer drugs. However, in order to rationally design biased
drugs, one must understand the molecular basis of this phenomenon. Computational approaches can help
in exploring the conformational universe of GPCRs and detecting conformational states with relevance for
distinct functional outcomes. This information is extremely valuable for the development of new therapeu-
tic agents that promote desired conformational receptor states and responses while avoiding the ones
leading to undesired side-effects.
This book chapter intends to introduce the reader to powerful computational approaches for sampling

the conformational space of these receptors, focusing first on molecular dynamics and the analysis of the
produced data through methods such as dimensionality reduction, Markov State Models and adaptive
sampling. Then, we show how to seek for compounds that target distinct conformational states via docking
and virtual screening. In addition, we describe how to detect receptor-ligand interactions that drive
signaling bias and comment current challenges and opportunities of presented methods.

Key words G protein-coupled receptor, Receptor plasticity, Conformational space, Signaling bias,
Drug discovery

1 Introduction

Biased agonism (or functional selectivity) of G protein-coupled
receptors (GPCRs) is related to their ability to preferentially elicit
a subset of responses of all possible receptor responses. This obser-
vation has opened new avenues for producing more efficacious and
safer drugs [1]. However, in order to rationally design biased
drugs, one must understand the molecular basis of this phenome-
non. GPCRs are of extremely flexible nature which explains the
existence of countless conformational receptor states. Among
them, distinct conformational populations can be assigned to inac-
tive, intermediate, or active receptor states of distinct signaling
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pathways (e.g., G protein or arrestin-mediated pathways).
Exploring the entire conformational space of GPCRs, as well as
the transition between distinct conformational populations, is a
major challenge for the GPCR research community. Targeting
only receptor populations that are linked to beneficial therapeutic
signaling pathways, and at the same time, avoiding conformational
populations related to undesired side effects is a promising strategy
for obtaining a new class of drugs with an improved therapeutic
profile. Just to mention one example that emphasizes the advantage
of drugging distinct receptor states: balanced agonists of the angio-
tensin type 1 receptor reduce blood pressure via G protein antago-
nism, but also lower undesirably cardiomyocyte contractility by
their β-arrestin antagonism [2]. In this context, new biased agonists
have been described to selectively couple to β-arrestin (increased
cardiomyocyte contractility) while maintaining G protein antago-
nism (reduced blood-pressure). Such biased molecules are a favor-
able starting point for more efficacious drug candidates for the
treatment of cardiovascular diseases.

Currently, high-resolution insights into receptor architecture
are mainly provided by X-ray crystallography capturing mostly the
inactive receptor state. An important milestone represents the
active structure of the β2-adrenergic receptor (β2AR) in complex
with the stimulatory G protein (Gs) for adenylyl cyclase (PDB ID:
3SN6) [3] and rhodopsin coupling to arrestin (PDB ID: 4ZWJ)
[4]. Despite these advances in elucidating different receptor states,
many conformational states remain elusive.

In this scenario, computational approaches can help in explor-
ing the black holes of the conformational universe of GPCRs. Our
book chapter intends to introduce the reader to powerful compu-
tational approaches to sample the conformational space of GPCRs.
Then, we focus on how to seek for compounds that target distinct
conformational states via docking and virtual screening, as well as
how to detect receptor-ligand interactions that drive signaling bias.

2 Sampling the Conformational Universe of GPCRs

To understand molecular mechanisms behind GPCR activation and
pharmacological action, computational methods as molecular
dynamics (MD) provide models that explain how different confor-
mations correlate in time while generating information about
receptor activation kinetics. However, two of the biggest challenges
of molecular dynamics are: (1) the treatment of the huge quantities
of dynamics data generated by MD and, (2) the statistical relevance
or sampling quality of the obtained MD data. Here, we will focus
on dimensionality reduction methods and Markov State Models
(MSM) which can be combined to tackle these problems [5].
Dimensionality reduction methods are mathematical tools that
reduce the number of dimensions of a specific dataset taking
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2.1 Dimensionality

Reduction

advantage of the interdependence among the different variables or
reaction coordinates. Most popular methods are linear methods.
These are based on linear transformations that create a new space
with new bases (known as independent components, ICs) where
the bases with less relevance are discarded considering different
criteria. In this chapter, we are going to focus on two linear reduc-
tion methods: Principal Component Analysis (PCA) and Time-
dependent Independent Component Analysis (tICA).

PCA is based on eigenvalue decomposition of the covariance or
correlation matrix of the input data that yields several eigenvectors
(or ICs), in this case, known as principal components (PC). These
represent processes in our system that best explain variance of the
data. PCA has been continuously used for the study of the confor-
mational space of proteins [6–9]. In the case of GPCRs, PCA is
useful to analyze conformational changes on the whole protein or
on specific protein regions [10, 11]. However, PCA is not able to
take advantage of the kinetic information obtained fromMD simu-
lations as it is variance-based.

tICA is another linear method but kinetic-based instead of
variance-based. Using as input the chosen reaction coordinates,
tICA obtain ICs by solving the following eigenvalues problem
(Eq. 1):

Cτri ¼ C0λi τð Þri ð1Þ

C0 ¼ ðXt � hXitÞTðXt � hXitÞ
1

N � 1
ð2Þ

Cτ ¼ ðXt � hXit ÞTðXtþτ � hXitÞ
1

N � 1� τ
ð3Þ

where Xt is a sequence ofmultivariate data,C0 is the covariancematrix
(Eq. 2), Cτ is the time-lagged covariancematrix (Eq. 3), ri are the ICs,
λi(τ) are the associated eigenvalues, and τ is the time-lag (in discrete
time), an arbitrary parameter that must be adjusted in every case
[12, 13]. In tICA, ICs are ordered from slowest to faster processes
being a useful reduction method for data pre-processing on Markov
State Model (MSM) construction (see below) [14]. Furthermore, it
can be also used onMDdata in the same fashion as a PCA. However,
kinetic data is necessary for generating the time-lagged covariant
matrix, thus tICA cannot be easily used for comparing MD data
with non-kinetic data (e.g., X-ray crystal structures).

2.2 Markov State

Models and Adaptive

Sampling

Although dimensionality reduction methods are useful in MD anal-
ysis, they have problems when obtaining long-living relevant meta-
stable states from the protein conformational space as they cannot
confirm their energy landscape convergence. Grossfield et al. have
studied the convergence of PCA on membrane proteins, especially
GPCRs, and they concluded that 26 simulations of 100 ns are not
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enough sample for the convergence of the simulation principal
nodes or quantifying fluctuations in several protein regions of
rhodopsin [15]. Hence, in order to study activation/inactivation
pathway rates or activation/inactivation models, one must ensure
enough sampling. Unfortunately, the above-mentioned methods
do not tell us anything about energetic convergence or sampling
quality. For this reason, we propose Markov State Models (MSMs)
to accomplish this purpose. An MSM is a mathematical model that
assumes “Markovianity,” whichmeans that the kinetics are modeled
by a memoryless jump process between states. A summary of the
MSM construction process can be seen at Fig. 1.

The process of building an MSM usually begins with a
dimensionality reduction applied to a set of reaction coordinates
(Fig. 1a–c). This first step is recommended because (1) it reduces
the computational time and memory needed for MSM estimation,
(2) it reduces the noise created by not so important processes, and
(3) it improves further clustering of data. Then, continuous data is
discretized using one of the available data clustering algorithms,
such as regular spatial clustering [16, 17], k-means [18], or Mini
Batch K-Means [19] (Fig. 1d, e). By slicing the time dimension in
intervals, which size is called time-lag, time is also discretized.
Finally, the transition probability matrix is estimated considering
every jump between clusters (states) as transition produced at each
discontinuous time unit (Fig. 1f) [20]. Once our MSM is com-
puted, we can obtain coarse-grained states (or macro-states) by
methods such as Robust Perron Cluster Cluster Analysis
(PCCAþ) [21], which are candidates to become metastable states
(Fig. 1g). Furthermore, possible pathways between states or meta-
stable states, and their fluxes and reaction rates can also be analyzed
through transition path theory (TPT) algorithms (Fig. 1h)
[22]. The reliability of our model, energetic convergence and
sampling quality can be tested by several methods such as Swope-
Pitera eigenvalue test [23], information theory approaches [24],
Chapman-Kolmogorov tests (Fig. 1i) [22], and Bayesian Model
selection approaches [25]. Finally, with adaptive sampling, we can
improve our model iteratively. TheMSM transition matrix is able to
resample our MD data for underexplored conformational states/
macro-states from which it generates new starting points in order
to increase the sampling of poorly visited conformational space
regions (Fig. 1j). Thus, several shorter MD trajectories can be
simulated (~10–100 ns) instead of longer ones improving compu-
tational power parallelization (Fig. 1b) [26].

Disadvantages of MSM are that systems with slow dynamics are
hard to sample, andmayneedhugequantities ofMDdata and longer
trajectories. In addition, a proper initial state clustering is needed as
it determines in a great measure the quality of the future MSM
[20]. Some python implementations of these methods are freely
available, such as PyEMMA 2 [13], and the MD analysis framework
HTMDwhich is freely available for non-commercial use [27].
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Fig. 1 Workflow of GPCR conformational analysis via MSM and adaptive sampling methods. (a) 3D represen-
tation of GPCR structural model backbone and residues selected for their study through MSM. (b) Relevant
reaction coordinates are obtained from MD simulation of the GPCR model. (c) Bidimensional histogram of two
first IC obtained from dimensionality reduction of reaction coordinates. (d) Discretization of reaction coordi-
nates or relevant ICs obtained in dimensionality reduction. (e) Example of discretized trajectories. (f)
Connectivity between the different clusters/states (nodes, d–e) of the build MSM. Equilibrium probabilities
shown in a color-scale from blue to red. (g) States with high probability membership at coarse-grained states
(macro-states) obtained from PCCAþ. (h) Chapman-Kolmogorov test for transition probability from macro-
state S4 to itself. Transition matrix propagation (green) against estimated from MD data with standard error
bars (blue). (i) Kinetic model obtained by TPT analysis. Equilibrium probabilities of macro-states as node width.
Arrow width is proportional to net fluxes between macro-states. (j) Adaptive sampling is initiated if more input
data from MD is needed for MSM convergence. Reproduced from Rodrı́guez-Espigares, I., Kaczor, A. A., and
Selent, J. (2016). In silico Exploration of the Conformational Universe of GPCRs. Molecular Informatics, 35
(6–7), 227–237
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There are two recent examples where MSM have been applied
to explore the GPCR conformational space. Kohlhoff et al. [28]
simulated the β2AR starting from active (PDB ID: 3P0G) and
inactive (PDB ID: 2RH1) conformations, in complex with both
an agonist (BI-167107) and an inverse-agonist (carazolol) as well as
in its apoform and analyzed them with MSM generating several
metastable states that were used as targets for virtual screening.

In another study, Bai et al. applied MSM to study the inactiva-
tion of the β2AR-G-protein complex (PDB ID: 3SN6) by the
inverse-agonist ICI118,551 focusing on the formation of a water
channel in the receptor interior related to receptor activation [10].

All in all, these examples highlight the usefulness of applying
MSM for exploring the conformational space of GPCRs.

3 Docking and Virtual Screening

Molecular docking can be used to predict the binding mode of
ligands with various signaling properties such as the orientation and
conformation that the ligands assume when bound to the receptor,
and also for modeling the local conformational state of the
ligand-binding cavity [29]. The benchmarking of docking of
GPCR biased ligands was carried out during DOCK 2013 compe-
tition. One challenge during this competition was to predict differ-
ent serotonin receptor activation states in complex with ergotamine
[30]. Ergotamine is a full agonist of 5-HT1B serotonin receptor but
a biased agonist of 5-HT2B serotonin receptor, eliciting full
β-arrestin-mediated response but only partial G protein activation
[30]. In accordance with its functional selectivity profile, the crys-
tallographic model of 5-HT1B serotonin receptor in complex with
ergotamine resembles classical active conformation of β2-adrener-
gic receptor. In contrast, the conformation of 5-HT2B serotonin
receptor in complex with this ligand is more consistent with an
inactive state in the transmembrane helix (TM) and 6 region but an
active state in the TM7 [30]. Accordingly, many of the submitted
models successfully predicted the activation state of 5-HT1B, but
not the biased state of 5-HT2B which demonstrates that application
of molecular docking for predicting functional selectivity of GPCR
ligands can be challenging.

In recent years, a limited number of successful and in some
cases experimentally verified molecular docking experiments to
construct complexes of GPCRs with biased ligands have been
published. These efforts focus either on indicating receptor resi-
dues involved in biased signaling [31, 32] or deciphering which
ligand moieties govern signaling to particular intracellular
partners [33].

Yiu-Ho Woo et al. [31] determined that tyrosine 308 is neces-
sary for ligand-directed Gs protein-biased signaling of β2-
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adrenergic receptor. Zhang et al. [32] used molecular docking and
site-directed mutagenesis to identify specific interactions between
angiotensin AT1 receptor and different ligands with inverse agonist,
neutral antagonist, or agonist activities. They found that mutation
N1113.35A in the putative sodium binding site affects binding of
the endogenous peptide agonist angiotensin II but not the
β-arrestin-biased peptide TRV120027. These two encouraging
examples demonstrate that molecular docking, in particular, in
combination with respective experimental techniques can be useful
in the identification of receptor molecular determinants of biased
signaling. Similarly, molecular docking supported by molecular
dynamics simulations was successfully used by Gmeiner’s group to
determine ligand structural determinants of biased signaling for
dopamine D2 receptor [33].

Biased signaling and functional selectivity can be exploited to
design novel GPCRs ligands with desired signaling properties
which may lead to elaboration of more selective drugs with fewer
side effects. As an example, compound PZM21, which is an agonist
of μ-opioid receptor, activates selectively Gi protein pathway and is
almost inactive toward β-arrestin pathway [34]. Compound
PZM21, in contrast to morphine, does not cause respiratory
depression and reinforcing activity. Discovery of biased ligands
can be done mainly using virtual screening or de novo design
(Fig. 2) [5, 35]. When the receptor 3D structure is known from

Fig. 2 Identification of biased ligands using virtual screening and de novo design
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X-ray studies or homology modeling, high-throughput docking is a
method of choice.

In general, most successful structure-based virtual screening
campaigns using high-throughput docking resulted in the identifi-
cation of antagonists due to the availability of an increasing number
of GPCR X-ray structures in inactive conformation in complex with
antagonists [36]. First X-ray structures of GPCRs in active confor-
mation and in complex with agonists enabled searching for agonists
using this technique. In general, it should be stressed that receptor
conformation strongly determines the properties of ligands identi-
fied using high-throughput docking [37]. Using receptor X-ray
structures in complex with antagonists or agonists favors identifica-
tion of antagonists or agonists, respectively. Thus, due to few
GPCR X-ray structures in complex with biased agonists available,
the discovery of biased ligand may be hampered by the lack of
appropriate receptor conformation. However, the receptor confor-
mation can be adjusted using molecular dynamics [37]. It should
be stressed that application of molecular dynamics seems nowadays
crucial for successful high-throughput docking application.

In this context, Tarcsay et al. [38] suggested that molecular
dynamics simulation may be used to capture protein conformations
which are less biased toward the binding points of the chemotype
that has been crystalized to obtain the X-ray structure.

Kohlhoff et al. [28] applied Markov State Models on molecular
dynamics data obtained by cloud-computing techniques to gain
insights into the conformational space and activation mechanisms
of GPCRs (see also Subheading 2). Virtual screening (high-
throughput docking) on obtained receptor conformations with
known agonists, antagonists and decoys resulted in higher accuracy
on predicting possible targets than following the same procedure
only with crystal structures.

Bhattacharya and Vaidehi [39] applied coarse-grain molecular
dynamics simulations to decipher the changes in the potential
energy landscape of the β2-adrenergic receptor by two full agonists,
two partial agonists, and an inverse agonist, starting from the
receptor X-ray structure in complex with an inverse agonist, car-
azolol. Virtual screening with a salbutamol-stabilized conformation
demonstrated enrichment of non-catechol agonists over a
norepinephrine-stabilized conformation which was produced by a
different activation pathway.

Kakarala and Jamil [40] used in silico methods, including
molecular docking and molecular dynamics to identify protease
activated receptor 2 (PAR2)-biased ligands-specific conformations
and agonists and antagonists from the GPCR ligand library (GLL),
which may induce biased signaling in PAR2 using the concept of
existence of multiple ligand-stabilized receptor conformations.

There are also examples of application of high-throughput
docking only. Gandhimathi and Sowdhamini [41] performed
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virtual screening and docking studies with both active and inactive
state models of serotonin 5-HT1A receptors identifying agonist-like
and antagonist-like compounds. Molecular docking can be also
supported by using protein-ligand interaction fingerprints (IFPs)
to post-process the docking poses as it was done by Kooistra et al.
[42] for adrenergic β1 and β2 receptors. Finally, de novo design
techniques can be applied to develop novel ligands as it was done
for novel selective nanomolar and ligand-efficient serotonin
5-HT2B receptor ligands [43].

In summary, molecular docking and subsequent successful
structure-based virtual screening to identify biased ligands of
GPCRs require the availability of appropiate receptor conforma-
tions responsible for functional selectivity. When an adequate
receptor X-ray structure is not available, molecular dynamics sup-
ported by experimental data can be used to adjust receptor confor-
mation. It can be expected that more and more successful
applications of molecular docking, in particular high-throughput
docking to identify functionally selective ligands, will be reported in
next years along with new X-ray structures, new site-directed muta-
genesis data and development of molecular dynamics techniques.

4 Detecting Receptor-Ligand Interaction that Drives Signaling Bias Using MD

As mentioned in the previous paragraph, the current understanding
of the signaling processes is based on the fact that a GPCR can exist
in a multitude of conformations. Biased ligands have the propensity
to establish specific interaction with the receptor which stabilizes a
distinct receptor conformation linked to signaling outcome. A
recent study successfully used molecular dynamics to identify recep-
tor-ligand interactions at the serotonin 5-HT2A receptor that are
relevant to signaling bias [44]. The 5-HT2A receptor is targeted by
hallucinogenic drugs of abuse [45] as well as by second generation
antipsychotic drugs [46], which function as antagonists at these
receptors [47]. The studied receptor can initiate many diverse
signaling pathways, among which is release of arachidonic acid
(AA) and accumulation of inositol phosphate (IP) [48]. The search
for biased signaling molecules was driven by the finding that a full
receptor inactivation has been suggested to be counterproductive
for the treatment of schizophrenia [49].

In order to detect ligand-receptor contacts that are relevant for
the type of signaling outcome, Martı́-Solano et al. compared the
natural and balanced agonist serotonin (AA and IP pathway) to a
known biased molecule 2C-N (biased toward the AA pathway)
[44]. Complexes of serotonin and 2C-N with the active 5-HT2A

receptor were subjected to 100 replicates of 100 ns each. A dynamic
interaction fingerprint was extracted from the accumulated simula-
tion data and revealed preferred interaction sites. Interestingly, the
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balanced ligand serotonin established polar contacts with TM5 and
TM6 whereas the AA-biased ligand 2C-N forms them only with
TM6. Based on this observation, the authors envisaged that they
could tune the natural agonist serotonin into an IP-biased signaling
molecule by avoiding the AA-biased TM6 interaction. Intriguingly,
using this strategy, the authors were able to rationally discover new
molecules with an unprecedented level of IP bias [44].

Another challenging goal of describing signaling bias using
MD simulation is to understand how protein-ligand interactions
propagate through an allosteric network of interactions in the
protein to yield a distinct signaling response. Recent attempts
have displayed the promise of these techniques in obtaining rele-
vant data [50]. With the Carma package it is possible to calculate a
covariance matrix between defined groups of atoms in a simulation
[51, 52]. If two residues fluctuate in a correlated way, especially if
they are distantly placed in the protein, it is highly probable that
there are allosteric interactions between them. Analyzing this
matrix can help to detect propagating signals from the extracellular
side to the intracellular one. The covariance data can be conve-
niently visualized and analyzed using the Network Viewer module,
available in VMD [53]. This approach was recently utilized to study
biased signaling in the μ-opioid receptor [54]. The authors found
that in the structure bound to the unbiased agonist—morphine,
there is intense allosteric communication between the orthosteric
binding site and the intracellular ends of helixes TM3 and TM6. In
contrast, when replacing morphine with the G-protein-biased ago-
nist—oliceridine, they no longer observed such communication
with the end of the TM6 helix while retaining it between the
binding site and end of helix TM3. Such results may help rational-
ize, what phenomena are responsible for such a divergent signaling
response between the two molecules.

In summary, the field of MD simulations is rapidly progressing.
Because of utilizing massive parallel graphical processor unit (GPU)
computation techniques, the current computational speeds pro-
gression slightly exceeds Moore’s law, doubling every 1,3 years
[55]. Also various algorithms are developed, to enhance the sam-
pling of the energetic landscape [56, 57], and are successfully
applied to GPCR studies [5, 58]. Thus, it appears that MD studies
will progressively reflect natural phenomena such as signaling bias
with better quality. Utilizing those techniques can provide valuable
data for structure-based drug design, ranging from obtaining mole-
cules with a tailored signaling profile, to predicting their affinity and
binding kinetics.
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5 Concluding Remarks About Challenges and Opportunities

The existence of multiple receptor conformational states linked to
distinct signaling outcomes has changed our perception of drug
design and is the basis for producing more efficacious and safer
drugs. This book chapter describes the advances on how computa-
tional chemists and biologists try to capture these different receptor
conformations and transitions among them starting from available
structural information.

For instance, molecular dynamics techniques combined with
dimensional reduction methods and MSM have been proven to be
useful to explore the conformational space of GPCRs. Once stable/
metastable conformational states have been detected by experi-
ment/computation, several success stories show that distinct states
can be exploited for the search of bias ligands via docking and
virtual screening. It should be mentioned that the selection of
relevant conformational receptor states for virtual screening can
be complicated, as we often do not know the implication of specific
receptor states for the signaling outcome. Obviously, more struc-
tural information on complexes between GPCRs and diverse signal
transducers is necessary for easing the selection of physiologically
relevant receptor states. In addition to high-throughput screening,
also structural approaches that take advantage of dynamic finger-
prints of ligand-receptor interaction obtained by MD simulations
have been proven to be efficient in rationally designing novel biased
agonists.

Despite those success stories, the discovery of specific mole-
cules that stabilize relevant receptor states is not trivial at all. This
can be explained by the fact that only subtle structural differences
exist between complexes that elicit a balanced or biased signal. To
address this challenge and to be more successful in detecting new
biased ligands, more structural information on different receptor
states related to signaling bias is needed. In this respect, we envisage
that in near future receptor structures with definite coupling and
signaling capacities will be available thanks to the current develop-
ments in solving distinct receptor states.

Considering available structural insights on GPCRs, the
on-going process in obtaining more structural information on
different receptor states combined with the potential of
computational-assisted drug discovery turns our present into an
exciting era for developing novel drugs with higher efficacy and
safer therapeutic profile.
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10. Bai Q, Pérez-Sánchez H, Zhang Y et al (2014)
Ligand induced change of β2 adrenergic recep-
tor from active to inactive conformation and its
implication for the closed/open state of the
water channel: insight from molecular dynam-
ics simulation, free energy calculation and Mar-
kov state model analysis. Phys Chem Chem
Phys 16:15874–15885. https://doi.org/10.
1039/c4cp01185f

11. Ng HW, Laughton CA, Doughty SW (2013)
Molecular dynamics simulations of the adeno-
sine A2a receptor: structural stability, sampling,
and convergence. J Chem Inf Model
53:1168–1178. https://doi.org/10.1021/
ci300610w
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Chapter 15

Synergistic Use of GPCR Modeling and SDM Experiments
to Understand Ligand Binding

Andrew Potterton, Alexander Heifetz, and Andrea Townsend-Nicholson

Abstract

There is a substantial amount of historical ligand binding data available from site-directed mutagenesis
(SDM) studies of many different GPCR subtypes. This information was generated prior to the wave of
GPCR crystal structure, in an effort to understand ligand binding with a view to drug discovery. Concerted
efforts to determine the atomic structure of GPCRs have proven extremely successful and there are now
more than 80 GPCR crystal structure in the PDB database, many of which have been obtained in the
presence of receptor ligands and associated G proteins. These structural data enable the generation of
computational model structures for all GPCRs, including those for which crystal structures do not yet exist.
The power of these models in designing novel ligands, especially those with improved residence times, and
for better understanding receptor function can be enhanced tremendously by combining them synergisti-
cally with historic SDM ligand binding data. Here, we describe a protocol by which historic SDM binding
data and receptor models may be used together to identify novel key residues for mutagenesis studies.

Key words GPCRs, Adenosine receptors, Homology modeling, Ligand binding, Binding kinetics,
Receptor, Site-directed mutagenesis

1 Introduction

1.1 Site-Directed

Mutagenesis (SDM)

Binding Studies

Despite their shared seven transmembrane helix structure, GPCRs
recognize a wide array of ligands in many different signaling path-
ways [1]. Ligand specificity stems from sequence variance between
receptors, at key residues. Themechanism of specificity is important
to understand so that structure-based drug design can achieve high
efficacy and avoid off-target side effects. To determine these key
amino acid residues, site-directed mutagenesis (SDM) studies are
performed. By comparing binding values for mutant compared to
wild-type receptors, the influence of a given residue on ligand
binding affinity or kinetics can be determined. Many mutagenesis
studies have been conducted in a shotgun approach, but careful
targeting of informative mutations for these experiments will
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enable more precise information about the role of a given residue to
be determined.

Extensive mutagenesis studies were performed on the four
adenosine receptor subtypes with the aim of determining residues
that confer binding specificity for each of the receptor subtypes
[2]. In general, these were based on multiple sequence alignments
that had been used to identify residues, which differed between the
four receptors, with the view that they might contribute to subtype-
specific ligand binding. These studies led to the design of a number
of different subtype-specific ligands [3]. SDM binding studies are
still carried out on the adenosine receptors, mostly performing
kinetic binding experiments to rationalize residence time.

1.2 Using GPCR

Models to Elucidate

Binding

Advances in techniques that stabilize GPCRs, which have many
different conformations, have allowed a greater number of these
receptors to be crystallized [4]. Further, these stabilization meth-
ods have enable receptors to be cocrystallized, generating struc-
tures with agonist bound to the receptor [5]. These methods
involve specific thermostabilizing mutations and often include the
engineering of a fusion domain between transmembrane helix
5 and 6. If these modifications are restored to the wild-type resi-
dues, homology modeling can be used to further increase the
number of receptors for which accurate models can be obtained.
In homology modeling, the model of the receptor is largely treated
as static during drug docking, ignoring ligand flexibility and any
conformational changes that could take place upon ligand binding.
The loop regions, particularly extracellular loop 2, have been found
to be involved in ligand binding [6], causing a problem for tradi-
tional GPCR homology modeling as the loop regions tend to be
inaccurately predicted. Hierarchical GPCR modeling protocol
(HGMP), described in Chapter 19, is a more advanced modeling
workflow that addresses these problems.

The use of residue engineering and the introduction of
non-GPCR sequences to stabilize receptors for improved crystalli-
zation means that computational models based on crystal structure
are the best means of exploring structure-function relationships for
GPCRs. Using accurate models allows the mutagenesis data to be
put in the 3D context of the binding site, allowing for indirect
interactions to be more easily noted. For the A2A adenosine recep-
tor, viewing mutagenesis studies in the context of a model has
enabled the identification of a hydrophobic pocket, which holds
the adenine ring of agonists [7]. Historic mutagenesis binding data,
therefore, when explored in the context of a computational model
can be of great help in understanding ligand binding at the atomic
level.
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2 Methods

2.1 Models Can

Inform Which Residues

to Mutate

The overall process of this workflow is outlined in Fig. 1. The first
stage of a SDM binding experiment is to plan which residues to
mutate, something that requires careful attention in order to maxi-
mize the amount of information that can be obtained. Identifica-
tion of a suitable model, either crystal or homology, should be used
as a starting point in planning:

1. Search for a crystal structure for the GPCR to be studied, using
the PDB [8].

(a) If there are multiple entries for the receptor, make a quick
table comparing the resolution, the ligand bound, if any,
and any crystallization techniques that may have altered

Fig. 1 Flow diagram of a simplified version of the methodology detailed in this chapter. Diamond-shaped
boxes represent decisions that need to be made and the rounded rectangle boxes represent inputs that help
carry out a task
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the structure of the receptor, including the use of fusion
domains and stabilizing mutations.

(b) If there is a single entry for the receptor of interest, it is
important to note these structural features, as they will
allow one to assess the reliability of using the structure for
SDM binding experiment design. In cases where the
receptor has been engineered to look at how the receptor
functions, for example by fusion of the receptor with a Gs

[9], it may be more suitable to make a homology model
for experimental design.

(c) If there are no crystal structures, conduct a literature
search to determine whether an appropriate template
structure has previously been used for homology model-
ing; otherwise, a template can be generated by homology
modeling using the crystal structure of a closely related
GPCR:

l Both template and query sequence structure must be
numbered according to the Ballesteros-Weinstein
numbering Scheme [10] to allow for better sequence
alignment, which can be achieved with a single com-
mand in Molecular Operating Environment,
MOE [11].

l Sequence alignment can be performed in MOE or
programs like T-Coffee [12]. MOE is specifically tai-
lored for GPCRs, so that alignment is constrained to
align the conserved residues and GPCR motifs, ensur-
ing that a correct fit is likely to be achieved.

l Homology modeling can also be performed in MOE
or using MODELLER [13]. In MOE, sidechains are
built on a database gathered from a large rotamer
library that has been generated by systematic clustering
of high-resolution PDB data. The model is then mini-
mized using the OPLS-AA force-field.

l To check the quality of the model, scoring is per-
formed. GLAS© tests the likeliness of a GPCR to the
model structure. If using a new template, however,
ProS© should be used instead.

2. It is important to remember that both homology models and
crystal structures are static versions of a dynamic system. One
therefore needs to explore the conformation space of the ligand
to define a binding pocket. Molecular dynamics
(MD) simulations can be used to achieve this. An alternative
to using MD simulations is to look at multiple models and
docking results, as the variability in structures will give a picture
of a ligand’s conformational space.

3. Search for interactions that are present in the model or MD
simulations. Hydrogen bonds can easily be found by predictor
tools available in most molecular visualization software
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packages, such as PyMOL [14] or UCSF’s Chimera
[15]. These software packages can also be used to view the
hydrophobicity surface of the receptor, which may indicate
hydrophobic interactions or buried hydrophilic interactions.
Make a list of all these interactions, detailing their nature and
in which model/simulation the interaction was seen (see Note
1).

4. Look at the conservation of an interaction, not just in the
different models or simulations, but in other related receptors.
To look at the equivalent residue in other receptors, the
Ballesteros-Weinstein numbering scheme is very useful. This
is a numbering system devised for class A GPCRs, allowing a
given amino acid to be compared across different GPCRs. In
this system, the number before the decimal point indicates
what transmembrane helix the amino acid is in, the numbers
after it specify the location of this residue compared to the
helixes conserved residue which, by convention, is defined as
0.50. For example, the position that corresponds to 5.58 is on
the fifth transmembrane helix and is eight positions away from
the conserved position [10].

5. Identify the level of structural conservation at a given position,
to ascertain whether the interaction is likely to be conserved. It
should be noted that the lack of conservation of an interaction
may also be valuable when looking at receptor specificity, par-
ticularly for models based on nearest neighbors that bind a
different endogenous ligand.

6. Once a residue has been selected for mutagenesis, decide which
amino acid the residue will be mutated to. The usual choice is
alanine, as it prevents that residue from making interactions, is a
residue that favors helix formation and is unlikely to cause steric
clashes, due to its size. Alanine mutations can, on occasion,
prevent stable expression of the receptor in which case other
amino acids will need to be considered. In those cases, one can
mutate to an amino acid that loses the functional group but
retains the relative bulk of the R group. Mutating a position to
two or more different amino acids can detail the nature of the
interaction. To maximize the information gained from making
two or more mutants, one of the mutants should retain the
moiety that can make the interaction and the other should lose
the interaction but retain the relative bulk of the R group.Muta-
tion to cysteine can be useful for cross-linking experiments.

2.2 Selecting

Ligands for Binding

Studies Using Models

and SDM Binding Data

Tailoring the selection of ligands for each mutagenesis study will
maximize the information gained from the binding experiments.
Four ligands are usually selected for a mutagenesis study that is
intended to determine whether a residue interacts with a specific
category of ligand. For radioligand binding studies, at least one of
the ligands must be available as a radiolabeled ligand to allow for
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competition binding studies. The following steps will help make
this selection of ligand:

1. Look at different interactions made between the receptor and
various ligands; to achieve this crystal structures and homology
models with ligands docked into their structure must exist (see
Note 2).

2. From these structures, identify pairs of similar ligands that
differ by a single interaction. This is the residue that will be
mutated. These ligands may have similar binding affinity values
because of their similar structure (see Note 3).

2.3 Models

and Historic SDM

Binding Data Add

Value to the Analyses

of New SDM Binding

Experiments

After mutagenesis binding studies have been performed, the results
should be analyzed in conjunction with models of the receptor to
gain a more informed understanding of the nature of the binding
and the changes that mutagenesis elicits. One should similarly
evaluate any existing historic mutagenesis data with a view to
integrating all sources of information needed to put the recently
obtained results in context. This will allow for a comprehensive 3D
analysis of binding.

1. Gather all mutagenesis binding study data for the receptor of
interest. To find previous mutagenesis data for a given receptor,
one can use GPCRdb’s mutation browser: http://gpcrdb.org/
mutations/ [16]. This will show details of all the mutants that
have been made in a specified receptor which can be made into
a database. The entries of the database must be checked to
indicate whether the mutation was made as part of a binding
study or if it was mutated for some other purpose, these latter
entries should be removed. The database will allow one to
check for historic data for the residue of interest. After the
removal of nonbinding study data, the ligands used in each
study and the fold differences in ligand binding values to the
mutant compared to the wildtype can be added by searching
the reference associated with each entry. If no mutants have
been made for binding studies with the receptor of interest,
another closely related receptor can be used. In these cases, the
models of the two receptors should be superimposed (seeNote
4), to check for equivalent residues.

2. Map the historic mutagenesis study results to the models of the
receptors that have the ligands used in the binding study
docked. This can be done by editing the color of residues that
have significantly different binding values for a given ligand
using a molecular visualization software package, such as
PyMOL or Chimera. The current experimental results should
also be mapped to the model.

3. Check the position of the residue that has been mutated in
comparison with other residues that are colored because of a
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significant binding difference. This comparison with other
residues is not obvious when looking solely at the sequence
or the residue numbers because structurally adjacent residues
may be on different transmembrane helices, so the model to
which the mutagenesis studies were mapped must be used.
Significant results located some distance from the predicted
binding pocket, as seen from docking or a crystal structure,
may indicate a secondary binding site. It is important to look at
interactions between the residue of interest and other residues
to check for possible indirect interactions with the ligand. The
mapped model will indicate whether the residues of indirect
interaction play a significant role in binding. The properties of
the residues surrounding the mutant residue, in the model, are
also important to consider as these may reveal a hydrophobic
pocket or a buried hydrophilic interaction.

Figure 2 shows an output of this workflow for the example case
of understanding NECA binding to the A2A adenosine receptor.
SDM NECA binding data for the A2A receptor was used to make
the mapped model [17, 18]. This mapped model can be used to
help explain the SDM binding data. Looking at Ser277 and Thr88,
in the context of the mapped model, rationalized why these
mutants caused loss of binding only to agonists because of their
proximity to the ribose ring not present in adenosine receptor
antagonists.

Fig. 2 A model of the A2A adenosine receptor with SDM binding data for NECA mapped, using the methodology
described in this protocol. Residues, which when mutated have significantly different binding affinity value
compared to the wildtype, are colored in pink and are in stick representation. NECA, the ligand, is also shown
in stick representation and is tan colored
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2.4 SDM Data Can Be

Used to Select

a Docking Pose

Docking a ligand into a receptor results in many distinct docking
poses. Selection of the correct pose from the list of docked posi-
tions can be tricky as the only selection criterion given is an arbitrary
docking score. Using the following methodology, SDM binding
data can give experimental validation for the selection of a given
pose:

1. Work out the binding pocket of the GPCR. This can be done
by looking at the locations of mutagenesis binding studies with
significant results for that ligand, or if those data are not
available, use any ligand for which data exist. This will give a
quick selection criterion that should halve the number of dock-
ing results.

2. Check that key interactions, predicted using SDM binding data
and the methodology detailed in Subheading 2.3, are possible
in each docked pose. Hydrogen bond predictor tools can be
useful to help determine this but it is important to remember
that the receptor is flexible, which is something that is not
accounted for in docking.

3. Make certain that the orientation of the ligand corresponds to
most the significant mutagenesis binding studies data; these
significant residues can be colored so that they can be easily
identified.

3 Notes

1. Distance measurements can be used to increase the conforma-
tional space of the ligand, overcoming the issue of having a
static model. Residues within a specified distance from the
ligand can be selected.

2. If one is docking an agonist, the model must be an active
structure. This means that the original crystal structure must
have an agonist bound to the receptor.

3. For the adenosine receptors, there are position-substituted
ligands that are particularly useful for blocking a potential
interaction; these can be compared to the unsubstituted ligand
(e.g., CPA and R-PIA are both N6-substituted agonists).

4. UCSF’s Chimera has a “MatchMaker” feature [15], found
under “Structure Comparison” in the “Tools” dropdown,
which is good at quickly overlaying structures. This finds the
best overall fit between the two receptors; however, selection
can be made to just include specific residues, like those the
binding site.
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9. Carpenter B, Nehmé R, Warne T et al (2016)
Structure of the adenosine A2A receptor
bound to an engineered G protein. Nature
536:104–107. https://doi.org/10.1038/
nature18966

10. Ballesteros J, Weinstein H (1995) Integrated
methods for the construction of three-
dimensional models and computational prob-
ing of structure-function relations in G
protein-coupled receptors. Methods Neurosci
25:366–428. https://doi.org/10.1016/
S1043-9471(05)80049-7

11. Chemical Computing Group Inc. (2017)
Molecular operating Environement (MOE).,
Version 2015.10

12. Notredame C, Higgins DG, Heringa J (2000)
T-coffee: a novel method for fast and accurate
multiple sequence alignment. J Mol Biol
302:205–217. https://doi.org/10.1006/
jmbi.2000.4042

13. Fiser A, Sali A (2003) MODELLER: genera-
tion and refinement of homology-based pro-
tein structure models. Methods Enzymol
374:461–491. https://doi.org/10.1016/
S0076-6879(03)74020-8

14. Schrodinger LLC (2015) The PyMOL molec-
ular graphics system. Version 1.8

15. Pettersen EF, Goddard TD, Huang CC et al
(2004) UCSF chimera - a visualization system
for exploratory research and analysis. J Comput
Chem 25:1605–1612. https://doi.org/10.
1002/jcc.20084

16. Munk C, Isberg V, Mordalski S et al (2016)
GPCRdb: the G protein-coupled receptor
database - an introduction. Br J Pharmacol
16:2195–2207. https://doi.org/10.1111/
bph.13509

17. Kim J, Wess J, van Rhee AM et al (1995) Site-
directed mutagenesis identifies residues
involved in ligand recognition in the human
A2a adenosine receptor. J Biol Chem
270:13987–13997

18. Jiang Q, Rhee AM v, Kim J et al (1996) Hydro-
philic side chains in the third and seventh trans-
membrane helical domains of human A2A
adenosine receptors are required for ligand rec-
ognition. Mol Pharmacol 50:512–521

GPCR Modelling and SDM 343

http://www.compbiomed.eu/
https://doi.org/10.1016/S0165-6147(00)01678-3
https://doi.org/10.1016/S0165-6147(00)01678-3
https://doi.org/10.1124/pr.110.003285.1
https://doi.org/10.3389/fphar.2015.00082
https://doi.org/10.3389/fphar.2015.00082
https://doi.org/10.1016/j.jmb.2011.03.075
https://doi.org/10.1124/mol.116.105007
https://doi.org/10.1124/mol.116.105007
https://doi.org/10.1016/S0163-7258(99)00051-0
https://doi.org/10.1016/S0163-7258(99)00051-0
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1038/nature18966
https://doi.org/10.1038/nature18966
https://doi.org/10.1016/S1043-9471(05)80049-7
https://doi.org/10.1016/S1043-9471(05)80049-7
https://doi.org/10.1006/jmbi.2000.4042
https://doi.org/10.1006/jmbi.2000.4042
https://doi.org/10.1016/S0076-6879(03)74020-8
https://doi.org/10.1016/S0076-6879(03)74020-8
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1111/bph.13509
https://doi.org/10.1111/bph.13509


Chapter 16

Computational Support of Medicinal Chemistry
in Industrial Settings

Daniel F. Ortwine

Abstract

The practice of computational chemistry in an industrial setting poses unique opportunities and challenges.
Industrial computational chemists must manage large amounts of data, master modeling software, write
scripts to perform custom calculations, and stay abreast of scientific advances in the field. Just as impor-
tantly, because computational chemists are full partners in the drug discovery effort at companies, in order
to influence and streamline the drug discovery process, they must communicate effectively with medicinal
chemists and other scientists to deliver results of their calculations in a timely fashion. The skills necessary to
play this role require education that emphasizes a combination of chemistry, programming, and communi-
cation skills. Professors are encouraged to incorporate such training in their curriculum.

Key words Computational chemistry, Industry, Integration, Education, Data, Environment

1 Introduction

Computational chemistry clearly has come of age, taking its place
alongside organic, medicinal, analytical, and biophysical chemistry
as a mainstream discipline in the support of drug discovery. Phar-
maceutical and biotechnology companies have universally adopted
computational approaches to accelerating drug discovery, and vir-
tually all have individuals or groups dedicated to these tasks. There
are several reasons why computational chemistry has remained in
the forefront. Biological targets have become more challenging to
prosecute as companies attempt to tackle traditionally difficult
problems, such as inhibition of protein-protein interactions.
There is an ever-increasing avalanche of biological, structural, and
other data to manage, integrate, and interpret. Scientific advances
in the field continue apace, resulting in an ever-increasing ability to
accurately forecast physical and biological properties of small mole-
cules ahead of synthesis. Computational horsepower, particularly
the availability of fast graphics processing units (GPUs) and cloud
computing, continues to rapidly increase, allowing large-scale
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calculations such as molecular dynamics simulations to be per-
formed in a fraction of the time they used to take. Finally, medicinal
chemists have become increasingly computer savvy. Many have
received some training in schools in computational chemistry tech-
niques, and are in general interested in applying these techniques in
their drug design decision making.

Industrial computational chemistry presents unique opportu-
nities and challenges. Industrial computational chemists are
expected to be fully integrated, collaborative project team mem-
bers, driving analyses, generating hypotheses, and designing com-
pounds and other experiments. They are expected to understand all
aspects of their project, from all the data, to how assays are per-
formed, structural biology, biophysical approaches, journal and
patent literature, etc. This is an exciting opportunity for industrial
computational chemists, as they get to help drive and not just
support a drug discovery team, with a chance of seeing their proj-
ect(s) progress to human clinical trials. This is rarely possible in
academia. Finally, industrial computational chemists gain experi-
ence from multiple projects and are therefore well-positioned to
identify or develop new computational approaches to improve how
drugs are discovered. Specific opportunities and challenges can be
divided into broad categories related to data, science and technol-
ogy, environment, integration, collaboration, and education. Each
will be covered in sections below.

1.1 Data Unlike typical academic settings where data may be available for a
limited number of compounds, the average industrial drug discov-
ery project involves multiple results on hundreds to thousands of
compounds. Data are generated from in vitro assay experiments on
the biological target of interest or specific off-targets, cellular
assays, and in vivo pharmacology experiments in animals. There is
frequently panel screening done against a wide variety of enzymes
and receptors to assess selectivity. Physiochemical measurements
such as log P, solubility, and pKa are obtained. Many compounds
undergo pharmacokinetic evaluation for hepatic stability, perme-
ability, plasma protein binding, and other endpoints. Safety (i.e.,
toxicity) data may also be available. A number of small molecule
and protein Xrays are often available to support structure-based
drug design analyses. As a result, a substantial fraction of an
industrial computational chemist’s time is consumed by data man-
agement, from ensuring timely results are available to the project
teams they support in an easy-to-consume format, to providing
insightful analyses on that data to help drive decision making on
what molecules to synthesize next.

1.2 Science

and Technology

Computational chemistry as a field continues to evolve. Techniques
such as free-energy perturbation calculations [1, 2] and deep
learning [3] technology are two that have been at the forefront
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recently. In the competitive industrial pharmaceutical environment,
it is important to stay abreast of developments in the field to ensure
state-of-the-art methods are being applied. Industrial computa-
tional chemists are also bombarded with vendors trying to sell
their software that run the latest and greatest calculations. One
must pick and choose which techniques to invest time in evaluating,
efficiently determining if the approach is worth pursuing in depth.
This must be done while continuing to support therapeutic pro-
jects, so efficient time management for an industrial computational
chemist is a must. Having direct access to data and technology
coupled to the needs of project teams provides the industrial
computational chemist with a unique perspective to assess gaps in
science and technology. They can and do devote effort themselves,
or work with vendors, to develop new scientific or technological
approaches to address those gaps. Having access to significant
internal datasets permits the industrial computational chemist to
validate and compare third party scientific methods, for example to
compare free energy perturbation methods for calculating free
energy of binding against experimentally determined values.

1.3 Environment The pharmaceutical industry continues to be a highly competitive
business. The target or even chemical series being targeted by one
company is probably also being pursued by others. Unlike an
academic setting where one might analyze a certain aspect of a
protein-ligand interaction in detail by applying a number of
computational techniques, the need to rapidly prosecute chemical
series into a clinical candidate molecule (or a reach a no-go deci-
sion) means an industrial computational chemist must be able
identify the key issues at hand and rapidly bring to bear computa-
tional tools to address those issues. Tools must be employed to
rapidly deliver results in a timeframe that can impact a rapidly
moving project. One must also maintain an up-to-date awareness
of developments in the field against the biological target of interest
by tracking the literature (including patents) and attending confer-
ences. Being first in class to the clinic means a lot to a pharmaceuti-
cal company.

1.4 Integration With access to multiple sources of data and technology in industry,
putting it all together in a form readily accessible to chemists and
other scientists on the project team is essential. Three-dimensional
X-ray and modeling information must be combined with potency
and other data by making all available inside in a unified interface to
permit all aspects of molecules’ and chemical series’ behavior to be
considered when determining trends and what to synthesize next.
Tracking virtually designed compounds, along with the reasons
they were suggested for synthesis, is important [4]. Once tested,
one learns if the hypothesis for the synthesis was correct or wrong
by returning to the tracking tool to see what idea was being tested,
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and then moving on to the next design hypothesis. Most large
pharmaceutical companies have developed internal statistical mod-
els to predict experimental properties such as log D, solubility,
microsomal stability, and project-specific potency. Integration of
these predictions into molecular modeling software is important
and a focus in the industrial arena. Publications on these efforts
have recently appeared [9, 10].

1.5 Collaboration In academia, one might interact with a co-investigator or two, a
handful of students, and perhaps an individual from an industrial
collaborator. Academic drug discovery occurs in a fairly insulated
environment. In industry, computational chemists are immersed in
a highly collaborative environment. They interact with medicinal
chemists, biochemists, biologists, and colleagues from structural
biology, bioinformatics, formulations, pharmacokinetics, safety
assessment, and legal representatives on a regular basis. A majority
of companies employ external contract research organizations
(CROs) to perform chemical syntheses and experiments. A few
engage their CROs in true medicinal chemistry collaborations,
expecting the CRO to provide insightful data analyses and com-
pound designs. Drug design typically occurs in dynamic team set-
tings, often at a distance via teleconferences. This puts a premium
on teamwork, active listening, and clear communication skills. An
insightful design or analysis, if poorly communicated, may be
missed.

Training is an important part of effective collaboration. In
industry, training in the use and interpretation of models, whether
they are docking paradigms, quantum chemical calculations,
dynamics simulations, or statistical models, is essential. A computa-
tional model that is poorly understood by a medicinal chemist will
be rarely used. Training in the use of software is also paramount.
Most companies deploy computational techniques to the desktops
of their medicinal chemists and other scientists. Part of the compu-
tational chemist’s job is to ensure that deployed techniques being
deployed are properly used and results appropriately interpreted
and presented.

1.6 Education Most medicinal chemists perform their own docking and scoring,
and are becoming proficient in understanding physical organic
chemistry principles. The environment is waning where the compu-
tational chemist is asked to dock a chemist’s idea and pass judge-
ment on it, or explain existing structure-activity relationships in
terms of protein-ligand interactions. Concurrently, new scientific
methodology is constantly being developed that requires integra-
tion into a company’s infrastructure. Industrial computational che-
mists are expected to be able to script, know modeling software,
and perhaps generate statistical models. Just as importantly, they
need to be able to communicate the results of their modeling
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clearly and effectively, working in a team setting toward the goal of
delivering a clinical candidate molecule. As a result, pharmaceutical
and biotech companies now actively seek candidates with chemistry,
drug design, informatics, and programming backgrounds. In fact,
many smaller companies have just a single individual that fill all
these roles.

Unfortunately, in today’s academic environment, programs
that emphasize this combination of chemistry, programming, and
communication skills are hard to find, leading to a shortage of
qualified candidates. Companies such as Genentech and Novartis
have active computational chemistry summer intern and postdoc-
toral programs that can fill some of this gap. Students are encour-
aged to seek out schools with such training, and universities are
encouraged to offer such diversity in their coursework.

2 Conclusions and Perspective

Synthesizing and testing molecules is expensive and time consum-
ing. It is estimated that the largest portion of the preclinical devel-
opment cost of a drug comes from these activities, due to the large
number of molecules that must be made to find a clinical candidate
[5]. Computational chemistry plays a central role in the goal of
making an informed decision about what molecules to make next,
and to learn something from the results on each molecule synthe-
sized. The field continues to evolve, as does the industrial compu-
tational chemistry environment along with it. Working in industry
poses a unique set of advantages and challenges. Having access to a
wealth of data requires knowledge of how to organize, store,
report, and analyze it. One must keep abreast of new developments
in the field while developing and testing new internal scientific
capabilities. Add in the task of supporting therapeutic projects
produces a job description that requires excellent timemanagement
and prioritization skills.

Industrial computational chemistry groups are well integrated
in the drug discovery teams throughout the pharmaceutical indus-
try. For more information, a perspective on the organization and
function of a number of computational chemistry groups in indus-
try can be found in a special issue of the Journal of Computer-Aided
Molecular Design [6], including a description of how the Compu-
tational Drug Discovery group at Genentech functions [7]. Indus-
trial computational chemistry groups require individuals with drug
design, modeling, as well as programming (or at least scripting)
skills. Students considering a career in industrial computational
chemistry are advised to consult Chapter 16 in a recently published
book [8], in which considerations when deciding on a career in this
field are described. It is suggested that more schools and professors
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train students in chemistry, drug design, programming, and oral/
written communication skills, as there is a bright future and
continued strong demand for such multitalented individuals.
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2. Kuhn B, Tichý M, Wang L, Robinson S, Mar-
tin RE, Kuglstatter A, Benz J, Giroud M,
Schirmeister T, Abel R, Diederich F, Hert J
(2017) Prospective evaluation of free energy
calculations for the prioritization of Cathepsin
L inhibitors. J Med Chem 60:2485–2497.
https://doi.org/10.1021/acs.jmedchem.
6b01881

3. Gawehn E, Hiss JA, Schneider G (2016) Deep
learning in drug discovery. Mol Inform
35:3–14. https://doi.org/10.1002/minf.
201501008

4. Lee M-L, Aliagas I, Dotson J, a Feng J,
Gobbi A, Heffron T (2012) DEGAS: sharing
and tracking target compound ideas with exter-
nal collaborators. J Chem Inf Model
52:278–284. https://doi.org/10.1021/
ci2003297

5. Paul SM, Mytelka DS, Dunwiddie CT, Per-
singer CC, Munos BH, Lindborg SR, Schacht
AL (2010) How to improve R&D productiv-
ity: the pharmaceutical industry’s grand

challenge. Nat Rev Drug Discov 9:203–214.
https://doi.org/10.1038/nrd3078

6. Warr WA (2017) A CADD-alog of strategies in
pharma. J Comput Aided Mol Des
31:245–247. https://doi.org/10.1007/
s10822-017-0017-6

7. Tsui V, Ortwine DF, Blaney JM (2016)
Enabling drug discovery project decisions
with integrated computational chemistry and
informatics. J Comput Aided Mol Des
31:1–5. https://doi.org/10.1007/s10822-
016-9988-y

8. Miller SM, Moos WH, Munk BH, Munk SA
(2016) Managing the drug discovery process:
how to make it more efficient and cost-
effective. Woodhead Publishing, Elsevier,
United Kingdom

9. Feng JA, Aliagas I, Bergeron P, Blaney JM,
Bradley EK, Koehler MFT, Lee M-L, Ortwine
DF, Tsui V, Wu J, Gobbi A (2015) An
integrated suite of modeling tools that
empower scientists in structure- and property-
based drug design.J Comput Aided Mol Des
29(6):511–523

10. Lee M-L, Aliagas I, Feng JA, Gabriel T,
O’Donnell TJ, Sellers BD, Wiswedel B, Gobbi
A (2017) chemalot and chemalot_knime:
Command line programs as workflow tools
for drug discovery. J Chem Inf 9(1)

350 Daniel F. Ortwine

https://doi.org/10.1016/j.sbi.2016.10.007
https://doi.org/10.1021/acs.jmedchem.6b01881
https://doi.org/10.1021/acs.jmedchem.6b01881
https://doi.org/10.1002/minf.201501008
https://doi.org/10.1002/minf.201501008
https://doi.org/10.1021/ci2003297
https://doi.org/10.1021/ci2003297
https://doi.org/10.1038/nrd3078
https://doi.org/10.1007/s10822-017-0017-6
https://doi.org/10.1007/s10822-017-0017-6
https://doi.org/10.1007/s10822-016-9988-y
https://doi.org/10.1007/s10822-016-9988-y


Chapter 17

Investigating Small-Molecule Ligand Binding to G Protein-
Coupled Receptors with Biased or Unbiased Molecular
Dynamics Simulations

Kristen A. Marino and Marta Filizola

Abstract

An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important—albeit
static—pictures of how small molecules or peptides interact with their receptors. These high-resolution
structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture
atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding
and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better
drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of
small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches.

Key words Molecular dynamics, Ligand binding, Small-molecule drugs, GPCRs, Enhanced-sampling
methods, Interaction fingerprints, Allosteric communication

1 Introduction

One of the main challenges of developing novel small molecules
which target G protein-coupled receptors (GPCRs) is that these
proteins are highly dynamic and exist in an ensemble of conforma-
tions rather than single inactive and activated states. While the
dynamics of GPCRs represent a challenge for the discovery of
novel ligands using traditional methods of computer-aided drug
discovery (CADD), they also represent an opportunity to develop
improved therapeutics by virtue of exploiting them to achieve
functional selectivity. Increases in computing power and advance-
ments in parallelization of molecular dynamics (MD) simulations,
as well as the application of enhanced sampling algorithms, have led
to the increasing use of these approaches to capture, at an atomic
level of detail, dynamical processes such as ligand binding and
ligand-induced conformational changes in the receptor. When con-
sidering the ensemble of conformations in which GPCRs exist,
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docking into an available crystal structure may not be able to
capture the correct binding pose of a ligand, especially one that is
chemically different from the cocrystallized ligand. This is even
more true for allosteric ligands, which bind to a site other than
the canonical orthosteric binding site, where endogenous ligands
normally bind. As this site typically corresponds to variable and
flexible loop regions, the bound conformation of an allosteric
ligand may not be readily identified from a crystal structure with
only an orthosteric ligand. For instance, while a positive allosteric
modulator (PAM) was found to be bound at the extracellular side
of the M2 muscarinic receptor crystal structure (PDB: 4MQT [1]),
the negative allosteric modulators (NAMs) cocrystallized with the
chemokine receptors CCR9 (PDB: 5LWE [2]) and CCR2 (PDB:
5T1A [3]) were found at the intracellular side. Notably, allosteric
GPCR ligands are of great interest from a drug discovery perspec-
tive due to their expected greater subtype selectivity, their ability to
maintain temporal and spatial characteristics of endogenous signals,
and their potentially limited on-target overdosing risks [4].

Another hallmark of GPCRs that can be particularly useful for
drug discovery is their ability to mediate several signaling pathways
due to possible activation of various intracellular proteins, including
G proteins and β-arrestins. Although functionally selective ligands
may, in principle, bind to the orthosteric binding site, they are
capable of inducing changes in the receptor conformation which
lead to the activation of selected signaling pathways, thereby separ-
ating beneficial from adverse side effects. For example, the observa-
tion that analgesic properties of opioids are mostly due to the
activation of the G protein signaling pathway while signaling
through the β-arrestin pathway leads to adverse side effects, includ-
ing constipation, tolerance, and respiratory depression, led to the
development of the G protein-biased agonist TRV-130, which is
currently in clinical trials for FDA approval [5].

MD simulations have been used by our group [6–8] and others
(e.g., [9–11]) to answer two key questions with respect to func-
tionally selective and allosteric ligands targeting GPCRs: (1) what
are the energetically preferred binding pathways and modes of
ligand binding, and (2) how does the ligand transfer information
from the ligand binding site to the intracellular side of the receptor?
The ability of long timescale, unbiased MD simulations to predict
the crystallographic binding pose of a small molecule, as well as to
characterize its binding pathway to a GPCR crystal structure, was
first shown for the binding of several beta blockers to the β2 adren-
ergic receptor (β2AR) [10]. Long unbiased MD simulations have
recently been used to predict poses of TRV-130 to the μ-opioid
receptor (MOR) [7], allosteric ligands to the M2 muscarinic recep-
tor (M2) [9], andML056 to the sphingosine-1-phosphate receptor
1 (S1P1R) [12]. We pioneered the use of metadynamics [13] to
study ligand binding to GPCRs [14] and have recently used this
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enhanced MD algorithm to predict the binding pose of a PAM,
BMS-986187, to the δ-opioid receptor (DOR) [8], as well as
kurkinorin, a G protein-biased agonist, to MOR [6]. Notably, our
experimentally validated allosteric binding site of BMS-986187 at
DOR [8] was not similar to any of the top-ranked poses from
docking with Glide XP version 6.2 [15]. While accelerated MD
(aMD) [16] was able to characterize the binding of the partial
agonist arecoline and the agonist acetylcholine to the M3 musca-
rinic receptor [17], neither aMD [17] nor unbiased MD simula-
tions [11] were able to recapitulate the crystallographic binding
pose of the much larger and flexible antagonist tiotropium to M3,
which shows that there are still limitations to these methods.

While the determination of the binding pose and binding
pathway is a crucial part of understanding how ligands and recep-
tors interact, understanding how information is communicated
between the binding site and intracellular parts of the receptor is
also necessary. The dynamical information derived from MD simu-
lations can lead to the identification of the specific GPCR residues
and ligand-receptor interactions that are responsible for this allo-
steric transmission (see e.g. [7, 18, 19]). This information is likely
to impact the design of allosteric ligands which modulate the action
of endogenous ligands, as well as functionally selective ligands that
only activate desired therapeutic pathways.

Here, we discuss the computational methods that we used to
predict energetically preferred binding poses of two functionally
selective ligands, TRV-130 [7] and kurkinorin [6], and an allosteric
ligand, BMS-986187 [8], as well as the analysis that led us to
identify interesting allosteric communication differences in MOR
between the classical unbiased agonist morphine and the G protein-
biased agonist TRV-130 [7].

2 Materials

While there are many alternatives, the software and web-servers
that we have used to set up, run, and analyze the MD simulations
discussed here are described below. Most of the software listed
below is available free of charge to academic researchers.

1. Crystal structures of GPCRs frequently require modifications
(e.g., adding hydrogens) before they can be used in simula-
tions. If the crystal structure is missing loops and/or side-
chains, they can be added using modeling software packages
such as MODELLER [20] or ROSETTA [21].

2. Once the protein structure is complete, it needs to be embed-
ded in a membrane. The CHARMM-GUI webserver
(charmm-gui.org) [22] is very user friendly and can be used
to build membranes of many different compositions. An
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alternative is to use a tool known as InflateGRO2 [23], which
can automatically and efficiently embed the receptor in a
pre-equilibrated membrane.

3. In most cases, the parameters of a small-molecule ligand are not
readily available in standard force fields and need to be gener-
ated by the user in a manner that is consistent with the force
field used to describe the protein and lipids (see Note 1). We
generally use the CHARMM force field and generate initial
ligand parameters using the CHARMM General Force Field
(CGenFF) webserver (cgenff.paramchem.org [24, 25]). The
parameters must be validated according to the procedures
described in [26]. Validation requires performing quantum
mechanics calculations, which we usually carry out with Gauss-
ian for which a license must be purchased.

4. There are several software packages available to perform MD
simulations. We frequently use GROMACS [27] or NAMD
[28], which are both freely available (see Note 2). Metady-
namics simulations can be implemented in either of these
packages using the PLUMED plug-in [29].

5. Two programs that can be used to visualize structures and
trajectories from MD simulations are VMD [30] and PyMOL
[31]. Postprocessing and simulation analysis can be performed
with GROMACS tools and in-house scripts. We typically use
the PyEMMA python library [32] to construct Markov State
Models (MSMs).

3 Methods

3.1 Protein Setup In our recently published work, we used the crystal structures of the
inactive DOR (PDB: 4N6H [33]), inactive MOR (PDB: 4DKL
[34]), and activated MOR (PDB: 5C1M [35]) (see Note 3). First,
with the exception of the crystallographic waters, the non-receptor
atoms, including the ligands, lipids, and some of the proteins
required for crystallization (BRIL for DOR and T4L for inactive
MOR), were removed. Many crystal structures of GPCRs are miss-
ing segments of intracellular or extracellular loops that are too
flexible to be resolved crystallographically or were removed to
insert fusion proteins necessary for crystallization. These segments
such as most of the intracellular loop 3 (ICL3) missing from the
inactive MOR crystal structure (PDB: 4DKL [34]), need to be
built ab initio or modeled by homology using an available, close
template structure, as a reference. In our recently published studies,
we used MODELLER to perform homology modeling of MOR
ICL3 based on the corresponding segment in the ultra-high-
resolution DOR crystal structure (PDB: 4N6H [33]) (see Notes
4 and 5). To crystallize activated forms of GPCRs, G protein
mimetic nanobodies have been used to maintain the
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conformational changes on the intracellular side of the receptor
that accompany receptor activation. We retained the nanobody
cocrystallized with the MOR activated crystal structure in simula-
tions of TRV-130 binding to avoid deactivation of the receptor
while the ligand was still in the bulk, but removed it in simulations
where we studied allosteric communication in MOR induced by
TRV-130 or morphine [7].

Once the protein construct to be simulated is complete, it
needs to be embedded in a membrane and solvated. Since choles-
terol (CHOL) is an integral part of the plasma membrane, we
typically use a membrane with a 1-palmitoyl,2-oleoyl-sn-glycero-
3-phosphocholine (POPC)/10%CHOL composition. A user-
friendly way to construct the protein/membrane/solvent system
is to use the MEMBRANE BUILDER module [36] of the
CHARMM-GUI [22], which can output input files for several
MD packages [37], including GROMACS, CHARMM, and
NAMD.

The final step is to equilibrate the system. First, we typically
perform an energy minimization to remove steric clashes. Then, we
equilibrate the system in a constant-temperature, constant-pressure
(NPT) ensemble at 300 K and 1 bar to equilibrate the box size. To
ensure stability of the system it is generally best to start by placing
position restraints on the heavy atoms of the lipids and protein, and
reduce the position restraints in stages by changing the force con-
stant (e.g., k ¼ 1000, 500, 100, and 50 kJ/mol/nm2). Finally, we
typically perform an NPT run without position restraints.

3.2 Trajectory

Generation

with Unbiased MD

To generate binding trajectories and identify the bound pose(s) of
ligands, we have used two approaches in recently published works:
(1) long-timescale MD and (2) multiple-walker metadynamics.
Here, we discuss how to set up and run these types of simulations.

Normally, unbiased MD is unable to capture the timescale on
which GPCR ligand binding from the bulk occurs, but thanks to
specially designed hardware, e.g., D. E. Shaw Research’s Anton
supercomputer [38], this problem is partially alleviated. To further
enhance the probability of ligand binding, the concentration of the
ligand is increased in the simulation box instead of only using one
molecule. For example, we added ten TRV-130 molecules to our
recently published simulations [7]. They can be manually placed in
the simulation box using PyMOL [31] at a distance of at least 1 nm
from the receptor. Multiple copies of the system need to be created
to further enhance the probability of a binding event. In the case of
TRV-130, eight starting conformations were generated by ran-
domly assigning initial velocities. The individual MD trajectories
can be run until a binding event occurs or when all ligands are
bound to the membrane. Once a ligand binds to the membrane it is
unlikely to be released back into the bulk during typical timescales
of ligand binding (several microseconds on Anton). For the
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recently published TRV-130 simulations, the initial eight simula-
tions were run for between 1 and 8.4 μs each (39.10 μs total)
[7]. Despite initiating eight trajectories, binding of TRV-130 at
the orthosteric site only occurred in one trajectory, which was not
sufficient to derive conclusions about the sampled binding pathway
and adopted ligand bound poses. To enhance sampling, new tra-
jectories were started from conformations in which the ligand was
not in the orthosteric site but was at a bound position along the
binding pathway. This second set of 25 simulations were run for
between 0.2 and 1.0 μs each (5.15 μs total) and resulted in eight
additional binding events.

3.3 Trajectory

Generation

with Multiple Walker

Metadynamics

A more computationally efficient method of identifying ligand
binding pathways and binding poses is to use metadynamics,
which applies a history-dependent bias term on collective variables
(CVs) to enhance the sampling of rare transitions [13]. The CVs,
which are defined by the user, should account for the slow degrees
of freedom of the system and must be able to distinguish between
states. Multiple walker metadynamics [39] increases the efficiency
of metadynamics by running several copies of the system in parallel.
For the recently published simulations of the binding of BMS-
986187 to DOR [8], two CVs were biased: (1) the distance
between the centers-of-mass of the transmembrane (TM) bundle
of the protein and the heavy atoms of the ligand and (2) a measure
of the polar and hydrophobic contacts formed between the ligand
and receptor sidechains. CV2 was defined as:

X
Ligand
Polar

X
Receptor
Polar

1� rij=r0
� �6

1� rij=r0
� �12 þ

X
Ligand

Hydroph:

X
Receptor
Hydroph:

1� rij=r0
� �6

1� rij=r0
� �12

where rij is the distance between the atoms of the ligand and the
receptor and r0was set to 5 Å. The same two CVs were biased in our
recently published simulations which predict the binding pose of
kurkinorin [6]. While the starting configuration of the walkers
should be independent of the final results, sampling is more effi-
cient if each walker starts from a different initial structure, including
structures in which the ligand is in the orthosteric binding site as
well as in the bulk. An easy way to generate the starting structures is
to perform a metadynamics simulation in which only CV1 is biased.
To restrict sampling of the ligand in the bulk to the area of interest
(i.e., close to the protein) and prevent the ligand from binding to
the membrane, limits can be placed on the xy-position of the ligand.

Since all replicas in multiple-walker metadynamics experience a
bias, the trajectories must be reweighed to recover the Boltzmann
distribution using, for instance, the method developed by Tiwary
et al. [40]. The reweighting procedure can also be used to recon-
struct the free-energy surface as a function of other CVs to aid in
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discriminating between ligand binding poses, which have similar
values of CV1 and CV2 but different orientations with respect to
the receptor. For the simulations of the PAM binding to DOR,
CV3 was defined as the z-component of a vector connecting centers
of mass of the tricyclic moiety (green in Fig. 1) and the ortho-
substituted benzyl ring (purple in Fig. 1) while CV4 was simply the
xy-component of CV1. The 4-D free energy surface was then
divided into microstates by dividing each CV into 75 bins. Only
those microstates with energies less than 5 kJ/mol were included in
further analysis.

3.4 Clustering

to Identify the Binding

Pose and Metastable

States

To determine representative poses of the bound ligand and meta-
stable states, the poses sampled during the simulations are clus-
tered. In recently published work [6–8], we have used two types of
interaction fingerprints, which describe the interactions between
the ligand and the receptor. The first considers the number and
type of ligand-receptor interaction with the interaction type classi-
fied as hydrophobic, polar, or aromatic. The polar interactions can
be direct, between the ligand and the receptor in which the receptor
is either the H-bond donor or acceptor, or water-mediated, in
which one water molecule interacts with both the ligand and recep-
tor at the same time. The aromatic interactions are divided into
π-cation, edge-to-face, and edge-to-edge interactions. In the sec-
ond type of interaction fingerprint, the ligand is divided into frag-
ments and the interactions between the fragments and receptor
residues are clustered regardless of the type of interaction. For
example, TRV-130 was split into four fragments [7]: (1) the
methoxy-thiophene moiety, (2) the pyridine, (3) the 6-oxaspiro

Fig. 1 The structure of BMS-986187, a DOR PAM, for which multiple-walker
metadynamics was used to predict the binding pose at an allosteric site on DOR.
The parts of the ligand which were used to calculate CV3 are the tricyclic moiety
(green) and the ortho-substituted benzyl ring (purple). Adapted with permission
from Shang Y, Yeatman HR, Provasi D, Alt A, Christopoulos A, Canals M, Filizola
M (2016) Proposed mode of binding and action of positive allosteric modulators
at opioid receptors. ACS Chemical Biology 11(5):1220–1229. Copyright 2016
American Chemical Society
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[4.5]decan-9-yl, and (4) the amine moiety (see Fig. 2). Sometimes,
the definition of which interactions to cluster needs to be extended
based on the problem of interest. For example, since we were only
interested in defining the binding pose of kurkinorin [6], only the
interactions between the ligand and receptor were considered. In
the case of TRV-130, we were interested in the full binding path-
way so interactions between the ligand and lipid headgroups were
considered in addition to those between the ligand and the receptor
since the ligand spent some time outside the extracellular vestibule.
Finally, when determining the binding poses of the PAM BMS-
986187 to DOR [8], the interactions between the PAM and the
orthosteric ligand SNC-80 were also considered since they could
come into contact. Using the Tanimoto dissimilarity coefficient as
the distance metric, we then apply a density-based spatial clustering
of applications with noise (DBSCAN) [41] algorithm to perform
the clustering. This is our currently preferred method since it does
not require the user to input the desired number of clusters as is
necessary, for instance, in k-means clustering. Finally, the free
energy of each cluster is calculated to determine which is the lowest
energy ligand binding pose. The energy is directly proportional to
the population of each cluster for unbiased simulations, but in the
case of the metadynamics simulations, the free energy of a cluster α
is calculated as

F α tð Þ ¼ �kBTlog

Z
α
dsexp �F s; tð Þ

kBT

� �
þ kBT logZ

where s is a microstate within cluster α and Z is the partition
function.

Fig. 2 Structure of TRV-130 which shows the four fragments into which the
structure was broken to compute the interaction fingerprints to identify the
ligand bound pose and metastable sites along the binding pathway: (1) the
methoxy-thiophene moiety (yellow), (2) the pyridine moiety (green), (3) the
6-oxaspiro[4.5]decan-9-yl moiety (purple), and (4) the amine moiety (orange).
Adapted with permission from Schneider S, Provasi D, Filizola M (2016) How
oliceridine (TRV-130) binds and stabilizes a mu-opioid receptor conformational
state that selectively triggers G protein signaling pathways. Biochemistry
55 (46):6456–6466. Copyright 2016 American Chemical Society
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3.5 Characterizing

Pathway Connectivity

Markov state models (MSM) can be used to derive kinetic informa-
tion from MD simulations and are useful in characterizing transi-
tions between states. While our simulations of TRV-130 binding
[7] were not comprehensive enough to derive converged rate con-
stants, we applied the PyEMMA python library [32] to determine
likely transitions between identified metastable states (see Note 6).
An alternative set of libraries for the construction of MSMs is
MSMBUILDER [42].

A very extensive set of simulations totaling 831 μs was recently
carried out by Stanley et al. [12] to examine the kinetics of binding
of ML056 to S1P1R. Specifically, a first set of 1000 trajectories
totaling 579 μs was followed by two iterations of trajectory
respawning to increase sampling of binding events. From the
kinetic model, the simulations were able to show that the rate-
limiting step of the binding of ML056, which occurs via the
membrane, corresponds to entry into the vestibule region of the
receptor and not to movement into the orthosteric site, an obser-
vation that is consistent with the work by Dror et al. [10].

3.6 Allosteric

Communication

Between

the Orthosteric Ligand

Binding Site

and the Intracellular

Side of the Receptor

While a comparison of the inactive and activated crystal structures
of GPCRs can provide some clues as to how communication can
travel from the orthosteric binding site to the intracellular side of
the receptor, the use of computational analysis methods based on
MD simulations of these crystal structures allows an assessment of
these communication pathways based on dynamics. Extracting rel-
evant allosteric pathways from simulations of proteins is a long-
standing problem and a number of approaches have been
developed (see e.g. [43–45] for reviews of these methods). Such
methods have been applied to study various GPCRs, including the
A2A-adenosine receptor [46], β2AR [18], dopamine receptors [47],
luteinizing hormone receptor [48], MOR [7], rhodopsin [49, 50],
and 5HT2A serotonin receptor [51, 52].

We recently applied the N-body Information Theory (NbIT)
analysis [53] of LeVine and Weinstein to study the allosteric com-
munication between the MOR orthosteric binding site and the
intracellular end of the receptor, in the presence of bound TRV-
130 or bound morphine. NbIT provides a more detailed picture of
allosteric communication because it is determined using an infor-
mation theory-based analysis of N-body correlated motions derived
from the configurational entropy of the system rather than simply
pairwise atomic fluctuation correlations from MD.

To compare the allosteric communication between morphine
bound to the activatedMOR crystal structure and TRV-130 bound
to activated MOR, we performed three 1 μs simulations for each
ligand/MOR complex. While the nanobody used to crystallize
activated MOR was retained in the simulations of TRV-130 bind-
ing, it was removed to study MOR communication in order to
ensure we captured the communication in the receptor due to only
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the bound ligand. The first step was to define two sets of residues,
the “transmitting” (T) region and the “receiving” (R) region. The
T residues were selected as those within 5 Å of the ligand in the
initial conformation of the ligand-protein complex. The selected R
residues were those within 5 Å of the nanobody in the activated
MOR crystal structure. Within the NbIT formalism [53], the
mutual information (MI) between the T and R residues is defined as

MI T ;Rð Þ ¼ H Rð Þ þH Tð Þ �H R [ Tð Þ
where H is the configurational entropy of the residues in the set X
(either R or T).

H Xð Þ ¼ 1

2
ln 2πejCMjð Þ

Here, CM is the covariance matrix for all of the heavy atoms in
the corresponding R or T region.

Furthermore, the co-information for the R and T regions,
given the channel (C), is

CI R;T ;Cð Þ ¼ MI R;Tð Þ �MI R;T jCð Þ
in which the last term is the conditional mutual information,

MI R,T jCð Þ ¼ H RjCð Þ þH T jCð Þ �H R,T jCð Þ:
To determine the contribution of a specific residue in the

C region, the CI is calculated with that residue removed from the
C region and then normalized by the MI between the T and R
regions, MI(T,R). For further details on the NbIT method, please
see Ref [53]. From the NbIT analysis, we were able to deduce key
differences in the allosteric communication between morphine
bound to MOR and TRV-130 bound to MOR [7].

4 Notes

1. It is important to ensure that ligands are parameterized with
the same force field one is using for the protein and lipids to be
simulated. A ligand parameterized with CGenFF cannot be
used with the AMBER force field and vice-versa.

2. Some of the TRV-130 simulations discussed here were per-
formed on the Anton supercomputer [38] at the Pittsburgh
Supercomputing Center for which a very specific simulation
setup is required.

3. Since an activated structure of DOR has not been solved yet,
we elected to use the receptor’s inactive crystal structure to
simulate the binding of BMS-986187 to DOR. Also, at the
time we started the kurkinorin simulations, the activated MOR
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crystal structure was not available yet, requiring us to use the
receptor’s inactive structure. A comparison of the orthosteric
binding sites of the inactive and activated MOR crystal struc-
tures shows that they are very similar, and we expect the same
to be true for DOR.

4. In some cases, e.g., the muscarinic receptor, the missing loops
from crystal structures are very long and we typically choose
not to add them to the structure to be simulated. Instead the
ends of the helices are capped.

5. When preparing the opioid receptor structures to simulate, we
chose to remove the N-terminal fragment that is present in the
activated MOR [35] and inactive DOR [33] crystal structures.
The high flexibility of these fragments and the inability to
sample their conformations thoroughly make the study of
ligand binding more challenging in their presence than
without them.

6. Building a MSM requires the selection of parameters (e.g., lag
time, number of macrostates) which are dependent on the
system of interest. Please see the documentation and tutorials
on the http://emma-project.org webpage for more details.
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Chapter 18

Ligand-Based Methods in GPCR Computer-Aided
Drug Design

Paul C.D. Hawkins and Gunther Stahl

Abstract

This chapter describes two powerful 3D ligand-based shape similarity and scoring methods called ROCS
and EON, their basic operation and selected validation data. The steps required to prepare a database of
molecules for successful use with ROCS and EON are described and selected examples of their application
in prospective lead discovery experiments are summarized.

Key words Lead discovery, Shape similarity, OMEGA, ROCS, EON, LBLD

1 Introduction

In recent years, virtual screening or computational lead discovery
has become an important part of the armamentarium of modern
drug discovery [1]. Much of the drive to use virtual screening
(VS) or computational lead discovery (CLD) has arisen from
increased pressure to put more compounds into the development
pipeline and to reduce the costs of getting suitable compounds to
this point. Experimental high-throughput screening (HTS) can be
expensive and time-consuming [2], so computational methods for
lead identification have become a routine part of drug discovery.
Given that the time and costs associated with HTS can be substan-
tially reduced by correctly applied CLD, a great many methods have
been developed. They can be broadly divided into ligand-based
lead discovery (LBLD) and structure-based lead discovery (SBLD).

Ligand-based methods offer a number of advantages over
SBLD; they are usually much less computationally intensive, they
require less user input to correctly set up and, perhaps most impor-
tantly, they do not require an atomic resolution structure of the
target protein of interest in order to be used successfully. In cases
where structural information is available LBLD and SBLDmethods
can often be productively used together [3]. However, even with
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the exponential increase in the number of protein structures avail-
able in internal collections and publicly in the PDB [4] there are
many targets without structural characterization (many GPCRs and
nearly all ion channels still do not have atomic resolution struc-
tures). In these cases, LBLD can be used immediately, while SBLD
methods would first require the time-consuming generation and
validation of homology models. Similarly, in the case of novel
targets LBLD can be used as soon as an active ligand has been
identified, which can provide substantial time-saving for a project
over waiting for a crystal structure to be solved.

There are a great many LBLD methods available, some that
require only the molecular graph to function, so-called 2D meth-
ods (fingerprints, substructure searches, etc.) and others that
require a 3D representation of molecules (pharmacophore searches,
shape similarity, 3D–QSAR etc.). In this chapter, we will focus on
two particular methods for 3D LBLD, ROCS, and EON, which are
both based on comparison of molecular shape.

2 Materials and Methods

In principle, the requirements for LBLD with ROCS are simple; a
3D conformation of the query molecule (usually a molecule active
against the target protein) and a database of molecules to be
screened as can be seen in Fig. 1. There are, however, a few steps
that should be considered carefully before embarking on a LBLD
calculation with ROCS.

2.1 Database

Preparation

Before any lead discovery campaign is undertaken the database of
molecules to be screened must be appropriately prepared. To gen-
erate a database suitable for use with ROCS tautomer and proton-
ation state(s) must be assigned and 3D conformers generated. For
ligand-based lead discovery methods the assignment of tautomer
and protonation state is often simpler than for structure-based
methods, as ligand-based methods do not depend on having the
correct tautomer or protonation state, but only one consistent state
across all molecules to be screened. It has been shown that genera-
tion of a single, stable tautomer for each molecule in the database
produces equivalent results to enumerating sets of tautomers [5],
and is obviously much faster for downstream processing. As such in
general, it is recommended that for LBLD with ROCS a single
tautomer state and a single protonation state be generated for each
database molecule. After tautomer and protonation state assign-
ment conformations must be generated.

2.2 Conformer

Generation

Since ROCS performs its overlays rigidly, reasonable 3D conforma-
tions for both the query and database molecules are required. In
our internal experiments, and in most published examples,
conformer databases to be searched with ROCS are generated
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with OMEGA, as the two have been extensively tested together. We
describe the OMEGA algorithm briefly here, more details can be
found elsewhere [6, 7]. OMEGA uses two built-in knowledge
bases to generate conformer ensembles; a library of allowed torsion
angles and a library of fragment conformations in 3D. As such,
conformer sampling with OMEGA requires only a connected
molecular graph, i.e., a 3D structure of the molecule to be sampled
is not required. The molecular graph is fragmented according to a
set of rules and the fragments generated are compared against the
internal library of 3D fragment conformations. If a fragment is not
found in the built-in fragment library, then its conformations are
generated on-the-fly. Once geometries for all the fragments of the
molecule are available, they are assembled to produce one, or a few,
starting 3D geometries for the molecule. From this starting 3D
structure torsion driving is performed based on the settings in the
torsion library to provide a possibly very large ensemble of con-
formations. This ensemble is subsequently sampled based on ener-
getic and geometric criteria to provide a smaller ensemble suitable
for use in downstream calculations. OMEGA has been extensively
and carefully validated by the reproduction of solid state structures
[6, 7] and has been successfully used to provide input conforma-
tions for retrospective validations in both pose prediction and lead
discovery [8, 9].

Fig. 1 Basic schema of 3D Ligand-based shape similarity searching: a query molecule (A) in one or more 3D
conformations is compared to every conformer of every molecule in a pre-generated database of conforma-
tions (B). The optimized overlay between the single best conformer of each database molecule and each
conformation of the query is reported together with a similarity score (C)
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2.3 3D Shape

and Feature Similarity

Searching

Here, we introduce shape and chemical feature similarity searching
using ROCS [10]. ROCS performs shape and feature-based over-
lays of conformers of a candidate molecule to a query molecule in
one or more conformations. The overlays can be performed very
quickly based on a description of molecular shape as the sum of
atom-centered Gaussian functions [11]; on modern hardware
speeds of 50–100 molecules/CPU/second can be attained.
ROCS maximizes the rigid overlap of these Gaussian functions
and thereby maximizes the shared volume and shared features
between a single conformation of the query and a single conforma-
tion of a database molecule. The chemical features used in ROCS
are based on the work of Mills and Dean [12] and are termed
“color” features. An example of abstraction from the usual repre-
sentation of a molecule to the shape and color feature used in
ROCS is shown in Fig. 2.

Similarity in shape and color between the query and the data-
base molecule is calculated from the best match of any conforma-
tion of the query to any conformation of the database molecule.
Similarity is measured by a set of Tanimoto coefficients; by shape
alone as ShapeTanimoto, by color alone (ColorTanimoto), and by
the sum of these two measures (TanimotoCombo). The differences
between these metrics are discussed under Subheading 3.

ROCS has successfully been used in a great many prospective
lead discovery experiments. In cases where protein-ligand struc-
tures exist the cocrystal ligand is often used directly from the crystal
structure as the query [13] but in some experiments the ligand has
been substantially manually altered to improve relevance [14]. An
interesting recent trend is to use results from molecular simulation
on a protein-ligand cocrystal structure to generate structurally
novel queries that may not be related to the structure of the original
cocrystal ligand [15, 16]. Since in retrospective experiments
SBLD methods, such as docking, and ROCS have been shown to
identify different molecules [4, 17] ROCS has also been used

Fig. 2 Shape and chemical feature representation in ROCS. On the left a 3D conformation for a molecule as
usually represented. On the right is the shape and color representation from ROCS of the same molecule. Red
hatched sphere ¼ acceptor, blue hatched sphere ¼ donor, red solid sphere ¼ anion, green solid
sphere ¼ ring

368 Paul C.D. Hawkins and Gunther Stahl



prospectively in combination with docking [18, 19]. In cases where
protein-ligand structures do not exist, ROCS has also proven useful
[20, 21]. In these cases, the conformation for the query ligand
must be computed and in spite of that ROCS still performs well
(see Subheading 3 for further data on the use of computed query
conformations in ROCS).

2.4 3D Shape

and Electrostatic

Similarity Searching

An alternate way to compare small molecules is to use their shapes
in combination with electrostatic similarity using EON [22]. EON
combines the shape similarity score from ROCS (ShapeTanimoto)
with a field-based measure of similarity to compare the electrostatic
potential of two small molecules. This electrostatic potential is
calculated internally using Zap [23], OpenEye’s Poisson-Boltzman
(PB) electrostatics toolkit. Two ElectrostaticTanimoto (ET) mea-
sures are calculated using different outer dielectrics in the PB
calculation (outer dielectric of 80.0 and 2.0). The rationale for
using a PB electrostatic field is that the external potential is damp-
ened by orientation of aqueous solvent.

A visualization of electrostatic similarity calculations with EON
can be seen in Fig. 3. More examples of prospective EON use can
be found in the literature [25–27].

3 Notes

In this section, we present some validation and performance data
for ROCS as a guide to users of ROCS in ligand-based lead discov-
ery. As a metric of performance we use the AUC of a ROC plot
[28], which is bounded by 1 (perfect recovery) and 0, with 0.5
indicating random performance. The single largest effect that the
user can have on ROCS is selection of the conformer sampling
regime to be used in OMEGA, both for the query and the database,
so here we present data on the influence of query conformation and
database sampling to guide the user in their experiments. For all the
data discussed belowOMEGA’s parameters were set at the defaults,
except as noted.

Fig. 3 Shapes and electrostatic potential for query (left) and database hit (right) as described in [24]. Red color
denotes electronegative areas, whereas blue shows electropositive areas
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3.1 Effect

of Conformer Sampling

First, we examine the amount of conformer sampling in the data-
base that is required. In Fig. 4, we show the effect of changing the
number of conformations generated by OMEGA for each database
molecule (by changing themaxconfs flag in OMEGA). The median
performance for ROCS is constant as the maximum number of
conformations allowed declines from 400 to 25, with a small
decline at 10 and a further decline at only 1 conformation per
database molecule. Since performance is not degraded by using
small numbers of conformers, this allows the use of smaller data-
bases, thereby increasing search speed (ROCS’ speed is usually
limited by disk reading speed, not computation capacity) and
decreasing the burden of storage and data transfer across networks.
A good balance of speed and performance is provided by setting
maxconfs to 50; this is the setting used in all subsequent
experiments.

Further investigations on ROCS’ performance were carried out
on a newer and larger dataset for virtual screening evaluation, the
Database of Useful Decoys Enhanced or DUD-E [30]. DUD-E is a
large dataset of over 100 diverse protein targets, and for many
targets there are hundreds of active ligands and thousands of
decoys. As such, DUD-E provides high statistical power (the ability
to detect small, but genuine differences in performance between
methods [31], which is rarely considered in CADD [32]) and low
error rates (accurate prediction of performance on datasets other
than DUD-E). While not designed for evaluating ligand-based lead
discovery tools, DUD-E is appropriate for discriminating among
different settings for the same tool, while it is perhaps not appropri-
ate for discriminating among different tools. We used the recovery
of active compounds from their background of presumed decoys in
DUD-E to assess the influence of a variety of parameters in ROCS.

Fig. 4Median AUC on DUD [29] with different levels of conformer sampling in the database. Maxconfs¼max-
imum number of conformations per database molecule from OMEGA
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3.2 Effect of Query

Conformation

An obvious problem when performing lead discovery on classes of
proteins that have few, if any, atomic resolution crystal structures is
how to select the conformation of the protein (for SBLD) or the
ligand (for 3D LBLD). In Fig. 5 we show the effect of using an
experimentally derived conformation (from the DUD-E X-ray
structure) or the lowest energy conformation found by OMEGA
as the query when ranking the database molecules by their Tani-
motoCombo (TC) score to the query. The results for all three
similarity measures are given in Table 1. (ShapeTanimoto
(ST) alone, ColorTanimoto (CT) alone, or TanimotoCombo
(TC)). The X-ray conformation is statistically and substantively
significantly better than the OMEGA conformation when using
TanimotoCombo, in accord with intuition. However, the perfor-
mance of the OMEGA conformation is still good (median AUC is
far above 0.5), indicating that the use of a computed conformation
of the query molecule in ROCS in the absence of an X-ray confor-
mation will likely still provide good results. In contrast, when
ranking by ST and CT there is no substantive difference in perfor-
mance whether the X-ray or the OMEGA conformation is used.
The origin of the difference in sensitivity to the query conformation
for the three metrics is unclear.

Fig. 5 The effect of using experimental ligand conformation (X-ray) or a low-energy computed conformation
(OMEGA) on virtual screening on the DUD-E database (TanimotoCombo used as similarity measure)
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3.3 Effect of Scoring

Function

The data in Table 1 show the effect of using different scoring
measures for similarity on ROCS’ performance. TC is both statisti-
cally and substantively significantly better than ST, and while TC is
numerically superior to CT, the difference is not statistically or
substantively significant (data not shown). As such, it is recom-
mended that TC be used as the similarity measure in ROCS unless
prior experimentation indicates otherwise.

The results above show that 3D similarity searching with
ROCS is remarkably insensitive to the details of the conformer
sampling used to generate either the query or the database con-
formations; an X-ray conformation of the query provides only a
small, though significant, benefit over using the lowest energy
conformer from OMEGA and even light sampling of the database
molecules (a maximum of 25–50 conformers per molecule) pro-
vides identical performance to much heavier, and therefore much
more time-consuming, sampling. This makes ROCS a fast and
powerful LBLD tool, applicable in both high information projects,
where one or more atomic resolution crystal structures are avail-
able, and in low information projects, where perhaps only one
active ligand is known.

Recently, a new database for evaluating the performance of lead
discovery tools specifically on GPCR targets, GPCR-Bench, was
released [34]. The DUD-E dataset contains only 3 GPCR datasets,
so the comparison of ROCS’ performance on GPCR-Bench to that
on DUD-E provides a useful estimate of how well predictions from
general datasets like DUD-E transfer to other more target-specific
sets. The performance of ROCS on GPCR-Bench and DUD-E is
shown in Table 2. The results from GPCR-Bench are numerically
slightly worse than from DUD-E; however, there is no statistically
or substantively significant difference between the two sets. As
such, DUD-E can be used to estimate ROCS’ performance on
other sets of targets, few of which might be represented in DUD-E.

Table 1
Effect of changing the origin of the query conformation on ROCS’ performance on the DUD-E dataset.
The p-value is from the Student paired t-test [33], d is Cohen’s effect size [31]. NS ¼ not significant
at p ¼ 0.05

MEDIAN [95% CI]

X-ray OMEGA p-value d

TanimotoCombo 0.704 [0.667,0.720] 0.681 [0.652,0.712] <0.001 0.48

ShapeTanimoto 0.627 [0.605,0.659] 0.61 [0.581,0.636] <0.03 <0.2

ColorTanimoto 0.702
[0.671,0.725]

0.679
[0.649,0.718]

NS <0.2

372 Paul C.D. Hawkins and Gunther Stahl



4 Conclusion

Ligand-based computational methods are part of the armamentar-
ium of Computational Chemistry for more than 20 years. The
methods are applied in projects for Virtual Screening, Lead Hop-
ping, Molecular Alignment as well as Pose Generation and Predic-
tion. Ligand-based methods can be used when no structural
information about the target is available as they don’t require
knowledge of the active site or the bioactive conformation of a
query molecule. Even when structural information is available it
was shown that ligand-based searches are efficient, fast and they
perform consistently good over a large variety of target classes—
including GPCRs.
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Chapter 19

Computational Methods Used in Hit-to-Lead and Lead
Optimization Stages of Structure-Based Drug Discovery

Alexander Heifetz, Michelle Southey, Inaki Morao,
Andrea Townsend-Nicholson, and Mike J. Bodkin

Abstract

GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of
drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-
ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these
insights in the design of new molecules with improved binding, selectivity or other pharmacological
properties. In this book chapter, we present a brief survey of key computational approaches integrated
with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization
(LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies
used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery
projects.

Key words Structure-based drug design, Molecular dynamics, Simulation, Hit-to-lead, Lead optimi-
zation, G protein-coupled receptor, Docking

1 Introduction

1. GPCRs are cell surface receptors that contain seven transmem-
brane helices and constitute the largest superfamily of mem-
brane proteins, regulating almost every aspect of cellular
activity [1]. GPCRs have enormous physiological and biomed-
ical importance, being the primary site of action of 40% of all
prescribed drugs today [2]. There are over 800 human GPCRs
known today [3, 4], involved in a diversity of diseases, includ-
ing cancer, pain, inflammation, depression, anxiety [5]. Despite
this, drugs have been developed just for 50 of these GPCRs.
This renders GPCRs as one of the most important classes of
current pharmacological targets [3, 5].

2. Recent advances in X-ray crystallography of GPCR experience
its “renaissance” [2, 6–10], however, crystal structures are still
not currently feasible for every receptor or receptor-ligand
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complex [11]. This significantly limits the ability of the
crystallography to guide SBDD for GPCR targets in “real-
time” [11]. Furthermore, the experimentally determined
structures represent just a few snapshots of what we know are
very dynamic receptors and as a consequence offer only limited
insights into the overall conformational space and related func-
tion of GPCR [11].

3. In the absence of crystallographic data, GPCR modeling is
often the only practical alternative to guide SBDD
[1, 12–14]. Modern computational approaches can address
such key issues as GPCR flexibility [15] and ligand-induced
dynamics, ligand kinetics (kon/koff rates) [16–19], prediction
of water positions [20] and their role in ligand binding and
prediction of the effects of mutations on ligand binding. How-
ever, the ultimate goals of any GPCR modeling protocol are:
(1) to predict the structures of the complexes between the
ligands and the target receptor, (2) to explore the key interac-
tions between the ligand, surrounding residues, and water
molecules, and (3) to utilize these insights in the design of
the next generation of the lead compounds with improved
binding, selectivity, or other pharmacological properties. The
success of any GPCR modeling protocol applied in SBDD is
always measured by decreased time and cost of the synthetic
effort [14, 21].

4. Hit to lead (H2L) [22] is defined as early stage of drug discov-
ery also known as lead generation (Fig. 1a). In H2L small
molecule hits from a high-throughput screen (HTS) or from
virtual screening (VS) are evaluated and undergo limited opti-
mization to identify promising lead compounds, as illustrated
in Fig. 1a. Through the limited H2L optimization steps, the
affinities of these primary hits are often improved by several
orders of magnitude to the nanomolar (10�9 M) range
[22]. To achieve improvement in affinity it is usually sufficient
to modify the hit in such a way that it will generate additional
interaction/s with the target receptor compared to the
primary hit.

5. Lead optimization (LO) [21] phase of drug discovery (Fig. 1b)
is usually defined as the process of bringing a chemical series to
clinical trials through iterative steps of design and testing.
Compared to H2L, the initial lead compound(s) in LO often
already demonstrated significant potency against the target.
However, the affinity, selectivity or other pharmacological
properties might need further optimization. The key challenge
in LO is to improve of what are often already potent com-
pounds. This requires detailed information on the interactions
between the ligand and its corresponding target and off-target
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Fig. 1 (a) Optimization cycle for H2L. (b) Optimization cycle for LO
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receptors. Any modeling input must therefore be accurate and
give reliable insights at the molecular level.

6. Integrating of GPCR homology modeling with other model-
ing approaches such as docking and fragment molecular orbi-
tals (FMO) can be a powerful tool to guide SBDD [21, 23], as
it provides an accurate and comprehensive list of strong, weak,
or repulsive interactions between the ligand and its surround-
ing residues. Such information is highly useful in rational
design of the next generation of lead compounds in terms of
modifications, scaffold replacement (scaffold hoping), linking
(specifically in case of fragment-based drug discovery) or exten-
sion of chemical moieties to form stronger or new interactions
with the protein or alternatively to remove repulsions. It can
also be helpful in the analysis of the ligand-water-protein net-
work, to distinguish between energetically favorable and unfa-
vorable water molecules and to design ligands that can interact
or displace certain waters. FMO energy terms can be efficiently
used as descriptors in QSAR modeling to predict the binding
affinities of new molecules [24].

7. In this book chapter, we will describe one of many GPCR
modelling protocols named “hierarchical GPCRmodeling pro-
tocol” (HGMP [21, 25, 26], Fig. 2). HGMP has been devel-
oped by Evotec Ltd. and University of Oxford to support

Fig. 2 A summary schematic of the Hierarchical GPCR Modeling Protocol (HGMP)
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SBDD programs. HGMP generates a 3D model of GPCR
structures and its complexes with small molecules by applying
computational methods. In Subheading 2, we will describe
howHGMP is integrated with other SBDD tools like: docking,
molecular dynamic simulations, FMO, water molecules predic-
tors, and KNIME. In Subheading 3, we will illustrate how
these tools were used in 3 H2L and LO projects.

2 Methods

2.1 Constructing

GPCR Models

1. Traditional GPCR homology modeling approaches [13] often
involve the following steps: (1) sequence alignment between
the modeled receptor and an appropriate template, (2) homol-
ogy modeling andmodel refinement and (3) docking of ligands
into the binding site. The key cons of such “static” approaches
is that the modeled receptor is practically a “copy” of the
original template and therefore some of the critical structural
features are often lost. This significantly reduces the relevance
of such models and their ability to guide SBDD. This is partic-
ularly problematic in the LO when information on the fine
details of the system is highly important.

2. Modern (dynamic) GPCR modeling protocols [13, 27] have
moved beyond the use of static homology modeling
approaches by performing the type of extensive refinement
and exploration of both structure and flexibility that is required
to drive SBDD. To address the various challenges of GPCR
drug discovery programs, these contemporary approaches are
encapsulated as toolkits that can be flexibly assembled into
workflows tailored to the specific needs of each project. The
ability to incorporate experimental data during the modeling is
another important factor that can enhance the effectiveness of
these workflows. An example of such a workflow is the hierar-
chical GPCR modeling protocol (HGMP—Fig. 2).

3. Hierarchical GPCRmodeling protocol (HGMP) [25] (Fig. 2)—
generates a GPCR model and its potential complexes with
small molecules by applying a series of computational methods
incorporated mainly in molecular operating system (MOE,
Chemical Computing Group, version 2016.08). The protocol
makes use of homology modeling followed by MD simulations
and docking (flexible docking if required) to predict binding
poses and functions of ligands. The HGMP is practically a
toolbox for GPCR modeling that can be “tailored” for project
needs where experimental data can be easily fed in. It is
equipped with GPCR-specific “plugins”, including a GPCR-
likeness assessment score (GLAS) to evaluate model quality and
a pairwise protein comparison method (ProS) used to cluster
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structural data and distinguish between different activation
substrates. The HGMP has been applied in a number of indus-
trial drug design projects, which have also led to further refine-
ments of the protocol (seeNotes 1–3). Even in cases where the
sequence identity to the target is very low, careful model build-
ing in conjunction with site-directed mutagenesis and binding
assays can be very useful in aiding the future direction of a drug
discovery program.

2.2 Generating

of the GPCR-Ligand

Complex

1. Having the model of the receptor in hand, the next step is often
predicting of the receptor-ligand complex, this process is called
molecular docking. Predicting this complex is highly important
if we want to study the interactions between the ligand and the
receptor and to guide the SBDD. As numerous docking
approaches have been reviewed in the literature [28] quite
recently, we here survey briefly the unique challenges and dock-
ing protocols relevant to GPCRs.

2. Docking protocols [28, 29] are the molecular modelling pro-
cesses aimed to explore the interaction between the ligand and
protein. The ultimate goal of any docking protocol is to predict
the bioactive conformation of the ligand and its place and
orientation inside of the receptor binding site named as “dock-
ing pose” or “binding mode”. The docking procedure consists
of two sequential tasks: first, flexible placement of the ligand in
a predefined binding site of the receptor and then scoring the
poses of the docked ligands. Both posing and scoring phases
are equally important and can be carried out by very different
methodologies depending on how exhaustive the conforma-
tional sampling of both the ligand and protein is considered.

3. Some commercial available docking suites of programs are
AutoDock [30], AutoDock Vina [31], MOE [21], FlexX [32],
GOLD [33], and Glide [34]. Different search algorithms are
designed to predict the bioactive conformation of the studied
compounds through the evaluation of the interactions between
ligands and targets [29]. An increase in the quality of the ligand
docking can be gained by consideration of flexibility of the
modeled system.

4. Scoring and re-ranking: In many of our projects (see Note 4),
we used AMBER interaction energy to rescore and re-rank
docking poses. We used the MM_PBSA/GBSA approach
[35] to calculate the AMBER interaction energy [36]. This
approach, while subject to the same limitations of all force
field-based methods, was able to accurately predict relative
binding affinities between the ligand and protein and was
therefore selected as a reliable method to rescore and to rank
docking poses [37].
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5. Flexible docking—typical docking protocols keep the receptor
(largely) rigid, and so cannot address the issue of receptor
flexibility. As these protocols do not take into account the
ligand-induced (or ligand-stabilized) conformation of the
receptor, it makes it harder to rationalize the effects of ligand
binding in terms of activation or deactivation (agonists and
antagonists, respectively). Some docking approaches like
induced fit docking (IFD) introduced in Autodock 4 [38],
AutoDock Vina, and Schrödinger assign limited flexibility to
the sidechains of key residues. However, this approach is
slightly artificial and is an unsatisfactory solution to the general
problem of receptor flexibility. The ensemble docking proto-
col, implemented in GOLD [33], performs docking into mul-
tiple states of the same receptor but it is highly governed by the
availability of the structural information on the targeted recep-
tor. The perfect scenario would be if the bioactive conforma-
tion of the docked ligand was known prior to the docking
simulation.

6. HGMP-C4XD integrates HGMP with experimental NMR-
based technology (C4XD) (Fig. 3). The C4XD [39] was devel-
oped by C4X Discovery Ltd. to explore how molecules behave
in physiologically relevant solution. C4XD demonstrated that
small molecules exist in relatively few conformations in the
solution and that one of those conformations closely resembles

Fig. 3 HGMP-C4XD workflow
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the bioactive form—but which one? Next, during the docking
we limit the ligand conformation space only to the most popu-
lated conformations found by C4XD and assign the flexibility
to the receptor. The combination of HGMP and the C4XD
approaches allows the isolation of the bioactive conformation
of the ligand and the identification of the key pharmacophoric
features required for GPCR-ligand binding and selectivity.
These structural insights are essential for the refinement of
GPCR models, for addressing the ligand-induced receptor
flexibility and for the rationalization of the ligand binding.

7. An additional way to place the ligand inside the receptor is to
overlay it on the top of an already bound ligand (template)
usually extracted from the crystal structure. The most common
software to performmolecular overlays is ROCS, fromOpenEye
[40]. An additional minimization of the ligand within the active
site is needed after in order to remove clashes with the receptor.

8. ROCS protocol [40] is the most common shape-based superpo-
sition method employed in the industry nowadays. ROCS per-
forms shape-based overlays of conformers of candidate
molecules to a query molecule (template) in one or more
conformations. The overlays can be performed very quickly
because the molecules can be described as atom-centered
Gaussian functions. ROCS maximizes the rigid overlap of
these Gaussian functions and thereby maximizes the shared
volume between a template and a single conformation of a
database molecule. ROCS is therefore used in ligand-based
drug design in the absence of the target structure. Despite its
simplicity it has shown a similar performance and consistency
to other structure-based approaches in virtual screening. More-
over, ROCS has also been incorporated into docking work-
flows where the obtained ROCS overlay is used as initial
placement/pose within the active site and has also been embed-
ded in alignment-dependent 3D QSAR analyses.

2.3 Exploration

of the Dynamic Nature

of GPCRs

1. GPCRs are, by functional necessity, very dynamic entities.
Molecular dynamic (MD) simulation therefore provides an
important source of structural and functional information for
these receptors (as described in detail in Chapter 6 of this book)
[15]. MD can be used in a variety of ways including refinement
of the homology model in a more realistic membrane environ-
ment, exploration of ligand-induced flexibility and function,
the analysis of solvent, the effect of mutation on receptor
stability, and exploration of ligand binding and dissociation
kinetics [41, 42]. MD trajectories are often used to generate
an ensemble of possible receptor substrates. The ProS and
GLAS methods outlined in Subheading 2.1, step 3 were devel-
oped to explore the structural data generated within MD
simulations and to help distinguish between different GPCR
substrates.

382 Alexander Heifetz et al.



2. MD simulations also allow one to explore the possibility of
allosteric and cryptic binding pockets. Cryptic binding pockets
are not exposed to bulk solvent all of the time and so may be
hidden in certain crystallographic structures. MD allows these
sites to manifest themselves, enabling docking and similar pro-
tocols to be followed in the usual manner. Simulations are as
well essential for the understanding of allosteric modulation
[43, 44]. In some cases, however, full MD simulation may not
be required, for example when just local refinement of a homol-
ogy model is required. In these cases “low-mode” molecular
dynamics (LowModeMD) simulation can provide a more rapid
solution [45]. LowModeMD, as implement in MOE (Chemi-
cal Computing Group), is based on perturbing an existing
conformation along a trajectory using initial atomic velocities
with kinetic energy concentrated on the low-frequency vibra-
tional modes, followed by energy minimization.

3. Residence time and MD—It has been recently demonstrated
that GPCR modeling and MD simulation can be a promising
tool for the exploration and structural rationalization of ligand-
receptor residence time (RT) [15, 16, 18, 46, 47]. The defini-
tion of the RT is the length of time for which a small molecule
stays bound to its receptor target [48]. The current challenge is
the timescale: the millisecond timescales of conventional MD
are incompatible with the typical RTs of drugs (up to hours)
[15, 46]. To overcome this encounter new approaches to
extending MD timescales have been developed. These include:
(1) Markov State Models (MSM)—a very powerful method to
describe dynamical processes between defined states in MD
simulations [14] (2) Metadynamics-based approaches that
employ MSM to calculate off-rates based on the transitions
between the intermediate (calculated) and predefined end
states, and (3) Scaled MD—another approximate approach to
rank ligands by their off-rates [46, 47].

2.4 Exploring

Receptor-Ligand

Interactions

1. The understanding of binding interactions between a protein
and a small molecule plays a key role in the rationalization of
potency, selectivity and kinetics. However, even with the crystal
structure in hand, visual inspection and force-field-based
molecular mechanics calculations cannot always explain the
full complexity of the molecular interactions that are so critical
in both H2L and LO. Quantum mechanical methods have the
potential to address this shortcoming, but the high computa-
tional cost has typically made the use of these calculations
impractical.

2. Fragment Molecular Orbital (FMO) method [24] (Fig. 4a) is
widely used by us for protein-ligand binding calculations and
drug design because it offers substantial computational savings
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Fig. 4 Schematic summary of the FMO approach: (a) Workflow for PIEDA calculations and details on each of
the PIE terms that are computed (b) FMO analysis of human adenosine OX2 receptor in complex with
Suvorexant (PDB ID 4S0V [47]). The carbon atoms of the ligand are shown in light orange and for the receptor
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over traditional QMmethods [24, 49]. By dividing the system,
both the ligand and the receptor, into smaller pieces and
performing QM calculations on these fragments, one can
achieve high efficiency. A typical FMO calculation on a
GPCR-ligand complex takes approximately 4 h on 36 CPU
cores to complete, which is significantly faster than the equiva-
lent classical QM calculations. Recently, we have demonstrated
that FMO can be even faster (secs instead of hours) without
compromising the accuracy by combining it with the density-
functional tight-binding (DFTB) method [50].

3. Using FMO, one can take any protein-ligand complex and
calculate a list of interactions and their chemical natures.
Many of these interactions are difficult to detect or quantify
with non-QMmethods [49]. This information is very useful in
guiding rational LO in terms of ligand modifications such as
scaffold replacement and linking or the extension of chemical
moieties to form stronger or new interactions with the
protein [23].

2.5 Predicting Role

of Water Molecules

in Receptor-Ligand

Binding

1. It is known that water-mediated interactions between ligands
and receptor are extremely common and highly significant for
binding and kinetics [17, 44]. Yet only high-resolution crystal
structures are able to give any reliable indication as to the
presence of water molecules. Displacement of these key water
molecules can directly affect the ligand binding affinity and it is
in the scope of SBDD programs to design compounds that can
interact with or efficiently displace these water molecules. The
prediction of water molecule networks and their perturbation is
also critical in terms of its relationship to kinetics and residence
time (see Chapter 9 of this book), as has been demonstrated for
a series of adenosine A2A receptor antagonists [17].

2. Several methods (WaterMap [51], WaterFLAP [20], Water-
Dock [52], AutoDock Vina and 3D-RISM [53]) enable a
relatively rapid prediction of water molecule sites and estima-
tion of the energy penalty for water displacement. They can
help medicinal chemists to decide whether to interact with or
displace a certain water molecule, if a particular subpocket of
the receptor can be explored by hydrophobic moieties or if a
displaced water has to be substituted by a group that mimics

�

Fig. 4 (continued) are gray. Nitrogen atoms are shown in blue, oxygen in red, and chlorine in light green. The
fragmented bonds are marked as red discs. The left-hand bar plots describe the sorted PIE of the most
significant residues, and the right-hand plots describe the pair interaction energy decomposition analysis
(PIEDA) of these key interactions. PIE terms: electrostatics, dispersion, charge-transfer, and exchange-
repulsion are color-coded in yellow, blue, red, and green, respectively. The figure is adapted from our
previous publication

Computational Methods Used in Hit-to-Lead and Lead Optimization Stages. . . 385



the hydrogen bond network. These methods are suitable for
both H2L and LO.

3. Most of these methods are based on MD or Monte Carlo
(MC) simulations and observing the peaks in water density
can provide the location of water binding sites [54, 55]. How-
ever, these calculations can be time-consuming to run, espe-
cially with buried cavities, due to the long time it takes for
water to permeate within the protein. Grand canonical MC
methods [56] can significantly reduce the length of the simula-
tion. This has led to a number of attempts to develop faster
methods. JAWS, for example, is a grid-based MC method that
estimates the free energy of displacing a water molecule into
bulk. An integral theory approach (3D-RISM [53]) has also
reported success in predicting solvation structure within ligand
binding sites and protein cavities. Short molecular simulations
can be used as the data for inhomogeneous fluid solvation
theory (IFST). This method has the distinct advantage that
the free energy can be broken down into enthalpic and entropic
components. IFST also forms the framework for
WaterMap [51].

2.6 Combining

Individual Tools into

Integrated Workflow

Engines

1. GPCRmodeling and SBDD is a multitask process comprised of
sequential steps (Fig. 5). There is a desire to automate and
standardize this process and make it more user-friendly so
that less experience users can also work with it.

Fig. 5 Example of KNIME workflow
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2. Pipeline-Pilot and KNIME [57, 58] are the most commonly
used software packages (commercial and open source, respec-
tively) that automate the modeling process and enable an easy
concatenation of the individual tools (nodes) into an integrated
workflow. Given the extensive interest in creating new thera-
peutics based on novel GPCR targets, modeling methodolo-
gies that are as streamlined, rapid, precise and accurate as
possible are highly desirable and it is expected that an increas-
ing number of workflows will become available in the future.

3 Notes

1. In the absence of the structural information of the receptor
target, the design of new compounds in a medicinal chemistry
program typically relies purely on SAR data. However, inter-
preting such data in isolation from specific knowledge of the
protein can be challenging and even misleading [14]. There-
fore, any additional means that can build confidence in the SAR
interpretation and generate novel structure-based hypotheses is
potentially very useful. As a result, GPCR modeling is used to
bridge the gap and facilitate SBDD. The introduction of exper-
imental data like SAR into a modeling process allows a refine-
ment of the GPCR models to a degree that is not possible with
homology modeling alone and provides a deeper rationaliza-
tion of ligand binding and selectivity. In this way, modeling
methods should be designed to accommodate experimental
data in their algorithms and be flexible enough to deal with
the wide variety of challenges that drug discovery
programs face.

2. HGMP can take advantage of the experimental data that can be
fed into the modeling process to add extra accuracy and confi-
dence in the modeling outcomes. The use of the HGMP in
“real” drug discovery projects is demonstrated below.

3. Fighting obesity with a sugar-based library [59]—Obesity is an
increasingly common condition. Antagonism of the melanin-
concentrating hormone-1 receptor (MCH-1R) has been
widely reported as a promising therapeutic avenue for obesity
treatment. However, discovery and optimization of new com-
pounds targeting MCH-1R has been hindered by a lack of
structural information about the MCH-1R and low high-
throughput screening (HTS) success rates. In this H2L project,
we combined HGMP (see Subheading 2.1, step 3) with the
screening of a diverse library of sugar-based compounds from
the VAST technology (Versatile Assembly on Stable Templates
[59]). The GPCR-VAST method provides a good example of
how ligand SAR data, when combined with modeling, can
provide a useful source of structural information on GPCR
binding sites and for SBDD.
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(a) The 490 VAST compounds obtained from this library
were screened against MCH-1R, resulting in the discovery
of a moderately potent MCH-1R antagonist, ACL21823
(IC50 ¼ 306 nM, see Fig. 6). The discovery of ACL21823
was utilized in the construction of a MCH-1R model and
in the refinement of its binding site. We used HGMP (see
Subheading 2.1, step 3) to model the MCH-1R and the
flexible docking protocol of GOLD (see Subheading 2.2,
step 5) to dock the VAST hits into the MCH-1R receptor
model. The scoring and re-ranking was performed with
AMBER interaction energy (see Subheading 2.2, step 4).
The usefulness of this method in H2L was demonstrated
by a structure-based VS, which achieved a hit rate of 14%
and yielded 10 new chemotypes of MCH-1R antagonists
including EOAI3367472 (IC50 ¼ 131 nM) and
EOAI3367474 (IC50 ¼ 213 nM).

4. Discovery of selective 5-HT2C agonists for the treatment of meta-
bolic disorders [60]—In this LO project, which was performed
prior to the publication of the 5-HT2B and 5-HT1B crystal

Fig. 6 Summary schematic of the VAST-GPCR modeling workflow that led to the discovery of new MCH-1R
antagonists
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structures, the challenge was to optimize 5-HT2c binders and
convert them into strong agonists that were unable to activate
5-HT2A and 5-HT2B receptors. It is known that for effective
antagonism, it is sufficient for ligands just to occupy a relevant
receptor site in order to inhibit the binding of endogenous
ligands. However, agonist discovery has the additional compli-
cation and requirement that the ligand must not only be able to
both occupy the receptor site but also be able to activate the
receptor. Agonist binding should elicit conformational changes
in the receptor that result in the activation of intracellular
G-proteins and/or β-arrestins which, in turn, can modulate
the activity of downstream effectors within the cell. The mech-
anism and structural changes associated with the activation of
GPCRs remain unclear, making agonist design quite
challenging.

(a) To explore 5-HT2C activation mechanism and to design
compounds that would promote receptor activation,
HGMP was applied (see Subheading 2.1, step 3) to
model both the active and inactive receptor conforma-
tions, referred to as 5-HT2C

active and 5-HT2C
inactive,

respectively. Ensemble docking with GOLD (see Subhead-
ing 2.2, step 5) was used to predict the binding modes of
lead compounds in 5-HT2A, 5-HT2B and 5-HT2C. It was
proposed that agonists enter deeply into 5-HT2C binding
site and interact simultaneously with both TM3 and TM6,
thus increasing the overall stability of 5-HT2C

active and
promoting activation. In parallel, we modeled off-targets
5-HT2A and 5-HT2B to filter out compounds from the
5-HT2C

active screen that might also bind to these two
receptors. We also employed our hERG modeling [61]
to take into account the hERG liability of our lead com-
pounds. The final outcome was the discovery of a novel
compound 10 (EC50 ¼ 8.4/762/73 nM for 5-HT2C/2A/

2B and hERG inhibition of 11% at 10 μM) [60].

5. Case study 3: Discovery of potent and selective OX2 receptor
antagonists [62]—The orexin receptors (OX1 and OX2) are
linked to a range of different physiological functions including
the control of feeding, energy metabolism, modulation of
neuro-endocrine function, and regulation of the sleep-wake
cycle. The key challenges of this project were to increase the
OX2 activity and selectivity of lead compounds over OX1. This
was particularly difficult as OX1 and OX2 receptors share over
80% sequence identity at the amino acid level. This project was
completed before the crystal structures of OX1 and OX2 were
released.

(a) HGMP was applied (see Subheading 2.1, step 3) to model
both OX1 and OX2 receptors. We used MD simulation
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(see Subheading 2.3, step 1) as implemented in GRO-
MACS [21, 63] to explore OX1/OX2 selectivity. MD
suggested that differences in intra-helical interactions
resulted in differences in TM conformation and in the
topology of the binding pocket. The differences identified
were small but sufficient to design molecules with OX2

selectivity. This rational design significantly decreased the
amount of synthesis required by focusing effort on the
relevant portion of the ligand structure, as outlined in
Fig. 7. The final compound, EP-009-0513, had Ki values
of 4363 and 5.7 nM for OX1 and OX2, respectively.

6. Conclusion—Modern GPCR modeling protocols [64], such as
the HGMP, have gone beyond the use of static models to allow
for the type of detailed exploration of GPCR-ligand structures
required to drive H2L and LO. These methods permit the
prediction of GPCR substates in a way that is not possible
with static homology modeling alone. The practicality and
efficiency of GPCR modeling integrated with other modeling
tools is enhanced by experimental data and by the availability of
structural information on the targeted GPCR, satisfying the
immediate need of the drug discovery process for the informa-
tion needed to drive SBDD effectively.

7. Future challenges—Despite a huge effort by the pharmaceutical
industry to design novel drugs for GPCR targets, there is

Fig. 7 Schematic summarizing how interaction maps derived from GPCR model for potent and selective OX2
receptor antagonist
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tremendous attrition along R&D pipelines [48]. Many
promising drug candidates eventually fail in clinical trials due
to a demonstrated lack of efficacy. A retrospective analysis of
those that have successfully made it to the market has revealed
that their beneficial effects in patients may be attributed to their
long drug-target residence times (RTs)—the length of time for
which a drug (ligand) stays bound to its receptor target
[48]. There is substantial evidence that ~70% of long RT
therapeutics displayed higher efficacy than comparable faster-
dissociating drugs, supporting a growing recognition that
drug-target RT may be of even greater importance than affin-
ity, therapeutically [65].

8. Recently, several notable reviews [48, 65, 66] have emphasized
the crucial role of RT optimization in the early phases of drug
discovery, suggesting that detailed structure-based studies of
RT should be introduced in the early phases of drug discovery
to prevent “fail late, fail expensive” scenarios. Efforts to include
RT in the drug development process have focused on the
adoption of either experimental or computational approaches
(see Subheading 2.3, step 3). Although each approach is very
promising they only provide half of the whole picture. Experi-
mental methods can measure the RT but cannot rationalize
why certain compounds have longer RTs than the others or
suggest ways to modify the structure of the ligand to improve
its RT profile. On the other hand, computational methods are
only able to provide this essential information if robust experi-
mental data are available. Combining experimental and compu-
tational tools, as described in Chapter 15 of this book, is a
highly encouraging step toward addressing the RT in early
stages of H2L and LO.

9. Experience has shown that significant progress in technology
R&D and “know-how” for GPCR SBDD can only be achieved
when there are good interdisciplinary collaborations between
the experimental and theoretical groups [1].
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Chapter 20

Cheminformatics in the Service of GPCR Drug Discovery

Tim James

Abstract

Cheminformatics is a broad discipline covering a wide range of computational approaches, including the
characterization of molecular similarity, pattern recognition, and predictive modeling. The unifying theme
that these apparently disparate methods have in common is the aim of extracting useable information from
the increasing amounts of data that are associated with contemporary drug discovery projects. Both
proprietary and publically available data can be exploited to help inform and improve the process of
developing novel therapeutic molecules targeting the GPCR family of proteins.

Key words Cheminformatics, G protein-coupled receptor, Library design, Reaction mining, QSAR,
Drug-likeness, Multi-parameter optimization

1 Introduction

A commonly quoted definition of cheminformatics is taken from a
1998 article in Annual Reports in Medicinal Chemistry by Frank
Brown [1]:

“Chemoinformatics is the mixing of those information
resources to transform data into information and information into
knowledge for the intended purpose of making better decisions
faster in the area of drug lead identification and optimization.”

This definition, although descriptive, is incredibly broad in
scope and encompasses almost any use of information technology
in improving the drug discovery process. In this chapter I have
therefore focussed on a number of areas where, in my experience,
cheminformatics approaches are most frequently applied and have
the greatest impact. These are listed in Fig. 1 against a schematic
preclinical small-molecule drug discovery pipeline, to indicate
where each approach might commonly be considered. However,
as the nominally distinct stages of the process are largely arbitrarily
defined the different cheminformatics techniques can be and are
applied across the pipeline.
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Other therapeutic classes including peptides, antibodies, engi-
neered proteins, and RNAi agents are increasingly important in
pharmaceutical R&D, but will not be considered here. Some
authors also include approaches such as virtual screening as part
of the cheminformatics toolkit, but specific chapters exist to cover
these in more detail and so I will instead focus here on complemen-
tary techniques.

2 Data Sources for Cheminformatics

All chemoinformatics endeavors start with one or more data
sources. The most commonly used type of data is that related to
biologically relevant compound activities, typically against individ-
ual proteins or protein complexes. Many pharmaceutical companies
have the advantage of having access to considerable amounts of
proprietary information of this type, accumulated over years of
drug discovery research. Commercial compendia also exist, of
which Integrity [2], Liceptor [3] and Reaxys Medicinal Chemistry
[4] are well-known examples. However, there are an increasing
number of public domain databases in this area. Perhaps the best
known and most widely used of these is ChEMBL [5], which in its
most recent release contains approximately 14 million activity
values drawn from a variety of sources. Other examples of
general-purpose bioactivity databases include PubChem BioAssay
[6], BindingDB [7], the IUPHAR/BPS Guide to Pharmacology
[8] and the Psychoactive Drug Screening Program’s Ki database
[9]. There are also a number of systems focusedmore specifically on
GPCR research [10], including GLIDA [11] and GPCRdb [12].

The scientific literature and publically funded screening centers
are comparatively well served by open source bioactivity databases.
However, the patent literature remains more challenging. Specifi-
cally claimed compounds are generally available and captured by
systems such as SureChEMBL [13], although Markush patterns
can cover vast numbers of hypothetical compounds that are never
likely to be synthesized. However, activity data in patents is often
deliberately as vague as possible, and it can be difficult to associate
such data that is included with the corresponding molecular

Fig. 1 Common cheminformatics approaches and an illustration of where they are applied in the preclinical
drug discovery pipeline
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structures using automated approaches. This is one area in which
commercial databases currently offer an advantage [14].

Beyond bioactivities, a number of other types of data are com-
monly mined to drive cheminformatics applications. Publically
accessible three-dimensional structural information relevant to
drug discovery is consolidated to a large extent, both for small
molecules (the Cambridge Structural Database [15]) and macro-
molecules (the Protein Databank [16]). By contrast, structured
information related to chemical synthesis is largely confined to
company electronic lab notebooks (ELNs) and commercial data-
bases. Reaction informatics is a relatively immature area of research,
but one that has shown a number of developments in recent years.

The proliferation of data sources offers new opportunities to
the cheminformatician, but also presents a number of challenges.
Assessing the overlap between different sources is an ongoing task
[14], which is complicated by the fact that data abstraction from the
primary sources does not appear to be performed in a consistent
manner [17]. Even where information from a journal article or
other experimental account is accurately transcribed, the underly-
ing data quality should always be treated with a certain amount of
healthy scepticism. For example, despite a number of well-known
publications [18] describing compounds that are prone to showing
artifactual behavior in biochemical assays, the counter-assays
required to clarify the activity of such compounds are often not
reported. There have been recent efforts to address these issues in
the literature [19], but universal adoption of such standards appears
to still be some way off. Beyond establishing the veracity of any
individual data point, a further issue remains the challenge of
combining information from different experiments performed in
different labs by different scientists. Reproducibility in the
biological sciences is never as high as one would like it to be [20],
and analyses performed on inconsistent data sets are likely to suffer
from decreased signal-to-noise ratios. The greatest advantage that
proprietary corporate datasets offer over public compendia is there-
fore probably not the amount or diversity of information that is
available but rather its consistency.

3 Target Identification

Although the extreme reductionist philosophy of drug discovery
(“one target one disease”) has never truly received universal sub-
scription [21], the recent resurgence in the popularity of pheno-
typic screening suggests that a rebalancing between target-based
and systems approaches is currently underway [22]. Nonetheless,
many projects are still initiated with the hypothesis that modulating
a specific target will offer therapeutic value in a particular disease
setting. A number of GPCRs that, in principle, could be useful drug
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targets remain uncharacterized both in terms of function and
endogenous ligands. Cheminformatics techniques can be used to
supplement bioinformatics analysis and assist in receptor
de-orphanization. For example, van der Horst et al. [23] created
a phylogenetic GPCR classification scheme using only known
ligands and showed generally good agreement between this and
sequence-based classification. In a virtual experiment, these authors
showed that a combined chemogenomics strategy was able to
successfully de-orphanize a variety of pseudo-orphan GPCRs by
using the ligands of related receptors.

The efficacy of GPCR-targeting drugs seems likely to be related
to their polypharmacology across a number of receptors within the
family, at least in some therapeutic applications. It would therefore
be useful to be able to determine what the important elements of
these efficacious bioactivity profiles are. In a recently published
work, Drakakis et al. performed such an analysis to investigate the
sedative-hypnotic effects of compounds in rats [24]. The final
decision tree from this analysis is shown in Fig. 2. Using predicted
protein-level activities as inputs, this model achieved an overall
accuracy of 68% in retrospective cross-validation on a training set
of 491 molecules. Perhaps more impressively, 5 out of 7 of the

Fig. 2 A decision tree to classify compounds as either promoting a good or bad sleep pattern in rats using
predicted protein-level activities. Reproduced with permission from [24]
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compounds selected for prospective testing also showed promotion
of good sleep patterns. Importantly, these authors found that mod-
els built on single targets alone did not perform as well as those that
incorporated activities against multiple proteins.

Once an initial target (or profile) hypothesis has been gener-
ated, achieving an acceptable (preclinical) level of validation for that
hypothesis typically involves a multi-faceted approach using both
small molecules and genetic tools such as knockouts, CRISPR, or
RNAi. The requirements for a compound to give a useful level of
target-specific information—a chemical probe—have been the sub-
ject of recent discussion [25]. The commonly cited characteristics
include a certain level of on-target activity and selectivity over
relevant off-targets, activity in cells, and an absence of general
toxicity and other features that are likely to interfere with assay
readouts. Currently, a number of compounds employed as probes
likely fail to fulfil some of these criteria. As an example, in a recent
evaluation of 64 probes nominated by the NIHMolecular Libraries
and Imaging initiative, 25% were qualitatively assessed to be of low
confidence [26]. Attempts to introduce greater objectivity into the
assessment process remain much debated [27, 28], but it seems
clear that the increasing amounts of publically available bioactivity
data will have a positive impact in this area.

4 Library Design

Tailoring the composition of screening libraries for specific applica-
tions often makes use of cheminformatics techniques. Libraries can
be designed with a broad focus such as CNS or antibacterial screen-
ing, more particularly on the pathways associated with a certain
disease or biological process, or on individual targets or target
classes. In the context of GPCR drug discovery, most library design
strategies are based around the fundamental hypothesis that similar
compounds have similar properties [29]. The idea is that if a library
is biased toward areas of chemical space that have already shown
activity against GPCR targets, that library is likely to show higher
hit rates when screened against additional proteins from the same
class. One way to quantify chemical similarity is through the use of
physicochemical properties. For example, Balakin et al. [30]
explored the use of eight simple properties such as molecular
weight and number of hydrogen-bond donors in combination
with a neural network algorithm. These authors demonstrated
that they were able to distinguish between known GPCR actives
and non-GPCR ligands in this way, before applying the same model
to the design of a GPCR-focused library of 30,000 molecules.

Structural similarity is perhaps the most frequently adopted
approach to tailoring library properties. In this context, much
attention has been paid to the idea of privileged substructures.
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Originally defined as those molecular features that give rise to
activity at more than one receptor [31], the concept has since
been extended to encompass target-family-privileged substructures
[32]. This more recent idea implies the existence of common
pharmacophoric elements across the binding sites of a protein
family, to which the putative privileged substructures are assumed
to bind. Probably the archetypal example of this concept is the
hinge binding region in kinase domains, where a group of very
highly conserved hydrogen-bonding interactions with the protein
backbone is frequently exploited in inhibitor design. Whether this
approach can usefully be applied to GPCRs is perhaps less clear. For
example, Bondensgaard and coworkers examined three pairs of
GPCR ligands with common substructures that bind to multiple
receptors with relatively distant homology [33]. By docking these
ligands into receptor models they concluded that the conserved
regions of the binding sites responsible for interacting with the
privileged substructures are typically buried deep in the pocket
and possessed of a largely hydrophobic and aromatic character.
However, they also reported that some interactions are formed
with non-conserved parts of the binding sites, implying that each
privileged substructure would likely only be useful for a subset of
receptors. Other studies have also reported substructures that are
enriched in ligands for particular subgroups of GPCRs such as the
histamine or adrenergic receptors [34], and the rationale for iden-
tifying common binding elements appears much clearer where the
proteins in question are related by their endogenous ligands.

It is clear that one limitation of similarity-based library design is
the degree of extrapolation that can reasonably be expected. For
example, a collection designed around class A GPCR ligands—by
far the most well explored in terms of chemical matter—seems
unlikely to show much enrichment for class B or C GPCRs. Like-
wise, a library based on orthosteric binding site properties seems
unlikely to yield many allosteric modulators. A competing priority
that sometimes receives less attention in focussed library design is
that of novelty. It can be argued that the chemical space occupied by
ligands for a particular target or group of targets is more reflective
of historical trends in synthesis methods than it is of true receptor
binding preferences. Thus, while it may be true that choosing
further molecules from this same space will yield an increased hit
rate in a statistical sense, there is also the danger that one simply
rediscovers that which is already known. One way to circumvent
this issue is to define molecular similarity in a more abstract way
than using substructures, for example by searching for common
pharmacophoric features or field-based descriptors [35]. These
approaches are considerably more computationally demanding
than 2D property-based searches, requiring as they do the calcula-
tion of one or more 3D conformations for each molecule. This may
explain why they appear to be rather less frequently employed.
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5 Reaction Mining, Virtual Libraries, and De Novo Design

One of the allures of computer-aided drug discovery has always
been the hypothetical ability to navigate the vastness of chemical
space without the need to synthesize every compound. However, a
significant issue with virtual molecules is that they are not always
synthetically tractable, at least not with contemporary reaction
schemes. Broadly speaking, the two approaches used to mitigate
this issue are either to use synthetic considerations to guide the
construction of the molecules in the first place, or to apply an
automated synthetic accessibility scoring algorithm post-
construction.

A comparatively small number of reaction types account for a
substantial proportion of the synthetic steps that are carried out in
medicinal chemistry programs [36]. This is, in large part, due to the
time and other resource constraints that are placed on such pro-
jects, which mandate a strong preference for robust and versatile
chemistries. Manual abstraction and mapping of these reaction
types to an appropriate transformation language such as Daylight
SMARTS, MDL RXN, or reaction vectors is therefore a feasible
approach. One frequently referenced contemporary example of this
is the work by Hartenfeller et al. [37]. Alternatively, the informa-
tion can be mined from an appropriate source such as an ELN [38]
or the patent corpus [39]. Automated mining not only requires a
suitable parser to locate and extract the relevant information from
each document, but also the ability to algorithmically clean that
data and classify the various roles within each synthetic step as well
as the overall reaction type.

One application of in silico chemical synthesis is the generation
of virtual libraries. An example of this is the synthetically accessible
virtual inventory (SAVI) database, which uses reversed retrosyn-
thetic transforms from the LHASA program to generate a collec-
tion of approximately 610,000 products in its current form
[40]. Due to the combinatorial nature of the process, even with
modest numbers of reactions and reagents significantly larger vir-
tual libraries than that represented by SAVI have been generated, at
least up to 1016 compounds [41]. Efficient searching of these
virtual spaces then becomes a significant issue, as brute force
approaches and post-filtering do not scale appropriately. A more
elegant solution is to adapt the search algorithm to operate in the
reagent space, which eliminates the need to fully enumerate all of
the virtual products [42, 43].

De novo design approaches also avoid the need to fully enu-
merate virtual chemistry space by applying some kind of objective
function to construct the molecules in an iterative fashion. Objec-
tive functions can include the predicted strength of interaction with
a particular target (or targets) using either 2D or 3D information,
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as well as other physicochemical properties in the typical case of a
multi-parameter optimization. For example, Besnard et al. used an
evolutionary algorithm similar in concept to that illustrated in
Fig. 3 to design compounds with various profiles against aminergic
GPCRs [44]. The objective function in this case included Bayesian
models to predict a variety of on- and off-target activities, together
with scores representing the likelihood of achieving CNS penetra-
tion as well as other ADME properties. The chemical transforma-
tion rules were derived from an analysis of analogue series in
ChEMBL, and were therefore more akin to the kind of medicinal
chemistry transformations exemplified by the Drug Guru approach
[45] than true synthetic reactions. A synthetic accessibility filter was
therefore applied to each generation to penalize unusual or overly
complex molecules.

One question that seems unlikely to be resolved in the imme-
diate future is that of the appropriate level of detail that should be
included when describing a chemical reaction electronically. A
description that specifies the exact reagents and conditions that
have been experimentally validated will, in principle, be reproduc-
ible but will not usefully generalize. On the other hand, a descrip-
tion that only includes the direct reaction center without
considering its environment is likely to be inappropriate nonspe-
cific, giving rise to a significant proportion of virtual products that
would not, in reality, be formed in any useful yield. The correct
balance between these two extremes depends on the particular

Fig. 3 An example of an evolutionary de novo design workflow of the type exemplified by the work of Besnard
et al. At each iteration, virtual enumeration according to a set of medicinal chemistry transforms is followed by
scoring and filtering to generate an elite population. After a number of generations have evolved compounds
are selected for synthesis and experimental testing, and the results are fed back in to update both the models
and the molecules for the next cycle
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application and on the skills and experience of the medicinal chem-
istry team. However, it should always be expected that the type of
approach described above will provide an enrichment in terms of
synthetic tractability, rather than guaranteeing that every molecule
will be readily accessible.

6 QSAR/QSPR Modeling

Quantitative structure-activity or property relationship (QSAR or
QSPR, respectively) modeling is a substantial area of research that is
applied across the discovery pipeline. Hence, only the briefest
summary will be attempted here, and the interested reader is
referred to the large number of recent [46] and not so recent
[47] reviews in this field. Fundamentally, QSAR involves the con-
struction of a mathematical model that relates a compound’s struc-
ture to an experimentally measureable property of interest. This can
range from superficially straightforward properties such as melting
point or aqueous solubility to more complex biological endpoints
such as human toxicity. A wide range of modeling or machine
learning approaches have been and continue to be developed, and
some contemporary algorithms are discussed below. First, however,
some more general considerations for this type of approach are put
forward.

Perhaps the most important aspect of QSAR modeling is
choosing how to characterize the molecules; which known proper-
ties (or descriptors) to attempt to relate to the unknown property
of interest. Examples of common solutions to this problem are
illustrated in Fig. 4. The simplest approach is to use the molecular
graphs themselves as descriptors. This is the method used in Free-
Wilson analysis [48], which relates the structural elements of a
molecule to a biological activity or other properties using multiple
linear regression. On the assumption that the contributions from

Fig. 4 Examples of different ways of characterizing a molecule during QSAR modeling, illustrated using the
β-adrenoceptor antagonist Atenolol. (a) Division of the molecule into R groups and a core “scaffold”, as would
be performed during Free-Wilson or matched-pairs analysis. (b) Construction of a binary fingerprint from the
molecular graph; in this case, a path-based fingerprint where each pattern sets two bits. (c) A 3D description
of the molecule using electrostatic (red—positive, blue—negative) and shape (yellow) fields
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different parts of a molecule are approximately additive, this type of
approach can be useful if one is operating in a relatively well-
characterized chemical space. It is therefore still applied, for exam-
ple, in lead optimization programs to search for favorable combina-
tions of previously exemplified R-groups. Free-Wilson is highly
related to matched-molecular pairs analysis [49], another compara-
tively mature analysis method that has recently been extended to
encompass matched-triplicate design [50] as well as matched
molecular series [51]. Although they can offer good predictive
performance, a significant drawback to these approaches is that
they require a significant amount of experimental data to draw
robust conclusions. Furthermore, they are entirely interpolative,
and cannot be used to make predictions for compounds with
novel substructures.

In order to reduce data requirements and build models capable
of extrapolation, a more abstract level of compound description is
required. A simple modification of the molecular composition
approach is to use chemical fingerprints, either with predefined
fragments such as MACCS keys or more general graph-based fea-
tures such as atom paths or circular environments [52]. Predefined
fragments offer easy interpretation but limited extrapolation,
whereas hashed fingerprints are not limited in the same way but
are harder to interpret. A large number of other graph theoretical
indices can also be calculated from a molecular structure, although
the practical utility of these descriptors is generally limited by their
lack of interpretability. Alternatively, compounds can be described
using physicochemical descriptors such as molecular weight, atom/
ring counts, hydrogen-bond donor or acceptor counts, and so
forth. Despite issues surrounding propagation of errors, it is rela-
tively common practice to attempt to model one property such as a
biological activity using other predicted properties. For example,
descriptors that quantify molecular lipophilicity, such as the pre-
dicted octanol-water partition coefficient (logP or logD), are often
found to correlate with other experimental properties of interest.

Moving beyond 2D descriptions, 3D QSAR approaches have
also been developed. Perhaps the best known of these use the
concept of fields to describe the shape and electrostatic character
of a molecule [53]. A 3D approach should, in principle, offer a
more complete description of a molecule and therefore provide a
better foundation for predicting its behavior. However, this
assumes that an accurate and representative conformation
(or conformational ensemble) can reliably be generated, which is
unfortunately not the case with present technology for many mole-
cules. This additional complexity, computational cost and uncer-
tainty probably contribute to the fact that 3DQSAR approaches are
currently rather less frequently applied than their 2D counterparts.

Algorithms to model the relationship between a set of descrip-
tors and a property (or properties) of interest are many and varied.
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They range from comparatively simple approaches such as k nearest
neighbors and recursive partitioning trees to more complicated
ones such as random forests, support vector machines, and neural
networks. Algorithms are sometimes divided into those used to
model continuous variables and those used for classification. This
is pertinent in drug discovery because a number of properties of
interest such as aqueous solubility, permeability, and metabolic
stability are often experimentally characterized as high, medium,
or low, even where quantitative data is available. Most algorithms
have a number of adjustable parameters that specifically tune their
behavior, and indeed choosing the optimal parameters for a given
approach can be a significant challenge. However, regardless of the
exact method employed, it is key to try to capture the relationship
between the descriptors and the property of interest in a generaliz-
able way, rather than simply modeling the exact data set to hand. It
is common practice to partition the available information and use
cross-validation to check for overfitting, although the use of tem-
poral datasets is probably more representative of the real world
scenario in which QSAR models are employed [54]. Establishing
the domain of applicability—the area of chemical or, more gener-
ally, descriptor space in which predictions above a certain level of
accuracy are more likely—is also important. Studies have shown
that even models built on large amounts of corporate data tend to
show a deterioration in performance over time [55], and part of the
reason for this is likely to be the introduction of new chemotypes
that are distinct from those present in the training set.

As both the size of data sets and the available computing power
increase, machine learning approaches offer ever-increasing levels
of sophistication [56] and much attention is paid to which algo-
rithm performs best for a particular data set. Pattern recognition
alone is sometimes useful in drug discovery, for example in the
analysis of high-throughput screening results where one is inter-
ested in identifying potentially erroneous data points based on their
inconsistency with neighboring results [57]. However, a degree of
understanding is usually required in addition to statistical correla-
tion. In such situations the exact algorithm is, in many ways, the
least important component of the QSAR process, and it is how the
molecules are described that is critical. Some approaches allow for
the use of mathematical transformations of the input descriptors
and therefore, in principle, are able to recapitulate physical laws
involving nonlinear relationships [58]. Unfortunately, this is only
of use if all of the factors relevant to determining the property of
interest are known and calculable. This may be the case, for exam-
ple, if one is attempting to model the motion of a pendulum based
on its physical characteristics and the local gravity field, but in
essentially all drug discovery applications the important descriptors
are either partly unknown, or cannot themselves be calculated
accurately.
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7 Drug-Likeness and Multi-parameter Optimization

Drug discovery is inherently a multi-parameter optimization
(MPO) problem. Typically, it is necessary to consider a range of
properties for a candidate therapeutic, including activity against the
desired target or targets, activities against undesired “off-targets”
and pharmacokinetic and ADMET properties such as solubility, oral
bioavailability, and metabolic stability. The specific ranges that
should ultimately be achieved for each property are assembled into
an ideal profile, sometimes referred to as a target product profile.
This is normally specified at the start of a project, although it may be
necessary to adjust some of the requirements based on experience.

Unfortunately, it is nearly always the case that improvements in
certain properties are accompanied by degradation of others. A
balance between the various profile elements therefore needs to
be achieved. Computationally, the factors can be kept separate
and analyzed using an approach such as Pareto optimization, or
they can be combined into an aggregated objective function or
desirability metric. Combined metrics are appealing because they
reduce multiple factors to a single number, and have a long history
of application in medicinal chemistry programs [59]. They can
range from simple equations such as those defining ligand efficiency
and ligand-lipophilic efficiency up to more complicated functions
involving multiple measured or calculated properties. The nature of
the MPO function employed typically varies throughout a project’s
lifetime, with the complexity increasing to reflect the breadth of
data that is available and the additional criteria that need to be met.
For example, in the analysis of HTS results the experimental infor-
mation is often limited to single concentration responses and so a
function such as ligand efficiency might be appropriate. By contrast,
during lead optimization the focus is on identifying candidate
compounds for in vivo studies and so a more sophisticated MPO
scheme involving multiple ADMET properties is likely to be used.

Aside from theoretical concerns about specific formulations
[60], two general issues regarding the use of combined metrics
are the subjective nature of the functions employed and the propa-
gation of uncertainties. The real goal of any drug discovery pro-
gram is the development of therapeutics that are both safe and
efficacious in humans and, despite our best efforts, currently avail-
able preclinical assays are generally not terribly predictive of this.
Therefore, constructing an optimization function using these pre-
clinical readouts relies, in large part, on the expertise and experience
of the project team. Subjectivity inevitably arises in a number of
areas including the choice of properties, the functional forms of the
individual metrics (as illustrated in Fig. 5), and the relative weight
assigned to each during the aggregation. Furthermore, all measure-
ments (and predictions) have an associated level of uncertainty, and
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the greater the number of properties that are considered, the greater
the overall uncertainty will be in the combined outcome [61]. Prob-
abilistic approaches to MPO are therefore much more representa-
tive of the true underlying data than hard cutoffs or filters, although
they are more complicated to implement. The functional form of
the optimization metric and the influence of uncertainties can both
be challenged using sensitivity analysis [62], which is important
when making compound prioritization decisions in order to avoid
inappropriate exclusion of potentially useful series.

One specific application of multi-parameter thinking that is
perhaps worthy of separate discussion is the characterization of
drug-likeness. Work in this area typically seeks to characterize an
area of chemical space based on the known compounds that already
display some property of interest, such as being an approved drug.
A measure of how close novel molecules are to this space is then
derived, on the assumption that revisiting historically precedented
space is more likely to yield future success. In an early and now
much imitated study, Lipinski and coworkers analyzed the physico-
chemical properties of known drugs and clinical candidates to
identify factors that were associated with passive membrane perme-
ability and oral absorption [63]. This analysis was encapsulated as a
series of individual property thresholds that became known as the
“rule of 5” because all of the thresholds are multiples of that
number. Although the philosophy remains the same, hard cutoffs
have subsequently been superseded by continuous metrics familiar
to other contemporary MPO applications, for example in the
quantitative estimate of drug-likeness (QED) parameter [64] and
the Pfizer CNS MPO score [65]. Such general metrics tend not to
be monitored continuously during a drug discovery project, where
a more tailored optimization function of the type discussed above
would likely be developed. However, they may be of use in
pre-project and early stage activities where little project-specific
information is available, such as compound library design or HTS
analysis.

Fig. 5 Examples of individual desirability functions that might be combined into an overall MPO objective. (a) A
hard cutoff at property values below two, exemplifying early binary classification schemes such as Lipinski’s
rule of five. (b) A more complicated function representing a preferred property range from 2 to 4, with
asymmetric plateaux at low and high values and a graduated penalisation between the two. (c) A desirability
function based on a pre-existing distribution of property values, as employed in the QED approach
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The bias captured by these retrospective analyses is both their
strength and weakness. On the one hand, failing to learn the lessons
of history is a sure way to repeat the mistakes of the past. On the
other hand, novelty is certainly restricted by conforming to that
which is already known and reinventing the wheel is rarely attrac-
tive. Careful consideration should therefore be given to the consti-
tution of the reference population to ensure that it is both
representative and relevant. As an example, many of the early
protein-protein interaction inhibitors were comparatively large
molecules, reflecting attempts to mimic elements of protein sec-
ondary structure. An analysis of the chemical space at that stage
would therefore likely have yielded a drug-likeness metric that
favored these types of molecules. However, more recent research
has shown that it is clearly possible to identify PPI modulators with
more similar properties to drugs from other target classes, at least
for some types of interaction. Immunomodulatory drugs such as
lenalidomide, which alter the ability of the cereblon-containing E3
ubiquitin ligase to target various proteins for proteasomal degrada-
tion, are one such example [66]. Antibacterial compounds are
another example where earlier analyses of physicochemical property
requirements have recently been brought into question [67]. His-
torical data sets are generally reasonably good at indicating previous
success, but distinguishing regions with previous high failure rates
from those that are merely poorly explored usually receives rather
less attention.

8 Personal Perspective

Even a cursory glance at the popular literature will tell you that we
are currently entering an era of “big data”, and drug discovery is
certainly no exception to this. We are awash with data, and this
trend only looks to continue for the foreseeable future. The task of
the cheminformatician—turning this data into information, and
the information into knowledge—therefore becomes ever more
crucial. Simple increases in data volume are relatively easily accom-
modated by improvements in processing power, but issues sur-
rounding data quality, consistency, and interpretation do not scale
so straightforwardly. Cheminformatics is principally concerned
with summarizing and presenting the relevant information to
inform and expedite decision making in drug discovery, and this is
a valuable activity. Computer algorithms are, comparatively
speaking, excellent at pattern recognition, and therefore ideally
suited to identifying statistical correlations in our sea of numbers.
However, algorithms have almost nothing to say about the mean-
ing of these correlations and, despite the enthusiasm around some-
what misleading monikers like “machine learning” and “artificial
intelligence”, this situation seems unlikely to change soon.
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Improving our understanding of human biology and how to
manipulate it are ultimately the keys to creating more effective
therapeutics, and no amount of processing power can substitute
for thinking in this endeavor.
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Chapter 21

Modeling and Deorphanization of Orphan GPCRs

Constantino Diaz, Patricia Angelloz-Nicoud, and Emilie Pihan

Abstract

Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and
their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because
they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental
approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surro-
gate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently
published active structures of GPCRs provide stimulating opportunities for building active molecular
models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe
the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands,
and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.

Key words GPCR, Orphan GPCR, Molecular model, Homology modeling, Molecular dynamics,
Structure, Virtual screening, Surrogate ligand, CCKA, GPR34, GPR52

1 Introduction

G protein-coupled receptors (GPCRs) are cell surface sensors
which are activated by extracellular transmitters with a wide diver-
sity of sizes, shapes, and chemical properties, including photons,
ions, biogenic amines, nucleotides, amino acids, peptides, and
lipids [1, 2]. GPCRs play a key role in cell-to-cell communication
and they regulate a wide array of physiological and pathophysiolog-
ical processes. These membrane proteins form the largest human
receptors superfamily with more than 800 members [3]. Approxi-
mately 360 non-olfactory receptors are potentially druggable
[4, 5], of which about 60 have been exploited as pharmaceutical
targets and 120 remain orphan: their endogenous ligands and
functions are unknown [6, 7].

Orphan GPCRs (oGPCRs) represent an unexplored set of
targets for novel drug discovery [8, 9]. Two important steps in
the deorphanization of oGPCRs are the identification of their
highly selective natural ligand [10], and the understanding of
their physiological function and possible role in diseases. The
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most common strategy for ligand identification is high-throughput
screening (HTS) of focused libraries of small molecules, lipids,
peptides, and tissues extracts, using eukaryotic cells overexpressing
the oGPCR of interest, and a second messenger readout
[11–13]. In the absence of ligand, phenotypical characterization
of organisms overexpressing or silencing oGPCRs may help in
deciphering their function [14]. Identification of synthetic surro-
gate ligands is an alternative strategy to classical deorphanization
approaches. Finding activators opens the door for studying the
function of the receptor and provides matter for medicinal chemis-
try for optimizing compounds potency, selectivity, and biological
profile [15–17].

Molecular modeling of oGPCRs and virtual screening (VS)
contribute to identifying surrogate ligands with potential for ther-
apeutic development [18, 19]. Here, we present the protocols we
have used for identifying modulators for oGPCRs. We provide
results for CCKA, a simulated oGPCR, and for two oGPCRs,
GPR52 and GPR34.

2 Materials

2.1 Molecular

Dynamics

The CHARMm force field in InsightII [http://accelrys.com/] was
used. The production phase was during 1 ns at 300 K, with a
distance-dependent dielectric term, a 14 Å non-bonded cut-off
distance, and 0.5 fs steps. No restraint was used.

2.2 Homology

Modeling

Homology models for CCKA, GPR52, and GPR34 were built with
MOE 2015.10 [https://www.chemcomp.com/], based on NTS1
structures. The models were full-length, including extracellular and
intracellular loops.

2.3 Compounds

Libraries

2.3.1 CCKA

A CCKA library with 3375 compounds, containing 117 human
CCKA agonists, 195 antagonists, and 3063 decoys, was built for
the evaluations. Agonists and antagonists were retrieved from the
ChEMBL v21 database [20]. The included actives had activating or
inhibiting profile, values EC50, IC50, or Ki below 4 μM, and
molecular weights between 300 and 800 g/mol. Decoys were
collected from the DUD-E database [21]. They had size and phys-
icochemical properties similar to the actives (e.g., molecular
weight, LogP) but dissimilar topology. We randomly selected
decoys among those proposed for building a testset with a ratio
4% CCKA agonists and 96% decoys.

2.3.2 GPR52 A GPR52 library with 10179 compounds containing 15 human
GPR52 agonists and 10164 decoys was built for VS evaluations
with a true oGPCR. Agonists were retrieved from the ChEMBL
v21 database. The included agonists had EC50 values below 1 μM,
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and molecular weights between 414 and 486 g/mol. Decoys were
randomly collected from the ZINC database [22]. They had molec-
ular weights between 300 and 600 g/mol.

2.3.3 GPR34 A GPR34 library with 10239 compounds containing 78 human
GPR34 antagonists and 10161 decoys was built. Antagonists were
retrieved from the patent EP1849465A1 [23] with SureChEMBL
[24]. The included antagonists exhibited IC50 below 1 μM and
molecular weights between 459 and 589 g/mol. Decoys were
randomly collected from the ZINC database. They had molecular
weights between 300 and 600 g/mol.

2.4 Preparation

of the Chemical

Libraries

The libraries were prepared through a Knime workflow containing
the successive ChemAxon nodes [https://www.chemaxon.com/]:

1. Major microspecies, to keep the major tautomers, at pH¼ 7.4,

2. Stereoisomers, to consider undefined stereocenters and gener-
ate stereoisomers, and,

3. Conformers, to build the lowest energy conformer.

2.5 Virtual Screening

2.5.1 Docking

Docking sites in the GPCR models were defined using Site Finder
in MOE.

The compound libraries were docked in the GPCR models
using Gold 2016 [25] and four different scoring functions PLP,
ASP, ChemScore, and GoldScore. For each compound, ten dock-
ing poses were generated for each stereoisomer, and the best scor-
ing value among all poses and all stereoisomers was considered for
the compound. All docking parameters were those by default. No
post-docking process was done: no rescoring, and no visualization
or validation of the poses.

2.5.2 Analysis VS efficiency was evaluated considering:

1. The enrichment curve, where the percentage of found actives is
plotted against the ranked library.

2. The enrichment factor (EF) of a hit list composed by the top
1% of the ranked library.

EF ¼ (Activeshit list/Nhit list)/(Activestotal/Ntotal)

in which Activeshit list and Nhit list are respectively the number of
actives and the number of compounds in the hit list, Activestotal
and Ntotal are respectively the number of actives and the num-
ber of compounds in the full library.

3. The hit rate (HR) of a hit list composed by the top 1% of the
ranked library.

HR ¼ 100 � (Activeshit list)/(Nhit list)
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3 Methods

Residues in trans-membrane domains are designated by their posi-
tion in the sequence followed by their universal numbering pro-
posed by Ballesteros and Weinstein [26].

3.1 Templates

for Building Active

Molecular Models

for oGPCRs

Two alternative approaches were used:

– Building of an active molecular model for a GPCR, using a
constitutively activated mutant (CAM) and molecular dynamics.

– Identification of GPCR structures, in the PDB database [27],
which are in an active conformation.

3.1.1 Active Molecular

Model Built Using a CAM

Activation of GPCRs

GPCRs share a common architecture: (1) an extracellular region
containing the N-terminus and three extracellular loops EL1-3,
(2) a transmembrane domain comprising seven α-helices H1-7,
and (3) an intracellular region with three intracellular loops IL1-3
and the C-tail. The intracellular and extracellular regions show a
high variability in size and sequence across GPCRs, while the
transmembrane domain reveals a higher sequence conservation.
For a wild-type GPCR, binding of an agonist to parts of the
extracellular and transmembrane domains of the receptor modifies
its conformation and interaction with cytosolic effectors such as
G-proteins and β-arrestins, thus activating the downstream
signaling [28].

GPCR with constitutive activating mutations show spontane-
ous activity in an agonist-independent manner. The first CAM was
reported for the α1-adrenergic receptor [29], rapidly followed by
many other GPCRs [30]. CAMs are of considerable interest
because their study shed light on structural differences between
active and inactive GPCR conformations. It is worth noting that
naturally occurring CAMs are associated with human diseases
[31, 32].

The NTS1-V308E CAM For the NTS1 receptor, a CAM was produced by a single
V308E6.40 mutation. The spontaneous activity of the V308E6.40

mutant was eightfold higher than wild-type receptor when
expressed in COS-3 cells, and assessed for basal activity of Inositol
Phosphate production [33].

Active Molecular Model

for the NTS1-V308E CAM

First, models for NTS1 and NTS1-V308E were built by homology
modeling using the inactive structure of rhodopsin 1F88 [34], as
follows. Bovine rhodopsin, human NTS1, and other class-A GPCR
sequences were aligned using ClustalW. The positions of motifs in
class-A GPCRs for each TM helix were considered [35] and manual
modifications in the alignment were made where needed, produc-
ing the multi-alignment for the 7 TM helices shown in Fig. 1.
Residues in the 7 TM helices of the rhodopsin structure that were
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different to those of NTS1 were changed for the corresponding
NTS1 residues, with InsightII. Residues outside the 7 TM helices
were removed, generating a bundle with 7 independent TM heli-
ces. Hydrogen atoms were added to relevant positions. Steric
clashes between side chains were checked, and manual modifica-
tions of side chain rotamers were performed where needed, using
the rotamers library of InsightII. The NTS1 molecular model was
submitted to the V308E substitution for producing a
NTS1-V308E molecular model. Both models were minimized,
generating the NTS1 and NTS1-V308E homology models.

bRhod   34 PWQFSMLAAYMFLLIMLGFPINFLTLYVTVQ 
hNTS1   60 IYSKVLVTAVYLALFVVGTVGNTVTAFTLAR 
hCCKA   38 EWQPAVQILLYSLIFLLSVLGNTLVITVLIR 
hGPR34  51 KLLSTVLTTSYSVIFIVGLVGNIIALYVFLG 
hGPR52  37 VDVCIFETVVIVLLTFLIIAGNLTVIFVFHC 

bRhod   71 PLNYILLNLAVADLFMVFGGFTTTLYTSLH 
hNTS1  100 TVHYHLGSLALSDLLTLLLAMPVELYNFIW 
hCCKA   75 VTNIFLLSLAVSDLMLCLFCMPFNLIPNLL 
hGPR34  88 SIQIYLLNVAIADLLLIFCLPFRIMYHINQ 
hGPR52  75 TTSYFIQTMAYADLFVGVSCLVPTLSLLHY 

bRhod  107 PTGCNLEGFFATLGGEIALWSLVVLAIERYVVV
hNTS1  138 DAGCRGYYFLRDACTYATALNVASLSVERYLAI
hCCKA  111 SAVCKTTTYFMGTSVSVSTFNLVAISLERYGAI
hGPR34 124 VILCKVVGTLFYMNMYISIILLGFISLDRYIKI
hGPR52 111 SLTCQVFGYIISVLKSVSMACLACISVDRYLAI

bRhod  150 ENHAIMGVAFTWVMALACAAPPLVG 
hNTS1  182 RSRTKKFISAIWLASALLTVPMLFT 
hCCKA  155 KSHALKVIAATWCLSFTIMTPYPIY 
hGPR34 168 TKQSIYVCCIVWMLALGGFLTMIIL 
hGPR52 155 PCRLRICIILIWIYSCLIFLPSFFG 

bRhod  200 NESFVIYMFVVHFIIPLIVIFFCYGQLVF 
hNTS1  233 VKVVIQVNTFMSFIFPMVVISVLNTIIAN 
hCCKA  206 QQSWHTFLLLILFLIPGIVMMVAYGLISL 
hGPR34 215 GEAIFNFILVVMFWLIFLLIILSYIKIGK 
hGPR52 200 SAYFTGFIVCLLYAPAAFVVCFTYFHIFK 

bRhod  250 VTRMVIIMVIAFLICWLPYAGVAFYIFT 
hNTS1  301 GVRVLRAVVIAFVVCWLPYHVRRLMFCY 
hCCKA  311 VIRMLIVIVVLFFLCWMPIFSANAWRAY 
hGPR34 264 TARNSFIVLIIFTICFVPYHAFRFIYIS 
hGPR52 263 YAMVLFRITSVFYMLWLPYIIYFLLESS 

bRhod  286 IFMTIPAFFAKTSAVYNPVIYIMMN 
hNTS1  344 YFYMVTNALFYVSSTINPILYNLVS 
hCCKA  350 TPISFILLLSYTSSCVNPIIYCFMN 
hGPR34 307 KTNEIMLVLSSFNSCLDPVMYFLMS 
hGPR52 297 TLSFLTTWLAISNSFCNCVIYSLSN 

Fig. 1 Sequence alignment for the 7TM helices of bovine rhodopsin (bRhod),
human NTS1 (hNTS1), human CCKA (hCCKA), human GPR52 (hGPR52), and
human GPR34 (hGPR34) receptors. The conserved residues for class-A GPCRs
are shown in bold. The Val308 residue in hNTS1 is in bold and underlined
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Then, the two models were submitted to molecular dynamics
(see Subheading 3). The simulations resulted in NTS1 and NTS1-
V308E molecular dynamics models.

In the NTS1 homology model, Val3086.40 is situated in helix
H6 and is oriented toward the center of the TM helices bundle. It
participates in a central hydrophobic cluster composed by
Leu1052.43, Leu1082.46, Val1593.43, and Leu1623.46 (Fig. 2a, b).

In the 1 ns NTS1 molecular dynamics model, the packing of
the 7 TM helices bundle and the hydrophobic cluster remain
essentially unchanged (Fig. 2c).

In the 1 ns NTS1-V308E molecular dynamics model, the
substitution V308E6.40 in helix H6 introduced a strong polar
group perturbing the hydrophobic core and leading to structural
reorganization of the helices bundle. The negatively charged side
chain of Glu3086.40 formed a salt bridge with the positively charged
part of the side chain of Asn1583.42 in helix H3, producing a
concerted anticlockwise rotation of H6 and a small clockwise rota-
tion of H3, in an extracellular view. The side chains of the
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H6 H7
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Fig. 2 (a) Extracellular and (b) membrane views of the NTS1 homology model built using the inactive structure
of rhodopsin 1F88. Residues participating in the hydrophobic core are shown. (c) Extracellular view of the
NTS1 molecular dynamics model. (d) Extracellular view of the NTS1-V308E molecular dynamics model. Main
changes compared with the NTS1 molecular dynamics model are shown by arrows
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conserved Phe3126.44 and Trp3166.48 moved in the direction of
H5. An anticlockwise rotation of H5 and a clockwise rotation of
H7 also occurred, as well as changes in tilts for H4 and H5, and
kink for H6, resulting in the activation scheme shown in Fig. 2d.

CAMs with a Mutation at

X6.40
The residue X6.40 (where X is a hydrophobic residue Val, Ile, Leu,
or Met) is a hot spot, as mutations decreasing its hydrophobicity
generated CAMs for diverse GPCRs including rhodopsin, musca-
rinic M5, histamine H1, angiotensin AT1A, and opioid receptors
[30]. The hydrophobic core that includes in particular the con-
served Leu3.43 in helix H3 and X6.40 in helix H6 was proposed to
hold H3 and H6 in place in the inactive state for class-A GPCRs.
Rearrangement of the interactions between the residues involved in
this hydrophobic core enables the movement of H6 in the activa-
tion process, with co-occurring movements of H5 and H7.

3.1.2 Active Structures

of GPCRs

The first reported structure of a GPCR was in 2000, for rhodopsin,
a special GPCR with a covalently bound ligand, the retinal
[34]. Seven years were necessary to develop successful receptor
stabilization and crystallization techniques for GPCRs with diffus-
ible ligands. In 2007, a structure was published for the β2-adrener-
gic receptor [36], followed in 2008 by structures of β1-adrenergic
and adenosine A2A receptors [37, 38]. Since then, there has been
an almost exponential growth in the number of published GPCR
structures (Fig. 3). In early 2016, 146 structures were available in
the PDB repository for 32 different GPCRs in class-A, -B, -C, and
-F [39]. Structural coverage of the GPCR phylogenic tree is under-
way, providing atomic details for drug discovery and drug design
using computational methods [8].

Most GPCR structures were crystallized in complex with
antagonists or inverse agonists, and are therefore in an inactive
state. GPCR structures in a semi-active state cocrystallized with
an agonist, or in a fully active state stabilized in the extracellular
and intracellular sides by, respectively, an agonist and a G protein or
a G protein surrogate, are available for rhodopsin, β2 and β1
adrenergic, adenosine A2A, muscarinic M2, serotonin 5-HT1B
and 5-HT2B, purinergic P2Y12, FFAR1, SMO, and neurotensin
NTS1 receptors [40, 41]. These structures provide invaluable tem-
plates for building increasingly accurate active models for GPCRs
and oGPCRs.

3.2 Homology

Modeling of oGPCRs

The modeling process involves the following steps.

3.2.1 Listing of Potential

Templates

For searching activators, active GPCR structures or validated
molecular models of CAMs are needed. The GPCRdb database
[39] provides an updated list of GPCR structures.
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3.2.2 Sequence

Alignment Between

the Target

and the Templates

The sequences are aligned with multiple-sequences alignment tools
like ClustalW [42] and TCoffee [43]. Errors in the initial alignment
are common, and appropriate corrections are generally required,
based on the conserved motifs in the 7 TM helices [35], and the
conserved cysteine in EL2 loop.

3.2.3 Selection of a

Template

The selection is based on the highest target-template sequences
similarity. Three types of rankings can be used:

1. Considering the whole sequences,

2. Based on the full 7 TM sequences,

3. Restricting the sequences to 30 [44], 40 [45], or 44 [46]
residues pointing into the generic binding pocket of GPCRs.

Other factors may also be considered for selecting the template:
the identical position in the target-template sequences alignment of
key amino acids like prolines, the presence of the conserved cysteine
in the EL2 loop, and similar target-template lengths for EL2a and
EL2b loop. The EL2 loop must be considered with attention, as it
shows variable lengths and secondary structures for diverse GPCRs
[45, 47].

3.2.4 Building of a Crude

Homology Model

Various software packages perform the building of a homology
model, given a 3D template and target-template sequences align-
ment. We have used MOE. In the model generation, a large num-
ber of models are built, and the best model in terms of energy is
further refined. Visual inspection terminates the building of the
crude homology model.

3.3 Structure-Based

Virtual Screening

Molecular docking is a powerful technique for the discovery of new
ligands, and it has been successfully applied to various GPCRs
[19]. The main steps are the definition of the docking site, and
docking and scoring of the compounds in the docking site.

The docking of a compound consists of geometrically fitting a
flexible compound into the docking site which is mostly assumed to
be rigid. The scoring assesses the interactions between the docked
compound and the receptor using force-field, empirical or
knowledge-based functions. The widely used VS programs include
Gold [25], Dock [48], Glide [49], and LigandFit [50]. The dock-
ing and scoring performances vary depending on the target protein.
Benchmarks considering sets of protein structures cocrystallized
with ligands provide objective evaluations [51].
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4 Notes

4.1 A Simulated

oGPCR: CCKA

The cholecystokinin receptor (CCKA) was selected as a simulated
orphan receptor for evaluating diverse approaches for the identifica-
tion of surrogate ligands. No CCKA structure is available, and for
the present study, previous published work on CCKA was not
considered.

4.1.1 VS with an Active

CCKA Model Built Using

the MD Template

A crude active CCKA molecular model (CCKA-MD) was built by
homology modeling from the NTS1-V308EMDmodel, according
to the alignment in Fig. 1. The CCKA-MD model had only the
7 TM helices, the conserved Cys19645.50 of the extracellular loop
EL2, and the conserved disulfide bridge Cys1143.25-Cys19645.50

with the same geometry as the corresponding cysteine pair in
bovine rhodopsin [34]. The docking site was between the TM
helices and under Cys19645.50.

The enrichment curve resulting from the docking of the CCKA
library into the CCKA-MD model with Gold and the PLP scoring
function is shown in Fig. 4. Enrichment factor (EF) and hit rate

CCKA
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Fig. 4 Enrichment curves obtained by docking the CCKA library into the four
molecular models CCKA-MD, CCKA-4BUO, CCKA-4BV0, CCKA-4XES with Gold
and the PLP scoring function
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(HR), considering the top-scored 1% of the ranked library, are
shown in Table 1. Excellent results were obtained with PLP:
EF ¼ 7.9 and HR ¼ 27%.

4.1.2 VS with Active

CCKA Models Built Using

PDB Structures

To be consistent with the use of a NTS1 molecular dynamics model
as a template for building a CCKA model for VS, here we explored
the use of NTS1 structures for building CCKA models for VS and
for comparing the results. The three rat NTS1 active structures
with PDB Id 4BUO, 4BV0 [52], and 4XES [53] were used for
building crude active CCKA models by homology modeling,
named respectively CCKA-4BUO, CCKA-4BV0, and CCKA-
4XES. Extracellular loops were modeled based on those of the
NTS1 structures. Importantly, the lengths of loops EL2a and
EL2b, respectively before and after the conserved cysteine in
EL2, are similar for rat NTS1 (respectively 18 and 8 amino acids)
and human CCKA (17 and 9 amino acids).

Enrichment curves for the VS of the CCKA library with the
three models and the PLP scoring function are shown in Fig. 4.
Enrichment factors and hit rates with the four scoring functions,
considering the top-scored 1% of the ranked library, are shown in
Table 1. With the PLP scoring function, similar results were
obtained for the model built using the NTS1-V308E MD tem-
plate, and the three models built using the three NTS1 active
structures. For the four models, the PLP scoring function gener-
ated the best performance. As the goal was to identify agonists, only
the 117 CCKA agonists were considered actives. The 195 CCKA
antagonists in the library were considered to be negative com-
pounds like the 3063 decoys.

4.2 GPR52 GPR52 is an orphan receptor [www.guidetopharmacology.org] for
which 15 agonists were recently described [54]. The NTS1 active
structure 4BV0 was used for building a crude active GPR52 molec-
ular model by homology modeling: GPR52-4BV0.

Table 1
Enrichment factors (EF) and hit rates (HR) for CCKA agonists resulting from the docking of the CCKA
library into the four molecular models CCKA-MD, CCKA-4BUO, CCKA-4BV0, CCKA-4XES with Gold and
the PLP, ASP, ChemScore, and GoldScore scoring functions. EF and HR are given for the top 1% of the
ranked library

Models

PLP ASP ChemScore GoldScore

EF HR (%) EF HR (%) EF HR (%) EF HR (%)

CCKA-MD 7.9 27 2.6 9 1.7 6 0.9 3

CCKA-4BUO 7.9 27 0.9 3 0.9 3 0.0 0

CCKA-4BV0 7.0 24 6.1 21 0.9 3 4.4 15

CCK1-4XES 6.1 21 1.7 6 1.7 6 1.7 6
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Enrichment curves for the VS of the GPR52 library with the
four scoring functions are shown in Fig. 5. Enrichment factors and
hit rates, for the top-scored 1% of the ranked library, are shown in
Table 2. Best results were obtained with PLP and ChemScore. With
PLP, the enrichment factor for GPR52 is excellent and similar to
that of CCKA.

Fig. 5 Enrichment curves obtained by docking the GPR52 library into the GPR52-4BV0 molecular model with
Gold and PLP, ASP, ChemScore, and GoldScore scoring functions

Table 2
Enrichment factors (EF) and hit rates (HR) for GPR52 agonists resulting from the docking of the GPR52
library into the GPR52-4BV0 molecular model with Gold and the PLP, ASP, ChemScore, and GoldScore
scoring functions. EF and HR are given for the top 1% of the ranked library

Model

PLP ASP ChemScore GoldScore

EF HR (%) EF HR (%) EF HR (%) EF HR (%)

GPR52-4BV0 6.7 1 0.0 0 13.4 2 0.0 0
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4.3 GPR34 GPR34 is an orphan receptor [www.guidetopharmacology.
org]. Based on its sequence, GPR34 is closely related to P2Y12,
P2Y13, and P2Y14 [17]. It is activated by lysophosphatidylserine
(LPS), but LPS has no or very weak agonist activity at most verte-
brate GPR34 orthologues [55], suggesting that the search for the
endogenous agonist should continue. Recent studies suggest con-
stitutive activity [56]. Small compound antagonists, but no small
compound agonist, were published for GPR34 [23]. In this third
example, we assess if an active molecular model can be used for
searching antagonists for an oGPCR.

The NTS1 active structure 4BV0 was used again for building a
crude active GPR34 model by homology modeling.

Enrichment curves for the VS of the GPR34 library with the
four scoring functions are shown in Fig. 6. Enrichment factors and
hit rates, considering the top-scored 1% of the ranked library, are
shown in Table 3. Excellent results were obtained with the four
scoring functions, the best results being generated by PLP with
EF ¼ 57.9 and HR ¼ 44.1%.

Fig. 6 Enrichment curves obtained by docking the GPR34 library into the GPR34-
4BV0 molecular model with Gold and PLP, ASP, ChemScore, and GoldScore
scoring functions
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4.4 Perspectives The three retrospective studies show that, using the molecular
modeling and virtual screening techniques described, active com-
pounds were found in VS-lists representing 1% of the screened
libraries. These excellent results were obtained without requiring
prior knowledge of ligands for building the molecular models of
the receptors. Interestingly, among the four tested scoring func-
tions PLP, ASP, ChemScore, and GoldScore, the best results were,
on average, obtained with the PLP scoring function. Recently, a
comparison of 20 scoring functions over a set with 195 diverse
protein-ligand complexes also found Gold/PLP among the top
performers [51]. Surprisingly, the CCKA model built using the
molecular dynamics model of the NTS1-V308E CAM and the
three CCKA models built using NTS1 active structures generated
similar VS results when considering the VS-lists with 1% of the
screened library.

In a previous prospective study [57], we built a GPR34 molec-
ular model by homology to the NTS1-V308E MD model
described in the methods paragraph. The GPR34 model was
refined using active compounds found in an experimental screen-
ing, and it was used to perform the virtual screening of a corporate
library. Three inverse agonists with new chemical structures were
discovered, thus validating the use of molecular models for search-
ing modulators for orphan GPCRs.

In the last years, the almost exponential growth in the number
of published GPCR structures opens up new perspectives for build-
ing increasingly accurate molecular models for oGPCRs, and
searching surrogate ligands using VS.
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