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Preface

This volume represents presentations given at the 82nd annual meeting of the
Psychometric Society, organized by the University of Zurich, and held in Zurich,
Switzerland, during July 17–21, 2017. The meeting was one of the largest
Psychometric Society meetings in the Society’s history, both in terms of partici-
pants and number of presentations. It attracted 521 participants, with 295 papers
being presented, of which 91 were part of a symposium. There were 105 poster
presentations, 3 pre-conference workshops, 3 keynote presentations, 4 invited
presentations, 2 career award presentations, 4 state-of-the-art presentations, 1 dis-
sertation award winner, and 22 symposia.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society so as to allow
presenters to quickly make their ideas available to the wider research community,
while still undergoing a thorough review process. The first five volumes of the
meetings in Lincoln, Arnhem, Madison, Beijing, and Asheville were received
successfully, and we expect a successful reception of these proceedings too.

We asked authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 34 state-of-the-art chapters addressing a diverse set of psychometric
topics, including item response theory, factor analysis, causal inference, Bayesian
statistics, test equating, cognitive diagnostic models, and multistage adaptive testing.

Umeå, Sweden Marie Wiberg
Champaign, IL, USA Steven Culpepper
Leuven, Belgium Rianne Janssen
Santiago, Chile Jorge González
Amsterdam, The Netherlands Dylan Molenaar
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Optimal Scores as an Alternative
to Sum Scores

Marie Wiberg, James O. Ramsay and Juan Li

Abstract This paper discusses the use of optimal scores as an alternative to sum
scores and expected sum scores when analyzing test data. Optimal scores are built
on nonparametric methods and use the interaction between the test takers’
responses on each item and the impact of the corresponding items on the estimate of
their performance. Both theoretical arguments for optimal score as well as argu-
ments built upon simulation results are given. The paper claims that in order to
achieve the same accuracy in terms of mean squared error and root mean squared
error, an optimally scored test needs substantially fewer items than a sum scored
test. The top-performing test takers and the bottom 5% test takers are by far the
groups that benefit most from using optimal scores.

Keywords Optimal scoring ⋅ Item impact ⋅ Sum scores ⋅ Expected sum scores

1 Introduction

Test scores must estimate the abilities of the test takers in a manner that is both
accurate and unbiased, since they are used in many settings to make decisions about
test takers. Sum scores (or number correct scores) have in the past been a common
test score choice as they are easy for test takers to interpret and are easy to compute.
Scores built on parametric item response theory (IRT; see Lord 1980; Birnbaum
1968) have also been used, although almost exclusively by test constructors,
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since test takers usually find it hard to understand the meaning of the parametric
IRT scale scores, which may take any value on the real line. Test takers tend not to
be convinced that a score of zero represents average performance. A further
problem is that commonly not all items are satisfactorily modeled with parametric
IRT models, even in large-scale tests that have been carefully developed.

A choice other than using parametric IRTmodels is to use nonparametric methods
to estimate test takers’ ability and the item characteristic curves (ICC). Nonpara-
metric IRT has been used in several studies in the past. Mokken (1997) examined
nonparametric estimation and how it worked in connection to monotonicity. Ramsay
(1991, 1997) proposed ICC estimation using kernel smoothing over quantiles of the
Gaussian distribution. This technique gave fast and reasonably accurate ICC esti-
mation, and was implemented in the computer program TestGraf. Rossi et al. (2002)
and Ramsay and Silverman (2002) used the expectation-maximization (EM) algo-
rithm to optimize the penalized marginal likelihood, and the estimates came close to
the three-parameter logistic IRT model as the smoothing penalty was increased.
Ramsay and Silverman (2005) proposed a nonparametric method for not strictly
monotonic curve estimates. Woods and Thissen (2006) and Woods (2006) proposed
a method for simultaneously estimating item parameters using a spline-based
approximation to the ability distribution. Lee (2007) made a comparison of a number
of nonparametric approaches.

As yet another alternative approach to test scoring, this paper will focus on
optimal scoring. This method was proposed by Ramsay and Wiberg (2017a) and
practical concerns were discussed in Ramsay and Wiberg (2017b). The basic idea
behind optimal scoring is to use the interaction between the test takers’ responses
on each item and the impact of the corresponding items on the estimate of their
performance by letting high-slope items be more influential than low-slope items
when calculating the test scores. Optimal scoring differs substantially from previous
nonparametric approaches in several important ways. First, it uses a faster and more
sophisticated approach than the EM algorithm. Second, it uses spline basis
expansions over non-negative closed intervals to facilitate the interpretation of the
test scores for the test takers. A featured shared with the other nonparametric
methods is that it succeeds to get well-fitting ICC’s when parametric IRT models
fail to give a good fit. The overall aim of this paper is to discuss the nonparametric
IRT based optimal scores as a good alternative to sum scores and expected sum
scores and to illustrate this with real and simulated test data. This paper also differs
from Ramsay and Wiberg (2017b) by extending the comparison to include expected
sum scores.

The next section describes the quantitative skill test used as an illustration,
followed by a third section where three different test scores are defined. The fourth
section contains a description on how to estimate the ICC’s with optimal scoring. In
the fifth section a comparison between sum scores, expected sum scores and
optimal scores are given. The paper ends with a short discussion, which includes
some concluding remarks.

2 M. Wiberg et al.



2 A College Admission Test and Its Empirical Test
Distribution

The data used in this paper come from an administration of the Swedish Scholastic
Assessment Test (SweSAT), which is a binary scored multiple-choice college
admissions test. The SweSAT contains a verbal and a quantitative parts, each
containing 80 items. Sum scores are routinely used in the SweSAT, although the
obtained scores are equated to scaled scores, which are comparable over test
administrations and these scaled scores are used by test takers in their college
applications. A sample of 30,000 test takers who took the quantitative part of the
SweSAT is used throughout the paper and the empirical distribution of the sum
scores is displayed in Fig. 1. From this figure, we can draw the conclusion that a
majority of the test takers found the SweSAT difficult, with a median score of 35, a
lowest score of 4 and no test taker with a perfect score. In Fig. 1 we have added a
smooth function of the distribution, which was constructed from a B-spline
expansion of the log density (Ramsay et al. 2009), since the empirical distribution
of the sum scores did not resemble any of the common parametric densities.

Note that in general the distribution of the θ estimates can be transformed
whether or not a parametric or nonparametric IRT is used. Suppose we have a
one-to-one increasing and smooth transformation φ= hðθÞ, then there exists an
alternative item response function P*

i ðφÞ, so that P*
i ðφÞ=PiðθÞ. Thus, we can

transform any specified distribution of θ into an alternative distribution of φ. For
example, we transform from the whole real line into a closed interval such as ½0, n�
by defining φ= n ̸ð1+ e− θÞ.

Fig. 1 The empirical
distribution of sum scores.
The blue histogram indicates
the number of test takers
within each score range, the
red line indicates the smooth
density function, and the blue
dotted lines are 5, 25, 50, 75
and 95% quintile lines
respectively

Optimal Scores as an Alternative to Sum Scores 3



3 Three Test Scores

Let Sj denote the sum score of test taker j ðj=1, . . . ,NÞ and define it as the number
of correctly answered binary items. Let PiðθjÞ be the probability that a test taker
with ability level θj answered item i ði=1, . . . , nÞ correctly. The expected sum
scores are defined as

Ej = ∑
n

i
PiðθjÞ. ð1Þ

Note, a commonly used expected score uses parametric IRT to model PiðθjÞ.
To estimate optimal scores Oj (Ramsay and Wiberg 2017a) we focus on esti-

mating the more convenient log-odds function

WiðθÞ= log
PiðθÞ

1−PiðθÞ
� �

. ð2Þ

To estimate WiðθÞ we can use B-spline basis function expansions

WiðθÞ= ∑
K

k
γikψ ikðθÞ, ð3Þ

where for each item i, γik is the coefficient of the basis function, ψ ikðθÞ=Bkðθjξ,MÞ
is the B-spline basis function, ξ is a knot sequence, K is the number of spline
functions and M is the order of the spline. The advantage of this approach is that
B-spline basis functions are easily expanded in dimensionality and they give stable
and fast computations.

The left panel of Fig. 2 contains the Pi estimates of the 80 item response
functions and the right panel of Fig. 2 shows the Wi estimates of the SweSAT data.
From Fig. 2 we learn that items vary in shape of their ICC and their corresponding
log-odds functions Wi. Some items are very difficult, other items have low dis-
crimination. If Uij is test taker j’s response (0/1) to item i and if either PiðθÞ or its
counterpart WiðθÞ are either known or we can condition on estimates on them, then
the left hand side of

∑
n

i
Uij −PiðθÞ
� � dWi

dθ
=0 ð4Þ

is the derivative of the negative log likelihood

− log LðθjÞ= − ∑
n

i
UjiWiðθjÞ− logð1+ expðWiðθjÞÞÞ
� �

:

4 M. Wiberg et al.



with respect to θ, and the right hand side is zero for its optimal value. Equation 4 is
interesting in several aspects. The slopes of the log-odds functions WiðθÞ at the
optimal θ weight the residuals Uij −Pi θð Þ. The optimal scores thus correspond to
the ability that minimizes the difference between the answers and their probabilities
in which each item is weighted by its impact (or sensitivity) value. In practice, this
means that high-slope items are mainly influencing the differences in scores among
the test takers. The most useful items for assessing test takers at level θ have higher
slopes of Wi at that location, while items having nearly flat Wi are down-weighted,
which would be the case for easy items being given to high-level θ test takers. We
will refer to the interaction between item weights and item performance in the
weighting as the item impact function. The item impact curves ðdWi ̸dθÞ, corre-
sponding to the curves in Fig. 2, are shown in Fig. 3. From Fig. 3, it is obvious that
items have various weights or performances for a certain ability level θ, and one
particular item’s performance will change at different θ. Summing up, the optimal
scoring algorithm is focused on the items that are most informative as reflected by
the size of the item impact function dWi ̸dθ, which yields the amount of infor-
mation provided by answers to item i.

dWi ̸dθ

Fig. 2 The left panel displays the PiðθÞ curves for each item i estimated over the closed interval
0, 80½ � and the right panel displays the estimated log-odds functions Wi for the SweSAT. The
vertical dashed lines are the 5, 25, 50, 75 and 95% quintiles of the empirical distribution of the sum
scores

Optimal Scores as an Alternative to Sum Scores 5



4 Estimating Nonparametric ICC’s

An efficient nonparametric procedure for joint estimation of the n functions Wi and
the knowledge states θj was described in Ramsay and Wiberg (2017a). In their
procedure they use parameter cascading (PC), which is a generalization of profiling
that is computationally faster than marginalization over θ. Let θj be represented by
smooth functions θjðW1, . . . ,WnÞ. The PC optimizations performed are initialized
by a fast data smoothing approach to estimate the Wi as described in Ramsay
(1991). PC is a compound optimization procedure in which an inner optimization
ðHðθjγÞÞ of a penalized log likelihood function with respect to the θj is updated,
each time an outer optimization ðF γð ÞÞ adjusts the coefficients of the B-spline basis
function expansions of the Wi. In PC, the gradient plays a crucial role in the outer
optimization through the implicit theorem such that an efficient search is made
possible. Details of how to perform PC are provided in Ramsay and Wiberg
(2017a). We emphasize that PC is different from using alternating optimization
(AO) as for example the EM-algorithm. Instead of a compound optimization as in
PC, AO switches between optimizing one criterion F with respect to some γ
keeping θ fixed, and optimizing another criterion H with respect to θ keeping γ
fixed.

θ

Fig. 3 The item impact
curves, dWi ̸dθ, that provide
the optimal weighting of item
scores. The vertical dashed
lines are the 5, 25, 50, 75 and
95% quintiles of the empirical
distribution of the sum scores

6 M. Wiberg et al.



5 Optimal Scores in Comparison with Sum Scores
and Expected Sum Scores

5.1 Simulation Study

As a first step, the difference between optimal scores and sum scores as well as
optimal scores and expected sum scores were calculated for the SweSAT data. In
order to further examine the difference between sum scores, expected sum scores
and optimal scores we used simulations from the populations defined by the Wi

curves and the θj’s estimated from the data. The first obstacle was how to handle the
problem of identifying the distribution of θ. To make a fair comparison with the
sum scores we simulated test data using a smooth estimate of the density of the sum
scores based on the SweSAT empirical distribution shown in Fig. 1. As we had
access to a sample of 30,000 test takers the Wi have been pre-calibrated and were
considered to be known (and can be seen in Fig. 2) and thus we only simulated the
test takers’ responses. Root mean squared error (RMSE) of θ was used to assess
recovery. The analysis was performed using PC for optimization. The 81 sum score
values were used as fixed values of θ and we simulated 1000 test takers responses.
Sum scores, expected sum scores and optimal scores were averaged across 1000
simulated samples for each value of θ. The average bias of θ for each test score was
also used to evaluate the different test scores.

5.2 Results of the Simulation Study

The difference between optimal scores and sum scores as well as optimal scores and
expected sum scores are displayed in Fig. 4 for the SweSAT data. The left panel in
Fig. 4 shows a large increase in test scores for high-performing test takers if they
would get an optimal score instead of a sum score. The expected sum score in the
right panel is overall more similar to the sum scores than optimal scores, but the
really top achievers among the test takers get penalized with an expected sum score.
The sum score/optimal score and sum score/expected score differences can be as
large as the size of 20% for some of the scores (for sum scores around 40, the
difference can be ±8).

In Fig. 5 the empirical distributions are displayed in the left panel and the
average RMSE and bias are shown in the right panel for each value of θ. The
empirical distributions for the three different scores only differ slightly. For the mid
90% of the test takers the bias is close to zero regardless of the test scoring method.
But low-performing test takers get higher sum scores than the corresponding θ
values used to generate the data, while at the same time, high-performing test takers
lose about five items using sum scores. For the 5% top- and bottom-performing test
takers the bias and RMSE for sum scoring is substantial. For the mid 90% of the test
takers the RMSE is larger for the sum scores than for optimal or expected sum

Optimal Scores as an Alternative to Sum Scores 7



scores. From the simulations, the optimal score RMSE was on average 6.8% lower
than the sum score RMSE, which corresponds to a mean squared error (MSE) of
14%. Because the MSE declines in proportion to 1 ̸n, we see that the sum-scored
SweSAT would have to be 11 items longer than an optimally scored test in order to
achieve the same average accuracy. Note that the expected sum scores have the
lowest RMSE and bias at each score values, but they are expected scores and are
thus not built on the observed scores as sum scores and optimal scores are. The
results from the simulations for optimal scores in comparison to sum scores are in
line with the results in Ramsay and Wiberg (2017a), who used simulations based on
three different tests and compared optimal scores and sum scores.

Fig. 4 The left panel displays optimal scores minus the sum scores plotted against sum scores and
the right panel displays the expected sum scores minus the sum scores for the SweSAT

Fig. 5 The left panel displays the empirical distribution of sum scores, optimal scores and
expected sum scores and the right panel displays the average RMSE of θ and average bias of θ for
the three test scores. The vertical dashed lines are the quintiles of the empirical distribution of the
maximum likelihood estimates

8 M. Wiberg et al.



6 Discussion

This paper used a large sample from a college admissions test in order to discuss
optimal scores in comparison to sum scores and expected sum scores. A closed
interval in terms of the range of the sum scores was used in order to model student
performance differences. This choice facilitates comparisons with the sum scores
and the expected sum scores in terms of bias and RMSE, and also allows for
understandable interpretations for the test takers.

The simulation study indicated that the expected sum scores and optimal scores
should be preferred over sum scores as their average bias and average RMSE were
lower than for the corresponding sum scores. The improvement in terms of RMSE
was about 6% for 90% of the test takers. Even though the expected sum scores had
the lowest bias and RMSE we cannot recommend it in general as it measures
something else than the optimal scores, i.e. it is an expected score instead of an
observed score. It was mainly included here for sake of completeness and as
expected sum scores are sometimes used in test analysis. The largest problem with
sum scores is the substantial negative bias for high-performing test takers and the
positive bias for low-performing test takers. The substantial improvement is
important, especially in high-stakes test as the SweSAT. To get an improvement of
6% could be the difference of being accepted into the university program of one’s
choice or not. The improvement found in the well-designed SweSAT lead us to
expect a larger benefit if we have less well-designed tests, as for example those
given in classrooms. We are not stating that sum scores should never be used as
they might be useful in some situations. However if we put some effort into
explaining how optimal scores work it may be beneficial for both test constructors
and test takers as they contain more information.

In the future it is important to continue examining the performance of optimal
scoring, especially against parametric IRT as that is used all over the world by test
constructors. As additional information about test takers in terms of covariates are
regularly gathered when large-scale tests are given it should be interesting to
examine optimal scoring with covariates as it has been used successfully in other
test areas as for example test equating (Bränberg and Wiberg 2011; Wallin and
Wiberg 2017; Wiberg and Bränberg 2015). Other interesting future directions
include the use of optimal scoring with polytomous scored items and multidi-
mensional tests. In order to spread the usage of optimal scoring it is crucial to
develop an easy to use software. Currently the authors are developing a new version
of TestGraf (Ramsay 2000) which will incorporate all the important features of
optimal scoring. In summary, optimal scoring provides a number of interesting
opportunities as it is built on efficient and advanced statistical methodology and
technology. We need to stop the waste of valuable information and give our
top-performing test takers the score they earn.
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Disentangling Treatment and Placebo
Effects in Randomized Experiments
Using Principal Stratification—An
Introduction

Reagan Mozer, Rob Kessels and Donald B. Rubin

Abstract Although randomized controlled trials (RCTs) are generally considered

the gold standard for estimating causal effects, for example of pharmaceutical treat-

ments, the valid analysis of RCTs is more complicated with human units than with

plants and other such objects. One potential complication that arises with human

subjects is the possible existence of placebo effects in RCTs with placebo controls,

where a treatment, suppose a new drug, is compared to a placebo, and for approval,

the treatment must demonstrate better outcomes than the placebo. In such trials, the

causal estimand of interest is the medical effect of the drug compared to placebo.

But in practice, when a drug is prescribed by a doctor and the patient is aware of the

prescription received, the patient can be expected to receive both a placebo effect

and the active effect of the drug. An important issue for practice concerns how to

disentangle the medical effect of the drug from the placebo effect of being treated

using data arising in a placebo-controlled RCT. Our proposal uses principal stratifi-

cation as the key statistical tool. The method is applied to initial data from an actual

experiment to illustrate important ideas.

Keywords Causal inference ⋅ Placebo effects ⋅ Principal stratification

1 Introduction

Placebo-controlled, blinded randomized controlled trials (RCTs) are the standard for

approving pharmaceuticals to be given to human beings in the United States, Euro-

pean Union, and much of the world. In fact, agencies such as the U.S. Food and
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Drug Administration (FDA) and the European Medicines Agency (EMA) usually

require evidence from such trials that the drugs being proposed are safe and effec-

tive. It is a widely accepted stance in the world of drug development that if a drug is

“snake oil”, meaning it is ineffective and only appears to work because of presumed

expectancy effects, then the producer of the drug should not profit from its sale. It

was because of this attitude that placebo controlled, double-blind randomized trials

became essentially necessary for the approval of new drugs in the 1960s. That is, for

a drug to be considered effective, the active drug (treatment) must be compared to

an inactive drug (a placebo), which (to a user) is indistinguishable from the active

drug, where assignment to the treatment versus control is random and unknown to

the experimental units until the completion of the experiment; here the units are said

to be “blinded” to the actual assignment. If assignment is unknown to both the exper-

imental units and the experimenter, the experiment is considered “double-blind”.

Although randomized experiments have been used for nearly a century, for

decades they were only used with unconscious units, such as plants, animals, or

industrial objects, none of which presumably could be influenced by the knowledge

that they were objects of experimentation. Historically, it has been recognized that

humans are different and can be influenced by the knowledge that they are part of

an active experiment. In some cases, that knowledge alone has been shown to influ-

ence participants behavior, as with the well-known “Hawthorne effect” (Landsberger

1958), where awareness of participation in a study influences outcomes. In other

examples, the knowledge that some individuals would receive an active drug with a

particular anticipated effect creates the expectation among all experimental units that

this anticipated effect will be achieved among all participants, a version of so-called

“expectancy effects (Rosenthal and Fode 1963; Rosenthal and Jacobson 1966). Thus,

a number of complications may arise when analyzing data from randomized exper-

iments with human subjects when the conduct of the experiment itself influences

participants’ outcomes.

2 Motivation

Emotional Brain (EB) is a research company based in the Netherlands that is devel-

oping a therapy for improving sexual functioning in women, which they call Lybrido.

Lybrido is designated for the treatment of a medical condition in women called

Female Sexual Interest/Arousal Disorder (FSIAD). The increase in “satisfying sex-

ual events” (SSEs) per week from baseline (before any drugs, active or placebo,

have been received) is the accepted primary outcome of interest, and for approval of

Lybrido, by either the FDA or EMA, there must be evidence that the drug is superior

to placebo with respect to increase in SSEs from baseline, 𝛥SSE. As with other psy-

chopathologies, experiments on therapies for treating this condition are believed to

suffer from large placebo effects because the anticipation of effects of the drug can

have obvious effects on the self-reported number of SSEs.

A variety of small, but expensive, randomized placebo-controlled double-blind

trials have been conducted to study the effectiveness of Lybrido (Van Der Made et al.
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2009a, b; Poels et al. 2013). In these trials, simple analyses comparing the random-

ized groups with each other (intention to treat analyses) generally show significant

positive effects for Lybrido relative to placebo, but the large placebo effects (that

is, large increases in SSEs observed in all groups) complicate the interpretation and

implication of the results.

The desire to disentangle the active effects of Lybrido from its related placebo

effects is important for several reasons. First, assume Lybrido has a true effect for

some subset of women, but this true effect is masked by highly variable placebo

effects; how do we eliminate the noise and so identify that subset of women? This is

related to the current hot-topic issue of “personalized medicine”, which describes

selecting treatments that are tuned to patients characteristics. Another important

question concerns what outcomes should be anticipated in actual medical practice,

when doctors prescribe a treatment and patients are aware of the prescription they

receive. In this setting, patients’ outcomes will reflect both placebo effects as well as

the medical effects of the active drug. Considering both types of effects may allow

prescribing physicians to anticipate better the benefits a patient can expect when

using the drug outside of the setting of an RCT.

The objective of this work is to disentangle active drug and placebo effects in

RCTs, such as those with Lybrido. Previous attempts to address this issue using

existing methods are summarized in Kessels et al. (2017), and, though some have

interesting ideas, none are statistically fully satisfactory. Here we use the statistical

tool called Principal Stratification (Frangakis and Rubin 2002) to estimate jointly

treatment and placebo effects within the framework of causal inference based on

potential outcomes, commonly called the Rubin Causal Model (Holland 1986) for a

body of work done in the 1970s (Rubin 1974, 1975, 1978, 1980); a short summary

of this perspective is in Imbens and Rubin (2008) and a book on it is Imbens and

Rubin (2015).

In principle, we consider the administration of placebo as an intervention, just as

the administration of an active drug. The placebo effect is then defined by compar-

ing potential outcomes under assignment to placebo to potential outcomes under no

treatment at all. Just as active treatment effects can vary across units, so can placebo

effects, which can also vary as a function of patients’ individual characteristics. Fur-

ther, the effects of the active treatment can also vary with respect to characteristics

of patients, including their individual placebo effects, which further complicates sta-

tistical inference.

3 The Principal Stratification Framework for Joint
Estimation of Treatment and Placebo Effects

3.1 Notation

Consider an RCT with N subjects, indexed by i = 1,… ,N. Subject i is assigned

treatment Zi, which equals 1 for subjects assigned and receiving active treatment



14 R. Mozer et al.

and equals 0 for subjects assigned and receiving placebo. Throughout, we assume

full compliance with assignment. Interest focuses on the effect of treatment (Zi = 1)

compared to placebo (Zi = 0) on an outcome variable, defined in terms of change

from a baseline measurement Yi0. For each subject we may also observe a vector

of p pre-treatment covariates Xi = (Xi1,Xi2,… ,Xip) where X is the N × p matrix of

covariates for all subjects. The outcome variable takes the value Yi(1) if subject i
is assigned treatment and Yi(0) if subject i is assigned placebo. The “fundamental

problem facing causal inference” (Rubin 1978) is that we cannot observe both poten-

tial outcomes Yi(0) and Yi(1), but rather Yobs
i = ZiYi(1) + (1 − Zi)Yi(0), the observed

outcome for subject i. Additionally, we consider a third potential outcome, Yi(−1),
which is defined but never observed for any unit in the situation we consider and rep-

resents the outcome that would be observed if unit i is neither assigned nor receives

either treatment or placebo and is aware of this. We then define the causal effects of

interest by differences in potential outcomes, where Yi(0) − Yi(−1) is the “placebo

effect” for unit i and Yi(1) − Yi(0) is the “medical effect” of active treatment for unit

i, or for descriptive simplicity, the treatment effect.

3.2 General Modeling Strategy

Because we believe that effect of the active treatment can depend on both individ-

ual characteristics of the patient (i.e., covariate values Xi) and the magnitude of the

patient’s response to placebo, Yi(0), our approach is a version of the one used in Jin

and Rubin (2008), which deals with “extended partial compliance”, a special case

of principal stratification that defines principal strata based on continuous measures

of how each patient would comply with their assignment under both treatment and

control.

Here, we view patients’ response to placebo as roughly analagous to compliance

status under active treatment, and following Jin and Rubin (2008), we define con-

tinuous principal strata according to this potential outcome, which is only partially

revealed (i.e., revealed for those patients assigned placebo), but is missing for those

patients assigned the active treatment. Causal effects of the active treatment versus

placebo are then defined conditional on the observed covariates and the potential

outcomes under placebo. Regression models (typically not linear) are used for the

joint conditional distribution of potential outcomes given covariates, specified by the

distribution of the placebo potential outcome (given covariates) and the conditional

distribution of the potential outcome under treatment given the potential outcome

under placebo (and, of course, the covariates). This is explained in greater detail in

Sect. 4. For analysis, we use Bayesian models with proper prior distributions and

employ Markov Chain Monte Carlo (MCMC) methods, which are only outlined in

this paper. Under this framework, missing potential outcomes are multiply imputed

to obtain a large number of completed data sets, from each of which, all causal

estimands, including individual causal effects, can be computed. Aggregates of the
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estimated individual effects across the multiply imputed data sets then approximate

the posterior distributions of interest.

3.3 Assumptions

Throughout this article, we assume the Stable Unit Treatment Value Assumption

(SUTVA) (Rubin 1980), which requires that there is no interference between units

(that is, treatment assignment for an individual unit has no effect on the potential

outcomes of other units) and that there are no hidden versions of treatments. We

also assume ignorable treatment assignment (Rubin 1978), which requires that the

treatment assignment is known to be a probabilistic function of observed values and

is true by design in randomized experiments. Next, we assume that the potential

outcomes under no treatment, Yi(−1), defined as the change in the outcome from its

measurement at baseline, is zero for all units (i.e., Yi(−1) = 0 for all i = 1,… ,N).

This important assumption implies that the outcome that would be observed for each

unit if they were given neither the active treatment nor placebo, and are aware that

they are receiving neither, will be exactly equal to the value of that unit’s outcome at

baseline; assessing this assumption would require a design with such an assignment

(i.e., an assignment with instructions to take nothing and continue to be followed

up with measurements as if the patient had been assigned either active treatment or

placebo).

All other assumptions are extensions of the classical assumptions utilized in

problems involving principal stratification. In particular, we assume positive side-

effect monotonicity on the primary outcome for both treatment and placebo, that is,

Yi(1) ≥ 0 and Yi(0) ≥ 0 for all i, which implies that neither the treatment nor the

placebo are harmful to any units, in the sense that an individual will not experience

a decline in their outcome (measured as change from baseline) as a result of either

intervention.

We also assume additivity of the treatment and placebo effects on some scale.

This is analagous to the perfect blind assumption commonly made in causal infer-

ence, which requires that, upon receipt, the active drug is indistinguishable from the

placebo except for its active effect. Under this assumption, for a unit assigned to

treatment, the portion (on some scale) of the observed outcome that is attributable

to the placebo effect is exactly equal to the placebo effect that would be observed

if that unit had been assigned placebo. Thus, the potential outcome when assigned

treatment can be viewed as the sum of the “placebo effect” and some “extra” effect

achieved under treatment that is attributable to the active drug, which we call the

treatment effect.

Together, these assumptions also imply that for every patient, the total response

that would be observed when assigned treatment is greater than or equal to the

response that would be observed when assigned placebo (i.e., Yi(1) ≥ Yi(0) for all i).
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4 Model and Computation

4.1 The General Model with No Covariates

We begin by considering the simplest case of an RCT with no covariates. We first

specify a distribution for the potential outcomes under control, Y(0), conditional on

some global parameter 𝜃:

Yi(0)|𝜃 ∼ 
(0)
, Yi(0) ≥ 0 for all i, 𝜃 (1)

where(0)
denotes the probability law for Yi(0), governed by some parameters, which

are functions of the global parameter 𝜃. We then specify a distribution for the poten-

tial outcomes under treatment, Yi(1), conditional on the potential outcomes under

control, Yi(0) and 𝜃 as

Yi(1)|Yi(0), 𝜃 ∼ 
(1)
, Yi(1) ≥ 0 for all i, 𝜃 (2)

where

E[Yi(1)|Yi(0), 𝜃] = Yi(0) + f (Yi(0)). (3)

Here, (1)
is another probability law, and f is an arbitrary function that generally

defines heterogeneous treatment effects across units as a function of potential out-

comes under placebo. Under this formulation, f (Yi(0)) is the treatment effect for unit

i. By the assumptions stated in Sect. 3.3, f (⋅) must be chosen such that f (Yi(0)) ≥ 0
for all i and Yi(0) + f (Yi(0)) is monotonically non-decreasing in Yi(0), which defines

a positive, monotonically non-decreasing curve, analagous to a dose-response curve,

which captures the expected effect of assignment to treatment versus assignment to

placebo for each possible value of placebo response.

For example, consider the specification of f (⋅) as the polynomial f (x) =
a0 + a1x + a2x2, where a0, a1 and a2 are constrained such that f (x) ≥ 0, and 1 +
f ′(x) = 1 + a1 + 2a2x ≥ 0 for all x (thereby satisfying the monotonicity constraint).

Under this specification, the parameters of interest are (a0, a1, a2), where the intercept

parameter a0 is a common treatment effect across all subjects, including those who

have zero response to placebo, and the parameters a1 and a2 capture how treatment

effects vary linearly and quadratically, respectively, with the magnitude of placebo

response. Figure 1 illustrates such a specification, where the left plot displays the

expected medical effect of the active drug as a function of placebo response, which is

relevant for drug approval, and the right plot displays the overall expected response

to being assigned the active drug and taking it as a function of placebo response,

which is relevant for anticipating the benefits a patient can expect when using the

drug as prescribed by a doctor.
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Fig. 1 Two illustrations of a possible quadratic specification of f

4.2 Computation

Under the general formulation above, the complete-data likelihood for the data Y =
(Y(0),Y(1)) (meaning the likelihood if both Yi(1) and Yi(0) were observed for all

units) is:

p(Y|𝜃,Z) =
∏

i
p(Yi(1),Yi(0)|𝜃) =

∏

i
p(Yi(1)|Yi(0), 𝜃)p(Yi(0)|𝜃). (4)

For Bayesian inference, with prior distribution p(𝜃) on 𝜃, the posterior distribution

of 𝜃 given the complete data Y is then:

p(𝜃|Y ,Z) ∝ p(𝜃)p(Y ,Z|𝜃) = p(𝜃)p(Y|𝜃,Z), (5)

where the equality follows from the randomization of Z. Posterior inference on 𝜃

can then be done using straightforward application of MCMC techniques, such as

the Gibbs sampler (Geman and Geman 1984; Gelman et al. 2014). For example, in

each iteration of the Gibbs sampler, we draw the missing potential outcomes Ymis

given the observed data Yobs
and the current draw of the parameter 𝜃:

p(Ymis|Yobs
, 𝜃,Z) =

∏

i∈{Zi=0}
p(Yi(1)|Yi(0) = Yobs

i , 𝜃)

×
∏

i∈{Zi=1}
p(Yi(0)|Yi(1) = Yobs

i , 𝜃)

=
∏

i∈{Zi=0}
p(Yi(1)|Yi(0) = Yobs

i , 𝜃)

×
∏

i∈{Zi=1}
p(Yi(1)|Yi(0) = Yobs

i , 𝜃)p(Yi(0) = Yobs
i |𝜃)

(6)

where the second equality follows from Bayes Rule. We then draw 𝜃 given the com-

pleted data Y = (Yobs
,Ymis) using Eqs. 4 and 5, and we continue this process until
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convergence in distribution. Depending on the specifications of (0)
and (1)

, the

conditional distribution of Ymis
given Yobs

and 𝜃, and the conditional distribution of

𝜃 given the complete data Y , may not have closed-form solutions that allow us to sam-

ple directly values of Ymis
or 𝜃. In such situations, Metropolis-Hastings steps can be

used to draw approximate samples from the desired conditional distributions in each

iteration of the Gibbs sampler. For posterior inference on causal effects of interest,

we continue this sampling procedure after approximate convergence, in each itera-

tion drawing the missing potential outcome, Yi(0) or Yi(1), for each patient. Thus, in

each iteration, we construct a completed dataset consisting of all observed potential

outcomes and the imputed missing potential outcomes, and then use this completed

data to calculate the implied placebo and treatment effects. Repeating this process

over many such simulated datasets produces the approximate posterior distribution

for all causal effects of interest. In the same way, posterior samples of 𝜃 can provide

posterior estimates of the parameters of the function f , which characterizes the rela-

tionship between expected response to treatment and expected response to placebo.

Depending on the exact specification of f (⋅), the likelihood may suffer from prob-

lems with multimodality, as is common with many specifications of mixture models,

such as this one. In such situations, initialization of the MCMC procedure can have

an impact on convergence, and first finding regions of high posterior density (e.g.,

maximum likelihood estimates—MLEs) for model parameters using a method such

as a variant of Expectation Maximization (EM) (Dempster et al. 1977) to inform

initial values in the MCMC procedure can help. In cases of extreme multi-modality

of the likelihood, one can also specify more restrictive prior distributions on the

parameters governing f (⋅).

4.3 Incorporating Covariates

The model presented in Sect. 4.1 considers a patient’s response to placebo as an

underlying, psychological, characteristic that exists prior to treatment assignment.

By defining heterogeneous treatment effects as a function of this characteristic, we

can estimate both the expected effect of assignment to treatment versus assignment to

placebo (the medical effect of the active drug) and the expected effect of assignment

to placebo versus assignment to neither treatment nor placebo (the placebo effect)

for each type of patient, at least under specific assumptions.

When covariates, Xi = (Xi1,… ,Xip), are observed for patients, we can specify

the distribution for potential outcomes under control, Yi(0), conditional on Xi and

the global parameter 𝜃 as:

Yi(0)|Xi, 𝜃 ∼ 
(0) Yi(0) ≥ 0 for all i, 𝜃. (7)

We then model the potential outcomes under treatment, Yi(1), conditional on

Yi(0),Xi, and 𝜃 as
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Yi(1)|Yi(0),Xi, 𝜃 ∼ 
(1) Yi(1) ≥ 0 for all i, 𝜃, (8)

where (1)
is such that

E[Yi(1)|Yi(0),Xi, 𝜃] = E[Yi(0) + f (Yi(0))|Xi]. (9)

In general, we assume that covariate effects on Yi(0) are conditionally independent

of effects on Yi(1). For example, continuing the example where f is specified using

the polynomial f (x) = a0 + a1x + a2x2, we might consider linear regression models

for covariate effects on both Yi(0) and Yi(1):

Yi(0)|Xi, 𝜃 = 𝛽0 + Xi𝛽 + 𝜖i
Yi(1)|Yi(0),Xi, 𝜃 = Yi(0) + Xi𝛾 + a1Yi(0) + a2Yi(0)2 + 𝜂i,

(10)

where 𝜖i and 𝜂i are independent residual terms and 𝛽, 𝛾 ∈ p
govern covariate

effects. Here, we may include an intercept term for the distribution of potential out-

comes under control but not for the distribution of potential outcomes under treat-

ment. In this example, posterior inference for 𝜃 comprises two standard Bayesian

regressions (Gelman et al. 2014).

5 Evaluating Treatment and Placebo Effects of Lybrido on
Sexual Function

To illustrate our proposed approach, we return to our motivating example of Lybrido.

Data for this example were pooled from two double-blind, placebo-controlled RCTs

conducted by EB to investigate the efficacy of Lybrido among patients for whom

FSIAD was believed to be caused by insensitivities in the brain to sexual cues.

Because the actual results of both studies are under peer review process with an

implied embargo, a subset of 67 patients was sampled from these data to be used for

illustrative purposes here, 34 randomized to treatment (Lybrido) and 33 randomized

to control (placebo).

The primary outcome of interest in this example is the increase from baseline

in number of SSEs within a four week period during the study. In this example, no

baseline measurements for SSEs are directly observed for any participants in the

sample, but implicitly these values are all equal to zero, because the patients in these

experiments have FSIAD and therefore suffer from low sexual desire. This likely

leads to infrequent SSEs among these patients, which makes the assumed value of

zero SSEs at baseline realistic. In addition to the outcome, we observe the age and

body mass index (BMI) for each patient at the time of enrollment, as well as 40

other covariates collected via self-report using the Sexual Motivation Questionnaire

(SMQ), as described in detail in a subsequent publication.
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Fig. 2 Kernel density

estimates for the

distributions of observed

potential outcomes in

treatment (Lybrido) and

control (placebo)

We observe an average of 4.00 SSEs over the four week study period for patients

randomized to receive treatment, with a standard deviation of 2.58, and an average

of 4.06 SSEs over the four week period for patients randomized to receive placebo,

with a standard deviation of 2.58. Kernel density estimates of the distributions of

observed potential outcomes in the treatment and control groups are shown in Fig. 2.

Using simple intention to treat (ITT) analysis (Sheiner and Rubin 1995), which

compares the means of observed potential outcomes among treated units to those

in control, we estimate the ITT effect of assignment to Lybrido to be 4.00 − 4.06 =
−0.06. At first glance, this result suggests that Lybrido has essentially zero effect

compared to placebo and might lead to the conclusion that the drug is ineffective

as a treatment for FSIAD. However, because both the placebo and treatment groups

are observed to have large and highly variable responses (with standard deviations of

approximately 2.58 in each group), this finding may instead suggest that any effect of

the active drug is simply being masked by large placebo effects and varying treatment

effects, which more sophisticated statistical analyses might be able to detect.

5.1 Model Specification

To illustrate our proposed approach on these data, we consider models both with and

without the observed covariates. For both models, we specify the function f (⋅), which

relates each patients’ treatment effect to their expected potential outcomes under

assignment to placebo, using the simple quadratic form f (x) = a0 + a1x + a2x2. In

the model for Yi(1) that includes covariates, however, no intercept term is included

because Yi(1) is already centered at Yi(0). For both models, we assume a truncated

normal distribution for placebo response, Yi(0). With no covariates, this is:

Yi(0)|𝜃 ∼ +(𝜇0, 𝜎
2
0), (11)

where +(𝜇, 𝜎2) denotes a normal density with mean 𝜇 and variance 𝜎
2

truncated

to the interval [0,∞]. Similarly, we specify a truncated normal distribution for treat-
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ment response, Yi(1), given Yi(0) as:

Yi(1)|Yi(0), 𝜃 ∼ +(Yi(0) + f (Yi(0)), 𝜎2
1). (12)

In this illustrative example, we use truncated normal distributions for both placebo

response, Yi(0), and treatment response, Yi(1), to satisfy the assumption of positive

side-effect monotonicity, which requires that both Yi(0) and Yi(1) be strictly non-

negative for all i. However, other distributions that satisfy this constraint (e.g., Pois-

son) could be specified for one or both of these variables. In general, we advise

researchers implementing this approach in practice to choose appropriate distribu-

tions based on domain knowledge about the treatment and population under investi-

gation.

When including covariates, we model Yi(0) conditional on Xi as:

Yi(0)|Xi, 𝜃 ∼ +(𝛽0 + Xi𝛽, 𝜎
2
0), (13)

and model Yi(1) given Yi(0) and Xi as:

Yi(1)|Yi(0),Xi, 𝜃 ∼ +(Yi(0) + f (Yi(0)) + Xi𝛾, 𝜎
2
1). (14)

In the model without covariates, the global parameter is 𝜃 = (a0, a1, a2, 𝜎2
0 , 𝜎

2
1),

and with covariates we have 𝜃 = (a0, a1, a2, 𝛽0, 𝛽, 𝛾, 𝜎2
0 , 𝜎

2
1), where 𝛽0 is an intercept

term for the regression of response to placebo, Yi(0), on the covariates Xi, and 𝛽 and

𝛾 are p-dimensional vectors with components for coefficients for the covariate effects

on Yi(0) and Yi(1). In both models, we use weakly informative prior distributions on

all parameters, where each prior distribution is proper and fully specified.

5.2 Results

Results from the models with and without covariates are displayed in Fig. 3. When

using the model without covariates, we estimate the function f as f̂ (Yi(0)) = 0.288 −
0.035Yi(0) − 0.481Yi(0)2, which suggests that Lybrido has the largest effects on

patients that do not respond to placebo (E[Yi(1)|Yi(0) = 0] ≈ 0.288). Further, we see

that estimated treatment effects decrease with response to placebo, such that patients

who have a placebo response of approximately one or more post-assignment SSEs

are expected to have essentially zero treatment effects. That is, big placebo respon-

ders do not benefit from receiving the active treatment. The findings are similar

when employing the model that incorporates covariates. Using this model, we obtain

f̂ (Yi(0)) = 0.321 + 0.016Yi(0) − 0.323Yi(0)2 with E[Yi(1)|Yi(0) = 0] = 0.321.

Among covariates considered, none were identified as significant predictors of



22 R. Mozer et al.

Fig. 3 Estimated treatment (Lybrido) effects and total response to treatment as a function of

placebo response using model with no covariates (top), and essentially the same figures formed

using the model with covariates (bottom). Dashed blue lines show 95% posterior intervals

response to placebo or active treatment, though this is possibly due to the small sam-

ple size. Contrary to the ITT estimate, overall these results provide some evidence

that Lybrido may have a small, but positive, effect for a subset of patients who have

a minimal response to placebo—an interesting possibility.

6 Discussion

The approach developed in this paper is intended to allow for the estimation of dis-

tinct treatment and placebo effects in randomized experiments with human subjects.

We believe that this approach establishes a foundation for precise estimation of each

of the effects of interest, and has practical implications for both regulatory agencies

making approval decisions for new drugs and clinicians prescribing drugs to patients.

However, we recognize that this foundation is only a start to elucidate placebo effects

and their influence on the effects of active treatments. Although results for the applied

data analysis are promising, the framework presented here relies on a number of

assumptions. Further research may attempt to relax some of these assumptions, for

example, by considering new experimental designs that are intended for the investi-

gation of treatments with large expected placebo effects.
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Some Measures of the Amount
of Adaptation for Computerized
Adaptive Tests

Mark D. Reckase, Unhee Ju and Sewon Kim

Abstract Computerized Adaptive Testing (CAT) is gaining wide acceptance with
the ready availability of computer technology. The general intent of is to adapt the
difficulty of the test to the capabilities of the examinee so that measurement
accuracy is improved over fixed tests, and the entire testing process is more effi-
cient. However, many computer administration designs, such as two-stage tests,
stratified adaptive tests, and those with content balancing and exposure control, are
called adaptive, but the amount of adaptation greatly varies. In this paper, several
measures of the amount of adaptation for a CAT are presented along with infor-
mation about their sensitivity to item pool size, distribution of item difficulty, and
exposure control. A real data application is presented to show the level of adap-
tation of a mature, operational CAT. Some guidelines are provided for how much
adaptation should take place to merit the label of an “adaptive test.”

Keywords Computerized adaptive testing ⋅ Measures of adaptation
Test design

1 Introduction

A simple definition of adaptive testing (Lord 1980) is: a test where the specific tasks
that make up the test are selected for each examinee using appropriate criteria
during the process of test administration to optimize a specified desired test char-
acteristic. This simple definition includes a very broad set of tests including the oral
examinations given to students before large-scale, paper-and-pencil tests became

M. D. Reckase (✉) ⋅ U. Ju ⋅ S. Kim
Michigan State University, 620 Farm Lane, East Lansing, MI 48824, USA
e-mail: reckase@msu.edu

U. Ju
e-mail: juunhee@msu.edu

S. Kim
e-mail: kimsewon@msu.edu

© Springer International Publishing AG, part of Springer Nature 2018
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 233, https://doi.org/10.1007/978-3-319-77249-3_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_3&amp;domain=pdf


common (and that are still used for evaluating doctoral candidates when they
defend their dissertations) and such tests as the intelligence tests developed by Binet
and Simon (1915). However, these early versions of adaptive tests did not include
all the component parts that are typically included in today’s large-scale use of
adaptive testing. The use of the computer as a replacement for the individual person
as test administrator has allowed adaptive tests to be used with large populations of
examinees and has resulted in the acronym, CAT (computerized adaptive test).
Now CATs include item selection algorithms, exposure control, content constraints,
item pool designs, estimation procedures, etc. Mills et al. (2002) describe these
components. They are also discussed in other books on the topic of the general
design and development of adaptive tests (e.g., Parshall et al. 2002; van der Linden
and Glas 2010).

The variety of additional issues that are considered now when CATs are
designed and implemented make it possible that a computer-based test that uses the
technical methodologies of adaptive testing might have so many constraints that the
test is in practice hardly adaptive at all. It is also possible that item development
costs and security issues might lead to using item pools that are too small to support
good adaptation. It is concern about these issues that has led to the research reported
here on the development of statistical indices of the amount of adaptation observed
in an operational CAT.

2 Types of CATs that are the Focus of this Research

There are many variations in the details of the implementations of CATs. Because it
is not the purpose of this research to include all the variations, a simple catego-
rization of types will be used to provide an organizational structure for the field:
(1) adaptation on proficiency (e.g., Parshall et al. 2002; van der Linden and Glas
2010), (2) adaptation on test length for making decisions (e.g., Spray and Reckase
1996), and (3) adaptation on latent classes (Liu et al. 2015). The first type of CAT
has a basic item selection goal that is optimizing the estimation of the location of
each examinee on a latent continuum. Of course, as indicated above, there may be
other item selection goals in this type of CAT such as minimizing exposure of items
or insuring that the proportions of items from specified content areas match a target.
In the work reported here, it is assumed that optimization of the accuracy of
estimation of location is an important goal of the CAT.

The second type of adaptation is selecting items to obtain classification error less
than a specified value when making classification decisions. This selection criterion
results in CATs of varying lengths with the length depending on how close
examinees are to decision points. The third type of CAT selects test tasks to
optimize the classification of examinees into some number of latent classes. These
latent classes are typically not along a continuum. This third type of CAT is a
relatively new application of adaptive testing.
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Of the three types of CAT, the first will be the main focus of the research
reported here. However, the operational CAT whose adaptability was analyzed as
part of the research reported here has aspects of both the first and second types.
Overall, the goal of the research reported here was to develop and evaluate ways to
quantitatively describe the amount of adaptation that occurs within a CAT when
examinees have a range of different locations on the target latent continuum. The
other types of CAT designs are topics for future research. Note, however, that
variable length CATs that seek to accurately locate examinees on a continuum are
considered here. Fixed test length is not a requirement for the approach taken to
evaluate the amount of adaptation.

The research reported here is of two types. The first type is based on CAT
simulations with the goal of developing guidelines for what are reasonable amounts
of adaptation to expect from a CAT. These simulations vary three components of a
CAT: (1) the item pool size, (2) the spread of difficulties in the item pool, and
(3) the type of exposure control applied in the CAT (randomesque (Kingsbury and
Zara 1989), Sympson-Hetter (Sympson and Hetter 1985), and none). All simula-
tions were done assuming the Rasch model gave a good representation of item/
person interactions. Using the Rasch model simplified the interpretation of the
results. The second type of research is the analysis of the amount of adaptation of
operational test results from a certification/licensure test.

3 A Simple Conceptual Framework

A conceptually simple hypothetical example is presented here to provide a
framework for the approach taken to quantify the adaptability of a CAT with the
goal of estimating location on a latent continuum. Suppose that a CAT uses
the Rasch model as the psychometric model for item selection and estimation of the
latent trait. Also, assume that the location of examinee j on the latent continuum, θj,
is known. Then, the optimal set of test items for confirming the known location
would all have difficulty parameters (b’s) from the Rasch calibration of the items
equal to θj. Of course, in this hypothetical case, the mean of the b-parameters
administered to examinee j would also be equal to θj and the standard deviation of
the b-parameters would be 0.

Extending this hypothetical example, suppose that there is a sample of exami-
nees with known locations on the θ-scale. If each gets the optimal set of items as
described above, then the correlation between the mean of the b-parameters for each
of the examinees, bj̄, and their locations on the scale, θj, would be 1.0. Further, the
standard deviation of the bj̄’s would be equal to the standard deviation of θj’s and
the ratio of the two standard deviations would yield a value of 1.0.

Of course, this example is fanciful because we never know the true location of
an examinee on the θ-scale, and if we did we would not have to give the CAT.
However, the example does set the limits for adaptability for an ideal CAT that is
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designed to estimate the location of examinees on a latent continuum. For an actual,
operational CAT, each examinee will receive a set of items with variation in the
b-parameters and the mean of the b-parameters may not be equal to the true location
of the examinee on the θ-scale or even the final estimate of the location on the scale.
But, if the test is adaptive, the correlation over examinees, r bj̄, θĵ

� �
, between the

mean difficulty parameters, bj̄, and the final estimate of examinee location, θ̂j, for
examinee j, should be high and positive, showing that the examinees at different
locations received sets of items that were different in difficulty and that the level of
difficulty is appropriately related to the final estimate of location on the θ-scale.

Even if r bj̄, θ̂j
� �

, is close to 1.0, the adaptability of the CAT might not be good
because of limitations in the item pool or because of a problem with the item
selection algorithm. For example, if the item pool has a limited range of difficulty,
but the item selection algorithm is working well, the correlation may be high, but
the standard deviation of the bj̄’s may be small compared to the standard deviation
of the θĵ’s. In that case, the ratio of the standard deviation of the bj̄’s to the standard
deviation of the θĵ’s would be less than 1.0. The opposite could also be true. There
could be insufficient items in the middle range of difficulty and many at the
extremes. The standard deviation of the bj̄’s could be large relative to that of the θĵ’s
resulting in a ratio that is greater than 1.0. Thus, ratios of the standard deviations,
sbj̄ ̸sθĵ , that differ from 1.0 in either direction indicate a problem with adaptability.

The adaptation of the test may also be poor if there are insufficient items in the
region of the scale that contains the final estimate of the examinee’s location, θ̂j. In
such a case, the item selection algorithm may have to select items that have b-
parameters that are some distance from the current estimate of location. It is pos-
sible that the bj̄ might be close to the final estimate, θ̂j , but the variance of the b’s
for that examinee might be high. A statistic that would quantify this situation has

the same form as a familiar equation for reliability (Hoyt 1941),
s2b − pooled s2bj

s2b
, where

s2b is the variance of the b-parameters in the item pool, and s2bj is the variance of the
b-parameters administered to examinee j. Because the adaptation is over a sample
of examinees, the variance of bj’s is pooled over examinees. If the variance of the b-
parameters for each examinee is 0 (constant b’s) and if there is variation in the
difficulty of items in the pool, then this statistic is 1.0. A value less than 1.0
indicates the relative amount of variation in b-parameters selected for examinees
compared to the amount of variation in difficulty for the full item pool. This index is
labeled the Proportion Reduction in Variance, PRV.

The analysis of the hypothetical perfect case and the expectations about how an
actual CAT will function lead to a proposal that three indices of adaptation be used
to describe the amount of adaptation that results from the implementation of a CAT:

r bj̄, θ̂j
� �

, sbj̄ ̸sθ̂j , and PRV =
s2b − pooled s2bj

s2b
. Because there may be little adaptation
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early in a CAT when the location of the examinee is not well estimated, these
indices will be considered for the items in the last half of the CAT as well as the full
set of items administered to each examinee.

4 Simulation Studies of the Three Indices

A series of simulation studies were run with two overall goals. The first was to
determine if the three indices being considered would function in a reasonable way
under circumstances when the amount of adaptation was expected to vary. The
second goal was to develop guidelines on what is considered an acceptable amount
of adaptation for a test that is labeled as an adaptive test. Clearly, if the correlation
between mean b-parameter for each examinee and θ̂j is 0.0, there is no adaptation,
and if it is 1.0, adaptation is occurring. But what does it mean if the correlation is
0.6? Are there values of the correlation, the ratio of the standard deviations, and the
proportion of within examinee difficulty variance (PRV) that would indicate that the
use of the term “adaptive test” is questionable?

Three types of simulation studies were done to investigate the characteristics of
the indices. All the studies assumed a set of items that were well fit by the Rasch
model so only the b-parameters for the items needed to be considered. For these
studies, the b-parameters were assumed to be known so error in the estimation of
item characteristics was not a factor in the study. The following three studies were
conducted: (1) variation in item pool size; (2) variation in the spread of difficulty of
the items in the pool; and (3) type of exposure control applied to item selection.
Studies (1) and (2) were done because it was expected that these item pool char-
acteristics would influence the amount of adaptation in predictable ways. Exposure
control was included because it was expected to degrade the amount of adaptation.
These studies would give base-rates for interpreting the statistics when applied to
data from operational adaptive tests.

4.1 Variation in Item Pool Size

For this simulation study, an item level adaptive test was used that had a starting
proficiency estimate for all examinees of 0.0. The item selection algorithm chose for
administration the item that had the most information at the current estimate of
proficiency. Maximum likelihood was used to estimate proficiency when both a
correct and incorrect responses were present in the response string. When only
correct or incorrect responses were in the response string, the maximum likelihood
estimates are infinite. For those cases, the last proficiency estimate was incremented
by 0.7 after a correct response and −0.7 after an incorrect response. The value of
0.7 was selected based on early studies of bias in proficiency estimation for
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adaptive tests (Reckase 1975). The adaptive test was fixed length with 30 items
administered to each simulated examinee.

The item pools for the simulated CAT varied from 50 to 500 in size. They were
generated in the following way. The b-parameters for the items in the pool were
randomly sampled from a N(0, 1) distribution. The full set of 500 b-parameters was
generated and then they were randomly divided into ten sets of 50 items. Then the
first set of 50 was used for the simulation of a 50-item pool. Then the first set was
augmented by the second set to create the 100-item pool. That was used for the
second simulation. This process continued, adding a set of 50 items each time, until
the simulation was run on the full set of 500 items in the pool. This approach was
selected to allow us to check the form of the relationships between pool size and
values of the statistics. 50 items were expected to be less than adequate to support
adaptation and 500 were expected to be well more than adequate.

The three adaptation statistics were computed for the simulations for each of the
item pool sizes. For each item pool size, 200 simulated examinees were sampled
from a standard normal distribution. The true θ for each examinee was used to
compute the probability of correct response for each item that was selected and then
a random number was generated from a U(0, 1) distribution. If that number was less
than the probability, a correct response was recorded. Otherwise, an incorrect
response was assigned. This process was followed for each item that was
administered.

After each set of 200 simulated examinations, the three measures of adaptation
were computed using the final θ-estimate and the full set of 30 items administered
to the simulee. The measures of adaptation were also computed using the final
estimate and the item parameters from the last 15 items. In all cases, the results were
replicated 100 times so the stability of the statistics could be computed. The
standard deviations of the statistics over replications are included in parentheses in
the table next to the mean over the 100 replications. These results for the first set of
analyses are presented in Table 1.

Table 1 has two columns of results for each statistic. The first column is based
on a random sample of 200 simulees that do not have exactly a mean of 0 and a
standard deviation of 1. The mean and standard deviation have sampling variation
that results in small differences. The second column for each statistic has the sample
standardized so that the mean is exactly 0 and the standard deviation is exactly 1.
This removes the sampling variation.

As expected, the results show that as the pool size increases, the measures of
adaptation increase as well. However, for this test length and item selection pro-
cedure, there is not much increase in adaptation for pool sizes greater than 300. Of
the three measures of adaptation, the ratio of the standard deviations seems to be the
most sensitive. For the 50-item pool size, the value of the ratio is about 0.47 and
then increase dramatically with the increase in the size of the item pool.

These results suggest that a value in the low 0.90s is an indicator of good
adaptation for the correlation index, a value in the mid 0.80s indicates good
adaptation for the ratio of the standard deviations, and a value about 0.80 indicates
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good adaptation for the PRV. These values will be refined further as more examples
are considered.

Table 2 presents the results for the three indicators for the last 15 items of the
30-item test. As with the analysis of the full test length, these results suggest that
there is little improvement in adaptation for item pools larger than 300. Although
the required item pool size for a CAT is dependent on the distribution of proficiency
for the examinee population and the number of examinees who take the CAT
(Reckase 2010), it has typically been recommended that an item pool should be at
least 10–12 times larger than the length of the CAT (Stocking 1994). Considering
these previous recommendations, the observation that there is little improvement in
adaptation when the item pool is larger than ten times the test length
(30 × 10 = 300) provides more support. For that pool size, the value of the cor-
relation was 0.96, the ratio of the standard deviations was around 0.87 (note the
variation in the values), and the PRV value is about 0.97. These are higher values
than for the full test because the items selected are more homogeneous because
there is a reasonably good estimate of the final θ after the first 15 items.

4.2 Variation in Item Pool Spread

Another possible characteristic of item pools that could influence the amount of
adaptation is the amount of spread of difficulty of the items. If the difficulty of the
items is in a restricted range, even if the item pool is large, the test cannot be
appropriately adapted for examinees that are outside that range. To check the

Table 1 Evaluation of adaptation for different size item pools 30 item test length using
estimated θ

Pool
size

Statistic

r bj̄, θĵ
� �

sbj̄ ̸sθ̂j PRV

With
sampling
variation

Standardized With
sampling
variation

Standardized With
sampling
variation

Standardized

50 0.89 (0.01) 0.88 (0.02) 0.47 (0.01) 0.46 (0.04) 0.62 (0.01) 0.62 (0.02)
100 0.92 (0.01) 0.91 (0.01) 0.74 (0.02) 0.71 (0.03) 0.81 (0.01) 0.78 (0.02)
150 0.92 (0.01) 0.92 (0.01) 0.79 (0.02) 0.79 (0.03) 0.82 (0.01) 0.79 (0.02)
200 0.93 (0.01) 0.93 (0.01) 0.82 (0.02) 0.83 (0.02) 0.82 (0.01) 0.79 (0.02)
250 0.93 (0.01) 0.93 (0.01) 0.84 (0.02) 0.85 (0.02) 0.81 (0.01) 0.79 (0.01)
300 0.93 (0.01) 0.94 (0.01) 0.85 (0.02) 0.87 (0.02) 0.80 (0.01) 0.79 (0.01)
350 0.93 (0.01) 0.94 (0.01) 0.85 (0.02) 0.89 (0.02) 0.79 (0.01) 0.79 (0.01)
400 0.94 (0.01) 0.94 (0.01) 0.86 (0.02) 0.89 (0.02) 0.79 (0.01) 0.79 (0.01)
450 0.94 (0.01) 0.94 (0.01) 0.87 (0.02) 0.90 (0.02) 0.78 (0.01) 0.79 (0.01)
500 0.94 (0.01) 0.94 (0.01) 0.87 (0.02) 0.91 (0.02) 0.78 (0.01) 0.79 (0.01)
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performance of the measures of adaptation for these conditions, adaptive tests were
simulated for item pools that had standard deviations of the b-parameters from 0.1
to 1.5 at 0.1 intervals. In all cases, the item pools were centered on 0.0 and the
simulated examinees were sampled from a standard normal distribution. The size of
the item pools was 300 and the test length was 30. As for the previous analyses, the
indicators of adaptation were computed for the full test length and for the last 15
items.

As with the results for item pool size, the results for the spread of the item pool
difficulty showed that the indices of adaptation improved as the spread of the item
pool increased (see Table 3). It is interesting to note that for the 30-item test the
values of the indices continued to improve as the standard deviations of the item
pool increased beyond the standard deviations of the examinees (1.0). This suggests
that the variation of difficulty parameters for an item pool should be greater than the
variation in estimated θ so that there will be sufficient items for those examinees at
the extremes of the θ-range. However, when the last 15 items were used for the
analysis, the results did not improve as much as for the full 30-item test. This may
mean that early in the test it is helpful to have a greater range of difficulty to help
determine the approximate location of proficiency, but it is not as important once
good estimates of location have been obtained.

The results for the spread of the item pool study were consistent with the pool
size study when selecting values for the statistics. For the 30-item test, correlation in
the low 0.90s, ratio of standard deviations in the mid 0.80s, and the PRV around
0.80. For the last 15 items, correlation around 0.96, ratio of standard deviation
around 0.86 and PRV about 0.97 (Because of space limitations, the full table for the
last 15 items is not shown.).

Table 2 Evaluation of adaptation for different size item pools 30 item test length using last 15
items and estimated θ

Pool
size

Statistic

r bj̄, θĵ
� �

sbj̄ ̸sθ̂j PRV

With
sampling
variation

Standardized With
sampling
variation

Standardized With
sampling
variation

Standardized

50 0.66 (0.02) 0.65 (0.03) 0.37 (0.02) 0.37 (0.05) 0.71 (0.01) 0.78 (0.06)
100 0.92 (0.01) 0.91 (0.01) 0.70 (0.02) 0.67 (0.04) 0.93 (0.00) 0.94 (0.01)
150 0.94 (0.01) 0.94 (0.01) 0.79 (0.02) 0.77 (0.03) 0.96 (0.00) 0.96 (0.01)
200 0.95 (0.01) 0.95 (0.01) 0.83 (0.02) 0.83 (0.03) 0.97 (0.00) 0.97 (0.00)
250 0.95 (0.01) 0.96 (0.01) 0.85 (0.02) 0.87 (0.02) 0.97 (0.00) 0.97 (0.00)
300 0.96 (0.01) 0.96 (0.01) 0.87 (0.02) 0.89 (0.02) 0.97 (0.00) 0.97 (0.00)
350 0.96 (0.01) 0.97 (0.00) 0.87 (0.02) 0.91 (0.02) 0.97 (0.00) 0.97 (0.00)
400 0.96 (0.01) 0.97 (0.00) 0.88 (0.02) 0.92 (0.02) 0.97 (0.00) 0.98 (0.00)
450 0.96 (0.01) 0.97 (0.00) 0.89 (0.02) 0.93 (0.02) 0.97 (0.00) 0.98 (0.00)
500 0.96 (0.01) 0.97 (0.00) 0.90 (0.02) 0.93 (0.02) 0.97 (0.00) 0.98 (0.00)
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4.3 Influence of Exposure Control

Exposure control is an important aspect of CAT when the methodology is used for
large scale assessment. To make full use of the available computer facilities, test
sessions tend to be scheduled multiple times per day and every day of the week.
That means that examinees can communicate with each other before and after an
examination session threatening test security. The examinees can share information
about the test questions they have seen and the answers to those questions.

Because of relatively continuous testing, procedures have been developed to
limit the number of test questions that examinees will have in common. These
procedures are called exposure control procedures (see Georgiadou et al. (2007) for
a review of procedures). All the exposure control procedures have the effect of
possibly selecting items that are not the best match for the current estimate of
proficiency, but are almost as good as the best match. The selection of these “almost
as good” test items might reduce the level of adaptation of a CAT, so it is important
to determine their effect.

Two commonly used exposure control procedures were used in this research.
The first is called the randomesque procedure. It was first suggested by Kingsbury

Table 3 Evaluation of adaptation for item pools with different standard deviations 30 item test
length using estimated θ

Pool
SD

Statistic

r bj̄, θ̂j
� �

sbj̄ ̸sθ̂j PRV

With
sampling
variation

Standardized With
sampling
variation

Standardized With
sampling
variation

Standardized

0.1 0.82 (0.01) 0.83 (0.01) 0.13 (0.00) 0.13 (0.00) −0.29 (0.07) −0.27 (0.08)
0.2 0.83 (0.02) 0.83 (0.01) 0.23 (0.01) 0.25 (0.01) 0.08 (0.05) 0.00 (0.06)
0.3 0.84 (0.01) 0.85 (0.01) 0.35 (0.01) 0.37 (0.01) 0.21 (0.05) 0.27 (0.04)
0.4 0.86 (0.01) 0.87 (0.01) 0.47 (0.02) 0.48 (0.02) 0.36 (0.03) 0.40 (0.03)
0.5 0.88 (0.01) 0.88 (0.01) 0.56 (0.02) 0.59 (0.02) 0.50 (0.02) 0.48 (0.02)
0.6 0.89 (0.01) 0.90 (0.01) 0.63 (0.02) 0.67 (0.02) 0.55 (0.02) 0.55 (0.02)
0.7 0.90 (0.01) 0.91 (0.01) 0.70 (0.02) 0.73 (0.02) 0.63 (0.02) 0.65 (0.01)
0.8 0.91 (0.01) 0.92 (0.01) 0.75 (0.02) 0.78 (0.02) 0.69 (0.02) 0.70 (0.01)
0.9 0.93 (0.01) 0.93 (0.01) 0.81 (0.02) 0.83 (0.02) 0.74 (0.01) 0.76 (0.01)
1.0 0.94 (0.01) 0.94 (0.01) 0.85 (0.02) 0.88 (0.02) 0.78 (0.01) 0.79 (0.01)
10.1 0.94 (0.01) 0.94 (0.01) 0.86 (0.02) 0.90 (0.02) 0.82 (0.01) 0.82 (0.01)
1.2 0.95 (0.01) 0.94 (0.01) 0.89 (0.02) 0.93 (0.02) 0.84 (0.01) 0.84 (0.01)
1.3 0.95 (0.01) 0.95 (0.01) 0.91 (0.02) 0.94 (0.02) 0.86 (0.01) 0.87 (0.01)
1.4 0.95 (0.01) 0.95 (0.01) 0.92 (0.02) 0.95 (0.02) 0.88 (0.00) 0.88 (0.01)
1.5 0.95 (0.01) 0.95 (0.01) 0.93 (0.02) 0.95 (0.02) 0.89 (0.00) 0.90 (0.00)

Some Measures of the Amount of Adaptation for Computerized … 33



and Zara (1989). This procedure identifies the N items that are best for gaining
information at the current estimate of proficiency and randomly selects one of them
for administration. When this procedure is used, examinees with the same estimate
of proficiency will have a 1/N2 chance of being administered the same item.

The second exposure control procedure is the Sympson-Hetter method (Sympson
and Hetter 1985). This method uses a simulation of the CAT process with the actual
item pool to determine how often items will be selected for administration with the
expected sample of examinees. An exposure parameter is then estimated for each
item that is the probability that the item will be administered if it is selected. Items
that are projected to be used frequently are given lower exposure parameters.
However, when some items have low exposure parameters, other items will be
selected more often. Therefore, the process is repeated after each change in the
exposure parameters until all the exposure parameters reach stable values.

Because the simulation of item pool size suggested a pool size of 300 provided
good adaptation, this simulation was done using an item pool of 306 that was
designed using the bin-and-union procedures described in Reckase (2010). The
target distribution of item difficulty parameters that was developed using the pro-
cedure is provided in Table 4. This distribution of difficulty parameters is somewhat
flatter and wider than a standard normal distribution.

For the randomesque exposure control procedure, the item to be administered
was randomly sampled from the five items that had b-parameters closest to the
current estimate of proficiency. For the Sympson-Hetter procedure, the goal was to
have a maximum item exposure of 0.20. The exposure parameters were estimated

Table 4 Item pool design for
the exposure control study

Bin boundaries Frequency Mean b-parameter

−5.1 ≥ b > −4.5 1 −4.68
−4.5 ≥ b > −3.9 4 −4.19
−3.9 ≥ b > −3.3 14 −3.62
−3.3 ≥ b > −2.7 21 −3.01
−2.7 ≥ b > −2.1 23 −2.35
−2.1 ≥ b > −1.5 24 −1.75
−1.5 ≥ b > −0.9 26 −1.20
−0.9 ≥ b > −0.3 27 −0.54
−0.3 ≥ b > 0.3 26 −0.02
0.3 ≥ b > 0.9 27 0.59
0.9 ≥ b > 1.5 26 1.18
1.5 ≥ b > 2.1 24 1.82
2.1 ≥ b > 2.7 23 2.37
2.7 ≥ b > 3.3 21 2.99
3.3 ≥ b > 3.9 14 3.68
3.9 ≥ b > 4.5 4 4.01
4.5 ≥ b > 5.1 1 4.75
Total 306 0.01
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through a number of iterations of the CAT process with the item pool specified in
Table 4 until the exposure parameters stabilized. The distribution of the estimated
exposure control parameters is presented in the left side of Fig. 1. This figure shows
that for this item pool, over 200 of the items had exposure control parameters of 1.0
indicating that no exposure control was needed. About 70 items had exposure
control parameters around 0.50.

The results of the exposure control study are shown in Table 5. The results for
the no exposure control condition showed that the CAT procedure worked very
well with the item pool designed for this study. All the statistical indices were very
high. The results were also very good for both exposure control procedures. There
were only slight and hardly noticeable declines in the statistics. These results are
consistent with the distribution of exposure control parameters from the
Sympson-Hetter method (see Fig. 1 left panel) that indicated that over 200 items
did not need any exposure control. The items would be administered less than 20%
of the time without any exposure control. This is probably because the test length of
30 was only 10% of the pool.

Figure 2 (left panel) shows the variation in item exposure for the three condi-
tions. That figure shows the number of times items at different levels of difficulty

Fig. 1 Distribution of exposure control parameters for the Sympson-Hetter procedure for the 306
(left) and 153 (right) item pools

Table 5 Influence of exposure control on adaptation full test length of 30 items

Statistic

r bj̄, θ̂j
� �

sbj̄ ̸sθ̂j PRV

Full item pool No exposure control 0.95 (0.00) 0.97 (0.01) 0.95 (0.00)
Randomesque procedure 0.95 (0.00) 0.97 (0.01) 0.95 (0.00)
Sympson-Hetter method 0.96 (0.00) 0.97 (0.01) 0.94 (0.00)

Sub pool 1 No exposure control 0.96 (0.00) 0.96 (0.01) 0.93 (0.00)
Randomesque procedure 0.96 (0.00) 0.96 (0.01) 0.93 (0.00)
Sympson-Hetter method 0.95 (0.00) 1.18 (0.02) 0.38 (0.01)

Sub pool 2 No exposure control 0.96 (0.00) 0.95 (0.01) 0.94 (0.00)
Randomesque procedure 0.96 (0.00) 0.94 (0.01) 0.93 (0.00)
Sympson-Hetter method 0.94 (0.00) 0.99 (0.02) 0.32 (0.01)

Some Measures of the Amount of Adaptation for Computerized … 35



were administered for the three conditions. The no-exposure-control condition has
peaks for items early in the test when all examinees have the same ability estimates
with all 500 examinees taking the first item with b-parameter closest to the starting
proficiency estimate of 0.0. The randomesque procedure had much lower peaks and
the Sympson-Hetter kept the frequency of item usage to about 100 administrations
or lower.

Because these results were so positive, an additional study was conducted using
two different random half samples of the full pool. These consisted of 153 items
each. The test length remained at 30 which was now about 20% of the pool. The
target exposure remained at 0.20. The results for the randomesque procedure
remained very good, but the level of adaptation for the Sympson-Hetter procedure
was considerably reduced (see Table 5). The correlation of the average b-parameter
for examinees and the final θ-estimate remained high indicating that there was
adaptation, but the PRV statistic and the ratio of the standard deviations showed
that the items were less well targeted to the current ability estimate.

The results for the adaptation of the last 15 items (see Table 6) more dramati-
cally show the effect on adaptation for the Sympson-Hetter procedure when the

Fig. 2 Observed count of item administrations for the 306- (left) and 153-item (right) pools

Table 6 Influence of exposure control on adaptation last 15 items

Statistic

r bj̄, θ̂j
� �

sbj̄ ̸sθ̂j PRV

Full item pool No exposure control 0.98 (0.00) 1.02 (0.01) 0.99 (0.00)
Randomesque procedure 0.98 (0.00) 1.02 (0.01) 0.99 (0.00)
Sympson-Hetter method 0.99 (0.00) 1.03 (0.01) 0.98 (0.00)

Sub pool 1 No exposure control 0.99 (0.00) 1.02 (0.01) 0.96 (0.00)
Randomesque procedure 0.99 (0.00) 1.02 (0.01) 0.96 (0.00)
Sympson-Hetter method 0.87 (0.01) 1.48 (0.03) 0.08 (0.02)

Sub pool 2 No exposure control 0.99 (0.00) 0.99 (0.01) 0.97 (0.00)
Randomesque procedure 0.99 (0.00) 0.99 (0.01) 0.97 (0.00)
Sympson-Hetter method 0.82 (0.02) 1.21 (0.03) −0.08 (0.02)
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smaller pool size of 153 was used. For the full pool, the results are very good for all
procedures. The results for the smaller pool also show the sensitivity of the
Sympson-Hetter procedure to the characteristics of the item pool.

All three statistics showed a reduction in the amount of adaptation for the
Sympson-Hetter procedure. The correlation between average b-parameter admin-
istered and the final θ-estimate was in the 0.80s compared to the high 0.90s for the
randomesque procedure, the ratios of the standard deviations were 1.48 and 1.21 for
the smaller item pools, and the PRV statistics were 0.08 and −0.08. This suggests
that the items being selected for an examinee were almost as widely spread as the
entire item pool. Figure 1 (right panel) shows the distribution of exposure param-
eters for one of the 153-item pools. This distribution is dramatically different from
the results for the full item pool. About 90 items had exposure control parameters
near 0.20. Figure 2 (right panel) shows the counts of item administrations for the
three conditions. The Sympson-Hetter procedure provided better exposure control
than the other procedures, but at the expense of less adaptation.

4.4 Summary of the Simulation Study Results

The simulation studies provided several important results that help to understand
the amount of adaptation that is obtained when using CAT methodology. First, the
studies gave some guidelines for the interpretation of the statistics that are sug-
gested for evaluating the adaptability of a CAT. When the full-length test is ana-
lyzed, a correlation in the low 0.90s, a ratio of the standard deviation in the mid
0.80s, and a PRV of about 0.80 indicate a high level of adaptation. For the sim-
ulated 30-item test, these statistical indicators were very stable with a sample size of
300. All the empirical standard deviations (i.e., estimates of the standard error of the
statistic) were small. The ratio of the standard deviations had the largest standard
deviations, but these were still small. When only the last half of the test is analyzed,
higher values are expected because those early items used to determine the rough
location of the examinee on the scale are not included.

The results also support the guideline that the item pool should be about ten
times the length of the test to support good adaptation. Also, more spread in
difficulty is better than low spread, and with a good quality item pool, there is little
effect of exposure control. However, when the item pool is too small, the
Sympson-Hetter exposure control procedure degrades the level of adaptation. The
randomesque procedure does not reduce adaptation when the 153-item pool was
used, but many items in the pool had high exposure. For good quality adaptation to
occur when exposure control is used, a good quality item pool is needed.
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5 Operational Data Analysis

Two types of data are needed for computing the statistical indicators of the amount
of adaptation. The first is the final proficiency estimate for each examinee. The
second is the list of item parameters for the items administered to each examinee.
The former is the usual output from a CAT. The latter is something that needs to be
stored in a convenient format for computing the mean and standard deviation of the
difficulty values for each examinee.

Data for the operational use of the measures of adaptation were available for the
NCLEX nursing licensure test (NCSBN 2016). The total sample for an adminis-
tration period was large (about 30,000) so it was also possible to take multiple
random samples of 500 from the full sample to evaluate the stability of the quality
of adaptation statistics. The CAT test used for this analysis was variable length with
a minimum test length of 60 items and a maximum length of 250 items. The items
for an individual test were selected from a large item pool of approximately 1,500
items with a difficulty distribution peaked around the decision point on the IRT
scale. The mean b-parameter for the pool was −0.17 and the standard deviation was
1.00. Testing stopped when it was determined that an examinee was significantly
different than a preset passing score or 250 operational items were administered.
The testing procedure also included content balancing (eight content areas) and
exposure control using the randomesque procedure—randomly selecting from 15
items with the most information at the most recent proficiency estimate. The CAT
procedure was based on the Rasch model.

The results for the evaluation of the adaptability of this test are given in Table 7.
For all the statistics, this test met the guidelines suggested by the simulation studies.
The correlation of the mean b-parameter and the final estimate was in the low 0.90s,
the ratio of the standard deviations was better than the guideline of the mid 0.80s,
and the PRV exceed the guideline of about 0.80. These statistics indicate that this
test clearly deserves the label of an adaptive test. This is even the case when the test
had a variable-length stopping rule, content balancing, and exposure control. Good
adaptation results from having a good item selection algorithm along with a high
quality, well designed item pool.

Table 7 Adaptability statistics for an operational test

NCLEX Statistic

r bj̄, θ̂j
� �

sbj̄ ̸sθ̂j PRV

Mean SD Mean SD Mean SD

Total 0.92 0.01 0.96 0.02 0.84 0.01
Benchmark values Low 0.90s Mid 0.80s 0.80
Note SD = empirical standard deviation
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6 Discussion

The purpose of the research reported here was to evaluate some statistical indicators
of the amount of adaptation that occurs when a test is labeled as an adaptive test.
The research was stimulated by a concern that some tests labeled as CATs are so
constrained in their item selection and/or have such limited item pools that the
amount of adaptation may be minimal. Calling them adaptive tests might be mis-
leading. The research comprised of a series of simulation studies designed to
determine if the selected statistics were sensitive to item pool characteristics and
features of a CAT that would affect adaptation. Those studies supported the use of
the selected statistics and provided guidelines for interpreting the statistical
indicators.

The three statistics that were selected—(1) the correlation between the mean
difficulty for an examinee and the final proficiency estimate, (2) the ratio of the
standard deviation of the mean difficulties and the standard deviation of the pro-
ficiency estimates, and (3) the proportion of reduction of item difficulty variance
(PRV) brought about by the use of the CAT—were then applied to data from an
operational CAT. The statistics indicated that this test was very adaptive even
though it used content balancing and exposure control, and it used a variable-length
stopping rule. The strong results were due to a well-designed, high quality item
pool and a test length that was long relative to many other operational CATs.

The research reported here is initial work in this area. Future research will
consider other adaptive testing designs such as multi-stage tests and those based on
the three-parameter logistic model instead of the Rasch model used here. Also,
other operational test data will be analyzed to determine the amount of variation that
exists in the adaptability of existing tests.
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Investigating the Constrained-Weighted
Item Selection Methods for CD-CAT

Ya-Hui Su

Abstract Cognitive diagnostic computerized adaptive testing (CD-CAT) not only
provides useful cognitive diagnostic information measured in psychological or
educational assessments, but also obtains great efficiency brought by computerized
adaptive testing. At present, there are only a limited numbers of previous studies
examining how to optimally construct cognitive diagnostic tests. The cognitive
diagnostic discrimination index (CDI) and attribute-level discrimination index
(ADI) have been proposed for item selection in cognitive diagnostic tests. Zheng
and Chang (Appl Psychol Measure 40:608–624, 2016) proposed the modified
version of these two indices, an extension of the Kullback-Leibler (KL) and
posterior-weighted KL (PWKL) methods, and suggested that they could be inte-
grated with the constraint management procedure for item selection in CD-CAT.
However, the constraint management procedure hasn’t been investigated in
CD-CAT yet. Therefore, the aim of this study is two fold (a) to integrate the indices
with the constraint management procedure for item selection, and (b) to investigate
the efficiency of these item selection methods in CA-CAT. It was found that the
constraint-weighted indices performed much better than those without
constraint-weighted procedure in terms of constraint management and exposure
control while maintaining similar measurement precision.

Keywords Cognitive diagnostic models ⋅ Item selection ⋅ Constraint-weighted
Computerized adaptive testing

Y.-H. Su (✉)
Department of Psychology, National Chung Cheng University, Taiwan,
168 University Rd., Minhsiung Township, Chiayi County 62102, Taiwan
e-mail: psyyhs@ccu.edu.tw

© Springer International Publishing AG, part of Springer Nature 2018
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 233, https://doi.org/10.1007/978-3-319-77249-3_4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_4&amp;domain=pdf


1 Introduction

Cognitive diagnostic models (CDMs) can be used to assess if students have mastered
or have not mastered specific skills. Many CDMs have been proposed to obtain
diagnostic information (Hartz 2002; Junker and Sijtsma 2001; Mislevy et al. 2000;
Rupp et al. 2010; Tatsuoka 1983). One application of CDMs is integrating CDMs
with computerized adaptive testing (CAT), denoted as cognitive diagnostic CAT
(CD-CAT; Cheng 2009; Huebner 2010). The CD-CAT approach not only provides
useful cognitive diagnostic information measured in psychological or educational
assessments, but also obtains great efficiency brought by CAT. It provides diag-
nostics information to parents, teachers, and students, which can be used to direct
additional instruction to the areas needed mostly by individual students.

One of the important issues in CD-CAT is how to develop the item selection
algorithms. At present, there are only a limited numbers of previous studies
examining how to optimally construct cognitive diagnostic tests. The cognitive
diagnostic discrimination index (CDI; Henson and Douglas 2005) and
attribute-level discrimination index (ADI; Henson et al. 2008) have been proposed
to assemble tests followed by CDMs. The CDI measures the overall discrimination
power of an item by using Kullback-Leibler (KL) information to correctly classi-
fying the students’ true status; however, the CDI itself does not provide any
information about the item’s discrimination power for a specific attribute (Henson
et al. 2008). Therefore, ADI is proposed to measure the discrimination power of an
item with respect to each of the attributes. When the attribute relationships are
assumed to be nonhierarchical, the CDI and ADI have been shown to be efficient in
constructing tests.

For greater generality to attribute hierarchy structure, Kuo et al. (2016) proposed
the modified CDI (MCDI) and modified ADI (MADI) by considering attribute
hierarchical structure and including the ratio of test length to the number of attri-
butes. However, it was found that item usage from different attributes was still
unbalanced for nonhierarchical structure. To investigate item selection in the
framework of CD-CAT, Zheng and Chang (2016) proposed the posterior-weighted
CDI (PWCDI) and posterior-weighted ADI (PWADI), which can be considered as
an extension of the KL and posterior-weighted KL (PWKL) methods. Zheng and
Chang found that the PWCDI and PWADI could obtain results as fast as the PWKL
method, and suggested they can be used with constraint management procedures.

In additional to statistical optimization, the construction of assessments usually
involves meeting various statistical and non-statistical constraints. For example,
content balancing (selecting proportionate numbers of items from different content
areas), key balancing (distributing correct answers evenly between options A, B, C,
etc.), limiting specific types of items (such as those with negative stems), etc.
Because items are selected sequentially, it is challenging to meet various constraints
simultaneously in CAT context. Many item selection methods have been proposed
to handle these constraints in CATs. One popular constraint management procedure
is the maximum priority index (MPI), which can be used to monitor constraints
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simultaneously and efficiently in unidimensional and multidimensional CATs
(Cheng and Chang 2009; Cheng et al. 2009; Su 2015, 2016; Su and Huang 2015;
Yao 2011, 2012, 2013). Besides, the MPI procedure can be implemented easily and
computed efficiently so it is widely used in operational CATs (Cheng and Chang
2009). However, the constraint management procedure hasn’t been investigated in
CD-CAT yet.

Because of the fundamental nature of the CDI and ADI approach, item infor-
mation is the only thing to be considered for item selection. Such approach could
easily lead to some items overexposed and bad pool usage. Many constraints are
commonly required to increase validity on test scores while constructing tests.
However, none of the previous studies (Henson and Douglas 2005; Henson et al.
2008; Kuo et al. 2016; Zheng and Chang 2016) included constraint management
procedures in their studies. Since Zheng and Chang (2016) suggested the CDI and
ADI approach can be used with constraint management procedures in a straight-
forward manner, it is important to integrate the CDI and ADI approach with the
MPI procedure to achieve better test security and test validity. Therefore, this study
has two fold (a) to integrate PWCDI and PWADI with the MPI procedure for item
selection, and (b) to investigate the efficiency of these item selection methods in
CD-CAT.

1.1 The Cognitive Diagnostic Discrimination Index
(CDI) and Attribute-Level Discrimination Index (ADI)

Henson and Douglas (2005) proposed the CDI for test construction in CDMs. To
extend the concept of Kullback-Leibler information (Chang and Ying 1996), the
CDI of item j for any two distinct cognitive patterns αu and αv is defined as follows:

CDIj =
∑u≠ v hðαu,αvÞ− 1Djuv

h i
∑u≠ v hðαu,αvÞ− 1 , ð1Þ

where

hðαu,αvÞ= ∑
K

k= 1
ðαuk −αvkÞ2, ð2Þ

and

Djuv =Eαu log
PαuðXjÞ
PαvðXjÞ

� �� �
=Pαuð1Þ log

Pαuð1Þ
Pαvð1Þ

� �
+Pαuð0Þ log

Pαuð0Þ
Pαvð0Þ

� �
. ð3Þ
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In Eqs. (1), (2), and (3), αu and αv are 1 × K attribute vectors, Pαuð1Þ and Pαuð0Þ
are the probabilities of a correct response and an incorrect response given αu,
respectively, and Pαvð1Þ and Pαvð0Þ are the corresponding probabilities given αv. Xj

is the response of item j. The CDIj can be summed across items to obtain test-level
CDI. To assemble a test with a good discrimination between mastery and
non-mastery, items with large CDI should be selected.

To address an item’s discrimination power for a specific attribute, Henson et al.
(2008) defined ADI as follows:

ADIj =
dj1 + dj0

2
=

∑K
k=1 djk1 + ∑K

k=1 djk0
2K

. ð4Þ

For item j, djk1 is the power to discriminate masters from non-masters on
attribute k for item j where djk0 is the power to discriminate non-masters from
masters on attribute k for item j. The ADIj can be summed across items to obtain
test-level ADI. To assemble a test with a good discrimination between mastery and
non-mastery, items with large ADI should be selected.

1.2 The Posterior-Weighted CDI (PWCDI)
and Posterior-Weighted ADI (PWADI) Methods

Zheng and Chang (2016) proposed the posterior-weighted version for the CDI and
ADI, denoted as PWCDI and PWADI. These two indices can be considered as an
extension of the KL and PWKL methods. For item j, the posterior-weighted
D (PWD) matrix can be defined as follows:

PWDjuv = Eαu πðαuÞ × πðαvÞ × log
PðXjjαuÞ
PðXjjαvÞ

� �� �
, ð5Þ

where αu and αv are the updated cognitive pattern posteriors. Then, the PWCDI
and PWADI are defined as follows:

PWCDIj =
1

∑u≠ v hðαu,αvÞ− 1 ∑
u≠ v

hðαu,αvÞ− 1PWDjuv, ð6Þ

and

PWADIj =
1
2K

∑
all relevant cells

PWDjuv, ð7Þ

respectively.
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1.3 The Maximum Priority Index (MPI)

To improve measurement precision, test security, and test validity, the MPI method
was proposed to monitor many statistical and non-statistical constraints simulta-
neously (Cheng and Chang 2009). Denote the constraint relevancy Cjk, where j is
the number of items in the pool and k is the total number of constraints. cjk =1
represents constraint k relevant to item j and cjk =0 otherwise. Each constraint k is
associated with a weight wk. Usually, major constraints such as content balancing
are put larger weights than others. The priority index of item j can be computed
with

PIj = Ij ∏
K

k=1
ðwkfkÞcjk , ð8Þ

where Ij represents the Fisher information of item j evaluated at the current θ and fk
measures the scaled ‘quota left’ of constraint k. For a content constraint k, the PI can
be considered in a certain content area. After xk items have been selected, the
resulting scaled ‘quota left’ is

fk =
ðXk − xkÞ

Xk
. ð9Þ

Note that when cjk =0, meaning item j is not restricted by constraint k, the term
wkfk will not contribute to the final product PIj. For every available item in the pool,
the PI can be computed according to Eq. (8). Instead of the largest Fisher infor-
mation, the item with the largest PI value will be chosen to administer.

When item exposure control is considering during item selection, assume con-
straint k requires that the item exposure rates of all items to be lower than or equal
to rmax, fk can be defined as

fk =
1

rmax
ðrmax −

n
N
Þ, ð10Þ

where n/N is the provisional exposure rate of item j after N examinees have taken
the CATs.

When flexible content balancing constraints are required, Cheng and Chang
(2009) suggested the MPI method need to be used jointly with the two-phase item
selection strategy (Cheng et al. 2007). Each flexible content balancing constraint
involves a lower bound lk and an upper bound uk. Denote the number of items μk to
be selected from content area k. Then,
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∑
K

k=1
μk =L, ð11Þ

where K (k = 1, 2, …, K) and L are the total number of the content areas and the
test length, respectively. In the first phase, lk items are selected from each content

area to meet the lower bound constraints such that L1 = ∑
K

k=1
lk . After xk items have

been selected, the resulting scaled ‘quota left’ is

fk =
1
lk
ðlk − xkÞ. ð12Þ

Then, in the second phase, the remaining L2 =L−L1 items are selected within
the upper bounds of each content area. The fk can be computed by

fk =
1
uk

ðuk − xkÞ. ð13Þ

The MPI item selection method had fewer constraint violations and better
exposure control while obtaining the same level of measurement precision. When
flexible content balancing constraints is considered, the one-phase item selection
strategy was proposed by incorporating both upper bounds and lower bounds.
The PI becomes

PIj = Ij ∏
K

k=1
ðf1kf2kÞcjk , ð14Þ

where

f1k =
1
uk

ðuk − xk − 1Þ, ð15Þ

and

f2k =
ðL− lkÞ− ðt− xkÞ

L− lk
, ð16Þ

where t is the number of items that have already been administered and t= ∑
K

k=1
xk.

The f1k in Eq. (15) measures how close from the upper bound. The L− lk in
Eq. (16) is the maximum number of items that can be selected from other content
areas. When f2k equals to 0, it represents that the items from other content areas
have reached its maximum.
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2 Method

The deterministic input, noisy, and gate (DINA; Haertel 1989; Junker and Sijtsma
2001) model is considered in the study. The DINA model assumes that each
attribute measured by the item must be successfully applied to obtain a correct
answer. The probability of getting a correct answer is defined as

PðXij = 1 j sj, gj, ηijÞ = ð1 − sjÞηij gð1− ηijÞ
j , ð17Þ

where

ηij = ∏
K

k=1
α
qjk
ik ð18Þ

indicates if examinee i has mastered all the required attributes of item j. sj is the slip
parameter, which measures the probability that an examinee with all the required
attributes misses to answer the item j correctly. gj is the guessing parameter, which
measures the probability that an examinee without all the required attributes
answers the item j correctly.

2.1 Simulation Design

A fixed-length CD-CAT simulation study was carried out to evaluate the efficiency
of the item selection methods. Three factors were manipulated in this study: test
length (short vs. long), item bank quality (low vs. high), and item selection methods
(four methods). Three thousand examinees were generated by the DINA model, and
every examinee had a 50% chance of mastering each attribute. The item bank had
500 items followed by five-attribute DINA model, which was similar to the pre-
vious studies (Cheng 2009; Zheng and Chang 2016). Each item had 30% chance to
measuring each attribute. For low-quality item bank, item parameters sj and gj were
generated from U(0.10, 0.30); for high-quality item bank, these two item param-
eters were generated from U(0.05, 0.25). The length for short and long tests was set
as 5 and 10 items, respectively.

Four item selection methods were included in the study. Two were with
constraint-weighted MPI and the other two were without constraint-weighted MPI.
Besides the PWCDI and PWADI indices, the PWCDI and PWADI indices were
integrated with the constraint-weighted MPI for item selection, denoted as
CW-PWCDI, and CW-PWADI, respectively. When the CW-PWCDI, and
CW-PWADI were used for item selection in CD-CAT, the Fisher information in
Eq. (8) was replaced with the PWCDI and PWADI indices. Six constraints were
considered in the study, including item exposure control and five attributes
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balanced. The maximum item exposure rates were 0.2 in the study while the
constraint-weighted item selection methods were applied. To make sure items
selected evenly across five attributes, the constraint of content balance was con-
sidered in the study. The efficiency of the PWCDI and PWADI item selection
methods were compared with the CW-PWCDI, and CW-PWADI methods in
CD-CAT through simulations in terms of constraint management, measurement
precision, and exposure control.

2.2 Evaluation Criteria

The results of the simulation study were analyzed and discussed based on the
following criteria: (a) constraint management, (b) measurement precision, and
(c) exposure control. The constraint management was used to check whether the test
sequentially assembled for each examinee meets all the specified test-construction
constraints. The number of constraints violated in each test was recorded, and then
the proportion of tests violating a certain number of constraints was calculated.
Finally, the effectiveness of constraint management was evaluated by the averaged
number of violated constraints (V ̄):

V ̄=
∑N

n=1 Vn

N
, ð19Þ

where Vn represented the number of constraint violations in the nth examinees’ test.
The measurement precision was evaluated by attribute correct classification rate

(ACCR) and mastery pattern correct classification rate (PCCR), which were defined
as follows:

ACCRk = ∑
3000

i=1
Iðαik = α ̂ikÞ ̸3000, ð20Þ

and

PCCR= ∑
3000

i=1
ðαi = α̂iÞ ̸3000. ð21Þ

With respect to exposure control, the maximum item exposure rate, the number
of overexposed items (i.e. items with exposure rate are higher than 0.20), and the
number of unused items were reported. Besides, the χ2 statistic was used to measure
the skewness of item exposure rate distribution (Chang and Ying 1999)
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χ2 =
1

L ̸500
∑
500

j=1
ðrj − L ̸500Þ2, ð22Þ

where rj is the exposure rate of item j and L is the test length. It was a good index
for the efficiency of item pool usage by qualifying the discrepancy of item exposure
between the observed and the expected pool usage under uniform distribution. The
smaller the χ2 statistic, the better the item exposure control.

3 Results

The results of the simulations were summarized according to constraint manage-
ment, measurement precision, and exposure control in Tables 1, 2, and 3, respec-
tively. Six constraints were considered in the study, including five attributes
balanced and item exposure control. Since the violation was considered at each
examinee level, six constraints were included to evaluate the efficiency of the
constraint management. The proportions of assembled tests violating a certain
number of constraints and the average number of violated constraints for different

Table 1 The constraint management for four item selection methods in various test lengths

Bank
quality

Test
length

Item
selection
methods

Numbers of violations

0 1 2 3 4 5 6 Averaged

Low 5 CW-PWCDI 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CW-PWADI 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PWCDI 0.323 0.323 0.354 0.000 0.000 0.000 0.000 1.031

PWADI 0.317 0.333 0.350 0.000 0.000 0.000 0.000 1.033

10 CW-PWCDI 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CW-PWADI 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PWCDI 0.327 0.323 0.350 0.000 0.000 0.000 0.000 1.023

PWADI 0.311 0.334 0.355 0.000 0.000 0.000 0.000 1.044

High 5 CW-PWCDI 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CW-PWADI 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PWCDI 0.370 0.315 0.315 0.000 0.000 0.000 0.000 0.945

PWADI 0.356 0.300 0.344 0.000 0.000 0.000 0.000 0.988

10 CW-PWCDI 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CW-PWADI 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PWCDI 0.380 0.320 0.300 0.000 0.000 0.000 0.000 0.920

PWADI 0.329 0.350 0.321 0.000 0.000 0.000 0.000 0.992

Note. For a certain number of the violated constraints (from 0 to 6), the proportions of violating tests were
recorded. The average number of violated constraints for different item selection methods lists in the last
column of the table
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Table 2 The ACCR and PCCR for four item selection methods in various test lengths

Bank
quality

Test
length

Item
selection
methods

ACCR
A1 A2 A3 A4 A5 PCCR

Low 5 CW-PWCDI 0.740 0.740 0.738 0.741 0.742 0.556
CW-PWADI 0.771 0.752 0.761 0.763 0.749 0.573
PWCDI 0.739 0.768 0.737 0.741 0.716 0.542
PWADI 0.725 0.780 0.736 0.740 0.700 0.554

10 CW-PWCDI 0.816 0.820 0.818 0.821 0.823 0.736
CW-PWADI 0.810 0.812 0.811 0.810 0.811 0.733
PWCDI 0.811 0.814 0.814 0.808 0.802 0.713
PWADI 0.800 0.810 0.806 0.796 0.800 0.712

High 5 CW-PWCDI 0.889 0.890 0.888 0.891 0.892 0.705
CW-PWADI 0.921 0.901 0.911 0.913 0.899 0.723
PWCDI 0.888 0.918 0.887 0.890 0.866 0.692
PWADI 0.875 0.918 0.886 0.890 0.850 0.704

10 CW-PWCDI 0.966 0.970 0.968 0.971 0.973 0.887
CW-PWADI 0.959 0.962 0.961 0.959 0.962 0.883
PWCDI 0.961 0.965 0.964 0.958 0.952 0.863
PWADI 0.951 0.960 0.956 0.946 0.950 0.861

Table 3 The item exposure control for four item selection methods in various test lengths

Bank
quality

Test
length

Item selection
methods

Maximum
rate

Overexposed
items

Unused
items

Chi-square

Low 5 CW-PWCDI 0.167 0 8 1.389
CW-PWADI 0.171 0 5 1.380
PWCDI 0.358 11 20 11.765
PWADI 0.421 13 21 10.354

10 CW-PWCDI 0.170 0 7 1.381
CW-PWADI 0.180 0 6 1.379
PWCDI 0.423 15 21 13.754
PWADI 0.433 16 19 12.833

High 5 CW-PWCDI 0.181 0 6 0.891
CW-PWADI 0.182 0 5 0.913

PWCDI 0.430 14 35 28.987
PWADI 0.432 15 30 32.011

10 CW-PWCDI 0.182 0 5 0.971
CW-PWADI 0.183 0 5 0.959
PWCDI 0.315 21 36 39.491
PWADI 0.431 19 32 46.322
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item selection methods list in Table 1. In general, the constraint-weighted item
selection methods (i.e. CW-PWCDI and CW-PWADI) performed much better than
the PWCDI and PWADI for different bank quality and different test length in terms
of constraint management. When the item bank quality is low, the CW-PWCDI and
CW-PWADI yielded zero in the averaged violations whereas the PWCDI and
PWADI obtained the averaged violations ranging from 1.023 to 1.044. When the
item bank quality is high, the CW-PWCDI and CW-PWADI still yielded zero in
the averaged violations whereas the PWCDI and PWADI obtained the averaged
violations ranging from 0.920 to 0.992. No matter the bank quality is high or low,
the PWADI yielded slightly larger rates in the averaged violations than the PWCDI
for both test length.

With respect to measurement precision, the ACCR and PCCR for four different
item selection methods in various test lengths list in Table 2. The ACCR was
calculated on the basis of five-attribute levels, including A1, A2, A3, A4, and A5. In
general, the constraint-weighted item selection methods (i.e. CW-PWCDI and
CW-PWADI) performed slightly better than the PWCDI and PWADI in terms of
measurement precision. That is, the CW-PWCDI and CW-PWADI yielded slightly
higher ACCR and PCCR than the PWCDI and PWADI. The longer tests, the higher
ACCR and PCCR would be. The higher test quality, the higher ACCR and PCCR
would be. For 5-item tests, the PWCDI performed slightly worse than the PWADI,
and the CW-PWCDI performed slightly worse than the CW-PWADI. For 10-item
tests, however, the PWCDI performed slightly better than the PWACDI, and the
CW-PWCDI performed slightly better than the CW-PWACDI.

With respect to exposure control, the actual item exposure rates of each item
were recorded. The maximum item exposure rate, the number of overexposed
items, the number of unused items, and the chi-square statistic measuring the
skewness of the item exposure rate distribution were calculated. The results of
exposure control for different item selection methods list in Table 3. In general, the
constraint-weighted item selection methods (i.e. CW-PWCDI and CW-PWADI)
outperformed the other two methods for both test lengths and both bank quality in
terms of item exposure control, especially when the bank quality is high. The
CW-PWCDI and CW-PWADI yielded lower maximum item exposure rates, less
overexposed items, less unused items, and smaller chi-square statistics than the
PWCDI and PWADI. The performance of the CW-PWCDI and CW-PWADI was
very similar. The longer test length, the worse the PWCDI and PWADI would be.
The higher test quality, the worse the PWCDI and PWADI would be.

4 Discussions

The CD-CAT provides useful cognitive diagnostic information measured in psy-
chological or educational assessments. It also obtains great efficiency brought by
computerized adaptive testing. However, there are only a limited numbers of pre-
vious studies examining how to optimally construct cognitive diagnostic tests.
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This study proposed to integrate the constraint-weighted MPI with the PWCDI and
PWADI for item selection in CD-CAT. It was found that the CW-PWCDI and
CW-PWADI outperformed the PWCDI and PWADI in terms of constraint man-
agement and exposure control while maintaining similar measurement precision to
the PWCDI and PWADI. The constraint-weighted item selection methods (i.e. the
CW-PWCDI and CW-PWADI) has great potential for item selection in operational
CD-CAT.

Some future research lines are addressed as follows. First, only the fixed-length
CD-CAT is considered in the study. Each examinee has different measurement
precision when a fixed-length stopping rule is considered. It might result in a high
misclassification rate, which might be unfair to some examinees. To achieve the
same level of measurement precision to all examinees, some examinees may need
to take more items and some may need to take fewer items. However, some
research questions need to be investigated when a stopping rule of measurement
precision is considered. It is important to investigate the constraint-weighted item
selection methods in variable-length conditions for CD-CAT in the future. Second,
this study only considered the simulated item bank with five-attribute DINA model,
which was similar to previous studies (Cheng 2009; Zheng and Chang 2016).
Besides, six constraints were considered in the study. It would be worth to inves-
tigate the efficiency of the CW-PWCDI and CW-PWADI item selection methods in
an operational CD-CAT pool with different number of attributes, different number
of constraints, other cognitive diagnosis models, and other constraint-weighted
procedures.
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Modeling Accidental Mistakes
in Multistage Testing: A Simulation
Study

Thales A. M. Ricarte, Mariana Cúri and Alina A. von Davier

Abstract Stress in tests may cause individuals to underperform. In an adaptive test

context, earlier mistakes due to stress can raise the risk of administering inadequate

items to the examenees leading to an underestimation of their ability. In this paper,

the effects of accidental mistakes on the first stage of an Multistage Adaptive Testing

(MST) were analyzed in a simulation study. Two Item Response Theory models were

used in this study: the Two-Parameter Logistic and the Logistic Positive Exponent

models. Two groups were created: one group had a probability of making acciden-

tal mistakes and one did not have this probability. Comparison of latent trait esti-

mates accuracy and the impact on the item selection process of the MST (Routing)

between these two models were made. Results shows that both models had similar

performance with slightly differences depending on the procedures to simulate the

responses.

Keywords Logistic positive exponent ⋅ Multistage adaptive testing

Routing ⋅ Accidental mistakes

1 Introduction

Stressing about obtaining a good result on an important test can lead examinees to

score less than they would had scored if there were no stress involved. Beilock (2010)

stated that “Although people may certainly be motivated to perform their best under

stress, these environments can cause people to perform at their worst”.
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In Computerized Adaptive Testing (CAT), if an examinee performs well on an

item of a specific difficulty, (s)he will be presented with a more difficult question. Or,

if (s)he performed poorly, then a simpler question will be presented. Consequently, a

worse performance than expected (according to his/her latent trait level) would lead

to a test with easier items and an underestimation of the latent trait. Chang and Ying

(2008) showed that subsequent items administered in adaptive tests (that are easier

and more discriminating) are ineffective to move the estimate close to the true latent

trait value, unless the test is sufficiently long.

The focus of this paper is on a specific type of adaptive testing, namely the Mul-

tistage Adaptive Test (MST, Yan et al. 2014). This type of test is composed of pre-

assembled short linear tests calledmodules that are administered in stages (minimum

of 2), each stage contains one or more modules. These modules have different levels

of difficulty.

Figure 1 shows a diagram of a three-stage MST (represented by the levels of the

diagram) and seven modules (represented by the yellow boxes). The first stage con-

tains one module (named Routing module), the second and third stages have three

modules each.

Usually, the first stage of an MST has one module. Since, not much information

about 𝜃 is known in this stage, the first module can be composed of items with large

range of difficulty levels.

After a stage is completed (unless it is the last one), a new module from the next

stage is administered to the examinee. This module is chosen by a selection method

that is based on the individual performance on previous stages. The module selection

criteria is called routing.

Several approaches can be implemented as routing rules. For example: number

of correct responses or cut-off points for the 𝜃 estimates. In Fig. 1, the routing rule

is represented by “�̂� < cut-off1 point” and “�̂� > cut-off2 point”. The arrows repre-

sent the possible modules that could be administered to the examinee depending on

his/her �̂�.

Because of this structure, the MST has some practical advantages over CAT:

(a) MST is easier to implement than CAT (for example, MST does not need to be

Fig. 1 Diagram of an

example of an MST with

three stages



Modeling Accidental Mistakes in Multistage Testing: A Simulation Study 57

administrated via computer); (b) whereas test administrations are constructed item

by item in CAT, they are constructed with few fixed modules in MST, which makes

it easier to validate the test content and fairness, and (c) in MST, individuals can

review their responses within each module, which is not possible in CAT.

In this paper, the MST will be based on Item Response Theory (IRT) models to

describe the probability of an individual with a latent trait level to correctly respond

an item. Two models are compared: the Two-Parameter Logistic (2PL) model which

is a well known IRT model and the Logistic Positive Exponent (LPE) model (Same-

jima 2000) that adds an exponential parameter to the 2PL. Items under the LPE

model have an asymmetric Item Characteristic Curve (ICC).

The 2PL model was chosen because their item parameters are easier to esti-

mate than more complex models like the Three-Parameter Logistic (3PL) model.

The 2PL is implemented in high-stakes tests like Test of English as a Foreign Lan-

guage (TOEFL, About the TOEFL Test 2017) and The Graduate Record Examina-

tion (GRE, About the GRE general test 2017).

The second model adopted in this study is the LPE and it can be written as

PLPE(Xij = 1 ∣ 𝜃i, aj, bj, 𝜆j) =
[

1
1 + exp(−aj(𝜃i − bj))

]𝜆j
, (1)

whereXij is a binary random variable that assumes the value of 1 if the examinee with

latent trait 𝜃i, i ∈ {1, ..., I}, chooses the correct response for the item j ∈ {1, ..., J},

and 0 otherwise; PLPE(Xij = 1 ∣ aj, bj, 𝜆j, 𝜃i) is the LPE probability of the examinee to

correctly respond to the item; aj > 0, bj, 𝜆j > 0 are the discrimination, the difficulty

and the acceleration parameters, respectively.

Notice that the 2PL model, P2pl(Xij = 1 ∣ 𝜃i, aj, bj), can be obtained by fixing the

𝜆 = 1 in (1). Moreover, if the a parameter is also fixed to 1, the Rasch model is

obtained.

The reason the LPE model was chosen in this study can be found in Ricarte

(2016), where a particular case of the model (considering aj = 1, j ∈ {1, ..., J}) was

implemented in several MST simulations. It was shown that for items with 𝜆 > 1,

the right answers to more difficult items can have greater positive impact on the

individual’s ability estimate than in the 2PL. This could be useful to help individu-

als recover from accidental mistakes in the beginning of the test. In his dissertation,

it was observed that the item parameter estimation of the LPE is complicated using

the Marginal Maximum Likelihood as well as a Bayesian MCMC approach. For this

reason, in this study, the exponential parameter was fixed.

For a better understanding of the LPE model, Fig. 2 shows examples of the Item

Characteristic Curve (ICC) for the LPE model with different parameter values. In

these examples, b is fixed at 0, a = 1 (black curves) or a = 2 (red curves), and 𝜆

assumes 0.5, 1 and 2 values. Notice that for a = 1 and 𝜆 = 1 the Rasch model ICC

is reached and for a = 2 and 𝜆 = 1 the curve represents a 2PL’s ICC. For 𝜆 = 0.5,

the LPE’s ICC are dislocated to the left (in relation to the curves with 𝜆 = 1) and the
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Fig. 2 Examples of LPE’s

ICC with parameters a = 1
(black curves) or a = 2 (red

curves), b = 0 and different

𝜆 values. Rasch is

represented when LPE with

a = 1 and 𝜆 = 1

curve are less steep. For 𝜆 = 2, the LPE’s ICC are on the right side and the curve are

steeper.

Notice that 𝜆 ≠ 1 causes the LPE’s ICC to be asymmetric. As consequence, items

with 𝜆 < 1 cause wrong answers to easier items to have greater negative impact in

the individual’s ability estimate than the 2PL. In contrast, for items with 𝜆 > 1, right

answers to more difficult items have greater positive impact on the individual’s abil-

ity estimate than in the 2PL (Samejima 2000).

The Present Study
The aim of this study is to compare the effects of accidental mistakes on the param-

eter estimation of 2PL and LPE models, and on the selection of modules in an MST.

For this purpose, three simulation studies using different criteria to simulate indi-

vidual responses were made and three LPE models with different fixed values for 𝜆

(𝜆 = 2, 4, and 6 for all items) were used for each simulation.

For all simulations, the individual samples were segmented in two groups: half of

the individuals, named No mistakes group, were considered not to be susceptible to

make causal mistakes, while the other half, named Mistakes group, had a probability

to make them. This division was made because the stress caused on a high-stakes test

can vary to each individual.

Additionally, in a test composed of multiple-choice items, individuals have a

probability of giving a correct response by chance to an item (probability of guess-

ing), this was taken into account in two simulations as well.

To easily simulate the set of responses with or without accidental mistakes and

guessing, a Four-Parameter Logistic (4PL) model (Barton and Lord 1981) was used.

This model has item parameters that accounts for both situations and can be written

as

P4PL(Xij = 1 ∣ 𝜃i, aj, bj, cj, dj) = cj +
dj − cj

1 + exp(−aj(𝜃i − bj))
, (2)

where i, j, Xij, aj and bj are defined in (1), P4PL(Xij = 1 ∣ 𝜃i, aj, bj, cj, dj) is the 4PL

probability of the examinee to correctly respond to the item j, 0 < cj < 1 is the guess-
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Table 1 4PL’s c and d parameter values used in the three simulations of individual responses for

each group, other parameters were randomly generated

Simulation 1 Simulation 2 Simulation 3

Group c d c d c d

No mistake 0 1 0.2 1 0.2 1

Mistake 0 0.8 0 0.8 0.2 0.8

ing parameter of item j, 0 < dj < 1 is the accidental mistake parameter. Notice that

the higher the dj the lower probability of accidental mistake. If dj = 1 then 3PL model

is obtained. Additionally, the 2PL can be reached if dj = 1 and cj = 0.

Table 1 illustrates the c and d parameters of the 4PL used in the three simulation

studies to represent different scenarios. The a was sampled from the log-normal (0,

0.5), b and 𝜃 parameters were both sampled from the standard Normal distribution.

Notice that, because of how the groups were defined, No mistake and Mistake d
parameter values are equal to 1 and 0.8, respectively, for all simulations.

In the first simulation, guessing was not considered for neither group (c = 0 for

both groups). In second simulation, a probability of guessing was considered for the

No mistakes group, but not for the Mistakes group (c = 0.2 for No mistakes group

and c= 0 for the Mistakes group). In the final simulation, both groups had probability

to correctly guess the response for all items (c = 0.2 for both groups).

2 Methods

In this Section, details of the simulation specifications of this study are segmented in

three parts. In Sect. 2.1, the estimation methods used to fit the 2PL and LPE models

are described. In Sect. 2.2, the MST structure, response generation, item and indi-

vidual parameters used in the study are explained. In Sect. 2.3, measures to aid in the

comparison of the models analyzed are presented.

2.1 Estimation

In this Subsection, the methods to estimate the item parameters and latent traits are

described. First, a Bayesian MCMC method to estimate the item parameters is pre-

sented. Afterwards, the EAP method to estimate the latent traits is shown.

2.1.1 Bayesian MCMC Estimation

In this approach, the parameters given the data (posterior distribution) have a distri-

bution composed of the likelihood function and a distribution that reflects on prior

knowledge of the parameters (prior distribution).
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Chains of values are sampled for each parameter from the posterior distribution.

The resultant chains were used to infer about the parameters of the model. In this

paper, the sampling was done using a Metropolis-Hasting Algorithm using the Win-

bugs Software.

For both 2PL and LPE model, the prior distribution used in the estimation algo-

rithm were Log − Normal(0, 0.5), Normal(0, 2) and Normal(0, 1) for a, b and 𝜃

parameters, respectively. Three chains were generated with 50000 samples each,

burn-in of 10000 and thinning of 10 were made.

2.1.2 Latent Trait Estimation

Usually, in the application of an MST, the item parameters are estimated before the

test (by administering the items to a sample of the target population). In the test

administration, these estimates are used as fixed values for the item parameters and

a method is used to estimate the latent traits. In this paper, the estimation method

used is the Expected a Posteriori which consists in calculating the expected value of

the 𝜃’s posterior distribution. The standard normal distribution was used as prior for

𝜃.

2.2 Model Specifications

In this study, only the module on Stage 1 and the first routing are specified. Because

of that, the specification of later stages and models were not considered. Three sim-

ulations were made to study the differences between 2PL and LPE models in a first

stage of an MST scenario.

For all simulations, 5000 individual responses to 20 items were generated. The

individuals, parameters were sampled from the standard Normal distribution.

For all simulated items, the a and b parameters were sampled from the Log-

Normal (0, 0.5) and the standard Normal distributions, respectively. These items

compose the module used in this study.

The individuals were divided in 2 groups: 2500 individuals are not susceptible

to make accidental mistakes and 2500 individuals can make mistakes. These groups

were denominated as No mistakes and Mistakes groups, respectively. The differences

between groups are specified by the model used to simulate their responses (see

Table 1).

The 2PL and three cases of LPE models with fixed acceleration parameter values

were fitted to the data. The three fixed values used for LPE’s 𝜆 parameter were 𝜆 =
2, 4 and 6 for all items.
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2.3 Dependent Variables

To evaluate the precision of the latent trait estimate results, two measures were cal-

culated for each group. The bias is written as

Bias(�̂�) =
∑2500

i=1 (𝜃 − �̂�i)
2500

, (3)

where 𝜃i is the latent trait parameter for the i-th individual, �̂�i is the estimated value

of 𝜃i for the i-th individual. The other measure is the RMSE that was calculated as

RMSE(�̂�) =

√∑2500
i=1 (𝜃 − �̂�i)2

2500
. (4)

To study the effects of the models in routing on the earliest stage of an MST, a

range of cut-off points were specified for both easy and hard modules (ranges from

−1.5 to 0 and 0 to 1.5 for the easy and hard modules, respectively). Then, both the

true and estimated values of 𝜃 were routed accordingly. The proportion of agreement

on the routing (for example: the true and estimated 𝜃 were routed to the easy module

or both of them were routed to the hard module) were calculated for all cut-off points.

The cut-off points (one for easy and one for hard modules) with the highest pro-

portions accordance (among the ones in the range studied) were selected and their

proportion of agreement were denominated as correct easy route and correct hard

route for the routing to the easy and hard modules, respectively.

To analyze the assessment rating quality using the 2PL and LPE models, the true

and estimate 𝜃 ranks for each model were compared by calculating the Spearman cor-

relation coefficient and the Weighted Cohen Kappa (Cohen 1968), which measures

the inter-rate agreement between two classifiers and also accounts for the degree of

their disagreement. The Weighted Cohen Kappa in our study was written as

𝜅 = 1 −
∑2500

i=1
∑2500

j=1 wijoij∑2500
i=1

∑2500
j=1 wijeij

, (5)

where oij and eij are the observed and expected accuracy, respectively, and wij =
(i − j)2 are the elements of the weight matrix.

3 Results

Table 2 shows bias, RMSE, the correct easy route and correct hard route for the

No mistakes and Mistakes groups for all three simulations previously described.
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Table 2 Bias, RSME, ranking, correct module routes, Spearman correlations and Cohen Kappa

coefficient for the ranks for the 2PL and LPE models fitted for all simulations

LPE 2PL

𝜆= 6 𝜆= 4 𝜆= 2

Simulation 1

No mistakes (c
= 0, d = 1.0)

Bias −0.17 −0.17 −0.17 −0.17

RMSE 0.33 0.34 0.34 0.34

Correct easy

route

0.82 0.82 0.81 0.81

Correct hard

route

0.96 0.96 0.97 0.97

Spearman cor. 0.94 0.94 0.94 0.94

W. Cohen

Kappa

0.94 0.94 0.94 0.94

Mistakes (c =

0, d = 0.8)

Bias 0.16 0.16 0.16 0.17

RMSE 0.39 0.39 0.39 0.39

Correct easy

route

0.43 0.43 0.43 0.42

Correct hard

route

0.55 0.56 0.56 0.56

Spearman cor. 0.89 0.89 0.90 0.89

W. Cohen

Kappa

0.89 0.89 0.89 0.89

Simulation 2

No mistakes (c
= 0.2, d = 1.0)

Bias −0.40 −0.40 −0.41 −0.41

RMSE 0.53 0.53 0.53 0.53

Correct easy

route

0.61 0.61 0.60 0.60

Correct hard

route

0.97 0.97 0.97 0.97

Spearman cor. 0.86 0.86 0.86 0.86

W. Cohen

Kappa

0.89 0.89 0.89 0.90

Mistakes (c =

0, d = 0.8)

Bias 0.41 0.41 0.40 0.40

RMSE 0.53 0.53 0.53 0.53

Correct easy

route

0.30 0.30 0.30 0.30

Correct hard

route

0.65 0.65 0.66 0.66

Spearman cor. 0.87 0.87 0.87 0.87

W. Cohen

Kappa

0.79 0.79 0.80 0.80

(continued)
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Table 2 (continued)

LPE 2PL

𝜆= 6 𝜆= 4 𝜆= 2

Simulation 3

No mistakes (c
= 0.2, d = 1.0)

Bias −0.24 −0.23 −0.23 −0.24

RMSE 0.42 0.42 0.42 0.42

Correct easy

route

0.74 0.74 0.74 0.74

Correct hard

route

0.94 0.94 0.94 0.94

Spearman cor. 0.89 0.89 0.89 0.90

W. Cohen

Kappa

0.86 0.86 0.86 0.86

Mistakes (c =

0.2, d = 0.8)

Bias 0.24 0.24 0.24 0.24

RMSE 0.54 0.54 0.54 0.53

Correct easy

route

0.40 0.40 0.40 0.40

Correct hard

route

0.60 0.60 0.60 0.60

Spearman cor. 0.79 0.79 0.79 0.79

W. Cohen

Kappa

0.87 0.87 0.87 0.87

Additionally, the Spearman correlation and weighted Cohen Kappa for the No mis-

takes and Mistakes groups were also displayed.

In simulation 1, the results showed that the bias in the No mistakes group were

negative for all cases, meaning that the latent traits were overestimated. The oppo-

site effect occurs in the group that was susceptible to make mistakes. The RMSE

of the latent trait estimates was greater for the Mistakes group in all models. The

Spearman correlation and Cohen Kappa were very similar in all models for both the

No mistakes and Mistakes groups. Only about half of the routing was done correctly

for the Mistakes group in all models. However, almost 90% of the individuals on the

No mistakes group were routed correctly. There weren’t big performance differences

among models.

In the second simulation, the same interpretation of the bias in the first simulation

holds. The No mistakes group latent trait estimates had negative biases, while the

Mistakes group’s ones were positive. However, the magnitude of the biases in all

models considered were higher in the second simulation than in the first. In both

groups, the latent trait estimates using the 2PL and LPE models had similar RSME,

Spearman correlation and Cohen Kappa, as in the first simulation. Comparing to the

previous simulation, the routing for the easy module of the No mistakes group were

worse in the second simulation than in the first (approximately 0.60 versus 0.80 in
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average). This also was the case for the correct easy route of the Mistakes group.

However, the correct hard route values were higher in the second simulation than in

the first one.

In the third simulation, similar to the previous ones, the biases of the estimates

indicate that in the No mistakes group 𝜃 was overestimated, while in the Mistakes

groups 𝜃 was underestimated. No other important differences were found among

models considering bias, RMSE, correlation and Kappa. The third simulation rout-

ing performance for the No mistakes group was better than in the second simulations,

but worse than in the first. This same pattern occurs in the correct easy route for the

Mistakes group. The correct hard route values in the third simulation were higher

than the in the first simulation but lower than in the second one.

4 Discussion and Conclusion

In this paper, the LPE with fixed 𝜆 values, (2, 4 and 6) was compared with the 2PL

model in simulations that emulates the consequences of accidental mistakes in the

first stage of an MST.

For that purpose, three simulations were made and two groups of 2500 individuals

each were created. The first group, denominated as No mistake group, responses

were generated considering the 2PL or 3PL model. The second group, denominated

as Mistake group, responses were generated using the 4PL model with d = 0.8 to

simulate the occurrence of accidental mistakes.

The results showed that the 2PL and LPE models with fixed 𝜆 values had similar

results for all simulations. Even though, as mentioned in Sect. 2, items under the

LPE model with 𝜆 > 1 will reward more the correct answer to more difficult items

than under the 2PL, which means that at least in theory these items would be more

forgiving to accidental mistakes. This characteristics would also make the items to

be lenient towards guessing. Because of that, when the c parameter was added to

Simulations 2 and 3, it was expected that the performance of LPE model would be

worse comparing to the 2PL, but this was not observed either.

For all simulations, the bias of the latent trait estimates were negative for No

mistakes group and positive for the Mistakes group and their absolute values were

similar. The positive bias in the Mistakes group could be explained by the acci-

dental mistakes to the items, contributing to the underestimations of the value of

the latent traits. Consequently, the joint estimation of the item parameters for both

groups caused an overestimation of the No mistakes group’s latent traits.

The absolute value of the biases were higher in the second simulation in com-

parison to the first. In the former, it was considered that the No mistakes group had

a probability of guessing correctly the response to an item. Because of this, it was

expected that the No mistakes group’s �̂� would be even higher in relation to the real 𝜃

values than in Simulation 1. For the Mistake group, the magnitude of the latent trait

estimate bias was also higher in Simulation 2 than in the Simulation 1, indicating a

compensation in the latent trait distribution between both groups.
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In Simulation 3, where both groups could guess the correct response of the items,

it was observed that the absolute values of the bias were not as high as in the second

simulation. It is reasonable to conclude that there was a balance between the bias

values of both groups when they had the same probability of guessing.

Ricarte (2016) mentioned that the LPE’s 𝜆 parameter influences both inclination

and position of the ICC. The fact that the combination of LPE’s item parameters

could result in similar ICC to the 2PL might explain the similarities of the models’

performance in our simulations.

In this paper, no significant differences between LPE and 2PL were found. How-

ever, future studies for different scenarios need to be done to reach a final conclusion.

Studies that could to be done to improve this analysis: (a) different ways to con-

struct the Routing Module and routing; (b) considering estimating 𝜆 instead of fix-

ing it (specially in scenarios with guessing); and (c) comparison of the “Rasch” LPE

(LPE with a parameter fixed at 1) and Rasch models may be of interest, given that

there would be no influence of the a parameter on the inclination of the curve.
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On the Usefulness of Interrater
Reliability Coefficients

Debby ten Hove, Terrence D. Jorgensen and L. Andries van der Ark

Abstract For four data sets of different measurement levels, we computed 20
coefficients that estimate interrater reliability. The results show that the coefficients
provide very different numerical values when applied to the same data. We discuss
possible explanations for the differences among coefficients and suggest further
research that is needed to clarify which coefficient a researcher should use to
estimate interrater reliability.

Keywords Agreement ⋅ Interrater reliability coefficients ⋅ Estimates of interrater
reliability

1 Introduction

Interrater reliability (IRR) entails the degree of agreement, consistency, or shared
variance among two or more raters assessing the same subjects, expressed as a
number between 0 (no agreement) and 1 (perfect agreement). On September 27,
2017, the term “inter-rater reliability”—including quotation marks—returned
173,000 hits on Google Scholar, which illustrates its academic importance. IRR
also has societal relevance. For example, in the Netherlands an officer of Child
Protection Services (Raad voor de Kinderbescherming) assesses the recidivism
risks, risk factors, and protective factors of each juvenile delinquent (Van der Put
et al. 2011). For the juvenile delinquent, the stakes are high because the assessment
by the officer of Child Protection Services determines the district attorney’s
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sentencing recommendation. If the IRR of the assessment procedure were low, the
sentencing recommendation would largely depend on the officer who did the
assessment, which is highly undesirable.

In our experience, most researchers associate IRR with Cohen’s (1960) kappa,
but there is an abundance of coefficients available. Just for nominal data, Popping
(1988) identified over 38 coefficients. Zhao et al. (2013) discussed 22 of these
coefficients and found several were mathematically equivalent, resulting in 11
unique coefficients. The R package irr (Gamer et al. 2012) contains 17 different
coefficients for various types of data that estimate the IRR. Some coefficients have
different versions, which increases the number of coefficients even further. For
example, the intraclass correlation coefficient (ICC) can be calculated using a
one-way or two-way model, to estimate the consistency or agreement of either a
single rating or the average across raters. Due to the abundance of coefficients, we
found that preferring a particular coefficient to estimate IRR is hard to justify.
Despite review articles on IRR (e.g., Gwet 2014; Hallgren 2012), it is unknown to
what degree the estimated IRR depends on the coefficient.

It would be desirable if coefficients that can be applied to data with the same
measurement level (e.g., nominal data) produce similar results. Therefore, this
paper investigates to what degree the choice of coefficient affects the estimated IRR.
In the discussion, we attempt to explain some of the differences among coefficients,
and suggest research that is needed to answer the question: “Which coefficient
should a researcher use to estimate interrater reliability?”.

2 Methods

2.1 Data

We selected four datasets that are freely available from the R package irr (see
Table 1; Gamer et al. 2012). Each dataset contained the ratings of R raters
observing S subjects. The dataset Diagnoses (Fleiss 1971) consists of ratings by six
psychiatrists classifying 30 patients into one of five nominal diagnostic categories:

Table 1 Characteristics of the four datasets

Dataset S R NR Min Max Level

Diagnoses 30 6 180 1 5 Nominal
Vision 7477 2 14954 1 3 Ordinal
Video 20 4 80 2 5 Interval
Anxiety 20 3 60 1 6 Interval
Note S = number of subjects; R = number of raters; NR = number of ratings (S×R); Min =
minimum score; Max = maximum score
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depression, personality disorder, schizophrenia, neurosis, or other. The dataset
Vision (Stuart 1953) consists of the distance-vision performance of 7477 subjects
using their left eye and their right eye. The two eyes are considered the two
instruments (i.e., two raters). The ratings were measured on a scale from 1 (low
performance) to 4 (high performance), which we treat as ordinal. The dataset Video
is an artificial dataset consisting of four raters rating the credibility of 20 videotaped
testimonies. Ratings could vary from 1 (not credible) to 6 (highly credible), though
observed scores only ranged from 2 to 5. Technically, rating scales cannot yield
interval-level data unless it can be known that the distance between adjacent
integers is equivalent for any pair of adjacent integers across the range of the scale;
however, unbiased results may be obtained by treating Likert-type rating scales
containing at least five points as interval-level rather than ordinal-level data
(Rhemtulla et al. 2012). Therefore, we treated the ratings as interval-level data. The
dataset Anxiety is also an artificial dataset, in which three raters rated the anxiety of
20 subjects on a scale from 1 (not anxious at all) to 6 (extremely anxious). The
measurement level of these ratings was also treated as interval.

2.2 IRR Coefficients

We considered 20 IRR coefficients from the R package irr (version 0.84; Gamer
et al. 2012). We considered nine coefficients for nominal ratings (Table 2, top
panel). Cohen’s kappa (κ; Cohen 1960) can be used only for nominal ratings with
two raters. Weighted versions of κ have been derived that can also be used only for
nominal ratings with two raters (Cohen 1968). The weights reflect the amount of
disagreement between the raters. We calculated two weighted κ versions: κ with
equal weights (κW ) and with squared weights (κW2 ). Three generalizations of κ were
available to assess nominal data with more than two raters: Fleiss’ kappa (κFleiss;
Fleiss 1971), Conger’s exact kappa (κExact; Conger 1980), and Light’s kappa (κLight;
Light 1971). The percent agreement, Krippendorff’s (1980) alpha, and coefficient
iota (Janson and Olson 2001) each have a version for several measurement levels,
including nominal-level ratings. Their coefficients for nominal ratings are denoted
PAN , αN , and ιN , respectively.

We considered four coefficients for ordinal ratings (Table 2, central panel).
Kendall’s (1948) W and the mean of Spearman’s rank-order correlation (ρ ̄;
Spearman 1904) have been designed specifically for ordinal data, whereas the
percent agreement and Krippendorff’s (1980) alpha have a version for ordinal
ratings. The latter two coefficients are denoted PAO and αO, respectively.

We considered seven coefficients for interval-level ratings (Table 2, bottom
panel). Each coefficient can also be applied to ratio-level ratings. The percent
agreement, Krippendorff’s (1980) alpha, and coefficient iota (Janson and Olson
2001) have a version for interval ratings. These coefficients are denoted PAI , αI , and
ιI respectively. For the Finn (1970) coefficient and the ICC (Shrout and Fleiss
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1979), we specified two-way models to treat both raters and subjects as each being
randomly drawn from a population, which is often the case in social and behavioral
research. In addition, for the ICC we computed the level of consistency rather than
the level of absolute agreement. Furthermore, we computed the mean of Pearson’s
product-moment correlation coefficients (r ̄; Pearson 1895) and Robinson’s measure
of agreement (A; Robinson 1957).

We excluded three coefficients of the R package irr from our analyses, because
they clearly measured something different than the IRR: the Stuart-Maxwell
coefficient (Maxwell 1970) and the Bhapkar (1966) coefficient assess homogeneity
in marginal distributions, and the coefficient of Eliasziw et al. (1994) estimates
intrarater reliability (i.e., consistency of repeated ratings from the same rater).

Table 2 Characteristics of the 20 IRR coefficients used in this study

Symbol Name SE NHST Miss R>2

Nominal level

κ Cohen’s kappa ● ●

κW Weighted kappa (equal weights) ● ●

κW2 Weighted kappa (squared weights) ● ●

κFleiss Fleiss’ kappa ● ● ●

κExact Conger’s exact kappa ● ● ●

κLight Light’s kappa ● ● ●

PAN Percent agreement ● ●

αN Krippendorff’s alpha ● ● ●

ιN Coefficient iota ●

Ordinal level

W Kendall’s W ● ●

ρ ̄ Mean Spearman’s rank correlation ●

PAO Percent agreement ● ●

αO Krippendorff’s alpha ● ● ●

Interval level

PAI Percent agreement ● ●

αI Krippendorff’s alpha ● ● ●

ιI Coefficient iota ●

Finn2 Finn’s coefficient (two-way) ● ●

ICC2 Intraclass correlation coefficient (two-way) ● ● ●

r ̄ Mean Pearson’s correlation ●

A Robinson’s A ●

Note SE = standard errors are available; NHST = null-hypothesis significance test is available;
Miss = missing data can be handled by other methods than listwise deletion; R>2 = the method
can handle more than two raters
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2.3 Analyses

For the nominal dataset (Diagnoses), we applied only nominal IRR coefficients. For
the ordinal dataset (Vision), we applied all ordinal, nominal, and interval-level IRR
coefficients, with the exception of αN and αI . The results of interval-level coefficients
are interesting because researchers frequently treat Likert-type scales as though they
are continuous. The results of nominal IRR coefficients are interesting when the
ordering is not of primary interest in the application at hand. Therefore, for the
interval-level datasets (Video and Anxiety), we also computed all nominal, ordinal,
and interval-level IRR coefficients, with the exception of PAN ,PAO, αN , αO, and ιN .

We investigated the range of values obtained by these coefficients. We also
investigated whether the choice of coefficient affects the conclusion about the IRR
using the heuristic labels suggested by Landis and Koch (1977) for the use of κ:
negative values indicate a poor IRR, values between 0 and 0.20 indicate a slight
IRR; values between 0.21 and 0.40 indicate a fair IRR; values between 0.41 and
0.60 indicate a moderate IRR; values between 0.61 and 0.80 indicate a substantial
IRR, and values between 0.81 and 1.00 indicate an almost perfect IRR.

Furthermore, we investigated the following aspects of the IRR coefficients in
Table 2, by checking the literature and the functions of the package irr: Are
standard errors available? Is it possible to conduct null-hypothesis significance
testing? Are missing data allowed? And if so, how can missing data be handled?
How many raters are allowed?

3 Results

Table 3 shows the variability of the evaluated IRR coefficients as estimated for the
four datasets. For the nominal-level dataset Diagnoses, the six available IRR
coefficients ranged from 0.17 (PA) to 0.46 (κLight; M = 0.40, SD= 0.11). For the
ordinal-level dataset Vision, the IRR coefficients ranged from 0.60 (several coef-
ficients) to 0.85 (W; M = 0.69, SD= 0.09), but from 0.71 (several coefficients) to
0.85 if only ordinal IRR coefficients are considered. For the interval-level dataset
Video, the IRR coefficients ranged from 0.04 (κFleiss) to 0.92 (Finn;
M =0.26, SD=0.24), but from 0.10 (αI) to 0.92 if only interval-level IRR coeffi-
cients are considered. For the interval-level dataset Anxiety, the IRR coefficients
ranged from −0.04 (κFleiss) to 0.54 (W; M = 0.22, SD = 0.21), but from 0.00 (PAI)
to 0.50 (Finn2) if only interval-level IRR coefficients are considered.

Table 3 (cf. the asterisks next to the values) also shows that the interpretation of
the IRR of a dataset by means of the benchmarks of Landis and Koch (1977)
depends on the choice of coefficient. For the dataset Diagnoses, the IRR could be
labelled either slight, fair, or moderate; for the dataset Vision, the IRR could be
labelled either moderate, substantial, or almost perfect; for the dataset Video, the
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IRR could be labeled anywhere from slight to almost perfect; and for dataset
Anxiety, the IRR could be labelled either poor, slight, fair, or moderate.

For 13 of the 20 coefficients, standard errors were available (Table 2). To the
best of our knowledge, for the other coefficients, standard errors are not available.

Table 3 IRR estimates for 20 coefficients on 4 datasets

Coefficient Diagnoses Vision Video Anxiety

Nominal level

κ a 0.60* a a

κW
a 0.65** a a

κW2
a 0.60* a a

κFleiss 0.43* 0.60* 0.04 − 0.04

κExact 0.44* 0.60* 0.10 − 0.02

κLight 0.46* 0.60* 0.07 − 0.02

PAN 0.17 b b b

αN 0.43* b b b

ιN 0.44* b b b

Ordinal level

W c 0.85*** 0.39 0.54*

ρ ̄ c 0.71** 0.24 0.34
PAO

c 0.71** b b

αO
c 0.71** b b

Interval level

PAI
c b 0.35 0

αI
c b 0.10 0.16

ιI
c 0.60* 0.15 0.19

Finn2
c 0.78** 0.92*** 0.50*

ICC2
c 0.70** 0.16 0.20

r ̄ c 0.70** 0.24 0.28

A c 0.85*** 0.40 0.48*

Ranges of values

Ranged 0.17 – 0.46 0.71 – 0.85 0.10 – 0.92 0.00 – 0.50
Rangee 0.17− 0.46 0.60− 0.85 0.04− 0.92 − 0.04− 0.54
Note *coefficient greater than 0.40 (moderate IRR)
**coefficient greater than 0.60 (substantial IRR)
***coefficient greater than 0.80 (almost perfect IRR)
acoefficient cannot be computed because the number of raters is greater than 2
bcoefficient was not computed because a version of the coefficient that applies to another
measurement level was computed
ccoefficient was not computed because the measurement level of data is nominal
drange of all IRR coefficients that match the measurement level of the ratings
erange of all IRR coefficients
Estimates that correspond to the correct measurement level are printed in boldface
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For nine coefficients, a test statistic is available that tests whether the coefficient
equals zero.

Although no dataset contained missing values, it is worth noting that the package
irr handles missing data differently for different coefficients. Coefficients αN , αO,
and αI use all available data by counting disagreements among any observed pair of
ratings on the same subject (i.e., pairwise deletion). Coefficients ιN and ιI do not
allow missing ratings (i.e., the software will return a missing value for the coeffi-
cient when any ratings are missing), whereas all other coefficients handle missing
data by listwise deletion.

4 Discussion

The results showed that the coefficients provide very different numerical values
when applied to the same dataset. Depending on the choice of the coefficient, the
IRR label for a single dataset can range from poor to almost perfect. This seriously
questions the usefulness of IRR coefficients. We limited ourselves to coefficients
available in the R packages irr (Gamer et al. 2012), so the ranges may be even
wider if more coefficients were included. This problem should be investigated
further.

The usefulness of the coefficients in this paper can be investigated only if IRR
has a sound definition; however, a clear definition seems to be absent. Some
coefficients (e.g., the ICC) are based on variance decomposition, which is com-
patible with the framework of generalizability theory (e.g., Vangeneugden et al.
2005), whereas other coefficients (e.g., PA) are derived from the concept of literal
agreement. Coefficients that stem from different conceptualizations of IRR cannot
all measure the same thing. In a recent discussion with Feng (2015), Krippendorff
(2016) wrote: “I contend Feng discusses reliability measures with seriously mis-
taken conceptions of what reliability is to assure us of” (p. 139). We need to
distinguish the different theories behind the IRR coefficients and come up with a
more accurate terminology to identify competing conceptualizations of IRR. Only if
the theories and models behind IRR are sorted out, we can start investigating why
some IRR coefficients produce higher values than others, and we can separate the
wheat from the chaff. In that respect, we believe the work of Zhao et al. (2013) is a
valuable contribution. They explain, for example, the flaws of chance-corrected
coefficients such as κ. Once we have selected estimates for different conceptual-
izations of IRR, we can deal with other issues identified in this study.

Another major problem is that few coefficients can handle missing data. This is
problematic because ratings in the social and behavioral sciences can be expensive.
For example, an assessment of a juvenile delinquent by an officer of Child Pro-
tection Services in The Netherlands (see our Introduction) takes approximately 6–
8 h. A study investigating the IRR must allow for planned missingness because it is
financially and practically impossible to have all officers assess all juvenile delin-
quents. Hence, a useful coefficient must be estimable with missing data.
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We also found that for some coefficients, standard errors and confidence inter-
vals cannot be computed and null-hypothesis testing is impossible. These standard
errors, confidence intervals, and hypothesis tests should first be derived. Then the
bias of all standard errors, the coverage of all confidence intervals, and the Type I
error rate of all hypothesis tests should be investigated.

Finally, we used the benchmarks of Landis and Koch (1977). These benchmarks
are considered to be the single most often used benchmarks (e.g., Gwet 2014,
p. 164). The 42,000+ citations of the Landis and Koch paper on Google Scholar
indicate at least their widespread use. A relevant question may be whether these
benchmarks, which were designed for κ, can be used for coefficients stemming from
different conceptualizations of IRR. In future research, it should be investigated
whether different sets of heuristic rules should be provided for different types of
coefficients.
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An Evaluation of Rater Agreement
Indices Using Generalizability Theory

Dongmei Li, Qing Yi and Benjamin Andrews

Abstract This study compared several rater agreement indices using data simulated
using a generalizability theory framework. Information from previous generaliz-
ability studies conducted with data from large-scale writing assessments was used to
inform the variance components in the simulations. Rater agreement indices,
including percent agreement, weighted and unweighted kappa, polychoric, Pearson,
Spearman, and intraclass correlations, and Gwet’s AC1 and AC2, were compared
with each other and with the generalizability coefficients. Results showed that some
indices performed similarly while others had values that ranged from below 0.4 to
over 0.8. The impact of the underlying score distributions, the number of score
categories, rater/prompt variability, and rater/prompt assignment on these indices
was also investigated.

Keywords Rater agreement ⋅ Generalizability ⋅ Inter-rater reliability

1 Introduction

Rater agreement is an important factor affecting the reliability of test scores
involving subjective rater scoring. Numerous rater agreement indices have been
proposed to measure the consistency of rater scores (Banerjee et al. 1999; Gwet
2014). However, these indices are based on different assumptions which are rarely
met in practice and can result in paradoxes and abnormalities (Zhao et al. 2013).
Except for a few guidelines that were developed for Cohen’s kappa (e.g., Altman
1991; Fleiss 1981; Landis and Koch 1977), there is little guidance in the literature
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regarding how to interpret the values for most inter-rater agreement indices. Fur-
thermore, raters are usually not the only source of error. In large-scale writing
assessments, for example, research has repeatedly shown that the sampling of tasks
tends to be an even bigger source of error variance than the sampling of raters
(Breland et al. 1999). Therefore, rater agreement indices alone are not able to
provide an accurate estimation of test score reliability if other sources of error are
known to exist. Generalizability (G) theory (Brennan 2001), on the other hand,
provides a comprehensive framework for investigating the reliability of test scores
by allowing researchers to differentiate multiple sources of error.

The purpose of this study was to evaluate several rater agreement indices
commonly used in the context of large-scale writing assessments using a G theory
framework. A couple more recently proposed indices intended to overcome some
undesirable features of earlier indices were also included. Specifically, this study
was intended to answer the following research questions:

1. How do the rater agreement indices compare to the generalizability and
dependability coefficients from G theory analyses? How do the indices compare
to one another?

2. How does the number of rating categories affect the various rater agreement
indices and the G theory coefficients?

3. What is the impact of the distribution of the underlying scores on the perfor-
mance of these rater agreement indices?

4. What is the impact of rater/prompt assignment and rater/prompt variability on
these indices?

These research questions were investigated based on data simulated with real-
istic parameters (i.e., variance components) obtained from earlier writing score
generalizability research with real data. In the following sections, the rater agree-
ment indices investigated in this study are first introduced. Then the data simulation
procedures and the G theory coefficients used as criteria for comparison are
described. Results are presented and discussed at the end.

2 Methods

2.1 Rater Agreement Indices

Four types of agreement indices were included in the study: (1) percent agreement,
(2) Cohen’s kappa (i.e., kappa, linear and quadratic weighted kappa), (3) correla-
tions (i.e., polychoric, Pearson, Spearman, and intraclass), and (4) two newer
indices: Gwet’s AC1 and AC2. Below is a brief description of these indices and
some known relationships among them.

Percent agreement. Percent agreement, the most intuitive indicator of rater
agreement, is the percentage of cases where raters gave exactly the same ratings.
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Sometimes both the perfect agreement and the adjacent agreement are reported, but
this study considered only perfect agreement.

Kappa, linear and quadratic weighted kappa. Kappa (Cohen 1960) is calculated
as pa − pe

1− pe
, where pa represents the percent agreement across all the categories, and pe

represents the percent agreement expected by chance. The weighted versions of
kappa (Cohen 1968) take the same basic form as kappa, but weights are applied to
each cell of the agreement matrix when calculating pa and pe. Whereas kappa is
most appropriate for nominal scales, the weighted versions are for ordinal or
interval scales. Vanbelle (2016) suggested that the linear and quadratic weighted
kappa coefficients provide complementary information regarding position and
variability, respectively, and recommended that both coefficients be reported.

Correlations. Correlations quantify the relationship between two variables. The
Pearson product-moment correlation measures the linear relationship between
continuous variables, and the Spearman rank-order correlation measures the
monotonic relationship between two continuous or ordinal variables based on the
rank orders of each variable. The polychoric correlation estimates the relationship
between two normally distributed latent variables from their observed ordinal values.

Previous research showed the equivalence between the quadratic weighted kappa
and some of the correlation coefficients under restricted conditions. For example,
Cohen (1968) showed that for a general m × m table with identical marginal
distributions, the weighted kappa is equal to the Pearson product-moment corre-
lation coefficient obtained when the nominal categories are scaled so that the first
category is scored 1, the second category 2, and so on. According to Schuster
(2004), the Pearson product-moment correlation is insensitive to differences in rater
means and variances, but quadratic weighted kappa is sensitive to both mean and
variance differences between raters.

Intraclass correlations (ICC), though viewed as a type of correlation, are usually
conceptualized within the framework of analysis of variance (ANOVA), and

expressed as a proportion of variance, i.e., σ2α
σ2α + σ2ε

. When used in the context of rater

agreement, σ2α represents the variance due to true differences and σ2ε represents the
variance due to raters. Fleiss and Cohen (1973) showed that if the categories are
scaled as described above, the quadratic weighted kappa is equivalent to the ICC
coefficient where the mean differences between the raters are included as a com-
ponent of variability. This study included this type of ICC.

AC1 and AC2. All kappa statistics depend on the marginal distributions and the true
prevalence of a trait, which may cause paradoxes (Brenner and Kliebsch 1996; Yang
and Chinchilli 2011; Warrens 2012). Gwet (2008) proposed AC1 as a
“paradox-resistant” alternative to the kappa coefficient, and later developed AC2

(Gwet 2010), which is a weighted version ofAC1. Like the kappas, AC1 is for nominal
scales and AC2 is for ordinal or interval scales. These two statistics are not commonly
used to report rater agreement in large-scale writing assessments, but are included in
this study because of their demonstrated superiority over kappa (Gwet 2014).
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2.2 G Theory

As pointed out by Brennan (2001), G theory liberalizes and extends traditional
notions of reliability by allowing researchers to identify and quantify the sources of
errors in a measurement procedure. It provides both a conceptual framework and a
statistical framework for evaluating the consistency of scores. Below is a brief
introduction to a few important G theory concepts. See Brennan (2001) for details.

The universe of admissible observations are all acceptable conditions or quali-
fications for each facet of the measurement procedure, such as raters and prompts in
the measurement of writing proficiency. The purpose of a G study is to obtain
estimates of variance components associated with a universe of admissible obser-
vations. The universe of generalization is the universe to which a decision maker
wants to generalize based on the results of a particular measurement procedure. The
purpose of a D study is to provide estimates of variance components and score
properties for well-specified measurement procedures, including universe score
variance, error variances, and two reliability-like coefficients—the G coefficient
ðEρ2Þ and the index of dependability (ΦÞ. Whereas Eρ2 is the ratio of universe
score variance to itself plus relative error variance, Φ is the ratio of universe score
variance to itself plus absolute error variance. Note that these coefficients, as pro-
portions of variances, are actually different types of ICCs.

2.3 Data Generation and Evaluation Criteria

Data were simulated using a G theory framework that includes both rater and
prompt variabilities. In the terminology of G theory, the universe of admissible
observations for the researchers contains a large number of potential writing
prompts with similar characteristics and a large number of potential raters with
similar trainings, and with a potential pairing of any rater with any prompt for each
individual in the population of examinees. Therefore, the population (p) and the
rater and prompt facets are fully crossed. Let r represent raters and i represent
writing prompts. The fully crossed G-study design can be represented as p× i× r,
and each observed score (Xpir) for a single prompt evaluated by a single rater can be
represented by (Brennan 2001, p. 6):

Xpir = μ+ vp + vi + vr + vpi + vpr + vir + vpir, ð1Þ

where μ represents the grand mean, and v represents the various effects, including
the uncorrelated rater and prompt main effects and all the interaction effects.

Variance components with different rater and prompt variability. Each effect
was normally distributed with a mean of 0 and a standard deviation from variance
components observed in previous studies on writing assessments using the p× i× r
design. Two sets of variance components were used in the simulation: one with
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smaller rater and prompt variability (denoted Data 1), and one with larger variability
for these two effects (denoted Data 2). These two sets of variance components only
differ in terms of prompt and rater main effects, meaning that raters and prompts are
more variable in Data 2. Table 1 provides details of the G study variance com-
ponents used as parameters for data simulation, as well as D study results when the
final scores are based on one or two raters. The following notation, which is similar
to Brennan’s (2001), is used in Table 1: ni

′ and nr
′ for the D-study sample sizes for

raters and prompts, respectively; σ2 δð Þ and σ2 Δð Þ for the relative and absolute error
variances, respectively; and Eρ2 and Φ for the generalizability and dependability
coefficients, respectively. Note that Eρ2 did not change across the two different
rater/prompt pool compositions because the interaction effects did not change, and
only interaction effects involving p are used in the calculation of relative error.

Population distributions with different levels of skewness. Equation (2) is a
moments (mean and standard deviation) preserving transformation that can be
applied to manipulate the skewness of score distributions by changing the values of
c (Reardon and Ho 2014).

x* = t xð Þ= −
sgn cð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ec2 − 1
p 1− ecx−

c2
2

� �

ð2Þ

Three different distributions of the population were generated, a standard normal
distribution, and two levels of skewness that were obtained by applying Eq. (2) to

Table 1 Variance components used for data simulation and expected D-study results for
combinations of different numbers of raters and prompts

D study results
ni
′ 1 1 1 1

G study variance components nr
′ 1 2 1 2

Data 1 Data 2 Data 1 Data 2

σ2 (p) 1 1 σ2 (p) 1 1 1 1

σ2 (i) 0.01 0.09 σ2 (I) 0.01 0.01 0.09 0.09

σ2 (r) 0.01 0.09 σ2 (R) 0.01 0.01 0.09 0.05

σ2 (pi) 0.36 0.36 σ2 (pI) 0.36 0.36 0.36 0.36

σ2 (pr) 0.04 0.04 σ2 (pR) 0.04 0.02 0.04 0.02

σ2 (ir) 0.01 0.01 σ2(IR) 0.01 0.01 0.01 0.01

σ2 (pir) 0.25 0.25 σ2 (pIR) 0.25 0.13 0.25 0.13

σ2 δð Þ 0.65 0.51 0.65 0.51

σ2 Δð Þ 0.68 0.53 0.84 0.65

Eρ2 0.61 0.66 0.61 0.66

σ2 Δð Þ 0.60 0.66 0.54 0.61
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the examinee scores (x) generated from the standard normal distribution with
c being set to 0.5 or 1.

Fixed or random facets. Brennan (2001) called rater agreement indices obtained
based on scores assigned by the same two raters on the same task “standardized”
and those obtained from scores assigned by the same two raters on different tasks
“nonstandardized”. In large-scale writing assessments, standardized rater agreement
indices are rarely reported. Instead, rater agreement indices are often reported under
a variety of nonstandardized situations. For example, in the data used for the
calculation of rater agreement indices, raters for the examinees are often randomly
assigned, and the prompts taken by the examinees may be the same or different.
Data in this study were simulated to mimic such situations. Observed scores for
each examinee were simulated from each of the following situations: (1) a single
prompt taken by all examinees and evaluated by the same two raters (FPFR), (2) a
single prompt taken by all examinees and evaluated by two random raters (FPRR),
and (3) each examine takes a randomly selected prompt and is evaluated by two
randomly selected raters (RPRR). Scores on one prompt were simulated for the
calculation of the rater agreement indices. To be able to conduct generalizability
analyses under the p× i× r design, however, scores on a second prompt were
simulated to be used only for these analyses.

Number of categories. The above simulations assumed that the underlying scores
are all continuous variables. However, writing assessments are often scored using a
limited number of score categories. Discrete scores were created by partitioning the
continuous scale into different numbers (i.e., 2, 3, 4, 5, or 6) of equally spaced
intervals. For example, when partitioned into 6 intervals, scores within each interval
will be 1 to 6, respectively. In this study, all agreement indices were calculated and
compared based on the categorized data.

Evaluation Criteria. One major difficulty in evaluating rater agreement indices is
that there is no consensus in the literature regarding what a good measure of rater
agreement is. This makes it hard to establish a good criterion for the evaluation.
This study changes the focus of the comparisons from which is a better rater
agreement index to how the rater agreement indices compare to each other and how
they compare to the generalizability coefficients when both rater and prompt
variability are taken into account.

As pointed out by Brennan (2001), rater agreement indices characterize the
consistency between rater scores but they do not represent the reliability of scores
when other sources of error are involved or when the number of raters or prompts is
more than one in the final scoring. The generalizability coefficients for scores based
on one prompt and one rater were used as an appropriate baseline for comparison
because error from raters and prompts are both taken into account.

Often times, the parameters used to generate data are used to calculate appro-
priate baselines for comparison. Because of how the data were generated in this
study, however, there could be differences between the generalizability coefficients
using the data generation parameters and those estimated from the simulated data.
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The different numbers of categories, different population distributions, or other
factors could all play a role in potential differences. Consequently, different gen-
eralizability coefficients may be more reasonable for certain comparisons. Three
different sets of generalizability coefficients were considered in this study. The first
set is the coefficients that were calculated using the population parameters used to
simulate data. These were the best baseline when the number of categories was
being investigated because as the number of categories increases, it would be
expected that the estimated coefficients would be closer to the population values.
The second set was the coefficients estimated from the simulated data for the
p× i× r design. These served as a reasonable baseline when comparing indices for
data with a particular number of score categories or when the underlying score
distribution is not normal. The third set of coefficients was estimated from data
generated for the first prompt using a p× r design that treated the ratings as a facet
that was fully crossed with students when ratings came from random raters. These
generalizability coefficients are expected to be closer to the rater agreement indices
because they only take into account rater variability.

It should be noted that there are some instances when there is no reasonable
baseline. In some cases, it would be expected that certain indices would be higher
or lower than any of the baseline values based on the assumptions of the indices, the
data characteristics or other factors. The generalizability coefficients in this study
are intended to serve simply as baselines and not values that any of the indices
should necessarily closely approximate. The comparisons among the indices are
potentially more informative than their relation to the baseline.

Study conditions, sample sizes, and replications. Table 2 summarizes the various
factors that were taken into consideration in data generation. In short, the indices
were compared under 90 combinations of the conditions (i.e., 5 numbers of score
categories × 3 levels of skewness of the underlying score distributions × 3 types
of rater/prompt assignment × 2 levels of rater/prompt variability).

A sample size of 1,000 was used for the generation of examinees. As mentioned
earlier, scores from two raters on two prompts were generated for each examinee,
though the calculation of each agreement index only used scores on the first prompt.

Table 2 Summary of study conditions

Factors Conditions

Number of score category 2, 3, 4, 5, and 6
Skewness of underlying distributions Normal

Slightly skewed, with c = 0.5 in Eq. (2) (Skew1)
Moderately skewed, with c = 1 in Eq. (2) (Skew2)

Prompt and rater assignment Same prompt and same two raters (FPFR)
Same prompt and random raters (FPRR)
Random prompt and random raters (RPRR)

Prompt and rater variability Smaller variability (Data 1)
Larger variability (Data 2)
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The generalizability coefficients based on the p × i × r design were obtained
based on scores from both prompts. One hundred replications were conducted for
each study condition.

3 Results

Results for each agreement index and the G theory coefficients were first summa-
rized across the 100 replications for each of the 90 combinations of study condi-
tions. Then, to show the overall impact of a certain factor, such as the number of
categories, results were aggregated across other factors. For example, to show the
overall impact of the number of categories, for each index the results were sum-
marized across all replications and then across all the other conditions. These
aggregated results are shown in Table 3. Results for each combination of conditions
under FPFR are presented in the appendix, along with the average standard devi-
ations of each index across replications and across conditions.

In these tables, the generalizability and dependability coefficients for scores
based on one rater and one prompt analyzed under the p× i× r design are denoted
as “Gen_1_pir” and “Phi_1_pir”, respectively. Those analyzed under the p× r
design are denoted as “Gen_1_pr” and “Phi_1_pr”, respectively. “Gen_2_pir”,

Table 3 Mean values of the indices across different conditions

Indices Mean Normal Skew1 Skew2 2 3 4 5 6 FPFR FPRR RPRR FPFR FPRR RPRR
Perfect Agree 0.61 0.61 0.61 0.60 0.77 0.69 0.60 0.51 0.45 0.62 0.62 0.62 0.59 0.59 0.59

Kappa 0.40 0.43 0.41 0.36 0.54 0.45 0.39 0.33 0.28 0.42 0.42 0.42 0.38 0.37 0.39
Linear Kappa 0.52 0.56 0.53 0.47 0.54 0.52 0.52 0.52 0.52 0.54 0.54 0.54 0.50 0.50 0.52
Quadratic Kappa 0.67 0.71 0.69 0.62 0.54 0.61 0.67 0.70 0.72 0.66 0.66 0.66 0.63 0.62 0.65

Polychoric 0.77 0.81 0.78 0.72 0.76 0.77 0.77 0.77 0.77 0.79 0.78 0.78 0.79 0.73 0.75
Pearson 0.65 0.70 0.67 0.60 0.54 0.61 0.68 0.71 0.73 0.67 0.66 0.66 0.66 0.62 0.65
Spearman 0.64 0.69 0.65 0.58 0.54 0.61 0.66 0.69 0.70 0.65 0.65 0.65 0.65 0.61 0.63
Intraclass 0.65 0.69 0.66 0.59 0.54 0.61 0.67 0.70 0.72 0.66 0.66 0.66 0.63 0.62 0.65

AC1 0.47 0.48 0.48 0.46 0.56 0.58 0.48 0.41 0.35 0.49 0.49 0.49 0.46 0.46 0.45
AC2 0.80 0.80 0.80 0.80 0.56 0.82 0.86 0.88 0.89 0.81 0.81 0.81 0.79 0.79 0.79

Gen_1_pir 0.42 0.49 0.45 0.33 0.32 0.40 0.44 0.47 0.48 0.44 0.43 0.43 0.43 0.41 0.39
Phi_1_pir 0.41 0.48 0.43 0.32 0.31 0.39 0.43 0.46 0.47 0.43 0.43 0.43 0.39 0.39 0.39
Gen_2_pir 0.51 0.58 0.53 0.41 0.41 0.49 0.53 0.55 0.56 0.53 0.52 0.51 0.52 0.50 0.47
Phi_2_pir 0.49 0.57 0.52 0.39 0.40 0.48 0.51 0.53 0.54 0.52 0.51 0.51 0.48 0.47 0.47

Gen_1_pr 0.65 0.70 0.67 0.60 0.54 0.61 0.67 0.71 0.73 0.67 0.66 0.66 0.66 0.62 0.65
Phi_1_pr 0.65 0.69 0.66 0.59 0.54 0.61 0.67 0.70 0.72 0.66 0.66 0.66 0.63 0.62 0.64
Gen_2_pr 0.79 0.82 0.80 0.75 0.70 0.76 0.80 0.83 0.84 0.80 0.79 0.79 0.79 0.76 0.78
Phi_2_pr 0.78 0.81 0.79 0.74 0.70 0.75 0.80 0.82 0.84 0.79 0.79 0.79 0.77 0.76 0.78

Distribution Number of Categories Data 1 Data 2
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“Phi_2_pir”, “Gen_2_pr” and “Phi_2_pr” denote coefficients of scores based on
one prompt but two raters.

The values in these tables were color coded to indicate how they compare with
the generalizability coefficient (i.e., 0.61) based on the variance components used
for data simulation. Compared to this target value, those in dark red were more than
0.05 higher, those in blue were more than 0.05 lower, and those in green were
within 0.05. These results are discussed in more detail below as part of the findings
for each of the research questions.

3.1 Research Question 1: How Do the Rater Agreement
Indices Compare to the Coefficients from G Theory
Analyses? How Do the Indices Compare to One
Another?

The second column in Table 3 shows the overall average of each of the indices
across the 100 replications and across all 90 combinations of conditions. The rest of
the table shows the average values of these indices for the different levels of
skewness in the population distribution and for the different numbers of categories.
The values across the different indices ranged from 0.40 to 0.80. Compared with the
generalizability coefficient expected from the data generation parameters (i.e.,
0.61), some indices tended to produce higher values. This was expected because
rater agreement indices do not take into account prompt variability. However, some
indices (kappa, linear kappa, and AC1) did produce values lower than 0.61.

Compared with the generalizability results from the p× i× r design, almost all
indices had higher values than both the generalizability and dependability coeffi-
cients. The quadratic weighted kappa results were similar to the correlations (except
for the polychoric correlation) and also similar to the generalizability coefficients
based on the p× r design.

3.2 Research Question 2: How Does the Number of Rating
Categories Affect the Various Rater Agreement Indices
and the G Theory Coefficients?

As shown in the “Number of Categories” section of Table 3, all indices tended to
increase with the increase in the number of categories, except for the perfect
agreement, kappa, linear weighted kappa, and AC1. Linear weighted kappa stayed
stable with the increase in the number of categories, but the perfect agreement,
kappa, and AC1 decreased with the increase in the number of categories. Note that
when there were only two categories, kappa, linear and quadratic kappa would
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produce the same results. This is also true for AC1 and AC2, as well as the Pearson
and Spearman correlations.

The average generalizability coefficients obtained for the categorized data were
noticeably lower than the generalizability coefficients (0.61) calculated with the
variance components used for data simulation. The tables in the appendix show that
results from the categorized data were close to the values calculated for continuous
data only when the data were normally distributed and when the number of cate-
gories was large.

3.3 Research Question 3: What Is the Impact
of the Distribution of the Underlying Scores
on the Performance of These Rater Agreement Indices?

As shown in the “Distribution” section of Table 3, with increased skewness in the
population score distributions, all indices tended to decrease, except for AC2. This
finding is consistent with findings by Quarfoot and Levine (2016) that AC2 is more
robust to distribution changes. AC1 and the percent agreement also stayed relatively
stable with the increase in skewness.

3.4 Research Question 4: What Is the Impact of Rater/
Prompt Assignment and Rater/Prompt Variability
on the Rater Agreement Indices?

The “Data 1” and “Data 2” sections of Table 3 present the average values of the
indices across replications aggregated across the other conditions for the three
different rater/prompt assignment designs for the two sets of variance components
for rater/prompt variability. The different assignment made little difference for all
the indices, probably due to the small amount of variability among raters and
among prompts. For Data 2, which had more variability in rater and prompt main
effects, slightly greater differences across the different rater/prompt assignments
were observed, but the values for each index were still very close among the three
different designs.

As shown in Table 1, the only differences between the two sets of variance
components used for data simulation were in the variances for rater and prompt
main effects. Based on results from previous research, these variances were small
for large-scale writing assessments, probably due to the strict rater training and
prompt selection procedures. The small differences found in this study for different
rater and prompt assignments were consistent with findings from some earlier
research (e.g., Lee and Kantor 2005).

86 D. Li et al.



4 Discussion

One unique characteristic of this study is that rater agreement indices were eval-
uated in comparison with test score reliability indices which appropriately took into
account additional sources of error. With this design, it was expected that rater
agreement indices would overestimate test score reliabilities by ignoring other
sources of error.

Although it is common that a rating scale only consists of a small number of
categories, it is reasonable to assume that the rating scale is often a categorization of an
underlying continuous score scale. The current study showed that the categorization of
a continuous scale tended to decrease the values of the agreement indices—the smaller
the number of categories, the lower the values. Yet there were two groups of excep-
tions. The indices in the first group, including percent agreement, kappa, and AC1,

tended to decreasewith the increase in the number of categories. This is likely because
they are intended for nominal categories, and thus do not differentiate between dif-
ferent extents of disagreement. For these indices, the larger the number of categories,
the less likely it is to have a perfect agreement, whether chance agreement is corrected
or not. The second group, including polychoric correlation and linear weighted kappa
tended to remain stablewith the change in the number of categories. Thiswas expected
for polychoric correlation because it is intended to measure the association of the
underlying continuous variables. The reason for this behavior of linear kappa may
need further investigation.

The different rater agreement indices investigated in the study produced a wide
range of results (from 0.40 for kappa to 0.80 for AC2), even after aggregating over
all the conditions. More variability among the indices was found under specific
conditions (See tables in the Appendix). The inconsistency of rater agreement
indices is not a new finding, but the high values of AC2 are worth mentioning
because this index has rarely been used in the context of large-scale writing
assessments, which is the main context of interest in this research. Also worth
mentioning is the similarity of results between the quadratic weighted kappa and
some of the other indices. Besides the Pearson and Spearman correlations and the
intraclass correlation, the results also showed that the Spearman correlation and the
generalizability coefficients based on the p× r design also had similar values,
especially under the design where raters were randomly assigned to each simulated
examinee.

This study also touched upon the issue of forcing sparse assignment of raters and
prompts into a fully crossed design by not differentiating specific raters or prompts,
but treating ratings or test occasions as a facet. The small differences found in this
study are probably due to the small rater and prompt main effects assumed. Further
research is needed to draw conclusive conclusions regarding this.

Finally, it is important to note that the study was based on simulated data with
specific assumptions about the contributions of rater and prompt variability to
writing score reliability. Although the parameters were based on previous relevant
research and were intended to be realistic, these assumptions may not hold in other
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contexts where raters are not well trained or prompts are diverse in terms of topics,
genres, types, etc.

Appendix: Detailed Results for FPFR

Table A1 Results for FPFR on Data 1

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 Mean SD
Perfect Agree 0.80 0.71 0.62 0.54 0.47 0.79 0.71 0.61 0.54 0.47 0.75 0.71 0.61 0.53 0.47 0.02

Kappa 0.60 0.51 0.44 0.38 0.32 0.57 0.48 0.42 0.36 0.31 0.49 0.42 0.37 0.32 0.27 0.03
Linear Kappa 0.60 0.58 0.58 0.58 0.58 0.57 0.55 0.55 0.55 0.55 0.49 0.48 0.49 0.49 0.49 0.02
Quadratic Kappa 0.60 0.67 0.72 0.75 0.77 0.57 0.64 0.69 0.73 0.75 0.49 0.56 0.63 0.67 0.69 0.02

Polychoric 0.82 0.82 0.82 0.82 0.82 0.79 0.80 0.80 0.80 0.80 0.71 0.74 0.74 0.74 0.74 0.02
Pearson 0.61 0.68 0.73 0.76 0.78 0.58 0.64 0.70 0.74 0.76 0.49 0.57 0.64 0.68 0.70 0.02
Spearman 0.61 0.67 0.72 0.75 0.77 0.58 0.64 0.69 0.72 0.73 0.49 0.56 0.60 0.63 0.65 0.02
Intraclass 0.61 0.67 0.72 0.75 0.77 0.57 0.64 0.69 0.73 0.75 0.49 0.56 0.63 0.67 0.69 0.02

AC1 0.61 0.59 0.50 0.43 0.37 0.58 0.60 0.50 0.43 0.38 0.51 0.61 0.51 0.43 0.37 0.03
AC2 0.61 0.82 0.87 0.88 0.89 0.58 0.83 0.87 0.89 0.90 0.51 0.85 0.88 0.90 0.91 0.01

Gen_1_pir 0.41 0.49 0.54 0.56 0.57 0.36 0.43 0.49 0.51 0.53 0.23 0.32 0.37 0.40 0.42 0.02
Phi_1_pir 0.41 0.48 0.53 0.55 0.56 0.36 0.43 0.48 0.51 0.52 0.23 0.31 0.36 0.39 0.41 0.02
Gen_2_pir 0.51 0.58 0.62 0.64 0.64 0.46 0.53 0.57 0.59 0.60 0.31 0.40 0.45 0.48 0.49 0.03
Phi_2_pir 0.51 0.58 0.61 0.63 0.64 0.45 0.52 0.56 0.58 0.59 0.31 0.40 0.44 0.47 0.48 0.03

Gen_1_pr 0.61 0.67 0.73 0.76 0.78 0.58 0.64 0.70 0.74 0.76 0.49 0.57 0.63 0.68 0.70 0.02
Phi_1_pr 0.60 0.67 0.72 0.75 0.77 0.57 0.64 0.69 0.73 0.75 0.49 0.56 0.63 0.67 0.69 0.02
Gen_2_pr 0.76 0.81 0.84 0.86 0.87 0.73 0.78 0.82 0.85 0.86 0.66 0.72 0.78 0.81 0.82 0.01
Phi_2_pr 0.75 0.80 0.84 0.86 0.87 0.73 0.78 0.82 0.84 0.86 0.66 0.72 0.77 0.80 0.81 0.02

Normal Skewed (c=0.5) Skewed (c=1)

Table A2 Results for FPFR on Data 2

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 Mean SD
Perfect Agree 0.79 0.69 0.58 0.50 0.44 0.77 0.68 0.58 0.50 0.44 0.74 0.67 0.57 0.49 0.43 0.06

Kappa 0.57 0.47 0.40 0.33 0.28 0.53 0.44 0.38 0.32 0.27 0.45 0.38 0.33 0.28 0.24 0.08
Linear Kappa 0.57 0.54 0.54 0.54 0.54 0.53 0.51 0.51 0.51 0.51 0.45 0.44 0.45 0.45 0.45 0.07
Quadra c Kappa 0.57 0.64 0.69 0.72 0.74 0.53 0.60 0.66 0.69 0.71 0.45 0.53 0.59 0.63 0.65 0.06

Polychoric 0.82 0.83 0.83 0.83 0.83 0.79 0.80 0.80 0.80 0.80 0.71 0.74 0.74 0.74 0.74 0.02
Pearson 0.59 0.67 0.73 0.76 0.78 0.55 0.63 0.70 0.73 0.75 0.47 0.56 0.63 0.67 0.70 0.03
Spearman 0.59 0.67 0.72 0.75 0.77 0.55 0.63 0.69 0.72 0.73 0.47 0.55 0.61 0.63 0.65 0.03
Intraclass 0.57 0.64 0.69 0.72 0.74 0.53 0.60 0.66 0.69 0.71 0.45 0.53 0.59 0.63 0.65 0.06

AC1 0.60 0.55 0.46 0.39 0.33 0.56 0.55 0.46 0.39 0.33 0.50 0.56 0.46 0.39 0.33 0.09
AC2 0.60 0.80 0.85 0.87 0.87 0.56 0.81 0.85 0.87 0.88 0.50 0.83 0.86 0.88 0.89 0.06

Gen_1_pir 0.39 0.48 0.53 0.56 0.57 0.34 0.43 0.48 0.51 0.52 0.21 0.31 0.36 0.39 0.41 0.03
Phi_1_pir 0.37 0.45 0.49 0.51 0.52 0.31 0.39 0.44 0.46 0.47 0.20 0.28 0.32 0.35 0.36 0.05
Gen_2_pir 0.49 0.58 0.62 0.63 0.64 0.43 0.52 0.57 0.58 0.60 0.29 0.40 0.44 0.47 0.48 0.03
Phi_2_pir 0.47 0.54 0.57 0.59 0.60 0.41 0.48 0.52 0.54 0.55 0.26 0.36 0.40 0.42 0.43 0.05

Gen_1_pr 0.58 0.67 0.73 0.76 0.78 0.55 0.63 0.70 0.73 0.75 0.47 0.56 0.63 0.67 0.70 0.03
Phi_1_pr 0.57 0.64 0.69 0.72 0.74 0.53 0.60 0.66 0.69 0.71 0.45 0.53 0.59 0.63 0.65 0.06
Gen_2_pr 0.74 0.80 0.84 0.86 0.87 0.71 0.77 0.82 0.85 0.86 0.64 0.71 0.77 0.80 0.82 0.02
Phi_2_pr 0.72 0.78 0.82 0.84 0.85 0.69 0.75 0.80 0.82 0.83 0.62 0.69 0.74 0.77 0.79 0.05

Normal Skewed (c=0.5) Skewed (c=1)
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How to Select the Bandwidth in Kernel
Equating—An Evaluation of Five
Different Methods

Gabriel Wallin, Jenny Häggström and Marie Wiberg

Abstract When using kernel equating to equate two test forms, a bandwidth needs
to be selected. The bandwidth parameter determines the smoothness of the con-
tinuized score distributions and has been shown to have a large effect on the kernel
density estimate. There are a number of suggested criteria for selecting the band-
width, and currently four of them have been implemented in kernel equating. In this
paper, all four of the existing bandwidth selectors suggested for kernel equating are
evaluated and compared against each other using real test data together with a new
criterion that implements leave-one-out cross-validation. Although the bandwidth
methods generally were similar in terms of equated scores, there were potentially
important differences in the upper part of the score scale where critical admission
decisions are typically made.

Keywords Kernel equating ⋅ Continuization ⋅ Bandwidth selection
Cross-validation

1 Introduction

Observed-score test equating is the statistical procedure of adjusting test scores
from different administrations to facilitate fair comparisons between examinees
(González and Wiberg 2017). Kernel equating (KE; von Davier et al. 2004) is one
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of the more recent equating frameworks, and offers a unified approach to the
equating procedure. KE uses the equipercentile transformation to equate test scores
(Braun and Holland 1982), which is based on the percentiles of the score distri-
butions. However, if the equipercentile transformation is to be used in practice, the
score distributions need to be continuous and monotonically increasing. This is
generally not the case since test scores most often are discrete. KE utilizes kernel
smoothers to solve this problem. There are a number of kernel functions that can be
used, but regardless of the choice, a smoothing parameter always needs to be
selected. This parameter, called the bandwidth, has been shown to be more
important than the choice of kernel for density estimation (Wasserman 2006), but
there is a lack of research on the impact of the bandwidth on the equipercentile
transformation.

At the moment, there are four different methods suggested for bandwidth
selection in KE, including the penalty method (von Davier et al. 2004), the double
smoothing method (DS; Häggström and Wiberg 2014), the cross-validation method
(Liang and von Davier 2014), and Silverman’s rule of thumb method (SRT;
Andersson and von Davier 2014). Since this paper introduces another bandwidth
selection method that is based on cross-validation, the cross-validation method will
be referred to as the likelihood method to make them easier to distinguish. The KE
estimator that uses the penalty method (von Davier et al. 2004) was the first to be
proposed within KE and has been the reference of comparison for the other
methods. However, each study have used different evaluation criteria. Häggström
and Wiberg (2014) evaluated the performance of DS by comparing the first two
moments of the equated scores with those of the test scores from the old test form.
Liang and von Davier (2014) evaluated the likelihood method in terms of bias and
variance of the estimated kernel density function, and Andersson and von Davier
(2014) compared the relative performance of SRT to the penalty method in terms of
the difference in equated scores to the percentile rank method (Angoff 1971). For
every study, only small differences from using the penalty method have been found.
Moreover, some of the previous studies have varied the score distributions, others
have varied the data collection design, and yet others have varied the number of
examinees. Thus there is no possibility to draw conclusions about the performance
of each method in comparison with the other methods based on the existing studies
on bandwidth selection.

This study aimed to compare all existing bandwidth selection methods within
KE in terms of equated scores, percent relative error (PRE; von Davier et al. 2004),
standard error of equating (SEE; von Davier et al. 2004) and standard error of
equating difference (SEED; von Davier et al. 2004) using real data from a stan-
dardized test. Furthermore, a new method for selecting the bandwidth is suggested
that utilizes the leave-one-out cross-validation (LCV; Stone 1974) technique that is
common in kernel density estimation.
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2 Kernel Equating

KE is an equating framework that explicitly defines every step of the equating
procedure. It comprises the following five steps: (1) Presmoothing, (2) Estimation
of score probabilities, (3) Continuization, (4) Equating, and (5) Calculation of
evaluation measures (von Davier et al. 2004; González and Wiberg 2017).

Consider two test forms X and Y, where the task is to equate the former to the
latter. The scores generated from these test forms are denoted X and Y, respectively,
and are considered to be random variables with observed values x1, . . . , xJ and
y1, . . . , yK , respectively. By letting the cumulative distribution functions (CDFs) of
X and Y be denoted FXð ⋅ Þ and GYð ⋅ Þ, respectively, and assuming they are con-
tinuous functions, an equivalent score y to a score x can be found using the
equipercentile transformation:

y=φYðxÞ=G− 1
Y ½FXðxÞ�. ð1Þ

However, the CDFs of X and Y are rarely continuous functions, and test scores
are for the most part discrete (e.g. the number of correctly answered items). This
means that for most score values it will not be true that FXðxÞ= u=GYðyÞ for
u ∈ ½0, 1�, and thus there will be a large set of score values on test form X for which
Eq. 1 will not give unique score equivalents on test form Y. Different solutions to
this problem have been suggested, where the percentile rank method (Angoff 1971),
which uses linear interpolation, has been a common choice. More recently, the use
of kernel smoothing techniques have been suggested to address this problem,
which, in comparison to the percentile rank method, are not limited by the ranges of
the score scales when equating two test forms. It is common practice in KE to
approximate the score CDFs using a Gaussian kernel at the same time continuizes
the CDFs and preserves the first two moments of the score random variables. For
this purpose, let the variance of X be denoted by σ2X , let the bandwidth be denoted
by hX , Z ∼Nð0, 1Þ, let rj = PrðX = xjjTÞ for the target population T, and let
μX = ∑j xjrj. In terms of the test score X, KE using a Gaussian kernel replaces
X with the random variable XðhXÞ= aXðX + hXZÞ+ ð1− aXÞμX , where
aX =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2X ̸ðh2X + σ2XÞ

p
. The CDF of XðhXÞ is given by

FhX x; rð Þ= Pr X hXð Þ≤ xð Þ= ∑
j
rjΦ

x− aXxj − 1− aXð ÞμX
aXhX

� �
, ð2Þ

where r= ðr1, . . . , rJÞT and ΦðzÞ is the standard normal distribution function.
Letting s= ðs1, . . . , sKÞT and sk = PrðY = yk Tj Þ, the corresponding CDF of YðhYÞ,
the continuous random variable replacing Y, is denoted by GhY y; sð Þ. By letting
FĥX xð Þ=FhX x; r ̂ð Þ and GhY yð Þ=GhY y; s ̂ð Þ, the equipercentile transformation can be
estimated by
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φŶ xð Þ= Ĝ
− 1
hY F ̂hX xð Þ� �

. ð3Þ

The SEE is commonly used to evaluate the KE estimator φŶ xð Þ, and constitutes
of three parts; the Jacobian of φŶ xð Þ, the Jacobian of the design function, which is
the function that maps the estimated score distributions into the score probabilities
of the target population, and the matrix C from which the covariance of the score
distributions is formed. Denoting these three parts by Jφ̂Y

, JD̂F and C, respectively,
the SEE is given by

SEEYðxÞ= Jφ̂Y
JD̂FC

�� ��.
If the goal is to compare two equating transformations by calculating

φYðxÞ−φ*
YðxÞ, where φ*

YðxÞ differs from φYðxÞ only by the bandwidths, the SEED
can be calculated as

SEEDYðx) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðφYðxÞ−φ*

YðxÞÞ
q

= JφJDFC− Jφ*JDFC
�� ��.

3 Bandwidth Selection in Kernel Equating

In this section, the four previously proposed bandwidth selection methods will be
briefly described together with a new proposed method. This paper makes the
restriction to only compare these bandwidth selection methods, and excludes e.g.
adaptive kernels which González and von Davier (2017) studied in the context of
KE, and fixed values of the bandwidth that could be motivated from the goal to, for
example, approximate a linear equating.

The Penalty Method

Let f ĥX ðxÞ=F ̂′hX denote the kernel density estimate yielded by differentiating

F ̂hX ðxÞ. The penalty method selects as bandwidth the value of hX such that

PENðhXÞ= ∑j ðrĵ − f ĥX ðxjÞÞ2 + κ ⋅ ∑j Aj ð4Þ

is minimized, where Aj =1 if ½ðf ̂′hX ðxj −wÞ>0Þ∩ ðf ̂′hX ðxj +wÞ<0Þ� or ½ð f ̂′hX ðxj −wÞ
<0Þ∩ ð f ̂′hX ðxj +wÞ>0Þ�, and Aj =0 otherwise (Lee and von Davier 2011; von
Davier 2013). The term κ is a weight usually set to either 0 or 1 depending on if Aj

is to be used or not. The term w is manually selected and regulates the interval
around xj for which Aj =1. It is most often set to 0.25 (see e.g. von Davier et al.
2004; Häggström and Wiberg 2014; Andersson and von Davier 2014).
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Silverman’s Rule of Thumb Method

A theoretically optimal bandwidth minimizes the asymptotic mean integrated
squared error (Jones et al. 1996; Silverman 1986). If nX denotes the sample size and
X is normally distributed, the optimal bandwidth using SRT is given by
hX ≈ 1.06σXn

− 1 ̸5
X (Scott 1992). Motivated from the characteristics of test score data,

Andersson and von Davier (2014) suggested an adjusted version of hX , given by

SRTðhXÞ= 9σXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100n2 ̸5

X − 81
q .

The Double Smoothing Method

Let gX denote a large, pilot bandwidth and ϕðzÞ denote the standard normal density
function. In the first step of DS, a very smooth estimate of the kernel density of
XðhXÞ is calculated as

f ĝX ðxÞ= ∑
J

j=1
r ̂jϕ

x− a ̂gXX xj − ð1− a ̂gXX Þμ ̂XT
gXa ̂gXX

� �
1

gXa ̂gXX
with a ̂gXX =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ ̂2XT ̸ðσ2̂XT + g2XÞ

q

at each score value and at the values that lie in the middle of each score. To get a
first DS estimate of fhX , f ĝX ðxÞ is used instead of the score probabilities at each score
value, which gives

f
*̂
hX ðxÞ= ∑

J

j=1
f ĝX ðxjÞϕ

x− aX̂xj − ð1− aX̂ÞμX̂T
hXaX̂

� �
1

hXaX̂
.

This first step prevents undersmoothing the estimated score distribution. The
second step of DS makes sure that the estimated distribution tracks the shape of the
relative frequency distribution. This means minimizing the squared difference
between the estimated score probabilities and the estimated score distribution.
The DS method to select the bandwidth hX can be compactly written as

DSðhXÞ= ∑
2J − 1

l=1
ðr ̂*l − f

*̂
hX ðx*l ÞÞ2, where r ̂*l =

r ̂l+1
2
, if l is odd

f
*̂
hX x*l
� �

, if l is even.

(

The Likelihood Method

The likelihood method starts by splitting the sample for both of the test forms into

two subsamples. In terms of the X test scores, fhX is estimated using F ̂′hX for a set of
bandwidths ranging from 0.01 to 5 with increments of 0.01. For each density
estimate and each score value, the observed density value is plugged in as the
intensity parameter in a Poisson likelihood function, where the frequencies are
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taken from the other subsample. For a score frequency of k for test score xj, and a
size of the first subsample of n1, this maximization can be expressed as

LikelihoodðhXÞ= max
h

Lðk; f ĥX Þ= max
h

∏
J

j=0

e− n1f ĥX ðxjÞðn1f ĥX ðxjÞÞk
k!

.

The choice of bandwidth that maximizes the likelihood function is stored, and
this procedure is repeated 1,000 times. The median of the 1,000 stored bandwidths
is finally selected and used in the respective estimations of FhX and GhY .

The Leave-One-Out Cross-Validation Method

There are a few issues with the existing bandwidth selection methods in KE. The
penalty method, when adding the penalty function, is not a differentiable function.
SRT relies on normally distributed data, and the likelihood method is computa-
tionally infeasible because it maximizes a target function with 1,000 repetitions.
Other plug-in estimators that have been suggested within the general field of kernel
density estimation, and that are inherently computationally fast, suffer from
requiring an estimation of the second derivative of the density or requiring that the
density to be estimated is very smooth (Wasserman 2006). A good trade-off could
be to use LCV, which has a longstanding history in kernel density estimation, is
theoretically justified (see e.g. Stone 1984), and is not as computationally expensive
as the likelihood method.

Let

f
−̂ j
hx ðxjÞ= ∑

J

l=1
l≠ j

rl̂ϕ
xj − ax̂xl − ð1− ax̂Þμx̂T

hxax̂

� �
1

hxax̂

be the kernel density estimate of fhX ðxjÞ with ðxj, rjÞ left out of the estimation, i.e.,
fhX ðxjÞ is estimated using LCV. In this fashion, overfitting is effectively prevented.
Using this estimate, the novel approach suggested in this paper is to adjust the

penalty method by replacing f ĥX ðxjÞ with f
−̂ j
hX ðxjÞ and leaving out the penalty

function Aj.

4 Empirical Study

When applying for higher education in Sweden, there is the possibility to either use
the grades from high school or the results from a standardized test, the Swedish
Scholastic Assessment Test (SweSAT). The latter is given as a paper and pencil test
in the spring and fall each year. It contains a quantitative and a verbal section, both
with 80 items that are equated separately. We have equated the quantitative section
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of two consecutive administrations. The sample from the fall administration con-
sisted of 2,826 examinees, and the sample from the spring administration consisted
of 2,783 examinees.

Based on the equating process used in practice for the SweSAT, we adopted a
non-equivalent groups with anchor test design. The results presented here used
post-stratification equating with a weight of 0.5 for the synthetic population. Both
samples were presmoothed using log-linear models and with the AIC as the evaluation
measure. The bandwidth methods were evaluated and compared using the difference
in equated scores, SEED, SEE, and PRE. By letting μpðYÞ= ∑k ðykÞpsk and
μŶ = ∑j φŶðxjÞ

� �prj, the PRE is calculated as PREðpÞ=100ðμŶ − μpðYÞÞ ̸μpðYÞ. All
analyses were performed in R, and the R-package (R Core Team 2017) kequate
(Andersson et al. 2013) was used for the implementation of the penalty, SRT, and
DS methods.

5 Results

The bandwidths obtained from each method are displayed in the upper section of
Table 1. It is a big span between the largest and smallest bandwidth, where the
smallest was selected by LCV and the largest by the SRT method. The bandwidths
selected using the DS and penalty methods show great similarity.

The PRE for the first five moments of the five different KE transformations is
displayed in the lower part of Table 1. None of the PREs for any of the moments
are larger than 0.027%, meaning that the estimated distribution of the equated
scores, regardless of bandwidth method, comes close to the distribution of the
scores of the old test form. The KE transformations using the penalty and DS
methods had the overall best performance in terms of PRE.

Figure 1 shows the differences of the SRT, DS, likelihood, and LCV methods
compared to the penalty method in terms of the equated scores. Confidence bands
are added to each plot in Fig. 1 showing ±2×SEED. Bounds of ±0.5 are also

Table 1 The bandwidths for the Penalty, SRT, DS, Likelihood and LCV method, and the PRE for
the first five moments

Bandwidth Penalty SRT DS Likelihood LCV

hX 0.73 2.25 0.75 1.85 0.34
hY 0.71 2.42 0.74 1.19 0.34
Moment

1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.001 −0.003
3 0.000 0.000 0.000 0.004 −0.009
4 0.000 0.001 0.000 0.008 −0.017
5 0.001 0.005 0.001 0.011 −0.027
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added to indicate the difference that matters (Dorans and Feigenbaum 1994). The
differences in equated scores between each method and the penalty method are
small for a large part of the score range, but every method have equated scores that
fall outside of the confidence bands. Only the SRT method have scores that also fall
outside the limits of the difference that matters.

The SEE was computed for each KE transformation and is presented in Fig. 2.
All of the methods result in similar SEE, with a generally higher SEE for the low
and high scores due to fewer observations in the tails. The peaks are the highest
when using LCV.
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Fig. 1 The difference between the penalty method and the SRT, DS, Likelihood and LCV
method, respectively, in terms of equated scores (red lines). The straight black lines are confidence
bands of ±2×SEED, and the dashed lines display the DTM
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Fig. 2 The SEE for the KE transformation using the Penalty, DS, SRT, Likelihood and LCV
method, respectively
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6 Discussion

This paper has highlighted the continuization step of KE, and in particular the
choice of bandwidth for the Gaussian kernel function used in the KE process. Every
existing method have been evaluated and compared using real test data from the
SweSAT. Furthermore, LCV for bandwidth selection has been implemented within
the KE framework. The results indicate that LCV yields density estimates that are
not as smooth as e.g. the penalty method, but that the resulting equated scores from
using the two methods are very similar. The likelihood method also showed great
resemblance to the penalty method in terms of equated scores, but it took a con-
siderable time to compute. DS showed the greatest resemblance to the penalty
method in terms of bandwidths, equated scores, SEE and PRE. Only the SRT
deviated by more than 2 × SEED in the upper tail of the score scale, and all equated
score differences stayed within the confidence bands for most of the score scale.
Given the results of this study, there is a need to more rigorously investigate how
the bandwidths affect the equating results and to determine if there is a possibility to
identify certain test scenarios where each of the different bandwidth methods are
particularly suitable. The SweSAT is a test with score distributions that are fairly
symmetric and unimodal. We have also used a rather large number of examinees
and items, so future research should try to vary these factors. This study has both
confirmed and added to the results of previous studies by showing the small dif-
ferences between the methods in terms of PRE and SEE. For most equated scores,
there are only small differences between the methods that will not have any prac-
tical importance. However, the results have also shown important differences in the
upper tail of the score scale where critical admission decisions are to be made. Thus
the results have indicated that the choice of bandwidth is of importance for the
equating transformation, and since there are five different methods available to
select the bandwidth, it is critical to determine when each method is most
appropriate.
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Evaluating Equating Transformations
from Different Frameworks

Waldir Leôncio and Marie Wiberg

Abstract Test equating is used to ensure that test scores from different test forms can

be used interchangeably. This paper aims to compare the statistical and

computational properties from three equating frameworks: item response theory

observed-score equating (IRTOSE), kernel equating and kernel IRTOSE. The real

data applications suggest that IRT-based frameworks tend to provide more stable and

accurate results than kernel equating. Nonetheless, kernel equating can provide satis-

factory results if we can find a good model for the data, while also being much faster

than the IRT-based frameworks. Our general recommendation is to try all methods

and examine how much the equated scores change, always ensuring that the assump-

tions are met and that a good model for the data can be found.

Keywords Test equating ⋅ Item response theory ⋅ Kernel equating

Observed-score equating

1 Introduction

Test equating is used to ensure that scores from different test forms are comparable

and can be used interchangeably (Kolen and Brennan 2014; González and Wiberg

2017). For instance, if we want to transform the test scores x from test form X to the

scale of the test scores y from test form Y, we can define the general transformation

between the cumulative distribution functions FX(x) and FY(y) as

𝜑(x) = F−1
Y (FX(x)) . (1)
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This transformation is referred to as equipercentile equating, and all equating trans-

formations can be considered special cases of this equation (Braun and Holland

1982). Many equating methods have been developed depending on the data col-

lection design and the assumptions made, such as traditional equating methods

(Kolen and Brennan 2014), observed-score kernel equating methods (von Davier

et al. 2004), item response theory (IRT) methods (Lord 1980), local equating meth-

ods (van der Linden 2011), and mixtures of them as for example local kernel IRT

observed-score equating (Wiberg et al. 2014). Equating methods with similar charac-

teristics can be grouped into frameworks which are not necessarily mutually exclu-

sive, such as the kernel equating framework (KE, von Davier et al. 2004) and the

IRT observed-score equating framework (IRTOSE, Lord 1980), both of which can

be further grouped into the observed-score equating framework.

The number of approaches to equating can be overwhelming, so it is important

to have tools to evaluate the underlying transformation. One problem with many of

the current evaluation tools is that they were created to compare methods within

a specific framework and they are equating-specific, meaning they target specific

parts of the equating process and thus aim to evaluate the equating based on different,

isolated aspects. A different approach was proposed by Wiberg and González (2016),

who showed how we could use a statistical approach to evaluate equating methods

within a framework. Their work specifically used KE, although they also discussed

how it could be applied within IRTOSE and local equating. A problem left for further

research was how to evaluate equating transformations from different frameworks.

This paper aims to explore a method that fills this gap. The focus will be on IRTOSE,

KE and IRT observed-score kernel equating (IRTKE, Andersson and Wiberg 2017),

and the evaluation will be performed with real data.

One challenge when comparing equating transformations from different frame-

works is to set up a fair comparison which does not favor any particular method.

Equating is a process where several decisions need to be made which could dra-

matically change the results. Ideally, simulations should be conducted on different

scenarios that cover most approaches, like what Wiberg and González (2016) did

within the KE framework.

The rest of this paper is structured as follows. The next section contains brief

descriptions of the equating frameworks used. The third section describes the eval-

uation criteria used. The fourth section gives details on the real data study, and the

results are given in the fifth section. The final section contains some concluding

remarks as well as general recommendations.

2 Methodology

To equate test results from two independent populations of examinees P and Q, we

use samples of size IP and IQ from these populations. Let test form X contain JX
items, test form Y contain JY items. Furthermore, let A be an anchor test form con-

taining JA items. In this study we consider the non-equivalent groups with anchor
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test design (NEAT, von Davier et al. 2004, Sect. 2.4), which means test X+ = {X,A}
is administered to the sample of population P and test Y+ = {Y,A} is administered

to the sample of population Q. In the following subsections, the equating frameworks

used in this paper are briefly described.

2.1 IRT Observed-Score Equating (IRTOSE)

For each test form we observe dichotomous response data in a matrix with I rows

and J columns. To perform IRTOSE, we start by fitting an IRT model to this data.

A common model is the three-parameter logistic IRT model (3-PL) for binary data,

which models the probability examinee iwith ability 𝜃 ∈ ℝ correctly answering item

j as

pj = cj +
1 − cj

1 + exp[−aj(𝜃 − bj)]
, (2)

where aj represents the discrimination, bj the difficulty and cj the pseudo-guessing

probability of item j. These probabilities are then placed into a compound binomial

model to generate the probability distribution of the number-correct scores for a

given 𝜃. Typically, an algorithm described in Lord and Wingersky (1984) is used

for this, although other alternatives exist (see González et al. 2016). Then, the score

distributions are cumulated over the population of 𝜃 to create aggregated distribu-

tions of the total scores for tests X+
and Y+

(Kolen and Brennan 2014, Sect. 6.6). As

these probability distributions are discrete, they need to be made continuous before

their percentiles can be compared. This is done by linear interpolation, after which

equipercentile equating can be conducted.

2.2 Kernel Equating (KE)

KE is comprised of five steps. The first one, pre-smoothing, prepares the data for the

estimation of score probabilities, which is the second step. Pre-smoothing is typically

done by fitting a log-linear model to the observed scores, although the raw data can

also be directly used in the second step. Then, the discrete scores distributions are

made continuous using a kernel function (e.g., Gaussian, uniform, logistic). In the

fourth step, equipercentile equating is performed. On a NEAT design, we can choose

between chained equating (CE) and post-stratification equating (PSE) to equate the

tests. In the final step, accuracy measures such as the standard error of equating

(SEE) can be obtained.
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2.3 IRT Observed-Score Kernel Equating (IRTKE)

IRTKE (Andersson and Wiberg 2017) also comprises the five steps described for

KE, although it uses score probabilities derived from an IRT model as input for

the kernel continuization. Alternatively, IRTKE can be seen as an IRTOSE method

where a kernel function is used for the continuization instead of linear interpolation.

2.4 Chosen Methods

To perform equating in a particular framework, several choices must be made. A

3-PL model was fitted to the data when performing IRTOSE and IRTKE, with the

Haebara (1980) method used to rescale the model parameters.

For KE, several log-linear models were considered, with the best fit being chosen

by a stepwise procedure and the principle of parsimony. Both KE and IRTKE use

PSE and a logistic kernel for continuization. The logistic kernel was chosen because

its heavier tails (when compared with the more common Gaussian kernel) are a better

match to the distribution of the observed data.

All procedures were performed in R (R Core Team 2017), with the ltm package

(Rizopoulos 2006) being used to fit IRT models to the data and the glm function han-

dling the log-linear models. IRTOSE was performed using equateIRT (Battauz

2015); KE and IRTKE were carried out using kequate (Andersson et al. 2013).

3 Evaluating Equating Transformations

The most common way to compare the performance of two equating transforma-

tions within a framework is through equating-specific evaluation measures (Wiberg

and González 2016). In traditional equating methods, a commonly used measure is

the “difference that matters” (DTM), originally defined as the difference between

equated scores and scale scores that are larger than half of a reported score unit

(Dorans and Feigenbaum 1994). In KE, a popular measure is the percent relative

error (PRE), which compares the moments of the score distribution on the reference

form to the score distributions of all the equated forms (Jiang et al. 2012; von Davier

et al. 2004). Even though PRE was specifically developed for KE, it can be adapted

to methods that use linear interpolation (Jiang et al. 2012).

Since equating transformations can be viewed as statistical estimators (Wiberg

and González 2016), measures such as bias, mean squared error (MSE) and root

mean squared error (RMSE) can also be calculated. Given a score x, its true equiv-

alent score on test Y, 𝜑(x), and the estimated equivalent score �̂�(x), the bias and

RMSE are defined as
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bias[�̂�(x)] = E [�̂�(x) − 𝜑(x)] (3)

and

RMSE[�̂�(x)] =
√

E
{
[�̂�(x) − 𝜑(x)]2

}
. (4)

A good estimator is expected to have low bias and RMSE, which means we could

evaluate equating transformations from different frameworks simply by comparing

their values on these measures. There are two issues with this approach: the true

equated scores 𝜑(x) can vary from framework to framework, and 𝜑(x) is not even

obtainable with real data. The former does not constitute a critical problem, since it

only adds some algebraic complexity to the procedure, but the latter can be a major

impediment to the application of this approach to real data unless a satisfiable proxy

for 𝜑(x) can be found.

One way to circumvent the absence of 𝜑(x) is by defining an equating transforma-

tion to be the true and comparing the others to this benchmark. This is what Wiberg

and González (2016) did within KE.

Another possibility, implemented in Lord (1977), is to let test forms X and

Y actually be the same test, whilst having the computer procedure handle them

as different. Under this scheme, called the “circular paradigm”, we theoretically

have �̂�(y) = �̂�(x) = 𝜑(x) = x, meaning we should expect no difference between the

equated scores and the raw ones. However, when using real data, the calculation of

measures such as those in (3) and (4) under this simple approach presents one caveat:

real-life test administrations rarely (if ever) have the same group of students take the

same test multiple times, making this is a one-sample experiment. Under these cir-

cumstances, the equating estimates will contain an unknown amount of sampling

error on top of any bias that particular equating framework already has. Nonethe-

less, given the overall homogeneity of the test subjects as well as the small variabil-

ity between the test forms in the real data applications under study, we don’t expect

sampling error to be a critical issue. Hence, the circular paradigm seems to be an

adequate approach for this paper.

As pointed out by Harris and Crouse (1993), equating a test to itself solves the

problem of having a true, known criteria. However, since the observed differences

will be due not only to bias, but also to sample variability, we will refrain from refer-

ring to the calculated statistics as “bias” and will instead use the more comprehensive

term “error”. Moreover, considering that both real data cases represent only one sam-

ple, the RMSE would equal the absolute error. For this reason, only the errors were

presented in this study.

As the different methods can take significantly different times to be executed, it

is also interesting to compare the runtimes of the different equating procedures. This

can be useful in estimating the feasibility of a certain method in circumstances where

time is a major constraint.
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4 Real Data Study

The real data application is composed of two test forms of the Swedish Scholastic

Assessment Test (SweSAT) and the Brazilian National Assessment of Basic Educa-

tion (Aneb). These tests provide adequate examples for our study, since they have

quite different score distributions and number of items.

The SweSAT is a large-scale college admissions test given twice a year in Sweden.

It is a multiple-choice test consisting of a quantitative and a verbal section with 80

items each. The two sections are equated separately using anchor tests containing 40

items each. In this study we used the quantitative section from the autumn 2014 and

the spring 2015 administrations.

0
20

40
60

80
10

0

Score

Fr
eq

ue
nc

y

0 20 40 60 80

X
Y

0
50

10
0

15
0

20
0

Score

Fr
eq

ue
nc

y

0 10 20 30 40

AX

AY

(a) SweSAT

0
20

0
40

0
60

0

Score

Fr
eq

ue
nc

y

0 2 4 6 8 10

X
Y

0
20

0
40

0
60

0

Score

Fr
eq

ue
nc

y

0 2 4 6 8 10

AX

AY

(b) Aneb

Fig. 1 Distribution of the observed test scores



Evaluating Equating Transformations from Different Frameworks 107

Aneb is a biennial large-scale assessment of the Brazilian school system. It is

composed of a Math and a Language section. This study used the Math tests given

to 12th graders of the 2015 administration and equated two booklets containing 13

unique items each and another 13 common items.

5 Results

The distribution of the observed scores can be seen in Fig. 1. In general, the SweSAT

can be perceived as relatively more symmetric, with Aneb clearly presenting positive

skewness. As a matter of fact, the skewness of the test forms on the SweSAT ranges

from 0.35 to 0.66, whereas the test forms on Aneb had values of skewness between

0.73 and 1.07. In the Brazilian exam, test forms X and Y seem to have similar means,

with averages ranging from 3.81 to 4.49 across all forms. On the SweSAT, the plots

suggest Y has a slightly lower average than X, which is corroborated by their respec-

tive score averages of 39.89 against 41.68. The average scores of the anchor tests of

the Swedish exam were even closer, with A
X
≈ 16.71 and A

Y
≈ 16.64.

Information on equating quality can be seen in Fig. 2. The DTM limits were drawn

at error points −0.5 and +0.5. The plots show similar patterns for IRTOSE and

IRTKE, which are completely contained within the DTM band for Aneb and only

slightly trespass it at some points around the middle of the score range for the Swe-

SAT. The behavior of KE is definitely more unstable, with higher errors for Aneb

and even more for the SweSAT.

Table 1 complements the results from Fig. 2, allowing a numerical overview of the

errors. Some scores were omitted for brevity, but were still included in the average

and standard deviation. Once again, IRTOSE and IRTKE generally perform better
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Table 1 Bias per score

Score SweSAT Score Aneb

IRTOSE KE IRTKE IRTOSE KE IRTKE

0 −0.31 2.73 −0.52 0 −0.06 −0.20 −0.07

10 −0.40 0.30 −0.46 1 −0.08 −0.23 −0.09

20 −0.35 −1.75 −0.30 3 −0.13 −0.41 −0.14

30 0.00 −2.68 0.16 5 −0.19 −0.63 −0.19

40 0.29 −2.11 0.58 7 −0.09 −0.72 −0.14

50 0.26 −0.90 0.68 9 0.06 −0.68 0.02

60 0.22 −0.17 0.64 11 0.09 −0.48 0.11

70 0.04 1.35 0.34 12 0.15 −0.34 0.15

80 0.05 −0.11 0.15 13 0.14 −0.25 0.12

Average −0.02 −0.59 0.17 Average −0.03 −0.48 −0.05

Std. dev. 0.26 1.51 0.44 Std. dev. 0.12 0.19 0.12

than KE in both scenarios. While no framework presents the least error for all scores,

IRTOSE offers the lowest average error for both the SweSAT and Aneb.

On an Intel i5-760 CPU with 8 GB of RAM, the respective runtimes for IRTOSE,

KE and IRTKE were approximately 252, 66 and 253 s for the SweSAT. For the

smaller Aneb test, they clocked around 21, 2 and 20 s. These results are within the

expected values, with KE being by far the fastest procedure, whereas IRTOSE and

IRTKE take roughly the same time. These differences are mostly due to the fact that

IRTOSE and IRTKE process answers at the item level, whereas KE only uses the

total scores.

6 Conclusion

The results show an overall advantage of IRTOSE and IRTKE as far as error and

DTM are concerned, with KE prevalent when speed is a priority. KE can also be the

best option when there is evidence that IRT models do not fit the data, which might

be the case for the highly-skewed Aneb data (complete goodness-of-fit analyses of

the chosen models were not performed on the datasets). These results are in line with

Meng (2012), who found IRTOSE to be more accurate than KE under some of the

conditions explored in their work. On the other hand, their work has also found KE to

be more stable than IRTOSE, which contrasts with our findings. These differences

can be due to the particularities of the scenarios chosen on each work, and more

studies are encouraged to further explore the issue.

The model choice for pre-smoothing can drastically change the results of KE,

including the reduction of the errors we observed. The assumption that a fair com-

parison would be completely objective is what led us to allow a stepwise procedure
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to choose a model instead of hand-picking one. In practical cases, however, we rec-

ommend supplementing an automated analysis with a manual one. Such care is espe-

cially important in high-stakes admissions tests, where choosing a particular method

could lead to the approval or rejection of a candidate.

Even though a more careful analysis including simulated data with several repli-

cations should be conducted to allow more confident conclusions, the results of this

paper support the formulation of the hypothesis that test size and score skewness have

little effect on the quality of IRTOSE and IRTKE. If confirmed, this could mean that

test developers using IRT equating would benefit from focusing on improving the

quality of items rather than their quantity. For KE, the presence of low-frequency

scores provides an extra challenge to fitting a proper pre-smoothing model. In such

regions, careful modeling could make a big difference in equating quality. For IRT

models, danger relies on the presence of exceptionally difficult or easy items, which

can make these models fail to fit the data.

The equated scores are a function of the chosen parameters, so different decisions

could inadvertently favor one method over another. Further studies could help the

discussion on the best way to compare equating transformations on different frame-

works. Further research should contain a simulation study which allows deeper anal-

ysis of the results. Simulated data can be generated multiple times, which allows for

the reliable calculation of evaluating measures. Studies involving real data with other

characteristics (three or more test forms, internal anchor items) or other equating

frameworks such as those mentioned in Sect. 1 would also be a meaningful contri-

bution.

This paper expands the work of Wiberg and González (2016) by developing meth-

ods to compare equating transformations from different frameworks. We welcome

more studies to develop methods for evaluating equating transformations, since the

circular paradigm, although very useful at solving the problem of finding a reference

equating transformation, has at least two issues pointed out by Harris and Crouse

(1993): the equating results may depend on the chosen base form, and it could favor

frameworks which use one or two moments over more complex frameworks. The

latter is not a problem encountered in this paper but might be an issue in other cir-

cumstances. In any case, it could be interesting to see future work addressing any or

both of these issues.
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An Alternative View on the NEAT Design
in Test Equating

Jorge González and Ernesto San Martín

Abstract Assuming a “synthetic population” and imposing strong assumption to

estimate score distributions has been the traditional practice when performing equat-

ing under the nonequivalent groups with anchor tests design (NEAT). In this paper,

we use the concept of partial identification of probability distributions to offer

an alternative to this traditional practice in NEAT equating. Under this approach,

the score probability distributions used to obtain the equating transformation are

bounded on a region where they are identified by the data. The advantages of this

approach are twofold: first, there is no need to define a synthetic population and,

second, no particular assumptions are needed to obtain bounds for the score prob-

ability distributions that are used to build the equating transformation. The results

show that the uncertainty about the score probability distributions, reflected on the

width of the bounds, can be very large, and can thus have a big impact on equating.

Keywords Test equating ⋅ NEAT design ⋅ Partial identifiability ⋅ Ignorability

condition

1 Introduction

Test equating is used to make scores from different test forms comparable. An equat-

ing transformation function is used to map the scores on one scale into their equiva-

lents on the other. Before this score transformation takes place, it is necessary to con-

trol for test takers ability differences, and different data collection designs have been

described in the equating literature for such purpose (von Davier et al. 2004, Chap. 2;

Kolen and Brennan 2014, Sect. 1.4 and González and Wiberg 2017, Sect. 1.3.1).

These equating designs differ in that either common persons or common items are
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used to perform the score transformation. In this paper we will focus the attention

on the nonequivalent groups with anchor test design (NEAT).

The NEAT design is widely used in test equating. Under this design, two groups

of test takers are administered separate test forms with each test form containing a

common subset of items. Because test takers from different populations are assigned

only one test form, missing score data emerge by design rendering some of the score

distributions unavailable. The equating literature has treated this problem from dif-

ferent perspectives all of them making different assumptions in order to estimate the

missing score distributions. In this paper, we offer an alternative view that is free of

these types of assumptions to obtain the score distributions under a NEAT design.

We first argue that, rather than viewing the problem as one of missing data, there

is an inherent identifiability problem underlying the NEAT design. Then, we further

argue that the typical assumptions on the equality of conditional distributions are

nothing more that identifiability restrictions. Because these assumptions might be too

strong, and, moreover, are not empirically testable, we offer an alternative that does

not make use of any assumption and show that the non identified score distributions

are actually partially identified, deriving bounds for them on the partially identified

region.

The rest of this paper is organized as follows. We first briefly revisit the current

view on the NEAT design, including the definition of synthetic population and the

assumptions commonly made to estimate score distributions. Then we introduce our

view on the NEAT design as an identifiability problem and derive bounds where

the non identified score distributions are partially identified. An illustration using

an hypothetical data example appearing in the equating literature is presented. The

paper ends with final remarks and ideas for future work.

2 NEAT Equating: The Current and an Alternative View

2.1 Notation and Preliminaries

Let X ∈  and Y ∈  be the random variables representing test scores from tests

forms X, Y. As mentioned before, the equating function 𝜑 ∶  ↦  defined as

𝜑(x) = F−1
Y (FX(x)) maps the scores on the scale  into their equivalents on the 

scale (González and Wiberg 2017). This definition is established for 𝜑 defined on

a common population where the equating is to be performed (Braun and Holland

1982). Accordingly, the score cumulative distribution functions used to build the

equating transformation, should also be defined on a common population that will

be denoted as T .

When single groups (SG), equivalent groups (EG) or counter balanced groups

(CB) equating designs are considered, defining 𝜑 on a common population does

not constitute a problem as samples of test takers are in fact taken from the same

population. However, this is not the case for the NEAT design where samples of test

takers come from two different populations, called here P and Q. As a consequence,
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score distributions of X and Y are defined in both P and Q and we denote these

distributions here as FXP(x), FYP(y), FXQ(x), and FYQ(x), respectively.

2.2 NEAT Equating: The Current View

To solve the problem of defining the equating transformation on a common popu-

lation, the equating literature has resorted in what is called a synthetic population
(Braun and Holland 1982). This definition conceptualizes a common population as

a weighted combination of P and Q in the form

T = wP + (1 − w)Q, (1)

where w is a weight such that 0 ≤ w ≤ 1. Using this definition, the corresponding

score distributions used to build the equating transformation are obtained as

FXT (x) = wFXP(x) + (1 − w)FXQ(x)
FYT (y) = wFYP(y) + (1 − w)FYQ(y). (2)

A typical representation of the NEAT equating design is shown in Table 1. From

the table, it can be seen that because test takers in P are only administered test

X and those in Q are only administered Y, the corresponding score distributions

FXQ and FYP needed to obtain FXT and FYT in (2) are said to be missing. Addi-

tional assumptions are thus needed to estimate them, and here is where the anchor

test, A, has played a fundamental role. Most commonly, it is assumed that the

conditional score distributions of X and Y given A are the same in both popula-

tion: FXP(x ∣ a) = FXQ(x ∣ a) and FYP(y ∣ a) = FYQ(y ∣ a), with A ∈ . Using these

assumptions, and the fact that marginal distributions of A are indeed observed in

both populations, the score distributions of X and Y in T are obtained by marginal-

izing the joint distributions over A. The obtained score distributions are then used to

build 𝜑(x) = F−1
YT (FXT (x)).

2.3 NEAT Equating: An Alternative View

Rather than facing missing score distribution, what happens in reality is that the

sampling process underlying the NEAT design does not give information on FYP
and FXQ, and thus the target score distributions FXT (x) and FYT (y) are not identified.

Table 1 Schematic representation of the NEAT design

Population Sample X Y A

P 1 ✓ ✓
Q 2 ✓ ✓
Note X and Y are test forms. A is an anchor test
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Moreover, the assumptions on equality of conditional score distributions are actually

identification restrictions.

To introduce these ideas better, let us briefly revisit the definition of identifiabil-

ity. If 𝜃 is a parameter indexing a family of distributions {f (x ∣ 𝜃) ∶ 𝜃 ∈ 𝛩}, then

𝜃 is said to be identified if distinct values of it lead to distinct probability distribu-

tions (Casella and Berger 2002). Equivalently, if the probability distribution can be

uniquely determined by 𝜃, then 𝜃 is identified. If the probability distribution cannot

be uniquely determined (i.e., the model is not identified), putting certain restrictions

on the parameter space can make the model identifiable.

In what follows, we show that the score distributions needed to build the equating

transformation are identified on a bounded region. No assumptions or restrictions

are needed for the derivation of these bounds.

2.3.1 Conditional Score Distributions with No Assumptions

Although the marginal score distributions are of main interest to build the equat-

ing transformation, we start analyzing the conditional score distributions as they are

typically used in NEAT equating.

Let Z be a binary variable such that

Z =
{

1, if test taker is administered X in P;
0, if test taker is administered Y in Q. (3)

Then, by the law of total probability (Kolmogorov 1950), it follows that

(a) P(X ≤ x ∣ A) =P(X ≤ x ∣ A,Z = 1)P(Z = 1 ∣ A)+ (4)

P(X ≤ x ∣ A,Z = 0)P(Z = 0 ∣ A),
(b) P(Y ≤ y ∣ A) =P(Y ≤ y ∣ A,Z = 1)P(Z = 1 ∣ A)+

P(Y ≤ y ∣ A,Z = 0)P(Z = 0 ∣ A).

The statistical model underlying the NEAT design is accordingly parameterized

by the parameters {P(X ≤ x ∣ A = a),P(Y ≤ y ∣ A = a)}. In order to show that these

parameters are not identified, consider the following comments on (4):

1. P(X ≤ x ∣ A = a,Z = 1) is the conditional score probability of X given A for a

test taker who actually answered form X (i.e., sampled from P) and scored A = a
on the anchor test.

2. P(Z = 1 ∣ A = a) corresponds to the proportion of test takers who were adminis-

tered form X (or equivalently, proportion of people sampled from P) and scored

A = a on the anchor test.

3. P(Z = 0 ∣ A = a) corresponds to the proportion of test takers who were adminis-

tered form Y (or equivalently, proportion of people sampled from Q) and scored

A = a on the anchor test.
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4. P(X ≤ x ∣ A = a,Z = 0) is the conditional score probability of X for a test taker

who was actually administered form Y (or sampled from Q).

Consequently,P(X ≤ x ∣ A = a) corresponds to the probability of scoring x on test

form X as if all test takers with a score A = a were administered test form X. How-

ever, this conditional probability is not identified. As a matter of fact, the data gener-

ating process that underlies the NEAT design only identifies P(X ≤ x ∣ A = a,Z = 1)
and P(Z = z ∣ A) for z ∈ {0, 1}. However, it does not provide any information about

P(X ≤ x ∣ A = a,Z = 0) and therefore the sampling process only reveals that

P(X ≤ x ∣ A = a) =P(X ≤ x ∣ A = a,Z = 1)P(Z = 1 ∣ A = a)+
𝛾 P(Z = 0 ∣ A)

for some unknown probability distribution 𝛾 . Therefore, P(X ≤ x ∣ A = a) cannot be

uniquely determined because 𝛾 can not be uniquely chosen. Consequently, P(X ≤ x ∣
A = a) is not identified. Similar conclusions can be drawn for P(Y ≤ y ∣ A).

In practice, P(X ≤ x ∣ A) and P(Y ≤ y ∣ A) are identified under an hypothesis of

strong ignorability (e.g., Rosenbaum and Rubin 1983), namely

P(X ≤ x ∣ A,Z = 1) =P(X ≤ x ∣ A,Z = 0) = P(X ≤ x ∣ A),
P(Y ≤ y ∣ A,Z = 1) =P(Y ≤ y ∣ A,Z = 0) = P(Y ≤ y ∣ A), (5)

which, in the context of the current application can compactly be defined as

(X,Y) ⟂⟂ Z ∣ A. (6)

As a matter of fact, the strong ignorability condition essentially tells us that 𝛾 is

not unknown, but it coincides with P(X ≤ x ∣ A = a,Z = 1). This implies that P(X ≤

x ∣ A = a) is uniquely determined, and thus identified. It is necessary to emphasize

that the strong ignorability condition cannot empirically be refuted and, therefore, it

should be justified in the context of an application.

2.3.2 Partially Identified Probability Distributions

The strong ignorability condition can be avoided if we find a region where the score

probabilities are actually identified. In this section we show that such region indeed

exists. As a matter of fact, because P(X ≤ x ∣ A,Z = 0) is bounded between 0 and 1,

from (4) it can easily be verified that

Lx ≤ P(X ≤ x ∣ A) ≤ Ux, (7)
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where

Lx =P(X ≤ x ∣ A,Z = 1)P(Z = 1 ∣ A) (8)

Ux =P(X ≤ x ∣ A,Z = 1)P(Z = 1 ∣ A) + P(Z = 0 ∣ A)

Analogously for Y it can be verified that

Ly ≤ P(Y ≤ y ∣ A) ≤ Uy, (9)

where

Ly =P(Y ≤ y ∣ A,Z = 0)P(Z = 0 ∣ A) (10)

Uy =P(Y ≤ y ∣ A,Z = 0)P(Z = 0 ∣ A) + P(Z = 1 ∣ A)

Thus, the conditional score distributions are partially identified (Tamer 2010)

on regions defined by the derived bounds. Note that the length of the intervals for

P(X ≤ x ∣ A) and P(Y ≤ y ∣ A) are P(Z = 0 ∣ A) and P(Z = 1 ∣ A), respectively, and

as mentioned before they correspond to the proportion of test takers in P and Q,

respectively, for a given score A.

2.3.3 Marginal Distributions with No Assumptions

The equating transformation 𝜑 is built from marginal score distributions defined on

a common population. It is thus of interest to examine if the preceding arguments

are also valid when the conditional distributions are marginalized over the anchor

scores. It is easy to see that marginalizing over A in (4) we obtain

P(X ≤ x) = P(X ≤ x ∣ Z = 1)P(Z = 1) + P(X ≤ x ∣ Z = 0)P(Z = 0). (11)

Note that the identifiability problem still remains in the marginal score distri-

bution as P(X ≤ x ∣ Z = 0) is non identified. However, because this probability is

bounded between 0 and 1, we can show similarly as before that P(X ≤ x) can also be

bounded. In fact,

Lx ≤ P(X ≤ x) ≤ Ux, (12)

where

Lx =P(X ≤ x ∣ Z = 1)P(Z = 1) (13)

Ux =P(X ≤ x ∣ Z = 1)P(Z = 1) + P(Z = 0)

Note that using the definition in (3), Eq. (11) can be rewritten as

FX(x) = wFXP(x) + (1 − w)FXQ(x) (14)
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withw = P(Z = 1). Interestingly, the right hand sides of Eqs. (2) and (14) are visually
identical. This result would indicate that the weights in the definition of a synthetic

population are actually related to the proportion of test takers in the populations and

thus should not be arbitrarily chosen. Moreover, w corresponds to the length of the

interval where the score distribution is partially identified. Analogous results as the

ones shown in (11), (12), (13), and (14) can be derived for P(Y ≤ y).
A natural question at this stage is how FX(x) and FY (y) compare to FXT (x) and

FYT (y), respectively. Such comparison is not possible because the formers distri-

butions are not identified and thus non observable. We have shown that they are

however partially identified on a bounded region so that it is possible to evaluate

the behavior of the bounds and how it relates to the target distributions tradition-

ally obtained in NEAT equating using the definition of synthetic population and the

ignorability condition. This is done in the following section.

Table 2 Bivariate score frequencies (X,A) and (Y ,A)
X A Frequency Y A Frequency

0 0 4 0 0 4

0 1 4 0 1 3

0 2 2 0 2 1

0 3 0 0 3 0

1 0 4 1 0 7

1 1 8 1 1 5

1 2 2 1 2 7

1 3 1 1 3 1

2 0 6 2 0 3

2 1 12 2 1 5

2 2 5 2 2 12

2 3 2 2 3 2

3 0 3 3 0 3

3 1 12 3 1 4

3 2 5 3 2 13

3 3 5 3 3 5

4 0 2 4 0 2

4 1 3 4 1 2

4 2 4 4 2 5

4 3 6 4 3 6

5 0 1 5 0 1

5 1 1 5 1 1

5 2 2 5 2 2

5 3 6 5 3 6
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3 Illustrations

3.1 Data

We use data from an hypothetical example shown in Kolen and Brennan (Kolen and

Brennan (2014), Sect. 5.1.3). In this example forms X and Y each contain 5 items

and 3 common items. The data in Kolen and Brennan (2014) are originally displayed

as joint probabilities fXP(x, a) = P(X = x,A = a) and fYQ(y, a) = P(Y = y,A = a) and

we use this information to create raw data as displayed in Table 2. The table shows

bivariate score frequencies for each test form. From the table, it can be seen that,

for instance, 8 test takes scored X = 1 and A = 1, whereas 13 scored Y = 3 and

A = 2, etc. For the information in the table (frequency), it follows that the sample

size considered is 100 for both populations.

3.2 Results

Figure 1 shows a graphical representation of the bounds derived in (8) for the case

when A = 2. From the figure, it can be seen that the bounds for the conditional dis-

tribution of X given A are wider than the ones for the conditional distribution of Y
given A, when A = 2. Note, however, that this situation could change for other values

of the anchor score. Moreover, the curves are parallel in the sense that the length of

the intervals are constant for all values of scores on the scale, for a given value of A.

Fig. 1 Bounds for

conditional score

distributions

P(X ≤ x ∣ A = 2) and

P(Y ≤ y ∣ A = 2)
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Table 3 Target cumulative distributions for Forms X and Y scores, and derived bounds

Score FXT [Lx,Ux] FYT [Ly,Uy]
0 0.100 [0.050; 0.550] 0.105 [0.040; 0.540]

1 0.250 [0.125; 0.625] 0.320 [0.140; 0.640]

2 0.500 [0.250; 0.750] 0.530 [0.250; 0.750]

3 0.750 [0.375; 0.875] 0.755 [0.375; 0.875]

4 0.900 [0.450; 0.950] 0.900 [0.450; 0.950]

5 1.000 [0.500; 1.000] 1.000 [0.500; 1.000]

Fig. 2 Bounds for

FX(x) = P(X ≤ x) and

FY (y) = P(Y ≤ y), and target

score distributions FXT (x)
and FYT (y) for the case w = 1

This is due to the fact that, as seen at the end of Sect. 2.3.2, the length of the intervals

are defined by P(X ≤ x ∣ A) and P(Y ≤ y ∣ A).
Next, we calculated the bounds derived in Sect. 2.3.3 for each of the marginal

score distributions. Because the real value of FX and FY is unknown, we use the

derived target cumulative distribution functions FXT and FYT as reference for com-

parison. The latter where obtained assuming that w = 1. Table 3 shows the target

cumulative distributions and the corresponding bounds where the marginal score

distributions are partially identified. Figure 2 shows a graphical representation of

these results.

From Table 3 and Fig. 2, it can be seen that all the values of FXT and FYT lie in the

intervals [Lx,Ux] and [Ly,Uy], respectively, as expected. Note also that the intervals

have length equal to 0.5. This is because the sample sizes in both populations is

exactly the same (100 in this case), so that P(Z = 1) = P(Z = 0) = 100
200

= 0.5 (see

comments on Sect. 2.3.3 below Eq. (14)).
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4 Concluding Remarks

In this paper, we have argued that there is an inherent identification problem underly-

ing the NEAT equating design. The assumption on the equality of conditional score

distributions, typically made in NEAT equating and called here an ignorability con-

dition, has been shown to actually be an identification restriction. We offered an

alternative to the ignorability condition and proposed to work with partially identi-

fied probability distributions.

The derived bounds on the partially identified region showed that there is huge

uncertainty about the probability distributions that are to be used for equating. The

actual impact of this method on equating is currently being investigated by the

authors.

The exposition focused on poststratification equating under the NEAT design.

However, the identifiability problem also arises for the case when chained equiper-

centile equating (e.g., Kolen and Brennan 2014) is used to equate score data collected

under the NEAT design. In fact, different assumptions are needed to identify the tar-

get score distributions used to build the equating transformation (see, e.g., von Davier

et al. 2004, Sect. 2.4.1). The derivation of bounds where the score distributions are

partially identified for the case of chained equating is currently being investigated by

the authors.
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Simultaneous Equating of Multiple
Forms

Michela Battauz

Abstract When test forms are calibrated separately, item response theory

parameters are not comparable because they are expressed on different measurement

scales. The equating process converts the item parameter estimates to a common

scale and provides comparable test scores. Various statistical methods have been pro-

posed to perform equating between two test forms. However, many testing programs

use several forms of a test and require the comparability of the scores of each form.

To this end, Haberman (ETS Res Rep Ser 2009(2):i–9, 2009) developed a regression

procedure that generalizes the mean-geometric mean method to the case of multiple

test forms. A generalization to multiple test forms of the mean-mean, the Haebara,

and the Stocking-Lord methods was proposed in Battauz (Psychometrika 82:610–

636, 2017b). In this paper, the methods proposed in the literature to equate multiple

test forms are reviewed, and an application of these methods to data collected for the

Trends in International Mathematics and Science Study will be presented.

Keywords Equating ⋅ Linking ⋅ Multiple forms

1 Introduction

Many testing programs use a large number of different forms of a test to assess the

achievement levels. Two examples are given by the Program for International Stu-

dent Assessment (PISA) and the Trends in International Mathematics and Science

Study (TIMSS). Both these testing programs involve a very large number of students

from many different countries, and require the administration of a large number of

items, which are organized in booklets. Of course, the raw scores are not directly

comparable, thus requiring the use of equating procedures. One option is given by

concurrent calibration, which estimates all item parameters in one run for all the

forms. However, this approach is highly computationally demanding, as the data
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matrix containing the responses of all the examinees to all the items is required.

When a testing program continues over many different years, concurrent calibra-

tion becomes challenging if not unfeasible. A different approach is given by separate

estimation of the item parameters for each form, followed by rescaling of the item

parameter estimates in order to obtain values expressed on a common metric. The

literature proposed various methods for the estimation of the equating coefficients,

which are two constants used to convert the item parameters. These methods include

the mean-mean (Loyd and Hoover 1980), the mean-geometric mean (Mislevy and

Bock 1990), Haebara (1980) and Stocking and Lord (1983) methods. However, all

these methods can be applied only to two forms with some items in common. The

first proposal to handle the case of multiple forms was given by Haberman (2009),

who developed a regression procedure that generalizes the mean-geometric mean

method. A generalization of the mean-mean, Haebara and Stocking-Lord methods

to the case of multiple forms is given in Battauz (2017b). This paper provides also

a procedure for the computation of the standard errors of the equating coefficients

estimated using all these methods.

Separate calibration is not only convenient from a computational point of view.

Separate calibration allows for a better control of the accuracy of the equating pro-

cess, which is indicated by the standard errors of the equating coefficients, and con-

stitutes a suitable setting for monitoring item parameter drift.

In this paper, the methods proposed in the literature for the computation of the

equating coefficients will be reviewed, and an application of these methods to data

collected for TIMSS will be presented. The paper is structured as follows. Section 2

reviews the methods available for multiple equating, Sect. 3 provides a real data

example, and Sect. 4 contains some concluding remarks.

2 Methods

In Item Response Theory (IRT), the probability of a correct response to item j is

modeled as a function of the ability level, 𝜃, and some item parameters

P(𝜃; aj, bj, cj) = cj + (1 − cj)
exp{Daj(𝜃 − bj)}

1 + exp{Daj(𝜃 − bj)}
, (1)

where aj is the discrimination parameter, bj is the difficulty parameter, cj is the guess-

ing parameter, and D is a known constant. This specification corresponds to the

so called three-parameter logistic (3PL) model. The two-parameter logistic (2PL)

model results when the guessing parameter is equal to zero, while the one-parameter

logistic (1PL) model requires also that the discrimination parameter is set to one. IRT

models are usually estimated by means of the marginal maximum likelihood method

(Bock and Aitkin 1981), which treats the abilities as random variables. Due to iden-

tifiability issues in all IRT models (Reise and Revicki 2015, p. 45), the abilities are

assumed to have zero mean and variance equal to one. For this reason, when the item
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parameters are estimated separately for different administrations of the test, the item

parameter estimates are not comparable, as they are expressed on different measure-

ment scales. The item parameters can be converted to a common metric using the

following equations

a∗
j =

ajt

At
(2)

and

b∗j = bjtAt + Bt, (3)

where t is the index of the administrations, At and Bt are the equating coefficients

related to administration t, a∗
j and b∗j are the discrimination and difficulty parame-

ters expressed on a common metric. In the following, the methods proposed in the

literature for the estimation of the equating coefficients will be briefly described.

2.1 Multiple Mean-Geometric Mean

Haberman (2009) proposed to employ Eqs. (2) and (3) to specify the regression mod-

els

log âjt = log Ât + log â∗
j + e1jt (4)

and

b̂jtÂt = −B̂t + b̂∗j + e2jt, (5)

where e1jt and e2jt are the residuals that should be introduced because Eqs. (2) and

(3) hold only approximately in samples. In the first stage, the estimates log Ât and

log â∗
j are obtained using the least squares method. In the second stage, the estimates

Ât = exp(log Ât) are used to compute the responses b̂jtÂt of the regression model (5),

and the estimates B̂t and b̂∗j are obtained by means of the least square method. The

equating coefficients Â1 and B̂1 are constrained to 1 and 0.

When this method is applied to two forms (i.e. T = 2) it can be shown that it

corresponds to the mean-geometric mean method. For this reason, this method is

called the multiple mean-geometric mean (MM-GM) method in this paper.

2.2 Multiple Mean-Mean

The mean-mean method for pairs of forms would estimate At using the following

equation

Ât =
∑

j∈Jt
âjt

∑
j∈Jt

â∗
j
, (6)
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where Jt is the set of items administered in administration t. However, â∗
j is not

available. The proposal in Battauz (2017b) is to replace â∗
j in (6) with

â∗
j =

∑
s∈Uj

âjs
∑

s∈Uj
Âs

, (7)

where Uj is the set of forms including item j. Substituting Eq. (7) in Eq. (6) yields

Ât =
∑

j∈Jt
âjt

∑
j∈Jt

∑
s∈Uj

âjs
∑

s∈Uj
Âs

, t = 2,… ,T . (8)

The simultaneous solution of these T − 1 equations can be achieved by applying

a numerical algorithm, setting Â1 = 1. Once the estimates Â2,… , ÂT are obtained,

the estimates of the equating coefficients B2,… ,BT can be obtained following the

procedure of the MM-GM method.

When T = 2, this method is equivalent to the mean-mean method. For this reason,

this method is called the multiple mean-mean (MM-M) method in this paper.

2.3 Multiple Item Response Function

The multiple item response function (MIRF) method requires the minimization of

the following function with respect to all the equating coefficients

f ∗IR =
T∑

t=1

∞

∫
−∞

∑

j∈Jt

(
Pjt − P∗

jt

)2
h(𝜃)d𝜃, (9)

where h(⋅) is the density of a standard normal distribution and

Pjt = P(𝜃; âjt, b̂jt, ĉjt) (10)

is the item response function computed using the item parameter estimates of admin-

istration t, while

P∗
jt = P(𝜃; â∗

jt, b̂
∗
jt, ĉjt), (11)

is the item response function computed using the synthetic item parameters. The

synthetic item parameters are obtain as a mean of the item parameters estimated in

different administrations and converted to the common scale

â∗
j = 1

uj

∑

s∈Uj

âjs

Âs
and b̂∗j = 1

uj

∑

s∈Uj

(b̂jsÂs + B̂s), (12)
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and then converted back to the scale of administration t

â∗
jt = â∗

j Ât and b̂∗jt =
b̂∗j − B̂t

Ât
. (13)

The integrals in Eq. (9) are approximated using Gaussian quadrature, and the min-

imization is performed numerically setting Â1 = 1 and B̂1 = 0.

2.4 Multiple Test Response Function

The multiple test response function (MTRF) method takes its name from consider-

ing the quadratic difference between the test response functions, instead of the item

response functions. This method is based on the minimization of the function

f ∗TR =
T∑

t=1
∫

(
∑

j∈Jt

Pjt − P∗
jt

)2

h(𝜃)d𝜃, (14)

where Pjt and P∗
jt are defined as for the MIRF method. Similarly, Gaussian quadrature

is used to approximate the integrals, and the minimization is performed numerically

setting Â1 = 1 and B̂1 = 0.

3 Real Data Example

As an example of a possible application, the multiple equating methods were applied

to data collected for TIMSS 2011 (Foy et al. 2013). This example considers only

achievement data in Mathematics at the fourth grade. Students were administered

one of 14 forms (booklets). These forms present items in common as shown in Fig. 1.

Only dichotomous items were considered for this analysis. An IRT model was fit to

each form separately, using a 2PL specification for constructed response items and a

3PL specification for multiple choice items. All analyses were performed using the R

statistical software (R Development Core Team 2017). The item parameter estima-

tion was performed using the tpm function of the R package ltm (Rizopoulos 2006),

constraining the guessing parameter to zero for the constructed response items. The

R package equateMultiple (Battauz 2017a) implements all the methods illustrated in

this paper and was used to estimate the equating coefficients and obtain the equated

scores.
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Fig. 1 Linkage plan

1

2

3

4

5

6 7

8

9

10

11

12

1314

Table 1 shows the estimates and the standard errors of the equating coefficients.

Form 1 was chosen as base form. It is possible to observe that the A equating coeffi-

cients are all around 1, while the B equating coefficients are all around 0, thus indi-

cating that the populations who were administered the different forms do not differ

much in the distribution of the abilities. Consistently with the simulation study pre-

sented in Battauz (2017b), the methods tend to give similar estimates of the equating

coefficients, while the standard errors tend to be lower for the MIRF method. Observ-

ing the standard errors, it is possible to note that they are larger for forms that are

linked through longer chains (see Battauz 2015).

After the conversion of the item parameters to the scale of Form 1 using the equat-

ing coefficients reported in Table 1, it is possible to obtain the equated scores. The

literature proposes two main IRT methods to this end, which are true score equating

and observed score equating (Kolen and Brennan 2014). Table 2 shows the equated

scores obtained using the observed score equating method and the equating coeffi-

cients estimated with the MIRF method. Scores obtained using the true score equat-

ing method are not shown because very similar to those obtained with observed score

equating. For example, a score of 15 in Form 1 is equivalent to a score of 19.2 in

Form 2. Note that here the equivalent scores across the forms differ not only because

of differences in item difficulties, but also because the number of items varies across

the different forms. This value is reported in the last row of the table.
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Table 1 Estimates (standard errors) of the equating coefficients for the TIMSS data

Form MM-GM MM-M MIRF MTRF

A equating coefficient
2 1.054 (0.016) 1.053 (0.017) 1.056 (0.009) 1.069 (0.011)

3 1.043 (0.020) 1.045 (0.020) 1.023 (0.013) 1.055 (0.015)

4 1.087 (0.025) 1.097 (0.025) 1.059 (0.015) 1.122 (0.021)

5 1.117 (0.028) 1.130 (0.028) 1.054 (0.018) 1.141 (0.025)

6 1.152 (0.030) 1.163 (0.030) 1.067 (0.018) 1.179 (0.027)

7 1.123 (0.031) 1.137 (0.031) 1.025 (0.018) 1.133 (0.029)

8 1.095 (0.030) 1.108 (0.030) 1.073 (0.019) 1.146 (0.027)

9 1.045 (0.028) 1.051 (0.028) 1.042 (0.019) 1.105 (0.029)

10 1.024 (0.027) 1.032 (0.027) 1.038 (0.019) 1.088 (0.027)

11 1.066 (0.027) 1.074 (0.027) 1.008 (0.018) 1.079 (0.025)

12 1.098 (0.025) 1.095 (0.024) 1.088 (0.018) 1.113 (0.021)

13 0.999 (0.020) 0.995 (0.019) 0.971 (0.014) 0.981 (0.016)

14 0.946 (0.015) 0.943 (0.015) 0.961 (0.011) 0.947 (0.012)

B equating coefficient
2 −0.138 (0.020) −0.138 (0.019) −0.103 (0.012) −0.117 (0.015)
3 −0.127 (0.025) −0.127 (0.024) −0.090 (0.016) −0.110 (0.019)
4 −0.161 (0.030) −0.166 (0.029) −0.116 (0.018) −0.157 (0.022)
5 0.020 (0.031) 0.017 (0.031) 0.024 (0.020) 0.015 (0.023)

6 0.003 (0.033) 0.000 (0.033) 0.020 (0.021) 0.005 (0.025)

7 0.080 (0.036) 0.076 (0.036) 0.093 (0.021) 0.091 (0.025)

8 0.010 (0.038) 0.007 (0.038) 0.012 (0.022) 0.036 (0.026)

9 0.041 (0.037) 0.039 (0.036) 0.002 (0.021) 0.042 (0.027)

10 0.047 (0.034) 0.044 (0.034) 0.001 (0.020) 0.039 (0.025)

11 0.042 (0.032) 0.040 (0.031) 0.029 (0.018) 0.046 (0.022)

12 −0.011 (0.028) −0.006 (0.028) −0.026 (0.018) 0.011 (0.021)

13 0.059 (0.023) 0.062 (0.023) 0.026 (0.016) 0.057 (0.017)

14 0.070 (0.018) 0.072 (0.018) 0.034 (0.013) 0.060 (0.014)

4 Conclusions

The multiple equating methods presented in this paper constitute a good alterna-

tive to concurrent calibration to handle the case of multiple forms to be equated.

The advantages of the equating methods based on separate calibration are related to

less computational cost and a better control of the accuracy of the equating process.

The latter can be based on the standard errors of the equating coefficients, which

also affect the standard errors of the transformed ability values (see Battauz 2017b,

Appendix 4).



128 M. Battauz

Table 2 Equated scores for the TIMSS data

Forms 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scores 0 0.9 0.8 0.7 0.9 1.3 1.1 1.4 1.6 1.2 0.9 1.1 0.8 0.1

1 2.3 2.2 2.0 2.5 2.9 2.5 2.8 3.1 2.7 2.2 2.6 2.3 1.1

2 3.7 3.6 3.2 4.0 4.4 3.6 4.0 4.6 4.1 3.4 4.0 3.8 2.1

3 5.0 4.8 4.4 5.6 5.9 4.7 5.2 6.0 5.5 4.5 5.4 5.2 3.0

4 6.4 6.1 5.5 7.2 7.4 5.8 6.3 7.3 6.8 5.6 6.8 6.7 3.9

5 7.7 7.3 6.5 8.6 8.9 6.8 7.3 8.5 8.1 6.6 8.1 8.1 4.8

6 9.0 8.4 7.5 9.9 10.2 7.9 8.3 9.6 9.4 7.6 9.4 9.4 5.7

7 10.2 9.6 8.5 11.1 11.5 8.9 9.2 10.7 10.6 8.7 10.6 10.7 6.6

8 11.4 10.7 9.5 12.3 12.7 9.9 10.2 11.8 11.8 9.7 11.8 12.0 7.5

9 12.6 11.8 10.5 13.3 13.8 11.0 11.1 12.8 13.0 10.8 12.9 13.2 8.5

10 13.7 12.9 11.4 14.3 14.9 12.1 12.1 13.9 14.3 12.0 14.0 14.5 9.5

11 14.9 13.9 12.4 15.3 16.0 13.3 13.1 15.0 15.5 13.2 15.2 15.6 10.6

12 16.0 15.0 13.4 16.2 17.0 14.4 14.2 16.1 16.8 14.4 16.2 16.8 11.7

13 17.1 16.1 14.4 17.0 18.1 15.7 15.3 17.3 18.1 15.8 17.3 18.0 12.7

14 18.1 17.2 15.4 17.9 19.1 16.9 16.4 18.6 19.4 17.1 18.4 19.1 13.8

15 19.2 18.3 16.4 18.7 20.2 18.1 17.6 19.9 20.7 18.5 19.5 20.2 14.9

16 20.2 19.3 17.4 19.5 21.2 19.4 18.9 21.3 22.2 20.0 20.6 21.2 15.9

17 21.2 20.4 18.3 20.2 22.2 20.7 20.2 22.7 23.6 21.4 21.6 22.1 16.9

18 22.2 21.3 19.3 20.9 23.2 22.1 21.6 24.2 25.1 22.9 22.7 23.1 18.0

19 23.1 22.3 20.2 21.6 24.1 23.4 23.0 25.7 26.6 24.3 23.8 24.0 18.9

20 24.1 23.2 21.1 22.3 25.1 24.6 24.4 27.3 28.2 25.6 24.9 25.0 19.9

Max 20 24 23 21 22 25 25 25 28 29 26 25 25 20

The application proposed in this paper considers TIMSS data of only one year.

This should be regarded as an example of possible application of these methods,

since considering more years can easily be implemented.

Hybrid strategies can also be considered and are straightforward to implement.

For example, it is possible to use concurrent calibration for each year of assess-

ment, and employ the equating methods presented here to achieve the comparability

between different years.

The main limitations of the methods illustrated in this paper is that they treat

the item parameter estimates as independent and homoscedastic variables. How-

ever, item parameter estimates are independent only between different administra-

tions, while they are dependent within the same administration. Furthermore, the

variability of the estimates is not constant over different items. The main factor that

influences the variability of the item parameter estimates is the sample size. If the

number of examinees taking the test does not vary largely over different administra-

tions, the variability of the item parameter estimates tends to present similar values.

On the contrary, different sample sizes result in a larger variability of the parame-

ter estimates. In this case, it would be worth the development of a method for the
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simultaneous estimation of the equating coefficients between multiple forms that

takes into account the different variability of the estimates. Accounting also for the

dependence of the item parameter estimates deriving from the same administration,

would further improve the efficiency of the estimators of the equating coefficients. It

is worth noting that the main linking methods currently used to equate two form (i.e.

mean-mean, the mean-geometric mean, Haebara and Stocking-Lord methods) do not

account for the different variability of the item parameter estimates or their depen-

dence. Thus, the development of new methods to equate simultaneously multiple

forms that take into account the heteroscedasticity and the dependence of the item

parameter estimates would also be of interest to equate two forms more efficiently.

A new method that considers the item parameter estimates as dependent variables

with different variances is currently under study by the author.

References

Battauz, M. (2015). Factors affecting the variability of IRT equating coefficients. Statistica Neer-
landica, 69, 85–101.

Battauz, M. (2017a). equateMultiple: Equating of multiple forms. R package version 0.0.0.

Battauz, M. (2017b). Multiple equating of separate IRT calibrations. Psychometrika, 82, 610–636.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:

Application of an EM algorithm. Psychometrika, 46(4), 443–459.

Foy, P., Arora, A., & Stanco, G. M. (2013). TIMSS 2011 User Guide for the International Database.

Haberman, S. J. (2009). Linking parameter estimates derived from an item response model through

separate calibrations. ETS Research Report Series, 2009(2), i–9.

Haebara, T. (1980). Equating logistic ability scales by a weighted least squares method. Japanese
Psychological Research, 22, 144–149.

Kolen, M., & Brennan, R. (2014). Test equating, scaling, and linking: Methods and practices (3rd

ed.). New York: Springer.

Loyd, B. H., & Hoover, H. D. (1980). Vertical equating using the Rasch model. Journal of Educa-
tional Measurement, 17(3), 179–193.

Mislevy, R. J., & Bock, R. D. (1990). BILOG 3: Item analysis and test scoring with binary logistic
models. Mooresville, IN: Scientific Software.

R Development Core Team. (2017). R: A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing.

Reise, S. P., & Revicki, D. A. (2015). Handbook of item response theory modeling: Applications to
typical performance assessment. New York: Routledge.

Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response theory

analyses. Journal of Statistical Software, 17(5), 1–25.

Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory.

Applied Psychological Measurement, 7(2), 201–210.



Incorporating Information Functions
in IRT Scaling

Alexander Weissman

Abstract Item response theory (IRT) scaling via a set of items common to two test
forms assumes that those item’s parameters are invariant with respect to a linear
transformation. Characteristic curve methods rely on this assumption; scale trans-
formations are conducted by minimizing a loss function between item characteristic
curves (ICCs), as in the case of Haebara (1980), or test characteristic curves
(TCCs), as in the case of Stocking and Lord (1983). However, minimizing the loss
function between characteristic curves does not guarantee that the same will hold
for information functions. This study introduces two new scaling methodologies:
one combines the ICC methodology of Haebara (1980) with item information
functions (IIFs); the other combines the TCC methodology of Stocking and Lord
(1983) with test information functions (TIFs). In a simulation experiment, Hae-
bara’s (1980) and Stocking and Lord’s (1983) methodologies as well as the two
new scaling methodologies were applied to simulated administrations of a fixed
form under different latent trait distributions. Results suggest that IRT scaling by
combining TCCs with TIFs yields some benefits over the existing characteristic
curve methodologies; however, combining ICCs with IIFs did not perform as well
as the other three scaling methodologies.

Keywords Item response theory ⋅ Scaling ⋅ Scale transformations
Characteristic curve methods ⋅ Information functions

1 Introduction

Consider two test forms where the item response theory (IRT) parameters for the
items on each form have been estimated separately from one another. IRT scaling
refers to the methodology for placing the item parameters from one form onto the
scale of the other form. The need for IRT scaling comes about due to the inde-
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terminacy of IRT latent trait scales; as Kolen and Brennan (1995) note, “[If] an IRT
model fits a set of data, then any linear transformation of the [latent trait] scale also
fits the set of data, provided that the item parameters are also transformed (p. 162).”
Thus, IRT scaling seeks to find an optimal linear transformation of the parameters
from one form onto the scale of another form.

When two test forms have items in common, the non-equivalent groups with
anchor test design can be used in IRT scaling. In that case, only the items common
to both forms are utilized in the IRT scaling method. There are two crucial
assumptions with this design. First, the item parameters of the common items are
assumed to be invariant with respect to a linear transformation; that is, any common
item will function in the same way independent of the form on which it appears, and
independent of the group to which it is administered. Second, a linear transfor-
mation of one form’s item parameters to another is assumed to be valid for all items
on that form, regardless of whether those items are in common with items on the
other form; that is, the same linear transformation obtained from a set of common
items can be extended to all items on a form.

IRT scaling may be conducted via methods that focus on the moments of the
distribution of common item parameters only, such as the mean/sigma method
(Marco 1977) and the mean/mean method (Loyd and Hoover 1980). Typically,
however, IRT scaling is conducted by characteristic curve methods. In IRT, an item
characteristic curve (ICC) is a function that relates the probability of correctly
responding to an item with the level of the underlying latent trait. Likewise, a test
characteristic curve (TCC) is a function that relates the expected number correct
score on a set of items with the level of the underlying trait. Haebara (1980)
introduced an IRT scaling methodology that utilizes item characteristic curves,
while Stocking and Lord (1983) introduced a scaling methodology that utilizes test
characteristic curves. In both cases, an optimal linear transformation for placing the
item parameters of one form onto the scale of the other is obtained by minimizing
an objective function defined in terms of a sum of squared differences. In the case of
Haebara (1980), the squared differences are between the ICCs from each common
item, whereas in the case of Stocking and Lord (1983), the squared differences are
between the TCCs for all common items.

1.1 Impact of Item Parameter Transformations
on Information Functions

When IRT scaling is conducted using characteristic curve methods, the optimal
linear transformation is the one that minimizes a function of squared differences
between characteristic curves, by definition. However, information functions in IRT
are also affected by linear transformations of item parameters. (Note that this
applies to any linear transformation, including those obtained by mean/sigma or
mean/mean methods.) Like characteristic curves, information functions can be
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defined at the item- or test-level. Whereas characteristic curves relate expected
number correct scores with the level of the underlying latent trait, information
functions are related to the precision of measuring the level of the underlying latent
trait itself.

Because information functions relate to the measurement precision of the latent
trait, it is reasonable to expect that the information functions for a set of items
common to two forms should be similar; otherwise, the measurement precision
provided by the items on one form would differ from the measurement precision
provided by the items on another form, even though the same set of items appear on
both forms. An analogous argument can be made for characteristic curve methods;
indeed, the minimization of squared differences between characteristic curves is a
mathematical statement of the goal for having the item- or test characteristic curves
between forms align as closely as possible.

The problem of obtaining an optimal linear transformation by characteristic
curve methods is that it does not necessarily translate into minimizing the squared
differences between information functions. That is, after transformation, charac-
teristic curves may be similar, but information functions may not. An example is
provided in Fig. 1 for IRT scaling using Stocking and Lord’s (1983) methodology,
where test characteristic curves are quite well aligned, but the test information
functions are not.

The purpose of this study is to investigate how information functions can be
incorporated into IRT scaling, and the effect of incorporating these functions on the
item parameter transformations with respect to both characteristic curves and
information functions. Two new scaling methodologies are introduced: one com-
bines Haebara’s (1980) methodology with item-level information functions; the
other combines Stocking and Lord’s (1983) methodology with test-level informa-
tion functions. The performance of these two new methodologies is compared with
the corresponding characteristic curve methodologies in a simulation study.

Fig. 1 Test characteristic curves (TCCs) and test information functions (TIFs) for two forms. IRT
scaling transforms the item parameters from one form (labeled “scaled”) onto the scale of another
form (labeled “reference”). The latent trait level is indicated by “theta” on the horizontal axis
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2 Methodology

As mentioned in the introduction, IRT scaling refers to the methodology for placing
the item parameters from one form onto the scale of another form. Denote the form
whose item parameters are being transformed as the new form, and the form whose
item parameters are on the reference scale (and hence will not have its item
parameters transformed) as the reference form. Further, denote the set of trans-
formed new form item parameters as the scaled item parameters.

For the 3-parameter logistic (3PL) IRT model (Birnbaum 1968), a linear
transformation of the new form item parameters to the scale of the reference form
item parameters is defined as follows:

aj, scaled =
aj, new
A

bj, scaled =Abj, new +B

cj, scaled = cj, new

ð1Þ

such that for item j on the new form, aj, new is the discrimination, or a, parameter,
bj, new is the difficulty, or b, parameter, and cj, new is the pseudo-guessing, or c pa-
rameter. When linear transformation coefficients A and B are applied to the new
form item parameters, the resulting set of scaled item parameters are denoted as
aj, scaled, bj, scaled, and cj, scaled in (1). Note that the c parameter is not transformed,
since it is not on the same metric as the latent trait scale. Further, the new form
latent trait scale is transformed by applying the linear transformation as:

θi, scaled =Aθi, new +B ð2Þ

where the subscript i indicates a latent trait level, θi, new is the latent trait level on the
new form scale, and θi, scaled is the corresponding latent trait level on the reference
form scale.

2.1 IRT Characteristic Curve Scaling as Optimization

IRT characteristic curve scaling is an optimization problem where nonlinear pro-
gramming is used to minimize an objective function. The objective function may be
defined in terms of item characteristic curves (ICCs) as in the case of Haebara
(1980), or in terms of test characteristic curves (TCCs) as in the case of Stocking
and Lord (1983). For the 3PL model, an ICC evaluated at latent trait level θk for
item j is defined as:
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ICCj θkð Þ=P Xj =1jθk , aj, bj, cj
� � ð3Þ

where P Xj =1 θk, aj, bj, cj
��� �

is the probability of correctly responding to item
j given θk and item parameters aj, bj, cj

� �
, such that

P Xj =1 θk, aj, bj, cj
��� �

= cj +
1− cj

1+ exp −Daj θk − bj
� �� � ð4Þ

where the constant D is usually chosen to be equal to 1.702.
Now consider a set V of items. For the entire set of items in V, a TCC evaluated

at θk is defined as the summation of the ICCs for each of the items:

TCC θkð Þ= ∑
j∈V

ICCj θkð Þ ð5Þ

Suppose a set V of items is common to both the new form and the reference
form. Then the optimization problem corresponding to Haebara’s (1980) method
may be written as:

min
A,B

∑
K

k=1
f θkð Þ ∑

j∈V
ICCj, scaled θkð Þ− ICCj, ref θkð Þ� �2 ð6Þ

where

ICCj, scaled θkð Þ=P Xj =1jθk, aj, newA
,Abj, new +B, cj, new

	 

ð7Þ

ICCj, ref θkð Þ=P Xj =1jθk, aj, ref , bj, ref , cj, ref
� � ð8Þ

such that for any common item j∈V , aj, new, bj, new, cj, new
� �

are the item parameters
for item j on the new form, and aj, ref , bj, ref , cj, ref

� �
are the item parameters for item

j on the reference form. Note that the scaled item parameters for item j are implicit
in (7); see (1) for the correspondences.

Because IRT scaling is conducted over a range of latent trait levels, the indi-
vidual θk are indexed by k=1, 2, . . . ,K for the K latent trait levels being evaluated
in (6). The function f θkð Þ serves the purpose of weighting the θk if so desired. Note
that in Haebara’s (1980) method, f θkð Þ=1 for all k.

The optimization problem corresponding to Stocking and Lord’s (1983) method
may be written in a similar fashion:

min
A,B

∑
K

k=1
f θkð Þ TCCscaled θkð Þ−TCCref θkð Þ� �2 ð9Þ
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where

TCCscaled θkð Þ= ∑
j∈V

ICCscaled, j θkð Þ ð10Þ

TCCref θkð Þ= ∑
j∈V

ICCref , j θkð Þ ð11Þ

such that the summation over common items j∈V is incorporated in the definitions
for the test characteristic curves in (10) and (11). Note also that in Stocking and
Lord’s (1983) method, f θkð Þ=1 for all k.

Incorporating Information Functions. The optimization problems in (6) and (9)
corresponding to Haebara’s (1980) and Stocking and Lord’s (1983) methods can be
extended to include item- or test-level information functions. Modifying the
objective functions to include both characteristic curves and information functions
yield two new scaling methodologies examined in this study. First, consider the
item-level information function, or item information function (IIF), for a 3PL item
j evaluated at θk:

IIFj θkð Þ= D2a2j 1−Pj θkð Þ� �
Pj θkð Þ

Pj θkð Þ− cj
1− cj

� �2
ð12Þ

where Pj θkð Þ≡P Xj =1 θk, aj, bj, cj
��� �

with item parameters aj, bj, cj
� �

as in (4).
Next, consider again a set V of items. The test-level information function, or test
information function (TIF) for the entire set of items in V evaluated at θk is defined
as the summation of the IIFs for each of the items:

TIF θkð Þ= ∑
j∈V

IIFj θkð Þ ð13Þ

With these definitions for IIFs and TIFs, the optimization problems incorpo-
rating both characteristic curves and information functions can now be presented.

Combined Item-Level Methodology. This extension of Haebara’s (1980) method
is referred to here as the “Combined Item-Level” scaling methodology. Extending
(6) to incorporate IIFs yields the following optimization problem:

min
A,B

∑
K

k =1
f θkð Þ ∑

j∈V
ICCj, scaled θkð Þ− ICCj, ref θkð Þ� �2 + IIFj, scaled θkð Þ− IIFj, ref θkð Þ� �2n o

ð14Þ
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where ICCj, scaled θkð Þ and ICCj, ref θkð Þ are as defined in (7) and (8), respectively,
IIFj, scaled θkð Þ is defined as:

IIFj, scaled θkð Þ= D2a2j, new
A2

1−Pj, scaled θkð Þ� �
Pj, scaled θkð Þ

Pj, scaled θkð Þ− cj, new
1− cj, new

� �2
ð15Þ

where

Pj, scaled θkð Þ≡P Xj =1jθk , aj, newA
,Abj, new +B, cj, new

	 

ð16Þ

and IIFj, ref θkð Þ is defined as:

IIFj, ref θkð Þ= D2a2j, ref 1−Pj, ref θkð Þ� �
Pj, ref θkð Þ

Pj, ref θkð Þ− cj, ref
1− cj, ref

� �2
ð17Þ

where

Pj, ref θkð Þ≡P Xj =1jθk , aj, ref , bj, ref , cj, ref
� � ð18Þ

Combined Test-Level Methodology. This extension of Stocking and Lord’s
(1983) method is referred to here as the “Combined Test-Level” scaling method-
ology. Extending (9) to incorporate TIFs yields the following optimization problem:

min
A,B

∑
K

k=1
f θkð Þ TCCscaled θkð Þ−TCCref θkð Þ� �2 + TIFscaled θkð Þ− TIFref θkð Þ� �2n o

ð19Þ

where TCCscaled θkð Þ and TCCref θkð Þ are as defined in (10) and (11), respectively,
and

TIFscaled θkð Þ= ∑
j∈V

IIFscaled, j θkð Þ ð20Þ

TIFref θkð Þ= ∑
j∈V

IIFref , j θkð Þ ð21Þ

with the item information functions in (20) and (21) corresponding to (15) and (17),
respectively.
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3 Experimental Design

Four IRT scaling methodologies were investigated in this study: Haebara’s (1980),
Stocking and Lord’s (1983), the Combined Item-Level, and the Combined
Test-Level methodologies. In the following, Haebara’s (1980) method will be
referred to simply as “Haebara”; likewise, Stocking and Lord’s (1983) method will
be referred to as “Stocking-Lord.”

A single reference form was used throughout the study. This form contained 50
3PL items and was assembled to match specified TCC and TIF targets. The TCC
and TIF for the reference form are plotted in Fig. 1 and labeled “reference.” For the
simulation study, new form item parameters were obtained by simulated adminis-
trations of the reference form under different generating distributions for the latent
trait. Thus, the reference and new forms had all 50 items in common.

The nine experimental conditions in the study involved three levels of means
μ= − 1, 0, 1f g crossed with three levels of standard deviations σ= 0.8, 1, 1.2f g
for the latent trait generating distributions, which were all Normal; i.e., θ∼N μ, σð Þ.
(Note that the mean and variance convention for moments of the Normal distri-
bution is replaced here with mean and standard deviation.) Within each condition of
generating θ distribution, 100 datasets were simulated using the reference form item
parameters as generating parameters. Each of these replications contained the
simulated responses of 5000 examinees to the 50 items. BILOG-MG 3 (Zimowski
et al. 2003) was used to estimate the item parameters from each replication; the
resulting item parameter estimates were taken as new form item parameters. Note
that for each replication, the mean and standard deviation for the latent trait scale in
BILOG-MG was set to 0 and 1, respectively. Then, for each replication, the new
form item parameters were scaled to the reference form item parameters using the
four IRT scaling methodologies discussed earlier: Haebara, Stocking-Lord, Com-
bined Item-Level, and Combined Test-Level. All scalings were conducted using
SAS (SAS Institute Inc. 2012); the OPTMODEL procedure (part of SAS/OR) was
used for solving the optimization problems.

For each of the optimization problems (see (6), (9), (14), and (19)), K = 21
latent trait levels were chosen in equally spaced intervals between − 4 and +4
(inclusive) such that θk = − 4, − 3.6, . . . 0, . . . , + 3.6, + 4f g. A probability density
function for f θkð Þ was assigned to correspond with the Normal probability density
function. Specifically, for θ1 = − 4 and θ2 = − 3.6, f θ1ð Þ=Φ θ1 + θ2

2

� �
, where Φ ⋅ð Þ is

the cumulative normal distribution function. For θk where θ1 < θk < θK − 1, the
following was used:

f θkð Þ=Φ
θk + θk+1

2

 �
−Φ

θk− 1 + θk
2

 �
ð22Þ

Once f θkð Þ was determined for all k<K, f θKð Þ was calculated as
1− ∑k<K f θkð Þ.
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4 Results

Scaling results were evaluated by comparing the scaled and reference TCCs and
TIFs. Differences between the scaled and reference TCCs for a given θk were
calculated as:

TCCdiff θkð Þ= TCCscaled θkð Þ−TCCref θkð Þ� � ð23Þ

Since relative efficiency measures are commonly used to compare information
functions between test forms, the following relative efficiency measure was used
here:

RE θkð Þ= TIFscaled θkð Þ
TIFref θkð Þ ð24Þ

Thus, within an experimental condition, there were 100 TCCdiff θkð Þ values and
100 RE θkð Þ values for each θk.

Results for the TCC differences and relative efficiencies were plotted as box
plots. In the following, the box plots were formatted such that: a box was plotted for
each latent trait level; the midline of the box indicates the median; the length of the
box indicates the interquartile range; and the upper and lower whiskers indicate the
maximum and minimum values, respectively. In addition, a curve passing through
the means across the latent trait levels was fit to each plot. Since the study included
nine experimental conditions, four IRT scaling methodologies, and two outcome
measures, a total of 72 plots were generated. Due to space constraints, only a subset
of these plots is presented here.

4.1 Results for Baseline Condition

The experimental condition for which the latent trait generating distribution
θ∼N 0, 1ð Þ had the same mean and standard deviation as the reference form (latent
trait) scale served as the baseline condition. The results for the TCC differences and
relative efficiencies for this condition are shown in Figs. 2 and 3, respectively.

In Fig. 2, it is instructive to note: (1) the deviation of the fitted curve (i.e., the
curve passing through the means of the box plots) with respect to the zero line on
the vertical axis; and (2) the variability of the TCC differences. For all IRT scaling
methodologies, the deviation of the fitted curve was greatest at lower latent trait
levels, such as θ≤ − 1.6. In addition, the variability of the TCC differences for a
given θk was also greatest at these levels. For all IRT scaling methodologies except
Combined Item-Level, the deviation of the fitted curve as well as variabilities in the
outcome measure were smallest in the neighborhood of θ=0; however, for θ≥ 1.2,
deviations of the fitted curve increased slightly, along with an increase in the

Incorporating Information Functions in IRT Scaling 139



variabilities of the outcome measure. The Combined Item-Level methodology
yielded results quite different from the other three methodologies, with greater
deviations and variabilities. Note that this pattern of TCC differences for Combined
Item-Level persisted across experimental conditions.

In Fig. 3, where relative efficiency is the outcome measure, box plots were
formatted similarly to Fig. 2, but with the vertical axis reference line indicated for a
relative efficiency equal to 1. For all four IRT scaling methodologies, the deviations
of the fitted curve from the reference line across all latent trait levels were not as
substantial as those observed for the TCC differences; however, variabilities of the
relative efficiency measure followed a similar pattern as those observed for TCC
differences.

4.2 Results for Other Conditions

Across the nine experimental conditions, a relationship was observed between TCC
differences and combinations of the mean and standard deviation of the latent trait
generating distribution: the magnitude of the variability in TCC differences
increased with increasing means, and the magnitude of this variability increased

Fig. 2 TCC differences versus theta for baseline experimental condition θ∼N 0, 1ð Þ
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with decreasing standard deviations. Thus, the experimental condition with the
smallest range of TCC differences was where θ∼N − 1, 1.2ð Þ, and the condition
with the largest range of TCC differences was where θk ∼N 1, 0.8ð Þ. Due to space
constraints, only the plots associated with these two conditions are presented.

Figures 4 and 5 present TCC differences and relative efficiencies, respectively,
for the experimental condition θ∼N − 1, 1.2ð Þ. As shown in Fig. 4, the fitted curve
passing through the mean TCC differences remained close to the zero line, even for
θ≤ − 1.6, across all IRT scaling methodologies except Combined Item-Level. For
the relative efficiencies shown in Fig. 5, the proximity of the fitted curves to the
reference line was similar to that observed for the baseline condition, with some-
what greater deviations from the reference line for θ≤ − 2.8.

Figures 6 and 7 present TCC differences and relative efficiencies, respectively,
for the experimental condition θ∼N 1, 0.8ð Þ. Under this condition, deviations of the
fitted curves from their respective reference lines were substantially larger than
those observed for the baseline and θ∼N − 1, 1.2ð Þ conditions. These deviations
were most striking for the relative efficiencies; unlike the baseline and
θ∼N − 1, 1.2ð Þ condition, where the fitted curve was in close proximity (or

Fig. 3 Relative efficiency versus theta for baseline experimental condition θ∼N 0, 1ð Þ

Incorporating Information Functions in IRT Scaling 141



overlapped) the reference line, in this condition the fitted curve wanders below and
above the reference line, crossing it twice: once in the neighborhood of θ=0, and
again in the region 2.8≤ θ≤ 4.

When comparing the results of the four scaling methodologies across the three
experimental conditions presented here, some interesting patterns and trends
emerge. First, the results from the Combined Item-Level methodology were quite
different from those for the other three methodologies, particularly for the TCC
differences. Second, variability of the TCC differences and relative efficiencies were
in general smallest in the neighborhood of θ=0 for Combined Test-Level as
compared to the other scaling methodologies. Although not shown here, this pattern
held across all experimental conditions for the Combined Test-Level methodology.
Third, results for relative efficiencies from the Combined Test-Level methodology
resembled those from Haebara more than Stocking-Lord, except possibly in the
θ∼N − 1, 1.2ð Þ condition, where these three methodologies yielded similar results.
For TCC differences, the Combined Test-Level methodology resembled those from
Stocking-Lord more than Haebara, except for the θ∼N 1, 0.8ð Þ condition, where
results from Combined Test-Level and Haebara were more similar.

Fig. 4 TCC differences versus theta for experimental condition θ∼N − 1, 1.2ð Þ
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5 Discussion

This study investigated how information functions could be incorporated into IRT
characteristic curve scaling by introducing two new scaling methodologies, each
based on the existing characteristic curve methodologies of Haebara (1980) or
Stocking and Lord (1983). The Combined Item-Level methodology incorporated
Haebara’s (1980) method with item information functions; the Combined
Test-Level methodology incorporated Stocking and Lord’s (1983) method with test
information functions.

Across the four scaling methodologies, the Combined Item-Level method yiel-
ded results that were noticeably different from the other scaling methodologies,
particularly with respect to TCC differences. A possible explanation for this result is
that minimizing the differences in item information functions came at the expense
of minimizing differences in the item characteristic curves. Such an explanation
would be supported by the comparatively more stable relative efficiency measures
for this method.

One somewhat surprising result was that the variability in TCC differences
observed for the Combined Test-Level methodology was consistently smaller than
that observed for the other scaling methodologies in the neighborhood of θ=0.
(Although not presented here, this pattern held across all nine experimental

Fig. 5 Relative efficiency versus theta for experimental condition θ∼N − 1, 1.2ð Þ
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conditions.) One potential explanation concerns the density function f θkð Þ assigned
to the latent trait levels evaluated in the optimizations (see (22)); this function was
chosen to correspond to the Normal probability density function. Since the maxi-
mum of this function occurs at θ=0, more weight was assigned to that latent trait
level in the optimizations (see (6), (9), (14), and (19)). However, this explanation is
difficult to support for two reasons: (1) the same probability density function was
assigned to all four scaling methodologies, yet this effect was observed only for
Combined Test-Level; and (2) in follow-up studies, a uniform probability density
function was chosen instead, and similar results were obtained. An alternative
explanation is that since the test information reaches its maximum in the neigh-
borhood of θ = 0 (see Fig. 1), incorporating this information with the test char-
acteristic curve contributes to the reduced variabilities in TCC differences observed
in that region of the latent trait scale.

This study was designed to reduce sources of error. While this approach is
advantageous from an experimental design perspective, it does present some lim-
itations. For example, the new and reference forms contained identical items, so
both forms had all items in common. Thus, parameter estimation of the new and
reference form item parameters focused solely on the common items; in practice, it
is rarely the case that new and reference forms will share all items in common.
Further, all estimated new form item parameters were scaled to the reference form

Fig. 6 TCC differences versus theta for experimental condition θ∼N 1, 0.8ð Þ
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item parameters. This approach minimized scaling error, since the best set of ref-
erence form item parameters (the ‘true’ or generating parameters) were utilized. In
practice, however, true item parameters are never known. To minimize parameter
estimation error over replications, latent trait generating distributions across the
experimental conditions were all selected to be normal, and sample sizes for each
replication were fixed at 5000. Thus, sources of error in this study were mostly
contained to replication error (from item response simulation) and item parameter
estimation.

Future studies might expand upon the design of this study. Possibilities include:
(1) assembling reference and new forms such that they do not share all items in
common; (2) simulating item responses not only for new form administrations, but
also for the reference form administrations, then estimating item parameters for
both forms for each replication and conducting IRT scaling on those parameter
estimates; (3) varying sample sizes for replications, particularly for smaller sample
sizes that could be encountered in practice; (4) examining other IRT models, such
as the 2PL model or polytomous IRT models; and (5) applying different methods
for assigning latent trait levels or probability density functions in the IRT scaling
optimizations.

Fig. 7 Relative efficiency versus theta for experimental condition θ∼N 1, 0.8ð Þ
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Reducing Conditional Error Variance
Differences in IRT Scaling

Tammy J. Trierweiler, Charles Lewis and Robert L. Smith

Abstract The performance of a Hybrid scaling method that takes into account the
differences between test characteristic curves as well as differences between con-
ditional error variances when estimating transformation constants is proposed and
evaluated. Results are evaluated and discussed in relation to the Stocking-Lord
method. Findings using a Monte Carlo simulation approach suggest that when the
two forms being scaled are parallel, the Hybrid method and the Stocking-Lord test
characteristic curve method lead to similar results. However, when the forms being
scaled have similar test characteristic curves but different conditional error vari-
ances, the Hybrid method does better near the mean of the ability distribution,
especially for the test information function.

Keywords Item response theory (IRT) ⋅ Scaling ⋅ Equating
Test characteristic curve ⋅ Conditional error variance

1 Introduction

In item response theory (IRT), when item parameters for a given pair of forms
(referred to here as the reference and new forms) whose items measure the same
trait are independently estimated using data obtained from two different groups of
test takers, the estimates will generally be on two different IRT scales. For the two
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forms to be compared and used interchangeably, these estimates need to be placed
on a common scale.

When working with the two-parameter logistic (2PL; Birnbaum 1968) IRT
model for binary data, with the item response function written as

P θ; a, bð Þ= exp Da θ− bð Þ½ �
1+ exp Da θ− bð Þ½ � , ð1Þ

(where D is a scaling constant equal to 1.702), Lord (1980) showed that the rela-
tionship between the scales of any two test calibrations is linear. Specifically,

θ* =Aθ+B, ð2Þ

where the slope A and intercept B are the linking coefficients of the linear function,
θ is the trait value on the scale of the new form, and θ* is the corresponding trait
value on the scale of the reference form. Given the relationship in Eq. 2, the
parameters for a given item from separate calibrations are linearly related as
follows:

a* =
a
A

and b* =Ab+B , ð3Þ

where a* and b* are item parameters expressed on the reference form scale, and
a and b are the corresponding item parameters expressed on the new form scale.

1.1 Functions Used in This Investigation

There are three functions that will be considered in this investigation, namely the
test characteristic curve (TCC), the conditional error variance (CEV), and the test
information function (TIF).1 For a test consisting of J items, and working with the
2PL IRT model, they are defined as follows:

TCC θð Þ= ∑
J

j=1
P θ; aj, bj
� �

, ð4Þ

CEV θð Þ= ∑
J

j=1
P θ; aj, bj
� �

1−P θ; aj, bj
� �� �� �

, ð5Þ

and

1These abbreviations are used to refer to both singular and plural forms of the names. Thus, TCC is
used to refer to both “test characteristic curve” and “test characteristic curves,” depending on the
context.
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TIF θð Þ= ∑
J

j=1
D2a2j P θ; aj, bj

� �
1−P θ; aj, bj

� �� �n o
. ð6Þ

Let X denote the number-correct observed score for the J-item test, with the
classical test theory (CTT) expression giving the observed score as the sum of true
and error scores:

X =T +E. ð7Þ

The TCC gives the number-correct true score T for the test and the CEV gives
the number-correct Var(EjT) for the test. These two functions thus provide a link
between classical test theory and item response theory.

The TIF is a function that has no interpretation in CTT. It is strictly an IRT
expression. If θ denotes the maximum likelihood estimate of θ, its (asymptotic)
sampling variance is given by

Var θ ̂ θj� �
=

1
TIF θð Þ . ð8Þ

It is instructive to compare the CEV and TIF for the special case where all aj = a
(i.e., all item slopes are equal). In this case the relationship between two functions
may be written as

TIF θð Þ= Dað Þ2CEV θð Þ. ð9Þ

This expression says that the location on the trait scale where the CEV is the
greatest is also the location where the test information is the greatest, or where the
sampling variance of θ is the smallest. Expressed in terms of error variances, Eq. 9
may be rewritten as

1
Var θ ̂ θj� � = Dað Þ2Var X θjð Þ. ð10Þ

This emphasizes the point that errors of measurement can function very differ-
ently depending on the scale being used for the measurement (true score compared
to latent trait).

Finally, note that Eqs. 9 and 10 only apply to the case where all the a-parameters
are equal. For the general 2PL model, the TIF and CEV functions will be similar in
shape but not strictly proportional. Moreover, as will be seen in our studies, the two
functions show differential sensitivity to changes in the choice of scaling criterion,
so both functions are of interest.
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1.2 Stocking-Lord TCC Scaling

A standard approach for placing new form item parameter estimates onto a refer-
ence form scale uses a NEAT (non-equivalent groups anchor test) design. Specif-
ically, the two sets of item parameter estimates for the common (anchor) items
obtained from calibrating the two forms are used to estimate the A and B transfor-
mation constants. Once these transformation constants are estimated using the
common items, the estimated constants are then used to place the parameter esti-
mates for the remaining items in the new form onto the reference form scale.

When a test is scored using IRT ability estimates, there is no need to establish a
further relationship between the two forms as the abilities for the reference and new
form are now considered comparable. However, if a raw score (number-right or
formula score) is needed for reporting, the transformed ability value can be used to
find corresponding true scores for both forms through the TCC (IRT true score
equating).

There are a number of methods that can be used to estimate the A and B trans-
formation constants used in the linear scaling process (e.g., Haebara 1980; Loyd
and Hoover 1980; Marco 1977; Stocking and Lord 1983). The most popular of
these methods is the Stocking-Lord TCC method (Stocking and Lord 1983).

Suppose there are J common items on the reference and new forms. Denote the
reference form item parameter estimates (for the 2PL model) by (a1j, b1j) and the
corresponding new form item parameter estimates by (a2j, b2j) for the common
items. Also, denote the new form item parameter estimates after transformation
using the expressions in Eq. 3 by (a*2j, b

*
2j). The TCC functions for the reference and

new forms (after transformation) may be written as TCC1 θð Þ and TCC*
2 θð Þ,

respectively.
With the Stocking-Lord TCC method, the A and B transformation constants are

chosen so that the squared difference between the TCC functions after transfor-
mation, averaged over the values for a suitable group of N test takers with reference
scale trait values θi, i=1, . . . ,N, is as small as possible. The objective function that
is minimized may be written as (Stocking and Lord 1983, Eq. 6):

FSL =
1
N

∑
N

i=1
TCC1 θið Þ−TCC*

2 θið Þ� �2
. ð11Þ

Rather than averaging over a finite group of test takers to represent a corre-
sponding population, in the current investigation a discrete approximation to a
specified population distribution (in this case, the standard Normal) for the latent
trait is used, with quadrature points θq and weights wq for q=1, . . . ,Q. This
modification results in a new objective function to be minimized for the
Stocking-Lord TCC method:
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modifiedFSL = ∑
Q

q=1
wq TCC1 θq

� �
− TCC*

2 θq
� �� �2n o

. ð12Þ

1.3 Illustration of a Scaling Issue

The two primary target criteria used in test construction are form difficulty and
reliability. In an IRT context the TCC represents form difficulty and the CEV and
TIF represent reliability. The Stocking-Lord method only uses the TCC. Conse-
quently, there may be systematic variation that cannot be removed with a linear
transformation.

As a simple illustration of this point, Table 1 presents item parameters for a 2PL
model for both a reference and new form, each composed of two test items. Figure 1
presents the corresponding TCC and CEV functions for the two tests. In this case, the
a- and b-parameters for the two forms result in similar TCC but different CEV.

Since the b-parameters for the new form have a greater range than those from the
reference form, to match the two TCC, the resulting slope transformation constant
(A) would need to be equal to 0.91. However, since the a-parameters of the new
form are steeper than those of the reference form, a slope transformation constant of
1.05 would be required to match them. In this illustration, there is no linear
transformation that would transform the new form onto the reference form scale
perfectly to match both TCC and CEV functions.

Table 1 Item parameters for
two 2-item tests

Reference form New form
a b a b

Item 1 1.00 −1.00 1.05 −1.10
Item 2 1.00 1.00 1.05 1.10
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Fig. 1 TCC and CEV functions for reference and new form illustration
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1.4 Proposed Hybrid and Weighted Hybrid Scaling Methods

Theoretically, assuming the IRT model holds, the reference form and new form
item response functions for a specific common item after transformation should be
identical. However, in practice, there will always be systematic variation that cannot
be removed through a linear transformation. By including the CEV function in the
transformation process, more information can be accounted for if there are sys-
tematic variations between forms in either the TCC or the CEV.

As can be seen from Eqs. 11 and 12, the Stocking-Lord method does not con-
sider any information in the scaling process other than the TCC. Extending the
work of Stocking and Lord (1983), we present a Hybrid method that takes into
account both the TCC and the precision of the two forms being scaled.

As was done above for the TCC functions, the CEV functions for the reference
and new forms (after transformation) may be written as CEV1 θð Þ and CEV*

2 θð Þ,
respectively. Using both the true score information (TCC) and the precision
information (CEV), we may write a Hybrid function to be minimized to find the
A and B transformation constants as

FHybrid = ∑
Q

q=1
wq TCC1 θq

� �
− TCC*

2 θq
� �� �2

+ CEV1 θq
� �

−CEV*
2 θq
� �� �2n o

. ð13Þ

The A and B transformation constants that minimize the quantity given in Eq. 13
would include information associated with both the TCC and the CEV or, more
specifically, would take into account both the true score and the reliability of the
tests.

An important feature of Eq. 13 is that it can be modified to incorporate weights
that may be specified for each component:

FWtHybrid = ∑
Q

q=1
wq λT TCC1 θq

� �
−TCC*

2 θq
� �� �2

+ λC CEV1 θq
� �

−CEV*
2 θq
� �� �2n o

ð14Þ

where λT is the weight is associated with the TCC component, and λC is the weight
associated with the CEV component.

1.5 Current Investigation

Three studies are presented below. In the first study, the Hybrid scaling method is
evaluated against the Stocking-Lord method under the assumption that the reference
form and new form are parallel. In the second study, the Hybrid scaling method and
the Stocking-Lord method are evaluated against each other when the two forms
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have similar TCC but different CEV. In the third study, the Weighted Hybrid model
is evaluated, varying the weights on the two components (i.e., TCC and CEV)
included in the Hybrid scaling method.

2 Method

For each of the three studies presented below, the general methodology is as
follows:

1. Reference form item parameters are fixed for all three studies and are considered
to be known true parameters when performing the scaling for each study;

2. New form item parameters (given the specific study design presented below) are
used to generate item responses for 3,000 test takers across 200 replications
using a generating distribution of ability taken to be N(0, 1);

3. For each replication, item response data for the new form are calibrated using
the 2PL model in BILOG-MG (Zimowski et al. 1996);

4. Scaling is performed for each replication, where the new form item parameter
estimates are scaled to the reference form item parameters. All scaling methods
are written and conducted in SAS/OR® 9.4 (SAS Institute, Cary NC).

2.1 Item Parameters

For the studies presented below, the reference form item parameters are taken from
a 50 item multiple-choice test, calibrated using the 2PL model. These item
parameters are considered the ‘generating item parameters’ for the reference form.
Twenty-three of the items are considered common items and are used in the scaling
process as required by the NEAT design.

2.2 Evaluation of Results

Evaluation of results for each of the three studies is done several ways. First, an
unweighted mean squared deviation (MSD) statistic is computed to quantify the
closeness between the reference form generating parameters and the transformed
new form estimated item parameters averaged across replications. The value of the
MSD statistic averaged across replications is given by
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This MSD statistic is computed for the TCC, the CEV, and the TIF, and is an
unweighted mean measure of the difference between the functions at each
quadrature point (θq). In Eq. 15, κ can represent the TCC, CEV or TIF, R is the
number of replications and Q is the number of quadrature points at which each of
the functions is evaluated.

Additionally, the TCC, CEV and TIF functions are graphically presented to
illustrate visually the differences found between these functions and each corre-
sponding scaling method.

3 Study 1

3.1 Methods

As described above, the reference form item parameters are used to specify the
reference form. In this study, these same reference form parameters are used to
generate data for the “new” form over replications. For each replication, item
response data are calibrated using the 2PL logistic model and each of the scaling
method analyses is conducted.

3.2 Results

Table 2 presents the average mean squared deviations averaged across replications
between the reference and new form TCC, CEV, and TIF functions for each scaling
method. Both scaling methods appear to capture the transformed parameters almost
perfectly.

Figure 2a–c graphically present the TCC, CEV, and TIF for the reference and
for the transformed new form to illustrate how similar the scaling methods are under
the condition when the reference and new forms are parallel. Note that the three
curves in each figure essentially lie on top of each other and cannot be
distinguished.

Table 2 Average mean squared deviations for the TCC, CEV and TIF functions between the
reference and new form for each scaling method

Scaling method TCC CEV TIF

Stocking-Lord 0.001 0.000 0.003
Hybrid 0.001 0.000 0.003
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4 Study 2

4.1 Methods

Unlike Study 1 where the reference form parameters were used to simulate new
form item responses, new form item parameters for Study 2 were created to produce
similar TCC but different CEV.

To achieve this result, new form item parameters were created using nonlinear
optimization in Excel Solver, where the method applied to find the new item
parameters included constraints so that the resulting new form parameters would be
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within ±0.25 from the original reference form parameters. These new form
parameters created using this optimization process are used as the generating
parameters for the new form in Study 2.

The reference and new form TCC and CEV for the common item generating
parameters (for both the new and reference forms) are shown in Fig. 3, where the
reference form curves are indicated by the dashed lines and the new form curves are
indicated by the solid lines.

Calibration and scaling in Study 2 are conducted following the same procedures
used in Study 1.

4.2 Results

Table 3 presents the average mean squared deviations across replications between
the reference and new form TCC, CEV, and TIF for each scaling method. Unlike
Study 1, where the mean squared deviations are similar (and close to zero)
regardless of scaling method, results for Study 2 show that there are some distinct
differences between these methods. First, the Stocking-Lord and Hybrid methods
appear to capture the TCC very similarly. This is not totally unexpected as the
generating item parameters for the reference and new form were created to produce
similar TCC. However, results show that the Hybrid model appears to capture the
reference form slightly better than the Stocking-Lord method for the CEV and
somewhat better than the Stocking-Lord method for the TIF as well.
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Table 3 Average mean squared deviations across replications between the reference form and the
new form TCC, CEV, and TIF functions for each scaling method

Scaling method TCC CEV TIF

Stocking-Lord 0.005 0.127 1.010
Hybrid 0.006 0.117 0.723
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Figure 4a–c graphically present the reference and transformed new form TCC,
CEV, and TIF to further illustrate the performance of each of the scaling methods.

The findings regarding the TCC are consistent with the results in Table 3.
The TCC in Fig. 4a show that the Stocking-Lord and the Hybrid methods both
appear to capture the reference TCC very well. What can be seen from Fig. 4b is
that the Stocking-Lord and the Hybrid scaling methods are very similar to each
other in capturing the average CEV across replications. Although the two methods
produce similar results, they both differ from the reference form CEV. This reflects
the fact that the new form was created to have this discrepancy from the reference
form in the CEV. However, as can be seen in Fig. 4c, the Hybrid method captures
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the TIF somewhat better than the TCC method near the mean of the ability
distribution.

5 Study 3

5.1 Methods

The reference form and new form generating parameters are those used in Study 2,
and new form item response data are simulated and calibrated in the same way as
for the previous studies.

Different weights are systematically applied to the TCC and CEV components in
the scaling process, where the item parameter estimates for the new form are scaled
back to the reference form generating parameters for each combination of the 6
pairs of λ weights presented in Table 4 for each replication.

5.2 Results

Table 5 presents the average mean squared deviations across replications between
the reference and new form TCC, CEV, and TIF for each of the Weighted Hybrid
scaling methods. As might be expected, when more weight is given to one of the

Table 4 Weights for the TCC and CEV components in the Weighted Hybrid model

λT λC

More weight to the TCC component 0.80 0.20
0.70 0.30
0.60 0.40

More weight to the CEV component 0.40 0.60
0.30 0.70
0.20 0.80

Table 5 Average mean squared deviations across replications between the reference and new
form TCC, CEV, and TIF functions for each set of weights

λT λC TCC CEV TIF

More weight to the TCC component 0.80 0.20 0.004 0.124 0.923
0.70 0.30 0.004 0.122 0.868
0.60 0.40 0.005 0.119 0.803

More weight to the CEV component 0.40 0.60 0.010 0.114 0.625
0.30 0.70 0.019 0.110 0.503
0.20 0.80 0.041 0.107 0.353
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components (CEV or TCC), the corresponding MSD becomes smaller. Also, when
the weight is increased on the CEV component, the mean squared deviation for the
TIF between forms decreases substantially.

Figure 5a–c graphically present the reference and transformed new form TCC,
CEV and TIF functions to illustrate the similarities and differences in performance
for each of the Weighted Hybrid scaling methods evaluated in Study 3.

As can be seen from Fig. 5a, regardless of the weights applied to the TCC or
CEV, the TCC functions for the new and reference form are very similar. Even
when weighting the CEV component 80% in the scaling process, the differences
between the TCCs are very small.

Figure 5b shows that there is an impact of the different weighting methods on
the CEV component, especially in the in the −2.5 to −1.0 and 1.0 to 2.5 ability
ranges. In these ranges, the resulting transformed CEV becomes closer to the
reference form CEV under the conditions when more weight is applied to the CEV
component in the scaling.

The impact of the weighting is even more evident when looking at the TIF
function. When more weight is applied to the CEV component, as can be seen in
Fig. 5c, the TIF function becomes more similar to the reference form TIF function.

6 General Discussion

Results evaluating a Hybrid scaling method proposed in this study against the
popular Stocking-Lord scaling method indicate that, when forms are parallel, the
scaling methods perform almost identically. However, when the TCC for the forms
are similar but the CEV are different, the Hybrid scaling method does somewhat
better at capturing both the CEV and the TIF across the ability distribution.

A Weighted Hybrid scaling method is also evaluated. Results indicate that in
general, giving more weight to the CEV component in the scaling process results in
a better transformation of both the CEV and TIF when compared to the reference
form. Overall, both the CEV and the TIF appear to be relatively sensitive to the
weights applied in the scaling process. However, the TCC is quite robust to the
weighting of the components, especially in the middle of the ability distribution.

Results presented here suggest that it may be advantageous in the scaling process
to use information about the precision as well as the true scores of the forms being
scaled. Further research should evaluate the impact of using the Hybrid and
Weighted Hybrid scaling methods on overall equating results as well as the per-
formance of these methods under different distributional conditions.
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An IRT Analysis of the Growth Mindset
Scale

Brooke Midkiff, Michelle Langer, Cynthia Demetriou
and A. T. Panter

Abstract Growth mindset has gained popularity in the fields of psychology and
education, yet there is surprisingly little research on the psychometric properties of
the Growth Mindset Scale. This research presents an item response theory analysis
of the Growth Mindset Scale when used among college students in the United
States. Growth Mindset is the belief that success comes through hard work and
effort rather than fixed intelligence. Having a growth mindset is believed to be
important for academic success among historically marginalized groups; therefore it
is important to know if the Growth Mindset Scale functions well among first
generation college students. The sample consists of 1260 individuals who com-
pleted the Growth Mindset Scale on one of 5 surveys. The Growth Mindset Scale
consists of 8 items, with responses ranging from strongly disagree (1) to strongly
agree (5). IRT analysis is used to assess item fit, scale dimensionality, local
dependence, and differential item functioning (DIF). Due to local dependence
within the 8-item scale, the final IRT model fit 4 items to a unidimensional model.
The 4-item scale did not exhibit any local dependence or DIF among known groups
within the sample. The 4-item scale also had high marginal reliability (0.90) and
high total information. Cronbach’s alpha for the 4-item scale was α = 0.89. Dis-
cussion of the local dependence issues within the 8-item scale is provided.
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1 Introduction

The aim of this research is to provide a first item response theory (IRT) examination
of the 8-item Growth Mindset Scale. While some evidence of reliability is available
for shorter versions of the scale, little psychometric research has been done on the
more commonly used form.

The extant literature on the reliability and validity of the Growth Mindset Scale
is varied, largely due to the variety of versions of the scale that have been used in
research. In some of Dweck’s earliest work (1995), what is now commonly known
as growth mindset was measured by three items that compromised a scale for the
measurement of implicit theories of intelligence. Dweck et al. (1995, p. 269) report
that only three items were used because “implicit theory is a construct with a
unitary theme, and repeatedly rephrasing the same idea may lead to confusion and
boredom on the part of the respondents.” They report data from six validation
studies showing high internal reliability (α = 0.94–0.98), as well as a test-retest
reliability of 0.80 over a 2-week interval. Using factor analysis, Dweck et al. (1995,
p. 269) demonstrate that the implicit theory of intelligence is a separate construct
from other implicit theories (they also tested implicit morality and world theories),
and that endorsement of the implicit theory items does not constitute an acquies-
cence set. Lastly, Dweck et al. (1995) present evidence that the 3-item measure of
implicit theories of intelligence is unrelated to cognitive ability, confidence in
intellectual ability, self-esteem, optimism or confidence in other people and the
world, social-political attitudes such as authoritarianism, or political conservatism
or liberalism. The three items on this early instrument are: (a) “You have a certain
amount of intelligence and you really can’t do much to change it”; (b) “Your
intelligence is something about you that you can’t change very much”; and
(c) “You can learn new things, but you can’t really change your basic intelligence.”

Dweck (1999) includes an 8-item scale that uses the 3 items from the original
Implicit Theories of Intelligence scale, published shortly after the previous study.
Of the 8 items on the new scale, 4 are marked to indicate that they can be used
separately; these 4 items include the original 3 with the addition of, “To be honest,
you can’t really change how intelligent you are” (Dweck, 1999, p. 178). Dweck
cites the earlier article along with Levy et al. (1998), Levy and Dweck (1999),
Erdley and Dweck (1993), and Erdley et al. (1997) as evidence of the reliability and
validity of the scale provided in the book. However, evidence of reliability and
validity within these studies is varied.

First, Levy et al. (1998) report a high reliability (α = 0.93), but used the domain
general measure of implicit theories rather than the domain-specific measure of
implicit theory of intelligence. Next, Levy and Dweck (1999) use a newly created
measure that includes both entity and incremental items and is designed for use with
children; they report reliability of α = 0.62 and a test-retest reliability of r = 0.70
over a 1 week period. Erdley and Dweck (1993) report reliability at α = 0.71 with
test-retest reliability at r = 0.64 over a 1 week period, but they use the Implicit
Personality Theory Questionnaire—Others Form for children. Lastly, Erdley et al.
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(1997) report reliability at α = 0.75, but use the children’s form of the 3-item
Implicit Personality Theory Questionnaire—Self-form.

More recent work includes a study by Degol et al. (2017) that finds a significant
relationship between growth mindset and task values in mathematics. However, the
study uses a single item to measure growth mindset‚ taken from the U.S. Educa-
tional Longitudinal Study of 2002 (ELS) database. The item is, “Most people can
learn to be good at math.”

Karwowski (2014) developed a 10-item Creative Mindset Scale adapting the
items from previous growth mindset scales. Karwowski (2014) demonstrates
through exploratory factor analysis, confirmatory factor analysis, and an IRT Rasch
model the psychometric properties of the Creative Mindset Scale. The psychometric
evidence shows that the scale represents two separate factors—fixed and malleable
mindsets—rather than one factor conceptualized as two ends of a continuum.
However, IRT parameters are not provided in the published study.

2 Methods

This research used the 8-item version of the Growth Mindset Scale, originally
published by Dweck (1999) as the “Theories of Intelligence Scale—Self Form For
Adults” (p. 178). Response options differed slightly from the published scale which
ranges from (1) Strongly Agree to (6) Strongly Disagree. Response options used in
this study were (1) Strongly Disagree, (2) Disagree, (3) Neither Agree nor Disagree,
(4) Agree, and (5) Strongly Agree. The response options used in this research were
consistent across the five surveys from which the sample are drawn.

2.1 Sample

The sample consists of 1,260 college students who completed the Growth Mindset
Scale on one of five surveys administered in research projects within The Finish
Line Project (“Finish Line Overview”, 2017). Of the 1,260 participants, 691 were
first in their family to attend college (first generation college students; FGCSs), 549
were non-FGCSs, 273 were currently enrolled, and 987 were recent college
graduates.

2.2 Reliability Analysis

Corrected item-total correlations and Cronbach’s alpha (1951) were examined to
assess the reliability of the scale. These analyses were repeated iteratively after
fitting IRT models. Internal consistency was evaluated by Cronbach’s alpha using
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the software Mplus (Muthén and Muthén 1998). Alpha values of 0.70 or greater
was used as an acceptable minimum for group-level assessment (Cronbach 1951).

2.3 IRT

IRT analysis was conducted using Samejima’s (2010) graded response model
(GRM) for polytomous items using IRTPRO3 (Cai et al. 2011). Based on the
original literature around the psychometric properties of the scale—that it represents
a single latent construct of growth mindset (Dweck 1999)—a unidimensional model
for all 8-items was first fit. Subsequent IRT models included a bifactor model and a
unidimensional model on a subset of items identified through bifactor IRT analysis
and exploratory factor analysis (EFA). The subset of items identified through
bifactor and EFA analysis were items 3, 5, 7, and 8 (see Table 3). The EFA used
maximum likelihood estimation with orthogonal, varimax rotation, with explained
common variance (ECV) > 0.85 indicating unidimensionality. The analyses pre-
sented here used only the portion of the sample with no missing data on any of the
scale items (N = 1129). IRT model fit based on SS−X2 (Orlando and Thissen 2000,
2003) was assessed examining root mean square error of approximation (RMSEA),
wherein adequate fit is 0.05 or less. IRT model fit was also fit through comparisons
of -2 log likelihood Akaike Information Criteria (AIC) (Akaike 1974) and Bayesian
Information Criteria (BIC) (Schwarz 1978), with lower scores indicating better
model fit for both statistics relative to AIC and BIC for compared IRT models.

2.4 Local Dependence

Local dependence was assessed based on the Chen and Thissen (1997) local
dependence indices, wherein LD χ2 values greater than ten suggest significant local
dependence. Item wording was also assessed to further investigate underlying
possible causes of local dependence.

2.5 Differential Item Functioning

Differential item functioning (DIF) was assessed using the IRT-based Wald test
(Langer 2008). DIF was assessed between known groups within the sample
including FGCS status, gender, underrepresented minority (URM) status, and
current students versus recent graduates.
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2.6 Known Groups Validity

The validity of the Growth Mindset Scale was examined by assessing the extent to
which it could discriminate between several known groups: FGCS status, gender,
URM status, current students versus recent graduates, and URM interacted with
gender and FGCSs. We compared summed scores on the final 4-item scale across
all groups using a one-way analysis of analysis of variance (ANOVA). Statistical
significance was defined at the 0.05 alpha level for evaluation of known groups
validity.

2.7 Discriminant Validity

Participants who completed the Growth Mindset Scale also completed the five item
Guilt-Proneness Scale (Cohen et al. 2014). To assess discriminant validity, the
correlation between the mean item score on the Growth Mindset Scale and the mean
item score of the Guilt Proneness Scale was computed. Guilt Proneness response
items were (1) “Extremely Unlikely,” (2) “Unlikely,” (3) “Neither Likely nor
Unlikely,” (4) “Likely,” and (5) “Extremely Likely,” and were scored such that
higher mean scores reflect more guilt proneness. Statistical significance was defined
at the 0.05 alpha level for evaluation of discriminant validity.

3 Results

3.1 Descriptive Statistics

Of the total sample (N = 1,250), 1,148 participants answered at least one growth
mindset scale item; 1.7% (19 students) skipped one or two items. Analysis was
conducted only for responses with no missingness. Mean item scores for those with
no items missing (N = 1129) range from 3.27 to 3.82, suggesting that, on average,
participants tended to be neutral or slightly agree with all items on the scale.
Descriptive statistics for scale items are given in Table 1. The mean summed score
for the 1129 respondents with no missing is 28.69 (SD = 6.56); summed scores
presented a negatively skewed distribution.

The demographic information for the sample with no missing scale items
(N = 1129) is given in Table 2. Known group totals vary due to missing demo-
graphic data within the overall sample of non-missing responses on scale items
(N = 1129) (e.g. there is no missing data within the scale items but some missing
data within demographic data).
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3.2 Reliability

Relevant items were reverse coded so that higher scores reflected more growth
mindset. Cronbach’s alpha was high (α = 0.93) for the 8-item scale at. Corrected
item-total correlations were strong, ranging from 0.70 to 0.79. Item-total correla-
tions are given previously in Table 1. The final 4-item scale also showed strong
corrected item-total correlations (given in Table 3), ranging from 0.71–0.79, higher
than the 8-item scale. Cronbach’s alpha remained high (α = 0.89) for the 4-item
scale.

3.3 IRT

GRMs were fit within unidimensional and bifactor frameworks to assess scale
dimensionality. The first model fit a unidimensional GRM with all eight items

Table 1 Mean item scores and item-total correlations for growth mindset scale

Item
#

Scale item Mean SD Item-total
correlation

1 You have a certain amount of intelligence, and you can’t
really do much to change it

3.75 0.98 0.78

2 Your intelligence is something about you that you can’t
change very much

3.78 1.01 0.78

3 No matter who you are, you can significantly change
your intelligence level

3.63 1.02 0.73

4 To be honest, you can’t really change how intelligent
you are

3.82 0.98 0.79

5 You can always substantially change how intelligent
you are

3.43 1.03 0.72

6 You can learn new things, but you can’t really change
your basic intelligence

3.27 1.12 0.71

7 No matter how much intelligence you have, you can
always change it quite a bit

3.57 0.94 0.75

8 You can change even your basic intelligence level
considerably

3.44 1.01 0.70

Table 2 Demographic makeup of sample

Group N Group N Totals

First generation 629 Continuing generation 495 1124
Current student 245 Recent graduate 884 1129
Men 358 Women 687 1045

Underrepresented minority 239 Non-underrepresented minority 801 1040
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based on the literature that purports the scale measures 1 latent construct. The SS
−χ2 item fit was significant for all items in the first unidimensional model that
included all 8 items, and local dependence was detected for the following item
pairs: 1&2, 1&4, 3&5, 3&7, 3&8, 5&7, 5&8, 6&8, 7&8. The model RMSEA was
0.25, indicating poor fit.

3.4 Local Dependence

In the unidimensional IRT model for the 8-item scale, local dependence was
detected for multiple item pairs. Inspection of the wording of the items reveals that
items 1, 2, and 4 simply state that you can’t change intelligence, whereas the other
five items qualify changing intelligence with words such as significantly, consid-
erably, and so on.

3.5 Bifactor GRM

In light of the preponderance of local dependence and poor model fit of the uni-
dimensional GRM, we fit a bifactor GRM model to the 8-items, shown in Table 4.
Items 1, 2, and 4 loaded onto one specific factor and items 3, 5, 6, 7, and 8 loaded
onto the second specific factor; all items loaded on the overall factor. However, the
bifactor model overall model fit was poor: RMSEA = 0.60, SS−χ2 item fit was
significant for all items, and local dependence was detected for the item pair 6 & 8.

The factor loadings suggest two factors, with an ECV of 0.79 (ECV > 0.85
typically indicates unidimensionality). Based on these findings, we conducted an
EFA to further investigate the factor structure of the 8-item scale because the first
two models fit so poorly and extant literature suggested the scale measured only one
latent construct.

The EFA used oblique-varimax rotation and showed 2 factors with each item
showing high loadings onto one or the other factor, with the exception of item 6,

Table 3 Corrected item-total correlations for 4-item growth mindset scale

Item
#

Scale item Item-total
correlation

3 No matter who you are, you can significantly change your
intelligence level

0.75

5 You can always substantially change how intelligent you are 0.77
7 No matter how much intelligence you have, you can always

change it quite a bit
0.79

8 You can change even your basic intelligence level considerably 0.71
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“You can learn new things, but you can’t really change your basic intelligence.”
The factor loadings indicate there are both positively-worded and
negatively-worded items. Item#6 likely cross-loads (λ1 =−0.34, λ2 = 0.56) because
it has both positive (“can learn new things”) and negative (“can’t change basic
intelligence”) wording. The cross-loading is also evident in the previous bifactor
model, which detected high loading for item 6 on the overall factor, but only
λ = 0.03 on one of the specific factors, suggesting that item 6 measures mindset but
does not fit with either growth or fixed mindset as a separate construct.

3.6 Final IRT Model

Growth mindset is a positive construct, and good measurement practice is to have
items worded positively. Therefore, we proceeded with IRT analysis using only
items 3, 5, 7, and 8, all of which are positively worded and are statements in
congruence with a growth mindset rather than a fixed mindset. This analytic
strategy was chosen in light of the previous IRT models and EFA, and the
understanding that the scale ultimately should measure only one construct. A uni-
dimensional GRM was fit using the items 3, 5, 7, and 8. IRT parameters of this
model are given in Table 5.

The final unidimensional IRT model for the 4-item scale, like the 8-item uni-
dimensional and bifactor IRT models, still did not fit well (SS−χ2 showed poor item

Table 4 Factor loadings from bifactor model of 8-item growth mindset scale

Item
#

Item Factor loadings
Overall Specific Specific

1 You have a certain amount of intelligence, and
you can’t really do much to change it

0.86 0.44 –

2 Your intelligence is something about you that
you can’t change very much

0.87 0.42 –

3 No matter who you are, you can significantly
change your intelligence level

0.77 – 0.47

4 To be honest, you can’t really change how
intelligent you are

0.90 0.26 –

5 You can always substantially change how
intelligent you are

0.73 – 0.54

6 You can learn new things, but you can’t really
change your basic intelligence

0.86 – 0.03

7 No matter how much intelligence you have, you
can always change it quite a bit

0.75 – 0.54

8 You can change even your basic intelligence
level considerably

0.74 – 0.43
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fit and RMSEA = 0.37). However, the 4-item scale did not exhibit any local
dependence, making it preferable for research use to the 8-item scale. The shorter,
4-item scale also had high marginal reliability (0.90) and high total information.
Test information is high from −2.5 SDs below the mean to 1.5 SDs above the mean.
The total information curve is given in Fig. 1.

Differential Item Functioning. DIF analysis of the 4-item scale showed no DIF
between the known groups in the sample—FGCSs and non-FGCSs, gender, URM
status, and current students versus recent graduates.

Table 5 IRT parameters: 4-item growth mindset scale

Item
#

Scale item a b1 b2 b3 b4

3 No matter who you are, you can significantly.
Change your intelligence level

3.42 −2.21 −1.05 −0.41 0.96

5 You can always substantially change how
intelligent you are

3.71 −2.10 −0.88 −0.12 1.16

7 No matter how much intelligence you have,
you can always change it quite a bit

4.24 −2.25 −1.07 −0.29 1.20

8 You can change even your basic intelligence
level considerably

2.83 −2.14 −1.00 −0.15 1.32

Fig. 1 Total information curve: 4-item growth mindset scale
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3.7 Known Groups Validity

One-way ANOVA using summed scores from the 4-item scale was used to assess
known groups validity. Significant differences were found between URM students
and their majority peers as well as between FGCSs and non-FGCSs. ANOVA
results are given in Table 6.

3.8 Discriminant Validity

Of the sample with no missing items on the Growth Mindset Scale, 1020 also
completed the Guilt Proneness Scale with no missing items from either scale. The
mean item score on the Guilt Proneness Scale was 4.09 (SD = 0.74); the mean item
score on the 8-item Growth Mindset Scale was 3.57 (SD = 0.83); the mean item
score on the 4-item Growth Mindset Scale was 3.49 (SD = 0.87). The Guilt
Proneness Scale was significantly correlated with the 8-item Growth Mindset Scale,
but with a small magnitude (r = 0.14, p < 0.05). The Guilt Proneness Scale was
also significantly correlated with the 4-item Growth Mindset Scale, but also with a
small magnitude (r = 0.15, p < 0.05).

3.9 Measuring Fixed Versus Growth Mindset

Interestingly, the remaining items not used in the final IRT model (items 1, 2, 4, and
6) exhibit slightly stronger reliability and higher average inter-item covariance than
the 4-item scale containing items 3, 5, 7, and 8, shown in Table 7. Because of the
wording of the items, each set of 4 items may be conceptualized as a subscale
measuring two factors—growth mindset and fixed mindset.

In fact, in the original published scale, Dweck notes that items 1, 2, 4, and 6 “can
be used alone” (Dweck 1999, p. 178). The mean item-scores of both subscales are
correlated at r = 0.72, p < 0.01.

Lastly, the version of the Growth Mindset Scale that is currently used on www.
mindsetworks.com (“What’s My Mindset?” 2017), founded by Dweck in 2007,
uses completely different items with the exception of item 7. On www.

Table 6 ANOVA Results for 4-item growth mindset scale

Groups Df Mean square F Pr > F

URM 1 218.77 18.27 0.00
FGCS 1 186.66 15.54 0.00
Gender 1 0.00 0.00 0.99
Current student status 1 6.88 0.56 0.45
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mindsetonline.com (“Test Your Mindset,” 2017), another website run by Dweck,
the scale contains 16 items, incorporating new items that contain wording around
talent as well as intelligence.

4 Discussion

The IRT findings presented here suggest that the use of all 8-items may not be the
most efficient way to measure the latent construct of growth mindset. A subset of
four items (3, 5, 7, and 8) shows no local dependence or DIF among the known
groups in the sample, however, a unidimensional GRM still fit poorly. The items in
the final IRT model exhibit good test practices in the use of positive wording.
Additional IRT analysis is needed to determine if a unidimensional GRM for the
fixed mindset subscale fits better than the 4-item growth mindset subscale. IRT
analysis of the two new scales available online to assess their psychometric prop-
erties in comparison to the 4-item growth mindset is also recommended. One
limitation of this study is that all participants were college students; it is possible
that the 8-item scale performs differently in the larger, adult population. Until
additional IRT analyses are available, researchers are advised to use items 3, 5, 7,
and 8 for the measurement of growth mindset as a single latent construct.
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Considering Local Dependencies: Person
Parameter Estimation for IRT Models
of Forced-Choice Data

Safir Yousfi

Abstract The Thurstonian IRT model of Brown and Maydeu-Olivares (Educ
Psychol Meas 71:460–502, 2011) was a breakthrough in estimating the structural
parameters of IRT models for forced-choice data of arbitrary block size. However,
local dependencies of pairwise comparisons within blocks of more than two items are
only considered for item parameter estimates, but are explicitly ignored by the pro-
posed methods of person parameter estimation. A general analysis of the likelihood
function of binary response indicators (used Brown and Maydeu-Olivares) for arbi-
trary IRT models of forced-choice questionnaires is presented that reveals that Fisher
Information is overestimated by Brown and Maydeu-Olivares’ approach of person
parameter estimation. Increasing block size beyond 3 leads only to a slight increase
measurement precision. Finally, an approach that considers local dependencieswithin
blocks adequately is outlined. It allows for Maximum-Likelihood and Bayesian
Modal Estimation and numerical computation of observed Fisher information.

Keywords Forced-choice ⋅ Thurstonian IRT model ⋅ IRT
Person parameter estimation ⋅ Fisher information

Requiring respondents to assign ranks to questionnaire items that reflect their
preference within a block of items (i.e. the forced-choice Method) potentially
reduces or eliminates item response biases (e.g. acquiescence, extreme responding,
central tendency responding, halo/horn effect, social desirable response style)
typically associated with direct responses (like Likert-type or Yes/No ratings).
However, the ipsative nature of forced-choice data results in problematic psycho-
metric properties of classical scoring method (e.g. sum scores), i.e. construct
validities, criterion-related valdities and reliabilities are distorted (Brown and
Maydeu-Olivares 2013). Recently, Maydeu-Olivares and Brown (2010) proposed
an IRT approach to modeling and analyzing forced choice data that effectively
overcomes these problems by binary coding and considering local dependencies of
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the binary response indicators in the process of estimating the structural model
parameters. However, the proposed methods of person parameter estimation
explicitly neglect local dependencies of the binary response indicators within a
block. Consequently, the respective estimates of person parameters might be
flawed. Fisher information might be affected, too. Consequently, recommendations
derived from properties of the Fisher information matrix are also called into
question.

1 Notation

ð Þ is used to extract elements from vectors or matrices. The entries in the brackets
are positive integers and refer rows and columns, respectively.

⟨ ⟩ is used to extract parts from vectors or matrices respectively. The entries in
the brackets are vectors of positive integers and refer to rows and columns,
respectively.

A (•) indicates that all rows or columns are extracted.

2 Binary Coding of Forced Choice Data

Let yb be a random variable whose values denote the response of a person to the
forced choice block b which consists of nb items. For instance, yb =

2
3
1

0
@

1
A would

indicate that the respondent shows the strongest preference for the third item of
block b and the lowest preference for second response options. The response
pattern to full forced choice questionnaire of K blocks can be described by a
sequence of K rankings Y : = y1, . . . , yb, . . . , yKð Þ

Let Yb be a random quadratic matrix of dimension nb × nb, whereby the entry in
p-th row and the q-th column refers to the binary response variable ypq : =Ybðp, qÞ
with:

Yb p, qð Þ =
1 if ybðpÞ > ybðqÞ
0 if ybðpÞ ≤ ybðqÞ

�
ð1Þ

Maydeu-Olivares and Brown (2010) referred only to the entries above the
diagonal of Yb which results in a full description of the data as ypq =1− yqp.
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3 The Likelihood of the Response yb to Block b

Let Ω be the set of structural parameters of an arbitrary model for forced-choice
questionnaire data (e.g. the item parameters and the parameter of the latent trait
distribution of the Thurstonian IRT model established be Maydeu-Olivares and
Brown 2010). Let θ be vector of incidental person parameters (i.e. latent trait
values). lΩ; θðYÞ denotes the likelihood of the response pattern Y as a function of Ω
and θ. If local (i.e. conditional on θ) stochastic independence of the response to
different blocks holds, then lΩ; θðYÞ can be decomposed to the product of the
likelihood of the responses to the blocks:

lΩ; θðYÞ= ∏
K

b=1
lΩ; θ ybð Þ= ∏

K

b=1
lΩ; θ Ybð Þ ð2Þ

For person parameter estimation Maydeu-Olivares and Brown (2010) explicitly
neglected local dependencies of the binary response indicator within blocks which
results in:

lΩ; θ Ybð Þ≅ lUb⊥ : = ∏
ðp, qÞ∈Ub

lΩ̂; θ Ybðp, qÞ
� � ð3Þ

whereby Ub : = ðp, qÞjp, q∈ℕ, p< q≤ nbf g. However, if we consider the subset Nb

of Ub that refers to items with neighbored ranks (with respect to the response
pattern under consideration), i.e.

Nb := ðp, qÞjðp, qÞ∈Ub ∧ ybðpÞ − ybðqÞ
��� ���=1

n o
ð4Þ

it becomes obvious, that lUb⊥ is expected to be smaller than lΩ; θðYbÞ, because the
conditional likelihood of the binary comparisons of items with non-neighbored
rank, given the values of all binary comparisons of items with neighbored ranks is
always 1, i.e.

lΩ̂; θ Yb Ub −Nbð Þ
��YbðNbÞ

� �
=1 ð5Þ

because the binary comparisons of items with neighbored ranks imply the values of
the remaining binary response indicators (for the response pattern under
consideration).

This implies that

lΩ; θ Ybð Þ= lΩ̂; θ YbðNbÞ
� �

lΩ̂; θ Yb Ub −Nbð Þ
��YbðNbÞ

� �
= lΩ̂; θ YbðNbÞ

� � ð6Þ

Consequently, the likelihood of the response to the forced choice block equals
the joint likelihood of all binary comparisons that refer to neighbored ranks (for the
response pattern under consideration).
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Relaxing the assumption on local independence within a forced choice block by
neglecting only local dependencies of items with neighbored ranks results to

lΩ; θ Ybð Þ≅ lNb⊥ : = ∏
ðp, qÞ∈Nb

lΩ̂; θ Ybðp, qÞ
� � ð7Þ

and consequently

lNb⊥ ⋅ ∏
ðp, qÞ∈Ub −Nb

lΩ̂; θ Ybðp, qÞ
� � !

= lUb⊥ ð8Þ

The term in the brackets might be a good approximation of the size of under-
estimating lΩ; θ Ybð Þ by using lUb⊥. Considering the respective log-likelihoods

logLNb⊥ + ∑
ðp, qÞ∈Ub −Nb

logLΩ̂; θ Ybðp, qÞ
� �

= logLUb⊥ ð9Þ

it becomes obvious that the curvature of the log-likelihood and consequently the
observed Fisher information is expected to be overestimated by including the terms
that refer to binary comparisons of items with non-neighbored ranks.

If all binary comparison within a forced-choice would contribute independently
to the Fisher information then the amount of information would increase dramati-
cally with block size as there are nb nb − 1ð Þ binary comparisons. Figure 1 shows
how these expectation must be revised if local independence is only assumed for
items with neighbored ranks which leads to nb − 1 binary comparisons. Figure 1
includes direct (Likert-type response) item responses (to all the nb items of the
respective block) as benchmark (whereby it was assumed that a direct response is as
informative as a binary comparison within a forced-choice block). It is obvious that
the assumption of local independence of all binary item comparisons in a block
leads to expectations which are by far too optimistic. In particular, the forced choice
method is expected to outperform direct item responses under this scenario for
block sizes greater than 3. The relative efficiency of the forced choice method
(compared to Likert-type responses) would be expected to increase linearly with
block size. In contrast, if the assumption of local independence is restricted to
binary comparisons without algebraic dependencies the relative efficiency of the
forced choice method (compared to Likert-type responses) is also expected increase
monotonically. However, the positive effects of increasing block size are substantial
for very small blocks only. Forced-choice tests would not be expected to outper-
form Likert-type tests for any block size. These considerations are not tied to the
Thurstonian IRT model but apply to any arbitrary IRT measurement model of
forced-choice data. In the remainder it is outlined how local dependencies of
comparisons of items with neighbored ranks can be considered adequately in the
framework of the Thurstonian IRT model .
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4 Thurstonian MIRT Model of Forced Choice Data

Thurstone’s law of comparative judgment states, that the observed binary com-
parisons of the items Yb are determined by a vector latent utilities tb (of length nb)
in the following way:

Ybðp, qÞ =
1 if tbðpÞ − tbðqÞ ≥ 0
0 if tbðpÞ − tbðqÞ <0

�
ð10Þ

The entries in tb are assumed to be multivariate normally distributed:

tb ∼ N μb +Λbθ,Ψbð Þ ð11Þ

μb refers to the intercepts and Λb refers to the rows of matrix Λ (of factor loadings),
that correspond to the items of block b, respectively. ftb is the probability density
function of tb.

5 The Likehood Function of a Response Under
the Thurstonian MIRT Model

The likelihood of yb (the response to block b) is given by:

lΩ̂; θ ybð Þ= lΩ̂; θ Ybð Þ=
Z
Sb

ftbðxÞdx ð12Þ

absolute rela ve

Fig. 1 Relative efficiency of the forced-choice method as function of block size and assumptions
with regard to local dependencies
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whereby Sb refers to the region of ℝnb where the following system of nb − 1
inequalities holds true:

Cbtb⟨yb⟩ ≥ 0nb − 1 ð13Þ

whereby 0nb − 1 ∈ℝnb − 1 is a vector of nb − 1 entries of 0 and Cb is a matrix with
nb − 1 rows and nb columns with

Cbðp, qÞ =
1 if q= p
− 1 if q= p+1
0 if otherwise

8<
: ð14Þ

Geometrically, Sb is a nb-dimensional parallelotope with two infinite ends on
one of its dimensions and one infinite end on the remaining dimensions. Integration
of ftb over Sb can done by the methods developed by Genz (2004) which allows
computing the likelihood of any response to a forced-choice block. Computing the
log-likelihood across all blocks is straightforward and maximizing the respective
likelihood function to get Maximum-likelihood estimates of the latent trait can be
done by standard optimizing procedures. The observed Fisher information can
be computed numerically as well. The properties of the estimation procedure will be
dealt with by Yousfi (in prep.).

6 Conclusions

Recommendations for assembling forced-choice questionnaires of Brown and
Maydeu-Olivares (2011) that aim at measurement precision and trait recovery rely
to some degree on properties of the Fisher information matrix. However, ignoring
local dependencies might result in misleading conclusions. Brown and
Maydeu-Olivares (2011) warned that forced-choice blocks should not contain more
than four items in order to avoid cognitive overload, but established the expectation
that increasing block size should be an effective way to enhance measurement
precision. The considerations in this paper suggest that it usually won’t pay off to
increase block size until the limit of cognitive capacity is reached. The outlined
approach of computing the likelihood and Fisher information might contribute to a
solid psychometrical basis for recommendations with regard to the assembly of
forced choice questionnaires.
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Elimination Scoring Versus Correction
for Guessing: A Simulation Study

Qian Wu, Tinne De Laet and Rianne Janssen

Abstract Administering multiple-choice questions with correction for guessing
fails to take into account partial knowledge and may introduce a bias as examinees
may differ in risk-taking to guess the correct answer when not having full
knowledge. In the latter case, elimination scoring gives examinees the opportunity
to express their partial knowledge as this alternative scoring procedure requires
examinees to eliminate all the response alternatives they consider to be incorrect.
The current simulation study investigates how these two scoring procedures affect
response behaviors of examinees who differ not only in ability but also in their
attitude toward risk. Combining a psychometric model accounting for ability and
item difficulty with the decision theory accounting for individual differences in risk
aversion, a two-step response-generating model is proposed to predict the expected
answering patterns on given multiple-choice questions. The results of the simula-
tions show that overall there are no substantial differences in the answering patterns
for examinees at both ends of the ability continuum under two scoring procedures,
suggesting that ability has a predominant effect on the response patterns. Compared
to correction for guessing, elimination scoring leads to fewer full score response
and more demonstration of partial knowledge, especially for examinees with
intermediate success probabilities on the items. Only for those examinees, risk
aversion has a decisive impact on the expected answering patterns.

Keywords Multiple-choice questions ⋅ Elimination scoring ⋅ Correction for
guessing ⋅ IRT ⋅ Prospect theory
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1 Introduction

Multiple-choice (MC) questions are often scored dichotomously with a penalty for
wrong answers. This scoring method, known as “correction for guessing”, is based
on the assumption that examinees either possess the full knowledge to know the
answer to the question, or they do not know and guess randomly among all
response alternatives. However, this assumption fails to take partial knowledge into
account. Examinees can always use their partial knowledge to make an informed or
profitable guess rather than a random guess (Frary 1988). According to Lindquist
and Hoover (2015), what can only be implied from responses to MC questions is
that some examinees may answer the question on the basis of more certain or
complete knowledge, having a more accurate memory, or a sounder reasoning than
others. Therefore, responses to MC questions should be considered to be on a
continuum rather than a discrete know–don’t know dichotomy.

Moreover, in situations of partial knowledge, examinees may differ in their
willingness to guess—some are more daring to take the risk of receiving a penalty
in case they guess incorrectly, while others may take the more conservative
answering strategy of omission to avoid getting a penalty. Consequently, correction
for guessing may introduce a bias with regard to risk aversion (Bereby-Meyer et al.
2002; Lesage et al. 2013). This alleged bias has led some universities and testing
institutions to abandon correction for guessing on MC tests (De Laet et al. 2015;
SAT).

As an alternative to correction for guessing, elimination scoring (Coombs et al.
1956) gives examinees the opportunity to express their knowledge level on the MC
question by instructing examinees to eliminate all the response alternatives that they
consider to be incorrect. For a MC question with four alternatives, this leads to 15
possible answer patterns that can be classified into five different knowledge levels
(see Table 1). Note that the response of eliminating all alternatives (XXXX) is
considered to be irrational as one of them is known to be correct. Under the scoring
rule proposed by Arnold and Arnold (1970), partial credit is given to each correct
elimination of a distractor and a penalty to the elimination of the correct answer so
that the expected score of random elimination is zero (see the last column in
Table 1). It has been shown that by rewarding partial knowledge, elimination
scoring increases student performance and test satisfaction, while reduces test
anxiety (Bond et al., 2013; De Laet et al. 2016).

The current study aims to compare how these two scoring procedures affect
response behaviors of examinees who differ not only in ability but also in their
attitude toward risk. In a simulation study, a psychometric model of item response
theory (IRT) that takes into account ability of a person and item characteristics is
combined with a behavioral decision model of prospect theory that accounts for
individual differences in attitude toward risk and losses. The rationale of our study
is in line with the approach by Budescu and Bo (2015) who simulated the effect of
ability and risk aversion on response omissions on MC items under correction for
guessing using a model combining IRT and decision theory. In the present study,
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we expand their approach by simulating which particular response pattern exami-
nees of various levels of ability and risk aversion will give to a MC question under
the two scoring procedures. Although examinees in vivo may behave differently
from what a fully rational model predicts, the results of this in vitro study may
reveal the differential impact of ability and risk aversion under the two scoring
procedures and may give an indication of the size of the alleged willingness to
guess bias in MC questions.

2 Method

2.1 The Response-Generating Model

The model consists of two steps. In the first step, the Rasch model is used to model
the subjective probabilities of knowing the correct response to each of the alter-
natives of a MC item, given an examinee’s ability and the alternatives’ difficulties.
In the second step, prospect theory is used to predict how examinees make a
decision on how to answer the MC item given the obtainable scores for all possible
response patterns and their probabilities to receive those scores by taking into
account individual differences in risk aversion. A MC question with four response
alternatives A, B, C and D, of which A is the correct answer, is used as an example.

Step 1: Modeling the probability of knowing a correct response to each
alternative. Consider a MC question as a testlet with the four alternatives as its
binary sub-items. First, assume that those four sub-items can be viewed as fully
independent from each other. Then the probability of giving a correct response to
each alternative is modeled using the Rasch model with the examinee’s ability and
the sub-item’s difficulty as parameters, i.e., PðAcorrectÞ, PðBcorrectÞ, PðCcorrectÞ, and

Table 1 Response patterns and scores under correction for guessing and elimination scoring for a
multiple-choice item with four alternatives of which the first one is correct

Score

Knowledge level Response pattern Correction for guessing Elimination scoring
Full knowledge OXXX 1 1
Partial knowledge 2 OXXO, OXOX, OOXX – 1/3
Partial knowledge 1 OXOO, OOXO, OOOX – 1/9
No knowledge OOOO 0 0
Misconception XXXO, XXOX, XOXX −1/3 −1/3

XXOO, XOXO, XOOX – −1/3
XOOO – −1/3

Note X = elimination; O = non-elimination; –: not applicable; −1/3: the penalty for wrong
responses and eliminating the correct answer in correction for guessing and elimination scoring,
respectively
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PðDcorrectÞ, where the latter three probabilities refer to the probability of considering
that alternative as a wrong answer. Thus, a high ability not only increases the
probability of recognizing the correct answer, but also increases the probability of
identifying distractors as incorrect. The rationale behind using the Rasch model for
the individual sub-items is to consider the modeled probability on each alternative
as the probability of the examinee giving that answer indicated on the alternative as
would be the case that the MC question were posed in an open response format.
Hence, there would be a universe of all possible responses. Since the response
alternatives of the MC question are assumed to be only a sample of the universe of
all possible responses, the modeled probabilities on the given alternatives can be
used without the constraint of summing up to 1 at each level of ability.

Step 2: Modeling the decision-making process. The goal of a rational test-taker is
to maximize the expected scores on the test. As shown in Table 1, there are five
possible response patterns under correction for guessing (selecting one of the four
alternatives or omission), and 15 under elimination scoring (each alternative can be
eliminated or not). Each response pattern is associated with certain points set out by
the scoring rules. Given all the possible answering patterns and scores, prospect
theory (Kahneman and Tversky 1979) is used to predict which response will be
given by examinees.

Prospect theory is a behavioral economic theory that describes how people make
decisions between probabilistic alternatives under uncertainty and risk. The theory
states that people make decisions based on the potential values of gains and losses
rather than the objective outcomes. When faced with a number of actions, each of
which gives rise to more than one possible outcomes xk (k=1, 2, . . . , n) with
different (objective) probabilities pk , a person will make a decision that optimizes
the expected utility U, depending on the (a) subjective probability πðpkÞ of each
possible outcome, (b) the personal value function vðxkÞ of potential losses and
gains, and (c) the loss aversion parameter λ, as:

U = ∑
n

k=1
πðpkÞ*vðxkÞ ð1Þ

where

vðxkÞ= xa, when x≥ 0
− λ*ð− xÞβ, when x<0

�
ð2Þ

and a, β are diminishing sensitivity parameters,1 which were fixed to 0.75 in the
present study.

1a and β can take different values, but in many studies they are often set to be equal (see Budescu
and Bo 2015).
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According to the theory, each response pattern is a prospect. Since the correct
answer is not known to examinees, for each response pattern there are four possible
outcomes, namely, either A, B, C, or D being correct. The subjective probability of
such an occurrence is derived as the multiplication of the four possibilities on the
alternatives calculated in Step 1. That is, a subjective probability of considering A
being the correct answer, when it is indeed the correct response, implies giving
correct responses to all four sub-items, i.e., πA =PðAcorrectÞ*PðBcorrectÞ*PðCcorrectÞ*
PðDcorrectÞ. A subjective probability of B being the correct answer implies that two
incorrect responses are made: A is considered not as the correct answer and B not a
distractor, and hence, πB = 1−PðAcorrectÞ½ �* 1−PðBcorrectÞ½ �*PðCcorrectÞ*PðDcorrectÞ.
The subjective certainty of the other two alternatives follows the same logic,
πC = 1−PðAcorrectÞ½ �*PðBcorrectÞ* 1−PðCcorrectÞ½ �*PðDcorrectÞ and πD = 1−P½
ðAcorrectÞ�*PðBcorrectÞ*PðCcorrectÞ* 1−PðDcorrectÞ½ �.

Using these subjective probabilities, the expected utility of a response pattern is
then calculated as the sum of the personal values of obtainable scores weighted by
the probabilities of each outcome, taking into account the loss and risk aversion.
Table 2 gives the calculations of expected utilities for all response patterns. The
response pattern of omission has an expected utility of zero, as no points are to be
gained or lost. The answering pattern with the maximum utility is expected to be
chosen as the final response given by examinees to the MC question.

Table 2 Calculation of expected utilities of all possible answering patterns

Answering
pattern

Possible outcome: if the correct answer is …
A B C D

OXXX πA*1a + πB*− λ* 1
3

� �a + πC*− λ* 1
3

� �a + πD*− λ* 1
3

� �a
XOXX πA*− λ* 1

3

� �a + πB*1a + πC*− λ* 1
3

� �a + πD*− λ* 1
3

� �a
XXOX πA*− λ* 1

3

� �a + πB*− λ* 1
3

� �a + πC*1a + πD*− λ* 1
3

� �a
XXXO πA*− λ* 1

3

� �a + πB*− λ* 1
3

� �a + πC*− λ* 1
3

� �a + πD*1a

OOXX πA* 1
3

� �a + πB* 1
3

� �a + πC*− λ* 1
3

� �a + πC*− λ* 1
3

� �a
OXOX πA* 1

3

� �a + πB*− λ* 1
3

� �a + πC* 1
3

� �a + πD*− λ* 1
3

� �a
OXXO πA* 1

3

� �a + πB*− λ* 1
3

� �a + πC*− λ* 1
3

� �a + πD* 1
3

� �a
XOOX πA*− λ* 1

3

� �a + πB* 1
3

� �a + πC* 1
3

� �a + πD*− λ* 1
3

� �a
XOXO πA*− λ* 1

3

� �a + πB* 1
3

� �a + πC*− λ* 1
3

� �a + πD* 1
3

� �a
XXOO πA*− λ* 1

3

� �a + πB*− λ* 1
3

� �a + πC* 1
3

� �a + πD* 1
3

� �a
XOOO πA*− λ* 1

3

� �a + πB* 1
9

� �a + πC* 1
9

� �a + πD* 1
9

� �a
OXOO πA* 1

9

� �a + πB*− λ* 1
3

� �a + πC* 1
9

� �a + πD* 1
9

� �a
OOXO πA* 1

9

� �a + πB* 1
9

� �a + πC*− λ* 1
3

� �a + πD* 1
9

� �a
OOOX πA* 1

9

� �a + πB* 1
9

� �a + πC* 1
9

� �a + πD*− λ* 1
3

� �a
OOOO 0
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2.2 The Choice of the Person and Item Parameters

A sample of 2000 examinees was simulated with the ability parameters θi from a
normal distribution of Nð0, 1Þ. The level of risk aversion is modeled using the
loss-aversion parameter λi. The prospect theory states that typically losses hurt more
than gains feel good (Kahneman and Tversky 1979), and hence the value of λi is
usually equal to or larger than one. Given that there has been no empirical evidence
in the literature about the association between ability θi and risk aversion λi, these
two parameters are assumed to be uncorrelated in the current study, and the risk
aversion parameters λi is generated from a uniform distribution of U½1, 6�. Table 3
gives the different sets of difficulty parameters of the response alternatives of the
MC items that were used in the simulation. Items 1–3 are conventional items where
the correct alternative A has the highest difficulty. They represent items of low,
medium, and high difficulties, respectively. Item 4 is a so-called unconventional or
tricky item where one of the distractors is the most difficult, and Item 5 is a
conventional item of intermediate difficulty but with smaller difficulty differences
between response alternatives.

3 Results

Figure 1 presents the plots of the expected answering patterns on Items 1–5 as a
function of ability and risk aversion using the response generating model under the
two scoring procedures. Note that because the difficulties of the four alternatives are
arranged in an increasing order, only seven possible response patterns are observed.
Looking at the plots in general, it can be seen that there is a main effect of both
ability and risk aversion on the expected response patterns. However, as the sep-
arations between the adjacent response patterns in each of the plots are tilted, there
is also an interaction between both variables. The effect of risk-aversion depends on
the level of ability and vice versa. In case of two independent main effects, the
separations between the adjacent response patterns should follow straight vertical or
horizontal lines.

Table 3 Difficulty
parameters of the response
alternatives of multiple-choice
items used in the simulations

Response alternative
Item A* B C D

1 0 −1 −2 −3
2 1 0 −1 −2
3 2 1 0 −1
4 0 1 −1 −2
5 1 0.5 0 −0.5
Note *Alternative A is the correct answer
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The upper three sets of plots are the results from the three conventional items
with easy, medium, and high difficulties, respectively. Within each scoring pro-
cedure, there is a clear shift of the expected response patterns to the higher ability
end, expressing the change in success probabilities along the ability scale when
item difficulty increases.

To compare the response patterns under two scoring procedures, take a closer
look at Item 2 with the medium difficulty. For examinees with no risk aversion
ðλi =1Þ, there is a clear switch point on the ability scale between incorrect and
correct responses under correction for guessing (upper panel). Under elimination
scoring (lower panel), on the other hand, there is a small proportion of partial
knowledge observed around the switch point in correction for guessing, resulting in
a smaller amount of full score response. This suggests that at least part of the full
score response in correction for guessing is due to (informed) guessing. When given
the opportunity under elimination scoring, those examinees with partial knowledge
choose to express their doubt by leaving some alternatives open.

Item 1 Item 2 Item 3

Correction
for

Guessing

Elimination
scoring

Item 4 Item 5

Correction
for

Guessing

Elimination
scoring

Fig. 1 Plots of the expected answering patterns on Items 1–5 under correction for guessing and
elimination scoring
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When risk aversion increases, the proportion of omission responses increases
under correction for guessing, whereas under elimination scoring, omission is rather
scarce. Instead, examinees choose to show their partial knowledge. Note that this
effect is asymmetrical. It is more prominent for examinees with lower abilities. For
both scoring procedures, examinees with higher abilities ðθi >1Þ show no effect of
risk aversion—they all receive full scores; and examinees with lower abilities
ðθi <1Þ barely show the effect of risk aversion—they all give an incorrect response
receiving a penalty. The strongest effect of risk aversion is observed in the middle
range of the ability scale. These examinees only have partial knowledge of the item,
and hence, are in doubt. There is a fair probability of gaining the point, but also a
fair probability of receiving a penalty. Therefore, the factor of risk aversion has a
bigger impact for them. It is also interesting to notice that the separation between
misconception and omission under correction for guessing is more tilted than that
between misconception and the adjacent response categories under elimination
scoring, suggesting that to some extent elimination scoring diminishes the effect of
risk aversion, although not entirely.

The bottom left panel of Fig. 1 shows the expected answering patterns on an
unconventional item (Item 4). Under correction for guessing, the unconventional
item seems to confuse examinees with lower abilities and leads to more incorrect
responses compared with Item 2. In contrary, under elimination scoring the dis-
tributions of the knowledge levels on the two items are rather similar. There is no
increase in the amount of incorrect responses on the unconventional item. Lower
ability examinees still show misconception and higher ability examinees obtain a
full score. Examinees with partial knowledge obtain a higher score in elimination
scoring than in correction for guessing.

The comparison of the expected answering patterns on Item 2 and Item 5
(bottom right) indicates that when the differences between alternatives become
smaller, omission becomes the dominant strategy for most of the examinees who
are in doubt, given both scoring procedures. Nevertheless, examinees with rela-
tively higher abilities can still receive partial credit by demonstrating partial
knowledge under elimination scoring, while examinees with lower abilities tend to
lose points by showing misconception.

4 Discussion

4.1 Conclusions

The results of the simulation study show that overall ability has a predominant
effect on the response patterns. There are no substantial differences in the answer
patterns for examinees at both ends of the ability continuum under two scoring
procedures. Risk aversion only has a stronger impact for examinees with inter-
mediate success probabilities on the items, but elimination scoring diminishes this
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effect to some extent. When examinees are in doubt, they benefit from elimination
scoring by leaving the alternatives they feel uncertain about open and obtaining
partial credit on the correct elimination(s) they can make. Although the majority of
the variation in responses is captured by ability, supporting the validity of
administering MC tests with correction for guessing, elimination scoring may
further improve MC tests by reducing the effect of risk aversion on examinees who
are in doubt. Note that the impact of risk aversion depends on the relative difficulty
of the item for the examinee. When a test is composed of items of a wide range of
difficulties, risk aversion affects examinees in several ranges on the ability scale, but
not necessarily on all the items. Moreover, in case risk aversion and ability are in
reality correlated, the former variable may also indirectly affect the response
probabilities on each of the alternatives and hence have a higher impact on the
responses.

By rewarding partial knowledge and allowing expression of doubt, elimination
scoring offers examinees the opportunity to express their uncertainty when they do
not have full knowledge, and consequently reduces the need and the amount of
guessing the correct answer to the question. It is also useful in providing both
examinees and examiners with more differentiated feedback on what kind of mis-
conception or problems examinees have, and facilitate remedial instructions for
future learning. Ben-Simon et al. (1997) concluded in their comparative study of
several scoring methods in MC tests that no response method was uniformly best
across criteria and content domains, but the current study shows that elimination
scoring can be a more neutral (with respect to risk aversion), and hence, a viable
alternative to correction for guessing in MC tests.

4.2 Limitations

The conclusions of this study were drawn given a theoretical model set up to predict
examinees’ purely rational decisions based on ability and risk aversion. The
response-generating model used in the study may be a simplified representation of
real response behaviors to MC items in the following ways.

First, the alternatives of the MC items are treated as independent sub-items in the
first psychometrical step when estimating the response probabilities, and then are
considered simultaneously in the second decision-theoretical step when choosing
the most optimal answering pattern. Another possibility is to model the probability
of being in a certain knowledge level for the MC item as a whole and then using
prospect theory to make a response decision, as was done by De Laet et al. (2016).
Despite its different approach, the latter study yielded similar conclusions as the
present one.

Second, the subjective probabilities of each possible outcome used in the cal-
culation of the expected utility in the second step were set equal to the objective
(true) probabilities derived from the Rasch model in the first step. However,
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according to the prospect theory, these two probabilities do not necessarily match
perfectly, because people tend to mis-calibrate extreme probabilities, e.g., over-
confidence or underestimation (Kahneman and Tversky 1979). A potential link
function between the subjective and objective probabilities as proposed by Budescu
and Bo (2015) may be a useful addition to the model.

Finally, it is hard to see how the risk aversion parameter in prospect theory links
to the reality of MC items, given that a high value of λi may correspond to a
perceived value of the penalty that is much higher in absolute value than the value
of one point an item has. In sum, although useful theoretical results were obtained
on the comparison of the two scoring procedures, the present in vitro study should
definitely be supplemented with empirical in vivo studies on examinees’ response
behaviors.
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Three-Way Generalized Structured
Component Analysis

Ji Yeh Choi, Seungmi Yang, Arthur Tenenhaus
and Heungsun Hwang

Abstract Generalized structured component analysis (GSCA) is a component-based
approach to structural equation modeling, where components of observed variables
are used as proxies for latent variables. GSCA has thus far focused on analyzing
two-way (e.g., subjects by variables) data. In this paper, GSCA is extended to deal
with three-way data that contain three different types of entities (e.g., subjects, vari-
ables, and occasions) simultaneously. The proposedmethod, called three-wayGSCA,
permits each latent variable to be loaded on two types of entities, such as variables and
occasions, in the measurement model. This enables to investigate how these entities
are associated with the latent variable. The method aims to minimize a single least
squares criterion to estimate parameters. An alternating least squares algorithm is
developed to minimize this criterion. We conduct a simulation study to evaluate the
performance of three-way GSCA. We also apply three-way GSCA to real data to
demonstrate its empirical usefulness.
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1 Introduction

Generalized structured component analysis (GSCA; Hwang and Takane 2004,
2014) is a component-based approach to structural equation modeling, in which
weighted composites or components of observed variables are used as proxies for
conceptual or latent variables. GSCA involves three sub-models to specify a general
structural equation model: weighted relation, measurement, and structural models.
The weighted relation model is used to define a latent variable as a weighted
composite or component of observed variables; the measurement model is to
specify the relationships between latent variables and their observed variables; and
the structural model is to express the relationships between latent variables.
In GSCA, these three sub-models are combined into a single model formulation,
which in turn facilitates the derivation of a global optimization criterion for
parameter estimation. An alternating least squares algorithm (de Leeuw et al. 1976)
was developed to minimize this criterion.

Various extensions of GSCA have been developed to enhance its data-analytic
scope and flexibility. For instance, Hwang et al. (2007) proposed fuzzy clusterwise
GSCA, which integrated GSCA and fuzzy clustering in a unified framework to
uncover subgroups of observations, each of which may involve different
path-analytic relationships between observed and latent variables. Another exten-
sion focused on accommodating various interaction terms of latent variables
(Hwang et al. 2010). Moreover, Hwang et al. (2007) developed multilevel GSCA to
take into account hierarchically structured data, where cases at a lower-level unit are
grouped within those at a higher-level unit, e.g., students nested within classrooms.
Refer to Hwang and Takane (2014) for a comprehensive discussion of a wide range
of the extensions.

To date, GSCA and all its extensions have been geared for the analysis of
two-way data, which contain two different types of entities (e.g., subjects and
variables). Nonetheless, in practice, the same subject can often be measured on a set
of variables over another type of entities, for example, times or situations. This
gives rise to so-called three-way data consisting of three different types of entities
concurrently, each of which is called a mode. A few examples of three-way data
include neuroimaging data as an array of subjects by brain locations by time points/
scans (e.g., Cox 1996; Germond et al. 2000; Thirion and Faugeras 2003),
fluorescence spectroscopy data as an array of samples by emission spectra by
excitation wavelengths (e.g., Andersen and Bro 2003; Bro 1997; Christensen et al.
2005), and multivariate longitudinal data as an array of subjects by variables by
occasions (e.g., Kroonenberg 1987; Kuze et al. 1985; Oort 2001). Although there
exist various forms of three-way data, as mentioned above, we shall assume an
array of subjects by variables by occasions as the standard data structure hereafter
unless otherwise specified.

Having collected data in a three-way array structure, researchers in many areas
of psychology, such as neuropsychology, developmental and cognitive psychology,
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are interested in addressing at least two different types of questions (e.g., De Roover
et al. 2012; Ferrer and McArdle 2010; Kroonenberg 2008). The first main objective
is aimed at revealing relationships among latent and observed variables, and the
second is at describing how the modelled psychological process unfolds over dif-
ferent occasions. While the first objective itself can be addressed by aggregating or
pooling three-way data over the third mode and then applying two-way data
analysis, to answer both types of questions simultaneously, researchers should be
able to exploit the three-way data as they are collected.

In this paper, we propose an extension of GSCA to the analysis of three-way
data, called three-way GSCA. Three-way GSCA is free from any aggregating or
pooling procedure and applies the analysis directly to the three-way data. As in
GSCA, three-way GSCA consists of the same sub-models. However, it extends the
measurement model to relate each latent variable to entities in both second and third
modes (i.e., variables and occasions, respectively), so that it provides the estimates
of loadings for both second and third modes simultaneously. As a result, three-way
GSCA enables researchers to investigate how variables and occasions are associ-
ated with a latent variable.

Three-way GSCA differs from other approaches to three-way data, multilinear
partial least squares (M-PLS; Bro 1996) and multiway regularized generalized
canonical correlation analysis (MGCCA; Tenenhaus et al. 2015). M-PLS extracts
components of a set of three-way data via parallel factor analysis (PARAFAC;
Harshman 1970) and then investigates the effects of the components on endogenous
observed variables. M-PLS involves two sequential steps of estimating model
parameters (i.e., one step for estimating components and another for estimating
regression coefficients). In contrast, three-way GSCA involves a single estimation
procedure to estimate all parameters simultaneously. Also importantly, three-way
GSCA is more general than M-PLS, because the former can contemplate multiple
sets of exogenous and endogenous three-way data, whereas the latter concerns
multiple sets of exogenous three-way data only. Recently, RGCCA was proposed to
analyze multiple sets of three-way data. MGCCA extracts components from each
set of three-way data in such a way that they are mutually orthogonal to each other
within the same set, but maximally correlated across different sets. However,
MGCCA focuses on investigating non-directional associations (i.e., correlations)
among multiple sets of three-way data. Conversely, three-way GSCA aims to
examine directional (path-analytic) relationships among latent variables as well as
observed entities in three-way data.

The paper is organized as follows. In Sect. 2, we provide technical accounts of
three-way GSCA. It describes model specification and parameter estimation. In
Sect. 3, we conduct a Monte Carlo simulation study to evaluate the performance of
three-way GSCA in parameter recovery. In Sect. 4, we illustrate the empirical
feasibility through the analysis of a real data set. In the final section, we summarize
the implications of three-way GSCA and discuss directions for future research.
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2 Method

LetXp denote the pth three-way data set (p = 1,…,P), arranged in a block of I by Jp by
Kp,where I is the number of entities (e.g., subjects) in thefirstmode,which is assumed to
remain the same across all P data sets, Jp is the number of entities (e.g., variables) in the
secondmode, andKp is the number of entities (e.g., occasions) in the thirdmode. LetXp

denote an I by JpKpmatrix constructed by aligning each I by Jp frontal matrix ofXp Kp

times next to one another. Let Xp have been centered across the first mode and nor-
malizedwithin the secondmode. This centering is done by subtracting the columnmean
from every value in each column of Xp (Bro 1997). Also, we assume that Xp are
normalized within the variables’mode to adjust their values measured in different units
to a common scale. It is performed by dividing each element in data by a square root of
sum of squares of all element associatedwith the jpth variable (Bro 2003). Let γp denote
an I by 1 column vector of the pth latent variable scores. Letwp = wp11, . . . ,wpJP1,

�
wp12, . . . ,wpJP2, . . . ,wp1KP , . . . ,w1JPKP �′ denote a JpKp by 1 column vector of com-

ponent weights for the pth latent variable. Let cJp = cJp1, . . . , cJp JP

h i′
and

cKp = cKp1, . . . , cKpKP

h i′
denote a Jp by 1 andKp by 1 columnvectors of loadings relating

γp to the second and third modes of the pth data set, respectively.
As stated earlier, three-way GSCA involves three sub-models. The weighted

relation model defines a latent variable as a weighted composite or component of
the first mode, as follows:

γp =Xpwp. ð1Þ

This is similar to (two-way) GSCA. On the other hand, the measurement model
specifies the relationship between entities in the second and third modes and its
latent variable, as follows:

Xp = γp cKp ⊗ cJp
� �

′ + E1p, ð2Þ

where E1p is the residual for Xp, and ⊗ indicates the Kronecker product. More
generally, let X* = X1, X2, . . . ,XP½ �, Γ= γ1, γ2, . . . , γP½ � and E1 = E11, E12, . . . ,½
E1P�. The measurement model can be then re-expressed in matrix notation as follows:

X* =ΓC+E1, ð3Þ

where C=
cK1 ⊗ cJ1
� �

′ 0 0
0 ⋱ 0
0 0 cKP ⊗ cJP

� �
′

2
4

3
5.

The structural model expresses hypothesized path-analytic relationships among
latent variables as follows:
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γp = ∑
P

q= 1
γqbqp + ε2p, ð4Þ

where bqp indicates a path coefficient of γq on γp, and ε2p an I by 1 vector of
residuals. In matrix notation, the structural model is re-expressed as

Γ=ΓB+E2, ð5Þ

where B is the matrix whose (q, p)th element is bqp and E2 = ε21, ε22, . . . , ε2p
� �

.
Figure 1 shows a hypothetical example of a three-way GSCA model. This model

involves two three-way data sets (P = 2), each of which consists of three entities in
the second (J1 = J2 = 3) and two entities in the third mode (K1 = K2 = 2). In this
example, the weighted relation model specifies two latent variables γ1 and γ2 as
follows.

γ1 =X1w1 =X1

w111

w121

w131

w112

w122

w132

2
6666666664

3
7777777775
, γ2 =X2w2 =X2

w211

w221

w231

w212

w222

w232

2
6666666664

3
7777777775
, ð6Þ

Fig. 1 A hypothetical three-way GSCA model with two latent variables
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where X1 and X2 are an I by 6 matrix unfolded from X1 and X2 by arranging an I by
3 frontal matrix of X1 and X2 next to one another, respectively. In the measurement
model, X1 and X2 are assumed to load on γ1 on γ2, and hence their loading vectors
cJ1, c

K
1 , c

J
2, and cK2 in (2) would be written as

cJ1 =
cJ11
cJ12
cJ13

2
4

3
5, cK1 = cK11

cK12

� 	
, cJ2 =

cJ21
cJ22
cJ23

2
4

3
5, cK2 = cK21

cK22

� 	
. ð7Þ

The structural model in Fig. 1 hypothesizes the effect of γ1 on γ2 and B in (5)
can be expressed as

B=
0 b12
0 0

� 	
. ð8Þ

To estimate the parameters of three-way GSCA (weights, loadings, and path
coefficients), we aim to minimize the following least squares criterion:

ϕ= ∑
P

p=1
SS Xp − γp cKp ⊗ cJp

� �′

 �

+SS Γ−ΓBð Þ, ð9Þ

subject to γ′pγp = 1, cJ′p c
J
p =1, and cK′p cKp =1, where SS(M) = tr(M′M).

An Alternating Least Squares (ALS) algorithm (de Leeuw et al. 1976) is
developed to minimize (9). It alternates three steps until convergence: each set of
the unknown parameters, wp, cJp and cKp , and B, is updated alternately while the
other sets are fixed. A detailed description of the ALS algorithm is provided in the
Appendix.

As in GSCA, we can measure an overall measure of fit, called FIT (Hwang and
Takane 2004). This index shows how much variance of all observed and latent
variables is accounted for by the specified model. It is calculated as

FIT= 1−
∑P

p=1 SS Xp − γp cKp ⊗ cJp
� �′


 �
+SS Γ−ΓBð Þ

∑P
p=1 SS Xp

� �
+SS Γð Þ . ð10Þ

The FIT index would range from 0 to 1, and the larger FIT index, the more
variation of endogenous variables is explained by the model.

In three-way GSCA, the bootstrap method (Efron 1982) is used to estimate the
standard errors or confidence intervals of parameter estimates, which can be used
for testing their statistical significance.
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3 A Simulation Study

We performed a Monte Carlo simulation to investigate the parameter recovery
capability of three-way GSCA. For the simulation study, we considered two
three-way data sets (P = 2), each of which consisted of four entities in the second
and third modes (Jp = Kp = 4). We chose parameter values as follows: all loadings
in cJp and c

K
p were equal to 0.5; all weights in wp were 0.2; and the path coefficient in

B was 0.3. The prescribed loadings, weights, and path coefficient were combined

into V = [I W] and A = [C B], where W = w1 0
0 w2

� 	
and C = h′1 0

0 h′2

� 	
whose diagonal element is calculated as h′p = cKp ⊗ cJp

� �
′. We aligned the two

three-way data sets as X* = X1 X2½ � and re-expressed (4) in matrix notation as
follows: X* V−WAð Þ=E, where E = E1 E2½ �. In this study, each column of
E was assumed to follow the standard normal distribution. Then, data were gen-

erated from X* =EQ′ QQ′
� �− 1, where Q=V−WA.

We considered five levels of sample size (i.e., the number of entities in the first
mode): I = 50, 100, 200, 500, and 1000. At each sample size, 500 replications were
obtained, thus yielding a total of 2,500 data sets. Three-way GSCA was applied to
each of the generated data sets to estimate the four sets of parameters (i.e., wp, cJp
and cKp , and B). To evaluate parameter recovery of three-way GSCA, we computed
the average relative biases, standard deviations, and mean squared errors (MSE) of
the estimates.

3.1 Results

Table 1 provides the average relative biases, standard deviations, and MSE of the
estimates across the five different sample sizes. In this study, we regarded absolute
values of relative bias greater than 10% as indicative of an unacceptable degree of
bias (Bollen et al. 2007; Lei 2009).

As shown in Table 1, on average, when I = 50, all sets of estimates showed
large relative biases (greater than 10%), indicating that the estimates of wp, cJp and
cKp were positively biased, whereas those of B were negatively biased. On the other
hand, the relative biases of the estimates became smaller with sample sizes, and
when I ≥ 200, they were considerably smaller than 10% in absolute value. The
standard deviations of the estimates became smaller when the sample size
increased. In regards to the MSE of the estimates, on average, although the MSE
values tended to be somewhat large at I = 50, they decreased and became quite
close to zero as the sample size increased. Overall, these simulation results sug-
gested that three-way GSCA seems to recover population parameters reasonably
well unless the sample size was too small (I ≤ 50).
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4 An Empirical Application

The present example is based on a sub-sample of children born in 1982 from the
National Longitudinal Survey of Youth 1979-Children (NLSY79-C), a longitudinal
study following up children of female participants of the NLSY79 every 2 years
starting in 1986 (Center for Human Resource Research 2004). It contains three sets
of three-way data, which are an array of subjects by variables by time points. More
specifically, as described in Table 2, each latent variable in the model was assumed
to be linked to a set of observed variables.

The first latent variable problem behavior was assumed to be associated with six
variables (ANTI, ANX, DEP, HEAD, HYPR, and PEER), measured by Behavior
Problems Index (Peterson and Zill 1986) across five different time points between
6–14 years of age with a 2-year interval. The second latent variable was home
environment with two age-standardized variables (COGNZ and EMOTZ), mea-
sured using the Home Observation for Measurement of the Environment (Bradley
and Caldwell 1984) across the five time points. The third latent variable cognitive
performance with three variables (MATHZ, RECOGZ, and COMPZ) was mea-
sured by the Peabody Individual Achievement Test across the five time points.
Higher values of problem behavior represent greater extents of misbehaviors,
whereas those of home environment and cognitive performance indicate more stable

Table 1 The average values
of relative biases (rbias),
standard deviations (SD), and
mean square errors (MSE) of
parameter estimates across
different sample sizes

Parameter Sample size rbias SD MSE

W I = 50 40.92 0.15 0.082
I = 100 23.38 0.12 0.017
I = 200 8.31 0.09 0.007
I = 500 0.79 0.05 0.002
I = 1000 −1.24 0.03 0.001

cJ I = 50 22.47 0.31 0.112
I = 100 11.80 0.23 0.059
I = 200 4.32 0.14 0.022
I = 500 1.36 0.08 0.007
I = 1000 0.64 0.06 0.003

cK I = 50 22.69 0.32 0.113
I = 100 12.94 0.24 0.065

I = 200 5.20 0.16 0.026
I = 500 1.61 0.09 0.008
I = 1000 0.75 0.06 0.004

B I = 50 −18.13 0.30 0.093
I = 100 3.47 0.16 0.025
I = 200 3.62 0.09 0.008
I = 500 6.26 0.04 0.002
I = 1000 8.49 0.03 0.002
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emotional states and higher levels of competence. Figure 2 displays the hypothe-
sized relationships among the three latent variables in the structural model. It was
assumed that problem behavior influenced cognitive performance, and home
environment was also assumed to affect both problem behavior and cognitive
performance.

Tables 3, 4 and 5 present the estimates of weights, loadings, and path coeffi-
cients obtained from three-way GSCA. In three-way GSCA, a weight is estimated
for the jpth variable at the kpth time point, which shows the contribution of the
variable to defining its latent variable at a particular time point.

Table 2 A summary of latent and observed variables for the national longitudinal survey of youth
1979-Children (NLSY79-C) data

Latent variables Observed variables

Problem behavior ANTI: antisocial
ANX: anxious/depressed
DEP: dependent
HEAD: headstrong
HYPR: hyperactive
PEER: peer conflict/withdrawn

Home environment COGNZ: cognitive stimulation
EMOTZ: emotional support

Cognitive performance MATHZ: math
RECOGZ: reading recognition

COMPZ: reading comprehension (total)

Fig. 2 A three-way GSCA model for the National Longitudinal Survey of Youth 1979-Children
(NLSY79-C) data
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Table 4 presents the loading estimates and their 95% confidence intervals
obtained from three-way GSCA. The loading estimates signify how each latent
variable is associated with entities in the second and the third mode. As shown in
the table, problem behavior was positively and statistically significantly related to
their corresponding entities in the second mode indicating that higher values of
problem behavior represented greater extents of misbehaviors (e.g., more antisocial,
anxious, and/or dependent). It had the highest association with the variables HYPR
and HEAD, followed by ANTI, ANX, PEER, and DEP. This latent variable was

Table 3 Weight estimates obtained from three-way GSCA for the national longitudinal survey of
youth 1979-Children (NLSY79-C) data

Latent Variables Time
points

Estimate Latent Variables Time
points

Estimate

Problem
behavior

ANTI T1 0.07 Home
environment

COGNZ T1 0.03
T2 0.06 T2 0.04
T3 0.03 T3 0.01
T4 0.06 T4 0.10
T5 0.07 T5 0.10

ANX T1 0.04 EMOTZ T1 0.10
T2 0.09 T2 0.06
T3 0.07 T3 0.16
T4 0.02 T4 0.14
T5 0.07 T5 0.07

DEP T1 0.06 Cognitive
performance

MATHZ T1 0.11
T2 0.05 T2 0.10
T3 0.08 T3 0.12
T4 0.05 T4 0.11
T5 0.05 T5 0.08

HEAD T1 0.05 RECOGZ T1 0.13
T2 0.09 T2 0.20
T3 0.02 T3 0.26
T4 0.03 T4 0.16
T5 0.05 T5 0.21

HYPR T1 0.06 COMPZ T1 0.13
T2 0.07 T2 0.11
T3 0.06 T3 0.06
T4 0.05 T4 0.14
T5 0.07 T5 0.09

PEER T1 0.05
T2 0.04
T3 0.05

T4 0.07
T5 0.05
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also positively and statistically significantly related to the five time points in the
third mode. All the loading estimates for the time points were large, which was

consistent with that those who exhibited problematic behaviours tended to continue
to show these behaviors over time (Biederman et al. 2001). Home environment was
positively and statistically significantly related to two observed variables in the
second mode (COGNZ and EMOTZ), suggesting that its higher values indicated
more cognitive and emotional supports at home. It was also positively and statis-
tically significantly associated with all the time points in the third mode, although
the first time point (T1) was less strongly associated with the latent variable than the
other time points. Similarly, cognitive performance was positively and statistically

Table 4 Loading estimates obtained from three-way GSCA for the national longitudinal survey
of youth 1979-Children (NLSY79-C) data

Latent Entities in the second mode Entities in the third mode

Variables Estimate 95% CI Time points Estimate 95% CI

Problem behavior ANTI cJ11
� �

ANX cJ12
� �

DEP cJ13
� �

HEAD cJ14
� �

HYPR cJ15
� �

PEER cJ16
� �

0.45
0.35
0.30
0.49
0.50
0.31

0.39–0.50
0.28–0.42
0.23–0.36
0.44–0.53
0.45–0.55
0.19–0.39

T1 cK11
� �

T2 cK12
� �

T3 cK13
� �

T4 cK14
� �

T5 cK15
� �

0.42
0.45
0.48
0.44
0.44

0.320.52
0.40–0.51
0.39–0.56
0.350.52
0.38–0.51

Home environment COGNZ cJ21
� �

EMOTZ cJ21
� � 0.51

0.65
0.46–0.57
0.61–0.69

T1 cK21
� �

T2 cK22
� �

T3 cK23
� �

T4 cK24
� �

T5 cK25
� �

0.15
0.49
0.51
0.49
0.49

0.03–0.25
0.40–0.56
0.46–0.56
0.43–0.56
0.43–0.57

Cognitive performance MATHZ cJ31
� �

RECOGZ cJ32
� �

COMPZ cJ33
� �

0.56
0.79
0.62

0.51–0.59
0.71–0.88
0.47–0.71

T1 cK31
� �

T2 cK32
� �

T3 cK33
� �

T4 cK34
� �

T5 cK35
� �

0.47
0.55
0.51
0.32
0.35

0.37–0.54
0.48–0.64
0.41–0.60
0.21–0.41
0.26–0.42

Table 5 Path coefficients’ estimates obtained from three-way GSCA for the national longitudinal
survey of youth 1979-Children data

Path coefficient Estimate 95% CI

Problem behavior → Cognitive performance ðb1Þ −0.20 −0.46 to −0.05
Home environment → Problem behavior ðb2Þ −0.16 −0.42–0.14
Home environment → Cognitive performance ðb3Þ 0.50 0.27–0.70
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significantly related to all the variables in the second mode, indicating that its higher
values represented higher levels of competence in mathematics and reading com-
prehension. It was most highly associated with RECOGZ, followed by COMPZ and
MATHZ. It was also positively and statistically significantly related to all the time
points in the third mode, although it was more highly correlated with earlier time
points (e.g., T1–T3).

Table 5 displays the estimated path coefficients and their 95% confidence
intervals. Problem behavior had a negative and statistically significant effect on
cognitive performance, suggesting that children with a higher level of problem
behavior were more likely to have a disrupted performance on cognitive tasks.
Home environment had a negative yet statistically non-significant impact on
problem behavior, whereas it had a positive and statistically significant effect on
cognitive performance. This indicates that children in more stimulating and sup-
portive environments were more likely to show better cognitive functioning, which
is consistent with previous studies (Totsika and Sylva 2004).

5 Concluding Remarks

We generalized GSCA to the analysis of three-way data. Three-way GSCA enables
to describe the directional relationships among latent variables as well as the
relationships between entities in the second and third modes and the latent vari-
ables. A simulation study was conducted to evaluate the parameter recovery
capacity of three-way GSCA. Three-way GSCA was found to recover parameters in
a given model sufficiently well unless the sample size was too small. The usefulness
of the proposed approach was also demonstrated through the analysis of real data.
Besides investigating the interrelations among observed and latent variables,
three-way GSCA enabled to examine which entities in the third mode were highly
related to latent variables.

We may extend three-way GSCA to further improve its applicability. For
example, we may extend three-way GSCA to accommodate so-called functional
data (Ramsay and Silverman 2005). When a mode’s responses can be sequenced
along a continuum, such as time, frequency, or spatial location, and are intensively
recorded at more than a handful points, it may be more natural to view them as a
single connected entity or a function varying over the continuum. We can gener-
alize three-way GSCA to permit observed responses in a mode to be functional
rather than multivariate.

At present, three-way GSCA estimates all parameters by aggregating data across
entities in the first mode (e.g., subjects) under the assumption that such entities are
drawn from a homogenous population. Nonetheless, such an assumption may be
easily violated in practice, and rather it is more plausible to assume that there exist
heterogeneous subgroups or clusters of the population (e.g., Mun et al. 2008). To
address this issue, we may combine three-way GSCA with a clustering method
(e.g., non-overlapping k-means clustering (Hartigan and Wong 1979) or fuzzy
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c-means clustering (Bezdek 1974) in order to allow estimating cluster memberships
of entities in the first mode as well as cluster-specific parameters.

Appendix

The ALS algorithm repeats the following three steps until convergence.

Step 1. Update weights (wp’s) for fixed cJp, cKp , and B. This is equivalent to
minimizing

ϕ= ∑
P

p=1
SS Xp − γpðcKp ⊗ cJpÞ′

� �
+SS γpe′p +Γð− pÞ − γpb′p −Γð− pÞBð− pÞ

� �

= ∑
P

p=1
SS Xp − γpðcKp ⊗ cJpÞ′

� �
+SS γptp −Δp

� �
= ∑

P

p=1
SS Xp − γpq′p

� �
+SS γptp −Δp

� �
,

ðA:1Þ

subject to γ′pγp =1, where qp = ðcKp ⊗ cJpÞ, tp = e′p −b′p, and

Δp =Γð− pÞBð− pÞ −Γð− pÞ. In (A.1), Γ − pð Þ and B − pð Þ indicate Γ and B, whose
columns are all zero vectors except the pth column, respectively, and e′p indicates a
1 by P vector, whose elements are all zero except the pth element being unity.
Based on (1), (A.1) can be re-expressed as

ϕ= ∑
P

p=1
SS Xp −Xpwpq′p

� �
+SS Xpwptp −Δp

� �
= ∑

P

p=1
tr X′

pXp
� �

− 2w′

pX
′

pXpqp +w′

pX
′

pXpwpq′pqp
� �

+w′

pX
′

pXpwptpt′p − 2w′

pX
′

pΔpt′p + tr Δ′

pΔp

� �
.

ðA:2Þ

Solving ∂ϕ
∂wp

= 0, wp is updated by

ŵp = qpq
′

pX
′

pXp + tpt′pX
′

pXp

� �− 1
X′

pXpqp +X′

pΔpt′p
� �

. ðA:3Þ

Subsequently, γp is updated by γp =Xpbwp and normalized to satisfy the con-
straint γ′pγp =1.
Step 2. Update cJp and cKp for fixed wp and B. This is equivalent to applying parallel
factor analysis (PARAFAC) (Harshman 1970), subject to cJ′p c

J
p =1, and cK′p cKp =1.
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We can simply use the ALS algorithm for PARAFAC to update cJp and cKp (Acar
and Yener 2009; Harshman 1970; Olivieri et al. 2015).

Step 3. Update B for fixed wp, cJp and cKp . This is equivalent to minimizing

ϕB =SS Γ−ΓBð Þ
=SS vec Γð Þ− Ip⊗Γ

� �
vec Bð Þ� �

=SS vec Γð Þ−Ψuð Þ
ðA:4Þ

where vec(S) is a super vector formed by stacking all columns of S in order,
u denotes free parameters to be estimated in vec(B), and Ψ is a matrix consisting of
the columns of Ip ⊗Γ corresponding to the free parameters of vec(B) The estimate
of u is obtained by

û= Ψ′Ψ
� �− 1Ψ′ vec Γð Þ. ðA:5Þ

Then, bB is reconstructed from bu.
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Combining Factors from Different Factor
Analyses Based on Factor Congruence
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Abstract While factor analysis is one of the most often used techniques in

psychometrics, comparing or combining solutions from different factor analyses can

be cumbersome even though it is necessary in several situations. For example, when

applying multiple imputation (to account for incompleteness) or multiple outputation

(which can be used to deal with clustering in multilevel data) often tens or hundreds

of results have to be combined into one final solution. While different solutions have

been in use, we propose a simple and easy to implement solution to match factors

from different analyses based on factor congruence. To demonstrate this method,

the Big Five Inventory data collected under the auspices of the Divorce in Flanders

study was analysed combining multiple outputation and factor analysis. This mul-

tilevel sample consists of 7533 individuals coming from 4460 families with about

10% of missing values.
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1 Introduction

While factor analysis is one of the most often used techniques in psychometrics, com-

paring and/or combining solutions from different factor analyses can be

cumbersome even though combining factors is necessary in several situations. Such

situations include using factor analysis with multiple imputation (to account for

incompleteness; Rubin 1976; Little and Rubin 2002; Carpenter and Kenward 2012)

or with multiple outputation (which is a simple solution to deal with multilevel data

when one wants to use methods that require independent observations; Follmann

et al. 2003). In both situations, often tens or hundreds of results have to be combined

into one final solution. Also, assessing the factorial invariance for factors from dif-

ferent studies or samples, for example in the case of a cross-cultural study, may be

of interest.

Although several solutions have been proposed, such as a confirmatory maximum

likelihood procedure (e.g., Jöreskog 1966) or methods based on procrustes rotations

(e.g., Korth and Tucker 1975), they are often complicated and difficult to implement

(Lorenzo-Seva and ten Berge 2006) or limited in use. For the latter, a good example

is Cattell’s index of proportionality, which assumes “that the variance of each factor

in one experiment shall be different . . . from that of the corresponding factor in the

second” (Cattell 1951 cited by Pinneau and Newhouse 1964, p. 276). Another, often

occurring, disadvantage is that many of these methods change the factor loadings.

A possibility that does not affect the factor loadings would be to compare each pair

of factors from the different analyses and to select the most similar pairs, for exam-

ple by minimising the difference between the factor loadings. While this is certainly

possible, we propose finding the matching pairs based on the modified Tucker’s con-

gruence coefficient (mTCC).

The original Tucker’s congruence coefficient (TCC) has been around for nearly

70 years and has been in use ever since to assess factor similarity across samples for

the same variables (Tucker 1951, Lorenzo-Seva and ten Berge 2006). It is merely the

cosine of the angle of two uncentered vectors. The interpretation is quite arbitrary as

it is difficult to establish reference values. Lorenzo-Seva and ten Berge (2006) found

in an empirical study that 0.95 may be a suitable cut-off value. However, the TCC

is sensitive to changes in signs over different analyses. This may result in overes-

timating/underestimating congruence when the signs of the variable pairs are pre-

dominantly the same/different (Pinneau and Newhouse 1964; Barrett 1986; Lovik

et al. 2017). Another practical issue is related to negatively framed items (state-

ments in a questionnaire which have an opposing meaning, a negative association

with the factor they belong to) which results in factor loadings of the same magni-

tude with reversed sign, since the factor loadings are calculated based on the cor-

relation/covariance matrix of all items. For these reasons, a modified congruence

coefficient was proposed, which may be more useful in combining factor analyses

(Lovik et al. 2017). This coefficient uses the absolute values of the products in the

numerator of the TCC:
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𝜓(x, y) =
∑

|xiyi|
√∑

xi
2 ∑ yi

2
. (1)

The mTCC does not have a nice geometric interpretation but has several advan-

tages. To begin with, all of the advantages of the TCC are preserved: the new coef-

ficient is insensitive to scalar multiplication of x and y, and to changes in the sign

of any pair (x, y) but sensitive to additive constants. Furthermore, it is also still a

continuous function of xi and yi. Obviously, the mTCC is always at least as large

as the TCC and it varies between 0 and 1. It should be noted that there is no direct

relationship between the TCC and the mTCC. The reason it may be more useful for

combining factors is that very low values (between −1 and −0.90) normally arise

when two factors are very similar (in interpretation) but all signs are reversed for

one factor compared to the other. In such cases, the TCC would erroneously reject

the possibility that the two are equal, while the modified coefficient results in a value

above 0.90.

The method to combine M factor analyses with k factors each based on mTCC

(or TCC) is very simple:

Notation Suppose we have M sets of factor loading matrices each with k factors:

L1,L2,… ,LM . We denote a re-ordered set of factor loadings by L̃i (i = 1, ...,M) and

L̂r represents the combination of r sets of factor loadings. Furthermore, a congruence

matrix is a symmetric k × k matrix containing the congruence coefficients between

all possible pairs of factors of two sets of factor loadings (from two separate factor

analyses).

Algorithm L̃r, the re-ordered Lr based on Ls, is computed as follows:

1. The k × k congruence matrix for Lr and Ls is constructed.

2. The location of maximum congruence coefficient in each column of the congru-

ence matrix is determined.

3. L̃r is constructed by re-ordering the columns of Lr based on the maximum loca-

tions obtained from Step 2.

Now the combination algorithm is as follows:

1. Begin. L̂1 = L1.

2. Iteration. L̂r =
(r1)L̂r1+L̃r

r
, for r = 2, ...,M.

We demonstrate the method on a dataset that contains responses to a Big Five

personality inventory.

2 Motivating Dataset: The Divorce in Flanders Study

The dataset we use for analysis is a subsample from the Divorce in Flanders (DiF)

project, which contains a sample of marriages registered between 1971 and 2008

with oversampling of divorces (1/3 intact and 2/3 dissolved marriages at the sampling

date) drawn from the Belgian National Register (see details in Mortelmans et al.
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2011). Family members across three generations were surveyed during the original

data collection, more than 10,000 people. The data were collected in 2008 and the

validated Dutch language version of the BFI was administered among a battery of

tests with the aim of studying the phenomenon of divorce in families. In this paper

we use data from 4460 families, 7533 people in total (3362 mothers, 2920 fathers

and 1251 children). We excluded new partners of the ex-spouses and parents of the

selected sample. One of the main advantages of the data collection is the ability

to assess, among others, the patterns of matching personality traits between family

members, predicting personality traits by studying the intergenerational transmission

of personality, associating personality traits with fertility and personality traits with

divorce.

As part of this study the personality of each participant was assessed with the

validated Dutch version (Denissen et al. 2008) of the Big Five Inventory (BFI, John

and Srivastava 1999), a personality test which is a commonly used tool to assess per-

sonality measuring the five factors of personality (Neuroticism, Extraversion, Open-

ness to Experience, Conscientiousness and Agreeableness; e.g. John and Srivastava

1999; Digman 1990). When clustering is not taken into account, the five factors tend

to emerge clearly from the data (Lovik et al. 2017).

Participants were asked to rate their agreement with each item regarding their

perceptions of themselves using a Likert scale ranging from 1 (strongly disagree) to

5 (strongly agree). The 44-item questionnaire contains 14 reversed items. The items

were reversed before any analysis has taken place.

Since the DiF was a multi-actor where several family members from the same

family were invited to participate, the observations are not independent. To account

for clustering, we decided to use multiple outputation (Follmann et al. 2003). Mul-

tiple outputation is a within-cluster sampling method that “throws out excess data”

by sampling exactly one observation from each cluster to create multiple subsets

without clustering, which allows using statistical methods where observations are

assumed to be independent. 1000 random subsets were generated from the original

dataset using simple random sampling, thus one individual from each family was

selected, resulting in 1000 samples of size 4460. On each of these 1000 datasets fac-

tor analysis with principal component extraction was performed and the results were

rotated using direct oblimin rotation. The analyses were combined with the method

described previously based on TCCs and mTCCS. We wanted to examine whether

the order of the factor analyses had an effect on the final result. To this end, we

randomly re-ordered the 1000 datasets and repeated the analysis. This process was

repeated 10 times, the factor structure did not change.

3 Results

Descriptive statistics for TCCs and mTCCs are given in Table 1 for congruent and

incongruent factors separately.

Figures 1 and 2 allow to compare the results based on either TCCs or mTCCs.

As it can be seen in Fig. 1, although the five factor structure is quite clear in most of
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Fig. 1 Scatterplot of TCCs and mTCCs in the DiF study

the datasets, the congruence coefficients show quite a bit of variability. The TCCs

range from −0.7671 to 0.9996, while the mTCCs are between 0.2822 and 0.9996.

The equality of the maximum is not surprising, the higher the TCC the smaller the

difference with the associated mTCC. In case all factor loadings are positive, the two

coefficients are, of course, equal. This happens in 2% of the cases in our example.

There are 443∕999 pairs which have a different initial factor ordering than the ref-

erence. This shows that finding the right factor order before combining factor anal-

yses is extremely important.

Figure 1 shows that out of the 999 × 5 factor matches, five analyses will be ordered

differently based on TCCs compared to mTTCs. The reason is that the correct

matches have high negative loadings and TCCs select the highest positive match

resulting in assigning two factors to one. Nevertheless, in this example matching

based on TCCs works in 99.5%, based on mTCCs in 100% of the cases. For this

reason, Table 2 presents the final factor loadings after combining the 1000 datasets

based on mTCCs. Should we choose to ignore the mismatches and still combine fac-

tors based on TCCs, the difference between the result without mismatches (based on

mTCCs) and the result based on TCCs is smaller than 10−8 for each factor loading.

Of course, one has to take into account that the sample was rather big, especially for

an exploratory factor analysis. In fact, when combining multiple outputation with

split-sampling, resulting in factor analyses based on samples of size 1000 instead of

4460, the number of mismatches is 97∕999 for factor matching based on TCCs and

52∕999 in case of mTCCs, with an overlap of 45 cases. The difference between the

final analyses is still below 10−3 for all factor loadings. The mismatches with the
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analyses based on mTCCs are due to an increased number of high cross-loadings for

at least two factors. In fact, the factor structure is quite unclear for these analyses.

Fig. 2 Histogram of TCCs (left) and mTCCs (right) based on congruence

Table 2 Final factor loadings (combining 1000 analyses based on mTCCs)

No. Questionnaire item N E O C A

19. . . . worries a lot 0.71 −0.06 0.04 0.10 −0.03

14. . . . can be tense 0.70 −0.05 0.07 0.17 −0.15

9r. . . . is relaxed, handles stress well 0.63 −0.08 −0.17 −0.15 0.03

39. . . . gets nervous easily 0.75 −0.01 0.00 0.02 −0.10

24r. . . . is emotionally stable, not easily upset 0.49 −0.05 −0.16 −0.20 0.02

34r. . . . remains calm in tense situations 0.56 0.08 −0.19 −0.22 −0.05

4. . . . is depressed, blue 0.45 −0.29 0.06 −0.02 −0.12

29. . . . can be moody 0.37 −0.02 0.06 0.09 −0.48
1. . . . is talkative 0.10 0.68 0.02 0.07 −0.06

21r. . . . tends to be quiet −0.06 0.77 −0.15 −0.09 −0.04

16. . . . generates a lot of enthusiasm −0.02 0.50 0.28 0.28 0.05

36. . . . is outgoing, sociable 0.10 0.53 0.14 0.11 0.31
6r. . . . is reserved −0.20 0.67 −0.19 −0.05 0.04

31r. . . . is sometimes shy, inhibited −0.30 0.58 −0.25 −0.03 −0.02

11. . . . is full of energy −0.25 0.35 0.13 0.34 −0.04

26. . . . has an assertive personality −0.26 0.32 0.06 0.35 −0.25

40. . . . likes to reflect, play with ideas −0.04 0.00 0.46 0.38 −0.07

25. . . . is inventive −0.19 0.13 0.45 0.33 −0.11

30. . . . values artistic, aesthetic experiences 0.01 −0.17 0.69 0.08 0.12

5. . . . is original, comes up with new ideas −0.09 0.17 0.43 0.25 −0.11

(continued)
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Table 2 (continued)

No. Questionnaire Item N E O C A

15. . . . is ingenious, a deep thinker 0.09 −0.05 0.36 0.48 −0.15

20. . . . has an active imagination 0.03 0.19 0.54 −0.03 −0.11

10. . . . is curious about many different things −0.12 0.22 0.40 0.26 −0.10

44. . . . is sophisticated in art, music, or

literature

−0.04 −0.12 0.61 −0.05 0.11

41r. . . . has few artistic interests −0.12 −0.15 0.52 −0.04 0.14

35r. . . . prefers work that is routine −0.25 0.01 0.19 −0.06 −0.14

3. . . . does a thorough job 0.03 0.02 −0.03 0.64 −0.09

28. . . . perseveres until the task is finished −0.01 0.00 −0.04 0.69 0.03

18r. . . . tends to be disorganized −0.03 −0.08 −0.45 0.48 0.20

23r. . . . tends to be lazy −0.04 0.00 −0.35 0.49 0.21

13. . . . is a reliable worker 0.06 0.07 0.04 0.58 0.04

33. . . . does things efficiently −0.03 0.00 0.01 0.69 0.07

38. . . . makes plans and follows through with

them

−0.08 0.16 0.09 0.60 −0.06

43r. . . . is easily distracted −0.33 −0.10 −0.28 0.39 0.17

8r. . . . can be somewhat careless 0.03 −0.13 −0.41 0.38 0.24

32. . . . is considerate and kind to almost

everyone

0.18 0.19 0.22 0.20 0.47

17. . . . has a forgiving nature 0.10 0.16 0.25 0.07 0.41
7. . . . is helpful and unselfish with others 0.14 0.06 0.17 0.21 0.24

12r. . . . starts quarrels with others −0.25 −0.13 −0.01 0.03 0.54
37r. . . . is sometimes rude to others −0.13 −0.14 −0.03 0.04 0.68
27r. . . . can be cold and aloof 0.02 0.27 −0.07 −0.06 0.58
22. . . . is generally trusting 0.03 0.19 0.28 −0.10 0.33
2r. . . . tends to find fault with others −0.18 −0.19 −0.09 −0.02 0.55
42. . . . likes to cooperate with others 0.04 0.32 0.12 0.18 0.23

N Neuroticism, E Extraversion, O Openness to Experience, C Conscientiousness, A Agreeableness

Figure 2 shows that both TCCs (left) and mTCCs (right) separate congruent and

incongruent factors well.

The above mentioned results belong to the first analysis. As mentioned previously,

the order of the analyses may influence the end result and for this reason, the entire

analysis was repeated several times. We found no substantial differences.

4 Conclusion

In this paper, we used a modified Tucker’s congruence coefficient to combine factor

analyses by matching factors based on the maximum of all calculated mTCCs. In our

example, both TCCs and mTCC work well in separating congruent and incongruent
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factors. However, it should be noted that this method may not work perfectly if the

factor structure is not clear for more than a few of the factor analyses that need to

be combined. Depending on the analysis, throwing out the “unclear” factor analy-

ses may cause bias. Therefore, if mismatches happen one needs to assess the effect

of keeping/deleting the analyses that cause the mismatch and a sensitivity analysis

might prove useful.
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On the Bias in Eigenvalues of Sample
Covariance Matrix

Kentaro Hayashi, Ke-Hai Yuan and Lu Liang

Abstract Principal component analysis (PCA) is a multivariate statistical tech-
nique frequently employed in research in behavioral and social sciences, and the
results of PCA are often used to approximate those of exploratory factor analysis
(EFA) because the former is easier to implement. In practice, the needed number of
components or factors is often determined by the size of the first few eigenvalues of
the sample covariance/correlation matrix. Lawley (1956) showed that if eigenvalues
of population covariance matrix are distinct, then each sample eigenvalue contains a
bias of order 1/N, which is typically ignored in practice. This article further shows
that, under some regulatory conditions, the order of the bias term is p/N. Thus,
when p is large, the bias term is no longer negligible even when N is large.

Keywords Factor analysis ⋅ Principal component analysis ⋅ High dimension
Large p small N

K. Hayashi (✉)
Department of Psychology, University of Hawaii at Manoa,
2530 Dole Street, Sakamaki C400, Honolulu, HI 96822, USA
e-mail: hayashik@hawaii.edu

K.-H. Yuan
Department of Psychology, University of Notre Dame,
123A Haggar Hall, Notre Dame, IN 46556, USA
e-mail: kyuan@nd.edu

L. Liang
Department of Psychology, Florida International University,
11200 S.W. 8th Street, Miami, FL 33199, USA
e-mail: luliang@fiu.edu

© Springer International Publishing AG, part of Springer Nature 2018
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 233, https://doi.org/10.1007/978-3-319-77249-3_19

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_19&amp;domain=pdf


1 Introduction

Principal component analysis (PCA; Hotelling 1933) is a multivariate statistical
technique for data reduction frequently employed in research in behavioral and
social sciences. PCA has been a default dimension reduction technique in statistical
software SPSS (IBM Corp. 2016), which is most widely used by researchers in
social sciences. Anderson (1963) derived the asymptotic distribution of the
eigenvalues and standardized eigenvectors of a sample covariance matrix when the
observations follow a multivariate normal distribution whose covariance matrix can
have eigenvalues with more than one multiplicity. Lawley (1956; see also Muirhead
1982) gave the formulas for the asymptotic expansion for both the mean and the
variance of eigenvalues of the sample covariance matrix up to the order of
1/N when their population counterparts are distinct. The current work is an
extension of Lawley’s work. We show that the bias term in sample eigenvalues is of
order p/N when the number of variables p is not negligible.

From a practical point of view, PCA is often used to approximate the results of
exploratory factor analysis (EFA; see, e.g., Hwang and Takane 2004). It has been
well known that PCA and EFA often yield approximately comparable loading
matrices (cf., Velicer and Jackson 1990). Conditions under which the two matrices
are close to each other have been studied extensively (Bentler and Kano 1990;
Guttman, 1956; Krijnen, 2006; Schneeweiss and Mathes 1995). Because the
computation for the estimates of PCA loadings is much simpler than that for the
estimates of FA loadings in that the former is just an eigenvalue-eigenvector
decomposition of the sample covariance matrix, it is attractive if PCA can be used
as an approximation for FA especially when p is large.

2 Principal Component Analysis

Let Λ+ be the p × p matrix whose columns are the standardized eigenvectors cor-
responding to the eigenvalues of Σ in descending order; Ω+ = diagðω1,ω2, . . . ,ωpÞ
be the p × p diagonalmatrix whose diagonal elements are the eigenvalues ofΣ, that is
ΣΛ+ =Λ+Ω+ ; Λ be the p × m matrix corresponding to the first m largest eigen-
values of Σ, Ω be the m × m diagonal matrix whose diagonal elements are the
m largest eigenvalues of Σ; and Ω1 ̸2 be the m × m diagonal matrix whose diagonal
elements are the square root of those inΩ. Then the PCs withm elements are obtained
as (c.f., Anderson 2003):

f =Λ′y, ð1Þ

where y is the vector of p manifest variables. Clearly, the PCs are uncorrelated with
covariance matrix:
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Covðf Þ=Λ′ΣΛ=Ω. ð2Þ

When m is properly chosen, we have

Σ≈ΛΩΛ′ =Λ*Λ*′, ð3Þ

where

Λ* =ΛΩ1 ̸2 ð4Þ

is the p × m matrix of PCA loadings. If we define f * =Ω− 1 ̸2f , then Covðf *Þ= Im
and we can express PCA similar to EFA, that is,

y=Λ*f * + ε*. ð5Þ

where ε* =Λ− f − , with Λ− being the p × (p – m) matrix whose columns are the
standardized eigenvectors corresponding to the p – m smallest eigenvalues of Σ,
and f − =Λ− ′y. Obviously, Covðf *, ε*Þ=0.

3 Bias in Eigenvalues of Sample Covariance Matrix

Suppose that y has a multivariate normal distribution with mean vector μ and
covariance matrix Σ, that is, y∼Npðμ,ΣÞ. For a fixed value of p, Lawley (1956)
showed that if the eigenvalues of Σ are distinct, that is, if ω1 >ω2 > . . . >ωpð>0Þ,
then the mean of the i-th largest eigenvalue li of the sample covariance matrix S can
be expanded as

EðliÞ=ωi +
ωi

n
∑
p

j=1
j≠ i

ωj

ωi −ωj
+Oðn− 2Þ=ωi +

1
n
fiðΩÞ+Oðn− 2Þ, ð6Þ

where n=N − 1 and

fiðΩÞ= ∑
p

j=1
j≠ i

ωiωj

ωi −ωj
= ∑

p

j=1
j≠ i

ωjð1− ωj

ωi
Þ− 1 = ∑

m

j=1
j≠ i

ωjð1− ωj

ωi
Þ− 1 + ∑

p

j=m+1
j≠ i

ωjð1− ωj

ωi
Þ− 1 = f1iðΩÞ+ f2iðΩÞ

ð7Þ

See also Sect. 9.3 of Muirhead (1982, p. 388). The term ð1 ̸nÞfiðΩÞ on the
right-hand side of Eq. (6) dominates the bias. If fiðΩÞ in Eq. (7) is of order 1, the
bias term is of order 1/N. This is the case with p fixed, because then p does not
affect the order. More generally, when the number of variables p is negligible
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relative to the sample size N, the effect of 1/N dominates as N increases, and the
sample eigenvalues are still asymptotically unbiased. However, when p is large or
p/N is not negligible, we encounter a different situation. For example, a substantial
bias is noted in by Arruda and Bentler (2017) in the context of varying values of
N while holding p constant, in which the largest bias was found when N is the
smallest.

Now, we show that the bias term is of order Oðp ̸NÞ when p is not negligible. To
see this, in addition to the above assumption of distinct eigenvalues, we further
assume the following:

(A1) For the m largest eigenvalues, ωi =OðpÞ→∞ as p→∞.
(A2) The m largest eigenvalues are well separated with each other. That is, for
every different pair ωj ̸ωi does not converge to 1 as p→∞.
(A3) For the rest p – m eigenvalues, ωi =Oð1Þ as p→∞.
(A4) The ratio m ̸p→ 0 as p→∞.

Then, regarding the order of the function fiðΩÞ with respect to the number of
variables p, we proceed as follows:

Case 1: Suppose the subscript i is in {1, 2, …, m}, that is, i≤m.
(C1.1) If j≤m with j≠ i, both ωi and ωj are OðpÞ by (A1), so that ωj ̸ωi is Oð1Þ.
Thus, ð1−ωj ̸ωiÞ− 1 is still Oð1Þ by (A2), and finally,
ωjð1−ωj ̸ωiÞ− 1 =OðpÞ ⋅Oð1Þ=OðpÞ. This leads to:

f1iðΩÞ= ∑
m

j=1
j≠ i

ωjð1−ωj ̸ωiÞ− 1 = ðm− 1Þ ⋅OðpÞ=OðpÞ by (A4).

(C1.2) Next, if j≥m+1, ωi =OðpÞ and ωj =Oð1Þ by (A1) and (A3), so
ωj ̸ωi =Oðp− 1Þ→ 0. Thus, ð1−ωj ̸ωiÞ− 1 → 1 and ωjð1−ωj ̸ωiÞ− 1 =Oð1Þ by
(A3). By collecting p – m such terms, along with (A4),

f2iðΩÞ= ∑
p

j=m+1
ωjð1−ωj ̸ωiÞ− 1 = ðp−mÞ ⋅Oð1Þ=OðpÞ.

Combining (C1.1) and (C1.2) yields fiðΩÞ= f1iðΩÞ+ f2iðΩÞ=OðpÞ+
OðpÞ=OðpÞ. In summary, if i≤m, in Eq. (6), the first term ωi is OðpÞ, and the
second term ð1 ̸nÞfiðΩÞ is Oðp ̸NÞ.
Case 2: Suppose the subscript i is in {m + 1, …, p}, that is, i≥m+1.
(C2.1) If j≤m, then ωi =Oð1Þ and ωj =OðpÞ according to assumptions (A1) and
(A3), so that ωiωj ̸ðωi −ωjÞ=Oð1Þ ⋅OðpÞ ̸fOð1Þ−OðpÞg=Oð1Þ. Thus,

f1iðΩÞ= ∑
m

j=1
ωjð1−ωj ̸ωiÞ− 1 =m ⋅Oð1Þ=Oð1Þ.

(Note: Here, f1iðΩÞ is always negative because ωi −ωj <0.)
(C2.2) If j≥m+1, then ωi =Oð1Þ and ωj =Oð1Þ according to (A3), so that ωj ̸ωi is
Oð1Þ. Thus, ð1−ωj ̸ωiÞ− 1 is still Oð1Þ by (A2), and also,
ωjð1−ωj ̸ωiÞ− 1 =Oð1Þ ⋅Oð1Þ=Oð1Þ. By collecting p – m – 1 such terms, along
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with (A4), f2iðΩÞ= ∑
p

j=m+1
j≠ i

ωjð1−ωj ̸ωiÞ− 1 = ðp−m− 1Þ ⋅Oð1Þ=OðpÞ.

Therefore, combining (C2.1) and (C2.2), fiðΩÞ= f1iðΩÞ+ f2iðΩÞ=Oð1Þ+
OðpÞ=OðpÞ. In summary, if i≥m+1, in Eq. (6), the first term ωi is Oð1Þ, and the
second term ð1 ̸nÞfiðΩÞ is Oðp ̸NÞ.

Thus, by combining Cases 1 and 2 the order of the bias terms as a whole is
Oðp ̸NÞ. Therefore, we can write Eq. (6) as:

EðliÞ=ωi +Oðp ̸NÞ, ð8Þ

where

ωi =OðpÞ i=1, . . . ,m, and
ωi =Oð1Þ i=m+1, . . . , p,

by (A1) and (A3).
In summary, our analytical results imply that (i) when p is ignorable relative to

N, the order of the bias of the eigenvalues of the sample covariance matrix is 1/N;
(ii) when p is not ignorable relative to N, the order of the bias of the sample
eigenvalues is p/N; (iii) The sample eigenvalue is asymptotic unbiased if p/N goes
to zero. It is obvious that the result in case (ii) is more general than that in case (i),
and the sample eigenvalues are always asymptotically unbiased when N →∞ while
holding p constant.

Here, it is important to note that problems might arise if Oðp ̸NÞ exceeds oð1Þ, in
which case the assumption of p ̸N→ 0 in (A3) does not hold. This indicates that the
estimated eigenvalues are consistent if and only if p ̸N→ 0 (See also, e.g., the
consistency result in Theorem 1 of Johnstone and Lu 2009 on this point).

4 Simulation

4.1 Method

Our result indicates that the bias term in the eigenvalues of the sample covariance
matrix should increase as the number of variables p increases, and that the bias
should decrease as the sample size N increases. To verify the result, we conducted a
small simulation. The number of variables p is chosen as either 20 or 100. For each
p, the sample sizes N varies according to 2p, 4p, 6p, 8p, and 10p. At p = 20, the
population eigenvalues are chosen proportional to 10.0, 8.0, 6.0, 2.0, 1.9, 1.8, 1.7,
1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, and then these 20 numbers
are scaled so that the sum of the eigenvalues to be exactly 20 (See Fig. 1 for the
scree plot) to satisfy the need for a population correlation matrix. For p = 100,
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we generated population eigenvalues using the series ðpÞð2kÞ− 1 ̸ ∑
p

i=1
ð2kÞ− 1,

k=1, . . . , p=100 (See Fig. 6 for the scree plot).
At each p, we generated an orthogonal matrix with the pre-specified eigenvalues

using the algorithm by Stewart (1980). Next, we applied the Givens rotations to the
orthogonal matrix (Bendel and Mickey 1978). Finally, we converted the rotated
matrix into a correlation matrix (Davies and Higham 2000). The entire procedure is
implemented in the SAS Procedure IML (SAS Institute). Now, a random sample of
size N were generated from the multivariate normal distribution with mean vector 0
and the correlation matrix created by the procedure described above. For each data
set with p variables and N observations, we computed a sample correlation matrix,
and obtained the p sample eigenvalues. The number of replications is 1,000 for each
crossed condition of p and N. The 1,000 replications were averaged in obtaining the
mean sample eigenvalues, which were compared against the corresponding popu-
lation eigenvalues, and an empirical bias is thus obtained for each of the p sample
eigenvalues.

Fig. 1 Population eigenvalues of the condition with the number of variables p=20
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4.2 Results

Figures 2 through 5 describe the results with p = 20. The plot in Fig. 2 contrasts
the empirical bias at N = 40 (p/N = 0.5) on the vertical axis against that at N = 200
(p/N = 0.1) on the horizontal axis. The slope of the solid line is equal to the ratio of
two sample sizes, 200/40 = 5 (i.e., y=5x) corresponding to the theoretical result
obtained in the previous section. In Figs. 3, 4 and 5, the values on the horizontal
axis remain the same whereas the values on the vertical axis are changed to those
corresponding to N = 80, 120, and 160, respectively, and so are the slopes of the
solid lines. In parallel, Figs. 7 through 10 contain the plots of the empirical bias for
p = 100, where the horizontal axis is for the condition of N = 1,000 while the
conditions for vertical axis vary from N = 200 to 800. Corresponding to the ratio of
the sample sizes, the slopes of the solid line in the four figures are 5/1 = 5,
5/2 = 2.5, 5/3, and 5/4 = 1.25, respectively.

Fig. 2 Scatterplot of average biases between the case with N = 2p = 40 and the case with N =
10p = 200 for the number of variables p=20. The inserted line is y=5x

On the Bias in Eigenvalues of Sample Covariance Matrix 227



Note that, with the same value of p, the slope of the solid line in each figure is
also identical to the ratio of the values of p/N. If the points are on the line, we have a
support to our finding that the bias term is of order p/N.

For the scenario with p = 20, there are some fluctuations from the expected
results in Fig. 2, due to the small sample size (N = 40) on the vertical axis. In
Fig. 3, where the vertical axis is with a sample size of N = 80, the points are very
close to the expected line. As the sample size increases, the points in both Figs. 4
and 5 are essentially on the solid line (Fig. 6).

The results at p = 100 are similar to those at p = 20. In Figs. 7 and 8 when the
sample sizes (of N = 200 and 400, respectively) on the vertical axis are relatively
small, the points somewhat deviate downward from the theoretical lines at the large
end of the plots. However, in Figs. 9 and 10, where the sample sizes for the vertical
axes are N = 600 and 800, respectively, the points are mostly on the theoretical
solid lines except a few at the low end.

Fig. 3 Scatterplot of average biases between the case with N = 4p = 80 and the case with
N =10p=200 for the number of variables p=20. The inserted line is y=2.5x
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Fig. 4 Scatterplot of average biases between the case with N = 6p = 120 and the case with N =
10p = 200 for the number of variables p=20. The inserted line is y= ð5 ̸3Þx

Fig. 5 Scatterplot of average biases between the case with N = 8p = 160 and the case with N =
10p = 200 for the number of variables p=20. The inserted line is y=1.25x
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Fig. 6 Population eigenvalues of the condition with the number of variables p=100

Fig. 7 Scatterplot of average biases between the case with N = 2p = 200 and the case with N =
10p = 1,000 for the number of variables p=100. The inserted line is y=5x
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Fig. 8 Scatterplot of average biases between the case with N = 4p = 400 and the case with N =
10p = 1,000 for the number of variables p=100. The inserted line is y=2.5x

Fig. 9 Scatterplot of average biases between the case with N = 6p = 600 and the case with N =
10p = 1,000 for the number of variables p=100. The inserted line is y= ð5 ̸3Þx
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5 Concluding Remarks

We showed that the order of the bias of the eigenvalues of the sample covariance
matrix is Oðp ̸NÞ and is not negligible when p is large. We confirmed our finding
by a simulation study. We suspect that higher order terms such as p1 ̸2N − 3 ̸4 and
p3 ̸4N − 1 ̸2 might explain the deviations seen in Figs. 7 and 8 (Yanagihara, personal
communication). The bias term of order Oðp ̸NÞ may justify the use of p/N as the
ridge tuning constant in the ridge methods for structural equation models (Yuan and
Chan 2008, 2016).

Acknowledgements The authors are thankful to Dr. Dylan Molenaar for his very helpful com-
ments. Ke-Hai Yuan’s work was supported by the National Science Foundation under Grant
No. SES-1461355.

Fig. 10 Scatterplot of average biases between the case with N = 8p = 800 and the case with N =
10p = 1,000 for the number of variables p=100. The inserted line is y=1.25x
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Using Product Indicators in Restricted
Factor Analysis Models to Detect
Nonuniform Measurement Bias

Laura Kolbe and Terrence D. Jorgensen

Abstract When sample sizes are too small to support multiple-group models, an
alternative method to evaluate measurement invariance is restricted factor analysis
(RFA), which is statistically equivalent to the more common multiple-indicator
multiple-cause (MIMIC) model. Although these methods traditionally were capable
of detecting only uniform measurement bias, RFA can be extended with latent
moderated structural equations (LMS) to assess nonuniform measurement bias.
As LMS is implemented in limited structural equation modeling (SEM) computer
programs (e.g., Mplus), we propose the use of the product indicator (PI) method in
RFA models, which is available in any SEM software. Using simulated data, we
illustrate how to apply this method to test for measurement bias, and we compare
the conclusions with those reached using LMS in Mplus. Both methods obtain
comparable results, indicating that the PI method is a viable alternative to LMS for
researchers without access to SEM software featuring LMS.

Keywords Factor analysis ⋅ Product indicators ⋅ Measurement invariance
Nonuniform measurement bias

1 Introduction

Measurement bias entails that scales function differently across groups, irrespective
of true differences in the construct that the scale was designed to measure. Let T
denote the construct of interest measured by a set of observed variables X. More-
over, let V be a set of variables other than T . The formal definition of measurement
bias involves a violation of measurement invariance (Mellenbergh 1989):
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f1ðXjT = t,V = vÞ= f2ðXjT = tÞ ð1Þ

where f1 is the conditional distribution of X given T and V , and f2 the conditional
distribution of X given T . If measurement invariance holds (i.e., f1 = f2), the mea-
surement of T by X is invariant with respect to V . But if measurement invariance
does not hold (i.e., f1 ≠ f2), the measurement of T by X is biased with respect to V .
A distinction can be made between uniform and nonuniform bias. Uniform bias
implies that the extent of bias is constant for all levels of the construct T , whereas
nonuniform bias implies that the extent of bias varies with T .

A common method to test for measurement bias with respect to a grouping
variable is multiple-group confirmatory factor analysis (MGCFA; Vandenberg and
Lance 2000), which requires sufficiently large samples for each group. An alter-
native for testing measurement bias is restricted factor analysis (RFA; Oort 1992,
1998). An advantage of this method over MGCFA is that the potential violator V
may be categorical or continuous, observed or latent, and multiple violators can be
investigated simultaneously. Moreover, RFA does not require the division of the
sample into subsamples by V . The latter advantage comes at the cost of additional
assumptions—namely, homogeneity of residual variances across groups.1 If these
additional assumptions hold, RFA should have more power than MGCFA to detect
measurement bias.

When using RFA, the potential violator V is added to a common factor model as
an exogenous variable that covaries with T . Uniform bias can be assessed by testing
the significance of direct effects of V on X. To assess nonuniform bias, an extension
for modeling latent interactions is required. RFA is commonly extended with latent
moderated structural equations (LMS; Barendse et al. 2010). This allows for
assessing nonuniform bias by testing the significance of interaction effects of T ×V
on X. Although this method generally has high power to detect measurement bias
(Barendse et al. 2010, 2012; Woods and Grimm 2011), a disadvantage is that LMS
is only implemented in the commercial structural equation modeling (SEM) soft-
ware Mplus (Muthén and Muthén 2012).2 Moreover, most traditional SEM fit
indices to test for model fit are not available when using the LMS method in Mplus,
except for Akaike’s Information Criterion (AIC; Akaike 1973) and Bayesian
Information Criterion (BIC; Schwartz 1978).

In this chapter, we introduce the product indicator (PI) method to model latent
interactions in RFA models. The PI method has received a great deal of attention in
the general context of modeling interactions among latent variables in SEM
(Henseler and Chin 2010; Lin et al. 2010; Little et al. 2006; Marsh et al. 2004),

1In traditional RFA models, common-factor variances are also assumed to be equal across groups.
However, when extending RFA to include a latent interaction factor with product indicators
(described immediately following), differences in common-factor variances can be captured by the
covariance between the common factor and the latent interaction factor.
2LMS is also available in the open-source R package nlsem (Umbach et al. 2017), but the
implementation is very limited. It is not possible to test measurement bias using RFA models in the
nlsem package, so we do not consider it further.
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but has never been studied in light of testing measurement bias. First, we discuss
the detection of measurement bias using RFA models, then we introduce the PI
method, and finally we demonstrate how to test for measurement bias using RFA
with PI by means of an illustrative example. We compare the results of PI to LMS
on the same simulated data set.

2 Restricted Factor Analysis

2.1 Detection of Measurement Bias with RFA Models

In RFA models, the construct T can be modeled as a latent factor with multiple
measures X as observed indicators. The possible violator V is added to the mea-
surement model as an exogenous single-indicator latent variable and is allowed to
covary with the common factor T . The violator V may represent a grouping variable
by using a dummy-coded indicator. The observed scores X are modeled as

xj = τ + λtj + bgj + ctjgj + δεj ð2Þ

where xj is a vector of observed scores, tj is the common factor T score, gj is a
dummy code for group membership V , and εj is a vector of the residual scores of
subject j. Moreover, the vector τ contains intercepts, λ is a vector of factor loadings
on the common factor T , and δ is a vector of residual factor loadings. The vectors b
and c are of special interest and contain regression coefficients. A nonzero element
in b or c indicates uniform or nonuniform bias, respectively.

Figure 1 illustrates an example of an RFA model to test for measurement bias
using two anchor items. The violator V is modeled as a latent variable with a single
indicator G representing group membership. For visual simplicity, the measurement
model of T ×V is excluded from Fig. 1, but those details are discussed in the
following subsection. Measurement bias can be examined by comparing the fit of
an unconstrained model with several constrained models. In the unconstrained
model, all items are regressed on V and T ×V , except for the items in the anchor
set. Each constrained model involves fixing the regression of the studied item onto
V and T ×V at zero.

The pair of constraints for each item can be tested simultaneously, where the null
hypothesis of no measurement bias implies both b and c coefficients corresponding
to the studied item are zero in the population. These constraints can be tested via
model comparison of a constrained and unconstrained model, producing a likeli-
hood ratio test statistic that is distributed as χ2 random variable with 2 df. A sig-
nificant test statistic indicates that the studied item is biased with respect to V , and
1-df follow-up tests of the individual b and c coefficients can reveal whether that
indicator’s bias is uniform or nonuniform. Our study focuses only on the 2-df
omnibus test for each indicator.
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2.2 Product Indicators

The use of PI to model interactions among latent variables was originated by Kenny
and Judd (1984). The PI method involves the specification of a measurement model
for the latent interaction factor. Generally, product terms are built by multiplying
the indicators of the associated latent variables, which serve as indicators for the
latent interaction factor. All indicators, including the product indicators, are
assumed to be multivariate normally distributed if the maximum likelihood esti-
mation procedure is used. Because products of normal variables are not themselves
normally distributed, this assumption is violated. Thus, a robust maximum likeli-
hood estimator is used to relax this assumption (see Marsh et al. 2004).

Several variants of the PI method have been proposed, among which is the
double-mean-centering strategy (Lin et al. 2010) that we implement herein. The
double-mean-centering strategy is superior to other strategies because it eliminates
the need for a mean structure and does not involve a cumbersome estimation
procedure. Although the orthogonalizing and double-mean-centering strategy per-
form equally well when all indicators are normally distributed, the double-mean-
centering strategy performs better when the assumption that all indicators are
normally distributed is violated (Lin et al. 2010).

The Double-Mean-Centering Strategy. The first step of the double-mean-
centering strategy involves mean-centering the indicators of the latent variables of
interest. Each of the mean-centered indicators of one latent variable are multiplied
by the mean-centered indicators of the other latent variable. Then, the resulting
product indicators are centered at their means and are used as indicators of the latent
interaction factor. If the common factor T has I indicators and the violator variable
V has J indicators, then the latent interaction factor can have up to I × J product

Fig. 1 An example of testing
measurement bias using an
RFA model. Dashed arrows
represent effects that may be
estimated to test for uniform
and nonuniform bias. The
indicators X1 and X2 serve as
anchor items
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indicators, although matching schemes have been proposed to reduce the number of
product indicators (Marsh et al. 2004). In RFA, however, these matching schemes
would be irrelevant when the common factor only interacts with a single-indicator
violator construct (or with multiple single-indicator violators). Figure 2 shows an
example of an RFA model with a latent interaction using the PI method. All
possible cross-products are used in this example (i.e., each indicator of T is mul-
tiplied by the single indicator of V), and all indicators of T and V are centered at
their means.3

3 Illustrative Example

We simulated a single data set to demonstrate how to apply the PI method in R (R
Core Team 2016) to test for measurement bias, and to compare the conclusions with
those reached using LMS. See Barendse et al. (2012) for Mplus syntax to apply
LMS.

3.1 Data Generation

Data were generated for two groups, each with a group size of n=100. We con-
sidered a scale of k=10 items, 40% of which were biased: two uniformly biased
items and two nonuniformly biased items. This way, we are able to investigate the
performance of LMS and PI using a hypothetical scale with a substantial degree of
measurement bias. Item scores of subject j in group g were generated using the
following model:

xj = τg + λgtj + δgεj ð3Þ

where xj is a vector of 10 item scores, tj is the common factor score, and εj is a
vector of 10 unique factor scores (residuals) for subject j. Moreover, τg is a vector
containing 10 intercepts, λg is a vector of 10 common factor loadings, and δg is a
vector of 10 residual factor loadings of group g. Following Barendse et al. (2010),
differences in the common factor were simulated by drawing common factor scores
from a standard normal distribution for the reference group tr ∼N 0, 1ð Þ and from a
normal distribution with a lower mean for the focal group t f ∼N − 0.5, 1ð Þ.
Residual factor scores were drawn from a standard normal distribution εj ∼N 0, 1ð Þ.

3In the case of a dummy-coded indicator, the mean is the proportion of the sample in Group 1.
Mean-centering does not affect the variance, so a 1-unit increase in a mean-centered dummy code
still represents a comparison of Group 1 to Group 0, just as the original dummy code does.
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The same magnitude of uniform and nonuniform bias used by Barendse et al.
(2010) was used. To introduce uniform bias, all intercepts τ were equal to 0, except
for the intercept for the second and third item in the focal group, which were chosen
equal to 0.5 (small uniform bias) and 0.8 (large uniform bias), respectively.
Moreover, all common factor loadings were fixed at 0.8, except for the factor
loadings of the fourth and fifth item in the focal group, which were chosen equal to
0.55 (small nonuniform bias) and 0.3 (large nonuniform bias), respectively. The
residual factor loadings were set equal to the square root of 1− λ2g. Table 1 presents
R syntax to generate this data set.

Table 1 R syntax for data generation for the illustrative example

## set seed
RNGkind("L'Ecuyer-CMRG")
.Random.seed <- as.integer(c(407, 1945764513, -1852313839, 178524778, 
-983224279,-1572978333, -68534343))
## specify group size
Nn <- 100
## draw latent-trait values
theta1 <- rnorm(Nn)
theta2 <- rnorm(Nn, -0.5, 1)
## draw scores on residual factor
residual <- matrix(NA, 2*Nn, 10)
for (j in 1:Nn) {
for (i in 1:10) { 
residual[j, i] <- rnorm(1)

} 
}
## model parameters reference group
loading1 <- rep(0.8, 10)
delta1 <- sqrt(1 - loading1^2)
## model parameters focal group
tau2 <- c(0, -0.5, -0.8, 0, 0, 0, 0, 0, 0, 0)
loading2 <- c(0.8, 0.8, 0.8, 0.55, 0.3, 0.8, 0.8, 0.8, 0.8, 0.8) 
delta2 <- sqrt(1 - loading2^2)
## simulate indicator scores reference group
x1 <- matrix(NA, Nn, 10)
for (j in 1:Nn) { 
for (i in 1:10) { 
x1[j,i] <- loading1[i] * theta1[j] + delta1[i] * residual[j, i]

} 
} 
## simulate indicator scores focal group
x2 <- matrix(NA, Nn, 10)
for (j in 1:Nn) { 
for (i in 1:10) { 
x2[j,i] <- tau2[i] + loading2[i]*theta2[j] + delta2[i]*residual[j,i]

} 
} 
## combine scores of both groups
dat <- as.data.frame(rbind(x1, x2))
dat$group <- rep(c(1, 2), each = Nn)
names(dat) <- paste0("x", 1:11)
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3.2 Application

Table 2 shows R syntax for the application of PI in RFA models to detect mea-
surement bias in the simulated data set. The RFA models with PI are fitted with the
R package lavaan (version 0.5–23; Rosseel 2012). In our example, we apply the
double-mean-centering strategy. First, the indProd() function in the semTools
package (version 0.4–14; semTools Contributers 2016) with the argument
doubleMC = TRUE is used to transform the data in order to be suitable for this
strategy. This way, the indicators of the common factor T and violator V are
mean-centered and indicators of the interaction factor T ×V are built by multiplying
the mean-centered indicator of V by each mean-centered indicator of T . The
resulting product indicators are mean-centered again. After the data are prepared,
one constrained model for each studied item must be specified. We use the ninth
and tenth items, which are both bias-free, as anchor items, so they are not tested for
measurement bias. Hence, the studied items are the first eight items, four of which
are biased, which leads to eight constrained models in total. The unconstrained
model is the same across items.

The first factor of the unconstrained model is the common factor T with 10
mean-centered observed variables XC as indicators. The second factor is the violator
V with a mean-centered single indicator GC representing group membership. The
residual variance of GC is fixed at 0. The interaction factor T ×V is the third factor

Table 2 R syntax for the application of PI in RFA in the illustrative example

## required package
library(semTools)
## prepare data
datDMC <- indProd(dat, 1:10, 11, match = FALSE, doubleMC = TRUE)
## additional parameters
paramc <- paste0("group + group.by.theta =~ x", 1:8)
## specify and fit unconstrained model
mod.un <- c('
theta =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10
group =~ 1*x11
group.by.theta =~ x1.x11 + x2.x11 + x3.x11 + x4.x11 + x5.x11 +

x6.x11 + x7.x11 + x8.x11 + x9.x11 + x10.x11 
x11 ~~ 0*x11', paramc)

mod.un.fit <- cfa(mod.un, data = datDMC, estimator = "MLM")
## specify and fit constrained models
out <- matrix(NA, nrow = 8, ncol = 2,

dimnames = list(paste0("x", 1:8), c("X2", "p")))
for (i in 1:length(paramc)) { 
mod.con <- mod.un[-(i+1)] # remove b and c for the i-th studied item
mod.con.fit <- cfa(mod.con, data = datDMC, estimator = "MLM")
outfit <- lavTestLRT(mod.con.fit, mod.un.fit,

method = "satorra.bentler.2001")
out[i,1:2] <- c(outfit[2,5], outfit[2,7]) 

} 
## print results
out
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of the unconstrained model with double-mean-centered product indicators. For
example, the first indicator of the interaction factor is obtained by mean-centering
GC ×XC

1 . For all factors in the unconstrained model, the factor loading λ of the first
indicator is fixed at unity for identification. Covariances between all three factors
are freely estimated. Finally, factor loadings of all items on V and T ×V are added,
except for the anchor items. The constrained models are built by removing factor
loadings of the studied item on V and T ×V from the unconstrained model. The
estimator to be used for the unconstrained and constrained models is set to “MLM”,
which involves maximum likelihood estimation with robust standard errors and a
Satorra-Bentler scaled test statistic (Rosseel 2012).

To test each of the eight items for measurement bias, likelihood ratio test
statistics are calculated using the lavTestLRT() function in the lavaan
package (version 0.5–23; Rosseel, 2012). This involves comparing the fit of the
unconstrained model with each constrained model. By setting the argument
method = “satorra.bentler.2001”, a scaled Δχ2 test statistic with 2 df is
computed as described by Satorra and Bentler (2001). An item is flagged as biased
with respect to violator V when the Δχ2 statistic is significant using a criterion of
α=0.05.

3.3 Results of Measurement Bias Detection

Table 3 presents the results of measurement bias detection using RFA with LMS
and PI. When the PI method was applied, the Δχ2 statistics of three out of four truly
biased items were significant. The item with small nonuniform bias, Item 4, was not
flagged as biased, which is consistent with previous Monte Carlo studies showing
that power to detect uniform bias is greater than to detect nonuniform bias
(Barendse et al. 2010, 2012). Moreover, none of the Δχ2 statistics of the bias-free

Table 3 Results of testing
measurement bias using RFA
models with PI and LMS

Item PI LMS

χ2df =2 p χ2df =2 p

1 0.425 0.809 0.674 0.714
2 19.396 0.000 17.696 0.000
3 38.755 0.000 28.000 0.000
4 5.217 0.074 6.283 0.043
5 10.105 0.006 10.656 0.005
6 0.145 0.930 0.201 0.904

7 0.948 0.622 0.772 0.680
8 0.246 0.884 0.196 0.907
Note Bold cells indicate significant measurement bias. Items 9
and 10 were used as anchor items, so they were not tested for
measurement bias
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items were significant. Thus, none of the items were incorrectly flagged as biased
using PI. The LMS method obtained comparable results, but correctly flagged all
truly biased items as biased with respect to violator V .

4 Discussion

In this chapter, we proposed the use of PI in RFA models as an alternative to LMS
to test nonuniform measurement bias. The illustrative example showed that this
method obtains results comparable to LMS. Because RFA with LMS can only be
implemented in Mplus (Muthén and Muthén 2012), knowing that PI performs at
least as well as LMS provides more researchers the opportunity to test for
nonuniform bias using SEM software package. An additional advantage of PI is the
availability of more traditional SEM fit indices to test for model fit that are not
available when using LMS in Mplus, nor when using other available strategies for
modeling interactions with latent variables (e.g., random effects models which treat
item responses as cross-nested within items and subjects). However, several aspects
of the use of PI in RFA models are yet unclear, for example, which items should
serve as product indicators for the interaction factor (e.g., all items, only anchor
items, or anchor items and studied items). In addition, RFA models assume strict
invariance, that is, equal residual variances across groups. Future research could
investigate how violations of strict invariance affect Type I error rates.
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Polychoric Correlations for Ordered
Categories Using the EM Algorithm

Kenpei Shiina, Takashi Ueda and Saori Kubo

Abstract A new method for the estimation of polychoric correlations is proposed
in this paper, which uses the Expectation-Maximization (EM) algorithm and the
Conditional Covariance Formula. Simulation results show that this method attains
the same level of accuracy as other methods, and is robust to deteriorated data
quality.

Keywords Polychoric correlation ⋅ EM algorithm ⋅ Conditional covariance
formula

1 Correlation Coefficient Computed from Categorical
Variables

Despite long-standing warnings by psychometricians, it is still common to use
ordered categories (e.g., Likert ratings or verbal labels) as if they were integers.
Pearson (1913), the inventor of r, did notice that when the number of categories are
small, and thus categories are “broad,” r is biased. This problem has been studied in
sociology and psychology. Martin (1978) simulated the broad category problem
and concluded: “The findings suggest that the amount of lost information is sub-
stantial.” Bollen and Barb (1981) performed a similar simulation and arrived at a
similar conclusion. Further, they noticed “more complex patterns occurring when
the collapsed variables do not have the same number of categories” (1983, p. 286).
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Therefore, the use of the polychoric correlation coefficient (Olsson 1979) is
generally recommended. The polychoric correlation coefficient was first introduced
by Ritchie-Scott (1918) and Pearson and Pearson (1922) in the early 20th century,
but it took over half a century before the computationally feasible maximum
likelihood procedure was proposed by Olsson (1979).

In this paper, a new computational procedure for polychoric correlation is
proposed, based on the Conditional Covariance Formula (Ross 2010) and the
Expectation-Maximization (EM) algorithm (Dempster et al. 1977). Its accuracy and
robustness are compared to those of other methods.

2 Assumptions on the Data Generating Process

Let x and y be two original, continuous latent variables, with their density function
given by a Bivariate Normal Distribution (BND):

ϕðx, y μx, μy, σ
2
x , σ

2
y , ρ

��� Þ= 1

2πσxσy
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p e
− 1

2f ðx− μxÞ2
σ2x ð1− ρ2Þ−

2ðx− μxÞðy− μyÞ
σxσyð1− ρ2Þ ρ+

ðy− μyÞ2
σ2y ð1− ρ2Þg. ð1Þ

The original variables are often assumed to be abstract latent variables, espe-
cially in psychology. It is further assumed that categorizing the original variables
yields manifest variables X and Y, which are integer-valued. In Likert type ratings,
for example, it can be postulated that a rater internally categorizes the original
variables. In an educational setting, a teacher may categorize original test scores
into integer ranks. There are many other empirical settings.

We should consider the number of categories (p for X and q for Y), as well as the
arrangement of category boundaries, because the manner by which we partition the
original, continuous latent variables into categories will be critical. We can set
μx = μy =0 and σx = σy =1 without loss of generality and we can define or assume
category boundaries for x and y as:

−∞= θ0 < θ1 < θ2 <⋯< θp =∞
−∞= τ0 < τ1 < τ2 <⋯< τq =∞

such that, if θi− 1 < x< θi, then X = i; if τj− 1 < y< τj, then Y = j.
The true probability γij of each cell in the contingency table (correlation table)

corresponds to the rectangular region ½θi− 1, θi�× ½τj− 1, τj� in the x− y space (Fig. 1)
and is given by:

γij =
Zθi

θi− 1

Zτj
τj− 1

ϕðx, y μx, μy, σ
2
x , σ

2
y , ρ

��� Þdydx. ð2Þ
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Figure 1 shows how the contingency table is generated; let nij be the cell count
of the empirical contingency table N and let n= ∑p

i=1 ∑
q
j=1 nij, then, we can

assume γij ≈ nij ̸n. An example of a contingency table, from which we try to restore
the original ρ, is provided in Table 1.

From the rectangle regions in Fig. 1 we can construct a system of Quadruply
Truncated Binormal Distributions (QTBDs), gijðx, yÞ, where:

gijðx, yÞ≡ϕðx, yÞ ̸γij, θi− 1 < x< θi, τj− 1 < y< τj. ð3Þ

Notice that a QTBD is defined on a rectangular sub-space θi− 1, θi½ �× τj− 1, τj
� �

.
Moments of QTBD (Genz and Bretz 2009), as numerically shown in Fig. 2, can
easily be computed analytically (Muthén 1990) or by using R’s tmvtnorm package
(Stefan and Manjunath 2015; R Core Team 2016).

Fig. 1 Left: Heat map of the original distribution ϕðX, Y 0, 0, 1, 1, 0.9j Þ. Right: Categorized space
with its probability γij defined by Eq. (2). p = 3, q = 4, θ1 = − 1, θ2 = 1, τ1 = − 1.5, τ2 = 0,
τ3 = − 1.5

Table 1 An example of the
empirical correlation table
(generated from Fig. 1: Right)

X

1 2 3

Y 4 0 53 614
3 7 3359 964
2 964 3359 7
1 614 53 0

Note In ordinary data analysis, we start from this table and try to
restore the correlation coefficient
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Fig. 2 Estimated moments of 12 QTBDs from Table 1 by using R package of tmvtnorm. The
black blobs designate the mean of each QTBD on the rectangular region
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3 Reproducing Original BND Moments from QTBD
Using Conditional Covariance Formula

Let U, V, and Z be random variables. The Conditional Covariance Formula (Ross
2010, p. 381) is given by:

COVðU,VÞ=E COVðU,V ZÞj½ �+COVðEðU ZÞ,j EðV ZÞj Þ
=E COVðU,V ZÞ+EðU ZÞEðV ZÞjjj½ �−EðUÞEðVÞ. ð4Þ

In the present context, under the assumption of BND, ϕðx, y 0, 0, 1, 1, ρj Þ, this
formula simplifies to:

ð5Þ

where xīj, yīj, and σij are the respective means and covariance of the QTBD, gijðx, yÞ.
As mentioned previously, the means and covariance can be computed easily.

Equation (5) indicates that the covariance of the whole can be recovered by
aggregating the parts. For example, from Fig. 2 it follows that:

∑
p

i=1
∑
q

j=1
γijðσij + x ̄ijȳijÞ=0.0615 × f0.122+ ð− 1.829Þð− 1.962Þg

+0.0965 × f0.029+ ð− 1.335Þð− 1.009Þg+⋯+0.0965 × f0.029 + ð1.335Þð1.009Þg
+ 0.0615 × f0.122 + ð1.829Þð1.962Þg=0.90

which shows a perfect restoration of the original ρ=0.90 in Fig. 1.
If we replace γij in Eq. (5) by its empirical counterpart, nij ̸n, we have the

estimation formula:

ρ ̂= σx̂y = ∑
p

i=1
∑
q

j=1

nij
n
ðσij + xījyījÞ ð6Þ

which is valid at least when γij ≈ nij ̸n.

4 An Iterative Procedure to Estimate ρ

Because σij, xīj, and y ̄ij in Eq. (6) are functions of ρ, an iterative procedure seems
possible with an updating formula:

σðt+1Þ
xy ← ∑

p

i=1
∑
q

j=1

nij
n

σðtÞij + xð̄tÞij y
ð̄tÞ
ij

� �
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where the parenthesized t is an index for iteration. The estimation procedure is as
follows:

Step 1: Estimate the thresholds. The marginal of the contingency table can be
used to estimate the thresholds (Olsson 1979). More precisely:

θk̂ ≈Φ− 1ð1
n
∑
k

i=1
∑
q

j=1
nijÞ, τ ̂k ≈Φ− 1ð1

n
∑
k

j=1
∑
p

i=1
nijÞ

can be used. The method that uses this estimation is often called the
two-step procedure (Olsson 1979).

Step 2: Set the Initial value for ρ. The choice of initial value ρð0Þ is quite arbi-
trary. This is based on our own simulation, which is presented in the
Numerical Example section.

Step 3: Compute σðtÞij , x
ð̄tÞ
ij and y ̄ðtÞij . We used R package “tmvtnorm” to compute

these values, as shown in Fig. 2.

Step 4: Compute σðt+1Þ
xy or ρðt+1Þ

xy [if we assume ϕðx, y 0, 0, 1, 1, ρj Þ�. Use the
values computed in Step 3 along with the recursive formula mentioned
above.

Step 5: If there is no convergence, go back to Step 3.

5 EM Algorithm

The above computational procedure yielded satisfactory results in our simulation,
as shown in the Numerical Example section. The derivation of Eq. (6) is, however,
rather heuristic, and remains at a level of descriptive statistics. In this section, we
show that Eq. (6) can be derived from a stationary equation within the framework
of the EM Algorithm (Dempster et al. 1977).

The EM algorithm comprises the Expectation step (E-step), where the expec-
tation of the likelihood is calculated by taking the missing variables into account,
and the Maximization step (M-step), where the parameters are estimated by max-
imizing the likelihood function found in the E-step. The parameters found in the
M-step are then used as the starting point of a new E-step phase, and the process is
iterated until convergence.

As shown in the Appendix, the conditional expected log likelihood Q of the
current problem can be written as:

Q= ∑
p

i=1
∑
q

j=1
nij

ZZ
logϕðxij, yij ρj Þ× gij xij, yij ρðtÞ

��� �
dxijdyij
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where ðxij, yijÞ∈ ½θi− 1, θi�× ½τj− 1, τj�. After some operations (see the Appendix), we
have a stationary equation that needs to be solved for ρ:

ρð1− ρ2Þ+ ðρ2 + 1Þ ∑
p

i=1
∑
q

j=1

nij
n

COVðxij, yijÞ+EðxijÞEðyijÞ
� �

− ρ ∑
p

i=1
∑
q

j=1

nij
n
ðVðxijÞ+VðyijÞ+EðxijÞ2 +EðyijÞ2Þ=0.

ð7Þ

This is a cubic equation in variable ρ, and thus generally difficult to solve.
Fortunately, with the help of Eq. (6) and the Conditional Covariance Formula, we
can find an immediate solution to the stationary equation:

ρ= ∑
p

i=1
∑
q

j=1

nij
n

COV xij, yij
� 	

+E xij
� 	

E yij
� 	� � ð8Þ

with

2= ∑
p

i=1
∑
q

j=1

nij
n
ðVðxijÞ+VðyijÞ+EðxijÞ2 +EðyijÞ2Þ≈VðxÞ+VðyÞ. ð9Þ

This is because the insertion of Eqs. (8) and (9) into Eq. (7) yields the following
result: ρð1− ρ2Þ+ ðρ2 + 1Þρ− 2ρ=0. Note that under the assumption that the BND
is ϕðx, y 0, 0, 1, 1, ρj Þ, Eq. (9) is naturally satisfied by using Eq. (4). Therefore, we
have proved that the iterative procedure could be interpreted as a type of EM
algorithm.

6 Numerical Example

A total of 10,000 contingency tables (p = 2, q = 3) with 1024 entries were gen-
erated, as shown in Table 2. The original BND was ϕðx, y 0, 0, 1, 1, 0.9j Þ and the
thresholds were θ1 = 0, τ1 = − 1, and τ2 = − 1.

We compared four types of correlation coefficients ρ ̂ from the following:

1. Original continuous variables,
2. Integer-valued (Likert) variables,

Table 2 An example of a 2
by 3 correlation table

X

1 2

Y 3 4 181
2 353 324
1 162 0
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3. Olsson’s polychoric correlation method (with two-step estimation), and
4. The new method proposed in the current study.

The results of the numerical simulation are depicted in Fig. 3 and Table 3. Not
surprisingly, the original continuous variables fared the best amongst the other
methods, and the estimation from integer-valued variables (Likert rating) was very
poor. A comparison between the approach by Olsson (1979) and the present
method shows that both methods demonstrated a similar level of accuracy. How-
ever, Olsson’s polychoric correlation yielded a large number of overestimations.

Fig. 3 The results of numerical simulation. Left most distribution is from Likert-type categories.
Dotted line around 0.9 is from the original continuous variable. Solid line designates the results
obtained by using the new method. Results from Olsson’s polychoric correlation are shown in long
dash: the distribution shows three peaks

Table 3 Summary statistics of the simulation

Original continuous
variable

Categorized (Likert)
variable

Polycholic (two-step
method)

New
method

N 10000 10000 10000 10000
Mean 0.8998 0.5584 0.9180 0.8832
RMS 0.8999 0.5585 0.9191 0.8839
SD 0.0059 0.0133 0.0439 0.0367
RMS
error

0.0047 0.3416 0.0323 0.0323

Note RMS = Root Mean Square, RMS error = Root Mean Square from true value ρ=0.90ð Þ
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7 Discussion

Apparently, the new method shows satisfactory robustness in our simulation. Of
course, in order to further validate our new procedure, a more substantive numerical
check is needed; we are currently working on this. A major concern we have is that
this method is rather slow, as is often the case with EM algorithms. On the other
hand, a clear merit of this approach is its simplicity and theoretical clarity. We can
observe that Eq. (6) enjoys a direct connection to the ordinary definition of Pearson’s
correlation coefficient: r= 1

n∑
n
k=1 xkyk. The reason for this is that, if p→∞, q→∞

in such a way that maxi=1, p½θi − θi− 1�→ 0 and maxj=1, q½τj − τj− 1�→ 0, then the
cells become very small; consequently nij ̸n→ 1 ̸n, σij → 0, xīj ≈ x′ij, and yīj ≈ y′ij
where ðx′ij, y′ijÞ∈ ½θi− 1, θi�× ½τj− 1, τj� is any vector within the rectangle. Therefore in
Eq. (6), we have, as a rough approximation:

∑
p

i=1
∑
q

j=1

nij
n
ðσij + xījyījÞ→ ∑

p

i=1
∑
q

j=1
nij ≠ 0

1
n
x′ijy

′

ij,

which means that, when categories are very fine, we have a scatter plot and the
ordinary formula for the correlation coefficient.
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Appendix

This Appendix shows the derivation of the stationary Eq. (7) within the framework
of the EM algorithm.

Let the observed integer-valued data pair (e.g., pair of Likert ratings) be:

ðXk ,YkÞ, k=1, 2, 3, . . . , n , where Xk ∈ f1, 2, . . . , pg,Yk ∈ f1, 2, . . . , qg.

from which we can construct a correlation table. According to the data generation
process in the main text, n sample pairs:

ðxk, ykÞ, k=1, 2, 3, . . . , n

are first extracted from the standard BND and then categorized into p× q rectan-
gular regions, which are defined by the thresholds.
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The Likelihood of Complete Data
The complete data is the concatenation of the missing data ðxk, ykÞ and the

incomplete data ðXk ,YkÞ. The likelihood L of complete data is written as:

L= f ðx1, y1,X1,Y1, x2, y2,X2,Y2, . . . , xn, yn,Xn,Yn ρÞ.j

The likelihood of data pair k is written as:

Lk = fkðxk , yk,Xk ,Yk ρÞ.j

Assuming the independence of data pairs, we have:

L= f ðx1, y1,X1,Y1, x2, y2,X2,Y2, . . . , xn, yn,Xn,Yn ρÞj = ∏
n

k=1
fkðxk , yk,Xk, Yk ρÞj

= ∏
n

k=1
fkðXk,Yk xk, yk , ρÞj ϕðxk, yk ρÞj .

Notice that:

fkðXk, Yk xk, yk, ρÞj =
1 if ðxk, ykÞ∈ ½θXk − 1, θXk �× ½τYk − 1, τYk �
0 otherwise




Therefore, we have:

L= f ðx1, y1,X1,Y1, x2, y2,X2,Y2, . . . , xn, yn,Xn,Yn ρÞj = ∏
n

k=1
ϕ*ðxk, yk ρÞj

where ϕ* is a BND under the restriction: ðxk , ykÞ∈ ½θXk − 1, θXk �× ½τYk − 1, τYk �.
The Incomplete Data
Using QTBD, the probability density of missing data, given a data pair ðXk, YkÞ

is:

fkðxk, yk Xk, Yk, ρÞj =ϕ*ðxk, yk ρj Þ ̸γXkYk = gXkYk ðxk, yk ρj Þ

and thus, the probability density of incomplete data is given as:

∏
n

k=1
fkðxk, yk Xk, Yk, ρÞj = ∏

n

k=1
ϕ*ðxk, yk ρj Þ ̸γXkYk = ∏

n

k=1
gXkYk ðxk , yk ρj Þ

where ðxk, ykÞ∈ ½θXk − 1, θXk �× ½τYk − 1, τYk �.
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Expected Log Likelihood (E-step)
Using the above results, the conditional expected log likelihood Q can be written

as:

Q=
ZθX1

θX1 − 1

ZτY1
τY1 − 1

ZθX2
θX2 − 1

ZτY2
τY2 − 1

⋯
ZθXn

θXn − 1

ZτY2
τYn − 1

flog ∏
n

k =1
ϕ*ðxk, yk ρj Þg∏

n

k=1
gXkYk ðxk, yk ρðtÞ

�� Þdxdy

=
ZθX1

θX1 − 1

ZτY1
τY1 − 1

ZθX2
θX2 − 1

ZτY2
τY2 − 1

⋯
ZθXn

θXn − 1

ZτYn
τYn − 1

f∑
n

k=1
logϕ*ðxk, yk ρj Þg∏

n

k=1
gXkYk ðxk, yk ρðtÞ

�� Þdxdy

= ∑
n

k =1
Qk

where Qk =
R θXk
θXk − 1

R τYk
τYk − 1

logϕ*ðxk, yk ρj Þ× gXkYk ðxk , yk ρðtÞ
�� Þdxkdyk.

This simplification is possible because any variables other than ðxk , ykÞ are
integrated out.

There are some Qk’s that are defined in the same region, ½θi− 1, θi�× ½τj− 1, τj�,
and thus have the same value. We can categorize these Qk’s and arrive at the final
expression:

Q= ∑
n

k=1
Qk = ∑

p

i=1
∑
q

j=1
nijQij

where Qij =
R θi
θi− 1

R τj
τj− 1

logϕ*ðxij, yij ρj Þ× gijðxij, yij ρðtÞ
�� Þdxijdyij with the understand-

ing that ðxij, yijÞ are variables confined to ½θi− 1, θi�× ½τj− 1, τj�.
The Derivation of the Stationary Equation (M-step)
Because

Qij =
Zθi

θi− 1

Zτj
τj− 1

logϕ*ðxij, yij ρj Þ× gijðxij, yij ρðtÞ
�� Þdxijdyij

=
Zθi

θi− 1

Zτj
τj− 1

− logð2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
Þ− 1

2ð1− ρ2Þ ðx
2
ij − 2ρxijyij + y2ijÞ

� �
× gijðxij, yij ρðtÞ

�� Þdxijdyij

= − logð2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p
Þ− 1

2ð1− ρ2Þ fEðx
2
ijÞ− 2ρEðxijyijÞ+Eðy2ijÞg
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and

∂Qij

∂ρ
=

ρ

1− ρ2
+

ðρ2 + 1ÞEðxijyijÞ− ρðEðx2ijÞ+Eðy2ijÞÞ
ð1− ρ2Þ2 ,

the derivative of Q with respect to ρ is:

∂Q
∂ρ

= ∑
p

i=1
∑
q

j=1
nij

∂Qij

∂ρ
= ∑

p

i=1
∑
q

j=1
nij

ρ

1− ρ2
+

ðρ2 + 1ÞEðxijyijÞ− ρðEðx2ijÞ+Eðy2ijÞÞ
ð1− ρ2Þ2

" #

=
nρ

1− ρ2
+

ðρ2 + 1Þ∑p
i=1 ∑

q
j=1 nijEðxijyijÞ− ρ∑p

i=1 ∑
q
j=1 nijðEðx2ijÞ+Eðy2ijÞÞ

ð1− ρ2Þ2 .

Setting this to 0, and rearranging the terms, we have:

ρð1− ρ2Þ+ ðρ2 + 1Þ ∑
p

i=1
∑
q

j=1

nij
n
EðxijyijÞ− ρ ∑

p

i=1
∑
q

j=1

nij
n
ðEðx2ijÞ+Eðy2ijÞÞ=0

and further:

ρð1− ρ2Þ+ ðρ2 + 1Þ ∑
p

i=1
∑
q

j=1

nij
n

EðxijyijÞ−EðxijÞEðyijÞ+EðxijÞEðyijÞ
� �

− ρ ∑
p

i=1
∑
q

j=1

nij
n
ðEðx2ijÞ+Eðy2ijÞ−EðxijÞ2 −EðyijÞ2 +EðxijÞ2 +EðyijÞ2Þ

= ρð1− ρ2Þ+ ðρ2 + 1Þ ∑
p

i=1
∑
q

j=1

nij
n

COVðxij, yijÞ+EðxijÞEðyijÞ
� �

− ρ ∑
p

i=1
∑
q

j=1

nij
n
ðVðxijÞ+VðyijÞ+EðxijÞ2 +EðyijÞ2Þ=0.

The last line is the stationary Eq. (7) in the main text.
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A Structural Equation Modeling
Approach to Canonical Correlation
Analysis

Zhenqiu (Laura) Lu and Fei Gu

Abstract Canonical Correlation Analysis (CCA) is a generalization of multiple
correlation that examines the relationship between two sets of variables. Spectral
decomposition can be applied and canonical correlations and canonical weights are
obtained. Anderson (2003) also provided the asymptotic distribution of the
canonical weights under normality assumption. In this article, we propose a
Structural Equation Modeling (SEM) approach to CCA. Mathematical forms are
presented to show the equivalence among these models. The weight matrix is
obtained as the inverse of the loading matrix and the variance or standard errors of
weights are calculated through the Delta method. Different popular SEM software
such as Lavaan, Mplus, EQS are demonstrated to illustrate the application, and the
results are compared with those obtained from Anderson’s (2003) formula. Related
issues are also discussed in the last section.

Keywords Canonical correlation analysis ⋅ Structural equation modeling

1 Introduction

Canonical Correlation Analysis (CCA), first introduced by Hotelling (1936), is a
generalization of multiple correlation analysis that examines the relationship
between two sets of variables. Following a stepwise procedure, pairs of linear
combinations of original variables are derived successively, one from each set, such
that the linear combinations of the current pair have maximal correlation and are
uncorrelated with all linear combinations of previously derived pairs (Anderson
2003). This stepwise procedure can be continued to derive as many pairs of linear
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combinations as the number of variables in the smaller set. In the CCA terminology,
these newly created linear combinations of original variables are called canonical
variates. Those coefficients used in linear combinations to create canonical variates
are called canonical weight coefficients or just weights. The maximal correlations
between a pair of canonical variates are called canonical correlations, which
provide a concise summary of the relationship between the two sets. The correla-
tions between a canonical variate and its original variables are called canonical
loadings. Finally, the correlations between a canonical variable and the other
original variables are called index coefficients, or cross loadings. From the above
description, it is clear that the canonical correlations are exclusively determined by
the canonical weight coefficients. Thus, the goal of CCA is essentially to find the
optimal weights that maximize these canonical correlations. For normalization
purposes, the weight coefficients must also satisfy the unit-variance restriction on
each canonical variate, in addition to the bi-orthogonality restrictions on the
canonical variates (within-set orthogonality and between-set orthogonality). This
stepwise procedure is easy to understand conceptually but not computationally
effective. Actual implementations, however, are replaced by a mathematically
equivalent spectral decomposition of some quadruple product of covariance/
correlation matrices so that all canonical correlations and the associated weight
coefficients can be obtained simultaneously. For the set having more variables,
additional canonical variates may be derived (which are orthogonal to all existing
ones). However, more constraints are needed to uniquely determine these additional
weight coefficients (Anderson 2003, p. 499).

Structural Equation Modeling (SEM), evolved from the earlier methods in genetic
path analysis of Wright (1918, 1921, 1934; see Bollen 1989), is a generalization of
multivariate linear models. SEM includes a very broad set of models such as path
analysis models, measurement models, factor models, structural relation models, and
latent growth models. It is now being widely used in the social sciences, educational
sciences, business, and other fields. Usually, a SEM model includes a measurement
model for exogenous variables, a measurement model for endogenous variables, and
an overarching structural model for relationships among exogenous and endogenous
variables. Unlike CCA, which only investigates the relationship between two sets of
observed variables, SEM examines the underlying relationship among many vari-
ables, including latent variables in addition to observed variables.

There are connections between CCA and SEM. However, the statistical relation
is less obvious and consequently less well known. We found two articles on this
topic, Bagozzi et al. (1981), and Fan (1997). Based on the insightful discussion by
Bagozzi et al. (1981), canonical correlation analysis could be treated as a special
case of a structural relations model. Following this idea, an innovative approach
from SEM to CCA was developed by Fan in 1997 when a Multiple Indicators and
Multiple Causes (MIMIC) model in SEM was used to analyze CCA. They had tried
several SEM models, “but the current example seems to be the only plausible one”
(Fan 1997, p. 77). The current example here means the MIMIC model. However, as
mentioned in Fan (1997)’s paper, “the representation of CCA using SEM is not
straightforward” (Fan 1997, p. 69).
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In this article, we will propose a new and a straightforward SEM approach to
CCA. The main advantages of the new approach over the approach by Fan include
that it is a one-stage procedure, instead of a two-stage procedure, and it can more
easily be applied using various existing SEM software packages. Other advantages
can be thought of, for instance, missing data of the observed variables can more
easily be handled and various robust estimation methods of the canonical corre-
lation coefficient are readily available.

2 A New SEM Approach to CCA

In this section we introduce the new SEM representation of CCA. Before that, we first
briefly review the conventional CCA and the SEM model from mathematical forms.

2.1 Conventional CCA

Let X be a p-variate (p ≥ 1) zero-mean vector of p random variables in the first
variable set, and Y be a (p + d)-variate (d ≥ 0) zero-mean vector of (p + d) ran-
dom variables in the second variable set. We assume that Σ11 and Σ22 are the
covariance matrices of X and Y, respectively, and Σ12 =Σ′

21 is the covariance

matrix between X and Y. So if we use Z= X′ Y′
� �′, then the covariance matrix

of Z is

Σ=
Σ11 Σ12

Σ21 Σ22

� �
.

Let a1i and a2i (i = 1, 2, …, p) be the canonical weight vectors for the ith pair of
canonical variates (V1i, V2i) of Z, respectively, such that V1i = a′1iX and V2i = a′2iY.
The goal of conventional CCA is to maximize

E V1iV2ið Þ=E a′1iXY
′a2i

� �
= a′1iΣ12a2i ði=1, 2, . . . , pÞ,

subject to the following unit-variance and orthogonality constraints:

a′1iΣ11a1i = a′2iΣ22a2i =1, ði=1, 2, . . . , pÞ, ð1Þ

a′1iΣ11a1j = a′2iΣ22a2j =0, ði≠ j and i, j=1, 2, . . . , pÞ, ð2Þ

a′1iΣ12a2j =0, ði≠ j and i, j=1, 2, . . . , pÞ, ð3Þ
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The constraints in (1) restrict each canonical variate to have unit variance, the
constraints in (2) require within-set orthogonality, and the constraints in (3) require
between-set orthogonality. Taken together, the constraints in (2) and (3) are the
so-called bi-orthogonality constraints of conventional CCA.

Computationally, the eigenvectors of the p × p matrix Σ− 1
11 Σ12Σ− 1

22 Σ21 contain
p weight coefficients a1i (i = 1, 2, …, p), and the eigenvectors of the (p + d)
× (p + d) matrix Σ− 1

22 Σ21Σ− 1
11 Σ12 contain (p + d) weight coefficients a2i (i = 1, 2,

…, p). The biggest p eigenvalues of Σ− 1
22 Σ21Σ− 1

11 Σ12 are the same as the p eigen-
values of Σ− 1

11 Σ12Σ− 1
22 Σ21. They are equal to the square of canonical correlations of

X and Y.

2.2 SEM

In SEM, there are two types of variables, exogenous variables and endogenous
variables. An exogenous variable is a variable whose variability is assumed to be
determined by causes outside of the causal model under consideration. And an
endogenous variable is a variable whose variability is to be explained by exogenous
and other endogenous variables inside of the causal model.

Visually, a SEM model can be commonly depicted as what is called a path
diagram to show the causality and relationship among variables, in which squares
indicate observed variables, circles indicate latent variables, curved lines with
arrowheads at both ends show correlated variables, and straight lines with arrow-
head at one end tell the causal paths from the end without arrowhead to the end with
arrowhead.

Mathematically, a general SEM model without mean can be presented as the
following form with three equations,

X=Λxξ+ δ, ð4Þ

Y=Λyη+ ε, ð5Þ

η=Bη+Γξ+ ζ, ð6Þ

where model (4) is called the X measurement model, in which X is the vector of
observed indicators of ξ, a vector of the latent independent (exogenous) variable,
and Λx is a factor loading matrix for X; model (5) is called the Y measurement
model, in which Y is the vector of observed indicators of η, a vector of latent
dependent (endogenous) variables, and Λy is a factor loading matrix Y; and model
(6) is called the structural model, B is a coefficient matrix for endogenous variables,
and Γ is a coefficient matrix for exogenous variables; and δ, ε and ζ are mea-
surement error for X and Y, and residual part for η, respectively.
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2.3 SEM Representation of CCA

In order to derive the new SEM approach to CCA, we adopt the matrix form of
conventional CCA. By concatenating all canonical weight vectors horizontally
for each set, we obtain A1 = a11 ⋯ a1pð Þ of order p × p, and
A2 = a21 ⋯ a2pð Þ of order (p + d) × p. We also consider d additional
canonical weight vectors A3 = a2, p+1 ⋯ a2, p+ dð Þ, and the associated d canon-
ical variates that can be derived from the second variable set Y2. Anderson (2003,
p. 499) discussed that the columns of A3 can be uniquely determined “by various
types of requirements, for example, that the submatrix formed by the lower”
d “rows be upper or lower triangular with positive diagonal elements.” For the
canonical variates generated by vector A3, we further assume the following
unit-variance and orthogonality constraints:

a′2jΣ22a2j =1, ðj= p+1, p+2, . . . , p+ dÞ ð7Þ

a′2iΣ22a2j =0, ði=1, 2, . . . , p, and j= p+1, p+2, . . . , p+ dÞ ð8Þ

a′1iΣ12a2j =0, ði=1, 2, . . . , p, and j= p+1, p+2, . . . , p+ dÞ ð9Þ

Now let be a (2p + d) × (2p + d) block-diagonal matrix, in which A1 is a
block of p × p and (A2 A3) is another block of (p + d) × (p + d). Because of the
constraints (1)–(3) and (7)–(9), algebraically the conventional CCA states that

where 0 denotes a matrix of zeros of proper dimension, Ip and Id are identity
matrices of dimensions p and d, separately, and R is a diagonal matrix whose
diagonal elements are canonical correlations, which are often sorted in descending
order.

In other words, the vector of canonical variates of X and Y is
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V=
V1

V2

� 	
=A′ X

Y

� 	
=

A′

1 0
0 A′

2
0 A′

3

0
@

1
A X

Y

� 	
=A′Z ð10Þ

where V1 = V11 ⋯ V1p
� �′, V2 = V21 ⋯ Vp+ d

� �′, and its covariance matrix is

ð11Þ

in which R is a diagonal matrix whose diagonal elements are canonical correlations,
which are often sorted in descending order. In order to maximize the above
expectation subject to those constraints, Lagrange multipliers are used. Next, the
function is differentiated with respect to the elements of a1i and a2i.

Based on (10), we can transform it to an equivalent form

Z= A′
� �− 1

V, ð12Þ

with Cov(V) having the form of (11). Equation (12) is just a simplified Y mea-
surement model in SEM when Λy = (A′)−1, η = V, and ε = 0. We also have a
simplified SEM structural model if we assume η = V, B = I, Γ = 0, and ζ = 0.

In short, the matrix form of conventional CCA has been represented by

Y= A′
� �− 1η, ð13Þ

which is a simplified SEM model

Y=Λyη+ ε,

where Λy = (A′)−1, ε = 0, η = V with

Therefore, the weight matrix A in CCA can be obtained as the transpose of the
inverse of the loading matrix in SEM, A′ = Λy

−1.
In order to estimate the standard errors of canonical weight coefficients SE(A),

the Delta method is adopted. Because in the SEM approach we have A′ = Λy
−1, the

weight matrix is a function of the loading matrix. So we have

266 Z. (Laura) Lu and F. Gu



var A′
� �

=var Λ− 1
y


 �
=var f Λy

� �� �

=
∂f
∂λ

var Λy
� � ∂f

∂λ

� �′

= −Λ− 1
y

∂Λy

∂λ

� �
Λ− 1

y

� 	
var Λy

� �
−Λ− 1

y

∂Λy
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� �
Λ− 1

y
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y

∂Λy
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� �
Λ− 1
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� �

Λ− 1
y

h i′ ∂Λy

∂λ

� �′

Λ− 1
y
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Regarding the asymptotic distribution of the loadings, Anderson (1999, 2003)
provided formulas (3.25)–(3.29) to calculate the asymptotic standard errors of
canonical weight coefficients for conventional CCA.

2.4 Software Implementation

Convectional CCA can be implemented by using software packages such as
Proc CANCORR in SAS/STAT (SAS Institute Inc. 1993), the CCA package in R
(R Core Team 2013), the MANOVA command in IBM-SPSS (SPSS 2012), the
algebraic function for eigen-analysis in R, MATLAB (MathWorks, Inc. 2012), and
SAS/IML.

If we use the SEM approach, then CCA can be implemented in existing SEM
software packages, such as the Lavaan package (Rosseel et al. 2013) in R, the SEM
package (Fox 2006) in R, Mplus (Muthén and Muthén 2012), EQS (Bentler 1995),
the OpenMx package (Boker et al. 2011) in R, and LISREL (Jöreskog and Sörbom
2006).

In this article, we compare the results from the traditional CCA approach to
those from the SEM approach by employing the software packages, such as
Lavaan, Mplus, EQS and the others. Standard errors are compared between those
obtained from the Delta method and those derived from the Anderson’s formulas
(1999, 2003).

3 Real Data Analysis

In this section, we illustrate the SEM approach to canonical correlation analysis by
using a real data example and by comparing the results to those obtained from a
regular CCA analysis. In the SEM approach, the loading matrix was first estimated
using existing SEM software packages. Next, the inverse of the loading matrix is
taken to be the CCA weight matrix.
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We analyze the relationships between various kinds of food intake and the
mortality rate by various kinds of cancer. There are two sets of variables: variables
on food supplies and cancer variables. The data on food supplies are from 34
countries of the world from FAOSTAT (Food and Agriculture Organization of the
United Nations 1998). The cancer variables, X variables, consisted of the following
four cancer sites: (x1) esophagus, (x2) stomach, (x3) pancreas, and (x4) liver.
Seven Y variables were included: (y1) alcohol, (y2) meat, (y3) fish, (y4) cereal, (y5)
vegetable, (y6) milk products, and (y7) the total calorie per day. In this case, we
have

where

We use the full information maximum likelihood (FIML) estimation method,
and the −2*loglikelihood value is 3224.4953. First, the point estimates of the four
canonical correlations are identical to those obtained from any traditional CCA
approach. Second, Table 1 in the Appendix shows the estimates of the loading

268 Z. (Laura) Lu and F. Gu



matrices and their corresponding standard errors (SE) for the CCA analysis using
the Lavaan package in R (as the results for the other SEM packages are highly
similar, we only focus on the results obtained using Lavaan). Table 2 in the
Appendix compares the weight matrices and their standard errors (SE) obtained
from (1) the (asymptotic) Anderson formulas, and from (2) the inverse of the
loading matrices obtained via Lavaan and the Delta method. We can see both point
estimates and SEs are almost the same for the different approaches.

4 Conclusions and Discussion

There are many scholarly significances and advantages of this new SEM approach
to CCA. First of all, this approach is very simple and it can be easily applied in
various SEM packages. There are many other advantages to be explored. For
example, it treats the observed variables as endogenous variables by estimating the
loading parameters. Consequently, future research may focus on handling missing
data of the observed variables by using FIML. That is, estimating weight coeffi-
cients using the other methods, including regular CCA and the Goria and Flury’s
model (Goria and Flury 1996), will treat the observed variables as exogenous
variables. Also, future studies may consider the effectiveness of various robust
estimation methods to minimize the contaminating influences of outliers.

Appendix

See Tables 1 and 2.
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Table 1 Loading matrices and their standard errors estimated via the Lavann package

est method: FIML −2loglik: 3224.496

Loading1

−1.836 0.916 −3.074 −2.485
−13.043 0.462 7.134 5.244
−2.308 2.109 −3.991 4.071
−3.385 −3.207 −12.236 3.163
STDERR1

5.132 10.035 0.773 0.662
3.541 71.012 3.327 3.445
11.717 12.643 1.173 1.011
17.792 18.515 1.935 1.641
Loading2

−23.883 −7.307 −26.061 −9.992 −9.991 −5.611 −4.853
1.021 −7.736 −19.459 −6.402 4.176 5.595 −6.842
−3.436 −6.755 1.842 12.896 1.243 5.476 0.129
−2.228 2.931 22.282 −6.224 15.675 −8.323 −9.280
4.043 −32.032 8.784 −9.451 33.259 10.941 16.060
−6.005 29.614 −7.207 −10.736 5.185 23.932 0
−57.688 −74.403 −197.238 10.947 218.822 0 0
STDERR2

40.813 130.111 7.297 11.997 9.91 10.389 11.525
42.879 7.046 3.709 8.202 5.817 6.473 4.701
37.518 19.255 3.229 5.117 10.162 10.05 12.244
17.450 13.836 4.888 15.98 6.138 7.991 9.923
177.045 25.116 10.633 31.658 11.89 13.377 10.543
163.53 33.807 8.663 21.006 11.952 11.519
415.745 321.176 52.665 175.423 38.471
Note
1. Results from the other SEM software packages, such as Mplus and EQS, are highly similar
2. Loading columns may have different signs for different software packages
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Table 2 The weight matrices and their standard errors (SE) (1) from the Anderson’s formulas
(asymptotic) and (2) from the Delta method (columns are sorted according to the absolute values of
canonical correlations)

(1) Weight matrices of the traditional CCA approach and the asymptotic SEs from
the Anderson’s formulas
mat1

0.059 0.105 −0.146 −0.193
−0.025 0.061 0.027 0.004
0.038 −0.030 −0.221 0.107
0.039 0.019 0.124 0.016
SE1

0.028 0.794 0.579 0.063
0.009 0.149 0.337 0.022
0.029 1.201 0.169 0.074
0.016 0.677 0.107 0.042
mat2

−0.002 0.033 0.008 −0.012
0.008 −0.030 0.022 −0.013
−0.014 0.028 0.018 0.041
−0.017 0.013 0.002 −0.007
−0.007 0.004 0.013 −0.013
−0.002 0.010 −0.013 −0.005
0.002 0 −0.002 0.002
SE2

0.004 0.044 0.180 0.011
0.005 0.120 0.163 0.012
0.006 0.100 0.157 0.012
0.003 0.009 0.069 0.005
0.002 0.068 0.024 0.005
0.002 0.069 0.058 0.005
0.000 0.010 0.001 0.001
(2) Weight matrices from the Lavaan SEM package and the SEs from the Delta
method

mat1

0.060 0.106 0.148 −0.195
−0.025 0.062 −0.028 0.004
0.039 −0.030 0.224 0.108
0.039 0.019 −0.126 0.016
SE1

0.029 0.745 0.542 0.064
0.009 0.139 0.316 0.022
0.030 1.125 0.160 0.075
0.016 0.634 0.101 0.042

(continued)
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Dealing with Person Differential Item
Functioning in Social-Emotional Skill
Assessment Using Anchoring Vignettes

Ricardo Primi, Daniel Santos, Oliver P. John, Filip De Fruyt
and Nelson Hauck-Filho

Abstract When analyzed via item response theory, Likert-type items are modeled
by estimating a set of thresholds (i.e., parameters that inform on the latent trait level
required for endorsing a given scale option) that are assumed to be invariant across
the population of individuals. If persons vary in response styles this assumption
may not hold. This is called person differential functioning (PDIF). Anchoring
vignettes offer an approach to learn how individuals translate the latent trait into
Likert responses, and a method to assess potential variability in item thresholds
across individuals. A vignette presents hypothetical persons differing on the attri-
bute of interest (usually low, medium and high), and asks respondents to rate the
hypothetical persons in the same Likert scale used in self-assessment. This can then
be used to resolve PDIF, potentially producing measures that are more comparable.
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We investigated if the patters of responses to vignettes have a developmental
trend and if they are related to cognitive capacity, using data from a large-scale
educational assessment. We then investigated if anchor-adjusted scores produce
more reliable and valid measures.

Keywords Anchoring vignettes ⋅ PDIF ⋅ Social-emotional skill assessment

1 Introduction

1.1 Response Bias in Self Reports

Socio-emotional skills are most frequently assessed in education with self-ratings
using rating scales with a Likert format. One issue in these assessments is that the
effects of response bias are much more pronounced in children under age 16 and
addressing response bias is thus critically important for good measurement (Primi
et al. 2016; Soto et al. 2008).

Response bias distorts item responses and leads to construct irrelevant variance,
that is, variance due to factors other than the construct one intends to measure.
Well-known response biases include (a) acquiescence: tendency to choose
responses stating agreement regardless of the content of the item, (b) disacquies-
cence: tendency to choose responses stating disagreement regardless of the content
of the item, (c) extreme response bias: tendency to use the end points of a scale
regardless of the content, (d) middle response bias: tendency to use the midpoint of
the Likert scale regardless of the content, (e) social desirability bias: the tendency
to answer questions in a way to present oneself in a positive way, and (f) group
reference bias: systematic differences across respondents regarding internalized
group/culture frames of reference to make relative judgments about themselves
(e.g., Duckworth and Yeager 2015; He et al. 2014; Wetzel and Carstensen 2015).

Socio-emotional skill assessment through self-reports is popular because such
data are easy and inexpensive to collect, especially in large-scale assessments for
low-stake purposes (Kyllonen et al. 2014). Despite advantages, self-rating methods
assume that participants interpret and use response categories in the same way, and
that response styles do not meaningfully affect item responses. The previously
described response distortions may operate not only at the level of the individual
but may also affect variance at the aggregated level, such as the class, school, or
region. Two schools, for example, may have identical latent trait means, but their
observed aggregated means may vary because of differential acquiescence. Alter-
natively, students at different schools may use different frames of reference
reflecting socio-economic, cultural, or developmental differences, making com-
parisons among schools or grades difficult. This multitude of problems encouraged
researchers to think about methods to account for response styles and
group-reference effects.
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1.2 Responses Bias as Differential Person Functioning

In Item Response Theory (IRT), bias in test items is generally conceptualized as
Differential Item Functioning (DIF). DIF occurs when subjects with the same level
on the construct but from different groups have different probabilities of choosing a
particular answer. The underlying cause is an additional dimension that differs
across groups and affects item responses beyond the dimension of interest.
Therefore, group is a proxy variable for this second dimension that interacts with a
particular item, and will hence be indexed as an item-by-group interaction effect on
item endorsing. When not accounted for, these differences will be confounded with
latent scores, making the groups appear more different than they really are on the
dimension of interest.

Individual differences in response styles are better conceptualized as a form of
Differential Person Functioning (PDIF) (Johanson and Osborn 2004). PDIF occurs
when a person differently rates two types of items that measure the same trait with
equivalent difficulty but that differ in some irrelevant feature, such as keying
direction (e.g., true vs. reverse-keyed). Alternatively, and more generally, we can
say that PDIF occurs when two persons with the same level on the construct
endorse differently the same item or set of items that have similar difficulty. Again,
the underlying cause is a second dimension that varies across persons and affects
item endorsement beyond the main dimension of interest. Items that share a feature
will be more prone to elicit this particular bias. Being a person variable, it can be
modeled as a second latent dimension indexed by a person-by-item-group inter-
action effect. When not accounted for, it will be confounded with latent scores
potentially compromising test validity.

Solving DIF and PDIF involves modeling interaction effects (i.e., item-by-group
or person-by-item-group effects). Whereas solving DIF is relatively simple (i.e., by
estimating different difficulties for each group), solving PDIF is more challenging.
Let’s consider the example of group reference bias. Imagine an item designed to
measure self-management (conscientiousness), such as ‘I’m a careful and dedicated
student; I always keep my things organized,’ and students are asked to respond on a
scale with ‘1’ (not at all like me), ‘2’ (little like me), ‘3’ (moderately like me), ‘4’ (a
lot like me) and ‘5’ (completely like me). Imagine two groups A and B with very
different reference standards of what is considered an acceptable level of organi-
zation and dedication. Imagine that group A has a higher standard for organization
and dedication in mind than group B. Imagine two persons a and b from these two
groups. On the latent level, they could have the same average level on
self-management but according to their internalized standards, person a will tend to
choose a lower value on the item response scale (e.g., a ‘2’) than person b (e.g., a
‘3’). This difference reflects different group standards, rather than a real difference
between the two persons. If all items in a scale are affected by these different
internalized standards in the same way, then bias will be unidentifiable and con-
founded with the latent score, such that person a will end up with a lower on
self-management.
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Solving PDIF relies on the existence of item features that are (a) correlated with
this second dimension that we want to control for and, simultaneously, (b) are not
related to the construct of interest. Consider acquiescence bias as an example where
solving PDIF is doable. For instance, we can measure extraversion with items
representing high levels of sociability such as i1: ‘I talk a lot’ as well as low levels
such as i2: ‘I tend to be quiet’. For any person, after controlling for general item
difficulties, the expected response on these two items will be the same. As an
example, assume that i1 and i2 have the same level of difficulty. If a person
responds with a 4 on i1, the expected response on i2 would be 2 (because reflected
6 − 2 = 4). The difference between actual vs expected responses can be used to
estimate PDIF related to acquiescence (Primi et al. 2017; Soto et al. 2008).

In summary, to solve PDIF using IRT methodology, there is a need for item
groups that instantiate features related to the second dimension and that can then be
used as contrasts to estimate person-by-item effects. In the case of acquiescence,
scores on true and false keyed items can be used to estimate this bias and then
correct for it. But what item features could be used to instantiate group reference
bias? There is no easy solution to this problem since this type of bias tends to affect
all items in the same way (Mõttus et al. 2012). One candidate method to help
correct for reference-group bias is using anchoring vignettes.

1.3 Anchoring Vignettes

Anchoring vignettes, initially used in political science, have been suggested as an
effective means to control for group reference bias (King et al. 2004; Primi et al.
2016; Wand and King 2008). Specifically, respondents are asked to rate hypo-
thetical persons described in different vignettes; these vignettes vary systematically
on the attributes to be assessed, and ratings are obtained using the kinds of items
that will also be used for respondents’ self-descriptions, with the same rating scale
and response format. For instance, at the beginning of the questionnaire, three
vignettes are presented describing persons with respectively low, medium and high
scores on the skill of negative emotional regulation: (a) low: Beto gets irritated, and
he gets easily grumpy. He is always worried about everything, and it is difficult for
him to make decisions, (b) average: Fabiana deals well with stress, and she trusts
on her own abilities, but sometimes she gets sad and anxious, and (c) high: Pedro
is calm, and he copes well with tense and stressful situations. He hardly ever feels
sad. The respondent is asked to rate “How calm and confident do you think is Beto/
Fabiana/Pedro?”, providing response options in Likert scale format similar to the
self-report items: ‘1’ (not at all like him/her), ‘2’ (a little like him/her), ‘3’ (mod-
erately like him/her), ‘4’ (a lot like him/her), and ‘5’ (completely like him/her).
Later in the questionnaire respondents respond to similar items about themselves on
the same construct.

If we assume that all the fictitious characters on the vignettes have the intended
levels on the construct (the concept of anchors) and the process of rating others is
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equivalent to ratings of self (according to the consistency principle; see King et al.
2004), respondents should give the same expected ordered ratings for these three
vignettes. Any between-person variance in these ratings is a direct indicator of bias.
For instance, extreme response bias will be related to greater likelihood of giving
extreme scores of ‘1’ to Beto and ‘5’ to Pedro, as compared to more moderate
scores of ‘2’ and ‘4’. In contrast, group reference bias, reflecting systematic group
differences in benchmarks of what constitutes an average level of negative emo-
tional regulation, would be shown by average differences in Fabiana’s ratings by
group A and B.

In summary, responses on vignettes can potentially be used to estimate
group-reference bias and then be used as control variables accounting for bias when
correlating test scores with external variables. In recent research, anchoring vignettes
have been used in the Programme for International Student Assessment (PISA) to
correct for some paradoxical findings regarding reversed relationships from the
individual to the country level: specific traits were positively related with an outcome
at the individual level, though when scores were aggregated at the cultural level, the
same trait turned out to be unrelated or even negatively related to this outcome (see:
Kyllonen and Bertling 2013; Stankov et al. 2017; von Davier et al. 2017).

1.4 Research Questions

Despite its use in large scale assessments like PISA, little is known about the impact
of correcting scale scores using anchoring vignettes and how this affects their
psychometric properties and validity. The goals of the present research are
four-fold: (a) What is the relationship between original scores and recoded scores
using a non-parametric correction relying on vignettes? (b) Is there a developmental
trend in response patterns to vignettes? (c) Are response patterns related to indices
of cognitive capacity such as achievement tests? (d) Do recoded scores have
improved reliability and validity in predicting standardized achievement?

2 Method

2.1 Data

We collected data on vignettes in two representative samples of students attending
public schools in Brazil: Sample 1 (Rio de Janeiro): N = 23,133 students from 430
schools attending grades 10th and 12th, and Sample 2 (São Paulo): N = 42,845
students from 500 schools from grades 6th to 12th. The number of students varied
across grades in both samples. Total number of students broken down by grades are
6th N = 6,720, 7th N = 4,623, 8th N = 5,855, 9th N = 6,566, 10th N = 21,322,
11th N = 6,015, 12th N = 14,685. For further age comparisons, we also collected
data from a small sample of 192 undergraduate students. All data were collected in
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the course of social-emotional skill assessments conducted by researchers from
Edulab21 (Ayrton Senna Institute).

2.2 Instruments

Social-emotional skills were assessed with two self-report versions of SENNA
(Primi et al. 2016) that measure five broad social-emotional skill domains, con-
ceptually akin to the dimensions in the Big Five model of personality (e.g., John
et al. 2008): E: Engaging with others, A: Amity, N: Negative-emotion regulation,
C: Conscientious Self-management, and O: Open-mindedness.

Across samples, we used ten anchoring vignette sets, two per skill domain. Each
set was composed of three descriptions of hypothetical persons representing a high,
medium, and low position on each of the five domains. Following each description,
participants were asked to rate the socio-emotional skill levels of the various
characters using marker items defining either the high pole or the low pole on each
construct (5 domains × 2 poles = 10 sets total). High and low pole marker items
were ‘sociable/outgoing’ and ‘shy/introverted’ for E; ‘kind’ and ‘quarrelsome/
selfish’ for A; ‘calm/confident’ and ‘nervous/insecure’ for N; ‘organized’ vs
‘messy/disorganized’ for C; and ‘imaginative/creative’ and ‘little imagination/
difficulty to be creative’ for O. The complete set of vignettes can be downloaded
from http://www.labape.com.br/rprimi/ias/dic_vignettes_v2.xlsx.

As criterion variables we used official standardized achievement test scores (in
Portuguese and Math), which we obtained for each student from the education
authorities in the State.

3 Results

We first examined the relationship between the original scores and the scores
recoded according to the individual’s vignettes responses (research question a).
A non-parametric method is the simplest way to use vignettes to recode scores (King
et al. 2004). The procedure is as follows: let y be the subject’s response, ranging from
1 to 5 on a self-rating item and vlo, vav, vhi the subject’s responses on three vignettes
of respectively low, average and high levels on the same domain as the self-rating
item. Let z be the recoded response. The rules of recoding are: z = 1 if y < vlo, z = 2
if y = vlo, z = 3 if vlo < y < vav, z = 4 if y = vav, z = 5 if vav < y < vhie, z = 6 if
y = vhv and z = 7 if y > vhv. In summary, each vignette response is an anchor point
on the Likert scale that informs what level the subject considers low, average and
high. Then the respondent’s self-rating is compared to the responses to the anchor
points and transformed into a new scale from 1 to 7, indicating whether a response is
below low, equal to low, above low but below average, equal to average,above
average but below high, equal to high and above high. We run these transformations

280 R. Primi et al.

http://www.labape.com.br/rprimi/ias/dic_vignettes_v2.xlsx


on all items of a domain using a vignette set of the same domain. Original scores are
calculated as average endorsements on the items of a domain. Recoded scores are
calculated as average endorsements on the recoded items. Therefore, the metric of
original scores is on a 1 to 5 scale, whereas recoded scores range from 1 to 7.

Things get more complicated when an individual’s responses to vignettes does
not follow the normative ordering. For instance, a subject may answer vlo = 2,
vav = 1 and vhi = 4. This pattern exhibits a reversion of low with average vignettes
(coded as 2, 1, 3). More commonly, subjects tie some vignettes like vlo = 2, vav = 2
and vhi = 4 (coded as {1,2}, 3). For these patterns, more than one recoding is
possible. For instance, a self-report response of 2 could be recoded as 2 or 5 in the
former and 2 or 4 in the latter case. There is no consensus on how to treat these
anomalies. One pragmatic solution used in PISA is to tie reversals and pick up the
lowest value when two recoding options are encountered (Kyllonen and Bertling
2013). We followed this procedure.

Correlations between original and recoded scores for E, A, N, C and O were
r = 0.59, 0.71, 0.93, 0.84 and 0.66, respectively (M = 0.75). Figure 1 shows a
scatter plot of original (x-axis) and recoded (y-axis) scores on C in Sample 1 broken

Fig. 1 Original (X) versus recoded (Y) scores, violations (row facet being 0 no reversals, 1, 2 and
3 reversals), ties (column facet being 2 ties, 1 one tie and no ties) and response to low vignette on
self-management (color)
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down by rows on number of violations (0, 1, 2, 3 reversals) and by column by
number of ties (2 ties, 1 tie and no ties). Five different colors of the regression lines
indicate the response on the vignette representing the low level of conscientious
self-management. Therefore, we expect responses 1 or 2 since this vignette was
intended to represent a hypothetical person low in self-management.

Two patterns are important to notice. First, the upper right quadrant shows the
relationship of subjects that ordered vignettes perfectly. It can be seen that original
vs recoded scores are very similar. But slopes of the relationship changes. Those
who gave 2 or high responses to the lowest vignettes had a steeper slope than those
who gave 1. This a desirable change since subjects who use a restricted range on the
rating scale will have their scale stretched from 2–5 to 1–7 after recoding. This is an
interesting mechanism of equating extreme and middle responders. Second, when a
subject answers 5, a very unexpected response to the lowest vignette, the method
lowers the recoded scores. In this case any response from 1 to 4 will be recoded to 1
when using the lowest value rule. Therefore, subjects that gave this unexpected
response will have almost all items recoded to 1 or 2 (if they give 5) and therefore
will have a lower score on self-management.

Next we examined developmental patterns on vignettes (research question b).
We calculated the proportion of vignettes correctly ordered. We consider an order
correct if vignettes ratings are ordered as the expected pattern of low, average, and
high (1,2,3) or if they tie adjacent vignettes, namely low with average or average
with high ({1,2},3 or 1, {2,3}). Each subject obtained a score ‘1’ if their ratings
showed a correct pattern and ‘0’ otherwise. Figure 2 shows the proportions of this
variable by vignette set (for the five domains) and for each grade from 6 to 12
(where 12 is the last year of high school) and “grade 16” refers to undergraduate
students; these values are from Sample 2 plus the sample of undergraduate students.

Figure 2 shows clear evidence for the expected developmental pattern: the
proportion of correctly ordered responses increased with the grade level of the
students. Older students (i.e., in the higher grades) were more likely correct,
whereas younger students made more mistakes. Indeed, more than 80% of under-
graduate university students (Grade 16 in Fig. 2) ordered all the vignettes correctly.
But the percentage of correct orderings was as low as 30% in 6th grade students for
the most difficult vignette set, Open-mindedness rated on the reverse-keyed item. In
general, we found a linear increase associated with school grades, topped by the
much-better educated university students. Younger students in grades 6 and 7 made
more errors and showed more unexpected patterns. The vignettes for
Open-mindedness and Negative Emotion Regulation were generally more difficult
than the other three sets.

Research question c examined how performance on the vignettes is related with
standard indicators of cognitive development in school, namely scores on academic
achievement tests. For this analysis, we first calculated a Global Consistency Index
(GCI) from vignettes’ responses. Since vignettes have a predefined, normative
order, the expected order of the response for each vignette was 1 for the low
vignettes, 2 for the average vignettes and 3 for the high vignettes. For each subject,
we paired these expected vectors with their responses and calculated a correlation
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coefficient between the two vectors. Therefore, the GCI is a within-subject corre-
lation of expected order of vignettes and subjects’ actual responses. It is a metric
going from a minimum of −1 (completely reversed order in all vignette sets) to +1
(perfectly correct order in all vignette sets). In Sample 1, for example, the mean of
this consistency index was 0.61 (SD = 0.32, skew = −1.04). That is, this index has
generally positive values and its distribution is skewed negatively, indicating that
most students give responses in line with the normative order. Consistent with the
age trends in Fig. 2, we found that vignette consistency was positively correlated
with school achievement; in Sample 1, the consistency index correlated 0.45 with
achievement test scores in Portuguese and 0.32 with achievement in Math. These
are substantial correlations and indicate that students with greater reading-writing
skills and quantitative knowledge also gave more consistent responses on vignettes.

Finally, we explored whether recoded Big Five scores were more reliably and
valid than original scores (research question d). Table 1 shows internal consistency
coefficients of the Big Five scales and their correlations with standardized

Fig. 2 Proportion of correctly ordered patterns (y-axis) by grade (x-axis) on six vignettes sets (A:
Amity, C: Conscientious Self-management, E: Engaging with others, N: Negative Emotion
Regulation, and O: Open-mindedness (in addition, codes “_1” or “_0” after each domain code
indicate whether the questions about the persons in the vignettes were true keyed (e.g., ‘imaginative/
creative’ for O) or false keyed (e.g., ‘little imagination/difficulty in being creative’ for O)
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achievement. Recoding increased the reliability estimates for three of the five
dimensions but decreased reliability for the two other domains (for C and O).
Validity coefficients (i.e., correlations with scores on the Portuguese and Math
achievement tests) stayed largely unchanged.

4 Discussion

Together, these findings indicate three main points about what vignettes measure.
First, rating vignettes correctly (i.e., consistent with normative expectations) was
related to age and to achievement scores in Portuguese and mathematics. These
findings suggest that vignette performance is more strongly related to aspects of
cognitive development than previously realized. Vignette performance showed
similar patterns of associations with external variables—such as grade level in
school and cognitive measures of school achievement—as traditional intelligence
measures do (see Stankov et al. 2017 for similar results). At the same time, vignette
performance seems to tap specific knowledge about people and their typical
socio-emotional functioning (e.g., engaging with others; self-management in task
contexts) and how to express this knowledge in numerical scales. The index we
have proposed to capture this complex set of social-cognitive skills (GCI) could be
used as a measure of children’s psycho-social maturity or readiness to provide
self-ratings on psychological characteristics.

Second, vignettes can be a potential way to measure and solve response bias via
recoding. However, when anomalies in the vignette rating process are present,
recoding can change scores in an undesirable way. Students who make a lot of errors
in vignette ratings also had lower school achievement scores. Recoding using the
lowest value will hence lower the socio-emotional skills’ scores of students making
order violations. A confounder is introduced when assessing the relationship of
recoded scores with achievement. Now, the recoded socio-emotional skill scores are
contaminated with the criterion (a cognitively affected variable), leading to spuri-
ously higher associations of recoded scores with achievement (Primi et al. 2016).

Finally, recoded scores seemed to be more reliable in some cases, though this is
again a spurious increase due to a method artifact of the non-parametric recoding.

Table 1 Reliability indices
and criterion validity
(correlation with standardized
achievement in Portuguese
and math) of original and
recoded scores in Sample 1

Domains A C E N O

Reliability

Original 0.78 0.87 0.79 0.87 0.84
Recoded 0.85 0.82 0.82 0.77 0.91
Criterion validity

Original Port 0.11 0.13 0.02 0.01 0.19
Recoded Port 0.09 0.13 0.08 0.00 0.20
Original Math 0.07 0.10 0.00 0.05 0.10
Recoded Math 0.06 0.10 0.03 0.04 0.12
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If these increases were real increments in true variance related to total variance we
should have seen improved validity. Recoding introduces a dependency of item to
vignette responses since they become a function of the responses on vignettes, thus
increasing the correlation among items due to this common source variance.
Covariances among recoded items are no longer covariances among independent
observations, but covariances among items dependent on common vignettes items.
On top of that, if a subject violates the normative vignette ordering, their recoded
responses will be even more similar. Individual differences in the knowledge
necessary to order vignettes properly will further affect item responses, changing
responses in an undesirable way since it introduces other information, rather than
the desired correction for bias. Von Davier et al. (2017) proposed a mathematical
formulation of this problem and presented a simulation study that suggests that
violations are responsible for pseudo-increases in reliability.

Several limitations of the present research need to be considered. First, the
specific vignettes used here might not be valid measures of the type of biases we
intended to assess and control. Second, there is increasing evidence that the
non-parametric method to recode responses is not ideal (see von Davier et al. 2017).
Other methods have been based on item response modeling (see Bolt et al. 2014),
and their use may have achieved different results here. Finally, vignettes have
shown promise primarily in studies like PISA that aim to compare scores of
samples from different cultures or languages. The present samples come from a
single culture. More research is needed to address whether the utility of vignettes
may be limited to cross-cultural research contexts.

In conclusion, the present results suggest a cautiously optimistic stance
regarding the utility of vignettes and their use for correcting response biases in
mono-cultural research. After positive initial findings in PISA, further research is
needed to elaborate what vignettes really measure and to test whether they are
useful for capturing other kinds of response styles. For example, Mõttus et al.
(2012) suggested that vignettes response patterns may capture extreme response
style bias. Acquiescence is another response style that has recently attracted
renewed attention (e.g., Soto et al. 2008); we suggest that future research examine
whether vignettes may offer a novel way to assesses acquiescence and to correct for
that response style. More generally, more work is needed to better distinguish
among different kinds of response biases and to test whether and how vignettes can
be employed to improve the quality of measurement in psychological and educa-
tional contexts. Multidimensional item response models will likely prove the most
productive way forward for this important line of research.
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Random Permutation Tests
of Nonuniform Differential Item
Functioning in Multigroup Item Factor
Analysis
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Abstract The purpose of the present research was to introduce and evaluate ran-
dom permutation testing applied to measurement invariance testing with
ordered-categorical data. The random permutation test builds a reference distribu-
tion from the observed data that is used to calculate a p value for the observed (Δ)χ2

statistic. The reference distribution is built by repeatedly shuffling the grouping
variable and then saving the Δχ2 statistic between the two models fitted to the
resulting data. The present research consisted of two Monte Carlo simulations. The
first simulation was designed to evaluate random permutation testing across a
variety of conditions with scalar invariance testing in comparison to an existing
analytical solution: the robust mean- and variance-adjusted Δχ2 test. The second
simulation was designed to evaluate the random permutation test applied to testing
configural invariance by evaluating overall model fit (the χ2 fit statistic). Simulation
results and suggestions for the use of the random permutation test are provided.
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1 Introduction

Behavioral researchers often use multiple-group confirmatory analysis (MG-CFA)
to test measurement invariance (MI) with indicator variables on a Likert-type scale.
The procedure of testing MI can be seen as a procedure of finding items with
differential item functioning (DIF). In a MG-CFA framework, testing MI with
ordinal data usually involves comparing nested invariance models. To test
hypotheses about different levels of invariance, researchers could first use the
ordinal estimators based on polychoric correlations from software such as Mplus
and lavaan, which employ diagonally weighted least squares (DWLS) estimation.
A robust a mean- and variance-adjusted test statistic can be requested in Mplus
using the command “ESTIMATOR = WLSMV” or from lavaan using the
argument estimator = “WLSMV”, where the “MV” stands for the mean and
variance adjustment to the chi-squared test statistic. MI testing can be conducted by
comparing the global fit indices such as chi-squared statistic (χ2) or alternative fit
indices (AFI) between invariance models. Among different criteria developed for
MI testing, researchers have found that the chi-squared difference (Δχ2) test sub-
stantially outperforms other fixed cutoffs based on change in AFI (e.g., change in
CFI) by showing greater power and a better ability to control Type I error rate
across different scenarios (Sass et al. 2014).

The Δχ2 tests of ordinal estimators in MG-CFA usually require researchers to
apply robust corrections during the testing procedures to mitigate the influences of
not using consistent estimators for the weight matrix in fit function (Savalei 2014).
Software such as Mplus (Muthén and Muthén 2015) and lavaan (Rosseel 2012)
both provide robust Δχ2 tests for researchers to compare invariance models esti-
mated by DWLS. Unfortunately, even though robust Δχ2 tests are considered best
practice for testing MI with ordinal data in MG-CFA, there are some important
issues that warrant further attention.

Most simulation research of the mean- and variance-adjusted Δχ2 test utilizes the
implementation provided by Mplus with the DIFFTEST command when using
ESTIMATOR = WLSMV. Researchers have found contradictory conclusions
during simulations about its ability to control Type I error rate (see the following
sections for details). The mean- and variance-adjusted Δχ2 test is also implemented
in lavaan via the lavTestLRT function, but it has not been examined in a
published Monte Carlo simulation. Furthermore, the corrected χ2 statistic obtained
through WLSMV also has been shown to be inappropriate to test the configural
invariance assumption (whether the item-factor configurations are identical across
groups) when the model is only an approximation of the true population model
(Jorgensen et al. 2017), but evidence of inflated Type I error rates under certain
conditions (Bandalos 2014) suggests that a test of overall model fit could yield
inflated Type I errors even when models fit perfectly.

To address these issues, in the current study, we propose a nonparametric
method for testing MI based on the permutation test. We compare the robust (Δ)χ2
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tests provided by Mplus and lavaan with two simulation studies. Through these
simulations, we provide researchers (a) explanations about contradictory conclu-
sions in previous studies about the robust Δχ2 test in Mplus, (b) systematic eval-
uations of the robust Δχ2 test provided by lavaan, and (c) a new solution that can
outperform robust Δχ2 test under conditions when it fails to yield nominal error
rates. The rest of this article is organized as follows. We first briefly introduce the
robust (Δ)χ2 tests provided by Mplus and lavaan, then explain their problems in
MI testing. After that, we illustrate the rationale of the permutation test we propose
and explain its theoretical advantages. Lastly, we investigate the relative perfor-
mances between methods through our simulations and provide recommendations
for researchers.

2 The Robust Δv2 Test in Mplus for Testing MI
with Ordinal Data

The robust Δχ2 test provided by Mplus is a widely used implementation for MI
testing with ordinal data in MG-CFA recommended by popular structural equation
modeling textbooks (e.g., Kline 2016; Little 2013). Muthén and Muthén (2015)
suggested that researchers use the DIFFTEST command in Mplus in order to
correctly scale Δχ2. The DIFFTEST command in Mplus applies the mean and
variance adjustment to the Δχ2 statistic between nested models, as discussed by
Asparouhov and Muthén (2006; see also Satorra 2000). The parent model (e.g., a
configural model) is fitted to the data, and matrices containing information about the
model are saved in a separate output file. When the nested model (e.g., a scalar
invariance model) is fitted and the text file containing matrices from the parent
model is provided, DIFFTEST uses information from both models to compute a
“scaled and shifted” Δχ2 statistic that asymptotically yields nominal Type I error
rates. A more detailed explanation of the computation involved with the DIFFTEST
command can be found in Asparouhov and Muthén (2006).

3 The Robust Δv2 Test in lavaan for Testing MI
with Ordinal Data

Besides Mplus, empirical researchers could also use the “lavTestLRT” function
provided by lavaan for MI testing (Rosseel 2012). When two nested models are
supplied to the lavTestLRT function, the correction outlined by (Satorra 2000) is
applied to produce a mean- and variance-adjusted Δχ2 statistic. Within the lav-
TestLRT function in lavaan, there are two options for how to compute the
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Jacobian of the constraint function. The first option (method = “exact”) is to
calculate an exact solution from a constraint function applied to the full parameter
vector, which requires that the two models are nested in the parameter sense, not the
more flexible sense of nested covariance structures (Bentler and Satorra 2010). The
second option (method = “delta”) provides an approximation to the Jacobian
and only requires models to be nested in covariance sense, such that the set of
predictions that could possibly be made by the parent model include all possible
predictions made by the nested model. In the present research, we used the second
option, which is lavaan’s default method beginning with version 0.6-1.1109.

4 Problems with Currently Available Methods

Asparouhov and Muthén (2006) conducted a small simulation to show that their
robust Δχ2 test effectively controls the Type I error rate when the total sample sizes
are asymptotically large: 1100 and 2200. A follow-up study conducted by Sass
et al. (2014) found contradicting results when sample sizes were more realistically
small or moderate. Specifically, Sass et al. found that the Type I error rate of the
robust Δχ2 test provided by Mplus was always substantially inflated in all of their
conditions with symmetrically distributed thresholds (range from 7–9%), and 6–9%
in asymmetric conditions. One explanation to these contradicting results could be
that the sample sizes that Sass et al. examined are in general smaller than the sample
sizes in Asparouhov and Muthén (2006), and small samples are inconsistent with
the derivation of the robust test statistic, which relies on asymptotic theory.
However, if the Δχ2 statistic obtained from WLSMV requires more than 1000
observations, then its applicability will be severely limited, considering most of MI
studies in psychology won’t have this large of sample size (Putnick and Bornstein
2016).

After thoroughly examining the results in Sass et al. (2014), we found another
possible explanation. That is, in their simulations the scalar invariance model was
different from the ordinary settings by unnecessarily constraining two additional
parameters. Specifically, to make sure the configural model was identified, Sass
et al. fixed the mean and variance of latent factor to 0 and 1 in both groups. When
estimating the scalar invariance model, Sass et al. did not release these two con-
straints in the second group as suggested in literature, which resulted in an overly
stringent scalar invariance model (Kline 2016; Little 2013). We believe this could
be another reason that caused their inflated Type I error rates.

According to our knowledge, there is still no study evaluating the performance
of the lavTestLRT function in lavaan, despite its use by empirical researchers
(e.g., Antoniadou et al. 2016). Note that Satorra (2000) originally proposed the
adjustment for the Δχ2 statistic to correct for continuous non-normal data, not
categorical data. The utility of this Δχ2 correction with ordinal estimators like
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WLSMV seems to rest quite heavily on the asymptotic assumption. We therefore
think it is worthwhile to conduct a simulation to compare different implementations
of the correction that might not be equivalent in small to moderate samples, such as
the DIFFTEST procedure in Mplus and the lavTestLRT procedure in lavaan.

Finally, besides the unsolved issues we mentioned for the robust Δχ2 test in
Mplus and lavaan, we believed there is also a common limitation shared by the
robust χ2 obtained from the WLSMV estimator in both software packages.
Specifically, we believe the χ2 obtained from WLSMV estimator might not be a
valid statistic for evaluating the configural invariance in small to moderate samples
because it is derived from asymptotic theory. Bandalos (2014) found inflated Type I
error rates for the robust χ2 statistic when the sample size is small, especially when
thresholds are asymmetrically distributed.

5 Permutation Tests of MI with Ordinal Data

To solve the problem of (Δ)χ2 test statistics mentioned above, we proposed a
permutation test of MI with ordinal data, which would be free from asymptotic
theory and should be able to control the Type I error rate reasonably well regardless
of the sample size and distribution of the thresholds. Specifically, we propose to
apply the random permutation testing to (Δ)χ2 with ordered-categorical data to
overcome the issue of the difference statistic not following a central χ2 distribution.
The focus of the present research is demonstrating how this approach works and
evaluating its performance. The proposed random permutation test is a nonpara-
metric method based on the idea of building an empirical reference distribution
reflecting the null hypothesis that groups have the same model configuration and
measurement parameters. In other words, the reference distribution is built under
the assumption of a true null hypothesis that there is no effect of group membership
on measurement properties (e.g., configuration, parameter values). This reference
distribution is used to calculate a p value when testing the null hypothesis of
invariance. The benefit of permutation testing is that building a nonparametric
reference distribution alleviates many of the assumptions of standard parametric
hypothesis tests. When testing for the effect of group membership on a test statistic,
a null distribution can be built by randomly shuffling the grouping variable and
saving the resulting test statistic after each shuffle. If there is no difference in
measurement-model configurations or parameters between groups, the observed test
statistic (calculated from the original data) should be consistent with the values
created by randomly shuffling the grouping variable; that is, the observed value
would only exceed the upper 95th percentile of the permuted values 5% of the time.
This should keep the Type I error rate of the test procedure nominal (i.e., at 5%
when using α = 0.05). Building a null distribution this way is especially useful
when the distribution of the test statistic is unknown.
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6 Method

To address the issues of the currently available two methods mentioned in the
introduction, we conducted two Monte Carlo studies. Study 1 is designed to
compare the relative performances between the robust Δχ2 test provided by Mplus,
the robust Δχ2 test provided by lavaan, and our new proposed permutation
method on detecting DIF. In Study 1, based on the assumption that researchers have
confirmed configural invariance hypothesis, we conducted the Δχ2 tests between
scalar and configural invariance model with the three methods above. The relative
performances between methods were evaluated in terms of Type I error rate and
power across 1000 replications within each condition. In simulation Study 2 we
focused on the performance of the Type I error rate the χ2 obtained from the three
methods. In Study 2 we examined whether the corrected χ2 provided in Mplus and
lavaan would reject the configural invariance model too often in comparison to
the permutation method we proposed. In both simulations, we follow Sass et al.
(2014) and used (0.036, 0.064) as the acceptable range for observed Type I error
rates, In both simulations, data were generated in R using the simulateData
function in lavaan. A two-group, single-factor, model with eight indicator vari-
ables was used as the population model. The factor loadings were fixed at 0.6
except in conditions when loadings were not invariant (i.e., when the loadings of
first two items in Group 2 were different from Group 1). Residual variances for
indicator variables were always set at 1 – λ2 so that latent item responses would
have unit variance. The number of shuffling with each permutation test was set to be
500. The design factors we manipulated in the two simulations (i.e., sample size,
distribution of thresholds, the number of categories per item, and the presence of
measurement non-invariance) are illustrated as follows.

Study 1 evaluated the random permutation Δχ2 against analytically derived
robust Δχ2 test statistics. The simulation design was a fully crossed 2 (response
categories) × 2 (threshold symmetry) × 2 (sample size) × 2 (factor loading
invariance) design resulting in 16 between-replication conditions used to generate
data, each having 1000 replications. In each replication, four different Δχ2 tests
were conducted: robust Δχ2 tests in Mplus and lavaan, our permutation test for
Δχ2, and an unadjusted Δχ2 test as a reference.

In Study 1, we set the sample size as 300 (150 per group) or 600 (300 per group).
These settings are similar to the small and medium sample sizes Sass et al. (2014)
used. The number of categories per item was set to be 2 or 5 to represent the
dichotomous and ordinal scales that researchers frequently used in practice. In
addition, we also simulated either symmetrically or asymmetrically distributed
thresholds, given that previous studies have found that he distribution of thresholds
could affect the results of Δχ2 related tests (e.g., Sass et al. 2014). Specifically,
in conditions with ordinal items, the symmetric and asymmetric thresholds are
set to be (−1.30, −0.47, 0.47, 1.30) and (−0.25, 0.38, 0.84, 1.28) as used by
Sass et al. (2014). Threshold values for symmetrically and asymmetrically
dichotomous items are set to be 0 and 0.7 respectively, as the average of the
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conditions manipulated in previous research (Beauducel and Herzberg 2006;
Rhemtulla et al. 2012). The non-invariance we manipulated in the current study is
limited to factor loadings. Specifically, in Study 1 we created non-invariance by
subtracting 0.25 (Sass et al. 2014) from the factor loadings for Items 1 and 2 in the
population model in the focal group. Specifically, in non-invariant conditions, the
factor loadings of Items 1 and 2 in the model will be 0.60 in the reference group but
were 0.6 − 0.25 = 0.35 in the focal group. In contrast, Items 3–8 in both groups
always had factor loadings of 0.60 in all conditions.

There were two models compared in each replication: a configural invariance
model and a scalar invariance model. The configural model had the factor loadings
and thresholds freely estimated for both groups, whereas the latent variable in each
group had its estimated mean and variance fixed to be 0 and 1, respectively. Further,
in the configural model, the variances of the latent response variables (i.e., scales of
normally distributed responses assumed to underlie observed discrete item
responses) were fixed to 1 in both groups (i.e., we used the so-called “delta” method
of identification available in Mplus and lavaan). The scalar invariance model had
the factor loadings and thresholds constrained to equality across groups. Con-
straining the measurement parameters across groups allowed the latent variable
mean and variance to be estimated in the focal group rather than fixed to 0 and 1.

The simulation conditions of Study 2 are almost identical to those of Study 1
except we removed the non-invariant conditions and the estimation of scalar
invariance, given the exclusive focus on Type I error rates of the χ2 statistic for the
configural invariance model. Additionally, in order to increase the magnitude of
asymmetry in our data to better match the work of Bandalos (2014), we changed the
distribution of asymmetric thresholds to (1.198) and (0.85, 1.10, 1.45, and 2.00).

7 Results

Type I error rates for tests of scalar invariance are shown in Table 1. Results
showed that random permutation testing and lavTestLRT had reasonable Type I
error control. The random permutation test had Type I errors within the nominal
range of 0.036–0.064 in all eight equal measurement parameter conditions, whereas
the Mplus DIFFTEST procedure had inflated error rates in the two conditions where
there were two response options with asymmetric thresholds, even though the
inflation is not as severe as Sass et al. (2014) found with ordinal data.

Power for scalar invariance tests are shown in Table 2. The Mplus DIFFTEST
procedure consistently showed the highest power, with lavTestLRT showing
power equal to or greater than the random permutation test (see Table 2). All testing
procedures showed higher power in conditions higher group sizes, more response
categories, and symmetric thresholds.

The results of simulation Study 2 in Table 3 showed that the random permu-
tation test of configural invariance had acceptable Type I error control in all eight
study conditions. The mean- and variance-adjusted χ2 tests provided by Mplus and
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lavaan performed nearly identically and showed inflated Type I errors in con-
ditions with asymmetric thresholds with five response options. The error rates were
especially inflated with five response options when the group sizes were 150 (20.2%
and 19.9%), and improved but still inflated when the group sizes were 300 (10%
and 10.1%). Lastly, the unadjusted χ2 test provided by lavaan showed error rates
well below the nominal value of 0.05 in all conditions.

Table 1 Type I error rates for Δχ2 tests

N # Categories Thresholds Permutation Mplus lavaan Unadjusted

150 2 Symmetric 0.050 0.060 0.056 0.143
300 0.043 0.052 0.050 0.128
150 5 0.053 0.062 0.054 0.131
300 0.053 0.057 0.053 0.098
150 2 Asymmetric 0.053 0.065 0.054 0.135
300 0.056 0.078 0.065 0.139
150 5 0.050 0.053 0.047 0.131
300 0.054 0.062 0.056 0.128

Table 2 Power for Δχ2 tests

N # Categories Thresholds Permutation Mplus lavaan Unadjusted

150 2 Symmetric 0.279 0.319 0.292 0.452
300 0.543 0.568 0.543 0.703
150 5 0.460 0.504 0.464 0.618
300 0.786 0.811 0.794 0.890
150 2 Asymmetric 0.214 0.258 0.225 0.361
300 0.406 0.457 0.427 0.588
150 5 0.342 0.370 0.335 0.519
300 0.707 0.733 0.712 0.831

Table 3 Type I error rates of χ2 test in the configural invariance model

N # Categories Thresholds Permutation Mplus lavaan Unadjusted

150 2 Symmetric 0.051 0.049 0.049 0.001
300 0.048 0.052 0.052 0.001
150 5 0.054 0.066 0.066 0.000
300 0.057 0.059 0.059 0.000
150 2 Asymmetric 0.047 0.049 0.049 0.006
300 0.039 0.051 0.052 0.004
150 5 0.049 0.202 0.199 0.014
300 0.035 0.100 0.101 0.002
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8 Discussion

The purpose of the present research was to evaluate the use of random permutation
testing applied to Δχ2 tests with ordered-categorical indicator variables. The
research was focused on models estimated with the popular WLSMV estimator.
When models with ordered-categorical data are estimated with WLSMV, the Δχ2

related tests require a mean and variance adjustment (Asparouhov and Muthén
2006; Satorra 2000). The random permutation test was introduced as an alternative
that is easily implemented in any statistical software, and as a method that should
control Type I errors as well or better than existing methods. Study 1 evaluated the
random permutation Δχ2 test for measurement invariance in comparison to existing
analytical robust solutions, and served as a follow-up to Sass et al. (2014). Study 2
expanded on the work of Jorgensen et al. (2017) and served as a follow-up to
Bandalos (2014).

Overall, the random permutation test performed well in both simulations. In
Study 1 the random permutation test was the only method that consistently showed
Type I errors within the previously defined nominal range of 0.036 and 0.064.
Further, the power of the random permutation test was increased in conditions with
higher group sizes, more response categories, and symmetric response distributions.
As would be expected based on the better error control, the random permutation test
showed slightly less power than Mplus DIFFTEST and lavTestLRT. The
modification to the design of Sass et al. (2014) in simulation one did result in a
better performance of the Mplus DIFFTEST procedure. When the latent variable
mean and variance were freely estimated in the focal group in the scalar invariance
model, Type I error rates for the DIFFTEST procedure were closer to α = 0.05 than
what was reported by Sass and colleagues.

Study 2 replicated the poor Type I error control, previously reported by Ban-
dalos (2014), of the mean- and variance-adjusted χ2 when data were extremely
asymmetric. The random permutation test showed no performance issues with
Type I error control. These results show that random permutation testing should be
considered an appropriate option for researchers to test DIF using item factor
analysis models.

The present research suggests the random permutation testing procedure could
be preferable over the parametric approaches in nonideal conditions (small to
moderate samples with asymmetric thresholds) because permutation provides better
control of the Type I error rate for both χ2 and Δχ2 than the Mplus DIFFTEST
procedure or lavaan’s lavTestLRT.
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Using Credible Intervals to Detect
Differential Item Functioning in IRT
Models

Ya-Hui Su, Joyce Chang and Henghsiu Tsai

Abstract Differential item functioning (DIF) occurs when individuals from differ-

ent groups with the same level of ability have different probabilities of answering an

item correctly. In this paper, we develop a Bayesian approach to detect DIF based

on the credible intervals within the framework of item response theory models. Our

method performed well for both uniform and non-uniform DIF conditions in the two-

parameter logistic model. The efficacy of the proposed approach is demonstrated

through simulation studies and a real data application.

Keywords Credible interval ⋅ DIF ⋅ Item response model ⋅ Markov chain Monte

Carlo

1 Introduction

The unidimensional item response theory (IRT) models are statistical models that

describe the relationship among a latent trait (intelligence, ability, attitude, etc.), the

properties of items, and how respondents answer individual items. Like other sta-

tistical models, checking the validity of these models is necessary for the applica-

bility and the success of interpretation. Differential item functioning (DIF) refers to

a strong violation of the assumptions in IRT models. More specifically, DIF occurs

when individuals from different groups with the same level of ability have different
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probabilities of answering an item correctly. Studies of DIF deal with the question of

how item scores are affected by external variables that do not belong to the construct

to be measured (Glas 1998). Therefore it is important to know which items in a test

are subject to DIF.

Many DIF detection methods have been proposed in the literature, including tech-

niques based on the Mantel-Haenszel statistic (Holland and Thayer 1988; Camilli

and Penfield 1997; Li 2015), the log-linear models (Kok et al. 1985; Dancer et al.

1994), the IRT models (Hambleton and Rogers 1989; Wang and Woods 2017), and

the log-linear IRT models (Kelderman 1989). See Glas (1998) for further discus-

sions. Glas (1998) used the Lagrange multiplier test to evaluate DIF within the frame-

work of several IRT models, including the Rasch model, the one-parameter logistic

(1PL), and the two-parameter logistic (2PL) models.

In terms of statistical inference, there are two major approaches: frequentist infer-

ence and Bayesian inference. Using the approach of frequentist inference, hypothe-

sis testing and confidence intervals play important roles, and conclusions are drawn

based on the frequency or proportion of the observed data. A confidence interval

(CI) is a type of interval estimate (of a population parameter) that is computed from

the observed data. Confidence intervals (CIs) can be used as a significance test. The

simple rule is that if the 95% CI does not include the null value, the null hypothesis

is rejected at 0.05 level (e.g., Dahiru 2008, p. 25).

Using the approach of Bayesian inference, a credible interval is an interval in

the domain of a posterior probability distribution or a predictive distribution, and

is used for interval estimation. See Sect. 7.3 of Garthwaite et al. (2002) for further

discussion. So, similar to the frequentist approach, if one uses a Bayesian approach,

the null hypothesis is rejected at 0.05 level if the 95% credible interval does not

include the null value. Riley and Carle (2012) used 95% credible intervals to assess

differences in how respondents answer items administered by computerized adaptive

testing versus paper-and-pencil. Nevertheless, their study only focused on uniform

DIF without considering non-uniform DIF, and was limited to a small number of

replications per experimental condition.

Our goal of this study is to adopt a Bayesian approach to evaluate DIF within

the framework of IRT models by using credible intervals. In this paper, we obtained

95% credible intervals to analyze both uniform and non-uniform DIF in the context

of 2PL models. The rest of the article is organized as follows. Section 2 introduces

our method to detect DIF within the framework of 2PL models. Section 3 describes

simulations to investigate the performance of the proposed method in finite samples.

Section 4 applies the proposed analysis to the data of the physics examination of the

2010 Department Required Test in Taiwan, and Sect. 5 provides some concluding

remarks.
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2 Detecting Differential Item Functioning in
Two-Parameter Logistic Item Response Model

Let Ypj be the dichotomous response of examinee p on item j, where p = 1, 2, ...,P,

and J = 1, 2, ..., J. Denote bj and aj as the location and scale parameters respectively,

for item j, and 𝜃p as the ability parameter for examinee p. In the 2PL model (Birn-

baum 1968), the probability of examinee p getting a correct response on item j is

given by

𝜋pj = Pr(Ypj = 1|𝜃p, aj, bj) =
1

1 + e−aj𝜃p+bj
. (1)

The parameter aj is also known as the discrimination parameter (de Ayala 2009), or

the slope parameter (Wang 2004), and the parameter bj is called the difficulty param-

eter in Embretson and Reise (2000) and Wang and Xu (2015). For more descriptions

and discussions of the 2PL model, see Embretson and Reise (2000), Wang (2004),

and de Ayala (2009).

An item is said to exhibit DIF if the probability of correctly answering the item

differs across separate subgroups after controlling for the underlying ability. Specifi-

cally, consider the simplest case of two groups, namely the reference and focal group,

and use gp = 0 and gp = 1 to indicate whether the examinee p belongs to the refer-

ence group or the focal group. Furthermore, each group has its own difficulty and

discrimination parameters. Then, Eq. (1) becomes

𝜋pj = Pr(Ypj = 1|gp, 𝜃p, aj, bj, cj, dj) =

{ 1
1+e−aj𝜃p+bj

, gp = 0,
1

1+e−cj𝜃p+dj
, gp = 1,

(2)

where aj and cj are the discrimination parameters and bj and dj are the difficulty

parameters for the reference and the focal group, respectively. Alternatively, we can

adopt the notations of Glas (1998) to write Eq. (2) as

𝜋pj = Pr(Ypj = 1|gp, 𝜃p, aj, bj, 𝛾j, 𝛿j) =

{ 1
1+e−aj𝜃p+bj

, gp = 0,
1

1+e−(aj+𝛾j)𝜃p+bj+𝛿j
, gp = 1.

(3)

Equation (3) implies that the responses of the reference group are properly described

by (1), but that the responses of the focal group need additional difficulty parame-

ters 𝛿j, additional discrimination parameters 𝛾j, or both. Therefore, we consider the

following two hypotheses:

H
𝛾j,0 ∶ 𝛾j = 0 versus H

𝛾j,1 ∶ 𝛾j ≠ 0,
H

𝛿j,0 ∶ 𝛿j = 0 versus H
𝛿j,1 ∶ 𝛿j ≠ 0.
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Due to the complexity of the likelihood function, a Bayesian estimation method is

often used. Specifically, we follow closely the Bayesian approaches of Chang et al.

(2014, 2016). For model identification purpose, the marginal distribution of 𝜃p is set

to be the standard normal.

The procedure for testing the hypotheses runs as follows. Suppose there are J
items in the test. For each item, we test 𝛾j = 0 and 𝛿j = 0 separately, and only focus

on one item at a time. Let 𝜂j be either 𝛾j or 𝛿j. If 𝜂j = 𝛾j, then �̃�j = 𝛿j, and vice versa

(if 𝜂j = 𝛿j, then �̃�j = 𝛾j). Then, a size 𝛼 test of 𝜂j = 0 is constructed as follows. First,

let item j follow Eq. (3) and set �̃�j = 0, whereas the other items follow Eq. (1). In other

words, we only focus on testing, if for item j, the responses of the focus group need an

additional parameter 𝜂j. Then, we implement the Bayesian analysis via the Markov

chain Monte Carlo (MCMC) scheme to construct the equal-tailed 1 − 𝛼 credible

interval for the parameter 𝜂j. If the interval includes 0, then we do not reject 𝜂j = 0.

Otherwise, 𝜂j = 0 is rejected.

3 Simulation Study

In this section, we describe the simulation studies to evaluate the performance of

our tests. We fixed the Type-I error of each test (𝛼) to 0.05. All computations were

performed using Fortran code with IMSL subroutines. For each p, gp is randomly

assigned to be 0 or 1 with a probability of .50. In each experiment, we simulate a

test consisting of 10 items, i.e., J = 10. The number of examinees (P) are 200 and

400 students. For the true values of aj and bj, for j = 1, ..., J, we fit the data of the 26
items of the physics examination (see Sect. 4) to the 2PL model defined in Eq. (1),

and use the fitted values of the aj and the bj of the first 10 multiple-choice items

to be the true values. Regarding the values of 𝛾j and 𝛿j, we consider two cases (see

Table 1). The first case is that there is only one item with 𝛾j ≠ 0 or 𝛿j ≠ 0, but not

both. The second case is that there are three items of 𝛾j = 1 or 𝛿j = 1, or both. The

results are summarized in Table 2.

To construct the credible intervals, we produce 11,000 MCMC draws with the

first 1,000 draws as burn-in. For each experiment and each item, we repeat the exer-

cise 1,000 times to create 1,000 credible intervals to get the empirical probability

of detecting the DIF. In Table 2, pP
𝜂

is used to denote the probability of rejecting the

hypothesis 𝜂j = 0 for the value of P. Again, 𝜂 denotes either 𝛾 or 𝛿. When a test

is used to test 𝜂j = 0, the probabilities of rejecting the hypothesis 𝜂j = 0 when it is

true and when it is not true are the so-called Type-I error and the power of the test,

respectively. In Table 2, the numbers with and without parentheses correspond to

power and type-I error, respectively.

As shown in Table 2, it is clear that for DIF items the power increases with the

value of P. For non-DIF items the Type-I errors are on average close to the nominal

size, although some of them are as large as 0.131 (p400
𝛿

of item 9 for the case of

one DIF item) and as small as 0.009 (p200
𝛾

of item 8 for the case of 3 DIF items).
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Table 1 Overview of the experiments

Nr. of DIF items Condition Test P
One 1 𝛾j = 0 200, 400

2 𝛿j = 0 200, 400
Three 3 𝛾j = 0; 𝛿j = 0 200, 400

Table 2 Empirical probabilities of rejecting 𝛾j = 0 and those of 𝛿j = 0
True values 𝛾1 = 1 𝛿1 = 1 𝛾1 = 1; 𝛿2 = 1; 𝛾3 = 1 and 𝛿3 = 1
Item aj bj p200

𝛾

p400
𝛾

p200
𝛿

p400
𝛿

p200
𝛾

p400
𝛾

p200
𝛿

p400
𝛿

1 1.195 −0.001 (0.152) (0.317) (0.772) (0.979) (0.244) (0.347) 0.117 0.083

2 1.242 1.524 0.042 0.052 0.056 0.058 0.045 0.051 (0.680) (0.926)

3 0.544 1.955 0.034 0.038 0.058 0.053 (0.121) (0.222) (0.149) (0.249)

4 0.778 −2.195 0.045 0.049 0.103 0.080 0.026 0.048 0.094 0.077

5 0.803 1.254 0.046 0.056 0.039 0.062 0.039 0.051 0.040 0.053

6 0.841 −0.094 0.055 0.053 0.068 0.062 0.053 0.049 0.065 0.067

7 1.011 0.877 0.046 0.056 0.063 0.075 0.053 0.048 0.058 0.068

8 0.082 1.054 0.070 0.012 0.046 0.060 0.009 0.014 0.048 0.061

9 1.444 0.084 0.042 0.052 0.097 0.131 0.060 0.049 0.077 0.105

10 1.934 1.879 0.055 0.080 0.049 0.057 0.023 0.059 0.047 0.043

Moreover, the Type-I error and the power of the test of 𝛾j = 0 do not differ much for

one or three DIF items. For the test of 𝛿j = 0, the Type-I error does not change much

for one or three DIF items, whereas the power deteriorates from one to three DIF

items. It is also interesting to note that the power of detecting DIF on the difficulty

parameter is much larger than that on the discrimination parameter.

4 Application

In this section, the proposed procedure described in the previous sections are applied

to the data of the physics examination of the 2010 Department Required Test for

college entrance in Taiwan provided by the College Entrance Examination Center

(CEEC). Examinees have to answer 26 questions in 80 min. The 26 questions are fur-

ther divided into three parts. The totel score is 100, and the test is administered under

formula-scoring directions. For the first part, there are 20 multiple-choice questions,

and the examinees have to choose one correct answer out of 5 possible choices. For

each correct answer, 3 points are granted, and 3∕4 point is deducted from the raw

score for each incorrect answer. The second part consists of 4 multiple-response

questions, and each question consists of 5 choices, examinees need to select all the

answer choices that apply. The choices in each item are knowledge-related, but are
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Fig. 1 Plots of the correct

rates for male (blue line) and

female (red line) for all items

in the test

answered and graded separately. For each correct choice, 1 point is earned, and for

each incorrect choice 1 point is deducted from the raw score. The adjusted score

would only be 0 or above for each of these two parts. The last part consists of 2

calculation problems, and deserves 20 points in total.

The data from 1,000 randomly sampled examinees contains the original responses

and nonresponses information, but we treat both nonresponses and incorrect answers

the same way and code them as Ypj = 0 as suggested by Chang et al. (2014). As for

the calculation part, the response Ypj is coded as 1 whenever the original score is

more than 7.5 out of 10 points, and zero otherwise (see also Chang et al. 2014).

Chang et al. (2016) showed that the 2PL model fits the data well. Here, we consider

male as the reference group, and female as the focal group and among the 1,000

examinees, 692 of them are male and 308 are female.

We make more MCMC draws than in Sect. 3. Specifically, we produce 40,000

MCMC draws with the first 10,000 draws as burn-in. Then we test 𝛾j = 0 and 𝛿j = 0,

for j = 1, ..., 26. Again, we consider 𝛼 = 0.05. The results show that for Item 6, the

discrimination and the difficulty parameters are both subject to DIF, whereas for Item

24, only the discrimination parameter is subject to DIF, and for items 7, 17, 18, and

21, only the difficulty parameter is subject to DIF. To further study the testing results,

we first note that for each item, and for each examinee, the score can either be 0 or

1. Therefore, for each item, we define the percent of correct rate of each gender to

be the percent of scoring 1. The results are summarized in Fig. 1. It is interesting to

note that the correct rates for the male are all higher than those for the female, except

for items 3 and 19. For these two items, they are almost identical.

Then, we plot the credible intervals for the 𝛾 and the 𝛿 parameters in Fig. 2. In

this figure, the dot in the middle of each interval represents the median of the pos-

terior distribution based on the MCMC draws after burn-in. For the two items the

discrimination parameter is subject to DIF: for Item 6, the discrimination parameter

is higher for females than for males; for Item 24, the opposite holds.
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Fig. 2 Plots of the credible intervals for all items for 𝛾j (left figure) and 𝛿j (right figure)

From Fig. 1, we know that Item 6 is a relatively easy item and Item 24 is a rela-

tively difficult item. For the 5 items that the difficulty parameter are subject to DIF,

it is always that the parameter for the female is higher than that for the male. The

results are consistent with Fig. 1.

5 Concluding Remarks

In this article, we propose to use credible intervals to detect DIF in 2PL models.

Simulation studies show that the proposed method works reasonably well for detect-

ing the need of an additional difficulty parameter or an discrimination parameter for

the responses of the focus group. Applications of the proposed method to other IRT

models will be an interesting future line of research. It will also be worthwhile to

compare the power of our test with others in the future.
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Abstract In the attribute hierarchy method, cognitive attributes are assumed to be
organized hierarchically. Content specialists usually conduct a task analysis on a
sample of items to specify the cognitive attributes required by the correctly
answered items, and to order these attributes to create an attribute hierarchy.
However, the problem-solving performance of experts and novices was almost
certain to be different. Additionally, experts’ knowledge is highly organized in
deeply integrated schemas, while a novice views domain knowledge and
problem-solving knowledge separately. Thus, this may bring uncertainty into the
attribute hierarchy and lead to different attribute hierarchies for a test. Formally, a
Bayesian network is a probabilistic graphical model that represents a set of random
latent attributes or variables and their conditional dependencies via a directed
acyclic graph. For example, a Bayesian network can be used to represent the
probabilistic relationships between latent attributes in the attribute hierarchy. The
purpose of this study is to apply Bayesian network for modeling uncertainty in an
attribute hierarchy. The Bayesian network created from the attribute hierarchy,
which is regarded as a flexible high-order model, is incorporated into three cog-
nitive diagnostic models. The new model has an advantage of taking an account of
subjectivity of the attribute hierarchy specified by experts with the uncertainty of

L. Song
Elementary Education College, Jiangxi Normal University,
99 Ziyang Road, Nanchang, Jiangxi, People’s Republic of China
e-mail: viviansong1981@163.com

W. Wang (✉) ⋅ S. Ding
School of Computer and Information Engineering, Jiangxi Normal University,
99 Ziyang Road, Nanchang, Jiangxi, People’s Republic of China
e-mail: wenyiwang@jxnu.edu.cn

S. Ding
e-mail: ding06026@163.com

H. Dai
School of Psychology, Jiangxi Normal University, 99 Ziyang Road,
Nanchang, Jiangxi, People’s Republic of China
e-mail: daihaiqi@aliyun.com

© Springer International Publishing AG, part of Springer Nature 2018
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 233, https://doi.org/10.1007/978-3-319-77249-3_26

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_26&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_26&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77249-3_26&amp;domain=pdf


item responses. Fraction subtraction data were analyzed to evaluate the performance
of the new model.

Keywords Cognitive diagnosis ⋅ Attribute hierarchy ⋅ Bayesian network
The reduced reparameterized unified model

1 Introduction

More and more researchers are interested in combining psychometrics and cogni-
tive science to a new psychometric area. In an educational assessment, cognitive
diagnostic assessment (CDA) that combines psychometrics and cognitive science
has received increased attention recently (Leighton and Gierl 2007; Nichols et al.
1995; Rupp et al. 2010; Tatsuoka 2009). This approach potentially provides useful
diagnostic information regarding students’ strengths and weaknesses, and can
facilitate individualized learning (Chang 2015; Chang and Wang 2016). However,
how to incorporate these two fields into all aspects of the development of CDA calls
for more study to explore.

In the attribute hierarchy method (AHM), cognitive attributes are assumed to be
organized hierarchically (Leighton et al. 2004). Content specialists usually conduct
a task analysis on a sample of items to specify the cognitive attributes required by
the correctly answered items, and to order these attributes to create an attribute
hierarchy. However, the problem-solving performance of experts and novices was
almost certain to be different. Additionally, experts’ knowledge is highly organized
in deeply integrated schemas, while a novice views domain knowledge and
problem-solving knowledge separately. Thus, this may bring uncertainty into the
attribute hierarchy and lead to different attribute hierarchies for a test (Wang and
Gierl 2011).

Formally, a Bayesian network is a probabilistic graphical model that represents a
set of random latent attributes or variables and their conditional dependencies via a
directed acyclic graph. For example, a Bayesian network can be used to represent
the probabilistic relationships between latent attributes in the attribute hierarchy.
Moreover, mixing the Bayesian network proficiency model with the fusion evi-
dence model would produce a very attractive class of models (Yan et al. 2004).

The purpose of this study is to apply Bayesian network for modeling uncertainty
in an attribute hierarchy. The Bayesian network created from the attribute hierarchy,
which is regarded as a flexible high-order model, is incorporated into three cog-
nitive diagnostic models, including the deterministic-inputs, noisy ‘‘and’’ gate
(DINA) model (Haertel 1989; Junker and Sijtsma 2001), the revised DINA
(rDINA) model (Song et al. 2012), and the reduced reparameterized unified model
(rRUM; Hartz 2002). The new model has an advantage of taking an account of
subjectivity of the attribute hierarchy specified by experts along with the uncertainty
of item responses. Fraction subtraction data were analyzed to evaluate the perfor-
mance of the new model.
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2 Method

2.1 Cognitive Diagnostic Models

Let Xij be the response of examinee i to item j, i = 1, 2, …, N, j = 1, 2, …, J. Let αi

be examinee i attribute pattern. Let β be a vector of item parameters. Cognitive
diagnostic models often utilize a Q-matrix (Embretson 1984; Tatsuoka 1990, 1995,
2009). The entries of a Q-matrix are 1 or 0, in which qjk =1 means that attribute k is
involved in correctly answering item j, otherwise, qjk =0. Let qj be the q-vector of
item j in the Q-matrix.

The item response function for the DINA model is as follows

PjðαiÞ=PðXij =1jαi, βjÞ= g
1− ηij
j ð1− sjÞηij , ð1Þ

where βj = ðsj, gjÞ, ηij = ∏K
k =1 α

qjk
ik is an ideal latent response, and sj and gj are the

slipping and guessing parameters of item j.
The item response function for the rRUM is as follows

PjðαiÞ=PðXij =1jαi,βjÞ= π*j ∏
K

k=1
r*ð1− αikÞqjk
jk , ð2Þ

where βj = ðπ*j , r*j Þ, the baseline parameter π*j is the probability of correct response
to item j given that an examinee has mastered all the required attributes for the item,
and the probability of correct response to item j is proportional to the penalty
parameters r*jk when an examinee has not mastered attribute k.

The item response function for the rDINA model is as follows

PjðαiÞ=PðXij =1jαi,βjÞ= ð1− sjÞwijg1−wij
j , ð3Þ

where wij =α′

iqj ̸q′jqj is a latent response variable, and βj = ðsj, gjÞ. As in the DINA
model, sj and gj are the slipping and guessing parameters of item j. The latent
response variable describes the proportion of attribute mastery of the examinee i on
item j. It can be 0, 1, or a fraction between 0 and 1. For example, for an item j with
qj = ð1, 1Þ, if αi = ð0, 1Þ or αi = ð1, 0Þ, wij =0.5; if αi = ð0, 0Þ, wij =0, otherwise,
wij =1.

The rDINA model relaxes the DINA model assumption of equal probabilities of
success for examinees lacking some attributes for an item. In fact, it assumes that if
an examinee has not mastered all the required skills for an item, the probability of
success varies depends on how many required attributes have been mastered. This
is to say that a high probability of success at the item level will occur so long as the
examinee has been mastered a larger number of the required skills. The rDINA
model, which is similar to the DINA model, is a parsimonious model. It can also be
considered as an alternative simple model of the rRUM in some situations.
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2.2 Bayesian Network for Cognitive Diagnosis

In CDA, a critical issue is model determination. An attribute hierarchy can be
viewed as a representation of a cognitive model of task performance (Leighton and
Gierl 2007). The attribute hierarchy is designed to describe relationships among the
attributes required to solve a set of test items. In addition, a psychometric model is
needed to describe relationships between examinees’ attribute patterns and item
responses. There are three categories of psychometrical models for diagnosis.

(a) One is the high-order DINA model (de la Torre and Douglas 2004). It has a
general ability, and considers the relationship between the general ability and
each attribute. However, it does not directly take the relationship between latent
attributes into account.

(b) The AHM is another widely used model (Gierl et al. 2010; Wang and Gierl
2011). It has given a framework for incorporating the logic hierarchy of attri-
butes (Leighton et al. 2004) and provided a way for knowledge representation.

(c) The Yan’s model employed a BN model to consider the probabilistic rela-
tionship of attributes and considered the logical structure, in which attribute 3 is
a prerequisite to attribute 4 (Yan et al. 2004). However, the Yan’s model did
not consider the uncertainty of the attribute hierarchy.

The AHM and the Yan’s model only considered the logical hierarchy, and they
have not consider the uncertainty in the attribute hierarchy. We focus on this
question in this study. Next, we build a Bayesian network model, which combines
an attribute hierarchy with a psychometric model. Figure 1 displays a framework
for modeling the uncertainty in an attribute hierarchy and item responses. In this
framework, considering the attribute hierarchy as a directed acyclic graph, we
created a BN model for specifying a joint distribution of attributes, denoted by
PðαjλÞ, where λ is probabilistic parameters and PðλÞ is a prior distribution of λ in
the BN model. In the BN model, we employ a directed acyclic graph to model an
attributes hierarchy and use the BN parameters to describe the quantitative rela-
tionship between attributes.

For example, we assume an attribute hierarchy that contains three attributes. In
the attribute hierarchy, attribute A1 is considered to be a prerequisite to attributes
A2 and A3. Here, parameters λ= ðλ1, λ20, λ21, λ30, λ31Þ are added to the model to
describe the quantitative relationship between these three attributes. For attribute
A1, λ1 is the probability of mastering attribute A1, and 1− λ1 is the probability of
not mastering attribute A1. λ20 is the probability of mastering attribute A2 given
that attribute A1 is not mastered, while λ21 is the probability of mastering attribute
A2 when attribute A1 is mastered. Similarly, λ30 is the probability of mastering
attribute A2 when attribute A1 is not mastered, and λ31 is the probability of mas-
tering attribute A2 when attribute A1 is mastered.

The BN model can be used to provide a probabilistic relationship between
attributes, which can be combined into different cognitive diagnostic models. As to
the uncertainty of item response, we integrated the BN model to psychometric
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models, such as the DINA model, the rDINA model, and the rRUM. This process
makes the BN model more flexible, and can help with model determination.

2.3 Estimation

Using the condition independence of X given α, the joint posterior distribution of
parameters α, β, and λ given X is as follows

P α,β, λjXð Þ∝LðXjα,βÞpðαjλÞpðλÞpðβÞ, ð4Þ

where LðXjα,βÞ, p αjλð Þ, pðλÞ, and pðβÞ are respectively the likelihood function
Lðα,βÞ based on formula (1), (2), or (3), the joint distribution of attributes, the prior
distribution of λ, and the prior distribution of β. For using Metropolis-Hastings
within Gibbs sampling, the full conditional distributions of the parameters given the
data and the rest of parameter are as follows

pðλjα,β,XÞ∝ pðαjλÞpðλÞ, ð5Þ

p αjβ, λ,Xð Þ∝Lðα, βÞpðαjλÞ, ð6Þ

P( )

A1

A2 A3

α1

α2 α3

Uncertainty in an Attribute Hierarchy 

Uncertainty in Item Responses

P(X| )

DINA/rDINA/rRUM ...

λ λ

λ

Fig. 1 The framework for
modeling the uncertainty of
an attribute hierarchy and
item responses
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pðβjα, λ,XÞ∝Lðα,βÞpðβÞ. ð7Þ

We estimate or simulate observations λ,α, and β from the Gibbs sampler by
repeatedly drawing from the full conditional distributions at iteration t using the
following steps:

Step 1: Estimate the parameter λðtÞ at iteration t. Given a set of attributes or nodes
A= A1, A2, . . . , AKf g, let rk be the number of levels of node Ak. Let πðAkÞ be the
parent nodes of node Ak and let qk be the number of levels of πðAkÞ. Let
λijk = P Ai = kjπðAiÞ= jð Þ be a conditional probability such that ∑rk

k = 1 λijk =

∑rk
k = 1 P Ai = kjπðAiÞ= jð Þ=1. For sample data D= αðt− 1Þ

1 ,αðt− 1Þ
2 , . . . ,αðt− 1Þ

N

h i
,

where αðt− 1Þ
i represents a realization or observed value of A, then let

mðt− 1Þ
ijk = ∑

N

l= 1
χ i, j, k:αðt− 1Þ

l

� �
, ð8Þ

where mijk is the frequency of event fAi = k, πðAiÞ= jg in sample data. The prior
distribution of λij follows a Dirichlet distribution, denoted by Dir aij1, aij2,⋯, aijrk

� �
,

then the estimate of λijk can be written as (Zhang and Guo 2006)

λðtÞijk =
mðt− 1Þ

ijk + aijk

∑rk
k = 1 mðt− 1Þ

ijk +aijk
� � . ð9Þ

Step 2: Draw the parameter αðtÞ at iteration t. Assuming a proposed candidate αðtÞ
i ,

where the entry αðtÞ
ik draw from Bernoulli (0.5), let αðtÞ

i =αð*Þ
i with acceptance

probability

a αðt− 1Þ
i ,αð*Þ

i

� �
=min 1,

L αð*Þ
i ,βðt− 1Þ

� �
p αð*Þ

i jλðt− 1Þ
� �

L αðt− 1Þ
i ,βðt− 1Þ

� �
p αðt− 1Þ

i jλðt− 1Þ
� �

8<
:

9=
;, ð10Þ

otherwise, αðtÞ
i =αðt− 1Þ

i .
Step 3: Draw the parameter β at iteration t. Take the DINA model as an example.

The proposed candidates sð*Þj and gð*Þj draw from N sðt− 1Þ
j , 0.1

� �
and N gðt− 1Þ

j , 0.1
� �

.

Let βðtÞj = ðsðtÞj , gðtÞj Þ= ðsð*Þj , gð*Þj Þ with acceptance probability
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a sðt− 1Þ
j , gðt− 1Þ

j

� �
, ðsð*Þj , gð*Þj Þ

h i
=min 1,

L αðtÞ, sðtÞj , gðtÞj
� �

p sðtÞj
� �

P gðtÞj
� �

L αðtÞ, sðt− 1Þ
j , gðt− 1Þ

j

� �
p sðt− 1Þ

j

� �
P gðt− 1Þ

j

� �
8<
:

9=
;,

ð11Þ

otherwise, βðtÞj = ðsðt− 1Þ
j , gðt− 1Þ

j Þ.

3 Real Data Analysis

3.1 Fraction Subtraction Data Set

The new model was applied to a widely analyzed fraction subtraction data set (de la
Torre 2008; DeCarlo 2012; Tatsuoka 2002; Tatsuoka 1990), which consists of 536
examinees. The Q-matrix, which consists of 15 items, is the same as the one used
originally by de la Torre (2008) and DeCarlo (2012). The labels of the attributes are
(a) performing a basic fraction-subtraction operation, (b) simplifying/reducing,
(c) separating whole numbers from fractions, (d) borrowing one from a whole
number to a fraction, and (e) converting whole numbers to fractions.

3.2 Attribute Hierarchy and Bayesian Network

In the analysis of fraction subtraction data, two attribute hierarchies are considered, one
(called AH1 in Fig. 2) assumes that the attribute A3 is a prerequisite to attribute A4, and
the other (called AH2 in Fig. 3) is derived from the Q-matrix through the pairwise
comparison method (Tatsuoka 1995). According to the augment algorithm (Ding et al.
2008), two reducedQ-matrices are obtainedwith24or 9 attribute patterns.TwoBayesian
networks (called BN1 and BN2 as shown in Figs. 4 and 5) corresponding to the above
two attribute hierarchies are constructed based on the idea of the previous study (Yan
et al. 2004), and two joint distributions of attributes are specified, respectively. For the
BN1, the parameters for the joint distribution of attributes are specified as follows:

λ1 =Pðα1 = 1Þ,
λ2,m =Pðα2 = 1jα1 =mÞ for m=0, 1,

λ5,m =Pðα5 = 1jα1 + α2 =mÞ for m=0, 1, 2,

λ34,m, k =Pððα3, α4Þ= γkjα1 + α2 + α4 =mÞ for m=0, 1, 2, 3,

where γ1 = ð0, 0Þ, γ2 = ð1, 0Þ, γ3 = ð1, 1Þ, and ∑3
k=1 λ34,m, k =1. It should be noted

that λ34,m, k describes the statistical relationship between α1 + α2 + α4 and ðα3, α4Þ,
which is different from the Yan’s model.
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For the BN2, the parameters for the joint distribution of attributes are specified
as follows:

λ1 =Pðα1 = 1Þ,
λ2,m =Pðα2 = 1jα1 =mÞ for m=0, 1,

λ3,m =Pðα3 = 1jα1 =mÞ for m=0, 1,

λ4,m =Pðα4 = 1jα1 + α3 =mÞ for m=0, 1, 2,

λ5,m =Pðα5 = 1jα1 + α3 + α4 =mÞ for m=0, 1, 2, 3.

Besides the four attribute spaces above, an independent attribute space (called
AH0) was also considered. The DINA model, the rDINA model, and the rRUM
were used to analyze Tatsuoka’s fraction subtraction data by using the Markov
Chain Monte Carlo (MCMC) algorithm.

3.3 Evaluation Criteria

To compare these models under different attribute spaces and cognitive diagnostic
models, two relative fit statistics are considered in this study: −2log-likelihood
(−2LL; Chen et al. 2013) and deviance information criterion (DIC4; Celeux et al.
2006).

Fig. 2 Attribute hierarchy 1
(AH1)

Fig. 3 Attribute hierarchy 2
(AH2)
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3.4 Results

Table 1 shows model fit indices across different models. The results indicate that:

(a) The impact of different attribute spaces is very apparent. The BN1 and AH2
with similar results provide better fit than the BN2, AH1, and AH0. The BN2
and AH1 almost provide a better fit than the AH0.

(b) The impact of three cognitive diagnosis models is also apparent. The rRUM
model outperforms the other two models. There is an interaction effect between
attribute spaces and cognitive diagnosis models.

(c) It is important to note that the impact of different attribute spaces on the rRUM
model is relatively smaller than that on the other models.

Fig. 4 Bayesian network 1
(BN1)

Fig. 5 Bayesian network 2
(BN2)
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Furthermore, Table 2 shows that the means of attribute mastery probabilities of
examinees with a total score of zero. The independent structure of five attributes
was also estimated here for comparison. Here we observed that: under the rDINA
model, the attribute mastery probabilities are the lowest, and the DINA model
shows relatively high attributes mastery probabilities for both structures. For
example, for the AH1 under the rDINA model, examinees with a total score of zero
are classified as not mastering any of the attributes. While for the AH1 under the
DINA model, the means of attribute mastery probabilities for attributes A2 and A3
are greater than 0.50. Because total scores of these examinees are zero, attribute
mastery probabilities are theoretically supposed to be zero. Thus, from results of
this table, the rDINA and rRUM models perform relatively better than the DINA
model.

Figure 6 displays the estimates of the parameters λ based on the BN1 and the
rRUM. The estimate λ1 = 0.80 means that the mastery probability of attribute A1 is
0.8. The estimates 1− λ2, 0 = 0.92 and λ2, 1 = 0.88 mean that if an examinee has not
mastered attribute A1, then the mastery probability of attribute A2 is very low, 0.08;
if an examinee has mastered attribute A1, then the mastery probability of attribute
A2 is pretty high, 0.88.

Table 1 Model fit indices
across different models

Criteria Model AH0 AH1 AH2 BN1 BN2

−2LL DINA 7614 7464 7240 6980 7516
rDINA 7394 7295 7059 6919 7113
rRUM 6942 6920 6857 6881 7044

DIC4 DINA 9306 8934 7751 7857 8324
rDINA 9210 8900 7805 7912 8203
rRUM 9168 8990 7737 7846 7958

Table 2 The mean of
attribute mastery probabilities
of examinees with a total
score of zero

Attribute
hierarchy

Model A1 A2 A3 A4 A5

AH0 DINA 0.00 0.50 0.35 0.46 0.54
rDINA 0.00 0.00 0.00 0.00 0.27
rRUM 0.00 0.27 0.00 0.00 0.54

AH1 DINA 0.00 0.65 0.69 0.46 0.42
rDINA 0.00 0.00 0.00 0.00 0.15

rRUM 0.00 0.38 0.00 0.00 0.50
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4 Conclusion

The study proposed a framework for modeling the uncertainty in both the attribute
hierarchy and item responses. Combining the BN model with cognitive diagnostic
model, it relaxes restrictions, to some extent, on cognitive models and psychometric
models in CDA. The new model is flexible to collect more information about
model-data fit. The new model provides a way to assist verifying cognitive models.
In conclusion, this study shows that:

(a) Among the five cognitive models, the BN1 fits the fraction subtraction data best.
(b) The rRUM outperforms the other two psychometric models in terms of

model-data fit.
(c) The BN parameters, which provides quantitative description on attributes’

relationship, can help cognitive model validation.

Some future research directions are also pointed out. One limitation of this study
is that the latent structures are fixed in advance and the BN model is only learning
parameters. It would be interesting to explore the learning of latent structure from
data. More applications deserve to be studied.
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A Cognitive Diagnosis Method Based
on Mahalanobis Distance

Jianhua Xiong, Fen Luo, Shuliang Ding and Huiqiong Duan

Abstract Cognitive diagnosis methods (CDMs) is very important for cognitive
diagnosis, the primary purpose for CDMs is to classify examinees into mutually
exclusive categories. Although there exist many CDMs, researchers propose many
better new CDMs. Among them, the generalized distance discrimination (GDD)
and the Hamming distance discrimination (HDD) receive more and more attention
for their advantages of simple and easy to use, high classification accuracy, thus,
Mahalanobis distance discrimination (MDD), a generalized CDM is introduced.
GDD and HDD are its special cases. Mahalanobis distance (MD) is employed for
MDD to calculate the distance between an examinee’s observed response pattern
(ORP) and all kinds of ideal response pattern (IRP). The Shannon entropy is
specified as covariance. According to the principle of minimum distance and
designing test blueprint, IRP can be bijection mapped to the state of knowledge.
Under dichotomous model, the pattern match ratio and average attribute match ratio
are selected as the criteria for evaluating the classification accuracy. The Monte
Carlo simulation study shows that the performance of MDD is better than GDD and
HDD.
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1 Introduction

Cognitive diagnosis is the integration of multidisciplinary theory and technology,
which can evaluate the individual’s cognitive structure and reveal the internal
psychological process. The internal mental processing is not directly observed, so
it’s not easy to measure, diagnose, evaluate. Relevant scholars developed many
cognitive diagnosis methods (CDMs) to solve this problem (Tu et al. 2012).
According to the recent statistics, there are more than 100 CDMs (Xin et al. 2012).
There are some methods attract the researchers’ attention: AHM, RSM, DINA
(Ding et al. 2012). DINA is a simple and high classification accuracy method, thus
it has more research results (de la Torre 2009, 2011; Tu et al. 2010; Zhang et al.
2013). In recent years, a number of implicit cognitive diagnosis models have
emerged. For example, under dichotomous model, there are the generalized dis-
tance discrimination (GDD, Sun et al. 2011) and the Hamming distance discrimi-
nation (HDD, Chiu and Douglas 2013; Luo et al. 2015). Under ploytomous model,
there are the generalized distance discrimination based on graded response model
(Li et al. 2012; Sun et al. 2013), rule space method built on graded response
model (Tian and Xin 2012), a cluster diagnostic method established on grade
response items (Kang et al. 2015).

Because there are so many CDMs, the researchers try to integrate some methods.
That is to give a general cognitive diagnosis method, and think of a method as its
special case. The more abstract a method is, the deeper understanding of its essence
is. The GDD and HDD have some advantages, such as, simple and easy to use, high
classification accuracy. This paper extracts their essences and proposes a general-
ized method, that is Mahalanobis distance discrimination (MDD), to adjust the
weight matrix of Mahalanobis distance, a new method is presented, the corre-
sponding weight matrix should have better statistical significance and higher
classification accuracy. This paper introduces Shannon entropy as the weight matrix
of Mahalanobis distance, and discusses its classification performance.

2 Overview of Generalized Distance Discrimination
and Hamming Distance Discrimination

In this paper, cognitive diagnosis test include only dichotomous items, the ideal
response pattern (IRP) indicates an examinee answering the particular items without
slip or guess; the observed response pattern (ORP) indicates the real reaction of an
examinee on a set of items, assuming there is no missing data in ORP.
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2.1 Generalized Distance Discrimination

Assume N examinees respond to a cognitive diagnostic test with J items, and the
total number of IRPs inferred from the Q-matrix is T . The GDD uses the following
equation to measure the similarity between ORP and IRP:

GD Yi, Itð Þ= ∑
J

j=1
GDðYij, IðtÞj Þ, and,GD Yij, I

ðtÞ
j

� �
= Yij − IðtÞj

���
���PjðθiÞYijQjðθiÞ1− Yij

ð1Þ

where i=1, 2, . . . ,N, j=1, 2, . . . , J, t=1, 2, . . . ,T , vector Yi = ðYi1, . . . ,YiJÞ
denotes examinee i’s ORP, It = ðIðtÞ1 , . . . , IðtÞJ Þ denotes the tth IRP, the item response
for every item of the test is either 0 or 1. GDðYij, IðtÞj

Þ is the generalized distance for
item j, which measures the similarity between the examinee i’s ORP and the tth
IRP. Where PjðθiÞ and QjðθiÞ denote the probability of examinee i getting correct
answer and wrong answer on the item j. Under item response theory (IRT), the item
characteristic function of two parameters logistic model (2PLM) is adopted to
specify PjðθiÞ and QjðθiÞ (Qi et al. 2002). GD Yi, Itð Þ represents the sum of
the generalized distances on all items for examinee i, then choose the corre-
sponding IRP according to the shortest rule, that is min

t=1, ...,T
GD Yi, Itð Þf g. Under

non-compensatory model, for dichotomous items, if the test blueprint contains the
reachability matrix, there exists a bijection mapping between knowledge states and
IRP (Ding et al. 2010, 2011). The ORP can be classified into the knowledge state
corresponding to this IRP, so that the diagnostic classification can be realized.
The GDD method has good performance using simulation data (Sun et al. 2011; Cai
et al. 2013; Tu et al. 2013).

2.2 Hamming Distance Discrimination

Luo et al. (2015) surveyed the (Chiu and Douglas 2013) nonparametric cognitive
diagnosis method, and put forward the hamming distance discrimination (HDD).
HDD uses Hamming distance to define the distance between the examinee of ORP
and each IRP. Then classifies the examinees according to the principle of the
shortest distance. When there are more than one IRPs with the same minimum
Hamming distance for an examinee’s ORP, method R and method B are effective
auxiliary means. The Hamming distance between examinee i’s ORP and t th IRP is
defined as
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HD Yi, Itð Þ= ∑
J

j=1
HD Yij, I

tð Þ
j

� �
, and,HD Yij, I

tð Þ
j

� �
= Yij − I tð Þ

j

���
��� ð2Þ

N, J, T ,Yi and It have the same definition as GDD. The test blueprint is also the

same as GDD, HDðYij, IðtÞj Þ is the Hamming distance for item j, which measures the
similarity between the examinee i’s ORP and the t th IRP. HD Yi, Itð Þ represents
the sum of Hamming distance on all J items for examinee i. HDD is a nonpara-
metric CDM, which requires the Q-matrix only. It does not require the estimation
of the parameters, so it is simple to operate, and easy to understand. Under the
same experimental conditions, it has higher classification accuracy than GDD
(Luo et al. 2015).

3 Mahalanobis Distance Discrimination

3.1 The Definition of Mahalanobis Distance

Mahalanobis distance is a weighted distance, which can effectively estimate the
similarity between two different samples (Zhang and Fang, 2013). In this study,
vector Yi denotes examinee i’s ORP. Vector It denotes t th IRP, Wi denotes the
weight matrix (diagonal matrix). As long as Wi is a positive definite matrix, the
distance between the ORP and IRP is Mahalanobis distance. The equation is:

d2 Yi, Itð Þ= ðYi − ItÞTWiðYi − ItÞ ð3Þ

3.2 Shannon Entropy

Under information theory, entropy is a measure of the uncertainty random event.
Suppose an event could have n outcomes, the probability distribution of each result

is X = fp1, p2, . . . , pngð0≤ pi ≤ 1, i=1, 2, . . . , nÞ and ∑
n

i=1
pi =1.

The itself information provided by the ith result is Ii = − log pi, then the average
information on all outcomes of this event is:

HðXÞ= − ∑
n

i=1
pi log pi ð4Þ
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where HðXÞ is Shannon entropy, when the uncertainty of probability distribution X
is greater, the value of the corresponding Shannon entropy HðXÞ is larger; on the
contrary, the entropy is smaller. The characteristics are (Wu 2008):

(1) If probability distributions X = f1
n, 1n, . . . , 1ng, then HðXÞ= logðnÞ

(2) If probability distributions X = f0, . . . , 0, 1, 0, . . . , 0g, then HðXÞ=0

(3) For any probability distributions of X, 0≤HðXÞ≤ logðnÞ.
In Eq. (4), the base of logarithm function can take different values. In this paper,

let e be the base of logarithm, that is napierian logarithm, pilot study shows that it
has better result than other logarithm.

3.3 Integrated GDD and HDD by Mahalanobis Distance

Let the Eq. (1) in Sect. 2.1 be transformed into the following equation:

GD Yij, I
ðtÞ
j

� �
= ðYij − IðtÞj Þ2PjðθiÞYijQjðθiÞ1− Yij = ðYij − IðtÞj ÞTPjðθiÞYijQjðθiÞ1−YijðYij − IðtÞj Þ

GDD can be expressed with Mahalanobis distance, that is:

GD Yi, Itð Þ= ðYi − ItÞTWiðYi − ItÞ ð5Þ

The weight matrix in Eq. (5) is defined as follows:

Wi =
P1ðθiÞYi1Q1ðθiÞ1− Yi1 0

⋱
0 PJðθiÞYiJQJðθiÞ

1−YiJ

0
@

1
A

In the same way, the Eq. (2) in Sect. 2.2 is simply transformed into the fol-
lowing equation:

HD Yij, I
tð Þ
j

� �
= ðYij − I tð Þ

j Þ2 = ðYij − I tð Þ
j ÞTðYij − I tð Þ

j Þ

The Mahalanobis distance expression of HDD is as shown below:

HD Yi, Itð Þ= ðYi − ItÞTWiðYi − ItÞ ð6Þ

The weight matrix in Eq. (6) is an unit matrix, that is Wi =E. From Eqs. (5) and
(6), the essence of the GDD and HDD are Mahalanobis distance. They are just
different definition on weight matrix, so Mahalanobis distance discrimination
method is a more general cognitive diagnosis method.
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3.4 Define the Mahalanobis Distance Between ORP
and IRP

From the point of Mahalanobis distance definition, we derive the Mahalanobis
distance between ORP and IRP more generally. The Mahalanobis distance between
the examinee i’s ORP and t th IRP is defined as Eq. (7), and examinee i will be
classified into the IRP with minimum Mahalanobis distance.

MD Yi, Itð Þ= ðYi − ItÞTWiðYi − ItÞ ð7Þ

MDðYi, ItÞ is the Mahalanobis distance between Yi and It. The definition of
Yi and It are consistent with GDD, the Shannon entropy is the diagonal element of
the weight matrix (diagonal matrix). There are only two possible outcomes in
Shannon entropy for dichotomous items, that is, the probability of correct answer
Pð Þ and the probability of error answer Q=1−Pð Þ. For examinee i and item j,
the Shannon entropy using napierian logarithm is expressed as HðXijÞ=
−PjðθiÞ lnPjðθiÞ−QjðθiÞ lnQjðθiÞ. The Shannon entropy of examinee i in all items
can be represented by the diagonal matrix Wi:

Wi =

−P1ðθiÞ lnP1ðθiÞ−Q1ðθiÞ lnQ1ðθiÞ 0

⋱
0 −PJðθiÞ lnPJðθiÞ−QJðθiÞ lnQJðθiÞ

0
B@

1
CA

For the expression HðXijÞ= −PjðθiÞ lnPjðθiÞ−QjðθiÞ lnQjðθiÞ, when the value
of PjðθiÞ is 1 or 0, the value of Shannon entropy is 0, which is the minimum value;
when the probability of the correct answer and the wrong answer is equal, that is
PjðθiÞ= 1

2, the value of Shannon entropy reaches the maximum; the rest is some-
where in between. Shannon entropy consider not only the proximity degree
between ORP and IRP, but also the certainty of ORP. Even if an ORP is close to
certain IRP, since the uncertainty of ORP is big, the proximity between them is not
reliable, this is different from the Eq. (5). Because the test blueprint is also the same
as GDD, IRP can correspond to the state of knowledge, which can achieve the
purpose of classification of examinees.

Besides, there are two kinds definition for probability of Shannon Entropy: One
is the probability of correct answer based on IRT, which is consistent with the
definition of GDD, using PjðθiÞ and QjðθiÞ separately representing the probability
of examinee i to get correct answer and wrong answer on the item j; the other is the
pass rate based on Classical test theory (CTT), this definition is simple to calculate,
using Pj and Qj separately to represent the pass rate and the unpassed rate on the
item j.
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Compute the Mahalanobis distance between the certain examinee i’s ORP and
all IRP, find the IRP with the shortest distance. If there exists a bijection mapping
between knowledge states and IRP, examinee i can be classified to the knowledge
state corresponding to IRP.

4 Monte Carlo Simulation Study

This study mainly probes the performance of three CDMs (MDD, GDD and HDD)
in different attribute hierarchies (linear, convergent, divergent, unstructured and
independent) and slips (0.02, 0.05, 0.10, 0.15 and 0.2), there are 75 experimental
conditions. In order to conclude the stability and reduce the experimental error, the
simulation number of each experimental condition is 50 times, and the specific
experiment design is as follows.

4.1 The Design of Test Q-Matrix

In order to compare MDD method with GDD and HDD method, the experimental
conditions are the same as those of Sun et al. (2011) and Luo et al. (2015). The
study mainly probes five basic attribute hierarchical structures, they are in
sequence: linear, convergence, divergent, unstructured and independent (See
Appendix 1), the other more complex attribute hierarchy can be compounded by the
five basic hierarchies. Under non-compensatory model, if the test blueprint contains
the reachability matrix, there exists a bijection mapping between knowledge states
and IRP (Ding et al. 2010, 2011). According to the five hierarchical structures, the
typical item assessment patterns under them are obtained, there are 6 items, 7 items,
15 items, 32 items and 64 items respectively. In order to avoid the influence of test
length on parameter estimation accuracy, the test length of various hierarchy is
roughly the same, the five typical item assessment patterns are repeated 5 times, 5
times, 2 times, 1 time and 1 time in the test, for the independent hierarchy, due to
the limitation of the test length, the typical item assessment pattern is sorted by the
number of attributes and take the top 30 items. Therefore, in this study, the number
of test items for the five attribute hierarchy structures are 30, 35, 30, 32 and 30
respectively (See Appendix 2).

4.2 The Simulation of ORP

In this study, 1000 examinees are adopted under various experimental conditions,
and the process of simulating ORP include the following steps:
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(1) Calculate the ideal master pattern (IMP) for the five attribute hierarchy (also
known as knowledge state) respectively. There are in sequence 7 patterns, 8
patterns, 16 patterns, 33 patterns and 64 patterns.

(2) On the basis of the design of test Q-matrix in Sect. 4.1, the corresponding IRP
are fetched through IMP and test Q-matrix. Calculate the total score for each
IRP, and sort them by ascending order. Simulate 1000 examinees and distribute
them proportionally to each IRP, the IRP with the same test score will assign
the same number examinees, then 1000 examinees’ IMP will gain under var-
ious attribute hierarchy, simulate the examinees’ IRP without any slip.

(3) According to the simulated IRP, simulate the examinees’ ORP under different
slip (such as: 0.02, 0.05, 0.10, 0.15, 0.2) (Leighton et al. 2004).

4.3 Criteria

There are two kinds of criteria to evaluate the discrimination accuracy of different
methods, that is, the pattern match ratio (PMR) and average attribute match ratio
(AAMR), the equations are as follows:

PMR=
∑N

i=1 Ni correct

N
, AAMR=

∑N
i=1 ∑

K
k=1 Nik correct

K ×N

where, N is the total number of examinees, K is the number of attributes, Ni correct

represents the agreement between the obtained knowledge state and the known true
knowledge state for examinee i, if they are agreement entirely, Ni correct is 1,
otherwise 0. Nik correct represents the agreement of individual attributes between the
obtained knowledge state and the known true knowledge state for examinee i, if
they are agreement, Nik correct is 1, otherwise 0.

4.4 Comparison of Cognitive Diagnostic Methods

In this paper, the differences between MDD, GDD and HDD in PMR and AAMR
are compared. For MDD and GDD, the diagonal element of the weight matrix
involve the probability P, for the acquisition of P, there are two methods, one
method is based on IRT, combining 1000 examinees’ ORP and all IRP to estimate
item parameters, using 1000 examinees’ ORP to estimate ability parameters, then
using 2PLM item characteristic function to calculate the correct answer probability
P and error answer probability Q, another method is based on CTT, which only use
1000 examinees’ ORP to calculate the passed rate P and the unpassed rate Q. In
order to probe the effect of different parameter calculation methods on the dis-
criminant result, it is expressed as the following four combinations: MDD-CTT,
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MDD-IRT, GDD-CTT, and GDD-IRT. In addition, for HDD method, according to
the conclusion of Luo et al. (2015) that HDD B method is better than HDD R
method, so this research only compares HDD B method (shorthand for HDDB).
Therefore the paper compares MDD-CTT, MDD-IRT, GDD-CTT, GDD-IRT and
HDDB under various simulation conditions.

5 Results

Tables 1 and 2 show that MDD outperforms GDD and HDDB, while the GDD and
HDDB have their own merits. For MDD-CTT and MDD-IRT, their PMR and
AAMR are neck and neck. However, using the CTT method to calculate the pass

Table 1 The comparison of each cognitive diagnosis method on pattern match ratio

Attribute
hierarchical
structure

Slip Pattern match ratio (PMR)
MDD-CTT MDD-IRT GDD-CTT GDD-IRT HDDB

Linear 0.02 0.9999 0.9999 0.9808 0.9982 0.9999
0.05 0.9980 0.9980 0.9691 0.9887 0.9980
0.1 0.9856 0.9857 0.9242 0.9674 0.9852
0.15 0.9521 0.9534 0.8794 0.9284 0.9502
0.2 0.8936 0.8959 0.8126 0.8756 0.8869

Convergent 0.02 0.9998 0.9998 0.9808 0.9973 0.9998
0.05 0.9980 0.9981 0.9667 0.9877 0.9980
0.1 0.9844 0.9847 0.9167 0.9703 0.9843
0.15 0.9524 0.9538 0.8702 0.9307 0.9509
0.2 0.8937 0.8982 0.8179 0.8836 0.8887

Divergent 0.02 0.9863 0.9867 0.9854 0.9707 0.9813
0.05 0.9633 0.9618 0.9605 0.9282 0.9456
0.1 0.9083 0.9076 0.9047 0.8700 0.8695
0.15 0.8416 0.8426 0.8289 0.8096 0.7836
0.2 0.7494 0.7537 0.7205 0.7348 0.6737

Unstructured 0.02 0.9553 0.955 0.9474 0.9449 0.9457
0.05 0.8927 0.9007 0.8781 0.8749 0.8803
0.1 0.8036 0.8223 0.7827 0.7733 0.7928
0.15 0.7176 0.7367 0.6864 0.6887 0.7109
0.2 0.6403 0.6582 0.5993 0.6298 0.6353

Independent 0.02 0.9887 0.9786 0.9888 0.9595 0.9844
0.05 0.9684 0.9564 0.9670 0.8995 0.9566
0.1 0.9074 0.9023 0.9045 0.8065 0.8803
0.15 0.8248 0.8193 0.8147 0.7233 0.7777
0.2 0.7043 0.7025 0.6917 0.6427 0.6431
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rate is very simple, using the IRT method to calculate the item parameters and
ability parameters has preconditions, the estimation method is also more complex,
so the MDD-CTT method is simple and feasible.

Figures 1 and 2 show that under the same attribute hierarchical structure, with
the increase of slip, the PMR and AAMR have the tendency of decline for all
methods. Among them, the MDD approach declines the most slowly under various
hierarchical structures, while GDD falls faster than HDDB under the linear and
convergence hierarchy. HDDB falls faster than GDD under the divergent and
independent hierarchy. For various cognitive diagnosis methods, attribute hierar-
chical structure affect the accuracy of classification, the linear and convergence
hierarchy has the highest accuracy, followed by divergent and independent hier-
archy, unstructured hierarchy is the lowest, therefore, the identification of attribute
hierarchical structure is very important.

Table 2 The comparison of each cognitive diagnosis method on average attribute match ratio

Attribute
hierarchical
structure

Slip Average attribute match ratio (AAMR)
MDD-CTT MDD-IRT GDD-CTT GDD-IRT HDDB

Linear 0.02 1.000 1.0000 0.9967 0.9997 1.0000
0.05 0.9997 0.9997 0.9944 0.9981 0.9997
0.1 0.9975 0.9975 0.9860 0.9944 0.9971
0.15 0.9911 0.9916 0.9776 0.9872 0.9896
0.2 0.9790 0.9797 0.9629 0.9762 0.9747

Convergent 0.02 1.0000 1.0000 0.9967 0.9996 1.0000
0.05 0.9997 0.9997 0.9940 0.9979 0.9996
0.1 0.9973 0.9974 0.9850 0.9950 0.9971
0.15 0.9913 0.9918 0.9761 0.9877 0.9898
0.2 0.9796 0.9811 0.9645 0.9786 0.9749

Divergent 0.02 0.9976 0.9977 0.9972 0.9948 0.9956
0.05 0.9932 0.9930 0.9923 0.9871 0.9861
0.1 0.9814 0.9815 0.9805 0.9752 0.9618
0.15 0.9655 0.9662 0.9638 0.9601 0.9311
0.2 0.9411 0.9426 0.9390 0.9413 0.8891

Unstructured 0.02 0.9903 0.9916 0.9899 0.9886 0.9905
0.05 0.9759 0.9802 0.9748 0.9739 0.9772
0.1 0.9519 0.9614 0.9501 0.9506 0.955
0.15 0.9257 0.9377 0.9221 0.9270 0.9244
0.2 0.8993 0.9128 0.8946 0.9074 0.8905

Independent 0.02 0.9976 0.9962 0.9979 0.9927 0.9946
0.05 0.9931 0.9918 0.9933 0.9811 0.9847
0.1 0.9781 0.9791 0.9787 0.9599 0.9545
0.15 0.9558 0.9577 0.9555 0.9361 0.9101
0.2 0.9216 0.9256 0.9216 0.9084 0.8502
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Fig. 1 The comparison of each cognitive diagnosis method on pattern match ratio

Fig. 2 The comparison of each cognitive diagnosis method on average attribute match ratio
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6 Conclusions and Discussions

(1) For all methods, the classification accuracy are lower under independent and
unstructured hierarchy, further research should focus on the design of Q-matrix
in order to increase the classification accuracy.

(2) The classification accuracy of cognitive diagnosis methods is also affected by
slip, the smaller the slip, and the more accurate the classification, likewise, the
higher the slip, the lower the classification accuracy. In this study, MDD falls
the most slowly, followed by GDD, and HDDB falls the fastest. The results
related to the definition of the weighting matrix in different methods, such as
HDDB method use unit matrix as weight matrix, although it is simple, it also
loses some information of item parameters, thus when slip increases, the more
obvious difference between ORP and IRP, and results the decline in classifi-
cation accuracy rapidly; however, the definitions of weight matrix in MDD
method and GDD method are related to the item parameters, therefore the
distance between ORP and IRP can be corrected, the decrease is slower.

(3) For Mahalanobis distance, this study using Shannon entropy as diagonal ele-
ments of weight matrix achieves good performance, as a result, different weight
matrixes can be considered, then newer classification methods can be obtained
to discuss their classification performance.

(4) This paper extracts the essence of GDD method and HDD method, constructs a
more general Mahalanobis distance discrimination method, and compares them
under 2PLM. The next step will consider to extend this method to ploytomous
model.

(5) The conclusions of this paper are obtained by Monte Carlo simulation study.
Under the real situation, there exist a number of influencing factors and missing
data, therefore, it is necessary to apply these methods to real data and verify
their performance.
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Appendix 1 Five Basic Attribute Hierarchy Structures
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Appendix 2 the Test Q-Matrix of the Five Basic Attribute
Hierarchy Structures
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An Joint Maximum Likelihood
Estimation Approach to Cognitive
Diagnosis Models

Youn Seon Lim and Fritz Drasgow

Abstract In this study, a simulation-based method for computing joint maximum

likelihood estimates of cognitive diagnosis model parameters is proposed. The cen-

tral theme of the approach is to reduce the complexity of models to focus on their

most critical elements. In particular, an approach analogous to joint maximum like-

lihood estimation is taken, and the latent attribute vectors are regarded as structural

parameters, not parameters to be removed by integration with this approach, the joint

distribution of the latent attributes does not have to be specified, which reduces the

number of parameters in the model. The Markov Chain Monte Carlo algorithm is

used to simultaneously evaluate and optimize the likelihood function. This stream-

lined approach performed as well as more traditional methods for models such as the

DINA, and affords the opportunity to fit more complicated models in which other

methods may not be feasible.

Keywords Cognitive diagnosis model ⋅ Joint maximum likelihood estimation

Simulated annealing

1 Introduction

The cognitive diagnosis model is one of the important psychometrics models because

it provides diagnostic information about each individual examinee. An important

problem in the application of the model is the estimation of person and item parame-

ters. In most applications, both person and item parameters must be estimated simul-

taneously. The method of joint maximum likelihood estimation is one procedure that
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can be used for this purpose. This paper proposes a method that simultaneously eval-

uates and optimizes the joint likelihood function.

One classical approach to estimation has treated the person parameters as nui-

sance parameters and simply integrated them out of the likelihood equation. This

approach, called marginal maximum likelihood, is thus a function of only the struc-

tural (i.e., item) parameters. In a simulation study, Drasgow (1989) found that

marginal maximum likelihood estimates are more accurate than joint maximum

likelihood estimates regardless of sample size or test length. However, obtaining

marginal maximum likelihood estimates is a complex task because, in some cases,

the likelihood function for the structural parameters is not available in closed form

and, moreover, may be multimodal (e.g., Doucet et al. 2002). When the marginal like-

lihood is evaluated, the Expectation-Maximization (EM) algorithm is typically used.

However, it is sensitive to initial values and can have local maxima (e.g., Doucet et al.

2002). Furthermore, it can be a computational burden to deal with high-dimensional

integration in the EM.

Another approach is Bayesian estimation of the parameters using prior distribu-

tions on the person parameter, or on both person and item parameters. This pro-

cedure eliminates the problems sometimes encountered in the marginal maximum

likelihood estimation (e.g., Hambleton et al. 1991). This approach, however, has

its own difficulties. For instance, the prior specification and prior sensitivity are

important aspects of Bayesian inferences (e.g., Ghosh et al. 2000). In practice, it

can be difficult to give a meaningful full prior specification, especially, for models

with many parameters. Furthermore, in the Bayesian framework, the homogenous

Markov Chain Monte Carlo (MCMC) methods typically used for the estimation of

model parameters are inefficient for maximum a posteriori estimation because a large

amount of the computational burden is spent exploring regions of low posterior prob-

ability (e.g., Andrieu and Doucet 2000); for complex model estimation (i.e., the repa-

rameterized unified model) MCMC may be prohibitively slow to converge. Finally,

MCMC methods are often more suited for integration, not optimization problems

(e.g., Jacquier et al. 2007).

Joint Maximum Likelihood Estimation (JMLE), in which item parameters are

estimated at the same time as person parameters, is straightforward. The maximum

likelihood estimates of the person and item parameters can be obtained from this like-

lihood function by standard procedures (e.g., Lord 1974). Neyman and Scott (1948)

showed that when the number of structural parameters increases with the number of

incidental parameters, estimates may not be consistent. Even when the estimates of

structural parameters are consistent, the property of efficiency may not hold. Lord

(1968) JMLE procedure is an example of the situation dealt with by Neyman and

Scott, and the consistency of the structural (i.e., item) parameter estimates has been

questionable.

However, in the context of one IRT model, Haberman (1977) proved the joint

consistency of maximum likelihood estimates of item and person parameters for the

Rasch model. He obtained strong consistent estimates of the parameters as the num-

ber of items and examinees go to infinity. Douglas (1997) was also able to prove uni-

form asymptotic consistency in a unidimensional class of kernel-smoothing-based
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nonparametric IRT item response function estimation procedures under less restric-

tive assumptions than Haberman’s. Empirical results obtained by Lord (1975) and by

Swaminathan and Gifford (1983), for example, showed that the JMLE procedure can

give accurate results with as few examinees as I = 200 provided item J ≥ 60. Hulin

et al. (1982) conducted a Monte Carlo study to investigate the effects of four sample

sizes (I = 200, 500, 1000, or 2000) and three test lengths (J =15, 30, or 60 items)

on the accuracy of joint parameter estimation. They found that, for a two-parameter

model, there must be at least J = 30 and I = 500, and for a 3-parameter model, there

must be at least J = 60 and I = 1000.

The JMLE method proposed in this study is carried out by means of a combination

of the simulated annealing algorithm and stochastic simulation of the hidden Markov

chain. The central theme of the approach is to omit variables related to the joint

distribution of latent attributes to trim back model complexity. This algorithm is

shown to converge for the set of joint maximum likelihood parameter estimates under

suitable regularity conditions. Note that in this study, we assume that the Q-matrix

is known and is not estimated.

2 Algorithm and Properties

Let Yij denote the observed response of examinee i to item j, i = 1, 2,… , I, j =
1, 2,… , J. For examinee i, let αi = {αik} denote the latent binary attribute vector,

k = 1, 2,… ,K, where αik = 1 indicates mastery of the kth skill attribute and αik = 0
indicates nonmastery of the attribute. Under the assumption of conditional indepen-

dence, the joint likelihood L for the item responses is

L = L(Y|α,β) =
I∏

i=1

J∏

j=1
P(Yij = 1|αi,βj)Yij[1 − P(Yij = 1|αi,βj)]1−Yij , (1)

where βj = {βjk} denotes the item parameters for item j.
The item parameters βj as well as the person parameters αi are required to be

estimated at the same time. The values of αi and βj that maximize the likelihood,

argmax
αi,βj

L (2)

are the joint maximum likelihood estimates. One approach is to estimate the values

of parameters directly by iteratively setting
∂L
∂αi

= 0, and
∂L
∂βj

= 0 (Lord 1968). How-

ever, some difficulties can be encountered. First, there are some cases or models in

which the maximum likelihood estimates or the likelihood in closed form do not exist

(e.g., Hambleton et al. 1991). Second, it is a computational burden to iterate between

the two sets of partial derivatives; moreover, the numerical optimization on very

high dimensional models is time consuming. Finally, it is challenging to estimate
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the standard errors of the maximum likelihood estimates based on the second order

derivatives (e.g., Jacquier et al. 2007).

To avoid these potential problems, in this study the approach is modified in three

different ways. One is to implement a regularization term for all model parame-

ters. This is accomplished by establishing uniform (flat) prior distributions, and then

obtaining the maximum a posteriori values of the parameters. The assumption of flat

priors for the parameters means that the prior terms for those parameters can be set

to unity, and therefore the maximum a posteriori updates for α̂i and ̂βj are identical

to the maximum likelihood updates for the parameters (e.g., Ghosh et al. 2000; Patz

and Junker 1999) on bounded intervals.

Second, rather than estimate the distribution of αi, each αik is treated as a param-

eter to be estimated. This has been problematic in IRT models in which the latent

variables are continuous because something must be done to fix the scale. However,

for cognitive diagnosis models in which the latent attributes are binary, the scale is

solidly pinned down between the two possible values, 0 or 1 in the parameter space.

This results in a more streamlined model and yields simpler Markov chains and con-

sistent results, as shown in a later part of this paper.

Third, we propose an algorithm that is a combination of the insights of standard

MCMC algorithms and simulated annealing algorithms in the Bayesian framework.

The initial value of this algorithm is obtained from the nonparametric estimator of

latent attribute variables (Lim and Drasgow 2017). Given the estimates of α, the

item parameters are estimated, and then the estimates of item parameters are used to

update the estimates of α. This procedure is repeated until the convergence criterion

is satisfied.

Simulated annealing is an inhomogeneous variant of MCMC used to perform

combinational optimization. This method samples from a sequence of density func-

tions whose support concentrates itself on the set of maximum likelihood estimates.

The power γ(t), t = 1,… ,T , which is termed the temperature, makes it possible to

explore the entire search space systematically by being increased simultaneously as

the Markov chain increases (e.g., van Laarhoven and Aarts 1989). As in simulated

annealing, this proposed algorithm replaces the target joint density π(α,β) as

πγ(t)(α,β) ∝ P(α,β)γ(t)P(α)P(β), (3)

where limt→+∞ γ(t) = ∞. When γ(t) > 1, P(α,β) is raised to the γ(t) power and the

effects of the priors P(α) and P(β) disappear on the range of values (e.g., Jacquier

et al. 2007). Nonetheless, they are necessary to ensure their integrability without

affecting the maximum joint likelihood estimates.

In simulated annealing, convergence to the set of global maxima is ensured for a

sequence γ(t) growing logarithmically (e.g., van Laarhoven and Aarts 1989). How-

ever, it is difficult to concentrate on the global modes because the logarithmic func-

tion increases too slowly (e.g., Doucet et al. 2002). To solve this problem, it is

assumed that the γ(t) are fixed and do not depend on the iteration.

Formally, the proposed algorithm seeks to maximize the joint likelihood in the

Bayesian framework with a fixed temperature γ(T),
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πγ(T)(α,β) ∝ Lγ(T)P(α)P(β). (4)

The likelihood term L reappears in this Bayesian formulation but is now accom-

panied by the uninformative prior distributions of the parameters. As it is usually

impossible to sample from the density directly, MCMC methods are used to simu-

late samples from a sequence of joint densities, πγ(T),n(α,β), where n indexes the

length of the Markov Chain.

It is important to compare and contrast this algorithm with the marginal maximum

likelihood (or marginal maximum a posterior) estimation methods related to simu-

lated annealing. The basic idea is to generate a sequence of artificial distributions

from a density in which the latent variables are replicated temperature γ(t) times

by data argumentation. Then the sequence concentrates itself on the set of marginal

maxima. For generation, non-homogenous MCMC algorithms (Andrieu and Doucet

2000; Doucet et al. 2002), original sequential monte carlo methods (Johannes et al.

2008), and a standard evolutionary MCMC method (Jacquier et al. 2007) have been

employed.

These researchers advocate that as the chain goes to infinity, the sequence of den-

sity concentrates itself upon the marginal maximum of structural parameters. Then

the estimates of structural parameters are obtained without resorting to a gradient

based method. Temperature γ(t) is assumed to be increased as the chain increases,

especially in terms of the theoretical foundation. In contrast, our algorithm estimates

the joint maximum likelihood in the Bayesian framework. The joint density is alter-

nately raised to γ(T) as in simulated annealing while the priors are not exponentiated

unlike simulated annealing. The initial values of this algorithm is obtained from a

nonparametric approach. The estimates for the values of parameters are obtained

given the estimates of the other parameters. Furthermore, the joint distribution of

latent variables does not need to be estimated because each component is regarded

as an individual parameter. Unlike the algorithm presented here, the methodologies

for marginal maximum likelihood (or marginal maximum a posterior) require or are

suitable for continuous latent variable models.

This algorithm has several practical advantages. First, this approach does not

require estimating the distribution of α. Second, unlike a Bayesian approach,

informative prior distributions for the parameters are not necessary. Third, the MAP

(= ML) estimates are obtained neither exploring regions of low posterior probability

nor integrating over the incidental parameters. Finally, in combination with standard

MCMC algorithm, simulated annealing maintains the speed and reliability of gradi-

ent descent algorithms while at the same time avoiding local minima (Zomaya and

Kazman 2010). This approach can also handle models whose closed form expres-

sions are unknown like the marginal maximum likelihood (or marginal maximum a

posterior) estimation methods.
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2.1 MCMC Algorithm

For the proposed approach, the Metropolis-Hastings algorithm with simulated

annealing is used for sampling from πγ(T)(α,β) ∝ P(α,β)γ(T)P(α)P(β). Like

Birnbaum’s two stage paradigm (Birnbaum 1968), this algorithm starts with the esti-

mated initial values of latent attribute variable α by using a nonparametric technique

proposed by Lim and Drasgow (2017). In this approach, the uniform prior distribu-

tions are established over the parameters.

Step 1. Estimate the initial value of this algorithm: person parameter α
A nonparametric method (Lim and Drasgow 2017) is used to estimate the initial

value of this algorithm. The method estimates the person parameter α based on the

Hamming distance between ideal and observed response patterns. This approach

consists of two phases, the computation of all possible ideal response vectors and

the classification phase.

The ideal responses ηijnoncompensatory
are defined as

∏K
k=1 αik

qjk , ηijdisjunctive
are

defined as 1 −
∏K

k=1(1 − αik)qjk , and ηijcompensatory
are defined as rounding of (

∑K
k=1

(α̂
𝑖𝑘

× qjk)∕K) for examinee i and assessment item j. All possible ideal response

vectors η1,η2,… ,η2K are constructed from all 2K possible patterns for αi. In

the classification stage, the Hamming distances between Yi and each of ηm, for

m = 1, 2,… , 2K , are computed by simply counting the number of times two vectors

disagree as given by

D(Yi,αm) =
J∑

j=1
∣ Yij − ηmj ∣. (5)

The estimator is obtained by minimizing this distance over all possible attribute

patterns,

α̂i = arg min
m∈{1,2,…,2K}

D(Yi,αm). (6)

The theoretical justification is that the true attribute vector minimizes the expected

distance between Yi and ηm, under some general conditions on the underlying

model. Unlike the other nonparametric approaches (e.g., Chiu and Douglas 2013),

the estimator is applicable for noncompensatory, disjunctive as well as compensatory

models.

Step 2. Draw βγ(T)
{n=1,2,…,N}|α(0) ∼ P(βγ(T)|α(0),Y) ∝ P(Y|α,βγ(T))P(β).

Given the estimates of person parameter α, the Markov chains of item parameter

β are obtained until meet the convergence criteria. Tests for normality of the draws

such as Jarque-Bera test and Shapiro-Wilk goodness-of-fit test is used as the criteria

(e.g., Chauveau and Diebolt 1998; Jacquier et al. 2007). Here βγ(T) is considered

as the γ(t), t = 1,… ,T independent copies of β. That is,

P(βγ(T)|α,Y) ∝
T∏

t=1
(Y|α,βγ(t))P(β). (7)
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Instead of generating γ(T) copies, simulated annealing is used for this algorithm.

The simulated annealing provides additional flexibility and efficiency in generating

γ(T) copies of item parameters β. More specifically, (9) is obtained by

(βγ(T)
(n+1),β

γ(T)
(n) ) = min{1, exp(γ(T) × (logP(β(n+1)|α,Y)) − log(P(β(n)|α,Y))))}

(8)

Step 3. Draw αγ(T)
ik,{1,2,…,N}|β(0) ∼ P(αγ(T)

ik |β(0),Y) ∝ P(Y|αγ(T)
ik ,β)P(αik).

Now given the estimated item parameters β from the previous step, the estimates of

person parameter α are updated. The draws of the person parameter α are generated

until no values are updated during an iteration like Hartz (2002). The independent

draws of each γ(t), t = 1,… ,T αik are,

P(αγ(T)
ik |β,Y) ∝

T∏

t=1
(Y|αγ(t)

ik ,β)P(αik). (9)

This is obtained by

(αγ(T)
ik,(n+1),α

γ(T)
ik,(n)) = min

{
1, exp(γ(T) × (log(P(αik,(n+1)|β,Y)) − log(P(αik,(n)|β,Y)))

}

(10)

Steps 2 and 3 are repeated until a stopping criterion is met. As in simulated annealing,

the stop criterion is either determined by fixing the number of temperature sched-

ule values, or by terminating operation of the algorithm if the Markov chains are

identical for a number of chains (e.g., van Laarhoven and Aarts 1989).

3 Application to the DINA Model

The DINA model (Junker and Sijtsma 2001) is first considered as an example. This

model has the item parameters β = (s, g), and then

P(Yij = 1|αi,βj) = P(Yij ∣ αi, sj, gj) = (1 − s
𝑗

)ηij𝑔(1−ηij)
j , (11)

where ηij =
∏K

k=1 αik
qjk, sj = P(Yj = 0 ∣ ηj = 1), gj = P(Yj = 1 ∣ ηj = 0).

The marginal likelihood of this model is available in closed form, and the cor-

responding MLE and its asymptotic variance can be derived algebraically. There-

fore the estimation of maximum likelihood with the EM-algorithm has been com-

monly used for the estimation of model parameters (e.g., de la Torre 2009). As men-

tioned in the section of introduction, however, this approach has its own weaknesses

such as the sensitivity of initial values and the possibility of local maxima. Further-

more, the main difficulty is encountered when the number of latent skill attributes is

larger than K = 5. Following are the steps of the algorithm to update parameters at

iteration n;
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Step 1. Estimate the initial value of this algorithm: person parameter α.

This algorithm states with the estimates of α as mentioned above.

Step 2. Determine the temperature γ(T).
A constant temperature can be implemented, or can be updated as an additional

parameter until it reaches a frozen value. In this study, a constant Temperature γ(T)
= 1, 5, 10, or 20 is proposed as the Temperature schedule.

Step 3. Updating sj for j = 1, 2,… , J
A candidate value s⋆j is drawn from the uniform distribution on the interval (sl −
δ, sh + δ), where sl and sh are, respectively, the lower bound and the higher bound of

the slip parameters; δ = 0.1 in the following analyses. Typically, sl and sh ∈ (0, 0.5).
Calculate

rn = exp(γ(T) × (log(L(Yj|α
(n−1)

, s⋆j , g
(n−1)
j )) − log(L(Yj|α

(n−1)
, s(n−1)j , g(n−1)j ))))

(12)

which is the acceptance ratio and gives the probability of accepting the proposed

value. Let s(n)j = s⋆j with probability min(1, rn), otherwise let s(n)j = s(n−1)j .

Step 4. Updating gj for j = 1, 2,… , J
A candidate value g⋆j is drawn from the same uniform distribution used for s⋆j . Com-

pute the acceptance probability,

rn = exp(γ(T) × (log(L(Yj|α
(n−1)

, s(n−1)j , g⋆j )) − log(L(Yj|α
(n−1)

, s(n−1)j , g(n−1)j ))))
(13)

Let g(n)j = g⋆j with probability min(1, rn), otherwise let g(n)j = g(n−1)j .

Step 5. Updating αik for i = 1, 2,… , I, k = 1, 2,… ,K
For α⋆

ik in αi, a candidate value is drawn from the binomial distribution (1, 0.5).
Compute the acceptance probability,

rn = exp(γ(T) × (log(L(Yi|α
⋆

ik, s
(n−1)

, g(n−1))) − log(L(Yi|α
(n−1)
ik , s(n−1), g(n−1)))))

(14)

Let α(n)
ik = α⋆

ik with probability min(1, rn), otherwise let α(n)
ik = α(n−1)

ik .

Step 5 is repeated until no values are updated during an iteration. Note that flat

prior distributions are used throughout. For a sufficiently long chain, the parameters

are estimated to approximate the posterior mode.

3.1 Simulation Study

A simulation study was carried out to evaluate the performance of the proposed

MCMC algorithm under various conditions. In each condition, an item response

data set from the DINA model with K = 7 was generated. Four conditions were

considered: two test lengths J (short = 25, long = 50) and two examinee sample

sizes I (small = 250, large = 1000). A Q-matrix for J = 25 was randomly generated
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Table 1 Correctly specified Q (K = 7)

Item K = 7 Item K = 7
1 0 0 1 1 1 1 1 14 1 1 0 0 0 0 0

2 0 0 1 0 1 1 0 15 1 0 1 0 0 0 1

3 1 0 0 1 0 0 0 16 1 1 0 0 0 1 1

4 1 1 0 0 1 1 1 17 0 0 0 1 0 0 1

5 0 1 1 1 1 0 0 18 1 0 1 0 0 0 0

6 1 0 0 0 1 0 1 19 0 0 1 0 1 0 0

7 0 0 0 1 1 1 1 20 0 1 0 0 1 1 0

8 0 0 1 1 0 0 1 21 0 0 0 0 0 0 1

9 1 1 0 1 0 0 1 22 1 0 1 0 1 1 1

10 0 0 1 0 1 1 0 23 0 1 0 0 0 0 1

11 0 0 1 0 1 0 1 24 1 1 1 0 1 1 1

12 1 0 0 0 0 0 1 25 1 1 1 0 1 1 1

13 0 1 1 0 1 1 0

from 2K − 1 possible q−vectors as presented in Table 1. The Q-matrix for J = 50

was obtained by duplicating the matrix two times.

The item parameters were generated from sj ∼ Unif (0, 0.3), and gj ∼ Unif (0, 0.3).
The person parameters α were sampled from the bivariate Normal distribution with

mean vector μ = (0, 0, 0, 0, 0, 0, 0) and covariance matrix
∑

with all 1’s on the diag-

onal and off-diagonal elements of 0.3. Binary traits were constructed as in Chiu et al.

(2009),

αik =

{
1, if θik ≥ 𝛷

−1 k
K+1

;
0, otherwise

Markov chains were run with four different values of γ(T): 1, 5, 10, and 20. The esti-

mates of model parameters were obtained by estimating the modes of the draws based

on the the criterion of Gelman and Rubin (1992) which was calculated by generat-

ing five parallel Markov chains. The criterion was satisfied for all item parameters.

The convergence of the person parameter was estimated indirectly by evaluating the

agreement rate between the true α and estimated α̂ in the simulation study because

this parameter is dichotomous.

Table 2 reports the results of item parameter estimation. The estimation accu-

racy was calculated by RMSE =
√

∑J
j=1( ̂βj − βj)2∕J. Furthermore the results were

compared with the results from two different approaches: one was from marginal

maximum likelihood estimation with the EM-algorithm (Robitzsch et al. 2015), and

the other one was from the fully Bayesian MCMC model based on the algorithm

proposed for the Hierarchical DINA model (de la Torre and Douglas 2004).

The RMSE from the proposed algorithm decreased as the sample size I increased

when J = 50. Unlike the estimates from the fully Bayesian model and marginal
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Table 2 RMSE of item parameters

Condition Parameter EM-A Fully-B γ(T)
20 10 5 1

J = 25,

I = 250
Slip 0.114 0.058 0.081 0.087 0.094 0.126

Guess 0.042 0.036 0.043 0.060 0.062 0.063

J = 25,

I = 1000
Slip 0.064 0.048 0.086 0.088 0.085 0.089

Guess 0.041 0.028 0.055 0.060 0.057 0.056

J = 50,

I = 250
Slip 0.078 0.068 0.076 0.079 0.080 0.103

Guess 0.041 0.030 0.027 0.028 0.028 0.029

J = 50,

I = 1000
Slip 0.041 0.043 0.051 0.053 0.052 0.061

Guess 0.015 0.019 0.019 0.020 0.022 0.020

maximum likelihood with the EM algorithm, the influence of the test length J was

moderate. For this reason, this method worked property for the condition of sort test

length J = 25 and small sample size I = 250. The theoretical convergence results in

simulated annealing indicate that, as γ(T) increases, the draw will converge to the

joint maximum likelihood estimate. However, in this application, the RMSE slightly

increased as the γ(T) increased. This might be caused by local maxima. This problem

could be fixed when the optimal temperature γ(T) was determined in the simulated

annealing with a slowly increasing temperature schedule.

Figure 1 shows the draws of the guessing parameter for the four runs of the algo-

rithm with γ(T) = 1, 5, 10, and 20. The horizontal red lines show the true parameter

value. The plots confirm that moderate increases in γ(T) quickly reduce the vari-

ance of draws. The draws of the slip parameter for the same item are shown in the

Fig. 2. Like the guessing parameter, the variance of the draws was reduced as the

γ(T) increased. However, γ(T) seems to need to be increased further to reduce the

variance.

The proportion of the times in which the true αi and the estimated α̂i agreed

was summarized for each condition in two different ways: one was the Component-

wise Agreement Rate (CAR)= (
∑

i=1
∑

k=1 |αik = α̂ik |)∕(I × K), and the other one is

the Vector-wise Agreement Rate (VAR) = (
∑

i=1 |αi = α̂i|)∕I. Likewise in Table 3,

correct classification rates obtained from JMLE are similar to the rates of the other

methods.
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Fig. 1 Time plot of item 1 guess parameter in J = 50, I = 1000

3.2 Analysis of Fraction Subtraction Data with DINA Model

As an illustration of the model with real data, the DINA model with the proposed

algorithm was fitted to the fraction subtraction data that includes the item responses

to 20 items with 8 necessary attributes from 536 examinees. The data were originally

collected and analyzed by Tatsuoka (1990) and have been analyzed in numerous

studies. Here we use the Q matrix in Table 4 for the data that appeared in de la Torre

and Douglas (2004). The specified attributes are (1) Convert a whole number to a

fraction, (2) Separate a whole number from fraction, (3) Simplify before subtracting,

(4) Find a common denominator, (5) Borrow from whole number part, (6) Column

borrow to subtract the second numerator from the first, (7) Subtract numerators, and

(8) Reduce answers to simplest form.

Unlike the simulation studies, the optimal γ(T) was empirically determined by

searching uniform simulated annealing schedule until reach the frozen value. The

estimates of model parameters were obtained from the mode. The proportions of

examinees I who mastered or not mastered each attribute are summarized in Table 5.

The proportions were consistent for all three approaches (i.e., the overall difference

of maters with Fully-B is 0.016 and with EM-A is 0.007).
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Fig. 2 Time plot of item 1 slip parameter in J = 50, I = 1000

Table 3 Agreement rates between α̂ and α

Condition Parameter EM-A Fully-B γ(T)
20 10 5 1

J = 25,

I = 250
CAR 0.773 0.781 0.809 0.801 0.783 0.784

VAR 0.324 0.328 0.323 0.316 0.304 0.300

J = 25,

I = 1000
CAR 0.762 0.763 0.803 0.779 0.782 0.778

VAR 0.286 0.293 0.305 0.294 0.301 0.296

J = 50,

I = 250
CAR 0.866 0.864 0.855 0.829 0.837 0.829

VAR 0.452 0.468 0.444 0.404 0.388 0.376

J = 50,

I = 1000
CAR 0.844 0.802 0.820 0.799 0.798 0.790

VAR 0.433 0.355 0.368 0.357 0.362 0.354
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Table 4 Q for the fraction subtraction data

Item K = 8 Item K = 8
1 0 0 0 1 0 1 1 0 11 0 1 0 0 1 0 1 0

2 0 0 0 1 0 0 1 0 12 0 0 0 0 0 0 1 1

3 0 0 0 1 0 0 1 0 13 0 1 0 1 1 0 1 0

4 0 1 1 0 1 0 1 0 14 0 1 0 0 0 0 1 0

5 0 1 0 1 0 0 1 1 15 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0 16 0 1 0 0 0 0 1 0

7 1 1 0 0 0 0 1 0 17 0 1 0 0 1 0 1 0

8 0 0 0 0 0 0 1 0 18 0 1 0 0 1 1 1 0

9 0 1 0 0 0 0 0 0 19 1 1 1 0 1 0 1 0

10 0 1 0 0 1 0 1 1 20 0 1 1 0 1 0 1 0

Table 5 Attribute mastery or non-mastery rates for individual attributes

Attribute Number

of items

Mastery proportion Non-mastery proportion

JMLE Fully-B EM-A JMLE Fully-B EM-A

1 3 0.549 0.591 0.545 0.451 0.409 0.455

2 13 0.806 0.808 0.804 0.194 0.192 0.196

3 3 0.659 0.679 0.674 0.341 0.321 0.326

4 5 0.674 0.662 0.670 0.326 0.338 0.330

5 8 0.618 0.604 0.593 0.382 0.396 0.407

6 2 0.698 0.735 0.726 0.302 0.265 0.274

7 19 0.825 0.832 0.830 0.175 0.168 0.170

8 3 0.741 0.780 0.785 0.259 0.220 0.215

Mean 0.696 0.712 0.703 0.304 0.288 0.297

As shown in the Table 6, the estimates from JMLE are slightly different from the

estimates of other methods (i.e., for guessing parameters, the difference with Fully-B

is 0.001, and with the EM-A is 0.001; for slipping parameters, the difference with

Fully-B is 0.032, and with the EM-A is 0.029).

4 Discussion

In this study, an MCMC algorithm is proposed for joint maximum likelihood esti-

mation of parameters of various cognitive diagnosis models. This MCMC algorithm

has the advantage of the standard MCMC algorithm and simulated annealing simul-

taneously. The significance of this approach is that it enables researchers to trim back

model complexity by considering each α as an individual parameter to be estimated;
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Table 6 Items parameter estimation with DINA model

Item Guessing Slipping

JMLE Fully-B EM-A JMLE Fully-B EM-A

1 0.023 0.045 0.030 0.105 0.102 0.090

2 0.053 0.037 0.016 0.036 0.036 0.042

3 0.011 0.008 0.000 0.110 0.120 0.134

4 0.256 0.229 0.224 0.078 0.114 0.110

5 0.279 0.308 0.302 0.097 0.179 0.172

6 0.103 0.064 0.096 0.057 0.046 0.041

7 0.059 0.029 0.025 0.128 0.201 0.197

8 0.350 0.430 0.443 0.169 0.186 0.182

9 0.043 0.162 0.253 0.202 0.248 0.245

10 0.044 0.034 0.029 0.150 0.215 0.214

11 0.071 0.068 0.066 0.078 0.079 0.082

12 0.189 0.133 0.131 0.026 0.049 0.041

13 0.016 0.018 0.013 0.301 0.333 0.335

14 0.070 0.065 0.062 0.058 0.066 0.061

15 0.053 0.035 0.032 0.076 0.109 0.106

16 0.122 0.112 0.109 0.089 0.118 0.111

17 0.044 0.046 0.039 0.132 0.139 0.135

18 0.149 0.126 0.119 0.147 0.144 0.138

19 0.037 0.026 0.022 0.113 0.242 0.241

20 0.040 0.017 0.013 0.104 0.160 0.157

thus it is possible to estimate the item parameters and person parameters simultane-

ously.

The applications of the DINA model was provided as examples. As expected, as

γ(T) slightly increased, the variance of draws was reduced. The estimates of model

parameters relatively were consistent regardless of the sizes of sample I and item

J. It indicates that this approach is appropriate for the estimation of small sizes of

sample I and item J. However, it is unreasonable to determine the performance of

the algorithm by comparing the estimates of model parameters given each γ(T) =
1, 5, 10, 20 with their true values because as γ(T) increases up to the optimal value,

the draws will be closer to the true values (e.g., Jacquier et al. 2007).

Future research might include simulation using more attributes. In addition, the

optimal temperature γ(T) for each cognitive diagnosis model could be examined

empirically. At the present time, however, the new MCMC algorithm appears to be

a promising approach for joint maximum likelihood estimation of the parameters of

cognitive diagnosis models.
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An Exploratory Discrete Factor Loading
Method for Q-Matrix Specification
in Cognitive Diagnostic Models

Wenyi Wang, Lihong Song and Shuliang Ding

Abstract The Q-matrix is usually unknown for many existing tests. If the Q-matrix
is specified by subject matter experts but contains a large amount of misspecifi-
cation, it will be difficult for the recovery of a high-quality Q-matrix through a
validation method, because the performance of the validation method relies on the
quality of a provisional Q-matrix. Under these two situations above, an exploratory
technique is necessary. The purpose of this study is to explore a simple method for
Q-matrix specification, called a discretized factor loading (DFL) method, in which
exploratory factor analysis regarding latent attributes as latent factors is used to
estimate a factor loading matrix after which a discretization process is employed on
the factor loading matrix to obtain a binary Q-matrix. A series of simulation studies
were conducted to investigate the performance of the DFL method under various
conditions. The simulation results showed that the DFL method can provide a
high-quality provisional Q-matrix.
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1 Introduction

In educational assessment, Cognitive Diagnostic Assessment (CDA) that combines
psychometrics and cognitive science has received increased attention (Leighton and
Gierl 2007; Rupp et al. 2010; Tatsuoka 2009). This approach potentially provides
useful diagnostic information regarding students’ strengths and weaknesses, and
can facilitate individualized learning (Chang 2015; Chang and Wang 2016). Cog-
nitive Diagnostic Models (CDMs) often utilize a Q-matrix (Embretson 1984;
Tatsuoka 1990, 1995, 2009). The Q-matrix is an incidence matrix that shows the
relationship between items and the underlying cognitive skills and attributes. The
entries of the Q-matrix are 1 or 0, in which qjk =1 means that attribute k is involved
in correctly answering item j, otherwise, qjk =0.

The Q-matrix plays an important role in establishing the relation between latent
attribute patterns (or knowledge states) and ideal response patterns. The ideal
response patterns are defined as latent responses of examinees without slipping and
guessing. Meanwhile, a CDM entails developing a clear correspondence between
examinees’ observed item response patterns and the corresponding ideal response
patterns. Thus, an inference of whether an individual has mastered some attributes
or not can be drawn from an examinee’s observed item response pattern.

To guarantee the validity of this inference, a correct specification of the Q-matrix
is a fundamental step for CDA (Im 2007; Im and Corter 2011; McGlohen 2004;
McGlohen and Chang 2008). The procedure for specifying the Q-matrix is usually
an iterative process (Buck et al. 1998; Jang 2009): (a) the provisional Q-matrix is
basically exploratory based on a current related theory, subject matter experts’
judgment, and an item analysis; in addition (b) the modified Q-matrix is basically
confirmatory based on statistical methods. The above two steps represent qualitative
and quantitative methods respectively, and either of them alone is not enough to
guarantee the correctness of a Q-matrix.

In order to improve the quality of a Q-matrix, researchers have proposed several
quantitative methods for Q-matrix validation, such as the (sequential EM-based) δ
method (de la Torre 2008) and its extension, the ς2 method (de la Torre and Chiu
2010, 2016; Huo and de la Torre 2013), the γ method (Tu et al. 2012), the Bayesian
approach (DeCarlo 2012), the data-driven approach (Liu et al. 2012, 2013), the
nonparametric Q-matrix refinement method (Chiu 2013), and the stepwise reduc-
tion algorithm (Hartz 2002).

These validation methods often needed a high-quality provisional Q-matrix. For
instance, if the provisional Q-matrix is unknown for an existing test, the validation
methods can not be used. In addition, if the provisional Q-matrix is specified by
subject matter experts but contains a large amount of misspecification, it will be
difficult for the recovery of a high-quality Q-matrix through an validation method,
because the performance of the validation methods relies on the precision of
classification of attribute patterns resulting from the provisional Q-matrix (de la
Torre 2008; Rupp and Templin 2008).
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Under these two situations above, an exploratory technique is necessary. There
has been a study about the adoption of principal components analysis as an
exploratory technique for finding the Q-matrix, assuming that items measuring the
same skill set will load on the same component (Close 2012). However, since a
large number of attribute sets are expected to yield a large number of components, it
is hard to determine the meaning of the components (Close 2012).

The purpose of this study is to explore a simple method for Q-matrix specifi-
cation, called a discretized factor loading (DFL) method. An exploratory factor
analysis (EFA) regarding latent attributes as latent factors is used to estimate a
factor loading matrix after which a discretization process is employed on the factor
loading matrix to obtain a binary Q-matrix. A series of simulation studies were
conducted to investigate the performance of the DFL method under various con-
ditions. Response data were simulated from the deterministic-inputs, noisy “and”
gate (DINA) model (Haertel 1989; Junker and Sijtsma 2001), the reduced repa-
rameterized unified model (rRUM; Hartz 2002), and the deterministic-inputs, noisy
“or” gate (DINO) model (Templin and Henson 2006).

2 Method

2.1 Cognitive Diagnostic Models

Let Xij be the response of examinee i to item j, i = 1, 2, …, N, j = 1, 2, …, J. Let
αi = ðα1, α2, . . . , αKÞ be the attribute pattern of examinee i and
qj = ðqj1, qj2, . . . , qjKÞ be the j-th row of the Q-matrix, where K is the number of
attributes and the entries of both αi and qj only contains 0s and 1s.

The item response function for the DINA model is as follows:

PjðαiÞ = PðXij = 1 αij Þ = g
1− ηij
j ð1 − sjÞηij , ð1Þ

where ηij = ∏K
k =1 α

qjk
ik is a latent response variable or an ideal response (see Junker

and Sijtsma 2001), and sj and gj are the slipping and guessing parameters of item j.
The item response function for the rRUM is as follows:

PjðαiÞ = PðXij = 1 αij Þ = π*j ∏
K

k=1
r*ð1− αikÞqjk
jk , ð2Þ

where π*j is the baseline parameter and r*jk is the penalty parameter. π*j is the
probability of a correct response to item j given that an examinee has mastered all
the required attributes for the item. The probability of a correct response to item j is
proportional to r*jk when an examinee has not mastered attribute k.
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The item response function for the DINO model is as follows:

PjðαiÞ = PðXij = 1 αij Þ = ð1 − sjÞwijg1−wij
j , ð3Þ

where wij =1− ∏K
k =1 ð1− αikÞqjk is an ideal latent response. As in the DINA

model, sj and gj are the slipping and guessing parameters of item j.

2.2 An Exploratory Method: Discretized Factor
Loading (DFL) Method

There has been a study about the adoption of principal components analysis for
finding the Q-matrix, assuming that items measuring the same skill sets will load on
the same component (Close 2012). However, since a large combination of attributes
resulted in the total number of components increased, it is hard to determine the
meaning of the components. Thus, for Q-matrix specification, we attempt to use an
exploratory factor analysis (EFA) method, regarding the latent attributes as the
latent factors. Four steps of the algorithm are as follows:

Step 1. Use the item responses of all examinees to estimate the tetrachoric cor-
relation coefficient of each pair of items. Let a, b, c, and d denote the four
cell counts of a 2 × 2 contingency table between a pair of items. An
estimate of tetrachoric correlation is rtet = cos π ̸ 1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðadÞ ̸ðbcÞp� �� �
(Castellan 1966).

Step 2. Obtain the maximum likelihood estimate of the factor loading matrix.
Step 3. Perform Promax or Varimax rotation to maximize the variance of the

factors, and the resulting loading matrix is denoted by Λ= ðajkÞ. Varimax
rotation developed by Kaiser (1958) is an orthogonal rotation, which
assumes no intercorrelations between components or attributes. Promax
rotation relaxes the orthogonality constraint in order to gain simplicity of
interpretation.

Step 4. Apply the discretization process on Λ to obtain a binary matrix. Each entry
of the loading matrix is converted to a binary value by the use of threshold
t. If ajk ≥ t then qjk =1, otherwise qjk =0.

3 Simulation Study

A simulation study was conducted to investigate the performance of the DFL
method under various conditions.
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3.1 Simulation Design

To investigate whether the DFL method can work under certain conditions, five
factors were included in the design of the simulation study. We considered five
attributes. A total of 108 conditions were simulated (3 correlations × 3 sample
sizes × 3 models × 2 Q-matrices × 2 item parameters). 30 replication data sets
were enough for each condition. This is because the DFL method is an exploratory
method to obtain a provisional Q-matrix, we only need to consider the uncertainly
of the item responses.

(a) The source of the examinees’ attribute patterns includes a discrete uniform
distribution (Cheng 2009; Liu et al. 2013) and a multivariate normal threshold
model (Chiu et al. 2009). For the former distribution, the test takers are gen-
erated assuming that every examinee has a 50% chance of mastering each
attribute. In other words, for a 5-attribute test, the 32 attribute mastery patterns
are equally likely in the population. For the latter distribution, the underlying
continuous ability are drawn from a multivariate normal distribution (i.e.,
θ∼MVNð0, ρÞÞ, where ρ represents a correlation matrix with equal
off-diagonal elements. The elements of ρ are either all 0.5 or all 0.75 (Henson
and Douglas 2005), representing moderate or high correlation relationship,
respectively. It would be better to use a design where some attributes are easier
to master than others. Thus, the i-th individual’s mastery for attribute
k ðk = 1, 2, . . . , KÞ was simulated, as in the study of Chiu et al. (2009):

αik = 1 if θik ≥ Φ− 1ð k
K + 1Þ

0 otherwise

�
, ð4Þ

where Φ− 1 is the inverse of the normal distribution function Φ.
(b) The number of examinees is N = 300, 500, or 1,000.
(c) Three cognitive diagnostic models are considered, such as the DINA model, the

rRUM, and the DINO model. The DINA model is a conjunctive/
noncompensatory model; the rRUM is a partial compensatory model; the
DINO model is a compensatory/disjunctive model.

(d) Two true Q-matrices are designed. The first Q-matrix was fixed as the reduced
Q-matrix (Qr) with 31 items including all possible q-vectors. The second
Q-matrix contains two identity matrices horizontally stacked and all possible
items required two attributes, which is the same as Q3 used in Liu et al. (2012).
This Q-matrix, with an identity or an reachability (R) matrix, was called a
complete Q-matrix (Chiu et al. 2009) or a necessary and sufficient Q-matrix
(Ding et al. 2010). Because the necessary and sufficient Q-matrix can distin-
guish all ideal item response patterns of attribute patterns, the correct
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classification rate of attribute patterns can be improved. Since each single factor
or attribute is measured by different test items, the Q-matrix can be easily
recovered by the DFL method.

(e) The quality of the items has two levels based on item parameters. Items with s,
g ∼ U(0.05, 0.25) for the DINA or DINO model, or π* ∼ U(0.8, 0.98) and
r* ∼ U(0.1, 0.6) for the rRUM were labeled high quality. Items with s, g ∼ U
(0.05, 0.4) or π* ∼ U(0.75, 0.95) and r* ∼ U(0.2, 0.95) were labeled low
quality. Item quality in this study was defined as the average of the discrimi-
nating powers of items in a test (Cui et al. 2012) or item parameters (Liu et al.
2016; Ma et al. 2016). In practice, item quality would be defined in terms of
both discriminating power and coverage of the content specifications (Xing and
Hambleton 2004). In general, for the DINA or DINO model, a high quality or
“good” item will have small slipping and guessing parameters (Rupp et al.
2010), which means that the item discrimination powers are large (Cui et al.
2012). For the rRUM, a high quality or “good” item will have a high π* and
low r* parameters (Rupp et al. 2010).

3.2 Methods and Evaluation Criteria

A computer program was written in Matlab 2008. At the Step 4 in the DFL method,
we choose different thresholds to transform a continuous factor loading matrix into
a discrete Q-matrix. Seven thresholds are used, including row/item mean, column/
attribute mean, total mean, and four fixed thresholds (0.3, 0.2, 0.1, or 0.0):

qjk =
1 if ajk ≥ ∑

K

k =1
ajk ̸K

0 otherwise

8<
: , ð5Þ

qjk =
1 if ajk ≥ ∑

J

J =1
ajk ̸J

0 otherwise

8<
: , ð6Þ

qjk =
1 if aik ≥ ∑

J

J =1
∑
J

J =1
ajk ̸ðJKÞ

0 otherwise

8<
: , ð7Þ

qjk =
1 if ajk ≥ t, t is fixed as 0.3, 0.2, 0.1, or 0
0 otherwise

�
. ð8Þ

The results reported in this study focused on the accuracy of an estimated
Q-matrix, because it was directly related to the performance of the DFL method.
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The correct recovery rate (CRR) equals the ratio of the number of correct q-entries
in the estimated Q-matrix to the total number of q-entries (Chiu 2013). For each
condition, the mean and standard deviation of the CRR values of the 30 replications
were reported for each method.

For gaining insight into the performance of these methods in two different
aspects, the under-specified and over-specified rates of q-entries were presented.
The under-specified rate, denoted by USR, indicates the proportion of q-entries in
which true qjk =1 was estimated as qjk =0. The over-specified rate, denoted by
OSR indicates the proportion of q-entries in which true qjk =0 was estimated as
qjk =1.

3.3 Results

For each simulated dataset, one kind of rotate criterion and one kind of discrete
transformation were considered in the DFL method. Thus, the DFL method gen-
erated an estimated Q-matrix for each response data, each rotation and each discrete
transformation.

On the whole, results show that the DFL method can explore a Q-matrix with
high CRR. First, we consider the impact of the thresholds which should be set in the
discretization process. Table 1 lists the average of CRR, USR, and OSR of the
q-entries for the DFL method under two kinds of Q-matrix across all conditions.
We found that the DFL method using the row/column mean for discretizing the
factor loadings obtains the highest CRR for the reduced Q-matrix; while the DFL
method using a fixed threshold (i.e. 0.3) obtains the highest CRR for Q3. For Q3, the
difference of CRRs between using the row/column mean and the fixed threshold
(i.e. 0.3) is very small. As expected, the USRs will decrease as the thresholds
decrease and the OSRs will increase as the thresholds increase. Thus the row/
column mean is a good choice for the threshold.

Table 1 The average of CRR, USR, and OSR of the q-entries for the DFL method under two
kinds of Q-matrix across all conditions

Qr Q3

Threshold CRR USR OSR CRR USR OSR
Row mean 0.720 0.214 0.067 0.866 0.063 0.072
Column mean 0.729 0.194 0.077 0.873 0.056 0.071
Total mean 0.714 0.218 0.068 0.864 0.064 0.072
0.3 0.652 0.337 0.011 0.878 0.112 0.010
0.2 0.688 0.272 0.040 0.877 0.078 0.044
0.1 0.704 0.180 0.116 0.804 0.056 0.140
0.0 0.645 0.067 0.288 0.557 0.023 0.420
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Second, the impact of the rotations and the correlations is considered. Table 2
shows the average of CRR, USR, and OSR of the q-entries for the DFL method
under two rotations, three correlations, and two Q-matrices across all conditions.
The results suggest that the CRRs of the Promax rotation are higher than that of the
Varimax rotation regardless of the correlation and the Q-matrix. As expected, the
CRRs of the Promax rotation, on average, is 6.5% higher than that of the Varimax
rotation, when the underlying abilities or attributes have moderate or high corre-
lation relationship. However, the difference of CRRs between these two rotations is
relatively small. From Table 2, we found that the Q-matrix was more precisely
estimated under the discrete uniform distribution than under the realistic multi-
variate normal threshold model. One reason for this result is that some attribute
patterns contained too few examinees under the multivariate normal threshold
model to identify misspecified q-vectors, noticing that if ρ = 0.5 or ρ = 0.75 was
positive, then an individual with a specific attribute was more likely to have
mastered the second attribute. Since the Promax rotation performs better than the
Varimax, we will next only focus on results obtained from the Promax rotation.

Third, the impact of the rotations and the correlations is considered. Table 3
shows the average of CRR, USR, and OSR of the q-entries for the DFL method
under three models, two levels of item quality, and two Q-matrices across all

Table 2 The average of CRR, USR, and OSR of the q-entries for the DFL method under two
rotations, three correlations, and two Q-matrices across all conditions

Qr Q3

Correlation Rotation CRR USR OSR CRR USR OSR
0.00 Promax 0.790 0.161 0.048 0.939 0.025 0.036

Varimax 0.785 0.147 0.068 0.920 0.024 0.056
0.50 Promax 0.659 0.253 0.088 0.771 0.094 0.135

Varimax 0.622 0.224 0.154 0.691 0.085 0.224
0.75 Promax 0.660 0.252 0.088 0.768 0.094 0.138

Varimax 0.613 0.218 0.169 0.671 0.083 0.246

Table 3 The average of CRR, USR, and OSR of the q-entries for the DFL method under three
models, two levels of item quality, and two Q-matrices across all conditions (ρ = 0,
rotation = Promax, threshold = column mean)

Qr Q3

Model Item quality CRR USR OSR CRR USR OSR
The DINA model High 0.861 0.100 0.039 0.999 0.000 0.001

Low 0.741 0.173 0.085 0.980 0.003 0.017
The rRUM High 0.934 0.059 0.007 0.982 0.003 0.015

Low 0.863 0.130 0.007 0.924 0.038 0.038
The DINO model High 0.879 0.096 0.025 1.000 0.000 0.000

Low 0.723 0.183 0.094 0.977 0.004 0.019
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conditions. The DINA and DINO models give comparable results in terms of CRR.
The rRUM is more promising than the DINA and DINO models in terms of CRR.

Finally, the impact of sample size is considered. Table 4 shows the average of
CRR, USR, and OSR of the q-entries for the DFL method under different sample
sizes. As expected, when sample size increases, the CRRs increase and the USRs
and OSRs decrease.

4 Real Data Application

The DFL method was applied to analyse the fraction subtraction data (de la Torre
2008; Tatsuoka 1990) and the reading comprehension data (Jang 2009). For the two
real data sets, the original Q-matrices were shown in Table 7 of de la Torre (2008)
and in Table 3 of Jang (2009). Table 5 shows the CRR, USR, and OSR of the
q-entries between the original and estimated Q-matrix under the two real data sets.
The CRR, USR, and OSR of the fraction subtraction Q-matrix are highly similar to
those of the reduced Q-matrix from the simulation study. The DFL method per-
forms similar, but slightly different between the reading comprehension data and
the simulated Q3. One possible reason is that only primary skills were included in
the final Q-matrix of the reading comprehension test.

Table 4 The average of CRR, USR, and OSR of the q-entries for the DFL method different
sample sizes (ρ = 0, rotation = Promax, threhold = column mean)

Qr Q3

Sample size CRR USR OSR CRR USR OSR
300 0.803 0.140 0.058 0.960 0.012 0.028
500 0.829 0.127 0.044 0.980 0.007 0.013
1000 0.869 0.104 0.027 0.991 0.006 0.004

Table 5 The CRR, USR, and OSR of the q-entries for the DFL method under two real data sets
(rotation = Promax)

Qa Qb

Threshold CRR USR OSR CRR USR OSR
Row mean 0.667 0.280 0.053 0.742 0.054 0.204
Column mean 0.667 0.253 0.080 0.733 0.039 0.228
Total mean 0.707 0.253 0.040 0.751 0.051 0.198
0.3 0.560 0.360 0.080 0.841 0.129 0.030
0.2 0.707 0.253 0.040 0.841 0.105 0.054
0.1 0.693 0.187 0.120 0.784 0.072 0.144
0.0 0.627 0.120 0.253 0.538 0.021 0.441
aQ-matrix of the fraction subtraction data
bQ-matrix of the reading comprehension data
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5 Conclusion

Since the validation methods rely on the provisional Q-matrix which is often
unknown, the DFL method is introduced based on exploratory factor analysis and
response data. Results indicate that this method can mine information from data to
provide a high quality provisional Q-matrix in terms of CRR. The following listed
some important findings.

(a) On the whole, the results show that the DFL method can explore a Q-matrix
with high CRR.

(b) The Promax rotation performs better than the Varimax rotation.
(c) The row/column mean threshold is a good choice for discretizing continuous

factor loading matrix and transform it into a discrete Q-matrix.
(d) When sample size increases, the CRRs increase and the USRs and OSRs

decrease.

The contributions of this study are the following. First, the DFL method is easy
to implement as it is based on EFA that has been one of the most widely used
statistical procedures in psychological research. Second, the DFL method can be
applied to obtain a high-quality Q-matrix for the DINA model, the rRUM, and the
DINO model. Finally, the proposed DFL method can provide a provisional
Q-matrix for any validation methods for cognitive test developers. It was concluded
that this study provided an exploratory approach for assisting subject matter experts
in specifying a Q-matrix.

Some future research directions are also pointed out. One limitation of this study
is that the number of factors or attributes are known in advance. It is necessary to
consider how to determine the number of factors or attributes for the DFL method.
Maybe one possibility to obtain the number of factors in the EFA is to consider
latent class models, or use model fit tools from EFA. There exist a lot of methods
for Q-matrix validation. It would be interesting to propose a method to explore and
validate a Q-matrix. The second limitation is that the EFA approach taken here
assumes continuous latent attributes, while the CDA approach assumes dichoto-
mous attributes. In addition, the results depend on the arbitrary choice for the
thresholds. A sensitivity analysis should ideally be considered to check the
robustness of the results.
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Identifiability of the Latent Attribute
Space and Conditions of Q-Matrix
Completeness for Attribute Hierarchy
Models
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Abstract Educational researchers have argued that a realistic view of the role of

attributes in cognitively diagnostic modeling should account for the possibility that

attributes are not isolated entities, but interdependent in their effect on test per-

formance. Different approaches have been discussed in the literature; among them

the proposition to impose a hierarchical structure so that mastery of one or more

attributes is a prerequisite of mastering one or more other attributes. A hierarchical

organization of attributes constrains the latent attribute space such that several pro-

ficiency classes, as they exist if attributes are not hierarchically organized, are no

longer defined, because the corresponding attribute combinations cannot occur with

the given attribute hierarchy. Hence, the identification of the latent attribute space

is often difficult—especially, if the number of attributes is large. As an additional

complication, constructing a complete Q-matrix may not at all be straightforward

if the attributes underlying the test items are supposed to have a hierarchical struc-

ture. In this article, the conditions of identifiability of the latent space if attributes

are hierarchically organized and the conditions of completeness of the Q-matrix are

studied.

Keywords Cognitive diagnosis ⋅ Attribute hierarchy ⋅ Latent attribute space

Q-matrix ⋅ Completeness ⋅ DINA model

1 Introduction

Cognitive diagnosis (CD), a relatively recent development in educational measure-

ment (DiBello et al. 2007; Haberman and von Davier 2007; Leighton and Gierl 2007;

Nichols et al. 1995; Rupp et al. 2010) explicitly targets mastery of the instructional
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content and seeks to provide immediate feedback to students about their strengths

and weaknesses in terms of skills learned and skills needing study. CD terminology

refers to skills, specific knowledge, aptitudes—any cognitive characteristic required

to perform tasks—collectively as “attributes” (denoted by 𝛼k, k = 1, 2,… ,K) that

an examinee may or may not possess. CD models—or “Diagnostic Classification

Models” (DCMs), as they are called here—describe an examinee’s ability as a com-

posite of these attributes, each of which an examinee may or may not have mas-

tered. Mastery/non-mastery of attributes is recorded as a binary string; different 0-

1-combinations define attribute profiles of distinct proficiency classes (denoted by

𝜶 = (𝛼1, 𝛼2,… , 𝛼K)′). The entire set of realizable attribute profiles , given a par-

ticular set of attributes, is called the latent attribute space (Tatsuoka 2009). Model-

ing educational testing data within the CD framework involves estimating the item

parameters and assigning examinees to proficiency classes—that is, estimating their

individual attribute profiles 𝜶.

Educational researchers have argued that a realistic view of the role of attributes in

cognitively diagnostic modeling should account for the possibility that attributes are

not isolated entities, but interdependent in their effect on test performance. Different

approaches have been discussed in the literature. de la Torre and Douglas (2004)

proposed a higher-order model linking the latent attribute space to an underlying

multivariate normal distribution with possibly correlated dimensions. Haertel and

Wiley (1994) and Leighton et al. (2004) (see also Leighton and Gierl 2007; Tatsuoka

2009; Templin and Bradshaw 2014) developed a different approach to account for

potential relations/interdependencies among attributes by imposing a hierarchical

structure so that mastery of one or more attributes is a prerequisite of mastering

one or more other attributes. These DCMs are commonly referred to as Attribute

Hierarchy Models (AHMs).

As an example, consider the divergent attribute hierarchy among 𝛼1, 𝛼2, and 𝛼3—

mastery of attribute 𝛼1 is a prerequisite of mastering attributes 𝛼2 and 𝛼3:

α1

α3α2

Several complications can arise from imposing a hierarchy on the attributes. First, a

hierarchical organization of attributes constrains the latent attribute space such that

several proficiency classes, as they exist if attributes are not hierarchically organized,

are no longer defined because the corresponding attribute combinations cannot occur

with the given attribute hierarchy. Hence, the identification of the latent attribute

space  is often difficult—especially, if the number of attributes is large. Second,

constructing a complete Q-matrix may not at all be obvious. In this article, the con-

ditions of identifiability of the latent space if attributes are hierarchically organized,

and the conditions of completeness of the Q-matrix are studied.
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2 Completeness of the Q-Matrix

The items of a test are also characterized by individual attribute profiles that deter-

mine which specific attributes are required to respond correctly to an item. The

entire set of these item-attribute associations constitutes the Q-matrix of a test

(Tatsuoka 1985). The Q-matrix must be known (or the data cannot be analyzed

within the CD framework) and complete. A Q-matrix is said to be complete if it

guarantees the identifiability of all realizable proficiency classes among examinees

(Chiu et al. 2009; Köhn and Chiu 2017). An incomplete Q-matrix causes examinees

to be assigned to proficiency classes to which they do not belong. Formally, a Q-

matrix is complete if the equality of two expected item response vectors, S(𝜶) and

S(𝜶∗), implies that the underlying attribute profiles, 𝜶 and 𝜶
∗
, are also identical:

S(𝜶) = S(𝜶∗) ⇒ 𝜶 = 𝜶
∗
, where S(𝜶) = E(Y ∣ 𝜶), and Y = (Y1,Y2,… ,YJ)′ is the

vector of observed item responses.

Take the Deterministic Input Noisy “AND” Gate (DINA) model (Haertel 1989;

Junker and Sijtsma 2001; Macready and Dayton 1977) as an example. The item

response function (IRF) of the DINA model is

P(Yj = 1|𝜶, sj, gj) = (1 − sj)
𝜂j g

(1−𝜂j )
j

(for succinctness, the examinee index i is omitted if the context permits). Hence, the

J entries in S(𝜶) are defined as

Sj(𝜶) = E(Yj ∣ 𝜶) =

{
gj if 𝜂

j
= 0

1 − sj if 𝜂
j
= 1 with 1 − sj > gj

where 𝜂
j
= 0, 1 is the conjunction parameter indicating whether an examinee has

mastered all attributes required for correctly responding to item j; sj, gj are item

parameters formalizing the probabilities of “slipping”, sj = P(Yj = 0|𝜂
j
= 1) (i.e.,

failing item j despite the ability to solve it—“having a bad day”) and “guessing”, gj =
P(Yij = 1|𝜂

ij
= 0) (i.e., solving item j, but lacking the required attributes). Consider

the two Q-matrices 𝐐1∶3 and 𝐐4∶6, with rows representing J = 3 items and columns

K = 3 attributes:

𝐐1∶3 =
⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠

𝐐4∶6 =
⎛
⎜
⎜
⎝

0 1 1
1 0 1
1 1 0

⎞
⎟
⎟
⎠

Their completeness for the DINA model is evaluated by computing the expected

item response profiles S(𝜶):
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𝜶 𝐐1∶3 𝐐4∶6
q1 = (100) q2 = (010) q3 = (001) q4 = (011) q5 = (101) q6 = (110)
S1(𝜶) S2(𝜶) S3(𝜶) S4(𝜶) S5(𝜶) S6(𝜶)

(000) g1 g2 g3 g4 g5 g6
(100) 1 − s1 g2 g3 g4 g5 g6
(010) g1 1 − s2 g3 g4 g5 g6
(001) g1 g2 1 − s3 g4 g5 g6
(110) 1 − s1 1 − s2 g3 g4 g5 1 − s6
(101) 1 − s1 g2 1 − s3 g4 1 − s5 g6
(011) g1 1 − s2 1 − s3 1 − s4 g5 1 − s6
(111) 1 − s1 1 − s2 1 − s3 1 − s4 1 − s5 1 − s6

𝐐1∶3 is complete for the DINA model, whereas 𝐐4∶6 is not because, for example,

𝜶1 = (000) ≠ 𝜶2 = (100), but S(𝜶1) = S(𝜶2).
For tests with a large number of items involving multiple attributes, completeness

of the Q-matrix is often difficult to establish. As an additional complication, com-

pleteness is not an intrinsic property of the Q-matrix, but can only be assessed in

reference to a specific DCM supposed to underlie the data. In the extreme, the Q-

matrix of a particular test can be complete for one model, but incomplete for another.

How is Q-completeness affected if the attributes are hierarchically organized?

Consider again the divergent attribute hierarchy described earlier. For the DINA

model, none of the two Q-matrices, 𝐐1∶3 and 𝐐4∶6, is complete if the divergent hier-

archy is imposed on 𝛼1, 𝛼2, and 𝛼3, because Items 2, 3, and 4 are no longer admissible,

as they do not include 𝛼1 as a required attribute. But 𝛼1 is a prerequisite for attributes

𝛼2 and 𝛼3—casually speaking, 𝛼2 and 𝛼3 “cannot be had” without 𝛼1:

𝜶 𝐐1∶3 𝐐4∶6
q1 = (100) q2 = (010) q3 = (001) q4 = (011) q5 = (101) q6 = (110)
S1(𝜶) S2(𝜶) S3(𝜶) S4(𝜶) S5(𝜶) S6(𝜶)

(000) g1 g2 g3 g4 g5 g6
(100) 1 − s1 g2 g3 g4 g5 g6
(010) g1 1 − s2 g3 g4 g5 g6
(001) g1 g2 1 − s3 g4 g5 g6
(110) 1 − s1 1 − s2 g3 g4 g5 1 − s6
(101) 1 − s1 g2 1 − s3 g4 1 − s5 g6
(011) g1 1 − s2 1 − s3 1 − s4 g5 1 − s6
(111) 1 − s1 1 − s2 1 − s3 1 − s4 1 − s5 1 − s6

3 The Latent Attribute Space 

If the K binary attributes underlying a test do not have a hierarchical structure, then

the latent attribute space , the set of all realizable attribute profiles (characterizing

distinct proficiency classes), contains 2K elements (Tatsuoka 2009). The case of K =
3 attributes, 𝛼1, 𝛼2, and 𝛼3, may serve as a simple example; then, ∣  ∣= 2K = 8:
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No. 𝜶 = (𝛼1 𝛼2 𝛼3)
1 (0 0 0)
2 (1 0 0)
3 (0 1 0)
4 (0 0 1)
5 (1 1 0)
6 (1 0 1)
7 (0 1 1)
8 (1 1 1)

But if the three attributes have, say a divergent hierarchy as shown earlier—that is,

attribute 𝛼1 is a prerequisite of mastering attributes 𝛼2 and 𝛼3—then,  consists of

only five proficiency classes: (000), (100), (110), (101) and (111), because the pro-

ficiency classes (010), (001), and (011) are no longer defined.

Here is a more complex example of an attribute hierarchy involving K = 5
attributes; they are organized in the hierarchy displayed by the following tree graph:

α1

α2

α5α4

α3

Without a hierarchy imposed on the attributes, the latent attribute space  would

contain 25 = 32 proficiency classes; but due to the complex prerequisite structure,

most of these theoretically realizable proficiency classes are not defined. For exam-

ple, the single-attribute profiles (01000) = 𝐞2, (00010) = 𝐞4, and (00001) = 𝐞5 are no

longer defined and must be replaced by (11000), (11010), and (11101), respectively,

so that the prerequisite relations defining the hierarchy among attributes are satis-

fied. In fact, out of the original 32 proficiency classes, only ten proficiency classes

are defined, and  is reduced to

No. 𝜶 = (𝛼1 𝛼2 𝛼3 𝛼4 𝛼5)
1 0 0 0 0 0
2 0 0 1 0 0
3 1 0 0 0 0
4 1 0 1 0 0
5 1 1 0 0 0
6 1 1 1 0 0
7 1 1 0 1 0
8 1 1 1 1 0
9 1 1 1 0 1
10 1 1 1 1 1
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4 Attribute Hierachies: A Lattice-Theoretic Approach

The last two sections described in greater detail the challenges posed by AHMs:

(a) How to identify the latent attribute space  for attribute hierarchies with a com-

plex prerequisite structure?

(b) How to identify a complete Q-matrix for attribute hierarchies with a complex

prerequisite structure?

Extant approaches are ad hoc and merely descriptive. Alternatively, a general

approach based on lattice theory is developed here that accommodates attribute hier-

archy models as well as DCMs with no attribute hierarchy. The following definitions

are needed:

(1) The K attributes 𝛼k ∈ {0, 1} are Boolean variables.

(2) The 2K vectors 𝜶 are called Boolean vectors.

(3) The order relation ≤ for two binary K-dimensional attribute vectors 𝜶 and 𝜶
∗

is

defined such that 𝜶
∗
≤ 𝜶 if and only if 𝛼

∗
k ≤ 𝛼k ∀k. The relation ≤ is reflexive,

antisymmetric, and transitive; hence, it is a partial order.

(4)  is called a partially ordered set (poset) written ⟨,≤⟩.

(5) Consider Boolean vectors 𝜶 = (𝛼1,… , 𝛼K) and 𝜶
∗ = (𝛼∗

1 ,… , 𝛼
∗
K). Their infi-

mum is defined as the conjunction: inf{𝜶,𝜶∗} = 𝜶 ∧ 𝜶
∗ = 𝜶 ⋅ 𝜶∗ = (𝛼1𝛼∗

1 ,… ,

𝛼K𝛼
∗
K) (recall 0 ∧ 1 = 0). Their supremum is defined as the disjunction:

sup{𝜶,𝜶∗} = 𝜶 ∨ 𝜶
∗ = 𝜶 + 𝜶

∗ = (𝛼1 + 𝛼
∗
1 ,… , 𝛼K + 𝛼

∗
K) (recall 0 ∨ 1 = 1).

(6) Boolean operators ∧ and ∨ are idempotent (e.g., 1 ∨ 1 = 1). Thus, the infimum

and supremum of the singletons {𝜶m} are just inf{𝜶m} = sup{𝜶m} = 𝜶m—for

example: inf{𝜶1} = sup{𝜶1} = (00,… , 0), inf{𝜶M} = sup{𝜶M} = (11,
… , 1).

(7)  as a lattice: ⟨,≤⟩ is called a lattice if each of its (finite) subsets has an infimum

and a supremum.

(8) A lattice is called complete if it has universal bounds—that is, a least element 0
and a largest element I. For , O = 𝟎K = 𝜶1 = (00,… , 0) and I = 𝟏K = 𝜶M =
(11,… , 1).

Consider first the case where attributes have no hierarchy; for example, the K = 4
attributes shown in the following graph (the absence of directed edges indicates that

attributes lack a hierarchy):

α3

α1

α4

α2
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The latent attribute space is defined by 2K = 16 = M realizable proficiency classes:

No. 𝜶 = (𝛼1 𝛼2 𝛼3 𝛼4)
1 (0 0 0 0)
2 (1 0 0 0)
3 (0 1 0 0)
4 (0 0 1 0)
5 (0 0 0 1)
5 (1 1 0 0)
6 (1 0 1 0)
7 (1 0 0 1)
8 (0 1 1 0)
9 (0 1 0 1)

10 (0 0 1 1)
11 (1 1 1 0)
12 (1 1 0 1)
13 (1 0 1 1)
14 (0 1 1 1)
15 (1 1 1 0)
16 (1 1 1 1)

The lattice  can be displayed as a Hasse diagram that has the following properties:

(a) The proficiency classes are vertically ordered and connected by an edge if they

are in the relation ≤.

(b) Because order relations are transitive, any relation between proficiency classes

can be deduced by following the edges upward.

(c) The infimum and supremum of every subset of  are also in .

(d) All realizable proficiency classes can be obtained through the Boolean oper-

ations ∧ and ∨ performed on the four single-attribute profiles (1000) = 𝐞1,

(0100) = 𝐞2, (0010) = 𝐞3, and (0001) = 𝐞4.

(e) The vectors 𝐞1,… , 𝐞4 are called basic attribute vectors; they can be derived from

the graph of the four attributes directly by inspection; they are underlain by grey

boxes in the Hasse diagram below.
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(1111)

(1110) (1101) (1011) (0111)

(1100) (1010) (1001) (0110) (0101) (0011)

(1000) (0100) (0010) (0001)

(0000)

Second, to study the case of attributes having a hierarchical structure, consider

again the earlier example of a hierarchy involving K = 5 attributes, the tree graph of

which is repeated here as a convenience:

α1

α2

α5α4

α3

From the tree graph, the five basic attribute vectors, (10000), (11000), (00100),
(11010), and (11101), are obtained by inspection and arranged as an incomplete

lattice (left panel below). The lattice of the entire latent attribute space  is recon-

structed from these attribute vectors; for example, (10000) ∨ (00100) = (10100),
or (11000) ∨ (00100) = (11100); note that (10000) ∧ (00100) = (11000) ∧ (00100)
= (00100) ∧ (11010) = (00000) (right panel below).



Identifiability of the Latent Attribute Space and Conditions . . . 371

(11101)

(11010)

(11000)

(10000) (00100)

(11111)

(11110) (11101)

(11010) (11100)

(11000) (10100)

(10000) (00100)

(00000)

5 Key Results and Discussion

(1) A set of attribute profiles called “basic attribute vectors” can be derived by

inspection from the tree graph of any attribute hierarchy.

(2) These basic attribute vectors are a subset of the latent attribute space .

(3)  is a lattice; hence, the latent attribute space can be reconstructed in its entirety

from the basic attribute vectors using the operations ∧ and ∨.

(4) Any Q-matrix that contains the unique K × K submatrix formed by the basic

attribute vectors is complete for the DINA model, given any attribute hierarchy.

To demonstrate Claim (4), consider again the last example, with a hierarchy

involving K = 5 attributes. The Q-matrix derived from the basic attribute vectors

is

𝐐 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
1 1 0 1 0
1 1 1 0 1

⎞
⎟
⎟
⎟
⎟
⎠
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Computing the expected item response vectors S(𝜶) confirms its completeness:

𝜶 𝐐
q1 = (10000) q2 = (11000) q3 = (00100) q4 = (11010) q5 = (11101)
S1(𝜶) S2(𝜶) S3(𝜶) S4(𝜶) S5(𝜶)

(00000) g1 g2 g3 g4 g5
(00100) g1 g2 1 − s3 g4 g5
(10000) 1 − s1 g2 g3 g4 g5
(11000) 1 − s1 1 − s2 g3 g4 g5
(10100) 1 − s1 g2 1 − s3 g4 g5
(11100) 1 − s1 1 − s2 1 − s3 g4 g5
(11010) 1 − s1 1 − s2 g3 g4 g5
(11110) 1 − s1 1 − s2 1 − s3 g4 g5
(11101) 1 − s1 1 − s2 1 − s3 1 − s4 1 − s5
(11111) 1 − s1 1 − s2 1 − s3 1 − s4 1 − s5

In conclusion, one might ask why not extend the results of this study to general

DCMs? (General DCMs have received considerable attention as a framework for

expressing the specific functional relation between attribute mastery and the prob-

ability of a correct item response of diverse DCMs in a unified mathematical form

and parameterization; von Davier 2005, 2008; Henson et al. 2009; de la Torre 2011).

First, the procedure for identifying the latent attribute space suggested by the theoret-

ical results of this study can also be applied to general DCMs. Second, however, the

results on Q-completeness for the DINA model when attributes have a hierarchical

structure do not apply to general DCMs as well. The complex parameterization of

general DCMs causes anomalies in Q-completeness that cannot be accounted for at

present. As an illustration, consider a relatively simple instance of a general DCM,

de la Torre’s (2011) Additive Cognitive Diagnosis Model (A-CDM). The IRF of the

A-CDM is defined as a linear combination of K attributes

P(Yj = 1 ∣ 𝜶) = 𝛽j0 +
K∑

k=1
𝛽jkqjk𝛼ik

where qjk indicates whether mastery of attribute 𝛼k is required for item j. (Addi-

tional constraints on the coefficients 𝛽jk—not described here—guarantee 0 ≤ P(Yj =
1 ∣ 𝜶) ≤ 1.) Suppose a test involves K = 5 attributes that have a convergent hierar-

chy, as shown in the following tree graph:

α1

α2

α3

α4

α5
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For the DINA model, the five basic vectors that form the unique complete Q-matrix

can be derived by inspection from the tree graph (see matrix 𝐐 below).

𝐐 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
1 1 1 1 1

⎞
⎟
⎟
⎟
⎟
⎠

𝐐1∶2 =
(
1 1 0 0 0
1 1 1 1 1

)

𝐐3∶5 =
⎛
⎜
⎜
⎝

0 0 1 0 0
1 1 1 0 0
1 1 1 1 1

⎞
⎟
⎟
⎠

𝐐 is still complete for the A-CDM, as can be shown by computing the vectors of

expected item responses 𝐒(𝜶) (for the A-CDM, the expected response to item j is

Sj(𝜶) = P(Yj ∣ 𝜶) = 𝛽j0 +
∑5

k=1 𝛽jk𝛼kqjk). However, 𝐐 is no longer uniquely com-

plete for the A-CDM, as the example of the two Q-matrices 𝐐1∶2 and 𝐐3∶5 shows.

The vectors of expected item responses for the A-CDM corresponding to 𝐐1∶2 and

𝐐3∶5 are:

𝜶 𝐐1∶2
𝐪1 = (11000) 𝐪2 = (11111)
S1(𝜶) S2(𝜶)

(00000) 𝛽10 𝛽20
(10000) 𝛽10 + 𝛽11 𝛽20 + 𝛽21
(11000) 𝛽10 + 𝛽11 + 𝛽12 𝛽20 + 𝛽21 + 𝛽22
(00100) 𝛽10 𝛽20 + 𝛽23
(10100) 𝛽10 + 𝛽11 𝛽20 + 𝛽21 + 𝛽23
(11100) 𝛽10 + 𝛽11 + 𝛽12 𝛽20 + 𝛽21 + 𝛽22 + 𝛽23
(00110) 𝛽10 𝛽20 + 𝛽23 + 𝛽24
(10110) 𝛽10 + 𝛽11 𝛽20 + 𝛽21 + 𝛽23 + 𝛽24
(11110) 𝛽10 + 𝛽11 + 𝛽12 𝛽20 + 𝛽21 + 𝛽22 + 𝛽23 + 𝛽24
(11111) 𝛽10 + 𝛽11 + 𝛽12 𝛽20 + 𝛽21 + 𝛽22 + 𝛽23 + 𝛽24 + 𝛽25

𝜶 𝐐3∶5
𝐪3 = (00100) 𝐪4 = (11100) 𝐪5 = (11111)
S3(𝜶) S4(𝜶) S5(𝜶)

(00000) 𝛽30 𝛽40 𝛽50
(10000) 𝛽30 𝛽40 + 𝛽41 𝛽50 + 𝛽51
(11000) 𝛽30 𝛽40 + 𝛽41 + 𝛽42 𝛽50 + 𝛽51 + 𝛽52
(00100) 𝛽30 + 𝛽33 𝛽40 + 𝛽43 𝛽50 + 𝛽53
(10100) 𝛽30 + 𝛽33 𝛽40 + 𝛽41 + 𝛽43 𝛽50 + 𝛽51 + 𝛽53
(11100) 𝛽30 + 𝛽33 𝛽40 + 𝛽41 + 𝛽42 + 𝛽43 𝛽50 + 𝛽51 + 𝛽52 + 𝛽53
(00110) 𝛽30 + 𝛽33 𝛽40 + 𝛽43 𝛽50 + 𝛽53 + 𝛽54
(10110) 𝛽30 + 𝛽33 𝛽40 + 𝛽41 + 𝛽43 𝛽50 + 𝛽51 + 𝛽53 + 𝛽54
(11110) 𝛽30 + 𝛽33 𝛽40 + 𝛽41 + 𝛽42 + 𝛽43 𝛽50 + 𝛽51 + 𝛽52 + 𝛽53 + 𝛽54
(11111) 𝛽30 + 𝛽33 𝛽40 + 𝛽41 + 𝛽42 + 𝛽43 𝛽50 + 𝛽51 + 𝛽52 + 𝛽53 + 𝛽54 + 𝛽55
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Remarkably, 𝐐1∶2 is complete although it contains only two items. Two items,

however, do not automatically guarantee completeness for the A-CDM, as the

columns 𝐪4 = (11100) and 𝐪5 = (11111) of𝐐3∶5 demonstrate. Completeness depends

on the specific item parameter values and is not guaranteed because, for example,

𝛽41 = 𝛽43 and 𝛽51 = 𝛽53 cannot be ruled out so that for𝜶 = (10000) and𝜶 = (00100),
S4∶5(10000) = S4∶5(00100) is possible. Thus, a Q-matrix formed just by 𝐪4 and 𝐪5
cannot be guaranteed to be complete. The inconclusiveness of 𝐪4 and 𝐪5 can be

resolved by adding item 𝐪3 = (00100)—indeed, 𝐐3∶5 is complete. (Note that the

alternative additions (00110) and (11111), instead of 𝐪3, would also make 𝐐4∶5 guar-

anteed complete). In summary, this small-scale example of the A-CDM shows that

for a given attribute hierarchy there are at least three different ways to construct a

complete Q-matrix for a general DCM. At present, it seems not possible to iden-

tify common rules of Q-completeness for general DCMs that can be used with any

attribute hierarchy.
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Abstract Based on the Augment algorithm, any column of Q matrix can be
expressed as a Boolean union of some columns of reachability matrix R, but
the expression is not unique. There are two different expressions for a column of the
reduced Q matrix, say x, a redundant expression of x and a concise expression of x.
When a test length is short, the redundant expression of a knowledge state can be
used to simplify the proof of an important property of the reachability matrix R in
the design of cognitive diagnostic test, and provides a novel method to specify Q
matrix. This specification method can be employed to deal with the polytomous Q
matrix.
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1 Some Concepts and Symbols

For Boolean matrices, any nonzero knowledge state is a column of a reduced Q
matrix Qr (Tatsuoka 1995, 2009) and it can be expressed as a Boolean union of the
columns of the reachability matrix R based on the Augment algorithm (Ding et al.
2008, 2016) or on the incremental augment algorithm (Yang et al. 2010). There
may be several expression forms (Ding et al. 2017). If x is a column of reduced Q
matrix Qr, let Sx = { r | (r is a column of R) and (r ≤ x)}, then the Boolean union
of all elements in the set of Sx is called as the redundant expression of x, where
r ≤ x means that every element of x-r is non-negative. Let Ux be a subset of Sx and
any two different elements in the set Ux have no prerequisite relationship, i.e., they
are not comparable. At this time, the Boolean union of all elements in Ux is called
as the concise expression of x (Ding et al. 2017). Suppose that a, b are any two
elements in Sx and a < b, a is deleted from Sx, then the set Ux can be obtained
through comparing any pair elements in Sx and deleting the smaller element from
Sx. The set Sx is called as the set of redundant expression of x (SREx) in this paper.
The elements in Sx and Ux are called vectors or knowledge states hereafter.

The following Lemma 1 and Theorem 1 have been proved (Ding et al. 2017).

Lemma 1 The number of the redundant expression of x is equal to the sum of the
elements in x.

Example 1 R and Qp are reachability matrixes and potential Q-matrix (the reduced
Q-matrix) corresponding to a divergent structure in Fig. 1, respectively.

Qp =

1 1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 1 1
0 0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 1 0 1 1
0 0 0 0 1 1 0 1 1 1

2
66664

3
77775
= r1 r2 r3 r4 r5 q6 q7 q8 q9 q10½ �

where, q7 = r3 ∨ r4 (the concise expression of q7) = r1 ∨ r2 ∨ r3 ∨ r4 (the
redundant expression of q7) and q7 = ð11110ÞT contains four 1 and one 0. The
number of the combination components in the redundant expression of q7 is 4. It
means that there are 4 elements in Sx and x = q7.

[ ]54321

00001
00010
00100
01110
11111

R =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= rrrrr

Fig. 1 Divergent structure
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Theorem 1 Suppose that α ∈ Qp and α= ∨ h
j=1rij is the redundant expression of

α, then α= ∨ h
j=1rij = ∑h

j=1 eij , ∑
h
j=1 eij = ∨ h

j=1eij , where (e1, e2, …, ek) is the
column partition of the identity matrix.

Notice that in Theorem 1, the subscripts of the combinational components in the
redundant expression of x are equal to column indices of corresponding to the
columns in the identity matrix such that x = ∨ h

j=1eij ; that is, x is expressed by the
linear combination of columns of the identity matrix.

Example 2 (Cont. Ex.1). q7 == r1 ∨ r2 ∨ r3 ∨ r4 (the redundant expression of
q7) = e1 + e2 + e3 + e4.

An interesting relation between the redundant expression of x and its concise
expression.

Property 1 The two kinds of expressions of x are equal, if and only if the set Ux

contains one element, and at this time, the concise expression of x must be a column
of the identity matrix.

Proof If Ux contains two different elements, say a and b, and a and b do not
compare to each other, so c = a ∨ b does not equal to a, nor to b, and c belongs to
Sx. So two sets Ux and Sx are not equal. If Ux = Sx, then Ux contains one vector,
say u, u must be a column of the identity matrix. If it is not true, suppose that u is a
vector of the reachability matrix R and u contains at least two non-zero elements.
There is another column of R, and v < u, and u, v belongs to Sx. This is contrary to
the statement Ux = Sx. If u is augmented from some columns of R, it is obvious that
Ux is not equal to Sx. If Ux only contains a column of the identity matrix, then
Ux = Sx by the definition of Ux.

2 Applications

2.1 To Simplify the Proof of a Theorem

The definitions of redundant and concise expression may be applied to generate
personalized learning paths for different learning style learners and personalized
remedy route. And the definitions can be applied to prove the fact that under some
conditions, the reachability matrix R or the equivalent class of R plays an important
role in the design of cognitive diagnostic testing. Some other interesting applica-
tions of these definitions are discussed as following.

Theorem 2 (Ding et al. 2010, 2011) Supposed a 0–1 scoring rubric is adopted and
the attributes are non-compensatory. Let α ◦ Q be the expected examinee response
vector of knowledge state (attribute mastery pattern) α for a test Q-matrix Q. If R is
the test Q-matrix Q (i.e. R = Q), then for any knowledge state α satisfying α ◦

R = αT. Otherwise, if R is a submatrix of the test Q-matrix Q, and α1, α2 are
different knowledge states, then α1 ◦ Q ≠ α2 ◦ Q.
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Proof Take the redundant expression of α, α= ∨ h
j=1rij , then for any

rij ∈ ri1, ri2, . . . , rihf g, rij ≤ α, so α ◦ rij = 1, from Theorem 1 and α ◦R= ðα ◦ r1,
α ◦ r2, . . . , α ◦ rkÞ= ∑h

j=1 e
T
ij = αT.

The result is old (Ding et al. 2010, 2011, 2017), but the proof is new.

2.2 Specify Q Matrix Under Ideal Response Situation

Theorem 1 may be applied to specify unknown elements in a new item if all of the
columns in the reachability matrix R are specified correctly under ideal response
conditions. Namely, there are no slipping nor guessing in the observable response
patterns when examinees take a test. To specify the elements in Q matrix, please
follow the steps of this method:

Step 1. Suppose the items corresponding to the columns of R and the new item
which will be answered by examinees.

Step 2. Choose examinees whose responses on the new item are correct, and collect
their responses to the items corresponding to all columns in the reachability matrix,
say y1, y2, . . . , yn.

Step 3. Calculate the hierarchical consistency index (Cui and Leighton 2009) based
on the attribute hierarchy (HCI) and the responses y1, y2, . . . , yn, Delete the
responses with lower HCI (say smaller than 0.9) from the set fy1, y2, . . . , yng.
Denote the remaining be z1, z2, . . . , zt.

Step 4. Let z be equal to the Boolean conjunction of z1, z2, . . . , zt, then x = z.
If y1, y2, . . . , yn are n ideal response patterns, then the algorithm listed as above

(the step 3 can be omitted) can be proven based on Theorem 1. Even if n = 1, x still
equals to the first K components of y1.

Example 3 (Cont.Ex.1.). If x= q6, then if i is in {6, 8, 9, 10}, qi ◦ x=1, i = 6, 8, 9,
10, then x= q6Λq8Λq9Λq10 and q6 ≤ qi, i=6, 8, 9, 10, so x= q6.

In fact, we have the following theorem.
Suppose that b ∈ R or b∈Qp denote that b is a column of R or b is a column of

Qp, respectively.
Let x∈Qp be a unknown vector.
For any b∈Qp, let

SbðxÞ= fxjðr∈RÞ∧ ðr≤ bÞ∧ ðx≤ bÞg

SbðxÞ represents the set of components in the redundant expression of b which
satisfies x≤ b, then
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Theorem 3 ∩ b∈QpSbðxÞ= frjðr∈RÞ∧ ðr≤ xÞg and x= ∨ rr∈ frjðr∈RÞ∧ ðr≤ xÞg

Proof If x≤ b, then SxðxÞ⊆ SbðxÞ

∴ SxðxÞ⊆ ∩ b∈QpSbðxÞ
Notice that x ∈ Qp and x≤ x, so

∩ b∈QpSbðxÞ⊆ SxðxÞ

and (x≤ xÞ is true, so

SxðxÞ= frjðr∈RÞ∧ ðr≤ xÞ∧ ðx≤ xÞg

From the definition of the redundant expression of x, then

x = ∨ r
r∈ SxðxÞ

The condition of Theorem 3 is rigorous because it requires all responses to x
being ideal responses. We know that the observed responses are not satisfying.

3 Generalizing the Results to Polytomous Q Matrix

A Q-matrix is called as a polytomous Q-matrix if each of its element is a
non-negative integer. Some modifications are made. For example, the Boolean
union is replaced by wise-element MAX-operator. Then some analogues for the
polytomous Q matrix (e.g., Chen and de la Torre 2013; Sun et al. 2013) are given.
For example, the sum of all elements in a knowledge state, say x, is equal to the
number of the vectors in the redundant expression of x. And if the scoring rubric
format is changed, the importance of the quasi-reachability matrix (Ding et al.
2016) in a design of cognitive diagnostic testing is proved by using a polytomous Q
matrix.

Theorem 4 Suppose α is a column in a polytomous Q matrix and its redundant
expression is α= ∨ h

t=1rit, then the sum of all elements in α equals to h, which is the
number of the combinational components of α.

For the polytomous Q matrix, it is interesting that under ideal response situation,
the analogous to Theorem 4 can be obtained. Suppose that x is a column of the
polytomous potential Q matrix and its elements are unknown, the test Q matrix, Qt,
is a pile of the quasi-reachability matrix, denoting as Rp and x. That is to say,
Qt = (Rp | x), and if x <= α, then α ◦ x = 1.
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4 Discussion

Unfortunately, there are some slippages in the observed response patterns. Because
the quality of items is not satisfying, the HCI must be calculated for deleting some
observed response patterns, and the ORPs with HCI approaching to 1 are chosen to
calculate their Boolean conjunction.

In ideal response patterns, researchers can identify new items’ attribute vectors
perfectly even if their sample size is small. For the ordinary observable response
patterns, accurate identification result is near to 0.5 after Monte Carlo simulations.
This fact calls some theory or method to deal with the random errors in the
observable response patterns.
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Accuracy and Reliability
of Autoregressive Parameter Estimates:
A Comparison Between Person-Specific
and Multilevel Modeling Approaches

Siwei Liu

Abstract This simulation study compares the person-specific (PS) and multilevel
modeling (MLM) approaches in the accuracy and reliability of autoregressive
(AR) parameter estimates when data are generated from a first-order AR model and
the functional form of the analytic model is correctly specified. Influences of a
variety of factors on accuracy and reliability are examined, including time series
length, sample size, the distribution of the AR coefficients, and the variability of the
AR coefficients. Neither sample size nor distribution has an effect on accuracy or
reliability. MLM generally has better accuracy than PS at both the population level
and the individual level. However, in MLM, individuals who deviate farther from
the sample mean are modeled less accurately than individuals who are closer to the
sample mean. The two approaches do not differ in the reliability of the AR esti-
mates. For both approaches, higher variability in the AR coefficients is associated
with higher reliability. Implications on modeling practices are discussed.

Keywords Autoregressive model ⋅ Person-specific ⋅ Multilevel modeling
Accuracy ⋅ Reliability

1 Introduction

With increasing popularity of intensive longitudinal data in psychology, time series
models have gained enormous attention in recent years. One widely used and
general model for time series analysis is the autoregressive (AR) model, which, in
the univariate case, describes the temporal dependency of one variable on itself in
the form of lagged regression. For instance, the first-order AR model (i.e., maximal
lag = 1) is often used in emotion research to examine the emotional regulatory
ability of individuals (Hamaker and Grasman 2015; Jongerling et al. 2015; Kuppens
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et al. 2010). In this model, the AR coefficient represents the extent to which a
person’s affect at the current time point depends on his/her own affect at the
previous time point. Hence, a larger coefficient is often interpreted as an index of
emotional inertia, an indicator of psychological maladjustment (Hamaker and
Grasman 2015; Jongerling et al. 2015; Kuppens et al. 2010). In developmental
research, the AR coefficients have been used to represent stability of household
income during the early years of development. Higher stability can predict greater
educational attainment later in life, which conforms to the life history theory (Li
et al. in prep; Nettle et al. 2013). In other areas of psychology, the AR model has
been used to study substance use (Rovine and Walls 2006; Zheng et al. 2013),
stress reactivity (Liu et al. 2013), and brain connectivity (Ding et al. 2006; Liu and
Molenaar 2016), just to name a few.

Given the popularity of the AR model, the ability of different modeling
approaches to recover the underlying AR mechanisms in time series data becomes
an important issue. Currently in psychology, AR models are typically estimated
using one of two approaches. One is the person-specific (PS) modeling approach,
where an AR model is fitted to one individual’s data at a time, and inferences at the
population level are drawn based on the empirical distributions of the estimated
person-specific AR parameters (Bollen and Curran 2006). The other approach is
multilevel modeling (MLM), where an AR model is fitted to data from a sample of
individuals simultaneously assuming a common AR pattern (e.g., first-order), but
individuals are allowed to vary in the magnitude of their AR coefficients. The
differences between the individual AR coefficients and the sample mean are known
as random effects. They are usually assumed to be normally distributed with mean
zero, and can be estimated using Empirical Bayes (EB) methods (Verbeke and
Molenberghs 2000b).

Conceptually, the PS and MLM approaches have several crucial differences.
With MLM, researchers have to assume that all individuals’ data can be described
by the same functional form, such as a first-order AR model. In contrast, the PS
approach allows individuals to have idiographic AR patterns, such as AR models
with different numbers of lags. Hence, PS may be particularly suitable for modeling
highly heterogeneous dynamic processes. On the other hand, multilevel models are
estimated by pooling information across individuals, whereas with PS, only one
individual’s information is used for each model. Therefore, MLM may be more
suitable for making population level inferences when limited information is
available per person, such as when the number of measurement occasions is small.

In a previous study (Liu 2017), I simulated data to compare the two approaches
in accurately recovering the AR parameters at both the population level and the
individual level. I investigated the influences of sample heterogeneity, time series
length (T), sample size (N), and the distribution of the AR coefficients on the
accuracy of AR parameter estimates. I found that when the sample was relatively
homogeneous, MLM generally outperformed PS at both levels, regardless of T, N,
and distribution. When the sample is heterogeneous, such that different individuals
are characterized by AR processes with different numbers of lags, the relative
performance of the two approaches depends heavily on T, with PS more sensitive to
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the number of measurement occasions. These findings provided important impli-
cations for research design and model selection with intensive longitudinal data.

The current study is a follow-up investigation of Liu (2017), and it extends the
previous study in two ways. First, I aim to examine the influences of an additional
factor—variability of AR coefficients (hereafter referred to as σ2a1 )—on the per-
formance of the two approaches. This investigation would help elucidate how the
two approaches compare given various amounts of individual differences in the
magnitude of the AR coefficients. Specifically, I hypothesize that σ2a1 would not
affect the performance of PS, but would influence the EB estimates of MLM.
Because EB estimates are posterior estimates based on a prior normal distribution,
they are known to be biased towards the sample mean (i.e., the “shrinkage effect”;
Verbeke and Molenberghs 2000b). Hence, I speculate that smaller variability in the
true AR coefficients will be associated with higher accuracy in the EB estimates.
The second extension of the current study is in the outcome measures. Because the
individual level AR estimates are often used as predictors in further analyses
(Kuppens et al. 2012; Li et al. in prep), I aim to examine the reliability of these
estimates in addition to their accuracy. Similar to the accuracy measures (to be
introduced later), I will examine how the reliability is affected by analytic approach
(PS vs. MLM), T, N, the distribution of the AR coefficients, and σ2a1 .

2 Method

2.1 Simulation

Data are simulated according to a first-order AR model. To control for the influence
of the intercept on the estimation of the AR parameters, the following model with no
intercept is used, where i = 1, …, N represents individual, and t = 1, …, T
represents time point:

yit = a1iyiðt− 1Þ + εit . ð1Þ

The population mean of the AR coefficients a1i is fixed to 0.30, and its variance,
σ2a1 , is fixed to 0.01 in this simulation. The variance of εit is set to 1 for all
individuals. A three-way factorial design is used to examine the effects of T, N, and
the distribution of the AR coefficients. Both T and N have three levels, 20, 50, and
100. The factor distribution also has three levels, with a1i generated from a normal
distribution, a uniform distribution, or a symmetric bimodal distribution consisting
of two equal-variance normal distributions.1 For each condition, 1000 time series

1I also simulated data following a highly skewed distribution, which was not used in Liu (2017). It
did not show any large effect on the results. Hence, it is excluded in this paper to facilitate
comparison between the two studies.
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are generated. Importantly, the design of the current simulation is identical to that in
Liu (2017), with the only exception that in the previous study, σ2a1 was fixed to 0.10,
ten times the value used here. Hence, although σ2a1 is not a factor manipulated in the
current simulation, a comparison between this study and Liu (2017) will provide
insights to the influence of AR coefficients variability.

2.2 Analysis and Outcome Measures

To compare results between PS and MLM with the correct model specification,
each data set is analyzed with both methods assuming a zero-intercept first-order
AR pattern. The PS models are estimated using the ar function in R (R Core Team
2015) with ordinary least square (OLS) estimation, and the multilevel models are
estimated using the nlme package in R (Pinheiro et al. 2016).

Three outcome measures are considered. Population level accuracy is assessed
by comparing the estimated population mean, μ⌢a1 , to the true population mean,
0.30. Individual level accuracy is evaluated using the mean square error (MSE) of
the individual AR coefficients:

MSEa1 =
1
N

∑
N

i=1
ða⌢1i − a1iÞ2 ð2Þ

where N represents sample size, a1i is the true AR coefficient for individual i, and
a⌢1i is the estimated AR coefficient for the same individual. Hence, a smaller MSEa1
indicates higher accuracy, averaged across individuals. Finally, reliability is eval-
uated using the square of the Pearson correlation between the estimated AR coef-
ficients (a⌢1i) and the true values (a1i).

Repeated-measures analysis of variance (RM-ANOVA; Myers 1979) is used
with data simulated in the current study, in which analytic approach (PS vs. MLM)
is the within-subject factor, and T, N, and the distribution are the between-subjects
factors. Because the p-values in these models are influenced by the number of
replications, which is arbitrary in a simulation study, the importance of an effect
will be evaluated instead using the effect size measure, η2, which indicates the
proportion of variance explained by an effect. In the following, only results with at
least a medium effect size (η2 ≥ 0.06) will be reported (Cohen 1988). For each
outcome measure, similarity and differences between results from the current study
and the previous study (Liu 2017) are highlighted to assess the influence of σ2a1 .
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3 Results

3.1 Population Level Accuracy

For population level accuracy, the results resemble those in the previous study in
which the AR coefficients had the same mean but a larger variance (Liu 2017).
Specifically, none of the effects involving N or distribution has an η2 ≥ 0.06.
However, there is a large main effect of analytic approach (η2 = 0.83), and an
interaction effect between analytic approach and T (η2 = 0.64). Table 1 shows the
average estimates of the population mean, the standard deviations of the estimated
means, the average standard errors, and the coverage rates of the true value in the
95% confidence intervals for the two approaches, broken down by T. The MLM
estimates are almost identical to the true value, 0.30, regardless of T. In contrast, the
PS estimates are negatively biased, especially with short time series data. When
there are only 20 measurement occasions, PS, on average, produces a relative bias
(i.e., the ratio of bias over the true value) of 9%. This number reduces to 4% with 50
measurement occasions, and 2% with 100 measurement occasions. The average
standard errors from PS tend to be smaller than those from MLM, although the
differences are tiny. Accordingly, with 100 measurement occasions, both PS and
MLM have good coverage rates of the true value in their 95% confidence intervals.
With fewer measurement occasions, MLM still has satisfactory coverage rates, but
PS does not. Importantly, the estimated population means and coverage rates
reported here are almost identical to those found in Liu (2017), suggesting that the
variability of the AR coefficients does not affect the accuracy of the population level
estimates. This is consistent with the MLM literature that population level infer-
ences are generally robust (Verbeke and Molenberghs 2000a).

Table 1 Population level accuracy in the AR(1) coefficients by the analytic approach and time
series length, averaged over the factors sample sizes and distribution. MLM = multilevel
modeling; PS = person-specific

Time series length Estimate
(standard deviation)

Standard error 95%
Confidence
interval
coverage rate

MLM PS MLM PS MLM PS

20 0.2994
(0.0385)

0.2734
(0.0368)

0.0375 0.0356 0.95 0.86

50 0.2998
(0.0261)

0.2885
(0.0254)

0.0260 0.0254 0.96 0.93

100 0.3000
(0.0208)

0.2943
(0.0205)

0.0213 0.0210 0.95 0.95
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3.2 Individual Level Accuracy

Results for the accuracy of the individual level estimates are also similar to those in
the previous study (Liu 2017). There are main effects of analytic approach
(η2 = 0.87) and T (η2 = 0.83), as well as an interaction effect between the two
(η2 = 0.82). As shown in Fig. 1a, MLM (solid line) generally produces smaller
MSEa1 than PS (dotted line), and the difference is more dramatic when T is small.
This interaction pattern is consistent with results from the previous study with a
larger σ2a1 , which is showed in Fig. 1b. However, a comparison between the two
figures reveals an impact of σ2a1 on the accuracy of MLM. Specifically, a smaller σ2a1
is associated with smaller MSEa1 from MLM. In other words, when individuals are
more similar to one another in the magnitude of their AR coefficients, MLM pro-
duces more accurate EB estimates, averaged across individuals.

This finding is consistent with the well-known “shrinkage effect” in the Bayesian
literature, which refers to the phenomenon that individual EB estimates are
shrunken towards the prior average profile. In the current context, the prior dis-
tribution for the random effects is a normal distribution with mean zero. Hence,
individuals whose AR coefficients deviate from the sample mean are shrunken
towards the sample mean. In addition, the strength of this effect depends on the
amount of deviation, with larger deviations associated with greater shrinkage.
Hence, the average MSEs from MLM in Fig. 1a are smaller than those in Fig. 1b.
To further illustrate this, I compute the correlation between the individual MSE
(Eq. 2) and the absolute difference between an individual’s true AR coefficient and
the sample mean. As shown in Fig. 2, there are indeed positive associations
between the two for the MLM approach. Because a larger T gives a heavier weight
to the empirical data in comparison to the prior distribution, the shrinkage effect, as

(A) 2
1a

σ = 0.01 (B) 2
1a

σ = 0.10

Fig. 1 Mean square error of the AR coefficients by the analytic approach and time series length,
averaged over the factors sample size and distribution. Solid line = multilevel modeling. Dotted
line = person-specific. T = time series length
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indicated by the strength of the above correlation, decreases with increasing
T. However, even with 100 measurement occasions, the average correlation is
above 0.30, indicating at least a medium effect size. In contrast, no such association
is present for the PS approach.

3.3 Reliability of the Autoregressive Coefficients

Lastly, I compare the two approaches on the reliability of the individual AR
coefficients by examining the squared correlation between the estimated and true
values. When σ2a1 = 0.01, the only effect that reaches a medium effect size is the
main effect of T (η2 = 0.62). With T = 20, the average squared correlation between
the true and estimated AR coefficients is 0.18. This value increases to 0.35 when
T = 50, and 0.52 when T = 100. Notably, the reliability is much higher when
σ2a1 = 0.10. Specifically, the average squared correlations are 0.67 for T = 20, 0.85
for T = 50, and 0.92 for T = 100.

4 Discussions

This study compares the PS and MLM approaches in the accuracy and reliability of
the AR parameter estimates when data are generated based on a first-order AR
model, which is correctly specified in the analysis (i.e., no model misspecification).
Various factors that may affect their relative performance are examined, including
time series length (T), sample size (N), and the distribution of the AR coefficients.
In addition, a comparison of results from the current study and a previous study

Fig. 2 Correlations between
individual MSE and the
absolute difference between
the individual AR coefficients
and the sample mean, broken
down by the factors analytic
approach and time series
length. Solid
line = multilevel modeling.
Dotted line = person-specific.
T = time series length
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with similar design (Liu 2017) provides insights to the influence of the AR coef-
ficients variability (σ2a1 ).

Consistent with findings in the previous study (Liu 2017), MLM in general
produces more accurate AR parameter estimates than PS, both at the population and
individual levels. Whereas variability of the AR coefficients has no impact on the
PS approach, smaller variability is associated with higher individual level accuracy
for MLM. In other words, in terms of individual level accuracy, MLM benefits from
the scenario where individuals are more similar to one another. It is important to
note, however, that with the MLM approach, the accuracy for a specific individual
also depends on how similar that individual is to the average profile in the sample.
Specifically, higher accuracy is to be expected for individuals whose true values are
closer to the sample mean. For individuals who deviate farther from the mean, the
discrepancy between the estimated AR coefficients and the true values may be large
with small numbers of measurement occasions. In terms of reliability, no large
difference is found between PS and MLM. However, both approaches are affected
by σ2a1 and T, such that higher variability and longer time series length are asso-
ciated with higher reliability.

These results provide several practical implications. Specifically, when choosing
between the PS and MLM approaches, researchers need to consider the purpose of
their research and the characteristics of the data. For example, if researchers are
concerned with the accuracy at the population level, such as in examinations of the
stability in a variable over time, or when evaluating the effect of a treatment on
emotional regulation by comparing the AR coefficients across different groups,
MLM is preferred over PS because it produces less bias as well as higher coverage
rates of the true values. However, if the goal is to extract the individual AR
coefficients and use them as predictors in further analyses, having high reliability in
these estimates is most critical. In this case, researchers can choose either approach
because they produce similar reliability. However, caution should be used if the
variability in the AR coefficients is small. With σ2a1 = 0.01, for example, it is
generally not a good idea to treat the AR estimates as predictors because they are
likely to contain a large amount of estimation error, which may lead to bias in the
next step. In contrast, with σ2a1 = 0.1, such modeling procedure may be acceptable,
especially when the number of measurement occasions is large. Lastly, if the goal
of research is to identify individuals whose AR coefficients exceed a certain
threshold so that they are eligible for a treatment or intervention, neither approach
seems ideal. Although MLM, on average, has higher individual level accuracy than
PS, its performance declines as individuals deviate farther and farther away from
the sample mean. In other words, it performs worst when accuracy is needed the
most. Future research needs to examine whether this effect may be alleviated by
assuming a prior distribution with flatter tails in the EB estimation.

It should be noted that the recommendations above are provided based on the
assumption that researchers are working with a homogeneous sample, where all
individuals can be characterized by an AR pattern with the same number of lags,
and the analytic model is correctly specified to match the underlying data
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generating mechanisms. In reality, the sample may be heterogeneous, in which case
the MLM approach may be less ideal (Liu 2017). In addition, the results presented
here should be interpreted taking into account the limitations of the study. Like all
simulation research, the current study is limited in the factors considered and the
range of parameters used to simulate the data. For instance, although a variety of
factors are included in the simulation, the population mean of the AR parameters
and the residual variance are fixed to be constants. It has not been studied whether
and how these factors may affect the performance of the two approaches. In
addition, in this simulation I do not include a measurement model. However, the
reliability of the variable is likely to affect the performance of both approaches,
another factor that needs to be investigated in the future.

Despite these limitations, the current study extends and complements the pre-
vious study, which was the first to directly compare PS and MLM, the two most
commonly used approaches for analyzing intensive longitudinal data in psychol-
ogy. Together, they provide unique contributions to the literature by simultaneously
considering model performance at both the population level and individual level.
This comes in time as psychology as a whole is moving towards more intensive
data collection, allowing individuals to be “brought back” to scientific psychology
(Molenaar 2004; Molenaar and Campbell 2009).
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Abstract When studying longitudinal phenomena, the notions of traits and states
can be a useful classification. Specifically, traits represent basic human character-
istics that have a permanency or enduring property, while on the other hand, states
are environmental or ephemeral that are more time specific. Admittedly, research
often focuses on traits and the relationships of these traits to other important
variables. Moving in a different direction, this contribution focuses on the more
ephemeral aspects of longitudinal variables, that is, states. A very practical justi-
fication for this direction is model fit indices. A probably more important rationale
for expanding the state model is to obtain a more accurate reflection of the situation
under study. To establish a common foundation, a longitudinal factor analytic
model and a latent curve model are presented. Next, a statistical model of the
ephemeral effects or state, which is analogous to Spearman’s Two-Factor Theory is
given. Lastly, a substantive illustration demonstrates the worthwhileness of this
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1 A Two-Factor State Theory

1.1 Introduction

When studying longitudinal phenomena, the notions of traits and states (Lord and
Novick 1968, pp. 27–28) can be a useful classification. Specifically, traits represent
basic human characteristics that have a permanency or enduring property, while on
the other hand, states are environmental or ephemeral that are more time specific
(Tisak and Tisak 2000). Admittedly, research often focuses on traits and the rela-
tionships of these traits to other important variables. In addition, one might be
interested in the decomposition of observed measure variance into trait, state, and
error variances for any psychological variable (Alessandri et al. 2012).

Moving in a different direction, this contribution focuses on the more ephemeral
aspects of longitudinal variables, that is, states. A very practical justification for this
direction is model fit indices. Concretely, the modeling of states may improve the
acceptability of one’s statistical model or more precisely one’s Structural Equations
Model (SEM) without the inclusion of “nuisance” parameters. A probably more
important rationale for expanding the state model is to obtain a more accurate
reflection of the situation under study. Parenthetically, this circumstance is analo-
gous to the dichotomy between common and specific factors in classical factor
analysis (Thurstone 1947). To improve model fit, one could include additional
common factors, however, this approach might lead to theoretical unimportant
factors, which could reflect undesirable or nuisance features of the items, such as
sentence length.

To establish a common foundation, a longitudinal factor analytic model and a
latent curve model are presented. Since these models are well established, the
exposition will be terse. However, to facilitate an understanding, the common
notation used in LISREL (Jöreskog and Sörbom 1996) is used. Next, a statistical
model of the ephemeral effects or state, which is both conceptually and structurally
analogous to Spearman’s Two-Factor Theory (Spearman 1904) is given. Con-
cretely, in Spearmen’s Two-Factor Theory, there is a general or g-factor that is
common to all the items, and there are specific factors, which are unique to each
item. Analogously, in the proposed Two-Factor State Theory, there is a temporal/
general or t-factor that is present at each time point and that impacts each of the
factors or saliences. Additionally, there are temporal-specific effects, which are
unique to each factor or salience at each time point. Lastly, a substantive illustration
demonstrates the worthwhileness of this Two-Factor State Theory.

1.2 A Basic Longitudinal Factor Analytic Model (FAM)

In this and the following two sections, three related longitudinal models are pre-
sented. The first is a longitudinal factor model (FAM), which is a standard
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measurement model with measured variates, latent variables or factors, and mea-
surement errors. The second or latent curve model (LCA) restricts each of the
longitudinal factors to have a specific structure and includes temporal effects at this
second-level. Finally, the third latent curve model with state structure (LCA-S)
permits the usually uncorrelated state effects to be correlated.

Initially, consider a basic longitudinal factor analytic model (Tisak and Meredith
1989):

y kð Þ = τy +Λyη kð Þ + ϵ kð Þ, ð1Þ

where k = 1, 2, …, g indicates the populations or groups. y kð Þ is an observed
random vector of size mp (m is the number of measurement periods and p is the
number of variables). The unobserved random vectors, η kð Þ and ϵ kð Þ, are of size mr
and mp, respectively. Here r indicates the number of factors at each time point. The
intercepts, τy, and slopes, Λy, have dimensions mp × 1 and mp × mr, respec-
tively. Notice that both the intercepts and slopes exhibit the property of stationarity
(invariance across time) and invariance across populations.

Concretely,

τy = 1m ⊗ τ½ � andΛy = ½Im ⊗ λ�,

where 1m and Im are a unit vector and identity matrix of size m; ⊗ is the kronecker
product.

For this first-order model, the Means and Covariance Structure (MACS) are

μ kð Þ
y = τy +Λyμ kð Þ

η andΣ kð Þ
y =ΛyΣ kð Þ

η Λ′

y +Θ kð Þ
ϵ , ð2Þ

where μ kð Þ
η is a mr × 1 mean vector and Σ kð Þ

η is a mr × mr covariance matrix of the

first-order factors. Lastly, Θ kð Þ
ϵ is a mp × mp covariance matrix of the unique

factors. More specifically, in this longitudinal situation it has the following form.

Θ kð Þ
ϵ =

Θ kð Þ
11 ⋯ Θ kð Þ

1m
⋮ ⋱ ⋮

Θ kð Þ
m1 ⋯ Θ kð Þ

mm

2
4

3
5,

where Θ kð Þ
tt′ is a diagonal matrix of uniqueness of size p with t = 1, 2, …, m.

1.3 A Basic Latent Curve Model (LCM)

Next, consider a basic latent curve model (Meredith and Tisak 1990) that contains
both traits and states:
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η kð Þ =α+Γξ kð Þ + ζ kð Þ, ð3Þ

where α is a vector of temporal effects that impacts everyone in the same fashion;
ζ kð Þ are individual temporal or state influences; and ξ kð Þ is a set of individual
saliences that determines how individuals change across time (these are the trait
aspect of the model). Parenthetically in the parlance of latent curve analysis, sal-
ience is the weighting or individual change; it is analogous to a common factor in
factor analysis.

The set of basis curves, Γ, describe general change across time. In general, they
have the following form:

Γ=

γ11
γ21
γ31

⋯
γ1r
γ2r
γ3r

⋮ ⋱ ⋮
γm1 ⋯ γmr

2
6664

3
7775.

Notice that the elements, γtj, (t = 1, 2, …, m; j = 1, 2, …, r) can be fixed or
parameters to be estimated, and if they are to be estimated, then identification
constraints will be needed.

For this second-order model, the Means and Covariance Structure (MACS) are

μ kð Þ
η =α+Γκ kð Þ andΣ kð Þ

η =ΓΦ kð ÞΓ′ +Ψ kð Þ, ð4Þ

where κ kð Þ are the means for latent factors or salience weights and the covariance
matrices of trait and state factors are given by Φ kð Þ and Ψ kð Þ, respectively. Further,
Φ kð Þ is usually a symmetrical matrix and Ψ kð Þ is usually assumed to be a diagonal
matrix, that is, temporal or state variables are unrelated.

1.4 A Latent Curve Model with State Structure (LCM-S)

Clearly from (4) an additional structure could be imposed on either the trait,
ΓΦ kð ÞΓ′, or on the state, Ψ kð Þ, aspects of the model (Tisak et al. 2017), however, for
this project the diagonal covariances of the state or temporal factors, ζ kð Þ, will be
generalized to include correlated state factors. Concretely, the state factors asso-
ciated with each trait factor will be allowed to correlate across time:

Ψ kð Þ
ζ =

Ψ kð Þ
11 ⋯ Ψ kð Þ

1m
⋮ ⋱ ⋮

Ψ kð Þ
m1 ⋯ Ψ kð Þ

mm

2
4

3
5, ð5Þ
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where Ψ kð Þ
tt′ is a diagonal matrix size r (t = 1, 2, …, m). Note that this pattern is

analogous to Spearman’s Two-Factor Theory (Spearman 1904). Concretely, for
each time of measurement, there will be a general state factor, which influences all
the factors in the second-order model, and specific state factors, which are
uncorrelated.

2 A Substantive Illustration of the Impact of State
Variables in the Development of Positive Orientation

2.1 Introduction

The positive psychology movement (Seligman and Csikszentmihalyi 2000) has
generated interest in the positive features of individual functioning. These findings
have lead Caprara and colleagues (Caprara et al. 2010) to address what is common
to self-esteem, life satisfaction, and optimism. In particular, they identified a
common latent factor named positive orientation (POS). Additionally, in a longi-
tudinal study (Alessandri et al. 2012), it was reported how POS relates to three
additional constructs: (1) the quality of affective experiences (Watson et al. 1988);
(2) the quality of social interactions (Hartup 1993); and (3) psychological resilience
(Block and Kremen 1996). Given this longitudinal study of positive orientation,
positive and negative affects, quality of social experiences, and psychological
resilience across three time periods, this contribution generalizes the latent curve
model with uncorrelated temporal effects to one that includes the suggested
two-factor model on the state or temporal effects.

2.2 Method

2.2.1 Participants

As part of a longitudinal study the participants were male (N = 45) and female
(N = 81) adolescents, who had complete data, from Genzano, Italy, a residential
community near Rome. Notice that the original sample at Time 1 had 228 obser-
vations and that the attrition was mainly due to relocation from the area. For
additional information on the attrition, see Alessandri et al. (2012). The first
assessment (T1) was in 2000 at the age of 16; the second (T2) was in 2002 at the
age of 18; and the third (T3) was in 2004 at the age of 20.
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2.2.2 Measures

1. Self-esteem. Assessed by the 10 items of the Self-Esteem Scale (RSGE) of
Rosenberg (1965). Coefficient alpha’s at T1, T2, and T3 were respectively, 0.80,
0.81, and 0.83.

2. Life satisfaction. Assessed by the five items of the Satisfaction with Life Scale
(Diener et al. 1985). Coefficient alpha’s at T1, T2, and T3 were respectively,
0.90, 0.91, and 0.93.

3. Optimism. Assessed by the 10 items of the Life Orientation Test (SWLS) of
Scheier et al. (1994). Coefficient alpha’s at T1, T2, and T3 were respectively,
0.79, 0.83, and 0.81.

4. Positive affectivity. The Positive and Negative Affect Schedule (PANAS-P) of
Watson et al. (1988). For positive affectivity, there were 10 items. Coefficient
alpha’s at T1, T2, and T3 were respectively, 0.81, 0.78, and 0.83.

5. Negative affectivity. The Positive and Negative Affect Schedule (PANAS-N) of
Watson et al. (1988). For negative affectivity, there were 10 items. Coefficient
alpha’s at T1, T2, and T3 were respectively, 0.87, 0.80, and 0.81.

6. Perceived quality of interpersonal relationships. Assessed by the nine items of
the Quality of Friendships Questionnaire (QDA) of Capaldi and Patterson
(1989). Coefficient alpha’s at T1, T2, and T3 were respectively, 0.81, 0.79, and
0.73.

7. Psycholological resilence. Assessed by the 14 items of the Ego Resiliency Scale
(ER89) of Block and Kremen (1996). Coefficient alpha’s at T1, T2, and T3 were
respectively, 0.73, 0.74, and 0.73.

Note that because of the small samples, the measures were aggregated into scales
and the first three scales formed the construct of positive orientation. As described
in the next section, these aggregations will lead to a “measurement model”, which
contains both measured variable (without errors) and latent variables with mea-
surement errors.

2.3 Statistical Analyses

2.3.1 Program and Model Fit

For estimating the hypothesized model, we utilized LISREL 8.80 (Jöreskog and
Sörbom 1996). To evaluate the fit of the models, chi-square and restricted
chi-square tests were used. Additionally, the root mean square of approximate
(RMSEA) of Steiger and Lind (1980) was used. Browne and Cudeck’s (1993)
guidelines are that RMSEA < 0.05 is a close fit, and RMSEA < 0.08 is a rea-
sonable or near fit, but RMSEA > 0.10 is a poor fit.
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2.3.2 Structural Equation Models (SEM)

Two major Structural Equation Models (SEM) were evaluated:

1. A Longitudinal Factor Analytic Model (FAM) with the corresponding modeling
equation (1) and MACS (2). Specifically, on this first-order model both
invariance and stationarity conditions were imposed on the intercepts and
slopes. There were seven measured variables (scales) that were assessed at the
three time points; hence, there were 21 variables. The first-order construct of
positive orientation was obtained from self-esteem, life satisfaction, and opti-
mism. The remaining four variables were treated without measurement error,
that is unstructured except for the invariant and stationary intercepts and slopes.
The covariance matrix of the unique factors was zero, except for self-esteem, life
satisfaction, and optimism. Each of these variables were allowed to covary with
themselves across time, and they had positive variances. This model reduced the
21 measured variables to 15 latent variables.

2. A Latent Curve Model (LCM) with the corresponding modeling equation (3)
and MACS (4). For each of the five longitudinal variables (positive orientation,
positive affectivity, negative affectivity, quality of relationships, ego resiliency),
the temporal effects, α, were set to zero, and a single latent curve was used.
Concretely, the 15 × 5 matrix of basis curves (Γ) is

Γ=

1 0 0
γ21 0 0
γ31 0 0
0 1 ⋯ 0
0 γ22 0
0 γ32 0

⋮ ⋱ ⋮
0 0 1
0 0 ⋯ γ25
0 0 γ35

2
666666666666664

3
777777777777775

.

Further, the covariance matrix of the temporal (state) variables, Ψ kð Þ, was as
usual constrained to be a diagonal matrix. Lastly, one of the major interests in this
study was the covariance matrix of the latent factor, Φ kð Þ, because it gives the
relationships among the individual saliences.

Based on the findings of the two previous models, a modified third model was
explored. This model with correlated temporal or state variables demonstrates the
point of the manuscript.
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2.4 Results

The simple modeling fitting results for the two models (FAM and LCM) are given
in the first and third rows of Table 1. Notice that FAM has a very acceptable
RMSEA of 0.0358, while LCM only has a marginally acceptable RMSEA of
0.0790. Further using a restricted chi-square test (χ2R 210ð Þ = 403.628,
p = 0.00000), the reduced LCM was significantly different from the general FAM.

Given these results, how should one proceed? One could report the Latent Curve
Model, or one could try to generalize it by modifying the number of basis curves
(the trait aspect) or by modifying the covariance matrix of the temporal or state
factors. Concretely, since Σ kð Þ

η =ΓΦ kð ÞΓ′ +Ψ kð Þ,ΓΦ kð ÞΓ′ and Ψ kð Þ represents the trait
and the state aspect of the model.

If one changes the trait aspect, that is, the number of basis curves, there are
numerous combinations, which could lead to adding “nuisance parameters” to the
model. Hence, one avenue to explore is to add structure to the previously diagonal
matrix, Ψ kð Þ. Using the Two-Factor State Theory, Ψ kð Þ, has the form depicted in (5).
The fit indices of this model, which includes correlated temporal effects, are given
in the second row of Table 1 (LCM-S Model). Notice that LCM-S has a very
respectable RMSEA of 0.0459. Further, when one compares the more general
LCM-S to the more specific LCM, the restricted chi-square (LCM versus LCM-S)
equals χ2R 60ð Þ = 196.847, p = 0.00000. Thus, correlated temporal factors should
not be ignored. In conclusion, there is a model (LCA-S) between the general
(FAM) and the reduced (LCM) models, which is an improvement in terms of the fit
indices over the (LCM).

Notice that the degrees for freedom for these models represent the difference
between the observed data means (21) and the data covariances (231) for the two
genders for a total of 504 and the number of parameters estimated in each model.
To illustrate, the FAM has 310 parameters that are estimated; so the degrees of
freedom for this model is 504 – 310 or 194.

3 Discussion

Earlier it was pointed out that the notions of traits and states can be an important
and useful classification in longitudinal studies. These two entities are expressed in
(3) and the corresponding means and covariance structure in (4). Concretely, traits

Table 1 A summary of the
fit indices for the different
models assessed

Model Df Chi-Square RMSEA p-value

FAM 194 255.521 0.0358 0.00201
LCM-S 344 462.302 0.0459 0.00002
LCM 404 659.149 0.0790 0.00000
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may be expressed by the formulation: Γξ kð Þ, and states or temporal effects may be
represented in the random vector, ζ kð Þ.

Psychological constructs, like positive orientation, are not directly observable.
Instead, constructs are latent entities introduced to explain the recurrent organiza-
tion of an individual’s internal states, such as feelings and emotions, as well to be
used as causes of human behaviors (Borsboom et al. 2003). Researchers often
studies those constructs at different timescales, depending on whether they are
interested, for example, in the longitudinal development of individual’s traits or
aptitudes, or in the online tracking of individuals daily functioning. Whatever the
timing of the study, psychological constructs usually reveal both trait and state
variance, that researchers need to isolate and separately investigate. Whereas
constructs characterized by trait variance only are rare, pure state-like constructs are
often the exception. This contribution moves in a different direction, that is, states.
Fit indices are a very practical justification for enhancing the structure on states.
However, a more important justification for a more developed state model is an
increased accuracy of the situation under study.

Additionally, whereas temporal consistency is one of the more distinctive
characteristics of traits, states may often reveal a significant degree of continuity.
Carry-over effects, denoting the tendency for a previous state to spill over time into
the following state are often observed and often expected on a theoretical basis. For
example, emotional states often display a high temporal continuity, denoting a
tendency of the emotional dynamics to slow down until a state called emotional
inertia (Kuppens et al. 2010).

To account for a significant continuity of states, researchers need tools able to
allow the modeling of temporal variances in psychological attributes, such as the
Latent Curve Model with state structure. Introduced as an expansion of the Latent
Curves-Latent State-Trait modeling framework, the LCA-S is sensible to the con-
tinuity of states, allowing their inclusion in the model as covariances among sub-
sequent states. Results presented in this paper point to this model as an interesting
alternative to the general (FAM) and the reduced (LCM) models, which ensure a
gain in terms of fit indices over the (LCM).

A longitudinal study on the development of position orientation illustrates the
importance of states in one’s statistical model. In Table 1, the Latent Curve Model
(LCM) has a questionable mode fit index (RMSEA) of 0.0790. Further note that
this LCM has a minimum formulation on the temporal effects, that is, these effects
exist, but they do not correlate. On the other hand, if one generalizes the LCM to
include structured states (LCM-S), the index of RMSEA is greatly improved.
Lastly, when one compares the more general LCM-S to the more specific LCM, the
restricted chi-square (LCM versus LCM-S) is significant. Thus, correlated temporal
factors are statistically significant.

We surmise that in many situations, the LCA-S model may represent a more
realistic alternative to simple LCM models. For example, we expect the LCA-S
model to be of great value in allowing the modeling of intensive short-term studies
(such as daily studies, weekly studies) whereas a significant continuity in trait
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variance can be expected. Of course, the results presented in this paper are pre-
liminary, and more work is recommended to examine the stability of the LCA-S
model, under different empirical data conditions, and different variance/covariance
structures.

Moreover, it is likely that the benefit introduced by the use of the LCA-S model
are directly correlated with the length of the temporal lag, being probably higher for
lags introducing more temporal variance in psychological constructs. In conclusion,
we recommend to routinely consider the LCA-S as an alternative to simple LCM
models, most of all, in all those conditions where including more common factors
lacks theoretical justification and thus risks overfitting the model without any
practical contribution to the understanding of the phenomenon under study.
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SPARK: A New Clustering Algorithm
for Obtaining Sparse and Interpretable
Centroids

Naoto Yamashita and Kohei Adachi

Abstract k-means clustering is one of the popular procedures for multivariate anal-

ysis in which observations are classified into a reduced number of clusters. The

resulting centroid matrix is refereed to capture variables which characterize clus-

ters, but between-clusters contrasts in the centroid matrix are not always clear and

thus difficult to interpret. In this research, we address the problem in interpretation

and propose a new procedure of k-means clustering which produces a sparse and thus

interpretable centroid matrix. The proposed procedure is called SPARK. In SPARK,

the sparseness of the centroid matrix is constrained and therefore it contains a num-

ber of exact zero elements. Because of this, the contrasts between-clusters are high-

lighted and it allows us to interpret clusters easier in comparison with the standard

k-means clustering. A sparsity selection procedure for determining the optimal spar-

sity of the centroid with reduced computational load is also proposed. Behaviors

of the proposed procedure are evaluated by two real data examples, and the results

indicate that SPARK performs well for dealing with real world problems.

Keywords k-means clustering ⋅ Sparse estimation ⋅ Interpretability

1 Introduction

k-means clustering, known as a non-hierarchical clustering procedure, is widely used

for extracting the homogeneity of observations, by assigning them into a small num-

ber of clusters. Let 𝐗 be an n-obserbations × p-variables matrix, and the k-means

clustering is formulated as a minization of the least squares loss function defined as

f (𝐌,𝐘) =
∑

i,l
mil||𝐱′(i) − 𝐲l||2 = ||𝐗 −𝐌𝐘′||2, (1)
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where 𝐌 = {mil} is an n-observations × p-variables membership matrix and 𝐘 =
{yjl} is a p-variables × k-clusters centroid matrix. 𝐱(i) and 𝐲l denote the ith row vector

and the lth column vector of 𝐗 and 𝐘, respectively.

The centroid matrix is refereed for interpreting what variables characterize the

clusters, and the within- and between-clusters contrasts in the centroid matrix are of

help for the interpretation. These contrasts, however, are not always clearly observed

and therefore the interpretation is difficult, as exemplified in Sect. 4. A typical strat-

egy to discriminate the clusters is to replace the elements close to zero in the centroid

matrix with zeros, by a certain threshold. It is not recommended, however, in that

the threshold totally depends on users’ decision, and it can spoil the reliability of the

interpretation and the following decisions.

In this article, considering the above problem in interpretability of the result-

ing centroid matrix, we propose a new algorithm for clustering which produces an

easily interpreted centroid matrix. We call this algorithm SPARK (abbreviation of

Sparse k-means). In SPARK, the resulting centroid matrix is sparse in that it contains

a number of entries exactly equal to zero. The contrasts of the clusters are there-

fore emphasized, without any subjective threshold, which facilitates the easier and

more coherent interpretation than the existing procedures. Such a centroid matrix is

obtained by minimizing (1) subject to the constraint that 𝐘 has a specific number of

zero elements, namely,

Sp(𝐘) = r (2)

where Sp(𝐘) is the number of zero in 𝐘. The positive integer r is specified

beforehand.

1.1 Related Procedure

Sun et al. (2012) proposed regularized k-means clustering for obtaining such sparse

centroid matrix, which is similar to the proposed method. It is formulated as a min-

imization of (1) subject to the row-wise constraint on 𝐘

||𝐲(j)|| ≤ 𝜆j (j = 1,… , p) (3)

where ||𝐲(j)|| is an L1-norm of the 𝐘’s jth row vector 𝐲(j) and a tuning parameters

𝜆j (j = 1,… , p) control the resulting sparsity of 𝐘. It therefore contains a number

of zero elements, since the L1-norm of rows of 𝐘 is constrained to be less than

𝜆1,… , 𝜆p. This minimization is equivalent to the minimization of the following

function;

f (𝐌,𝐘) +
p∑

j
𝜆j||𝐲(j)||. (4)
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We call this approach as a penalty approach, in that it adds the penalty function∑p
j 𝜆j||𝐲(j)|| to the original loss function (1). The tuning parameters take any positive

integer, which are commonly determined by cross-validation. Similar approaches

can be found in Witten and Tibshirani (2010) and Hastie et al. (2015). Penalty

approach is originally proposed for avoiding over-fitting in clustering. Generaliz-

ability, however, does not always results in the easier interpretability of the clus-

ters, which we focus on in this article. The proposed procedure directly controls the

number of zero elements r in the centroid matrix within a restricted range, without

introducing tuning parameters as in the penalty approaches. Within- and between-

contrasts in the centroid matrix are therefore highlighted, and it allows users to find

what variables manifest the clusters easily. It should be noted that controlling r can-

not consider all possible values of 𝜆1,… , 𝜆p. For interpretation of clusters, however,

inspecting all possible 𝜆s is not necessary, and sparseness of 𝐘 can be determined

by how many elements in 𝐘 are zero and ignorable.

2 Algorithm

The proposed procedure SPARK is formulated as the following constrained mini-

mization problem;

min
𝐌,𝐘

f (𝐌,𝐘) = ||𝐗 −𝐌𝐘′||2 (5)

subject to the sparsity constraint (2) and the membership constraint is imposed on

𝐌 such that

mil ∈ {0, 1} and

∑

l
mil = 1. (6)

The parameter matrices are alternately and iteratively updated in the M-step and

Y-step, respectively, starting from multiple sets of initial values in order to avoid

accepting a local minimum as the final solution. In these steps, the current parameter

matrix is replaced by the one minimizing (1) keeping the other parameter matrix

fixed. The update formulae used in the M-step and Y-step are presented as follows.

M-step The minimization of f (𝐌,𝐘) with fixed 𝐘 subject to (6) is achieved by the

k-means algorithm with the fixed centroid (MacQueen 1967). Therefore, the optimal

𝐌 = {mil} is obtained by

mil =

{
1 (l = arg min

l
f (𝐌,𝐘))

0 (otherwise)
, (7)

for i = 1,… , n.

Y-step Using the matrix 𝐂 = 𝐗′𝐌(𝐌′𝐌)−1, (1) is rewritten as
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f (𝐌,𝐘) = ||𝐗 −𝐌𝐘′||2

= ||𝐗 −𝐌𝐂′ +𝐌𝐂′ −𝐌𝐘′||2

= ||𝐗 −𝐌𝐂′||2 + ||𝐃1∕2(𝐂 − 𝐘)||2

−tr(𝐗 −𝐌𝐂′)′(𝐌𝐂′ −𝐌𝐘′). (8)

where 𝐃 = diag{d11,… , dll,… , dkk} denotes the k × k diagonal matrix whose lth
diagonal element is equal to the number of the observations classified into the lth
cluster (l = 1,… , k). The third term is proved to be zero as follows;

tr(𝐗 −𝐌𝐂′)′(𝐌𝐂′ −𝐌𝐘′)
= tr𝐗′𝐌(𝐌′𝐌)−1𝐌′𝐗 − tr𝐗′𝐌(𝐌′𝐌)−1𝐌′𝐗 − tr𝐗′𝐌′𝐌 + tr𝐗′𝐌′𝐌
= 0. (9)

Therefore, minimizing the second term in (8), g(𝐘) = ||𝐃1∕2(𝐂 − 𝐘)||2, is equiv-

alent to the minimization of f (𝐌,𝐘) with respect to 𝐘. Further, g(𝐘) is rewritten

as

g(𝐘) =
∑

(j,l)∈Z
d1∕2

ll c2jl +
∑

(j,l)∈Z⊥

d1∕2
ll (cjl − yjl)2 ≥

∑

(j,l)∈Z
d1∕2

ll c2jl (10)

where the Z denotes r pairs of indices (j, l)s indicating the locations of yjls to be

zero. The last equality holds when the second term in (10) is equal to zero, that is,

when yjl with (j, l) ∈ Z⊥

is taken equal to the corresponding cjl. In addition, the limit

∑
(j,l)∈Z d1∕2

ll c2jl is minimal when Z is composed of the indices of the r smallest c2jls
among all squared elements in 𝐂. Therefore, 𝐘 that minimizes g(𝐘) is obtained as

yjl =

{
0 (iff c2jl ≤ c2[r])
cjl (otherwise)

(11)

for l = 1,… , k and j = 1,… , p, where c2[r] denotes the rth smallest value among all

c2jls. The update formulae (7) and (11) are used in the M-step and Y-step, respectively,

and it is guaranteed that function value of f (𝐌,𝐘) monotonically decreases in each

of these steps. As presented in this section, 𝐌 and 𝐘 are alternately updated until the

convergence is reached. In the following real data examples, we used 100 different

initial values for 𝐌 and 𝐘.

3 Sparsity Selection Based on Information Criteria

In the proposed procedure, the number of zeros in 𝐘 has to be specified as a positive

integer r in (2). In this article, the minimum and maximum of r, rmin, rmax, are defined

as
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rmin = 1, rmax = p × (k − 1) (12)

considering that 𝐘 has p non-zero elements when 𝐘 has a perfect cluster structure;

each variable is associated with only one cluster. Selecting the number of zero ele-

ments in 𝐘 can be considered as a model selection problem, since this selection

partially specifies the model part of 𝐌𝐘′
fitted to 𝐗. In this respect, the information

criterion such as AIC and BIC is suitable for specifying r, which controls how sparse

the model is to be fitted to the data. In this section, we propose two criteria in order

to select the “best” r among the interval [rmin, rmax].
Here, let 𝐄 = {eij} be the matrix of errors defined as 𝐄 = 𝐗 −𝐌𝐘′

. Under the

assumption that 𝐗 is generated by 𝐗 = 𝐌𝐘′ + 𝐄 with eij distributed independently

and identically according to N(0, 𝜎2) for all is and js with a specific error variance 𝜎

2
,

it can be shown that the least squares estimation and maximum likelihood estimation

in SPARK are equivalent. The log-likelihood function to be maximized in the ML

estimation is

l(𝐌,𝐘) = −
np
2

log ||𝐗 −𝐌𝐘′||2 (13)

including f (𝐌,𝐘) to be minimized in the least square estimation. With an arbitrary

r, the maximum of l(𝐌,𝐘) is attained as

l(𝐌,𝐘) ≤ −
np
2

log fmin(r). (14)

where fmin(r) denotes the attained function value of (1). By (14), the information

criteria AIC(r) and BIC(r) with the specific r are obtained by

AIC(r) = np × log fmin(r) + 2𝜈(r) (15)

BIC(r) = np × log fmin(r) + log(np) × 𝜈(r) (16)

where 𝜈(r) denotes the number of parameter to be estimated with a certain r;

𝜈(r) = n + kp − r, (17)

Therefore, r can be determined by r = arg min
rmin≤r≤rmax

AIC(r) or BIC(r) in terms of min-

imizing the model selection criteria. This approach is considered to be computation-

ally inefficient, however, as of 100 run of SPARK are required, in order to avoid a

local minimum, for each of all possible rs. When 𝐗 is of a large size, (𝐗 contains

many observations and variables) the resulting centroid matrix is also of a large size,

and thus higher computational cost is required for each run.

In order to find such r with lower computational cost, we propose the following

algorithm.
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Step 1. Set Sinitial and Sdecrease to an integer within the range [0, 1]. Set rt = Sinitial ×
rmax

Step 2. Repeat Step 3 to Step 4 while S > 1.

Step 3. (Forward search) Repeat (a) to (c).

(a) Set r = rt and compute

𝛥AIC(r) = AIC(r + 1) − AIC(r) (18)

or

𝛥BIC(r) = BIC(r + 1) − BIC(r) (19)

(b) If 𝛥AIC(r) or 𝛥BIC(r) is smaller than 0, set rt = rt + S and go back to 2.

Otherwise proceed to (c).

(c) Set S = S × Sdecrease and proceed to the backward search.

Step 4. (Backward search) Repeat (a) to (c).

(a) Set r = rt and compute 𝛥AIC(r) or 𝛥BIC(r).
(b) If 𝛥AIC(r) or 𝛥BIC(r) is greater than 0, set rt = rt − S and go back to 4.

Otherwise proceed to (c).

(c) Set S = S × Sdecrease and proceed to the forward search.

Step 5. If the previous step is Forward search, repeat barkward search with S =
1 until 𝛥AIC(r) or 𝛥BIC(r) is positive; otherwise repeat Forward search
𝛥AIC(r) or 𝛥BIC(r) is negative.

The above algorithm seeks r which minimizes AIC(r) or BIC(r) within the range

[rmin, rmax] by repeating the forward and backward search and reducing the step size

S at each step of the iteration, starting from the initial step size rmax × Sinitial. The rate

of decrement of the step size is controlled by Sdecrease. The total computational cost

is therefore dramatically reduced compared with applying SPARK for computing

AIC(r) or BIC(r) for all rs. In the following simulation and the real data examples,

we set Sinitial = 0.9 and Sdecrease = 0.7 which is empirically confirmed to be well-

performed.

4 Real Data Examples

In this section, we demonstrate that SPARK extracts the sparse centroids underlying

the dataset and facilitates interpretation of the centroid, with keeping the correctness

of classification.
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4.1 Example 1: Fisher’s Iris Data

In the first example, SPARK was applied to Fisher’s Iris data, where 150 samples,

which are originally sampled from three species, were measured with respect to four

variables. In order to find the optimal sparsity, the sparsity selection procedure based

on BIC was used. It suggested that r = 2 was the best, and we also applied the stan-

dard k-means clustering to Iris data for comparison.

The estimated centroids are shown in Table 1 as a heatmap. As found in Table 1,

the contrast between the first (C1) and the second (C2) clusters can be seen in

Sepal.Length and Sepal.Width. In addition, C2 is different from the rest of clus-

ters with respect to Sepal.Width The contingency table of two partitions, the species

of samples and the estimated membership, for SPARK and the one for k-means, are

shown in Table 2. It can be seen that the estimated memberships correspond to the

species, in that (49 + 37 + 42)∕150 = 85.3% of the observations are correctly classi-

fied, while (50 + 39 + 36)∕150 = 89.2% in the k-means. These results indicate that

SPARK appropriately produces sparser and thus easy-to-interpret centroid matrix in

comparison with the exiting method, keeping the accuracy of classification.

Table 1 Estimated centroid matrices by SPARK for Fisher’s iris dataset with r = 2 and k-means

clustering

Sepal.Length Sepal.Width Petal.Length Petal.Width

SPARK C1 1.065 0.966 0.999

C2 −0.928 0.322 0.236

C3 −1.011 0.850 −1.301 −1.251
k-means C1 1.132 0.088 0.993 1.014

C2 0.050 −0.880 0.347 0.281

C3 −1.011 0.850 −1.301 −1.251

Table 2 Contingency table for species versus the estimated partitions by SPARK and k-means

SPARK k-means

C1 C2 C3 C1 C2 C3

Setosa 49 0 0 50 0 0

Versicolor 1 37 8 0 39 14

Virginica 0 13 42 0 11 36
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4.2 Example 2: Vicon Physical Action Dataset

The second example is Vicon Physical Action Dataset (Lichman 2013). A subject’s

walking was recorded by the 3-axis motion sensors attached to the subject’s right and

left wrists, elbows, knees, and ankles. The activity was recorded for approximately

8000 ms with the frequency of 20 Hz. Therefore we have 24 (x-/y-/z-axis sensors of

right and left wrists, elbows, knees and ankles) × 173 (time elapsed) data matrix.

k-means clustering is applied to the data matrix and the resulting centroid matrix is

shown in Fig. 1 as a heatmap. The number of clusters is set to 5 which explains 75%

of the total variance of the dataset.

We can interpret the estimated five clusters by referring the 173 × 5 centroid

matrix as follows. For example, the first (C1) and the second (C2) clusters are well

discriminated against the others; the first cluster is characterized by the lower output

value in the middle phase of records (around 2000–6000 ms) and the higher value

in the latter phase (around 6000–8500 ms), while this variation in the sensor outputs

is shifted for 2000 ms earlier in the second cluster. The third (C3), fourth (C4) and

fifth (C5) clusters are, however, hard to be discriminated mutually, in that the time

evolutions of values are similar to each other especially in the early phase.

Before applying SPARK to the dataset, the sparsity selection procedures were

applied. The AIC- and BIC-based procedures suggested that r = 332 and r = 461
were the best, respectively. We therefore determined to set r = 461 in order to obtain

the sparser centroid matrix. This means that approximately 53.3% of the all elements

of the centroid matrix were estimated as zero. The number of clusters was set at 5,

as in the example of the k-means clustering in Sect. 1.
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Fig. 1 Estimated centroid matrix by SPARK with r = 461 and k-means (absolute transformed) for

Vicon Physical Action Dataset
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Table 3 Estimated membership of 24 sensors; x/y/z-axis senror on the right (R) and left (L) wrist,

elbow, knee and anckle

wrist elbow knee ankle

L R L R L R L R

C1 z z

C2 z z

C3 y/z y y/z y y y y y

C4 x x x x x x x x

C5 z z

The resulting centroid matrix is represented as a heatmap in Fig. 1. The elements

estimated as zero are colored in white. It can be seen that, compared with the stan-

dard k-means clustering, the estimated centroid is sparse enough and the contrasts

between clusters are clearer than in the k-means clustering solution. Based on the

sparse centroid, each cluster can be interpreted as follows; the sensors classified into

the first cluster show the lower values from approximately 2000–5000 ms and the

higher values from 6500 ms to the end of recording, and this variation of sensor

outputs is earlier by 1500 ms in the second cluster. The third cluster is character-

ized by the lower values around 6000 ms, which makes the cluster different from the

other clusters. In the fourth cluster, the lower values and the higher values alternately

appear except in the early phase of recording, while the sensor outputs are almost

stable in the fifth cluster.

The centroids obtained by k-means are less sparse than the centroids for SPARK

and the characteristics of clusters are unclear. As a measure of interpretability,

Lorenzo-Seva (2003) proposed the index of simplicity called LS index in the context

of factor analysis. The LS index ranges from 0 (least simple) to 1 (most simple) and

the values LS index for the centroid matrices were 0.313 in the k-means and 0.590 in

the SPARK, which indicates the sparsely estimated centroids are more simple and

thus more interpretable compared with the existing method.

The sensor classified into each cluster are shown in Table 3. The first cluster is

composed of the z-axis sensors on the right arm, while those on the left arm are

classified into the third cluster. It indicates that the subject’s horizontal movement in

the left and right arms are expressed in the first and the second clusters. The third

cluster is composed of 10 sensors, the y/z-axis sensors on the left arm and the y-

axis sensors on the leg. The x-axis sensor on all parts are classified into the fourth

cluster, and refereeing the sparse centroids in Fig. 1 therefore indicate that the clear

difference between the x-axis and the y-axis movement is observed around 6000 ms.
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5 Concluding Remarks

In this article, we proposed a new procedure of clustering called SPARK, which

produces a sparse centroid matrix The interpretation of the centroid matrix is eas-

ier compared with the ordinal k-means clustering by the sparsity constraint imposed

on the centroid matrix. It is also possible to obtain such sparse centroid by adding a

penalty term to the loss function of k-means clustering, as proposed by some authors.

These procedures mainly aims to improve the robustness of clustering through the

sparse estimation of centroid matrix. In SPARK, on the other hand, we rather focus

on the interpretability of the resulting centroid matrix than robustness. The sparse-

ness of the centroid matrix is therefore controlled by the number of zero elements in

the centroid matrix, which is closely related to its interpretation. The results of the

two real data examples indicate that the estimated sparse centroids surely facilitates

to capture the characteristic of the clusters.
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