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Preface

Hydrological and ecological connectivity is a matter of high concern. All terrestrial and coastal 
 ecosystems are connected with water, which includes groundwater, and there is a growing 
 understanding that “single ecosystems” (mountain forest, hill forest, mangrove forest, freshwater 
swamp, peat swamp, tidal mudflat, and coral reef) that are actually the result of an artificial percep-
tion and classification can, in the long term, only be managed by a holistic vision at the watershed 
level. It is essential to investigate ecosystem management at the watershed level, particularly in a 
changing climate.

In general, there are two important approaches:

 1. Adaption to hydrological events such as climate change, drought, and flood
 2. Qualitative and quantitative conservation of water, thereby optimizing water consumption

The Handbook of Engineering Hydrology aims to fill the two-decade gap since the publication of 
David Maidment’s Handbook of Hydrology in 1993 by including updated material on hydrology 
science and engineering. It provides an extensive coverage of hydrological engineering, science, and 
technology and includes novel topics that were developed in the last two decades. This handbook is 
not a replacement for Maidment’s work, but as mentioned, it focuses on innovation and provides 
updated information in the field of hydrology. Therefore, it could be considered as a complementary 
text to Maidment’s work, providing practical guidelines to the reader. Further, this book covers 
different aspects of hydrology using a new approach, whereas Maidment’s work dealt principally with 
classical components of hydrologic cycle, particularly surface and groundwater and the associated 
physical and chemical pollution.

The key benefits of the book are as follows: (a) it introduces various aspects of hydrological engineering, 
science, and technology for students pursuing different levels of studies; (b) it is an efficient tool helping 
practitioners to design water projects optimally; (c) it serves as a guide for policy makers to make 
appropriate decisions on the subject; (d) it is a robust reference book for researchers, both in universities 
and in research institutes; and (e) it provides up-to-date information in the field.

Engineers from disciplines such as civil engineering, environmental engineering, geological engi-
neering, agricultural engineering, water resources engineering, natural resources, applied geography, 
environmental health and sanitation, etc., will find this handbook useful.

Further, courses such as engineering hydrology, groundwater hydrology, rangeland hydrology, arid 
zone hydrology, surface water hydrology, applied hydrology, general hydrology, water resources engi-
neering, water resources management, water resources development, water resources systems and 
planning, multipurpose uses of water resources, environmental engineering, flood design, hydro-
meteorology, evapotranspiration, water quality, etc., can also use this handbook as part of their 
curriculum.
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This set consists of 87 chapters divided into three books, with each book comprising 29 chapters. 
This handbook consists of three books as follows:

 1. Book I: Fundamentals and Applications
 2. Book II: Modeling, Climate Change, and Variability
 3. Book III: Environmental Hydrology and Water Management

This book deals mainly with modeling, climate changes, and variability and can be classified in the 
following categories:

• Climate changes: Climate change and hydrological hazards, climate change and hydrological 
modeling, climate change and urban water systems, climate change impacts on hydrology and 
water resources, and climate change uncertainty, vulnerability, and adaption

• Hydrologic changes and estimation: Design rainfall estimation and changes, hydrological 
changes of mangrove ecosystems, impact of the development of vegetation on flow condi-
tions and flood hazards, impacts of urbanization on runoff regime, discretization in urban 
watersheds

• Mathematical modeling: Artificial neural network–based modeling of hydrologic processes, flow 
and sediment transport modeling in rivers, hybrid hydrological modeling, hydrologic modeling: 
stochastic processes, time series analysis of hydrologic data

• Risk and uncertainty: Dam risk and uncertainty, drought indices for drought risk assessment in a 
changing climate, hydrologic prediction and uncertainty quantification, uncertainty and risk of 
the PMP and PMF

• Spatial and regional analysis: Geostatistics applications in hydrology, GIS applications in a 
changing climate, GIS-based upland erosion mapping, regional flood frequency analysis, region-
alization of hydrological extreme events, remote sensing data and information for hydrological 
monitoring and modeling

• Statistical analysis: Application of copulas in hydrology, bankfull frequency of river, statistical 
parameters used for assessing hydrological regime, significance of statistical tests and persistence 
in hydrologic processes

About 200 authors from various departments and across more than 30 countries worldwide have 
contributed to this book, which includes authors from the United States comprising about one-third 
of the total number. The countries that the authors belong to have diverse climate and have encoun-
tered issues related to climate change and water deficit. The authors themselves cover a wide age 
group and are experts in their fields. This book could only be realized due to the participation of uni-
versities, institutions, industries, private companies, research centers, governmental commissions, 
and academies.

I thank several scientists for their encouragement in compiling this book: Prof. Richard McCuen 
from the University of Maryland, Prof. Majid Hassanizadeh from Utrecht University, Prof. Soroush 
Sorooshian from the University of California at Irvine, Profs. Jose Salas and Pierre Julien from Colorado 
State University, Prof. Colin Green from Middlesex University, Prof. Larry W. Mays from Arizona State 
University, Prof. Reza Khanbilvardi from the City College of New York, Prof. Maciej Zalewski from the 
University of Łodź -Poland, and Prof. Philip B. Bedient from Rice University.
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In addition, Research Professor Emeritus Richard H. French from Las Vegas Desert Research 
Institute, who has authored the book Open Channel Hydraulics (McGraw-Hill, 1985), has encouraged 
me a lot. I quote his kind words to end this preface:

My initial reaction to your book is simply WOW!
Your authors are all well known and respected and the list of subjects very comprehensive. 

It will be a wonderful book. Congratulations on this achievement.

Saeid Eslamian
Isfahan University of Technology

Isfahan, Iran

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Research Group at the Department of Water Engineering. His 
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and climate change. In particular, he specializes in modeling and 
prediction of natural hazards including floods, droughts, storms, 
wind frequency, and groundwater drawdowns, as well as pollution in 
arid and semiarid zones, particularly in urban areas.
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University of New South Wales, Sydney, Australia. His supervisor was Professor David H. Pilgrim, who 
encouraged him to conduct research on regional flood frequency analysis using a new region of influ-
ence approach. Soon after his graduation in 1995, Eslamian returned to Iran and worked as an assistant 
professor at Isfahan University of Technology (IUT). In 2001, he was promoted to associate professor.

Eslamian was a visiting professor at Princeton University, Princeton, New Jersey, in 2006 and at 
the University of ETH Zurich, Switzerland in 2008. During this period, he developed multivariate 
L-moments for low flow and soil–moisture interaction.

Eslamian has contributed to more than 300 publications in books, research journals, and techni-
cal reports or papers in conferences. He is the founder and chief editor of the International Journal of 
Hydrology Science and Technology and the Journal of Flood Engineering. He also serves as an editorial 
board member and reviewer of about 30 Web of Science (ISI) journals. Recently, he has been appointed 
as the chief editor for a three-set book series Handbook of Engineering Hydrology by Taylor & Francis 
Group (CRC Press).

Prof. Eslamian has prepared course material on fluid mechanics, hydraulics, small dams, hydrau-
lic structures, surface runoff hydrology, engineering hydrology, groundwater hydrology, water 
resource management, water resource planning and economics, meteorology, and climatology at 
the undergraduate level and material on evapotranspiration and water consumption, open channel 
hydraulics, water resources engineering, multipurpose operation of water resources, urban hydrology, 
advanced hydrology, arid zones hydrology, rangeland hydrology, groundwater management, water 
resources development, and hydrometeorology at the graduate level.

He has presented courses on transportation, Energy and Agriculture Ministry; and different uni-
versity departments in governmental and private sectors: civil engineering, irrigation engineering, 
water engineering, soil sciences, natural resources, applied geography, and environmental health and 
sanitation.



xii Editor

Eslamian has undertaken national and international grants on “Studying the impact of global 
warming on the Kingdom of Jordan using GIS,” “Study of the impact of different risk levels of cli-
mate change on Zayandehroud River Basin’s climatic variables,” “Feasibility of reclaimed water reuse 
for industrial uses in Isfahan Oil Refining Company,” “Microclimate zoning of Isfahan city and 
investigation of microclimate effect on air temperature, relative humidity and reference crop evapo-
transpiration,” “Feasibility of using constructed wetland for urban wastewater,” “Multivariate linear 
moments for low flow analysis of the rivers in the north-eastern USA,” and “Assessment of potential 
contaminant of landfill on Isfahan water resources.” He has received two ASCE and EWRI awards from 
the United States in 2009 and 2010, respectively, as well as an outstanding researcher award from Iran 
in 2013. Persian being his native language, Prof. Eslamian is also fluent in English and is professionally 
familiar with French and Arabic.



xiii

Contributors

Jazuri Abdullah
Department of Civil and Environmental 

Engineering
Colorado State University
Fort Collins, Colorado

Iván Rivas Acosta
Hydrology Department
Mexican Institute of Water Technology
Jiutepec, Mexico

Pradeep Adhikari
Department of Geography and Environmental 

Sustainability
University of Oklahoma
Norman, Oklahoma

Carmen Agouridis
Department of Biosystems and Agricultural 

Engineering
University of Kentucky
Lexington, Kentucky

Hussam Al-Bilbisi
Faculty of Art
University of Jordan
Amman, Jordan

Rezaul K. Chowdhury
Department of Civil and Environmental 

Engineering
United Arab Emirates University
Al Ain, United Arab Emirates

Emery A. Coppola Jr.
NOAH LLC
Lawrenceville, New Jersey

Caleb M. DeChant
Department of Civil and Environmental 

Engineering,
Portland State University
Portland, Oregon

Hamze Dokohaki
Department of Water Engineering
Isfahan University of Technology
Isfahan, Iran

Tayel El-Hasan
Faculty of Science
Mutah University
Al-Karak, Jordan

Saeid Eslamian
Department of Water Engineering
Isfahan University of Technology
Isfahan, Iran

Masoomeh Fakhri
Department of Hydraulic and Sanitary 

Engineering
Chamran University
Ahvaz, Iran

Iman Fazeli Farsani
Department of Soil Science
Shahrekord University
Shahrekord, Iran

Mohammad Reza Farzaneh
Department of Water Engineering
Tarbiat Modares University
Tehran, Iran



xiv Contributors

Brian A. Fuchs
National Drought Mitigation Center
University of Nebraska-Lincoln
Lincoln, Nebraska

Emna Gargouri-Ellouze
Laboratory of Hydraulic and Environmental 

Modeling
Tunis El Manar University
Tunis, Tunisia

Germán Gavilán
University of California, Merced
Merced, California

Albrecht Gnauck
Department of Ecosystems and Environmental 

Informatics
Brandenburg University of Technology at Cottbus
Cottbus, Germany

Ehsan Goodarzi
Department of Civil and Environmental 

Engineering
Georgia Institute of Technology
Atlanta, Georgia

Khaled Haddad
School of Computing Engineering and 

Mathematics
University of Western Sydney
Sydney, New South Wales, Australia

James S. Halgren
Riverside Technology Inc.
Fort Collins, Colorado

Khaled H. Hamed
Faculty of Engineering
Irrigation and Hydraulics Department
Cairo University
Giza, Egypt

Michael J. Hayes
National Drought Mitigation Center
University of Nebraska-Lincoln
Lincoln, Nebraska

Yang Hong
School of Civil Engineering and Environmental 

Science
University of Oklahoma
and
Advanced Radar Research Center
National Weather Center
Norman, Oklahoma

Shafi Noor Islam
Department of Ecosystems and Environmental 

Informatics
Brandenburg University of Technology at Cottbus
Cottbus, Germany

Pierre Y. Julien
Department of Civil Engineering
Colorado State University
Fort Collins, Colorado

Tomasz Kałuża
Department of Hydraulic and Sanitary 

Engineering
Poznan University of Life Sciences
Poznan, Poland

Reza Khanbilvardi
Cooperative Remote Sensing Science and 

Technology Center
National Oceanic and Atmospheric 

Administration
The City College of New York
New York, New York

Nir Krakauer
Cooperative Remote Sensing Science and 

Technology Center
National Oceanic and Atmospheric 

Administration
The City College of New York
New York, New York

Tarendra Lakhankar
Cooperative Remote Sensing Science and 

Technology Center
National Oceanic and Atmospheric 

Administration
The City College of New York
New York, New York



xvContributors

Lu Liu
Pacific Northwest National Laboratory
Joint Global Change Research Institute
College Park, Maryland
and
School of Civil Engineering and Environmental 

Science
University of Oklahoma
Norman, Oklahoma

Jansen Luis
Tenaga Nasional Berhad
Kuala Lumpur, Malaysia

Gregoire Mariethoz
School of Civil and Environmental Engineering
University of New South Wales
Sydney, New South Wales, Australia

Ole Mark
DHI
Horsholm, Denmark

Mohammed Matouq
Faculty of Engineering Technology
Al-Balqa Applied University
Amman, Jordan

Seyed Jalal E. Mirnezami
Department of Water Engineering
Tarbiat Modares University
Tehran, Iran

Hamid Moradkhani
Department of Civil and Environmental 

Engineering
Portland State University
Portland, Oregon

Never Mujere
Department of Geography and  Environmental 

Science
University of Zimbabwe
Harare, Zimbabwe

Rouzbeh Nazari
Cooperative Remote Sensing Science and 

Technology Center
National Oceanic and Atmospheric 

Administration
The City College of New York
New York, New York

Birgit Paludan
Greve Solrød Water Utility
Roskilde, Denmark

Al Powell
Center for Satellite Applications and Research
Satellite and Information Service (NESDIS)
National Oceanic and Atmospheric 

Administration
Camp Springs, Maryland

Lei Qiao
School of Civil Engineering and Environmental 

Science
University of Oklahoma
and
Advanced Radar Research Center
National Weather Center
Norman, Oklahoma

Ataur Rahman
School of Computing Engineering and 

Mathematics
University of Western Sydney
Sydney, New South Wales, Australia

Fernando R. Salas
Department of Environmental and Water 

Resources Engineering
The University of Texas at Austin
Austin, Texas

Jose D. Salas
Department of Civil and Environmental 

Engineering
Colorado State University
Fort Collins, Colorado



xvi Contributors

Rina Schumer
Division of Hydrologic Sciences
Desert Research Institute
Reno, Nevada

Lariyah M. Sidek
Department of Civil Engineering
Universiti Tenaga Nasional
Kajang, Malaysia
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from High School of Sciences and Technics of Tunis in 1996; and the Bachelor of hydraulic engineering 
from the National School of Engineers of Tunis in 1990.

Dr. Emna Gargouri-Ellouze serves as an associate professor at the National School of Engineers of Tunis 
and as a research associate at the Hydraulic Environmental Modeling Laboratory. Her main research topic 
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is the predetermination of the runoff of ungauged basins using statistical tools. Copulas are currently her 
research domain.

She is the vice-president of ICSH-IAHS (International Commission of Statistical Hydrology of 
International Association of Hydrological Sciences), which coordinates, optimizes, and concentrates 
resources for statisticians who would like to understand hydrological applications, for hydrologists who 
need to use a statistical tool and would like to easily understand what is the right approach, and for sta-
tistical hydrologists to easily stay updated on recent developments in their research field.

She is a member of American Geophysical Union (AGU), International Association of Hydrological 
Sciences, and Réseau National des Systèmes Complexes (RNSC).

Saeid Eslamian received a PhD from the University of New South Wales, Australia, under Professor 
David Pilgrim. He was a visiting professor in Princeton University, Princeton, New Jersey, and ETH 
Zurich, Switzerland. He is currently an associate professor of Hydrology in Isfahan University of 
Technology. He is the founder and chief editor of the Journal of Flood Engineering and the International 
Journal of Hydrology Science and Technology. He has to his credit more than 200 publications mainly in 
statistical and environmental hydrology and hydrometeorology.

1.1  Introduction

Hydrological observations, experiments, and practices show that hydrological events are described 
through various characteristics, which are generally correlated. Taking into account this aspect, it is 
necessary when modeling hydrological events to consider their characteristics jointly. Indeed, in the 
past few years, bivariate and multivariate modeling has received increased attention. Among the pro-
posed models, one has the frequency analysis procedures. They are commonly used as tools for the 
analysis of hydrological events. These procedures join the magnitude of events to their frequency of 
occurrence.

One often uses families of multivariate distributions that are extensions of univariate ones such 
as multivariate normal distribution or its extensions: multivariate lognormal distribution, Student t 
distribution and Fishers F distribution or multivariate logistic Gumbel (see Reference 27), multivari-
ate gamma distributions (e.g., [24], see Reference 32), multivariate exponential distribution [31], and 
multivariate generalized Pareto distributions [25]. However, these distributions suffer from several 

Preface

Hydrological observations, experiments, and practices show that hydrological events are described 
through various characteristics that are generally correlated. Taking into account this aspect, it is 
necessary when modeling hydrological events to consider their characteristics jointly. One often 
uses families of multivariate distributions that are extensions of univariate ones. However, these 
distributions suffer from several limitations and constraints. Copulas models offer to overtake 
these difficulties. For this reason, the attraction of the mathematical simplicity of copulas models 
has interested researchers since the 2000s.

The use of copulas in hydrology is rapidly growing. Copulas offer the opportunity to treat one 
of the main researched objectives by hydrologists: the determination of the statistic quantities 
such as joined probabilities, conditioned probabilities, and return periods of events. We first pres-
ent in this article the notion of multivariate return period and also multivariate quantile. We also 
present two hydrological applications to explain the approach of copulas and how to model with 
them. At the end of the text, we give relevant appendixes for the goodness of fit of copulas, which 
remains an open issue.
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limitations and constraints, such as that the marginal distributions may belong to the same probabil-
ity family [22,27]. Thus, to avoid these limitations, copulas models are used [12]. Copulas allow the 
description of the dependence structure between random variables without information on the mar-
ginal distributions and also the description of the multivariate distributions with any kind of marginal 
distributions [2]. It is worth noting that copulas are not the only models that fulfill these requirements, 
as underlined recently by Ashkar et al. [1] “These other models were ignored, or overlooked, because 
it was wrongly assumed that they do not allow for sufficient flexibility in the choice of marginal dis-
tributions for the two variables being modeled.” These authors compared copulas to three bivariate 
distributions (Downton’s bivariate exponential distribution, bivariate Fisher distribution, and bivariate 
Pearson Type 2 distribution) and showed that these distributions have their own dependence struc-
tures, and need to be given the same level of consideration in hydrology as copula. In 1997, Kelly and 
Krzysztofowicz [18] presented the flexibility of Méta-Gaussian distribution. However, the attraction of 
the mathematical simplicity of copulas models has kindled the interest of researchers since the 2000s.

The use of copulas in hydrology, as well as in other geophysical and environmental sciences, is rapidly 
growing. The addressed fields mainly are flood frequency analysis, drought frequency analysis, rain-
fall frequency analysis, design rainfall, design floods, regional analysis, analysis under climate change, 
hydrological extremes, uncertainty modeling, geostatistical models, remote sensing observations, and 
others fields (see http://www.stahy.org/Activities/STAHYReferences/).

Copulas offer the opportunity to treat one of the main researched objectives by hydrologists: the determi-
nation of the statistic quantities such as joined probabilities, conditioned probabilities, and return periods 
of events. For example, extreme floods or droughts, which are essentially natural hazards, occur “infre-
quently.” In most cases, excessive or scarce precipitation is the main cause of these catastrophic events. 
Indeed, the severity of these phenomena is the consequence of different behaviors of the same cause: too 
small precipitation for a long time (drought) or too large precipitation for a short time (floods) and also too 
large precipitation for a long time (floods). An event could thus be defined as unsafe if either precipitation 
or time exceeds the given threshold or precipitation and time are larger than the prescribed values.

1.2   Notion of Multivariate return Period 
and Multivariate Quantile

The concept of return period is proposed to characterize the frequency of occurrence of a phenom-
enon. This is probably in a pedagogical concern that statisticians wanted to translate the probability 
of an event, especially mysterious concept known in return period, assumed more understandable for 
managers and public [14]. Consequently, it is more convenient to talk about the risk (or probability) of 
the occurrence of an event rather than its return period. In the same context, Chebana and Ouarda in 
2009 [4] specified the concept of multivariate quantile, which is the value of the variable leading to the 
risk. This concept was initially established by Salvadori in 2004 [26], for univariate case and then was 
generalized to multivariate case.

Here, we focus on the bivariate case that could be extended for multivariate case. In the bivariate case, 
we assume that X and Y are two random variables with joint distribution FXY, marginal distributions FX 
and FY, respectively, and copula C, which is implicitly defined through the functional identity:

 F x y C F x F yXY X Y( , ) ( ), ( )= ( )  (1.1)

Since copulas are invariant under strictly increasing transformations of X and Y, thanks to probability 
integral transformation, one can deal with the pair of RVs (U, V) given by [23]

 

U F x

V F y

X

Y

=
=





( )

( )
 (1.2)
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Let consider a sequence of E1, E2, … of independent events. Each event Ei is characterized by the joint 
behavior of a pair of RVs (U,V) ∼ CU,V, which can be expressed in terms of univariate marginal events. 
Using the (inclusive) OR operator “∪” and the AND operator “∩,” it is possible to combine the marginal 
events in several ways. Eight combinations are possible.

The latter authors proposed to retain only the following events Eu,v, which are the main of interest in 
hydrology.

 E U u V v E U u V vu v u v, ,{ } { } { } { }∪ = > > ∩ = > >∪ ∩and  (1.3)

In addition, [26] proposed the expression of the isolines of bivariate return period and [4] expressed the 
isolines of bivariate quantiles, for a couple of Archimedean copulas.
For the case of Eu v, :∪

 
p C u L u t t uu L tt u, ( )

, ( ) ,∪ = − ( ) = − ≤ ≤1 1 1  (1.4)

For the case of Eu v, :∩

 
p u L u C u L u t u tu L t tt u, ( )

( ) , ( ) ,∩ = − + − + − −( ) = − ≤ ≤− −1 11 1 1 1 0  (1.5)

with

 p U u V v p U u V vu v u v, ,( ) ( )∪ = > > ∩ = > >P P∪ ∩and  (1.6)

pu v,
∪ and pu v,

∩ are joint probabilities and Lt the level curve:

 L u v C u v t tt = ={ } < ≤( , ) [ , ] : ( , ) ,ε 0 1 0 1²  (1.7)

Relevant findings presented by Chebana and Ouarda in 2009 [4] showed that for the univariate 
analysis, each variable needs to be treated separately, which implicitly involves several events, and 
consequently several risk levels to associate. On the contrary, for multivariate analysis, for a given 
joint event, “one” risk level is associated. The univariate analysis can only provide the bounds of 
each variable without any information about the shape of the relation between the variables. In 
addition, the univariate estimation does not take into account the dependence structure between 
variables and should be used cautiously [4]. Another convenient, some events cannot be expressed 
in the univariate context. These issues are solved by the use of multivariate analysis. However, they 
moderate their comments: “the performances of univariate and bivariate procedures are evaluated 
on the basis of different criteria. The main differences between univariate and bivariate estimations 
are conceptual.”

In the following sections, two applications of copulas are presented.

1.3   application 1: runoff estimation for an 
Ungauged catchment Using GIUH

GIUH (Geomorphological Instantaneous Unit Hydrograph) is till now still largely used as a tool of flood 
discharges predetermination in catchments, and particularly in ungauged ones [7,16,19,20,28].

GIUH is a very attractive model due to the parsimony of necessary inputs and the simplicity of its 
application. It is an effective rainfall-runoff model [21]; however, it presents the disadvantage of the prior 
knowledge of effective rainfall [3], which is particularly complicated to determine for ungauged basins. 
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The effective rainfall is determined by index infiltration method (φ-index) that represents the average 
value of infiltration capacity through the duration of effective rainfall.

In the perspective of the applicability of the GIUH to ungauged basins, Gargouri-Ellouze and 
Bargaoui [10] (1) relaxed the prior knowledge of effective rainfall since runoff volumes and hydrographs 
are unavailable, introduced uncertainties in its amount and temporal structure; and (2) investigated and 
exploited the dependence between φ-index and rainfall characteristics in order to derive hydrograph’s 
components.

They generated hydrographs with Monte Carlo simulations, then analyzed the dispersion of their 
characteristics (peak discharges, peak times, base times, and the volumes), after they studied the cou-
pling between φ-index and rainfall characteristics (rainfall depth, maximum intensity, average inten-
sity, and rainfall duration) and reconstituted the observed hydrographs, finally compared the different 
methods of φ-index estimation and their impact on GIUH’s outputs.

The studied site is a small catchment: Saddine 1, near Makthar (Tunisia) in a mountainous zone, 
monitored by the DGACTA* from 1992 to 2000, within the framework of the HYDROMED† project. 
This catchment is controlled by a headwater dam and its area is equal to 3.84 km2.

They used a sample of hydrological events (hyetographs and runoff volumes, see Table 1.1) that covers 
a large value range of total depth rainfall (P), rainfall duration (D), rainfall maximum intensity (Imax), 
rainfall average intensity (Imoy), runoff volumes (V), peak discharges (Qp), time to peak (tp), base time 
(tb), and φ-index (φ).

* DGACTA: Direction Générale des Aménagements et Conservation des Terres Agricoles.
† HYDROMED: Programme de recherche sur les lacs collinaires dans les zones semi-arides du pourtour méditerranéen.

TABLE 1.1 Characteristics of Studied Events

Event P (mm) D (min)
Imax 

(mm/h)
Imoy 

(mm/h) V (m3) Qp (m3/s) tp (min) tb (min) φ (mm/h)

20/5/92 106 116 260.0 55 30,059 34.70 25 60 166.0
24/5/92 36 299 36.0 7 1,509 0.60 25 85 26.2
14/9/93 26 27 84.0 58 10,657 3.00 60 120 58.0
31/7/94 35.5 42 120.0 51 20,843 19.80 30 60 73.0
8/1/95 12 138 10.0 5 400 0.10 60 190 9.0
8/6/95 14 28 58.8 30 1,768 0.04 — — 53.0
24/6/95 11.5 13 101.0 53 3,980 0.60 50 470 87.8
24/8/95 12.5 12 102.0 63 41,940 26.70 20 95 5.5
4/9/95 39.5 13 324.0 182 67,200 85.60 15 29 162.0
4/9/95bis* 8.5 30 30.6 17 15,164 2.10 50 200 10.6
16/9/95 7.5 14 56.0 32 16,055 0.10 60 — 13.1
7/2/96 8 73 31.2 7 3,152 0.40 5 360 21.3
15/8/96 39.5 44 115.0 54 1,476 2.00 10 — 103.2
9/9/96 12 74 56.6 10 15,573 10.40 25 35 13.1
9/9/96bis* 13 53 28.8 15 15,030 0.10 40 — 13.1
18/8/97 10.5 26 68.4 24 6,308 2.60 45 225 48.4
21/9/97 17.5 21 118.8 50 26,393 22.30 25 85 38.8
4/11/97 5.5 16 32.4 20 383 0.20 95 240 31.2
6/12/97 10.5 243 4.8 3 2,306 0.20 135 305 3.8
5/8/99 27 36 99.6 45 35,093 7.90 60 390 47.3

Note: P, rainfall depth; D, rainfall duration; Imax, rainfall maximum intensity; Imoy, rainfall average intensity; V, runoff 
volume; Qp, peak discharge; tp, time to peak; tb, base time; φ, infiltration index. 4/9/95 event occurred at 16h50 and 
4/9/95bis* occurred at 23h45. 9/9/96 occurred at 5h15 and 9/9/96 occurred at 14h55.
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The marginal distributions of variables: Imax, φ-index, D, Imoy, and P are fitted using (HYFRAN*). The 
parameters are estimated by the maximum-likelihood method, and the goodness-of-fit is achieved with 
the chi-square test. Table 1.2 recapitulates the main characteristics of the variable distributions.

To measure the association between φ-index and rainfall characteristics, the rank correlation coef-
ficient Kendall’s tau (τ) [17] is used for the characterization of dependence. Table 1.3 deals with τ’s values 
and their corresponding statistics for the different couples (φ, Imax), (φ, Imoy), (φ, D), and (φ, P). The analy-
sis of Table 1.3 shows that H0

† independence hypothesis is rejected for the first three couples and accepted 
in the latter. Consequently, φ depends on Imax, which confirms the previous works of Gargouri-Ellouze 
and Bargaoui in 2009 [9]; in addition, φ depends on Imoy, which implicitly depends on event duration. 
Indeed, the correlation between φ and D gives a τ’s value equal to −0.41 (z* = 4.20), that is the more the 
duration increases the more φ decreases. As a conclusion, the maximum intensity plays the most signifi-
cant role, followed by average intensity and finally by duration, but the rainfall depth seems to have no 
importance. Therefore, in this chapter, we only focus and exploit the following relationships: (φ, Imax), 
(φ, Imoy), and (φ, D).

1.3.1  Modeling with copulas

For the modeling of the joint cumulative distribution function of pairs (Imax, φ), (φ, Imoy), and (φ, D), 
Archimedean copulas with one parameter (a) are used. For the goodness-of-fit of copulas, the meth-
odology of Gargouri-Ellouze and Chebchoub in 2008 [8] is adopted: we select among three models 
(Gumbel, Frank and Clayton, see Appendix 1.A.1 for details) by comparing the empirical versions of the 
functions K, J, M, L, and R ([29,30], see Appendix 1.A.2 for details) and the theoretical versions and also 

* Software developed by INRS-ETE, Chaire en hydrologie statistique (HYDRO-QUÉBEC/ALCAN/CRSNG).
† A test of independence can be adopted for Kendall’s τ, since under the null-hypothesis H0, this statistic is close to 

Normal distribution with zero mean and variance 2(2n + 5)/[9n(n − 1)] (n size of sample). As a result H0 would be rejected 

at an approximate level α if τ α> + −[ ] [ ]z n n n/ ( ) ( )2 2 2 5 9 1 . For α = 5%, zα/2 = 1.96. Let z* represent the quantity 
z n n nα/2 2 2 5 9 1( ) ( )+ −[ ] [ ].

TABLE 1.2 Variable Distribution and Their Characteristics

Variable X Distribution Mean μ
Standard 

Deviation Σ
Parameter 
Position X0 p-Value

Imax (mm/h) Exponential 46.5 42.6 3.9 0.94
φ-index (mm/h) Exponential 32.4 29.2 3.2 0.30
D (min) Exponential 77.9 67.3 10.6 0.09
Imoy (mm/h) Lognormal 2.6 0.97 — 0.30
P (mm) Exponential 13.3 9.00 4.3 0.19

TABLE 1.3 Kendall’s τ Values and Their z* Statistics

Couple Sample Size τ z* H0

(φ, Imax) 51 0.72 0.19 Rejection
(φ, Imoy) 51 0.57 0.19 Rejection
(φ, D) 51 −0.42 0.19 Rejection
(φ, P) 51 0.18 0.19 Acceptance

Note: Ιmax, maximum rainfall intensity; Ιmoy, average 
rainfall intensity; D, rainfall duration; P, rainfall depth; 
τ, Kendall’s τ; z*, test statistic; H0, null hypothesis.
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by using bivariate χ2 test as proposed by Hürlimann in 2004 [15] (see Appendix 1.A.3). Consequently, for 
each couple, one copula is estimated according to Kendall’s τ.

Based on this methodology, Gumbel copula is adopted for (φ, Imax) and (φ, Imoy) with a parameter a 
respectively of aImax = 4.8 and aImoy = 3 and Frank copula is adopted for (φ, D) with a parameter aD = −4.4. 
Thus, φ-index can be generated conditioned to Imax, Imoy, and D.

Figure 1.1a–c shows the simulated and observed values for each studied couples. Note that the 
observed values are reconstituted for the pairs φ-index conditioned to Imax and Imoy, even those used 
for the validation. However, it is not the case for φ-index conditioned to D (Figure 1.1c), several 
values are not reconstituted. This may be due to the weakness of the relationship between φ-index 
and D (τ = −0.42) and the choice of the copula model. Other types of copulas that model negative 
correlations should be tested. Therefore, the authors suggested prospecting only the couples (Imax, φ) 
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and (Imoy, φ). It is worth noting that during the simulation of couples (φ, Imax) φ is rejected when φ is 
greater than Imax (unfeasible case).

In order to understand and exploit these correlations, Figure 1.2a and b represents the isolines of sim-
ulated couples (Imax, φ) and (Imoy, φ). These isolines correspond to Intensity–φ-index–Frequency curves. 
They give for each fixed intensity (maximum or average) the distribution of φ-index. We notice that for 
the high values of intensities (maximum or average) φ-index becomes constant.

1.3.2  Stochastic Generation of Simulated Hydrographs

The effective rainfall is considered intensities as a vector of model parameter. The vector components are 
estimated from the knowledge of φ-index for each event. Each rainy event is separately considered with-
out presuming its occurrence probability. The generation process of hydrographs is as follows:

• Data insertion: geomorphological parameters and rainfall hyetograph with constant time incre-
ment for all simulations.

• Draw the different values of φ-index in a distribution conditioned to rainfall characteristic F(φ|Io), 
using Monte Carlo Simulations.

• For each φ-index value, the different components of effective rainfall are calculated.
• Simulation of different hydrographs for each estimated effective rainfall vector.
• Statistical analysis of simulated hydrographs.

The methodology proposed earlier is simultaneously applied to effective rainfall intensities deduced 
from the couples (φ, Imax) and (φ, Imoy). For each event Ei, the authors used MCS by drawing φ condi-
tioned to Imax or Imoy. They thus obtained a distribution F(φ|Io), knowing that during the simulations of 
(ϕ|Imoy), φ is rejected if it is greater than event Imax. Then, the vectors of effective rainfall intensities are 
estimated corresponding to each distribution. This procedure is repeated for all events.

1.3.3  results and Discussions

The obtained hydrographs from the two φ distributions give statistically the same results: disper-
sion and variability for all studied characteristics (V, Qp, tp, and tb). Even if the mode of the variation 
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coefficients for tp and tb is of 0.40, which is not relevant for the water management knowing that the time 
scale is of 5 min. Besides for V and Qp derived distribution, 40% of events are not restituted either for 
volume or for peak discharge or for both. Consequently, the duration that is implicitly in the Imoy term 
does not improve the results, unlike what we expect. This is predictable if we examine Kendall’s τ, it is 
more important (0.72) for the couple (φ, Imax). Thus, the hypothesis of φ to Imax conditioning is justi-
fied, and the results suggest that the formation of runoff in this catchment may be governed by rainfall 
kinetic energy.

In conclusion, in order to apply the GIUH to ungauged basins, MCS are achieved for generating 
hydrographs. The dispersion of their characteristics (volume, peak discharge, time to peak, and base time) 
is analyzed, and allowed selecting the design hydrograph. The effective rainfall input of GIUH model is 
considered here as unknown and is estimated with infiltration index method (φ-index). Three main cor-
relations are detected and tested between this index and the characteristic rainfall intensities: maximum 
intensity, average intensity, and duration. They are modeled with Archimedean copulas. Consequently, 
assuming distributions, the effective rainfall hyetographs are generated. It appears that
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• The conditioning of φ-index to D disables the reconstitution of the observed values. At this step 
of this research, no conclusions can be drawn. Other types of copulas that model negative cor-
relations have to be tested.

• The resulting hydrographs from the two φ-Intensities distributions give statistically the same 
results: dispersion and variability for all studied characteristics (V, Qp, tp, and tb).

• The effective rainfall hyetographs derived from the two φ-Intensities distributions allowed reconsti-
tuting observed hydrographs; unlike the case of which deals with rainfall duration (Imoy is the ratio 
between rainfall depth and duration). The average intensity does not seem to improve the results.

• The encouraging results derived from distribution allow supporting the hypothesis of the condi-
tioning of φ to Imax. Moreover, they suggest that kinetic rainfall energy may control runoff.

• Other investigations may be possible between φ and other variables such as antecedent rainfall or 
kinetic rainfall energy.

1.4   application 2: Intensity–Index of 
Infiltration frequency: (2I2f)

The discharge prediction in ungauged basins constitutes a very important stage in the conception of 
road drainage works, stream crossing, flood protection, water resource and water quality management, 
and generally in the definition of soil occupation and regional development schemas.

Effective rainfall constitutes the climatological inputs of discharge prediction in models based on 
Unit Hydrograph methodology. It derives from infiltration process that represents an important part of 
streamflow process. One of the approximation infiltration process models is the Horton process suppos-
ing that runoff is generated by rainfall intensities that are greater than the soil infiltration capacity. The 
index infiltration method (φ-index) represents the average value of infiltration capacity f through the 
duration (DR) of rainfall (Equation 1.8). This method is still largely used for estimating effective rainfall 
and deducing flood volume for specific rainfall events.

 
ϕ = ∫1

D
f t t

R

( )d  (1.8)

However, the applicability of the φ-index method reveals particularly complicated for ungauged basins 
due to the large degree of spatial heterogeneity of soil basin and rainfall. For this reason, the regionaliza-
tion is suggested as a solution to provide the estimation of variables in ungauged basins.

Basing on the works of Ellouze-Gargouri and Kebaili-Bargaoui in 2006 [5], the authors [9] focused 
only on modeling the relationship between φ-index and maximum rainfall intensity (Imax).

They began by modeling the correlation between φ-index and Imax, for 22 catchments (areas between 
1 and 10 km2) in Tunisia (from 35°N to 37°N, from 8°E to 11°E), in a semi-arid climate zone (average 
annual rainfall between 280 and 500 mm) [9]. Then, they regionalized the copula parameter based on 
physiographic and geographical catchment characteristics to explain the inter-sites variability.

1.4.1  Bivariate Modeling of Infiltration Index and rainfall Intensity

The series (Imax, φ) of 22 catchments are considered separately. The detection of the nature of dependence 
between these variables is achieved with K-plot (see Appendix 1.A.4).

Figure 1.3 shows the different K-plots for each catchment. This reveals that the dependence between 
Imax and φ exists, for all of the catchments, which is positive and very important. Indeed, the points 
fall near the curve K0. The degree of this dependence is measured by Kendall’s τ, which is reported in 
Table 1.4 as well as their test statistic z*. It shows that the hypothesis of independence between Imax and 
φ is rejected for the all of the catchments and that the correlation is very high. Indeed, the values range 
from 0.47 to 0.91.
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Hence to model the previous correlations, the methodology used is as indicated in the previous 
application. Gumbel copula could be selected for the whole basins, with a local parameter ai varying 
from 1.9 to 11.1.

1.4.2  regionalization of copula Parameter

To regionalize the model parameter ai through sites (i = 1, m; m number of observed sites), the τ(l) (l = 1, k; 
k number of physiographic and geographical characteristics Qi

l( )) were calculated for each couple (ai, Qi
l( )). 

The τ(l) allow the analysis of whether the correlations between catchment characteristics and model 
parameter exist. Moreover, τ(l) indicate the representativeness of characteristic. The higher degree of 
dependence is, the more representative the characteristic is. Consequently τ(l) makes it possible to sort 
the characteristics relatively to their explanatory capacity in copula parameter.

The delimitation of catchments into regions according to each representative characteristic is 
achieved with the maximization of Kendall’s τ by subregion. Let consider the sorted representative 
characteristic set Qi

l( ) according to the sign of τ(l), and the copula parameter set ai, then seek for the subset 
(Qp

l( ), ap) (p = 1, m; m number of observed sites) that maximize the τp
l( ). This subset of p catchments cor-

responds to the desired region. The considered physiographic characteristics are area, perimeter, maxi-
mum altitude, minimum altitude, specific height (difference between maximum altitude and minimum 
altitude), global slope index, equivalent rectangle length, equivalent rectangle width, Gravellus index, 
the percentage of pasture land, the percentage of forest cover, the percentage of cereal culture area, the 
percentage of arboriculture area and the percentage of area affected by antierosive practices. The former 
percentage is calculated on the basis of the area controlled by antierosive practices. In addition, geo-
graphical characteristics North latitude and East longitude are considered.

TABLE 1.4 Independence Test Results H0 for (Imax, φ).

Designation Basin Sample Size T z* H0 a

14 Abdeladhim 74 0.68 8.58 Rejected 3.13
10 Abdessadok 57 0.68 7.50 Rejected 3.16
15 Arara 39 0.58 5.24 Rejected 2.41
22 BrahimZaher 29 0.60 4.59 Rejected 2.52
11 Dékikira 62 0.77 8.81 Rejected 4.30
13 Echar 37 0.80 7.00 Rejected 5.08

9 El hanech 73 0.76 9.48 Rejected 4.12
20 El Maleh 39 0.81 7.27 Rejected 5.29
16 El mouidhi 67 0.72 8.64 Rejected 3.60
19 Es séghir 70 0.88 10.74 Rejected 8.14
12 Es sénéga 76 0.72 9.23 Rejected 3.60

4 Fidh Ali 32 0.53 4.28 Rejected 2.14
3 Fidhbenaceur 28 0.66 5.04 Rejected 3.08
7 Hadada 69 0.73 8.91 Rejected 3.75
8 Janet 73 0.64 8.06 Rejected 2.81

21 Kamech 91 0.75 10.53 Rejected 4.00
5 MrichetAnza 16 0.78 4.23 Rejected 4.61

26 Mrira 54 0.67 7.11 Rejected 3.00
18 Saadine 38 0.47 4.19 Rejected 1.90

1 Saddine 1 51 0.73 7.55 Rejected 3.68
2 Saddine 2 44 0.76 7.28 Rejected 4.18

17 Sbaihia 97 0.86 12.44 Rejected 7.00

Note: τ, Kendall’s τ; z*, test statistic; H0, null hypothesis; a, copula parameter.
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1.4.3  results of regionalization

The regionalization leads to the formation of four main groups of copula parameters: the first region (R1) 
is the catchments situated in North with a percentage of less than 20% of antierosive practices and without 
forest cover, the second region (R2) is constituted of South-Western catchments with a percentage of less 
than 20% of antierosive practices and without forest cover, the region (R3) includes the catchments with 
forest cover and the last region (R4) encloses the catchments with a nonweak percentage of anti-erosive 
practices. The results show that the catchments in a same region are not necessary geographically contigu-
ous. Indeed, the delineation is hydro-physiographical and not geographical ones.

To illustrate the impact of the regionalization on the joint distribution of (Imax, φ), one may propose 
to generate, for fixed catchments belonging to a given region, couples (Imax, φ), obeying to the regional 
copula parameter. To this end the case of Kamech catchment is presented, which belongs to R1. The con-
sidered samples of (Imax, φ) are constituted of 91 independent events over a period of 11 years from 1994 
to 2004 for Kamech. The fitted marginal distribution of Imax is Lognormal distribution with μImax = 3.30 
and σImax = 0.83 and the one of φ is Gamma distribution with μφ = 27.2 mm/h and σφ = 24.2 mm/h.

In order to simulate couples (Imax, φ), the methodology of generation proposed by [6] is adopted. One 
deals with the couple (FImax(Imax), Fφ(φ)) and not with the couple (Imax, φ). Thus, one uses the random vec-
tor (U = FImax(Imax), V = Fφ(φ)), which has uniform marginals on [0, 1]. Consequently in order to simulate 
the couples (U, V), one has to use the conditional distribution of V knowing U. However, the conditional 
distribution of Gumbel copula is not reversible, [6] proposed to

 a. Simulate independently s and q in uniform through the interval [0, 1]
 b. Determinate t = K−1(q) with K(t) = t(1 − ln(t)/a)
 c. Determinate u = ϕ−1(sϕ(t)) and v = ϕ−1((1 − s)ϕ(t)), φ is the Gumbel copula generator
 d. Determinate F uaxIm ( )−1  and F vϕ

−1( ) according to Imax and φ distributions

The number of generated couples is equal to 10,000. Should be it is that observed values concern indepen-
dent rainfall events, and any conclusion does not be drawn for simulated ones. Figure 1.4 shows the isolines 
of simulated couples (Imax, φ) with regional Gumbel copula and those of observed ones. These isolines cor-
respond to Imax–φ–frequency curves (2I2F) and provide for a fixed frequency, the diverse possible couples 
of (Imax, φ). One notes that for the small probabilities of nonexceedance, the simulated and observed values 
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are close. On the other hand, starting from the frequency 0.90, the copula of Gumbel overestimates the 
quantiles. Thus, the event of 12 October 1995 (Imax = 148 mm/h, φ = 34 mm/h) has been reconstituted with 
the same joint frequency of 0.7 (simulated and observed). Should be it is that this event represents one of 
main observed flood volumes with a frequency of 0.99, and Imax frequency equal to 97.3% and the one of φ 
equal to 71%. As a result, the determination of φ-index allows calculating runoff volumes, which represent 
an important stake in water resource management. Indeed, runoff volume intervenes in the estimation 
of sediment transport, filling or draw-off of reservoirs. However, the event (Imax, φ) frequency may not be 
sufficiently informative concerning the occurrence of flood volume.

1.5  Summary and conclusions

Copulas are mathematical objects that fully capture the dependence structure among random variables 
and hence offer great flexibility in building multivariate stochastic models. Since their introduction 
in hydrology in the 2000s, copulas have gained considerable popularity in several fields of hydrologi-
cal sciences such as flood frequency analysis; drought frequency analysis; rainfall frequency analysis; 
design rainfall; design floods; regional analysis; analysis under climate change; hydrological extremes; 
uncertainty modeling; geostatistical models; remote sensing observations.

Copulas offered the opportunity to determinate multivariate statistic quantities such as joined prob-
abilities, conditioned probabilities, and return periods of events that were unsolvable by classical multi-
variate distributions. A monthly updated database of recent references on copula can be found in www.
STAHY.org.

In this chapter, two applications were presented: the first is the estimation of runoff for an ungauged 
catchment using geomorphological instantaneous unit hydrograph and the second is the modeling of 
the correlation of infiltration and rainfall intensities. The main conclusions that can be drawn are

• The conditioning of infiltration-index to rainfall duration disables the reconstitution of observed 
hydrograph. We suggest testing other types of copulas which model negative correlations.

• The effective rainfall hyetographs derived from two φ-Intensities distributions (maximum intensity 
and average intensity) allowed reconstituting observed hydrographs; unlike the case of which deals 
with rainfall duration. We note that the average intensity does not seem to improve the results.

• The encouraging results derived from distribution allow supporting the hypothesis of the condi-
tioning of infiltration index to maximum intensity and suggest that kinetic rainfall energy may 
control runoff.

• Particular isolines 2I2F (Intensity-Index of Infiltration Frequency) were proposed. They can be 
used in design effective rainfall or design flood.

• Other investigations may be possible between Infiltration index and other variables such as ante-
cedent rainfall or kinetic rainfall energy.

1.a  appendix

1.a.1   archimedean copulas, Their Generator, and relation 
between copula Parameter and Kendall’s Tau

Several references published copula models. One famous reference: [23] who presented among these 
models, the Archimedean ones and particularly those of one parameter. Table 1.5 shows the copula 
generators and the relation between the copula parameter and Kendall’s τ.

1.a.2  functions of Goodness-of-fit

K(z) function is the distribution function of the copula C(U, V). Reference 13 showed that this distribu-
tion function is related to the generator ϕ of an Archimedean copula through the expression of K(z):



Applications of Copulas in Hydrology 15

 
K z

z z

z
( )

( )

( )
= −

′
φ

φ
 (1.9)

An empirical K(z) can be calculated for any z as the proportion of empirical values of C(u, v) that is less 
than z:

 
K z

z z

n
i

emp( )
}= ≤{number of  (1.10)

J(z) function or cumulative: Tau is related to a copula through the expression

 

τ = − + ∫∫1 4

0

1

0

1

C u v c u v u v( , ) ( , ) d d  (1.11)

J(z) function is expressed by

 
J z

C u v c u v u v

C z z

zz

( )

( , ) ( , )

( , )
= − +









∫∫

1 4
00

d d

²
 (1.12)

The full double integral is a probability weighted average of C(u, v). To compare this, the partial integral 
has to be divided by the weights, thus the first power of C(z,z) is the denominator. This quotient gives 
the average value of C(u, v), which increases as a function of z. The second C(z, z) divisor expresses this 
average relative to C(z, z). It should be that J(1) = τ.

An empirical cumulative τ can also be calculated, expressed by
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M(z) function is the cumulative conditional mean defined by
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Verifying M(1) = 1/2.

TABLE 1.5 Archimedean Copulas, Their Generator, and Relation between 
Copula Parameter and Kendall’s τ

One-Parameter 
Archimedean Copulas Generator

Relation between Copula 
Parameter a and Kendall’s τ
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Gumbel ϕ(t) = (−ln (t))a a > 0 τ(a) = 1 − 1/a
Clayton ϕ (t) = a(t−1/a −1) a > 0 τ(a) = 1/(2 a + 1)
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With D(1) = n and N(1) = n/2.
L(z) and R(z) functions are Left and Right tail concentration functions. The two functions L(z) and 
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L function is analyzed for z ∈ [0,1/2] and R function for all z ∈[1/2,1].

1.a.3  Goodness-of-fit: Bivariate χ2

Let (X, Y) be a sample of size n.
The Xi and Yi are regrouped into six classes, respectively (v0; v1]; (v1; v2]; …; (v5; v6], and (w0; w1]; 

(w1; w2]; …; (w5; w6], where the boundaries vi’s (wi) are chosen such that the number of observations λ1, 
λ2 …, λ6 respectively η1, η2, …, η6, in the corresponding classes are as symmetrically distributed as pos-
sible. We thus obtain 36 two-dimensional intervals (vi−1; vi] x (wi−1; vi], i, j = 1…6. Then, we regroup these 
intervals in k larger rectangular interval classes, such that an expected frequency of at least 1% in each 
class and a 5% expected frequency in 80% of the classes. The fitted number of observations fi,j in each 36 
two-dimensional intervals (vi−1; vi] x (wi−1; vi], is given by
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Let zi,j be the number of observations in the 36 two-dimensional intervals. Through summation of 
zij’s respectively fi;j’s, one obtains the number of observations Ok, respectively, the expected number of 
observations Ek, in each rectangular interval class k. The bivariate chi-square statistic is then defined by
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1.a.4  Kendall’s Plots

For a bivariate sample (X, Y) of size n, one defines for a given pair (Xi, Yi) a random variable H(i):
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Let the quantity Wi:n represent the expectation of the ith order statistic associated to the random variable H 
of size n from the distribution K0, under the null hypothesis of independence. By definition, it is expressed by
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[11] proposes to take as H distribution, the asymptotic null distribution K0, defined by
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k0 is the density corresponding to K0 (U and V are independent uniform random variables on the inter-
val [0,1]).

After sorting H(i) to get H(1) < H(2) … < H(n), one plots the pairs (Wi:n, H(i)), for each i ∈ [1,n]. The 
interpretation of the graph (Wi:n; H(i)): K-plot allows to detect the dependence: the greater departure 
from the 45° reference line, the greater the dependence. For negative dependence, the points fall on the 
horizontal axis. Similarly, for a positive dependence, the points fall on the curve K0(w). The denomina-
tion Kendall plot comes from the relation between the H(i) and the Kendall’s τ [11]. They demonstrate 
that an estimation of Kendall’s τ can be calculated as follows:
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2.1  Introduction

Clean water is rapidly becoming an increasingly scarce resource in many regions of the world; so much 
so, that in some places, it is now traded on water markets, similar to traditional commodities like oil 
and natural gas. While some may argue that a market-based system will incentivize more efficient use of 
this essential and irreplaceable resource, increasing worldwide demand, improper practices that diminish 
water quality, wasteful and inefficient water management practices, and climate change will continue to 
reduce the availability of clean water. Today, 1.2 billion people, approximately 20% of the world popu-
lation, live in water-scarce areas. It is estimated that by the year 2025, 1.8 billion people will be living 
in regions with absolute water scarcity, and two-thirds of the world’s population could be living under 
stressed conditions. Water resource problems that have become more serious in recent years include 

Preface

In the late 1990s and early 2000s, when we and our colleagues began applying artificial neural 
networks (ANNs) to hydrologic problems, there was relatively little interest in the field. Most 
researchers were not familiar with ANN technology, and those who had a minimal understand-
ing often expressed an aversion to a “less than elegant black-box approach.” It was often difficult to 
convince peer reviewers that ANN-related modeling research had technical merit or that the find-
ings were universally transferable and constituted a significant contribution to hydrology. Over 
the last 10 years, with a seemingly exponential increase in publications demonstrating the power 
of the ANN technology, this view has changed dramatically. Now, researchers and practitioners 
alike are using ANNs in larger numbers for addressing a wide variety of serious and complex 
hydrologic processes and problems.

As will be presented in this chapter, ANNs have certain inherent advantages over traditional 
physical-based models that often make them better suited for particular types of hydrologic mod-
eling. Their flexibility and adaptability to a range of hydrologic process modeling and prediction 
applications and the ease of coupling ANNs directly with real-time data streams and optimi-
zation significantly increase their power and value. There is no doubt that they will become a 
basic modeling and management tool for hydrologic problems that continue to grow worldwide as 
human populations, economic activities, and climate changes impose new stresses and changes.

The purpose of this chapter is to

• Justify the use of ANN modeling for modeling complex hydrologic processes
• Contrast ANNs with more traditional physics-based modeling approaches like numerical 

models
• Provide an introductory overview of the invention and development of ANNs, along with 

their theoretical underpinning
• Provide general guidelines for developing and testing ANN models
• Use case studies to illustrate development and use of ANN modeling on representative 

hydrologic modeling applications

It is our hope that this chapter will not only introduce readers to the proven power of the ANN 
technology but its potential for new and novel applications in hydrologic modeling. In closing, 
we wish to acknowledge the contributions of several collaborators on previous work, some of 
which is presented in this chapter, particularly Dr. Mary Poulton of the University of Arizona 
and Mr. Emmanuel Charles of the US Geological Survey. They shared a vision of applying ANN 
technology to complex hydrologic problems and were among its earliest advocates as a standard 
modeling and prediction tool in hydrology.
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aquifer overdraft (i.e., mining) of groundwater systems, saltwater intrusion and/or upcoming into coastal 
aquifers, algal blooms of surface water systems, and extreme low flow and flooding events on rivers.

In an effort to more effectively monitor and manage water, there has been a rapid proliferation of 
data acquisition of critical hydrologic and water management variables. A relatively recent technology 
adaptation in water management has been supervisory control and data acquisition (SCADA) systems. 
SCADA systems consist of instrumentation sensors and relay that measure, transmit, and store hydro-
logic and operational data at virtually any time frequency of interest (e.g., second, minute, and hour). As 
their name implies, SCADA systems extend beyond simple data collection and storage, in that data can 
be transmitted for display and analysis in real time, with human decision control variables like pumping 
rates adjusted to achieve operational and management objectives.

Data visualization tools like geographic information systems (GIS) have been used with much success 
to spatially depict and analyze data. Still, data monitoring and SCADA systems have largely been under-
utilized, where all too often, little to no effort is dedicated to analyzing or extracting useful information 
from these continuous data streams in real time to facilitate effective management decisions; in short, a 
“data-rich but information-poor” culture pervades much of the industry.

Given this confluence of increasingly serious water problems, the increasing proliferation of large and 
continuous data streams, and the need for real-time decision-making capability, there is a premium for a 
fast and accurate data-processing tool. Artificial neural networks (ANNs), a form of artificial intelligence 
modeled after the human brain, are a class of “data-driven” models that “learn” system behavior of interest 
from data. Due to their mathematical structure, ANNs are capable of providing extremely accurate predic-
tions at specific target locations (e.g., groundwater monitoring wells, surface water stations) in real time 
using easily measurable variables like water levels, water extraction rates, and weather conditions. They 
have been used in a variety of hydrologic and water management applications, including groundwater level 
prediction, water treatment processes, streamflow prediction, algal bloom forecasting, and water demand.

In this chapter, the underlying theoretical and structural underpinnings of the ANN technology, its 
advantages and disadvantages relative to other methodologies, example applications, and its integration 
with optimization for promoting improved decision-making capability will be presented.

2.2  Differences between Physical-Based Models and aNN

Before presenting the underlying historical and theoretical underpinnings of ANNs, it is useful from a 
pedagogical perspective to first contrast this technology with more traditional physics-based modeling 
approaches. Physical-based models like analytical and numerical models are based upon the governing 
physics of the problem of interest. For example, the numerical groundwater flow model, MODFLOW, 
developed by the US Geological Survey (USGS), and used worldwide, uses the principles of mass con-
servation and momentum as the basis of its underlying numerical equations. The physics of flow is 
approximated by MODFLOW using Darcy’s law, which assumes a porous media with laminar flow 
conditions. While the model can be used to represent a variety of hydrogeological environments, the 
accuracy of its solution is constrained by how close its underlying physical assumptions (e.g., Darcian 
flow) represent reality, the accuracy of its estimated input parameter values, boundary conditions, and 
for transient simulations, its initial conditions. Real-world groundwater systems exhibit significant spa-
tial (i.e., heterogeneity), temporal (i.e., nonstationary), and even directional (i.e., anisotropy) variability, 
with parameter values like hydraulic conductivity exhibiting orders of magnitude variation direction-
ally, even within very short distances and, in the unsaturated zone, temporally. Representing this real-
world variability in a numerical model is infeasible, and often an average or typical representation of the 
system with the model is sought. Consequently, while these models are often effective at simulating and 
predicting general trends over space and time, their ability to accurately predict state variables like water 
levels at specific locations (e.g., monitoring well) in real time is limited.

In contrast, ANNs as an empirical-based model are not bound by simplifying physical and math-
ematical assumptions. In addition, they do not require inputs of difficult to estimate and/or characterize 
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parameter values like hydraulic conductivity. Instead, they learn directly from easily measurable vari-
ables, like water levels, pumping rates, and precipitation values. This underscores one of the major 
advantages of ANN models; they often use variables that are often more “transparent” (i.e., more directly 
measureable and quantifiable) than parameters used in traditional physics-based models.

While the historical data set used for developing the ANN model should ideally span the expected 
system behavior of interest for optimal performance, data sets approaching this range are often available 
or can be generated over time (e.g., variable pumping rates). Unlike physics-based models, a disadvan-
tage to the ANN approach occurs if the system fundamentally changes, for example, installation of a 
new production well. Under these circumstances, a new ANN model would have to be developed with 
data that includes the effect of the changes on the system. However, based upon the literature, ANN 
models often do not require data sets that span relatively long historical periods to accurately model 
hydrologic systems for their typical range of behavior. This is attributable to the well-behaved nature 
of most hydrologic systems; that is, while system behavior may be highly nonlinear, it is typically not 
contradictory or inconsistent, whereby a small change in a particular input variable does not produce 
inconsistent results (e.g., more precipitation does not diminish groundwater levels).

Another powerful advantage that ANN models have is that, unlike numerical models, they can be 
initialized to real-time conditions, which is invaluable for accurate real-time prediction and man-
agement capability. The parameter and boundary conditions values of numerical models are cali-
brated to an assumed (often average) initial condition, and deviation from this initial condition can 
produce an imbalance in the calibrated model, producing highly erroneous solutions. This ability to 
initialize the ANN models to real-time conditions increases prediction accuracy over shorter time 
periods at location specific points. At the same time, as presented later in this chapter in the saltwater 
upconing case study, ANN models have proven capable of accurately predicting over extended time 
periods that span years.

A further advantage of the ANN model is their simple mathematical structure, which enables com-
putation of solutions in seconds or less. Unlike numerical models, which consist of a system of numeri-
cal equations that must be solved simultaneously using complex numerical techniques like iterative 
matrix manipulations, the ANN equations are solved with simple mathematical operations. Because 
of this computational efficiency, ANN models are often used as “meta-models” or surrogate models for 
numerical models, where an ANN is trained from and used in lieu of a companion numerical model 
to exploit its superior computational speed while providing the same simulation or prediction capa-
bility. Their condensed nature also lends them to more efficient and effective integration with formal 
optimization.

While the use of ANN models in hydrologic problems are becoming more common, the methodology 
is still less accepted than more traditional physics-based models. Some of this aversion is due to a combi-
nation of a reluctance to use “black-box” models that do not explicitly represent the underlying physics 
as well as a general lack of familiarity with the ANN methodology. There is also an aversion because 
there is no mathematically strict rationale for determining the structure of an ANN model, although 
general heuristic guidelines are offered in the literature.

The reality is that no modeling approach is universally better or more applicable than another for all 
problems. ANN models offer relative advantages and disadvantages versus their counterpart physics-
based models. For many types of problems, however, they provide not only an acceptable but superior 
alternative and should continue to receive increasing attention in the hydrologic field, particularly with 
the increasing proliferation of continuous data streams like SCADA.

2.3  Historical Overview of aNN Development

ANNs were first developed not in an effort to perform complex modeling and estimation for engineering 
and science applications but rather to understand brain operation and human learning. Humans and 
indeed animals can process complex signals from which they extract information and make informed 
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decisions. Over time, “reinforcement learning” enables humans and animals to extract relationships 
that arise not through complicated mathematical models but from repeated experiences.

The first mathematically functioning ANN can be famously traced back to McCulloch and Pitts [11]. 
McCulloch was interested in understanding learning in the brain, and Pitts was a first-rate mathematician 
who assisted McCulloch in developing the first mathematical model for learning, which consisted of nodes, 
representing brain neurons, connected by mathematical functions, representing the synaptic connections 
with weights, which were adjusted during “learning.” Not only was their work revolutionary, their model 
actually serves today as the basis for the multilayered perceptron, which is the most commonly used ANN.

A number of important theoretical breakthroughs emerged over the 1940s, 1950s, and 1960s, includ-
ing Hebb [8], who described the interrelations between the neurons during learning; Von Neuman [18], 
the father of the modern computer, who discussed the role of memory and the way how biological 
networks can form memories by strengthening synaptic connections in creating physical changes in 
the brain; the first neurocomputer by Minsky in 1951, demonstrating that Hebbian learning could be 
implemented by a machine [12]; and Rosenblatt and Wightman, who developed the Mark I perceptron 
neurocomputer [15], which was able to produce interesting and complex behaviors, recognize patterns, 
and make associations. Widrow and Hoff [20] developed a similar computer (called ADALINE and later 
the MADALINE), which had binary inputs and outputs (−1 and 1), and as in the perceptron a linear 
combination of the inputs was computed, where the weights were updated based on the value of this 
linear combination. Time-varying data were introduced into the McCulloch–Pitts neuron by Caianiello 
[3]. The very special and simple learning algorithms posed a very strong limitation on the complexity of 
problems that could be solved by these neural computers.

In 1969, Minsky and Papert [12] published the book Perceptron, which exposed limitations of cer-
tain ANNs for solving select problems. This publication reduced the level of interest and research in 
ANNs until the 1980s. The limitations and perceived drawbacks were eliminated by the introduction 
of a then new back-propagation learning algorithm [12,16,19]. As a result, research and applications in 
ANNs exploded in the 1980s and 1990s in fields spanning most disciplines in engineering and science, 
with even significant applications in business.

2.4  Kolmogorov’s Theorem

Like many breakthroughs in applied science, astute scientists found an apparent relation between two dif-
ferent fields of study that connected the applied with the theoretical. In the case of ANNs, Hecht-Nielsen 
[9] noticed a connection between neural networks and a purely theoretical result posited by the father of 
modern probability theory A.N. Kolmogorov. Kolmogorov elegantly solved a major mathematical puzzle 
of the famous mathematician Hilbert, who in 1900 formulated 23 major unsolved mathematical problems 
as challenges for the twentieth century. Kolmogorov proved that any arbitrary continuous function on an 
n-dimensional cube can be exactly represented as a composition of additions and single-variable functions. 
The resulting theorem is considered as the theoretical foundation of ANN modeling and is an extremely 
important mathematical proof that attests to the powerful nonlinear modeling capability of ANN.

2.5  General aNN Structure

In the structure of neural networks, there are three kinds of neurons: input, output, and hidden neu-
rons. The structure of a three-layer perceptron is shown in Figure 2.1, where m is the number of inputs, 
n is the number of outputs, and p is the number of nodes in the hidden layer.

We note that the structure shows that every node in the hidden layer is connected to all nodes in the 
input and output layers. The bias unit (B) assumes unit input values and its role is to speed up the learn-
ing process. Note that it is connected to all hidden nodes as well as to all outputs. Multilayer perceptrons 
have a similar structure. Each node receives several inputs, which depend on the location of this node 
in the hierarchy. Its inputs can be original inputs or hidden variables. It also generates an output that is 
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directed toward to the nodes of the next hidden layer or to the output variables of the system. For nota-
tional convenience, let xi, …, xn denote the inputs and y denotes the output of a perceptron. The value 
received by the perceptron is a linear combination of its inputs:

 
Sum w x wi

i

i= +∑  (2.1)

where
the coefficients wi are the multipliers of the inputs
w is the coefficient of the bias unit (with unit input value)

The output is then obtained from Sum via an activation function
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The graphs of these functions are shown in Figure 2.2, and it is easy to show that
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Observe that f transforms Sum into the unit interval (0,1) and f ̅ transforms it into (−1,1) and that the two 
most popular activation functions are basically the same, they are linear transformations of each other. 
With given weights the first hidden variables can be computed from the inputs by using Equations 2.2 
and 2.3, and then the second hidden variables can be obtained, and so on in the case of multiple hidden 
layers, and finally all outputs can be calculated. That is, with given set of weight values wij, the output yk 
can be directly and very easily obtained for any input selection x1, …, xm.
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FIGuRE 2.1 Three-layer perceptron structure.
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This recursive procedure is a function y = F(x, w), where x is an input vector, w is the vector having 
all connection weights, and y is the output vector. Learning algorithms are used to identify the optimal 
connection weight values. Training and validation are the two stages of any learning process. First, 
about half of the data are used to determine the connection weights, and then the second half of the data 
are used to check the accuracy of the obtained input–output relation F. There are various references that 
discuss the popular learning algorithms for ANNs, and good summaries may be found, for example, in 
Poulton [14] Lingireddy and Brion [10], and Parker [13].

The training of an ANN requires the solution of an optimization problem, in which the unknown 
weights wij are the unknowns and the objective function is the mean squared error between the com-
puted and actually observed output values. The most popular back-propagation method is the applica-
tion of the gradient optimization method for this specially structured problem.

2.6  Development of a Particular aNN Model

2.6.1  Variable Selection

A very basic overview of the types of variables used for developing an ANN model is presented here. In 
accordance with systems theory, variables for systems may be classified into three general types: state 
variables, input variables, and output variables. State variables represent some fundamental inherent 
measure of the system’s state or condition; examples include water levels and water quality concentra-
tions. A state variable typically evolves over time and also often exhibits spatial variations.

State variables are often used as both input and output variables in an ANN model, with the set of 
inputs representing the state(s) of a previous time step(s) and the output variables often representing 
the state(s) for a future time step. Another typical group of input variables for ANN models are control 
variables, often called decision variables, which are variables over which humans have control; examples 
include extraction rates of a production well, the chemical dosing rate in a water treatment plant, and the 
storage release rates from a dam. Another group of input variables are random variables and, as the name 
implies, are variables that exhibit statistical randomness, over which there is no control; weather variables 
such as precipitation or temperature are classic examples. While the future value of these variables can be 
estimated using statistical methods, there is no way to control their outcome. The ANN outputs are the 
variables of most concern for the modeler, for example, the computed future water levels, salinity concen-
trations, algae counts, or even objective function values like economic costs, which may evolve over time 
in response to some combination of prior state(s), human controls, and random variables.

A critical first step in developing a robust and accurate ANN model is identifying the critical input or 
predictor variables necessary for predicting the system states of interest. One frequent criticism of ANN 
models is that they are “black boxes” that do not explicitly account for the physics of the system of inter-
est. While this is true, in order to develop a robust model capable of accurately predicting system behav-
ior of interest, a strong conceptual if not theoretical understanding of the system is necessary. Without 
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FIGuRE 2.2 Graph of the sigmoid and hyperbolic tangent activation functions.
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this understanding, the modeler will have difficulty in identifying the important input variables, related 
temporal and spatial issues that are important for proper data characterization and preprocessing, as 
well as characterizing the conditions under which the model will perform well, versus conditions where 
the model may not achieve desired performance.

Often, there is a temptation to “throw” as many variables into the model as possible, with the belief that 
the ANN model will identify the critical variables and minimize the relative predictive importance of the 
irrelevant variables accordingly. While this may be partially true, with limited data sets, more input vari-
ables result in a more complex or higher dimension error surface, which can compromise learning. The 
“principle of parsimony” is a general modeling edict that holds for all modeling in general; the complexity 
of the model should be reduced to the extent possible without compromising its ability to represent the 
fundamental properties of the system of interest. The goal of the modeler should be to develop an ANN 
that utilizes the critical input variables and can generalize system behavior, thereby consistently providing 
sufficiently accurate predictions. There is often a temptation for modelers to strive to achieve the lowest 
possible prediction error during validation or testing. Although not intuitively obvious, as discussed later 
in this chapter, achieving the lowest validation error does not necessarily ensure that the ANN (or other 
competing) model will be best for providing accurate predictions over a range of conditions.

For very complicated systems like algal blooms, where there are many possible input variables, a 
number of techniques may be used to identify an appropriate set of input variables. Principal com-
ponent analysis is often used to identify strongly correlated variables to reduce the number of inputs 
for the ANN model. Another common modeling approach is the use of a special type of ANN called 
self-organizing maps (SOM) or Kohonen networks, which can be used to classify systems into different 
classes and identify the relevant variables for each. For example, Bae et al. [2] used SOM to classify 720 
sampling sites on the basis of 27 environmental variables into seven clusters, with significant differences 
of environmental conditions among these clusters.

Another method is to use the ANN model to help identify relevant variables through trial and error 
and a sensitivity analysis. The ANN model can be used to generate sensitivity ratios that quantify how 
the training and validation errors change with and without inclusion of each of the candidate input 
variables. A more detailed overview of this may be found in Coppola et al. [5].

Yet another way to reduce the number of input variables, and therefore the dimensionality of the 
modeling problem, is to eliminate or combine highly correlated variables. For example, evapotranspira-
tion is highly dependent on temperature. However, spatial and temporal variability of evapotranspira-
tion across a study area is a function of differences in land use, type of vegetation, surface slopes, etc., 
and may produce significant variations in correlation between evapotranspiration and temperature. In 
cases where there is little variation in correlation between the two variables, a single variable (e.g., tem-
perature) may be used in lieu of the two variables. In areas where there is significant variation between 
the two variables, a single lumped value that is the additive or average of the two variables may suffice. 
For cases where there is a significant difference in the magnitude of the values, normalization should be 
used to offset these differences. Lastly, time lags for select input or predictor variables may significantly 
improve ANN forecasting accuracy, particularly where a “memory” in the system affects and/or is cor-
related with future system outcomes that the ANN model is predicting.

2.6.2  Determining the Number of Hidden Nodes

Identifying the “optimal” number of hidden nodes is problem dependent, and a certain amount of trial 
and error is necessary. From Kolmogorov’s theorem, Hecht-Nielsen [9] derived that the upper bound of 
the required number of hidden nodes is one greater than twice the number of input nodes. The number 
of hidden nodes must be capable of two simultaneous objectives; providing sufficient representation of 
the task but sufficiently low to achieve generalization in order to avoid over-fitting. If the data do not 
contain much information, or contain a high degree of noise, a fewer number of hidden nodes than the 
theoretical limit is advisable in order to prevent over-fitting. In some cases, a “fan-in” approach may 
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be desirable, where a fewer number of hidden nodes is used related to the number of input nodes. This 
“fan-in” structure reduces the dimensionality of the data set, promoting generalization. Therefore, in 
many cases, the optimum number of hidden nodes may be significantly less than the theoretical limit.

2.6.3  Training Patterns for aNN Learning

As “data-driven” models, robust ANN development is fundamentally dependent upon the quantity and 
quality of the data used to train the models. As discussed by Coppola et al. [4], “appropriate training set 
size for an ANN depends upon a number of factors, including its dimension (i.e., number of connection 
weights), the required ANN accuracy, the probability distribution of behavior, the level of noise in the 
system, and the complexity of the system.” Complexity within the context of ANN modeling refers to 
a system where small changes in model input values produce large and even contradictory changes in 
model output values. A system that does not exhibit this type of complexity may then be referred to as 
a “well-behaved” system.

There is no theoretical derivation for determining the number of necessary training patterns for 
a given ANN model development problem. However, some researchers suggest that the minimum 
number of training data required for robust ANN model development is

 Minimum number of required training samples = [(1.5 ) (1.×m + 55 )]× ×n c  (2.6)

where
m is the number of input nodes
n is the number of output nodes
c is some constant, typically ranging between 4 and 10

Note that the previous equation does not account for the number of hidden nodes in the ANN. It can 
be stated that, in general, more connection weights, partly a function of hidden nodes, necessitate 
more training samples. Therefore, c can be expected to increase with a higher number of hidden nodes 
for a particular modeling problem. Similarly, c will increase with more complex and/or nonlinear 
behavior.

Ideally the training samples should span the range of measured or expected behavior. Therefore, it is 
not simply a matter of using a sufficient number of training samples but the degree to which they statisti-
cally represent the problem behavior of interest over its full range.

2.6.4  Over-fitting Data

As discussed earlier, over-fitting of data should be avoided in ANN modeling and, fortunately, can 
be avoided by following basic protocol. Often, ANN modelers are excessively intent on reducing or 
minimizing training error to the maximum extent possible. Typically, a researcher will compare two 
competing models, and even when the relative error difference is almost insignificant, the researcher or 
modeler will select the model with the lowest error as the de facto superior one.

While low training and validation errors are obviously desirable, it does not ensure that one has 
developed a robust ANN (or other) model that is capable of generalizing system behavior over a wide 
range of conditions or that a particular model is necessarily superior to a competing or comparison 
model with a larger error. To help demonstrate this important concept, Figure 2.3 illustrates an over-
fitting example, where the parabola represents the exact function for the system behavior, and the mea-
surements have some random errors.

A function perfectly fit to the measurements produces an error of 0 between the measured and fitted 
values; however, the fitted function does not show the basic properties of the true function, monotonic-
ity and convexity, by producing a varying wavy function.
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The knowledge of the behavior of the data as well as their accuracy can be used to determine the 
needed accuracy of the ANN fit. One does not want to fit a function with a smaller error than the errors 
of the data; when this occurs, one is fitting random errors, rather than the tendency of the function, 
which is the objective.

2.7  aNN applications with case Studies

In order to demonstrate the utility of ANN models, several case studies from the literature are briefly 
overviewed in the following. These case studies are by no means an exhaustive survey of the literature 
but demonstrate the basic operational principles and applications of ANNs as discussed earlier.

2.7.1  aNN applications to Predicting Groundwater Levels

Accurately predicting groundwater levels has numerous important benefits, including protection against 
aquifer overdraft, streamflow depletion, wetlands dewatering, water quality degradation (e.g., saltwater 
intrusion), among others. Traditionally, numerical groundwater flow models are used for modeling and 
predicting groundwater levels in response to variable weather and pumping stresses. ANN models have 
fairly recently been proven to have the capability of accurately modeling complex groundwater systems, 
providing highly accurate predictions over small and large spatial scales, over short- and long-term 
prediction horizons, using a number of different types of input or predictor variables. This section will 
briefly summarize two case studies where ANN models have been developed for predicting groundwa-
ter levels in complex real-world groundwater systems.

2.7.2   case Study for Predicting Groundwater Levels 
in Tampa Bay, United States

The city of Tampa Bay, located along the southwestern Florida coast, has undergone tremendous popu-
lation growth over the past several decades. Consequently, the groundwater system used to meet much 
of the area’s water demand has suffered excessive water level declines. The area resides above a complex 
hydrogeological system, with a sedimentary unconfined aquifer overlying a low-permeability clay layer, 
below which lies a semi-confined and more complex limestone aquifer, which is characterized by com-
plex karst features in places.

The Northwest Hillsborough Wellfield consists of seven high-capacity production wells, which pump 
from the lower limestone aquifer. Numerous monitoring wells were installed in the vicinity of the well-
field to monitor groundwater level changes in response to pumping, with some wells screened within the 
upper sedimentary unconfined aquifer and others in the deeper limestone aquifer.
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FIGuRE 2.3 Consequence of over-fit.
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An ANN model was developed to predict groundwater levels at monitoring wells over forecast peri-
ods (i.e., stress period) ranging from 3 to 24 days. The ANN inputs consisted of initial water levels for 
12 monitoring wells; pumping extractions of individual extraction wells over the stress period length; 
precipitation; temperature; dew point; wind speed, as measured at the Tampa Bay Airport; and stress 
period length. The ANN outputs consisted of the water levels at the 12 monitoring wells at the end of the 
stress period. ANN predictive capability was compared both against measured groundwater levels and 
reforecasts (i.e., back prediction using information pertaining to that period) of groundwater levels by 
a coupled numerical surface water/groundwater flow model developed and operated by the water utility 
that manages the wellfield using a validation data set consisting of 10 consecutive weeks of weekly data, 
which was not used during ANN model development.

For the 120 validation predictions (i.e., 12 monitoring wells over 10 stress periods), the ANN model 
not only achieved a significantly lower validation error than the numerical model, 0.16 m versus 0.85 m, 
respectively, but also accurately reproduced the general behavior, accurately capturing increasing and 
decreasing water level periods in response to variable weather and pumping conditions in both the 
unconfined sedimentary aquifer and deeper semi-confined limestone aquifer. A sensitivity analysis 
with the ANN models demonstrated that precipitation events are the most significant factor on short-
term water level changes in the shallow unconfined aquifer, while pumping rates of the production wells 
are the most significant factors on short-term water level changes in the semi-confined aquifer. The 
interested reader is referred to Coppola et al. [4] for a more in-depth presentation of this work.

2.7.3  case Study for Predicting Groundwater Levels in Minqin Oasis, china

In the Tampa Bay Water modeling problem presented earlier, there was explicit information for 
the seven input pumping variables. In many areas where there is a high number of pumping wells 
(e.g., hundreds or more), as in a large agricultural area, this information will not be available. Often, 
when explicit information regarding an important variable is missing, a surrogate variable(s) may be 
used. The case study presented by Feng et al. [7] presents such an example when applying ANN model-
ing to a regional groundwater modeling problem.

The Minqin Oasis, situated in northwest China near Mongolia, is an area encompassing 160,000 km2 
and is surrounded by the Bandanjilin and Tenggeli Deserts. Over decades spanning from the 1950s 
to the present, high groundwater pumping in the region augments surface water diverted from the 
Hongyashan Reservoir, located at the lowest reach of the Shiyang River. This combination of high 
groundwater pumping and high surface water use has reduced both groundwater storage and recharge, 
resulting in extreme groundwater level declines throughout the region. The researchers developed ANN 
models trained and validated with historical data, which were then used to predict average groundwater 
level declines within the oasis under different land use conditions.

With more than 9000 irrigation wells in the area, even if actual pumping data existed, which does not, 
it would be impractical to explicitly represent each well. Instead, historical annual irrigation ground-
water pumping for the region was estimated by accounting for the irrigation area and types of crops, 
from which water demand was calculated. The ANN model used seven input variables for predicting 
the average basin groundwater levels 1 month into the future: initial groundwater level, monthly total 
precipitation, monthly total water surface evaporation, monthly total surface water reservoir inflow, 
population, monthly synthesis irrigation ratio, and irrigation. As pointed out by the authors, agricul-
ture irrigation always exceeded surface water inflow into the reservoir. Irrigation demand is obviously 
a function of agricultural factors, which are represented by the two ANN input prediction variables: 
monthly total surface water evaporation and the monthly synthesis irrigation ratio. Some quantity of 
groundwater pumping is attributable to potable consumption for the resident population. Therefore, 
using the two agricultural factors in combination with population represents the total water demand for 
the region, and in conjunction with surface water inflow, it was used as surrogate variables to represent 
total groundwater pumping in the region for discrete monthly stress periods.
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Two different subregions of the study area, Xiqu, more distant from the reservoir, and Xinhe, more 
proximate to the reservoir, were modeled by separate ANN models using the same seven input variables. 
In both cases, the ANN models achieved high prediction accuracy during validation, with an aver-
age root mean squared error of 0.37 m or less for the two validation cases. In addition, during valida-
tion, both models accurately reproduced the seasonal and overall annual trends of groundwater level 
changes, achieving a relative validation error with respect to the average monthly range of groundwater 
level fluctuations of around 8.8% on average for the two study areas. The models were then used to proj-
ect groundwater level declines under various potential irrigation demands over 1-year periods using 
monthly time steps and to identify scenarios that would reduce and/or eliminate continued overdraft of 
the groundwater systems.

Sensitivity analyses results obtained with both models were consistent with the hydrogeological sys-
tem. Surface water inflow into the reservoir was only the fourth most important predictor variable for 
the Xiqu region, while it was the most important predictor variable for the Xinhe region, which is sig-
nificantly closer to the reservoir, and therefore has more access to and uses more surface water for irriga-
tion. This higher surface water use has two important effects on groundwater levels in the Xinhe region: 
first, it reduces demand for groundwater extractions, and second, it artificially increases areal recharge 
from irrigation. In addition, leakage through the unlined reservoir bottom acts as an additional source 
of groundwater recharge to the region.

In summary, highly accurate ANN prediction models were developed using seven input variables for 
accurately predicting monthly average groundwater level changes within two large regional study areas 
and performing a sensitivity analysis that enhanced system understanding. Because explicit groundwa-
ter extraction pumping information was not available for this large irrigation area, the researchers used 
surrogate variables indicative of irrigation and potable use as surrogate variables for this critical govern-
ing variable. This work demonstrates how ANN models can implicitly represent important causal vari-
ables with correlative variables that capture the important physical components of the system, achieving 
high prediction capability.

2.7.4  aNN applications to Predicting Water Quality

Predicting water quality in both man-made and natural systems is an extremely important and common 
objective, with numerous applications in the literature using ANN, including saltwater intrusion and 
upconing, algal blooms, nitrate loading, and water treatment, among just some of the examples. Many 
mechanistic models are limited in accurately predicting complex chemical processes, for example, the 
onset, duration, and intensity of algal blooms in surface water systems. In this section, an ANN water 
quality modeling application addressing groundwater upconing problem for a community well located 
in Provincetown, Massachusetts, with an extended 46-month simulation is presented.

2.7.5   case Study for Predicting Saltwater Upconing 
in Provincetown, United States

Provincetown, Massachusetts, situated on a peninsula between the Cape Cod Bay and the Atlantic 
Ocean, is a popular resort that experiences significantly higher water use during summer. A production 
well was installed in the middle of the peninsula in 1987 to help meet water demand for the commu-
nity. Over time, increases in salinity concentrations in the aquifer were measured in a monitoring well 
located near the production well. The salinity concentrations in the aquifer, as measured in the monitor-
ing well, generally decrease during lower demand periods but increase during higher pumping periods.

In order to predict variable salinity concentrations (i.e., conductivity) in the monitoring well in 
response to variable pumping and weather conditions, ANN models were developed to predict conduc-
tivity levels 30, 60, and 90 days ahead. The ANN model inputs consisted of initial conductivity value, 
measured at the beginning of the prediction period in the monitoring well; total pumping extraction 



32 Handbook of Engineering Hydrology

over the prediction period; total precipitation over the prediction period; and average air tempera-
ture. The ANN models in general achieved excellent predictive accuracy, accurately reproducing vari-
able conductivity levels in the monitoring well over time. Although significantly higher conductivity 
changes occurred over the longest 90-day prediction period, higher accuracy was achieved, as total 
pumping extraction becomes more closely correlated with conductivity levels over longer periods. A 
sensitivity analysis also revealed that weather variables in general become more important as predictors 
of conductivity levels in the aquifer with longer prediction horizons.

A final ANN model was used to perform an extended 46 month simulation period using monthly 
time steps. The model accurately simulated variable conductivity levels in the monitoring well over the 
extended period, reproducing the higher and lower conductivity periods. This performance demon-
strates that ANN models can be used for providing extended simulations over multiple time steps that 
span years into the future. A more detailed overview of this research may be found in Coppola et al. [5].

2.7.6  aNN application to formal Management Optimization

Formal optimization can be performed to identify the optimal values for human control or decision 
variables that minimize a negative objective (e.g., operating costs) and/or maximize a positive objective 
(e.g., water supply) while satisfying both management objectives (e.g., minimum required water levels) 
and the physics of the problem (e.g., conservation of mass). Optimization has been used extensively in 
water resources planning and management, ranging from groundwater extraction policies that mini-
mize environmental impacts while maximizing water supply to surface water extractions that maxi-
mize storage while minimizing flooding. Traditionally, physical-based models (e.g., numerical) have 
been used as the basis for performing the optimization. The reader is referred to Ahlfeld and Mulligan 
[1] for a more detailed overview of the method. However, ANN models developed for the physical sys-
tem of interest can serve as a more efficient and even accurate surrogate for traditional physical-based 
models in performing optimization.

2.7.7   case Study for Optimizing Wellfield Pumping 
in Toms river, United States

An ANN model developed from a physics-based numerical groundwater flow model was used to perform 
formal optimization of a public supply wellfield [6]. The public supply wellfield, located in Toms River, 
New Jersey, is at risk to a groundwater contamination plume originating from a highly contaminated 
site. A detailed five-layered numerical groundwater flow model, consisting of over 77,000 active cells, 
was developed by the New Jersey Geological Survey to simulate the groundwater system and resulting 
capture zones generated by the individual pumping wells under variable pumping and natural recharge 
conditions. The objective of the optimization analysis was to balance the two conflicting objectives of 
maximizing pumping supply while minimizing wellfield vulnerability to contamination from the plume.

Using simulation sets generated by the numerical groundwater flow model, the ANN model was 
trained to accurately predict in response to variable pumping and recharge rates groundwater levels 
(i.e., head) one month ahead at select model cell locations situated between the capture wells used to 
contain the plume and nearby community supply wells. From the predicted water levels, hydraulic 
head differences along the downgradient plume boundary were computed, which was used to estimate 
the level vulnerability of the supply production wells to the groundwater contamination plume under 
different pumping and recharge rates.

The inputs to the ANN model consisted of initial water levels at 32 cell locations at the beginning of 
the monthly stress period, the pumping rates for each of the four production wells over the monthly 
stress period, and the monthly areal recharge rate. The output variables consisted of the final water levels 
at the 32 cell locations at the end of the monthly stress period. A different ANN model was developed 
for each month, and in all cases, the ANN models achieved excellent prediction results, with a mean 
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absolute error of just 0.03 m in predicted water levels for a system that experienced an average monthly 
change of 0.70 m. The 12-monthly ANN models were linked and demonstrated to maintain high predic-
tive capability for one year prediction horizons.

The ANN model equations were directly embedded within the optimization formulation, from which 
the corresponding Pareto frontier was generated. Using the Pareto frontier, various distance-based 
methods were used to select the best trade-off point in accordance with the priorities and preferences of 
the decision makers. The solutions obtained by the ANN-optimization model compared favorably with 
the results validated with MODFLOW. In short, the ANN-optimization model was able to achieve high 
accuracy while attaining orders of magnitude higher computational efficiency than a corresponding 
numerical model approach. In addition, the ANN model could be used independent of optimization 
efficiently performing thousands of simulations that would otherwise be infeasible with the correspond-
ing numerical groundwater flow model.

2.8  Summary and conclusions

ANN models are a powerful alternative to more traditional physical-based models, having been applied 
with success to a number of different hydrologic areas, including groundwater and surface water resources, 
process control of water treatment systems, water demand forecasting, and unsaturated flow. They have 
accurately predicted future system states that include water levels, flow rates, and water quality in response 
to various factors, including weather and human controls. ANNs offer a number of other advantages, such 
as the nonnecessity of including often difficult to estimate physical model parameter values, superior com-
putational efficiency and speed, and their ability to provide insights into physical systems.

One of the more frequent criticisms of the empirically based ANN is their “black-box” approach, 
where the fundamental governing physics are not embedded within their equations. However, because 
hydrologic systems all too often lack the necessary spatial and/or temporal characterization of physical 
parameters necessary for developing and calibrating an accurate physical-based model, this “black-
box” approach that relies on more easily measureable variables that conform with the physical rules 
is often a distinct advantage. In effect, the physics of the system is captured implicitly via the data. At 
the same time, it is important that modelers have a solid conceptual if not theoretical understanding 
of the system of interest. Modelers must be careful in using the necessary input variables for model-
ing the system of interest over its expected range. In addition, a solid system understanding is vital 
for not only promoting development of a robust ANN model but understanding its limitations under 
different conditions.

One of the major advantages posed by ANN models that has received far too little attention is that, 
unlike numerical models, ANNs can be directly integrated with real-time data streams for initialization 
of its input variables to real-time conditions. This real-time initialization capability not only increases 
predictive accuracy but allows the ANN models to provide forecasts in real time that reflect existing 
system (e.g., weather) conditions. In addition, this real-time initialization allows the ANN models to 
attain location specific accuracy at discrete locations (e.g., monitoring wells) that are otherwise not pos-
sible with a traditional-based model.

Undoubtedly, there are many additional innovations and advancements that remain to be realized 
with ANN technology. For example, ANN models have also been demonstrated both in theory and 
simulations to have the potential of improving numerical model simulations by constraining their set 
of equations to discrete future values predicted independently by the ANN models [17]. ANN models 
can also easily be combined with interpolation equations and/or physics-based equations to expand 
the domain of prediction capability. ANN models can be efficiently combined with formal optimiza-
tion, helping to overcome some of the traditional problems associated when performing optimization 
with physics-based equations. As an extension to this, ANN models that can achieve a higher level of 
accuracy in predicting real-time responses in the natural system will produce more accurate optimal 
solutions.
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As water resources are increasingly stressed and depleted, the need for more accurate modeling will 
only increase. That ANN models can be continuously updated by real-time data streams, can be com-
bined with other modeling techniques for increasing the domain of predictions and achieving superior 
real-time prediction capability, as well as can serve as segments in optimization models, all of these 
will ensure that they will continue to be used to address some of the most pressing water problems 
confronting humans in the twenty-first century.

references

 1. Ahlfeld, D.P. and Mulligan, A.E. 2000. Optimal Management of Flow in Groundwater Systems. 
San Diego, CA: Academic Press.

 2. Bae, M., Kwon, Y., Hwang, S., Chon, T., Yang, H., Kwak, I., Park, J., Ham, S., and Park, Y. 2011. 
Relationships between three stream assemblages and their environmental factors in multiple spatial 
scales. International Journal of Limnology 47: S91–S105.

 3. Caianiello, E. 1961. Outline of a theory of thought-processes and thinking machines. Journal of 
Theoretical Biology 2: 204–235.

 4. Coppola, E., Szidarovszky, F., Poulton, M., and Charles, E. 2003. Artificial neural network approach 
for predicting transient water levels in a multilayered groundwater system under variable state, 
pumping, and climate conditions. Journal of Hydrologic Engineering 8(6): 348–359.

 5. Coppola, E., McLane, C., Poulton, M., Szidarovszky, F., and Magelky, R. 2005. Predicting conduc-
tance due to upconing using neural networks. Journal of Ground Water 43(6): 827–836.

 6. Coppola, E., Szidarovszky, F., Davis, D., Spayd, S., Poulton, M., and Roman, E. 2007. Multiobjective 
analysis of a public wellfield using artificial neural networks. Journal of Ground Water 45(1): 53–61.

 7. Feng, S., Kang, S., Huo, Z., Chen, S., and Mao, X. 2008. Neural networks to simulate regional ground-
water levels affected by human activities. Journal of Ground Water 46(1): 80–90.

 8. Hebb, D.O. 1949. The Organization of Behavior. New York: Wiley.
 9. Hecht-Nielsen, R. 1990. Neurocomputing. Reading, MA: Addison-Wesley.
 10. Lingireddy, S. and Brion, G., eds. 2005. Artificial Neural Networks in Water Supply Engineering. 

Reston, VA: American Society of Civil Engineers.
 11. McCulloch, W.S. and Pitts, W. 1943. A logical calculus of the ideas immanent in nervous activity. 

Bulletin of Mathematical Biophysics 5: 115–133.
 12. Minsky, M.L. and Papert, S.A. 1969. Perceptrons. Cambridge, MA: MIT Press.
 13. Parker, D. 1985. Learning-logic: Technical Report TR-47, Center for Computational Research in 

Economics and Management Science, MIT, Cambridge, MA (April).
 14. Poulton, M.M. 2001. Computational Neural Networks for Geophysical Data Processing. Amsterdam, 

the Netherlands: Pergamon.
 15. Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and organization 

in the brain. Psychological Review 65: 386–408.
 16. Rumelhart, D. and McClelland, J. 1986. Parallel Distributed Processing. Explorations in the 

Microstructure of Cognition. Cambridge, MA: MIT Press.
 17. Szidarovszky, F., Coppola, E., Long, J., Hall, A., and Poulton, M. 2007. A hybrid artificial neural 

network-numerical model for ground water problems. Journal of Ground Water 45(5): 590–600.
 18. Von Neuman, J. 1958. The Computer and the Brain. New Haven, CT: Yale University Press.
 19. Werbos, P. 1974. Beyond regression: New tools for prediction and analysis in the behavioral sciences. 

PhD dissertation, Applied Math, Harvard University, Cambridge, MA.
 20. Widrow, B. and Hoff, M. 1960. Adaptive switching circuits. IRE WESCON Convention Record 4: 

96–104.



35

AuTHOR

Carmen Agouridis is an assistant professor in the Biosystems and Agricultural Engineering 
Department at the University of Kentucky. A licensed professional engineer in Kentucky and West 
Virginia, Dr. Agouridis has expertise in stream restoration and assessment, riparian zone management, 
hydrology and water quality of surface waters, and low-impact development. She is the recipient of over 
$5 million in grants, has authored a number of publications related to streams and riparian manage-
ment, and is the director of the Stream and Watershed Science Graduate Certificate at the University 
of Kentucky. Having received training in Rosgen Levels I–IV along with courses at the North Carolina 
Stream Restoration Institute and various conference workshops, she teaches Introduction to Stream 
Restoration, which is a senior- and graduate-level course at the University of Kentucky.

3
Bankfull Frequency 

in Rivers

3.1 Introduction ........................................................................................36
3.2 Identifying Bankfull ...........................................................................37

Field Indicators • Minimum Width-to-Depth Ratio
3.3 Determining Bankfull Discharge ....................................................40

Gaged Sites • Ungaged Sites
3.4 Computing Bankfull Frequency.......................................................43

Example • Solution
3.5 Summary and Conclusions ...............................................................46
References ........................................................................................................48

Carmen Agouridis
University of Kentucky

Preface

Bankfull discharge is often used as a surrogate for channel-forming or dominant discharge—
the morphologically significant discharge that shapes the river. Because of this, understanding 
the magnitude and frequency of bankfull discharge is important for river management and 
restoration. While an average return period of 1.5 years is often cited for bankfull discharge, this 
event can occur at intervals of less than one year to more than a decade. Determining bankfull 
discharge magnitude and frequency requires the ability to identify bankfull elevation in the 
field, transform this elevation into a discharge, and then compute the frequency of the resultant 
discharge.
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3.1  Introduction

Bankfull discharge represents the maximum flow that a river can convey without overflowing its banks 
[5,19,42,77]. This discharge is considered morphologically significant as it represents the separation 
between river formation processes and floodplain processes [19,42,57]. Bankfull discharge is considered 
deterministic and as such is frequently used to estimate the channel-forming or dominant discharge of 
alluvial rivers [19,27,66]. Channel-forming discharge is a theoretical discharge that if maintained for an 
indefinite period of time (i.e., held constant) would produce the same river morphology as that of the 
long-term hydrograph [2,19,66,69]. Bates and Jackson [9] define channel-forming discharge as the “dis-
charge of a natural channel which determines the characteristics and principal dimensions of the chan-
nel.” The concept of channel-forming discharge is applicable to stable rivers [19].

As channel-forming discharge is theoretical, it is not measured directly; rather it is indirectly esti-
mated using bankfull discharge although effective discharge, the discharge that transports the maximum 
annual sediment load, is sometimes used [1,5,11,19,25,26,62,78,79]. Soar and Thorne [69] describe effec-
tive discharge as the “integration of sediment transport with flow-duration.” As seen in Figure 3.1 with 
curves (i) and (ii), frequent but small discharges transport small amount of the sediment, and infrequent 
but large discharges transport large amount of sediment. However, when considering the effectiveness 
of a given discharge, as seen in curve (iii), it is the intermediate discharges that transport the greatest 
fraction of the average annual sediment load [5,56,69].

Computing effective discharge requires the use of long-term discharge and sediment data, of which 
obtainment of the latter can be especially challenging. Few monitoring stations collect sediment data, 
and of those that do, it is the suspended fraction that is sampled. Juracek and Fitzpatrick [36] note that 
very few US Geological Survey (USGS) gage sites have bed load transport curves. The type of sediment 
data required to compute effective discharge depends on the river of interest. For rivers dominated by 
suspended load, effective discharge had been calculated using just this fraction [56]. For gravel-bed 
rivers, effective discharge has been computed using only bed load data although the bed load transport 
rates were calculated instead of measured given the difficulty in collecting bed load data [5,60]. In cases 
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FIGuRE 3.1 Effective discharge curve (iii) developed from discharge frequency curve (i) and sediment transport 
rating curve (ii). (Adapted from Soar, P.J. and Thorne, C.R., Channel Restoration Design for Meandering Rivers, 
ERDC/CHL CR-01, U.S. Army Corps of Engineers, Coastal and Hydraulics Laboratory, U.S. Army Engineer 
Research and Development Center (ERDC), Vicksburg, MS, 2001.)



Bankfull Frequency in Rivers 37

where rivers have a significant bed and suspended loads, the total bed material load is recommended 
[5,6,69]. Details regarding the procedure for calculating effective discharge are provided in Biedenharn 
et al. [11] and Soar and Thorne [69].

As determining bankfull discharge is less data intensive than computing effective discharge, and 
since it can be determined on both gaged and ungaged rivers, bankfull discharge is more commonly 
used by scientists, engineers, planners, and other environmental professionals than effective discharge. 
Estimations of bankfull discharge magnitude and frequency are particularly important in river restora-
tion projects, which have increased dramatically in the United States [10,70], as bankfull discharge is a 
critical design parameter [2,14,68,74].

Williams [77] noted the frequency of bankfull discharge is not common across rivers. While the 
one–two year recurrence interval is often cited as the mean frequency of bankfull discharge [15,22,41], 
Williams [77] found it could vary widely from 0.25 to 32 years. Table 3.1 contains a summary of bankfull 
discharge return periods throughout the United States and in some locations in Europe, Caribbean, 
Australia, and Middle East.

3.2  Identifying Bankfull

Computation of bankfull discharge first requires locating bankfull elevation. Identification of bank-
full elevation is done in the field [31,64] though limited efforts have examined techniques for remotely 
determining bankfull characteristics [12,13]. Identifying bankfull elevation requires practice with 
the degree of uncertainty in identifying bankfull elevation decreasing with increasing experience 
[31]. The degree of difficulty in identifying bankfull stage is also related to the stability state of the 
river and its location in the watershed. Bankfull elevation is often difficult to identify in unstable 
rivers [35], which are the very rivers for which restoration efforts are focused. Identifying bankfull 
elevation is more challenging with rivers without well-developed floodplains such as those in more 
mountainous regions [64].

3.2.1  field Indicators

Identification of bankfull elevation is best done through the use of multiple indicators, if possible. These 
indicators should identify a consistent bankfull elevation throughout the project reach [37,64]. For 
unstable rivers or those without well-developed floodplains, the presence of reliable bankfull indica-
tions will likely be limited. Regional curves, which are curves relating drainage area to the bankfull 
characteristics of width; mean depth; cross-sectional area; and discharge are useful in helping to iden-
tify and validate bankfull elevation (Figure 3.2) [14,22,37,48].

Bankfull indicators vary in importance and reliability in identifying bankfull elevation. Bankfull 
indicators commonly used, listed in order of importance, include [14,37,48,64,72]

 a. Flat depositional surfaces immediately adjacent to the river (Figure 3.3)
 b. Top of the highest depositional feature such as point bars and central bars (Figure 3.4)
 c. Prominent changes or breaks in the slope of a bank
 d. Erosion or scour features
 e. Vegetation

The use of vegetation is not recommended in the eastern portion of the United States as it is common 
for vegetation to grow below bankfull elevation. In the western portion of the United States, bankfull 
elevation has been successfully identified using vegetation.

In some instances, the flat depositional surfaces immediately adjacent to the river are inner berm 
features. The inner berm is developed and maintained by discharges that are smaller and more frequent 
than the bankfull discharge. This feature is more common in rivers that are or have adjusted to changing 



38 Handbook of Engineering Hydrology

TABLE 3.1 Bankfull Discharge Return Periods for the United States, Europe, 
Caribbean, Australia, and Middle East

Under Study Location

Bankfull Discharge 
Return Period (Years)

Range Average Source

Eastern United States
New York (regions 1 and 2) 1.01–3.8 2.1 [55]
New York (region 3) 1.2–3.4 2.1 [51]
New York (regions 4 and 4a) 1.2–2.7 1.5 [52]
New York (region 5) 1.1–3.4 1.6 [74]
New York (region 6) 1.01–2.4 1.5 [53]
New York (region 7) 1.1–3.6 2.1 [54]
Pennsylvania and Maryland 1.01–2.3 1.4 [16]
Piedmont of Pennsylvania and Maryland 1.01–1.5 1.3 [17]
Piedmont of Pennsylvania and Maryland 1.2–1.5 1.4 [75]
Allegheny Plateau and Valley and Ridge of Maryland 1.1–1.8 1.5 [44]
Coastal Plains of Maryland 1.0–1.4 1.2 [45]
Piedmont of Maryland 1.3–1.8 1.5 [46]
Coastal Plains of Virginia and Maryland <1.01–2.1 1.4 [39]
Piedmont of Virginia 1.0–4.3 1.8 [43]
Valley and Ridge of Maryland, Virginia, and West Virginia <1.1–2.3 1.4 [37]
Piedmont of North Carolina (rural) 1.01–1.8 1.4 [29]
Mountains of North Carolina 1.1–1.9 1.5 [30]
Coastal Plains of North Carolina 1.0–1.3 1.1 [21]
Coastal Plains of North Carolina 0.1–0.3a 0.2a [71]
Piedmont of North Carolina (urban) 1.01–1.8 1.4 [23]
Florida 1.0–1.4 1.1 [48]
Bluegrass region of Kentucky <1.01–1.2 1.1 [14]
Eastern Coal Fields of Kentucky <1.01–1.5 1.1 [73]
Ohio <1.01–1.4 1.1 [62]
Ohio 1.01–9.7 1.7 [67]
Michigan 1.0–1.8 1.3 [49]
Michigan 1.1–10 3.4 [63]

Western United States
Western United States 1.01–32 14.0 [77]
Oklahoma 1.01–3.7 1.4 [24]
Montana 1.0–4.4 1.9 [40]
Arizona and New Mexico 1.1–1.8 1.4 [50]
Colorado 1.3–1.8 1.5 [80]
Colorado 0.7–0.9a 0.8a [66]
Yampa River Basin of Colorado and Wyoming 1.01–4 — [5]
Pacific Northwest 1.01–3.1 1.4 [15]

Europe
Belgium 1.1–5.3 2.1 [59]
Cumberland Basin in New South Wales 4–10 — [60]

Caribbean
Puerto Rico 0.1–0.2a 0.1a [61]

Australia
Northern Territory 1.8–7.6 4.1 [65]

Middle East
Fars Province, Iran — 1.1 [3]

Note: Reported values are based on annual series unless otherwise noted.
a Partial-duration series.
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FIGuRE 3.3 Flat depositional surfaces immediately adjacent to the channel, as noted by the arrows, are good 
indicators of bankfull elevation. (Photo courtesy of Greg Jennings, North Carolina State University, Raleigh, NC.)
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2005; Keaton, J.N. et al., Development and analysis of regional curves for streams in the non-urban valley and ridge 
physiographic province, Maryland, Virginia, and West Virginia, U.S. Geological Survey Scientific Investigations 
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watershed conditions such as urbanization [20,23]. Identifying the inner berm elevation as bankfull 
elevation would result in an incorrect bankfull discharge [14].

3.2.2  Minimum Width-to-Depth ratio

Finding the elevation at which the width-to-depth ratio is at a minimum is a means of aiding in the iden-
tification of bankfull elevation, particularly in uniform reaches of the channel [14,19,38,77] (Table 3.2). 
In uniform reaches, the width of the channel changes slowly in relation to the channel depth until 
bankfull elevation is reached. As bankfull represents the breakpoint between in-channel and floodplain 
processes, width increases substantially in comparison to the mean depth (Figure 3.5).

3.3  Determining Bankfull Discharge

The procedure for computing bankfull discharge varies depending on whether or not the site of interest 
is gaged and the length of the discharge record. In both instances of gaged and ungaged sites, bankfull 
elevation must be identified in the field.

3.3.1  Gaged Sites

The USGS presently collects discharge and water level data at over 25,000 locations within the United 
States. Records are also available for over 11,000 additional decommissioned sites. A number of other 
countries operate monitoring programs similar to the USGS (e.g., Water Survey of Canada, Environment 
Agency of the United Kingdom). Many times, other entities such as universities and state and local 
governments also collect discharge data. However, such data are generally acquired for short periods 
of time meaning the data record may be of insufficient length for bankfull frequency analysis. A data 
record of at least 10 years is recommended for bankfull frequency analysis.

Fluctuations in budgets and population densities in addition to changing monitoring needs (e.g., total 
maximum daily loads) means that the gage network evolves. While some monitoring stations are 
decommissioned, new sites are initiated or activated. Discharge data from these inactive and active 

FIGuRE 3.4 The top of the point bar, as noted by the arrow, is a good indicator of bankfull elevation. (Photo 
courtesy of Carmen Agouridis, University of Kentucky, Lexington, KY.)
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TABLE 3.2 Minimum Width-to-Depth Ratio 
Method Is a Useful Aid for Identifying Bankfull 
Elevation

Elevation (m) Width (m) Mean Depth (m) W/D

1.90 0.94 0.04 23.50
1.95 0.99 0.09 11.00
2.00 1.05 0.13 8.08
2.05 1.13 0.17 6.65
2.10 1.23 0.20 6.15
2.15 1.37 0.23 5.96
2.20 1.47 0.26 5.65
2.25 1.56 0.30 5.20
2.30 1.63 0.33 4.94
2.35 1.70 0.37 4.59
2.40 2.40 0.30 8.00
2.45 2.96 0.29 10.21
2.50 3.26 0.31 10.52
2.55 3.74 0.32 11.69
2.60 4.21 0.33 12.76
2.65 4.69 0.34 13.79
2.70 5.06 0.37 13.68
2.75 5.67 0.38 14.92
2.80 6.40 0.38 16.84
2.85 6.75 0.41 16.46
2.90 6.95 0.45 15.44

Note: Data correspond to Figure 3.5.
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gaged sites are useful in bankfull frequency analysis provided bankfull elevation can be identified, and 
for inactive sites, an undisturbed staff gage is present (Figure 3.6).

3.3.1.1  active Gages: real-Time Data

If the active gage site is equipped to transmit data in real time (e.g., at 15–60 min intervals), it is likely 
that a staff gage is absent. To determine the stage at which bankfull elevation occurs, complete the 
following steps [14]:

 a. Identify bankfull elevation.
 b. Measure the elevation difference between bankfull elevation and water surface elevation. Be sure 

to note the exact date and time of the measurements.
 c. Access the Internet and find the stage that corresponds to the exact date and time of the 

measurements.
 d. Add the elevation difference, recorded in Step b, to the stage in Step c to get the water level or stage 

at bankfull.
 e. Use the most current discharge rating curve for the gaged site to determine bankfull discharge. 

For the USGS, discharge rating curves for active gages are available at the ratings depot.

3.3.1.2  active Gages: Nonreal-Time Data

In cases where the data are not collected and transmitted in real time, a staff gage should be present. The 
staff gage is used to reference both water surface and bankfull stages. For active gages with only a staff 
gage present, complete the following steps [14,72]:

 a. Identify bankfull elevation.
 b. Measure the elevation difference between bankfull elevation and water surface elevation.
 c. Read the water surface elevation on the staff gage.
 d. Add the elevation difference, recorded in Step b, to the staff gage reading in Step c to get the water 

level or stage at bankfull.
 e. Use the most current discharge rating curve for the gaged site to determine bankfull discharge. 

For the USGS, discharge rating curves for active gages are available at the ratings depot.

(a) (b)

FIGuRE 3.6 USGS hydrologic monitoring station comprised of (a) equipment housing unit with real-time data-
transmittal capabilities and (b) staff gage for visually assessing water level (units are in feet). (Photo courtesy of 
Carmen Agouridis, University of Kentucky, Lexington, KY.)
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3.3.1.3  Inactive Gages

Determining bankfull discharge at inactive gages is the same for active gages without real-time capa-
bilities (i.e., only a staff gage is present). The only difference is that discharge rating curves are not 
maintained for inactive sites. In the United States, one may either contact the USGS to obtain the last 
developed discharge rating curve or one may develop a stage-discharge rating curve using historic 
streamflow data [47]. Care should be exercised in using inactive gaged sites as the characteristics of the 
site (e.g., percent impervious area) may have changed considerably since the data were collected. If this 
were the case, treat the site as an ungaged site.

3.3.2  Ungaged Sites

While bankfull frequency cannot be determined at ungaged sites, information regarding bankfull 
discharge is useful. At ungaged sites, bankfull discharge must be estimated using hydraulic equations 
for open channel flow. In the United States, Manning’s equation is commonly used (3.1) [21,23,31,48]:

 
Q

1

n
AR S2/3 1/2=  (3.1)

where
Q represents the bankfull discharge (m3 s−1)
n is the Manning’s coefficient
A is the bankfull cross-sectional area (m2)
R is the hydraulic radius (m)
S is the slope (m m−1)

With Manning’s equation, cross-sectional surveys are required to compute the bankfull channel 
dimensions width, cross-sectional area, and mean depth; a longitudinal survey is needed to compute 
bankfull slope; and a Manning’s roughness coefficient is selected. Numerous references are available 
for assisting in the selection of a Manning’s roughness coefficient [7,8,18,28,32,34]. A comparison of 
Manning’s n values and bankfull discharge estimates from ungaged sites to those from similar gaged 
sites is recommended for purposes of validation [23,48]. In cases where detailed river and floodplain 
surveys are available, bankfull discharge can be estimated using United States Army Corps of Engineers 
program Hydraulic Engineering Center River Analysis System (HEC-RAS).

3.4  computing Bankfull frequency

Once bankfull discharge is known, the next step is to compute the frequency at which it occurs. Recall 
that the frequency with which bankfull occurs can only be computed for gaged sites. Computing the 
frequency of bankfull is helpful in validating whether or not bankfull elevation was correctly identified. 
While the frequency with which bankfull discharge occurs has been shown to vary considerably by 
Williams [77], the variation in a physiographic region is typically relatively small (Table 3.1). Within a 
physiographic region, bankfull return period values that are notably lower or higher than those found 
in the area require further examination. Other bankfull characteristics such as width, cross-sectional 
area, and mean depth should be compared to an appropriate regional curve to ensure an inner berm 
feature (bankfull return period too small) is not mistakenly identified as bankfull elevation or that 
channel incision does not mistakenly result in the identification of the top of the lowest bank as bankfull 
elevation (bankfull return period too large).

The Interagency Advisory Committee on Water Data (IACWD) published guidelines on the deter-
mination of flood flow frequency—Guidelines for Determining Flood Flow Frequency, Bulletin 17B of the 
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Hydrology Subcommittee [33]. Commonly known as Bulletin 17B, this document serves as the standard 
for determining the frequency of bankfull discharges. The guidelines are applicable for stream gage 
records for at least 10 years in length, unregulated or at least not appreciably altered flows, and fairly 
consistent watershed conditions for the period of record studied [76]. A number of free and commer-
cially available software programs are available for computing flood flow frequencies using the Bulletin 
17B guidelines (Table 3.3).

3.4.1  example

Determine the bankfull frequency for USGS gage station 01613900 Hogue Creek near Hayfield, Virginia, 
United States. Discharge data were collected starting in 1961. A cross-sectional view of a riffle surveyed 
at the site is shown in Figure 3.7. Keaton et al. [37] contains a detailed description of the site. All eleva-
tions are in reference to the staff gage datum.

3.4.2  Solution

The solution consists of three parts: identifying bankfull elevation, determining bankfull discharge, and 
computing the return period or frequency of the bankfull discharge:
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FIGuRE 3.7 Riffle cross section at USGS gage station 01613900 Hogue Creek near Hayfield, Virginia, United 
States. Bankfull elevation, as shown by the dotted line, occurs at a flat depositional surface immediately adjacent 
to the channel.

TABLE 3.3 Software Programs Utilizing Flood Flow Frequency Computations Using Bulletin 17B 
Guidelines

Software Program Developer Domain Website

HEC-SSP US Army Corps of Engineers Public http://www.hec.usace.army.mil/software/hec-ssp/
Peak FQ US Geological Survey Public http://water.usgs.gov/software/PeakFQ/
RIVERMorph RIVERMorph, LLC Private http://www.rivermorph.com/

Source: IACWD (Interagency Advisory Committee on Water Data), Guidelines for Determining Flood Flow 
Frequency-Bulletin 17B of the Hydrology Subcommittee, U.S. Geological Survey Office of Water Data Coordination, 
Reston, VA, 1982.
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 a. Bankfull is identified as the flat depositional surface adjacent to the channel, as shown with the 
dotted line in Figure 3.7. Bankfull occurs at an elevation of 1.21 m at station 8.38 m. The minimum 
width-to-depth ratio is used to verify bankfull elevation, as shown in Table 3.4. At an elevation of 
1.21 m, the width-to-depth ratio is about 16.0.

 b. The stage-discharge ratings table for the gage station is used to identify bankfull discharge. 
Table 3.5 contains a portion of the ratings table. At an elevation of 1.21 m, the corresponding 
discharge is 17.8 m3 s−1.

TABLE 3.4 Width-to-Depth (W/D) Ratios for Riffle 
Cross Section at USGS Gage Station 01613900 Hogue 
Creek near Hayfield, Virginia, United States

Elevation (m) Width (m) Mean Depth (m) W/D

0.05 0.75 0.03 25.00
0.10 1.58 0.05 31.60
0.15 3.42 0.06 57.00
0.20 4.49 0.09 49.89
0.25 5.16 0.12 43.00
0.30 5.77 0.16 36.06
0.35 6.85 0.18 38.06
0.40 8.33 0.19 43.84
0.45 8.82 0.23 38.35
0.50 9.32 0.27 34.52
0.55 9.77 0.30 32.57
0.60 11.00 0.32 34.38
0.65 11.22 0.36 31.17
0.70 11.43 0.40 28.58
0.75 11.65 0.45 25.89
0.80 11.86 0.49 24.20
0.85 12.04 0.53 22.72
0.90 12.21 0.57 21.42
0.95 12.38 0.62 19.97
1.00 12.54 0.66 19.00
1.05 12.71 0.70 18.16
1.10 12.86 0.74 17.38
1.15 13.00 0.78 16.67
1.20 13.15 0.82 16.04
1.25 14.55 0.79 18.42
1.30 15.59 0.79 19.73
1.35 16.62 0.79 21.04
1.40 19.29 0.72 26.79
1.45 20.48 0.73 28.05
1.50 20.72 0.77 26.91
1.55 20.96 0.81 25.88
1.60 21.19 0.85 24.93
1.65 21.43 0.89 24.08
1.70 21.67 0.93 23.30
1.75 21.90 0.97 22.58
1.80 22.14 1.01 21.92
1.85 22.38 1.05 21.31
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 c. The bankfull return period or frequency is computed using the publically available software pro-
gram Hydrologic Engineering Center Statistical Software Package (HEC-SSP). Table 3.6 contains 
the annual peak flow data used in the analysis. Note that the peak streamflow for water year 2009 
was not used because the gage height was not the maximum for the year.

The bankfull return period is 1.5 years meaning the event occurs twice every 3 years.

3.5  Summary and conclusions

Knowledge of the magnitude and frequency of bankfull discharge in rivers has important implications 
for river management and restoration. Changes or modifications to the flow regime of a river such as in 
the case of irrigation, dams/impoundments, urbanization, or even climate change can alter the frequency 
with which the floodplain is inundated (i.e., bankfull discharge producing events occur) meaning the geo-
morphic and ecological functions of the riverine system will change as well [58]. Bankfull events not only 
shape the channel but these and larger discharges influence riparian ecosystems through sediment, nutri-
ent, and woody debris deposits onto the floodplains. Such deposits influence nutrient cycling in riparian 
soils and hence hyporheic and instream water quality [4].

Efforts to manage and restore rivers must carefully consider bankfull discharge magnitude and 
frequency. While many studies report bankfull return periods between 1 and 2 years, others report 
values on the order of months to decades. Selecting a specified return interval (e.g., 1.5 years) for a 
restoration design without carefully evaluating the expected bankfull return period for a physio-
graphic region can result in large errors in estimating channel-forming discharge [19]. If the speci-
fied return period is much lower than the actual bankfull return period, then the channel will be 
undersized (i.e., bankfull discharge is actually larger than what is modeled) and will likely erode. 
Contrarily, if the specified return period is much larger than the actual bankfull return period, 
then the channel will be too large (i.e., bankfull discharge is actually smaller than what is modeled) 
and will likely aggrade [14]. The interaction between the channel and its floodplain is critical. As 
such, successful management strategies and restoration efforts will seek to maintain, or if needed, 
reestablish this connection.

TABLE 3.5 Portion of the 
Stage-Discharge Rating Table 
for USGS Gage Station 01613900 
Hogue Creek near Hayfield, 
Virginia, United States

Stage (m) Q (m3 s−1)

1.189 17.1
1.192 17.2
1.195 17.3
1.198 17.4
1.201 17.5
1.204 17.6
1.207 17.7
1.210 17.8
1.213 17.9
1.216 18.0
1.219 18.1
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TABLE 3.6 Annual Peak Flow Data for USGS Gage Station 
01613900 Hogue Creek near Hayfield, Virginia, United States

Water Yeara Date Q (m3 s–1) H (m)

1961 April 13, 1961 14.22 1.32
1962 March 21, 1962 22.09 1.53
1963 March 19, 1963 20.39 1.61
1964 November 7, 1963 11.10 1.27
1965 March 5, 1965 20.87 1.62
1966 September 21, 1966 27.86 1.79
1967 March 7, 1967 31.43 1.87
1968 March 17, 1968 14.50 1.42
1969 July 27, 1969 1.16 0.60
1970 July 9, 1970 55.22 2.26
1971 November 13, 1970 51.25 2.19
1972 June 22, 1972 78.15 2.70
1973 December 8, 1972 10.93 1.17
1974 December 26, 1973 11.67 1.21
1975 March 19, 1975 30.30 1.85
1976 January 1, 1976 31.43 1.88
1977 October 9, 1976 53.24 2.34
1978 August 6, 1978 75.89 2.61
1979 February 25, 1979 30.02 1.60
1980 October 2, 1979 31.15 1.61
1981 April 13, 1981 3.62 0.62
1982 June 13, 1982 39.08 1.84
1983 April 24, 1983 22.09 1.34
1984 February 14, 1984 51.25 2.32
1985 November 28, 1984 28.60 1.76
1986 November 4, 1985 20.08 1.49
1987 April 17, 1987 25.37 1.66
1988 May 6, 1988 28.88 1.76
1989 March 6, 1989 10.70 1.12
1990 July 13, 1990 4.87 0.78
1991 October 23, 1990 34.26 1.91
1992 July 25, 1992 21.41 1.53
1993 March 4, 1993 65.70 2.22
1994 November 28, 1993 33.13 1.60
1995 June 27, 1995 21.18 1.30
1996 September 6, 1996 115.82 2.96
1997 December 2, 1996 13.05 1.06
1998 November 7, 1997 29.45 1.51
1999 March 17, 1999 4.56 0.69
2000 August 6, 2000 30.58 1.54
2001 June 22, 2001 82.40 2.49
2002 May 2, 2002 5.15 0.72
2003 January 1, 2003 22.20 1.33
2004 September 28, 2004 67.68 2.25
2005 March 28, 2005 12.01 1.02
2006 November 29, 2005 25.66 1.42
2007 April 15, 2007 19.43 1.26
2008 April 20, 2008 21.29 1.31
2009 May 4, 2009 14.61 1.11
2010 March 13, 2010 37.66 1.70

a A water year encompasses the period from October 1 to 
September 30.



48 Handbook of Engineering Hydrology

references

 1. Afzalimehr H., M. Abdolhosseini, and V. Singh. 2010. Hydraulic geometry relations for stable 
channel design. Journal of Hydraulic Engineering 15: 859–864.

 2. Agouridis C.T., R.R. Brockman, S.R. Workman, L.E. Ormsbee, and A.W. Fogle. 2011. Bankfull 
hydraulic geometry relationships for the Inner and Outer Bluegrass Regions of Kentucky. Water 
3: 923–948.

 3. Alireza K. and S.H. Nabavi. 2007. Dominant discharge in the Kor River, upstream of Doroodzan 
Dam, Fars Province, Iran. Trends in Applied Sciences Research 2: 158–164.

 4. Andrews D.A., C.D. Barton, R.K. Kolka, C.C. Rhoades, and A.J. Dattilo. 2011. Soil and water char-
acteristics in restored canebrake and forest riparian zones. Journal of the American Water Resources 
Association 47: 772–784.

 5. Andrews E.D. 1980. Effective and bankfull discharge of streams in the Yampa River Basin, Colorado 
and Wyoming. Journal of Hydrology 46: 311–330.

 6. Annable W.K., V.G. Lounder, and C.C. Watson. 2011. Estimating channel-forming discharge in 
urban watercourses. River Research and Applications 27: 738–753.

 7. Arcement G.J. and V.R. Schneider. 1989. Guide for selecting Manning’s roughness coefficients for 
natural channels and flood plains. Washington, DC: U.S. Geological Survey Water-Supply Paper 2339.

 8. Barnes H.H. 1967. Roughness characteristics of natural channels. Washington, DC: U.S. Geological 
Survey Water-Supply Paper 1849.

 9. Bates R.L. and J.A. Jackson. 1987. Glossary of Geology. Alexandria, VA: American Geosciences Institute.
 10. Bernhardt E.S., M.A. Palmer, J.D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr et al. 2005. 

Synthesizing U.S. river restoration efforts. Science 308: 636–637.
 11. Biedenharn D.S., C.R. Thorne, P.J. Soar, R.D. Hey, and C.C. Watson. 2001. Effective discharge 

calculation guide. International Journal of Sediment Research 16: 445–459.
 12. Bjerklie D.M. 2007. Estimating the bankfull velocity and discharge for rivers using remotely sensed 

river morphology information. Journal of Hydrology 341: 144–155.
 13. Bjerklie D.M., D. Moller, L.C. Smith, and S.L. Dingman. 2005. Estimating discharge in rivers using 

remotely sensed hydraulic information. Journal of Hydrology 309: 191–209.
 14. Brockman R.R., C.T. Agouridis, S.R. Workman, L.E. Ormsbee, and A.W. Fogle. 2012. Bankfull 

regional curves for the Inner and Outer Bluegrass Regions of Kentucky. Journal of the American 
Water Resources Association 48: 391–406.

 15. Castro J.M. and P.L. Jackson. 2001. Bankfull discharge recurrence intervals and regional hydraulic 
relationships: Patterns in the Pacific Northwest. Journal of the American Water Resources Association 
37: 1249–1262.

 16. Chaplin J.J. 2005. Development of regional curves relating bankfull-channel geometry and discharge 
to drainage area for streams in Pennsylvania and selected areas of Maryland. Reston, VA: U.S. 
Geological Survey Scientific Investigations Report 2005-5147.

 17. Cinotto P.J. 2003. Development of regional curves of bankfull-channel geometry and discharge for 
streams in the non-urban, Piedmont physiographic province, Pennsylvania and Maryland. New 
Cumberland, PA: U.S. Geological Survey Water-Resources Investigations Report 03-4014.

 18. Coon W.F. 1995. Estimates of roughness coefficients for selected natural stream channels with 
vegetated banks in New York. Ithaca, NY: U.S. Geological Survey Open-File Report 93-161.

 19. Copeland R.R., D.S. Biedenharn, and J.C. Fischenich. 2000. Channel-Forming Discharge. Washington, 
DC: U.S. Army Corps of Engineers.

 20. DCR (Department of Conservation and Recreation). 2004. The Virginia Stream Restoration and 
Stabilization Best Management Practices Guide. Richmond, VA: DCR.

 21. Doll B.A., A.D. Dobbins, J. Spooner, D.R. Clinton, and D.A. Bidelspach. 2003. Hydraulic geometry 
relationships for rural North Carolina coastal plain streams. Report to NC Division of Water Quality 
for 319 Grant Project No. EW20011. Raleigh, NC: North Carolina Stream Restoration Institute.



Bankfull Frequency in Rivers 49

 22. Doll B.A., G.L. Grabow, K.R. Hall, J. Halley, W.A. Harman, G.D. Jennings, and D.E. Wise. 2003. 
Stream Restoration: A Natural Channel Design Handbook. Raleigh, NC: North Carolina Stream 
Restoration Institute, North Carolina State University.

 23. Doll B.A., D.E. Wise-Frederick, C.M. Buckner, S.D. Wilkerson, W.A. Harman, R.E. Smith, and 
J. Spooner. 2002. Hydraulic geometry relationships for urban streams throughout the Piedmont of 
North Carolina. Journal of the American Water Resources Association 38: 641–651.

 24. Duntell R.C. 2000. Development of Bankfull Discharge and Channel Geometry Relationships for 
Natural Channel Design in Oklahoma Using a Fluvial Geomorphic Approach. Norman, OK: University 
of Oklahoma.

 25. Emmett W.W. and M.G. Wolman. 2001. Effective discharge and gravel-bed rivers. Earth Surface 
Processes and Landforms 26: 1369–1380.

 26. Ferro V. and P. Porto. 2012. Identifying a dominant discharge for natural rivers in southern Italy. 
Geomorphology 139–140: 313–321.

 27. FISRWG (Federal Interagency Stream Restoration Working Group). 1998. Stream corridor restora-
tion: Principles, processes, and practices. By the Federal Interagency Stream Restoration Working 
Group (FISRWG) (15 Federal agencies of the US gov’t). GPO Item No. 0120-A; SuDocs No. 
A 57.6/2:EN3/PT.653.

 28. Gillen D.F. 1996. Determination of roughness coefficients for streams in west-central Florida. 
Tampa, FL: U.S. Geological Survey Open-File Report 96-226.

 29. Harman W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and 
R.E. Smith. 1999. Bankfull hydraulic geometry relationships for North Carolina streams. Presented 
at AWRA Wildland Hydrology Symposium, Bozeman, MT.

 30. Harman W.A., D.E. Wise, M.A. Walker, R. Morris, M.A. Cantrell, M. Clemmons, G.D. Jennings, 
D.R. Clinton, and J.M. Patterson. 2000. Bankfull regional curves for North Carolina mountain 
streams. Presented at AWRA Conference: Water Resources in Extreme Environments, Anchorage, AK.

 31. Harrelson C.C., C. Rawlins, and J. Potyondy. 1984. Stream channel reference sites: An illustrated 
guide to field techniques. Fort Collins, CO: USDA Forest Service Rocky Mountain Forest and Range 
Experiment Station General Technical Report RM245.

 32. Hicks D.M. and P.D. Mason. 1991. Roughness Characteristics of New Zealand Rivers. Christchurch, 
New Zealand: National Institute of Water and Atmospheric Research Ltd.

 33. IACWD (Interagency Advisory Committee on Water Data). 1982. Guidelines for Determining Flood 
Flow Frequency-Bulletin 17B of the Hydrology Subcommittee. Reston, VA: U.S. Geological Survey 
Office of Water Data Coordination.

 34. Jarrett R.D. 1985. Determination of roughness coefficients for streams in Colorado. Lakewood, CO: 
U.S. Geological Survey Water-Resources Investigations Report 85-4004.

 35. Johnson P.A. and T.M. Heil. 1996. Uncertainty in estimating bankfull conditions. Journal of the 
American Water Resources Association 32: 1283–1291.

 36. Juracek K.E. and F.A. Fitzpatrick. 2009. Geomorphic applications of stream-gage information. River 
Research and Applications 25: 329–347.

 37. Keaton J.N., T. Messinger, and E.J. Doheny. 2005. Development and analysis of regional curves for 
streams in the non-urban valley and ridge physiographic province, Maryland, Virginia, and West 
Virginia. Reston, VA: U.S. Geological Survey Scientific Investigations Report 2005-0576.

 38. Knighton D. 1998. Fluvial Forms and Processes. London, U.K.: Hodder Education.
 39. Krstolic J.L. and J.J. Chaplin. 2007. Bankfull regional curves for streams in the non-urban, non-tidal 

Coastal Plain physiographic province, Virginia and Maryland. Reston, VA: U.S. Geological Survey 
Scientific Investigations Report 2007-5162.

 40. Lawlor S.M. 2004. Determination of channel-morphology characteristics, bankfull discharge, and 
various design-peak discharges in western Montana. Reston, VA: U.S. Geological Survey Scientific 
Investigations Report 2004-5263.

 41. Leopold L.B. 1994. A View of the River. Cambridge, MA: Harvard University Press.



50 Handbook of Engineering Hydrology

 42. Leopold L.B., M.G. Wolman, and J.P. Miller. 1964. Fluvial Processes in Geomorphology. New York: 
Dover Publications, Inc.

 43. Lotspeich R.R. 2009. Regional curves of bankfull channel geometry for non-urban streams in 
the Piedmont physiographic province, Virginia. Reston, VA: U.S. Geological Survey Scientific 
Investigations Report 2009-5206.

 44. McCandless T.L. 2003. Maryland stream survey: Bankfull discharge and channel characteristics of 
streams in the Allegheny Plateau and the Valley and Ridge hydrologic regions. Annapolis, MD: U.S. 
Fish and Wildlife Service CBFO-S03-01.

 45. McCandless T.L. 2003. Maryland stream survey: Bankfull discharge and channel characteristics 
of streams in the Coastal Plain hydrologic region. Annapolis, MD: U.S. Fish and Wildlife Service 
CBFO-S03-02.

 46. McCandless T.L. and R.A. Everett. 2002. Maryland stream survey: Bankfull discharge and channel 
characteristics of streams in the Piedmont hydrologic region. Annapolis, MD: U.S. Fish and Wildlife 
Service CBFO-S02-01.

 47. McCuen R.H. 2004. Hydrologic Analysis and Design. Upper Saddle River, NJ: Prentice Hall.
 48. Metcalf C.K., S.D. Wilkerson, and W.A. Harman. 2009. Bankfull regional curves for North and 

Northwest Florida streams. Journal of the American Water Resources Association 45: 1260–1272.
 49. Mistak J.L. and D.A. Stille. 2008. Regional hydraulic geometry curve for the Upper Menominee 

River. Ann Arbor, MI: Michigan Department of Natural Resources Fisheries Division, Technical 
Report 2008-1.

 50. Moody T., M. Wirtanen, and S.N. Yard. 2003. Regional Relationships for Bankfull Stage in Natural 
Channels of the Arid Southwest. Flagstaff, AZ: Natural Channel Design, Inc.

 51. Mulvihill C.I. and B.P. Baldigo. 2007. Regionalized equations for bankfull-discharge and channel 
characteristics of stream in New York state-hydrologic region 3 east of the Hudson River. Reston, 
VA: U.S. Geological Survey Scientific Investigations Report 2007-5227.

 52. Mulvihill C.I., B.P. Baldigo, S.J. Miller, D. DeKoskie, and J. DuBois. 2009. Bankfull discharge and 
channel characteristics of stream in New York state. Reston, VA: U.S. Geological Survey Scientific 
Investigations Report 2009-5144.

 53. Mulvihill C.I., A.G. Ernst, and B.P. Baldigo. 2005. Regionalized equations for bankfull discharge and 
channel characteristics of streams in New York state: Hydrologic region 6 in the southern tier of 
New York. Reston, VA: U.S. Geological Survey Scientific Investigations Report 2005-5100.

 54. Mulvihill C.I., A.G. Ernst, and B.P. Baldigo. 2006. Regionalized equations for bankfull-discharge 
and channel characteristics of streams in New York state: Hydrologic region 7 in western New York. 
Reston, VA: U.S. Geological Survey Scientific Investigations Report 2006-5075.

 55. Mulvihill C.I., A. Filopowicz, A. Coleman, and B.P. Baldigo. 2007. Regionalized equations for 
bankfull discharge and channel characteristics of streams in New York state—Hydrologic regions 
1 and 2 in the Adirondack region of northern New York. Reston, VA: U.S. Geological Survey 
Scientific Investigations Report 2007-5189.

 56. Nash D.B. 1994. Effective sediment-transporting discharge from magnitude-frequency analysis. 
Journal of Geology 102: 79–95.

 57. Navratil O., M.B. Albert, E. Herouin, and J.M. Gresillon. 2006. Determination of bankfull discharge 
magnitude and frequency: Comparison of methods on 16 gravel-bed river reaches. Earth Surface 
Processes and Landforms 31: 1345–1363.

 58. Page K., A. Read, P. Frazier, and N. Mount. 2005. The effect of altered flow regime on the frequency 
and duration of bankfull discharge: Murrumbidgee River, Australia. River Research and Applications 
21: 567–578.

 59. Petit F. and A. Pauquet. 1997. Bankfull discharge recurrence interval in gravel-bed rivers. Earth 
Surface Processes and Landforms 22: 685–693.

 60. Pickup G. and R.F. Warner. 1976. Effects of hydrologic regime on magnitude and frequency of 
dominant discharge. Journal of Hydrology 29: 51–75.



Bankfull Frequency in Rivers 51

 61. Pike A.S. and F.N. Scatena. 2012. Riparian indicators of flow frequency in a tropical montane stream 
network. Journal of Hydrology 382: 72–87.

 62. Powell G.E., D. Mecklenberg, and A. Ward. 2006. Evaluating channel-forming discharges: A study 
of large rivers in Ohio. Transactions of the ASABE 49: 35–46.

 63. Rachol C.M. and K. Boley-Morse. 2009. Estimated bankfull discharge for selected Michigan rivers 
and regional hydraulic geometry curves for estimating bankfull characteristics in southern Michigan 
rivers. Reston, VA: U.S. Geological Survey Scientific Investigations Report 2009-5133.

 64. Rosgen D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology.
 65. Rustomji P. 2009. A Statistical Analysis of Flood Hydrology and Bankfull Discharge for the Daly River 

catchment, Northern Territory, Australia. Clayton South, Victoria, Australia: CISRO, Water for a 
Healthy Country National Research Flagship.

 66. Segura C. and J. Pitlick. 2010. Scaling frequency of channel-forming flows in snowmelt-dominated 
streams. Water Resources Research 46: W06524.

 67. Sherwood J.M. and C.A. Huitger. 2005. Bankfull characteristics of Ohio streams and their relation to 
peak streamflows. Reston, VA: U.S. Geological Survey Scientific Investigations Report 2005-5153.

 68. Shields F.D., R.R. Copeland, P.C. Klingeman, M.W. Doyle, and A. Simon. 2003. Design for stream 
restoration. Journal of Hydraulic Engineering 129: 575–584.

 69. Soar P.J. and C.R. Thorne. 2001. Channel Restoration Design for Meandering Rivers. ERDC/CHL 
CR-01. Vicksburg, MS: U.S. Army Corps of Engineers, Coastal and Hydraulics Laboratory, U.S. 
Army Engineer Research and Development Center (ERDC).

 70. Sudduth E.B., J.L. Meyer, and E.S. Bernhardt. 2007. Stream restoration practices in the southeastern 
United States. Restoration Ecology 15: 573–583.

 71. Sweet W.V. and J.W. Geratz. 2003. Bankfull hydraulic geometry relationships and recurrence inter-
vals for North Carolina’s coastal plain. Journal of the American Water Resources Association 39: 
861–871.

 72. U.S. Department of Agriculture, Forest Service. 2005. Guide to identification of bankfull stage in the 
northeastern United States. Fort Collins, CO: Rocky Mountain Research Station, General Technical 
Report RMRS-GTR-133-CD.

 73. Vesely W.S., A.C. Parola, and C. Hansen. 2008. Geomorphic characteristics of streams in the eastern 
Kentucky coal field physiographic region of Kentucky. Final Report for Section 319(h) Nonpoint 
Source Implementation Program Cooperative Agreement #C9994861-01. Frankfort, KY: University 
of Louisville Stream Institute for the Kentucky Division of Water.

 74. Westergard B.E., C.I. Mulvihill, A.G. Ernst, and B.P. Baldigo. 2004. Regionalized equations for 
bankfull-discharge and channel characteristics of streams in New York state: Hydrologic region 5 in 
central New York. Reston, VA: U.S. Geological Survey Scientific Investigations Report 2004-5247.

 75. White K.E. 2001. Regional curve development and selection of a reference reach in the non-urban, 
lowland sections of the Piedmont physiographic province, Pennsylvania and Maryland. New 
Cumberland, PA: U.S. Geological Survey Water-Resources Investigations Report 01-4146.

 76. Wilkerson G.V. 2008. Improved bankfull discharge prediction using 2-year recurrence-period 
discharge. Journal of the American Water Resources Association 44: 243–58.

 77. Williams G.P. 1978. Bankfull discharge of rivers. Water Resources Research 14: 1141–1154.
 78. Wolman M.G. 1967. A cycle of sedimentation and erosion in urban river channels. Geografiska 

Annaler 49A: 385–395.
 79. Wolman M.G. and J.P. Miller. 1960. Magnitude and frequency of geomorphic processes. Journal of 

Geology 68: 54–74.
 80. Yochum S.E. 2003. Regional Bankfull Characteristics for the Lower Willow Creek Stream Restoration. 

Lakewood, CO: U.S. Department of Agriculture, Natural Resources Conservation Service Northern 
Plains Engineering Team.





53

AuTHORS

Yang Hong is currently professor of hydrometeorology–climatology and remote sensing in the School 
of Civil Engineering and Environmental Sciences and the School of Meteorology at the University of 
Oklahoma. Previously, he was a research scientist at NASA’s Goddard Space Flight Center and postdoc 
researcher at University of California, Irvine. He currently directs the Hydrometeorology and Remote 
Sensing Lab at the National Weather Center (http://hydro.ou.edu).

Lu Liu is a postmaster research associate at the Joint Global Change Research Institute (JGCRI), a col-
laboration between the University of Maryland and the Pacific Northwest National Laboratory (PNNL). 
Her research interests generally include the development of global hydrological models, assessment of 
climate change impacts on global and regional hydrological regimes, and implementation of global and 
regional sectoral water demand models from an integrated assessment framework. Lu received both her 
BS and MS in environmental science at the University of Oklahoma.

Lei Qiao is a postdoctoral research fellow in the School of Civil Engineering and Environmental Sciences 
at the University of Oklahoma. He was graduated from Saint Louis University in 2012, with PhD studies 
focusing on climate change and its effects on terrestrial hydrological systems.

Pradeep Adhikari is a PhD student at the Department of Geography and Environmental Sustainability, 
University of Oklahoma. His research focuses on climate change and its impact on land and water resources.

4
Climate Change and 

Hydrological Hazards

4.1 Introduction ........................................................................................54
4.2 Climate Change Impacts ...................................................................54

Case Study: Climate Change Projection over 
the Southern United States

4.3 Hydrological Hazards Related to Climate Change .......................61
Droughts • Floods

4.4 Summary and Conclusions ...............................................................68
References ........................................................................................................68

Yang Hong
University of Oklahoma
and
National Weather Center

Lu Liu
University of Oklahoma
and
Joint Global Change 
Research Institute

Lei Qiao
University of Oklahoma
and
National Weather Center

Pradeep Adhikari
University of Oklahoma



54 Handbook of Engineering Hydrology

4.1  Introduction

Climate is the average weather in a place over a long period of time. Climate influences the Earth 
through changing temperature, precipitation, snowmelt, and a host of other natural phenomenon, and 
it is also in turn influenced by the variability on Earth [16]. Regional climate, which is characterized by 
local atmospheric variability and regional atmosphere–surface interaction, is a combined product of 
global climate forcing and also of regional atmosphere–land surface feedbacks. Given the assessment 
of regional climate, the linkage between climate and water resources management could be localized, 
which allows more relevant and localized practices [17]. As is known that the frequency and areal extent 
of local extreme weather is of great importance to regional social and economic systems, regional cli-
mate therefore plays a significant role in policy making and business management [13,17].

Global climate models (GCMs) have been developed over decades to study the global climate as a 
whole. Since the early generation of climate models that were not capable of fully characterizing the 
Earth’s climate, GCMs nowadays are capable of capturing global climate characteristics temporally 
and spatially. The complexity of the Earth’s climate is demonstrated using a variety of dynamic, chemi-
cal, and biological equations that form the computationally intensive GCMs [30]. GCM outputs usu-
ally have coarse resolutions and perform poorly at smaller scales, therefore inappropriate for regional 
impact assessment [22]. To solve the problem, downscaling techniques were applied to subset global 
climate data to the specific study region. The two primary downscaling methods commonly used are 
dynamic and statistical downscaling [11,38]. Dynamic downscaling techniques considers regional sur-
face features by applying regional climate models (RCM) to the GCM outputs and as a result performs 
better at capturing local processes and feedbacks. However, it is relatively expensive to operate [21]. 
Statistical downscaling, however, finds the statistical relationship between large-scale climate features 
and local climate and simply applies the relationship to downscale the GCM outputs. Therefore, it is 
computationally less intensive but less physically relevant and dependent on the quality of the obser-
vational data [22].

Uncertainties are normally expected in climate simulations and projections produced by GCMs. 
There is no doubt that the Earth is a complicated natural system including tremendous processes and 
feedbacks between different components. Many of the processes are yet not fully understood by human. 
Therefore, it is unlikely to include these unknown uncertainties in the models until better understand-
ing has been achieved. Therefore, the predictions made by the GCMs are largely dependent on the extent 
to which current models understand the natural processes. In addition, many of the uncertainties in the 
predictions of future climate are not even due to lack of understanding of the natural processes. Instead, 
future human behavior is the most unpredictable component in climate modeling. For example, tech-
nology innovations that limit the amount of greenhouses gases, regulations that change the amount of 

Preface

According to the Intergovernmental Panel on Climate Change (IPCC) report, the global tempera-
ture rise has increased the evaporation rate and moisture-holding capacity in the atmosphere, 
which in turn alters the hydrological cycle, changes precipitation patterns, and thus streamflow 
extremes and soil water content. Due to continuous accumulation of atmospheric greenhouse 
gases and aerosols, climate predictions consistently warn of increases in global temperature for 
the current century, which could potentially result in more severe extreme weather impact such 
as drought and floods.

This chapter reviews the climate change and its impacts on regional hydrological systems 
under different climate scenarios. The case studies in the southern United States demonstrate the 
seasonal and spatial variability of hydrological response to the changing climate.
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pollutants, and how the population will be growing in the future all remain somewhat unknown [14]. 
Each of these is able to make a significant difference to the future climate that is beyond predictability.

4.2  climate change Impacts

Global climate change has profound effects on society’s physical systems and human activities [14]. 
The Global Climate Change Impacts in the US Report compiled by the US Global Change Research 
Program claims that “Climate changes are already affecting water, energy, transportation, agriculture, 
ecosystems, and health” and additionally finds that the “global temperature has increased over the past 
50 years.” Many studies have been carried out to assess the climate change impacts on water, agriculture, 
health, and other aspects of life [29,31,34]. In this chapter, a case study will be used as an example to 
show the climate change processes over the southern United States.

4.2.1   case Study: climate change Projection 
over the Southern United States

The area of focus for the case study is the six-state region of responsibility for the Southern Climate 
Impacts Planning Program (SCIPP) (http://www.southernclimate.org/)—Oklahoma, Texas, Arkansas, 
Louisiana, Tennessee, and Mississippi—hereafter referred to as the SCIPP region (Figure 4.1). SCIPP 
is a southern US-focused climate hazards preparedness program that aims to bridge the gap between 
climate science and local-level climate hazard planning processes.

The average temperature for the period of 1950–1999 was 17.4°C in SCIPP. Climate in the SCIPP 
region is characterized by maximum temperature in July (∼27.3°C) and minimum temperature in 
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FIGuRE 4.1 SCIPP region. (From Liu, L. et al., Theor. Appl. Climatol., 109, 345, 2012.)
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January (∼3°C). The historical temperature distribution across the SCIPP region is characterized by an 
increasing trend from north to south, with the Gulf Coast region warmer than the northern portion 
of SCIPP. The 1950–1975 period exhibited an overall cooling trend, while warming was predominant 
during 1976–2000 (Figure 4.2). Studies have found out that the influence on climate from increasing 
greenhouse gas emissions has been the strongest during the past 50 years [16].

As defined in the IPCC Special Report on Emissions Scenarios, scenario A2 is a higher CO2 emission 
path and describes a populated world where technological change and economic growth are more frag-
mented and slower. Scenario A1B is a middle emission path known as business-as-usual and describes 
a balanced world where people do not rely too heavily on any particular energy source. Scenario B1 is a 
lower emission path where clean and sustainable technology is highly emphasized. Sixteen GCM projec-
tions indicate an increase in temperatures across SCIPP ranging between 2.3°C and 4.8°C by the end of 
the twenty-first century depending on the emission scenario (Figure 4.2).

The second half of the twenty-first century is projected to be warmer than the first half century as 
a whole by an average of 2.2°C, 1.8°C, and 1°C as projected by A2, A1B, and B1 scenarios. The most 
significant changes in temperature are projected to occur in the summer and fall seasons. A warming 
signal is also present during the spring and winter but is less significant relative to the summer and 
fall (Figure 4.3a). The monthly future temperature changes projected by A1B are broken down into 
every two decades in Figure 4.3b. The changes are phenomenal during the last two decades of the 
century with over 4°C of warming being projected to occur for half of the year. Figure 4.4 provides a 
spatial representation of future temperature conditions based on the ensemble GCMs. More signifi-
cant warming is projected is the second half century than the first half. Warming is projected to be 
more significant across the northwestern portions of SCIPP, with less substantial warming near the 
Gulf Coast. One significant concern regarding the projected increase in surface temperatures is the 
potential influence on temperature-related hazards such as drought [6]. Warmer summer conditions 
could potentially contribute to more droughts, though that would be highly dependent on future 
precipitation conditions.

In conclusion, projected temperature for the twenty-first century is highly dependent on the emis-
sion scenario with the A2 scenario exhibiting the highest relative increases in temperature, particularly 
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for the summer and fall months. The changes in monthly temperature are crucial to numerous sectors, 
including agriculture, water resources, and energy. A change in climate induces various biological 
effects that can result in impacts on crop production and supply, which could further impact systems 
and lead to more economic and social issues [25].

The SCIPP region has a very diverse precipitation pattern. The historical average annual pre-
cipitation across the SCIPP region has been 955.7 mm (38.2 in.) the past 50 years and has slightly 
increased over time. Western portions of the region experience arid conditions and less than 254 mm 
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of precipitation per year on average, while southeastern portions of the region (southern Louisiana 
and Mississippi) receive significantly greater amounts of precipitation of greater than 1524 mm/year 
on average. One major feature contributing to this disparity in rainfall is the presence of the Gulf of 
Mexico, which provides a significant amount of the moisture to the region, particularly to the loca-
tions closer to the coast.

The results found that future precipitation conditions do not show significant trend overall (Figure 4.5). 
However, projected precipitation under B1 scenario is tested to have more increase compared to that of 
A1B and A2. Future increases are projected in the northeastern portions of SCIPP, with Tennessee hav-
ing the most significant increase of precipitation. Southwestern portions of SCIPP are projected to have 
a drier future, with A2 producing 0.35% less rainfall during 2050–2099 than the historical mean (Figure 
4.5), although change is not considered statistically significant. Precipitation is projected to increase in 
southwest Texas and eastern Tennessee during the summer, with a shift toward the Gulf Coast during 
the fall. Winter is projected to be wetter in the northeast and drier in the south (Figure 4.6). Seasonal 
precipitation variation differed according to the different scenarios; however, common characteristics 
were found. The spring season, which provides a substantial portion of the annual precipitation total to 
the region, is projected to be drier [19].

Rainfall is projected to increase nearly 7% in December relative to 1950–1999 mean according to the 
A1B scenario (Figure 4.7). However, 7% of increase is not incredibly significant in this case. The three 
states exhibiting the most noticeable change are Tennessee, Texas, and Louisiana. The state of Tennessee 
is expected to have 10–30 mm of precipitation increase in the winter months from 2050 to 2099. Texas 
is projected to be drier for most months except for several months during the fall (September and 
November). Louisiana exhibits tremendous changes throughout the year, with rainfall increases during 
February and rainfall decreases during January and April (Figure 4.8).
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4.3  Hydrological Hazards related to climate change

4.3.1  Droughts

Drought is usually defined on the basis of the degree of dryness and the duration of the dry period 
[27]. Scientifically speaking, it is considered to be a deficiency of precipitation over an extended period 
of time, which might result in a water shortage for some activity, group, or environmental sector [18]. 
Scientists have developed four classifications to describe different kinds of drought, which are meteoro-
logical drought, agricultural drought, hydrological drought, and socioeconomic drought [39].

Meteorological drought is simply the departure from normal conditions of meteorological variables 
that induces drying of the surface. It is region-specific because the atmospheric conditions of different 
areas have high local variability in space and time [24]. Agricultural drought occurs when the soil moisture 
fails to provide enough nourishment to the plants. It indicates whether the water quantity in soil can meet 
the demand of plants at various growing stages. Hydrological drought, which is initially caused by rainfall 
deficits, is normally associated with reservoirs or lake levels within a basin [34]. It is important to note that 
the hydrological responses normally are latent to precipitation deficiencies in a basin. Therefore, not all 
meteorological droughts will immediately trigger a hydrological drought because reservoir levels remain 
fairly constant over a short period of time. Socioeconomic drought is different from the aforementioned 
types of droughts because it is a measure of the gap between supply and demand. If the water supply cannot 
meet the demand of water consumption such as hydroelectric power, food production, and fishery activi-
ties, a socioeconomic drought will occur due to the demand–supply unbalance [24].

4.3.1.1  Drought Quantification

Drought is difficult to be quantified due to its dependence on different geographic regions, needs, and 
disciplinary perspectives [23,33]. Various drought indices have been developed over the past few decades 
to assimilate thousands of bits of data on rainfall, snowpack, streamflow, and other water supply indica-
tors into a comprehensible big picture. These drought indices were developed for different purposes. In 
this chapter, we introduce three different kinds of drought indices, Standardized Precipitation Index 
(SPI) [23], Palmer Drought Severity Index (PDSI) [27], and Standardized Runoff Index (SRI) [39].

SPI is a meteorological drought index. As mentioned previously, meteorological drought is mainly 
caused by a deficiency of precipitation. A long-term precipitation record is needed in order to calculate 
SPI. After the statistical fitting and transformation of the long-term precipitation data, region-specific 
deviations are mostly minimized. SPI is a probability-based index, so the heaviness or lowness of a pre-
cipitation event in the SPI is relative to the rainfall characteristics of that area. SPI has a very straightfor-
ward classification of different drought severities (Table 4.1).

Although SPI is fairly easy to calculate compared to the other indices [2], it is very effective in pro-
viding early drought warning and drought damage control. However, the disadvantage of SPI is that it 
only considers one climate variable, precipitation, and not incorporating evapotranspiration (ET) or soil 
moisture, which is essential parameter in hydrological process. Therefore, comprehensive indices that 
involve more complex natural hydrological process are also developed to address droughts.

TABLE 4.1 SPI Classification
2.0+ Extremely wet
1.5–1.99 Very wet
1.0–1.49 Moderately wet
−0.99 to 0.99 Near normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
−2 and less Extremely dry
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The PDSI is an indicator of hydrometeorological drought that has been used for the last 45 years. 
Instead of taking only precipitation into account, PDSI also accounts for temperature that has a huge 
impact on ET and soil moisture. This index provides a more comprehensive method to assess the impacts 
of climate change on drought since it requires more climate variables as input [2,12,27].

PDSI has different classification from that of SPI (Table 4.2).
The SRI appeared in Vasiliades et al. [39] as Water Balance Derived Drought Index. Input for this 

index is monthly streamflow data. Vasiliades et al. [39] fitted monthly streamflow data into to Pearson 
type III distribution and transformed it using Box–Cox transformation [5] to remove skewness.

The transformed streamflow values are then standardized to translate into a runoff index known as ZWBI. 
SRI has the same classification with that of SPI; therefore, the region-specific deviation is minimized. SRI is 
fairly new compared to SPI and PDSI, so the fundamental idea of using SRI is to examine drought from a 
hydrological perspective and compare it with the traditional drought indices, namely, SPI and PDSI.

4.3.1.2  Drought History in the Southern United States

Historical records documented that Oklahoma, which is within southern Unites States, experienced six 
major droughts since the twentieth century: 1909–1918, 1931–1941, 1950–1956, 2001–2002, 2005–2006, 
and 2010–2011. While the drought of the 1930s is historically associated with the Dust Bowl of the Great 
Plains, statistics show that the drought of the 1950s was more severe for Oklahoma as indicated by 
record low drought indices values [3]. However, socioeconomic impacts were less severe as Oklahoma’s 
population learned to cope with the Dust Bowl and put into place agricultural and water management 
practices that mitigated many of the worst impacts of the Dust Bowl. The drought history in the south-
ern United States reveals that the southern United States is a drought-prone region. This raises the 
concern of how the future is going to be in terms of drought and whether climate change plays a role in 
affecting the drought condition. In this part, a case study will be talked about to show how the drought 
in the southern United States is projected under a changing climate.

4.3.1.3  case Study: Blue river Basin, OK

The Blue River Basin (Figure 4.9) is particularly important to the State of Oklahoma and local sur-
rounding communities. Historically, several Native American tribal communities have used the river 
as their important water source. Recently, however, there have been increasingly competing demands 
from surrounding industrial and metropolitan areas located in Oklahoma and Texas. The Blue River 
Basin is also a drought-prone region. It is very essential to study the future drought in this basin given 
the already-stressed water conflict in the region.

TABLE 4.2 PDSI Classification

Palmer Classifications

4.0 or more Extremely wet
3.0–3.99 Very wet
2.0–2.99 Moderately wet
1.0–1.99 Slightly wet
0.5–0.99 Incipient wet spell
0.49 to −0.49 Near normal
−0.5 to −0.99 Incipient dry spell
−1.0 to −1.99 Mild drought
−2.0 to −2.99 Moderate drought
−3.0 to −3.99 Severe drought
−4.0 or less Extreme drought



Climate Change and Hydrological Hazards 63

The three drought indices mentioned previously are first validated against the historical records. 
Results show that the three indices all capture the historical droughts with SPI and SRI showing better 
agreement with the records [20].

In terms of the drought projection, the three drought indices give similar but somewhat different 
drought projects in the Blue River Basin (Figure 4.10). SPI indicates one minor drought in the early 
2020s, and the frequency and intensity of drought appear to increase substantially after 2050. PDSI and 
SRI show similar results and many more droughts are projected after 2050. More drought events are 
displayed on the PDSI panel than on the SRI panel, and severe droughts on PDSI are projected to be 
more severe (PDSI < –5) than those on SRI, except for the early 2080s.

The Blue River Basin is projected to be nearly constantly under wet conditions before 2050 for both 
PDSI and SRI, with a slight decreasing trend of wetness from 2011 to 2050. It is not surprising to see that 
both PDSI and SRI demonstrate more severe and frequent drought after 2050, although the magnitude 
and timing of droughts are not exactly the same. Based on the projections from Thornthwaite monthly 
water balance model, which is a hydrological model that gives future changes of hydrological variables, 
the Blue River Basin is expected to have an increasing trend of ET and decreasing trend in total runoff 
under A1B scenario. Actual ET is expected to increase by up to 8% on average, and runoff is projected to 
decrease by more than 10% by the end of the twenty-first century (Figure 4.11). Accordingly, more water 
is going out as ET and less water will be available for surface runoff.

In conclusion, three types of drought indices (SPI, PDSI, and SRI) capture the major droughts docu-
mented in history. The results projected by the drought indices under the business-as-usual A1B sce-
nario suggest that more drought events might occur in the second half of the twenty-first century. This 
could be caused by the fact that the precipitation predicted by the GCM GISS-ER shows a descending 
trend, while the temperature is slowly but constantly increasing after 2010. Moreover, the ET projected 
by the Thornthwaite monthly water balance model also has a significant increasing trend under such a 
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warming climate. Therefore, it is very likely that future drought in the Blue River Basin will be more severe 
and intense compared to the 1950–1999 period, especially for the second half of the twenty-first century.

4.3.2  floods

4.3.2.1  flood Definition

Floods are an overflow or inundation that comes from a river or other body of water and often threaten 
lives and properties. Floods can happen when the flow capacities of river channels, streams, or coastal 
areas are exceeded due to heavy, intense, or continuous rainfall or when the absorptive capacity of the 
soils is exceeded. This causes water in a river channel to overflow its banks onto adjoining land area, 
known as a floodplain. Floodplains are highly prone to flood. In addition, places like coasts and deltas, 
areas immediately below dams, inland shorelines, and alluvial fans are also vulnerable to floods [36].

Flooding creates a significant threat to life and property. Communities located near riverbanks or 
coastal zones are most vulnerable to flood, but many historic cities and towns have been built in such 
areas because of the conveniences of transportation, commerce, and recreation. Occasionally, flood 
hazard and flood risk are used interchangeably. Generally, flooding creates images of destruction and 
catastrophe. However, floods also play an important role in the functioning of ecosystems, analogous to 
wildfire. Floodwaters sometimes are beneficial because they increase soil fertility by depositing nutri-
ents from upstream and recharging ground water. Many aquatic species depend on normal flooding 
to wash debris into the water, which they subsequently use for shelter and food. Periodic floods also 
transport eroded soil and other materials that are essential for delta areas and coastal marshes to persist 
over time and sustain the wetland ecosystems. Freshwater floods in particular play an important role in 
maintaining ecosystems in river corridors and are a key factor in maintaining floodplain biodiversity 
[4]. Many ecosystems develop with regular flooding as one of the key components to their existence. 
Similarly, it has been found that flooding was the key to the well-being and prosperity of ancient com-
munities along the Nile, the Tigris Euphrates, the Yellow, and the Ganges Rivers.
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4.3.2.2  Global flood Database

A number of flood databases exist. The Emergency Disasters Database (EM-DAT) is a publicly acces-
sible international database with information on natural and technological disasters including floods. 
The United Nations Office for the Coordination of Humanitarian Affairs (OCHA) through its portal 
ReliefWeb provides current disaster information on humanitarian emergencies and disasters relief works 
(ReliefWeb, http://www.reliefweb.int/). It does not intend to provide a comprehensive database of disaster 
events but can serve as a valuable resource to verify current events and obtain additional disaster details 
for rapid response and humanitarian support. The Dartmouth Flood Observatory (DFO) compiled the 

12

10

8

6

Pe
rc

en
t c

ha
ng

e (
%)

4

2

0
2010 2020 2030 2040 2050 2060

AET

2070 2080 2090

Bottom 25% percentile
Ensemble mean
Top 25% percentile

(a) Year

50

30

10

–10

–30

–50

Pe
rc

en
t c

ha
ng

e (
%)

2010 2020 2030 2040 2050 2060

Runoff

2070 2080 2090

Bottom 25% percentile
Ensemble mean
Top 25% percentile

(b) Year

FIGuRE 4.11 (a) 10-year moving average of projected AET change as percentage of 1950–1999 mean. (b) 10-year 
moving average of projected runoff change as percentage of 1950–1999 mean. (From Liu, L. et al., Water Resour. 
Manage., 26(10), 2761, 2012.)



66 Handbook of Engineering Hydrology

Global Archive of Large Flood Events, which covers events from 1985 to the present in a simple Microsoft 
Excel spreadsheet format (DFO, http://www.dartmouth.edu/∼floods/). This database also includes links 
to high-quality maps for selected events since 2006, showing the entire affected region. The database is 
exclusively dedicated for flood hazards. It has about 3400 events recorded for 1985–2008 (Figure 4.12). 
The global flood inventory (GFI) has compiled global flood data for 1998–2008 from publicly available 
online resources, irrespective of their scale of impacts so as to have a comprehensive flood database. It 
has geo-referenced locations of all the flooding events for a period of 11 years. The GFI has record of 
approximately 2700 events in total for the period, which is about 250 per annum [1]. The discrepancies in 
the database discussed previously are mainly due to the inherited biases as a result of the scope of the data-
base. The entry criteria, sources of data, and definition of specific hazard terms differ among the databases.

It is obvious that analyses based on different database entries might result in contradicting conclu-
sions. It is important to note that some databases are impact-based, making them potentially biased 
toward reporting more events in populated areas, whereas others are compiled from publicly available 
resources. The latter are prone to undermine the number of actual flooding events because only those 
floods that have significant effects on the community, local government, or national government are 
recorded. Therefore, a very careful interpretation of flood data is necessary before reaching conclusions 
regarding the number of events or their impacts to the people and the community. Based on the GFI, 
it is found that the United States has recorded the highest number of flood events followed by China 
and India for the period 1998–2008. In addition, the GFI shows a seasonal pattern in flooding, with 
the number of events increasing in May and peaking in the months of July to August (Figure 4.13). In 
terms of the spatial distribution of flooding, GFI is also able to show the percentage of reported flooding 
events for each region, sorted by year. Asia and Africa continuously recorded the highest percentage of 
events throughout the globe, followed by Southeast Asia, Central America, and the Caribbean [1].

4.3.2.3  future flood risk under changing climate

Of the major flood-inducing factors, climate change and the alternation of extreme weather, which 
directly impact water availability and variability, play the primary role in water-related issues and are of 
more concern worldwide. According to the Intergovernmental Panel on Climate Change (IPCC) report 
[14], the global temperature rise has increased the evaporation rate and moisture-holding capacity in 
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the atmosphere, which in turn alters the hydrological cycle, changes precipitation, and thus streamflow 
and soil water content. Due to continuous accumulation of atmospheric greenhouse gases and aerosols, 
climate predictions consistently warn of increases in global temperature for the current century, which 
could potentially result in more severe extreme weather impact such as floods. Although the predicted 
climate change impacts remain significant uncertainty, many regions across different continents are 
projected toward worse flooding expectation.

The upper Mississippi River Basin and the lower Missouri River Basin (LoMRB) would be more likely 
to have intensified precipitation and flooding. With a regional climate simulation model, Pan et al. [28] 
predicted a warming hole in 2040s over the central United States and suggested that 21% more precipita-
tion and 51% more streamflow would happen in the upper Mississippi River Basin. A similar increase of 
streamflow for this region was also presented by Jha et al. [15] through integrated simulations combin-
ing an RCM and the soil and water assessment tool (SWAT). Stone et al. [37] compared simulations with 
a coarse-resolution GCM and a fine-resolution RCM and found, although the two types of resolution 
models disagree on the magnitude of the effects, water yield would increase in the LoMRB. Qiao [32] 
used the newly available North American Regional Climate Change Assessment Program (NARCCAP) 
climate data to study the hydrological variability for the region, and his study showed that, following 
the seasonal variability of precipitation, various water fluxes would increase and expected precipita-
tion tends to increase in intensity triggering faster water accumulation to form floods. In other regions 
like the United Kingdom, Osborn et al. [26] showed an upward trend in rainfall and related increase 
in magnitude for high streamflow since 1960s. By using statistical rainfall models and high-resolution 
RCMs, a 20% increase in peak flow over the next 50 years was suggested in the United Kingdom [35]. 
Some studies [8,9] indicated longer wet and dry durations in Iran under different statistical downscaling 
of GCM projections. However, uncertainties arising from different sources in climate change studies are 
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significant, imposing grand challenging on climate change adaptation, mitigation, and preparation with 
manageable solutions [7,10,34].

4.4  Summary and conclusions

This chapter reviews the climate change and its impacts on regional hydrological systems such as 
drought and flood effects under different climate scenarios. The case studies in the southern United 
States demonstrate the seasonal and spatial variability of hydrological response to the changing climate. 
General conclusions related to the cases are as follows:

• The projected temperature for the twenty-first century is highly dependent on the emission sce-
nario with the A2 scenario exhibiting the highest relative increases in temperature, particularly 
for the summer and fall months.

• The SCIPP region has diverse precipitation change pattern in both time and spatial scales. The 
projected precipitations under B1 scenario have more increase compared to that of A1B and A2. 
Increases are projected for the northeastern portions of SCIPP, while the southwestern portions 
of SCIPP have a drier future, with A2 producing 0.35% less rainfall during 2050–2099 than the 
historical mean. Winter is projected to be wetter in the northeast and drier in the south. The 
spring season, which provides a substantial portion of the annual precipitation total to the region, 
is projected to be drier.

• The study for the Blue River Basin in Oklahoma shows that the three types of drought indices 
(SPI, PDSI, and SRI) can capture the major droughts documented in history. The projections by 
the drought indices under the business-as-usual A1B scenario suggest that more drought events 
might occur in the second half of the twenty-first century. This could be caused by a descending 
trend of precipitation predicted by the GCM GISS-ER and a significant increasing trend of ET 
under a warming after 2010.

• Common consensus that climate change would cause wet region wetter and dry region drier. The 
warming climate increase water vapor contents in atmosphere, which could result in more intense 
rainfall and potentially more flood events for the wet regions such as central and eastern United 
States, western Europe, and Southeast Asia.
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5.1  Introduction

Increased concentration of GHGs in the atmosphere is scientifically acknowledged to alter the radiative 
balance in the stratosphere, causing increases in temperature. This phenomenon is generally known 
as global warming. Alternation of radiative balance and increased temperature in the atmosphere will 
change precipitation patterns and other climatic variables [39]. Because of close interactions between 
water, socioeconomic activities, and cultural practices, climate change impact on regional water avail-
ability is considered one of the most important impacts on the society of future climatic changes. Global 
climate change is considered to impose significant alterations on regional landscape systems, regional 
water cycles, and particularly catchment hydrology [55]. Changes in hydrological regimes will affect 
almost every aspect of socioeconomic life, from agricultural production and energy consumption to 
flood control, municipal and industrial water supply, conservation of natural resources, and ecohy-
drological management. Anticipated increased flow volumes will require larger reservoir spillways and 
drainage waterways for flood management, whereas decreased flow volumes will need increased capac-
ity of flood storage for the security of water supply schemes. Therefore, it is necessary to understand how 
climate change and climate variability could affect regional water availability.

Reliable estimation of stream flows from catchments is required for water resources planning, design, 
and management. Stream flow characteristics such as high-flow, medium-flow, and low-flow conditions; 
flow duration relationships; and spatial and temporal variability of stream flows and their probability 
distributions are important decision parameters for water and agricultural management. Numerous 
hydrologic models are being used by hydrologists and water professionals for the reliable estimation of 
stream flows from catchments. General techniques of stream flow estimation involve

• Calibration and validation of an appropriate hydrologic model using observed rainfall, runoff, 
and catchment data

Preface

Climate changes due to increased concentration of greenhouse gases (GHGs) have obvious effects 
on the regional landscape systems, water cycles, and particularly catchment hydrology. Changes 
in hydrologic cycle will affect almost every aspects of socioeconomic life, from agricultural pro-
duction and energy consumption to flood control, municipal and industrial water supply, con-
servation of natural resources, and ecohydrological management. Some parts of the world may 
experience increases in precipitation and some may experience decreases. The timing and fre-
quencies of storm events may alter in some areas, and some regions may experience the increased 
potential for evapotranspiration. Because of close interactions between water, socioeconomic 
activities, and cultural practices, climate change impact on regional water availability is consid-
ered one of the most important impacts of future climatic changes on society. Therefore, a reliable 
estimation of stream flows is required for water resources planning, design, and management in 
a changing climate. A fundamental problem is the fact that the spatial and time scales of global 
climate models (GCMs) and hydrological models are extensively different. As a result, downscal-
ing of climate model outputs is essential. Assessment of uncertainty in the simulated outputs of 
climate downscaling technique and in the predicted stream flows is also necessary before their 
application to climate change impact studies. Selection of climate predictors in downscaling stud-
ies and selection of an appropriate hydrologic model are critical issues in climate change impact 
studies. This chapter provides the details of climate models, their downscaling techniques, selec-
tion of appropriate hydrologic models, and uncertainty analysis, and delineates recommenda-
tions for climate change impact studies on water resources.
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• Generation of runoff data using calibrated model parameters by feeding long-term rainfall, evap-
oration, and temperature data into the hydrologic model

• Analyses of simulated stream flow time series

Quality assurance in hydrologic modeling through a series of principles and actions in model develop-
ment, implementation, and applications is collectively known as the best-practice modeling [11]. In the 
changing climate, calibrated hydrologic models are used for stream flow projections into future by using 
projected rainfall and other climatic variables. GCMs and regional climate models (RCMs) are used for 
the projection of climatic variables. Because of their coarse spatial resolution, downscaling of projection 
is required. Also, large uncertainties are observed in the projected magnitude, variability, and patterns 
of climatic variables. Therefore, it is generally considered that reliable projection of rainfall and other 
water-related variables is not possible using the most sophisticated GCMs/RCMs though these data 
are the best available source of climate projections used as driving inputs into calibrated hydrological 
models, transferring future climate projections into hydrological quantities at the landscape or catch-
ment scale. The interactions between climate and hydrological modeling in water resources decision 
systems are shown in Figure 5.1.

For the development of climate change adaptation strategies, several climate models’ outcomes cover-
ing a wide spectrum of possible projections are currently available. The uncertainties involved in these 
climate projections as well as in subsequent hydrologic modeling tools are currently a limiting factor 
for the formulation of a meaningful adaptation strategy into practice [47,57]. Hydrologic models used 
for operational purposes (such as flood forecasting or reservoir management) are generally exposed to 
more or less sophisticated calibration and validation procedures [10,24,62]. While reliable results can be 
obtained from these models under current flow conditions, they are not appropriate enough in a chang-
ing climate. This is because of nonstationary properties of climate projections [20]. Moreover, high data 
demand, wide parameter space, complex process descriptions, and complicated handling are also con-
sidered as difficulties to these models. Selection of appropriate hydrologic model is a critical decision for 
climate change impact assessment on water resources. The level of complexity of a given hydrological 
model may limit its application in some cases, characterized by spatial and temporal resolutions and by 
predominant hydrological decision variable (e.g., stream flow at the catchment outlets or soil moisture 
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FIGuRE 5.1 Interactions between climate and hydrologic modeling in water resources management.
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content at field scale). Currently, there are three major challenges in climate change impact analyses on 
water resources, which are provided in Figure 5.2. The arrow sign in Figure 5.2 indicates propagation 
of uncertainty.

5.2  emission Scenario

Climate changes due to increased concentration of GHGs have obvious effects on the hydrological cycle. 
Some parts of the world may experience increases in precipitation and some may experience decreases. 
The timing of rainy seasons may change in some areas, and some areas may experience the increased 
potential for evapotranspiration. Therefore, projection of GHGs is the first concern for any climate 
change impact assessment, as indicated in Figure 5.1. The IPCC Special Report on Emissions Scenarios 
(SRES) [42] describes different possible GHG projections, and their different scenarios are being widely 
used in climate change impact studies. The starting point for each projection of future emissions was 
considered as a “storyline,” describing the way world population, economics, and political structure may 
evolve over the next few decades. The storylines were grouped into four scenario families, which led to 
the construction of six SRES scenarios.

The A1 scenario family considers rapid economic growth with global population, which will peak in 
mid-century and decline thereafter, and the rapid introduction of new and more efficient technologies. 
Major underlying themes are convergence among regions, capacity building, and increased cultural 
and social interactions, with a substantial reduction in regional differences in per capita income. On 
the basis of sources of energy for this rapid growth, there are three variants in A1 scenario family: A1FI 
(fossil intensive), A1T (nonfossil fuels), and A1B (balance across all sources). The B1 scenario family con-
siders same population growth as A1, but development takes a much more environmentally sustainable 
pathway with global-scale cooperation and regulation. Clean and efficient technologies are considered 
to be introduced. The A2 scenario family is based on heterogeneous market-led world and less rapid 
economic growth but more population growth than A1. Economic growth is considered to be regionally 
oriented, which will promote regionally diverse income growth and technological development. The B2 
scenario considers population increases at a lower rate than A2 but at a higher rate than A1 and B1. The 
development is considered to follow environmentally, economically, and socially sustainable regionally 
oriented pathways.

Figure 5.3 shows the carbon emissions associated with each scenario, together with global tempera-
ture change relative to the temperature in 1990 [43]. For a given GCM, there is little difference in the 
pattern of runoff changes from different emissions scenarios [3]. By 2080s, magnitudes of runoff vary; 
highest and lowest changes are because of the A1FI and B1 scenarios, respectively. Two extreme emis-
sions scenarios are the A1FI (highest carbon emissions) and B1 (lowest carbon emissions) scenarios. In 
some cases, A1B scenario is used as an average scenario in climate change impact assessment.

Spatial and temporal 
downscaling of GCM/RCM

projections

Selection of appropriate 
catchment scale hydrologic 

modeling 
Uncertainty analysis 

FIGuRE 5.2 Three major challenges in climate change impact analyses on water resources.
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5.3  Global climate Models

The GCMs were initially developed to simulate average synoptic-scale (104–106 km2 spatial scale) 
atmospheric circulation patterns for specified external forcing conditions [60]. Since then, several 
atmospheric GCMs were conceptually designed to simulate average large-scale atmospheric circu-
lation (e.g., [38]). For about last two decades, GCMs are applied to simulate climatic sensitivity to 
increased concentration of GHGs to predict future climatic change. GCMs are developed based on 
well-established physical principles and are demonstrated to reproduce observed features of recent 
climate and past climate changes [61]. It is acknowledged that the atmosphere–ocean general circula-
tion models (AOGCMs) provide credible quantitative estimates of climate scenarios at the continental 
and larger scales. Confidence levels are high for some climate variables (e.g., temperature) and low 
for some others (e.g., precipitation). GCMs are still under ongoing improvements to their resolution, 
computational methods and parameterizations, and additional processes. Figure 5.4 shows their devel-
opment progress since mid-1970s. Different modeling components were developed first separately and 
then coupled with the comprehensive climate models [43]. As development progresses, performances 
of climate models are improved. Some reported improvements on AOGCMs are [61]

• Most AOGCMs are no longer using flux adjustments, and thereby uncertainty associated with the 
use of flux adjustments has been decreased.

• Improvement has been occurred in the simulation of important modes of climate variability, for 
example, the El Niño–Southern Oscillation.

• Ability to simulate extreme events (hot and cold spells) has improved, but the frequency and the 
amount of precipitation in extreme events are underestimated.

• Improvement has occurred in the simulation of extratropical cyclones.

The GCM data can be obtained from the Program for Climate Model Diagnosis and Intercomparison 
(PCMDI) (http://www-pcmdi.llnl.gov). These GCMs were used in the production of the IPCC fourth 
assessment report (2007). The GCMs are BCCR-BCM 2.0 (Bjerknes Centre for Climate Research, 
Norway); BCC-CM1 (Beijing Climate Center, China); CCCMA-CGCM 3.1(T47) and CCCMA-CGCM 
3.1(T63) (Canadian Centre for Climate Modeling and Analysis, Canada); CNRM-CM3 (Météo-
France/Centre National de Recherches Météorologiques, France); CSIRO-Mk3.0 and CSIRO-Mk3.5 
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FIGuRE 5.3 Carbon emissions together with temperature change associated with each SRES emission 
scenario. (From IPCC [Intergovernmental Panel on Climate Change], Climate change 2001: The science of 
climate change, Report of working group 1 to the third assessment report of IPCC, Cambridge University Press, 
Cambridge, U.K., 2001.)
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(Commonwealth Scientific and Industrial Research Organisation, Australia); Max Planck-ECHAM5/
MPI-OM (Max Planck Institute for Meteorology, Germany); MIUB/KMA-ECHO-G (Meteorological 
Institute of the University of Bonn, Germany, and Meteorological Research Institute of the Korea 
Meteorological Administration, Korea); LASG/IAP-FGOALS-G1.0 (National Key Laboratory of 
Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of 
Atmospheric Physics, China); GFDL-CM2.0 and GFDL-CM2.1 (National Oceanic and Atmospheric 
Administration/Geophysical Fluid Dynamics Laboratory, United States); GISS-AOM, GISS-EH, and 
GISS-ER (National Aeronautics and Space Administration/Goddard Institute for Space Studies, United 
States); INM-CM3.0 (Institute for Numerical Mathematics, Russia); IPSL-CM4 (Institut Pierre Simon 
Laplace, France); CCR-MIROC-H and CCR-MIROC-M (Center for Climate System Research, University 
of Tokyo and National Institute for Environmental Studies and Frontier Research Center for Global 
Change, Japan); MRI-CGCM2.3.2 (Meteorological Research Institute, Japan); UKMO-HadCM3 and 
UKMO-HadGEM1 (Hadley Centre for Climate Prediction and Research/Met Office, United Kingdom); 
and NCAR-CCSM3 and NCAR-PCM1 (National Center for Atmospheric Research, United States). 
Details of these GCMs are available at the PCMDI website. For example, details on the CSIRO-Mk3.5 
are available at http://www-pcmdi.llnl.gov/ipcc/model_documentation/CSIRO-Mk3.5.htm

Researchers throughout the world analyzed climate impact assessment in various conditions. Some 
used a selected GCM and emission scenario, and some others used various conditions due to differences 
in GCMs and emission scenarios. A key point in the review of these GCMs is the lack of a fixed trend 
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in projection outputs due to different GCMs, and even in some studies, different models had completely 
reversed the results [26]. A performance comparison study between four GCMs (CSIRO, CGCM2, 
CCSR, and HadCM3) in the projection of rainfalls at Shahrekord climate station was conducted in Iran, 
and it was observed that HadCM3 performed well [26]. Though GCMs operate on large spatial scale 
and their temporal resolution corresponds to monthly averages at best, the reality is that GCMs are the 
only available tool for detailed modeling of future climate evolution. The ensembles of models represent 
a new resource for studying the range of plausible climate responses to a given forcing. Such ensembles 
can be generated either by collecting results from a range of models from different modeling centers 
(known as multimodel ensembles) or by generating multiple model versions within a particular model 
structure, by varying internal model parameters within plausible ranges (known as perturbed physics 
ensembles).

5.4  Hydrologic Models

Hydrological models are required to understand catchment hydrological responses to climate change. 
Nowadays, several hydrologic models are available. These can be categorized based on their modeling 
approaches as (a) simple empirical methods (e.g., curve number); (b) large-scale energy–water balance 
equations (e.g., Budyko curve); (c) conceptual rainfall–runoff models (e.g., Sacramento); (d) landscape 
daily hydrological models (e.g., WaterDyn model); and (e) fully distributed hydrologic models (e.g., 
Système Hydrologique Européen—SHE model, TOPOG model). Selection of an appropriate model is 
generally based on an understanding of the objectives and characteristics of the system to be mod-
eled. According to [79], the following factors should be considered prior to the selection of a hydro-
logic model:

• Modeling objectives—hydrological forecasting, climate change impact assessment, human influ-
ences on hydrological regime, etc.

• System to be modeled—small catchment, large river basin, river reach or reservoir, etc.
• Hydrological elements to be modeled—floods, daily discharges, monthly or annual discharge, 

water quality, etc.
• Climate and physiographic characteristics of the system to be modeled—catchment in arid, semi-

arid, or tropical conditions, etc.
• Data availability in terms of type (sub-daily, daily, monthly, seasonal, or annual data), length 

(length in years for model calibration and validation), and quality (percentage of missing data, 
homogeneity, consistency of data), etc.

• Model simplicity—number of model parameters to be optimized and ease of model application 
for practical purposes.

Selection of appropriate hydrologic model is a critical issue in climate change impact assessment. The 
choice of a hydrologic model for a particular case study depends on many factors: purpose of study, 
model, and data availability have been the dominant ones [59,82]. For the regional scale assessment 
of water resources management, monthly rainfall–runoff models are generally useful for identify-
ing hydrologic consequences of changes in temperature, precipitation, and other climatic variables 
[5,34,56,80,81]. For detailed assessments of surface flow, conceptual lumped-parameter models are use-
ful. One of the more frequently used models in this group is the Sacramento Soil Moisture Accounting 
Model [13]. This model has been used by many researchers in the United States for studying the impact 
of climate change [22,35,53,58,66]. The HBV model [9] is widely used in Nordic countries as a tool to 
assess the climate change effects [65,73]. The SIMHYD model (a conceptual lumped model) has been 
used in several Australian studies on climate change impact assessment. Several other models having 
a similar structure to the earlier-mentioned two models, but with different process conceptualizations, 
have been used to assess the effect of climate change on many regions of the globe [51]. Effects of varia-
tions of climatic parameters (precipitation, temperature, relative humidity, wind speed, and sunshine 
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duration) on potential evapotranspiration estimation in arid and semiarid Iran regions were previ-
ously investigated using the Penman–Monteith Potential Evapotranspiration model [25]. Temperature 
and relative humidity were found most sensitive in the model. For simulation of spatial patterns of 
hydrologic response within a basin, process-based distributed-parameter models are required [8,64,69]. 
For estimating changes in the average annual runoff for different climate change scenarios, simple 
empirical and regression models were used previously. Examples include those models used in the 
United States [63] and in the United Kingdom [4].

The models that are complex in terms of structure and input requirements could be expected to pro-
vide adequate results for a wide range of applications; the more simple models that have smaller range 
of applications can give adequate results at greatly reduced cost, provided that the objective function is 
suitable. The distinction between simple and physically based distributed-parameter models is not only 
one of lesser or greater sophistication, but also intimately bound up with the purposes for which such 
models are to be used. Therefore, choosing a suitable model is equivalent to distinguishing the situation 
between when simple models can be used and when complex model must be used.

5.5  Spatial and Temporal resolutions of climate Models

GCMs are the primary tools to study and estimate the nature of climate change. Based on the physi-
cal laws for the atmospheric composition and behavior, they attempt to provide a calculable model 
of the earth’s climate system, including internal and external forcing as well as feedback in the cli-
mate system. The size of the climate system (atmosphere, oceans, land) and the time range of climate 
experiments (several decades to thousands of years) place a significant constraint on the design of the 
GCMs. This leads to spatial and temporal coarseness. Hydrological models are frequently concerned 
with small subcatchment (even hillslope)-scale processes, occurring on spatial scales much smaller 
than those resolved in GCMs. While GCMs predict the climate using a three-dimensional grid that 
generally has a horizontal resolution within 250–600 km, 10–20 vertical layers in the atmosphere, 
and sometime 30 layers in the oceans. Operation on such large spatial scales prevents explicit model-
ing of such climate-modifying local geographic factors as topography and land/water distribution or 
vegetation type. Moreover, although GCMs use short time steps, commonly 10–30 min, cascading 
through 10 or more atmospheric layers and then providing information for a range of climatic vari-
ables (e.g., temperature, rainfall), most verifications of the models have been based on long-term mean 
simulations for base cases similar to present conditions, and the most reliable temporal scale to date 
remains seasonal [67].

Hydrological models, on the other hand, typically use a time step of one day (even subdaily), com-
monly cascading rainfall through two to three soil layers to produce output on hydrological variables. 
The ability of GCMs to predict spatial and temporal distributions of climatic variables declines from 
global to regional to local catchment scales, and from annual to monthly to daily amounts. However, the 
hydrological importance of climate predictions increases from global to local scales and from annual to 
daily amounts. Therefore, downscaling of the GCM climate projection is necessary. Two types of spatial 
downscaling are generally adopted, dynamic and statistical downscaling methods.

5.5.1  Dynamic Downscaling

The goal of dynamic downscaling, that is, to extract local-scale information from large-scale GCM 
data, is achieved by nesting a high-resolution limited area climate model to a GCM or by developing 
RCMs. It fits output from GCMs into regional meteorological models. Rather than using equations to 
bring global-scale projections down to a regional level, dynamic downscaling involves using numerical 
meteorological modeling to reflect how global patterns affect local weather conditions. RCMs can attain 
horizontal resolution on the order of tens of kilometers, over selected areas of interest. They have been 
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applied with relative success to numerous regions [30–33,44,45]. Compared with GCMs, the resolu-
tion of these RCMs is much closer to that of landscape-scale hydrologic models and makes coupling 
of RCMs and hydrologic models potentially suitable for evaluating the effects of hydrologic systems. 
The main shortcomings of the dynamic modeling include that RCMs still require considerable com-
puting resources and are as expensive to run as a global GCM, that these models still cannot meet the 
needs of spatially explicit models of ecosystems or hydrological systems, and that there will remain the 
need to downscale the results from such models to individual sites or localities for impact studies [76]. 
The amount of computations involved in dynamical downscaling makes it significantly difficult to 
produce decades-long simulations with different GCMs or multiple emissions scenarios. As a result, 
most research aimed at producing regional projections involves statistical downscaling.

5.5.2  Statistical Downscaling

Statistical downscaling establishes a connection between large-scale climate variables (predictors) 
and local-scale or station-scale climate variables (predictands) through a statistical model [49,74]. 
Instead of maintaining a dynamic climate model at the higher resolution of a region, this approach 
applies the information from GCMs to the region by using a series of equations to relate variations 
in global climate to variations in local climate. Regression models (linear regression and artificial 
neural network [ANN]), weather typing schemes (analogue method, fuzzy classification, and Monte 
Carlo method), and weather generators (Markov chain, stochastic model, and spell length model) 
are the main types of statistical downscaling methods [78]. The underlying assumption of statistical 
downscaling methods is that the predictor–predictand relation is assumed to be stationary and will 
remain the same in future with changed climate. Selection of domain for predictors and predictands 
is one of the challenges in statistical downscaling methods. According to [23], a general equation for 
the downscaling methods can be expressed as R = F(X), where R represents the local climate vari-
able known as predictand, X is the set of GCM-produced large-scale climate variable (predictor), 
and F is the stochastic or deterministic function that establishes relation between the predictand 
(R) and predictors (X). Predictands are the local climate variables such as rainfall and temperature. 
Predictors are the large-scale circulation and atmospheric variables that have direct influence on 
the local climate variables. Sea-level pressure, relative humidity, air temperature, specific humidity, 
geopotential height, sea surface temperature, etc., are the most commonly used predictors in spatial 
downscaling. Statistical downscaling requires less computational effort than dynamic downscaling. 
Therefore, the method is more popular. Advantages of statistical modeling include the opportunity 
to use “ensemble” GCM results. An ensemble of numerous GCMs is better than a single model, since 
ensemble values, which average results from many models, tend to match overall observations better 
than the results from any individual model. With statistical downscaling, the ensemble average for 
a region can be applied using equations that relate the larger-scale observations to regional climate 
parameters.

Statistical downscaling methods can be classified based on either the use of techniques or the choice 
of predictor variables. The commonly used predictor sets can include both atmospheric variables such 
as geopotential heights and/or surface patterns such as sea-level pressure [6,46,77]. The method often 
involves “bias correction,” the correction of factors inaccurately modeled by GCMs. If GCMs overesti-
mate precipitation, for instance, on the order of a millimeter a day, or an inch a month, a downscaling 
method can correct that bias before modeling future rainfall. It plays an important role in translating 
global climate change scenarios to more regional impact assessment [74,76].

The nonhomogeneous hidden Markov model has been used in spatial downscaling of rainfalls 
[7,16,17,29,41]. The statistical downscaling model has also been widely used in downscaling climate 
projections [18,40,48,75]. The generalized linear model-based downscaling models are also popular in 
downscaling climate projections [1,15,21,83–85].
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5.5.3  Predictor Selection in Statistical Downscaling

The National Centre for Environmental Prediction (NCEP/NCAR) reanalysis dataset (available at 
http://www.esrl.noaa.gov/psd) is widely used in downscaling works. The dataset represents the state 
of earth’s atmosphere, which is the combined result of the numerical weather prediction model and 
observed data from 1948 to present. These data are continuously updated and generated on a 2.5° × 2.5° 
spatial resolution grid covering the whole globe. Sea-level pressure, specific humidity, relative humid-
ity, geopotential height, surface temperatures, etc., are the few variables available in the NCEP/NCAR 
reanalysis data. Reanalysis data are significantly used in several climate change studies all over the 
world [16,19,27–29,70–72].

Selection of climate predictors in downscaling studies is an important issue. Choice of predictors could 
vary from region to region depending on the characteristics of the large-scale atmospheric circulation 
[2]. Poor selection of predictors will produce poor simulation results. In stochastic methods, predictor 
selection generally depends on the correlation coefficient between the atmospheric predictors and local 
(station) rainfalls. The Spearman correlation coefficient was used by [27]. The ANN was used in previous 
studies [14]. In some cases, application of atmospheric circulation predictors in spatial downscaling is not 
sufficient enough for better prediction of rainfall. Some other predictors used in downscaling techniques 
are specific humidity, total rainfall, mean temperature, relative humidity, etc. [19,27,29,52,72].

Selection of predictor domain varies in terms of spatial extent and obviously a critical parameter for 
the quality of downscaling performance. The large-scale circulation pattern of the single GCM grid cov-
ered by the selected point stations may not capture the local processes; these may result from the effects 
of neighboring location. In some cases, maximum correlation between precipitation and mean sea-level 
pressure occurred away from the grid box [50]. Considering and averaging the values of predictors 
from several GCM grid points around the downscaling point location have the advantage of capturing 
spatial variation of predictor variables [28]. Few studies have recommended considering continental 
scale predictor domain while using slowly varying atmospheric circulation variables [78]. In [36], they 
selected 26 exogenous atmospheric variables from the grid point that cover the climate station and from 
the surrounding eight grid points; suitable predictors were selected from each grid by partial correlation 
method at the 5% significance level. Finally, four grids were selected out of nine on the basis of variance, 
and the predictors from each selected four grids were further selected based on the partial correlation.

5.6  Uncertainty analysis

Assessment of uncertainty in the simulated outputs of downscaling technique is necessary before their 
application to climate change impact studies [12]. Sources of uncertainty in downscaling are the concept 
of the downscaling method, data used in the model such as predictor and its domain, GCMs outputs, 
and predictant database. Uncertainty in downscaled precipitation was found very high, and the simu-
lated precipitation variable was found inappropriate to reproduce the extreme events accurately in many 
studies [48,68]. Because of climate variability and uncertainty in computational methods, it is generally 
recommended to express the climate change projection in terms of probability. Probabilistic projec-
tions of climate change based on the multimodel ensemble are comparatively a new idea in uncertainty 
quantification. The Bayesian method has also been applied to multimodel ensembles to quantify the 
uncertainty for climate changes [37,54].

Uncertainties are also involved in hydrologic modeling. Sources of uncertainty in hydrologic 
modeling are

• Model input data including parameters, constants, and driving data set
• Model assumptions and simplifications
• The science underlying the model
• Stochastic uncertainty also known as variability
• Code uncertainty such as numerical approximations and undetected software bugs
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Major uncertainties come from input data sets. Uncertainties are associated with measured rainfall 
data, potential evapotranspiration data, and stream flow data (associated with rating curve develop-
ment). Spatial variability of rainfall in a catchment is generally ignored in lumped hydrologic mod-
els. A single raingauge in a catchment may not be representative of all rainfall events in a catchment. 
Nowadays, spatial gridded climate data are available, and uncertainties may be associated in the inter-
polation of raingauge data. Models are simplified representation of actual hydrological processes in a 
catchment. The assumptions and simplifications considered in a model are sources of uncertainty and 
are known as structural uncertainty in hydrologic modeling. Sensitivity analysis is also a commonly 
applied tool for quantitative estimation of parameter uncertainty in hydrologic modeling.

5.7  Summary and conclusions

A review of studies identified four major limitations in assessing climate change impacts on hydrol-
ogy. These are related to (a) capacity of GCMs, (b) limitation of downscaling techniques, (c) selection 
of hydrological modeling tools, and (d) uncertainty involved in both climate and hydrologic modeling. 
A fundamental problem is the fact that the spatial and time scales of GCMs and hydrological models 
are extensively different. Major challenges in climate and hydrologic modeling and in climate change 
impact assessment on water resources are provided in the following text. Recommendations are also 
provided. A general recommendation is to adopt collaborative studies between climate modelers and 
hydrologists in this field, which could be potentially useful to minimize this limitation.

Improved methodologies are required for the development of climate change scenarios. Removing 
uncertainties in current scenarios is dependent on improvements in both GCMs and downscaling 
techniques. Scenarios must provide the spatial and temporal resolutions required by assessment 
models, and they must incorporate the simulated changes in mean and variability of climate vari-
ables. Collection of reliable data at a range of spatial and temporal scales is critical to improving our 
understanding of hydrologic processes and in testing and validating the downscaling techniques and 
hydrological models that are being developed. Utilization and comparison of the existing databases 
from GCM and RCM are required for the estimation of their respective intrinsic variability and their 
contribution to the overall uncertainty related to climate change projections. An appropriate approach 
for the assessment of uncertainty in climate prediction scenario as well as in downscaling procedures 
and hydrological impact modeling is also significantly important. Uncertainty measures could provide 
an estimate of confidence limits on model results and would be of value in the application of these 
results in risk and policy analyses. Development and application of ensembles of hydrologic models 
can be followed for an improved understanding of the impact of the complexity of process descrip-
tions on simulated hydrological variables and predictive power, evaluation of intrinsic variability, and 
uncertainties in hydrologic modeling.

It is recommended that improvement is required in the scaling procedures for the utilization of RCM 
results in regional watershed management and evaluation and improvement of transferability of existing 
bias correction methods between station measurements and RCM outputs for future climate conditions. 
The challenge in hydrological modeling is to determine required hydrological model complexity needed 
for climate change impact studies with specific consideration of the available data for parameterization 
and of the required accuracy to develop specific adaptation options. After the projection of climate, 
downscaled and incorporated into a calibrated hydrologic model, it is necessary to develop, compare, 
and evaluate watershed adaptation options and climate change impacts (to address water quantity and 
quality challenges, changing land-use patterns, dam management, irrigation needs, etc.).
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adaptation and flood risk management. Birgit Paludan is one of the main authors of the Climate Cook 
Book, which gives recipes for consistent analyses of climate change impacts on urban drainage. She 
works for the official Danish government “Task Force on Climate Change Adaptation,” which brings 
knowledge and inspiration to the Danish municipalities on adaptation to the changing climate.

6.1  Introduction

It is in the interest of society to provide protection for the population and to protect infrastructure 
against flooding and to protect the aquatic environments against polluted sewer overflows in a timely 
and cost-efficient way [8]. Climate changes (precipitation, increase in temperature, and mean sea level) 
may have significant impact on the urban water cycle [5]. Hence, it is important to identify and quantify 
the impact on the main urban water systems, such as sewer systems, wastewater treatment plants, storm 
water overflows, and combined sewer overflows, to receiving waters, such as rivers, lakes, estuaries, and 
the sea.

In the past, infrastructure, located facilities, buildings, or new urban areas were designed based on 
the assumption that the future was like the past. Parameters were measured in nature, and they were 
used as design basis, for infrastructure, which should last for many years (100+) into the future. Today, 
we are in a situation where we know that it is insufficient to make decisions that have consequences far 
into the future—without taking into account the changes that we already know will happen in nature 
due to climate change. A climate adaptation strategy for urban water systems shall therefore be based 
on the protection of the society on the basis of the knowledge we already have and optimize both exist-
ing and new infrastructure based on the knowledge we currently have about the movements of climate 
change.

6.2   Principles for adapting Urban Water 
Systems to climate change

The aim of any climate adaptation strategy should be to adapt the society in such a way that

 1. The negative social consequences of climate change (including economic, technical, social, and 
other effects) are minimized to a deliberately chosen level.

 2. It creates confidence among the public that the consequences of climate change are identified and 
taken care of, and that the citizens’ views are heard.

 3. Climate change adaptation of the society becomes an integral part of the planning processes.

These three objectives must be achieved through conscious and informed choices about how we deal 
with the consequences of climate change. This requires that we have mapped both the possible effects of 

Preface

Future climate changes may have significant impacts on the urban water cycle. One of the main 
threats is increased flooding in the cities, which may be very extensive and cause serious flood 
damages. This chapter outlines how climate changes may have an impact on the urban drainage 
systems. The impact on the urban drainage system is discussed in terms of changes in perfor-
mance of the urban water systems. The main principles for analyses of the impact on the urban 
water systems are presented, and strategies for adapting urban water systems to climate change 
are outlined and discussed. Finally, adaptation principles and measures are outlined for the urban 
water systems.
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climate change and the associated uncertainty estimates. The conscious and informed choice on climate 
adaptation consists of the following equal elements:

 1. Assessments of the effects of climate change and thus the usefulness of climate change adaptation 
measures are subject to uncertainties. In many situations, the uncertainties will not have a signifi-
cant impact on the choice of adaptation measures. In this context, it is important to acknowledge 
uncertainties and use that knowledge constructively, that is, the uncertainties must not be used 
as an excuse for inaction. On the other hand, you cannot select solutions without considering the 
actions that are most robust against uncertainties. This is an important point that a deliberate and 
documented choice (which may also be doing nothing) must be taken—on the basis of acknowl-
edged uncertainties.

 2. Climate changes may have serious impact on the living conditions for many urban citizens in 
connection with the urban water systems, for example, in terms of increased urban flooding or a 
reduced supply safety for water. Hence, stakeholder involvement is essential—both in relation to 
the identification of problems and when it comes to assessment of possible climate change adapta-
tion measures. This provides the opportunity to involve all relevant information, and, not least, 
to achieve a high degree of common understanding of the problems and character. Many climate 
change adaptations require change in the behavior of citizens and changing social environment, 
which in turn requires stakeholder involvement to anchor the decisions and behavior of citizens.

 3. Selection of climate change adaptation measures can have effects that are positive for one sector 
and negative for another, and perhaps unknown to a third sector. Cross-sectoral assessments are 
therefore essential to ensure socially sound and sustainable solutions. Cross-sectoral solutions 
often require priorities between different sectoral interests (stakeholders), which illustrate the 
need for stakeholder involvement.

 4. Handling of the extreme events due to climate change. Extreme events will always occur with 
strength, which exceed the design; even after design, the standards have been updated based on 
the latest climate change projections. This is, for example, the case for urban flooding. The delib-
erate handling of extreme events consists of an analysis of the respective risk and damage from 
extreme weather events held up against the costs to manage them. The results of such analyses 
provide valuable information for the long-term social planning, for example, when drawing up 
plans for where new infrastructure can be built and where existing infrastructure and buildings 
have to be moved from vulnerable areas. In addition to these primary economic analyses, there 
is also a need for outlining the general ethical and social consequences as the society can accept. 
Finally, the need comes for emergency plans for handling of extreme weather situations as they 
arise in the future and even today.

The core of the conscious and informed choice is that all relevant effects of climate change are identified 
(including uncertainties) and that there is a documented choice of what you choose to do. A conscious 
and informed choice of action can also be not to do anything today, but to wait for more knowledge in the 
field. Climate change adaptation (as described in points 1–4) must be integrated into the existing plan—
planning processes in the society. That is, climate adaptation of society becomes part of the continuous 
and rolling planning cycle within the authorities.

6.3  Predicted climate changes Impacting on the Urban Setting

6.3.1  future rain

In some places, the annual rainfall may change so that the easily available water resources for the drink-
ing water supply will be reduced. The rainy season may shift a bit, and more extreme rain events may 
occur, especially during summer. In the Northern Hemisphere, in many places it is expected that the 
precipitation will increase during winter; the accumulated precipitation will be reduced during summer, 
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but with an increase in single extreme rainfall events. The question now is which changes will occur and 
how quickly will they come? Both issues are important to consider in planning the augmentations of 
urban drainage systems. In some cases, there is a need for estimates of future precipitation in the rest 
of this century, while in other cases, estimates of future precipitation is required only for a shorter time 
scale. It depends entirely on the actual problem, not least on the potential to continuously adapt the 
system to increased load and to judge the consequences of an error estimate in the prediction. New local 
rainfall for design can today be estimated using statistical downscaling from GCM climate projections. 
At present, the local design storm found by means of this method indicated an increase in design rain-
fall in the order of 20%–50% for urban drainage and storm water systems.

6.3.2  future Water Levels in Marine Waters

In the future, the mean sea level along the coasts will increase due to climate-related sea-level rise. In 
addition to this, new climate-related extreme wind fields will lead to backwater or increases in near-
shore sea level. Changing sea levels will affect the hydraulic conditions at the outlets in drainage sys-
tems, which discharge by gravity to the sea [4]. More specifically, the mean sea level is expected to rise 
by 50–150 cm during this century. Additionally, a wind contribution by storm surges of up to 50–100 cm 
in maximum sea water levels is expected around the world. The impact of the new extreme water levels 
for coastal municipalities should be calculated as sea-level rise plus backwater from new climate-related 
extreme wind fields. Output from these oceanographic calculations will be extreme water levels for rel-
evant return periods including a measure of duration (i.e., day maximum or similar). This information 
can be used to estimate the required pumping in a given urban drainage system and whether inflow 
from the sea through rivers may occur.

6.3.3  future Water Levels in Lakes and rivers

Rivers have large differences in water flow patterns. Some creeks have a relatively constant water flow 
with small differences between winter and summer flows. They can have a little sensitivity to extreme 
rainfall events, while other streams and rivers have large differences between winter and summer flows, 
and they can have a strong response to extreme rainfall events. This type of urban stream/river may 
have a tendency to dry out in summer. In the future, it is expected that rivers will also be affected by 
climatic changes. Sea-level rise will affect rivers and reduce the drainage capacity, and in situations of 
extreme water levels, the impact is increased. Since the rivers often act as boundary condition to the 
urban drainage system, it is recommended to describe the river hydraulics together with the urban 
drainage network.

6.3.4  future Water Levels/Pressures in Groundwater

Any changes in the groundwater conditions are interesting from an urban drainage point of view. If the 
groundwater table changes, it might impact the infiltration to the urban drainage system, the secondary 
groundwater zone that has an impact on the runoff on terrain to storm water and combined systems as 
well as rivers. When heavier rainfall events occur, the surface runoff from permeable areas to the urban 
drainage systems will increase. The expected increase in precipitation events with high intensity may 
have local impact on the groundwater conditions. Especially in areas with coarse sandy sediments, a 
rapid rise in groundwater table may occur under very intense rainfall with potential infiltration into 
sewers, basements, and other underground structures. At the same time, there may be disturbances 
in the dewatering plant pumping from the upper aquifers. The projected sea-level rise in coastal areas 
would cause a rise in groundwater potentials. The risk of intrusion of saline water into coastal ground-
water wells will increase, and the drainage of coastal catchment areas will be disturbed or altered. In 
many cases, the sea-level rise will have only very local impact on groundwater conditions. However, it 



Climate Change and Urban Water Systems 91

may have significant impact on runoff conditions in coastal rivers, where gradients are small, especially 
combined with the anticipated increased intensity of rainfall.

6.4  changes in Performance of the Urban Water Systems

6.4.1  Urban flooding

Drainage systems are designed to be full flowing for a certain return period of rainfall, for example, 5, 10, 
or 25 years, depending on the location of the drainage system (e.g., rural, suburban, and financial dis-
trict) [12]. Hence, if nothing is done to the urban drainage systems, their performance will certainly drop 
in locations exposed to more frequent or extreme rain events. Consequently, city areas will be flooded 
with an increase in flood damages [13]. Several studies suggest that the economic consequences by fail-
ing to change the city’s design for the drainage systems are very large; the studies state that it pays off 
to extend the capacity of new pipes being built today, so they correspond to the last climate projections.

6.4.2  Overflows to receiving Waters

Drainage systems are designed to relieve (send rainwater mixed with water) to recipients (e.g., lakes, 
rivers, and estuaries) in case that the drainage system is overloaded. This design practice has changed 
over the years, and now it is more common to use objectives, which are determined on the basis of the 
vulnerability of individual recipients to water. Increase in annual precipitation may increase sewer over-
flows, but no general statement can be made, and local analyses (e.g., by urban drainage modeling) are 
required to estimate an impact from the future rainfall on overflows.

6.4.3  changes in Inflow to Wastewater Treatment Plants

If the precipitation is increased during winter, biological wastewater treatment plants located in cold 
areas may have a readied efficiency as cold weather and water slow down the biological activity and 
reduce the efficiency of the wastewater treatment plant. Conversely, the generally higher temperatures 
in winter will reduce the need for preventing slippery roads by means of chemical and salt, and this will 
reduce the load of these substances on the wastewater treatment plant and the aquatic environment.

6.5  adaptation of Urban Water Systems

Climate change adaptation in urban areas is described in this section by applying risk assessments in 
practical solutions in order to achieve desired standards of services in preparation and layout of contin-
gency plans [3].

6.5.1  risk analysis: Damage assessment Using a risk analysis

Assessing the risk of damages in an urban drainage catchment can be undertaken at different levels, 
from broad qualitative analysis to quantitative analysis. Other impacts may be taken into account in 
the analysis. Besides the influence of extreme rainfall, there are also risks in the general operation of 
drainage systems.

A complete risk analysis of the system can be undertaken by systematically examining how the drain-
age system operates under different conditions during both extreme rain events and periods with dis-
ruptions in the service by weighting the various disruptions by their importance. A simpler risk analysis 
focused on extreme flooding is also possible. Analyses at both levels are very useful tools that can be 
used in prioritizing the maintenance, and operational actions should be continuously made to upgrade 
the drainage system.
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Traditionally, damage caused by surcharged water on terrain is divided into three categories:

 1. Direct damage—typically, damage caused by standing or flowing water
 2. Indirect damages—for example, traffic accidents due to aquaplaning, traffic disruptions, admin-

istrative costs, labor costs, loss of production, etc.
 3. Social costs—negative long-term effects of a more economical nature, such as reducing the value 

of property in areas subject to flooding and slower economic growth

A big advantage of a risk analysis is that all causes of flooding are assessed and weighted. Hence, optimiz-
ing the time and avoiding disproportionate spending of time on some measures, while others, perhaps 
more important, are overlooked. As an example, a pump failure of a pumping station due to obstruction 
or power failure during a moderate rain event could result in flooding comparable to the flood caused 
by an extreme rainfall event. One method to find the cost related to flooding in urban areas is to col-
lect information on documented flood incidents by the insurance companies as, for example, made in 
Norway [6] or Brazil [10]. An internationally recognized technique to quantify the damage is the use of 
“flood damage curves,” describing the extent of the damage as a function of land use and water level, 
refer to [10]. Currently, such “flood damage curves” do not exist for any areas in Denmark. The following 
issues should be included in an assessment of damage related to flooding [11]:

 1. To prevent that the population is brought into contact with a mixture of sewage and rainwater due 
to overloading of the drainage systems

 2. The vital community functions, such as electricity supply, water supply, heat supply, communica-
tion points, and access to hospitals, are not out of operation due to flooding

 3. The number of affected basements and buildings is minimized
 4. The number of flooded electrical power cabinets and other equipment is minimized
 5. The impact from flooding on traffic is minimized

6.5.2  risk analysis: Definition of risk concept

A plan for managing risk includes the following seven steps:

 1. Identify the risks (e.g., what can go wrong?)
 2. Assess the likelihood and consequences of these risks
 3. Determine the risk mitigation options
 4. Assess the economic, environmental, public relations and operational costs and benefits of the 

options
 5. Prioritize the mitigation option
 6. Identify the decision makers
 7. Develop the implementation plan

The steps in a risk analysis are illustrated in Figure 6.1.
The first step is data collection, where knowledge of the drainage system is obtained. This is followed 

by a coarse risk analysis during which a screening of infrastructure is undertaken by experts and special 

Risk is the combination of the probability of an adverse event (e.g., failure of wastewater treatment 
plant/pump station, basement flooding, releases of hazardous substances, errors in management/
SCADA) and the magnitude of the consequences (e.g., damage to facilities, personal injury, odor, 
traffic delays, fish kills) and severity (is it the release of 1 or 100 L, is it the hospital that gets 
flooded, how many are injured). Mathematically expressed as risk = probability times consequence.
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risk tools. After the coarse risk analysis, there are two options: either to prepare a detailed risk analysis 
with a focus on selected areas from the coarse risk analysis or to go directly on to identify mitigation 
measures. If it is decided to proceed with the detailed risk analysis, it is possible to quantify different 
priority risk mitigation measures. In order to prioritize the selected sites, it is necessary to establish 
three matrices:

 1. A frequency matrix
 2. A consequence matrix
 3. A risk matrix

The frequency matrix consists of seven intervals named F1–F7. F1 is an event that statistically occurs less 
frequently than once every 10,000 years. F7 is an event that statistically occurs 10–100 times a year. The 
frequency ranges are constructed according to a logarithmic scale. Because of the logarithmic scale, it is 
not important to know the frequencies of adverse events accurately. It is important to know the magni-
tude of a given event to be used. The frequency matrix is shown in Table 6.1.

A logarithmic scale is used between the individual impact categories in the matrix to make it possible 
to compare the impact groups. “Negligible,” for instance, indicates an economic value of 10,000–100,000 
DKK, while “marginal” indicates a value between 100,000 and 1 million DKK. The economic scale used 
in the consequence matrix is not arbitrary. Each figure is estimated from available sources and practical 
guidance numbers. The consequence matrix can describe the different impact categories ranging from 
no/negligible impact to the disastrous impact described in both qualitative and quantitative terms. The 
accumulated risk matrix is shown in Figure 6.2.
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FIGuRE 6.1 Risk analysis process.

TABLE 6.1 Frequency Matrix

Frequency Interval Classification Frequency per Year

Daily to monthly F7 10–100
Monthly to year F6 1–10
1–10 year F5 0.1–1
10–100 year F4 0.01–0.1
100–1,000 year F3 0.001–0.01
1,000–10,000 year F2 0.0001–0.001
<10,000 year F1 0.00001–0.0001

Source: DANVA, Urban Climate Change (Original title: 
En kogebog for analyser af klimaændringers effekter på 
oversvømmelser i byer), 2011.
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Consequences

Risk matrix

Classification
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Frequency
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Number per
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FIGuRE 6.2 Risk matrix. In the matrix are examples of selected sites in sewers placed in relation to the assessed 
frequencies and consequences. (From DANVA, Urban Climate Change [Original title: En kogebog for analyser af 
klimaændringers effekter på oversvømmelser i byer].)
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Four scales of gray are used in the risk matrix to indicate whether the calculated risk level for a given 
event is tolerable or not. A risk level above six or seven shall lead to implementation of defined actions to 
reduce risk levels. According to Figure 6.2, identified mitigation measures must be implemented for the 
two events classified in the nontolerable region indicated by circle nos 4 and 13 in Figure 6.2.

All items located in the light gray area should be evaluated based on a cost–benefit analysis that can 
determine what and how much is required to reduce the level of risk and whether an investment should 
be made here and now, or only when the impact occurs. An analysis provides the basis for assessing 
the risk level for the entire drainage system and to assess this level relative to the acceptance threshold 
defined in the risk matrix. For incidents above the acceptance threshold, risk mitigation measures must 
be identified and implemented. For incidents that lie in the acceptance area, an identification of optional 
mitigation measures must be undertaken and assessed through a cost–benefit analysis.

6.5.3  risk of flooding from extreme rainfall

A risk analysis of flooding from extreme rainfall alone can be based on flood maps [7]. The simulation 
results of rain with high return periods may be plotted using GIS themes or aerial photos in order to 
identify problematic areas. Each area must be assessed as to whether flooding is a problem and whether 
there may be damages. The assessment shall be based on the following considerations:

• If a park or football field is flooded for a given return period, is it acceptable? Is the inundation 
from a separate or combined system? How long does it take before the area can be used again and 
is cleanup required?

• What flood levels will affect basements, first floor, electrical cabinets, parked cars, etc.?
• How much does the number of different damages increase caused by climate change? Is there a 

risk of more damages related to urban development and what is the flood impact from planned 
upgrades of drainage system? Can damages caused by flooding be exported to other locations?

• What is the level of uncertainty in the model results? How well is the model calibrated, and has 
a safety factor been included? Is it reasonable to interpret the results directly, or should a safety 
factor be applied to the results?

6.5.3.1  compilation of Damages

The cost of flood damage varies depending on what is damaged, if the damaged items have been com-
pletely or partly written off, replacement cost, etc. Moreover, the cost depends on whether the flooding 
was caused by rainwater and sewage, and where the flooding occurred. It is therefore very difficult to 
generalize the damage costs. A general list that accurately describes the cost of flooding of electrical 
cabinets, basements, houses, etc., cannot be developed. It is therefore recommended to first determine 
the number of damages by type and then to cost the damage.

To quantify the loss by flooding, it is desirable to have a geographical overview of what values might 
be flooded. Typically, municipalities have records of where the buildings are located, and housing reg-
istration contains information about the location of basements. The basis for the comparison is estab-
lished by combining the building theme and the house registration data. Public buildings will often have 
a higher value than a single dwelling, so it may be appropriate to categorize the public institutions in 
terms of use, that is, as kindergarten or a nursing home.

Streets convey rainfall water into the drains. However, when the capacity of the drainage system is 
exceeded, the water may surcharge to the roads. The roads are then used to convey the excess water dur-
ing the rainfall event [9]. In these situations, it is important to know estimates of water depths, water 
velocities, and where the water flows. Roads are usually designed to drain storm water quickly and effi-
ciently. However, when there are significant amounts of water on roads, it might conflict with the origi-
nal design of the road. If an analysis shows that a road under future climate conditions will be flooded 
more frequently, it should be discussed and resolved with the road authorities. The road construction 
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may be adapted. In connection with the damage assessment of roads, it is pertinent to examine the crite-
ria for the operation: How much water on the road is allowed by the authorities before the road must be 
closed? And to investigate the road quality, so it can be determined how much water it takes to destroy 
the foundation of the road and how long the road can be flooded before damage occurs.

6.5.3.2  Valuation

The following parameters can be used for valuation of flooding:

• Housing
• Crèches
• Kindergartens
• Nursing homes and sheltered housing
• Water distribution. Flooding of the building of the water treatment plant causing possible con-

tamination of clean water
• Water wells, flooding may lead to contamination of the bore field
• Petrol stations where there may be a risk of water flowing into the tanks, so that the petrol runs 

out (service stations with newsstand sales, auto service, etc.)
• Areas of storage of oil and hazardous waste near recipients
• Companies with oil and petrol separators connected to the sewage system and storm water sys-

tem. Oil/gasoline may either surcharge inside a building or outside (it will run approximately 
50–100 L from each separator)

• Especially for wastewater systems:
 − Avoid overflows from sewage pumping stations
 − Avoid swimming pools becoming contaminated with sewage

It is important that people with the greatest knowledge of the area being examined are consulted to 
determine appropriate values for the various categories provided earlier. In some cases, the GIS staff 
has a good overview of the information available. The boundaries of what can be illustrated and calcu-
lated from GIS primarily depend on what information is available. The following are a few examples for 
inspiration.

Figure 6.3 shows a theme with houses inundated by various return periods. The GIS layer of simu-
lated floods is linked to the GIS layer of houses taking into account the foundation level. In Figure 6.4, 
the electricity cabinets are illustrated with floods exceeding 40 cm, by which flooded electricity cabinets 
can be identified and counted.

Figures 6.5 and 6.6 show the specific buildings plotted together with the extent of the flooding and 
flood depth. In this example, schools, kindergartens, and service stations are shown. This type of GIS 
illustration shows how and where health or environmental issues may arise.

For valuation of a new road foundation, the following should be noted:

• Cost varies according to thickness, etc.
• Most expensive is asphalt-layered roads. In this situation, it will be necessary to remove and 

deposit the asphalt before construction of new foundation, followed by a new asphalt pavement.
• In parts of the foundation, there will be cables, and costs associated with coping and any repairs 

due to damage caused by replacement of the foundation are impossible to estimate. Worst 
case = much more expensive than road foundation and asphalt replacement.

6.5.4  Priority adapting to floods under a changing climate

As it appears, the risk analysis can be used as a basis for prioritizing actions to prevent floods and to 
adapt to climate change, but in many cases, it will not be necessary to implement the full risk analysis 
to get started. Analyses of climate adaptation can be achieved at many different levels. These methods 
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T = 20 år
T = 50 år

T = 100 år

FIGuRE 6.3 Example of GIS theme of the houses flooded at different return periods. (From DANVA, Urban 
Climate Change [Original title: En kogebog for analyser af klimaændringers effekter på oversvømmelser i 
byer], 2011.)

FIGuRE 6.4 Example of GIS theme of electrical cabinets damaged. Placement of electrical cabinets is pictured 
together with water levels above 40 cm. (From DANVA, Urban Climate Change [Original title: En kogebog for 
analyser af klimaændringers effekter på oversvømmelser i byer], 2011.)
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FIGuRE 6.5 Example of GIS theme showing specific buildings. Flood propagation is pictured together with the 
location of schools and kindergartens and gas stations. (From DANVA, Urban Climate Change [Original title: 
En kogebog for analyser af klimaændringers effekter på oversvømmelser i byer], 2011.)

0.0–0.1
0.1–0.2

0.3–0.4
0.4–0.5

0.5–0.75
0.75–1.0
Over 1.0

0.2–0.3

FIGuRE 6.6 Example of GIS theme showing specific buildings. Flood levels are pictured together with the loca-
tion of schools, kindergartens, and gas stations. (From DANVA, Urban Climate Change [Original title: En kogebog 
for analyser af klimaændringers effekter på oversvømmelser i byer], 2011.)
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can be used for different degrees of priority: establishing a basis for getting started, where models shall 
be established, prioritizing measurement programs, prioritization of specific climate adaptation in the 
form of installations, priority for emergency action, etc. In relation to the specific climate adaptation, 
it will be necessary to implement according to priorities of both the economy and technical measures, 
which are highly political decisions, but the political decisions must obviously be made on a sound tech-
nical basis. Priorities not only can be carried out based on assessments of risks of flooding, but can also 
be implemented based on economic assessments: Where do you get the greatest reduction in flood risk 
or most climate change adaptation for the money? Prioritization of climate change adaptation can be 
based on the climate-meter. Among others, it will be possible to prioritize where to undertake registra-
tion of the pipe network if it is not available in a digital form. The digitization can be undertaken based 
on the relatively simple depression map method combined with a simple hydraulic mode.

6.6  Options for adapting the Urban Drainage System

The expected higher rainfall in the cities should be either discharged or stored in order to avoid flood-
ing. Possibly, part of the water can infiltrate locally before it enters the urban drainage system. A wide 
range of technical options exist to solve this. The drainage system can be built out with additional or 
larger pipes, and ponds for storing can be constructed. In the following examples, various augmentation 
options are given. Main groups of options are

• Active reduction of inflow of rainwater to the drainage system, that is, through increased infiltra-
tion of rainwater

• Temporary controlled storage of rainwater, that is, using wetlands
• Augmentations in the drainage system that increases capacity, that is, larger pipes, basins, etc.

6.6.1  Physical Measures on Drainage System

Addressing the increased rainfall from our urban areas in order to meet the standard of services and 
reduce the flooding can be done in a variety of ways. There are three types of solutions: to avoid the 
increased volume of water discharged to the drainage system, increasing the discharge or the storage 
capacity of the drainage system, or possibly a combination of these. Reduction of inflow to the drainage 
system can usually be achieved only by establishing local infiltration of water. Drainage of storm water 
can be done through open channels or closed pipes to the recipient, to larger infiltration units, or with 
any wastewater to treatment plants.

Storage systems can be either traditional basins like concrete boxes or pipe basins, or it can be lakes 
and ponds. Beyond the physical conditions in the catchment, treatment plant capacity, and conditions 
in the receiving waters, it is crucial whether the drainage system is a combined system or a separate 
system. In a separate storm water system, it is usually much easier to find diversion options for a local 
recipient than it is for overflow originating from a combined system. Figure 6.7 shows an overview of 
possible ways of regulating storm water into a drainage system.

The following describes some of the most common approaches expected to be used for augmenting 
existing drainage systems, so that they can meet performance requirements during the future increased 
load. The municipality should be aware that actions often lead to a need for revision of both wastewater 
and discharge or infiltration permits, for example, if overflow volumes or local infiltration is increased/
established.

6.6.2  Infiltration of Storm Water

Where it is geologically and hydrologically possible, infiltration of storm water can be established at 
each property, or complete infiltration solutions can be made for small urban areas. Storm water from 
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roads, sites, car parks, etc., may in some cases be infiltrated, but in those cases, it must be determined 
whether the infiltration may pose a threat to groundwater quality. Infiltration is basically the best 
environmental approach for discharging unpolluted rainwater, as it largely corresponds to the natural 
way and results in only limited interventions in the natural water cycle. Drainage structures should be 
designed so that there is emergency overflow from infiltration facilities to the public storm water system. 
This reduces the risk of flooding, and the size of the infiltration facilities required is limited. However, 
this has the unfortunate consequence that during heavy rain, the fascines can be filled up, resulting in a 
quite instantaneous and uneven flow back to the drainage system, which must therefore be designed to 
cope with these peaks in the flow.

The capacity of fascines may typically be of a size equivalent to 20–30 mm of rain, but there is no 
assurance that fascines are empty at the beginning of rainfall events. For this reason, it is not certain 
during an extreme rainfall event that flooding is reduced significantly. However, fascines can reduce the 
yearly runoff volume considerably and increase groundwater recharge.

6.6.3  combination of Infiltration and Storing

As mentioned, infiltration systems for storm water usually have a limited capacity, requiring water to be 
stored during periods of major inflows. The optimal combination of storage size and infiltration capacity 
can be calculated or estimated based on the knowledge of soil infiltration capacity, flow conditions, etc.

6.6.4  Separation of combined Systems

Many of the most appropriate measures to address the increased rainfall are ill-suited for combined 
systems. The mixture of sewage and storm water is so polluted that the water must be treated with cau-
tion. Human contact with the water poses a risk of disease, and there are aesthetic problems at outlets. 
Functional requirements are therefore much more stringent to the combined systems than to storm 
water systems. It is natural to consider changing the old combined systems to separate systems, espe-
cially if the spare capacity of the combined system is limited requiring major built-outs. In practice, this 
involves so many problems that only a few places exist where it is implemented. It is very expensive and 
very difficult to build a completely new drainage system, which also requires that the pipes located at 
each parcel are converted to a separate system.
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FIGuRE 6.7 Schematic overview of possible ways of regulating runoff.
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Separating the combined system is carried out in smaller communities and new built-outs, but rarely 
in the old city centers where the need is often the greatest. Therefore, there is a need for other solutions 
to address at these sites. There is currently a “standard” solution for these city problems.

6.6.5  Increasing Pipe Sizes

If the conceptual layout of a drainage system cannot be changed, it can be chosen to simply increase 
the dimension of all the pipes in the system, so the capacity will meet the requirements in the standard 
of services. Alternatively, an additional pipeline can be added along the existing pipeline. Prior to this 
augmentation, the drainage system should be carefully analyzed in order to make only the necessary 
substitutions, and it should be considered to increase existing dimension on some stretches and whether 
there are alternative pipeline options, which can reduce costs for expansion.

6.6.6  Trunk Mains

The increased runoff flow from a catchment can be conveyed through larger pipes or stored in basins. 
Due to lack of space, it may be difficult to expand the sewage system, and an option could be to build 
tunnels conveying the water from strategically well-placed nodes in a catchment area to the recipient 
or main trunk line. The tunnels can also act as extra storage capacity. The technical and economic fea-
sibility of using such solutions have been considerably improved in recent years. It should be noted that 
the increased water flow can be critical for the rehabilitation method that can be used, and thus for the 
expense.

6.6.6.1  Overflow

In combined systems, overflow or spillways are often installed to prevent the water level in the drain-
age system from exceeding a certain level that protects areas from flooding as well as ensures that only 
the designed volumes of water are conveyed through the system. Overflow discharges across a weir to 
basin, outlet pipe, or recipient. To ensure the same hydraulic functionality at the overflow structure 
during higher inflow and constant outflow, it will be required to increase the width of the weir crest or 
lower the weir crest level. The latter will, however, have the unfortunate consequence that the number 
of overflow increases.

To ensure the best hydraulic function of an overflow structure, that is, ensuring that most water 
flows through the structure without an increase in the backwater, the weir structure can be equipped 
with movable weir, dynamically controlled crest level, or a moveable flap. This can also maximize the 
basin effect in the upstream drainage system. In addition to the hydraulically justified augmentations, 
treatment measures are also installed at overflow structures, normally, automatically cleaned strainers 
or grids, but in some cases, more extensive treatment measures, that is, removal of nutrients and sanita-
tion. The development will certainly lead to such cleaning being more and more prevalent, providing 
increased and better cleaning methods for use by local treatment. If the discharged water is sufficiently 
cleaned, the cleaning can compensate for the increased overflow volumes, so that the impact on the 
recipient is reduced despite the increased overflow.

6.6.6.2  Basins

At many locations where it is chosen to reduce the hydraulic capacity in an outgoing pipe, basins are 
built that can act as buffer in the drainage system. Basins are often constructed with an overflow ensur-
ing only overflows to the recipient at a chosen frequency. The basins can be designed both to store the 
extreme peaks of the runoff, so flooding is avoided or reduced, and also to reduce the overflow to the 
recipient. In combined systems, the stored water is conveyed to the water treatment plants in the normal 
way after a rainfall event. In separate systems, basins are usually used to not only smooth runoff flow, 
but also add some treatment of the water before it is discharged into the recipient.
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Sizing of basins in combined systems can be made from the discharge capacity of the basin and 
selected return period of overflow. There are formulas in Guide 26 to determine the required volume of 
the basins, but it is recommended that updated rain series are used and in addition the effect of climate 
change incorporated. A subsequent calculation is undertaken with historical rain to verify the function 
of the basin.

Basins in separate storm water systems can often be engaged in recreational areas and therefore have 
other functions than just smoothing the runoff. In this case, the size of the basins may be determined 
by the permissible water level variation, that is, of requirements to retention time limits. The retention 
time may not be too short because it gives too little withdrawal of substance, and it must not be too long 
as it can cause excessive algae growth in the basin/pond. This type of basins may also be recommended 
because they are often very flexible to increased inflows, partly because overflows due to the location do 
not cause major damage.

6.6.6.3  Local Storage

Wherever there is a possibility, it will be a good idea to store rainwater in extreme situations. It should 
therefore be considered to place basins in as many small watersheds as possible, that is, in the drain-
age of minor roads, parking lots, etc. Perhaps at some locations the storm water inlets can be made so 
large that they can act as smaller basins during extreme rainfall by reducing the outgoing pipe capacity. 
Developments such as these can be performed when there is still rehabilitation undertaken and can thus 
assist in compensating for extreme rainfall beyond the level of service.

It could be considered at the planning stage that newly paved areas can serve multiple purposes, so 
that planned activities in this area are not harmed by water depths of approximately 5–10 cm in the area 
during extreme rainfall in a short period.

6.6.6.4  control and regulation of Drainage System

Drainage systems are dimensioned to handle a design rainfall and thereby meet performance require-
ments. Since rainfall often falls unevenly across a catchment basin and the capacity of the pipeline 
system is often varied, there may be a good opportunity to improve the use of a drainage system by 
introducing dynamic control of certain elements in the system, for example, the outflow from the basins. 
This can contribute to both reduced flooding and, in combined systems, reduced overflow to recipients. 
For drainage systems with multiple basins, pumping stations, etc., it is strongly recommended to inves-
tigate the potential for dynamic control. As part of augmentations in the system, it may be appropriate 
to examine whether control can allow for more appropriate solutions to problems such as the storage 
basins or large pipe basins can be better placed in the system.

6.6.6.5  Use of the road System

Normally, runoff from the roads is conveyed to the drainage system to avoid water or aquaplaning on 
the road. In some cases, it may be considered to exploit the road profile to convey water away during 
extreme rainfall. If the terrain is suitable and a model can be assessed in terms of how the system will 
operate, it may be an excellent way to get the water transported from critical areas to suitable recipients 
or storage options. The method can be recommended to be used only to separate storm water systems 
and in situations where the design rainfall has been exceeded (i.e., in emergency situations).

6.6.7  augmentation on Private Property

6.6.7.1  Physical Measures

It may be useful to encourage owners to collect and divert rainwater on their own land in order to 
avoid that the water is collected and hence requiring large drainage capacity. Additionally, less effect 
on the water circulation in the area is achieved by infiltrating the water locally. However, it requires 



Climate Change and Urban Water Systems 103

that groundwater, soil, and terrain conditions fulfill certain conditions so that it is possible to divert the 
water locally, without introducing local problems and damages.

If a parcel with a relatively small impervious area of 150 m2 is considered, this corresponds to the 
landowner being able to store and dispose 7.5 m3 of rainwater in a five-year rainfall event (rainfall equiv-
alent to 50 mm), if there is no connection of storm water to sewer. This amount equates to 30 standard 
rain barrels or a pond in the grounds of 5 × 5 m and 30 cm deep. If more water falls, the owner needs 
to have a management plan in place for handling this extra amount of water volume locally to prevent 
flooding on his own or other people’s parcels.

Managing storm water on their own land without drainage to the combined drainage system may 
therefore be recommended primarily for environmental reasons and in order to recharge groundwater. 
When looking at the hydraulic balance, these constructions are not the solution, but a complement to 
climate adaptation.

It is recommended not to base an adaptation solely on efforts by private landowners for many reasons. 
The fact alone that it is not possible to control when landowners are ready to disconnect their storm 
water system is reason enough not to rely on this method from a hydraulic standpoint.

6.6.7.2  Infiltration of rainwater

This refers to the diversion of rainwater into fascines on the site. Infiltration requires adequate soil con-
ditions. Fascines are often designed in a size equal to 20–30 mm of rainfall, but no certainty exists that 
the complete capacity is available when the rainfall starts. If, for example, grass armor stone or similar 
surfaces are used in parking spaces, etc., a large part of rainfall is infiltrated on site depending on the 
soil type. But in case of intense rainfall, water will run on the surface and be discharged to the drainage 
system.

6.6.7.3  rainwater Barrels

By collecting rainwater in rain barrels, a reduction in the discharge to the drainage system is obtained, 
and water consumption is reduced in cases where the water replaces the standard drinking water supply 
used, for example, for garden watering. The volume that can be collected is often very limited, 200–500 L 
is often seen, and this is only a modest proportion of the volume of extreme rain on a roof. Rainwater 
barrels can be full at the start of the rainfall and therefore not reduce runoff at all.

6.6.7.4  reuse of rainwater

Use of rainwater in homes as a substitute for water supply has only been implemented in a few places, 
but has the same advantages as rain barrels and the further advantage that consumption—as opposed to 
irrigation—is more evenly distributed over time. A major drawback is also here that the storage capacity 
is limited, and therefore there is no guarantee that systems can store water during critical situations.

In many places, a rainwater tank of approximately 3–5 m3 is used, and it is estimated that a tank like 
this will be able to store a large part of the annual precipitation to be used in the dwelling for toilet flush-
ing and washing machines. In connection with extreme rainfall, an overflow is required to divert water, 
since a 5-year storm event alone requires in the order of 7.5–10 m3 for a single-family house.

6.6.7.5  Green roofs

Techniques have been developed for using the so-called green roofs, where a grid of growth layers in 
which plants can grow are laid out on the roofs of buildings. The aim is to store the water fallen on the 
roof in the growing layer where it is absorbed by plants. However, the storage ability of the growth layer 
is limited, only 6–10 mm, so the storage effect during extreme rainfall is limited. Even so, on an annual 
basis, a quite good effect can be achieved in terms of reduced inflow to drainage systems.

As shown in the mentioned examples of actions on private land, it is hard to find solutions for the 
public, which are as safe and easy as discharging to the public drainage system, and it is hard to find 
solutions that can handle the very critical periods of extreme rainfall.
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6.6.7.6  Private Prevention of Basement flooding

If a landowner needs to guard the basement against flooding from sewers, nonreturn or check valves can 
be installed so that water cannot flow backward into the basement. If the basement drainage system is 
connected to a pump, wet well pumping to drainage system, then even higher security is gained toward 
basement flooding. This also ensures that the private installations can be used regardless of the water 
level in the public drainage system.

6.6.7.7  Drainage of road Space

In most places, drainage of road space works very effectively. This is also the target from the road author-
ity’s side, since water on the roadway constitutes a danger to traffic, and water in the road paving and road 
base layer may damage the road. Drainage of especially smaller roads and streets, however, could per-
haps be made so that the water in a lesser degree was led directly to the drainage system, but first had to 
pass through some kind of retention system such as infiltration devices. There is also scope for increased 
use of semipermeable pavements, through which part of the water from the road could infiltrate.

6.6.8  flood emergency Preparedness

Municipalities shall determine the desired standards of services that they will offer citizens. This has to 
be done under conditions that are more extreme than the defined desired standards of service, which 
cannot prevent floods. However, it is possible to minimize damage and inconvenience by increasing 
emergency preparedness. The level of flood emergency preparedness needs to be balanced by the finan-
cial effort (see Section: 6.5.2).

Preparedness involves a wide range of activities and assessments that can protect assets and people 
from damage caused by water. The contingency plans should of course contain important phone num-
bers and other important administrative information, but in this report, only the hydraulic aspects of 
preparedness will be discussed.

Preparedness can be divided into before, during, and after because the state of emergency must be 
investigated and planned before it occurs, actions may be required during the emergency situation, and 
there will be an evaluation after the event where the experience will be evaluated and possibly incorpo-
rated into new updated contingency plans (Figure 6.8).

In the following sections, the flood preparedness components are elaborated.

6.6.8.1  Before the rainfall event

6.6.8.1.1  Establishment of Contingency Plans if Necessary for Climate Change Adaptation
All municipalities should, as a part of the overall civilian preparedness, have a contingency plan in 
place. There is currently no requirement for the municipalities to develop a specific plan for the opera-
tion of urban drainage systems and wastewater treatment plants. Some municipalities have, however, 
made such plans that accommodate a number of issues that are critical to the operation of the urban 
drainage system, for example, power failures, flood damages in exposed locations, and staff/contractor 
preparedness for emergencies that could maintain a minimum service level.

Contingency plans are those that are used by municipalities to respond to overloads to urban drain-
age system and water surcharges to terrain, and they include the following:

• Actual physical measures to reduce the effects of an extreme rainfall situation and resulting floods 
such as earth embankments and walls designed to hold water back in predefined depressions.

• Preparedness for emergency ad hoc efforts, that is, placement of sandbags and use of mobile 
pumps.

• Information/alerts both internally within the municipality’s operations and externally.
• Preparatory work must be undertaken where all details related to physical measures, acute ad hoc 

efforts, information, and alerts are reviewed.
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6.6.8.1.2  Priority for Contingency Plans
Contingency plans should be available to all urban and possibly rural areas where it is estimated that 
flooding may cause significant either human health related or costly damages. Once contingency plans 
have been established for a large area, for example, a municipality or a region, priorities for all catch-
ment areas in the region should be set. This must be done before a critical situation occurs, because there 
might not be sufficient personnel and equipment available to implement the effort in all catchments at 
once. A prioritized contingency plan would be a good decision support tool for incident management 
team. The hierarchy of plans can be implemented using the same principles as the prioritization of cli-
mate change adaptation.

6.6.8.1.3  Structural Responses to Flooding
In relation to obtaining a climate change service level for a catchment area, analysis and detailed proj-
ects will uncover the critical issues within the area. The solutions that exist could to some degree be 
expanded without significant additional costs. It may also be required to be able to protect vulnerable 
housing areas using banks of earth or terrain regulated through embankments or excavation so that 
water can be conveyed to less critical areas.

Examples of permanent measures include embankment at Godsparken in Greve, Denmark, to prevent 
a river from flowing into an urban area, and a gutter near the Sports Park in Odense, which convey the 
water onto the running path to avoid damage to floors in buildings. The embankment at Godsparken is 
not expensive in construction and ensures not only against extreme long-term rainfall, but also against 
extreme water levels in the ocean (Figure 6.9).

6.6.8.1.4  Mobile Preparedness Actions
Besides the stationary emergency response, there is a wide range of possibilities for mobile emergency 
measures, for example, mobile pumps, sandbags, and shutters. Partly through terrain analysis, calcu-
lations, and experiences, a strategy can be created in advance for how surface water is conveyed in an 
emergency situation, and the necessary dimensions for pumps and mobile walls can be assessed. It is 
essential that the number and precise location of such sandbags are known and that everything is avail-
able in stock and ready before the situation arises (Figures 6.10 and 6.11).

Before

After During

NotificationsUpdate plans

Evaluate the incident

· Revise, i.e., augmentation
   of drainage system
· Update/revise
   prioritization

· Operation
· Plans
· Cleanup!

· Prioritize the effort to prevent flooding
· Prepare contingency plans

Flood contingency in operation
· When precipitation sea level
   exceeds the standard of service!

· DMI precipitation and sea
   level, in-house monitoring, radar,
   etc.
· Regulation
· Supervise the situation
· Prepare the incident
· Pumping, locate sandbags, etc.

Analysis and calculation of drainage system

FIGuRE 6.8 Illustration of the flood preparedness cycle.
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6.6.8.1.5  Warning
It is essential that the municipality and wastewater utilities are warned about possible adverse events 
that should be acted upon. Meanwhile, it is also appropriate that citizens are warned that flooding is 
expected and advised to secure personal belongings.

A number of meteorological institutes forecast heavy rainfall events today, but the risk of subsequent 
floods in cities is often based on experience. This is inadequate because local conditions in the urban 

FIGuRE 6.9 Establishment of embankment at Godsparken in Greve. (From DANVA, Urban Climate Change 
[Original title: En kogebog for analyser af klimaændringers effekter på oversvømmelser i byer], 2011.)

Gate Sand bags Online measurements

Discharges from
residential areas

FIGuRE 6.10 Sample proposals for mobile emergency response in combination with online measurement. (From 
DANVA, Urban Climate Change [Original title: En kogebog for analyser af klimaændringers effekter på oversvøm-
melser i byer], 2011.)
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drainage systems determine if flooding occurs or not. Alerts are currently used in selected locations 
abroad to reduce costs associated with flooding. Can the urban drainage system, for instance, be par-
tially emptied until rain arrives, or traffic radio can be used to warn people to stay away from urban 
areas at risk of flooding? [1].

Some floods are acceptable if people are informed in a timely and appropriate manner about how to 
behave. However, this requires that the municipality is in possession of an appropriate action and contin-
gency plan that can be executed when an extreme rainfall is warned. If an analysis shows that there will be 
flooding in an area under future climate change conditions that are not acceptable, then it will take some 
time from the analysis is performed until new infrastructure is built. In this period, a warning is useful.

When the warning comes into force, it is important that the wastewater utility has a communication 
channel set up through which information to the citizens about the measures affecting them can be 
communicated. Before the emergency situation occurs, citizens must be aware of how to seek informa-
tion: website, radio, or similar.

It is appropriate to have a contingency plan based on a warning of heavy rainfall for viaducts or simi-
lar flood-prone sites. Using the warning, such sites can be isolated before the flood is so high that people 
are at risk if attempting to walk or drive through the water. Whether the warning will be appropriate 
and economically viable must be assessed on a case-by-case basis.

Responses to the flooding may depend on

• Existing storage basins, canals, streams, rivers, and lakes that can be drained before the emer-
gency situation arises, ensuring an optimum volume available in the systems

• How soon operational staff can be warned so they are ready to implement contingency plans
• Existing grates, outlets, nonreturn valves, etc., are reviewed to ensure that they are fully opera-

tional before the rainfall occurs

6.6.8.1.6  Control and Supervision
Control can be implemented in urban drainage systems if there is additional storage available or long 
transport times present. A control strategy could be developed when there is a sufficient understanding 

FIGuRE 6.11 Mobile pump used at Greve Gymnasium during extreme rainfall in Greve on July 5, 2010. (From 
DANVA, Urban Climate Change [Original title: En kogebog for analyser af klimaændringers effekter på oversvøm-
melser i byer], 2011.)
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of how the urban drainage system functions are available. The computer modeling may be useful to 
provide an overview of where it is appropriate to control the water, for example, by implementing gates 
or pumps. The analysis may have identified a critical area where it may be useful to store water upstream 
by flooding less critical areas. By applying online meters at strategic locations in the urban drainage 
system, gates or pumps can be controlled by set points and be in operation at the right time. Additional 
storage can be created by emptying existing ponds, canals, rivers, and lakes before the situation arises.

6.6.8.2  During the rainfall event

During the extreme rainfall and the time just after (depending on rainfall character), the urban drain-
age systems are monitored and the contingency plans are initiated when required.

6.6.8.3  capture of evidence and experience

To ensure that the entire organization will be wiser from the experience gained during the incident, it is 
very important to conduct a detailed documentation of the incident. The documentation should include 
at least the log of adjustments and operation actions in urban drainage system (who has done, what, and 
when) and preferably include notes of why and on what basis the action was implemented. Observations 
in the field are very valuable (preferably with pictures) when experience should be used in further analy-
sis and possible in updating the contingency plans.

After a flood event, very detailed knowledge of what exactly happened during the incident is required.

6.6.8.4  after the rainfall event

After the floods, a cleanup of both the urban drainage systems and the terrain is required. It must be 
ensured that facilities have not have damaged and that the function and capacity have not been reduced 
by trapped items.

6.6.8.5  Updating contingency Plans

Thorough documentation and experience of the flooding incident may be used to evaluate whether 
the contingency plans need to be updated. This includes evaluation of the prioritization of the plans, 
whether the hydraulic model requires recalibration after the incident, as well as finding solutions to the 
challenges or ensuring that service levels are met.

6.6.8.6  Operating experience

It is valuable to compare experiences with expectations and conclude if flooding is caused by operational 
problems or lack of capacity in the urban drainage systems.

6.7  case Study

The method described earlier was used in Greve, Denmark, to enable politicians to decide whether to 
adapt to climate change or not and to what extent. The method was applied to the most vulnerable area 
in the municipality, and the cost was calculated. In Greve Municipality, it is politically decided that the 
entire drainage system in the city shall be upgraded to a maximum flooding frequency of once every 
10 year. Based on experiences from the flooding in 2002 and 2007 (see Figure 6.12) and a vulnerability 
map prepared using a GIS model, the municipality is divided into 42 urban areas and the climate adap-
tation is prioritized over the next 12–15 years.

Prioritization is carried out by the motto: those areas that have been hit the hardest will be adapted 
first, an approach that is politically accepted. The hydraulic models will be developed and improved 
through measurement campaigns and experiences. If these models show that there is reason to priori-
tize differently from that is done here, reprioritization will be made and presented to the political sys-
tem. Economic issues may similarly prove it necessary to reprioritize, for example, if a relatively simple 
and inexpensive measure will have significant positive impact on climate adaptation.
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For the prioritization, the following data are used:

• Lessons from the floods in July 2007, which is reported directly from citizens or landowners
• The digitization of storm water system
• The digital terrain model for Greve Municipality, which is used to calculate the depth of surface 

depressions
• GIS themes of buildings in the municipality and the theme of business and public buildings

Figure 6.13 shows the prioritizing Greve. If only a few previous flooding experiences exist in a city, 
terrain models or/and hydraulic modeling can be used to prioritize which areas to work on first. 

FIGuRE 6.12 Flooding, Greve 2002—before adaptation to climate changes. (From DANVA, Urban Climate 
Change [Original title: En kogebog for analyser af klimaændringers effekter på oversvømmelser i byer], 2011.)

0–7
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17–24
25–33
34–42

FIGuRE 6.13 The prioritized city areas of Greve, Denmark. (From DANVA, Urban Climate Change [Original 
title: En kogebog for analyser af klimaændringers effekter på oversvømmelser i byer], 2011.)
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In Greve, a model of the total storm water system (including streams) has been developed. To sim-
ulate flow on the terrain, the digital terrain model has been used to locate depressions in the city 
areas. This model, called “the strategic hydraulic model of Greve,” has been used to quality-assure the 
prioritization.

Detailed emergency plans are in the process of being prepared for all areas to minimize the material 
damage and health risk in case of extreme rainfall. An example is shown in Figure 6.14.

6.8  Summary and conclusions

Increased frequency and intensity of flooding events, combined with trends in growing urban popula-
tion in most countries, have led to the need for increased and internationally coordinated efforts to 
enhance technologies and policies for dealing with floods. On the top of today’s flood problems come 
the impacts from climate change, which in many places will aggravate the situation.

Estimates of impacts from climate changes are proposed to be carried out by the use of flood mod-
eling, and based on the flood maps, transparent and informed decisions must be made—taking the 
uncertainty into account. After the flood impact assessment, the problems should be prioritized, for 
example, by the use of risk assessment tools. Based on the findings, the municipalities must develop a 
plan for timely management and mitigation of the impacts from climate changes. The plan should con-
tain descriptions of how and when climate changes are analyzed and managed for:

 1. Planning and design of new sewer systems
 2. Existing sewers where maintenance and reconstruction are already planned
 3. Existing sewers where no maintenance and reconstruction are scheduled today

Case studies on the mitigation of the climate change impacts have been carried out in a number of places 
around the world, for example, for catchment areas in Sweden and Denmark [9].

The development of flood mitigation strategies for sewer systems under the impact of climate changes 
has resulted in sets of guidelines for municipalities [2]. It is believed that such sets of guidelines will 
provide the municipalities with a timely and cost-efficient strategy for coping with climate changes and 
their impacts on sewer system.

Priority
Very high
High
Medium
Below medium
Low

FIGuRE 6.14 Extreme rainfall. (a) Without activating an emergency plan. (b) With an emergency plan activated. 
(From DANVA, Urban Climate Change [Original title: En kogebog for analyser af klimaændringers effekter på 
oversvømmelser i byer], 2011.)



Climate Change and Urban Water Systems 111

references

 1. Chumchean, S., Einfalt, T., Vibulsirikul, P., and Mark, O. 2005. To prevent floods in Bangkok: An 
operational radar and RTC application—Rainfall forecasting. 10th International Conference on 
Urban Drainage, Copenhagen, Denmark.

 2. DANVA. 2011. Urban Climate Change (Original title: En kogebog for analyser af klimaændringers 
effekter på oversvømmelser i byer).

 3. Djordjevic, S., Butler, D., Gourbesville, P., Mark, O., and Pasche, E. 2011. New policies to deal with 
climate change and other drivers impacting on resilience to flooding in urban areas: The CORFU 
approach. Environmental Science and Policy 14: 864–873.

 4. Domingo, N.D.F., Sunyer, M.A., Hansen, F., Madsen, H., Mark, O., and Paludan, B. 2010. Modelling 
of sea level rise and subsequent urban flooding due to climate changes. Conference: SimHydro: 
Hydraulic Modeling and Uncertainty, Nice, France.

 5. IPCC. 2007. Rapports from FN’s International Climate Panel. ipcc.ch/publications_and_data/ar4/
syr/en/contents.html. Accessed on February, 2007.

 6. König, A., Sægrov, S., Schilling, W. 2002. Damage Assessment for Urban Flooding, 9th International 
Conference on Urban Drainage, Portland, Oregon, USA.

 7. Mark, O. and Djordjević, S. 2006. While waiting for the next flood in your city.… 7th International 
Conference on Hydroinformatics, Nice, France.

 8. Mark, O., Svensson, G., König, A., and Linde, J.J. 2008. Analyses and adaptation of climate change 
impacts on urban drainage systems. 11th International Conference on Urban Drainage, Edinburgh, 
U.K.

 9. Mark, O., Weesakul, S., Apirumanekul, C., Boonya Aroonnet, S., and Djordjević, S. 2004. Potential 
and limitations of 1-D modelling of urban flooding. Journal of Hydrology 299: 284–299.

 10. Nascimento, N., Baptista, M., Silva, A., and Machado, M.L. 2005. Flood damage curves: 
Methodological development for the Brazilian context. 10th International Conference on Urban 
Drainage, Copenhagen, Denmark.

 11. Paludan, B., Brink-Kjær, A., Nielsen, N.H., Linde, J.J., Jensen, L.N., and Mark, O. 2010. Climate 
change management in drainage systems—A “Climate Cookbook” for adapting to climate changes. 
Novatech, Lyon, France.

 12. Parkinson, J. and Mark, O. 2005. Urban Stormwater Management in Developing Countries, The 
International Water Association (IWA) Publishing, London, U.K., 222pp.

 13. Speight, L. 2006. Analysis of the Causes of Flood Risk in Urban Areas, The University of Newcastle 
upon Tyne, Newcastle upon Tyne, U.K.





113

AuTHORS

Never Mujere holds a master of philosophy degree in geography from the University of Zimbabwe (UZ). 
Currently, he is a physical geography lecturer in the UZ’s Department of Geography and Environmental 
Science. He is the founder of a local nongovernmental organization, Environmental Management Trust 
(EMT). His areas of research interests are water resources and environmental issues. He has authored 
two books, contributed to some chapters of four books, published seven papers in referred journals, and 
presented papers at international workshops.

Saeid Eslamian received his PhD from the University of New South Wales, Australia, with Professor 
David Pilgrim. He was a visiting professor in Princeton University, United States, and ETH Zurich, 
Switzerland. He is currently an associate professor of hydrology in Isfahan University of Technology. He 
is the founder and chief editor of Journal of Flood Engineering and International Journal of Hydrology 
Science and Technology. He has published more than 200 publications mainly in statistical and environ-
mental hydrology and hydrometeorology.

7
Climate Change 

Impacts on Hydrology 
and Water Resources

7.1 Introduction ...................................................................................... 114
7.2 Climate Change and Variability .....................................................115

Climate • Climate Variability • Climate Change
7.3 Causes of Climate Change ............................................................... 116
7.4 Climate Change and Hydrological Cycle ...................................... 116

Precipitation • Evapotranspiration • Soil 
Moisture • Groundwater • Runoff

7.5 Climate Change Impacts on Water Resources Management ....119
7.6 Managing Predicted Climate Change Risks ................................119
7.7 Nyanyadzi River Catchment Water Resources System ...............119
7.8 Climate Change Scenarios ..............................................................120
7.9 Baseline Climate and Hydrological Data ......................................121
7.10 Projected Hydroclimatological Changes ......................................121

Temperature Changes • Precipitation Changes • Changes in 
Potential Evapotranspiration • River Flow Changes • Changes in 
Water Resources Availability

7.11 Summary and Conclusions .............................................................124
References ......................................................................................................125

Never Mujere
University of Zimbabwe

Saeid Eslamian
Isfahan University 
of Technology



114 Handbook of Engineering Hydrology

7.1  Introduction

Global climate change is one of the most complex and challenging environmental challenges facing 
the world today. It is a global issue of concern, which has received the increased attention in recent 
years. The subject has been debated across various scales with an emphasis on national and interna-
tional acceptance, adaptation, and, subsequently, mitigation. It is a critical and urgent challenge where 
the top-down technical consideration needs to be met with a bottom-up community-based approach 
to better inform policy and practice at higher levels. Global efforts designed to tackle climate change–
related problems at national, regional, and international levels include the Montreal Protocol in 1987 
to reduce the production and consumption of ozone-depleting substances; United Nations Framework 
Convention on Climate Change (UNFCCC) of 1992 encouraged industrialized countries to stabilize 
greenhouse gas (GHG) emissions; and Kyoto protocol in 1997, which compelled industrialized countries 
to reducing GHG emissions [16]. However, lack of compliance to the agreements is a major challenge. 
The World Meteorological Organization (WMO) and the United Nations Environment Programme 
established the Inter-governmental Panel on Climate Change (IPCC) in 1988 with the assigned role of 
assessing the scientific, technical, and socioeconomic information relevant for understanding the risk 
of human-induced climate change [19].

Research evidence has also shown that global mean surface air temperature over the twenty-first 
century is expected to rise by 0.6°C over the twentieth-century average of 14°C. A net increase in mean 
global air temperature of 0.74°C has been reported by the IPCC from 1906 to 2008. Several models have 
predicted increases in mean global temperatures of 1°C–5°C over the next 100 years [15]. On the other 
hand, globally averaged precipitation is projected to increase in the twenty-first century by 1.1 mm over 
the twentieth-century average of 2.4 mm [6,11].

The Second Assessment Report of the IPCC warned that global warming would lead to increases in 
both floods and droughts [6]. Global climate change characterized by rising global temperature and 
precipitation is projected to have significant major impacts on freshwater systems by intensifying the 
hydrological cycle. Changes in seasonal and annual temperatures, precipitation patterns, and amounts 
will drive important hydrological processes, resulting in extreme weather conditions.

This chapter analyzes the effects of climate change on hydrology and water resources. It first sum-
marizes the evidence of climate change (Section 7.1), before assessing its general effects on hydrology, 

Preface

Global climate change characterized by rising global temperature and precipitation is projected to 
have significant major impacts on freshwater systems by intensifying the hydrological cycle. The 
potential effects of climate change on hydrology (focusing on cycling of water) and water resources 
(focusing on human and environmental use of water) are receiving great academic attention. It is 
important to emphasize that climate change is just one of many pressures facing the hydrological 
system and water resources. Changing land-use and land-management practices are altering the 
hydrological system, often leading to deterioration in the resource base. Changing and competing 
water demands are generally increasing pressure on available resources. This chapter analyzes the 
potential effects of climate change on the hydrology and water resources in the Nyanyadzi River 
catchment in eastern Zimbabwe. The impacts of climate change on the hydrological and water 
resource systems of the catchment were analyzed using Commonwealth Scientific and Industrial 
Research Organization (CSIRO) model projections for two SRES emission scenarios compared to 
the 1961–1990 baseline climate data. Modeling results showed significant reductions of river flows 
by 2020, 2050, and 2080. Changes in river hydrology will reduce reliability and amount of irrigation 
water supply and its reliability, thus negatively affecting irrigation development in the catchment.
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water resources, and water resources management. Section 7.2 gives definitions of the terms climate, 
climate change, and climate variability while Section 7.3 examines the causes of climate change. The 
implications of climate change on hydrology are reviewed in Section 7.4 with Section 7.5 focusing on 
climate change–water resource management nexus. The issue of climate change risk management is 
explored in Section 7.6. A case study approach has been adopted in Section 7.7, where the Nyanyadzi 
River catchment has been introduced. Sections 7.8 and 7.9 explain the issues of climate change scenarios 
and baselines. The potential hydrological impacts of climate change are presented in Section 7.10. The 
final Section 7.11 gives a discussion on summary and conclusions.

7.2  climate change and Variability

7.2.1  climate

Climate is a periodic–stochastic process whose realizations are states of atmosphere (weather) and can 
be described by a set of quantifiable attributes [12]. The WMO defines climate as the average weather, 
that is, the statistical description in terms of the mean and variability of surface variables such as tem-
perature, precipitation, and wind over a period of time ranging from months to thousands or millions 
of years. The classical period of time is 30 years [10].

The climate system is a complex interactive system consisting of the atmosphere, land surface, snow 
and ice, oceans and other bodies of water, and living things. The atmospheric component of the climate 
system characterizes climate. It evolves in time under the influence of its own internal dynamics and 
due to changes in external factors that affect climate (called forcings). External forcings include natural 
phenomena such as volcanic eruptions and solar variations, as well as human-induced changes in atmo-
spheric composition. Solar radiation powers the climate system. There are three fundamental ways to 
change the radiation balance of the Earth: (1) by changing the incoming solar radiation (e.g., by changes 
in Earth’s orbit or in the Sun itself); (2) by changing the fraction of solar radiation that is reflected 
(albedo), for example, by changes in cloud cover, atmospheric particles, or vegetation; and (3) by alter-
ing the long-wave radiation from Earth back toward space (e.g., by changing GHG concentrations). 
Climate, in turn, responds directly to such changes, as well as indirectly through a variety of feedback 
mechanisms [10,11].

7.2.2  climate Variability

Climate variability refers to deviations of climatic statistics over a given period of time (e.g., a month, 
season, or year) from the long-term statistics relating to the corresponding calendar period. The term 
also denotes variations in the mean state and other statistics (e.g., standard deviations and the occur-
rence of extremes) of climate on temporal and spatial scales beyond that of individual weather events, 
including the fluctuations associated with El Niño (dry) or La Niña (wet) events [10]. Variability may 
be due to natural internal processes within the climate system (internal variability) or to variations in 
natural or anthropogenic external forcing (external variability).

7.2.3  climate change

Climate change refers to a statistically significant variation in either the mean state of the climate or its 
variability, persisting for an extended period (typically decades or longer), and may be due to natural 
internal processes or external forcings or to persistent anthropogenic changes in the composition of 
the atmosphere or in land use. The UNFCCC defines climate change as a change of climate, which is 
attributed directly or indirectly to human activity that alters the composition of the global atmosphere 
and which is in addition to natural climate variability observed over comparable time periods [12]. 
Note that the definition of climate change used in the UNFCCC is more restricted, as it includes only 
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those changes that are attributable directly or indirectly to human activity. According to the IPCC, 
climate change refers as any change in climate over time, whether due to natural variability or as a 
result of human activity [9,10]. Thus, the IPCC makes a distinction between climate change attribut-
able to human activities altering the atmospheric composition and climate variability attributable to 
natural causes.

From the two definitions, it is vital to note that climate change is any change in climate over time, 
whether due to natural variability or as a result of human activity. The climate of a place or region is 
changed if over an extended period there is a statistically significant change in measurements of either 
the mean state or the variability of the climate for that place or region. While weather and climate are 
closely related, as such, climate change and weather are intertwined. Observations can show that there 
have been changes in weather, and it is the statistics of changes in weather over time that identifies 
climate change.

7.3  causes of climate change

The definitions of climate change highlighted in Section 7.2 have shown that changes in climate may 
be due to natural processes or persistent anthropogenic changes in atmosphere and land use. Climate 
change is caused by GHGs, which enhance the greenhouse properties of the earth’s atmosphere. These 
gases allow solar radiation from the sun to travel through the atmosphere but prevent the reflected heat 
from escaping back into space. This green house effect causes global warming as a result of rising earth 
temperatures.

The climate of the earth changes continually on a range of timescales due to internal and external 
factors. Internal factors are natural and arise from complex interactions within the climate system. In 
general, internal variability on short timescales (days to weeks—what we know as weather) is generated 
by atmospheric instability. Variability on longer timescales (intraseasonal, interannual, and decadal to 
centennial) can be enhanced by complex interactions between not only the atmosphere and other com-
ponents of the climate system, mostly the oceans, but also the terrestrial biosphere and the cryosphere.

Natural external factors include the earth’s rotations that produce diurnal and seasonal cycles, varia-
tions in the amount of radiant energy emitted by the sun (e.g., sunspot cycles have a period of about 
11 years), volcanic eruptions, and changes in the Earth’s orbital parameters (e.g., due to Milankovitch 
cycles, which have a dominant period of 100,000 years). Substantial global warming at the end of ice ages 
over the past half million years was triggered by changes in the Earth’s orbit and subsequently enhanced 
by natural increases in GHGs [8].

Humans are also responsible for external factors such as [11,15].

• Changes in atmospheric composition (e.g., in concentrations of stratospheric ozone and GHGs: 
carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, and tropospheric ozone)

• Release of atmospheric particulates (e.g., sulfate aerosols and black carbon)
• Modification of the terrestrial ecosystems (e.g., by land clearance and agricultural practices)

7.4  climate change and Hydrological cycle

Climate and hydrology are inextricably linked. Although the hydrological system influences climate 
change, climate change also affects the hydrological system with changes in surface temperature, pre-
cipitation patterns, and evapotranspiration rate. Water vapor is a key component in GHG [1,17]. Changes 
in temperature and precipitation patterns as a consequence of the increase in concentrations of GHGs 
affect the hydrological process, availability of water resources, and water use for agriculture, population, 
mining industry, aquatic life, and hydropower.

According to the IPCC, a notable reduction of the water resources service is projected where the 
runoff decrease, and also the projection of water stress for 2050s indicates an increase in the range of 
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62%–76% of the global land areas. The twenty-first-century simulations with climate models indicate 
an increase in the global evaporation, water vapor, and precipitation [9]. The hydrological impacts of 
climate change, including changes in temperature, precipitation, and sea-level rise, are expected to have 
varying consequences for the availability and management of freshwater resources around the world. 
Changes in river runoff, for example, will affect the yields of rivers and reservoirs and navigation and 
have an impact on the energy sector, finally affecting the recharging of groundwater [3].

The main components of hydrology cycle are the precipitation, evaporation, runoff, groundwater, 
and soil moisture. They are all linked with changes in atmospheric temperature and radiation balance. 
This section gives a review of the potential effects of climate change on these components of the water 
balance and their variability over time.

7.4.1  Precipitation

Precipitation is the main driver of variability in the water balance over space and time. Changes in pre-
cipitation have very important implications for hydrology and water resources. Variations in precipita-
tion over daily, seasonal, annual, and decadal timescales influence hydrological variability over time in 
a catchment. Flood frequency is affected by changes in the year-to-year variability in precipitation and 
by changes in short-term rainfall properties (such as storm rainfall intensity). The frequency of low flows 
or drought flows is affected primarily by changes in the seasonal distribution of precipitation, year-to-
year variability, and the occurrence of prolonged droughts. The spatial change in amount, intensity, and 
frequency of the precipitation will affect the magnitude and frequency of stream flows; consequently, it 
increases the intensity of floods and droughts, with substantial impacts on the water resources at local 
and regional levels.

Climate models are revealing that at the global scale, precipitation will generally increase over the 
tropical Pacific and high latitudes by 10%–20%. Increase in annual precipitation of more than 20% 
will occur in high latitudes such as in northern part of central Asia, Eastern Africa, and the Equatorial 
Pacific Ocean. However, in the subtropics, mean precipitation is expected to decrease in the same range 
of 10%–20%. For instance, the mean annual precipitation will decrease by up to 20% in the Caribbean 
regions, subtropical western coasts, Mexico, Central America, Southern United States, and over the 
Mediterranean [11,12].

Decrease and increase in precipitation will increase the risks of droughts and flooding respectively 
due to the increase in the intensity and variability of the precipitation in the twenty-first century. Dry 
periods are projected for mid-continental zones in summer (subtropics, low, and midlatitudes), with 
marked risk of droughts in these regions. Likewise, extreme rainfall is projected to increase in tropical 
and high-latitude regions that experiment increases of the mean precipitation [11].

7.4.2  evapotranspiration

The rate of evaporation from the land surface is driven essentially by meteorological controls, mediated 
by the characteristics of vegetation and soils, and constrained by the amount of water available. The 
primary meteorological controls on evaporation are the amount of energy available (characterized by 
net radiation), the moisture content of the air (humidity is a function of water vapor content and air 
temperature), and the rate of movement of air across the surface (a function of wind speed). Increasing 
temperature generally results in an increase in potential evaporation, largely because the water-holding 
capacity of air is increased. Changes in other meteorological controls may exaggerate or offset the rise 
in temperature, and it is possible that increased water vapor content and lower net radiation could lead 
to lower evaporative demands. The relative importance of different meteorological controls, however, 
varies geographically. In dry regions, for example, potential evaporation is driven by energy and is not 
constrained by atmospheric moisture contents, so changes in humidity are relatively unimportant.
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Annual evaporation increases over most oceans as surface temperature increases. At the global 
scale, mean evaporation changes, but it is different at local scale due to changes at the atmospheric 
transport of water vapor [8]. In humid regions, however, atmospheric moisture content is a major 
limitation to evaporation, so changes in humidity have a very large effect on the rate of evaporation. 
Evapotranspiration is projected to increase almost everywhere as the water-holding capacity of the 
atmosphere increases with increasing temperatures [3]. An increase in the rate of evaporation will also 
affect water supply and contribute to the salinization of irrigated agricultural lands.

7.4.3  Soil Moisture

The amount of water stored in the soil influences the rate of actual evaporation, groundwater recharge, 
and generation of runoff. Spatial and temporal changes in soil moisture depend on precipitation and 
evaporation, which may be affected by changes in the land use and land cover. Local effects of cli-
mate change on soil moisture vary with the degree of climate change and soil characteristics. The 
water-holding capacity of soil affects possible changes in soil moisture deficits. Hence, soils with low 
water-holding capacity are highly sensitivity to climate changes. Climate changes also affect soil char-
acteristics, perhaps through changes in waterlogging or cracking, which in turn affect soil moisture 
storage properties. Infiltration capacity and water-holding capacity of many soils are influenced by the 
frequency and intensity of freezing [3]. In limestone terrains, infiltration and water-holding capacity of 
soils are greater with increased frost activity, and increased temperatures could lead to increased surface 
or shallow runoff.

Climate change projections indicate that the annual mean soil moisture content will increase by 15% 
in some regions like East Africa and central Asia, where precipitation is expected to increase, while 
it will decrease in subtropical and the Mediterranean zone. Climate models show that a rise in GHG 
concentrations is associated with reduced soil moisture in Northern Hemisphere midlatitude summers. 
This is the result of higher winter and spring evaporation, caused by higher temperatures and reduced 
snow cover, and lower rainfall inputs during summer.

7.4.4  Groundwater

Groundwater is the major source of water across much of the world, particularly in arid and semiarid 
regions. Groundwater recharge has a direct influence on the base flow of rivers, when the water table 
depth and groundwater decrease; the base flow is reduced fundamentally in dry seasons. Climate 
change affects the groundwater recharge. Some research results indicate that the groundwater recharge 
decreased by more than 70% for the South West Africa and Northeastern Brazil. In addition, the Near 
East, Western United States, northern China, and Siberia are zones where the groundwater recharge is 
estimated to increase by more than 30% by the 2050s; consequently, the water table will increase, and it 
will affect agriculture areas located in the lower basins by soil salinization [11].

7.4.5  runoff

Climate change increases water resources stresses in some parts of the world. Runoff is expected to 
decrease around the Mediterranean, in some parts of Europe, central and southern America, and 
southern Africa. In high-latitude rivers and other water-stressed parts of the world, particularly in 
southern and eastern Asia, climate change increases runoff, but this may not be very beneficial in prac-
tice because the increases tend to come during the wet season and the extra water may not be available 
during the dry season [2]. Changes in stream flows in rivers depend fundamentally on the change in the 
volume and time precipitation, and some cases of the snow melting.

Runoff depending on changes in precipitation is noted to decrease in Central America and Europe. 
Risks of droughts are projected for subtropical, low and midlatitudes, and floods for tropical and high 
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latitudes. Some results from GCMs reveal that climate change will affect directly on the water resources 
systems, indicating that in the next 50 years the water stress on land areas will increase.

7.5  climate change Impacts on Water resources Management

Global water demand is increasing due to population growth, and regionally, substantial changes in 
irrigation water demand are expected as a result of climate change [11]. Climate change affects the man-
agement and operation of existing water infrastructure such as irrigation systems [12]. This situation 
is even more complicated if the characteristics and policies of water resources management systems 
are not adequate to mitigate these changes. Irrigation methods and water management practices also 
will be affected [18]. The main water resources for agriculture come from base flows in rivers (for dry 
periods), which will be affected due to the changes in the recharge of groundwater (effect on aquifers in 
long term). 

7.6  Managing Predicted climate change risks

The reality, however, is that climate change is already occurring. There are two ways to manage the 
risks posed by climate change: mitigation and adaptation. Mitigation of GHGs aims to slow or reverse 
the pace of climate change. It implies the human measures, structural and nonstructural, undertaken 
to limit the adverse impacts of climate change by reducing the levels of GHGs in the atmosphere [4]. 
This is accomplished through the development of appropriate technology for reducing emissions and/or 
capturing them at their source. Examples of mitigation measures include energy efficiency, promotion 
of renewable energy sources, and carbon trading.

Adaptation refers to all climate change responses that may be used to reduce vulnerability to climate 
change impacts. It is achieved through actions designed to take advantage of new opportunities that 
may arise as a result of climate change [19]. Therefore, adaptation describes a set of responses to actual 
and potential impacts of climate change in order to moderate the harm or take advantage of the oppor-
tunities that climate change may bring.

This section has generally reviewed the possible effects of climate change on the water resource base 
in a global context. It highlighted the two approaches toward climate change risk reduction: mitigation 
and adaptation. In the following sections, an assessment is done on the likely hydrological effects of 
climate change in the Nyanyadzi River catchment is Zimbabwe.

7.7  Nyanyadzi river catchment Water resources System

As was discussed in the preceding sections, the potential effect of climate change on the precipitation 
and runoff would affect directly the water resources availability in region. Water for agriculture, popu-
lation, etc., depends on the hydrological cycle. This section focuses on Nyanyadzi River catchment as a 
case study. Population in the catchment stands at 19,366.

Nyanyadzi River (Figure 7.1) flows westward from its source in the eastern highlands of Chimanimani 
District at an altitude of 1500 m and high annual rainfall of 1200 mm on fertile soils. The river and its 
main tributaries, the Shinja, Biriwiri, and Makwe streams, cover a catchment area of 458 km2 [13]. On 
its way westward, it flows through farmlands before it enters the Odzi River at an altitude of 530 m 
where vegetation is sparse, soils are less fertile, annual rainfall is less than 400 mm, and temperatures 
are more than 21°C/annum.

The catchment is characterized by a moderate climate. Rainfall is highly seasonal and unevenly distributed 
spatially, with about 95% occurring between October and April, typically concentrated in a number of iso-
lated rain days and in isolated locations. It also varies significantly from year to year. Annual rainfall is 
635 mm/year, mean annual temperature is 15°C, and potential or pan evaporation rate is 2000 mm/year. 
Flooding and droughts are major water-related impacts of climate change in the catchment [5,14].
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Before Nyanyadzi River enters the Odzi River, a 414 ha smallholder Nyanyadzi irrigation scheme taps 
away water by means of a permanent weir. The scheme was established by the government in 1934 and 
has been government managed ever since. About 578 plot holders occupy the scheme. Cropping pattern 
comprises beans, tomatoes, vegetables, maize, and wheat [13].

7.8  climate change Scenarios

The impacts of climate change on hydrology are usually estimated by defining scenarios for changes in 
climate inputs. A scenario is an internally consistent set of climatological relationships and assump-
tions of radiative forcing, and plausible outline of a possible future state of the world or description of 
its future development [19]. Climate scenarios often make use of climate projections by manipulating 
model outputs and combining them with observed climate data. The IPCC Special Report on Emissions 
Scenarios (SRES) storylines, which form the basis of many studies of projected climate change on water 
resources, consider a range of plausible changes in population and economic activity over the twenty-
first century [7].

In this analysis, the CSIRO model version 3.5 and two GHG emission scenarios, namely, the A2a 
(worst case) and B2a (reduced emissions), from the scenario family in the IPCC SRES were used. The 
scenarios assume less globalization or cooperation and global population to increase until 2100, reach-
ing 10.4 billion (B2) and 15 billion (A2) by the end of the century. The scenario A family represents a 
business as usual future world with growth-focused policy objectives, while the B family represents 
ecofriendly policies resulting in reduced emissions. The two scenarios are more geopolitically divided, 
representing regional-oriented growth [8,19].
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7.9  Baseline climate and Hydrological Data

In climate change impacts assessment, a period of 30 years of observed meteorological data is used 
to define a current climate baseline. The WMO and IPCC define and recommend that the 1961–1990 
period is the 30-year normal period for use as a baseline period in climate change impact studies 
[19]. Such a long period of continuous record of historical climate data is widely used for creating a 
baseline and is likely to contain wet, dry, warm, and cool periods. It also contains significant tem-
perature and precipitation global trends and a more extensive network of observing stations to record 
more variables than earlier periods. It represents climate before significant changes attributable to 
human activity were detected. The period 1961–1990 was chosen as the baseline because it is the cur-
rent WMO normal period and is recommended by IPCC as a historical period for climate change 
impact and adaptation assessment [9–11]. Three points in time, 2020, 2050, and 2080, were used in 
the analysis.

The average monthly temperature, rainfall, and evapotranspiration for the 1961–1990 baseline period 
are 22.5°C, 870.8 mm, and 122.5 mm, respectively. Table 7.1 shows climate data for the baseline mete-
orological years. A meteorological year in Zimbabwe starts from July 1 and ends on June 30 of the 
following year.

The mean monthly runoff for the baseline period is 3168 × 103 m3. On average, the highest rainfall 
was received in February while September received the lowest. Table 7.2 shows river flow data for the 
1961–1990 water hydrological years. A hydrological year in Zimbabwe starts from October 1 and ends 
on September 30 of the following year.

7.10  Projected Hydroclimatological changes

7.10.1  Temperature changes

The mean monthly temperature is expected to increase by 1.5°C (i.e., 6.7%) under the two climate change 
scenarios from 2020 to 2080. The A2a scenario will realize the highest increase of 2.9°C (12.8%) in 2080 
and the lowest figure of 0.5°C (2.2%) in 2020. January is expected to experience the lowest temperature 
increase of 0.8°C (3.7%) while June will experience the highest, 2.1°C (14.8%). Figure 7.2 shows the pre-
dicted changes in monthly temperature for the two climate change scenarios.

TABLE 7.1 Baseline Climate Data for 
the Nyanyadzi River Catchment from 
1961 to 1990

Month T (°C) P (mm) ET (mm)

July 14.1 7.3 72
August 16.1 9.3 102
September 19.0 11.0 141
October 21.6 35.0 178
November 21.7 96.3 159
December 21.7 174.7 151
January 21.6 178.0 153
February 21.1 164.0 126
March 20.7 104.0 134
April 19.3 41.3 106
May 16.7 16.3 83
June 14.2 12.7 65
Average 22.5 870.8 122.5
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7.10.2  Precipitation changes

The mean monthly precipitation is expected to increase by 7.2 mm (10.2%) with climate change. Highest 
precipitation increase of 8.4 mm (11.9%) is expected under the 2080B2a scenario while the 2080A2 
predicts the lowest increase of 1.6 mm (2.3%). April is expected to have the highest increase of 8.2 mm 
(19.9%). However, July, August, September, and November will have a decrease in precipitation with 
October having the highest decrease of 11.2 mm (32%). Figure 7.3 shows the predicted changes of rain-
fall in two climate change scenarios: A2a and B2a in the 2020, 2050, and 2080 periods.

7.10.3  changes in Potential evapotranspiration

A linear relationship was established between mean monthly temperature and potential evapotranspi-
ration (PET) using baseline data. Thus, PET data for the 2020, 2050, and 2080 periods were estimated 
projecting CSIRO temperature data. With climate change, mean monthly PET is projected to increase 
by 14.9 mm (12.2%) for both scenarios and all time points, 2020, 2050, and 2080. Between the two 

TABLE 7.2 Baseline Hydrological 
Data for the Nyanyadzi River 
Catchment (1961–1990)

Month Runoff (103 m3)

October 1166.7
November 1733.9
December 4108.8
January 5054.6
February 7960.4
March 8614.6
April 4655.9
May 3146.4
June 2195.0
July 1826.4
August 1321.6
September 1037.4
Average 3169.2
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scenarios, A2a predicts a higher increase of 31.8 mm (26%) in 2080 primarily because of the severest 
warming effects brought about by the 2080A2a (see Section 7.10.1) and therefore raise in PET most 
rapidly. The lowest mean monthly increase of 5.7 mm (4.7%) is expected under the 2020A2a scenario. 
June will experience the highest increase of 41.4%, while October is expected to have a largest decrease 
of 3.9% from the baseline. Figure 7.4 shows mean monthly PET changes under the two climate change 
scenarios.

7.10.4  river flow changes

Predicted changes in rainfall under the CSIRO model were used to estimate runoff using the established 
rainfall–runoff relationship from baseline data. A linear relationship was established between rainfall 
and runoff using the baseline data. Thus, runoff data for the 2020, 2050, and 2080 periods were estimated 
from the established relationship using projected rainfall data from the CSIRO model. With climate 
change, runoff was predicted to decrease for both scenarios. On average, monthly runoff will decrease 
by 550 × 103 m3 representing a change of 15.4% change. Highest change of 608.3 × 103 m3 is expected 
under the 2080A2a while the lowest of 13.9% or 496.6 × 103 m3 is expected under the 2080B2a. From 
February to September, runoff is expected to decrease with September experiencing the largest decline 
of 87.5%. However, the months October to January are expected to have an increase in runoff, with 
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October experiencing the highest increase of 85.3%. Figure 7.5 shows the predicted changes in runoff for 
the two climate change scenarios, A2a and B2a, for the 2020, 2050, and 2080 periods.

7.10.5  changes in Water resources availability

The major water uses are for irrigation, domestic, and the environmental requirements. Irrigation 
requires 1026.4 m3/month, while the environment flow requirements are 10% of the mean annual flow 
[13]. With the projected climate change, the availability of water resources availability will decrease by 
about 15.4%. This has adverse implications on irrigation water supply, environmental water require-
ments, domestic water use, watering animals, and other uses. Table 7.3 shows the changes in water 
resources availability under climate change impacts.

7.11  Summary and conclusions

Global warming, due to the enhanced greenhouse effect, is likely to have significant effects on the hydro-
logical cycle. The hydrological cycle will be intensified, with more evaporation and more precipitation, but 
the extra precipitation will be unequally distributed around the globe. Some parts of the world may expe-
rience significant reductions in precipitation, or major alterations in the timing of wet and dry seasons.

Assessing the implications of climate change on hydrology is essential for planning future water 
resources activities on a regional scale. This chapter analyzed the potential effects of climate change on 
the hydrology and water resources in general and the Nyanyadzi River catchment in eastern Zimbabwe 
in particular. The impacts of climate change on the hydrology of the Nyanyadzi River catchment were 
examined using the CSIRO climate model projections, two SRES emission scenarios (A2a and B2a), 
three points in time (2020, 2050, and 2080), and the 1961–1990 baseline climate data. Both scenarios 
predict increases in mean monthly temperature, rainfall, and evapotranspiration.

TABLE 7.3 Changes in Monthly Water Resources Availability (103 m3) for Different Uses

Scenario Baseline 2020A2a 2020B2a 2050A2a 2050B2a 2080A2a 2080B2a

Runoff 3169.2 2612.8 2609.7 2669.4 2589.6 2560.9 2672.6
Environment 316.9 261.3 261.0 266.9 259.0 256.1 267.3
Irrigation 1026.4 1026.4 1026.4 1026.4 1026.4 1026.4 1026.4
Others 1852.8 1325.1 1322.3 1376.0 1304.2 1278.4 1378.9
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Significant reductions of runoff are expected for all time periods under the two climate change 
scenarios. Changes in river flows the availability of water use in the catchment. Thus, sound water man-
agement strategies need to be put in place.
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8.1  Introduction

In recent decades, special increase in greenhouse gases has led to the disturbance of climatic equi-
librium of the Earth, which is referred to as the “climate change” phenomenon [9,14]. Research dis-
closed that this phenomenon may have negative effects on water resources, agriculture, environment, 
sanitation, industry, and economy. Because of this, climate change has been considered to be important 
and the ways to face with the associated dangers and even the protection of water resources, agricul-
ture, and environmental resources against its hazards have become a common issue around the world. 
Considering scarcity as a victim of climate change, assessing its variation in coming years will con-
tribute to a great extent to overcome problems such as droughts, flash floods, evaporation alteration, 
etc. The main purpose of this chapter is to introduce IPCC, climatic, and non-climatic scenarios and 
their roles in the Atmosphere-Ocean General Circulation Models (AOGCM) simulations. Also, some 
international databases will be introduced in order to receive these models outputs. Downscaling and 
quality improvement processes would be also explained as alternatives to convert large-scale outputs 
into regional data that can be useful for further computations. Preparing useful data is not the end but 
it is a starting point for climate change studies. The three main so-called main parts will remain that 
should be passed one after another, which are impact assessment, adaptation to climate change, and 
uncertainty analysis, and would be explained in this chapter.

8.2  climate change concept

Atmosphere, cryosphere, biosphere, and hydrosphere form the main parts of Earth’s climate. Earth’s 
atmosphere encompasses various gases, which lead, to absorption, diffusion, and reflection of 
different wavelengths and control of atmosphere temperature. Greenhouse gases, carbon dioxide (CO2), 
methane (CH4), nitrogen dioxide (N2O), and halo carbons (CFC), have a great effect on atmosphere sur-
face temperature, due to absorption. Sun light, which is mostly of short length wave, can pass through 
these gases and reach Earth, but after its reflectance in infrared form because of land surface heat, these 
gases act as barriers against them due to infrared long length wave; in other words, when wavelengths 
become longer the greenhouse gases form a barrier and absorb the wave, so they become hotter and the 
surface temperature of Earth increases. Cryosphere encompasses the ice around the ground surface and 
therefore plays the main role in the reflection (albedo) of received waves into Earth. Biosphere, through 
evapotranspiration of plants and sun light reflection, is one of the main producers and consumers of 
carbon dioxide, which lead to the great effects on climate system energy. Seas, lakes, rivers, and oceans, 
which constitute hydrosphere have serious impacts on atmosphere carbon dioxide absorption because 
of huge heat inertia present in them.

Preface

Climate change is one of the most important topics that has lots of different consequences on 
several environmental phenomena such as water resources. In this chapter, some basic concepts 
of climate change, the Atmosphere-Ocean General Circulation Models (AOGCM), emission sce-
narios, and down scaling methods are presented. After that, the consequences of climate change 
and adaption are reviewed. Finally, a case study on the evaluation of climate change effects on 
water resources and preparation for adaption is presented.
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Multiple factors may lead to disturbance of governing situation on various parts of Earth and there-
fore disturbance of these parts too. The proposed factors can be categorized into two main branches, 
the first stem, from the internal actions of the climate parts and the second forms from external factors 
such as sun radiation, volcanic activities, and irregular increase in greenhouse gases. The changes that 
are shaped from internal activities of climate system are called internal climate variability, for example, 
El-Nino phenomenon is one of this category’s members. Sun radiation and volcanic activities are the 
external factors, which may cause change in climate. After volcanic activities and aerosol occur in the 
air, light reflection occurs and prevents light transmission to the lower layers of atmosphere. Another 
classification is based on the source of these factors, and branches into of natural and artificial climate 
variability. Only greenhouse gases increase is artificial in the mentioned factors. Research discloses that 
after industrial evolution in the mid-eighteenth century, a serious increase in greenhouse gas concentra-
tion has happened, especially carbon dioxide, which could be related to the prevalence of fossil fuel con-
sumption and spread of industries. Changes in greenhouse gas concentration, causes climate changes, 
because the more greenhouse gases, the more absorbed heat would occur [3].

8.3  Scenarios in future Periods

As mentioned before, any change in greenhouse gas concentration will lead to a disturbance of equi-
librium in the climate system Earth. But how much of these gases are produced by human beings and 
consequently what is likely to happen, is not determined yet. Therefore, the scenarios have been intro-
duced in an uncertain manner. These are divided into climatic and nonclimatic scenarios, which will be 
discussed in the following sections.

8.3.1  Nonclimatic Scenarios

Economic activities and consequently the growth of industries and factories and also change in land use 
are the main reasons for the increase in greenhouse gases. Thus, the socioeconomic situation of future 
periods is necessary to be analyzed. In general, a nonclimatic scenario encompasses socioeconomic situ-
ation and greenhouse gas emission rates, which are so-called emission scenarios.

Intergovernmental Panel on Climate Change (IPCC) is responsible for identifying all aspects of cli-
mate change phenomenon and disseminated the first series of emission scenarios in 1992, namely, IS92 
(IPCC scenario) (IS92a-IS92f). Through these scenarios, the greenhouse gas content will increase at a 
constant rate until 2100. In 1996, a newer series of emission scenarios disseminated by the name of SRES 
(Special Report on Emission Scenarios) in order to update the previous version and as a substitute for 
IS92. Generally, 40 various SRES subscenarios are produced, which encompass a wide range of popu-
lation growth rates in future, and also economic and technological factors affecting greenhouse gas 
emission and suspended dust. Each of these scenarios is categorized in to one of four groups: A1, A2, B1, 
and B2. The main feature of this category is depicted in Figure 8.1.

In the scenario family of A1, the world is assumed to have a fast economic growth, increasing popula-
tion growth till the mid-twenty-first century and then a decrease, and also introduction of newer and 
better technologies. There is more focus on economic issues than on environmental, and aspects seem 
to be more global and not be local. Considering three kinds of technologies used in the twenty-first 
century, three branches can be identified for this family, which are different approaches in technological 
advancement, respectively, intensification of fossil fuel consumption (A1FI), non-fossil fuel consump-
tion (A1T), and finally both fossil and non-fossil fuel consumption.

The main subject of scenario family of A2 is promotion of local population forces with regard to fam-
ily values and traditions, rapid growth of population, and less dependency on fast economic growth.

Population growth in B1 scenario is similar to A1, but the focus is on the usage of clean energies and 
a global aspect emphasis is placed on sustainable economy and environment.
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In B2 family, there is more emphasis on local solutions to economic, social, and environmental devel-
opment. This is formed in a heterogeneous world that despite having more variety in technologies the 
rate of alteration in technologies is lower. Main focus is on society innovation in finding local solutions 
instead of global ones.

Scenario A1FI is the first in producing radiation forces till 2100, and B1 is the least, thus A1FI would 
have more impact in comparison to B1. The ranking of scenarios on their radiation force generation 
basis in descending order is A1FI, A2, A1B, B2, A1T, and B1 [17].

8.3.2  climatic Scenarios

Now it is a common belief for most scientists that greenhouse gases concentration would increase in 
future and consequently the average surface temperature of Earth would increase too. But the change in 
climatic variables in regional scale is not explicitly definable. Thus, the alternative to pass this problem 
is to define possible future climatic scenarios, but we should not forget that a climatic scenario is not a 
weather prediction [10].

Few approaches are available now to generate climatic scenarios for future periods but the most ele-
mentary one is synthetic scenario generation. In this way, climatic variables are arbitrarily increased 
or decreased [21,25]. For instance, we can decrease rainfalls or increase temperatures to a defined 
percentage. Despite its easiness, there is no physical basis at the background and therefore the outputs 
are not acceptable sometimes.

Another approach to achieving this target is the extension of available data trend for future. For 
this, using statistical methods that present a trend can be extended for future simulation periods [26]. 
The main weakness in this approach is considering and using experienced trends in previous periods. 
Research has demonstrated that observatory trends in regional statistical periods might be a part of a 
long-term internal change cycle in a regional climate system [11,27]. Thus, an extension of a trend for 
future periods may not imply climate change for that variable in the proposed region.

At present, the most reliable tool for generation of climatic scenarios is three-dimensional coupled 
AOGCM models [13,16,24]. Although there are some simple models that can imitate the AOGCM mod-
els, which will be described in summary in the following sections.
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There are two points that should be considered during scenario selection. At first, the climatic 
variables needed for further simulation in impact assessment models should be defined and checked 
with the scenarios because there is no single scenario that contains all climatic variables. Second, it is 
recommended to use as much scenarios that are available and possible, but if you have limitations in 
time and scenario selection, do not forget to choose scenarios with extreme changes in their variables 
like temperature and precipitation for the intended region.

8.4  aOGcM Models

The AOGCM models are based on mathematical relations and are solved in a 3D network for the entire 
Earth’s surface. Main processes of the climate system (atmosphere, ocean, Earth surface, membrane ice, 
and biosphere) are solved in various sub-models separately. Then, all atmosphere and ocean sub-models 
are coupled and form the AOGCM Model. In sub-models momentum displacement, heat and moisture 
will be simulated in a large scale too. The horizontal resolution of these models in dry areas is generally 
about 250 km and this value changes to 1 km in vertical direction. But the resolution differs in oceans and 
for horizontal and vertical directions; they are respectively 125–250 km and 200–400 m. Despite mini-
mum time scale to solve these relations is 30 min, there are many other physical processes related to the 
clouds and oceans, which occur in less time intervals and cannot be explicitly solved. In such cases, their 
average impacts are considered using physical relations of large-scale variables in the model, which is 
called parameterization. It should be noted that the AOGCM models have been advanced to a great extent 
in recent decades due to computer technology improvements [10].

AOGCM models imply two kinds of climatic variables simulations. In the first, greenhouse gases 
concentration is set to the observed values of year the 1860 as a constant quantity. This type of sim-
ulations, which is called control run, executes simulations for a 1000-year period. Obviously, due to 
constant values of external factors like greenhouse emissions and sun radiation, only internal climatic 
factors play the main role and the outputs will depict the impacts of internal forces on the internal vari-
ability of climate system. Assuming no change for external factors in the future, this simulation would 
imply natural climate variability.

To assess past Earth’s climate, in the other type, the observed data of greenhouse emissions, sun 
radiation fluctuations, and produced aerosols from volcanic activities till 2000 are inserted as input time 
series into the model in monthly scale. A comparison between these model outputs and observed mean 
annual and seasonal temperature and precipitation data and also atmospheric phenomena like ENSO, 
Monsoon, El-Nino, NAO, and exceptional occurrence of extreme temperature and precipitation has 
proven the validity of these simulations [2,12,19,23]. But this simulation is for the past period; for simu-
lation of future periods, it is needed to introduce conditions of greenhouse emissions in the future to 
the AOGCM model. Therefore, emission scenarios (which are generally defined till 2100) are converted 
into concentrations and finally radiation forces using other models and then inserted into the AOGCM 
model. Finally, a time series of climatic variables would be produced for the future period till 2100.

8.5  Introduction of the aOGcM Databases

One of the limitations related to the project that is associated with change in the climate is accessing 
toward the output of the AOGCM models. Sensitivity has been decreased during the time and increase 
of databases related to climate meaningfully. Despite the widespread development of such databases, an 
attempt is made here to point out the popular databases briefly.

8.5.1  IPcc

The Intergovernmental Panel on Climate Change (IPCC) which was instituted in 1988 by the World Meteo-
rological Organization and United Nation Environmental Program is responsible for the identification of 
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various aspects of climate change. IPCC released the first series of emission scenarios in 1992, namely IS92. 
Through scenarios, greenhouse gas measure is increasing with a constant rate up to 2100. In 1996, the new 
series of emission scenarios called the SRES was released, which contains 40 subscenarios. In 1998, a com-
mittee was set up to gather the AOGCM output scenarios, namely Data Distribution Center.

8.5.2  cccSN

Canadian Climate Change Scenarios Network (CCCSN) was established in 2005 with support from 
Environment Canada, the Climate Change Adaptation Fund, and University of Regina, but since 
January 2012 it is only being supported by Environment Canada. CCCSN conducts climate change 
impact and adaptation, and also research in climate change. This database presents various downscal-
ing software and a lot of information about major and minor concepts of climate change. But the main 
support of this site is providing the AOGCM model’s outputs for researchers (Table 8.1).

8.5.3  PcMDI

In 1989, Program for Climate Model Diagnosis and Intercomparison (PCMDI) was established 
at the Lawrence Livermore National Laboratory to develop improved methods and tools for com-
parison of GCMs simulations. In this website, the AOGCM outputs for twentieth, twenty-first, and 
twenty-second centuries is prepared. Future data of twenty-first and twenty-second centuries will be 
calculated based on the IPCC request for various scenarios. The scientific initiatives are other interest-
ing part of this website.

8.5.4  crU

The Climatic Research Unit (CRU) has gathered various datasets about climate change phenomenon. 
CRU database includes two types of data. The first is with 2° resolution and the latter is with 0.5° resolu-
tion. Also, two sets of data are available on this website. The first set called HadCRUT3 is the surface 
land temperature on a 0.5 × 0.5 grid from the year 1850 for 4349 weather stations around the world [4]. 
The next set is the rainfall data on a 2.5° × 3.75° grid [8]. Although the rainfall data are in a larger cell 
size, it also has some gaps in the northern part of North America, middle east Asia, and Africa. In spite 
of this, this database is a popular and user-friendly one.

8.5.5  TYN

The Tyndall Centre (TYN) is composed of many advisory and management teams in order to enhance a 
global qualified source for climate change research. It seeks to be a reliable source for long-term strategic 
climatic policies around the globe.

TABLE 8.1 AOGCM Databases

ID Sign Name Website

1 IPCC Intergovernmental Panel on Climate Change IPCC.ch
2 CCCSN Canadian Climate Change Scenarios Network www.cccsn.ec.gc.ca
3 PCMDI Program for Climate Model Diagnosis and 

Intercomparison
www.pcmdi.llnl.gov/publications/index.php

4 CRU Climatic Research Unit www.cru.uea.ac.uk
5 TYN Tyndall Centre for Climate Change Research www.tyndall.ac.uk
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8.6  Downscaling

The process of downscaling will be done in their large computational cell accuracy after receiving the 
output of the AOGCM models. There are different methods for downscaling climate impact under the 
effect of climate change, both dynamic and statistical methods. These methods are explained briefly by 
Fowler et al. [7].

Dynamic methods are executed using the numerical models. In these methods, the resolution is 
higher, but they are much more expensive and harder than statistical ones. The main approach in statisti-
cal methods is relating some predictants with predictors. The predictants are downscaled parameters and 
the predictors are the outputs of the AOGCM models that are calculated in large-scale computational 
size. Generally, the statistical methods are more popular than dynamic ones, because setting up numeri-
cal models needs too much time and expense. Statistical methods are sorted in three main branches, 
namely, weather classification, weather generator, and regression models. In each of these methods, the 
predictors and predictants are related using various formulations and mechanisms. Here, because of 
limitations we do not explain each one separately, but you may refer to multiple scientific sources to find 
out more about them.

8.7  climate change Uncertainty

An important point in the studies of climate change is uncertainty. Because of different sources of 
uncertainty in different processes related to climate change, considering this issue causes a mistake in 
the final output. The most important steps in uncertainty is recognizing its different sources. In this 
part, main sources have been presented:

• AOGCM simulation’s uncertainty in regional level
• Assessment of climatic variables in regional level shows different simulation results of the 

same climatic variables because of short-scale event parameterization.
• Downscaling uncertainty

• Multiple ways are devise for downscaling, which have both special benefits and defections. 
Each of these approaches results in different outputs, so their outputs are uncertain.

• Greenhouse gas emissions scenarios uncertainty
• Talking about future is definitely uncertain, because using a specific measure for greenhouse 

gas emission in the further, especially for such a long period (100 years), is not deterministic.
• The uncertainty related to the sensitivity of the different AOGCM models to the same radiation force

• Different models convert the radiation into heat using various formulations, thus a source 
of uncertainty is the sensitivity of the models in converting the radiation into heat. Based 
on IPCC reports, the amount of increase in the temperature of the atmosphere is esti-
mated to be 2°C–5.1°C based on the various AOGCM models outputs.

• Uncertainty in conversion of greenhouse gases to atmospheric concentrations and radial force
• In order to present various emission scenarios to the AOGCM models, it is needed to 

firstly convert the amount of the gas into the atmospheric concentration and then calcu-
late the radiation force. Since there exists a lack of knowledge about these processes, the 
AOGCM model outputs would be accompanies with related uncertainty.

8.8  Impact assessment

Climate change has a great effect on the various aspects of nature, thus the main objective in climate 
change is the identification and assessment of possible future conditions in the nature. For this, many 
researches have been implemented in order to analyze climate change impact on hydrological cycle, 
water balance in river basin, and extreme events like droughts and floods.
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Most researches have been focused on hydrological cycle, and realizing this can help so much in the 
evaluation of various water aspects in nature, because the components of hydrological cycle form the 
situation of the basin. But floods are less focused as the purpose for climate change studies, because the 
outputs of GCM models are usually monthly, which is not enough to study floods. Although the avail-
able data from the models are not seemingly useful for climate change impact on floods, we can find 
various studies in this field.

Precipitation as the basic component in hydrological cycle is under direct effect of climate change, 
thus it should be clearly studied for impact assessment. A decrease in precipitation consequently results 
in ground and surface water recharge decrease and also lower soil moisture. It should be noted that not 
only water resources are under the great effect of climate change, but also it changes water consumption 
ratio greatly. Agricultural demand as the largest part in water demands in this century is mostly affected 
by climatic variables. Plant growth period, transpiration, and irrigation demand are under direct rela-
tion with precipitation, temperature, and radiation. Limitations formed by climate change may result in 
stresses on economic, social, and environmental aspects of a region, thus impact assessment can obvi-
ously contribute to a great extent to better management of a region in order to lessen bad situations. In 
other words, the climate change impact assessment helps in identifying probable future issues and even 
threats to human and nature; thus, it can be executed in a general or specified condition.

Inputs for impact assessment studies are scenarios, which might be generated from artificial assump-
tions in change of climatic variables, or even outputs of the GCM models. The main processors are 
simulators, which help us in the assessment of scenarios utilities, but obviously the type and precision 
of these models depend heavily on the available data and requested precision. In this area, economic, 
social, and environmental simulation models can be used.

The most important point in climate change impact assessment problems is misunderstanding in 
climate change stimuli’s. Change in hydrological cycle components, water balance, or increase in occur-
rence of extreme events cannot be interpreted only by greenhouse gases irregular emission, and it might 
be shaped from land use or water management strategy alteration. For instance, drought is heavily 
affected by water management strategies and it should not be evaluated only as a result of climate change. 
In addition, the climate change effect is much weaker than those of economic and technological changes.

8.9  adaptation

As discussed before, the main objective in the climate change problem is its impact assessment and 
finally searching for the way out of unwanted future conditions that are likely to happen. On this 
basis, in the present section, adaptation as an anticipatory method for preparing to overcome prob-
able future issues of climate change would be explained specifically. Another approach, which acts in 
a reactive manner, is mitigation. In other words, adaptation and mitigation are two different methods 
that can be used future situations; the first is an anticipatory and the second is a reactive one, and 
adaptation makes the system prepared to overcome the present situation in order to lessen the burden 
in the future.

Various definitions could be found in the give references, which are given below

 1. Adaptation to climate change is a process that stakeholder groups try to decrease unwilling health 
and welfare issues and to increase advantages from it [5].

 2. Adaptation is any course of action that is implemented in order to adapt with harmful predictions 
of climate change and improve its disadvantages [22].

 3. Burton et al. [5] defines adaptation as responses to climate change in order to decrease vulnerability.
 4. Adaptation is a response to climate change for maintaining possibility of life, with maximizing 

benefits and minimizing damages [20].

It is shown that adaptation is any response and reaction to future changes, which can be implemented 
to remove damages or improvement of willing outputs of climate change. Due to multiple trade-offs, 
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adaptation is a hard activity, but through participation of various stakeholders it becomes much easier 
and better. Stakeholders in climate change problem may vary from public to governors and their partici-
pation would contribute very much to problem solving and adaptation (Figure 8.2).

System and its boundary are the first things that should be evaluated, in such way that it could 
be concluded that adaptation is done for what. System characteristics are other significant things in 
this stage that needed to be analyzed. The most important characteristics are sensitivity, vulnerabil-
ity and adaptability. Vulnerability refers to the amount of exposure of a system (nature or human 
being) to danger by climate change outputs. Adaptability can be defined as the potential of a system 
to encounter possible damages and finally sensitivity is the rate of response of the system to the vari-
ability of climate variables.

This is the first step, and now it is needed to select appropriate tools or models for assessment. This 
step depends mostly on the requested precision and also on available data, thus it might vary from 
a simple model to some complicated models in various aspects such as economic, environmental, 
and social.

Simulation of the present state of the model can help a lot in identifying the current situation of 
the system, the potentials, and facilities to incorporate adaptation. Now it could be considered as the 
reference for other simulations, and comparisons between this simulation and the others would help 
to understand what the impacts of various scenarios are and the performance of various management 
strategies could be assessed more descriptively.

Now it is the time for doing the major part of the adaptation process, which is the identification and 
selection of adaptation approaches, which remove the negative effects of climate change in the future. 
No specific approach exists that fit, to all cases, thus, considering various aspects of each case and the 
availability of potentials we can select an approach for the adaptation. Sometimes, it might be needed 
to innovate new approaches for the specific case and solve the problem with the least availabilities. 
But, in general, most adaptive approaches are made through modification of current measures. The 
more awareness about the case and its realities, the more appropriate approaches would be presented. 
Structural and nonstructural potentials of the system are of great significance and should be studied 

Identification and assessment of the region from
economic, environmental, and social aspects

Selecting appropriate tools and models to simulate and
evaluate system state

Simulating the region considering present and future
conditions

Identification of adaptation approaches

Simulating the region considering future conditions
(considering adaptation)

Evaluation

FIGuRE 8.2 Adaptation flowchart diagram.
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carefully before any approach is selected of created. Many studies have been conducted in this area, but 
here a classification presented by Feenstra et al. [6] is given

 1. Bear losses
 Considered as a base action for comparing various adaptation methods. In the case of fronting 

to climate change, no action is done, only tolerating bad situations is selected as an approach 
to battle with undesirable climate change impacts.

 2. Share losses
 This is another kind of the former method, and through multiple functions, the impact of 

climate change is spread over greater society, instead of its acceptance only by the most vulner-
able part in the society.

 3. Modify the threat
 Modifying the threat includes actions that reduce future threat, like reducing greenhouse gas 

emission into the atmosphere. Unlikely in some classifications this method is called mitigation 
and is placed in another class than adaptation methods.

 4. Prevent effects
 In this class, expected effects are prevented by doing some actions, like using more fertilizers in agri-

cultural sites that would receive less rainfall, and preventing the sites from loss in biomass production.
 5. Change use

 If conditions do not support any more for some special uses, changing the usage would help 
a lot in adaptation to climate change. For example, usage of less water consumer plants is a 
change use action.

 6. Change location
 In addition to usage change, changing location would also help in the reduction of undesirable 

aspects of climate change.
 7. Research

 Research can play the main role in adaptation is considered as a single class of adaptation mea-
sures. Getting familiar to new technologies and latest researches would have a great effect on 
adaptation.

 8. Educate, inform, and encourage behavioral change
 Higher education and knowledge will serve as the last class in adaptation actions. Unfortunately 

this type of adaptation is forgotten in most researches and projects, but it should be noted that 
higher knowledge would result in behavioral change, which can contribute too much to the 
adaptation process.

Selection of these approaches needs a case-based study. Some other useful adaptation measures can be 
found in Mathews [15]. Based on his paper, seven major steps can be imagined in order to reduce global 
carbon dioxide emissions by 70% by 2050. These steps are

 1. A global carbon pricing regime
 An effective and market-driven system to reduce carbon emissions by introducing taxes.

 2. Global satellite monitoring of greenhouse gas emission
 To control the product of greenhouse gas emissions to ensure that countries are adopting emis-

sion rules regulated for them.
 3. Compensating developing countries for preserving rainforest

 Conserving rainforests in developing countries as solution to promote carbon dioxide sinks.
 4. Creation of a global market for responsible biofuels

 As a way to set conditions for developing biofuel usage instead of fossil fuel use.
 5. Creation and furtherance of markets for renewable electricity.

 Providing better situations for creation of electricity energy generation from renewable energy 
sources like solar and wind energy.
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 6. A global moratorium on building new coal-fired power stations
 An initiative at global level to preventing construction of more coal-fired power stations.

 7. Creation of global incentives for developing countries that are moving to adopt nonfossil-fuel 
industrial pathways.

Encouraging developing countries by adopting various international acts to use fossil fuels lesser after 
selection of adaptation approach, its performance in reduction of negative effects should be assessed. The 
only alternative is simulation of the proposed conditions in the form of a scenario using various models.

Evaluation is the last step and affects directly on the final result of adaptation. Any mistake may cause 
misleading approaches that change the climate system destination into a dangerous position. Iteration 
is a common method in finding best management practices. In this way, various adaptation approaches 
would be assessed using simulation models. Evaluation and finally selection of best approaches can be 
implemented by sensitivity analysis, scenario analysis, and multicriteria analysis. Using these methods, 
some ranked approaches will be generated that are the most suitable ones for the executive managers. 
Ranking processes encompass evaluation of different aspects of each scenario and adaptation action, 
thus, in addition to availability of a set of suitable practices, learning process would also occur.

It is worthy to note that the described structure is so general and at execution time it may change 
in various aspects, but rationally it forms the main path to climate change adaptation goal. For more 
details, refer to the proposed adaptation approach in Climate Change in Contrasting River Basins [1]. In 
this book, an innovative approach called “Adaptation Methodology for River Basins” is introduced for 
various river basins around the world. Based on this methodology, four main aspects, namely, agricul-
tural water, drinking water, industrial water, and ecological water are considered and these are related 
with the physical states of river basin water resources system using various indices.

8.10  case Study

For more illustration, a case study is presented here. North Behesht-abad, Iran, is chosen as the case 
study (Figure 8.3).

In this study, the aim is to assess climate change impact on future runoff considering various uncer-
tainty sources for near future period (2040–2069). Therefore, the output data of HADCM3 model for 
scenario A2 are extracted from the IPCC database. As mentioned before, in order to use these data 
in hydrologic models, we need to downscale the outputs to achieve higher resolution. Here, statistical 
regression method is applied using the SDSM model. The first step is preparing observation data, mea-
sured predictors of NCEP, and simulated predictors of A2 scenario from HADCM3 model. Large-scale 
data can be downloaded from the CCCSN database for the selected region and after downscaling, veri-
fication, and validation will respectively be done.

As shown in Figures 8.4 through 8.6, assessment of average, variance, dry and wet periods of boot 
strapped rainfall data demonstrates appropriate accuracy of the model in the calculation of rainfall 
properties in the region. Variance uncertainty range in first months of the year is greater and the great-
est values are recorded in the dry periods of warm months in the year because of low precipitation and 
increase in dry periods. The mentioned range increases in wet periods in the cold months of the year, 
which is for precipitation increase in such months. Comparison of setup and assessment periods of 
the model implies high capability of the model in estimating rainfall parameter in future periods. But 
in minimum and maximum temperature, considering Figure 8.4, most of the variation in observation 
data is placed in the uncertainty of the model estimation, which demonstrates enough accuracy of 
downscaling process. Only in minimum temperature data it is observed that the value estimated by the 
model is partially greater than the observed values, which implies greater fluctuations of downscaled 
parameters in comparison with measured ones. Also, comparison between setup and assessment peri-
ods of the model shows its capability in the estimation of minimum and maximum temperature values 
in future period.
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Despite partial differences in the estimation of minimum and maximum temperatures and precipita-
tion of some months, generally it could be concluded that the model has a good capability in the estima-
tion of these parameters and their properties, and, on the other hand, a comparison between setup and 
assessment periods demonstrates a high capability of the model in the estimation of these parameters 
in the future periods. Therefore, downscaled data produced from SDSM could be used in the estimation 
of runoff. After assessment of the uncertainty of the whole process (producing temperature and pre-
cipitation parameters), now the impact of climate change on the variation of these parameters in future 
periods can be assessed, which is depicted thematically in Figures 8.7 through 8.9.

As shown in Figure 8.7, except for April (which is accompanied with a 35% reduction of minimum 
temperature), for the rest, minimum temperature is increased, in a way that 30% increase is obvious for 
the total period, and consequently snow melting and evaporation has increased and affected directly the 
water resources of the region.
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Maximum temperature will increase at the rate of 10% in the future period and, on the other hand, 
increasing trend of maximum temperature in most of the months demonstrates drought intensity in 
future. The greatest increase in value is found in February, which results in more snow melting and a 
higher probability of flood occurrence.

As shown in Figure 8.10, in all months precipitation will reduce and lead to more intensified droughts 
in the region.

The output of the downscaling process will be used as a hydrologic model input to assess the impacts 
of climate change in the region. For this, SWAT (Soil and Water Assessment Tools) is chosen as the 
hydrologic model. At first, using observation data of the base period, and soil, land use and the DEM 
maps, the model run was executed. Then, using SUFI2 algorithm in SWAT-Cup software, validation 
and verification of the model was completed and the optimum parameters of the model were selected. 
In Figures 8.10 and 8.11, the uncertainty band of the hydrologic model is depicted.

Given observation data of the station, the validation of the model was accomplished for the period 
1998–2002, and the results are shown in Table 8.2.

The optimal values of the aforementioned indices are one, one, zero, and one, respectively. But because 
of the uncertainties affecting the model output, these values are never reached. One of the objectives of 
SUFI-2 algorithm is to reduce uncertainty, in a way that most of observation data would be placed in the 
95% band. Rostamian et al. [18] proved that NS (Nash & Sutcliffe) and p-factor values of higher than 0.5 
and also d-factor value of lower than 1.35 could be defined as desirable levels. The result demonstrates 
high accuracy of the model in runoff estimation (Table 8.2).

As shown in Figure 8.10, in all months observation values are located in the 95% confidence of the 
modeled data and considering the narrow band of the uncertainty, model accuracy is evaluated to be 

40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00
0.00

M
ax

im
um

 te
m

pe
ra

tu
re

 (°
C) Historic

2050s

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FIGuRE 8.8 Monthly average variation of maximum temperature of future periods in comparison with the past 
periods.

70

60

50

40

Ra
in

fa
ll 

(m
m

)

30

20

10

0

Historic
2050s

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FIGuRE 8.9 Monthly variation of precipitation of future periods in comparison with the past periods.



Climate Change: Uncertainty, Impact, and Adaptation 143

good in validation process. In order to achieve more confidence of the resulted outputs, it is necessary 
to accomplish verification of the model.

For verification of the model, observation data of the period 2002–2004 were used. The results of 
verification are shown in Table 8.3 in the form of performance indices. This was obviously predictable 
that the values of these indices would be lower in comparison with the results of validation process, but 
despite these new ranges, all estimated parameters are placed in an acceptable range.

TABLE 8.2 Performance Indices of the SWAT 
Model Validation

P-Factor D-Factor R2 NS

Evaluated values 0.54 0.49 0.85 0.76
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Figure 8.11 shows the uncertainty range of the modeled parameters and facilitates their comparison 
with the observation data. All observation data are placed in 95% confidence of the modeled values and 
considering the narrow band of the uncertainty, accuracy of the model in verification process would also 
be concluded and it demonstrates high capability of the model in runoff estimation for future periods.

After this step, by setting calculated parameters as constant parameters of the SWAT model, time 
series of minimum and maximum temperature and precipitation are introduced to the model in down-
scaled form, therefore, by rerunning the model, hydrologic components of the past and also near, mid-
dle, and distant future would be extracted from the model. In this study, the focus is on, assessment of 
climate change impact on the runoff values. Figures 8.12 and 8.13 depict the impacts of climate change 
on, future values of runoff in Behest-abad region.

The results show an increase in temperature and a decrease in precipitation and runoff in the future 
period of the case study region. Based on these results, the SDSM multiple linear algorithm in down-
scaling of the temperature and precipitation has been successful. To achieve better results, uncertainty 
should be considered in all of the downscaling processes. Finally, climate change has a decreasing trend 

TABLE 8.3 Performance Indices of the SWAT 
Model Verification

P-Factor D-Factor R2 NS

Evaluated values 0.65 1.05 0.54 0.53
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impact on the basin runoff; of course, in some years, the river flow has meaningfully been increased but 
through a more accurate study of the simulations, the impact of climate change on extreme occurrences 
like floods would become much clearer. Thus, an assessment of various approaches of climate change 
adaptation is necessary and useful for this region.

8.11  Summary and conclusions

In this chapter, a methodology is presented to assess the impacts of climate change and devise some 
methods to adapt to climate change. The main concepts of climate change, climatic scenarios, and 
nonclimatic scenarios and usage of these scenarios in the AOGCM simulation models are explained 
respectively and consequently output data of these models are shortly presented. Some of the well-
known databases for receiving output data of these models are also introduced here. After receiving the 
required data, based on needed computational cell size, downscaling should be executed because the 
AOGCM model outputs are regularly presented in large cell sizes. Finally, three important issues impact 
assessment, adaptation, and uncertainty, are described. An interesting finding about uncertainty in 
climate change studies is that the major portion of total uncertainty is the AOGCM models simulation; 
even this is true after downscaling.

Adaptation has two dimensions (social and environmental) that should be considered carefully. 
Adaptation is done in a social and environmental context, and the socioeconomic aspects of each adaptation 
approach must be predefined and assessed completely. Thus, it is critical to study the social aspects and com-
municate with the realities in the case study. Also, accounting water and finance resources is of great impor-
tance because any action in order to reduce climate change negative effects may cause significant ruining 
results and vice versa. So through a more specific assessment of a climate change case and its situation and 
realities, hopefully a better adaptation measure could be done and more positive results would be achieved.
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9.1  Introduction

The risk concept has a long history and has been a main aspect of life since the beginnings of human 
experience. About 2400 years ago, Athenians were among the earliest people to use risk theory and risk 
assessment prior to making decisions. Applications of risk and safety analyses have been developed 
simultaneously by expanding various facets of technology in all branches of science, such as engineer-
ing and environment. The main intentions of risk and safety analyses are to identify existing system 
threats and predict possible outcomes in the future to provide clearer ideas for making the best possible 
decisions. In other words, risk analysis not only provides quantitative support for decision makers, but 
also helps to find the most effective options for decision-making. For instance, engineers could never 
have designed systems such as great bridges, dams, sewer systems, and so on, without some form of risk 
assessment. On the other hand, increasing water demands, higher standards of living, growing popu-
lation, climate variability, and water resource limitations have caused conflicting issues among water 
consumers and put stress on existing water resources across the world, particularly in arid and semiarid 
countries [9]. Therefore, the proper management of water resources and risk assessment can provide an 
opportunity to manage available water resources using a framework. An efficient way to manage water 
resources is dam construction, which creates reservoir to store water and distributes it at the right time 
into downstream districts. Reservoirs have significant roles in water resource engineering in which their 
proper design, construction, and maintenance contribute considerably toward fulfilling water supply 
requirements and minimizing the risk of water shortages.

9.2  risk, reliability, and Uncertainty analysis

The importance of risk and reliability analyses of hydrosystems has been increasing in recent years due 
to concern for citizens and government safety, and health and environmental problems. Simply put, 
risk can be defined as the probability of an undesired event that results in losses or damage. Risk is 
the probability of an unfavorable event that happens during a certain period of time. In other words, 

Preface

The increase in population and socioeconomic activities has escalated the water demand for vari-
ous purposes and put stress on existing water resources across the world, particularly in arid 
and semiarid countries. An efficient way to manage water resources is dam construction, which 
creates reservoir to store water and distributes it at the right time into downstream districts. 
Reservoirs have significant roles in water resource engineering in which their proper design, con-
struction, and maintenance contribute considerably toward fulfilling water supply requirements 
and minimizing the risk of water shortages. In the past few decades, many risk and uncertainty 
methods have been developed by water resources engineers for the purpose of finding the opti-
mal way to design safe dams, which can affect the safety of hydrosystem infrastructures. For 
instance, the proper design of a dam’s spillway and the flood control capacity of a reservoir can 
ensure the safety of a dam and prevent any undesirable problems such as overtopping. In this 
chapter, the application of risk and uncertainty analyses to dam overtopping is presented for 
Doroudzan Reservoir located at the south part of Iran. The Monte Carlo simulation (MCS) and 
Latin hypercube sampling (LHS), as two effective sampling approaches, are applied to perform 
the uncertainty analysis by considering spillway discharge coefficient, quantiles of peak flows, 
and initial water surface level as uncertain variables. The inclusion uncertainty of key variables 
can be resulted in an expanded range of overtopping risks and provides significant information 
for decision makers to detect the events that indicate a developing failure mode.
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risk can be defined as the probability that the actual result will differ from the expected outcome. 
Reliability is the complement of risk and is defined as the probability of nonfailure. Reliability and 
risk have an inverse relation, as increasing failure probability results in decreasing desired system reli-
ability. In engineering, reliability signifies the ability of a set of components to carry out its required 
functions under some desired conditions over a specific time interval. Hence, the main objective of 
risk and reliability in engineering is to calculate a system’s probability of failure or nonfailure regard-
ing possible loads and resistance. Load and resistance can be defined differently depending on the 
analyst’s viewpoint, type of system, purpose of analysis, and determined hydrosystem objectives. For 
example, the load and resistance in overtopping analysis of an embankment dam can be defined as 
water height in the reservoir and dam height, respectively, while for a culvert, the maximum inflow 
(based on rational formula) and the culvert’s capacity to pass this flood can be defined as load and 
resistance, respectively. Some of the most applicable methods in the risk and reliability analyses of 
hydrosystem engineering can be named as performance function and reliability index, direct integra-
tion method, mean-value first-order second-moment (MFOSM) technique, and advanced first-order 
second-moment (AFOSM) method [24].

Another important concept that usually comes up with risk and reliability is uncertainty. 
Uncertainty refers to the condition that is not exactly quantifiable and can be ascribed as deficient 
in perfect information regarding phenomena, data, models, and processes. More simply, uncertainty 
comprises the incidence of events beyond human management capabilities. Any uncertain variable 
has random characteristics of which randomization yields a particular level of error. Recently, vari-
ous approaches for measuring error and uncertainty have expanded, and the application of these 
techniques has shown a steady growth in the uncertainty analysis of hydrosystem engineering. There 
are different classifications with regard to the types and sources of uncertainty. Tung et al. [24] catego-
rized the main sources of uncertainty in hydrosystem engineering as natural variability and knowl-
edge deficiency. In their classification, the natural variability includes natural events such as climatic, 
hydrologic, and seismic forces, while knowledge deficiency involves data, model, and operational 
uncertainties. From another point of view, the sources of uncertainty in water resource engineering 
can be considered as hydrologic, hydraulic, structural, and economic sources. As uncertainties are a 
result of lack of perfect knowledge on the phenomena, decisions with some uncertainties are still fre-
quently being made in all engineering processes. Thus, safety of any engineering projects is relative to 
the level of uncertainty involved. In the probability assessment and random event analysis, statistical 
procedures would be of great assistance, and applying statistical tools can be very useful for risk and 
reliability analyses.

Different approaches have been applied to measure uncertainty in hydrosystem engineering. One way 
to measure the degree of uncertainty is to apply statistical moments in various orders. Useful statistical 
moments in this case are mean and variance of desired variables. Mean (μx) is the first central moment 
that illustrates the expected variable value, while variance ( )σx

2  is the second-order moment of a variable 
and presents the scatter of a random variable. Coefficient of variation, defined as ratio of the standard 
deviation of variable (σx) to the mean of variable (Ωx = σx/μx), can be applied to explain uncertainty level. 
This coefficient is used as a normalized measure of uncertainty to be compared in various conditions, 
and it is also useful for combining uncertainties of different variables [24]. However, the most complete 
approach is applying the probability density function (PDF) of desired uncertain variables. Generally, 
the uncertainty techniques can be categorized into analytical, approximation, and sampling of which 
the most important of them are presented in Table 9.1.

9.3  Sampling Methods

In water resource engineering, making a decision about system operation and capacity is strongly 
dependent on the system’s reaction under some predictable conditions. However, it is not possible to 
assess the system’s reaction with distinct certainty, as the various system components are subject to 
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different kinds of uncertainty. One problem regarding the different uncertain variables in complex and 
nonlinear models is deriving the PDF of uncertain variables and determining the appropriate statisti-
cal moments or probability distribution of model outputs. Furthermore, any analysis in the real world 
is based on historical recorded data, while usually historical records are not long enough and the data 
includes all sorts of errors. Sampling is potentially an applicable method to compound several random 
input values and get results with appropriate accuracy. Sampling can be defined as the procedure of 
selecting an individual from a specific statistical population to evaluate characteristics of the entire 
population. In other words, it is the extrapolation from sample to the population and helps engineers 
to improve quality of data and saving in time and cost. Hence, the MCS and LHS, as two significant 
sampling techniques, will be briefly explained in the following sections.

9.3.1  Monte carlo Simulation

Simulation is a process of recreating a real situation, usually based on a set of hypotheses and math-
ematical formula. Simulation is a useful tool for evaluating system performance in different conditions 
and also to test new theories in the form of a computer program. The MC process is a numerical simu-
lation that replicates stochastic variables according to a certain statistical distribution. In other words, 
MC uses random numbers to model a desired process. To generate continuous random numbers based 
on the MCS, consider X as a random variable and Fx(X) as its cumulative distribution function (CDF); 
the inverse function for any value of u ∼ u(0,1) can be written as

 X F ux= −1( )  (9.1)

where
F ux
−1( ) is the inverse function

u has a uniform distribution on (0,1)

It should be noted that the continuous probability distributions in hydrosystem engineering are strictly 
uptrend for all random variables X, and thus, there is a unique relationship between Fx(x) and u as 
u = Fx(X). To generate m random variables using the CDF-inverse method, the following steps should be 
repeated m times:

 1. Draw a uniform random variate as u ∼ u(0,1) (random number generator).
 2. Find x such that x F ux= −1( ).

There are two major concerns about the MCS. First, it needs large computations to generate random 
values, and second, its result accuracy strongly depends on the number of iterations and simulations. 
In this method, increasing sample size is a prerequisite to achieving higher precision results, while the 
achieved results will lead to sampling errors related to the number of selected random variates with an 

TABLE 9.1 Uncertainty Analysis Methods

Analytic Methods Approximation Methods Sampling Methods

Derived distribution First-order variance estimation Monte Carlo simulation
Fourier, Laplace, and exponential 

transforms
Rosenblueth’s probabilistic point estimation Latin hypercube sampling

Mellin transforms Harr’s probabilistic point estimation Correlated sampling
Estimations of probability and 

quantile using moments
Li’s probabilistic point estimation Antithetic variates

Source: Tung, Y.K. et al., Hydrosystems Engineering Reliability Assessment and Risk Analysis, McGraw-Hill 
Professional, New York, 2005.
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inverse relation to the sample size number. On the other hand, increasing sample size entails an increase 
in computer time needed for generating random variates and the simulation process.

9.3.2  Latin Hypercube Sampling

As stated earlier, increasing sample size in sampling-based methods can reduce sampling errors, but 
simulation process and computer time for generating random variates will be increased. On this basis, 
there are some reduction variance techniques to increase the precision of MCS outcomes without 
the need to increase sample size [24]. Some of the most important methods of variance reduction are 
antithetic-variate technique, control variates, importance sampling technique, LHS, correlated sam-
pling, and stratified sampling technique. LHS is one of the main variance reduction techniques that can 
increase the efficiency of the output statistics parameters. This method is frequently used to decrease 
the number of necessary runs of MCS to achieve a reasonably accurate random distribution. In this 
method, the range of each variable is divided into m nonoverlapping intervals with the equal probability 
1/m. Then, a random variate is selected from each range with regard to the desire probability distribu-
tion [22]. A simple and primary algorithm for applying the LHS method is

 1. Divide the range of input variables into the number of m.
 2. Generate M uniform random number from U(0,1/M).
 3. Perform random permutation.
 4. Determine random variates (xi,j) by applying the following equation:

 
x F

m
P ri j j i j i j, , ,= − 









−1 1  (9.2)

where ri,j and Pi,j are random number and random permutation, respectively [17].

Based on the LHS method, each generated random variate is placed in a separate interval with the equal 
probability of 1/m. For example, Figure 9.1 shows the range of each variable for m = 5 nonoverlapping 
intervals with an equal probability of 1/5 = 0.2.

On the other hand, the generated random variates from the MC technique are randomly distributed, 
and there may be more than one random variate, or no random variate placed in an equal probability 
area. Figure 9.2 illustrates the main differences between the MCS and LHS techniques.

0.2 0.2 0.2 0.2 0.2

a b c d e

FIGuRE 9.1 Nonoverlapping probability area for m = 5.
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As it can be seen from this figure, with the LHS sampling strategy, each row and each column is filled 
by a black circle, which represents a generated random variate. Whereas based on MCS method, some 
rows and columns do not contain any black circle and some rows and columns have been filled with 
more than one random variate.

9.4  frequency analysis

Frequency analysis is an applicable statistical method for analyzing hydrologic phenomena based on the 
past records and historical data. This analysis is the concept of the probable frequency of occurrence of 
a certain event in the future within a given time period. Frequency information is commonly applied 
in different fields of water engineering, and it has been the main concern of hydrologists in particular 
when they are designing various water resources systems. In other words, reliable estimates of the mag-
nitude and frequency of extreme hydrologic events could be useful to provide the basic and necessary 
information in the design of hydrosystems, considering the current condition of systems and finding the 
most sensitive factors that increase the risk of failure. Based on Chow et al. [4], the principal objective 
of hydrologic frequency analysis is to create a relationship between the magnitudes of extreme events 
and their frequency of occurrence and predict how often an event (e.g., floods, droughts, wind speeds, 
and rainfalls) is likely to recur. Therefore, we need to fit a probability distribution to available data and, 
then, establish a relationship between the event magnitude and its exceedance probability. As frequency 
analyses are based upon the principle of statistical analyses, it needs a deep understanding of statistical 
and probability theories.

In addition to that, the number of sample size and observations also are an important feature of 
frequency studies, in which larger sample sizes generally lead to increasing the accuracy of results. 
Hydrological data show the quantitative values of each process in water cycle, and so, the importance 
of this sort of data in forecasting and managing different events cannot be underestimated. Hence, 
the first key step of any hydrological study like frequency analysis is data collection. Based on Tung 
et al. [24], there are three basic types of data series extractable from hydrological records: a complete 
series, an extreme value series, and a partial duration series. The complete series data cover all available 
values on the magnitude of an event and usually includes a large number of sample sizes containing 
all the data between the minimum and maximum values. In practice, this type of data series is not 
applicable for some of the hydrological events that only their largest or smallest values are required. 
In this case, using extreme value series of data in the form of annual maximum series for the largest 
and annual minimum series for the smallest data value could be more relevant. However, there are still 
specific limitations regarding this class of data in which using annual maximum or minimum series 

a b c d e a b c d e
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FIGuRE 9.2 Generating random variates based on MCS and LHS.
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may contain loss of some information. For example, the second maximum or minimum value of wind 
speed within a year may be greater or smaller than the largest or smallest value of speed in other years, 
while it is ignored in annual maximum or minimum series. This problem could be solved by apply-
ing the third category of data series as partial duration. This category is a subgroup of complete data 
series, and it is conducted on values that are above or below a preselected base value. According to 
this method, a base value is chosen, and all data above or below that certain base will be considered in 
frequency analysis. For example, the partial duration series may consider all inflows above 500 m3/s or 
wind speeds less than 10 m/s.

As stated earlier, the probability distribution also is another input requirement for frequency analysis 
to describe the frequency of occurrence of an event. However, deciding whether given data come from a 
particular class of probability distributions still is one of the basic problems of statistics. Two traditional 
ways to test how a particular distribution sufficiently fits a set of observations are (1) using probability 
paper and (2) comparing the observed relative frequency with the theoretical relative frequency. Based 
on the first method, data series is ranked, and exceedance probability or return period is computed 
using the proper plotting-position formula. Afterward, the probability paper for the desire distribu-
tion is obtained, a graph of magnitude of desire random variable versus its probability is plotted, and 
finally a distribution fitted graphically [26]. For the second method, some statistical goodness-of-fit tests 
should be applied to compare observed and expected relative frequencies and see how well a probability 
distribution fits a set of observations. In this case, three of the most applicable tests are Kolmogorov–
Smirnov (KS), the Anderson–Darling (AD), and chi-square test. The KS test is a nonparametric test that 
makes no assumption about the distribution of data, and it does not rely on the probability distribution 
function being tested. The second one, AD test, is a modification of the KS test and assumes that there 
are no parameters to be estimated for desire distribution, and so it is distribution-free. The last one, 
chi-square goodness-of-fit test, is the most used member of the nonparametric family of statistical tests, 
and it can be applied to any univariate distribution to calculate the CDF. This test is an alternative to the 
KS and AD tests, and it can be used for discrete distributions, while two other tests are limited to the 
continuous distributions [5]. Although goodness-of-fit tests are popular yet, and they have been used 
in many hydrologic design projects, there are kinds of questions and some limitations on using them 
in hydrological frequency analysis particularly for extreme events. The most important restrictions can 
be written as insensitivity in the tail regions of the distributions, dependency of quantile function on 
the method of fit, problems with small samples, and inherent arbitrary rules [28]. Hence, developing 
methods (e.g., L-moments) are always interesting for both hydrologists and statisticians, and they can 
increase the accuracy of results and also give a more proper prediction of hydrologic events [7]. The 
applications of L-moments for conducting goodness-of-fit tests to identify appropriate probability dis-
tributions began in the late 1970s and have been increased in the recent years. The name of this method 
is obtained from their construction as linear combinations of order statistics. L-moments are known as 
robust model for characterizing the shape of a probability distribution and estimating the distribution 
parameters, principally for environmental data with small sample sizes [12]. More information on vari-
ous frequency methods and their application to different hydrologic events are presented by Tung et al. 
[24] and McCuen [20].

In the case of various hydrologic events, flood and wind speeds both play a significant role in design-
ing hydrosystems, in which the extreme value of these natural events can be resulted in unexpected 
damaging effects like loss of human life and economic losses. Henceforth, estimating extreme values 
of flood and wind speeds is an essential task in many fields of environmental and engineering risk 
analysis. For example, in dam overtopping study, overtopping happens when the flood outlet cannot 
release water fast enough and water rises above the dam and spills over, or, wind can start waves, raise 
the height of water in a reservoir, and consequently increase the probability of the occurrence of over-
topping. In other words, when the water elevation is very near the crest, the generated waves might 
wash over, resulting in dam failure. Therefore, flood and wind frequency analyses are used to estab-
lish a relationship between flood and wind speed magnitude and frequency of occurrence. Once the 
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historical data are available, it is possible to use the past data as a representation of future and establish 
the relationship to predict their extreme values in different return periods. In general, the process of 
any hydrologic frequency analysis, including flood and wind frequency analyses, briefly includes the 
following steps:

 1. Data collection for interested hydrological event (e.g., rainfall, wind speeds, and reservoir 
inflows).

 2. Find the best fit probability distribution for the available data series (e.g., Gumbel max, general 
extreme value (GEV), gamma, log-gamma, log-logistic, normal, log-normal, Pearson, log-Pearson 
Rayleigh, and Weibull).

 3. Determine the magnitude and frequency of desire hydrologic events based on the given probabil-
ity distribution.

In the following sections, the flood and wind frequency analyses for a real case study are presented.

9.5  Dam Overtopping

The proper design of a dam’s spillway and the flood control capacity of a reservoir can ensure the safety 
of a dam and prevent any undesirable problems such as overtopping. The design flood of reservoirs is 
usually computed based on the univariate flood frequency analysis of peak discharges in which the 
hydrograph of design flood is routed through the reservoir to determine the spillway design discharge 
and flood control capacity. However, dams still suffer overtopping, which comprises about one-third 
of all uncontrolled breach failures [15]. The standard design of dams has not been absolutely solved 
because of the uncertainty in the variables and applied models, and until now, it is a difficult issue in 
hydrosystem engineering.

Deterministic approaches, such as the probable maximum flood technique, which assumes that the 
risk of dam failure is zero, are well established and still used in dam design engineering [23]. However, 
by improving the mathematical and statistical models through the increasing ability of computer 
programs, and with the accessibility to data records for longer periods, it is time to move from the 
deterministic approaches in engineering design to probabilistic methods that consider higher-order 
uncertainty in the variables and models. In the past, some studies were carried out to consider the 
risk and reliability analyses in dam safety. Wood [28] evaluated the overtopping risk for an embank-
ment dam by applying the integral transformation approach. Cheng et al. [3] evaluated the risk of 
overtopping by applying various approaches including direct integration method, MCS, MFOSM, and 
AFOSM and, then, compared the results of different methods with each other. The Committee on 
the Safety of Existing Dams [6] offered a risk index for overtopping and structural failures and also 
discussed the concept of risk-based design for hydrosystems. Singh and Snorrason [21] analyzed some 
historical earth-filled dam failure events due to overtopping. One finding of this analysis was the iden-
tification of a strong correlation between the breach width and dam height. Cheng et al. [2] offered a 
new approach to estimate the risk of overtopping due to wind. Bowles [1] studied the tolerable risk con-
cept in hydrosystem engineering and presented some examples for tolerable risk criteria in dam safety. 
Yanmaz and Gunind [29] applied bivariate flood frequency analysis to estimate the overtopping risk 
of a detention dam. Wang and Bowles [27] studied different breach locations of an earthen dam due to 
wave overtopping, and based on their results, wind direction, as well as the wind speed, has an impor-
tant effect on the location of the breach. Kwon and Moon [17] introduced three major innovations to 
improve overtopping risk elevations using probabilistic concepts for existing dams. The first innova-
tion was the use of nonparametric probability density estimation methods for selected variables, the 
second was applying LHS to improve the efficiency of MCS, and the third was the use of bootstrap 
resampling to determine initial water surface level. Marengo [19] studied the probability of overtop-
ping during dam construction by focusing on the upstream water surface elevation during the flood. 
Kuo et al. [16] conducted a risk analysis for Feitsui Reservoir by considering five uncertainty analysis 
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methods (MFOSM, RPEM, HPEM, LHS, and MCS) and four initial water levels in five return periods. 
Li and Zhao [18] introduced a time-dependent reliability method to predict the risk of failures due to 
the increased wave overtopping and reduced structural capacity in conjunction with some basic appli-
cations of its method. In addition, a stochastic process was proposed to model the time variant and 
random nature of severe waves. Hughes and Mantel [13] studied the application of a hydrological mod-
eling approach to investigate the uncertainty associated with simulating the impacts of farm dams in 
several South African catchments. The focus of the study was on sensitivity analysis and the limitations 
of the data that would be typically available for water resources assessments. Fakhri et al. [8] studied 
the uncertainty assessment of downscaled rainfall and impact of climate change on the probability of 
flood. Goodarzi et al. [10] present the application of risk and uncertainty analyses to dam overtopping 
due to various inflows and wind speeds based on univariate frequency analysis for the Meijaran Dam 
in the north of Iran. The results revealed that rising water level in the reservoir is the most important 
factor in overtopping risk analysis, and wind speed also has a considerable impact on reservoirs that 
are placed in windy areas. In another study, Goodarzi et al. [11] presented the application of risk and 
uncertainty analyses to dam overtopping based on univariate and bivariate flood frequency analyses 
by applying Gumbel logistic distribution.

The process and application of risk and uncertainty analyses to dam overtopping and application of 
a probability-based methodology to evaluate the probability of dam overtopping are presented in the 
following sections. A flood frequency analysis of 33 years of annual maximum discharge is carried out 
by applying GEV distribution for the Doroudzan Reservoir in the south of Iran. Afterward, the risk of 
overtopping is calculated for five extreme floods considering inflow hydrographs, initial water levels, 
and the discharge coefficient of the spillway as uncertain variables. The highest water levels were com-
puted by the reservoir routing technique while the MC and Latin hypercube techniques were applied for 
uncertainty analysis. It is important to note that when derivation of the PDF of uncertain variables is 
difficult, the sampling technique is an applicable method that tries to compound several random input 
values to obtain the best result. These results can be analyzed statistically to predict the behavior of 
the system. The accuracy of the sampling methods strongly depends on the sample size, and so, a large 
number of samples (20,000 for MC and 10,000 for LHS) were considered in this study to increase the 
precision of the calculations. As the LHS can converge with smaller sampling, its sample size is half of 
the MCS technique.

9.5.1  case Study: The Doroudzan Dam, Iran

Doroudzan Dam is one of the most important dams in the south part of Iran. The preliminary stud-
ies and investigations of the dam were carried out in the years 1963–1966, and dam construction was 
started and complicated in 1970 and 1974, respectively. The basin of this multipurpose earth-fill dam 
is situated near northwest Shiraz on the Kor River and in the Bakhtegan lake catchment area. The Kor 
river watershed is between the longitude 51° 43′ and 52° 54′ East and latitude 30° 08′ and 31° 00′. The 
elevation of the highest watershed point is 3749 m from the mean sea level and is located northwest of 
the watershed. The total volume and dead storage of the reservoir are 993 and 133 (106 m3), respectively. 
Basic technical information concerning Doroudzan Dam, the schematic view of dam, and its basin are 
shown in Table 9.2, Figures 9.3 and 9.4, respectively.

This dam is a major source of water, supplying for 112,000 ha of agricultural land and domestic–
industrials and power plants requirements of Shiraz, the capital of Fars province, and Marvdasht and 
Zarghan as two other main cities. It is important to note that, two of the most important artifacts, 
the Pasargadae and Persepolis monuments, which date back to 515 BC, are located downstream of the 
Doroudzan.

These structures are among the most famous monuments in the world and are visited annually by 
people from all over the world. Therefore, any problems with the Doroudzan dam will undoubtedly 
immerse these two ancient and valuable heritage sites.



156 Handbook of Engineering Hydrology

All inflows, reservoir storage, evaporation, and releases from 1975 to 2008 have been collected by 
the Fars Ministry of Energy Data Center land-based/surface data collection. Team members collected 
all available meteorological data including inflows, water elevation, rainfall, temperature, etc., for each 
station along the Kor River, and the recorded data were ported in Microsoft Excel workbooks for data 
quality assurance and quality control.

TABLE 9.2 Physical 
Characteristics of 
Doroudzan Reservoir

Type Earth-Fill

Height 57 (m)
Crest length 710 (m)
Crest width 10 (m)
Fill volume 4.8 (106 m3)
Volume 993 (106 m3)
Dead storage 133 (106 m3)
Spillway type Ogee spillway

Max drawdown EL.1655.0

Max flood EL.1681.00
EL.1683.5.00

Downstream
33

11

450 m

Chimney drain

Clay-concrete walls

FIGuRE 9.3 A schematic view of Doroudzan Dam.

Kor river

Dam site

N

0 6 12 km

FIGuRE 9.4 A schematic view of Doroudzan’s basin.
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9.6  Methodology

9.6.1  Dam risk Model

If a system is unable to perform expected tasks, the system will fail, and, accordingly, undesirable con-
sequences will occur. Failure can be defined as the load (L) exceeding system resistance or capacity (R). 
Identifying load and resistance is a fundamental issue in risk analysis, and it noticeably depends on the 
type of hydraulic structure and problem physics. Tung et al. [24] defined the probability of failure as

 Probability of failure = >( )P L R  (9.3)

where P([.]) is the probability of failure. Risk also can be represented as [22]

 α = = <( )Risk P Z 0  (9.4)

where Z is the performance function, and it can be defined as Z = R − L, Z = (R/L) − 1, and Z = ln(R/L).
It is important to note that the performance function of an engineering system can be described in 

several forms in which the selection of each form depends on the distribution type of desire perfor-
mance function. In this study, the system outcomes have been compared with the log-normal and nor-
mal distributions, and the goodness-of-fit test was applied to choose the appropriate distribution based 
on the KS and AD tests (Table 9.3).

The results of the test revealed that log-normal distribution fits the available data better than normal 
distribution, and thus, the log form of the performance function was selected. Hence, the performance 
function (Z) can be considered as follows:

 
Z

R

L
= 






ln  (9.5)

More information on various performance function forms and their application to hydraulic engineer-
ing systems is presented by Yen [30].

9.6.2  Overtopping risk Model

Overtopping happens when the flood outlet cannot release water fast enough and water rises above the 
dam and spills over. In overtopping analysis, the maximum water height in the reservoir (Hmax) and dam 

TABLE 9.3 Goodness-of-Fit Tests for the System Outcomes

Goodness-of-Fit Test Kolmogorov–Smirnov Anderson–Darling

T-Year Probability Distribution Statistic Value Table Value Statistic Value Table Value

2 Log-normal 0.008 0.030 0.177 2.501
2 Normal 0.014 0.030 0.811 2.501

10 Log-normal 0.008 0.030 0.177 2.501
10 Normal 0.014 0.030 0.811 2.501
20 Log-normal 0.013 0.030 0.206 2.501
20 Normal 0.019 0.030 0.878 2.501
50 Log-normal 0.013 0.030 0.212 2.501
50 Normal 0.019 0.030 0.893 2.501

100 Log-normal 0.013 0.030 0.211 2.501
100 Normal 0.019 0.030 0.879 2.501
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height (HR) can be considered as the load and resistance of the system, respectively. Therefore, the over-
topping probability with respect to the performance function due to different inflows and wind speeds 
can be expressed as follows [22]:

 
Z

H

H
f

R

max

= 







ln  (9.6)

and
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max w
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ln  (9.7)

where
Zf is the performance function of flood
Zfw is the performance function of flood and wind
HR is the dam crest height
Hw is the total wave height
Hmax is the highest water level during a flood event that can be calculated from reservoir routing

Finally, the overtopping probability will be computed as

 
Risk = −∅







 = −∅( )1 1

µ
σ

βz

z

 (9.8)

in which β is the reliability index indicator and is defined as the mean ratio of the performance function 
(μz) to its standard deviation (σz).

9.6.3  flood Model (reservoir routing)

The main objective of overtopping analysis of an earth-filled dam is estimating the water height in the 
reservoir under various inflows and wind speeds, and comparing the result with the dam crest elevation. 
The known and frequently used flood model is the continuity equation with the following basic form:

 
I Q

ds

dt
− =  (9.9)

where
I and Q are reservoir inflow and outflow (m3/s)
S is the storage (m3)
t is the time (s)

The implementation form of reservoir routing can be written as

 

I I Q Q S S

t
t t t t t t+ − + = −+ + +1 1 1

2 2 ∆
 (9.10)

where
It and It+1 are inflow into the reservoir (m3/s)
Qt and Qt+1 are outflow from the reservoir (m3/s)
St and St+1 are reservoir storage (m3) at t and t + 1, respectively
∆t is the time interval (s)



Dam Risk and Uncertainty 159

The maximum water height in the reservoir could be estimated by solving Equation 9.10 step by step. 
Time interval ∆t determines the length of each step in the reservoir routing, and output precision will be 
increased with decreasing ∆t. In this study, a time interval of 30 min was selected to reduce uncertainty 
due to the highest water level possibility, which may occur between the t and t + 1. The fourth-order 
Runge–Kutta is applied to solve reservoir routing throughout this investigation.

9.6.4  Wind Model

Wind can be defined as the horizontal movement of air, which is created if the thermal temperature bal-
ance changes because of unequal energy. Wind can start waves, raise the height of water in a reservoir, 
and, consequently, increase the probability of the occurrence of overtopping. In other words, if the water 
elevation is very near the crest, the generated waves might wash over and result in dam failure. Wind 
setup and wave run-up are applicable factors in evaluating the effect of wind speed on the water surface 
elevation in reservoirs. Hence, there is a requirement to make a relationship between the wind return 
period (Tw) and wind speed in the desired return period ( )VTw  to calculate wind setup, wave run-up, 
and the total height of water elevation. USBR [25] provided a method to estimate wind-generated waves 
in reservoirs, which is commonly accepted in the dam engineering community. Based on USBR [25], 
the minimum duration to reach a maximum wave height, tmin in hours, is calculated by the following 
equation:

 
t

F

V
min =1 544

0 66

0 41
.

.

.
 (9.11)

where
V is the wind speed over water in km/h
F is the fetch length in km

The significant wave height Hs (m), which is the average of the highest one-third of the waves of a given 
group or spectrum, can be calculated by the following equation [25]:

 H V Fs = 0 00237 1 23 0 5. . .  (9.12)

When wind hits the beach, a setup is created and the water level rises higher than the normal water 
level in the reservoir. This event is called wind setup, and it can be calculated based on the following 
equation [25]:

 
Y

V F

D
s =

2

62772
 (9.13)

where
Ys(m) is the wind setup
F is the fetch length (km)
V is the wind speed over the water surface (km/h)
D (m) is the mean water depth along the fetch length

The next effective factor in wind overtopping analysis is wave run-up. If a wave approaches or hits a 
structure, such as a dam, part of the energy is destroyed because of turbulence, and the rest of the energy 
is used to run-up the dam embankment. Therefore, wave run-up is defined as the vertical difference 
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between the highest water level caused by the run-up on the dam and the water level at the slope foot. 
According to the height of the run-up, it can be determined whether overtopping occurs or not. This 
parameter is a function of the measured wave characteristics including significant wave height, wave-
length, slope of dam body roughness, and dam permeability. Hughes [14] presented an equation to 
compute the maximum wave run-up based on the wave moment flux as follows:
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 (9.14)

where
YR is the maximum run-up of regular waves (m)
H0 is the water depth from the bed to the current water elevation (m)
MF is the depth integrated wave moment flux per unit width
ρ is the density of water (kg/m3)
θ is the embankment slope

Hughes [14] also presented an empirical relationship for estimating momentum flux as follows:
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where
A H H0 0

2 0256
0 6392= ( ).

.
/

A H H1 0
0 391

0 1804= ( )−.
.

/

H (m) is the wave height, which can equal significant weight height [27]
Finally, the total wave height, that is, an integration of the wind setup and wave run-up in the reser-

voir, could be calculated as follows:

 H Y Yw R S= +  (9.16)

9.6.5  Outlier Test

In the first step of this study, an outlier test is applied for 34 year (1975–2008) annual maximum dis-
charges to determine the data that are departed from the trend line. Without the outlier test, the data 
point will not follow the trend of the assumed population regardless of the probability distribution. Data 
that are departed from the trend line occur in either upper and lower tails and are called high and low 
outliers, respectively. In this study, outlier analysis (high and low outliers) was implemented using the 
Bulletin 17B approach [20]. The steps of the test are as follows:

 1. Determining k (Equation 9.17) based on the number of sample size.
 2. Calculating mean and standard deviation of annual maximum discharges.
 3. Computing Qoh parameter for high outlier as follows:

 Q Q k Soh Q= + ⋅  (9.17)
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and for low outlier

 Q Q k Sol Q= − ⋅  (9.18)

where Q‒ and SQ are mean and standard deviation of inflows.
 4. If Q > Qoh, Q can be considered as high outlier, and if Q < Qol, Q can be considered as a low outlier.

Table 9.4 shows the results of outlier test for 34 year (1975–2008) annual maximum discharges of 
Doroudzan Reservoir. According to the outcomes of this test, there is a low event datum, and it should be 
omitted from the annual maximum flood series. Therefore, the number of recorded data was reduced to 33.

9.6.6  flood frequency analysis

Different statistical distributions are fitted to the annual maximum floods in order to estimate the peak 
flows in various return periods. The used distributions are Gumbel max, GEV, gamma, log-gamma, log-
logistic, gen-gamma (4P), normal, and Pearson 5 (3P). Afterward, a goodness-of-fit test is applied for 
choosing the best distribution based on the KS test (Table 9.5).

Although the result of test demonstrated that all considered distributions could be selected for 
recorded flood data, the GEV distribution fits better than others, and it is used in this study. From fre-
quency analysis, the values of mean and standard deviation of estimated peak discharge are obtained at 
a given return period, and the results are presented in Table 9.6.

9.6.7  Wind frequency analysis

There are two main directions for the wind speed in the Doroudzan dam basin, which are southwest and 
west directions. As the speed of west wind is higher than southwest and its direction is along with the 

TABLE 9.4 Outlier Test Results
Sample size = n 34
K 2.61
Qoh 3.42
Qol 1.50
Mean 2.46
Standard deviation 0.36

TABLE 9.5 Goodness-of-Fit Test of Maximum Annual Flood

Probability 
Distribution

Kolmogorov–Smirnov

Statistic Value Table Value Remark

Gumbel max 0.099 0.230 Ok
GEV 0.085 0.230 Ok
Gamma 0.086 0.230 Ok
Log-gamma 0.110 0.230 Ok
Log-logistic 0.091 0.230 Ok
Gen-gamma (4P) 0.195 0.230 Ok
Normal 0.119 0.230 Ok
Pearson 5 (3P) 0.089 0.236 Ok
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fetch length (Figure 9.5), the west wind data have been used to evaluate the wind setup and wave run-up 
for Doroudzan Reservoir.

Different statistical distributions are fitted to the 34-year (1975–2008) annual maximum wind speed 
in order to estimate the maximum speeds in various return periods. The used distributions are Gumbel 
max, GEV, Rayleigh, gamma, log-gamma, gamma (3P), Weibull, Weibull (3P), log-normal 3P, normal, 
Pearson 5 (3P), log-Pearson 3. A goodness-of-fit test is applied to find the best distribution by using the 
same statistical tests in flood frequency analysis, and the results are shown in Table 9.7.

Based on the goodness-of-fit test, the GEV, Gumbel max, log-Pearson, and other used distributions 
can be considered for hydrologic dam risk analysis. In this study, the GEV distribution is selected, and 
the wind speeds are computed in 2-, 10-, 20-, 50-, and 100-year return periods (Table 9.8).

9.6.8  Statistical characteristics of Uncertainty factors

The considered uncertainty parameters in this study are as follows:

 1. Quantile of flood peak discharge in different return periods (I): the main reasons for consider-
ing peak floods as uncertain variables are error in data recording, lack of data, and lateral inflow 
into the reservoir. The values for the mean and standard deviation of Doroudzan Reservoir are 

TABLE 9.6 Mean and Standard Deviation of Peak 
Discharges in Various Return Periods

T-Year 2 Years 10 Years 20 Years 50 Years 100 Years

μI 524.191 755.388 871.876 1048.4 1201.14
σI 21.56 52.74 78.83 126.30 173.85

Wind speed
(m/s)

>= 11.1
8.8–11.1
5.7–8.8
3.6–5.7

0.5–2.1
Calms: 0.00%

South

North

West East

60%

48%

36%

24%

12%

2.1–3.6

FIGuRE 9.5 The wind rows of Doroudzan basin.
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presented in Table 9.6. The estimated peak discharges based on GEV distribution have been used 
to generate inflow hydrographs, and then, the generated hydrographs were routed into the reser-
voir to compute the maximum water height.

 2. The initial water level (H0): the average depth of water in the reservoir was computed based on the 
observed and recorded water elevation over 33 years (1975–2008). The mean and standard devia-
tion of water depth were 43.16 (m) and 1.63 (m), respectively. In addition, six other depths (with 
1.5 m increments) have been assumed as initial depths in order to consider the effect of changing 
initial water depth on the probability of overtopping. The considered depths are 43.16, 44.66, 
46.16, 47.66, 49.16, 50.66, and 52.16 m.

 3. Spillway discharge coefficient (C): Its mean and standard deviation are assumed to be 2.05 and 
0.069, respectively.

The overall process of risk and uncertainty analyses can be summarized as data collection, flood and 
wind frequency analyses, identification of uncertainty factors in the overtopping analysis, reservoir 
routing, and finally estimating overtopping (Figure 9.6).

9.7  results and Discussions

9.7.1  Overtopping Probability Due to Different floods

Based on the equations presented in the previous sections, the probability of overtopping is calculated 
for various floods of 2-, 10-, 20-, 50-, and 100-year return periods with a consideration of three uncertain 
variables peak floods, initial water level, and discharge coefficient. All uncertain variables are assumed 

TABLE 9.7 Goodness-of-Fit Test for Maximum 
Annual Wind Speed

Probability 
Distribution

Kolmogorov–Smirnov

Statistic Value Table Value Remark

GEV 0.204 0.327 Ok
Rayleigh 0.371 0.327 Not ok
Gamma 0.243 0.327 Ok
Log-gamma 0.228 0.327 Ok
Gamma (3P) 0.240 0.327 Ok
Weibull 0.234 0.327 Ok
Weibull (3P) 0.247 0.327 Ok
Log-normal (3P) 0.237 0.327 Ok
Normal 0.266 0.327 Ok
Pearson 5 (3P) 0.235 0.327 Ok
Log-Pearson 3 0.240 0.327 Ok

TABLE 9.8 Value of Wind Speed 
and Minimum Duration to Reach 
Maximum Wave Height

T-Year CDF V (km/h) tmin (h)

2 0.500 53.05 0.24
10 0.900 66.66 0.22
20 0.950 71.61 0.21
50 0.980 77.83 0.20

100 0.990 82.35 0.20
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to be independent variables, while the MCS (with a sample size of 20,000) and LHS (with a sample size 
of 10,000) are applied for uncertainty analysis. The probability of overtopping due to floods in different 
return periods and initial levels is presented in Tables 9.9 and 9.10.

Based on these tables, by increasing the initial water level in each step, the probability of overtopping 
(in a constant return period) was raised for both uncertainty approaches adopted in this study.

The trends of computed risks indicated that the calculated probabilities with LHS are slightly higher 
than the outcomes of MC technique. Figures 9.7 and 9.8 show the results of overtopping risks for two 
initial water levels: 44.66 (m) and 49.16 (m) based on both MCS and LHS methods.

Collection wind speed data Collection inflow hydrographs data

Flood frequency analysis

Determination uncertain variables

Reservoir routing

Yes

No

Estimation flood overtopping risk

Consideration
wind effect

Wind frequency analysis

Evaluation wind set-up and wave run-up

Estimation flood and wind
overtopping risk

VTW (T-year return period wind speed) QT (T-year return period flood)

FIGuRE 9.6 The process of overtopping risk and uncertainty analyses.

TABLE 9.9 Overtopping Risk Using Monte Carlo Method Due to 
Different Inflows

H0 (m)

T

2 Years 10 Years 20 Years 50 Years 100 Years

43.16 1.13E–11 1.67E–10 4.36E–10 2.60E–08 5.30E–07
44.66 3.60E–10 2.91E–09 4.99E–09 1.88E–07 2.53E–06
46.16 3.47E–09 7.95E–08 1.69E–07 2.28E–06 2.99E–05
47.66 2.95E–07 2.88E–06 5.96E–06 2.46E–05 3.13E–05
49.16 2.31E–06 1.46E–05 2.45E–05 4.02E–05 9.52E–05
50.66 4.58E–05 1.16E–04 2.59E–04 3.30E–04 3.89E–04
52.16 8.78E–04 2.75E–03 3.21E–03 3.73E–03 5.23E–03
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TABLE 9.10 Overtopping Risk Using LHS Method Due to 
Different Inflows

H0 (m)

T

2 Years 10 Years 20 Years 50 Years 100 Years

43.16 5.66E–11 4.56E–10 7.83E–10 3.08E–08 8.06E–07
44.66 5.95E–10 3.35E–09 6.78E–09 3.94E–07 4.60E–06
46.16 4.04E–09 1.54E–07 2.69E–07 5.63E–06 4.40E–05
47.66 7.80E–07 5.32E–06 9.80E–06 3.61E–05 8.73E–05
49.16 5.70E–06 3.79E–05 4.25E–05 9.63E–05 1.77E–04
50.66 6.33E–05 1.76E–04 3.78E–04 4.09E–04 7.76E–04
52.16 9.95E–04 3.04E–03 4.43E–03 4.90E–03 6.12E–03

5.00E–05

5.00E–06
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5.00E–08
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FIGuRE 9.7 Variation of overtopping risk versus return period for H0 = 44.66 (m).
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FIGuRE 9.8 Variation of overtopping risk versus return period for H0 = 49.16 (m).
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9.7.2  Overtopping risk Due to floods and Wind

After obtaining wind speeds in different return periods, the wind setup and wave run-up are calculated 
using the equations provided by USBR. The wind setup and wave run-up are functions of the initial 
water level in the reservoir, and hence, they are also subject to uncertainty. It is important to note that 
there was no strong correlation between the wind speed and inflows (Corr = 0.152), and, thus, the wind 
speeds and flood values are generated separately. In other words, the highest water level in the reservoir 
and total wave height are calculated individually; after that, the total water elevation, which is the sum 
of these two factors, is assigned as final water elevation in the risk analysis. However, many combina-
tions of inflows, wind speeds, and water elevations have been considered to cover the most likely condi-
tions that will probably happen in the reservoir. The overtopping risks due to different floods and wind 
speeds in five return periods and four initial water levels were evaluated by MCS and LHS uncertainty 
approaches, and the results are presented in Tables 9.11 and 9.12.

The risk of overtopping, based on the MCS method versus different return periods in various wind 
speeds and constant initial water level (49.16 m), is presented in Figure 9.9.

9.8  Summary and conclusions

The overall procedure in this study involved frequency analysis of floods and wind speeds, reservoir 
routing, and integration of wind setup and run-up to calculate the final reservoir water level. The prob-
ability of overtopping was assessed by applying two of the most used sampling methods (MCS and LHS) 
and considering the quantile of flood peak discharge, initial depth of water in the reservoir, and spillway 
discharge coefficient as uncertain variables. Considering the uncertain input variables can be resulted in 
an expanded range of overtopping risks in different return periods compared with deterministic analy-
ses, which use only the best estimate value as input and provide a single point as output.

TABLE 9.11 Risk of Overtopping Due to Flood and Wind Using MCS

Tw

T

H0 (m) 2 Years 10 Years 20 Years 50 Years 100 Years

2 Years 47.66 3.45E–07 3.03E–06 6.46E–06 2.56E–05 3.25E–05
49.16 3.63E–06 1.78E–05 3.81E–05 9.18E–05 2.09E–04
50.66 5.86E–05 1.51E–04 3.82E–04 5.60E–04 9.34E–04
52.16 1.19E–03 3.32E–03 4.70E–03 6.91E–03 8.74E–03

10 Years 47.66 5.81E–07 3.83E–06 1.48E–05 4.44E–05 7.67E–05
49.16 3.92E–06 1.92E–05 4.12E–05 9.94E–05 2.25E–04
50.66 6.31E–05 1.63E–04 4.12E–04 6.05E–04 1.00E–03
52.16 9.83E–04 3.58E–03 5.08E–03 7.49E–03 9.01E–03

20 Years 47.66 6.36E–07 4.19E–06 1.62E–05 4.87E–05 8.34E–05
49.16 4.22E–06 2.06E–05 4.43E–05 1.07E–04 2.42E–04
50.66 6.66E–05 1.72E–04 4.35E–04 6.39E–04 1.06E–03
52.16 1.33E–03 3.71E–03 5.27E–03 7.78E–03 9.61E–03

50 Years 47.66 7.99E–07 5.24E–06 2.04E–05 6.11E–05 1.03E–04
49.16 5.29E–06 2.57E–05 5.56E–05 1.35E–04 3.01E–04
50.66 8.34E–05 2.15E–04 5.45E–04 8.02E–04 1.30E–03
52.16 1.67E–03 4.64E–03 6.60E–03 9.77E–03 1.62E–02

100 Years 47.66 1.07E–06 7.00E–06 2.73E–05 8.18E–05 1.36E–04
49.16 7.08E–06 3.44E–05 7.44E–05 1.81E–04 4.01E–04
50.66 1.11E–04 2.87E–04 7.29E–04 1.07E–03 1.71E–03
52.16 2.23E–03 6.19E–03 8.83E–03 1.31E–02 2.17E–02
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TABLE 9.12 Risk of Overtopping Due to Flood and Wind Using LHS

T

Tw H0 (m) 2 Years 10 Years 20 Years 50 Years 100 Years

2 Years 47.66 7.95E–07 5.93E–06 1.07E–05 5.22E–05 9.35E–05
49.16 6.85E–06 4.39E–05 5.04E–05 1.22E–04 2.70E–04
50.66 7.02E–05 1.98E–04 3.97E–04 6.00E–04 1.01E–03
52.16 1.21E–03 3.34E–03 4.74E–03 7.00E–03 8.92E–03

10 Years 47.66 8.78E–07 5.93E–06 1.90E–05 5.49E–05 9.77E–05
49.16 6.14E–06 4.23E–05 5.34E–05 1.30E–04 2.86E–04
50.66 6.47E–05 2.01E–04 4.27E–04 6.44E–04 1.08E–03
52.16 1.00E–03 3.68E–03 5.27E–03 7.98E–03 1.00E–02

20 Years 47.66 9.34E–07 6.28E–06 2.04E–05 5.92E–05 1.04E–04
49.16 6.44E–06 4.07E–05 5.65E–05 1.38E–04 3.03E–04
50.66 6.81E–05 1.79E–04 4.50E–04 6.79E–04 1.14E–03
52.16 1.35E–03 3.80E–03 5.46E–03 8.27E–03 1.06E–02

50 Years 47.66 1.10E–06 7.34E–06 2.45E–05 7.16E–05 1.24E–04
49.16 6.51E–06 4.18E–05 6.78E–05 1.65E–04 3.62E–04
50.66 8.49E–05 2.23E–04 5.61E–04 8.42E–04 1.38E–03
52.16 1.69E–03 4.74E–03 6.80E–03 1.03E–02 1.72E–02

100 Years 47.66 1.37E–06 9.10E–06 3.15E–05 9.23E–05 1.57E–04
49.16 8.30E–06 4.05E–05 8.66E–05 2.11E–04 4.62E–04
50.66 1.13E–04 2.95E–04 7.44E–04 1.11E–03 1.79E–03
52.16 2.25E–03 6.29E–03 9.02E–03 1.36E–02 2.27E–02
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FIGuRE 9.9 Variation of flood-wind overtopping risk versus return period in H0 = 49.16 (m).
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Based on the results, by increasing the initial water level in each step, the probability of overtopping 
(in a constant return period) was raised for both uncertainty approaches adopted in this study. As the 
LHS stratifies cumulative distribution function (CDF) into several subregions and forces the input vari-
ables to be better than that for simple random sampling, the achieved results are different from MCS 
method. On the other hand, the results revealed that wind speed could have a great impact on reservoirs 
situated in windy areas, and the probability of overtopping has been increased in different return peri-
ods. To show the effect of wind speed on the overtopping risk, the percentage of increasing risk due to 
various wind speeds for both LHS and MCS methods in H0 = 47.66 m and two flood and four wind speed 
return periods is presented in Table 9.13.

To sum up, risk analysis in conjunction with uncertainty provides significant information for deci-
sion makers to identify the events that indicate a developing failure mode, understand the critical 
parameters needed to effectively monitor, and determine how to use a warning system for evacuating 
the downstream community.

Symbols

cms cubic meter per second
C coefficient of variation
D mean water depth along the fetch length (m)
F fetch length (km)
Fx
−1 inverse function

H0 mean of elevation from bottom (m)
H wave height (m)
H1 height difference between the crest of spillway and 

initial water level (m)
H2 height difference between the crest of dam and ini-

tial water level (m)
Hs significance wave height (m)
Hmax height of water in the reservoir (m)
HR height of dam (m)
ht wind setup (m)
hr wave run-up (m)
hw total weight height (m)
h depth of water from the bed to the current water 

elevation (m)
I inflow (cms)

TABLE 9.13 Percentage of Increasing 
Overtopping Risk by Considering Wind Speed in 
H0 = 47.66 m

Tw

T = 50 T = 100

LHS (%) MCS (%) LHS (%) MCS (%)

2 44.60 4.07 7.10 3.83
10 52.08 80.49 11.91 145.05
20 63.99 97.97 19.13 166.45
50 98.34 148.37 42.04 229.07
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k number of uniform random numbers
km kilometer
L wavelength (m)
Lf load
m meter
MCM million cubic meters
MF depth integrated wave moment flux per unit width
P[.] probability of
Pi,j random permutation
Q outflow (cms)
R resistance
ri,j random number
S storage (MCM)
t time (s)
T flood return period
Tw wind return period
ui uniform random number
V wind speed over the surface of water (km/h)
VTw wind speed in desired return period (km/h)
xi,j random variates
Z performance function
∆t time interval (s)
a′ risk
a reliability
ρ density of water (kg/m3)
β reliability index indicator
μ mean of variable
σ standard deviation
Θ slope of the dam body
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10.1  Introduction

Design rainfall is a primary input to many models used to estimate runoff, pollutants load, and erosion. 
Many hydrological and hydraulic design applications need to be based on reliable estimates of rainfall 
quantile/design rainfall, which is the expected rainfall depth corresponding to a given duration and 
average recurrence interval (ARI). The generalized design rainfall data in the form of intensity–dura-
tion–frequency (IDF) curves are generally estimated from a regional rainfall frequency analysis (RRFA) 
approach using recorded rainfall data from a large number of stations within a country, for example, 
United Kingdom [60], United States [33], and Australia [40].

A review of rainfall frequency estimation methods was undertaken by Svensson and Jones [82]. They 
outlined the nationwide approaches adopted for design rainfall estimation in nine countries. The dif-
ficulties in the derivation of topographically, spatially, and temporally consistent IDF information arise 
from the fact that many of the rainfall stations have relatively shorter record lengths and the continuous 
pluviometers often have poor spatial density. In fact, many countries have very little data availabil-
ity on continuous rainfall records; however, daily recorded data are often widely available. This allows 
estimating 24 h design rainfalls; but in many urban applications, much shorter durations are needed. 
Another difficulty is that rainfall characteristics can vary sharply with distance, in particular, in moun-
tainous terrain, which makes the spatial interpolation of design rainfall characteristics a more difficult 
task. Design rainfall estimation is generally made using a regional frequency analysis rather than at-site 
analysis, which is the fundamental difference between design rainfall and flood estimation problems; in 
flood estimation, at-site analysis is preferred provided there is enough data.

Design rainfall estimation involves a number of steps, which are described in the following sections 
of this chapter. Various steps are illustrated in Figure 10.1 to provide an overview of the principal 
steps.

Preface

Design rainfall estimation is frequently needed in practice. Most nations develop their own 
design rainfall atlas for nationwide application. This chapter intends to provide insights of design 
rainfall estimation issues to researchers and practitioner to enable them to understand some of 
the fundamental statistical concepts behind the development of design rainfalls in the form of 
intensity–duration–frequency (IDF) data.

We have attempted to cover essential aspects of design rainfall estimation, which include 
(1) at-site and regional perspectives, (2) regional homogeneity and spatial dependence, (3) para-
metric and nonparametric approaches to fit probability distributions and model selection using 
different goodness-of-fit tests, (4) data collation, (5) gauged and ungauged site estimation, (6) 
uncertainty analysis, (7) IDF smoothing, (8) presentation of IDF data for practical application, 
and (9) impact of climate change on design rainfall estimation.

We would like to acknowledge the supports of the editor-in-chief associate professor Saeid 
Eslamian and the anonymous reviewers for making constructive comments and suggestions, 
which have improved the materials presented in this chapter. We would also like to acknowledge 
the members of our family for supporting us in writing this chapter.
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10.2   Design rainfall estimation Methods: 
at-Site and regional Perspective

To estimate design rainfalls, regional frequency analysis methods are generally used to facilitate the 
estimation of rainfall quantiles for any site in a region by pooling data from several surrounding sites, 
which may also include data from the site being analyzed. When sufficient data are available for a par-
ticular site, the regional methods exploit the information from nearby sites or sites that are compatible 
in some capacity to increase the accuracy of design rainfall estimates at the site of interest. From another 
perspective, for an ungauged site, these methods estimate design rainfalls using regional relationships 
between the parameters of a probability distribution (e.g., log-Pearson type 3 and generalized extreme 
value [GEV]) and climatic or physiographic site characteristics (e.g., mean annual rainfall, distance 
from sea, and aspect).

10.3  Influencing factors and regional frequency Methods

Regional frequency analysis used in design rainfall estimation aims to extract the best and most use-
ful information from data at all the gauged sites within a region. In essence, it attempts to exploit the 
regional data to derive design rainfall estimates at any point within the region. In pooling the data, the 
useful information is gathered by excluding the noise by adopting a statistical test for homogeneity, 
which often identifies discordant sites and excludes them from the region, for example, Hosking and 
Wallis [35] and Lu and Stedinger [52]. In this, the contribution or the effectiveness of the additional 
data needs to be assessed, for example, by accounting for the effects of inter-site dependence of the data 
[54,59,66,75–77]. These issues are briefly discussed in the following sections.

10.3.1  regional Homogeneity

The regional frequency estimation approaches attempt to combine data from other sites in the region 
to estimate the at-site quantiles or frequency curves. The similarity of the data is measured by some 
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measure of regional homogeneity. For the optimal situation, data from a homogeneous region are con-
sidered to be coming from a single population (same parent distribution) and are assumed to be iden-
tically distributed. For real-world data, this assumption does not always hold, and hence data from 
different sites exhibit small to large degrees of heterogeneity. The definition of regional homogeneity is 
essentially dependent on the frequency analysis being considered. In most cases, it is assumed that any 
differences occurring in at-site frequency curves in a homogeneous region can be attributed to sampling 
variability. A classic example of this is the index frequency method, which assumes a regional homoge-
neity after standardizing the at-site data by the at-site mean (or some other measure of central tendency 
of the data), for example, at-site median [5,18,35,36,44,46,54]. A homogeneous region or group can also 
be found by selecting a subsample of sites from the region. The selection can be based on geographical 
contiguity (see IH-FORGE method [59,66,70], region of influence approach [9,10,20,26]). Alternatively, 
homogeneous regions may be based on site characteristics. For example, Smithers and Schulze [72,74] 
presented a methodology for the estimation of short-duration design rainfalls in South Africa using a 
regional approach based on L-moments. The regionalization was performed using only site characteris-
tics (e.g., mean annual precipitation [MAP], rainfall seasonality, and altitude) and minimum subjectiv-
ity to relocate stations in order to achieve relatively homogeneous clusters. In contrast to the previous, 
Schaefer [71] and Alila [2] formed homogeneous datasets by choosing sites with similar L-coefficient 
of variation (LCV) and L-coefficient of skewness (LSK) values. A similar approach was also investigated 
by Bates et al. [3] and Rahman et al. [64] for regional flood frequency analysis using data from eastern 
Australia.

10.3.2  Statistical Test for Homogeneity

In the literature, a large number of statistical tests for assessing regional homogeneity are proposed 
[6,13,23,35,36,52,84,85,91]. The purpose of these tests is to check whether the inter-site variability of a 
frequency curve or a distributional parameter (e.g., 1 in 50-year rainfall quantile estimate or LSK) can be 
attributed to sampling variability.

10.3.3  Spatial Dependence

In design rainfall estimation, more often a dense network of sites is usually encountered. The annual 
maxima data in this dense network of observations generally show some spatial dependence, which 
can be attributed to the different meteorological influences; this can be categorized as large and small. 
The larger-scale meteorological influences stem from such phenomena such as El Niño conditions. The 
smaller-scale influences are by far more responsible for the high degree of dependency (correlation) 
between data from the closer stations. Other influences that contribute to spatial dependence include 
topography and site location.

Spatial dependence leads to increased uncertainty in growth curve estimation (see Hosking and 
Wallis [30]). Spatial dependence reduces the worth of a given number of station years of pooled data 
[7,8,16,90]. The use of a spatial dependence correcting model allows attribution of a much higher return 
period to an observation than implied by the length of the individual site record as noted by Svensson 
and Jones [82].

10.4   regional frequency estimation for 
Design rainfall for Gauged Sites

Regional frequency estimation approaches for gauged sites can be broadly classified into two main 
groups: (1) methods that use regional average values [24,35–37,71,79] and (2) methods that pool or 
regionalize recorded data from many sites (e.g., station year method and regional regression approaches) 
[6,7,29,33,40,41,43,44,46,53,54,56,57,59,60,92]. In the first category, it is common to use some form of 
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averaging of at-site parameters to derive the regional frequency curve [35], whereas the second category 
aims to substitute space for time, which essentially jointly analyzes data from the entire region. In any 
one of the broad groups identified previously, the derivation of design rainfalls in the form frequency 
curves can be based on two approaches, parametric and nonparametric.

10.4.1  Parametric approach

The parametric approaches include in particular the assumption of a theoretical probability distribu-
tion for the data being analyzed and the estimation of the parameters of the distribution using an appro-
priate statistical method. The parameters of a statistical distribution can be estimated using a number 
of alternative methods: (1) method of product moments, (2) method of L-moments, and (3) method 
of maximum likelihood. Method of product moments may not be suitable for estimation of higher 
moments of the data such as the standard deviation and skewness as these are highly sensitive to the out-
liers in the data. In contrast, method of L-moments is generally considered to be more robust [78]. The 
L-moments method developed by Hosking [37] are linear functions of probability-weighted moments 
(PWMs) and thus do not involve squaring or cubing the observed values as do product moments. The 
L-moment ratios are standardized L-moments and are analogous to product moment ratios (e.g., coef-
ficient of variation, skewness, and kurtosis). In addition, sample estimates of L-moments are virtually 
unbiased and have a relatively small sampling variance. Bobee and Rasmussen [4] show that L-moment 
estimators may also be problematic as they tend to give too little weight to large sample values that may 
contain important information on the tail of the parent distribution.

Hosking [37] presented L-moment ratio diagrams for some common distributions. These are quite 
useful in identifying a suitable distribution for a given set of observed data. Wang [89] developed direct 
estimators of L-moments, which eliminate the need for calculating the PWMs as an intermediate step. 
An extension to L-moments is the LH-moments, which are linear combinations of higher PWMs. 
The LH-moments provide greater weights to the higher observations in the observed data than the 
L-moments do, in which it is believed that these would lead to improved quantile estimates at higher 
ARIs [66]. The LH-moments appear to be well suited to regional frequency estimation of design rain-
falls. Jakob et al. [44] applied LH-moments in design rainfall estimation in Australia and found that 
LH-moments utilizing a GEV distribution with a shift of 2 provided estimates that were 10% different 
than the estimates derived based on L-moments.

Maximum likelihood estimators do not appear to be in common use in rainfall analysis. This may be 
attributed to the fact that poor fitting data may cause numerical difficulties, which is often time consum-
ing to solve and causes convergence issues.

10.4.2  Nonparametric approach

In applying the nonparametric approaches to frequency estimation, it is first necessary to assign a 
plotting position to the observed data and secondly fit an empirical curve (linear or polynomial) to the 
points on the probability plot. Here, the assumption is made that continuity and differentiability hold 
in some order in the local fitting. This really is in contrast to the assumption that a particular global 
form of a distribution function can explain the variability in the observed data. In a single-site analysis, 
frequency curves derived from a nonparametric approach usually face issues with extrapolation, which 
is a remnant of the local fitting procedures used. However, in pooling data together from several sites 
(i.e., in the case of regionalization), an empirical frequency curve may become better defined especially 
for the larger events. This is advantageous as it eliminates the need for strict extrapolation. The non-
parametric approach in the case of regional design rainfall estimation may be useful in the determina-
tion of the larger events, where the parametric approaches would prove very useful in the estimation of 
low to mid events as most of the information is being inferred from the body of the data. It should be 
kept in mind that nonparametric approaches have number of pitfalls especially when dealing with the 
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larger observations since larger observations are often associated with a greater degree of error. Data 
preparation and screening should be carried out initially to look for any anomalies or suspect data.

10.5   regional frequency estimation for Design 
rainfall for Ungauged Sites

Estimating design rainfalls using regional frequency analysis for ungauged sites involves the transfer of the 
best information from the gauged sites to the ungauged site of interest. Homogeneity based on a relevant 
methodology (see Section 10.3.2, e.g., statistical criteria and physiographic characteristics) is an important 
basis for securing the transfer of the best information. Inter-site dependence then quantifies the value of 
the best information in the final estimation at the site of interest. In transferring the information from 
gauged sites to an ungauged one, two steps are involved: (1) identification of a homogeneous region to 
which the ungauged site belongs and (2) utilizing the best information possible from the homogeneous 
region, using adjustments if necessary, to provide an estimate of the quantity required at the ungauged site.

Identifying homogeneous regions or groups can be determined as explained in Sections 10.3.1 and 
10.3.2. The information from the homogeneous region can be transferred to the ungauged site in three 
ways: (1) Regional frequency curve calculated for the homogeneous region may be used directly for the 
ungauged site of interest [1,35]. (2) Estimation of the desired quantiles at gauged sites and then using 
interpolation to transfer the information to ungauged sites. This can be achieved using geo-statisti-
cal methods [22,58] or other spatial interpolation methods [38,39,80,87]. (3) Estimation of statistical 
parameters such as LCV and LSK for the ungauged site, using regression (e.g., generalized, partial, or 
ordinary least squares) or other empirical relationships with climatic and physiographic characteristics 
obtained from gauged sites and estimate quantiles [5,12,17,18,26,27,29,31,46,53–55,62,71–74].

10.6  Data collation

Data collation is an important step in RRFA as this is essentially a data-based empirical approach. The 
quality and quantity of the data affect the accuracy of the final quantile estimates to a great extent. The 
individual site should have enough record length to generate at-site rainfall statistics with an accept-
able level of accuracy. A shorter record length produces at-site rainfall statistics being affected by a high 
degree of sampling variability. Furthermore, a region should have enough number of sites so that it 
can deliver statistically meaningful prediction equations as well as an ample opportunity to carry out 
independent validation of the developed regionalization method. Hence, the selection of a cutoff record 
length is an important step in any rainfall regionalization study; the record length should be as long as 
possible while retaining enough sites in the region.

The data collation involves a number of steps: (1) select the data type needed (e.g., daily read data, 
pluviograph/continuous data, and historical data); (2) select whether annual maximum or partial dura-
tion series (PDS) will be used in the modeling; (3) consult the database of the relevant authorities to 
check how much data is there, its cost, and accessibility; (4) make request of the data to the authority; (5) 
check the data for accuracy and consistency as rainfall data may be subject to number of errors such as 
failure of gauges, accumulated data, and manual error in entering the data; (6) infill the gaps in the data 
where applicable possible; (7) conduct outlier and trend analysis; and (8) extract the events for various 
rainfall durations.

10.7   Model Selection: Partial Duration and 
annual Maximum Series

Most of the literature dealing with the use of annual maximum series (AMS) in comparison to PDS is 
in the flood frequency analysis domain. There are only a modest number of papers that consider PDS. 



Design Rainfall Estimation and Changes 179

Svensson and Jones [82] surveyed nine countries with regard to their design rainfall estimation proce-
dures. All of these nine countries use AMS data as they are more readily available and easy to extract. 
However, there is some evidence that quantile estimates given by the PDS approach have greater preci-
sion than estimates given by the AMS approach [15,56]. Wang [88] extended the work of Cunnane [15] 
and found that there is no theoretical reason to use the AMS in preference to the PDS approach.

One of the limitations of the AMS method is that it always contains one value per year. As such the 
very large events that are not the largest in a particular year will not be included in the data series. 
Another consideration is that the largest event in a particularly dry year may be considerably smaller 
than events from other years, which may contribute to greater bias in the analysis. Another means of 
retrieving extra information for the frequency analysis is to use block maxima from blocks that are 
smaller than a year, like a month or a season, and subsequently derive the design rainfall distribu-
tion from these seasonal distributions [19]. In any case, the AMS continues to be the most popular 
approach given that PDS has two main drawbacks. Firstly, with PDS it is necessary to ensure that 
the chosen events are independent, that is, the assumption with PDS is that the abstracted peaks 
are mutually independent [68]. In practice, it is common to adopt some simpler approach or rule to 
achieve this. Secondly, the use of PDS data requires the selection of a minimum threshold value, which 
defines the events included in the PDS [54]. The choice of a threshold really becomes a balancing act. 
If the threshold is set low, many events are identified for the analysis, and some of these may be very 
small therefore being irrelevant especially for the higher quantile estimation. A more standardized 
procedure is needed for selecting the threshold value when using the PDS method at a regional level 
as noted by Madsen et al. [56].

10.8   at-Site Quantile estimation: Selection 
of Probability Distribution

Finding a probability distribution that provides a satisfactory fit to design rainfalls (rainfall depth or 
intensity) has always been a topic of debate and interest in the fields of hydrology, meteorology, and 
others. The investigations into the design rainfall distributions are primarily spread over three main 
research areas, namely, (1) stochastic rainfall models, (2) frequency analysis of design rainfalls, and (3) 
rainfall trends related to global climate change. In this section, we mainly focus on the second group 
of literature. A key step in frequency analysis of design rainfalls involves selection of a suitable distri-
bution for representing rainfall depth extremes. These analyses can be conducted for multiple rainfall 
durations.

10.8.1  Different Methodologies

This section describes the different methodologies of analysis used in distributional hypothesis evalua-
tions, namely, L-moment diagram, probability plot correlation coefficient (PPCC) analysis, and model 
selection based on the Akaike information criterion (AIC) and Bayesian information criterion (BIC) 
and the modified Anderson–Darling statistic (ADC).

10.8.2  L-Moment Diagrams

The L-moment analysis is a commonly accepted procedure for evaluating the goodness of fit of alterna-
tive distributions to a given set of data. The theory and application of L-moments introduced by Hosking 
[37] are now widely available in literature [21,34,78], and hence it is not reproduced here. The L-moment 
ratios are approximately unbiased in comparison to conventional moment ratios, which can exhibit 
enormous bias, even for very large samples as reported by Vogel and Fennessey [86]. Higher-order con-
ventional moment ratios such as skewness and kurtosis are very sensitive to extreme values and can 
exhibit notable bias even for large sample sizes [86]. The L-moment ratio diagrams provide a convenient 
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visual way to view the characteristics of sample data compared to theoretical statistical distributions. 
The L-moment diagrams, L-kurtosis (τ4) versus LSK (τ3) and LCV (τ2) versus LSK (τ3), enable one to com-
pare the goodness of fit of a range of three-parameter, two-parameter, and one-parameter distribu-
tions. Table 10.1 displays the different distributions that can be analyzed by means of the τ4 versus τ3 
L-moment ratio diagrams. The L-moment ratio diagrams have been used extensively before to examine 
the distribution of annual maximum data series [12,17,18,32,51,63] and PDS [55,56]. Figures 10.2 and 
10.3 show the application of the L-moment ratio diagram for use with at-site and regional distribution 
testing with some of the distributions shown in Table 10.1. Figure 10.4 shows a plot of some typical dis-
tributions used for fitting the 12 h duration rainfall for an arbitrary site in New South Wales, Australia.

10.8.3  Probability Plot correlation coefficient Goodness-of-fit Test

The PPCC test introduced by Filliben [25] measures the linearity of a probability plot and is given by
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where
x(i) is an ordered observation
Mi is the expected value from the selected distribution for an observation of order i
n is the number of observations
x‾ and M‾ are the means of x and M, respectively

The PPCC is near unity when the sample is drawn from the selected distribution; the plot of ordered 
observations versus corresponding expected values Mi for the selected distribution is expected to be 
nearly linear. The PPCC has been shown to be a powerful statistic for evaluating alternative distribu-
tional hypotheses as reported by Stedinger et al. [78].

TABLE 10.1 Most Commonly Used Theoretical Probability Distributions 
Presented on the L-Kurtosis versus L-Skewness L-Moments Diagram

Distribution
Abbreviation 

and Data Parameters
L-Moment 
Diagram

AIC, BIC, 
and ADC

Log-Pearson type III LP3–AMS/PDS 3 — Yes
Pearson type III P3–AMS 3 (τ4) vs. (τ3) Yes
Lognormal LN3–AMS 3 (τ4) vs. (τ3) Yes
GEV type III GEV–AMS 3 (τ4) vs. (τ3) Yes
Generalized logistic GLO–AMS 3 (τ4) vs. (τ3) Yes
Generalized Pareto GPA–AMS 3 (τ4) vs. (τ3) Yes
Gamma GAM–AMS 2 (τ4) vs. (τ3) Yes
Generalized Pareto GP2–PDS 2 (τ4) vs. (τ3) Yes
Lognormal LN–AMS 2 (τ4) vs. (τ3) Yes
Weibull WEI–AMS 2 (τ4) vs. (τ3) Yes
Gumbel EV1–AMS 2 (τ4) vs. (τ3) Yes
Normal NORM–AMS 2 (τ4) vs. (τ3) Yes
Logistic LOGIS–AMS 2 (τ4) vs. (τ3) Yes
Uniform UNIF–AMS 2 (τ4) vs. (τ3) Yes
Exponential EXP–AMS/PDS 2 (τ4) vs. (τ3) Yes
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10.8.4  Model Selection criteria: aIc, BIc, and aDc

The AIC, based on the principle of maximum entropy, has been used in hydrological applications to 
select the flood frequency model in several previous studies [11,28,49,50,81]. The AIC is given by

 AIC = − +2 2Π( )θ p  (10.2)

where
Π(θ) is the log-likelihood maximized function
p is the number of the model parameters fitted to the available sample

The first term on the right-hand side of Equation 10.2 measures essentially the true lack of fit, while 
the second term measures the estimation uncertainty, which is due to the number of parameters. In 
practice, after the computation of the AIC, for all of the operating models, one selects the model with 
the minimum AIC value, AICmin. In some situations where the sample size n is small with respect to 
the number of estimated parameters p, the AIC may perform inadequately. In cases such as these, a 
second-order variant of AIC, called AICc, should be used and is given by Equation 10.3. As reported, 
AICc should be used when n/p < 40 to reduce bias as reported by Calenda et al. [11]:

 
AICc p

n

n p
= − +

− −
2 2

1
Π( )

( )
θ  (10.3)

The BIC is very similar to the AIC but is developed in a Bayesian framework:

 BIC = − +2Π( ) ( )θ ln n p  (10.4)

The BIC penalizes heavier for small sample sizes and models with high values of p. Since Π(θ) depends on 
the sample, the candidate models can be compared using AIC and BIC only if fitted on the same sample.
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The Anderson–Darling statistic has shown good skills for small sample size and heavy-tailed distri-
butions often encountered in flood frequency analysis [50,61]. The ADC can be applied to a set of dis-
tributions commonly used for frequency analysis. This criterion accounts for uncertainty through the 
values of ξj, βj, and ηj (distribution-dependent coefficients that are tabled by Laio [50]), which depend 
implicitly on the number of parameters of the model. The ADC gives similar results to the AIC and BIC 
for small samples especially for asymmetrical distributions. After calculation of the ADCj values for all 
of the operating models, one selects the model with the minimum ADC value (ADCmin).

10.9   Uncertainty estimation in regional 
Design rainfall estimation

10.9.1  Uncertainty Sources

It is generally agreed upon that uncertainty in hydrological modeling can be divided into two main cat-
egories: (1) data and sampling errors and (2) modeling or structural errors. The first category contains 
the data and sampling errors that remain within the data despite quality control and that is caused by 
sparse station density such that significant rainfall events are poorly sampled in space and time. The 
second category of error, that is, the modeling and structural errors, is attributed to the choice of the 
adopted models, the assumptions made during modeling to predict the quantile of interest. Rosbjerg 
and Madsen [69] noted that methods with the most restrictive assumptions lead to smaller uncertainties 
in the resulting predictions. However, model assumptions are often violated and as such the estimated 
uncertainties may be misleading. The sophistication of methods applied in assessing uncertainties var-
ies considerably, from standard methods [84] to more complex methods addressing interrelationship 
between errors in estimating the index rainfall and regional growth curves [47] and methods taking 
into account the effects of selecting the distribution.

10.9.2  Model errors

A number of steps are required to produce final design rainfall estimates usually either as a graph or 
gridded IDF estimates. The different steps and the associated models with the relevant assumptions are 
briefly discussed in the following.

10.9.3  Parameter estimation

The L-moments are the most widely used method to summarize the statistical characteristics of the 
AMS and PDS data. As discussed in Sections 10.4.1 and 10.8.2, L-moments, though reduce the effects of 
sampling variability, are still subject to uncertainty, which of course transfers on to the parameters of 
the distribution being fitted to the at-site data. To reduce uncertainty in the parameter estimates, station 
records with a relatively longer length should be used.

10.9.4  regional regression: Bayesian Generalized Least Squares regression

Generalized least squares (GLSs) as proposed by Stedinger and Tasker [75–77] and Bayesian GLS (BGLS) 
as adopted by Reis et al. [67] and Haddad and Rahman [30] can be adopted to infer regional L-moments 
(as a function of climatic and physiographic characteristics) for sites where little or no rainfall data are 
available [27,29,31,56]. The advantage of the BGLS is that it allows for the partitioning of the total error 
into sampling and model errors. As observed by Haddad and Rahman [27], Haddad et al. [29], and 
Haddad and Rahman [31], the sampling errors often dominate the total error in the model especially 
for the higher-order moments. Reis et al. [67] also found a similar result for the shape parameter of the 
log-Pearson type 3 distribution.



184 Handbook of Engineering Hydrology

The BGLS provides estimates of the standard error in (1) the regression coefficients β, (2) the predic-
tions at gauged sites used in deriving the regression equations, and (3) the predictions at ungauged sites, 
that is, sites not used in deriving the regression equation. The other advantage of using the BGLS is that 
it provides the associated posterior error variance of each parameter of a specified distribution [67]. The 
posterior error variance reflects the uncertainty related to the residual regional heterogeneity (model 
error variance) as well as sampling variability corrected for inter-site correlation, while also reflecting 
the prior used [56]. From these regional values, one may quantify the uncertainty in the new design 
rainfall estimates by deriving the 90% or 95% posterior confidence limits.

10.9.5  Gridding

The transformation from point to gridded design rainfall estimates can be carried out by thin-plate 
smoothing splines, which can be implemented using specific software packages (e.g., ANUSPLIN) 
[39]. The appropriate level of smoothing for the thin-plate smoothing spline can be chosen through 
generalized cross-validation by minimizing prediction error of the fitted surface [39]. Distribution 
point parameters or point rainfall depths can be gridded using commercial software such as 
ANUSPLIN.

10.9.6  Presentation of IDf Data for Practical application

IDF data are generally provided in the form of a table or a set of curves as shown in Figure 10.5 in 
Rahman et al. [65]. The preparation of such data generally involves the smoothing of the initially derived 
quantiles by polynomial curve fitting. Smoothing IDF curves revolve around a few main aspects: should 
the curve be smoothed, what methodology should be adopted in smoothing, and what is the optimum 
order of the polynomial required for sufficient smoothing. The main objective of smoothing is to achieve 
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consistency in design rainfall intensities across the durations. The smoothing can also reduce residual 
noise in the estimates and unevenly spaced differences in design rainfall estimates at neighboring dura-
tions of interest.

10.10  Impacts of climate change on Design rainfall estimates

All the regional frequency analysis techniques are largely data-based and empirical in nature. The 
regional design rainfall estimates are derived using the recorded rainfall data. If the climate changes, 
the at-site and regional rainfall characteristics would also change, which will undermine the use of the 
past data to make prediction, which are valid for the future. For example, the rainfall data statistics 
such as the mean or median may change due to climate change and hence the distributional parameters 
or the parent distribution itself would change. The climate change poses a serious problem where the 
stationarity assumption may no longer be valid, which is the fundamental assumption in any frequency 
analysis of hydrological data.

The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report acknowledged that 
the global surface temperature is expected to continue to warm up over the twenty-first century, affect-
ing all aspects of the hydrological cycle [42]. Many studies have found trends in rainfall data at different 
parts of the world. For example, Taschetto and England [83] investigated the post-1970 Australian rain-
fall trends, and they found an increasing trend to the west (except coastlines) and a decreasing trend on 
the northeast coast of Australia. Chowdhury and Beecham [14] investigated the monthly rainfall trends 
and their relation to the southern oscillation index (SOI) at ten rainfall stations across Australia cover-
ing all the state capital cities. The outcomes of their assessment revealed decreasing trends of rainfall 
depth at two stations (Perth Airport and Sydney Observatory Hill); no significant trends were found in 
Melbourne, Alice Springs, and Townsville rainfall data, while the remaining five stations showed increas-
ing trends of monthly rainfall depth. Furthermore, they found that SOI accounted for the increasing 
trends for the Adelaide and Cairns rainfall data and the decreasing trends for Sydney rainfall. Kunkel 
et al. [48] found that the overall trend in 1–7 days precipitation covering the period 1931–1996 is upward 
at a highly statistically significant rate over the southwest United States and in a broad region from the 
central Great Plains across the middle Mississippi River and southern Great Lakes basins. However, the 
annual trend for Canada is upward for the period 1951–1993, which is not statistically significant.

10.11  Summary and conclusions

Many hydrological and hydraulic design tasks need to be based on reliable estimates of rainfall quan-
tiles, generally expressed in the form of IDF data/curves. Design rainfall estimation involves applica-
tion of a regional frequency analysis since at-site estimation is not preferred in rainfall estimation. The 
chapter has covered the principal steps in the derivation of design rainfall estimates including data 
preparation, formation of regions, assessment of homogeneity, building the regional estimation equa-
tions, uncertainty estimation, and the impact of climate change on design rainfall estimation.
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11.1  Introduction

11.1.1  Urban Drainage Models

The complex hydrology and hydraulics of rainfall–runoff models in urban watersheds represents one 
of the most challenging problems in water resources engineering, even when it has been an important 
level of advancement by the scientific community. Geographic information systems (GIS) technology 
has been applied successfully to represent the complexity of the variables, and optimization methods 
have been applied to improve calibration as well. Unlike undeveloped watersheds, urban basins present 
an additional component to be modeled: the drainage network.

The simulation of rainfall–runoff relationships has been a prime focus of hydrologic research for 
several decades and has resulted in an abundance of models having been proposed [20]. Accurate and 
reliable modeling of stormwater runoff and associated phenomena has been in the past and continues 
today to be a challenge [37].

11.1.2  Distributed Parameter Hydrologic Models

Basin discretization is the first process to be done when a rainfall–runoff model is set up. However, there 
is no clear procedure to perform this task in urban basins. Neither it is fully obvious to what extent these 
models can provide reliable simulations over a wide range of spatial scales [25]. Many hydrologic models 
are available, varying in nature, complexity, and purpose [33].

The SWMM was developed by the US Environmental Protection Agency (EPA), and it is one of the 
most successful models produced by the EPA for the water environment [32]. SWMM is a dynamic 
rainfall–runoff simulation model, used for single-event or long-term (continuous) simulation of run-
off quantity and quality from primarily urban areas [19]. SWMM is widely used worldwide, and it 
was the model used in this study. SWMM5 [13] was used as the main modeling tool since it was devel-
oped especially for urban hydrology, even when SWMM has been applied successfully to nonurban 
basins [31].

The runoff component of SWMM operates on a collection of subcatchment areas that receive pre-
cipitation and generate runoff and pollutant loads. Urbonas [37] pointed out that for distributed 

Preface

Rainfall–runoff modeling in urban watersheds represents one of the most challenging issues in 
water resources. Two case studies in North Carolina (Pigeon and SW Prong Basins) were used 
for illustrating an innovative proposed methodology. Such procedure simplifies the drainage 
network where the entire urban watershed is divided into hydrologic unit watersheds (HUWs). 
A HUW represents a subcatchment in the watershed in which routing length is obtained by opti-
mization. Irregular subcatchment shapes were converted to regular shapes using a kinematic 
wave (KW) cascading plane approach. A discretization analysis was performed where a set of 
hydrologic experiments using different levels of discretization were used, and a threshold discreti-
zation value in urban hydrology was investigated.

The representative element area (REA) concept was explored using the Storm Water 
Management Model (SWMM), and it was found that subcatchment sizes of 3% of the total basin 
size were appropriate. This magnitude represents the needed level of discretization in urban 
watersheds after which the improvement in performance becomes asymptotic. Coarser resolution 
levels underestimated peak flow rates and total runoff volumes.
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rainfall–runoff models such as SWMM, research and studies are needed to develop guidance on how 
to discretize a study catchment properly, at least from the end user’s perspective. Urbonas [37] specifies 
that an issue not solved yet is how to reduce an irregular-shaped catchment with an array of street and 
development patterns into regular shapes called for in models such as SWMM to get consistent and 
accurate results.

Selecting a higher resolution in distributed hydrologic modeling implies a subsequent set of activi-
ties: data acquisition, defining the model parameter values, building the model, simulation, calibration, 
and maintenance; all the cost of these tasks are increased when selecting a higher resolution. On the 
other hand, selecting a lower resolution greatly reduces the workload, but there is the risk of losing the 
advantage of the distributed modeling approach, leading to poor results due to lack of consideration of 
important spatial features. Clearly, there is a tradeoff between both approaches.

11.1.3  Discretization Issues in Urban Hydrology

Distributed hydrologic models subdivide an entire watershed into smaller units to represent heterogene-
ity within the watershed. Distributed parameter hydrologic models are being increasingly used in inves-
tigations of spatial scale and catchment heterogeneity as well as general rainfall–runoff applications. 
Sivapalan and Kalma [34] recognized that spatial and temporal scales generally lead to predictive uncer-
tainty in distributed hydrologic modeling. Heterogeneity in urban watersheds presents a great com-
plexity and so far has virtually challenged detailed description and/or measurement given the imposed 
human cover.

11.1.4  Imperviousness in Urban Hydrology

For modeling purposes, two types of impervious areas have been identified in urban hydrology. The first 
type, effective impervious area, comprises those impervious surfaces that are hydraulically connected 
to the channel drainage system. Streets with curb and gutter and paved parking lots that drain onto 
streets are examples of effective impervious surfaces. This area is known as directly connected impervi-
ous area (DCIA). The second type, noneffective impervious area, comprises those impervious surfaces 
that drain into pervious ground such as roof that drains onto a lawn. The sum of both is known as total 
impervious area (TIA).

Alley and Veenhuis [2] developed the following empirical relationship between TIA and DCIA from 
a highly urbanized portion of Denver, using 14 basins:

 DCIA K TIA K= 1 2( )  (11.1)

in which K1 and K2 are dimensionless parameters to be calibrated. K1 and K2 were equal to 0.15 and 
1.41 in Denver, whereas the coefficient of determination (r2) was 0.98 and the standard error of estimate 
was 7.5%. Alley and Veenhuis [2] also suggested to calibrate DCIA using the smaller storms for which 
runoff is largely from the effective impervious area of the watershed and to calibrate infiltration param-
eters using the larger storms. Usually, impervious surface maps come in a GIS raster format showing 
TIA; therefore, it is necessarily a correction through Equation 11.1.

11.1.5  Measurements of Performance

Measurements of performance allow to assess how reliable are the modeling results and, therefore, the 
predictive power of hydrologic models. The agreement between the observed and simulated volume 
and peak flow may be expressed in terms of a bias or departure. The bias indicates systematic over- or 
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underprediction. The departure serves as a measure of the prediction accuracy [39]. Next, there is a 
description of the measurements of performance used in this chapter.

 1. Root Mean Square Error: This measure takes the distance vertically for all the given points (the 
error) and squares the value. The squaring is done so negative values do not cancel out positive 
values. Then all values are added and divided by the number of points. Finally, the square root is 
taken to have the same original units. Hence, the root mean square error (RMSE) is the vertical 
distance, on average, between the modeled and the observed flows.
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 2. Pearson’s Moment Correlation Coefficients (PMCC): Pearson’s correlation reflects the degree 
of linear relationship between two variables. It ranges from +1 to −1. A correlation of +1 
means that there is a perfect positive linear relationship between variables. A correlation of 
−1 means that there is a perfect negative linear relationship between variables. A correlation 
of 0 means that there is no linear relationship between the two variables. Correlations are 
rarely if ever 0, 1, or −1. The statistic is defined as the sum of the products of the standard 
scores of the two measures divided by the degrees of freedom.
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 3. Nash–Sutcliffe Coefficient [26]: This calibration performance equation was suggested by the 
ASCE [6].
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 4. Index of Agreement [41]: The IOA is a standardized RMSE. It can vary from 0 (total disagreement) 
to 1 (total agreement).

 

IOA
O S

S O O O

i i
i

N

i i
i

N= −
−( )

− + −( )
=

=

∑
∑

1

2

1
2

1

 (11.5)

 where in Equations 11.2 through 11.5,
  Oi is the observed value at the ith time
  Si is the simulated value at the ith time
  N is the total number of observations
  O‾ and S‾ are mean values of Oi and Si

In summary, the best condition is when Pearson’s moment correlation coefficient (PMCC), NSC, and 
IOA yield a value of unity and RMSE to zero.



Discretization in Urban Watersheds 195

11.2  Modeling approach

11.2.1  Methodology

Discretization scenarios were obtained with Arc Hydro [22]. As a computer aid, a GIS toolbox was 
developed to obtain the needed GIS data to build the SWMM5 models. Several rainfall–runoff experi-
ments were performed in each watershed, where a different level of discretization was modeled in each 
scenario. Then, from the hydrologic simulations with various watershed configurations, the corre-
sponding measurement of performance was computed.

11.2.2  case Studies

The proposed methodology was tested on two urban watersheds. Both basins are located in the Wake 
County, North Carolina, as shown in Figure 11.1.

The land use and main properties of these watersheds are shown in Tables 11.1 and 11.2, respectively. 
Pigeon presents a higher urbanization level than SW Prong; the much higher TIA value in Pigeon is 
because it has highly developed and commercial areas. Both basins are located in the Raleigh metropoli-
tan area. These watersheds served as examples of the methodology described herein.

The Urban Infrastructure Index (UII) is a multimetric parameter that represents the degree of devel-
opment in the watershed and includes census, socioeconomic, infrastructure, land use, and land cover 
metrics that correlated with population density [24]. However, in this case, UII represents a specific 
index developed for a set of 30 watersheds in North Carolina, ranging from 0 to 100 [16].

11.2.3  HUW Modeling Principles

The entire urban watersheds were divided into HUWs. A HUW represents a subcatchment in 
the watershed in which routing length is obtained by optimization. Since drainage network was 
not modeled, a simplified and equivalent routing channel was obtained to represent the entire 
drainage network in each subwatershed. Because the only point in the watershed with recorded 
flows is the outlet, there are no observed flows for any of the subwatersheds; therefore, a synthetic 
hydrograph method was used to develop a proper size for the routing channel length in each 
subwatershed.

Unlike undeveloped watersheds, urban watersheds present an additional component to be modeled, 
the drainage network. Modeling an entire drainage system requires extensive field work just to obtain 

Wake
County

SW Prong
Basin

N

Pigeon
BasinState of North Carolina

Raleigh

0 0.5 1 2 Miles

FIGuRE 11.1 Location of the basins.
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the data. However, even if there is an existing GIS shapefile with all links and their corresponding 
geometric features, such as cross sections and node elevations, modeling the complete network is not 
feasible in large watersheds. In other words, this task would represent a big engineering effort to model 
every single storm drainage structure, for instance, gutter flow toward a drop inlet and then to a storm 
drain. Therefore, realistic simplifications should be made to obtain reliable results and to meet budget 
and time restrictions.

11.2.3.1  Internal routing

For the cases studies to be modeled, drainage network data were available. The City of Raleigh [12] 
located important drainage structures (inlets, pipes, and open channels) using global position-
ing system (GPS). For Pigeon Basin, the database was composed of more than 5000 link elements. 
However, the procedure described in the next section was applied to obtain an equivalent drainage 
network.

Since drainage network was not modeled, a simplified and equivalent routing channel was obtained 
to represent the entire drainage network in each subwatershed. Some attempts have been made to obtain 
a comparable drainage network. Brink [8] suggested creating a routing channel with the objective of 
accounting for in-system storage and attenuation that would occur within a given subarea by developing 
empirical relationships for length and width of this routing channel as a function of the subcatchment 
area (A):

 L A=  (11.6)

 
W

A=
2

 (11.7)

where
L is the length of routing channel
W is the width of routing channel

On the other hand, Espey et al. [14] developed a set of generalized equations for the construction of 
unit hydrographs using a study of 41 watersheds ranging in size from 0.014 to 15 mi2 and impervious 

TABLE 11.2 Watershed’s Properties (Year 2000)

Watershed Name Area (mi2) TIAa (%)
Population 

Density (hab/mi2)
Housing Density 

(homes/mi2) UIIb

Pigeon 4.45 30.35 3204 239 100.00
SW Prong 3.02 11.45 3093 198 90.80

a TIA, total impervious area.
b UII, urban infrastructure index.

TABLE 11.1 Watershed’s Land Use (Year 2000)

Watershed Name

Land Use Breakdown (%)

Developed 
High Intensity

Developed 
Medium Intensity

Developed 
Low Intensity

Developed 
Open Space Forest or Rural

Pigeon 6 20 28 45 1
SW Prong 1 3 16 75 5
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percentage from 2% to 100%; 9 of the watersheds were located in North Carolina. Espey et al. [14] found 
the following relationships to estimate the time to peak (Tp, minutes) and the peak flow rate (Qp, cfs/in.) 
as follows:
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where
L is the length of the routing channel (ft)
Φ is the dimensionless watershed conveyance factor, which is a function of the channel roughness 

and watershed impervious cover or TIA (Figure 11.2)
S is the main channel slope (feet/foot)
I is the imperviousness level (%)

Design storms are developed using long-term runoff simulation and typically are used to design storm 
sewers, detention ponds, and other flood control facilities. Nevertheless, Urbonas [36] pointed out that 
it is possible to develop design storms that reasonably duplicate the peak flows from small urban basins 
at various recurrence intervals. In this study, a 24 h precipitation depth with a return interval of 1 year 
was estimated to be 2.87 in. [27] at Raleigh State University. Then, using an SCS Type II storm distri-
bution, peak discharges and excess rainfall depths were computed in SWMM for eight experimental 
subwatersheds ranging from 5 to 140 acre. Using the proposed methodology by Espey et al. [14] for these 
subwatersheds, the length of the main channel (L) was optimized to minimize the RMSE between the 
peak runoff of both methods (SWMM and the unit hydrograph). The relationships that minimized the 
RMSE were found to be L = A0.5967 in Pigeon and L = A0.5436 in SW Prong.

The lower exponent in SW Prong is due to its lower development level than Pigeon; in other words, 
in a given subcatchment, the flow paths to reach the outlet are shorter. The latter results are congruent 
with the relationship provided by Brink and Broek [9]. In both watersheds, channel slopes were used 
based on a 3 m digital elevation model (DEM), and DCIA imperviousness levels were applied. Table 11.3 
shows the used parameters.
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Figure 11.3 shows a comparison between flows. The RMSE in Pigeon was 1.72 and 1.31 cfs in SW 
Prong.

11.2.3.2  conversion of Irregular Watersheds

SWMM5 model requires the width in every subwatershed; the model assumes hypothetically that all 
subwatersheds have a rectangular shape. However, the subwatersheds defined with Arc Hydro resulted 
in irregular shapes, and a conversion was needed. As recommended [13], an irregular urban catchment 
can be converted to its equivalent rectangular shape. As illustrated in Figure 11.4, the uniform rainfall 
distribution is applied to the rectangular watershed that has a central channel collecting the overland 
flows from both sloping planes.

The SWMM5 user’s manual suggests that the width parameter can be used to account for internal routing 
and attenuation, enabling delineation for larger subareas with less detail needed in defining the conveyance 
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TABLE 11.3 Experimental Subcatchment Data

Parameter Pigeon Basin SW Basin

Channel slope (S) 0.018 0.024
Manning’s roughness (n) 0.035 0.035
Imperviousness level (DCIA, %) 13.57 5.36
Conveyance factor (Φ) 0.85 0.87
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network. Huber and Dickinson [19] suggested combining many subcatchments into a single lumped or 
equivalent and calibrating the subcatchment width. Reducing the width increases the flow length and stor-
age within a subarea, resulting in an effective way to attenuate the runoff hydrograph without modeling in-
system storage and pipe networks [10]; for this reason, the width parameter is often the primary parameter 
adjusted to obtain desired peak flow rates and hydrograph shapes. Since travel time is larger, this results in 
more time for infiltration to occur and, therefore, infiltration volume might be overestimated [9].

However, it is easily observed that a reduction in the width increases overland flow length and over-
land flow travel time; therefore, there is more allowed time for infiltration to occur. This results in an 
effective attenuation of the runoff hydrograph without modeling in-system storage and pipe networks 
[9]. Brink and Broek [9] also pointed out that a solution to this problem would be to avoid large subar-
eas and developed a more detailed conveyance system network. This idea may or may not be feasible, 
depending on whether the required information is available, project time and budget.

Another approach could be to estimate the runoff length (L0), that is, the actual distance that flow 
typically could be expected to travel before reaching a directly connected impervious surface or a natu-
ral channel in an urban environment (usually from 100 to 300 ft). After traveling this distance, flow will 
either reach an impervious surface or become shallow concentrated flow. Then, compute the subcatch-
ment Width (W) as

 
W

A

L
=

0

 (11.10)

where A is the total area of the subcatchment. Rivas and Roesner [29] used the latter procedure success-
fully in large urban watersheds. With this approach, for each subwatershed, three to five runoff lengths 
need to be measured in typical lot sizes (from the back of the lot until the street center line), and then, 
the arithmetic average is computed. Estimating the runoff length and then computing the width yield 
more accurate results than taking a direct measurement of the width. This assumption is valid as long 
as the homogeneity of the watershed remains constant; nonhomogeneous watersheds require further 
discretization until homogeneous subwatersheds result. However, this task requires the visual estima-
tion of runoff lengths through aerial images in subcatchments. Even when the last procedure is realistic, 
it might be time consuming and possibly infeasible in large watersheds.

For example, a schematic in Figure 11.5 shows three subwatersheds with three different runoff lengths 
(L1, L2, and L3). The runoff in each subwatershed drains to the junctions (J1, J2, and J3) and, then, 
through the drainage network to the outlet.

A more general approach is given by Guo and Urbonas [17] defining a KW cascading plane specified 
by the plane’s area, width, and slope. Traditionally, the current state of practice recommends that the 
KW plane width be twice the length of the central channel in a symmetric watershed or equal to the 
length of the side channel along the watershed boundary [19].

Guo and Urbonas [17] developed a methodology to convert an irregular watershed to its equivalent 
rectangular watershed, where the continuity and energy principles were interpreted to preserve the 
watershed area and vertical fall over the receiving waterway’s length. Figure 11.6 shows how a natural 

ChannelFlow

Channel Overland flow Runoff length, L

Width = Area/L

Irregular
catchment

Equivalent
rectangle

FIGuRE 11.4 Conversion of irregular catchments. (From Guo and Urbonas, 2009.)
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watershed with irregular shape may be converted to a rectangular watershed. The longitudinal slope 
(S0) is defined by the vertical fall along the receiving waterway for the natural watershed. The KW plane 
slope (Sw) is virtual and used only in computation. After numerous tests, Guo and Urbonas [17] con-
firmed that the watershed and KW shape factors provide a consistent and stable basis for watershed 
geometric conversion.

The set of equations to perform the conversion are presented [17]:

 1. Natural watershed shape factor (X)
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 Ks is the upper limit of shape factor. The Colorado Urban Hydrograph Procedure suggests 
K = 4 [35] to avoid subareas too wide in shape.

 2. KW shape factor (Y)
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 In which Z = Am/A (area skewness coefficient between 0.5 and 1.0). Am is the dominating area 
that is the larger one between the two subareas separated by the collector channel. For a sym-
metric watershed, Z = 0.5. For a side channel along the watershed boundary, Z = 1. From visual 
inspection, all subwatersheds in Pigeon and SW Prong Basins were identified to have a central 
channel.

 3. Finally, the potential energy along the water course is preserved by
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Y
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w
s

0 = + ≤;  (11.13)

In summary, in a HUW, the routing channel length (L) was estimated through an optimization algo-
rithm as a function of the subwatershed size (A), and then, it was used as a parameter for the conversion 
from irregular to regular subcatchments. An advantage of the latter method is that the only parameter 
needed in each subcatchment is its routing channel length. This proposed procedure showed to be effec-
tive and simple to implement, and results were still accurate.

11.2.4  Main channels

Rainfall in each subcatchment becomes overland surface runoff after the soil is saturated, and then, it is 
routed through the main channels. However, runoff from the DCIA occurs rapidly and comprises the 
bulk of the runoff from urbanized areas [21].

Arc Hydro [5] is a GIS extension to obtain drainage patterns in catchments from the DEM. Raster 
analysis was performed to generate data on flow direction, flow accumulation, stream definition, stream 
segmentation, and watershed delineation. These data are then used to develop a vector representation of 
catchments and drainage lines from selected points. It was found that the stream patterns defined with 
Arc Hydro [5] follow the drainage network.

Natural streams are an integral part of the drainage system. Preliminary site investigations were 
performed to identify conveyance features of the main streams. Field work was done during November 
2005 to obtain the cross sections in main channels using level and rod methods as described by 
Harrelson et al. [18]. Streams cross sections were taken at approximately 2500 ft intervals along main 
channels [28].

Channel Manning’s roughness was estimated during the field work by following the guidelines 
provided by Chow [11], and Arcement and Schneider [4]. GPS coordinates of the cross sections were 
mapped with a unit eTrex Legend [15].

11.2.5  Hydrologic Parameters

Table 11.4 shows the needed watershed model input data, divided by type.
A DEM was obtained through the USGS National Map Seamless Server [38]. The website provides the 

National Elevation Dataset with a 1/9 as resolution (approximately 3 m). One arc second is the 1/3600th 
of a degree (1 s) of latitude or longitude. The length of arc subtended is approximately 30 m. Arc Hydro 
[5] processes the DEM raster to discretize the watershed, that is, the watersheds are discretized into 
subareas using the Arc Hydro extension of ArcGIS; impervious areas and slopes were estimated for each 
subarea.

Initial estimates of a watershed’s soil infiltration were obtained through soil conservation service 
(SCS) maps. These maps classify soils into four hydrologic soil groups (A, B, C, and D) based on textures 
and runoff potentials. It is possible to link these hydrologic soil groups with initial (f0) and ultimate (fc) 
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Horton infiltration values and obtain a weighted initial estimation of watershed infiltrations. Horton 
method (Equation 11.14) was used to model infiltration as a function of time fp (t):

 
f (t) f

f f

e
p c

c
Kt

= + −0  (11.14)

where
fc is the minimum (final) infiltration rate ([L]/[T])
f0 is the maximum (initial) infiltration rate ([L]/[T])
K is the decay coefficient (1/[T])
t is the time ([T])

The decay coefficient (K) determines the time elapsed in which the soil becomes saturated, and it 
reaches its final infiltration rate (fc). Typical values of infiltration decay coefficients are shown in 
Table 11.5.

Horton infiltration rates are reported by Natural Resources Conservation Service divided by hydrau-
lic soil groups (Table 11.6).

In SWMM5, another parameter of infiltration is the drying time (Tw, days). Tw represents the time it 
takes the soil to recover its initial infiltration capacity (return to the initial condition). In other words, 
it is the time it takes for the soil to dry out. The decay coefficient (K) and drying time (Tw) are especially 
important for long continuous simulations, since a successive set of storms are applied.

Impervious surface maps come in a GIS raster format, which allows an assessment of the 
percentage of impervious cover in a watershed. Since imperviousness changes over time, the most 
recent maps are preferred. In any case, they should be corrected to take into account only the DCIA 
through Equation 11.1; this is especially necessary in urban areas. DCIA is important to quantify 

TABLE 11.5 K and fc Relationship

Decay Coefficient (1/h)

% Decline of Infiltration 
Capacity toward Limiting 

Value fc after 1 h

2 76
3 95
4 98
5 99

TABLE 11.4 Watershed Model Input Data

Watershed Model Input Data

Subcatchment Characteristics Channel Conveyance Calibration Data

Drainage area Cross sections Rainfall depth
Width Bottom slope Streamflow records
Overland ground slope Length
Overland flow slope Roughness
Soil infiltration rates
DCIA coefficients
Depression storage
Overland flow roughness
Groundwater parameters
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accurately in modeling because it affects not only the large and medium discharge runoff events but 
also the frequent 2 year or more frequent events that have been shown to produce 90% of the total 
runoff [30].

If the gross impervious area is taken to be zero (TIA = 0), the original land surface is assumed and any 
kind of human development is ignored. Raster GIS imperviousness maps were obtained with a resolu-
tion of 30 × 30 m. To obtain the overall imperviousness of a particular subwatershed, a weighted average 
from the individual values of each raster is obtained, that is,
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The necessary adjustments for the correction factors K1 and K2 for imperviousness raster maps showed 
in Equation 11.1 were found to be minimum. In Pigeon Basin, K1 = 0.13 and K2 = 1.35, and in SW Prong 
Basin, no modification from the original coefficients proposed by Alley and Veenhuis [2] was needed. 
The depression storage represents all losses before runoff begins and includes water retained in surface 
depressions and water taken up by vegetation interception. In urban watersheds, any rainfall less than 
about 0.05 in. will not produce runoff due to depression storage.

Watershed models have three types of Manning’s roughness parameters:

 1. Roughness of the pervious ground surface. Typical values range from 0.26 (dense grass) to 0.40 
(light underbrush).

 2. Roughness of the impervious ground surface, for example, 0.015 for smooth asphalt.
 3. Roughness of the channels and/or conduit links, for instance, 0.012 for concrete storm drains.

Even though aerial images do not provide a direct input to the watershed models, they do help in the 
visual recognition of features in the watershed, such as ponds and commercial/residential/industrial 
zones. Aerial images may be downloaded through the USGS website (http://seamless.usgs.gov/). Aerial 
images are especially useful to estimate runoff lengths [29].

11.2.6  Groundwater Simulation

Interflow is the residual groundwater flow that occurs after each storm event. The interflow is not as 
deep as the baseflow of a watershed, and it feeds into stream channels at a slower rate than the flow of 
surface runoff produced by the same event. In both basins, the baseflow was estimated on a monthly 
basis and removed from the USGS monitored record (Figure 11.7). Then, groundwater component in 
SWMM5 was added to meet the medium and small event discharges due to the presence of interflow in 
the USGS discharge record.

TABLE 11.6 Soil Textures and Hydrologic 
Soil Groups

Hydraulic 
Soil Group

fc (in./h)

f0 (in./h)High Low Average

A 0.45 0.30 0.38 7.50
B 0.30 0.15 0.23 4.50
C 0.15 0.05 0.10 3.00
C/D 0.10 0.03 0.06 2.25
D 0.05 0.00 0.03 1.50
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While baseflow can be estimated on a monthly basis and subtracted from the discharge record, inter-
flow, which occurs on a storm-by-storm basis, cannot be easily removed from the record and must be 
simulated to improve modeling results. A single aquifer was assumed in both watersheds. According to 
the USGS, groundwater in the Piedmont Region is likely to flow near the surface as interflow. Because 
of this, groundwater component was added to the models to account this phenomenon and to properly 
model the low flows.

11.2.7  rainfall and runoff Data

Precipitation data constitute the main input to the model. It comes in a spatial distribution of pre-
cipitation over time. Rainfall data should be as close as possible to the watershed being modeled. 
In some regions, spatial variability plays an important role. However, the use of radar-generated 
rainfall data overestimates runoff in some cases [37]. USGS rain gage (site no. 0208732885) located 
at Marsh Creek, New Hope, NC, provided 15 min rainfall data. Refer to Table 11.7 for a complete 
description.

The streamflow gages were located at the watershed outlets of both basins. Stream depth data were 
collected by the USGS. Water-level data were collected at 15 min increments for the monitoring period. 
The water-level data were converted to discharge values by USGS staff using stage–discharge curves 
established using HEC-RAS models [28]. Streamflow records identified in Table 11.8 provided data for 
calibration.
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FIGuRE 11.7 Runoff, base flow, and interflow volumes.

TABLE 11.7 Rain Gage Data

Data Value

ID 317079
In service May 31, 1954 to present
Elevation 121.9 m (400 ft) above s/l
Lat/Lon 35°48′N/78°42′W
County Wake
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11.2.8  Model calibration

Traditionally, stormwater model calibration is performed on six or more individual storms of varying 
size [1]; it is considered complete for the single storm event when the peak discharge and volume of run-
off are accurately reflected by the model.

In general, calibration can be done at a number of temporal scales [28]:

 1. Single event: one storm
 2. Multiple events: several storms
 3. Continuous simulation: long records (months to several years)

Calibration to a single storm is not appropriate for continuous simulation modeling because adjustments 
of variables to match runoff from one event may over- or underadjust variables and inhibit matching of 
other events. Pomeroy [28] pointed out that it is important that rainfall–runoff models be able to accu-
rately simulate the full spectrum of flows to evaluate biologic integrity in streams. Therefore, the models 
were calibrated across the full spectrum of flows during the 2002–2003 (temporal scale (2)) period of 
level-flow monitoring by the USGS personnel, where model outputs and observed flows were compared.

Large events for flow duration are those equal to or less frequent than 0.2% of time exceeded. Medium 
events are those falling between 0.2% and 10% of time exceeded and small events are those less than 
10% of time exceeded. Small storms are generated mainly by DCIA; however, peak floods also play an 
important role in urban watershed modeling. Hence, a unique feature of this study is to consider all 
types of events in the calibration procedure.

The flow duration curve is a graph of all the discharges during a continuous record, and their cumula-
tive exceedances, or the percent of time each discharge occurs during the period of record. These curves 
were developed from the partial duration series of peak flows. This approach, which is in contrast to 
the examination of the annual maximum series, was used because it allowed for the analysis of high-
frequency, low runoff–producing storms.

The percentage of time for each flow magnitude is equaled or exceeded can be computed by arranging 
the flow rates in the order of descending magnitude [23]. The return period (Tr) is computed for each 
event using the Cunnane method:

 
T

n a

m a
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+ −
−

1 2·  (11.16)

where
n is the length of record, years
a is the plotting position, usually taken as 0.40
m is the rank, 1 for the highest

TABLE 11.8 General Data for Stream Flow Gages

Variable Pigeon Basin SW Prong

USGS site number: 0208732610 02087304
Geographic location (NAD83) Latitude 35°48′25ʺ (N)

Longitude 78°36′50ʺ (W)
Latitude 35°49′04ʺ (N)
Longitude 78°39′35ʺ (W)

Hydrologic unit: 03020201
Drainage area (mi2): 4.45 3.02
Range of 15 min data July 4, 2002

October 28, 2003
July 4, 2002
July 28, 2003

Number of years 1.32 1.07
Datum of gage, NGVD29 (feet above sea level) 200 240



206 Handbook of Engineering Hydrology

The return interval was computed to exceedances per year (E) using 1/Tr. Then, this percentage of time 
of exceedance is plotted against the flow magnitude. Let Q(A) be a random variable denoting the annual 
peak floods from a watershed of drainage area A. Then, the pth quantile Qp(A) is defined with Equation 
11.17 and shown in Figure 11.8.

 P Q(A) Q (A) pp>( ) =  (11.17)

11.2.9  advantages of continuous calibration

Continuous calibration involves calibrating to a long duration of multiple events ranging from months 
to years. The main advantage of continuous calibration is that it makes maximum use of available data 
over a variable spectrum of hydrologic–hydraulic events [40]. Continuous calibration eliminates the 
need to select specific storms with various antecedent conditions because all or a large portion of 
the events of the calibration record are being simulated. Continuous calibration eliminates the time 
required to select discrete events to calibrate and ensures that a wide range of conditions are assessed 
in a shorter period of calibration time. Continuous simulation allows modeling the complex interac-
tions between the precipitation patterns. Return periods for storms can be defined on the basis of 
the simulated record; critical events chosen for study may be substituted for synthetic design storms.

Finally, SWMM simulation errors were verified after simulations. Mass continuity simulation errors 
for runoff and flow routing represent the percent difference between initial storage + total inflow and 
final storage + total outflow for the entire drainage system. All simulation errors were verified to be less 
than 1%. The most common reasons for an excessive continuity error are computational time steps that 
are too long or conduits that are too short.

11.3  Model Discretization

11.3.1  Modeling experiment Setup

Several rainfall–runoff models were built in each basin, ranging from a high resolution down to the 
lowest possible resolution (a single watershed). Then, measurements of performance (PMCC, NSC, IOA, 

Flow

Qp

Qm

p % m %

Percent equaled or exceeded

FIGuRE 11.8 Flow duration curve.
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and RMSE) were computed and compared to identify the existence of a threshold value in which mod-
eling results are acceptable and a finer discretization is no longer needed to obtain satisfactory results. 
The initial or base scenario was chosen to have an average subbasin size of 43 acre in Pigeon and 55 acre 
in SW Prong. This size represents a reasonable value in which the homogeneity is kept. From this initial 
level of discretization, successive scenarios representing a coarser resolution with larger average sizes 
were built, until get the last scenario, where the total watershed does not have any subdivision level, that 
is, the entire watershed was lumped as a single unit.

This analysis allowed the determination of a scale-related threshold value to discretize urban basins 
(see Figure 11.9). Also through the performed simulation analysis, the effects of subbasin scale on peak 
flow rate and total runoff volume were investigated.

Resulting Arc Hydro subbasins were successively disaggregated in larger sizes until a single unit for 
the entire watershed was obtained (Scenario 1 in both basins). Scenario 1 represents a model with a 
single unit, in other words, without any discretization, see Figures 11.10a,b and 11.11a,b.

11.3.2  Peak flow rate estimation

Long-term simulations were performed based on the dates shown in Table 11.8. In terms of peak flow 
rates, coarser resolution showed larger errors and an underestimation of peak flows in both basins, as 
it is shown in Figure 11.12a and b. Scenario 5 showed a reasonable estimation of peak flow rate in both 
basins, considering that the estimation of peak flow rate was not solely indented during calibration. 
However, the runoff peak rate is the most important hydrologic variable for drainage system design 
and flooding analysis. Notice that Pigeon had larger errors for coarser scenarios than SW Prong, which 
could be explained by its higher level of urban development.

11.3.3  representative element area

The REA represents a spatial case over which the hydrologic processes can remain simple in terms of 
distributed catchment behavior [7]. Therefore, this concept was further investigated to find out an appro-
priate scale level in urban hydrology. Theoretically, this element size is able to represent the complex 
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FIGuRE 11.9 Threshold zone to be identified.
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heterogeneity in the basin, and this relates directly to an ideal element size for distributed catchment 
modeling.

Wood et al. [42] determined the runoff volume from 148 subcatchments. These runoff volumes were 
ranked on the basis of subcatchment size, irrespective of their relative position in the basin. The average 
of a 15-element filter, moving in steps of 5, was plotted versus area. These plots were then used to deter-
mine the REA, defined as the area where the curve is flattened out. In other words, the REA is described 
as the scale where |dq/da| becomes small, with “q” being the peak volume and “a” the subcatchment area. 
Based on the concept proposed by Wood et al. [42], the REA was estimated using Scenario 5 in both 
basins. Figure 11.13a and b shows the effect of averaging.

From the results in Pigeon, it is clear to see than an average area subcatchment of 50 acre might 
be appropriate (2% of the total basin size). In SW Prong, despite the lower runoff volumes, the runoff 
showed to be stabilized after a subcatchment area of 60 acre (3% of the total size). We conclude that 
an average subbasin size of 3% of the total basin may be an appropriate threshold scale in the context 
of urban hydrology. Arabi et al. [3], using the soil and water assessment model, found appropriate to 
use subcatchment sizes of approximately 4% of total basin area; in that study, two mostly undeveloped 
basins were analyzed: Dreisbach and Smith Fry, both basin sizes of about 2.5 mi2.

11.3.4  Measurements of Performance

The model with a higher resolution level was taken as base model. In both basins, the IOA showed higher 
values than the PMCC and NSC as it shown in Figure 11.14a and b. In Pigeon, the metrics showed a 
poor performance for Scenarios 3, 2, and 1, as it was expected. However, surprisingly, Scenarios 3 and 2 
showed reasonable values in SW Prong. This behavior means that the imperviousness level might be a 
factor to estimate the REA. This idea should be further investigated, but it is out of the time framework 
in this research.
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FIGuRE 11.11 Discretization scenario map in (a) Pigeon Basin and (b) SW Prong Basin.
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11.4  Summary and conclusions

This chapter involved a discretization analysis. A set of hydrologic experiments were performed in each 
watershed, where different levels of discretization were used in each scenario. Discretization scenarios 
were obtained with Arc Hydro [22]. Needed GIS data were extracted through a toolbox that was devel-
oped, and SWMM5 simulations were performed with the watershed configurations. The main objec-
tive was to investigate a threshold value in urban hydrology. This value represents the needed level of 
discretization in urban watersheds after which the improvement in performance becomes asymptotic 
either to 1.00 (PMCC, NSC, and IOA) or to 0 (RMSE) and, thus, is not significant to improve the spatial 
resolution. The REA concept was explored using SWMM, and it was found that subcatchment sizes of 
3% of the total basin size were appropriate. Coarser resolution levels underestimated peak flow rates and 
total runoff volumes.

The practice of urban stormwater hydrology is not an exact science. While the hydrologic processes 
are well understood, the necessary equations and boundary conditions required to solve them are often 
quite complex. However, this research work constitutes a step forward since some guidelines were 
found. A 3% of total basin size is suggested to disaggregate watersheds since REA values of 50 and 60 
acre in Pigeon and SW Prong respectively were found. However, this result is by no means a universal 
concept to apply in all models.

This study arose some issues that should be further researched. For instance, differences between 
runoff outputs using different DEM resolutions were not addressed; however, as DEM rasters become 
available with higher resolution, it may be worth it to investigate the effects of the runoff response with 
different resolution grids. The REA size found here was appropriate for the case studies, but its value 
may be different for another range of basin sizes, for example, smaller than 1 mi2 or larger than 10 mi2. 
Thus, caution must be taken when using the presented results to other basins with different range sizes.
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12.1  Introduction

As common as drought occurrences are around the world, a standard definition for drought isn’t 
recognized. Even among the experts who study droughts, a single standard definition is not easy to 
agree upon. In the simplest of meanings, drought can be identified as a deficit of precipitation from an 
expected average over an established time frame. To better define drought, one needs to establish the 
context in which the phenomenon and its associated impacts are being described. Wilhite and Glantz 
(1985) identified more than 150 published definitions of drought; from these, drought was classified 
into 4 types: meteorological, agricultural, hydrological, and socioeconomic. As their names imply, these 
diverse drought types impact different sectors, but in most instances the impacts related to each overlap 
both temporally and spatially (Figure 12.1).

All droughts begin with a deficiency of precipitation over some time frame. These early stages 
of accumulating precipitation deficiencies are commonly referred to as meteorological drought. 

Preface

There are many drought indicators being used around the world. Some have been developed with 
a specific needs being addressed, while others have tried to identify drought in all circumstances 
and scenarios. Over time, the risks associated with drought have become more visible and discus-
sions about how to cope with drought are ongoing. At this time, there is not a single drought index 
that accomplishes everything that users want it to do, even with the consolidated approaches that 
are being used. The challenges of a changing climate amplify the need to continue working toward 
the development of better indicators and methods to monitor drought as part of greater drought 
early warning system (DEWS). As climate regimes change or seasonal shifts occur, the drought 
indicators used in the past may not adequately address drought moving forward. This chapter 
hopes to identify some of the drought indices that are being used and how they were developed. 
With a better understanding of the various indices available, a better sense of how drought is 
being monitored can be realized, and also a better understanding of a changing climate may 
impact the use of these indicators. I would like to acknowledge Mark Svoboda, Don Wilhite, and 
Michael Hayes for their contributions to this work.
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A continuation of these dry conditions over a longer period of time, sometimes in association with above-
normal temperatures, high winds, and low relative humidity, quickly results in impacts in agricultural and 
hydrological sectors. Meteorological droughts are driven by a change in the local meteorological condi-
tions, such as dominance by a high pressure ridge as occurred over a large portion of the United States 
in 2012. The geography and climatology of a region plays an important role in what defines meteorologi-
cal drought since regions have very different precipitation regimes. Meteorological droughts can develop 
quickly, but they can also end just as quickly if the precipitation deficits are relatively small. However, these 
types of drought may also linger on into a multi-seasonal event and develop into the one of the other types 
of drought.

Agricultural droughts can be characterized as an extended meteorological drought in which there is 
a deficiency of precipitation during the growing season such that crop growth and development is sup-
pressed. Agricultural drought can also be associated with a dry period prior to the growing season in which 
soils were not fully recharged with moisture, which carries over to a growing season with inadequate pre-
cipitation, especially during critical crop growth stages. It may also include periods where available water 
for irrigation is lacking. Agricultural droughts are events that become the next phase of meteorological 
drought. As the name implies, a drought of this nature will extend in duration to the point at which 
the agricultural concerns of a region are being impacted by dryness and lack of adequate soil moisture. 
Agricultural drought may extend into portions of more than one growing season, but the natural break 
between seasons is identified as a period where drought did not worsen or improve, because no agricul-
tural production was taking place (such as in the winter season). Agricultural drought can also precede 
the actual start of the growing season in which conditions are not favorable for planting because of dryness 
and the lack of soil moisture, or not enough moisture available for pasture and rangelands to green up.

Hydrological drought, as the name implies, refers to drought events that curtail the amount of water 
available in rivers, streams, lakes, reservoirs, and groundwater. As meteorological droughts are prolonged, 
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FIGuRE 12.1 Four types of drought. (From National Drought Mitigation Center, http://drought.unl.edu/, 
accessed August 1, 2012.)



220 Handbook of Engineering Hydrology

the lack of runoff from precipitation events due to dry soils will begin to impact the hydrology of a region. 
There is typically a lag involved that will be unique to each region and for a particular time of the year 
as the impacts to hydrology will not be immediate after the start of the drought. With an extended dry 
period, soil moisture diminishes, surface runoff and subsurface recharge are reduced, and the amount 
of water in the hydrologic system of a region declines. During winter months, frozen precipitation is 
accumulated for future runoff, so a dry winter can induce hydrological drought months later. Even with 
precipitation, the dry soils can inhibit substantial runoff, as they will capture excess moisture before it 
is able to reach rivers, streams, and reservoirs. Dryness and heat (via evaporation) will work together to 
reduce the amount of water available in hydrologic systems. As some hydrologic systems are managed, 
water managers can choose to withhold water if hydrological drought is of concern to try to lessen future 
impacts. Without proper recharge, a long-term drought will impact the hydrology of the region even after 
precipitation returns to more normal levels. It typically takes the longest time period for a hydrological 
drought to develop, and, in turn, the recovery time can also take months or even years.

Socioeconomic definitions of drought associate the supply and demand of some economic good with 
elements of meteorological, agricultural, and hydrological drought. It differs from the aforementioned 
types of drought because its occurrence depends on the time and space processes of supply and demand 
to identify or classify droughts (Wilhite and Glantz, 1985). Other weather or climate factors can play 
into why certain goods are not available, but for socioeconomic drought, the demand for these goods 
exceeds supply because of drought. Socioeconomic drought impacts can develop immediately once 
drought advances into a region and may linger for quite some time depending on the severity of the 
impact and the importance of the goods being impacted in the region.

12.2  How to Monitor Drought

Given the complexity of trying to define drought, we need to know how droughts develop and what indi-
cators are available to determine that this phenomenon is taking place. Gathering information about 
the primary weather and climate characteristics of a region is an important first step needed to monitor 
droughts. One must understand both the climate and drought climatology of the region. What may 
be a regular climatic occurrence in one region may constitute the beginning of a drought in another 
region or season. We must first understand the climate to determine if the current weather pattern is 
truly developing into a drought or is expected to do so in the future. Knowing if a particular pattern of 
dry weather is unique and the possible start of a drought is important in knowing how to properly plan 
for and mitigate the impacts of drought. Drought early warning systems (DEWSs) focused on monitor-
ing drought conditions are an important part of being adequately prepared for drought (Wilhite, 2005, 
2009; WMO, 2011). Without adequate planning and preparedness, the impacts resulting from drought 
may be worse and may lead to even more severe consequences for many sectors. When the impacts are 
severe, the recovery process may be delayed considerably.

With the basic characteristics of drought involving a lack, or deficit, of precipitation, it is critical 
to have reliable and long-term records of precipitation. Most drought monitoring actions, as part of a 
DEWS, are established with the knowledge of comparing recent weather events to the known climatic 
values such as long-term averages or normals. Even though precipitation is the basis of many drought 
indicators, many other indicators are also important in the assessment of drought severity. Ideally, one 
should try to also monitor rivers and streams, snowpack, water storage and availability, the health of 
the ecology of the area, soil moisture, evaporation, crop production, and other indicators that might 
be relevant for understanding water availability and use in that region. For many regions, it may not be 
possible to look at every single indicator when determining if an area is in drought, particularly because 
for many regions the data may not be readily available. However, it is best to look at multiple indica-
tors to verify the existence and severity of drought. In determining the historical context of current 
information, the period of record of indicators used to monitor drought is important. Regardless of the 
indicator being used, having the longest and most complete (serially complete) record available will help 
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in establishing the context of current conditions to known historical conditions. One must realize that 
a drought is a feature categorized on the dry side of a region’s precipitation distribution. Those events 
that are on the statistical tails (extremes) of a distribution will be better understood if more of them fall 
within the sample size. Guttman (1993, 1999) recommended that at least 50 years of precipitation data 
is the minimum needed for drought periods of 12 months or less, and more is needed for droughts that 
cover multiple years (when using the Standardized Precipitation Index [SPI]).

What is problematic is that some indicators may not have a long enough period of record, and this 
is especially true of remotely sensed data. Monitoring drought properly requires taking some time to 
construct historical data records or develop data sets for as many data points as possible. Once this 
work is completed, monitoring current conditions not only adds to the period of record but also allows 
researchers to learn about the climate of a region intimately and what is expected (or not expected) 
and when. This is important to understand as it may be more meaningful if while monitoring current 
conditions it is known how much precipitation is expected over the period being monitored. If the pre-
cipitation distribution for a region is typically seasonal, then a shortage of precipitation during this time 
would not necessarily signal the beginning of a drought. Thus, it is possible to determine the “crucial” 
period(s) of precipitation for any region.

12.3  Drought Indicators and Indices

An indicator is a measure of a meteorological, hydrological, agricultural, or socioeconomic variable that 
provides an indication of potential drought-related stress or deficiency. An index is a method of deriving 
“value-added” information related to drought by comparing current conditions to historical information 
based upon statistical calculations or formulas. Indices are an attempt to quantify drought and its magni-
tude. It is also important to note that indices are indicators as well. For some, the quickest and easiest way 
to determine drought is by comparing actual precipitation to a long-term average or mean. The percent of 
normal method allows for a calculation that can be computed over any defined period and gives meaning 
to the value. This method does have some drawbacks. One such drawback is the difference between the 
mean and median. These can be significantly different for shorter periods of time (i.e., month to seasonal 
time periods). Thus, comparing departures of precipitation to the mean or normal amount may be mis-
leading. With that in mind, the simplest method is not always best, and scientists require a better way of 
determining the precipitation statistics while giving some historical context to the frequency of an event. 
To do this, drought indices were developed as a way of expressing drought information in a manner that 
also gives the user more information than just how the current situation compares to a historical average 
and to identify the degree of water shortage associated with the dry event (duration and intensity).

12.4  History of Drought Indicators and Indices

Heim (2002) showed the evolution of drought indices from the early 1900s to what has become the 
standard for the United States with the development of the US Drought Monitor (USDM) in 1999. It 
should be noted that the progression of the development of indices is aimed at trying to derive a number 
or value that has meaning in the expression of drought severity. Some drought indices looked strictly 
at agricultural issues, while others focused on water supply or availability. When Wayne Palmer (1965) 
developed the Palmer Drought Severity Index (PDSI), it was an attempt to put the full water balance 
into a regional perspective while identifying meteorological and agricultural drought episodes. As other 
drought indices were developed, it was determined that not all indices worked in all locations because 
many were developed to address a particular problem in a certain climate. With some indices need-
ing a great deal of data and becoming more complex, the World Meteorological Organization (WMO) 
wanted to put forward a recommendation for a single meteorological drought index to be the minimum 
standard and starting point for every country to calculate in the assessment of drought in order to pro-
vide more comparability between regions. At a meeting in 2009, the “Lincoln Declaration on Drought 
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Indices” recommended the SPI as the drought index to be computed and used globally by meteoro-
logical and hydrological services as the common meteorological drought index (WMO, 2011). As work 
toward developing drought indices continues, knowing which indices work best for a region and how to 
apply them becomes critical in establishing a functional DEWS.

In evaluating and selecting various drought indices, it is best to look at the various applications in 
which they are likely to be used. Many drought indices have the potential to be used in multiple appli-
cations or can be applied to various sectors. The drought indices described in the following are by no 
means complete, but we will discuss some of those that are most commonly applied globally and how 
they can be used for meteorological, agricultural, and hydrological analyses.

12.4.1  Standardized Precipitation Index

Even before the WMO recommendation in 2009 the SPI received a great deal of attention throughout 
the world as countries wanted to calculate and use it operationally to track drought conditions. The SPI 
was developed by McKee et al. (1993). It uses the historical precipitation record for any location, and 
a probability of precipitation is developed for various time scales. The intensity scale for SPI has both 
a positive and negative metric, where the positive values are correlated to wet events and the negative 
values are used to identify drought events. McKee et al. (1993) also characterized drought events as 
beginning when the SPI value fell below −1.0 for a particular time period. The duration of the drought 
event lasted until the SPI became positive. This is where the SPI has a great amount of utility. The SPI 
is flexible and can be calculated for both short-term and long-term periods by choosing various time 
steps. Another reason for the SPI’s appeal is that the index can be calculated with missing data. In the 
way that the SPI is calculated (by using a historical precipitation distribution when data are missing), 
the distribution can still be developed and used. If too many data are missing, the results will be “null” 
and the program will calculate the next SPI value when enough data are again available. Initially, the SPI 
was calculated for periods from 1 to 72 months, but it is mostly used for periods of 24 months or less. 
Having this flexibility has allowed the SPI to be very useful in monitoring meteorological, agricultural, 
and hydrological droughts in which time scales and impacts are variable (Table 12.1).

Many countries that are trying to develop drought monitoring activities typically have data issues 
since consistent and quality long-term reporting precipitation stations may be hard to find. Even though 
there may be a break in the SPI results being calculated, the data can be utilized and knowledge gained 
from them. Users of the SPI will begin to know which SPI time intervals will make the most sense for 
their region in helping identify the different types of drought and associated impacts. Since the SPI is a 
precipitation-only index, it tends to be used more often to identify periods of meteorological and hydro-
logical drought since it does not have a water balance component that is important for monitoring agri-
cultural droughts. There are agricultural drought applications where the SPI is useful, especially when 
identifying a developing drought situation, because the SPI, with a short time scale, will respond quickly 

TABLE 12.1 SPI Classification Scale

SPI Value Moisture Level

+2.0   and greater Extremely wet
+1.5   to 1.99 Very wet
+1.0   to 1.49 Moderately wet
−0.99 to 0.99 Near normal
−1.0   to −1.49 Moderately dry
−1.5   to −1.99 Severely dry
−2.0   and less Extremely dry

Source: Guttman, N.B., J. Am. Water 
Resour. Assoc., 35(2), 311, 1999.
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to a situation where conditions are drying out rapidly. With that being said, the flexibility of the SPI is that 
it can be calculated for any time period, and this feature makes it possible to calculate a SPI that would be 
useful for application during a region’s particular growing season or off-season moisture recharge periods.

12.4.2  Standardized Precipitation evapotranspiration Index

One of the more recently developed drought indices is the Standardized Precipitation Evapotranspiration 
Index (SPEI), which took the basic premise of the SPI and added a temperature component to capture 
a simplified water balance (Vicente-Serrano et al., 2010). The SPEI, like the PDSI, uses a simple water 
balance calculation that is based on the Thornthwaite (1948) model for calculating potential evapo-
transpiration (PET). Several studies have shown that good estimates of PET can be obtained with vari-
ous meteorological parameters, but for the purpose of a drought index, they are not needed because 
only a general estimation of the water balance is required. This also keeps the calculations simple and 
usable given the additional data requirements needed for determining actual evapotranspiration values. 
Having the same flexibility that the SPI has in being able to be updated weekly using a moving window 
for each time step, the SPEI uses the difference between the basic calculations for PET and precipitation 
to determine a wet or dry period. Given the flexible nature of the SPEI, it has the capacity to be utilized 
in monitoring the various types of droughts because of the included water balance calculations. As such, 
it has the potential to better track agricultural drought.

12.4.3  Palmer Drought Severity Index

One of the most widely used indices, especially in the United States, has been the PDSI, developed 
by Wayne Palmer for the US Department of Agriculture in the 1960s (Palmer, 1965). The index was 
intended to be used as an agricultural drought index, as it measures the availability of moisture in 
the region being monitored using a water balance equation. Unlike the SPI, in which the only variable 
needed is precipitation, the PDSI also incorporates temperature and soil moisture as well as a previous 
PDSI value. The temperature data are used to estimate PET utilizing a Thornthwaite approach, and the 
default soil moisture information comes from data that have been extrapolated from the soil informa-
tion collected by the US Geological Survey (Palmer, 1965). The complexity of the variables needed to 
compute the PDSI makes it more challenging to use as the needed soil information is typically not read-
ily available for all locations.

Like the SPI, the PDSI has both a wet and dry categorization scheme, with most values falling into the 
range of +4 to −4. Having both scales allows users to become familiar with how the PDSI responds to 
precipitation events in order to have a better understanding of how the index functions for any particu-
lar area. Over time, the agricultural applications of the PDSI have been widely used. Several inherent 
drawbacks are associated with using the PDSI, and these have been well documented (Steila, 1972; Karl, 
1983, 1986; Alley, 1984, 1985; Hayes et al., 1999). For one, the index has a time scale of approximately 9 
months, which leads to a lag in identifying drought conditions based upon the simplification of the soil 
moisture component within the calculations. This lag may be up to several months, which is a drawback 
when trying to identify a rapidly emerging drought situation. There are also seasonal issues to the PDSI 
as it does not account for frozen precipitation and frozen soils very well and all precipitation events are 
treated as if they were liquid precipitation events. Some of the drawbacks to using the PDSI are that this 
particular index was developed to be used in the Midwest of the United States as a trigger to identify 
agricultural droughts. Several other papers have discussed the limitations of the PDSI (Alley, 1984; Karl 
and Knight, 1985; Willeke, 1994; McKee et al., 1995; Guttman, 1997), and they were summarized by 
Kangas and Brown (2007), which presented applications of using the PDSI for various drought episodes. 
Kangas and Brown (2007) also described the positive attributes of using the PDSI where the longevity 
of the index is accounted for. The index has been tested in many situations and illustrates the benefits of 
using precipitation, temperature, and soil characteristics in characterizing drought (Table 12.2).
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12.4.4  crop Moisture Index

As the drawbacks to the original PDSI became apparent, Wayne Palmer responded to some of these 
issues with his Crop Moisture Index (CMI), which was released 3 years after the original PDSI (Palmer, 
1968). The CMI was intended to be an agriculture-only drought index that responded well to rapidly 
changing climatic situations during the growing season. As with work previously done by Palmer, the 
CMI was developed for those areas of interest in the grain-producing regions of the United States. The 
calculations needed are total weekly precipitation and mean temperature along with the previous week’s 
CMI value. The output is weighted for each location, which allows for the comparison of different cli-
mate regimes to one another. To respond rapidly to changing agricultural conditions, a simple differ-
ence between PET and moisture is calculated to determine if the moisture was sufficient to offset what 
was lost to PET and, in turn, made it into the soil moisture profile. Because of the targeted nature of what 
the CMI is monitoring, it is not a very good index for longer-term drought events. The CMI will respond 
rapidly to precipitation events, but can also provide a false sense of recovery from long-term drought, 
as improvements in the short term may not necessarily mean that the long-term situation improved.

12.4.5  Self-calibrated Palmer Drought Severity Index

One of the inherent problems associated with the PDSI was that comparisons were being made from 
results of different regions, especially those with very different climate regimes, and in many cases this 
was not appropriate. The self-calibrated Palmer Drought Severity Index (scPDSI) is based upon the 
original PDSI work, but takes all the constants and replaces them with values that are calibrated based 
upon the data for each individual location (Wells et al., 2004). With the calculations for the scPDSI 
accounting for each individual location, the index becomes more reflective of what is happening at each 
site and allows for comparisons between regions to be more accurate. With these new calculations, the 
data can be computed at different time steps (weekly, biweekly, and monthly), and the extreme events 
being calculated by the scPDSI are indeed rare because they are based on calculations at that location 
and are not a constant.

12.4.6  Deciles

Deciles of precipitation, another approach to characterizing the departure of precipitation from a long-
term normal or average, were developed to identify and classify drought. Gibbs and Maher (1967) 
wanted to try to eliminate the drawbacks of using the percent of normal calculations in classifying 

TABLE 12.2 PDSI Classification Scale

4.0 or more Extremely wet
3.0–3.99 Very wet
2.0–2.99 Moderately wet
1.0–1.99 Slightly wet
0.5–0.99 Incipient wet spell
0.49 to −0.49 Near normal
−0.5 to −0.99 Incipient dry spell
−1.0 to −1.99 Mild drought
−2.0 to −2.99 Moderate drought
−3.0 to −3.99 Severe drought
−4.0 or less Extreme drought

Source: Palmer, W.C., Meteorological 
drought, U.S. Weather Bureau Research 
Paper 45, 1965, 58pp.
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droughts in Australia. Using deciles, current precipitation is ranked against the historical record, break-
ing the record into partitions that are 10% of the record (a decile). The first decile would be precipitation 
falling in the driest 10% of the record, and the 5th decile would be the median (Figure 12.2).

This method is simple, but needs a long-term period of record to have the most utility. The straight-
forward nature automatically determines the status of the dryness for a location or region, allowing 
researchers to know exactly where the current precipitation regime compares historically. Those imple-
menting this method will have certain deciles that are thresholds that trigger some type of response. 
Having the decile method as part of a DEWS establishes when a drought begins and ends, according to 
the data and characteristics of drought in the region, by defining the thresholds being used. With the 
flexibility of establishing thresholds based on the climate of the region, the decile method can be used 
to monitor all types of drought, as it has been applied to monitor both agricultural and hydrological 
droughts (Table 12.3).

Australian Government
Bureau of Meteorology

Australian rainfall deciles

Product of the National Climate Centre

10

Rainfall decile ranges

Highest on
record

Very much
above average

Above average

Average

Below average

Very much
below average

Lowest on
record

1

8–9

4–7

2–3

Distribution based on gridded data
1 April to 30 June 2012

Issued: 01/07/2012

FIGuRE 12.2 Deciles are commonly used in Australia to identify drought conditions. (From Australian Bureau 
of Meteorology, http://www.bom.gov.au/climate/drought/drought.shtml, accessed August 1, 2012.)

TABLE 12.3 Deciles Classification Table

Decile Level Moisture Level

Deciles 1–2: lowest 20% of data Much below normal
Deciles 3–4: next lowest 20% of data Below normal
Deciles 5–6: middle 20% of data Near normal
Deciles 7–8: next highest 20% of data Above normal
Deciles 9–10: highest 20% of data Much above normal

Source: Kinninmonth, W.R. et al., Australian climate ser-
vices for drought management, in Wilhite, D.A., ed., Drought: 
A Global Assessment, Routledge, New York, pp. 210–222, 2000.
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12.4.7  Surface Water Supply Index

One of the drawbacks of the PDSI mentioned previously was the lack of consideration of frozen pre-
cipitation in the calculations. This problem was addressed with the Surface Water Supply Index (SWSI) 
in the early 1980s by Shafer and Desman (1982). The SWSI is used primarily as a hydrological drought 
index, and it addresses what the PDSI lacks by taking into account snowpack in mountainous regions 
along with the subsequent runoff from the melting snow into a river basin. Four inputs are required 
for the calculations: precipitation, reservoir storage, snowpack, and streamflow. The inputs are given a 
weighted value based on the total contributions to the water balance in the basin. The scale is similar to 
the PDSI with a range of +4.2 to −4.2. Even with the advantages that the SWSI presents over using the 
PDSI alone, some issues limit its widespread application. As with the PDSI, many inputs are not readily 
available for many locations or need to be calculated for each data point, in most river basins. As data 
points are added or subtracted from the basin, the weights assigned to all the points need to be read-
justed. Since the calculations are unique to each river basin they are being calculated for, it is hard to 
make comparisons between basins. The SWSI also doesn’t account for management decisions in which 
water is being withheld due to diversion or other management practices within a basin.

12.4.8  US Drought Monitor

As many drought indicators and indices have been developed, finding one that could handle all the vari-
ous drought situations well has been futile. The concept of a composite approach was developed in 1999 
that would signal the start of the USDM (Svoboda et al., 2002). The theory behind the USDM is that all 
indicators that are available to be monitored can be used and combined by applying a ranking percen-
tile methodology. Using a composite of multiple indicators covering various short- and long-term time 
frames, an analysis of all drought conditions can be produced and depicted on a single product. The 
USDM also has the flexibility to integrate new tools and data as they come online and to add additional 
information where it may be available to enhance the level of accuracy (i.e., mesonet data) compared 
to other areas that may not be covered by that particular data. The USDM also identifies areas on the 
map that are in short-term drought (S), long-term drought (L), or a combination of short- and long-term 
drought (SL), along with the expected impacts associated with each. The (S) and (L) indicators were 
recently changed from the A (agricultural) and H (hydrological) labels that were used initially by the 
USDM. These identifiers give the users an idea of the duration of drought to go along with the color-
coded intensity levels from D0 (abnormally dry) to D4 (exceptional drought) (Table 12.4).

When a composite of indicators is being monitored using this methodology, there is usually a 
mix between where percentile indicators will fall for the various drought intensities. To help form a 
consensus of what level of drought should be depicted for an area, a network of local experts contributes 
to the making of the weekly map. At this time, more than 350 people participate in the weekly process 
of making the USDM, contributing local knowledge, data, and products. This group of experts also 
provides feedback by critiquing the multiple drafts of the map that come out prior to the official release. 

TABLE 12.4 USDM Classification Scheme

USDM 
Classification Intensity Level

Percentile 
Ranking

D0 Abnormally dry 30th
D1 Moderate drought 20th
D2 Severe drought 10th
D3 Extreme drought 5th
D4 Exceptional drought 2nd

Source: Svoboda, M. et al., Bull. Am. Meteorol. 
Soc., 83(8), 1181, 2002.
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In addition, the local experts also relay information on drought-related impacts that are occurring dur-
ing a drought event (Figure 12.3).

12.4.9  Other Indices

Over the years, many drought indices have been developed. Some were developed for a very specific area 
and others were targeted to address a particular type of drought. Within the many options available, 
there have been new types of data and platforms that have augmented and added to drought monitoring 
efforts. One of the newer platforms being utilized for monitoring and detecting drought has been via 
the integration of remotely sensed data. Indices, such as the SPI, can be calculated using data for vari-
ous satellite platforms to determine the degree of dryness being observed from space. The advantage 
to using remotely sensed data is that they allow for a high-resolution spatial coverage that can help to 
fill in the gaps of in situ data and are updated frequently to allow for near real-time analyses. The main 
drawbacks are the short period of record associated with remotely sensed data and how platforms and 
products have changed, or become obsolete, over time. There are also hybrid types of indices where sat-
ellite data are being merged with surface data to determine if the stress being observed in the vegetation 
could be due to drought conditions instead of disease, pests, etc. One such example is the Vegetation 
Drought Response Index (VegDRI), which takes into account climate-based drought indices as well as 
satellite-derived data and other biophysical parameters in order to determine drought-related stress 
upon vegetation through the utilization of data mining techniques (Brown et al., 2008). Depending on 
the data availability and quality of data for any particular area, it may be possible to utilize many of the 
drought indices that are available today and determine which ones work best for any particular area or 
season. With enough communication and coordination, it may also be possible to replicate a composite 
approach such as what is being done with the USDM (Figure 12.4).

12.5  Drought Indices in a changing climate

The idea of what a changing climate could mean and how to address it has been a very active discussion 
topic recently in the literature and among scientists engaged in drought early warning. Using not only 
the written climate record but also paleoclimatic data, it is possible to understand the characteristics 
of past droughts, even back thousands of years. What is known is that drought has been a constant 
phenomenon with episodes taking place regularly throughout time. Some events have been short, 
while others have lasted multiple decades. In the context of a changing climate, it should be noted and 
expected that droughts will continue to occur, as they are a natural part of the climate cycle. With 
increasing temperatures for most regions and the uncertainty of precipitation amounts and distribu-
tion in the future, the intensity, duration, and frequency of droughts is likely to increase for many 
locations (Easterling et al., 2000; IPCC, 2007; Meehl et al., 2007). With this knowledge in hand, it is 
important to recognize the value of those drought indices that include a temperature component, as 
the water balance for an area will not be dependent upon precipitation alone. Drought indices that 
also account for temperatures can help put into the proper perspective how temperatures are impact-
ing the water balance of a region. Using an approach such as the USDM that is looking at all available 
indicators would also allow for the flexibility to implement more temperature-based indicators. We 
may need to continue working toward newer and potentially better drought indices that can do what 
is needed to account for a changing climate in which there may be a shift in both temperature and 
precipitation regimes.

Over time, there have been many approaches to identify, classify, and monitor droughts. As the 
world’s climatic conditions change, some of these approaches may not work as well under new cli-
mate regimes, and the science community needs to continue to examine new approaches to capture 
these observed changes. By doing so, indicators and indices will remain a vitally important component 
of any DEWS.
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12.6  Summary and conclusions

There are many ways to identify drought episodes using a variety of indicators and indices. A universally 
accepted definition of drought has not been agreed upon. With the variety of ways to explain drought, 
the simplest is to describe it as a deficiency of precipitation over a defined time period. Scientists have 
also explained drought by the impacts being experienced. Over time, scientists have tried to better 
clarify drought by developing various indices in which the duration and intensity of drought could be 
identified based upon historical occurrences. With the advent of various drought indices, it has also 
become evident that some indices will work better in certain situations than others. Numerous indices 
are available, and just a few of the most used indices were discussed in this chapter. With all the indices 
available, new indices are being developed that help address an unmet need. In the case of the SPEI, 
this index was developed to directly address how an increase in temperature would impact drought in a 
changing climate by including a temperature component to the calculations. It is unknown exactly how 
droughts will evolve in the future, and some of the techniques we use to monitor and assess droughts 
today may not be adequate. More research may be needed to provide a solution to an unmet need.
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13.1  Introduction

River play a very important role in establishing civilization and human settlement since they are the 
most significant natural resource. Humans have always depended on rivers. Rivers are one of the most 
important cause of erosion, sediment transportation, and sedimentation processes.

In addition, these processes are a function of hydraulic and hydrologic conditions; they are also 
related to geological characteristics, morphological characteristics, sediment characteristics, etc. Many 
variables, including river discharge, longitude slope, sediment volume, shore resistance toward the 
stream, land cover, and geology, affect the sedimentation of rivers. Many studies, experiments, and 
in-river investigations have been performed to relate these and other parameters.

Preface

In this chapter, attempts have been made to present different types of models in the simulation of 
flow and sediment transport in rivers. These models have been classified into four groups: empiri-
cal, conceptual, physical, and computational. After that, the different types of models have been 
reviewed and finally, instructions for choosing and also using these models have been provided.
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Although in recent times many studies have been done on soil erosion, sediment transportation, 
and sediment deposit, we have a long way to go to completely understand this phenomenon. This can 
be attributed to complications of effective processes on soil erosion. The role of sediments in the life 
of humans can be divided into both positive and negative aspects: On the positive side, sediments are 
deposited beside shores and floodplains and fertilize the lands for agricultural use, for example, the 
floodplains of Nile River in Egypt and Mississippi River in the United States. On the negative side, sedi-
ment transportation affects all aspects of programming, developing, and using and sustaining of water 
resources. For this reason, in the past decade, several scientists have paid attention to this subject and 
have presented lots of theories.

Each of the three processes, including erosion, transportation, and deposition, are troublesome for 
humans. Erosion destroys basin soil and natural resources in the basin, which will have a huge impact 
on the future as we will not be able to recover them easily. Deposition damages the buildings, bridges, 
reservoirs, and other structures built along the rivers, causing floods. Unfortunately, many man-made 
structures cause erosion, transportation, and deposition, including cutting or burning land cover that 
causes severe erosion with plenty of sediments flowing into the river. Changes in rivers and their activ-
ity, construction of reservoirs, for instance dams and bridges, and mines producing sand and gravel are 
the other causes of erosion.

Sediment is not only the main source of pollution but is also an important factor in the transporta-
tion and adsorption of pollutants. To minimize the risks and reach our goals, erosion trend estimation 
and sediment stream calculations have to be performed to estimate the amount of deposition, sediment 
transportation, etc.

Many scientists have performed studies in the fields of erosion, transportation, and deposition mod-
eling, and have developed different models for different regions. In this study, attempt has been made to 
present the important and practical models in this area in spite of many explanations about each model 
being available. Finally, evaluation methods are presented.

13.2  erosion Models Grouping

Erosion models can be classified in many ways; each model is different from the other and can be based 
on function, theoretical base of model introduction, calculative framework of model, and data process-
ing. In this study, the classification is based according to the theoretical base of the models.

The models can be based on theory mentally. In other words, there is no clear bound to separate the 
models from each other, and the models have common bounds. In general, these bounds can be divided 
into the following groups:

 1. Empirical models
 2. Conceptual models
 3. Physical-based models
 4. Computational models

13.2.1  empirical Models

Empirical models are based on observations and are usually statistical. These models are usually used in 
average erosion prediction. However, some are utilized to predict sediments. These type of models are 
simple to use and are beneficial in identifying the source of sediments and nutrition elements.

13.2.2  conceptual Models

Conceptual models are based on the continuing equations of water and sediment. Disregarding the 
details, they provide a basin’s complete description. These models act as an intermediate between the 
empirical and physical models.
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13.2.3  Physical Models

Physical models are based on physical equations and are developed in order to study the local distribu-
tion of runoff and sediment during rainfall and also to predict total runoff and soil loss.

To separate each model from the other, different types of these models are presented.

13.2.4  computational Models

Computational models have a high variety of empirical, conceptual, and physical models. The authors 
present a detailed summary of each model (Table 13.1). These types of model include the following.

13.3  Model Description

13.3.1  USLe Model

The first equation to estimate the amount of erosion in a specific slope was the Zing equation 
(1940) [177], in which only two factors, degree and slope length, were considered. Then, climate 
and land-covering factors were included in the equation by Musgrave [106] and Smith and Whitt 
[130], respectively. The best equation to estimate soil erosion was given by Wischmeier and Smith 
in 1965 to sustain soil and water resources by selecting agricultural management of erosion control 
in farmlands.

This equation, called the universal equation of soil erosion, has an empirical base and can be achieved 
from abundant outdoor data and after about 30 years of study on water erosion collected from 46 
research stations in 26 different states with different geographical and climate conditions in the United 
States. We also need to consider the results of other researchers. The following four factors can be used 
to estimate sheet and rill erosions:

 1. Potential erosion of climate
 2. Potential erosion of soil
 3. Elevation
 4. Land use and its management

In this method, the emphasis is on total rainfall energy to calculate erosion severity caused by all kinds 
of surface and sheet erosions. In the universal equation of soil erosion, the effect of every factor on soil 
erosion is recognized with a specific number, and finally the erosion amount, as a quantitative value, is 
calculated by multiplying the numbers. The following is the equation for the USLE model:

 A R K L S C P=      (13.1)

where
A is the erosion amount of soil by sheet and rill erosions (weight/area/time) (In British units, the unit 

is (ton/ac/year); in metric units, it is (ton/ha/year).)
R is the rainfall factor indicating the potential erosion of rainfall
K is the potential of erosion factor of soil as a number identifying the soil intrinsic sensitivity on 

erosion
L is the slope length factor calculated by the division of erosion in slope length to erosion in control 

basin. The control basin is a basin present in the same field and slope. It has no land cover, is 
fallow, and is plowed in slope aspect. The area, slope, width, and length of the basin are 0.01 ac 
(40.5 m2), 9% (5.14°), 6 ft (1.83 m), and 72.6 ft (22.13 m), respectively
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TABLE 13.1 Empirical, Physical, and Conceptual Models Description

Model Acronym Type Reference/Website Model Name Description

USLE Empirical Wischmeier and Smith [164] Universal Soil Loss Equation
MUSLE Empirical Williams and Berndt [161] Modified Universal Soil Loss Equation
RUSLE Empirical Renard et al. [116] Revised Universal Soil Loss Equation
AGNPS Conceptual Young et al. [173] Agricultural Non-Point Source Model
ANSWERS Physical Beasley et al. [11] Areal Nonpoint Source Watershed 

Environment Response Simulation
CREAMS Physical Knisel [74] Chemical Runoff and Erosion from 

Agricultural Management Systems
EMSS Conceptual Vertessey et al. [151], 

Watson et al. [155]
Environmental Management Support System

GUEST Physical Yu et al. [175], Rose et al. [118] Griffith University Erosion System Template
HSPF Conceptual Johanson et al. [65] Hydrologic Simulation Program, Fortran
IHACRES-WQ Empirical/

Conceptual
Jakeman et al. [61–63] Identification of unit hydrographs and 

component flows from Rainfall, Evaporation 
and Streamflow Data—Water Quality

IQQM Conceptual DLWC [33] Integrated Water Quantity and Quality Model
LASCAM Conceptual Viney and Sivalapan [152] LArge Scale Catchment Model
LISEM Physical Takken et al. [141], De Roo and 

Jetten [36]
Limburg Soil Erosion Model

MIKE-11 Physical Hanley et al. [53] MIKE (named partially after the author 
Michael, Mike Abbott)

PERFECT Physical Littleboy et al. [87] Productivity, Erosion, and Runoff, Functions 
to Evaluate Conservation Techniques

SEDNET Empirical/
Conceptual

Prosser et al. [115] Sediment River Network Model

TOPOG Physical CSIRO Land and Water, TOPOG 
Homepage; Gutteridge [29], 
Haskins and Davey [50]

TOPOGraphy

WEPP Physical Laflen et al. [78] Watershed Erosion Prediction Project
EUROSEM Physical Morgan et al. [105] EUROpean Soil Erosion Model
KINEROS Physical Smith [131], Woolhiser et al. [166] KINematic EROsion Simulation
SEDD Empirical Ferro and Porto [43] SEdiment Delivery Distributed
RUNOFF Physical Borah [17] No acronym
WESP Physical Lopes [89] Watershed Erosion Simulation Program
CASC2D-SED Physical Johnson et al. [66] CASCade 2-Dimensional SEDimentation
SEM Physical Storm et al. [140] Soil Erosion and Sediment Transport Model
SHESED Physical Wicks [157] SHE–SEDimentation
EGEM Empirical USDA [148], Woodward [165] Ephemeral Gully Erosion Model
EPIC Empirical Sharpley and Williams [128] Erosion Productivity Impact Calculator
EROSION 2D/3D Physical Schmidt [123,124], Werner [156] National Centre for Earth Resources 

Observation and Science
MOSES Physical http://www.weru.ksu.edu/ftp_site/

moses/moses_man/index.html
MOdular Soil Erosion System

PESERA 
(MESALES)

Physical Kirkby et al. [72] Pan-European Soil Erosion Risk Assessment

WATEM 
(SEDEM)

Conceptual http://www.kuleuven.be/
geography/frg/modelling/
erosion/watemsedemhome/
index.htm

Water and Tillage Erosion Model

(continued)
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TABLE 13.1 (continued) Empirical, Physical, and Conceptual Models Description

Model Acronym Type Reference/Website Model Name Description

CAESAR Physical Coulthard [27] Cellular Automaton Evolutionary Slope And 
River Model

G2 Empirical http://eusoils.jrc.ec.europa.eu/
library/themes/erosion/G2/data.
html

Geoland 2

SLEMSA Empirical Elwell and Stoking [41] Soil Loss Estimation Model for Southern 
Africa

BLM Empirical http://www.blm.gov Bureau of Land Management
EPM Empirical Nearing et al. [107] Erosion Potential Method
FAO Empirical http://www.fao.org Food and Agriculture Organization
PSIAC/ MPSIAC Empirical Pacific Southwest Interagency 

Committee [111]
Pacific Southwest Interagency Committee

HEM Physical Lane et al. [80] Hillslope Erosion Model
Fournier Empirical Fournier [45] Fournier Model
Musgrave Empirical Musgrave [106] Musgrave Model
PEPP Physical Schramm [125] Process-Oriented Erosion Prognosis Program
SHE Physical Abbott et al. [2,3] Système Hydrologique Européen (French 

acronym for ‘European Hydrologic System’)
MULTSED Physical Li et al. [84] MULTiple-watershed SEDiment-routing
OPUS Physical Smith [132] No acronym
ACRU Conceptual Schulze [127] Agricultural Catchments Research Unit
Hydro Physical 

Method (HP)
Empirical Larionov et al. [81] Hydrophysical Method

Scalogram Empirical Cruz [28] Scalogram Model
Carson and Kirkby Empirical Carson and Kirkby [20] Carson and Kirkby Model
AL-Kadhimi Empirical Al Kadhimi [4] AL-Kadhimi Model
Stehlik Empirical Stehlik [138] Stehlik Model
Douglas Empirical Douglas [38] Douglas Model
MMMF Empirical/

Conceptual
Morgan et al. [104], 

De Jong et al. [35]
Modified Morgan, Morgan and Finney

SHETRAN Physical Bathurst et al. [9] European Distributed Basin Flow and 
Transport Modelling System

AGWA Conceptual/
Physical

Burns et al. [19] Automated Geospatial Watershed Assessment

USPED Empirical/
Conceptual

Mitasova [97] Unit Stream Power Erosion Deposition model

THORNES Conceptual/
Empirical

Thornes [145] Thornes model

SPL Empirical/
Conceptual

Barnes and Pelletier [8] Stream Power Law Model

SWRRB/SWAT Conceptual USEPA [149], Arnold et al. [6] Simulator for Water Resources in Rural 
Basins/Soil and Water Assessment Tool

SEAGIS Empirical/
conceptual

DHI [37] Erosion Assessment Tool of MIKE BASIN & 
MILW

MATSALU Conceptual Krysanova et al. [76] No acronym
SWIM Conceptual Krysanova et al. [77] Soil and Water Integrated Model
CHILD Physical Tucker et al. [147] Channel-Hillslope Integrated Landscape 

Development
TOPMODEL Conceptual Beven and Kirkby [14] TOPographic MODEL
SIMWE Physical Mitasova et al. [98] SIMulation of Water Erosion
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S is the slope factor calculated from the proportion of erosion in the existing slope to the one present 
in the control basin (9% slope)

C is the factor of land cover estimated from the proportion of erosion in specific land cover to erosion 
value in the control basin that does not have any cover and is plowed in slope aspect

P is the soil conservation factor calculated from the proportion of erosion in conserved land to the 
erosion in the same land when no conservation is performed (planting is in the slope path)

13.3.2  MUSLe Model

The universal equation of soil erosion (USLE) to estimate soil loss from a piece of land or in a specific 
slope is presented, but with its use, the sediment delivery amount of basins could not be estimated. To 
calculate the sediment amount according to this equation, Williams and Berndt [161] introduced the 
sediment delivery ratio (SDR) coefficient. The SDR depends on drainage and physiographical character-
istics of basins, climatic events, and also land use.

The investigations have shown that the relationship between erosion causes and sediment yield 
amount is not linear and strong. Therefore, due to changes in the estimated SDR and no linear relation-
ship between R and the sediment yield amount, the rainfall factor of the USLE model is replaced with 
the runoff factor and the model has been named MUSLE.

By replacing the rainfall factor by the runoff factor, it is not necessary to use SDR in the universal 
equation any more. In MUSLE model, the role of runoff is important and is practical in calculating 
the annual sediment. This equation, instead of estimation of soil erosion, is presented to estimate the 
sediment delivery in the outlet of a basin and is based on a single thunderstorm. The model formula 
is as follows:

 A Q q KLSCPp= ( )95
0 56

⋅
.  (13.2)

where
A is the sediment delivery amount of an event (kg)
Q is the runoff volume (m3)
qp is the severity or maximum discharge of runoff (m3/s)

13.3.3  rUSLe Model

The RUSLE model has been used increasingly from the 1970s. In 1985, in a meeting, with the presence 
of some researchers of the agriculture ministry of the United States and other researchers of soil erosion, 
it was decided that according to the necessity, the universal equation of soil erosion would be developed 
and after compilations and recommendations, the related dissertation would be revised in 1978.

TABLE 13.1 (continued) Empirical, Physical, and Conceptual Models Description

Model Acronym Type Reference/Website Model Name Description

SEMMED Physical De Jong et al. [35] Soil Erosion Model for Mediterranean Areas
ARMSED Physical Riggins et al. [117] Army Multiple Watershed Storm Water and 

Sediment Runoff
CSEP Physical Kirkby and Cox Climatic Index for Soil Erosion Potential
MEDRUSH 

(MEDALUS)
Physical Kirkby [71] MEdalus Desertification Response Unit SHe

Dendy and Bolton Empirical Dendy and Bolton [32] Dendy and Bolton Model
CORINE Physical EEA [39] COoRdinate INformation on the 

Environment
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The revision was begun in late 1987 and from early 1990s. The USLE model was revised and its 
data were updated and then used to present the erosion estimation model under the name of RUSLE. 
Although the principal form of the universal equation is maintained, the numerical values used in cal-
culating unique indices in the RUSLE equation are changed significantly.

In the following years, some revisions in the model were made; RUSLE 1.05 (1993), RUSLE 1.06 (1998), 
and finally RUSLE 2 (2010) were presented; in the latest version, two characteristics have been improved 
including land covering management and displaying runoff events added to the modeling.

13.3.4  aGNPS Model

The AGNPS model was developed by the US Department of Agriculture, Agricultural Research Service 
(USDA-ARS), Soil Conservation Service (SCS), and Minnesota Pollution Control Agency in the United 
States [174]. The model estimates the runoff quality in basins with areas less than 20,000 ha. The input 
data include basin morphology, land use, and rainfall.

Input parameters for each AGNPS grid cell contain the SCS curve number, land slope, land shape 
factor, field slope length, slope of channel, slope aspect of channel, channel shape, rough coefficient of 
Manning, factor of soil erosion potential, management factor, soil texture, soil fertility, fertilization 
availability factor, gully progress, COD (chemical oxygen demand) factor, and water absorption factor.

The outputs generally include runoff, sediment, nutritious elements, and chemical oxygen demand 
(COD). The hydrological outputs contain runoff volume and peak runoff ratio. The sediment output 
includes sediment yield, sediment density, diffusion, and size of sediment particles. The pollution out-
put includes the nitrogen amount in sediment, nitrogen and phosphorus solved in runoff, phosphorus, 
and organic carbon in sediment.

For simulating erosion and sediment transportation, the universal equation of soil loss is used. In 
previous versions of AGNPS, the USLE equation was utilized; however, recent versions use the RUSLE 
one. This model needs much data and its calculations are complicated comparing empirical models 
defined according to weighting.

13.3.5  aNSWerS Model

The ANSWERS model was developed during middle of the 1980s [102]. The model is a kind of deter-
ministic model and by using distributed factors in a basin and using single-event data, it deals with 
simulation of hydraulic processes.

The model is easily used for small basins. This model was evaluated in two sub-basins in Black Gulf, 
basins in Oklahoma, Ohio, North Carolina, Texas, and also in Iran was determined that evaluation veri-
fies the accuracy of the model. ANSWERS is used for a single event of a basin, and it is able to predict 
maximum flood and the total volume of surface runoff and erosion from rainfall in agricultural basins. 
This model does most of the calculations of erosion and sedimentation.

One of the input parameters includes landform parameters such as soil data, land use, slope, and 
slope aspect [11]. Runoff and erosion simulations are the output parameters [44]. This model calculates 
erosion with empirical equations and uses Yalin’s equation [168] to estimate sediment transportation. 
The limitation is that the model considers erodibility as a constant parameter in time limit.

13.3.6  creaMS Model

The CREAMS model has been developed as a tool to assess the relative effects of agricultural activities 
on the pollution of surface runoff and root zone soil water. Input data in the model include precipitation 
series, monthly air temperature, solar radiation, and soil and crop type data.

The CREAMS model can be operated in both continuous and single-event forms, and it is assumed 
that land use and soil topography are steady wherever it is used. The process of rain runoff is similar to 



Flow and Sediment Transport Modeling in Rivers 241

the SCS curve number. The erosion factor is based on the USLE model but in this model, the sediment 
transportation capacity of subsurface flows has also been considered.

In this model, the slope in each unit is hypothetically fixed. With reference to the continuous equa-
tion, the sediment transportation flow is assumed a steady-state continuity equation. In addition, the 
model can calculate sediment yield by gully erosion. This model is usable for basins of about 40 ha area 
though it could be used for up to 400 ha scale. It shows erosion completely variable as one of the most 
important aspects of the model. One of the model shortages is that the basin shape has been assumed 
uniform in topography and land use aspects, which is an unreal assumption.

13.3.7  eMSS Model

The environmental management support system (EMSS) is a software designed for helping in water 
quality management in the basins located in eastern south Queensland in Australia. This system has 
been developed in the Cooperative Research Centre for Catchment Hydrology (CRCCH) [156]. Input 
data include the GIS layer of each subcatchment boundary, land use, rainfall, and daily potential 
evapotranspiration.

The output contains daily runoff, daily loads of total suspended sediment, and total nitrogen and 
phosphorous predicted for every subcatchment [151]. This model almost has a low complexity but esti-
mates runoff and pollution transportation well [25]. Considering model structure, its modules can be 
added or deleted only in-case. However, although it was developed in eastern south Queensland in 
Australia, it seems inflexible for other regions.

13.3.8  GUeST Model

The GUEST model was introduced in 1983 by Rose, and then Rose and Misra developed it in 1992. 
GUEST is a physicomathematic model and is profitable for predictions of factors such as potential ero-
sion and its changes, density of sediment, runoff and rainfall, gully and mass erosion in time limit.

GUEST is a single-event model, and its estimation is based on physical characteristics of soil. By 
measuring these cases, the parameters can be estimated [96].

Input data of the GUEST model include the following:

• Geometry that includes length, width, slope, and compactness of rill.
• Sediment characteristics include sediment density, size distribution of soil particles, and deposi-

tion velocity characteristics.
• Rough characteristics contain Manning roughness.
• Erodibility parameter factor.
• Hydrologic characteristics include effective runoff and total runoff sum.

The output includes the following:
Soil erosion value, estimation of soil loss in interval time for the locations where their soil erosion 

is not measured, and available hydrologic data are the parameters such as runoff severity or rainfall 
severity.

13.3.9  HSPf Model

This model has been developed based on the 1960s Stanford Watershed Model for the simulation of 
watershed hydrology and water quality (nitrogen, phosphorous, suspended sediment, and other toxic 
organic or inorganic pollutants) [154]. The model is practical in catchment scale and the basins are 
divided into homogenous sections. The model calculates quality and quantity of water for each land use.

The model inputs include rainfall, evaporation, air and water temperature, solar radiation, sedi-
ment grain size distribution, point source discharge volume, and water quality data, which should be 
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calibrated [24]. These data are necessary for all of the subcatchments. The model is able to simulate great 
limitations of water elements. The output includes runoff, flow rate, sediment load, and nutrient concen-
trations in a time limit. One of the limitations of the model is that its parameters depend on calibration 
too much [154].

13.3.10  IHacreS-WQ Model

The IHACRES-WQ model contains the rainfall runoff model of the IHACRES and STARS model. The 
input data include time series data for streamflow, rainfall and depending on IHACRES versions, also 
include temperature or evapotranspiration. The model predicts daily streamflow, while the STARS 
model can be used to predict downstream suspended sediment concentration. The IHACRES-WQ 
model needs a little input data approximately and local distribution of input data does not need calibra-
tion. However, the parameter values should be calibrated with observed data or inferred from regional-
ization of similar catchments.

13.3.11  IQQM

The Integrated Water Quantity and Quality Model (IQQM) is a largely conceptual model developed by 
the NSW Department of Land and Water Conservation in Australia. This model is designed for use in 
water resources management in river scale [34]. Minimum necessary input data to run IQQM include 
catchment areas and slope, river system configuration, daily rainfall, daily evaporation, daily stream-
flow, storage characteristics, diversion points, and design of water use. The applied rainfall–runoff mod-
ule in the IQQM is the Sacramento model, which was developed by the US National Weather Service 
and the California Department of Water Resources. The model uses many parameters and each of the 
IQQM modules need many parameters, which should be calibrated, and this is one of the difficulties. 
For example, QUAL2E needs more than 100 input data.

13.3.12  LaScaM Model

LASCAM is a salt and water balance model including sediment generation and hydrology modeling 
algorithms at a catchment scale [190]. Hydrologic model input data contain daily rainfall distribution, 
evaporation pan, and land use information. Topographic data for defining subcatchment and stream 
networks are needed, and to calibrate sediment components, sediment load records in catchment are 
necessary.

Nutrient components include 29 parameters, of which respectively 11 and 18 parameters are related 
to phosphorous and nitrogen; most of them are observed values. The output for hydrology model con-
tains surface and subsurface runoff, actual evaporation, recharge to the permanent groundwater table, 
baseflow, and measuring soil moisture and salt outflows. The LASCAM model considers water quantity, 
salt mobilization, and transport and also uses USLE to predict sediment generation.

13.3.13  LISeM Model

This model has been adapted with Geographic Information System (GIS) by Dorsen and Koach. 
ANSWERS [10] and SWATRER [13] models are the base of the LISEM model. During 1998–2000, as 
a common project between China and the Netherlands, erosion in loss conservational programs of 
China was measured based on this model and Hessel [55] published the conclusions. At the same time 
(1998–1999 duration), other regions of the world evaluated this model.

LISEM is one of the first physical models of soil erosion that has been adapted with the geographic 
system. It means the input and output of the model are usable in the geographic information system 
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format. The studied processes in the model include rainfall, interception, pothole, infiltration, 
 surface flows, channel flow, erosion due to rain, erosion due to surface flows, and flow transporta-
tion capacity.

Input maps in the LISEM model contain maps of basin, covering, soil surface, soil permeability, and 
maps of channel and climatic information. The model outputs are total rainfall information, total dis-
charge, maximum discharge, and total soil loss, a map with “asc” format with hydrograph curves and 
maps of soil erosion and sediment in each rainfall with the PCRaster format.

13.3.14  MIKe-11 Model

MIKE-11 is a software system used in water quality modeling developed by the Danish Hydrology 
Institute (DHI) [37]. Main modules of this model include rainfall–runoff component, hydrologic mod-
ule, water quality module, and sediment transportation module. This model simulates unsteady flow in 
one dimension.

13.3.15  PerfecT Model

The PERFECT model was developed by the Queensland Department of Primary Industries (Land 
Management Branch and Queensland Wheat Research Institute) and the QDPI/CSIRO Agricultural 
Production System Research Unit [87]. This model was made to solve such problems as soil management 
analysis like tillage or fallow management strategies.

The model is designed to predict runoff, erosion, and crop yield for some management components 
such as planting succession, harvesting, and stubble management in fallow duration of dry farming in 
Australia [88]. Model inputs include daily climatic data, soil parameters, cropping sequence criteria (i.e., 
crop type and length of fallow), growth parameters, and fallow management.

The necessary climatic parameters contain daily rainfall, pan evaporation, temperature, and evapo-
ration. This model predicts water balance, erosion, and crop growth on a daily time step. The simulated 
erosion in the model is with the use of the MUSLE model. However, losses of nitrogen in the surface of 
soil are simulated by the CREAMS model.

Littleboy et al. [87] showed that the PERFECT model is more reliable than CREAMS according to 
77%–89% changes in the daily runoff volume. The authors indicated considering crop covering, surface 
runoff, and soil evaporation impacts, the PERFECT model is a suitable model to analyze runoff com-
pared with the CREAMS model. Littleboy et al. [86] pointed out that this model is not designed for using 
beyond the north east of Australia, and it is recommended that the model should be calibrated before 
using the it for another region.

13.3.16  SedNet Model

SedNet is a steady-state model utilized to estimate sediment yield generation and deposition from hill-
slopes, gullies, and riverbanks in a river network [114]. It needs the digital elevation model (DEM) for 
defining river network for input data and the model calculates topography of the basin by using it. The 
hillslope model requires a grid of mean annual rainfall, soil erodibility, crop management factors, slope, 
slope length, and management practices.

The gulley erosion model needs a network of gulley density and characteristics explanation. SedNet 
links to GIS and sediment local pattern in stream is the output. This model has been developed specially 
on continental scale for the Australian continent. The model needs many parameters and it is difficult 
to gain most of them for a basin. Compared with other grid-based models such as LISEM and AGNPS, 
this is an easier tool in showing processes.
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13.3.17  TOPOG Model

This model is used to simulate water, carbon, solutes, and sediment balance of catchments [110]. Input 
data include topography, climate, and soil and plant information [49]. Output of the model includes 
water fluxes, conservative solutes, and sediment.

TOPOG contains two rainfall–runoff modules: steady-state water balance model (TOPOG-Simuli) 
and dynamic water balance modeling program (Topog-dynamic), which are able to simulate in every 
daily and subdaily time step. The TOPOG model is used to predict local distribution of erosion haz-
ard, earthquake risk indices, and dynamic balance between soil, plant, and atmosphere systems in a 
catchment.

13.3.18  WePP Model

WEPP is a physical-based model and is designed by USDA-NSCS, USDA-FS, USDA-BLM, and other 
organizations in environmental planning and water and soil conservation in United States [78]. The 
model parameters are changed with time and locality and simulate erosion and sediment in each time 
and locality unit in a catchment, including slopes of hill, channel, and catchment.

These channels can be from simple and uniform to very complicated. The WEPP model has the capa-
bility of erosion in a widespread region and it is possible that this region has no financial reason for ero-
sion estimation. WEPP is a continuous model that could be utilized for single events.

Because this model is designed to estimate erosion in a continuous time, it needs much information 
comparing single-event studies. For example, if soil management changes would be investigated, at least 
100 input data for this model are required. This model is created to recognize and study mechanisms 
of erosion control made by water. The model does not calculate erosion, transportation, and sediment 
processes in steady channels such as gullies and perennial streams.

In this model, rill and interill erosions are studied. The WEPP model input data include information 
on climate, soil freezing, snow aggregation and melting, hydraulic infiltration of surface flow, water 
level, plant growth, decomposition of the residual plant left over, stability, erosion, and sediment. The 
model output includes pure erosion or sediment, erosion or sediment in rills, erosion and sediment in 
interill, and sediment density.

The main output indicates runoff and a summary from erosion on daily or monthly scale. One of the 
WEPP difficulties is that many parameters of the model should be calibrated with observed data, and 
gulley erosion is not considered as another problem.

Generally, the abilities of the WEPP model can be summarized in the following cases:

 1. This model divides total basin rill and interill erosions.
 2. The model considers rainfall more than other models since runoff map is important in soil 

erosion.
 3. This model can be used in agriculture basins with 1–2000 ac area.
 4. This model cannot be used for regions with a channel or river, because the model cannot simulate 

the processes that happen there.

13.3.19  eUrOSeM Model

EUROSEM [105] is a comprehensive single-event model for prediction of runoff and water erosion of 
farmland soil or small hydrological catchment. This model is a result of 25 scientists’ attempts from 
10 European countries. The model can be used for assessment of erosion danger and the methods of 
water and soil conservation. EUROSEM is a physicomathematical model based on erosion process.

The role of the erosion process in creating this model is in division of raindrops by land covering two 
sections. The first one passes the plant and reaches bare ground (throughfall). The latter one reaches 
the plant and creates interception storage, which finally reaches ground level in two ways including 
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interception storage and leaf drainage. Kinematic energy of interception storage drops and throughfall 
makes soil particles separated.

A section of rain reaches surface ground, infiltrates soil, and the left over fills surface holes. After 
that, runoff flows on surface soil, subsequently soil erosion follows. Soil particles can be changed to sedi-
ment and the equilibrium between these two-autonomy processes estimates erosion load. This model is 
designed to correct some problems of the universal model.

The first problem of the universal model is erosion estimation during 1 year, which should be changed 
to single event in this model. To investigate a single event, the erosion models need a series of equations 
and physical models. This model uses 1 min time steps to simulate and investigate. The studied basin is 
divided into a series of homogenous sheets and the data are gained from them.

The main problem of this model is the large numbers of input parameters. The EUROSEM model is 
not completely a distributional model and has a problem in studying big gullies. This model is designed 
for simulation of erosion, sediment transportation, and deposition made by rill and interill processes. 
Application scale of the model includes small farmlands and basins. EUROSEM simulates total runoff 
volume, total soil loss, hydrograph, and sediment graph of each event.

13.3.20  KINerOS Model

The kinematic wave theory has been used for estimation of runoff in channels and basins from 1970. 
Although this method needs simple assumptions in theoretical aspects, its hydraulic characteristics are 
introduced and confirmed well. This model has been studied many times in various regions. The kine-
matic wave theory was used by Rovey et al. [119] as a network of channels and flat levels in a computer 
model named KINGEN, and then some corrections were done on infiltration section, regarding basin 
element, erosion, and sediment transportation estimation and finally the model was named KINEROS.

This model can show basin function in each event and can be used for different types of small basins, 
such as agricultural, natural, and municipal basins. In this model, utilizing Horton mechanism that 
rain intensity is more than infiltration capacity, runoff could be made. Therefore, it is not suitable for 
basins with a high flow.

In this model, differential equations indicating flow into the channel, erosion, and sediment trans-
portation are solved by finite movement. KINEROS is a physical model and is based on physics prin-
ciples such as conservation of mass and kinematic energy. In addition, KINEROS is a distributed model, 
which means that the model shows basin and channel network in a collection. Also, this model is 
stochastic; in the other words, in wet and rainy situations, it calculates surface runoff and erosion due 
to a thunderstorm.

The KINEROS model components include infiltration, infiltration at the end of rain, surface flow of 
Horton, flow in channels, flow in the storage, erosion and sediment transportation, channel erosion, 
sediment transportation, and sedimentation in basins.

13.3.21  SeDD Model

SEDD is an empirical model, based on the USLE model, suggested by Ferro and Porto [43]. The Monte 
Carlo technique was used to test uncertainty in parameters of sediment yield model. Biesemans et al. 
[15] did the same study on RUSLE.

13.3.22  rUNOff Model

Sediment transportation component of RUNOFF [17] computes soil erosion and sediment routes in 
downstream. The model has two parameters: flow detachment coefficient, which should be calibrated by 
observed data, and raindrop detachment coefficient, which is fixed. Though the model simulates sedi-
ment discharge reasonably, some parameters should be considered fixed in time scale.
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13.3.23  WeSP Model

The WESP model calculates sediment transportation by a one-dimensional continuity equation as the 
physical base and is usable for small watersheds [108].

In this model, erosion and sediment happen simultaneously. Santos et al. [122] corrected the WESP 
model for large watersheds. In this correction, instead of the simultaneous concept of erosion and sedi-
ment in the original WESP model, it calculates sediment transportation using overland flow and con-
sidering the difference between amounts of erosion and deposition.

13.3.24  caSc2D-SeD Model

The model has a physical base and has been introduced by Johnson et al. [65]. This model investigates 
runoff flow using two-dimensional continuous equations. In a section of upland erosion, transportation 
capacity was corrected utilizing regression equations by Kilinc and Richardson [67]. Despite runoff 
hydrographs computed reasonably well, sedigraphs cannot simulate appropriately. The sediment yield 
was found within a range of 50%–200%.

13.3.25  SeM Model

SEM is a mixture of the SHE modeling system [2,3]. This model simulates spatial and temporal changes 
of soil erosion. The splash detached soil particles are transported by overland flow. The overland flow has 
a detachment potential called flow entrainment equivalent to flow transportation capacity.

The net erosion or deposition is calculated by the difference between the sediment load entering and 
leaving each grid in the catchment. Two parameters including soil erodibility and flow entrainment 
should be calibrated in this model.

13.3.26  SHeSeD Model

SHESED is a hydrologic and sediment transportation model of SHE [2]. SHESED considers erosion as 
the sum of erosion by raindrop and leaf drip impacts. Storm et al. [140] presented the erosion due to 
raindrops in a theoretical equation. In SHESED, overland flow and sediment transportation are based 
on the equation of conservation of mass in two dimensions. In this model, gulley erosion, mass move-
ment, channel bank erosion, and erosion in frozen soil are not considered.

13.3.27  eGeM Model

There are a few models to estimate gulley erosion (e.g., WEPP and CREAMS). The EGEM model is cre-
ated specially to estimate soil loss by gulley erosion. EGEM has a suitable potential for estimation of 
gulley erosion. Considering the importance of gulley erosion, only some physical models are developed 
for its estimation.

EGEM contains two components: hydrology and erosion. The model calculates gulley erosion in 
annual average or single storm. Using EGEM, the length and width of gulley can be measured. Some 
input parameters include drainage area, slope percentage of basin, curve number, soil class, erosion 
potential factor, critical shearstress, maximum depth of gulley, bulk density, particle diameter, rainfall 
distribution, 24-year rain depth, and plow practices [165].

13.3.28  ePIc Model

EPIC is a simulative model studying long period effects of various components of soil erosion on 
crop yield [162].
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EPIC is a general model and soil erosion impact on yield in 66 different countries in Asia, South 
America, and Europe is investigated by using this model. This model has several components such as soil 
erosion, economic component, hydrologic component, climate, nutrition, growth, and crop management.

This model needs GIS layer of GRASS including information for series of soil and climate. This infor-
mation should be in a text file. Recently, there have been many management files for EPIC. The model 
provides output on crop yields, economics of fertilizer use, and crop values.

13.3.29  erOSION 2D/3D Model

The EROSION 2D/3D is a model calculating runoff due to soil erosion and sediment in one slope (2D) 
and small watersheds (3D).

The model is developed to predict soil erosion and also to program of conservation and evaluation. 
Considering the user need, the model calculates runoff production, the amount of particles separated 
due to rain and runoff, transportation of separated particles by runoff, and the direction of runoff and 
sediment using basin and sediment process.

Input data of the model could be divided to three main groups: parameters of topography, surface 
soil, and rainfall including

• Topography parameters: Digital Elevation Model (DEM)
• Parameters of surface soil: texture, bulk density, organic matter content, initial moisture of soil, 

manning’s roughness coefficient, resistance to erosion, canopy cover, infiltration correction factor
• Precipitation parameters: rainfall intensity and duration

Output data contains

• Runoff, sediment discharge, grain size distribution of the transported sediment, net erosion

13.3.30  MOSeS Model

MOSES is a tool for estimating wind and water erosion and was designed by the NRCS personnel of 
the United States in October 2000. MOSES progressively utilizes universal revision equation of soil loss 
(RUSLE 2) and wind erosion prediction system (WEPS) and estimates wind and water erosions.

13.3.31  PeSera Model

The PESERA model has a physical base [89], and using a model with a spatial distributed base, it predicts 
quantifying soil erosion throughout Europe. Also using this model, tillage and wind erosion could be 
predicted. This model as a diagnostic tool is a replacement for existing methods such as the universal 
equation of soil erosion (USLE), which was hardly suitable for Europe situations.

Input data of the model includes topography, climate, soil, and land covering data.

13.3.32  WaTeM Model

WATEM is a spatially distributed model presented to estimate erosion and sediment due to water and 
tillage practices in two dimensions. In spite of many dynamic complicated models (such as WEPP or 
EUROSEM), the WATEM model concentrates on local variables and barely on time variables. To avoid 
the main difficulties related to values and the spatial values and uncertainty in parameters estimation, 
WATEM is an easy topography-based model.

Water components in this model are achieved from the universal revision equation (RUSLE). Tillage 
components use an emission equation to describe tillage processes (tillage p coefficient or ktil-value).

WATEM could be used in prediction of water erosion, soil erosion due to tillage, and determining 
agricultural regions having erosion potential.
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13.3.33  caeSar Model

CAESAR is a two-dimensional sediment transportation model. This model can simulate morphological 
changes in basins during a multithousand year period. CAESAR is one of the Cellular Fluvial models 
named for reduced complexity too.

Cellar characteristics of CAESAR model include elevation, water discharge depth, land covering, 
depth of bedrock, and particles size. CAESAR uses hourly rainfall data as hydrological model input [14].

13.3.34  G2 Model

G2 is a new empirical model in erosion estimation and is designed with the cooperation of JRC/IES and 
Aristotle University in Europe. G2 predicts soil loss (ton/ha) utilizing monthly calculation of rill and 
interill erosions in landscape scale.

G2 uses standardized input data, universal and European databases such as Europe Soil Database 
(ESDB), topsoil organic carbon (TOC), and satellite images of SPOT and ASTER as DEM. This makes 
1:500,000 scale (MMU = 10 ha) usable throughout Europe. G2 uses the USLE model and needs calibra-
tion for erosion potential due to rain. This model calculates rill and interill erosion. The advantages of 
this model are its simplicity and needing less data.

13.3.35  SLeMSa Model

This model was presented for the southern regions of Africa by Elwell and Stoking in 1982 [41]. In fact, 
it is a correction on the USLE model to adjust it for agro-climatic conditions of southern Africa. This 
model is proposed for countries having a severe need for conservational actions but do not have finan-
cial and research facilities.

This model is used for prediction of annual average erosion of surface soil on the lands with agri-
culture potential between two contour lines. The SLEMSA model, in addition to combining main and 
simple data together, emphasizes some environment relationships specially land covering, rainfall, and 
erodibility.

13.3.36  BLM Model

This method was designed by the land management office of the United States and is based on evaluation 
of seven factors:

 1. Soil movement (by wind, water, gravity force, etc.)
 2. Existence of crop residue cover in soil surface
 3. Conditions of stones (mainly in distribution aspect)
 4. Firm stone particles
 5. Existence of rill erosion
 6. Channel form
 7. Existence of gulley erosion

Although the evaluation is quantitative in this method, final results are presented qualitatively. 
Therefore, the BLM model is a qualitative way to assess soil erosion conditions.

13.3.37  ePM Model

This method by using erosion plats information and sediment measurement during 40 years of experi-
ment in Yugoslavia was designed and as the first time, was presented by Gavrilovic [47] through an 
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international conference of river regime (1988). Utilizing this model, in addition of erosion severity 
estimation, sediment transportation in rivers could be estimated and also has appropriate application 
in rivers not having hydrometrics and sedimentary data.

Generally, the EPM method is used for the prediction of three parameters:

 1. Erosion severity and net erosion
 2. Sediment potential coefficient
 3. Net sediment discharge and total sediment discharge

13.3.38  faO Model

In this model, soil erosion estimation is based on investigation and evaluation of six effective factors on 
soil erosion and sediment yield in basin. The relationship between soil erosion and effective factors is 
as follows:

 S f A B C D E F= ( ), , , , ,  (13.3)

where
S is the soil erosion severity
E is the superficial geology
B is the soil
C is the relief and slope
D is the soil covering
A is the land use manner
F is the current condition of erosion in basin

The presented factors in the FAO model are very similar to the PSIAC model. In fact, A is the surface 
geology, B the soil, C topography, D soil covering, E land-use manner, and F is the current condition of 
erosion in the PSIAC method.

Finally, each of these factors is scored according to severity and its effect on soil erosion. The score of 
each factor is shown in Table 13.2.

After scoring all of the factors in hydrologic units or land units, soil erosion severity is identified using 
the score’s sum and is categorized in six classes. The classification is presented in Table 13.3.

The FAO model is approximately similar to the PSIAC model but PSIAC is more practical and com-
plicated, since it considers nine factors in soil erosion (FAO considers six factors) and it can present 
quantitative and qualitative descriptions (FAO method presents only quantitative description).

TABLE 13.2 Quality Evaluation of FAO Soil 
Erosion Model

Factor Erosion Severity Score

Geology 1–18
Soil 1–16
Relief and slope 1–16
Soil covering 1–20
Land use 0–15
Current condition of erosion 0–15
Total 4–100
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13.3.39  PSIac and MPSIac Models

This model was presented to predict soil erosion in the basins without stations of sediment measurement 
in arid and semiarid regions in 1968. In this model, nine different factors are considered for sediment 
calculation. The factors include the following:

 1. Surface geology
 2. Soil
 3. Climate
 4. Runoff
 5. Relief
 6. Soil covering
 7. Land use
 8. Upland erosion
 9. River bank erosion

Each of these factors has a specific limit of impact score. Finally, the number achieved from adding the 
nine factors identifies sediment yield degree for that sub-basin. Net sediment and net erosion could be 
calculated according to the degree. For this reason, in 1982, the model was reconsidered and one for-
mula was regarded for each of the nine factors so that the calculated values would be close to real ones.

13.3.40  HeM Model

HEM is a limitative and distributional model in thunderstorm scale in arid and semiarid pastures pre-
sented in the US basin research center by Lane et al. [80]. The model is applied based on the mathematical 
relationship among sediment and runoff volume, slope characteristics, and soil erosion potential factor. 
This model estimates erosion and sediment yield in a specific slope and in the scale of a thunderstorm.

HEM is based on a solution of kinematic wave equations for continuous equations of surface flow and 
runoff in a slope profile and for one runoff event. The model evaluates rill erosion, interill erosion, and 
sediment transportation and deposition processes. Input information includes runoff volume in area 
unit (mm), soil texture, and basin characteristics, including slope in percentage, slope length in meter, 
land covering percentage, and ground covering percentage.

HEM application studies are limited in the world and need specific conditions to use. Cogle et al. [26] 
evaluated HEM efficiency in India, Australia, and New Zealand. Conclusion of studies showed that this 
model does not need calibration in New Zealand region and presents suitable estimation in 15.6% slope 
with the model proposed amount for soil erosion potential. However, the erodibility volume in India 
and Australia was calibrated to improve model estimations.

Sadeghi et al. [121] in Iran evaluated HEM model efficiency only in pasturage plats with 9% slope in 
the Khasbian region, Arak province. For this reason, data related to 11 thunderstorm events was used. 

TABLE 13.3 Soil Erosion Class and Soil Conservation in the FAO Model

Erosion 
Class Score Modification Practice

I 0–8 Current activities are acceptable.
II 9–20 Reconsideration in land management way with some modification practices.
III 21–40 Reconsideration in land management way should be added to modification practices.
IV 41–65 Widespread and comprehensive changes in land management, general application of 

modification practices, and construction.
V 66–85 Comprehensive activities in land limitation field, ownership estimation, widespread 

construction activities.
VI +86 Restriction in land ownership and maximum modification practices.
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The researchers indicated that there is a significant difference between observed and predicted values 
without calibration, and these two values are close when soil erosion potential factor is calibrated.

They also studied different kinds of regression in normal situations and changed data, and introduced 
significant relationship between observed and predicted values with calibrated soil erosion potential 
factor (equivalent 1.1) using fourth-degree polynomial relationship.

13.3.41  fournier Model

Fournier presented two different methods to predict sediment in a basin:
The first Fournier’s method for estimation of sediment in a basin is as follows:
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where
QS is the net sediment (ton/km2/year)
Pw is the average rainfall in a month of a year having the most rain depth (mm)
Pa is the annual average rainfall (mm)
h is the average elevation of basin (m)
S is the average slope (degree) (average slope percentage of basin could be used instead of tan S)

The second Fournier’s method to predict sediment in a basin is as follows:
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All these factors are the same in the previous formula except S, which indicates basin area in km2.
The Fournier method does not consider the erosion potential of a basin. Therefore, if two regions have 

similar factors in the formula but are different in conditions of geology, soil science, and land covering, 
sediment amounts will be evaluated similarly.

Fournier and Douglas models approximately predict erosion in the same way, and both of them make 
a relationship between some parameters and erosion amount to estimate erosion. Using these models 
however facilitates estimation; because of the simplicity and low numbers of parameters, the results are 
severely narrow and could be used in specific regions, because the selective parameters do not have high 
importance, variation, and impact.

13.3.42  Musgrave Model

Musgrave [106], studying and measuring erosion due to 40,000 thunderstorms in the United States, 
presented a formula to estimate sheet erosion severity as follows:

 E I R S L P= ⋅ ⋅ ⋅ ⋅1 35 0 35
30
1 73. . .  (13.6)

where
E is the soil erosion (in./ac)
I is the soil erosion potential (in.)
R is the soil covering factor
S is the slope (%)
L is the slope length of basin (ft)
P30 is the maximum 30 min rain in 2 years (in.)
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13.3.43  PePP Model

PEPP was developed by Schramm [125] and Gerlinger [48]. In this model, runoff, erosion, and sedi-
ment for rill and sheet erosions are calculated. This model can also predict Phosphorous loss amounts. 
For surface runoff modeling, moving wave method is considered in unsteady flow processes. To solve 
movement equation, Particle loss energy is calculated by Manning–Strickler formula. Input data include 
slope, climate, and soil data.

13.3.44  SHe Model

SHE is a spatial hydrologic model developed by Britain Hydrology Institute, Denmark Hydrologic 
Institute, and France SOGREAH [2,3]. Using basins of orthogonal network, the spatial distribution is 
achieved.

13.3.45  MULTSeD Model

MULTSED was developed in Colorado University in the late 1970s [84]. From that time, some changes 
have been made [129]. Sediment transportation capacity for bed load and suspended load was calcu-
lated, respectively, by Meyer-Peter and Müller [93] and Einstein [40].

13.3.46  OPUS Model

OPUS [132,133] by using CREAMS [74] was developed to simulate single-event and multievent runoff 
and the processes of water flow and nutrition movement. All hydraulic processes of soil are calculated in 
one dimension and vertically. In surface soil, such processes as runoff and surface erosion are calculated 
in one dimension and the slope direction. As a result, the soil surface is divided into several sections and 
erosion rate is calculated for each of them.

OPUS is a computer model for materials transportation in surface soil and water in a small basin. This 
model is a simulative tool for pollution studies. OPUS simulates water movement using rainfall, crop, 
topography data, and other management activities of water use. The model contains such models as 
plant growth; water use; nutrition; cycle of nitrogen, phosphorous, and carbon in soil; and transporta-
tion of absorbed pesticides, runoff, and erosion.

13.3.47  acrU Model

Initial studies of the ACRU model were done in 1970 by using hydrological basins relying on evapotrans-
piration in Natal Drakensberg [126]. Input data of this model include daily rainfall, daily or monthly 
evaporation, and soils and land-use parameters. The output includes simulated streamflows, sediment 
and crop yield, and reservoir yield analysis.

13.3.48  Hydro-Physical Model

Hydro-physical model is utilized to recognize relative sediment yield of hydrological units or differ-
ent sub-basins of a basin. The base of this method is comparing hydrophysical conditions of hydro-
logical units or various sub-basins of a basin and its relationship with sediment yield potential in 
basin regions.

In this model, first of all comparative sediment yield (CSY) is calculated for all hydrological units or 
sub-basins. Then using the results, sediment yield percentage of each hydrologic unit in proportion to 
sediment yield potential of total basin is calculated. Relative coefficient of sediment yield is also calcu-
lated as follows:
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 CSY = ( )a R E V P⋅ ⋅ ⋅  (13.7)

where
a is the area factor
R is the topography or slope factor
E is the erosion potential factor
P is the annual average rainfall (mm)

After CSY calculation in each hydrologic unit or sub-basin, the sum or total CSY of basin is achieved. 
Therefore, sediment yield percentage of each hydrologic unit in proportion to sediment yield potential 
of total basin could be calculated as Equation 13.8:

 
SY

CSY hydrologic unit

Total basins CSY
= ×100  (13.8)

In general, use of the hydro-physical model just estimates the sediment yield percentage of each hydro-
logic unit in proportion to the sediment yield potential of the total basin. So the sediment amount can-
not be estimated.

13.3.49  Scalogram Model

This model is designed for basins that do not have data and necessary parameters to predict basin ero-
sion situations including land slope, bed stone kind, texture and structure of soil, land covering (plant, 
residual plant cover, and stone), human management, and existing erosion.

Using this model, erosion potential could be evaluated as a number related to erosion factors. The 
impacts of different factors of erosion potential in each region could also be evaluated with the use of 
the scalogram model.

13.3.50  carson and Kirkby Model

Empirical and simple method to estimate basin sediment uses annual runoff and slope conditions of 
the basin and Equation 13.9:

 Q QS w
z= 0 017. tanθ  (13.9)

where
QS is the annual net sediment (kg/m2)
Qw is the annual runoff depth (m)
θ the slope degree
z the region coefficient

13.3.51  aL-Kadhimi Model

The AL-kadhimi model connects soil erosion index with the sediment yield in a basin. This index is 
identified by five factors of rainfall erosion (R) (Fournier factor), soil erosion potential (St), slope (Sl), 
covering type (C), and soil disassembling due to plow and furrow (D).

Each of the factors has five classes and a limit of scores. Soil erosion potential index is calculated by 
multiplying the five factors, and if this index were increased, soil erosion would be increased too.
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13.3.52  Stehlik Model

Stehlik [138] was investigated in Czechoslovakia and is used for prediction of annual soil erosion:

 X D G P S L O= · ·     (13.10)

where
X is the annual average of soil loss (mm/year)
D is the climate coefficient
G is the soil texture and permeability coefficient
P is the soil erodibility coefficient
S is the slope coefficient
L is the slope length coefficient
O is the land covering coefficient

The Stehlik model is sensitive on land slope degree, and rainfall coefficient and soil erosion potential 
are respectively more and less important for it. Therefore, this method is mostly useful for agricultural 
regions with a finite area.

13.3.53  Douglas Model

The Douglas model [38] was designed in Queensland, Australia. In this model, such factors as soil 
moisture, basin morphology, petrology, and ground surface roughness are considered. Equation 13.11 
explains the Douglas model:
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where
SS is the sediment yield (ton/km2/year)
Qw is the annual runoff depth (m)
R/L is the height to length of basin (ft/mile)
dd is the drainage network density (ft/mile2)

The second equation is as follows:

 
log . . log . . logE

q

P
R Dn n= − −









 + +0 841 2 704 5 6 2 967

2

 (13.12)

where
E is the specific sediment amount (ton/km2/year)
q is the average rainfall in the most humid month of year (mm)
Rn is the junction coefficient (junction ratio) in each sub-basin
Dn is the channel density of each sub-basin (km/km2)
P is the annual rainfall (mm)

13.3.54  Morgan, Morgan, and finney Model

Morgan et al. [104] proposed a model that could be used for prediction of soil loss in the slopes or farm-
lands. In this manner, in addition of soil erosion universal equation simplicity, new concepts are used 
achieved from the model.
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In this model, results of geomorphology and agriculture engineering studies are utilized, and the ero-
sion process is divided into two phases, water phase and sediment phase. To use it, 15 parameters and 
6 equations are necessary. The sediment phase is the same simple scheme of Meyer and Wischmeier [94] 
in which soil particle separation due to raindrops or water movement is disregarded.

Therefore, two equations in sediment phase are used including particles separation because of rain 
and the other equation, transportation capacity of surface flow. The required data in these equations, 
including rain energy and runoff volume, form water phase as the first phase.

13.3.55  SHeTraN Model

SHETRAN [9,158] is a physically based model with spatial distribution. Erosion and sediment yield of 
the existing European distributed hydrological modeling system (SHE) is usable for catchment scale. 
For hill slopes represented spatially by the SHE grid square network, SHETRAN models soil erosion by 
effects of raindrop, leaf drip, and sheet overland flow (disregarding rilling) and also models transported 
materials by overland flow. In the channels, it is assumed that the flow can carry any load of fine sedi-
ments (the diameter less than 0.062 mm) but will happen for coarser load sediments (limitation) [7].

13.3.56  aGWa Model

AGWA is a versatile hydrologic analysis model that it has been used in watershed, water resource, land 
use, and biological resource management for the studies in watershed and basin scales. AGWA is in 
relation with GIS, which is jointly developed by the US Environmental Protection Agency, USDA, and 
the University of Arizona, and it takes advantage of SWAT and KINEROS2 to estimate runoff, sediment 
yield, and additional nitrogen and phosphorus in different temporal and spatial scales. The minimum 
data requirement in AGWA is digital elevation models (DEMs), land cover grids, soil data, and precipi-
tation. AGWA is has been developed to be as an extension of the ESRI Institute’s software including 
ArcView versions 3.x and the software package of geographic information system (GIS).

13.3.57  USPeD Model

USPED [99] is a simple model that estimates rates of spatial distribution of erosion and deposition for a 
steady-state overland flow. The model works based on the concept proposed by Moore and Burch [101] 
with lots of improvements. The USPED model is an empirical model to identify erosion and deposition 
areas in catchment scale. Recent estimations have showed that the USPED model with the new high-
resolution DEM (2 m grid) can successfully identify erosion-prone hotspots in catchments. These loca-
tions were similar to those spots that farmers observed.

13.3.58  THOrNeS Model

Erosion models must organize energy (overland flow and slope), resistance (soil erodibility), and protec-
tion (plant covering) together in a physical and simple way. After checking the competition between 
vegetation growth and soil erosion capability, Thornes [144,145] presented a conceptual erosion model 
by combining sediment transportation and soil cover. This model includes hydrological parts based on 
a storage type analogy, sediment transportation component, and plant growth component [146]. When 
Kirkby et al. modeled the competitive behavior of plant covering and erosion, they indicated that by 
increasing plant covering, erosion will be decreased exponentially [71].

13.3.59  SPL Model

SPL has been designed for fluvial erosion while erosion is in proportion to the river slope and discharge. 
From a geological perspective, a change in discharge rate leads to a change in river slope to achieve 
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equilibrium between uplift and erosion. The model predicts the erosion rate of river bed by using empir-
ical equations.

This model combines equations describing conservation of water mass and momentum in streams 
with relations for channel hydraulic geometry (width-discharge scaling) and basin hydrology (dis-
charge-area scaling) and an assumed dependency of erosion rate on either unit stream power or shear 
stress on the bed to produce a simplified description of erosion rate as a function of power laws of 
upstream drainage area (A), and channel slope (S):

 E K A Sm n= ⋅ ⋅  (13.13)

where
E is the erosion rate
K, m, and n are positive [159]

The value of these parameters depends on the assumptions made, but all forms of the law can be 
expressed in this basic form.

The parameters K, m, and n are not necessarily constant, but rather they may vary as functions of 
the assumed scaling laws, erosion process, bedrock erodibility, climate, sediment flux and/or erosion 
threshold. However, observations of the hydraulic scaling of real rivers believed to be in erosional steady 
state indicate that the ratio m/n should be around 0.5, which provides a basic test of the applicability of 
each formulation [160].

Although consisting of the product of two power laws, note that the term stream power law refers to 
the derivation of the early forms of the equation from assumptions of erosion dependency on stream 
power, rather than to the presence of power laws in the equation. Note also that this relation is not a true 
scientific law, but rather a heuristic description of erosion processes based on previously observed scal-
ing relations that may or may not be applicable in any given natural setting.

13.3.60  SWrrB and SWaT Models

SWRRB was developed by Williams et al. [163]. The aim of this model is to estimate the impact of 
various management manners on runoff and sediment productions in rural basins without measuring 
stations. The main process in this model includes surface runoff, deep-seated flow, sub-surface flow, 
evapotranspiration, surface storage, deposition, and agricultural covering. This model contains three 
sections of hydrology, climate, and sediment.

The SWRRB model was only applicable for the basins with hundreds of square kilometers of area and 
could divided only to 10 sub-basins. This limitation causes that a model namely ROTO is developed. 
ROTO maintains the output from several runs of SWRRB and then finds the flow trend in canals and 
reservoirs. By connecting ROTO and SWRRB in each run, the dividing difficulty of the SWRRB model 
is solved.

Though this continuity was effective, input and output files of the SWRRB model were massive. All 
SWRRB runs are run individually and then input files for ROTO model should be prepared. To solve 
this problem, in the early 1990s SWRRB and ROTO models were united in a model named SWAT. 
SWAT models were studied and developed regularly. Different versions of this model up to now include 
SWAT94.2, SWAT96.2, SWAT98.1, SWAT99.2, SWAT2000, SWAT2005, and SWAT2009.

SWAT is a comprehensive model in basin scale presented by the Agricultural Research Service of the 
United States to predict impacts of different management methods on flow, sediment, nutrients, and 
chemical materials balance in the basins with various soil, land uses, and management conditions for 
long time periods. The characteristics of this model are as follows:
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SWAT is a continuous model with high calculative efficiency.
The model is sensitive to changes of management, climate, and plant covering and is able to predict 

effects of these changes on parameters such as water movement, sediment, and nutrients transportation.
The model is an effective calculator used to simulate big basins without the need for time and high 

investment.
Long period data are modeled and are not designed for single-event simulation in detail.
Since SWAT is a continuous model and also contains different processes including climate, hydrol-

ogy, nutrients, pesticides, erosion, plant covering, management manners, and finding flow trend, it 
seems an appropriate tool in basin scale.

13.4  computational Models

Evolution of the river bed in alluvial channels has been studied by many researchers using analytical 
and numerical approaches. Using just the analytical approach is insufficient for solving natural river 
engineering problems. Some of the simplified assumptions are based on idealized laboratory conditions 
that may not be suitable for the much more complicated natural river systems. With the rapid growth in 
computer technology, numerical models have become popular tools for the study of mobile bed hydrau-
lics. The major part of this section derived from the international hydrological program of UNESCO 
also provides a basic description of different types and also theoretical concepts used in the development 
of sediment transport computer models.

Sediment transport computer models differ greatly in their characteristics based on their basic 
concepts. The computational models are divided into many different categories based on their dimen-
sion, width, and many other factors that have been considered. Sediment routing models can also be 
classified as steady or unsteady, coupled or uncoupled, equilibrium or nonequilibrium, and uniform 
or nonuniform sediment models. Concise descriptions of some model categories are presented in 
Table 13.4.

13.4.1  Three-Dimensional Model

Flow process in rivers is three dimensional in reality, especially those at or near a meander bend local 
expansion and contraction, or a hydraulic structure. Many different numerical schemes have been 
developed to solve accurately three-dimensional flow phenomena. Three-dimensional models need 
three-dimensional experimental data for testing and calibration. The collection of such data is not only 
costly but also time consuming. Certain assumptions need to be made before a sediment transport for-
mula developed for one-dimensional flows can be applied to a truly three-dimensional model. With the 
exception of detailed simulation of flow in an estuary area, secondary current, or flow near a hydraulic 
structure, three-dimensional models are seldom used, and particularly not for long-term simulations. 
GSTARS and HEC2SR are two examples of semi-3D simulation models.

13.4.2  Two-Dimensional Model

Two-dimensional models can be categorized into two-dimensional vertically averaged and two-
dimensional horizontally averaged models. The former scheme is used where depth-averaged velocity or 
other hydraulic parameters can adequately describe the variation of hydraulic conditions across a chan-
nel. The latter scheme is used where width- or length-averaged hydraulic parameters can adequately 
describe the variation of hydraulic conditions in the vertical direction. Most two-dimensional sediment 
transport models are depth-averaged models. The width- or length-averaged two-dimensional models 
are usually used for modeling helically flows.
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13.4.3  One-Dimensional Model

Most sediment transport models are one-dimensional, especially those models used for long-term sim-
ulation of a long river reach. One-dimensional models require the minimum amount of field data for 
calibration and validation. The numerical solutions are more stable and require the least amount of 

TABLE 13.4 Descriptions of Some Computational Model Categories

Model Acronym Type Reference Model Name Description

HEC6 Computational 1D Thomas and Prashum [143] Hydraulic Engineering Center
MOBED Computational 1D Krishnappan [75] MObile BED
IALLUVIAL Computational 1D Karim and Kennedy [67] Iowa ALLUVIAL
FULUVIAL 11 Computational 1D Chang [21] No acronym
GSTARS Computational 1D Molinas and Yang [100] Generalized sediment transport models for 

alluvial River simulation
CHARIMA Computational 1D Holly et al. [59] Acronym of the word CHARiage, which 

means bedload in French
SEDICOUP Computational 1D Holly and Rahuel [57] SEDIment COUPled
OTIS Computational 1D Runkel and Broshears [120] One-dimensional transport with inflow and 

storage
EFDCID Computational 1D Hamrick [52] Environmental fluid dynamics code
3STD1 Computational 1D Papanicolaou et al. [112] Steep stream sediment Transport 1D model
SERATRA Computational 2D Onishi and Wise [109] SEdiment and RAdionuclide TRAnsport
SUTRENCH- 2D Computational 2D van Rijn and Tan [150] Suspended sediment transport in TRENCHes
TABS-2 Computational 2D Thomas and McAnally [142] No acronym
MOBED2 Computational 2D Spasojevic and Holly [136] MObile BED
ADCIRC Computational 2D Luettich et al. [91] ADvanced CIRCulation
MIKE 21 Computational 2D Danish Hydraulic 

Institute [30]
Danish acronym of the word microcomputer

UNIBEST-TC Computational 2D Bosboom et al. [18] UNIform Beach Sediment Transport–
Transport Cross-shore

USTARS Computational 2D Lee et al. [82] Unsteady Sediment Transport models for 
Alluvial Rivers Simulations

FAST2D Computational 2D Minh Duc et al. [95] Flow Analysis Simulation Tool
FLUVIAL 12 Computational 2D Chang [2] No acronym
Delft 2D Computational 2D Walstra et al. [153] No acronym
CCHE2D Computational 2D Jia and Wang [64] The National Center for Computational 

Hydroscience and Engineering
ECOMSED Computational 3D Blumberg and Mellor [1] Estuarine, Coastal, and Ocean Model-

SEDiment transport
RMA-10 Computational 3D King [69] Resource Management Associates
GBTOXe Computational 3D Bierman et al. [1] Green Bay TOXic enhancement
EFDC3D Computational 3D Hamrick [51] Environmental Fluid Dynamics code
ROMS Computational 3D Song and Haidvogel [135] Regional Ocean Modeling System
CH3D-SED Computational 3D Spasojevic and Holly [137] Computational Hydraulics 3D-SEDiment
SSIIM Computational 3D Olsen [108] Sediment Simulation In Intakes with 

Multiblock options
MIKE 3 Computational 3D Jacobsen and Rasmussen [60] Danish acronym of the word Microcomputer
FAST3D Computational 3D Landsberg et al. [79] Flow Analysis Simulation Tool
DELFT-3D Computational 3D Delft Hydraulics [31] No acronym
TELEMAC Computational 3D Hervouet and Bates [5], 

Zeng et al. [176]
No acronym
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computer time and capacity. However, one-dimensional models are not suitable for simulating truly 
two- or three-dimensional local phenomena.

13.4.4  Semi-Two-Dimensional Model

The one-dimensional models cannot simulate the lateral variation of hydraulic and sediment condi-
tions at a given river station. Engineers often take advantage of the nonuniform hydraulic and sediment 
conditions across a channel in their hydraulic design. There are three types of semi-two-dimensional 
models. For instance STARS [139], GSTARS [209], FLUVIAL-12 [22,23], and HEC2SR [83] are the mod-
els that use the semi-two-dimensional concept in their simulation.

13.4.5  composite Model

A composite model adds lateral movement of water and sediment on a one-dimensional model. The 
knowledge of variation of shear stress, or other parameters, is often required in the development of a 
composite model. For example, Song et al. [134] superimposed the lateral sediment transport across 
GSTARS [100] stream tubes due to secondary current and lateral shear stress. This composite model 
enabled them to more accurately simulate sediment transport near a meandering bend.

13.4.6  Strip Model

A strip model divides a channel into longitudinal strips of equal width or nonuniform width. Many 
modelers consider the main channel as the center strip and represent the flood plain as the left and right 
strips. There is no lateral variation of hydraulic and sediment parameters within each strip. Diffusion 
equations govern the movement of water and sediment between strips. Many modelers assume that 
the diffusion coefficient is a constant in a diffusion equation. In reality, the diffusion coefficient varies 
with changing channel geometry, which is part of the unknown a computer model is trying to predict. 
Consequently, from a theoretical point of view, predicting the variation of the diffusion coefficient is 
difficult and may be impossible.

13.4.7  Stream Tube Model

Stream tubes are conceptual tubes whose walls are defined by streamlines. A streamline is a conceptual 
line to which the velocity vector of the fluid is tangent at each and every point, at each instant in time. 
A study reach is divided into stream tubes of equal discharge based on equal conveyance. Water and 
sediment cannot cross the boundary of stream tubes.

Consequently, there is no need for solving diffusion equations, and the difficulties of determining 
diffusion coefficients can be avoided. The velocity and sediment concentration distributions in a stream 
tube are assumed to be uniform across the tube. However, because the stream tube width and location 
can change with respect to time across a given station, water and sediment can move with stream tubes 
implicitly across a channel. Yotsukura and Sayre [172] combined the stream function with transverse 
diffusivity to explain the movement of tracer in a natural channel.

13.4.8  fixed- and Variable-Width Model

13.4.8.1  fixed-Width Model

Open-channel hydraulic problems can be solved only if the channel width is fixed or can be assumed. 
With the exception of empirical relationships, conventional open-channel hydraulics cannot provide 
theoretical solutions for the determination of channel width. Consequently, most sediment transport 
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models assume that the channel width is given and would not adjust with changing flow and sediment 
conditions. This assumption can cause significant errors in the prediction of variation of channel geom-
etry and profile, especially for alluvial rivers, where the width change may be more significant than the 
depth change during a flood.

13.4.8.2  Variable-Width Model

The concept of threshold tractive force on channel perimeter and the theory of minimum energy dissi-
pation rate [170] or its simplified minimum stream power theory [171] can be used as a theoretical basis 
for the determination of optimum channel geometry and width.

13.4.9  computer Model classification

Sediment routing models can be classified as steady or unsteady, coupled or uncoupled, equilibrium or 
nonequilibrium, and uniform or nonuniform sediment models.

13.4.10  Steady or Unsteady Model

If the flow and sediment conditions in a model vary over time, it is an unsteady model. Otherwise, it 
is a steady model. Strictly speaking, flow and sediment conditions in most natural rivers are unsteady 
due to the changing hydrologic conditions over time. However, a hydrograph may be approximated by 
a series of constant discharge bursts, and the steady flow techniques can be used for these quasi-steady-
flow computations. The basic governing equations for a one-dimensional unsteady flow are as follows:
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Sediment continuity equation
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where
A is the cross-sectional area of flow
As is the cross-sectional area of river bed
Cv is the suspended load concentration by volume
Cl is the concentration of lateral flow by volume
g is the gravitational acceleration
ps is the bed sediment porosity
Q is the water discharge
Qs is the volumetric total sediment discharge
ql is the lateral inflow per unit length x
Sf is the energy or friction slope
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t is the time
x is the distance along the channel
z is the water surface elevation
ρ is the density of water

For steady flow, Equations 13.16 through 13.18 can be reduced to
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The friction or energy slope Sf is related to sediment particle size, flow discharge, sediment load or con-
centration, bed forms, channel geometry and pattern, growth of vegetation, and so on. Strictly speaking, 
Sf should be treated as an unknown variable. In practice, Sf is treated as a constant and is computed from 
a resistance function such as the Manning, Chezy, or the Darcy–Weisbach’s formula, that is,
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where
K is the total conveyance
Kj is the conveyance of subsection j
Aj is the cross sectional area of subsection j
Rj is the hydraulic radius of subsection j
nj is the Manning’s roughness coefficient of subsection j
m is the total number of sections

If the English unit is used, 1 should be replaced by 1.486 in Equation 13.24. CHARIMA [58], 
SEDICOUP [56], and FLUVIAL-12 can be presented as nonsteady models.

13.4.11  coupled or Uncoupled Model

A coupled model solves the water continuity equation, water momentum equation, and sediment con-
tinuity equation simultaneously. If the change of As in Equations 13.14 and 13.16 within a short period 
of time is much smaller than the change of cross-sectional area A, the solution can be uncoupled by 
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solving the water continuity and momentum equations first. The solutions thus obtained are then used 
to solve the sediment continuity equation. Uncoupled models solve the water and sediment routings 
separately to simplify the numerical solution. Generally speaking, a coupled model is more stable than 
an uncoupled model. The stability of uncoupled and coupled models can be improved by using a smaller 
time step of computation. SEDICOUP also can be presented as a coupled model.

13.4.12  equilibrium or Nonequilibrium Model

If we assume that there is an instant exchange of sediments in transportation and those on an alluvial 
channel bed when and where there is a difference between sediment supply and a river’s sediment trans-
port capacity, the model is an equilibrium model. This assumption is valid if sediments are transported 
mainly as bed load or if the sediments are coarse. The assumption of instantaneous exchange may not 
be valid for fine sediments, and there is a lag between the time when the imbalance occurs and the time 
sediments are actually deposited or scoured from the bed. A model that takes this phenomenon into 
consideration is a nonequilibrium model. Usually, a decay function is used in a nonequilibrium model 
to reflect the noninstantaneous exchange of sediments.

13.4.13  Uniform or Nonuniform Model

A uniform model applies a representative particle size for sediment routing. A nonuniform model 
routes sediment by size fraction to more realistically reflect the phenomenon of sediment sorting and 
the formation and destruction of an armor layer on a river bed.

13.4.14  Numerical Solution

13.4.14.1  finite-element and finite-Difference Methods

Most of the sediment-transport models use the finite-difference method for solving partial differen-
tial equations. Martin and McCutcheon [92] and Abbott and Basco [1] presented detailed descrip-
tions of numerical methods commonly used in hydrodynamic computer models. Wu and Molinas 
[167] described a comprehensive presentation of different techniques, which can be used for solving 
Equations 13.14 through 13.16. As a general approach the partial derivatives in Equations 13.14, 13.15, 
and 13.18 should be replaced with quotients of finite differences by using explicit or implicit finite-differ-
ence methods. The choice of numerical scheme for a particular situation should be based on its accuracy, 
stability, and convenience to use. Amein and Fang [5], among others, found that the implicit method is 
unconditionally stable. This method is also more robust and more accurate than other finite-difference 
methods when applied to open channel flood routing. The finite-difference method presented by Amein 
and Fang solves nonlinear algebraic equations by iteration, which is time consuming.

Preissman [113] developed a more efficient implicit finite-difference scheme to approximate a func-
tion f(x, t) and its derivatives of Mf/Mx and Mf/Mt at point P by using the following equations:
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where
f f x ti

j
i

j= ( , )

λ is the δt/∆t
δt is the distance of point P on the time axis for the old time line tj

∆t is the distance of the time axis between tj and tj+1

If λ is the 2, the scheme is called center implicit.
If λ = 1, the scheme is called fully implicit and, on the other hand, if λ = 0, the scheme is called fully 

explicit. The scheme that has been proposed by Preissman’s finite difference is shown in Figure 13.1. 
Four commonly used methods of solution are the complete solution, the uncoupled unsteady solution, 
the known discharge solution, and the uncoupled steady solution. These methods can be categorized 
into the coupled method of complete solution with known discharge and the uncoupled method of 
unsteady and steady solutions. The following comments on the advantages and disadvantages of differ-
ent methods are presented by Wu and Molinas [167]:

 1. The coupled method can better account for the continuous interaction between the hydraulic and 
sediment transport phases.

 2. The coupled method can be used with a longer time increment.
 3. The formulation of the complete solution of a coupled method is the most elaborate among the 

four methods.
 4. The known-discharge solution is developed solely for sediment routing.
 5. The uncoupled method is simpler to formulate than the coupled method.
 6. The length of time increment of an uncoupled solution is restricted in that the bed elevation 

change over one time increment must be small.
 7. For a stable channel with mild changes, the uncoupled method should be used for water and sedi-

ment routing.
 8. Under constant flow conditions, the uncoupled steady method should be used for sediment 

routing.
 9. If the channel is very active, the coupled method is most suitable.
 10. The coupled method is desirable for routing both water and sediment.
 11. The known discharge solution can be utilized to simulate sediment transients.

13.4.15  Stability and accuracy

If small numerical truncation and other errors produced at a given time in the numerical procedure do 
not increase during successive applications of the procedure, the finite-difference procedure would be 
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FIGuRE 13.1 Representation of Preissman’s finite-difference scheme.
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stable. Reducing the size of the space and time intervals can improve the stability of a numerical solu-
tion. Implicit methods of finite differences are generally unconditionally stable for linear problems. The 
maximum permitted time step is limited by the required accuracy [46,85]. The stability of an explicit 
method is governed by the Courant condition ∆t ≤ ∆x/C, where ∆x is the distance between xi and x1+t; 
∆t is the time difference between tj and tj+1; C is the wave celerity = gy V+ ; y is the water depth; and V is 
the mean flow velocity. For explicit schemes, the Courant Number should not exceed 1; that is, C∆t/∆x 
#1 for stability reasons.

Accuracy is a measure of the disagreement between the computed results and observed values.
The following reasons for possible discrepancies between a mathematical model and the prototype 

have been presented by Liggett and Cunge [85]:

 1. Inaccurate simplification and approximation of the basic equations to simulate a complex 
prototype.

 2. Inaccurate measuring techniques, such as survey errors and badly located gauging stations.
 3. Insufficient field data, such as unknown tributary discharges, seepage flow, and so on.
 4. Phenomena such as the variations of roughness coefficient with varying bed forms and chan-

nel geometry and pattern are not fully understood and their impacts on computed results are 
ignored.

 5. Inaccurate or inadequate schematization of topographic features.

Within the section, it is shown that there exists a variety of different numerical sediment transport mod-
els that differ especially concerning steady or unsteady, coupled or uncoupled modeling procedures, side 
erosion, and automatic width adjustment and especially transport formulae.

13.5  results and Discussions

As shown in the previous section, the models have a great diversity, which makes it crucial to use 
the models correctly. At the end of this chapter, attempts have been made to present some of the 
essential points to answer these two questions: how the models should be used and how the results 
should be interpreted.

13.5.1  choosing the Model for Use in Studies

The model’s competency for using in studies relies on how the model will be used, the watershed charac-
teristics, required data (such as the count and type of inputs and outputs of the model and their spatial 
and temporal variability), the and model’s validity. Typically, by increasing the accuracy and validity of 
the models, complexities and requirements of hardware and software would be increased. Meanwhile, 
the experimental models, because of their simplicity, accuracy, acceptable validity and low-input infor-
mation, are still considered.

In general, the following should be considered in selecting a model:

 1. Model assumptions should be considered.
  For instance if in the model’s assumptions, suitable mulch is being into consideration, this 

assumption should also be considered in the empirical practices.
 2. The circumstances in which the model is presented.
  For example, if a model is presented for a humid weather condition, it should not be used in non-

wetting weather conditions. Another example, if a model is introduced for small watersheds it 
shouldn’t be used in large watersheds (or vice versa).

 3. The requirements of the model must be considered.
  For better understanding, if there is limited input data, a model that fits with these input data 

should be selected; however, the selected model is less accurate than other models. However, if a 
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complex model can run with incomplete inputs, the results would be useful. As another example, 
the model must be selected based on the evaluation, feasibility, cost, and time.

 4. The purpose of using the model.
  In particular, if the purpose of study is to estimate the amount of erosion, a model that has been 

developed for this purpose should be selected; it is wrong to use a model that is not to evaluate the 
erosion process.

13.5.2  Development and application of an erosion Model

The best model of erosion is the model in which the user’s feedback is implemented during construction 
and development. Implementation of a small research model differs with the applications that are used 
for huge one. But they have a series of cases in common. In general, the following steps should be taken 
to apply a model.

13.5.2.1  Selecting the Type of the Model

In addition to the model’s features, considering the user’s needs is one of the most important factors in 
the creation, development, and application of models. User’s needs are important in the creation of the 
model’s output. Most users prefer to use a simple model, with low input requirement, fast and easy to 
understood, and also accurate enough. The most important decision in using the models is selecting the 
type and structure of the model. The structure of the models is representative of the equations, inputs, 
and outputs. Every single model has its own advantageous. A model that is successful in the research 
field is not useful in huge management practices.

13.5.2.2  assessment of the Model’s Verification

The verification process assures the accuracy of the calculations. Verification ensures users that the 
equations, parameters, and logics of the model are according to what has been planned. Verification 
process is carried out through the implementation of the data that the model used.

13.5.2.3  Model Validation

In the validation process, the model ensures that its requirements and targets are maintained with 
regard to the circumstances and needs of different users. Generally, soil erosion models have an uncer-
tainty of 25%, for average erosion rates 6–60 tons/ha/year. This uncertainty increases 50%, when erosion 
rates reach more than 100 tons/ac/year. As the main goal of the validation process, the experimental and 
predicted data should reach the minimum of the error, as far as it is possible. Most of the information 
that comes from a model has been under research but does not match the conditions of the watershed. 
The soil erosion models that are being used in the design of large conservation projects often have good 
accuracy around 1–40 tons/ha/year.

13.5.2.4  Model assessment

As the first step, before the user wants to apply a model for an area, it should be assessed. The real cir-
cumstance is very different from the case studies in which the model is developed. It should be noted 
that this does not mean that major changes should occur in the model because the new major changes 
cause new problems, complexity, and additional costs.

13.5.2.5  Sensitivity analysis

The sensitivity of a model is based on the degree of the output of the model such as soil or sediment loss 
and how a single unit change of input changes the model’s output. The independent variables (a change 
in one of them will cause drastic changes in the dependent variables or outcomes) are known as sensitive 
variables. If these critical variables measure accurately, the accuracy of the output will be increased. The 
model may not be sensitive to a variable in an area, but in another study in a different area the model 
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may be sensitive to this variable. The loss of soil along a slope would be an example of this relationship. 
In a region with low slope gradient, the slope may have little effect on erosion, while in the regions with 
higher slope gradient, this factor can be considered as a sensitive variable.

13.5.3  evaluation of erosion Models

For evaluating the performance of the erosion and sedimentation models and assess the degree of valid-
ity of each model for a particular region, it is necessary to perform the following three operations on the 
model’s input data:

 1. Parameterization
 2. Calibration
 3. Validation

Parameterization indicates the collecting, measuring, calculating, and correcting of the input data. 
Calibration process is the basic adjusting of the input parameters. This will be done in order to create 
the best fit between the model output and the observed value. Since soil characteristics are dynamic and 
they have time and spatial variations, always the models should be calibrated.

Validation is called evaluation of the models through the factors that have been modified in calibra-
tion. In other words, validation is the endpoints of model’s assessment process. During this operation, 
the simulation of future events is determined by the model. In other words, if in the validation stage, 
simulation is done well by the model, this can be used for future events.

In general, attention should be given to using the model before applying it to an area. After the 
previously mentioned operations, and achieving satisfying results, the models can be used for the 
same area or similar areas. The use of the models, mainly associated with the management objec-
tives, means that once a regional model, calibrated and validated, and with satisfying results, in 
future studies if changes are to be applied in this region (e.g., the dry prairie land into pasture), the 
model can simulate the effects of these changes and as a consequence, the results would be available 
to managers and planners.

13.5.4   Selecting the appropriate Scope of Training 
and Validation in Simulation

One of the main and disputable issues in the modeling data set is selecting the appropriate range for the 
model production and intervals for validation of the provided model. Most of the theoretical comments 
suggest that 70% of data set must be dedicated to the training (model calibration), and 30% may be used 
for model validation. But there is a knowledge-based approach to make separation between these two 
series to be used easily to define these ranges. M-test is a test that can be used, to accomplish this separa-
tion. M-test by calculating the values of variable Gamma for a given set of observations data provides 
a chart of Gamma changes. The user can use a descriptive analysis to identify the range of the training 
and validation. In the presented output graphs of this test, where the Gamma variables get constant, it 
means that it is the end of the training period and the beginning of the validation period. This test can 
be performed by using winGamma software.

13.5.5  Simple Performance Models of More complex forms of erosion

One of the problems that the erosion models face is the uncertainty of input parameters. An input 
parameter might have different values due to a wide range of spatial and time variation in the system. 
Uncertainty in input parameters can bring these questions into mind, that in the outputs of complex 
models, which used many input parameters, how much can be trusted. In simple terms, in comparison, 
what is the efficiency of simplified models with complex types in estimation of soil erosion?
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Many efforts have been made in this study area, including the studies by Favis-Mortlock et al. [42]. 
The study was conducted in a region of the United States, and the output results of different simple mod-
els such as CSEP for soil erosion model USLE, EPIC, and GLEAMS and complex process models such as 
WEPP were compared. The results did not show any significant differences in the efficiency of models 
for estimating soil erosion. In another study conducted by Morgan and Nearing [103], the performance 
of USLE, RUSLE, and WEPP models in 1700 natural runoff plots and 208 plots was analyzed. The results 
suggested that a more sophisticated WEPP model does not provide better results than those of other 
models that are empirical.
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14.1  Introduction

In more than half a century, geostatistics has become a useful tool for spatial modeling and interpola-
tion [29]. Applications are not limited to just spatial modeling, and one can deal with temporal and 
spatiotemporal problems as well. One of the most widespread geostatistical tools, kriging, was named 
after Daniel Krige. After Krige, Matheron developed the main principles of geostatistics [36,37] and 
developed a suite of methods to accurately estimate spatial attributes, which are broadly known as 
kriging-based methods. These methods call for a prior model of variability and correlation between the 
variables, known as the variogram. Kriging is one of the most popular interpolation methods.

However, it has been shown that kriging tends to produce overly smooth results [20,27] and therefore 
can fail to accurately represent nonsmooth processes. One consequence is the underestimation and 
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overestimation for low and high values, respectively. Hence, kriging estimation is not very suitable for 
representing highly structured phenomena such as heterogeneous rain fields, aquifers, or catchment 
properties. This spans beyond the field of hydrology, with important consequences for applications in 
fluid flow prediction through modeling subsurface structures. For example, this problem becomes obvi-
ous when one tries to predict the water breakthrough and reservoir response to different flow regimes. 
In the kriging model, the subsurface connectivity and variability cannot be reproduced finely.

The concept of stochastic simulation has been introduced to overcome the limitations of kriging 
[7,26,36]. Different variogram-based stochastic simulation methods have been proposed [20]. Methods 
such as sequential Gaussian simulation (SGSIM) and sequential indicator simulation (SISIM) have 
become popular among different fields of earth sciences. The main difference with kriging is that sto-
chastic simulation reproduces the spatial texture or roughness embodied in a variogram, while kriging 
only aims at finding a unique estimate minimizing the error variance, which is smooth. A corollary 
is that sequential simulation cannot provide a unique interpolation, but instead gives a number of 
“realizations” or interpolation scenarios. Multiple realizations allow to assess the uncertainty and quan-
tify it more accurately [1].

One of the main shortcomings of kriging-based geostatistical simulations is their inability to repro-
duce complex patterns. The main reason is that they only consider two-point statistics, which is the 
spatial dependence of locations taken two by two, therefore limiting the order of complexity that can be 
represented if higher orders were considered. In the last two decades, the need for using methods that 
can use more than two points simultaneously has been emphasized. This new category of methods is 
called multiple-point geostatistics (MPS).

In MPS, the spatial statistics are not represented with a variogram, but thorough a conceptual tool 
named training image (TI), which is an example of the spatial structure to be reproduced. During the 
recent years, several MPS methods have been developed to address issues related to CPU time and 
improved graphical representation of the models produced. In this chapter, we first try to present the 
main two-point-based stochastic simulation methods. Then, the basic terminologies and concepts of 
MPS are demonstrated. Next, different MPS methods are explained and the advantages and disad-
vantages associated with each method are demonstrated. Finally, a comparison between some of these 
methods is carried on.

14.2  Two-Point-Based Stochastic Simulation

Sequential simulation is often considered in order to circumvent the smoothing effect of kriging and 
to make a tool for accurate quantification of uncertainty. Consider a set of N random variables Z(uα), 
α = 1, …, N defined at locations uα. The aim of sequential simulation is to produce realizations {z(uα), 
α = 1, …, N}, conditioned to n available data, and reproduce a given multivariate distribution. For this 
aim, the multivariate distribution is decomposed into a set of N univariate conditional cumulative dis-
tribution functions (ccdfs):
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where F (uN; zN|(n + N − 1)) = Prob{Z(uN) ≤ zN|(n + N − 1)} is the conditional ccdf of Z(uN) conditioned to 
a set of n original data and (N − 1) previously simulated values.

14.2.1  Sequential Gaussian Simulation (SGSIM)

In this method, the lower statistical order such as histogram and variogram is used to determine the 
multivariate distribution, and the higher order will be expressed by using a multi-Gaussian distribution. 
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In other words, a Gaussian function can be fully characterized by its mean and covariance matrix [7,13]. 
Therefore, along a random path, the mean and variance of the Gaussian distribution can be estimated 
via kriging and kriging variance. Then a random value is drawn from that distribution and can be there-
after considered as conditioning data. The overall algorithm of SGSIM can be summarized as follows: 
First, a random path is defined that visits all nodes. Then, at each node, the hard data and previously 
simulated data are considered for estimation of the ccdf by kriging. Then, a random value from the 
obtained Gaussian ccdf is drawn and added to the simulation grid. Next, another node is simulated, 
chosen according to the predefined random path. Finally, another random path is used for obtaining 
another realization.

It is worth noting that the conditioning data should be normally distributed. If it is not the case, it 
entails transforming them into a Gaussian distribution in order to be useable for SGSIM, and at the end 
of the simulation the results should be back transformed. Such transformations can be accomplished 
using normal-score transforms or histogram anamorphosis through Hermite polynomials.

14.2.2  Sequential Indicator Simulation

Indicator simulation is based on the same principle as SGSIM, but is suited for categorical data that do 
not have an order relationship. Typical examples in surface hydrology are soil type, presence or absence 
of rainfall, or specific types of lithology in subsurface models. The similar sequential procedure is based 
on the estimation of the ccdf conditional to neighboring data. This algorithm is based on two-point 
indicator variograms [8], which represent the spatial variability of each category. An indicator variable 
is defined for each variable, equal to 1 if at location u a particular category is found and zero other-
wise. Also, E{I(u)} = p is the stationary proportion of a given category. The indicator variogram can be 
expressed as

 Prob Prob{ ( ) , ( ) } { ( ) ( )} { ( ) | ( )I I h E I I h I I hu u u u u u= + = = + = = + =1 1 1   11}p  (14.2)

Usually, the categorical variables are expressed as a set of K discrete categories that z(u) ∈{0, …, k − 1}. 
Therefore, the indicator value for each of the defined classes can be expressed as
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The aim of the indicator formulation is to estimate the probability of Z(u) to be less than the predefined 
threshold for a category conditional to the data (n) retained:

 I u z E I u z n Prob Z u z nk k k
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We can rewrite the previous equation for categorical variables by using simple kriging as
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where E{I(u, k)} is the marginal probability for category k.
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The previous formulation can be applied within the sequential scheme that is known as SISIM. In 
this case, the probability of each category is estimated by indicator kriging (IK). This algorithm can be 
described as follows: Similarly as SGSIM, a random path is defined by which all of the nodes are visited. 
Then, for each node on the random path, the neighboring data are selected, and then by using simple 
kriging, the indicator random variable for each category is estimated. Next, the conditional probability 
density function (cpdf) is obtained, and a value is randomly drawn from that cpdf and assigned to the 
simulated node. This procedure is repeated sequentially for all unknown nodes. By choosing another 
random path, one can generate another realization. More information on this method can be found in 
Goovaerts [20].

14.3  Multiple-Point Geostatistics

A problem that is general among all of the two-point-based geostatistical simulations is their inability 
to capture high variability and complex spatial structures. In particular, these methods cannot convey 
the connectivity and variability when the phenomenon considered contains definite patterns or struc-
tures. For example, SGSIM maximizes the entropy of the random function and therefore prevents the 
realizations to be structured [22]. Using several points at a time is necessary in order to capture the 
connectivity, variability, and correlations between more than two locations.

An alternative for constructing structured categorical models is the object-based (or Boolean) 
method. In these algorithms, the simulation grid is filled with proper shapes and objects that can satisfy 
the hard data [11,21–23,30,32,58]. Since the shape parameters such as size, direction, and sinuosity are 
all random, they lead the algorithm to be stochastic. Then, an iterative algorithm is incorporated in 
order to remove, change, add, or in addition modify the objects.

The object-based simulation methods are well fitted for TI construction and can condition to a limited 
amount of data, but when one simulates a grid with dense data, finding and adjusting the objects can 
be problematic. On the other hand, pixel-based simulation methods are better able to condition to hard 
data, but they can fail to reproduce connectivity and complex patterns.

The initial idea of MPS is based on a paper by Guardiano and Srivastava [21]. The idea was to scan the 
TI with a template of n-points and to find the replicates within the TI. It should be added that generally 
the TI is a conceptual model or image that tries to convey the subsurface features and heterogeneity. 
This image is not conditioned to any local data but it represents the structures of interest. The TI is able 
to quantify some qualitative information and integrate it with the available quantitative data such as 
well and seismic data. The main problem of this method was that it had to rescan the TI for the simula-
tion of each location and therefore needed a tremendous amount of time and was therefore impractical. 
After that, several methods have been proposed, which can be classified into three main categories: (a) 
iterative algorithms, (b) probabilistic algorithms, and (c) pattern-based simulations. In the following 
discussion, the main features of these algorithms and their limitations are described.

14.3.1  Iterative algorithms

There are a number of methods in optimization that are based on an iterative loop trying to find the 
global minimum/maximum in an objective function. In the following discussion, we briefly explain the 
algorithm used in an iterative framework that allows obtaining MPS realizations.

14.3.1.1  artificial Neural Networks

Artificial neural networks (ANNs) are a branch of artificial intelligence that tries to fit a linear/
nonlinear function on a set of data. This dataset can be pattern, hydraulic conductivity values, rain-
fall, etc., depending on the problem considered. More details about the ANNs and its applications 
can be found in Tahmasebi and Hezarkhani [49–53] and Asadisaghandi and Tahmasebi [3]. The first 
application of ANNs was proposed by Caers and Journel [5] in which multiple-point statistics are 
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inferred from a TI, and then an ANN is set to simulate values conditionally to these statistics. The 
results of this method are good, but it is very CPU demanding and has some problems related to 
network convergence. Also, in another study Caers and Ma [6] used ANNs for data integration. But, 
as indicated in Tahmasebi and Hezarkhani [52,53], ANNs need to be optimized with respect to its 
structural elements. In addition, the architecture should be optimized in order to prevent the network 
to be trapped in local minima.

14.3.1.2  Simulated annealing

Simulated annealing is a powerful stochastic optimization method that has the ability, in theory, to find 
the global minima, and it is used in different fields of application. Deutsch [12] and Farmer [17] used 
this algorithm to reproduce some MPS properties. In their study, they consider an objective function 
that satisfies some constrains such as histogram and variogram. Furthermore, some researchers applied 
simulated annealing for simulation of categorical [27] and continuous [16] variables. However, simu-
lated annealing has drawbacks, a major one being CPU time. Therefore, one can only consider a limited 
number of statistics as constrains, because increasing the number of constrains has a strong effect on 
CPU time. Also, this algorithm has a lot of parameters that should be tuned and therefore need a large 
amount of trial and error to achieve optimal values. Peredo and Ortiz [43] use speculative parallel com-
puting to accelerate the simulated annealing; however, the computation times are still far from what is 
obtained with sequential simulation methods.

14.3.1.3  Gibbs Sampler

The Gibbs sampler [18] is a special case of the Metropolis algorithm. It is also based on drawing samples 
from a given distribution and having a rule for accepting or rejecting the new value. Lyster and Deutsch 
[31] used this method for modeling geological features. The method is similar to Markov approaches 
and realizations are obtained by resampling the values at each node in an iterative fashion until conver-
gence. It is therefore extremely CPU demanding.

14.3.1.4  Markov random field

These models incorporate constraints by formulating high-order spatial statistics and enforcing them 
on the simulated domain using a Metropolis–Hastings algorithm [4,57]. In this case, the computational 
problem of the previous methods remains because the Metropolis–Hastings algorithm, although always 
converging in theory, may not converge in a reasonable time. Also, Tjelmeland and Eidsvik [56] used a 
sampling algorithm that incorporates an auxiliary random variable. All of these methods suffer from 
extensive CPU demand and instability in convergence. Also, the large structures cannot be reproduced 
finely, a series of factors that make them difficult to use for 3D applications.

14.3.2  Sequential algorithms

14.3.2.1  Single Normal equation Simulation

The main problem of the initial MPS idea of by Guardiano and Srivastava [21] was the need to scan 
the entire TI for each simulated node. Strebelle [48] proposed an innovative concept where the TI is 
scanned once and all the conditional probabilities for a given pixel configuration (template) are stored in 
a dynamic search tree data structure. Then, for the simulation of a new node, there is no need to rescan 
the TI and one can directly refer to this tree structure and retrieve the conditional probability. The single 
normal equation simulation (SNESIM) algorithm follows the framework of the traditional sequential 
algorithms based on a random path and uses the original data and previously simulated values. The 
main difference is that it uses statistics inferred from the TI instead of a variogram.

One of the problems of SNESIM is that the TI has to be categorical. However, one can divide a con-
tinuous TI into categories [47]. However, the method becomes very RAM demanding in the case of a 
high number of categories.
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14.3.2.2  Integrated Methods

These methods combine different approaches. For example, Ortiz and Deutsch [41], under an assump-
tion of independence of the different data sources, integrate the indicator method with MPS. Hence, 
instead of using a TI, the MPS properties are obtained directly from the available hard data (variogram) 
and integrated with the results of IK. Finally, a value is drawn from this new distribution. These meth-
ods were further investigated by Ortiz and Emery [40] and Hong et al. [25]. However, in most cases, final 
realization is highly influenced by the initial results of IK.

14.3.2.3  Improved Parallel Multiple-Point algorithm Using a List approach (Impala)

This method is the same algorithm as SNESIM, except that a list structure is used for storing the data 
events instead of the search tree [46]. The advantages are mainly computational, a list being much less 
computationally demanding than a tree. This is especially useful when dealing with large TIs contain-
ing a large number of categories. It was shown that the size of a tree grows exponentially with the TI 
complexity, whereas the size of a list grows linearly. Another advantage is that it is possible to efficiently 
parallelize a list, whereas it is very difficult with a tree structure.

14.3.2.4  Direct Sampling

This algorithm was proposed by Mariethoz et al. [35] and Mariethoz and Renard [34]. In this method, 
there is no need for pattern database. The basic principle is inspired from Shannon [45] and consists in a 
sampling of the TI conditional to a given pattern or data event. This data event does not need to have the 
same shape or the same number of neighbors for each simulated node. Since the TI is sampled directly, 
there is no need to construct a ccdf and also no need to store multiple-point statistics. The sampling of 
the TI is accomplished by defining a distance between the data event searched for and the one sampled. 
Using different types of distance allows dealing with categorical, continuous, or multivariate cases.

A first advantage is the very low RAM requirement of the method and also a relatively high computa-
tional efficiency. Other advantages are the result of the flexibility of the method in terms of the different 
data types that can be incorporated.

The algorithm can be summarized as follows: At each simulated node, a neighborhood is selected and 
a data event defined. Then, the TI is searched according to this data event and a similarity distance is 
calculated. As soon as the first occurrence of a matching data event in the TI is found (corresponding 
to a distance under a given threshold acceptance), the value of the central node of the data event in the 
TI is accepted and pasted in the simulation. If the algorithm finds a pattern that is similar up to a given 
threshold, the search is stopped. Otherwise, the most similar pattern found is selected and its central 
node is pasted.

A variation of the method using specific measures of distance between data events (transform-
invariant distances) has been proposed [33], which allows using and combining elementary TIs to define 
the desired spatial patterns.

14.3.2.5  cumulants

The cumulant approach is an extension of the variograms to account for higher-order statistics, beyond 
the two-point statistics. The advantage is that the cumulants can be directly inferred from the data 
rather than from TI. Dimitrakopoulos et al. [14] first used this method to simulate geological structures. 
As a result, they concluded that the choice of the cumulant appears to depend on the geological process, 
anisotropy, and pattern redundancy. Mustapha and Dimitrakopoulos [38] developed computer codes 
that calculate the higher-order cumulants and use them to model the complex spatially distributed 
natural phenomena [39]. The algorithm first computes the high-order statistics from the data, and only 
if not enough replicates could not be found, then a TI is used to find the conditional probabilities. One of 
the shortcomings is related to selecting the spatial cumulants and is different for each type of geological 
structures, and there is no general strategy for it.
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14.3.2.6  Markov Mesh Model

Daly [9,10] used this model in a raster path. The idea is borrowed from texture synthesis. First, a casual 
template is put on a simulation node, and then the conditional probability is computed for each of 
the sequential nodes, progressing in a linear (or unilateral) order. Parra and Ortiz [42] used a similar 
methodology and obtained encouraging results. However, conditioning to hard and soft data still has 
issues due to the use of a raster path, making it difficult to reproduce the continuity near the hard 
data. Kjønsberg and Kolbjørnsen [28] used the probability from IK to modify the Markov mesh model 
(MMM), and they used an iterative algorithm in their method.

14.3.3  Pattern-Based algorithms

Pixel-based algorithms can have problems to preserve the continuity of the geological structures. To 
palliate this, some pattern-based methods have been developed that are briefly introduced in the follow-
ing text. Their commonality is that they do not simulate one pixel at a time, but paste an entire “patch” 
in the simulation. One of the main aims of using pattern-based simulation methods is their ability to 
preserve the continuity and overall structure.

14.3.3.1  Simulation of Pattern

This algorithm was introduced by Arpat and Caers [2] to address some of the limitations of SNESIM. 
This method uses the TI for finding the conditional probabilities and therefore the final pattern that 
should be pasted on at a data event location. The algorithm can be summarized as follows: First, the TI 
is scanned with a given template T and stored in a pattern database. Then, the locations to simulate are 
selected according to a random path. At each node, the data event is found. If the data event is empty 
and contains no hard data, then a patch from the TI is selected randomly. Otherwise, according to avail-
able known nodes and their distance to all of the patterns in pattern database, the most similar pattern 
is pasted on the data event. Then, the next node in the random path is simulated. This process continues 
until all nodes are visited. The results are very promising, but due to a high computational burden, this 
algorithm is not applicable for 3D applications.

14.3.3.2  filter-Based Pattern Simulation

One of the main drawbacks of simulation of pattern (SIMPAT) is its CPU cost because for each node, 
one needs to compare a data event with all of the patterns in the pattern database. One possible solution 
is to use a redundancy algorithm to reduce both data event and comparison for finding the similar pat-
tern. Zhang et al. [59] used a set of 6 and 9 filters in 2D and 3D simulation, respectively, which are used 
to summarize the basic spatial properties of the patterns contained in the TI. This allows to significantly 
reduce the dimensionality of the patterns. Therefore, filter-based pattern simulation (FILTERSIM) pro-
vides good reduction of CPU time. The patterns are first summarized using the predefined linear filters 
and, according to similarity criteria, grouped in distinct clusters. Then, for each cluster, a prototype pat-
tern is computed that is the average of all the patterns in that cluster. The rest of the algorithm proceeds, 
at each node, by selecting the most similar prototype and randomly drawing a pattern from that cluster. 
This procedure is repeated for all locations to simulate. Therefore, due to the use of a limited number of 
filters, the CPU cost of this algorithm is reduced compared to SIMPAT.

The major issues related to FILTERSIM are that it uses a limited set of linear filters that cannot always 
convey all of the information and variability. Also, selecting the appropriate filters and several user-
dependent parameters for each TI is another issue that is shared with many MPS methods.

14.3.3.3  Growthsim

Eskandari and Srinivasan [15] proposed a new TI-based algorithm mainly developed for dynamic 
data integration. The main feature of the method is that it starts the simulation from the data and 
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the simulated values “grow” from these initial seed locations. The method incorporates an optimal 
template definition. It is especially suited for the integration of transient flow and transport data in 
aquifer simulations.

14.3.3.4  Wavelet-Based Simulation

Gloaguen and Dimitrakopoulos [19] used wavelet analysis to simulate both categorical and continuous 
variables based on TIs. The dimensionality of the TI is reduced, in a similar fashion as with FILTERSIM. 
The wavelet bands can capture the spatial variability contained in the TI with a limited number of coef-
ficients that correspond to different scales of variability. Then, these coefficients are used to classify the 
patterns. Whereas FILTERSIM bases the similarity on filter scores, this algorithm is based on wavelet 
coefficients. The algorithm can incorporate both hard and soft data.

The drawbacks of the method are that a lot of parameters have effect on both quality and CPU time 
and the modeler has to tune them in order to achieve good results in a reasonable time. This includes 
finding the wavelet decomposition level.

14.3.3.5  Distance-Based Pattern Simulation

This algorithm is a modification of SIMPAT that was introduced by Honarkhah and Caers [24]. It also 
incorporates some features of FILTERSIM such as pattern classification and inner patch. In this algo-
rithm, the patterns in the database are represented as points in a Cartesian space using multidimen-
sional scaling. Next, in a kernel space, the dimensionality of the patterns is reduced significantly, which 
leads to a better classification. Another advantage is that it is possible to expand the pattern’s database 
by creating new patterns similar to the ones existing in the database. The rest of this algorithm is similar 
to FILTERSIM. This method produces acceptable results with good computation time, but is limited in 
terms of memory requirements when it comes to very large TIs.

14.3.3.6  cross-correlation-Based Simulation

The previous patch-based algorithms were based on a distance calculation. Tahmasebi et al. [55] pro-
posed a methodology based on the cross-correlation function along a raster path. This algorithm can be 
summarized as follows: First, the algorithm selects a pattern randomly. Then, in a raster path, the data 
event is shifted and has an overlap with the previous one(s). At this point, the algorithm does not use 
the entire current data even for comparison, and the overlap regions(s) will only be used for finding the 
next similar pattern.

In this algorithm, there is no need to make a large pattern database and the selected pattern is directly 
pasted. Therefore, cross-correlation-based simulation (CCSIM) decreases the RAM demand signifi-
cantly. Also, since CCSIM uses the overlap concept, it simulates the patterns very quickly. Moreover, it 
uses an adaptive template splitting that makes it more flexible than most other pattern-based simulation 
methods for conditioning. In this case, the algorithm first tries to find a pattern that can satisfy both 
continuity and hard data. If no such pattern can be found, the data event is divided and each of its parts 
is simulated simultaneously. This solution leads CCSIM to be highly adapted with inconsistent TIs with 
hard data. It can also select at the beginning of the simulation a large template size to capture the large-
scale features in the TI. The comparative results of CCSIM with the previous MPS methods show an 
improvement in terms of both CPU time and quality. Furthermore, for more acceleration, it is possible 
to use this method in the Fourier domain [54].

14.4  examples

14.4.1  first example

The first example is devoted to a 3D simulation. The used TI is shown in Figure 14.1 and repre-
sents complex and continuous channels. The challenge is to reproduce channel connectivity and 
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distribution. To this end, SNESIM, FILTERSIM, and CCSIM algorithms were are tested and the 
results are shown in Figure 14.2.

The results are presented in Figure 14.2. One of the primary aims of using the MPS methods is in this 
case to integrate the geological and morphological data as very important sources of information. It can 
be seen that CCSIM is better able to capture the connectivities and major aspects of the channels than 
the other two methods considered. These characteristics are essential for flow and transport models, and 
their reproduction constrains the uncertainty of quantities such as contaminant estimates.

Sand

Shale

FIGuRE 14.1 The used 3D TI for MPS simulation.

(a) (b)

(c)

FIGuRE 14.2 Results of application of (a) SNESIM, (b) FILTERSIM, and (c) CCSIM for unconditional simulation 
of the proposed TI in Figure 14.1.
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14.4.2  Second example

In this next example, we test the ability using two-point statistical criterion, uncertainty quantification, 
hard data conditioning, and flow modeling. The used TI is shown in Figure 14.3. This TI represents a 
complex hydrological setting with specific channeling characteristics. Two-point geostatistical simula-
tion will be tested and compared.

The results of different simulation methods are shown in Figure 14.4. The methods used in this exam-
ple are SGSIM, FILTERSIM, and CCSIM. Since the given example is continuous, the SNESIM algorithm 
is not applicable. The simulation is performed in both unconditional and conditional modes.

Since SGSIM assumes a Gaussian distribution in grids and different nodes, connected channels 
and structures do not appear with in this algorithm because several points would be needed to rep-
resent them. The results using FILTERSIM show a better result than SGSIM. However, these results 
could be improved by using a lot of clusters and prototypes. This would however be a cumbersome 
task, and the current choice of filters yields results that do not capture the full variability and con-
nectivity of the TI. Also, it is worth noting that the CPU cost of this method is very high compared 
to previous methods. Finally, the result of CCSIM represents a better realization where the channels 
are better connected.

The variogram reproduction of realizations obtained with FILTERSIM and CCSIM is shown in 
Figure 14.5. Both methods show a similar variogram, with a slightly worse fit for FILTERSIM. This 
figure shows that low-order statistics are not sufficient to differentiate between models. Therefore, it can 
be concluded that the results also need to be checked visually. Another verification method can be flow 
simulation by which one is able to find a model that can show a better flow behavior. This simulation is 
used in the next example.

The next step is the conditional simulation in which some point of the grid is known and should be 
preserved during the simulation. Usually, it is a good idea to consider a scenario as a reference image 
(RI) by which the simulation results can be compared. In synthetic studies, this image is used during 
the simulation from which the hard data are extracted. The final simulation can be compared with the 
RI. The RI is generated using CCSIM and shown in Figure 14.6. According to this figure, it is clear that 
the RI is rich and complex enough to be used in conditional simulation. We picked 110 points ran-
domly form the RI and considered them as hard data. The extracted hard data that should be preserved 
and reproduced are shown in Figure 14.7. Furthermore, Figure 14.8 shows the conditional simulations. 
Different methods produced different results that one can easily compare it with the RI in Figure 14.6. 
One effect of using hard data is to constrain the simulation and decrease the uncertainty. This is repre-
sented by the E-type of 50 realizations for different methods shown in Figure 14.9.
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FIGuRE 14.3 The used TI for MPS simulation. [44]
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FIGuRE 14.4 Results of application of (a) FILTERSIM and (b) CCSIM for unconditional simulation of the pro-
posed channels in Figure 14.3.
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FIGuRE 14.5 Comparison of the obtained realizations for variogram reproduction.
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The presented E-type maps in Figure 14.9 show that the SGSIM and FILTERSIM methods produce 
large uncertainty rather than the CCSIM. One reason can be due to large differences between the pro-
duced realizations that let them to be very different, and therefore the final E-type map will be different 
with the RI. With a bit attention to the presented E-type map of CCSIM, it is clear that this method 
seems to produce close and/or the target RI that lead the E-type map to be close to RI.

According to the presented E-type maps in Figure 14.9, one can see that due to poor ability of SGSIM 
and FILTERSIM algorithms in pattern reproduction, the hard data seem to be similar to dark or 
white points that they just have been reproduced and are not associate with a specific patterns, while 
because of using an adaptive recursive pattern splitting algorithm in CCSIM, it is able to find the appro-
priate patterns and make the final realizations to be close to the RI. All of these abilities will let the algo-
rithm to quantify and subsequently decrease the uncertainty.

The final test that we will use is the flow modeling by which one is able to see another difference 
between the produced realizations between different methods.

Most of the previous comparisons show that the realizations can reproduce the lower-order statistical 
descriptors. But the spatial flow simulation offers a better test for quality checking, because in this test 
the spatial connectivities can affect in fluid behavior. Therefore, we did a two-phase flow simulation on 
a high-resolution-obtained 2D grid consisting of 100 × 200 grid cells, respectively. The size of each grid 
cell is assumed to be 100 × 100 × 50 (m) long X, Y, and Z directions. Also, the porosity are varied from 
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FIGuRE 14.6 The RI, which is used for conditional simulation and is obtained by unconditional CCSIM.
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FIGuRE 14.7 The location of hard data, which is used for conditional simulation.
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0 to 0.6 (%) and the permeability varied from 5 to 1150. Also, no flow conditions were used at boundar-
ies. Injection and production start at the beginning of reservoir.

The results for different algorithms are presented in Figure 14.10. As mentioned earlier, evaluating 
different algorithms for two-phase flow prediction can be used as a reliable test to discriminate the 
performance of MPS algorithms. According to the obtained results, any mistake in flow properties 
can make some serious problems for forecasting, management, appraisal, and even any possible 
location that a well can be drilled. For example, a wrong prediction of reservoir water cut can lead us 
to predict the first water production at the production wells mistakenly. Therefore, one of the results 
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FIGuRE 14.8 Results of application of (a) SGSIM, (b) FILTERSIM, and (c) CCSIM for conditional simulation 
with the shown hard data in Figure 14.7.
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of this study is decreasing the uncertainty. Also, the results of water cut are presented in Figure 14.11, 
which approve the previous results.

14.5  Summary and conclusions

Due to necessity of modeling complex and more realistic structures and more accurate uncertainty 
quantification, advanced modeling methods are increasingly used. Most of the traditional geostatistical 
simulations are based on two-point statistics such as variogram. However, these methods are not able to 
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FIGuRE 14.9 E-type maps of (a) SGSIM, (b) FILTERSIM, and (c) CCSIM for 50 realizations of conditional 
simulation.
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FIGuRE 14.10 The graphical results of flow simulation (water saturation) for (a) RI, (b) FILTERSIM, and 
(c) CCSIM.
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reproduce enough the complex structures and subsequently lead the final model to be less accurate. The 
idea of using a TI is simple and appealing. Instead of direct inference of conditional probabilities from 
the available data, one can use the replicates or event in the TI. In essence, the probability scheme was 
replaced by patterns and several algorithms were proposed.

In this chapter, we reviewed several methods that use MP in their algorithm and tried to compare 
their performance in two examples. Different MPS algorithms have their individual advantages. For 
example, the SNESIM algorithm is fast and performs well to model categorical images, while this algo-
rithm has RAM limitation when using large TIs with more than four facies. Also, this algorithm is not 
able to model the continuous images and geological phenomena such as continuous satellite images or 
rock thin sections. The SIMPAT algorithm can model both categorical and continuous images finely 
while it needs tremendous amount of time. To this end, the FILTERSIM algorithm uses a set of linear 
filters to reduce the dimensionality of the patterns, resulting in a significant acceleration. The distance-
based pattern simulation (DisPat) algorithm modifies the FILTERSIM with a multidimensional scaling 
framework to first transfer the patterns into that dimension and next uses a kernel framework to cluster 
the pattern similar to FILTERSIM. In this chapter, the results were not compared with this method. 
Finally, due to lack of connectivity and CPU time, the CCSIM algorithm that uses the advantage of low 
computational cost of cross-correlation can accelerate the current algorithms and increase the quality 
of the final realizations. It also benefits from an adaptive recursive template splitting which can improve 
the conditional simulation.

There are shortcomings and issues that should be addressed in the future works. Most of the current 
MPS methods are designed for stationary TIs, and they should use some extra features such as consider-
ing different regions for simulation or an auxiliary variable to guide the simulation. Through the mul-
tigrid approach, one can consider large structures in the simulation grid, but it seems that this method 
transfers the upper nodes as a conditional point to its lower grids and makes some problems. Also, 
most of the current MPS methods are limited to the patterns available in the TI. Finally, due to a large 
uncertainty in TI, it is necessary to design methods able to determine which TI to use in a given context.
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15.1  Introduction

15.1.1  Definition of GIS

Geographical Information System (GIS) is a particular kind of software program that runs on personal 
computers. In many ways, it resembles a database program as it analyzes and relates information stored 
as records, but with one crucial difference: each record in a GIS database contains information used to 
draw a geometric shape. GIS applications allow users to query, analyze, and edit spatial information and 
to create maps that present the results of these operations [1].

GIS is a frontier branch of science, which integrates space science, survey and mapping science, 
geography, information science, computer science, environmental science, and management science. 
The GIS is not only capable of managing data, text information and graph but also of integrating and 
analyzing spatial data from different sources, with diverse formats, structures, projections, or resolution 
levels with the aid of a computer. Thus, it is a new and effective technical system in complex processing 
and analysis of spatial data [5,12].

One of the great insights of GIS is that there is a vast difference between seeing data in a table of rows 
and columns and seeing it presented in the form of a map. The difference is not simply esthetic; it is 
conceptual—it turns out that the way you see your data has a profound effect on the connections you 
make and the conclusions you draw from it. A GIS visually represents the data in any field of a map file, as 
differing shades of color, as symbols of different sizes, as data pattern of varying density, or in other ways.

The GIS performs various functions, namely, data capture, data management, data manipulation and 
analysis, and the presentation of results in both graphic and report form, with a particular emphasis on 
preserving and utilizing inherent characteristics of spatial data. The GIS stores two types of data found 
on a map: the geographical definitions and the attributes or qualities of those features. There are two 
broad methods used to store such data in a GIS: raster and vector [5].

15.1.1.1  raster

A raster is a grid-based representation of data where spatial features and attributes are merged into a unified 
data file. Each cell (pixel) describes the condition of space at that location; each cell has a numeric value:

• Feature identifier
• Qualitative attribute code (categories differ in kind rather than quantity)
• Quantitative attribute

The quality of a raster image is determined by the total number of pixels (resolution) and the amount of 
information in each pixel (often called color depth).

15.1.1.2  Vector

Vector layers are composed of points, which are linked to form the lines and areal boundaries of poly-
gons. The points are encoded with latitude and longitude (X, Y) coordinates. Vector representation is 
feature orientated as they describe features, spatially referenced entities with distinct boundaries.

Preface

This chapter will deal with applying the GIS technique in the field of climate change in practical 
ways. Figures will be used to demonstrate the GIS application in weather data analysis meanly 
rainfall or temperatures for a certain location to build up geographic maps indicating the changes 
in weather condition in a certain period of time. The chapter will demonstrate a country case study 
like Jordan to build up the model for investigating the climate change in a region like the Middle 
East. All features of Arc View, Arc Map, and Arc Catalogue will be demonstrated in this chapter.
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15.1.2  Brief History of GIS

Two-dimensional GIS began in the computer aided mapmaking in the 1960s, and now it has gone deep 
into every application field. It is essentially based on an abstract symbolic system, so it cannot provide 
the original feeling of nature to people, and it is difficult to overcome the shortcoming [4]. However, 
three-dimensional GIS can solve the problem. With the development of Virtual Reality technology, the 
concept of “digital earth” has been put forward and three-dimensional GIS become a new technology 
to promote spatial analysis and expand information representation in GIS. By processing elevation data, 
three-dimensional GIS can display the landform and objects in three dimensions to create an obvious 
scene. This display usage can also meet the demand for management, analysis, estimation, decision, and 
visualization.

The 1960s saw many new forms of geographic data and mapping software. Within computer car-
tography, the first basic GIS concepts were developed during the late 1950s and 1960s. Linked software 
modules, rather than standalone programs, preceded GISs. Early influential data sets were the World 
Data Bank files. The vector topological arc/node data started at the Harvard University GIS was signifi-
cantly altered by both the PCs and the WSs. During the 1980s, new GIS S/W could better exploit more 
advanced H/W. User interface developments led to GISs vastly improved during the 1990s [7].

15.2  components of GIS

The GIS is a computer system for collecting, storing, manipulating, and displaying geographic informa-
tion. There are many definitions for GIS. However, the major characteristics are the geographic (spatial) 
analysis functions that provide means for deriving new information based on locations. The GIS inte-
grates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of 
geographically referenced information. It stores information about the world as a collection of thematic 
layers that can be linked together geographically. The GIS allows viewing, interpreting, and visualizing 
data in many ways that reveal relationships, patterns, and trends in the form of maps [9].

The GIS performs various functions, namely, data capture, data management, data manipulation and 
analysis, and the presentation of results in both graphic and report form, with a particular emphasis on 
preserving and utilizing inherent characteristics of spatial data:

• The computer system (hardware and operating system).
• The software (Learning the concepts, capabilities, limitations, and interface of GIS software have 

educational value in itself). The GIS is a tool that is increasingly being used in diverse fields of 
work, from local government to global scientific research.

• Spatial analysis is the most important function of the GIS, which makes it distinct from other 
computer-based graphics software. The spatial analysis provides the functions such as spatial 
interpolation, buffering and overlay operations, and network analysis.

• Data management and analysis procedures: After data are collected and integrated, the GIS pro-
vides facilities for effective data management, which include data integrity, storage and retrieval, 
maintenance and updating abilities.

• The people to operate the GIS.
• The methods or the process for getting data into the computer. This is one of the most important 

step and we can say: GIS without data as Car without fuel

15.3  Geospatial Tools for climate change

The GIS has been applied in climate change related studies such as land cover and land use change, 
glacier and snow cover mapping and modeling, air quality mapping, and modeling relationships 
between climate change and increasing natural hazards and the influence of extreme weather events on 
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livelihoods. GIS enables to visualize the changes and its interlinkages in the form of maps so that gaps 
and priority areas can be easily identified. The GIS is extensively used for making inventories and map-
ping and monitoring vegetation, glaciers, and snow cover across landscapes, in order to better under-
stand the impact of climate change. The geospatial technology provides powerful tools for decision 
making related to climate change adaptation, allowing us to measure, model, and monitor, manage, and 
mitigate its impacts. To avoid a dramatic disruption of society due to climate change, it is imperative 
that geospatial technology is in place to manage and minimize the many inevitable impacts.

Recently, Geographical Information Systems (GIS) have been used to understand the impacts of 
global change at the global, regional, and local scales by utilizing a broad range of social, economic, and 
climate data and by combing this data with up-to-date information from earth observation satellites 
[2,3,8]. There are a lot of applications of GIS; one of them is using it in the development of weather pro-
cessing system by integrating weather data into GIS [4,6,10,11]. Display of meteorological data: The first 
goal in GIS Meteorology is to convert meteorological data and information to “GIS negotiable” formats. 
The following table summarizes the relationships of weather data to GIS formats (or shape), but it is not 
intended to be exhaustive.

15.3.1  Spatial and attribute Data in GIS for climate change

ARC GIS is in general used here to predict the impact of global warming and climate change on a certain 
country, and we chose here for simplicity the Hashemite Kingdom of Jordan (here we call it Jordan).

Arc GIS consist of the following:

• Arc catalog
• Arc map
• Arc tool box
• Arc scene
• Arc global
• Work station
• Desktop administration
• Arc reader

15.4  arc catalog

15.4.1  arc catalog and Its application for climate change

An arc catalog is used to prepare the coordinate system and entering the spatial data, and an arc map is 
used to make layers, editing and doing the treatment on the produced map. Here are the steps you need 
to take to prepare for maps related to climate change taking into consideration that all weather param-
eters such as temperatures, rainfalls, and humidity are ready and tabulated in the form of an excel file. 
Another important step is to have the digital map for the study area where the impact of climate change 
is to be studied. Here, Jordan is selected as an example to apply climate change impact.

In this chapter and in order to give the reader a better idea for GIS application in climate change 
and step by step, certain regions will be introduced here as sample of study for this applica-
tion. The Hashemite Kingdom of Jordan (Jordan) is a typical example for this study. Jordan has 
Geographic coordinates of 31°00′N36°00′E/31.000°N36.000°E/31.000;36.000 and it is situated geo-
graphically in Southwest Asia, south of Syria, west of Iraq northwest of Saudi Arabia. The major 
characteristic of the climate is the contrast between a relatively rainy season from November to April 
and very dry weather for the rest of the year. With hot, dry, uniform summers and cool, variable win-
ters during which practically all of the precipitation occurs, the country has a Mediterranean-style 
climate.
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15.4.1.1  Steps in Preparing Maps for climate change Using GIS

 1. The first step to start with GIS is to open Arc catalog to create a geodatabase. Create a file in your 
hard disk in a certain location, that is, drive C, D, E … etc., and this will be the starting point to 
your project in climate change (Table 15.1).

 2. Start to create a new personal geodatabase (Figure 15.1).
 3. Begin to create layers or feature class (geodata set) (Figure 15.2). At this stage, you may choose a 

suitable geometric shape for your project depending on your data, line, point, and polygon, for 
example four layers created here such as temperature, rainfall, wind, and humidity (Figures 15.3 
and 15.4).

 4. Change the precision and scale to be consistent with the data you have (Figure 15.5).
 5. After saving your data then, you may close the Arc catalog, and open the Arc map, to start data 

input after simply importing layers for the location or area you are supposed to study from the 
arc catalog and then you need to save it into a new file of data in your computer (see Figures 
15.6 and 15.7).

 6. Insert the digital map that you have here; we chose Jordan digital map (see Figure 15.8) on arc 
map. Locate the stations that related information to your study target, that is, all other weather 
information like temperature, rainfall, humidity, wind speed, pressure, and so on, to match with 
weather stations that you have to locate on your specified map in the form of digital type. In this 
step by knowing the altitude and elevation for each weather station, it can be located as point in 
the map and all other weather information will be loaded on this point.

15.4.1.2  Steps Involved in creating GIS Maps from available Weather Data

The data should be inserted on the map according to the following steps:

• By right clicking on the layer where data need to be inserted, choose the button (open attribute 
table) (Figure 15.9).

• The table with the field that is added in arc catalog can now be seen. The data entry will be very easy 
even if your raw data were saved in the form of Microsoft excel. (see Figure 15.10.)

After the data are entered, right click on the tool bar and choose the button 3D (Figure 15.11),
Then choose from 3D, create/modify tin, then create tin from feature (Figure 15.12),
After that choose the layer that you started to work on, as it is demonstrated next, for example humid-

ity, and then select the year you started to work in (Figures 15.13 and 15.14).
After data are entered, the software will start to simulate all data saved for that specified year and the 

final shape can be seen as in Figure 15.15.
The contour line can be changed from tin lines by clicking on 3D and choosing surface analysis and 

then contour (Figure 15.16).

TABLE 15.1 Steps Needed to Change Weather Data to GIS Formats

Shape Weather Data Type

Point Surface observation, rain gage, river gage, pilot reports, model grid 
point data, lightning, tropical cyclone position

Line Contours, fronts, rivers and river stage, roads and road conditions, 
air parcel trajectories

Polygon Radar, watch/warning boxes, area/zone forecasts, plumes (air parcels)
Image Satellite images, charts
Grid object Intermediate objects for all data on a surface. Surfaces include 

constant height (e.g., MSL), constant pressure (isobaric), and 
constant potential temperature (isentropic).
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FIGuRE 15.2 Geodatabase.

FIGuRE 15.1 Arc catalog outlook.
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FIGuRE 15.3 Create layers or feature class in geodata set.

FIGuRE 15.4 Establishing a suitable geometry shape for the weather project.
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FIGuRE 15.6 Arc map outlook and start weather data input.

FIGuRE 15.5 Starting the precision and scale with the data.
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FIGuRE 15.7 Weather data input.
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FIGuRE 15.8 Jordan digital map. (Courtesy of Royal Jordan Geography Center, Amman, Jordan.)
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FIGuRE 15.10 Weather data input, for example, humidity.

FIGuRE 15.9 Insert digital map and layers on the map.
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FIGuRE 15.11 Data outlook after input on arc map.

FIGuRE 15.12 Introducing the concept of 3D form.
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FIGuRE 15.14 Year selection to work on to specify the time period.

FIGuRE 15.13 Choosing the layer to start work on, for example, humidity.
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FIGuRE 15.15 The final shape after data were entered.

FIGuRE 15.16 GIS software will start to simulate and analyze by choosing surface analysis and then contour.



310 Handbook of Engineering Hydrology

Choose suitable interval for contour lines, say for example 50, and save the data (Figure 15.17).
The contour map will look like the map in Figure 15.18.
Then all lines need to be treated by GIS, to get the final shape as seen in Figure 15.19.
Then these lines will be analyzed and connected according to the contour lines for the same value; for 

ease each contour line can be assign a certain color to generate different zones or regions (Figure 15.20).
This will be the same procedure for other weather parameters; you need to change only data from 

humidity to temperature or rainfall, for example. From these maps, now it is easy to study the effect of 

FIGuRE 15.17 Choosing suitable interval for contour lines.

FIGuRE 15.18 Final shape for contour map.
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FIGuRE 15.19 Final shape for contour lines after treating with GIS software.
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FIGuRE 15.20 The final shape for the treated map for certain weather parameters by GIS, indicating zones and 
lines (gray shadings) of weather parameters distributed in the region.
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climate change on the rainfall pattern by investigating the zone generated by the GIS. If the zone area 
has decreased or increased, we can conclude there is a change in that region. By applying GIS tech-
niques, we can predict if there will be a serious change in rainfall pattern or temperature higher or lower 
than previous data. The GIS can also give the users a better calculation for each area in each zone; this 
calculated area will be a great help to scientists to compare more data at different time domains. This 
time domain can even in some cases be around 100 years to give the right conclusion whether there are 
any changes in weather parameters during the specified time period resulting in any changes on the 
weather for that region.

15.5  Summary and conclusions

The application of GIS in climate change has been investigated in this chapter. The obtained data for 
weather parameters such as rainfall and temperature have been used here to create maps that demon-
strate the changes in weather conditions with different zones and areas inside the maps. These maps 
and technical data for all weather stations in a certain location or region will be a great help to study the 
changes that have taken place in the weather over a certain period of time. The maps produced in the 
GIS will give a good indication of all weather parameters showing clearly whether the region has under-
gone any changes during the past and current decade of time by calculating and exactly measuring 
these zones of temperature and rainfall to determine whether any shrinkage or expansion had occurred. 
These measurements can be easily conducted using the GIS.
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16.1  Introduction

16.1.1  Upland erosion Processes and Models

The main source of sediments in reservoirs is from upland erosion. Morgan and Davidson [22] and 
Julien [15,16] describe soil erosion processes and dynamics that have been studied for decades. The main 
factors contributing to upland erosion losses include rainfall erosivity, soil erodibility, land topography, 
land use, and land conservation practices [9]. Specific degradation rates in reservoirs of the United States 
are typically less than 2000 tons/km2/year [18] and are primarily linked to upland erosion rates. Upland 
erosion losses have been estimated using well-known methods like the Universal Soil Loss Equation 
(USLE) from Wischmeier and Smith [34]. The USLE includes all the factors affecting upland erosion 
from sheet and rill erosion. Renard et al. [25] provided a modified version named the Revised Universal 
Soil Loss Equation (RUSLE).

The advances in geographic information system (GIS) have allowed applications of raster-based for-
mats for the determination of the various parameters of the USLE and RUSLE. Some detailed applica-
tions at the watershed scale include Mitasova et al. [20], Molnar and Julien [21], and Kim and Julien 
[19]. The applicability in tropical areas represents a challenge because of the reduced availability in GIS-
gridded information for topography, soil type, and land use, as well as for the evaluation of the rainfall 
erosivity parameter R.

In tropical regions, the early and widely accepted soil erosion models consist of relatively simple 
response functions to predict mean annual erosion losses. Forest Research Institute Malaysia (FRIM) 
[11] provided a guide for soil erosion losses on Malaysian forestland using MUSLE. Schoorl et al. [28] 
state that the current trend is towards replacing these by far more elaborated process-based models. 
Among these models include water prediction program (WEPP) of the USDA; the erosion productiv-
ity impact calculator (EPIC); chemical, runoff, and erosion from agricultural management systems 
(CREAMS); and European soil erosion model (EUROSEM). These models are usually event based and 
are more applicable to agricultural areas than mountainous watersheds. Other models can be useful in 
the analysis of watershed hydrology (e.g., HEC-HMS, SHETRAN, and MIKE SHE). Other programs 
combine hydrology and hydraulics such as InfoWork RS, SWMM, SED2D, XP-STORM, and BASINS. 
Ekhwan et al. [7] studied the use of InfoWork RS to determine the sediment loads and riverbed profiles 
at Cameron (C.) Highlands. Hartcher and Post [12] studied the mean annual conceptualization of trans-
port and deposition processes of sediments in Thailand using SedNet. Fortuin [10] under the REACH 
study created Early Warning and Risk Navigation Systems (EWARNS) in order to resolve and minimize 
the serious soil erosion problems in C. Highlands, Malaysia. TNBR [30] studied the use of DHI’s SEAGIS 

Preface

The main source of sediments in reservoirs is from upland areas. Very high upland erosion rates 
have been observed in tropical countries around the world. For instance, Malaysia receives 2500 
mm of rainfall precipitation per year and the steep mountain areas are subjected to deforestation. 
The corresponding erosion rates have exceeded 10,000 tons/km2/year. The example of Cameron 
(C.) Highlands in Malaysia illustrates how geographic information system (GIS) can be used to 
examine soil erosion mapping. From this study using the Revised Universal Soil Loss Equation 
(RUSLE) model, the average annual soil loss rate at C. Highlands was estimated at 282,500 m3/year 
in 1997 and increased to 335,000 m3/year in 2006. The comparison of erosion rates between 1997 
and 2006 shows a soil loss increase of 18.5% in less than a decade. These rapid increases in reservoir 
sedimentation rates are attributed to changes in land use that can be easily monitored with GIS.
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(Soil Assessment Model) to estimate the sediment entering into the river systems coupled with MIKE 11 
and MIKE 12 model for the rainfall and hydrological conditions. Dynamic GIS-based watershed erosion 
modeling studies showing the processes of upland erosion, sediment transport, and deposition include 
applications of CASC2D-SED [8,13,17,26]. More recent developments of dynamic simulations of sedi-
ment transport and contaminant transport and fate were reported by Velleux et al. [31,32], Caruso et al. 
[4], and Johnson et al. [14].

C. Highlands in Malaysia is located in the mountains of a tropical region subjected to about 2500 mm 
of rain every year. The area formerly developed for hydropower development has been plagued with 
sedimentation problems. C. Highlands has been rapidly deforested and substituted with agriculture, 
urbanization, and infrastructure development contributing to severe soil erosion. The increase in soil 
erosion is primarily attributed to agricultural expansion, while the urbanization may also contribute, 
but to a lesser extent [28]. Changes in land use are therefore considered to have a major effect on the soil 
erosion losses.

This site provides a unique example for the demonstration of the applicability of GIS techniques for 
the analysis of upland erosion losses in a mountain tropical watershed. The site requires an evaluation of 
all the upland erosion parameters using RUSLE. The analysis also demonstrates how temporal changes 
in land use affect the upland erosion rates. This field site of C. Highlands in Malaysia has been selected 
because it is one of the most highly erodible areas in the world. The changes in land use between 1997 
and 2006 are highlighted in terms of impact of soil erosion.

16.1.2  field Site Description

The C. Highlands catchment area shown in Figure 16.1 in Peninsular Malaysia is relatively high with 
mountains ranging from 1524 m to Gunung Brinchang standing at 2032 m. Under the C. Highlands 
hydroelectric scheme—stage I construction, the high head scheme supplemented by the combined flow 
from two major rivers, Sg. Telom and Sg. Bertam, is being conveyed to the power house through a closed 
tunnel. The gross head estimated between Sg. Bertam and Sg. Batang Padang was 568 m.

The application of GIS facilitates the calculations of soil erosion by enabling the integration of hard-
ware and software for the analysis of data capturing the spatial and temporal variability of watershed 
characteristics of geographically referenced information. GIS allows us to view, understand, question, 
interpret, and visualize data in many ways that reveal relationships, patterns, and trends in the form 
of maps, globes, reports, and charts. For this study, ArcGIS version 9.3 was utilized. A raster-based 
approach is used here because it has proven to be more convenient and very well suited for the analysis 
of soil erosion at the watershed scale. Overall the simulation models are the most effective way to pre-
dict soil erosion processes and their effect by using GIS [1]. GIS provides a great advantage to analyze 
multilayer of data spatially and quantitatively within the basin. The estimation of soil loss in the basin 
using GIS is also in the ranges of other studies. GIS not only provides accurate results but also provides 
cost- and time-effective ways of analysis.

The boundary shape files of C. Highlands were obtained from the Department of Agriculture 
(DOA), Malaysia, shown in Figure 16.2. These shape files were added as data into ArcGIS. The total 
drainage area of C. Highlands scheme is 183 km2 comprising of 111 km2 for Telom and 72 km2 for 
Bertam.

16.2  Upland erosion Parameters

The well-known and widely used model used to estimate soil erosion losses from the upland areas is 
the USLE developed by the USDA Wischmeier and Smith [33,34]. The model was later modified and 
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renamed RUSLE by Renard et al. [25]. More details can be found in Pitt et al. [24] and Blaszczynski [2]. 
The USLE equation combines six parameters as described in Equation 16.1:

 A RKLSCP=  (16.1)

where
A is the upland erosion loss in tons per acre per year
R is the rainfall erosivity factor
K is the soil erodibility factor
L is the slope length factor
S is the slope steepness factor
C is the cropping and management factor
P is the conservation practice factor

A flow chart for the calculation of soil erosion losses is presented in Figure 16.3. The calculation details 
for this study can be found in Teh [28].

16.2.1  rainfall erosivity

In earlier studies at C. Highlands, the mean annual rainfall precipitation was observed to be approxi-
mately 2620 mm fairly evenly distributed over the year with somewhat heavier rainfall periods in April 
and November. This estimate decreased slightly in recent years where the mean annual rainfall reached 
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2550 mm. Higher rainfall precipitation occurs twice in a year, as shown in Figure 16.4, during the 
months of April through May and October through November.

The rainfall erosivity factor R describes that the rainstorm energy of the rainfall, which varies with 
climate and location within a certain region. In Malaysia, the Department of Irrigation and Drainage 
provided a Design Guides Report (DID) [6] to compute the annual EI30 and averaged R factor equal to 
9068 for Pahang State at Gunung Brinchang. This value is excessively high and had to be discarded. 
Other studies in Southeast Asia have also suggested relationships for the factor R. In Indonesia, Bols [3] 
provided an equation for the calculation of the R value based on an empirical study of the mean annual 
precipitation P in mm:

 
R

P

P
=

+
2 5

100 0 073 0 73

2.

( . . )
 (16.2)

In Thailand, Hartcher and Post [12] investigated hillslope erosion. The rainfall erosivity factor was 
determined using the following Hartcher equation [12]:

 R P= +38 5 0 35. .  (16.3)

Therefore, the values of the factor R at C. Highlands could be estimated from the rainfall precipi-
tation from the 1999 to 2006 rainfall record. Several equations were compared in Table 16.1. Both 
the methods of Hartcher and Bols [3,12] provided comparable values of R factor with 993 and 941, 
respectively.

Based on isohyets, a map of the rainfall erosivity factor R was developed from the equation of Bols [3]. 
The GIS map in Figure 16.5 shows the distribution in factor R for the RUSLE model.

16.2.2  Soil erodibility

The soil erodibility factor K describes the ability of a soil to erode under rainfall. The K factor is defined 
as a unit of mass per area per unit time. It quantifies the amount of soil erosion as a function of soil 
type, soil texture, and composition. The K factor values can be estimated using the soil erodibility 
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nomograph method that depends on soil properties such as the percentage of silt, clay, and fine sand, 
percentage of organic matter (OM), soil structure code, and permeability class. The Wischmeier et al. 
[35] equation is

 
K

OM M S P
=

× −( ) + −( ) + −−2 1 10 12 3 25 2 2 5 3

100

4 1 14
1 1. . . ( ).

 (16.4)

where
M = (%silt + %very fine sand) × (100 − %clay)
%silt is 0.002–0.05 mm
%very fine sand is 0.05–0.1 mm
%sand is 0.1–2 mm
%clay is <0.002 mm
OM is the % of OM
S1 is the structure index
P1 is the permeability

From laboratory sampling conducted in 2010, the particle size distribution for sediments at C. Highlands 
consists of an average composition of 13% sand, 60% silt, 25% clay, and 2% OM. For applications in 
Malaysia, Tew [29] proposed the following slight modification to the following method:
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where
K is the soil erodibility factor (tons/ha)(ha hr/MJ mm)
M = (%silt + %very fine sand) × (100 − %clay)
OM is the % of OM
s is the soil structure code
p is the permeability code

Using the Wischmeier et al. [35] formula, the K value for C. Highlands was determined to be 0.052, 
while Tew [29] provided 0.033. Meanwhile, the soil erodibility map for K factor developed using the 
GIS method obtained a higher value of 0.0659. On the other hand, findings from the NREM [23] by 
the Ministry of Natural Resources and Environment, Department of Environment, Malaysia, for C. 
Highlands reveal that the soil erodibility factors in the study area range from 0.1 to 0.2. For this study, 
the values of K are assumed to be uniform and are adopted from the DOA. Therefore, the K factor used 
for steep, urban, and mined land was 0.066.

16.2.3  Slope Length and Steepness factors

The two factors L and S describe the slope length and steepness factors, respectively. They can be deter-
mined from the topography of the area under study. In most studies, both factors are combined together 
to form the slope steepness factor LS. For the C. Highlands area, the topographic factors L and S were 
obtained from the topographic information provided by the digital elevation model (DEM) derived 
from the NASA Shuttle Radar Topographic Mission (thereafter SRTM) dataset. A DEM of scale 1:50,000 
was obtained for this study whereby the slope length and slope steepness can be used in a single index, 
which expresses the ratio of soil loss as defined mathematically by Wischmeier and Smith [34]. Using 
the raster calculator function under spatial analyst, the LS factors were obtained. The slope of the DEM 
in percentage and the flow accumulation were calculated at a cell size of 20 m. Using the available data 
from ArcGIS, the slope map is shown in Figure 16.6 and the slope length and steepness for LS factor was 
calculated, and the LS map is shown in Figure 16.7.

16.2.4  cropping Management and conservation Practice

The cropping management factor represents the ratio of soil loss under a given crop to that of a bare soil 
freshly tilled in the drainage direction [33]. The cover factor C relates to land use characteristics. Based on 
the previous studies and available land use maps, the values on Table 16.2 from the Ministry of Natural 
Resources and Environment, Department of Environment, for the C factor were used for this study.

As expected, the land use changes have been quite significant since the year 1946. Figure 16.8 shows 
the forested area reduction is almost all sub-catchment. The average percentage of reduction in forested 
area is 35% from 1946 to 1997. The Lower Bertam sub-catchment recorded the lowest percentage in 1997 
at 30% for the forested area.

The terrain within the study area can be classified according to the slope category as defined by the 
DOA, Malaysia. The terrain and topography classification is then used in the erosion practice factor, 
P as in Table 16.3, where it considers the best practices to reduce source erosion such as contouring and 
terracing. The values proposed are dependent on the terrain slope.

Two sets of land use maps from the DOA were available for this study, as shown in Figure 16.9a and b 
for years 1997 and 2006, respectively. The C and P factors were generated the same way as the K factor 
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TABLE 16.3 Erosion Control Factor, P (DOA)

Category Topography Slope Range (°)

1 Flat 0–2
2 Undulating 2–6
3 Moderate hilly 6–12
4 Hilly 12–20
5 Moderate steep 20–25
6 Steep >25

Slope (%) P Factor

1.1–2.0 0.60
2.1–7.0 0.50
7.1–12.0 0.60
12.1–18.0 0.80
18.1–24.0 0.90

TABLE 16.2 Land Use Cover Factor, 
C (DOA)

Land Use Type C Factor

Agriculture experimental stn. 0.600
Associated areas 0.350
Bare land 1.000
Forest 0.010
Grassland 0.015
Market gardening 0.350
Mine 1.000
Mixed agriculture 0.350
Orchard 0.250
Residential area 0.003
Scrub forest 0.010
Shifting cultivation 0.250
Sundry nontree cultivation 0.250
Tea 0.350
Urban 0.500
Water body 0
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by cross-referencing the attribute table to ArcGIS. For this study, P values were chosen based on the land 
use instead of management practice. The GIS converted the information from a vector-based format to 
a raster-based format at a cell size of 20 m.

Using the ArcGIS, the cover management factor C and erosion control factor P were developed using 
the method described previously for 1997 in Figure 16.10 and 2006 in Figure 16.11. The maps produced 
for 2006 exclude the sub-watershed of Plau’ur due to unavailability of data. The comparison of these 
maps reflects the impact of the change in land use that has been taking place on the watershed within 
less than 10 years.

16.3  Upland erosion Mapping

The maps obtained from RUSLE for C. Highlands are obtained from the product of the six parameters 
of Equation 16.1. The values of erosion potential were divided into seven classes as shown in Table 16.4. 
Figure 16.12 shows the upland erosion maps for 1997 and 2006, respectively.

Two separate sub-watersheds Habu and Ringlet were further investigated to examine the rate 
of increase in soil loss. Using the soil maps for Habu on Figure 16.13, the RUSLE model showed an 
increase in soil loss from 32,000 m3/year in 1997 to 50,600 m3/year in year 2006, which corresponds to 
a 58.1% increase. Meanwhile the Ringlet area shown in Figure 16.14 also showed a 100% increase in soil 
loss from 25,600 m3/year in 1997 to 50,900 m3/year in year 2006.

These increases in upland erosion losses reflect directly on the increased sedimentation rates mea-
sured in these reservoirs. The C. Highlands hydroelectric scheme was planned and constructed from 
1959 to 1964. The main feature of the scheme was to harness the Ringlet Falls with Sultan Abu Bakar 
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Dam that stands at 40 m height with concrete buttresses fitted to four (4) gated spillways. The reservoir 
elevation at full supply level is 1070.7 m and has a surface area of 60 ha. The reservoir receives water 
from three rivers (Sg. Habu, Sg. Bertam, and Sg. Ringlet) and other minor tributaries. Ringlet Reservoir 
was designed for a gross storage of 6.7 million m3, of which 4.7 million m3 is the active/live storage and 
2.0 million m3 is inactive/dead storage. The dead storage was designed for a useful lifespan of approxi-
mately 80 years that translates to a design sediment inflow of 20,000 m3/year [5]. From the bathymet-
ric survey data the sediment rate of 40,000 m3/year was recorded immediately after construction. The 
data showed an increase of almost 100% from the designed storage requirement, which means that the 
dead storage would be filled up after 40 years of operation and not meeting the design life expectancy. 
Since these earlier studies, the rate of sedimentation increase is directly related to the increase in the 
upstream activities such as deforestation, uncontrolled farming, residential, and other rapid changes in 
land use on the contributing watershed areas. The main difference with earlier studies is that GIS has 
now become a very important tool in the analysis of the prospective changes in reservoir sedimentation 
rates based on changes in land use.
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FIGuRE 16.11 Computed (a) C factor and (b) P factor for 2006 using ArcGIS.

TABLE 16.4 Derivation of the Ordinal Categories of Soil 
Erosion Potential

Erosion Class Numeric Range (tons/ha/year) Erosion Potential

1 0–1 Very low
2 1–5 Low
3 5–10 Moderate
4 10–20 High
5 20–50 Severe
6 50–100 Extreme
7 >100 Exceptional
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16.4  Summary and conclusions

Very high upland erosion rates have been observed in tropical countries around the world as a result of 
deforestation. GIS technology can be used to assess the changes in upland erosion rates from updated 
monitoring of land use. The USLE and RUSLE are well suited for upland erosion mapping. The methods 
include the effects of rainfall erosivity from rainfall records, soil erodibility from soil maps, slope length 
and steepness from surface topography and DEM, cropping management, and conservation practice 
from land use maps. This example of C. Highlands in Malaysia illustrates how GIS can be used to gener-
ate soil erosion maps at different times. Malaysia receives 2,500 mm of rainfall precipitation per year 

Exceptional
Extreme
Severe
High
Moderate
Low
Very low

        Legend
RUSLE 1997

(a)

Exceptional
Extreme
Severe
High
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Very low

      Legend
RUSLE 2006

(b)

FIGuRE 16.12 Computed soil erosion map for (a) 1997 and (b) 2006 using ArcGIS.

(a) (b)

FIGuRE 16.13 Soil erosion map for Habu (a) in 1997 and (b) in 2006.
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and the steep mountain areas are subjected to erosion rates in excess of 10,000 tons/km2/year. From 
this study using the RUSLE model, the average annual soil loss rate at C. Highlands was estimated at 
282,500 m3/year in 1997 and increased to 335,000 m3/year in 2006. The comparison of erosion rates 
between 1997 and 2006 shows a soil loss increase of 18.5% in less than a decade. These rapid increases in 
upland erosion rates result in similar increases in reservoir sedimentation rates. These can be attributed 
to changes in land use that can be easily monitored with GIS.
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17.1  Introduction to Hybrid Modeling

Systems of classification for different watershed models arise from differences in the way the hydrologic 
processes are represented [22].

17.1.1  Lumped vs. Distributed

One of the most common systems of hydrologic model classification is lumped vs. distributed. According 
to Abbot and Refsgaard [1], a lumped model is a model where the watershed is regarded as one unit and 
variables and parameters in the model represent average or effective values for the entire drainage area. 
On the other hand, a distributed model takes into account the spatial differences in all variables and 
parameters.

17.1.2  empirical, conceptual, or Physical

Physically based models represent flow using equations derived from the equations of conservation 
of mass, momentum, and energy. They internally use variables and parameters that directly represent 
physically measurable quantities in the field [11,12,23,45,47].

Conceptual models, by comparison, operate on parameters that represent a conceptualization of 
hydrologic processes. Aral and Gunduz [5] suggest that all lumped models are conceptual and non-
physical, asserting that they contain no connection to physical processes except through a black-box 
empirical function.

17.1.3  Hybrid Modeling concept

Hybrid models can overcome the problems caused by dissimilarities in temporal and spatial scales of 
flow processes in the channel, overland plane, and subsurface. Aral and Gunduz [4] introduced the idea 
of a “hybrid modeling concept” in order to “resolve some of the problems associated with the fully phys-
ics-based representation of all subsystem processes of a watershed while providing a much better and 
sophisticated interpretation that can be provided by an empirically based lumped parameter model.” 
For watershed modeling, “the small-scale requirements of overland and unsaturated zone flow domains 

Preface

This chapter explores a new hybrid approach to hydrologic modeling. Hybrid modeling combines 
distributed surface runoff modeling with a lumped-parameter rendering of infiltration and sub-
surface flow. The hybrid model TREX-SMA combines the Sacramento Soil Moisture Accounting 
(SAC-SMA) model with the TREX surface hydrology model. The capabilities of hybrid modeling 
are demonstrated with an application to the 30 km2 California Gulch watershed, near Leadville, 
Colorado. The results of a 50-day simulation are presented for comparisons with and without the 
hybrid model component SMA. Surface runoff parameters were obtained from a prior calibration 
of TREX, and the SMA soil moisture parameters were determined from a priori estimates used 
by the Arkansas Basin River Forecast Center (ABRFC) of the National Weather Service (NWS). 
The hybrid simulation results from TREX-SMA show improvement relative to results from the 
unmodified TREX model. Model results such as surface and channel water depth are processed 
with Geographic Resources Analysis Support System (GRASS) GIS and Keyhole Markup Language 
(KML) scripts to create 2.5-D, browsable animations overlaid on a Google Earth™ terrain.
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exhibit severe limitations on efforts of fully integrating the system. Consequently, a hybrid modeling 
approach is more suitable in which distributed- and lumped-parameter models are essentially linked and 
blended to obtain a semi-distributed watershed model” [5].

“Semi-distributed” as used here indicates that a portion of the spatial or temporal domain is distrib-
uted while the rest is lumped, hence “semi-distributed.” Kirchner [24] uses a similar line of reasoning to 
propose hybrid “gray box” models to allow some latitude for unexpected physical processes.

TREX and SAC-SMA differ in nearly all of the systems of classification: one is lumped and the other 
distributed; one is empirical and conceptual and the other is physically based. With these differences, 
the combination of these models can create a powerful hybrid.

This chapter illustrates the capabilities of hybrid hydrologic models. The example of TREX-SMA 
applications at California Gulch, Colorado, demonstrates the hybrid modeling capabilities.

17.2  Modeling with TreX and SMa

The main concept of hybrid modeling stems from the possible combination of the distributed surface-
water modeling capabilities of TREX with the SAC-SMA techniques for soil moisture volumes and 
return flow from the subsurface.

The TREX surface runoff model was developed at Colorado State University, and the Sacramento 
Soil Moisture Accounting (SAC-SMA) model is well known from the National Weather Service (NWS). 
Each model has strengths that contribute to the hybrid, and each also has limitations, some of which are 
overcome with the hybrid approach.

17.2.1  TreX

The TREX model is based on the distributed surface hydrology model CASC2D developed at CSU 
[21,42]. Johnson [18] and Rojas-Sánchez [39] added a sediment transport algorithm, and the code was 
renamed CASC2D-SED [19,40,41]. Velleux [49] developed a contaminant transport algorithm with 
capability to model multiphase transport and fate of metals. The new code, now called TREX, was fully 
tested for the transport of Zn, Cu, and Cd from mining areas at California Gulch, Colorado [50,51]. The 
current TREX code is available on the web at www.engr.colostate.edu/trex.

17.2.2  Sac-SMa

The SAC-SMA model is part of the National Weather Service River Forecast System (NWSRFS), which 
is considered the standard in flood forecasting models for the United States [6,45]. SAC-SMA, together 
with simple routing models, provides a primary method for channel flow forecasting in the NWSRFS. 
The SAC-SMA model conceptualizes the watershed as an abstracted soil column divided vertically into 
two storage zones that are filled and emptied to simulate infiltration, percolation, baseflow, and inter-
flow through the watershed. The upper and lower zones represent the infiltration capacity of shallow 
soils and the underlying aquifer, respectively.

Runoff is computed as the net excess volume remaining from precipitation after interception, and 
infiltration have been satisfied. Rates of infiltration and water holding capacities of the zones are rep-
resented with conceptual parameters that, while not directly physical, correspond closely to physical 
values such as void space ratio and saturated hydraulic conductivities [6].

The conceptualization of finite volumes filling, draining, and spilling like a collection of intercon-
nected buckets gives rise to the SAC-SMA model’s designation as a “bucket” model. Although not physi-
cally based, the Sacramento model parameters can be estimated a priori using the assumption that plant 
extractable soil moisture is related to tension water and that free water storages relate to gravitational 
soil water [27]. Using soil properties defined in the Soil Survey Geographic (SSURGO) database and 



334 Handbook of Engineering Hydrology

based on calibration experience, Anderson et al. [3] developed a range of acceptable values for 11 of the 
SAC-SMA parameters. Research by the NWS during recent years has focused on producing estimates 
of the SAC-SMA parameter values from known soil properties and remotely sensed data. These a priori 
estimates of the model parameters allow for uncalibrated simulation of watershed scale rainfall–runoff 
response with distributed versions of the SAC-SMA model [3,25,26,46].

17.3  TreX-SMa: Model Processes and algorithms

The TREX-SMA hybrid model has three primary layers: the TREX surface, the SAC-SMA upper zone, 
and the SAC-SMA lower zone. The hybrid model essentially preserves the raster-based distributed 
nature of the TREX model for the simulation of surface processes as well as the lumped and conceptual 
nature of soil moisture accounting with SMA. The links between the two models are provided from 
the following: (1) the infiltration from TREX is input to the SMA upper zone and (2) the SMA returns 
subsurface flow as point sources to the TREX surface flow algorithm.

More specifically, precipitation excess is calculated at each pixel and routed as 2-D surface runoff 
across the surface until it is conveyed as 1-D channel flow. The infiltration rates are removed from the 
surface domain and collectively lumped as input to the soil moisture accounting procedure of the SMA 
upper zone. Within the soil moisture accounting procedure, the volume (or depth) of water in the soil 
column is divided into two components: bound water and free-flowing water in both the upper zone and 
the lower zone. The free-flowing water replenishes the bound water zones when the latter is depleted. 
Evapotranspiration (ET) is extracted from both the upper zone and the deep bound water to be returned 
to the atmosphere. The free-flowing water in the upper zone flows into the lower zone according to a 
percolation function. The capabilities of TREX-SMA are summarized in Table 17.1.

The detailed algorithms for surface hydrology and flow-routing processes of the TREX-SMA hybrid 
are described in this section.

17.3.1  rainfall and Interception

Rainfall precipitation starts the hydrologic simulation. TREX-SMA creates a linearly interpolated pre-
cipitation function for each gage by reading a user-entered table of intensity-time pairs. If multiple gages 
are available, an inverse distance-weighted function is applied to compute rainfall intensities at points 

TABLE 17.1 Algorithms for Hydrologic Processes in TREX-SMA

Process/Model Component TREX

Precipitation distribution Thiessen, inverse distance square weighted, stochastic storms, gridded radar
Snowfall accumulation and melting Degree-day method
Precipitation interception User-defined
Overland water retention Idem
Infiltration Green and Ampt
Overland flow routing 2-D diffusive wave: Saint Venant equations
Channel routing 1-D diffusive wave: upstream explicit

New components In TREX-SMA
ET User-entered PET
Soil moisture in vadose zone Bucket
Lateral groundwater flow Conceptual
Stream/groundwater interaction 1-way return from SMA zones
Exfiltration N/A
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between the gages. Capabilities to use gridded radar rainfall precipitation from the NEXRAD/WSR88D 
were also developed by Jorgeson and Julien [20]. Uniform rainfall intensity is used when only one gage 
is present.

Interception depending on the land use and vegetation type is removed from the rainfall precipita-
tion. In TREX-SMA, the net precipitation volume is expressed as a unit flow rate by multiplying by cell 
area and dividing by the time step length.

17.3.2  Soil Infiltration

The Green and Ampt [15] equation models infiltration as a step or “piston” wetting front that penetrates 
downward into an infinite soil horizon according to soil moisture deficit, capillary suction head, and 
saturated hydraulic conductivity. The Green and Ampt equation determines the maximum rate of water 
entering the subsurface domain and gives a depth of new infiltration in each cell for each time step. 
Infiltration depths are summed across the cells belonging to a particular upper zone, and an average is 
computed as the primary input for the soil moisture code:
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where
f is the infiltration rate [L/T]
Kh is the saturated hydraulic conductivity [L/T]
Hc is the capillary pressure head at the wetting front [L]
Md is the soil moisture deficit [dimensionless]
F is the total infiltrated depth [L]
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where
θi, θr are the initial and residual saturation, respectively [dimensionless]
θe, ϕ are the effective and total soil porosity, respectively [dimensionless]
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where p1 and p2 are solution parameters as given by Velleux [49]
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with F, Kh, ∆t, Md, and Hc defined from the previous equations:
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where
tl is the transmission loss rate [L/T]
Hw is the hydrostatic pressure head of water [L]
T is the total depth of transmission losses [L]

17.3.3  Depression Storage

As runoff begins to occur, some of the precipitation excess will be retained in small discontinuous 
depressions in the land surface. The retained water volume is referred to as depression storage on the 
land surface and dead storage when it occurs in channels. Dead and depression storage are always 
subject to infiltration and evaporation. Depression storage acts functionally as a simple abstraction 
from the volume of water running off of the land surface. For multiple events, dead and depres-
sion storage remaining from previous events will contribute to more rapid runoff response in the 
watershed.

17.3.4  Overland and channel flow routing

TREX-SMA describes conservation of mass and momentum. The diffusive wave approximation of the 
Saint Venant equation is formulated to estimate the energy grade line or friction slope Sf for both over-
land and channel flow. The diffusive wave approximation considers flow generated by differences in 
head due to depth, as well as bed slope. This allows for flow calculations on horizontal and adverse 
slopes. Manning roughness derived from land cover and soil type defines flow resistance in energy slope 
calculations.

The diffusive wave approximation neglects the local and convective acceleration terms of the Saint 
Venant equations. Richardson and Julien [38] investigated the relative magnitude of all the terms of 
the Saint Venant equation for overland flow. Their analysis confirms that the neglected terms of the 
Saint Venant equation are insignificant and that the diffusive approximation is appropriate for most 
cases of overland flow. In channel flows, Lettenmaier and Wood [28] also showed that the neglected 
terms of the diffusive wave approximation can become significant when the slope is very small. At 
California Gulch, with the average slope of 12.5%, the diffusive wave approximation is sufficiently 
accurate.

Ogden and Julien [32] and Molnár and Julien [30] pointed out that spatial and temporal distributions 
of rainfall and grid scale may be expected to affect the hydrograph calculations far more than the diffu-
sive wave approximation. However, based on their conclusions, the 30 m grid spacing used at California 
Gulch is adequate to prevent grid-scale effects from influencing the results from this research.

The solution scheme for overland and channel water depth in TREX is the second-order modified 
Euler scheme (equivalent to the midpoint method of Cheney and Kincaid [8, p. 407]) which uses the cur-
rent depth plus an approximate first derivative of the state derived from the prior time step to predict the 
next time step state. The method uses the unit flow computed from the Manning formulation to predict 
the depth of water in a model cell in the next time step as detailed in Julien et al. [21] and is known to 
be unconditionally stable as long as the forward step size satisfies the Courant–Friedrichs–Lewy (CFL) 
condition [2,9].

In TREX-SMA, surface runoff is calculated with a 2-D formulation of the Saint Venant equation 
with friction slope in each of x- and y-directions defined using the Manning formulation. Channel 
flow is computed using 1-D formulations for both continuity and momentum with the diffusive wave 
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approximation. Point inflows or extractions from other sources, such as water treatment plant dis-
charges, springs, or irrigation diversions, can be added or subtracted as source terms:
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where
ie is the net rainfall excess [L/T]
∂h/∂t is the change in depth with respect to time [L/T]
∂qy/∂y, ∂qx/∂x are the partial derivatives of planar components of the unit flow (volumetric flow 

divided by width) with respect to their corresponding flow directions [L/T]
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where
ht+∆t(j,k) is the flow depth in cell (j,k) in next time step
ht( j,k) is the flow depth at the current time
∆t is the time step
ie is the net rate of infiltration excess runoff production
q k kx

t ( );→ +1  q k kx
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where
∆t is the time step
∆x is the grid cell size
V is the mean flow velocity
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where
Sfx, Sfy is the friction slope in each of x- and y-directions [dimensionless]
S0x, S0y is the change in depth with respect to time [dimensionless]
∂h/∂x, ∂h/∂y are the partial derivatives of depth with respect to their corresponding flow 

directions [L/L]

 q hx x= α β  (17.12)

 q hy y= α β  (17.13)
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where
αx, αy is the resistance coefficient in the x- or y-direction [L1/3/T]
β is the resistance exponent = 5/3 [dimensionless]
n is the Manning roughness coefficient [T/L1/3]
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where
Ac is the cross-sectional area of flow [L2]
Q is the total discharge [L3/T]
ql is the unit lateral inflow [L2/T]

17.3.5  Soil Moisture accounting in the Upper Zone

In TREX-SMA, the infiltrated water enters the subsurface domain via the upper soil moisture zone. 
Water is distributed between two portions in the upper zone: the bound water portion (tension water) 
and the free-flowing portion (free water). Abstractions from the upper zone include evaporation and 
transpiration, percolation losses to the lower zone, water redistribution, and return flow releases to the 
surface as interflow.

17.3.5.1  evaporation and Transpiration

Evaporation and transpiration are central to the mass balance in the inter-storm periods. The ET 
abstraction is removed first from the bound pore water volumes in the model. TREX-SMA currently 
uses a single constant ET demand for the entire simulation and uniform across the model domain. Any 
distribution of ET computed from any model could theoretically be used as input since the model aggre-
gates the demand from all cells to compute a total ET for each upper zone. ET is first removed from the 
upper zone tension water based on the ET demand computed from the user-entered potential ET scaled 
by the available water in the upper zone. If the scaled demand is greater than the amount available in the 
upper zone tension water storage volume, the additional demand is subtracted from the lower zone ten-
sion water storage and the upper zone free water storage. In the present formulation, a simple constant 
potential ET rate is applied across the model. The free water from the lower zone is not consumed by ET:
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where
ETdemand is the accumulated ET demand for the upper zone for the time step [L]
ETactual,uz is the amount of demand removed from the upper zone [L]
Fwc,uz is the upper zone free water current storage [L]
Fwm,uz is the upper zone free water capacity [L]

In addition to gravity-driven percolation, water in the physical soil column is influenced by capillary 
forces that drive water movement toward dry soils with a high capillary potential. The tension water 
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zone represents this capillary soil storage. Following the subtraction of ET losses, a balancing equation 
transfers excess free water to the tension volume. The transfer occurs when the storage ratio of the ten-
sion water is less than the storage ratio of free water. Redistribution exchanges water between the free 
water and tension water storage until the free and tension water ratios (the current volume divided by 
maximum storage) are equal.

A similar computation balances the water in the lower zone when the evaporation demand is suf-
ficiently high. For the lower zone, the redistribution occurs if the tension water storage ratio is less that 
the total lower zone storage ratio:
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The assumption is that if for any reason, the free water storage contains significantly more volume than 
the tension water than the free water will resupply the tension water. This could happen if the tension 
water capacity is small relative to the free water capacity and the evaporation is high. This assumption 
is consistent with the overarching assumption in the Sacramento model that tension water volumes are 
always satisfied first before any other volumes.

17.3.5.2  Interflow

At each time step, the upper zone free water storage releases water to the surface as interflow. Interflow is 
computed based on a simple rate equation. An effective depletion coefficient is obtained by multiplying 
the standard depletion coefficient by the time step.

The upper zone storage depletion coefficient defines the flow released per volume of stored water 
in the zone, normalized by the area of the model contributing to the given zone. The internal units 
of the soil moisture accounting procedure are 1-D length (e.g., millimeters) so the outgoing flow 
is scaled by the upper zone area. As used in the Sacramento model implemented in NWSRFS, the 
standard upper zone depletion coefficient is calibrated in units of millimeters released per millime-
ters stored per day. More specifically, the TREX-SMA model uses a conversion factor to account for 
different time steps:

 V k Fwf uz eff c uzint = ⋅, ,  (17.20)

where
Vintf is the baseflow unit volume for the time step [L]
Fwc,uz is the current unit volume of upper zone free water [L]
kuz,eff is the effective upper zone free water storage depletion coefficient [dimensionless]

 k k tuz eff uz, = ⋅∆  (17.21)

where
kuz is the standard upper zone free water storage depletion coefficient [L/(L · T)]
∆t is the current model time step [T]

 V k t Fwf uz c uzint = ⋅ ⋅ ⋅ ⋅∆ , Area Conversion factors  (17.22)
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or written to emphasize the units as
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Similar scaling is required to obtain an effective storage depletion coefficient for the lower zone free 
water storage depletion coefficients, taking into consideration the time step and also scaling from the 
NWSRFS parameter range that is used in TREX-SMA.

17.3.6  Soil Moisture accounting in the Lower Zone

Water drains into the lower zone via percolation. Losses from the lower zone include ET and baseflow.

17.3.6.1  Percolation

Water is transferred from the upper zones to the lower zones via the percolation computation. The percolation 
demand is computed as a demand in millimeters per day. A conversion is applied to determine the effec-
tive demand for the relatively small time steps occurring in the TREX-SMA model. The lower zone percola-
tion demand (demand for water from the upper zone to fill lower zone free water storages) is computed from 
a base percolation rate parameter and a two-parameter percolation curve that multiplies the percolation rate 
based on the current free water state. The actual percolation is reduced from the percolation demand based 
on the availability of upper zone free water. The total volume removed is limited by the amount in the upper 
zone free water current storage volume, to prevent mass balance errors. More specifically,
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where
Percdemand is the percolation demand [L/T]
Percbase is the base percolation rate [L/T]
zperc is the percolation multiplier
rexp is the wet vs. dry percolation differentiation exponent
factors a and b define the aggregate lower zone deficiency ratio:
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17.3.6.2  Baseflow

In TREX-SMA, the baseflow is returned to surface runoff as a point source as calculated from

 V k Fwbasf lz eff c lz= ⋅, ,  (17.27)

where
Vbasf is the baseflow volume [L]
klz,eff = klz[L/(L · T)] · ∆t[T] is the effective lower zone free water storage depletion coefficient 

[dimensionless]
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In order to allow multi-event simulation with TREX-SMA, the saturation condition of the soil moisture 
is used to re-initialize the parameters of the Green and Ampt infiltration equation:
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Infiltration parameters remain fixed for the duration of each storm and are allowed to recover soil 
moisture deficit between storms due to ET and drainage. In SMA, a storm ends at cessation of rainfall, 
when the precipitated water falls below a user-entered threshold value. The model does not change the 
infiltration parameters immediately upon cessation of rainfall, but continues to allow infiltration to 
occur using the Green and Ampt parameters set at the beginning of each storm.

17.4  Hybrid Modeling application at california Gulch

The TREX-SMA model will be demonstrated using data from the California Gulch watershed near 
Leadville, Colorado, shown in Figure 17.1.

17.4.1  Location and Site Description

A general description of the California Gulch watershed is given by Velleux et al. [51]:

California Gulch is part of a historical mining district located near Leadville, CO. The site is in 
the headwaters of the Arkansas River basin and covers an area of 30 km2. The watershed includes 
upper and lower reaches of California Gulch (CG), Stray Horse Gulch, Starr Ditch (SD), and several 
smaller drainages.

FIGuRE 17.1 Oblique view of the California Gulch watershed looking east. The light shading indicates the 
watershed delineation from the USGS NED at 30 m resolution. CG-4 is located near the city of Leadville. SMA 
outlets are located above CG-4 and CG-5.
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Due to the history of surface mine waste accumulation, the area of California Gulch was added to the 
US EPA National Priority List in 1983 [16,48]. The national priority list sites are designated as part of 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) commonly 
known as Superfund [48].

17.4.2  elevation and Topography

Elevations in the watershed range from 2,900 m (9,600 ft) at the Arkansas River to 3,650 m (12,000 ft) 
on top of Ball Mountain at the eastern boundary of the watershed. The average slope is 12.6% [51]. The 
city of Leadville, roughly in the center of the watershed, contains a small watershed divide between 
California Gulch and Malta Gulch with the majority of runoff from the city draining into California 
Gulch. The deep channel of California Gulch dominates the general topography of the valley as it runs 
from the bedrock formations of the upper watershed down through the alluvium and glacial deposits 
in the lower watershed.

The USGS 1/3rd arc second digital elevation model (DEM) from the National Elevation Dataset 
(NED) provides the basis for all topographic computations in the model. The site was simulated on a 
30 m × 30 m grid based on the nominal dimensions of the NED, and the watershed area was delineated 
with 34,002 cells for the overland plane. All other distributed inputs were converted to the same spac-
ing for purposes of calculation. The model setup from Velleux et al. [51] was replicated for use with the 
TREX-SMA simulations.

17.4.3  Land Use

In the TREX-SMA model, land use classification is used to determine overland flow roughness and 
interception depth. The NLCD 2001 land use dataset from NASA and USGS distinguishes 13 differ-
ent land use classes in the California Gulch watershed. Evergreen forest dominates the majority of the 
watershed except for the urban area of Leadville, and mining or otherwise industrially impacted lands 
that are classified as either “commercial” or “bare rock.”

17.4.4  Soil Type

Within the watershed, the USDA identifies 14 different soil associations. These were used along with a 
separate class for soils within the city of Leadville urbanized (subdivided by land use) to create a total of 
17 soil classes for the model.

The characteristics (Kh, Hc, K, porosity, grain size distribution, etc.) of each soil class were defined 
based on values reported in the NRCS SSURGO database as well as texture.

The method of Rawls et al. [34,35] was used to generate initial values for the Green and Ampt param-
eters (saturated hydraulic conductivity and capillary suction head) for use in the model. Kh values were 
calibrated by Velleux et al. [51] to achieve agreement between measured and simulated runoff.

17.4.5  Temperature

Hourly air temperature data were obtained for the modeling period from the Western Regional Climate 
Center (WRCC) for the weather station at the Leadville airport 5 km (3.2 mile) south of Leadville. The 
Leadville airport gage is at 9,938 ft above mean sea level. A normal adiabatic lapse rate of 3.6°F per 1,000 
ft would predict temperatures approximately 8°F cooler at the top of Ball Mountain (elevation 12,300 ft) 
and 1°F warmer at the watershed outlet (elevation 9,530 ft) into the Arkansas River. The climate record 
shows that daily extremes stayed well above freezing for nearly all the simulated period eliminating 
concern about frozen ground effects.
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17.4.6  evapotranspiration

The inter-event recovery of infiltration capacity in the soil moisture zones of TREX-SMA is driven by 
the release of water to the channel and by ET [43]. Pan evaporation has been measured at the Sugarloaf 
Reservoir weather station operated by the Bureau of Reclamation since 1948. The pan is located south-
east of the dam at 39°15′ north and 106°22′ west at an elevation of 2968 m (9738 ft), approximately 7 km 
(4.4 mile) west of the City of Leadville and 125 m (410 ft) lower in elevation. During summer months, 
when snow cover is largely absent, the values from the Sugarloaf Pan should be indicative of conditions 
in California Gulch [17].

Monthly evaporation values from the WRCC data show that for the months of July and August 2006, 
evaporation was less than the corresponding cumulative monthly averages for 1948 through 2005 [31]. 
The reduced evaporation is related to the occurrence of more precipitation that usual, one reason why 
this summer period was chosen for simulation.

Daily records from the pan show fluctuations between nearly 0 and 0.32 in. per day for July and 
August 2006. For purposes of simulation, the 2006 monthly averages from the WRCC were used to 
compute an average potential ET rate of 5.6 in. per month. This value was applied as a constant demand 
during all simulations.

17.4.7  Precipitation

As part of the CERCLA/Superfund efforts in California Gulch, a program to monitor the impact of 
mine waste transport on Arkansas River ecology, a network of automated pluviographic and fluvial 
gaging stations was established by the EPA. Automated sampling stations were installed each summer 
from 2003 through 2008 approximately from June through September. The automated sampling 
program 2009 and 2010 only included the peak runoff season. Gage locations and descriptions are 
given in Table 17.2. Precipitation and channel flow are recorded at 10 min intervals for stations labeled 
as CG-1, SHG-09, CG-4, and CG-6, and measurements are also made at locations CG-5, SD-3A, OG-1, 
AR-1, and AR-3A.

The summer of 2006 included at least eight significant convective storms with measurable precipita-
tion recorded at all four automated pluvial gaging stations. A series of nine storms from summer 2006 
were used as input to test the multi-event simulation capabilities of the TREX-SMA model. The first and 
most intense storm in the series occurred on July 19 (the same used for the baseflow modeling simula-
tion). The subsequent storms occurred on a roughly weekly basis following the first storm on July 25/26, 
July 30/31, August 5/6, and August 10/11. All of these storms occurred when snowmelt influences on 
streamflow in California Gulch had largely subsided for the summer.

TABLE 17.2 Automated Gage Locations and Available Data

Gage Description Available Data

SHG-09 300 ft below Emmett retention pond 1, 2, 3, 4, 5, 6
SD-3A Flume in Starr Ditch downstream of Monroe St. and upstream of drop structure 1, 2, 3, 4, 5
CG-1 California Gulch immediately upstream of the Yak Tunnel portal 1, 2, 3, 4, 5, 6
OG-1 Oregon Gulch immediately upstream of confluence with California Gulch 1, 2, 3, 4, 5
CG-4 California Gulch downstream of confluence with Oregon Gulch 1, 2, 3, 4, 5, 6
CG-5 California Gulch upstream of the Leadville Wastewater Treatment Plant 1, 2, 3, 4, 5
CG-6 California Gulch immediately upstream of confluence with Arkansas River 1, 2, 3, 4, 5, 6
AR-1 Arkansas River upstream of confluence with California Gulch, approximately 0.25 miles 

downstream of the confluence with Tennessee Creek
1, 2, 3, 4, 5

AR-3A Arkansas River approximately 0.5 mile downstream of confluence with California Gulch 1, 2, 3, 4, 5

1, Stage; 2, discharge; 3, temperature; 4, conductivity; 5, pH; 6, precipitation.
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During the July 19th storm, the most intense precipitation was measured in SHG at the SHG-09A 
gage, registering 0.4 in. in 10 min, equivalent to an intensity of 2.4 in./h. For comparison, a 100-year, 2 h 
storm for the watershed would reach 0.87 in./h, distributed over the watershed [44].

The observations at the four different precipitation gages show that the storms vary in geographic dis-
tribution. Throughout the summer, storms were recorded in which not all gages received precipitation. 
Many of these were biased toward the upper watershed (near CG-1 and SHG-09A). For instance, the 
August 6th storm was an upper watershed storm that generated significant flow at CG-1 but at no other 
gage. A simple weighting scheme placing the centroid of the total precipitation along the East–West axis 
of the watershed classified each storm as primarily upper or lower watershed.

17.4.8  Stream flow

Data from 2003 through 2007 were evaluated to find a suitable modeling period. The precipitation and 
streamflow hydrographs from the automatic gaging stations during a nonsnowmelt period at the end 
of the summer of 2006 were selected for testing TREX-SMA. Several large precipitation peaks and cor-
respondingly significant runoff signatures allow examining simulation quality during both high and 
low flows.

17.4.9  Hybrid Model Parameters

All surface model parameters for the multi-event simulation were drawn from the model calibration 
and validation by Velleux [49]. These calibrated parameters have been used for several event-based sim-
ulations of contaminant transport as seen in two papers by Velleux et al. [50–52] and further discussed 
by Caruso et al. [7]. Related work in the same basin has also been published by Rojas-Sánchez et al. [41] 
and for the simulation of extreme events including the PMP–PMF by England et al. [14].

For the multi-event simulation reported in this chapter, parameters for the SMA zones were drawn 
from the a priori dataset described by Koren et al. [26]. The parameter values are determined a priori 
using soils and land use data and are used by scientists at the NWS Arkansas Basin River Forecast Center 
(ABRFC) for regional hydrologic forecasting using the NWS distributed hydrologic model (DHM) [25]. 
For this research, the parameters from the three 4 km × 4 km grid cells aligned east and west nearest to 
Leadville (those most nearly corresponding to the California Gulch watershed area) were averaged to 
provide values for use in modeling, which are shown in Table 17.3.

17.5  TreX-SMa results and Discussion

17.5.1  Multi-event Simulation Hydrographs

We applied the TREX-SMA model to a real case at California Gulch in which 50 days of precipitation 
inputs were used to drive a model simulation. The multi-event simulation was carried out twice: once 
with the SMA submodel active, resetting the infiltration parameters at appropriate times, and once 
again with no infiltration resetting. The simulations and their respective results are distinguished in 
this discussion as “SMA” for the hybrid TREX-SMA simulations and “no-SMA” for TREX simulations 
without SMA.

The basin hydrologic response is captured most succinctly in the hydrographs showing the flow as 
a function of time through the simulated period. As expected, the TREX-SMA simulation reduces the 
simulated hydrograph peaks, especially for storms later in the series as the SMA zones dry out toward 
the end of summer. Figure 17.2 shows the aggregate basin response at CG-4 near Leadville for simula-
tions with and without the SMA submodel. Observed flows are also shown on the plot, for comparison 
to the simulated flow. The graphical evidence of the reduced peaks shown in these figures is the most 
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TABLE 17.3 Soil Moisture Accounting Parameters for Multi-Event Simulations with Re-Initialization as Given 
by Anderson et al.

No. Parameter Description
Used for 

Multi-Event Model
Acceptable

Ranges

1 UZTWM The upper layer tension water capacity, mm 52 10–300
2 UZFWM The upper layer free water capacity, mm 43 5–150
3 UZK Interflow depletion rate from the upper layer free water 

storage, day−1
0.51 0.10–0.75

4 ZPERC Ratio of maximum and minimum percolation rates 45 5–350
5 REXP Shape parameter of the percolation curve 1.54 1–5
6 LZTWM The lower layer tension water capacity, mm 240 10–500
7 LZFSM The lower layer supplemental free water capacity, mm 17.3 5–400
8 LZFPM The lower layer primary free water capacity, mm 219 10–1000
9 LZSK Depletion rate of the lower layer supplemental free water 

storage, day−1
0.180 0.01–0.35

10 LZPK Depletion rate of the lower layer primary free water storage, 
day−1

0.0473 0.001–0.05

11 PFREE Percolation fraction that goes directly to the lower layer free 
water storages

0.080 0.0–0.8

12 PCTIM Permanent impervious area fraction Not used Not estimated
13 ADIMP Maximum fraction of an additional impervious area due to 

saturation
Not used Not estimated

14 RIVA Riparian vegetarian area fraction Not used Not estimated
15 SIDE Ratio of deep percolation from lower layer free water storages 0.99 Not estimated
16 RSERV Fraction of lower layer free water not transferable to lower 

layer tension water
Not used Not estimated

Source: Anderson, R.M. et al., J. Hydrol., 320(1–2), 103, 2006.
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FIGuRE 17.2 Simulated TREX-SMA (dark-dashed line), TREX without SMA (light-dashed line), and observed 
hydrographs (solid line) for California Gulch at CG-4 (just below Leadville) during the multi-event simulation 
period, July 19 through August 31, 2006.
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convincing measure of the improvement brought with the SMA re-initialization procedure. For most 
storms, the no-SMA case overpredicts the basin response, while the reduced SMA peak corresponds 
more closely to the observed flow.

Generally speaking, the hydrographs show that the TREX-SMA model has reduced the overpredic-
tion of peaks. Only the SHG-09A hydrograph seems unmodified—the soil types in that portion of the 
watershed have such low infiltration rates that the differences in soil moisture do little to increase or 
decrease the infiltration. The inter-event periods show apparently very good fit to observed data for both 
SMA and no-SMA cases.

17.5.2  Overall Statistical Performance

For this research, the statistical performance is an indication of the level of model improvement that can 
be achieved with a hybrid model. Table 17.4 shows the comparisons of various statistical parameters for 
the TREX model with and without the SMA hybrid component. Overall, a modest improvement of the 
simulation results could be achieved by adding the hybrid component to the TREX model. Table 17.4 
lists various parameters including the Nash–Sutcliffe coefficient, the percent bias, the absolute percent 
bias, the root-mean-square error (RMSE) ratio, and other descriptive statistics.

17.5.3  Sources of Uncertainty

A number of sources contribute to the uncertainty in the model. These are not failings in the model—
uncertainty is part of engineering modeling [33].

Clearly, the assumptions used to create the individual model components contribute to the modeling 
uncertainty, for example, the numerical solution of the governing equations. Specific assumptions in this 
implementation of the model also produce uncertainty, like the very small volume of water not recovered 
by evaporation from the soil moisture zones. Grid scales provide additional uncertainty since the cali-
brated parameters are really “effective” parameters for the given grid size and averaging the properties 
across each cell. It has to be recognized that averaging the properties over each cell is a better approxima-
tion than averaging properties over the entire watershed as assumed in lumped-parameter models.

Measurement errors may also be present in some data sources used for the precipitation inputs and 
for comparison of output. The rainfall input data from the limited number of rain gages are also among 
the most significant possible sources of error. Rainfall measurements at the four rain gages charac-
terize the precipitation distribution in the basin, and the most elevated of these, SHG-09A and CG-1 
(10,450 and 10,331 ft, respectively) were still more than 1,500 ft below the summit of the watershed. 
Significant orographic precipitation may be found at the greater elevations. The large variation in eleva-
tion makes it very difficult to capture all the spatial and temporal variability of rainfall precipitation on 

TABLE 17.4 Statistical Analysis Showing Improvement with the SMA Algorithm

Statistic Name
Statistic 

(Optimal Value)

CG-4 CG-6

W/o SMA With SMA W/o SMA With SMA

Nash–Sutcliffe efficiency index NS (1.0) 0.17 0.19 0.44 0.46
Pearson correlation coefficient corr (1.0) 0.60 0.56 0.67 0.70
Modified correlation coefficient modcorr (1.0) 0.48 0.46 0.49 0.52
Percent bias pb (0.0) 0.31 0.25 −0.03 0.00
Absolute percent bias apb (0.0) 0.37 0.31 0.15 0.13
RMSE rmse (0.0) 4.16 3.33 0.78 0.57
Percent RMSE prmse (0.0) 2.79 2.24 0.36 0.26
RMSE ratio rrmse (0.0) 4.93 3.96 1.14 0.83
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this watershed. This is especially critical because about 95% of the water infiltrates in these simulations, 
so infiltration location will play a large role in the timing of flood peak arrival.

17.5.4  advances in Model Visualization

A hydrologic model consists of a hydrologic core and a separate technological shell that is “the pro-
gramming, user interface, pre- and postprocessing facilities, etc.” [37]. GIS in modeling serves to assist 
where “the hydrologist needs to cooperate intensively with experts in the field of ecology, agriculture, 
urban planning, and economics” [13]. This is because “the pure numerical results of a simulation are no 
longer the final products delivered by the hydrologist. The results have to be translated systematically 
into hydrological effects and subsequently into socially relevant quantities … [so that] the hydrologist 
can no longer depend on tabular representations of his data … [and] graphical tools [are] a necessity” 
[10]. Johnson et al. [19] state that the spatial capabilities of the model combined with GIS data for input 
parameters are the raison d’être for CASC2D-SED: “The strength of the model CASC2D-SED lies in its 
tremendous potential and visual output….”

Viewing the model output in the context of the geography and other imagery is useful for at least two 
reasons. First, the visual comparison of topography and other geographic and spatial features allows for 
a rapid evaluation of the success of the simulation. Model output is visually compared to expectation 
similar to the visual comparison on observed and simulated hydrographs on a plot. Second, the primary 
consumers of the information from a hydrologic model will have questions with specific respect to loca-
tion of effects such as overbank flow, points of maximum velocity, and scour problem areas. All of these 
effects may be evaluated with the TREX-SMA model.

The Google Earth™ viewer allows browsing of the series of overlays in both time and space. Any area 
may be highlighted for close viewing and the entire series may be animated or a particular time chosen 
using a time selector in the Google Earth™ interface. Other data such as gage locations may be inserted 
for additional context.

17.5.5  results Displayed with KML

In order to further evaluate the simulation results, a 3-D interactive results display was implemented 
using Google Earth™ and the Keyhole Markup Language (KML). Google Earth™ is a web-based “vir-
tual globe” that shows a 3-D view of the earth’s surface in varying resolutions based on various sources 
of aerial imagery and digital terrain models. The KML is an xml-based scripting language designed to 
allow display of text and graphics on a virtual globe such as Google Earth™ [36,53].

To use Google Earth™ to display TREX-SMA results, grid cell values of the land surface and chan-
nel water depth were exported from the model simulation at given time intervals as raster images, and 
these images were ingested into a GRASS GIS database [29]. The maps were colorized according to the 
data values for each cell and then exported as a flat graphic that is referenced as a ground overlay in a 
simple KML file. The KML file specifies the spatial and temporal extent of the overlay (e.g., an overlay 
may represent the average model states from 12:00 am to 12:10 am of July 30, 2006, and have a north, 
south, east, and west maximum extent). The KML time points were specified along with an offset from 
GMT and positions using latitude and longitude. The appropriate KML tags were inserted to specify 
the transparency of each overlay to allow partial viewing of the standard Google Earth™ aerial image 
underneath the overlay showing the modeled value. The ground overlays were produced to show depth 
of flow (on the land surface and in channels) but could show any other distributed variable from the 
TREX-SMA output. The Google Earth™ interface also allows for the series of individual frames to be 
animated showing evolution of model processes over time.

A demonstration of these graphical methods was performed using an application of TREX by Velleux 
[49] at California Gulch near Leadville, Colorado. The 100-year storm was simulated as 1.73 in. of 
uniformly distributed rain falling in 2 h over the entire watershed. The 100-year analysis was used to 
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demonstrate the effect of applying the improved graphical techniques. To produce the animation, the 
same process described previously was used to create flat frames showing the depth of water on the land 
surface at various times through the simulation. The color maps were produced according to the data 
values for each cell and then draped on a DEM, also contained in the GIS.

Figure 17.3 shows the 100-year inundation extent on a background of an aerial image of Leadville 
and California Gulch, providing valuable information in an integrated view to better visualize surface 
processes including (1) an extent of inundation and flow interaction between the main channel and 
the floodplain, (2) runoff from urban and forested hillslopes, and (3) flow convergence and divergence 
from surface runoff and detention storage. In the sequence of frames from the figure, the progression of 
flooding mechanism is visible between the Malta Gulch channel and the main California Gulch chan-
nel. In the initial frame (Fig. 17.3a) at the cessation of rainfall shows overland flow conditions over the 
entire watershed.  The second frame (Fig. 17.3b) 2 hours after the cessation of rainfall shows minimal 
overland flow in the light-shaded upland areas while the channels in the upper part of the watershed are 
flooded.  The third frame (Fig. 17.3c), taken 4 hours after the cessation of rainfall, shows that the flood 
wave has propagated to the lower areas of the watershed. The flood waters from the main channel caused 
overbank flows. The floodplain waters will thereafter either return to the main channel or infiltrate in 
the floodplain areas.

Figure 17.3 displays a series of frames from such an animation generated from the simulation output 
of a 100-year flood. The animation shows movement of the different flood waves and can help in analyz-
ing the watershed flood generation mechanism. For instance, the lower permeability of the bare upland 
soils is evident in that ponded water is still present well into the simulation when only the impervious 
surfaces in Leadville city are still producing runoff.

(a)

FIGuRE 17.3 Selected frames from a loop showing the depth of water on a land surface using Google Earth 3-D 
terrain and imagery for a 100-year return period event (1.73 in. in 2 h) at California Gulch. The first frame 17.3a) 
shows overland flow conditions at cessation of rainfall.
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(b)

(c)

FIGuRE 17.3 (continued) Selected frames from a loop showing the depth of water on a land surface using Google 
Earth 3-D terrain and imagery for a 100-year return period event (1.73 in. in 2 h) at California Gulch. The second 
frame 17.3b) shows minimal overland flow conditions and channel flooding in the upper part of the watershed 
2 hours after cessation of rainfall. The third frame 17.3b) shows that the floodwave propagated to the lower areas of 
the watershed and caused significant overbank flows.
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17.6  Summary and conclusions

A new hybrid approach to hydrologic modeling combines distributed surface runoff modeling with a 
lumped-parameter rendering of infiltration and subsurface flow. The hybrid model TREX-SMA com-
bines the SAC-SMA model with the TREX surface hydrology model. The capabilities of hybrid model-
ing are demonstrated with an application to the 30 km2 California Gulch watershed, near Leadville, 
Colorado. The results of a 50-day simulation are presented for comparisons with and without the hybrid 
model component SMA. Surface runoff parameters were obtained from a prior calibration of TREX, 
and the SMA soil moisture parameters were determined from a priori estimates used by the ABRFC of 
the NWS. The hybrid simulation results with TREX-SMA improved relative to results from the unmodi-
fied TREX model. Model results such as surface and channel water depth are processed with GRASS 
GIS and KML scripts to create 2.5-D, browsable animations overlaid on a Google Earth™ terrain.
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18.1  Introduction

The hydrology and surface water supply and management are dependent on anthropogenic activities 
and transboundary water supply condition (Wahid, 1995; Islam et al., 2011). The regional and local 
hydrological cycle is playing a potential role to make a balance of mangrove wetland ecosystems and its 
services in different parts of the world (Islam, 2006). Therefore, mangrove conservation and restoration 

Preface

In the contemporary world, there has been growing worldwide public concern about a wide range 
of issues relating to water resources management in the coastal regions. Water resources are most 
potential to social and economic improvement processes and achieving the millennium develop-
ment goal to alleviate poverty and hunger for sustainable coastal environment. In Bangladesh, a 
large mass of the population is almost annually faced with the devastating damage, since records 
began, that flood water can cause. On the other hand, the coastal regions of the world are using 
for social, industrial, and settlements and agricultural land use activities. Almost 60% of Asian 
population is living within 100 km range of the coastal offshore line. In Bangladesh, there are 
36.8 million people living in the coastal region and fighting against the natural calamities every 
year. The majority of the poor population is mostly settled down in the coastal region, and they 
are directly dependent on the mangrove ecosystem services (ES) and coastal natural resources. 
Therefore, hydrological changes of the coastal region are an important factor toward protecting 
and managing the coastal water cycle and mangrove ecosystems. In recent years, the dwellers are 
using huge ground and surface water for household, irrigation, and industrial purposes. Through 
this process the mangrove region are losing its hydrological cycle and changing mangrove eco-
system. The mangrove of Bangladesh is under threat due to hydrological imbalance in the coastal 
region as well as in the Sundarbans region. Therefore, mangrove wetland hydrology is also suffer-
ing from different types of disturbances and among the most endangered ecosystems of the world. 
The management of mangrove wetlands and the regional hydrology is not considered properly 
worldwide as well as in the mangrove region in Bangladesh.
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has become an important topic in recent decades. Wetlands not only support specific plant and animal 
communities but also provide other important services for humanity, such as water quality improve-
ment, carbon sinks, and community livelihood sustainability (Smolders et al., 2002; Margozczi et al., 
2007). The world mangrove refers to both wetlands and the salt-tolerant trees that dominate those wet-
lands. The world mangroves dominating countries are Indonesia 24%, Brazil 7%, Australia 6%, Nigeria 
6%, Cuba 4%, India 4%, Malaysia 4%, Bangladesh 4%, Papua New Guinea 3%, Mexico 3%, and the rest 
of the world represents 35% only (Mitsch and Gosselink, 1986; Islam and Gnauck, 2008). The mangroves 
are found along tropical and subtropical coastlines throughout the world, usually between 25°N and 
25°S latitude (Sarkar, 1993). The tidal salt marsh is replaced by the mangrove swamp in subtropical 
and tropical regions of the world. Approximately 14 million of mangrove wetlands are generally domi-
nated by the red mangrove species (Rhizophora) and black mangrove species (Avicennia) (Mitsch and 
Gosselink, 1986). The present-world mangrove vegetation cover has been estimated with an average of 
about 17 million ha, of which half are in the Asia-Pacific region. The remaining 50% is equally distrib-
uted in Africa (25%) and America (25%) (Lacerda, 2001; IPCC, 2007).

The scale of mangrove depletion and its causes vary from country to country. Coastal habitats and 
human stress are the vital reasons for exploitation of terrestrial aquatic and mangrove resources. 
Some main factors that are responsible for the decline of mangrove resources have been identi-
fied (Siddiqi, 1994; Islam and Gnauck, 2008). Mangroves in the South Asian countries especially 
in Thailand, the Philippines, Vietnam, Indonesia, Malaysia, and Sri Lanka have been converted to 
shrimp ponds and farms (Islam and Gnauck, 2008, 2009b). Approximately 1000 km2 of land now 
utilized for shrimp culture in Bangladesh was originally mangrove forest (Miah, 2003; Islam and 
Gnauck, 2008). In many countries and regions, withdrawal of freshwater from the upstream rivers 
for irrigation and other purposes has serious impacts on hydrological cycle, which is extending nega-
tive impacts on the mangrove ecosystems (Goodbred and Kuehl, 1999; Ahmed and Falk, 2008). The 
extensive mangroves in Bangladesh and India, Pakistan, Gambia, Nigeria, Thailand, and Vietnam 
are facing the problem of upstream freshwater crisis and transboundary water distribution conflicts 
between two neighboring countries. The Sundarbans mangrove forest is a good example of trans-
boundary Ganges River freshwater conflict between India and Bangladesh and hydrological degrada-
tion in the mangrove region in the coastal region of the Ganges delta (Adel, 2001; Ahmed and Falk, 
2008; Ahmed et al., 2008).

The Sundarbans mangrove forest is situated in the Ganges delta, and it is part of Ganges–
Brahmaputra–Meghna (GBM) River systems. It covers an area 10,000 km2 in southwest Bangladesh 
and West Bengal of India. A total area of 62% lies in Khulna region of the south western part of 
Bangladesh, while the remaining 38% in India (Lacerda, 2001; Siddiqi, 2001; Islam et al., 2011), and it 
is one of the largest mangrove wetlands and unique ecosystems in the world, which is dependent on 
hydrological regime (Wahid, 1995). It is a natural shield that protects the coastal landscapes and its 
ecosystems from storm surges and cyclones in pre- and postmonsoon periods. It is playing a potential 
role in regional economy and balance ecosystems in the coastal zone of Bangladesh. The Sundarbans 
landscapes consist of an almost all high tide during the rainy season. The Sundarbans landscapes con-
sist of a large number of fluvial and tidal lands, features created by the three mighty rivers, the Ganges, 
the Brahmaputra, and the Meghna (Siddiqi, 2001; Islam et al., 2011). Since the diversion of Ganges 
River water flows at Farakka Barrage in India from early 1975, the water and soil salinity has been 
penetrated due to capillary upward movement processes. Consequently, both siltation and intrusion of 
salinity have degraded water quality of Sundarbans Rivers, and it is the root cause of salinity intrusion 
and threats for coastal mangrove ecosystems (Miah, 2003; Sarker, 2008). The similar condition has 
been seen in Thailand, Vietnam, Indonesia, Sri Lanka, India, and Pakistan, where the mangrove wet-
land forest has been destroyed due to anthropogenic influences on upstream surface water and shrimp 
cultivation. The mangrove wetlands ecosystems are under threat because of hydrological changes in 
the mangrove wetlands regions in the Asian coast and other parts of the mangrove world (IWM, 2003; 
Islam and Gnauck, 2011).
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A large number of channels and creeks flow into larger rivers in the Sundarbans. The largest of 
these rivers are the remains of the Ganges, which have shifted eastward. The Gorai River is the main 
distributary of the Ganges River, which is connected to the Passur River and indirectly with the 
Sibsa River and playing a potential role to protect the Sundarbans mangrove ecosystems (Islam et al., 
2011). The Baleswar River is connected to the Ganges River in the eastern part of the forest and as a 
result receives huge volume of freshwater from it. It is reported that 2 × 1011 m3/year of groundwater 
flows directly into the Bay of Bengal, an outflow equivalent to 19% of the discharge from the Ganges–
Brahmaputra river system (Islam et al., 2011). Every year, the groundwater is sinking by at least 0.5 m. 
The quality of groundwater has been degraded due to salinity (NaCl) and arsenic (As) contamination, 
which is influencing the mangrove ecosystems in the Sundarbans regions (Sarkar, 1993; Hidayati, 
2000). In addition, saltwater intrusion already extends in every mega delta area in many Asian coun-
tries and in Bangladesh; it has penetrated 210 km inland, which could increase with higher sea levels 
(Whyte, 1995). The objective of this chapter is to investigate the water salinity of Sundarbans Rivers, 
which will be considered as a tool for decision making. Water salinity modeling will support to make 
a comprehensive management and conservation plan by the decision makers and ensure upstream 
freshwater supply to protect the coastal ecosystems and mangrove biodiversity in the Sundarbans of 
Bangladesh.

18.2  Geography and Geological History of the case area

The major portion of the Bengal Basins and Ganges delta is floored with quaternary sediments eroded 
from the high lands on three sides and deposited by the Ganges, Brahmaputra, and Meghna rivers 
and their tributaries and distributaries. The Ganges River originated in Gangotri Glacier in the south-
ern slopes of the Himalayas and carries discharge from a catchment of about 865,000 km2 in India to 
Bangladesh (Figure 18.1) (Joseph, 2006; Islam and Gnauck, 2008). The location of Bangladesh is in South 
Asia between 20°34′ to 26°38′ north latitude and 88°01′ to 92°42′ east longitude, with an area of 147,570 
km2. The other neighboring countries are India and Myanmar (Burma), sharing mountainous border 
in the southeast (Figure 18.1).

The Bay of Bengal lies to the south of Bangladesh. The coastal zone consists of about 710 km coastline. 
Three major types of landscapes are found in Bangladesh: floodplains (80%), terraces (8%), and hills 
(12%). Excepting the eastern hilly region, almost all of the country lies in the active delta of three of the 
world’s major rivers like the Brahmaputra, the Ganges, and the Meghna (Figure 18.1) (Ahmed and Falk, 
2008; Islam et al., 2011).

The Sundarbans region is located in the southwestern corner of Bangladesh and south east of 
West Bengal of India. The potential estuaries Hooghly Estuary, Saptaganga Estuary, Matla Estuary, 
Raimangal Estuary, Malancha Estuary, Kunga Estuary, Bangra Estuary, and Baleswar Estuary are 
located in the Sundarbans region (Figure 18.1) (Islam and Gnauck, 2008, 2009a). Geographically, 
the Sundarbans lies between latitudes 21°43′30ʺN and 24°5′20ʺN and between longitudes 87°47′17ʺE 
and 91°21′01ʺE (Katebi, 2001). The Sundarbans region enjoys a humid tropical monsoon climate 
with proximity to sea as an added advantage. Temperature varies from 20°C in December–January 
to 36°C in June–July with an annual range of about 8°C. The Sundarbans mangrove forest spreads 
over the Ganges delta with an average elevation of 0.9–2.1 m above mean sea level (Bird, 1969; Islam 
and Gnauck, 2007).

18.3  Data and Methodology

The present applied research has been carried out based on primary and secondary data sources. The 
time series water salinity data from 2000 to 2003 were collected from the Institute of Water Modelling 
(IWM), Dhaka. The collected 4 years’ time series data were reconstructed by EXCEL interpolation. 
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Field investigation has been conducted in 2003 and 2008. Some potential field-related information was 
collected from local people and stakeholders’ discussions around the Sundarbans mangrove wetland 
region and the catchment areas.

18.3.1  Data

The study was conducted at the field level, and saline water and soil samples were collected for the 
laboratory analysis of the salinity situation of ecological and ecosystem degradation in the case 
area. The study also involved discussions and interviews with the stakeholders, tourists and tour 
operators, shrimp cultivators, farmers, fishermen, shrimp collectors, business groups, local people, 
NGO leaders, and decision makers and planners in the Sundarbans region. More than 6 months 
were spent in the Sundarbans in different sensitive areas where the ecosystems are under pressure 
and threatened due to human influences on surface water. Areas and important locations includ-
ing Munchiganj, Mirgang, Koira, Kasiabad, Mongla, Kathka, Kochikhali, Hironpoint, Dublar Char, 
Mundarbaria, Burigoalini, and Saronkhola, were covered during the survey and data collection in the 
Sundarbans. Primary data for surface water salinity (four years’ time series data) were obtained from 
13 rivers including Passur, Sibsa, Chunnar, Kholpetua, Bal-Jhalia, Baleswar, Betmargang, Notabaki, 
Passakhali, Arpongasia, Kathka, Nilkamol, and Malancha rivers of the Sundarbans by the IWM 
(2003) and Bangladesh Inland Water Transportation Authority. The collected data were used for 
water salinity modeling of the rivers in the Sundarbans. Water salinity–related data were obtained 
from IWM of Bangladesh. The survey was done between February and July, 2003, at different inter-
vals and took into consideration the wet and dry seasons. The tested results from SRDI-Dhaka were 
used in water salinity modeling. The secondary data as well as published materials and relevant 
books on the Sundarbans were collected from book markets, university libraries, and research orga-
nizations in Dhaka, Khulna, and Chittagong. Soil-related secondary data were collected from SRDI–
Dhaka (SRDI, 2001). After completion of data collection, relevant data were processed and analyzed 
both manually and by employing. The following software like MS Excel and ESRI Geographical 
Information System (GIS) version ArcGIS 10 have been used for data visualization and mapping spe-
cially used for case area map preparation (Figure 18.1). MATLAB® software version 7.1 has been used 
for Fourier polynomial approximation of water salinity modeling, which has been shown in Figures 
18.4 and 18.6 and analyzed in detail.

18.3.2  Methods

In analogy to the “polynomials of best fit,” it is possible to write down a model that consists of a sum of 
sine and cosine functions that best fit the given data. The usage of Fourier polynomials to analyze peri-
odic signals is well known in engineering and serves as an algorithm explaining data variations caused 
by internal and external driving forces. It is a method for expressing a function by superposition of sine 
and cosine functions (Smith, 1997). According to the theory development by Fourier, any periodic func-
tion F(X), with period T, can be represented by an infinite series of the form. The Fourier Polynomial 
general equation has been used for water salinity modeling of 13 rivers in the Sundarbans Mangrove 
wetlands, where the coefficients ∂o, ∂n, and bn for a given periodic function F(X) are calculated by the 
formulas

 
ω π= 2

T
 (18.1)

 

a F X dt0
2= ∫Τ

Τ

( )

ο

 (18.2)
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Τ
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ο

 (18.4)

Considering the data that were recorded over some interval of time, it will be necessary to choose a 
model that is periodic (Figure 18.2). The model that consists of trigonometric functions is called Fourier 
polynomials. These models are widely used in engineering, physics, and applied sciences to approximate 
processes that are periodic. According to the theory development by Fourier, any periodic function 
F(X), with period T, may be represented by an infinite series of the form

 
F X

o
n nw X bn nw XT T

n

m

( ) ( cos sin )= ∂ + ∂ +
=
∑2

1

 (18.5)

where the coefficients ∂o, ∂n, and bn for a given periodic function F(X) are calculated by the formulas 
given earlier. The periodic function has been measured through equation numbers (18.1), (18.2), (18.3), 
(18.4), and (18.5). The general Fourier polynomial approximation of order 1–8 models was considered 
to generate results for the water salinity models of the Sundarbans Rivers. In the study, the Fourier 
polynomial approximation is carried out based on data and different Fourier polynomial approximation 
orders. The Fourier polynomial approximation eighth order is given by the following equation, consid-
ering coefficients (with 95% confidence bounds):

 f(x) = a0 + a1*cos (x* ω) + b1*sin(x* ω)

 + a2*cos (2*x* ω) + b2*sin (2*x* ω) + a3*cos (3*x* ω) + b3*sin (3*x* ω)

 + a4*cos (4*x* ω) + b4*sin (4*x* ω) + a5*cos (5*x* ω) + b5*sin (5*x* ω)

 + a6*cos (6*x* ω) + b6*sin (6*x* ω) + a7*cos (7*x* ω) + b7*sin (7*x* ω)

 + a8*cos (8*x* ω) + b8*sin (8*x* ω) (18.6)

ƒ(x)
1

2

T–2π –π π 2π T

1

2
1

–1
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–

–1

FIGuRE 18.2 The concept of periodic function of polynomial.
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As a whole, the equation numbers such as (18.1), (18.2), (18.3), (18.4), and (18.5) show the concept of peri-
odic functions which are given the mathematical equation and in addition the number (18.6) is given 
the general formula of Fourier polynomial approximation concept. To understand of the polynomial 
behavior of water salinity, the general formula (Equation 18.6) has been used for the investigation of 
seasonal water salinity intrusion pattern in the Sundarbans Rivers in Bangladesh.

The water salinity modeling results of the Sundarbans Rivers have been discussed in the following 
section, and the scenarios have been discussed in the results and discussion of the chapter.

18.4  Hydrological changes in the Sundarbans Mangrove region

Water is valuable natural resources to man and other living beings (Rahman and Ahsan, 2001). Under 
the natural conditions, freshwater flow toward the sea limits the landward encroachment of seawa-
ter. The surface water disturbs the dynamic balance between freshwater and seawater, which, in turn, 
allows seawater to intrude to the usable parts of aquifers (Rahman, 1988). Water quality is dominated 
by both natural and an anthropogenic influences, where the former includes local climate, geology, etc., 
and the latter covers the construction of dams and embankments, irrigation practices, indiscriminate 
disposal of industrial effluents, etc. (Rahman and Ahsan, 2001). The amount of the Ganges water flow 
into Bangladesh is remarkably affected by the amount of water drawn at the Farakka Barrage in India. 
The Ganges flow in 1962 was 3700 m3/s, whereas it was 364 m3/s in 2006 and 370 m3/s in 2010 (Islam 
and Gnauck, 2011). The reduction in flow rate has resulted in increase in high saline seawater in the 
upstream areas. Such diversion of upstream waters resulted in falling water tables and greater salinity 
downstream for Bangladesh especially in the Sundarbans region. The Gorai River then passes through 
Kushtia and Faridpur districts and divides at Bardia in the Jessore District. Some portion, almost 16% 
of the flow of Gorai River, meets the Haringhata–Baleswar estuary system at Madhumati River and the 
other 85% flow through to join the Passur Basin at Nabaganga River. The last part of the Gorai River 
joins at sea as Baleswar River (Islam et al., 2011). The Chunar-Munchiganj and Passur are two potential 
rivers in the Sundarbans region, and they carry freshwater from upstream region and from the regional 
catchment areas. Water salinity intrusion of these two rivers are dependent on hydrological condition 
and its changing behavior. Water level inside the Sundarbans is highly fresh and dependent on the 
upstream river water inflows and on the tidal oscillation at the coast (Siddiqi, 1994). Tides in the Bay of 
Bengal are semidiurnal exhibiting two high water and two low water levels per day. The variations in 
water level and tidal amplitude experienced at the coast are also propagated inland during each tidal 
cycle. It has been observed that the tidal range in the northern fringe of the Sundarbans mangrove for-
est is higher than that in the southern bay. The lowest record of tidal range was 2.74 m and the highest 
range was 5.12 m (Duke, 1992; Islam and Gnauck, 2009a; Islam et al., 2011). The maximum inundation 
period during the spring tide is around 3–4 h. The average velocity of micro-current varies from 10 to 
20 cm/s. Both siltation and erosion occur at the end of monsoon. The maximum net siltation and ero-
sion at the end of monsoon were found to be around 50 and 19 mm, respectively (Islam et al., 2011). The 
hydrological changes in the Sundarbans region will pose a new threat for the mangrove ecosystem, its 
goods and services. There is close correlation with hydrological cycle and the mangrove ecosystem in 
any region of the mangrove world.

18.4.1   relationship between Surface Water Supply and 
Salinity Intrusion in the Sundarbans

The salinity content of the tidally active delta in the Sundarbans region shows the special variation 
(Figure 18.3). The water salinity approximation shows both seasonal and special variations. During 
premonsoon (March–April), the conductivity of river water is high and ranges from 7 to 52 μS/cm. 
In the postmonsoon season (August–September), the conductivity of river water decreases from 0 
to 21.5 μS/cm. Water salinity level in the rivers of the eastern region both in premonsoon and in 
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postmonsoon seasons is low (0−7 μS/cm) in comparison to western rivers (Islam and Gnauck, 2007, 
2008). Figure 18.3 shows the Ganges water flows at Hardinge Bridge point, the Gorai River flows at 
the Railway Bridge point in the dry season, and water salinity intrusion at Mongla Point in the Sibsa 
River. There is a close interlinkage between the Ganges supply to the Sundarbans mangrove forest area 
and salinity intrusion and penetration in the upstream area. In Figure 18.3, the Ganges water supply 
level line and salinity intrusion curve have crossed at point A in 1976 just after the construction (1975) 
of Farakka Barrage on the Ganges River in India (1975). After 1975, the water flow of the Gorai River 
has also decreased.

In Figure 18.3, BC line has been treated as water salinity threshold line (43,220 dS/m) for mangrove 
wetland ecosystem in the Sundarbans. The salinity curve has crossed the BC line on point D in 2004 
when the Ganges water and the Gorai river water flows were 550 and 35 m3/s respectively. The point D 
is the optimal point for mangrove ecosystem for the Sundarbans mangrove wetlands. Therefore, it can 
be stated that there is a strong relationship between Ganges water supply and salinity intrusion at the 
Mongla Port point (Sibsa River). Figure 18.3 illustrates the salinity intrusion trends in the Sibsa River, 
which is a very normal trend where regression value R2 = 0.9433 and it is an acceptable value according 
to the statistical analysis.

18.5  results and Discussions

The abnormal hydrological changes in the Sundarbans mangrove wetland regions are a new threat for 
mangrove ecosystem and its services in the coastal region of Bangladesh. The Farakka Barrage and 
other dams constructed have resulted in the reduction of freshwater flows to the Sundarbans. Therefore, 
the results of intrusion of water salinity and alkalinity have damaged vegetation and agricultural crop-
ping system, changing the landscapes in the Sundarbans mangrove wetland region (Bird, 1969; Islam 
et al., 2011). The impact of soil starts with the destruction of surface organic matter and soil fertility 
for mangrove germination and plant production. The changes of basic soil characteristics related to 
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aerations, temperature, moisture, and the organisms that live in the soil. The five core elements of eco-
system such as soil, water, vegetation, wildlife, and temperature are natural resources and have a strong 
a correlation between freshwater and human activities (Islam et al., 2011).

18.5.1  Water Salinity approximation of chunar-Munchiganj river

The Chunar-Munchiganj River is one of the smaller but important rivers in the southwestern part of 
Bangladesh especially in the northern boundary of the Sundarbans. The Chunar-Munchiganj River is 
serving as a boundary between the Sundarbans mangrove wetlands and the northern settlement areas 
of the Indian border toward Munchiganj town. The river is important for local communication and 
a fertile water shade for shrimp prawn collection. The river is connected with Kanksially River and 
Kalindi River, which is one of the transboundary rivers in the Sundarbans forest area. After the Chunar-
Munchiganj River enters the Sundarbans, it is renamed as Malancha and joins with Ichamati River. The 
upstream freshwater from the local catchments is flowing into the Chunar-Munchiganj River chan-
nel. But recently the situation has changed, and there is not enough freshwater from the upstream, 
whereas the Chunar-Munchiganj River’s water is used in the shrimp field, in the northern boundary 
of the Sundarbans mangrove wetlands. For various reasons, water and soil salinity have been drasti-
cally increased in the Chunar-Munchiganj Basin area. The salinity rate is increasing gradually. The 
Fourier polynomial model 8 (order 8) has been fit for the Chunar-Munchiganj River as appropriate 
model considering the best approximation. In the model development process, MATLAB software has 
been used frequently, which is displaying the possible Fourier polynomial models 1, 2, 3, 4, 5, 6, 7, 
and 8 (Table 18.1). The Fourier model 8 (Figure 18.4) is considered the appropriate model for this Chunar-
Munchiganj River:

 f(t) = 13.59 + 2.099 cos (0.01985 t) + 0.82 sin (0.01985 t) − 0.7342 cos (0.0397 t)

 −0.2323 sin (0.0397 t) − 2.657 cos (0.05955 t) + 6.032 sin (0.05955 t)

 − 1.318 cos (0.0794 t) + 1.013 sin (0.0794 t) + 0.732 cos (0.09925 t) − 0.4589 sin (0.09925 t)

 −0.4179 cos (0.1191 t) − 1.682 sin (0.1191 t) + 0.8124 cos (0.13895 t) 

 − 0.2593 sin (0.13895 t) − 0.09655 cos (0.1588 t) + 0.5521 sin (0.1588 t) (18.7)

After the data reconstruction and rearrangement of the Chunar-Munchiganj River, it was used to 
develop the Fourier polynomial models using Equation 18.7. The Fourier model 8 (Table 18.1, Table 18.2, 
and Figure 18.4) was considered as appropriate model for this river. In the model, the highest R2 = 0.955, 

TABLE 18.1 Water Salinity 
Model Results of Chunar-
Munchiganj River

Models R2 Error

Model 1 0.152 5.237
Model 2 0.1584 5.232
Model 3 0.8309 2.352
Model 4 0.8837 1.956
Model 5 0.8952 1.862
Model 6 0.9389 1.426
Model 7 0.9505 1.287
Model 8 0.955 1.231
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adjusted R2 = 0.9528, the lowest value of RMSE = 1.231, and ω = 0.01985, which have made the model 
the best approximation. The highest regression value (R2) and lowest error (RMSE) are given the best 
approximation.

Figure 18.4 shows the Fourier polynomial model order 8, where the water salinity cyclic behavior 
has been seen. In this model, the graph shows the dry season (February–June) with average highest 
salinity value, which is 54,025 dS/m in 2000, 49,703 dS/m in 2001, 54,025 dS/m in 2002, and 56,186 
dS/m in 2003. The time series consideration of the water salinity intrusion of Chunar-Munchiganj 
River is a cyclic increasing behavior. This indicates the future increasing trend of water salinity in 
this river in the Munchiganj region. The Fourier polynomial model graph shows the increasing 
behavior of salinity yearly: after 2000, the salinity rate was 54,025 dS/m; suddenly in the following 
year, the rate decreased at 49,703 dS/m; and again 54,025 dS/m in 2002. The reason was that in 
March–April 2001, there was early monsoon rainfall, and some water flows have added in channels 
from the local catchments.
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TABLE 18.2 Fourier Polynomial Approximation (Eighth Order) Is Considering Coefficients with 95% 
Confidence Bounds

Coefficients Value
95% Confidence 

Lower
Value 
Upper Coefficients Value

95% Confidence 
Lower

Value 
Upper

a0 13.59 13.45 13.72 b1 0.82 0.6246 1.015
a1 2.099 1.912 2.286 b2 −0.2323 −0.4225 −0.04211
a2 −0.7342 −0.9258 −0.5426 b3 6.032 5.818 6.245
a3 −2.657 −2.929 −2.385 b4 1.013 0.821 1.205
a4 −1.318 −1.522 −1.114 b5 −0.4589 −0.6567 −0.2611
a5 0.732 0.542 0.9219 b6 −1.682 −1.87 −1.493
a6 0.4179 −0.6371 −0.1986 b7 −0.2593 −0.456 −0.06266
a7 0.8124 0.6259 0.9989 b8 0.5521 0.3654 0.0199
a8 −0.09655 −0.2853 0.09226 ω 0.01985 0.0198 0.0199
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18.5.2   Water and Soil Salinity Intrusion versus 
Mangrove ecosystem Services

The mangrove wetland ecosystems are dependent on the water and soil salinity. Almost all of the man-
grove forest need freshwater supply from the upstream. In the Sundarbans region, the two potential 
rivers such as the Passur-Mongla and Chunar-Munchiganj are carrying the high rate of salinity intru-
sion. The salinity rate was 42,000 dS/m in 2003, whereas in 2010 the salinity rate is 53,000 dS/m in the 
Passur–Mongla River point. On the other hand, the Chunar-Munchiganj River is showing the highest 
rate of water salinity in 2010, which is over 53,000 dS/m. In the Sundarbans mangrove forest, 66 man-
grove species have been recognized, where 36 are mangrove species and 30 are mangrove-obligate plant 
species. In Indo-West Pacific region, this is typically 20–40 species (Islam et al., 2011). In this sense, 
Sundarbans is very rich in mangrove biodiversity considering the other parts of the world. Duke (1992) 
has listed 71 species of mangroves, while other authors have given variant figures. Table 18.3 shows the 
distribution of mangrove species in the world. The domination portion of mangroves is located in the 
Asia-Pacific regions.

The mangrove ecosystem is getting more attention to the environmental community for conserva-
tion of nature and natural resources. It has been recognized as potential agenda; the ecosystems are 
socially valuable in ways that may not be immediately intuited (Daily, 2006). ES are benefits of nature to 
households, communities, and economics. The sophisticated definition of ecosystem can be structured 
in different ways: the meaning of the ecosystem is the functions of biotic and abiotic characters. On 
the other hand, the meaning of ES is the benefits that society receives from soil, water, air, organism, 
and the processes that govern the interactions. Nursing food and clean water in sufficient quantities 
are two examples of human needs that would not be met without cycling and regulating the earth’s 
climate. Other services include meeting recreational, aesthetic, and cultural amenities that are essential 
for human well-being (Fongwa et al., 2009). ES issue exists in the literatures but in-depth information 
is not being used for value creation and profit from ES. Conversely, even the damages to ecosystems 
continuously reduced ES have potential for resource development and creation. This could be used for 
human development and alternative for services by anthropogenic activities leading to the reduction of 
ES (Fongwa et al., 2009). Value creation from ES could mean how additional value could be added to ES. 
This could be achieved through the transformation of evaluation results of ES into knowledge and then 
to business development. It could be fostered if the benefits from ES and underestimated. Therefore, 
the reduction of ES could be mainly attributed to the action of man in his environment. The UN report 
stated that almost 50% of land has been highly degraded by anthropogenic influences (Vitousek, 1997; 
Versfeld and Wassen, 2005).

The agricultural ecosystems produce food, fiber, and nonmarked ES. Agro-ecosystem which is simul-
taneously producing food, fodder, and bioenergy. The Sundarbans are public goods, ecosystem services 
they are affecting due to climate change impacts and anthropogenic influences on upstream fresh 
water flow. ES are components of nature, directly enjoyed, consumed, or used for human well-being. 

TABLE 18.3 Estimate of Mangrove Species and Areas

Regions Number of Species Mangrove Area (ha) in 2005

Africa 20 3,160,000 (20.8%)
Asia 37 5,858,000 (38.5%)
North and Central America 11 2,263,000 (14.8%)
Oceania 49 1,972,000 (12.9%)
South America 10 1,978,000 (12.0%)
World the total 71 15,231,000 (100%)

Source: FAO (Food and Agricultural Organization), The world’s mangroves 
1980–2005, FAO forestry paper no. 153, Rome, Italy, 2007.
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Ecosystem components include resources such as surface water, oceans, vegetation types, and species. 
Ecosystem processes and functions are the biological, chemical, and physical interactions between eco-
system components (Joseph, 2006). The four types of mangrove ES are functioning in the lower tidally 
active delta of the GBM River delta in the Sundarbans coastal region.

Figure 18.5 illustrates the largest mangrove wetlands between Bangladesh and India. Due to high 
salinity intrusion and climate change impacts, the vulnerability of mangrove ES are gradually getting 
higher. Figure 18.5 shows the high salinity line, which has been demarked at the north site of the 
Sundarbans mangrove wetlands in Bangladesh and India. Therefore, it can be estimated that the pres-
ent situation is more vulnerable than before. The climate change impacts, sea-level rise, and shortage of 
upstream freshwater are global crisis for mangrove ecosystem. The damage and abandon scenarios have 
been seen in many countries in Asia-Pacific, Latin America, and African countries. The river water has 
abstracted and using for irrigation purposes in many countries; therefore, hydrological cycle process 
is facing barrier in many mangrove regions of the world. The salinity investigation results have been 
analyzed in Figure 18.6 through geostatistical analyses.

18.5.3  Degraded Mangrove Wetland ecosystems

The time series data of water salinity have been collected from 32 river basins in the Sundarbans man-
grove wetland areas in Bangladesh. The approximation of water salinity intrusion has been illustrated 
in Figure 18.6. The result shows that almost all of the rivers show the high rate of salinity intrusion. The 
northern rivers in the Sundarbans are carrying the low rate of salinity, the middle rivers are carrying 
the moderate rate of salinity, and the southern river basins are carrying the high rate of salinity, which 
has crossed the water salinity threshold value for the mangrove ecosystem and its services (Figure 18.6) 
(Islam and Gnauck, 2008, 2009a,b).
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Figure 18.6 shows the model (a–b) of the mangrove forest and water salinity intrusion pattern (water 
and forest landscape layer) based on the time series data analysis on the Sundarbans of Bangladesh 
area. The model (c–d) shows the sample distribution and water salinity intrusion (water layer). The time 
series water salinity data on 13 potential rivers in the Sundarbans forest areas have been diagnosed 
through geostatistical analysis using ArcGIS 10; the models show the present scenarios of water salin-
ity. In water salinity modeling, the 10 different salinity ranges used are illustrated in Figure 18.6. The 
1st range, which is located in the northeast corner of the Sundarbans, carries the low salinity. Since the 
Baleswar and Kocha rivers basins are carrying freshwater from the upstream area this is why the high 
salinity intrusion rate is low in the eastern part of Sundarbans region.

The second range carries the lowest salinity range of 7,000–14,000 dS/m; third range carries the rate 
14,000–21,000 dS/m; fourth range carries the rate 21,000–28,000 dS/m; fifth range carries 28,000–35,000 
dS/m; sixth range carries 35,000–42,000 dS/m; seventh range carries 42,000–49,000 dS/m; eigth range 
carries 49,000–56,000 dS/m; ninth range carries 56,000–63,000 dS/m; and tenth range carries the highest 
rate, 63,000–70,000 dS/m (Figure 18.6), which is very high for germination, growth, and development.

The salinity investigation results show that the southwest corner of the Sundarbans is carrying the 
highest rate of water salinity, which is harmful for balancing the mangrove ecosystem management in 
the coastal region (Islam, 2001; Akter et al., 2010). According to salinity approximation, this high rate 
is harmful for mangrove ecosystems. The 1st range area is safe for the mangrove ES, where the salinity 
rate is very low, because the Baleswar–Kocha River is carrying freshwater from the upstream (Akter 
et al., 2010; Islam et al., 2011). Accordingly, the 8th, 9th, and 10th ranges of the Sundarbans areas are 
under threat because the water salinity rate in these areas are very high, which has crossed the water 
salinity threshold line for the mangrove ecosystem and ES. Therefore, the result of salinity modeling in 
the Sundarbans region shows increasing trend, and it can be stated that almost half of the Sundarbans 
mangrove wetland areas are under threat for mangrove ecosystems and services.

18.5.4  Threats to Mangrove Biodiversity

The coastal mangrove biodiversity loss is a common scenario in Bangladesh and India. The mangrove 
reduction rate is 45% in both countries. Deforestation of mangroves due to shrimp farming, salt farm-
ing, agricultural land extension, and settlement development adversely affects marine fish production 
and leads to a loss of biodiversity and livelihood to over 3.5 million people who are dependent on man-
grove resources in the coastal region in Bangladesh (Anon, 1995). The estimated mangrove forest in 
Bangladesh was 685,000 ha (1963–1978), and the present area is about 587,000 ha, which covers 86%, it 
means that 14% of mangrove already lost or disappeared within 33 years. The degradation of mangroves 
is caused by anthropogenic influences and natural changes. Tropical storms and tsunami are common 
in the Bay of Bengal. The damaged forests take a very long time to recover. A cyclone has destroyed about 
8.5 million trees in Bangladesh Sundarbans in 2007, which is equivalent to 66.3 million m3 of sawed 
timber in the year 1988. The Heritiera fomes (Sundari) plant is the dominating one in Sundarbans, which 
represents 21% of the mangrove diversity. The top-dying disease has damaged about 45 million Heritiera 
fomes (Sundari) trees. This is about 20% of the entire forests in Bangladesh (Hussain and Acharya, 1994). 
The top-dying disease is believed to be caused by an array of factors: increased soil and water salinity due 
to reduced upstream river water flow, reduction in periodic inundation, excessive flooding, sedimenta-
tion and erosion, nutrient imbalances, pathogenic gall cankers, and cyclone-induced stress (Anon, 1995; 
Hussain and Acharya, 1994). Approximately 150,000 ha mangroves were destroyed during the past 100 
years between Bangladesh and India due to agricultural reclamation. A number of species like Javan rhi-
noceros (Rhinoceros Sondaicus), water buffalo (Bubalus bubalis), Swamp deer (Cervus duvauceli), Guar 
(Bos gaurus), hog deer (Axis porcinus), and marsh crocodile (Crocodylus palustris) became extinct dur-
ing the last 100 years in the Sundarbans (Hussain and Acharya, 1994; Islam and Gnauck, 2008). Oil spill 
and industrial waste are also creating threat and could cause immense damage, especially to aquatic 
fauna and seabirds and probably also to the mangrove forest biodiversity. The annual natural calamity, 
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global warming, and its impacts are new challenging threats for coastal food security and mangrove bio-
diversity (Rahman, 1988; Hussain, 1995). The siltation in the Sundarbans has increased, and sediment 
trapping has been aided by pneumatophores and dense roots of mangroves. The dominant species of 
Sundari (Heritiera fomes) and Goran (Cariops decandra) are affected by top-dying disease. The finding 
shows that 285 km2 areas of Heritiera-type forest are moderately affected and 275 km2 areas are severely 
affected by this disease, which is one of the main threats for the sustainable mangrove wetland manage-
ment and the protection of its ecosystems (IWM, 2003).

18.5.5  approach of Hydrological Balance for Mangrove ecosystems

Considering the present investigation results in the Sundarbans region in Bangladesh, it has been observed 
that there is a close correlation between hydrological cycle and the mangrove ecosystems in the Sundarbans 
region. The similar scenarios have been observed in other parts of the world like the Indus delta mangrove 
ecosystem, Mekong delta mangrove ecosystem, Red River delta mangrove ecosystem, and Chao Phraya 
River delta mangrove ecosystems, which are dependent on the upstream freshwater supply and hydro-
logical changes. The changing behavior of hydrological systems is a global common scenario in the man-
grove regions especially in Asia-Pacific, Latin America, and African countries. Upstream freshwater is 
essential for mangrove ecosystem, and in the contemporary world, most of the important river’s waters in 
Asia-Pacific and African countries are used for irrigation, hydropower generation, and industrial purposes 
(Versfeld and Wassen, 2005). Therefore, limited quantities of freshwater can enter in the mangrove wetland 
areas. As a result, almost 45% of mangrove forest has been destroyed due to anthropogenic activities and 
shrimp cultivation. Most of the mangrove regions are now affected due to shortage of freshwater supply, 
which is the root cause of hydrological change (Ahsan and Rahman, 2001; Miah, 2003; Nishat, 2006). In 
order to conserve the balance of mangrove ecosystems, it is necessary to balance the hydrological cycle in 
any mangrove region of the world. In the Sundarbans mangrove wetland areas, the Ganges freshwater sup-
ply could make the balance of regional hydrological systems in the Sundarbans region. The present study 
suggests that water storages in Nepal should be establised within the multilateral agreement (Adel, 2001; 
Nair, 2004). In Nepal, the major seven rivers are carrying 71% freshwater annually at the Farakka Barrage 
in the dry season (Elahi et al., 1998; Nishat, 2006; Islam et al., 2011). It has been estimated that through 
construction of water storage in the upstream areas in Nepal, Bangladesh can achieve extra 45,000 m3/s 
water from upstream in the dry season, which could make the hydrological balance in the Sundarbans 
region and could protect the mangrove ecosystems in the coastal region in Bangladesh (Islam and Gnauck, 
2009a,b; Islam et al., 2011). The similar approach could be used in other parts of the mangrove world.

18.6  Summary and conclusions

The Sundarbans mangrove forest is located in the Ganges delta, and it is the part of GBM River systems. 
The Sundarbans is one of the largest mangrove wetlands and a unique ecosystem in the world, which is 
dependent upon the hydrological regime. It is a natural shield that protects the coastal landscapes and 
its ecosystems from storm surges and cyclones in pre- and postmonsoon periods. The study results show 
that it is playing a potential role in regional socioeconomic improvement and in balancing ecosystems 
in the coastal zone of Bangladesh. Since the diversion of Ganges water at Farakka Barrage in India from 
early 1975, the water and soil salinity has penetrated due to capillary upward movement processes and 
sea-level rise impacts. Consequently, both siltation and intrusion of salinity have degraded water qual-
ity of Sundarbans Rivers, and it is the root cause of salinity intrusion and threats for coastal mangrove 
ecosystems. The peak salinity rate was found to be about 56,186 dS/m in 2001 and 2002, and it was found 
to be 58,347 dS/m in 2008 just after the Cyclone Sidr affected in 2007. The study findings show that the 
river water (13 rivers) salinity rate has increased rapidly, which is damaging the mangrove wetland eco-
system and its services. It has a polynomial behavior, and most of the river water has crossed the water 
salinity threshold value, which is unsafe for coastal mangrove ecosystems.
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The study has investigated the hydrological changes and the water salinity intrusion of the Sundarbans 
Rivers, which could be considered as a tool for decision making. Water salinity model will support to 
prepare a mangrove ecosystem management plan by the decision makers, to balance the hydrological 
cycle in the regional and local bases, and to protect the mangrove ecosystems and its unique biodiversity 
in the Sundarbans region (Islam and Gnauck, 2009a,b; Islam et al., 2011).

Hydrological changes in different parts of the mangrove wetlands region are the cause of damag-
ing ecosystem and its services. The present study investigated the salinity intrusion pattern in the 
Sundarbans mangrove region, which is dependent on the freshwater supply and hydrological changing 
behavior in the region. The sedimentation and salinity intrusion in the Sundarbans are also the reasons 
of vulnerable environmental degradation and threat to mangrove ES in the coastal region. The coastal 
landscapes and the Sundarbans mangrove of the deltaic region encompassed strong aesthetic, cultural, 
biological, and geological values. Therefore, conversation of mangrove biodiversity and maintenance 
of ecosystems is a global environmental issue. The mangrove ES are potential to ensure its natural 
services to the coastal communities. Based on the results of this study, it can be stated that the awareness 
education, applied training, and research should be initiated in order to change the attitude of the 
people and the government toward protecting water quality and mangrove ecosystem. The transbound-
ary Ganges water flow is patronizing the mangrove ES in the Sundarbans region; therefore to ensure 
upstream freshwater supply to the Sundarbans region is essential for its ecosystem maintenance. Beside 
this adaptation and migration strategies should be incorporated in the national development plan for 
coastal resources management and ecosystems protection. The proposed recommendations should be 
implemented for the future development of mangrove ES and should ensure food security of the coastal 
communities in the Sundarbans region in Bangladesh.

• The hydrological condition in the mangrove region must be considered as one of the most 
impending issues of local and regional developmental agenda and ensure the balance of future 
maintenance of mangrove ecosystem and its services.

• The Ganges freshwater supply through the Gorai River basin to the coastal region of the man-
grove wetland areas is necessary, which could protect the mangrove wetland ecosystem and ES for 
the coastal community livelihood sustainability in the Sundarbans region in Bangladesh.

• To arrange climate change awarness training activities for capacity building of local stakeholders 
through participation. Besides, more applied research is needed to find out alternative solutions 
for the Sundarbans mangrove wetland ecosystem and biodiversity protection.

• Mangrove wetlands and environmental data banks are required, and it is necessary for the future 
applied research, education, training, and development of the wetland ecosystem and to ensure 
their goods and services. GIS should be introduced within the mangrove and other wetland data 
collection, analysis, visualization, mapping, planning, monitoring, and management system.

• Rise in sea level, tidal inundation, and coastal estuaries’ wetlands ecosystem are factors that have 
to be considered within the long-term management strategy for dealing with coastal mangrove 
ecosystem issues. The coastal ecosystem management plan should be formulated based on the 
results of the present study of water salinity modeling in the Sundarbans mangrove wetlands.

• The proper regional water resources management plan could ensure the balance of hydrological 
ecosystem in the Sundarbans coastal region.

• All the aspects of mangrove ecosystem studies and research should ensure future develop-
ment and sustainable management of coastal natural resources. In such situation, a Mangrove 
Wetlands Research Institute should be established in a public university in Bangladesh for 
graduate studies and short training courses could be offered for the professionals for capacity 
building and good governance to ensure coastal resource management and mangrove biodi-
versity protection for the sustainability of mangrove ES in the Sundarbans region and other 
parts of the mangrove world.
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Preface

This chapter describes a variety of analytical models that permit incorporation of variabil-
ity in simulation of hydrologic processes. Emphasis is put on the probabilistic building blocks 
and assumptions underlying each model. Each class of problems to be solved (e.g., recurrence 
of extreme events, distance travelled, or time until a threshold is achieved) has a set of useful 
stochastic models. Statistical characteristics of the data and the scale at which predictions are 
required can guide the user to specific model selection.



376 Handbook of Engineering Hydrology

19.1  Introduction

All hydrologic processes in the water cycle are deterministic, governed by physical laws we could use 
for prediction if we had complete knowledge of the atmosphere, boundary layer, earth surface, and sub-
surface. More often than not, we must use simplifications of reality for hydrologic prediction, including 
models that can treat the inherent variation in timing of hydrologic forcing and the spatial distribution 
of physical properties. Thus, hydrologic models need to account for variability in both space and time. 
The flow of water, solutes, and sediment over and through heterogeneous media complicates determin-
istic prediction of hydrologic transport phenomena. Likewise, uncertainty in the timing and intensity 
of precipitation events and temperature fluctuations affects our ability to forecast snowmelt, recharge, 
evaporation, overland flow, streamflow, reservoir levels, etc. Stochastic models use probability theory to 
account for uncertainty in hydrologic prediction and can be used to reproduce the statistical regularity 
that often appears in physical phenomena after a sufficient amount of time has passed or a sufficiently 
large space is sampled. As with deterministic modeling, the goal of stochastic modeling is to find an 
equation that sufficiently describes the important properties of a process with the smallest number of 
explanatory variables.

One approach to stochastic modeling, known as Monte Carlo analysis, incorporates variability in 
environmental models by having the user define a domain of possible parameters and run a series of 
deterministic computations on inputs drawn from one or more probability densities. The aggregated 
result of a large number of simulations describes a range of possible outcomes and their likelihood. 
In this chapter, however, we describe stochastic models that have descriptions of variability built into 
analytical equations.

19.2  Probability Theory

The building blocks of probabilistic models are stochastic processes. A stochastic process is a collection 
of random variables X ⃗ = {X(t), t ∈ T} = {X1, X2, … , Xt}, where X(t) is the state of the process at time t and 
T is the set of all possible time. X varies through time and that variation may contain both deterministic 
and random components. For example, streamflow may follow predictable seasonal cycles but daily 
discharge may have considerable variability and may not be easily predictable. Instead the bulk behavior 
of discharge can be described by a probability density function (pdf) that characterizes the mean and 
spread around it. Notation such as K ⃗ = {K(x), x ∈ X} = {K1, K2, … , Kx} denotes spatial variability of, for 
example, hydraulic conductivity at each point x in the spatial domain X.

Probability distributions assign the likelihood of events associated with a random variable. If ran-
dom variables are discrete such that their sample space consists of a discrete set of values Ω = {0,1,2,…}, 
then the distribution is determined by a probability mass function f(x) = P(X = x), where P(·) denotes 
probability. The number of days between storms is a discrete random variable. If random variables 
are continuous, then their sample space can vary continuously and they are described by a probability 
distribution function or cumulative distribution function (cdf) F(x) = P{X ≤ x} or its derivative, the pdf 
f(x) = dF/dx [8]. It is common, but incorrect, for scientists to mix the terms density function and distri-
bution function. A density function describes the relative frequency of each value in a sample space, 
while the distribution function describes the likelihood of all outcomes below a given value. Also com-
monly used in hydrology is the exceedance distribution of a random variable 1 − F(x) = P(X > x), which 
shows the likelihood of all values above a given value. The exceedance distribution function is frequently 
used to distinguish between thin- and heavy-tailed data. There are many textbooks and numerical codes 
that execute both distribution fitting and parameter estimation for sample data.

The most commonly used stochastic models in hydrology are those that describe random incre-
ments, maxima, or sums of random events. For example, in time series analysis, we may be interested 
in the distribution of the random event sizes themselves. In flood frequency analysis and other areas of 
extreme value (EV) theory (see Chapter 22 in this volume), we are interested in the overall distribution 
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of event sizes and recurrence of the largest events in a given period of time and might track the maxima 
Mn = max{Y1, Y2, …, Yn} for a collection of random events {Y1, Y2, … } that occur during the nth year. In 
studying transport, on the other hand, we represent the location of a particle at time t as the sum of 
discrete jump lengths that occur with each ∆t, X t Y i

i

t t

( ) ( ).
/

=
=∑ 1

∆
 In all cases, the statistical character 

of the increments determines the long-term behavior of the maxima or sum. These rules are embodied 
by the limit theorems discussed in Section 19.4.1. In the case of both maxima and sums, the following 
properties affect the character of the appropriate stochastic model:

 1. Independent versus dependent increments
 2. Stationary versus non-stationary increments
 3. Thin- versus heavy-tailed distribution of increments

Independence of increments means that the size of each random event is unrelated to previous or 
future events, while stationarity indicates that event size is not related to the time the event occurs. 
The distinction between thin- and heavy-tailed distributions refers to the rate of upper tail decay, most 
easily seen in the end of the exceedance distribution. The upper tail represents the probability of events 
with extreme deviation from the mean or mode. The character of the tail decay determines the limiting 
distribution to which sums or maxima will converge in the scaling limit. Sums of independent and iden-
tically distributed (iid) random variables with thin tails converge in distribution to Gaussian densities. 
Heavy-tailed refers to distributions the tails of which decay slowly enough that EVs are relatively likely, 
such that random sums never converge in distribution to a Gaussian density. While heavy-tailed distri-
butions are always power law, distributions with power-law tails are not always heavy-tailed.

The effect of independence, stationarity, and tail characteristics will be described in the following sec-
tions on stochastic models for time series analysis, EV theory, and hydrologic transport.

19.3  Discrete Stochastic Models

19.3.1  Increments and Sums: classical Time Series analysis

After identifying and subtracting deterministic components (trends, cycles, etc.) of a time series, dis-
crete stochastic models are used to describe the “random” characteristics of data. For example, to deter-
mine how streamflow at one site varies from day to day in a given season, we might consider the entire 
flow series or difference the daily discharge data. If our interest is a model for streamflow to use for 
forecasting, we could analyze the statistical characteristics of the differenced or incremental data.

The fundamental discrete stochastic process is the white noise process, generally referring to as a col-
lection of iid random variables of arbitrary distribution with zero mean and finite variance. Variations 
on this definition are also in use. For example, “iid” is often replaced with “uncorrelated” and “finite 
variance” is often replaced with “unit variance.” Gaussian white noise, in which random increments are 
described by a Gaussian distribution, is the most commonly used model for iid increments with thin 
tails. Lévy or α-stable noise is used when “iid” increments are heavy-tailed. Importantly, no trends or 
clusters are associated with white noise processes.

19.3.1.1  autoregressive Processes

Many hydrologic processes are not uncorrelated in time, and more flexible models must be used to 
represent randomness. Autoregressive models–such as the autoregressive process of order 1 (AR1): 
X(t) = c + aX(t − 1) + σε(t), where c is a constant, σ is a scale parameter, and ε is a white noise process–are 
named because of their similarity to univariate regression models. Trends appear in the sample paths of 
an AR(1) because of the dependence of each increment on the prior increment. The mean and variance 
of AR(1) increments are a function not only of the noise term but also of a and/or c: E(X(t)) = c/(1 − a) 
and Var(X(t)) = σ2/(1 − a2) [5]. When the correlation structure of a time series goes farther back than a 
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single increment, an AR(p) model may be invoked: X t c a i x t i t t
i

p

( ) ( ) ( ) ( ), , , , .= + − + =
=∑ σε 0 1 2

1
…  One 

way to estimate how far back in a series dependence runs is to compute the autocorrelation function 
(ACF) ρ(h) of a time series: ρ( ) [ ( ), ( )] [ ( )] [ ( )] .h Cov X t X t h Var X t Var X t h= + +( )  For an AR(1) process, 
this reduces to ρAR(1)(h) = ah implying geometric decay of autocorrelation well past one lag. This occurs 
because X(t) is a function of X(t − 1) that is a function of X(t − 2) and so on. In practice, the ACF of an 
AR(1) decays so quickly past lag 1 that only lag 1 is significant. It does suggest use of the more intuitive 

partial autocorrelation function (PACF), which for an AR(1) is ξ( ) ,h

a h

h=
=
=









1

1 0

0 otherwise

 and for a more 

general AR(p)-process, we obtain nonzero PACF for the first p lags and zero PACF otherwise.

19.3.1.2  Moving average Processes, arMa, and Beyond

Moving average (MA) models are used when observations take the form of a weighted aver-
age of one or more previous observations of the noise process. An MA(q) process is given by 
X t c b i t i t t

i

q

( ) ( ) ( ) ( ), , , , .= + − + =
=∑ ε σε 0 1 2

1
…  Coefficients can be chosen so that an MA model is station-

ary, so the conditional mean and variance do not depend on the time for which they are computed; however, 
the conditional mean does change through time. MA models are typically not used alone in hydrology.

Numerous generalizations of the basic autoregressive and MA models exist. Autoregressive and MA 
models can be combined to form the general linear time series model, the ARMA(p,q)-process. While 
PARMA(p,q) models incorporate periodicity, GAR models are appropriate for skewed hydrologic pro-
cesses, ARCH models incorporate time-varying conditional variance, and ARIMA models apply when 
ARMA models are fit to differenced data.

19.3.2   Increments and Sums: Pre-asymptotic continuous 
Stochastic Models for Time Series and Transport

In some hydrologic applications, it is useful to model stochastic phenomena on a continuous timescale. 
This may occur because the random variable of interest is naturally measured on a continuous timescale. 
However, it is also common for discrete stochastic phenomena to be simulated with continuous models 
because of their analytical tractability. The pre-asymptotic (meaning before a limit theorem can be 
invoked) models are useful when the exact distribution of random variables can be quantified.

19.3.2.1  Markov chains and random Walks

The AR(1) model discussed earlier is an example of a discrete Markov chain, a stochastic process in 
which the next state of a system only depends on the current state and not on previous states. For a 
Markov chain {Xn, n = 0,1,2,…} where Xn = i signifies that the process is in state i at time n and there is a 
probability Pij that it will next be in state j, Pij is only a function of Xn and not of Xn−1, Xn−2, or any previous 
states. The classic example of a Markov chain in hydrology describes the chance of rain tomorrow or a 
subsequent day depending on current weather conditions. A two-state chain (state 1 = wet day and state

 

2 = dry day) might be described by the transition probability matrix P
P P

P P
=








 =











11 12

21 22

0 9 0 1

0 5 0 5

. .

. .
 as in 

Haan [13], where the sum of each row must be one. In this case, the probability of a wet day today fol-
lowed by a dry day tomorrow is 0.1. To calculate the probability of a wet day today followed by a dry day

 

two days from now or three days from now, we use P2 or P3, respectively. Since P 3 0 8440 0 1560

0 7800 0 2200
=










. .

. .
, 

we
 
can conclude that the probability of a wet day today followed by a dry day 3 days from now is 0.1560, or 

15.6%. As successive powers of the transition probability matrix P are calculated, the elements converge 
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to the longtime probability of any day being wet or dry. In our example, after P11 0 8333 0 1667

0 8333 0 1667
=










. .

. .
,
 

the elements no longer change and are equal in columns, indicating that the long-term probability of a 
wet day is approximately 83% and the probability of a rainy day is approximately 17%. While the prob-
ability of wet or dry days a few days from now is related to today’s weather, the long-term forecast is 
unrelated to the present state. This is an excellent introduction to the concept of asymptotics in prob-
ability theory and stochastic processes, in which long-term outcomes may emerge as a result of general 
statistical properties, but not the initial condition.

While exact transition probabilities as in the preceding example may be difficult to calculate in prac-
tice, use of a Markov chain known as a random walk is ubiquitous in hydrology, particularly in associa-
tion with transport processes. Let {Y1, Y2, …, Yn} be a sequence of iid random “jump” sizes. A random 
walk is a stochastic process that gives the running sum of the increments through time X t Yi

i

t t

( ) .
/

=
=∑ 1

∆

 
In modeling transport processes, jumps may represent actual distance that a particle (of water, solute, 
sediment) moves in a single time step, so that the sum represents total distance traveled through time. If 
the jumps represent daily changes in river flow, then a random walk can be used to model total change 
in flow through time. Similarly, if jumps represent elevation changes in a reservoir, a random walk can 
be used to model elevation change through time. The cdf F of jump size can be discrete or continuous 
(the notation x ∼ F means that the random variables xi have distribution F). In either case, if n = t/∆t is 
the number of steps by time t, the evolution of X(t) can be computed by taking the convolution of F n 
times, where the convolution operation is defined ( )( ) ( ) ( ) .f g x f g t d∗ = −

−∞

∞

∫ τ τ τ  This is because the cdf 

of the sum of independent random variables is the convolution of their respective cdfs. In practice, when 
a random walk fits the conceptual model for a hydrologic process, an asymptotic model, described in 
Section 19.4.2, is usually invoked.

19.3.2.2  renewal Processes

The random number of events up to a given time {N(t),t ≥ 0}, say the number of rainstorms at or prior to 
a 30-day period, is known as a counting process. A counting process is known as a renewal process if the 
length of time between events, known as the inter-arrival times, is iid random variables with arbitrary dis-
tribution. The well-known Poisson process is a renewal process with exponentially distributed (f(t) = λe−λt) 
inter-arrivals, with rate parameter λ. Its name derives from the fact that the number of events in any inter-
val of length t is Poisson distributed with mean λt: P{N(t) = n} = (e−λt)((λt)n/n!), n = 0,1,2,.… Poisson-type 
processes have long been used to model recurrence of seasonal rainfall and drought timing [7,23].

19.3.2.3  renewal reward Process or continuous Time random Walk

Classical random walk models represent distance travelled as the sum of discrete random jumps that 
are assumed to be equally spaced in time (although strictly speaking, a random walk with thin-tailed 
inter-arrivals will converge in distribution to the same limiting stochastic process as a random walk 
with equally spaced inter-arrivals). Renewal reward processes, also known as continuous time random 
walks (CTRWs), combine random walk and renewal counting processes by defining distance traveled as 
the sum of random jumps that occur randomly in time:

 
X t Y ti

i

N t
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=
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1

 (19.1)

where
the total distance traveled X(t) is the sum of iid random jump sizes
{N(t),t ≥ 0} is a renewal process
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Use of CTRW is now common in modeling of transport processes that consist of an on- and an off-
period for motion. Applications include subsurface transport in porous and fractured media, stream 
transport with transient storage, and sediment transport in rivers and on hillslopes [2–4,21]. The key 
is that the distribution governing particle in space and time can be written as a function of the jump 
length distribution and the inter-arrival time distributions. The master equation in Fourier–Laplace 
(with transform pairs x ↔ k and t ↔ s) is expressed as
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 (19.2)

where
�̂( , )C k s  is the Fourier–Laplace transform of particle density
�ψ( )s  is the Laplace transform of the inter-arrival time density
f̂ (k) is the Fourier transform of the jump length density

The inverse transform of �̂( , )C k s  is commonly computed numerically to display the likelihood of single-
particle travel distance through time and is interpreted as the form a spreading plume of many particles 
would take.

19.3.3  Maxima: extreme Value Theory

EV theory is concerned with the recurrence of large events and plays a significant role in analysis of haz-
ardous events such as floods, large waves, landslides, mudflows, and droughts [18]. When sufficient data do 
not exist to compute the empirical 10-, 500-, or 10,000-year events, stochastic models are used to estimate 
recurrence levels based on the distribution of event sizes and event inter-arrivals. As with random walk 
models, we let {Y1, Y2, …, Yn} be a sequence of iid random “jump” or “event” sizes describing peak discharge 
in a flash flood, the height of a wave, or severity of a drought. Extreme events do not occur at randomly 
spaced intervals, and so inter-arrivals between events always play an important role. The distribution of 
the maxima of iid extreme events with distribution F separated by iid inter-arrivals with pdf ψ can be 
described by the master equation for a continuous time random maxima (CTRM) (in Laplace space) [1]:
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where
L[·] denotes a Laplace transform
F(x) is the distribution of the event sizes
�ψ( )s  is the Laplace transform of the inter-arrival density

As with the CTRW, the master equation for the distribution of maxima (19.3) can be used with any 
event size and jump length distributions. In hydrologic applications, it is most commonly assumed that 
inter-arrivals are exponentially distributed in which case the CTRM describes the maxima of a Poisson 
process and can be reduced and transformed into real space such that P M x eN

t F x
t( ) ,( ( ))≤ = − −λ 1  where λ 

is the rate parameter for the exponential inter-arrival times [22].

19.4  asymptotic Stochastic Models

Although random variables in the stochastic models described in the previous section could be 
described using continuous probability densities, they may converge in distribution to another set of 
stochastic processes in the longtime scaling limit. Asymptotic stochastic models describe longtime 
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emergent properties of pre-asymptotic models and provide a macroscopic view of unmeasurable 
microscopic properties.

19.4.1  Limit Theorems

Limit theorems exist for both sums and maxima. The generalized central limit theorem (CLT) for sums 
of random variables specifies that the rescaled sum of stationary iid random variables {Yi} with even 
infinite variance (heavy tails) converges in distribution to an α-stable density, denoted Sα, with shift μ, 
spread σ, tail parameter α, and skewness β [10,12]. Restated, we can find the form of the distribution of 
a sum of random variables:

 Y Y n n Sn1
1 0 1+ + ≈ + ( )� µ σ α βα

α
/ , , ,  (19.4)

This general CLT includes the classical CLT thin-tailed subset that states that the rescaled sum of sta-
tionary iid random variables with thin tails converges in distribution to an α-stable density with α = 2, 
which is equivalent to Gaussian density:

 Y Y n n Nn1
1 0 1+ + ≈ + ( )� µ σ α/ ,  (19.5)

where
μ is the mean
σ is the variance
N(0,1) represents the standard normal (Gaussian)
skewness β does not exist for an α = 2 stable density

For maxima, the EV theorem states that the rescaled maximum of a sequence of stationary, iid random 
variables converges in distribution to one of the EV distributions. If a sequence of pairs of real numbers 
(an,bn) exists such that each an > 0 and

 
P

Y Y b

a
x F GEV

n n

n

max , ,
~ , ,

1 …{ }−
≤









 ≈ ( )µ σ ξ  (19.6)

where GEV(μ, σ, ξ) denotes the generalized EV distributions with location μ, scale σ, and shape 
ξ parameters. When random variables have thin tails, the Gumbel or type I EV distribution emerges, 
while heavy-tailed random variables lead to the Frechet, or type II EV distribution. As a result, the EV 
distributions are commonly used in estimating recurrence of extreme events because they arise natu-
rally for describing the distribution of annual maxima and can be used without knowledge of the exact 
distribution of the population.

The CLT and EV theorems can be further generalized to account for non-stationarity or long-range 
correlation in increments, but each must be tailored to the specific type of non-stationarity or correla-
tion. In hydrology, non-stationarity is frequently treated by using stationary models over small areas 
and varying model parameters in time or space as necessary. Effects of short-term correlation may 
disappear over the long term, and the CLT and EV theorems can be used. Stochastic models that incor-
porate the effects of long-range correlation are included in the following section.

19.4.2  Limiting (asymptotic) Stochastic Processes

Just as CLTs exist for sums or maxima of random variables, analogous limit theorems exist for stochas-
tic processes. The appropriate limiting stochastic processes can be identified with traits such as the tail 
character or degree of correlation of the increments.
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The components that lead to the asymptotic stochastic process are the building blocks for a CTRW: 
(1) the distribution governing the time between events and (2) the distribution governing the event sizes.

19.4.2.1  Brownian Motion

In the scaling limit, any stationary CTRW with thin-tailed inter-event periods and jumps that do 
not exhibit any long-range dependence converges in distribution to a Brownian motion. A standard 
Brownian motion is defined by the following properties [20]:

 1. B(0) = 0, the Brownian motion starts at zero.
 2. B(t), t ≥ 0 has stationary and independent increments.
 3. All increments of the Brownian motion B(t + h) − B(t) are normally distributed with mean zero 

and variance h.
 4. The paths of a Brownian motion are continuous.

As a result of the CLT, a Brownian motion B(t) at time t is normally distributed with mean zero and 
variance t. It is well known that the diffusion equation (advection–dispersion equation [ADE]) governs 
the evolution of particles undergoing Brownian motion. It is no coincidence that the spatial solutions to 
diffusion equations are Gaussian densities.

The diffusion equation and variations on ADEs described in this section are deterministic partial 
differential equations. They arise as a result of long time/space transport in a random medium because 
the CLT specifies a deterministic outcome for sums of random variables. Asymptotic distributions and 
stochastic processes show deterministic macroscopic properties that emerge as a result of microscopic 
variability. Diffusion-type equations are used to describe infiltration, solute transport, and heat trans-
port, among other phenomena. These equations are frequently derived by inserting the constitutive 
relation for Fickian flux into a continuity equation. It is within the Fickian flux term that microscopic 
particle motion governed by iid, stationary, finite variance jumps is hidden.

Having thin-tailed inter-arrivals and event sizes, the largest jump (event) that a particle undergoing 
Brownian motion can be expected to take in an epoch has an EV1 distribution. In one application, we 
sum random size jumps (motion) with random inter-arrivals (immobile periods) and think of a physical 
transport process; in a second type of application, we track the largest jumps (flood sizes) with random 
inter-arrivals (non-flood periods) using the same underlying conceptual model.

19.4.2.2  fractional Brownian Motion

A CTRW with deterministic or thin-tailed inter-event times and thin-tailed jumps with long-range cor-
relation converges in distribution to a fractional Brownian motion (fBm) [17]. An fBm is defined by the 
following properties (REF):

 1. BH(0) = 0, the fBm starts at zero.
 2. BH(t), t ≥ 0 has stationary increments.
 3. All increments of the fBm BH(t + s) − BH(t) are bivariate normally distributed with mean zero and 

covariance 1/2(s2H + t2H − |t − s|2H), where 0 < H < 1 is known as the Hurst coefficient.
 4. The paths of an fBm are continuous.

For Hurst coefficient H = 0.5, the fBm reduces to an ordinary Brownian motion with uncorrelated incre-
ments. When H > 0.5, the covariance of the increments is positive—upward paths tend to continue 
moving upward and vice versa. For H < 0.5, the increments are negatively correlated, and paths tend to 
exhibit frequent reversals in direction. fBm models primarily have been applied in hydrology in one of 
two ways. The first is to describe long-term persistence in time series. In fact, the application for which 
Hurst [14] first observed the phenomenon was in a design study for reservoir capacity. It since has been 
observed in many streamflow time series [15]. fBm also is used in the design of random fields for simula-
tion of heterogeneous porous media. Hydraulic conductivity fields with long-range dependence, having 
both preferential pathways and low permeability zones, may be one origin of anomalous dispersion of 
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particles that travel through aquifers [16]. Recurrence intervals for correlated random processes have 
not been posed in the CTRM framework, but their characteristics for recurrence of climate statistics 
have been described [6,9].

19.4.2.3  Lévy Motion

CTRW deterministic or thin-tailed inter-event times and heavy-tailed jumps converge in distribution to 
a Lévy motion. An α-stable Lévy motion has the following characteristics:

 1. L(0) = 0, the Lévy motion starts at zero.
 2. L(t), t ≥ 0 has stationary and independent increments.
 3. All increments of the Lévy motion L(t + h) − L(t) are α-stable distributed with zero shift, spread 

h1/α, and skewness β.
 4. The paths of a Lévy motion exhibit jumps; they are not continuous.

Particles undergoing Lévy motion are governed by fractional-in-space ADEs with non-integer order 
derivatives, usually of order between one and two on the spatial derivative of the dispersion term. The 
use of “fractional derivatives” simply generalizes the classical ADE by permitting nonlocal dispersion, 
characterized by heavy-tailed jump size distributions around a mean value. As a result of the gener-
alized CLT, the solutions to space-fractional ADEs governing particles undergoing Lévy motion are 
α-stable pdfs. The size of the largest jumps is governed by an EVII distribution. Recurrence times for 
various size extreme events can be computed with knowledge of this distribution.

19.4.2.4  Subordinated Motions

Heavy-tailed inter-event times change the time evolution of a transport process. In the scaling limit, 
CTRW with heavy-tailed inter-arrivals is governed by subordinated motions. For example, particles 
undergoing subordinated Brownian motion spread diffusively during motion (known as “operational 
time”), but spread anomalously during overall clock time because of heavy-tailed waiting times. For 
example, a subordinated Brownian motion is obtained from Brownian motion B(t) by replacing its 
time parameter t by an independent Lévy process SN(t) starting from zero so that Brownian motion 
only occurs after random (heavy-tailed) time intervals have elapsed. Subordinated motions are typi-
cally used to model sub-diffusive spreading, but, in the case of forward only jumps, also can lead to 
super-diffusive spreading [24]. Particles undergoing subordinated Brownian motion are governed by 
time-fractional ADEs, while particles undergoing subordinated Lévy motion are governed by space–
time-fractional ADEs. The solutions to equations governing subordinated motions can be computed by 
performing a transform on the solution to the unsubordinated solution, as in [21]. Similarly, the density 
governing the largest size jump in a time period can be calculated by subordinating the appropriate EV 
density for thin-tailed inter-arrivals. Subordinated stochastic processes are finding application in the 
many environmental transport processes thought to be dominated by intermittency.

19.4.3   Use of Pre-asymptotic, asymptotic, Tempered, or Truncated 
Models and associated embedded Stochastic Processes

The pre-asymptotic master equation forms of the CTRW (19.2) or CTRM (19.3) offer a detailed picture 
of statistical evolution of sums or maxima when the distributions of inter-arrivals and event sizes can 
be fully characterized. Like Markov chains, pre-asymptotic transport and EV models describe transient 
evolution of solutions from early conditions to the long-term, limiting state. Asymptotic models, on the 
other hand, do not require full distribution characterization (heavy- versus thin-tailed or correlated 
versus uncorrelated increments are frequently sufficient) and have well-known solutions related to the 
outcome of limit theorems.

Application of heavy-tailed stochastic models has grown as hydrologists increasingly see the need 
for stochastic models with different scaling properties than the classical diffusive model. Reproduction 



384 Handbook of Engineering Hydrology

of “anomalous” scaling behavior is the strength of heavy-tailed stochastic models. However, in many 
instances, the maximum event size or inter-arrival time is a key characteristic of hydrologic evolu-
tion, and standard Lévy models will be physically unrealistic. In these cases, tempered or truncated 
models–in which a maximum is invoked by imposing either an exponential tail or a cutoff on a power-
law density– can be used. Appropriate identification of the cutoff on power-law behavior can elucidate 
physical controls on threshold or bounded behavior [11].

As a time series fluctuates, it may not be the random sum or maximum event size that is of interest, 
but of a related quantity. For example, in fluctuations of soil moisture, it may be a threshold value that 
defines the wilting point. In this case, the return time distribution or crossing time (return from above 
or below) distributions of the time series can be estimated and used to drive stochastic ecohydrologic 
models [19]. Finally, in modeling the passage of a solute plume past a monitoring well at a single x–y 
location, the first-passage time distribution (directly related to the breakthrough curve) of particles is of 
interest rather than the spatial plume evolution described by a sum. The relationship between random 
sums and these and many other embedded stochastic processes are described in the mathematics litera-
ture and can be transferred for specific applications.

19.5  Summary and conclusions

Stochastic processes are appropriate model choices when effects of temporal variability or heterogeneity 
below the scale of measurement are dominant characteristics of hydrologic processes at the observation 
scale. The type of problem to be solved (recurrence of extreme events, distance traveled, time until a 
threshold is achieved) drives specific model selection. Disciplinary expertise and data analysis can then 
be used to identify the probabilistic conceptual model that best represents the relevant characteristics of 
temporal and spatial evolution of hydrologic processes. Are increments of a random process correlated? 
independent? thin- or heavy-tailed? stationary? These characteristics drive selection of the appropriate 
probabilistic models whether they are for time series analysis, EV analysis, or prediction of motion. 
The discrete-time, continuous, and asymptotic models described in this chapter are commonly used 
in hydrology. If none is appropriate for a new hydrologic application, generalizations and modifica-
tions of these models—with well-understood results—exist in the mathematics, physics, and economics 
literature.
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20.1  Introduction

20.1.1  Hydrologic Modeling and forecasting

Nearly all hydrologic forecasting systems incorporate model estimates of land surface states and fluxes 
into operational forecasts, to provide reliable information to end users. Hydrologic models are a class 
of computer simulation models that estimate at least some aspects of the hydrologic cycle (Moradkhani 
and Sorooshian, 2008). Within hydrologic models, climatic and land surface conditions, typically in the 
form of water and energy fluxes/storages, provide a basis for mass and energy balance approximation 
(Moradkhani, 2008). These models vary considerably in assumptions, accuracy, complexity, applicabil-
ity, and computational demand. Differences in the model structure and required forcing data between 
hydrologic models reflect the differing perceptualizations of hydrologic processes (Beven and Freer, 
2001) and the intended use of the model. For example, highly simplified or complex models are often 
used for research purposes, but these may not be appropriate for use by an operational forecasting agency. 
Similarly, a hydrologic model may be designed with a specific purpose, such as snow accumulation and 
ablation models, which do not directly estimate the entire hydrologic cycle. Another common distinc-
tion between models is the level of physical basis of model equations, ranging from purely conceptual 
(no physical basis) to land surface models (minimizing the nonphysically based processes). All models 
have some conceptual variables that cannot be physically measured, but there is a trend toward develop-
ing and using increasingly physics-based models in hydrologic sciences. With such a variety of models, 
it is essential to find a model that fits a forecasters needs for effective hydrologic forecasting.

Hydrologic forecasting serves the purpose of early warning for flood events and water supply fore-
casts for water resources management. Flood and water supply forecasting are distinguished by not 
only their intended purpose but also lead time. Forecasting for flood events at operational agencies is 
performed with short-lead times, on the scale of hours to weeks (Cloke and Pappenberger, 2009). Short-
lead forecasts may aid in evacuation of floodplains or mitigation measures to limit the harm caused by 
flooding. Alternatively, water supply forecasts require a much longer lead time of forecasts. Long-term 
forecasts range from seasonal to interannual timescales and may aid in allocating water for irrigation, 
power generation, or drinking water supply, among other uses (Moradkhani and Meier, 2010; Wood 
and Werner, 2011). Though the forecast lead time of flood and water supply forecasts is different, both 
require similar information to be effective. Accurate estimation of the hydrologic state of the land sur-
face prior to forecasting, referred to as the initial conditions, and the future climate factors is essential 
for hydrologic forecasting at any lead time.

Short-lead forecasts are most often regarded as a modeling problem. Operational forecasts within the 
National Weather Service (NWS) will use some form of modeled information and forecaster judgment 
for providing public warnings prior to flood events. Due to errors in the hydrologic modeling process, a 
model will likely need to be adjusted between simulations to ensure accurate forecasts. Manual or auto-
matic methods may be used to shift modeled states to accurate estimates, and short-term weather fore-
casts will be used to estimate the forcing inputs to a watershed of interest. Integrating both improved 
states and accurate forcing data provides a basis for reliable flood forecasts. This contrasts with long-lead 
forecasting, largely due to the diminished accuracy of meteorological variables at longer timescales. 
With the contrasting accuracy in meteorological data, a larger range of techniques are applicable to 
seasonal forecasts than short-lead forecasts.

Some purely statistical methods have found use in streamflow forecasting because of the relation-
ship between seasonal streamflow on land surface states and seasonal climate indicators. Principal 
component analysis (PCA) (Garen, 1992), independent component analysis (ICA) (Gotelli and Ellison, 
2004; Hyvärinen et al., 2001; Moradkhani and Meier, 2010; Najafi et al., 2011a; Westra et al., 2007), and 
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artificial neural networks (ANNs) (Hsu et al., 1997; Moradkhani et al., 2004) have all found success 
in forecasting seasonal runoff volumes. Though these methods have been shown to be effective pre-
dictors of seasonal streamflow, all assume a stationary climate, leading many hydrologists to question 
the reliability of such methods in light of global climate change and local land use change (Jung et al., 
2011; Moradkhani et al., 2010). This issue has led many forecasters to perform more physically based 
modeling, which is theoretically more robust in a changing climate/landscape. From a modeling per-
spective, ensemble forecasting frameworks are becoming popular. In the NWS, ensemble forecasting is 
performed with ensemble streamflow prediction (ESP) (Day, 1985; Najafi et al., 2012; Twedt et al., 1977; 
Wood and Lettenmaier, 2008). ESP uses a combination of model spin-up, to estimate the initial condi-
tions, and resampling of historical forcing to create a range of potential runoff quantities. This range 
is assumed to provide insight about the uncertainty in seasonal predictions. Similar methods utilize 
seasonal ensemble meteorological forecasts from numerical weather prediction (NWP) models to force 
seasonal hydrologic modeling. A recent study by Najafi et al. (2012) showed how the ESP for seasonal 
forecasting can be improved when the historical forcings, for generation of ESP traces, are weighted 
according to their similarities with the current year forcing data. This leads to a similar framework to 
flood forecasting.

20.1.2  State-Space Models

In general, viewing hydrologic models as state-space models is beneficial for hydrologic forecast updating 
and uncertainty quantification. This framework assumes the model produces some states that satisfy the 
Markovian criteria. That is, the states of a hydrologic model at some time contain all of the information 
necessary from previous times to propagate the model forward. This allows for analysis of model states 
at any given time, without the need for examining past model states. Within hydrologic models, states 
may be physically based (e.g., soil moisture or snow water equivalent) or conceptual (i.e., conceptual 
reservoir water content). Via the state-space framework, a hydrologic model may be viewed according 
to the following equation:

 x f x ut t t t= ( ) +−1, ,θ ω  (20.1)

In Equation 20.1, xt represents the true state vector at time t, which is the sum of the model (f(·)) estimate 
and the model error ωt. This model requires the true states at the previous time (xt−1), the true forcing 
data at time t (ut), and model parameters (θ) to characterize the land surface condition. It is often the 
case in hydrology that a subsequent model must be used to translate these model states into the obser-
vation space. A typical example is applying a hydrologic routing model to translate land surface water 
fluxes to flow at a watershed outlet, allowing for simple comparison of simulated and observed runoff. 
This model is referred to as an observational operator and is represented in the following equation:

 y h xt t t= ( ) +,Ψ ν  (20.2)

where yt represents the true observation value (note that this differs from the actual observation due 
to errors in the observation process), which is the sum of the observational operator (h(·)) estimate and 
the observational operator error νt. The observational operator requires the true state value and true 
parameters (Ψ). Though θ and Ψ are identified as independent values/vectors in the previous notation, 
in hydrologic model analysis, these may be examined in a combined vector, which can be represented 
as θ for simplicity. Analyzing model operations from the state-space framework simplifies a number 
of tasks including inverse modeling, calibration, sensitivity analysis, uncertainty analysis, and data 
assimilation. Application of the state-space model framework to these tasks is expanded on in following 
sections.
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20.1.3  Inverse Modeling and calibration

Modeling of the land surface is often viewed as an inverse problem. Since a modeler typically has some 
observations about the water balance of the land surface (i.e., precipitation and runoff), but cannot 
completely characterize the land surface interactions, these observations are used to make an infer-
ence about the land surface (Moradkhani and Sorooshian, 2008). Since a model is only developed 
for execution forward in time, the inverse model is not available. This situation necessitates iterative 
methods to search the feasible values of each variable being estimated. It is important to note that this 
is a one-to-many operation (as opposed to a many-to-one estimation in forward modeling) that typi-
cally makes the problem ill-posed. A visual comparison of forward and inverse modeling is presented 
in Figure 20.1.

Practically, a modeler will focus on estimating some or all of the time-invariant parameters (θ, Ψ), 
which represent land surface characteristics, based on some land surface observations. Parameter 
estimation, also referred to as model calibration, is necessary for characterizing the parameters that 
cannot be observed such as mean hydraulic conductivity, termed process parameters (Gupta et al., 
1998), but may also be used for observable, yet unavailable, parameters. Calibration can be per-
formed through a variety of methods. Some modelers simply perform manual adjustments of each 
parameter and examine the improvements in model performance with respect to the observation. 
Though manual calibration has the potential to improve hydrologic model simulation, it has become 
much more common to perform some automated calibration, due to the complexity of the parameter 
space. A range of techniques are used for automatic calibration of models including optimization and 
probabilistic methods.

Optimization techniques attempt to estimate the parameter values that provide the most accurate 
simulation from the model. This accuracy is determined based on some mathematical objective func-
tion, represented by Equation 20.4, which examines the model residuals at each time step Equation 20.3. 
The model residual (εt) is calculated as the difference between the model simulation (ŷt) and the obser-
vation (ỹt). The value of the objective function (E) is estimated error residuals from t′ to the final simu-
lation time (T). Analysis starts at some t′, which could be larger than 1, to allow for the model to reach 
reasonable state estimates, with respect to the parameters (referred to as a burn-in period). Commonly 
used objective functions in hydrology are root-mean-square error (RMSE), Nash–Sutcliffe efficiency 
(NSE) (Nash and Sutcliffe, 1970), heteroscedastic maximum likelihood error (HMLE) (Sorooshian and 
Dracup, 1980), and bias. In addition to single-objective function optimization, multi-objective func-
tion optimization has become popular (Vrugt et al., 2003; Yapo et al., 1998). Multi-objective functions 
utilize some method for normalizing the output from each objective function, to balance the weight of 
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each objective function value. Though objective functions provide information about the accuracy of 
parameters, these functions alone do not tell the modeler the location of the best parameters. Global 
optimization algorithms are thus necessary to locate the best parameters, in relation to the objective 
function:

 εt t ty y= −ˆ �  (20.3)

 E Obj t T= ( )′ε :  (20.4)

Generally, hydrologic models tend to be multidimensional, leading to complex parameter spaces with 
multiple local optima. A 2-D parameter space is visualized in Figure 20.2, which was created by sam-
pling two parameters from the 5-D HyMod (Boyle et al., 2000) model. Note that this figure suggests 
several local optima, which may create difficulties when attempting to find the global optimum (at 
∼[0.63, 0.09]). In order to find the optimum parameter values, many different techniques have been 
developed that utilize combinations of exploration (random search of the parameter space) and exploi-
tation (gradient approximation). Some optimization is performed entirely with gradient-based methods 
to maximize the speed of the algorithm, but these tend to be local optimization methods and often 
become stuck in a local optimum, which may be quite far from the global optimum (see [0.6, 0.0] in 
Figure 20.2). With a sufficient amount of exploration of the parameter space, the global optimum for 
the parameters may be located. Several methods have been used to estimate the global optimum of 
hydrologic models including the shuffle complex evolution method (SCE-UA) (Duan et al., 1992) and 
genetic algorithms (Shoemaker et al., 2007; Zhang et al., 2009). Though many effective methods for 
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optimizing model parameters have been developed, hydrologic modelers have begun questioning the 
value of optimization, because these models ignore the presence of equifinal parameter sets and uncer-
tainty within the modeling framework.

The size of this parameter matrix for hydrologic models tends to be larger than the number of avail-
able observation, leading to an ill-posed problem. In the event that a problem is ill-posed, the target 
quantities will likely have nonunique (equifinal) solutions (Beven and Freer, 2001). Given that a solu-
tion is nonunique, a modeler may find it advantageous to determine the uncertainty associated with 
each parameter, because an optimized parameter is not necessarily correct in this scenario. Several 
efforts have been made to estimate parameter uncertainty through probabilistic methods, including the 
generalized likelihood uncertainty estimation (GLUE) (Freer et al., 1996), Markov chain Monte Carlo 
(MCMC) techniques (Bates and Campbell, 2001; Kuczera and Parent, 1998; Marshall et al., 2004; Vrugt 
et al., 2008), Bayesian hierarchical methods (Renard et al., 2011), and data assimilation (DeChant and 
Moradkhani, 2011a,b, 2012; Leisenring and Moradkhani, 2011; Liu et al., 2012; Montzka et al., 2011; 
Moradkhani 2005a,b; Salamon and Feyen, 2009). Though all of these techniques show potential for 
accurately quantifying parameter uncertainty in hydrologic models, a deeper understanding of statisti-
cal uncertainty is required than for basic inverse modeling. The following sections provide information 
about the theoretical basis for the aforementioned methods.

20.1.4  Monte carlo Simulation

Modeling in the presence of significant uncertainty requires creative techniques to estimate the infor-
mation content of model estimates. Given that model processes are nonlinear, as is the case with nearly 
all hydrologic models, Monte Carlo experiments are commonly implemented to quantify modeling 
uncertainty. A Monte Carlo experiment takes advantage of computing power to perform repeated 
model executions and create a large number of potentially correct, but different, estimates. This group 
of estimates is referred to as an ensemble. From this ensemble, we can infer the probability of certain 
outcomes, based on the quantile in which they fall within the ensemble. In order to create this ensemble, 
a probability distribution of each uncertainty source must be assumed; then estimates are randomly 
sampled according to that distribution.

Performing Monte Carlo experiments on a hydrologic model will take a form similar to Equations 
20.5 through 20.8. In these equations, the forcing and observation data are perturbed based on some 
function E, and the model and observational operator have additive error terms. The function E may 
follow any distribution, but is commonly lognormal for precipitation inputs and normal for other vari-
ables. The additive error terms for the model operator and observational operator are often normally 
distributed but heteroscedastic:

 u Err ut i input t, = ( )�  (20.5)

 
ˆ ˆ , ,, , , ,x f x ut i t i t i i t i= ( ) +−1 θ ω  (20.6)

 
ˆ ˆ ,, , ,y h xt i t i i t i= ( ) +Ψ ν  (20.7)

 y Err yt i observation t, = ( )�  (20.8)

where
Err(·) represents error models
values with a “∼” represent observed values
each value with an index i represents an individual value sampled from the distribution of that 

variable
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The previous equations expand on the state-space framework to account for uncertainty in different 
portions of the model. By accounting for each source of uncertainty, the total uncertainty within the 
modeling framework can be estimated, leading to some observation value yt,i that is equal to a simulation 
ŷt,i. Though Monte Carlo experiments have the potential to estimate the full uncertainty of hydrologic 
variables, this analysis will provide relatively large uncertainty in many hydrologic prediction scenarios. 
Fortunately, many observations are available to hydrologists to reduce the spread of the uncertainty 
prediction, improving the precision of a forecast without compromising its reliability. A general method 
for incorporating these observations is through Bayes’ theorem.

20.1.5  frequentist approach vs. Bayes’ Theorem

In statistical analysis, a problem is based on either a frequentist or Bayesian approach. Frequentist 
analysis estimates the probability of a given outcome based on the historical frequency of observa-
tions, providing a basic framework for analysis that is entirely reproducible. Though the frequentist 
approach follows fundamental statistical theory, it can often ignore potentially informative data. Given 
that an observation of the phenomena of interest is available, as is common in hydrologic sciences, this 
observation can provide information to the model, thereby improving model estimates. Bayes’ theorem 
extends the frequentist approach by allowing for the inclusion of observations as conditional informa-
tion. Through Bayes’ theorem, a forecaster has the freedom to include any data that may contain infor-
mation about the target quantity in a forecast. Though this brings some subjectivity into the analysis, 
Bayesian inference allows for more reliable and precise forecasts, assuming that conditional information 
is properly utilized. Bayesian analysis is a useful framework within hydrologic forecasting, due to the 
large quantity of observations with incomplete information content.

Bayes’ law estimates the probability of model parameters conditioned on observed information 
((p(θ|y)), which is referred to as the posterior. In this section, the parameter θ may refer to any variable 
of interest in the hydrologic model, whereas in other sections, it refers only to the model calibration 
parameters. Given that some prior probability is available (p(θ)) and the likelihood can be calculated 
based on the observed information (p(y|θ)), the posterior may be calculated according to the following 
equation:

 
p y

p y p

p y
θ

θ θ
|

| ( )

( )
( ) = ( )  (20.9)

In the event that information from prior data and observations are not conflicting, this application of 
Bayes’ law effectively reduces the uncertainty about the parameters.

20.2  Hydrologic Modeling Uncertainty

Uncertainty is persistent in all aspects of hydrologic modeling due to a lack of complete knowledge 
about land surface properties and fluxes. Though many observations about the land surface are avail-
able for model development and evaluation, these observations can never perfectly explain hydrologic 
processes, due to the relevant spatiotemporal scale at which these processes take place. Within a hydro-
logic modeling framework, uncertainties can stem from imperfect characterization of model inputs, 
erroneous model structure, incorrect parameter estimates, and errors in observing the model output. 
These uncertainties accumulate through the modeling system, reducing the skill of model predictions. 
In order to accurately quantify the uncertainty in model estimates, all sources of uncertainty must be 
taken into account. Both the magnitude and form of errors must be effectively estimated to provide a 
reliable estimate of the uncertainty in hydrologic forecasts. Full accounting of hydrologic prediction 
uncertainty therefore requires a closer examination of each of the different sources of uncertainty.
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20.2.1  Input and Validation Data Uncertainty

Model inputs and validation data both require observations/estimates of land surface or atmospheric 
conditions. Input and observation data may be observed through either in situ or remote sensors, or 
this data may be estimated with a separate model (i.e., atmospheric models are often used to estimate 
hydrologic model input when observations are unavailable) (Clark and Slater, 2006; Hong et al., 2006; 
Kavetski et al., 2006; Moradkhani and Meskele, 2009; Moradkhani et al., 2006; Renard et al., 2010; 
Vrugt et al., 2008). Each of these methods for obtaining data for hydrologic modeling is subject to large 
uncertainties. Data uncertainty can affect the modeling framework by improperly characterizing the 
mass balance of the basin, incorrectly displaying the timing of water fluxes in a basin, or inaccurately 
explaining the spatial distribution of water fluxes in a basin, leading to ineffective hydrologic prediction 
in the basin. Since data uncertainty can lead to significant errors in the model, this uncertainty must 
be understood for an estimation of predictive uncertainty. By understanding the uncertainties in input 
and validation data, a hydrologic forecaster can effectively account for data uncertainties within the 
modeling framework, leading to reliable probabilistic predictions.

20.2.1.1  Sources of Input and Observation Data Uncertainty

Modeling data are subject to three sources of uncertainty: sensor errors, scale/interpolation, and 
translation errors. Sensor error refers to errors related to the mechanical observation of some value. A 
straightforward example is errors in rain gauge measurements due to wind, evaporation, or obstructions 
(Moulin et al., 2009). Sensor errors act at the point of observation and therefore cannot be improved by 
the modeler, but may be effectively estimated. Scale/interpolation errors result from the spatial averag-
ing or distribution of a given variable for use with a model (Villarini et al., 2008). With a number of 
techniques for spatial interpolation/averaging of hydrologic values, this uncertainty may be partially 
addressed with different methods of interpolation. Though scale/interpolation errors may be improved, 
these will still have some contribution to the total uncertainty in any practical situation. Translation 
error is the error associated with the need to translate an observation to a different space, for example, 
the use of a rating curve to estimate discharge from a river stage (Di Baldassarre and Montanari, 2009). 
Similar to scale/interpolation errors, translation errors may be reduced with improved estimation algo-
rithms, but are impossible to remove completely from a forecasting environment. In some scenarios, it 
may be possible to reduce this uncertainty by using a subsequent model to translate the simulation into 
the observation space. Using a hydraulic model to translate flow simulations into hydraulic stage is one 
example of such a case. This forward translation of the simulated variables is potentially beneficial, but 
will be situation specific. In all cases, it is necessary to understand the uncertainty in input and valida-
tion data to reliably produce probabilistic predictions.

20.2.1.2  accounting for Input and Validation Data Uncertainty

Accounting for input and validation data uncertainty requires the application of an error model prior 
to performing any hydrologic modeling. Such a model typically generates an ensemble of data values 
by perturbing the original data based on some statistical distribution (Equations 20.6 and 20.9). It is 
up to the forecaster to determine the correct magnitude and form of these errors prior to modeling. 
Though a number of scientific studies have been performed to quantify these errors, estimation of this 
uncertainty is still a difficult task as the problem is situation specific and often ill-posed (Kavetski et al., 
2002, 2006; Renard et al., 2010, 2011). In estimating these errors, forecasters often assume that precipi-
tation follows a heteroscedastic lognormal distribution, due to the skewed nature of precipitation data 
and the higher probability of large errors during large events, but this assumption has been questioned 
in recent research (McMillan et al., 2011). In addition, the magnitude of precipitation error may be 
assumed to be storm dependent (Kavetski et al., 2006), leading to added complexity in the error model. 
Streamflow is often assumed to have heteroscedastic errors with a normal distribution, but is overly 
simplified due to the existence of unsteady flow conditions, seasonal fluctuations in channel roughness, 



Hydrologic Prediction and Uncertainty Quantification 395

and the extrapolation of flow estimates beyond the observed data (Di Baldassarre and Montanari, 2009). 
Alternatively, it is often assumed that temperature inputs are homoscedastic normal because tempera-
ture errors are likely independent of magnitude.

20.2.2  Model Structural and Parameter Uncertainty

20.2.2.1  Model Structural Uncertainty

Model structural errors result from the various assumptions and simplifications that a model developer 
makes to create a computationally tractable model. These assumptions may be rooted in the simplifica-
tions of the land surface physical processes to develop representative differential equations or the spatio-
temporal discretization of these processes for application of these representative differential equations. 
Spatial representation of hydrologic processes is a particularly challenging issue, due to the difficulty 
of examining the physics at relevant scales to develop a mathematical model of a watershed. Typically 
models assume that equations fit for small scales are representative of the average at watershed scales, 
which is questionable due to the nonlinearities in hydrologic models (Bulygina and Gupta, 2009). In 
addition to assumptions in the model development process, imperfect knowledge about hydrologic pro-
cesses can also lead to errors in model structure. All hydrologic models are limited by these errors in 
some form, the extent of which is typically not apparent (Liu et al., 2012).

Though model structure is known to be imperfect, the noise that results from model errors is poorly 
defined (Bulygina and Gupta, 2011; Doherty and Welter, 2010). A loose definition of model structural 
error is the difference between model simulation and observation (Doherty and Welter, 2010). This defi-
nition provides an estimation of model structural uncertainty, but this is incomplete due to errors in 
input and observation data within the modeling framework. Since these errors are not easily under-
stood, separating them from other errors (e.g., parameter uncertainty as explained in the next section) 
and quantifying them is quite difficult. A number of strategies for estimating structural uncertainty 
have been proposed, but the methods vary greatly in strategy and implementation (Beven et al., 2011; 
Bulygina and Gupta, 2011; Clark et al., 2008; Doherty and Welter, 2010; Gupta et al., 2008; Liu et al., 
2012; Moradkhani et al., 2012; Parrish et al., 2012; Thiemann et al., 2001; Wagener, 2003).

20.2.2.2  Parameter Identifiability

Model structural error and parameter uncertainty are distinguished because model structural error 
stems from model simplifications and discretization, whereas parameter uncertainty results from 
incomplete information content in the calibration data. The ill-posed nature of hydrologic model cali-
bration leads to uncertainties embedded within estimated hydrologic parameters. Since parameters 
cannot be perfectly identified, total uncertainty estimation will involve quantifying the uncertainty 
associated with the parameter values (Beven and Freer, 2001). Beyond the inversion problem being 
ill-posed, further difficulty in parameter identification stems from the persistence of other sources of 
uncertainty in the modeling framework. Not only do data and model errors reduce the information 
content for parameter estimation, leading to reduced identifiability in model parameters, these errors 
compound the complexity in parameter estimation techniques. In the presence of these additional 
uncertainties, quantifying parameter uncertainty can become increasingly inaccurate, especially in 
the case of improperly quantified model structural uncertainty. Since model structural and parameter 
uncertainty are closely related, innovative methods must be used to account for both sources of error.

20.2.2.3  representing Model Uncertainty

Four methods are currently used to represent hydrologic model uncertainty. First, model parameter dis-
tributions may be estimated probabilistically (Beven and Binley, 1992; Vrugt et al., 2003), thus using the 
parameters to estimate model structural uncertainty. Probability distributions of each parameter may 
be estimated through this framework to characterize model uncertainty, thus providing streamflow 
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prediction distributions. While this method has some potential to estimate model uncertainty, it lumps 
parameter and model error, which are distinct uncertainty sources, potentially leading to erroneous 
parameter estimates (Thyer et al., 2009), and ignores model uncertainty that arises from imperfect con-
ceptual structure of the model, because the model parameters will always be bound by the conceptual 
basis of the model.

Second, the model may be evaluated stochastically through perturbation of model states/forecast. 
This involves assuming the statistical form of model errors and applying these errors to create a predic-
tive distribution. Early applications of this technique ignored parameter uncertainty (Reichle et al., 
2002; Vrugt et al., 2006), thus only adding model noise to state and forecast values, lumping parameter 
error into model error. Since parameter error is known to exist along with model error, this method 
likely requires inflated model error estimates to provide reliable forecasts. In light of this issue, a third 
method for analyzing model error through simultaneous estimation of parameter and state/forecast 
error was developed. It has become accepted that the stochastic evaluation of the model requires proba-
bilistic parameter estimation, in addition to applying model error to the states/forecast, leading to direct 
accounting of both model and parameter uncertainty (Kavetski et al., 2006; Moradkhani et al., 2005a,b, 
2012). Assuming that a hydrologist knows the statistical form of model errors, stochastic evaluation 
of the model is likely the most reliable method for probabilistic prediction from hydrologic models. 
Though this method has potential for reliable uncertainty quantification, estimating the form and mag-
nitude of model errors is a major challenge in hydrologic modeling, leading to model error values that 
are difficult to validate. This has led to a fourth method for estimating model uncertainty, using multiple 
independent models indirectly quantifying model uncertainty (Georgakakos et al., 2004).

Multi-modeling may be performed with completely independent model structures (Duan et al., 2007; 
Najafi et al., 2011b; Parrish et al., 2012) or with different combinations of model components (Clark 
et al., 2008). Through the use of multiple different models, the model error is implied in the variability of 
multiple different model predictions. This assumes that there is enough variability in model structures 
to account for the uncertainties in the general model framework. If this assumption is not violated, 
the modeler may simplify the model error estimation process, leading to a reliable prediction of model 
uncertainty without estimating the uncertainty in an individual model. Though multi-modeling sim-
plifies the quantification of model errors, it complicates the modeling application, creating additional 
work for the forecaster and necessitating additional computational resources. Both stochastic evalua-
tion of hydrologic models and multi-model combinations are of high interest to hydrologists, which will 
be discussed further in Section 20.3.

20.3  Uncertainty estimation Techniques

A number of different techniques are available for quantification of hydrologic uncertainty. Though 
most are rooted in Bayes’ theorem, there are significant differences in the application and assump-
tions of these techniques. Uncertainty quantification may fall into one of the two categories: batch 
and sequential. Batch and sequential methods are separated by the way Bayes’ theorem is applied. In 
a batch framework, Bayes’ law is applied in its simplest form. Thus, batch methods allow for the most 
straightforward methods of uncertainty estimation. Alternatively, sequential methods require the use of 
sequential Bayes’ law, which can be derived for models satisfying the Markovian criteria. Both methods 
can theoretically produce the same result, provided the same information, but practically this has not 
been proven to be the case.

20.3.1  Batch Methods

20.3.1.1  Markov chain Monte carlo

MCMC techniques apply Bayes’ theorem to a batch of simulation and observations to estimate the 
posterior parameter distribution of some model. In order to estimate the posterior, a large number of 
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model simulations are performed in sequences. Convergence to the posterior distribution is achieved by 
creating multiple ergodic chains (see Figure 20.3), all of which will explore the full posterior distribu-
tion. Through a sequence of parameter moves and acceptance/rejection criteria, each chain visits loca-
tions within the posterior distribution with a frequency equal to the probability of that location. After 
a sufficient number of simulations, referred to as a burn-in period, the previous locations of each chain 
provide samples from the posterior distribution. Development of such a chain may be created with 
the Metropolis or Metropolis–Hastings (MH) algorithm. MCMC techniques have found wide-ranging 
use in the hydrologic modeling community due to their accuracy and increasing efficiency (Bates and 
Campbell, 2001; Jeremiah et al., 2011; Kuczera and Parent, 1998; Smith and Marshall, 2008; Vrugt et al., 
2003, 2008).

The MH algorithm provides a general framework for Bayesian inference. Performing MH begins by 
drawing a set of initial parameters θi, where i = 0. A proposed value θ* is then sampled from some pro-
posal density q(θ*|θi). After evaluation of the model with the proposed parameters, the proposal likeli-
hood is calculated according to Equation 20.10. The MH acceptance criteria are calculated from Bayes’ 
law as the minimum of the ratio of the proposal parameter probability to the initial parameter probabil-
ity and 1, as shown in Equation 20.11. In Equation 20.11, the probability of the parameters, conditioned 
on the observation from t′ to T, is estimated for both the proposed and current parameters. With a 
probability of α (evaluated through the comparison with a uniformly drawn random number, U[0, 1]), 
parameters are accepted as the new location within the parameter space (θi+1) or rejected according to 
Equation 20.12:
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The MH algorithm can be simplified to the Metropolis algorithm if the proposal distribution is 
symmetric. In this scenario, the acceptance probability simplifies to the ratio of the posterior proposal 
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FIGuRE 20.3 This figure represents the estimation of a standard normal distribution with two separate chains, 
initialized at 1 and −1. The first 10, 25, 100, and 500 samples from each chain are presented.
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parameter probability to the posterior probability of the current parameters. If the proposal distribu-
tion is skewed, the MH algorithm must be used to correct for nonequivalent proposal densities (q(θ*|θi) 
≠ q(θi|θ*)).

20.3.1.2  Hierarchical Bayesian estimation

Hierarchical Bayesian methods expand on the basic implementation of MCMC to include all sources 
of uncertainty possible. By accounting for all sources of uncertainty in the analysis, model param-
eter may be more accurately estimated. In hydrology, much work has been performed on uncertainty 
analysis using hierarchical methods with the Bayesian total error analysis (BATEA) technique (Kuczera 
et al., 2006). The general posterior developed in BATEA is presented in Equation 20.13. In this equa-
tion, ϕ represents the vector of storm multipliers (a strategy for handling input uncertainty), βx is 
the input uncertainty parameter, and βy is the output uncertainty parameter (Kavetski et al., 2006). 
Equation 20.13 can be simplified by assuming that the prior error parameters are independent of the 
forcing data ( ( , , , | ) ( , , , ))p px y x yθ φ β β µ θ φ β βˆ =  the output likelihood is independent of the input error 
( ( | , , , , ) ( | , , , )),p y p yx y yˆ ˆ ˆ ˆθ µ φ β β θ µ φ β=  and all of the errors can be evaluated separately, leading to a final 
form in Equation 20.14:
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With this formulation of the posterior, all sources of error may be accounted for directly, and even 
estimated empirically. Though this framework can theoretically estimate the magnitude of errors con-
ditioned on the observations, lack of prior information often leads to ill-posedness in the analysis, lead-
ing to unreliable error estimates. A detailed discussion of this case is provided by Renard et al. (2011). 
This generalized framework allows for complete analysis of hydrologic uncertainty. Though this is the 
most straightforward method of total uncertainty quantification, the case may arise where a hydrolo-
gist wants to estimate the uncertainty sequentially. Sequential methods for uncertainty estimation are 
discussed in the following section.

20.3.2  Sequential Methods

Sequential estimation of the uncertainty in computer simulation models is referred to as sequential 
Monte Carlo filtering or ensemble data assimilation. Ensemble data assimilation techniques utilize 
Monte Carlo methods at each model evaluation time step to estimate the uncertainty in some hydro-
logic value. Of the techniques that can be applied sequentially to estimate the uncertainty in hydrologic 
quantities, the particle filter (PF) and the ensemble Kalman filter (EnKF) are the most commonly used 
(Moradkhani et al., 2005a,b). Both techniques are based on Bayes’ theorem, but the EnKF extends the PF 
to the case of Gaussian probability distributions. The underlying theory of these methods is explained 
through sequential Bayes’ law.

Bayes’ law can be extended to sequential form as shown in Equation 20.15, for estimating model states 
and parameters:
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In Equation 20.16, p(x̂t, θt | ỹ1:t−1) represents the prior information, p(ỹt | x̂t, θt) represents the likeli-
hood, and p(ỹt | ỹ1:t−1) is the normalizing constant. Since the model of interest is Markovian, the 
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Chapman–Kolmogorov Equation 20.16 is applied to estimate the prior distribution as the product of the 
transition probability and the posterior distribution at the previous time step. Estimation of the poste-
rior then requires an estimation of the likelihood. Filtering applications within hydrology most often 
assume a normal likelihood function is valid. Lastly, the normalizing factor must be estimated. Though 
this value is not readily available, it may be expanded to the integral of the numerator (total probability), 
according to Equation 20.17, using the states and parameters as intermediate variables. By substituting 
(20.16) and (20.17) into Equation 20.15, recursive Bayes’ law can be developed to compute the posterior 
distribution sequentially in time (20.18):

 
p x y p x x p x yt t t t t t t t t tˆ , | ˆ , | ˆ , ˆ , |: :θ θ θ θ� �1 1 1 1 1 1 1 1− − − − − −( ) = ( ) ( ))∫ − −dx dt tˆ 1 1θ  (20.16)

 
p y y p y x p x y dx dt t t t t t t t t t� � � �| | , , |: :1 1 1 1 1− − −( ) = ( ) ( )∫ ˆ ˆ ˆθ θ θ  (20.17)

 

p x y p x y y
p y x p x

t t t t t t t
t t t t tˆ , | ˆ , | ,

| ˆ , ˆ ,
: :θ θ

θ θ
� � �

�
1 1 1( ) = ( ) = ( )

−
||

| ˆ , ˆ , | ˆ

:

:

�

� �

y

p y x p x y dx d

t

t t t t t t t t

1 1

1 1 1

−

− −

( )
( ) ( )∫ θ θ θ

 (20.18)

The flow of data through sequential methods can be seen in Figure 20.4. In this figure, the posterior 
density at time t − 1 is used to generate some forecast density at time t. At this point, an observation may 
become available. This observation is used to estimate the likelihood, which is then compared to the 
forecast density. The posterior at time t is then developed as the product of the forecast density and the 
likelihood. After estimation of the posterior, the method can move to the next time step.

20.3.2.1  Particle filtering

The PF is the most generalized form of applying Bayes’ theorem sequentially. This is achieved through 
developing a posterior weight of each ensemble member after each observation becomes available. 
Weighting and reweighting samples leads to an estimation that is theoretically equivalent to batch 
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FIGuRE 20.4 Sequential Bayesian scheme for evolution of the conditional probability density of the state vari-
ables by assimilating observations from time t − 1 to time t. (After Moradkhani, H. and Sorooshian, S., Hydrologic. 
Model. Water Cycle Water Sci. Technol. Library, 63, 1–24, 2008.)
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application of Bayes’ law, assuming large enough sample size to represent the full posterior distribution. 
In its most basic form, a PF performs sequential importance sampling (SIS) (Arulampalam et al., 2002). 
SIS propagates a Monte Carlo sample of potential states and parameters over a number of time steps. 
The posterior at each time step is represented by SIS through Equation 20.19. At each time that an 
observation is available, the weight of each point in the sample is updated. In accordance with sequen-
tial Bayes’ law, this posterior weight is the normalized product of the likelihood (20.20) and the prior 
probability, as shown in Equation 20.21:

 
p x y w x xt t t t i t t i t t i

i

Nens

, | ,, , ,θ δ θ θˆ ˆ( ) ≈ − −( )+ − −

=
∑

1

 (20.19)

 

p y x
L y x

L y x
t i t i t i

t i t i t i

t i t i t i

, . ,

, , ,

, , ,

| ,
| ,

| ,
ˆ

ˆ

ˆ

− −
− −

−
( ) = ( )

θ
θ

θ−−
=

( )
= −( )

∑ i

N t i t i kens
p y y R

1

, .ˆ |  (20.20)

 

w
w p y x

w p y x
t i

t i t i t i t i

t i t i t i t i

,

, , , ,

, , , ,

| ,

| ,

+
− − −

− − −
=

( )
( )

⋅

⋅

ˆ

ˆ

θ

θ
ii

Nens

=∑ 1

 (20.21)

Though SIS can theoretically estimate the posterior distribution at each time step in a hydrologic model, 
practically the sample will develop a few highly weighted particles with many low-weighted particles. 
This is referred to as weight degeneracy and leads to a poorly representative sample. In order to avoid 
this scenario, resampling is typically performed, which replicates particles of high weights and discards 
particles of low weights. Through sampling importance resampling (SIR) (Moradkhani et al., 2005b), 
all particles are kept within meaningful portions of the posterior, which leads to a more accurate repre-
sentation of predictive uncertainty. Recently, Moradkhani et al. (2012) presented a more effective data 
assimilation approach in particle filtering by combining PF and MCMC leading to less uncertain and 
more accurate estimation of states and parameters in hydrologic modeling.

20.3.2.2  ensemble Kalman filtering

The EnKF is a special case of sequential Monte Carlo filtering in which the states/parameters and 
predictions have a multivariate Gaussian distribution and model residuals are normally distributed. 
By making these assumptions, optimal parameter updates can be calculated to develop the posterior. 
Original implementations of the EnKF were performed with state-only estimation for atmospheric 
data assimilation (Evensen, 1994), but was extended to hydrologic applications for state (Reichle 
et al., 2002) and combined state–parameter estimation (Moradkhani et al., 2005a). State/parameter 
updates within the EnKF are performed with the Kalman gain matrix, as shown in the following 
equations:
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where
yt is the observed flow
Kx and Kθ are the Kalman gains for states and parameters, respectively
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The Kalman Gain is calculated as follows:
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where Nens is the total number of ensemble members.

20.3.3  Multi-Modeling to account for Model Structural Uncertainty

Multi-modeling provides a simplified, from the forecaster’s viewpoint, method for handling model 
structural uncertainties. With the use of multiple independent models, one may be capable of charac-
terizing the model uncertainty with the variability of each of these models. This is often counterintuitive 
from the traditional standpoint of determining the optimal model for a given situation, but practically, 
multi-modeling is valuable because it is a rare case that one model can definitively be proven best for a 
given situation. Even a model that appears to be performing poorly may provide information about a 
watershed (Parrish et al., 2012).

A variety of methods for multi-modeling within hydrologic forecasting have been developed. 
The earliest application of multi-model averaging was performed with simple linear–deterministic 
combinations of competing models (Bates and Granger, 1969). Though linear–deterministic com-
binations of model observed some success, researchers have recently suggested that a more elegant 
framework is necessary to preserve all of the information content provided by each model (Hoeting 
et al., 1999; Raftery et al., 2005). Similar to other uncertainty estimation techniques, the most 
recently developed techniques are rooted in Bayes’ law. Not only does this lead to logical method for 
weighting the models, combinations provide a probabilistic forecast, thus quantifying the uncer-
tainty in the model estimates. Since Bayes’ law provides a robust framework for combining multiple 
model predictions for uncertainty quantification, methods based on Bayes’ law will be the focus of 
this section.

20.3.3.1  Statistical Postprocessing

Bayesian model combinations rely on the assumption that the model is an unbiased estimator, due to 
the basic assumptions in model weighting. With respect to hydrologic models, raw forecasts are rarely 
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unbiased. Due to the tendency toward bias in hydrologic predictions, a forecaster must bias correct the 
model predictions prior to model averaging. A number of techniques are available to forecasters for 
performing bias correction.

Linear regressions may be used to correct the bias of each individual model within the multi-
model ensemble. Adjusted forecasts are created according to Equation 20.28. This equation repre-
sents a linear function with coefficients ai and bi. Both coefficients are fit to each individual model 
to create a function for correcting bias at each forecast step. The forecast with bias removed is rep-
resented by yt i

u
, :

 y a E y bt i
u

i t i i, ,= [ ]+ˆ  (20.28)

Another method for correcting model bias is the quantile-mapping (QM) approach. QM corrects bias 
by comparing the cumulative density of the model prediction with the cumulative density of the obser-
vation. Through this comparison, the forecast quantile associated with each forecast value ( ( )),F yy t ii′

ˆ  is 
replaced with the observed value associated with that quantile. In Equation 20.29, Fy ′ is the cumulative 
density function associated with the model simulation, and Fy

−1 represents the inverse cumulative den-
sity function of the observed flows:
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Recently, problems with QM have been suggested in certain distributional combinations of simu-
lations and observations. These errors have motivated the examination of copula functions as a 
potential for bias correction (Madadgar et al., 2012). Copulas may be employed to estimate the joint 
distribution of model forecasts and observations. Since these two variables are assumed to be cor-
related, a joint distribution is beneficial for unbiasing the forecast with respect to the observation. 
The underlying theory behind copulas is Sklar’s theorem. This theorem states that for any group 
of marginal cdfs ([ ( ), ( ), , ( )]),F x F x F xX X X nn1 21 2 …  there exists a joint cdf (H(x1, x2, …, xn)) that can be 
estimated by the function C (copula function), as shown in Equation 20.31. In this equation, Ui is 
the ith uniformly randomly distributed variable transformed from its original distribution (Xi) with 
the F operator. This then creates a multivariate joint probability of random variables as shown in 
Equation 20.27:
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Through the use of copulas, a joint distribution of forecast and observation values may be developed, 
leading to accurate debiasing of model forecasts. For a complete explanation of bias correction with 
copula functions, see Madadgar et al. (2012).

20.3.3.2  Bayesian Model averaging

Bayesian model averaging (BMA) was the first implementation of Bayesian model combinations 
(Hoeting et al., 1999). Several years after the method was introduced, it was applied to ensemble fore-
casts for meteorological applications (Raftery et al., 2005) and later applied to hydrologic modeling 
applications (Duan et al., 2007). Several subsequent studies have examined this technique (Ajami et al., 
2007; Parrish et al., 2012; Rojas et al., 2008; Vrugt and Robinson, 2007). BMA extends the application of 
Bayes’ law to the case of multiple possible models.
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The application of Bayes’ law for multiple models is shown in the following equation:
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where
Mi represents the ith model
Y is the training data
P(Mi | Y) is the prior model probability, conditioned on the training data
P(ỹt | Mi,Y) is the likelihood of the model at time t

Basic applications of BMA assume that a deterministic model is used. Since each model is evaluated deter-
ministically, the uncertainty about each model must be estimated. Typically a normally distributed model 
errors are assumed, and some error variance ( )σi

2  is estimated for each model. Given some variance asso-
ciated with each model, probabilities for each model can then take the form of the following equation:
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where
g(·) assigns weights based on the model forecast (ŷt,i)
the variance assumed to represent the error in that model

Note that the index i indicates the ith model, as opposed to the ith ensemble member as presented in the 
ensemble data assimilation section. The problem now requires estimation of the variance and weight of 
each model, as suggested by the training data.

Estimation of the variance and weights for each model requires maximization of Equation 20.33, as 
represented in the following equation:
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Since this function cannot be solved analytically, it must be solved iteratively. Early applications of BMA 
utilized the expectation–maximization method to solve Equation 20.35 (Raftery et al., 2005). Though 
expectation–maximization has been applied to estimate these weights, it is only a local optimization 
procedure, which suggests that improved results can be found with newer global optimization tech-
niques (Duan et al., 2007).

20.3.3.3  Sequential Bayesian combination

In addition to estimating model weights and variance in a batch methodology, it is possible to use 
the recursive Bayes’ law (see Section 20.3.2) to estimate model weights sequentially (Hsu et al., 2009). 
Though the variance estimates are still required to remain constant in this analysis, weights are allowed 
to become dynamic. Updating the weights temporally allows for changing accuracy in each model to 
be examined, reducing the reliance on a stationary hydrologic system. Dynamic probabilities are calcu-
lated according to the following:
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Similar to Section 20.3.2, this can be evaluated as a series of weights, as shown in Equation 20.36, with 
a normalized likelihood according to Equation 20.37:
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These equations are similar to equations in Section 20.3.2.2, but weights are calculated for each indi-
vidual model and applied sequentially.

20.3.3.4  combination of Data assimilation with Multi-Modeling

Both the batch and sequential estimation of model weights in the previous sections require assump-
tions about the distribution of model errors. Typically a modeler will assume that model errors follow 
a homoscedastic Gaussian distribution. In the previous sections, it was highlighted that assumptions 
of homoscedastic normal model errors are violated in most hydrologic applications. With knowledge 
of this problem, it is advantageous to generalize the techniques with the combination of PF techniques 
and BMA (Parrish et al., 2012). This method utilizes the PF to develop a predictive distribution for each 
model, as opposed to an estimated variance. This leaves model prediction uncertainty highly flexible 
and can even handle multimodality or skew in the prediction. At a given time step, assume that the 
PF has developed a posterior distribution for the ith model (p(x̂t, θt | ỹ1:t)i). The posterior probability 
(p(Mi | ỹ1:t)) may then be calculated for each model. This probability has previously been estimated by 
using kernel density smoothing (Parrish et al., 2012) to create a probability density function. Through 
this combination of the PF and BMA, the need to estimate the model variance directly has been elimi-
nated, and the weights can be estimated dynamically with minimal assumptions about the form the 
predictive distribution.

20.4  Deterministic Verification

A hydrologic modeler will often be interested in the errors associated with a single-valued forecast from 
a given model. This is evaluated with deterministic verification methods. Quantifying the errors asso-
ciated with a single-value model forecast provides the modeler with a basic understanding of how the 
model is reproducing some hydrologic phenomenon. Different verification techniques are utilized to 
compare different aspects of model simulation and observations. A popular measure in hydrology is 
NSE, as discussed in Section 20.1.4. NSE provides similar information to the least square error, which is 
a more common verification measure in other fields, because NSE is the mean square error normalized 
by the observation variance. Since this measure is maximized with the least square estimate and the 
least square method assumed homoscedastic Gaussian errors, it is a suboptimal solution with homosce-
dastic errors. In the case that errors are dynamic, a modeler may choose to use a modified error measure, 
such as the HMLE. The HMLE assumes heteroscedastic errors and thus does not equally weight the 
error magnitudes with each observation. Further, a modeler may be interested in minimizing the bias of 
the model over a simulation time period. Measures of model bias provide information about the accu-
racy of long-term simulations with respect to volumetric flow. All of these measures may be applicable 
to a given situation, but it is up to the forecaster to determine the measure that maximizes the benefits 
of their model for a given application.
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20.5  Probabilistic Verification

Verifying probabilistic predictions requires the examination of the reliability and sharpness of the 
probabilistic prediction. Reliability refers to the accuracy of the predictive distribution, showing that 
the predictive distribution accurately estimates the uncertainty in the system. Sharpness refers to the 
spread of the predictive distribution, which is the magnitude of uncertainty in the system. An optimal 
probabilistic forecast will provide a reliable predictive distribution, while minimizing the spread of that 
distribution, leading to a trustworthy forecast with low uncertainty. Though both reliability and sharp-
ness are important qualities in a forecast, reliability of a forecast is paramount, and a forecast should not 
be made sharper if it sacrifices reliability.

20.5.1  Quantifying reliability

Many quantitative measures may be used to quantify the reliability of a predictive distribution. All verifi-
cation scores of reliability utilize a large number of observations to verify the predictive distribution. This 
assumes that if a sufficient number of observations are available, the observations will effectively populate 
the predictive distribution. For example, interquartile range of the predictive distribution will contain 
50% of the true flow values, but the 95% predictive interval will contain 95% of the true flow values, over 
a long enough simulation. In the event of low reliability, there may be two contributing factors: bias and 
over-/underconfidence. Bias is the case where a disproportionate number of observations fall either above 
or below the expected value of the predictive distribution, indicating that the predictive distribution is 
typically shifted either above or below the observation. Over-/underconfidence refers to the case that a 
predictive distribution is too narrow/wide to accurately characterize the uncertainty in the prediction.

20.5.1.1  rank Probability Skill Score

Ranked probability score (RPS) is a widely used measure for evaluating the reliability of probabilistic 
predictions. By definition, RPS is the sum of squared error of the cumulative probability forecasts, aver-
aged over multiple events. In streamflow prediction, the probability forecast is usually expressed using 
a nonexceedance probability forecast within prespecified categories (i.e., 5%, 10%, 25%, 50%, 75%, 90%, 
95%, and 99% nonexceedance). The observed value for a given threshold (forecast category) takes on the 
value of 1 if the observed flow value is less than the threshold for that category. Otherwise, the observed 
value is 0. The discrete expression of RPS is given as
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where
Fi

t is the forecast probability at time t, given by P( forecasti < threshi)
Oi

t is the observed probability, given by P(observed < threshi)
i is the probability category

The rank probability skill score (RPSS) then is computed as the percentage improvement over a refer-
ence score (e.g., climatology):
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Thus, the RPSS normalizes the RPS in relation to the climatology, which provides a measure in relation 
to a forecast with minimal information.
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20.5.1.2  Predictive Quantile–Quantile Plot and rank Histogram

Probabilistic verification is often most effective when using graphical techniques, such as the predic-
tive quantile–quantile (QQ) plot or the rank histogram (RH). These diagrams have the benefit of 
showing the behavior of the probabilistic model. Instead of simply quantifying the reliability of the 
predictive distribution, model bias and over-/underconfidence can be effectively diagnosed, guid-
ing the forecaster to potential improvements in the model. Both the predictive QQ plot and the RH 
have a similar mathematical basis. The observation quantile is calculated according to the following 
equation:
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where
ŷt,i is the predicted value associated with index i and time t
yt is the true value at time t
n is the total number of values sampled from the predictive distribution

Since the true value is unavailable, the observation is used for comparison, which requires the assump-
tion that the observation error distribution is symmetric and narrower than the forecast error. This pro-
vides an estimate of the quantile from the predictive distribution in which the observation falls. Given 
that the predictive distribution is reliable, the distribution of z should approach uniformity with enough 
observations. In the predictive QQ plot, the cumulative distribution of z is plotted against the cumula-
tive uniform distribution as calculated in Equation 20.41. This is shown in Figure 20.5, which has been 
adapted from Laio and Tamea (2007). In this figure, the interpretation of different forecast behaviors in 
the predictive QQ plot is explained. Note that a completely reliable forecast will follow the uniform line, 

Over-
prediction

Under-
prediction

Large
forecast

Narrow
forecast

1

0
0 zi

Ri/n

1

FIGuRE 20.5 Interpretation of the predictive QQ plot. Narrow/large forecast is synonymous with over-/
underconfidence, respectively, and over-/underprediction is synonymous with high/low bias, respectively. (After 
Laio, F. and Tamea, S., Hydrol. Earth Syst. Sci., 11, 1267, 2007.) Ri in this figure is equal to Ui in Equation 20.41.
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biased predictions will fall above or below the uniform line, and over-/underconfident predictions will 
cross the uniform line:
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Similar to the predictive QQ plot, the RH compares z to the uniform distribution, but this is performed 
with a histogram. Though theoretically equivalent to the predictive QQ plot, the RH provides another 
method for visualizing reliability, which some forecasters may find easier to interpret. A diagram of RH 
behavior under different distributional cases is provided in Figure 20.6. Figure 20.3 was adapted from 
information in Hamill (2001). This figure shows how the RH validates the predictive distribution with 
different levels of accuracy in estimating a normally distributed random variable with mean of 0 and stan-
dard deviation of 1. From left to right, the expected value of the predictive distribution is offset by 0, 0.2, 
0.4, 0.8, and 1.6, showing different levels of bias, and from top to bottom, the standard deviation of the 
predictive distribution is set to 0.25, 0.5, 1, 2, and 4, showing different levels of spread. Note that the middle 
left plot is the most reliable predictive distribution, as indicated by the uniform RH. The upper subplots 
indicate that the forecast is too narrow (overconfident) and the lower subplots indicate the forecast is too 
wide (underconfident). The left subplots indicate no bias and the right subplots indicate a very large bias.
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FIGuRE 20.6 RHs for a predictive distribution with mean value ranging from 0 to 1.6 (left to right) and standard 
deviation from 0.25 to 4 (top to bottom), as compared to a standard normal distribution (mean of 0 and standard 
deviation of 1).
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20.5.1.3  Normalized root-Mean-Square error ratio

The normalized root-mean-square error ratio (NRR) is a measure that estimates if the level of spread in 
the predictive distribution is fitting for the amount of error in the model (Anderson, 2001). NRR is use-
ful in verification of forecast uncertainty by communicating to the forecaster whether the level of uncer-
tainty has been quantified correctly. In the event that the magnitude of uncertainty in model prediction 
is incorrect, a forecaster may attempt to identify the reason why the model is incorrectly estimating the 
uncertainty. In addition, NRR may be used as a tool to calibrate uncertainty hyper-parameters in the 
event that accurate a priori estimates are unavailable (Moradkhani et al., 2005a).

Optimally estimated ensemble spread can be analyzed by comparing the mean square error of the 
forecast expected value (Equation 20.42) to the mean square error of each ensemble member within the 
forecast (Equation 20.43). As explained by Murphy (1988), the ratio of R1 and R2 is optimal when equal 
to E[Ra] from Equation 20.44. Overall, the NRR metric may be calculated according to Equation 20.45. 
When NRR < 1, the ensemble spread is too large, but in the case that NRR > 1, the ensemble spread is 
too small:
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20.5.2  Quantifying Sharpness

Quantifying the sharpness of a forecast is necessary for determining the value of a given forecast. 
Sharpness of a forecast determines the precision at which the forecast is being created and thus the use-
fulness of the forecast. The goal of a hydrologic forecaster will be to create the sharpest possible forecast 
possible, without compromising reliability. Current methods for quantifying the sharpness of a forecast 
include the coefficient of variation (CV) and uncertainty ratios (URs). CV is a commonly used statistic, 
which analyzes the mean and variance of forecast distributions. With respect to the notation used previ-
ously, the CV at time t is calculated according to the following equations:
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Analysis of the CV from the previous equations will typically be performed with the mean CV over 
some length of time. This provides a simple analysis of the relative sharpness of the forecast, with respect 
to the magnitude of the forecast. CV values approaching 0 indicate an increasingly sharper forecasts, 
and CV values approaching ∞ indicates increasingly wide forecasts. UR provides a similar metric, but 
can be applied to the width of any quantiles without assuming a Gaussian distribution, leading to a less 
restrictive measure than the CV. Based on a set quantile bound, the UR for that bound can be calculated 
according to the following:
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In the previous equation, ub is some defined uncertainty bound satisfying 0 < ub ≤ 100. Similar to the CV, 
the UR will typically be analyzed as the average value over some determined number of time step, and 
UR values approaching 0 indicate increasingly sharper forecasts, while UR values approaching ∞ indicate 
increasingly wider forecasts. In addition, any number of desired ub values may be chosen and then aver-
aged before analysis. Using multiple ub values typically provides more insight into the sharpness of the 
forecast. Given that either a ub value of 50 or multiple values chosen symmetrically about 50 are chosen, 
UR > 100 indicates a noninformative level of spread and UR < 100 indicates an informative level of spread.

20.6  Summary and conclusions

Hydrologic forecasting relies on accurate model simulations for prediction of flooding and estimation 
of water supply. Such models generally require information about land surface energy/water fluxes to 
characterize land surface processes, but there is much variability in the structure and parameterization 
of different hydrologic models, due to differing perceptualizations of the land surface. Since the models 
available to forecasters vary significantly in structure, identification of the proper model for a given 
application is important. Choice of hydrologic model may be viewed as a first step toward developing a 
hydrologic forecast. This choice may be based on the specific quantities a hydrologic model predicts, the 
data available to run the model, or the level of physical basis of the model (among many others). Such a 
choice is often subjective, which makes the model identification process imperfect, highlighting the fact 
that there is no one correct model. This lack of a perfect model is evidence of the inherent errors in the 
modeling process.

In the hydrologic modeling process, errors may be introduced by the model structure, the forcing 
data, observed data, and model parameters. This large number of uncertainty sources complicates the 
hydrologic forecasting process, introducing the need to manage these errors. Though it is intuitive to 
focus on reducing these errors, it is equally as valuable to quantify these errors. Accurate quantification 
of the uncertainty in hydrologic predictions conveys the certainty that forecasters can place on model 
predictions. After model selection, uncertainty quantification becomes a valuable step in hydrologic 
forecasting for the management of risk in hydrologic systems, but requires accounting for all sources 
of uncertainty and sophisticated techniques to manage that uncertainty. In most probabilistic hydro-
logic forecasting systems, Bayes’ law provides an effective framework for managing and reducing these 
errors, leading to reliable forecasts. Use of Bayes’ law provides flexibility over the frequentist approach 
by allowing the forecaster to utilize any additional data, which the prediction may be dependent on, to 
estimate the posterior probability. This makes the Bayesian approach valuable for hydrologic prediction 
because of the large quantity of informative observations.
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Bayes’ law may be applied through a variety of strategies to manage uncertainties in the modeling 
framework. The most basic difference is whether to apply Bayes’ law within a batch or sequential frame-
work. Given that the sources of error are accurately quantified, both batch and sequential techniques are 
appealing, but have different practical advantages. Batch techniques are the simplest to apply because 
they implement Bayes’ law in its most basic form and typically utilize MCMC techniques to estimate 
the posterior through simulation with ergodic chains. Expanding on batch methodologies, sequential 
methods rely on sequential Bayes’ law. Sequential methods are better able to learn from the temporal 
organization of the data and structure of information, resulting in more conformity of the model out-
put with observations. Additionally, sequential methods have the advantage of continuously examining 
data and the potential to manage nonstationary processes. These have made the sequential methods 
more attractive both theoretically and operationally. This requires an ensemble filtering technique, typi-
cally the PF or EnKF for hydrologic applications, which requires a large Monte Carlo sample to effec-
tively estimate the posterior. After applying Bayes’ law through either batch or sequential techniques, 
a probabilistic prediction is produced. At this point, it is necessary to perform some validation of the 
prediction, which is the final step in hydrologic prediction.

In order to probabilistically validate a prediction, certain verification measures must be utilized, 
which are referred to as probabilistic verification techniques. These techniques seek to quantify the reli-
ability and sharpness of a forecast. Reliability refers to the accuracy of the forecast distribution, whereas 
the sharpness refers to the precision of a forecast. Optimally, a forecast will be as sharp as possible while 
still providing a reliable distribution. In general, reliability metrics compare the observation distribu-
tion to the forecast distribution. Methods for quantifying reliability include RPSS, predictive QQ plot, 
and RH. Measures of sharpness include CV and UR (Moradkhani et al., 2006). With both the reliability 
and sharpness of a probabilistic forecast, different forecasts can be effectively compared. After valida-
tion of a forecast, it may be necessary to revise the methods used in creating the forecast to develop a 
new forecast. Once a reasonable forecast is developed, the hydrologic modeling process is complete.

The hydrologic forecasting process remains an area of much debate and research interest. This chapter 
has provided an overview of the techniques and the general process involved in providing a forecast 
of hydrologic variables. With this general framework, a forecaster has the basis for development and 
analysis of a hydrologic modeling system. Though a general framework has been provided, there are 
many opinions about each technique presented and further specific variations of each technique, in the 
scientific literature. For further details about these techniques, the reader is directed toward the cited 
works, which will provide further perspective on the application of each method.
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21.1  Introduction

Natural river systems with a typically natural horizontal structure are a severe challenge in the field of 
hydraulic calculations. The quality of the flow condition forecasts obtained on the basis of hydraulic 
modeling research depends in this respect on numerous natural specific factors of the given river val-
ley. Due to the fact that investments in flood protection facilities are mostly distributed in a time hori-
zon ranging from 20 to 100 years, hydraulic calculations should also reflect such long-term forecasts 
of changes in flow conditions. Thanks to the application of modern calculation methods, such as, for 
example, 2D models analyzing the dynamics of environmental changes and using such tools as GIS, 
attempts can be made to perform such simulations [21].

The basic biological process affecting the flow conditions is the plant vegetation, commonly 
referred to as overgrowing of riverbeds. The limits of riverbed overgrowing cannot be accurately 
determined, as apart from hydraulic and geometrical parameters of the given riverbed, this process 
is also influenced by four groups of factors: physical (light, temperature, changes in water levels), 
chemical, soil, and biotic [53].

Vegetation: both the water of the riverbed and bank-side and floodplain flora increase current tur-
bulence and energy loss, and therefore stimulate by far the growth of flow resistance [17]. As a result, 
this correlates with lower riverbed throughput [47]. On the other hand, vegetation improves the soil 
protection against erosion, which is normally caused by the flowing water and abrasion of banks by 
waves [10]. In this case, the role of vegetation as a flow-reducing factor comes to the fore, together with 
the dispersion of the wave energy by stalks and leaves, as well as the reinforcement of the ground by the 
root system, which stabilizes the soil particles. The acceptable maximum water velocity in channels with 
vegetation is two or even three times smaller than that in bare channels [61]. What is equally important 
is that plants play an important sanitary function, acting as a biofilter cleansing the flowing waters [55]. 
Due to the peculiar conditions enabling the development of hydrophytes, oxidization and reduction 
processes are intensified, and, supported by the sorption, sedimentation, and assimilation processes, 
eliminate a noticeable part of the polluted matter. This activity involves the participation of lower organ-
isms growing on the immersed parts of hydromacrophytes or root systems of bank vegetation.

21.2  Hydraulic Vegetation classification

In general, the plants existing within the riverbed area may be divided into water plants (growing within 
the main riverbed area) as well as bank-side and flood plain vegetation (with regard to a riverbed with 
high water level). The hydraulic classification of flood plain vegetation is associated with the variety of 
plants and flow conditions. Due to obvious reasons, such a classification necessitates certain simpli-
fications, mainly such as the exclusive distinguishing of those plant properties, which affect the flow 

Preface

Flow condition forecasts depend of many natural specific factors of the given river valley. The most 
important factor influencing the flow conditions is the development of vegetation. Vegetation: 
both the water of the riverbed and bank-side and floodplain flora increase current turbulence and 
therefore stimulate by far the growth of flow resistance. As a result, this correlates with lower riv-
erbed throughput. Hydraulic calculations should also reflect such short and long-term forecasts 
of changes in flow conditions. Vegetation improves also the soil protection against erosion, which 
is normally caused by the flowing water. What is equally important, plants play an important 
sanitary function, acting as a biofilter cleansing the flowing waters. The various aspects of the 
impact of the development of vegetation on flow conditions and flood hazards are explained.
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conditions, and therefore the distribution of velocity. The comparison of plants with flow depth is the 
simplest criterion. As proposed by Bretschneider and Schultz [6], river flora has been divided into three 
basic plant groups (Figure 21.1):

 1. Low vegetation: (grass and herbaceous plants) vegetation that, compared to water depth, is small 
enough to define its impact on flow conditions on the basis of the surface roughness parameter.

 2. Medium vegetation: (bushes, small trees) vegetation that is approximately as tall as the water 
depth.

 3. High vegetation: (fully mature trees, certain arborescent bushes), vegetation that is taller or equal 
to water depth and therefore is not immersed, while the respective flow resistance is principally 
dependent on the shape of tree trunks, instead of their surface roughness.

While using this simplified classification, one should consider its limits:
The differences between the three described groups are shifting, depending on the riverbed water 

level, and frequently there may occur problems with the appropriate classification of the specific plants.
As regards the trees, a lack of trunk deformation caused by the current is assumed, which, however, 

is not so clearly the case of bushes.
While analyzing the impact of vegetation on the riverbed flows during high water levels, it is worth 

considering the deformation of plants under the influence of the water flow. The schematic classifica-
tion of flow-related plant deformation may be defined in three categories: stiff (no deformation), elastic 
(elastic strain), and smooth (collapsing of plants—permanent deformation).

So far, out of these three possible options, only the resistance of stiff and smooth plants has been 
depicted relatively accurately with mathematical models. At present, the resistance of elastic (interme-
diate between stiff and smooth) vegetation has not been fully examined. The basic difficulty is that it 
depends additionally on the biomechanical properties of plants and the impact of the current itself. Out 
of a series of studies taking into account the elasticity of plants [2,18,28,46] virtually only the Kouwen’s 
method [27] seems to have gained some popularity, although, on the other hand, it did not avoid the 
reproach of being difficult from the practical point of view.

21.2.1  Submerged and Nonsubmerged Vegetation

In hydraulic calculations of various vegetation groups, one should apply a different water and plant 
impact model. This naturally correlates with different flow resistance evaluation methods. In the case of 
trees and bushes of certain height, a model of the stiff plant element not subject to deformation under 
the flowing current comes into question. On the other hand, low and medium vegetation may become 
elastically deformed under the impact of water.

Low vegetation
H >>hp 

Medium vegetation
H >hp 

High vegetation
H <hp 

hp

hp

hp

H

FIGuRE 21.1 Hydraulic classification of plants according to Bretschneider and Schultz. (From Bretsch-
neider, H. and Schulz, A., Anwendung von Fließformeln bei naturnahem Gewässerausbau, DVWK Schriften 72, 
Kommissionsvertrieb Verlag Paul Parey, Hamburg und Berlin, Berlin, Germany, 1985.)
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With regard to submerged vegetation, the consideration of vegetation elasticity is a source of an 
additional problem (Figure 21.2). So far, the elastic resistance of vegetation (intermediate between 
stiff and smooth) has not been fully examined. The basic difficulty is that it depends additionally on 
the biomechanical properties of plants and the dynamic impact of the current thereon. The relation 
between the parameters of the current and mechanical and geometrical values defining elastic veg-
etation has been described by Fenzl and Davies [13]. On basis of the measurements performed, they 
linked the value of shear strains with the value of bent stalk stiffness, which depends on stalk density 
per surface unit, plant elasticity module, and the inertia of the stalk cross section. In the course of 
further research, among others by Kouwen and Li [27], the substitute sandy roughness of submerged 
vegetation was defined again as a function of plant density, inertia, and elasticity module. Out of a 
series of studies taking into account the elasticity of plants [27,28], virtually only Kouwen’s method 
[27] has been used in practice. The recent intensive research activities [30,31,57] have featured both the 
dynamic water pressure models and the specific biomechanical properties (e.g., elasticity module) of 
different plant species.

Also in the case of flood area vegetation, its deformation is often observed in practice (elastic or per-
manent) under the influence of the current. This pertains both to elastic vegetation, such as grass, and 
in many cases also to young trees and bushes (Figure 21.3).

θ≈90° 0°≤ θ ≤ 90° θ 0°

FIGuRE 21.2 Deflection of plants depending on the flow velocity. (From Milbradt, P. and Schonert, T., Ökologische 
Modellkomponenten in hydrodynamischen Simulationsmodellen, Wasserbaukolloquium. Strömungssimulation im 
Wasserbau, Dresdener Wasserbauliche Mitteilungen Heft, Vol. 32, pp. 179–192, 2006.)

FIGuRE 21.3 Bushes after flood in 2010, Warta River, Poznan, Poland.
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In the case of nonsubmerged vegetation, as a simplified approach to the parameterization of its 
structure, it can be regarded as a group of stiff cylindrical elements. The impact analysis of such 
resistant elements on the conditions of determined flow has been presented by Petryk and Bosmajian 
[42]. The utilization of their research results has subsequently allowed Lindner [34] and Pasche [43] to 
derive the relations depicting the resistance coefficient values generated by stiff vegetation. The flow 
resistance while flowing around high vegetation is calculated on the basis of the substitute average 
diameter of plants and the substitute distances between the plants along the ax flow direction and the 
transverse ay (Figure 21.4). The flow resistance coefficients calculated in this manner are used for the 
computation of throughput capacities of riverbeds overgrown with high vegetation. The parameter 
calculation method for three different structures of medium and high vegetation has been developed, 
for example, in Germany in the form of design recommendations [11]. Further research dealt with, 
among others, determination of the value of the dimensionless flow-around resistance coefficient of 
plant elements.

21.2.2  assessment of Vegetation Parameters

21.2.2.1  characteristics of Low Vegetation

In case of low vegetation, there are not many empirical parameters defining its share in the global value 
of the roughness coefficient. The great discrepancies between the values obtained by different authors 
are caused by the fluctuation of this element in time (fluctuation within the vegetation period), and they 
depend on the factors affecting the plants directly (e.g., flooding time and, flow velocity). In practice, low 
vegetation is most frequently attributed with the appropriate roughness coefficients, values of equivalent 
sand roughness, and biomechanical parameters.

The value of the Manning’s coefficient n may be found, for example, in the Ven Te Chow tables [8]. 
The practical application of the values specified therein may, however, give rise to several doubts due to 
the wide n value scope and a descriptive and inexplicit classification of the specific plant groups. In the 
case of flood plains, the roughness coefficient may be estimated on the basis of the Palmer’s nomogram 
[15]. This method relies on the graphical definition of relations of the roughness coefficient n with the 
product of the average flow velocity and the vRh hydraulic radius, as well as with the parameters reflect-
ing the physical properties of grass (length and density). It has been empirically confirmed that a single 

Floodplain Riverbed

av

av,

di ax,

ax
dp

FIGuRE 21.4 High vegetation geometric characteristics. (From Szporak, S. et al., Ann. Warsaw Unive. Life Sci.—
SGGW Land Reclamat., 40, 45, 2008.)
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graphic relation n-vRh may be defined for the given grass species and length (Figure 21.5). Five curves, 
referred to as Palmer’s curves, corresponding with the vegetation coverage of various heights have been 
distinguished (Figure 21.5).

Temple [56] on the basis of research results of the n-vRh developed an empirical formula:

 n e
C T

=
− +



 −







0,0133 ln 0.0322 ln 0.145 4.162( ) ( )vR vRh h  (21.1)

where CT is the grass category curve index calculated with the formula
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3  (21.2)

where
l is the representative grass stalk length [m]
m is the stalk density [pcs/m2].

In the literature, table compilations of substitute values of absolute sandy roughness for low vegetation 
areas can be found extremely rarely. This is why the calculation results of these parameters by Ritterbach 
[49] for the various vegetation types of the Wupper river flood plains (Table 21.1) are so curious.

Klaassen and Van Urk [26] assessed the value of plant parameters in natural riverbeds in a year view. 
The changing roughness of grass, determined with the equivalent sand roughness, indicates noticeable 
differences in flow conditions between the summer and winter time:

 Winter 0.18 m < ks < 0.36 m

 Summer 0.72 m < ks < 0.75 m

Ritterbach [49], based on the results of experiments by Flach and Pieters, calculated the ks value, depend-
ing on the degree of vegetation overgrowth (Figure 21.6).

The consideration of the impact of low vegetation elasticity on flow conditions has been proposed by 
Kouwen [29]. Based on the measurements of elastic plants, he expressed the equivalent sand roughness 
as functions of contact shear stress evoked by flow:
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FIGuRE 21.5 Dependence of the roughness coefficient on vRh and grass height. (From USSCS, Handbook of 
Channel Design for Soil and Water Conservation, Publication SCSTP61, US Department of Agriculture, Washington, 
DC, 1954.)
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where
M is the relative plant density: M R a ah x y= ⋅2

E is the elasticity module of the plant element
J is the moment of inertia of the cross section of plant element
hp is the plant height
Rh is the hydraulic radius
i is the hydraulic gradient
ρ is the water density
g is the gravitation

The equivalent roughness in Equation 21.3 depends on the “stiffness” expressed as EJ, where the cross-
section moment of inertia J depends on the geometry of plant elements, whereas the elasticity module E 
is a feature of the elastic properties of plant elements. Kouwen’s analyses were verified in flow conditions 
of riverbeds with natural vegetation. This study has confirmed the need for considering the mechanical 
features of plants [30].

The cross-sectional obstruction indicator ϖp is an important vegetation parameter of riverbeds 
(both riverbank and water plants), defined as a relation of the plant projection on the cross-sectional 
surface against the volume of a plant colony. This indicator may be determined among others by 
measuring the LAI value, recalculated thereafter into the LAD of the plant cover [16]. The LAI leaf 
density coefficient is defined as a summarized relation of all plant surfaces, including leaves, with 
the relevant bed surface they are located on [m2/m2]. LAD is the leaf density indicator expressed as a 
relation between the summarized surfaces of all plant leaves and its volume [m3/m3]. The measure-
ments of the LAI coefficient may be performed both with regard to water and low vegetation, as well 
as bushes and trees [19,33].

TABLE 21.1 List of Equivalent Sand Roughness Values for Low 
Vegetation

No. Type of Vegetation Absolute Sand Roughness ks [m]

1 Pitch, sod 0.06
2 Lawn 0.10–0.35
3 Meadow 0.13–0.40
4 Bare agricultural field 0.02–0.25
5 Agricultural field with plants 0.25–0.80
6 Forest understory 0.16–0.32
7 Dense forest understory 0.40
8 Herbs, creepers 0.50–0.70
9 Wild vegetation, weak cane vegetation 0.60–1.20
10 Wild vegetation, understory 0.80–1.60
11 Stone surface with grass 0.30
12 Stone surface with herbaceous plants 0.70
13 Stone surface with wild plants 1.00

Source: Ritterbach, E., Wechselwirkungen zwischen Auenökologie und 
Fließgewässerhydraulik und Möglichkeiten der integrierenden computergestütz-
ten Planung, Mitteilungen Institut für Wasserbau und Wasserwirtschaft, RWTH 
Aachen, Heft 80, 1991.
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21.2.2.2  Geometrical characteristics of Medium and High Vegetation

The throughput of a high water lever riverbed is mainly conditioned by the flow resistance, the most 
important element of which is the impact of vegetation of the flood plains. In terms of hydraulic calcula-
tions, the abundance of growth and plant species acts as a severe challenge for the description and sub-
stantial parameterization of the diverse vegetation structure. Having adopted the previously mentioned 
(21.2) division scheme of flood plain vegetation, Rouvé [50] proposed a hydraulic parameterization 
of the selected geometrical plant features. It results from the applied description model of movement 
resistance based on the methods derived from the flow direction power balance analysis, taking into 
account the various plant structure forms. The resistance of immersed plants is defined with a formula 
by Colebrook and White [11], whereas the value of equivalent sand roughness ks acts as an important 
parameter. While assessing the resistance of nonimmersed plants, the concept of plant shape drag is 
used. However, in this respect it is referred to as the so-called extreme roughness, that is the impact of 
shape drag, while the rough element is being “flown around.” The hydraulic characteristics of this veg-
etation are based on the assumption that the impact of an irregular structure may be narrowed down to 
a substitute model of an arranged group of uniform plant elements. This has been proved among others 
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by Pasche [43], by confirming the possible use of a regular substitute vegetation model for the assess-
ment of the drag coefficient of natural vegetation.

The essential problem associated with the adopted vegetation division scheme and its impact on the 
flow is the definition of conditions in which the shift from the hydraulic surface roughness model to 
the plant shape drag model occurs. The conditions of this shift are undoubtedly of a fluent character 
and they depend on many factors, which are yet determined mainly by the flow depth. Another equally 
important question is the manner of defining the substitute geometrical parameters of the natural veg-
etation clusters within flood plain areas.

While describing the vegetation zone Av = bv·lv, it is necessary to present the mutual arrangement of 
plant elements within the riverbed plain and cross-section. As regards tree trunks, they are reflected on 
a model of stiff cylindrical elements. High vegetation, and sometimes also medium, is specified with 
substitute geometrical parameters (Figure 21.7): the average spacing in the flow direction ax and per-
pendicularly toward ay, as well as the average diameter of plant elements dp. In the case of an irregular 
vegetation structure, its parameters are presented in the form of average values and standard deflection.

So far, there has been no method that would present, in general, the transition process from nonim-
mersed to immersed plant form (Figure 21.8). Within the practical calculations, it is thus necessary to 
divide the vegetation preliminarily (into immersed and nonimmersed) with the consideration of the 
estimated flooding depth.

The development of suitable hydraulic characteristics in the case of a particularly irregular nonim-
mersed vegetation structure involves difficulties with choosing the correct method. Therefore, certain 
facilitations are used in the engineering practice, generally coming down the grouping of plants accord-
ing to hydraulic criteria. An interesting proposal of plant group classification and description has been 
presented in Reference 11. Three separate most frequently encountered plant structures have been speci-
fied therein (Table 21.2).

Here the summarized specifics of the adopted methods and the detailed solutions of defining the 
substitute plant parameters are presented:

• Within the macrostructural method (Figure 21.9(1)), it is assumed that the specific bushes nk 
or separate tree nd clusters act as nonpenetrable elements. The average trunk spacing is defined 
according to Reference 11 as
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FIGuRE 21.7 Parameters adopted in the vegetation zone.
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FIGuRE 21.8 Parameters adopted in the case of velocity and shear stress distribution above bushes.

TABLE 21.2 Characteristics and Definition Method of the Specific Vegetation Structures

Vegetation Structure Characteristics Definition Method

Coherent groups of 
trees or bushes

The parameter definition method is selected on the basis of water depth in 
the flooded area. Bushes and trees are subject to microstructural 
description. In certain conditions, bushes are defined with surface 
roughness.

Microstructural or 
equivalent sand 
roughness

Single trees or 
bushes

For single bushes and tree clusters, it is recommended to examine the plant 
macrostructure. Thereupon, the average diameter of a tree or bush cluster 
and their average spacing is defined.

Macrostructural

Mixed trees and 
bushes

A combination of trees and bushes is defined first by analyzing the specific 
parameters of trees and bush branches. Thereafter, the so-called “mixed 
parameters” of both plant types are calculated.

Microstructural or 
macrostructural 
in connection 
with the sandy 
roughness model

dpdp dpdp
axax

(1) (2)

(3) dp ax

FIGuRE 21.9 Schematic presentation of micro- and macrostructure according to Ritterbach. (From Ritterbach, E., 
Wechselwirkungen zwischen Auenökologie und Fließgewässerhydraulik und Möglichkeiten der integrierenden com-
putergestützten Planung, Mitteilungen Institut für Wasserbau und Wasserwirtschaft, RWTH Aachen, Heft 80, 1991.)
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The substitute diameter may be counted with two different formulas:

• Variant I, proposed by Reference 11 for mixed vegetation parameters:
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The substitute bush diameter has been defined according to Rickert [48]:
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• Variant II, according to Reference 48, as for inhomogeneous vegetation:
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• Within the microstructural method (Figure 21.9(3)), it is assumed that the flow between the struc-
ture of single branches gk or trunks is of great importance. Within the microstructural method, 
the average tree structure and trunk spacing or the average bush branch diameter and average 
bush spacing are defined according to Reference 11:
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In the substitute method of sandy roughness, it is assumed that the immersed medium vegetation may 
be specified with the ks value. Therefore, the additional consideration of roughness of the very flood 
plain (low vegetation) has been ignored. Geometrical parameters of trees have been defined according to 
Reference 11:
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The substitute trunk diameter dp is adopted as an average value out of a group of trees.
In the case of bushes, instead of using the microstructural method, the assessment of plant structure 

density with the cross-sectional obstruction indicator ϖp is more reasonable, as it expresses the relation 
of plant surface projected on the cross-sectional surface against plant volume:
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The cross-sectional obstruction indicator is a measurable value, which may also be used in the case of an 
irregular plant structure (branching, leaves, and free plant arrangement). Due to this reason, it becomes 
possible to compile the value catalogue ϖp according to the species, status, and density of the plant elements.
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Kaiser [20] has defined three groups of the ϖp indicator by analyzing the flow conditions:

• Scattered bushes ϖp = 0.1–0.5 [1/m]
• Moderately dense bushes ϖp = 0.5–1.5 [1/m]
• Dense bushes ϖp = 1.5–3.0 [1/m]

Further research by Kaluza et al. [22] specified in greater detail the selection of the ϖp indicator values 
for wicker bushes. In addition, its correlation with the bush height has been proved. As a result of the 
inhomogeneous form of bushes, the cross-sectional obstruction indicator ϖp may change along with 
the flow depth. The cross-sectional obstruction indicator ϖp is also modified due to the accumulation of 
various biomass on the plant surface (leaves, grass, stray, etc.) carried by the flow. In practice, similarly 
to low vegetation, the cross-sectional obstruction indicator has been tied to the LAD value, which may 
be defined with instrument-based parameters (LAI-2000 device, hemisphere photographs).

In case of completely immersed bushes, frequently their biomechanical parameters have to be consid-
ered. In this respect, relation (21.3) may be used. This study was also performed by Tymiński and Kaluza 
[57]. They have indicated the high natural fluctuation of plant parameters and the impact of moisture on 
the physical and mechanical properties of vegetation, particularly on elasticity (Table 21.3).

21.3   Quantification of flow resistance of Vegetated 
channel Bottom, Banks, and floodplains

The throughput capacity determination methods of open riverbeds, considering three types of vegeta-
tion structures, may be divided into three basic groups:

 1. Methods based on empirical formulas. In these methods, the analysis of average velocity consid-
ers all measured parameters. These methods are developed on the basis of a huge amount of infor-
mation regarding the geometrical parameters of plants, riverbed geometry, and flow velocity. The 
application of these methods is narrowed down to the conditions in which they were determined.

 2. The definition of resistance coefficients on the basis of model research or field measurements by 
means of commonly known methods of flow definition in open riverbeds. In order to determine 
the value of the flow resistance coefficient or roughness, the data of flow value, cross-sectional 
geometry, or bed slope are necessary. Subsequently, by converting the average flow velocity for-
mula, the flow resistance value is determined. The value, obtained in this manner, cannot be 
projected on other examined flow conditions.

 3. Methods derived from the flow direction power balance analysis, taking into account single 
plant elements. In the case of a determined continuous movement, it is correct to perform a force 
balance equation in a cross section where gravity is compensated by resistance forces gener-
ated by the roughness of the bed and the presence of plant elements. On this basis, for example, 

TABLE 21.3 Elasticity Module of the Examined Plant Samples

Willow I Willow II Reed Alder

Fresh Dry Fresh Dry Fresh Fresh Dry
[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

x̄ 4,077 7,380 4476 8,882 3,328 2523 3762
σ 2,122 3,179 1355 1,634 4,356 852 976
v 0.52 0.43 0.30 0.18 1.31 0.34 0.26
max. 10,171 17,478 7431 12,949 17,279 4597 5666
min. 918 2,568 720 6,913 269 680 1906

Source: Tymiński, T. and Kaluza, T., Polish J. Environ. Studies, 21(1), 201, 2012.
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Petryk and Bosmajian [42], as well as Lindner [34], defined the relations between the roughness 
coefficient and the density of the vegetation structure. This formed the basis for the development 
of modern determination methods of the impact of plants on flow conditions, such as the ones by 
Pasche [43] or Mertens [38].

The indicated methods tie the resistance coefficient value of a surface overgrown with tree and bush 
vegetation to substitute plant parameters. The definition of plant parameters becomes thus as important 
as the selection of the appropriate calculation method.

21.3.1  Influence of Submerged Vegetation on the Main channel capacity

The correct assessment of the resistance coefficient and the description of phenomena associated with 
flows in riverbeds of various roughness, caused among others by the presence of vegetation, keeps pro-
ducing several difficulties. It has been historically assumed that Chezy was the first to derive the depen-
dence on the average water flow velocity in a riverbed [8]:

 v C Rh
i=  (21.12)

where
Rh is the hydraulic radius of the current cross section [m]
i is the hydraulic gradient [−],
C is the velocity coefficient [m1/2/s]

Manning defined the velocity coefficient on the basis of the roughness coefficient value n and the 
hydraulic radius Rh and received the following relation [8]:

 
v

n
i Rh= ⋅ ⋅1 2 3  (21.13)

There are a number of sources from which photographic evidence of rivers and their associated hydrau-
lic roughness coefficients can be obtained. Chow [8] is probably the most familiar of these sources and 
although the channels in Chow are all from America and the photographs are black and white, they 
cover a wide range of channels and a list of tables is also supplied with the photographs that provide a 
good initial source of roughness values.

An alternative to Chow’s method of estimating Manning’s n involves the use of a procedure, as pre-
sented by Cowan [9]. This method involves the selection of a basic value of Manning’s n for a uniform, 
straight, and regular natural channel. The basic value is then adjusted for the effects of surface irregu-
larities, shape, and size of channel cross section, obstructions, vegetation, and flow conditions and the 
meandering of the channel. By this method, the value of n may be calculated by

 n = (n0 + n1 + n2 + n3 + n4) m5 (21.14)

where
n0 is the base value for a straight, uniform channel in natural materials
n1 is the value added to n0 to correct for the effect of surface irregularities
n2 is the value for variations in shape and size of the channel cross section
n3 is the value for obstructions
n4 is the value for vegetation and flow conditions
m5 is the correction factor for meandering of the channel
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Another commonly applied equation describing the average water velocity in a riverbed is the for-
mula referred to as the Darcy–Weisbach equation or universal flow equation [8]:
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i Rh= ⋅ ⋅ ⋅8  (21.15)

where
f is the dimensionless resistance coefficient [−]
g is the gravitational acceleration [m/s2]

The application of the Darcy–Weisbach equation for the purpose of velocity calculation in open river-
beds also requires the determination of the dimensionless resistance coefficient value f. In the transitory 
zone, the resistance coefficient f depends both on the viscosity and the relative roughness of walls ks/d. 
Due to this, both resistance-related sequences can be presented in the form of an empirical relation, 
referred to as the equation by Colebrook–White [8]:
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where
ks is the absolute roughness of riverbed surface [m]
Re is the Reynold’s number [−] calculated out of the following relation:
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As in open riverbeds, turbulent motion conditions occur most frequently, a simplified form of the equa-
tion by Colebrook–White can be applied:
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In the literature, there is an abundant collection of C and n coefficient values for various types of river-
bed surface and walls, including the presence of vegetation [8].

The most simple correlating relations confirm the impact of water vegetation on flow conditions. 
The research carried out by Reference 24 confirmed the dependence of the roughness coefficient value 
on the biomass amount in a cross section (Figure 21.10). On the other hand, Querner [47] presented 
the impact of cross-sectional obstruction level of overgrown riverbeds on the values of the rough-
ness coefficients (Figure 21.11). The cross-sectional obstruction degree is calculated as a relation of the 
obstructed cross-section area with the total cross-sectional area.

Blomfeldt [5] summarizes the approach for flexible vegetation with a spectrum ranging from a 
low flow called “Case 1” to a fully submerged scenario called “Case 3.” Case 1 uses cylindrical resis-
tance, and Case 3 is based on Stephan’s method [52] (Figure 21.12). Between these two methods, a 
linear assumption of resistance is used. The limit of H/hp,m = 0.8 is an assumption of the upper valid 
limit of cylindrical resistance.
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According to Reference 52, Equation 21.19 has its lower boundary at H/hp,m = 1.8.
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where
h is the plant height
hp,m is the deflected plant height
H is the flow depth
Cd is the drag coefficient
k = von Kármán constant (= 0.41);

Subscripts 1, 2, and 3 refer to Cases 1, 2, and 3, respectively, and D is the density parameter:
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FIGuRE 21.10 Dependence between the roughness coefficient value and macrophyte biomass of the Muehlibach 
river. (From Kenel, B. and Uehlinger, U., Arch. Hydrobiol., 143(3), 257, 1998.)
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The deflected plant height presented with linear estimation through Cases 1 and 2 (solved with iteration) 
and deflection based on velocity or maximum possible deflection in Case 3. Lines represent deflected 
plant height behavior in relation to a theoretical water level with marked levels of submergence.

Another method involves the LAI value of water vegetation. The LAI coefficient is defined as a sum-
marized relation of the one-side surface of all leaves to the ground surface equal to 1 m2. Based on the 
modified Fathi–Moghadam and Kouwen method, Järvelä [19] proposed the following dependence:
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where
Cdχ is a species-specific drag coefficient [−]
LAI is the leaf area index [−]
uχ is used as normalizing velocity when determining χ, which is plant specific [m/s]
H is the water depth [m]
h is the plant height [m]

The parameter LAI is widely used in other fields; the difficulty lies in the other plant specific parameters 
Cdχ and χ, which are both empirically established. Järvelä [19] established these parameters from their 
own flume studies, but they also calculated some from other sources. Common discrepancies found 
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for various leafy woody vegetation are presented in Table 21.4. Despite the lack of precise plant species 
information provided, the table provides an overview of the possible parameter span.

Another flow resistance value assessment proposal for elastic vegetation has been presented by Pasche 
and Deussfeld [44]. On the basis of laboratory research results (Figure 21.13), they proposed a deter-
mination method of the total flow resistance force as flow resistance through a vegetation structure 
(FD force) and rough impact of plant leaf surface (FS force):

 F F FD S= +  (21.22)

whereas
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where
fp is the leaf surface resistance coefficient [−]
C is the flow-around resistance index of a cluster of plants [−]
LAI is the leaf density index [−]
Θ is the plant element inclination angle [°]
ρ is the water density [kg/m3]

The determination of the flow resistance force on the basis of relations (21.23 and 21.24) necessitates the 
indication of the LAI index. The length l and width d of plant elements (leaves, twigs) are adopted as 
mean values. The inclination angle of plant elements Θ depends, among others, on the density of plant 
material ρr, length of plant elements l, stiffness EJ, density of vegetation structure LAI, flow velocity u, 
and the Reynolds’ number Re [44].

TABLE 21.4 Values of CdX for Different Plants 
Determined by Järvelä (2004) by Reanalyzing 
Published Data

CdX  [−] χ [−] uχ [m/s] LAI [−]

0.43–0.69 (−0.38) to (−0.57) 0.1 0.1 1.14–3.2

FD,i

Θ1;Θ2

x3
Fp,i

Wasserspiegel

Fs,i

x1;x2

FIGuRE 21.13 Flow over flexible vegetation. (From Pasche, E. and Deussfeld, N., HANSA Int. Maritime J., 5, 67, 
2003.)



432 Handbook of Engineering Hydrology

21.3.2   Influence of Vegetated Banks and floodplains 
on the flood-flow conditions

Klaassen and van der Zwaard [25] were among the pioneers of the research on the impact of high vegeta-
tion on flow resistance, as the floodplains of the Maas River were the main object of their studies. The 
impact analysis of cylindrical resistance elements on the conditions of determined flow has been pre-
sented [42]. Apart from the friction force on the riverbed walls and the bottom surface, they also subdi-
vided the friction force on the plant surface FW,pi by describing it with the Newton’s resistance formula:
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The shape resistance coefficient cd depends on the flow impact conditions on the vegetation element i 
and therefore also on velocity vpi. The value of friction coefficient on the plant surface has been adopted 
by the authors as equal to one: cd = 1.

The work by Petryk and Bosmajian [42] gave birth to the development of the roughness coefficient 
determination method for weed-obstructed areas, which is based on the shape resistance method. The 
results of experiments and measurements performed by researchers [4,12,20,34,43,48] served as a prep-
aration of the river hydraulic calculation guidelines, with the consideration of high vegetation obstruc-
tion on flood areas [11]. For the dimensionless computing of the flow resistance of high vegetation, 
Lindner [34] proposed the following relation:
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where
hp is the depth [m]
dp is the diameter of plant trunks [m]
ax, ay are the mean spacing along and across the flow direction [m]
cd is the plant cluster resistance coefficient [−]
α is the flood plain inclination angle [°]

While presenting the phrases describing the resistances of surface and vegetation structure by means of 
Equation 21.25, Lindner also provided the dependence for the determination of average velocity as the 
Darcy–Weisbach equation in the vegetation area:
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where
fso is the bed resistance coefficient [−]
Ap,i is the plant trunk surface area (dp × h) [m2]
Rh is the hydraulic radius [m]

According to Reference 34, the plant cluster flow-around resistance coefficient cd depends on the shape of 
a single vegetation element cd and geometric parameters of plants. The cd coefficient expresses the resis-
tance of a single element within ideally two-dimensional flow (Figure 21.14). According to Reference 11, 
cd adopts the values from 0.6 to 2.4, whereas as an approximate value one can assume cd = 1.5.
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The modification of Lindner’s method for a dense vegetation structure has been presented by Kaiser 
[20] who, based on Equation 21.26, modified it, so that it included the cross-sectional obstruction 
indicator ϖp:

 f c RV d p h= 4 ϖ  (21.28)

Kaiser [20] assumed (as proved by numerous studies) that the bed resistance coefficient value is much 
smaller than the vegetation resistance; therefore, the fso coefficient can be ignored. Therefore, in condi-
tions of noticeable vegetation density, appropriately large flow depth, and insignificant bed roughness, 
the following simplified dependence is obtained:
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The (1 − εp) phrase features the reduction of gravity caused by smaller water volume reduced by the 
volume of submerged vegetation elements.

According to Equation 21.29, in the conditions of high density of plant elements, the average velocity 
does not depend on the hydraulic radius, but it remains permanent in the plant layer. These solutions 
for the determination of average velocity in cross section pertain to the special case of nonsubmerged 
vegetation, provided that h < hp.

21.4   Impact of the Development of 
Vegetation on flow conditions

An additional feature that must be considered in the analysis of the real flow conditions in a riverbed 
with a complex cross section and vegetation on flood areas is the dynamic character of the main channel 
capacity fluctuation. A schematic representation of such fluctuation is provided in Figure 21.15.

The transitory changes caused by the current include, for example, elastic deformation of plants, 
whereas seasonal changes are considered as season-specific variation of plant structures. Permanent 
vegetation-related changes include the following:

• Changes of plant diameter and structure density
• Macrostructural changes of plants, such as natural dispersion or concentration of plants
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FIGuRE 21.14 Dependence of the cylinder resistance coefficient cw,∞ from Reynolds number. (From Pasche, E., 
Turbulenzmechanismen in naturnahen Fließgewässern und die Möglichkeiten ihrer mathematischen Erfassung, 
Mitteilungen des Instituts für Wasserbau und Wasserwirtschat, Heft 52, Rheinisch-Westfälische Technische 
Hochschule, Aachen, Germany, 1984.)
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The following are regarded as permanent flow-related transformations:

• Damage caused by, for example, washing out of roots
• Structural changes caused by overshadowing or light exposure of plants
• Irreversible changes resulting from among other inclinations of plants

The concept of permanent changes created by anthropogenic factors should be interpreted as transfor-
mations of the forest stand by chopping or planting forests within the flood valley area.

Elasticity is a common feature of vegetation (Figure 21.16). In the case of hydraulic calculations, this, 
however, means an additional dependence of vegetation height on the current flow conditions (water 
level and velocity) [59]. While rejecting the assumption of fully elastic plant deformation, one should 
consider the common natural phenomenon of permanent deformation (inclination or fall) or damaging 
(breaking apart or cracking) of plant elements subject to the flow force. Permanent plant deformations 
may be estimated only on the basis of information on the pressure of the flowing water and the plant 
elasticity module.

Flow-related plant deformation is a common feature of vegetation in flood areas. It becomes even 
more complicated, if the assumption of fully elastic plant deformation is rejected, while taking into 
account the common natural phenomenon of permanent deformation (inclination or fall) or damag-
ing (breaking apart or cracking) of plant elements subject to the flow force. For analysis purposes of 
tree damage as a result of flood water flow, they may be divided into five groups (Figure 21.16) [40]. The 
extreme case of damaging must be noted here, that is the intensive washing out of the bed and creation 
of craters due to the uprooting of entire trees or bushes from the soil.

21.4.1  Impact of Seasonal Development

Seasonal (phenologic) changes of vegetation pertain to water, riverbank, and onshore plants. Physiological 
and morphological variations thereof are a response to the seasonal rhythm of climate conditions. They 
include stages of vegetative development: for example, forming and growth of leaf buds, development of 
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FIGuRE 21.15 A schematic representation of factors influencing the flow conditions.
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FIGuRE 21.16 Observed impact of flow on trees.
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leaves and underground organs, dropping of leaves and stages of generative development: forming and 
development of flower buds, flourishing, forming of seeds, spreading of seeds. In the case of onshore 
plants, various forms may be distinguished, one year plants (one year cycle), perennials (plants with a 
life-cycle of several years and withering overground elements), as well as trees and bushes which develop 
and reduce their leaf surfaces on a seasonal basis.

21.4.1.1  Impact of Seasonal Macrophyte changes on flow conditions

The problem of riverbed weed obstruction (overgrowth) is a well-known issue. In hydrology, the devel-
opment of water plants will cause seasonal changes of the flow curve. The decrease in flow velocity, 
active flow cross section, changed descending pattern of the water surface altitude, and growth of the 
flow resistance coefficient observed in connection with water-weed obstruction (immersed, buoyant, 
and floating) cause the backing up of the water surface in comparison to normal flow conditions (with-
out overgrowth) [51]. Such backing up is often referred to as vegetative.

The reduction of the active flow cross section (Figure 21.18) is associated with the seasonal growth of 
riverbed obstruction degree (Figure 21.17). This is evident particularly in the comparison of data from 
naturally weed-obstructed riverbeds and cleared during the vegetation period (Figure 21.17).

The detailed research of the Poelsbeek and Bolscherbeek (Netherlands) have allowed to determine 
the intensity of main channel weed obstruction [47]. Most of the species existent on the survey locations 
included nettle, sorrel, glyceria maxima, glyceria fluitans, trinia, and elodea canadensis. Figure 21.18 
includes the variation of the vegetation area borders in 1990 within a selected cross section and four 
chosen dates. As seen in Figure 21.18, vegetation normally exists on the slopes of the riverbed and its 
growth gradually narrows the free flow cross section.
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FIGuRE 21.17 Change in relative weed obstruction during the summer period. (From Querner, E., Aquatic Weed 
Control within an Integrated Water Management Framework, CIP—Gegevens Koninklijke Bibliotheek, Den Haag, 
the Netherlands, 1993.)
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FIGuRE 21.18 Fluctuation of vegetation areas at survey location no. 7 during the vegetation period in 1990. 
(From Querner, E., Aquatic Weed Control within an Integrated Water Management Framework, CIP—Gegevens 
Koninklijke Bibliotheek, Den Haag, the Netherlands, 1993.)
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Impact of biomass growth within the riverbed on the flow conditions is evident particularly in the 
comparison of data from naturally weed-obstructed beds and cleared during the vegetation period 
(Figures 21.17 and 21.19). The research performed by Kenel and Uehlinger [24] on the Muehlibach river 
allowed for an assessment of the impact of riverbed purification in the vegetation period (by cutting 
or removing the plants) on the value of mean velocity and the roughness coefficient. The riverbed was 
cleared in the climax of vegetation. A growth of velocity from approximately 0.1 to 0.28 m/s has been 
gained, together with the reduction of the roughness coefficient n from 0.024 to 0.07 m−1/3s.

In the course of a detailed research, attempts are made to determine the seasonal variation of the sub-
stitute sandy roughness value ks of various vegetation types; Table 21.5 [41]. The research was performed 
in the Biebrza River valley (Poland).
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TABLE 21.5 Roughness ks Values Adopted for Vegetation in the Biebrza River 
Valley (Poland) within and outside the Vegetation Period

Type of Vegetation

Absolute Roughness ks (m)

In the Vegetation Period Outside the Vegetation Period

Meadow vegetation 0.7 0.3
Sedges 1.2 0.4
Sedges (clusters) 1.2 0.5
Glycerietum maximae 1.2 0.5
Phragmitetum australis 1.2 1.2
Understorey (Caltho-Alnetum) 1.6 0.8
Forest understory 0.4 0.4

Source: Kozioł, A. and Miroslaw-Swiatek, D., Nauka Przyr. Technol., 3(3, 88), 1, 2009.
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As a result of the overgrowing of rivers with water vegetation, the flow determined with the basic 
flow curve in connection with vegetative backing up is higher than the real flow. In order to bring the 
status-flow relation to a real level, the seasonal curves method or the summertime coefficient reduction 
method can be used.

If changes in the flow curve occur in the considered watermark cross section due to its seasonal over-
growth, the status-flow relation will vary on a continual basis. In this situation, certain periods correspond-
ing with the pace of such variation are defined. For this period, the status-flow relation is determined, by 
moving from one relation to another. The current intensity curve is obtained in the form of a group of curves 
valid at a given period of time (Figure 21.20). In practice, frequently only two current curves are defined for 
the main channel (Figure 21.21): basic curve and vegetation period curve [32]. Riverbed weed obstruction in 
the river basin of Biebrza (Poland) has brought as much as 10% of flow reduction (Figure 21.21).

The summertime flow reduction coefficient kL is the quotient of the real flow in the overgrowth period 
QL against the flow read from the current intensity curve Q0 at the observed water level. This coefficient, 
enclosed in the 0 < kL ≤ 1 range, indicates the fluctuation degree of the status-flow relation due to weed 
obstruction. On the basis of these coefficients, the real flow values are defined:

 Q k QL L= 0  (21.30)
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FIGuRE 21.20 Seasonal flow curves: 1, basic curve; 2, curve at the beginning and end of the vegetation period; 3, 
curve of the transitory periods; 4, curve of the vegetation climax.
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The most frequent determining method of the kL coefficient is the finding of relations of long-term mean 
values (Figure 21.22). While using the kL coefficient, it is necessary to consider the fact that its value 
depends on the water level (Figure 21.23a). Together with the main channel filling degree, first of all the 
reduction of the kL value is observed. Thereafter, along with the further growth of the water level, the 
value of the kL coefficient begins to grow (Figure 21.23b).

In the hydrometric practice, this method is frequently used, allowing for the determination of the 
summertime reduction coefficient on the basis of water level records and water temperature measure-
ments. By incorporating the water or air temperature into this method, the varying vegetation intensity 
within a given year may be considered, depending on weather conditions.

21.4.1.2  Impact of Seasonal flood Zone Vegetation changes on flow conditions

The seasonal altering of flow conditions within flood areas, expressed with the f(T) coefficient, are a 
result of the development of low fSo(T), as well as medium and high vegetation fV(T):

 f T f T f TV So( ) = ( ) + ( )  (21.31)

Seasonal changes of the low vegetation resistance coefficient fSo(T) can be determined from the changes 
of value in the substitute sandy roughness ks for different types of vegetation. Another method involves 
the consideration of the seasonal changing of LAI of low vegetation [3]. In the case of trees and bushes, 
the seasonal fluctuation of flow conditions is mainly a result of altering leaf area (indicated with the LAI 
value). This pertains mainly to bushes, as during floods treetops remain most frequently above water. In 
the case of bushes, there is a problem with determining the ωp indicator, whereupon it is easier to use the 
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automatic leaf area assessment methods enabling the simple and repeatable determination of the LAD 
leaf area density. On the basis of research [22], the linear relation between the ωp indicator and LAD has 
been found:

 ωp aLAD=  (21.32)

On the basis of regular field measurements, the function of seasonal leaf density fluctuation may be 
determined. Figure 21.24 provides an example of the fluctuation of the LAD value of a given bush on 
Warta River flood areas within a single year.

The impact of seasonal vegetation changes is also projected on the status-flow relation of a riverbed 
affected by a high (flood) water level. The seasonal valley changes observed in the Biebrza River basin 
(Poland) cause the reduction of the main channel discharge by about 21% (Figure 21.25) [32].
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21.4.2  Impact of Long-Term Development

The analysis of the long-term impact of expanding vegetation on flow conditions is most frequently 
carried out for riverbank and onshore plants (bushes and trees). Water plants are a difficult object of 
analysis in all views apart from seasonal. The estimation of flood zone’s roughness coefficient caused 
by development, transformation, and natural succession of vegetation is an important element of the 
impact of medium and high vegetation on flow conditions [35]. By basing the flow resistance assessment 
on objectively calculated plant parameters (ks, dp, a, LAD), it is possible to forecast changes in a longer 
run. Such a forecast becomes available only because of the analysis of the possible natural succession of 
the examined land ecosystems (Figures 21.26 and 21.27) or the application of vegetation development 
models. The development models provided, for example, on forest tables have been developed to the 
widest extent for forest stands.

Forest tables describe the dynamic growth of the forest stand according to a certain mean devel-
opment model prepared on the basis of measurement data of forest stands of the relevant species. 
Tables are systematized according to habitat valuation class and adopted ageing ranges. The analysis of 
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development-related parameter fluctuation specifically for various plant species has been presented in 
a study [21]. An exemplary dependence of willow parameter fluctuation on valuation class is presented 
in Figures 21.28 and 21.29.

The development of forest stands occurs by the change in diameter and trunk spacing. This depen-
dence is additionally associated with a valuation class. Higher trunk spacing and diameter values 
achieve higher valuation classes (Ia, I, II). This results from a more intensive forest economy and better 
environmental conditions for plants. On the basis of measurement data provided by Reference 49, it has 
been proved that for the analysis of flood zone forest stands, classes Ia and I can be adopted. The param-
eters of the tables are available starting from as late as 10 years of age, so the values of the preceding 
period have to be assumed on the basis of field measurement results in Reference 48. The fluctuation of 
plant parameters may be expressed by the change in plant structure density (Figure 21.30).
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By inserting the development model of willow geometric parameters, a long-term forecast of the 
density structure fluctuation of such forest stands has been obtained (Figure 21.30). As a distinctive fea-
ture, a clear maximum density of 0.032 [1/m] of a 5-year willow structure can be observed. The further 
development of plants implies a fall of density below 0.020 [1/m]. It is also interesting that the highest 
dynamism occurs within the initial period (up to approximately 30 years), whereas any subsequent 
changes are insignificant.

By inserting the data on the fluctuation of geometrical growth parameters to the formula (21.26), it is 
possible to determine the fluctuation of the resistance coefficient value fV as a function of time. The cal-
culation results of the resistance coefficient caused by the growth of willow trees are presented in Figure 
21.29. The age-related decrease of the flow resistance is strongly associated with the valuation class. In the 
case of willow and birch forest stands, the higher classes (Ia, I, II) correlate with the smaller resistance 
values (Figure 21.29). Research of other forest stands such as oak, pine, alder, and poplar have indicated 
that the highest resistance coefficient values are to be expected in the initial phase of forest development 
(up to 10–30 years), which is associated with the dense structure of a young forest (Figure 21.31).

21.4.3   Hydrological Impacts of river Vegetation, for example, 
the effect on T-Year extreme flow events

The impact of plant vegetation on flood areas can be determined on the basis of models of vegetation 
growth dynamics adopted in Section 21.4.2.

By analyzing the example of the Biebrza River (Figures 21.26 and 21.27) within the hydraulic calcula-
tions considering the natural plant succession scenario in flood areas, the impact of vegetation-related 
weed obstruction has been determined [54]. The water surface ordinates calculated with the one-
dimensional hydrodynamic models were used with the GIS and Numeric Terrain Model technologies 
to determine the range and average flood depth. In terms of maximum flow WQ = 229 m3/s, a growth of 
water levels on flood areas has been achieved by approximately 80 cm (from 0.65 to 1.44 m), and in terms 
of average flow SQ = 70 m3/s, the growth amounted to about 20 cm (from 0.49 to 0.68 m). The range of 
flooding on the analyzed river section without embankments grew in terms of the maximum flow by 
approximately 92% (or 86 km2) and in terms of average flow by 118% (or 52 km2).

Another example is the analysis of a section of the Vistula river in its surroundings based on a two-
dimensional Rismo modeling system [23]. An important element affecting the high water level riverbed 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 10 20 30 40 50 60
t (years)

D
v (

1/
m

 )

FIGuRE 21.30 Willow structure density fluctuation forecast.



Impact of the Development of Vegetation on Flow Conditions and Flood Hazards 443

in this section is the presence of trees on flood areas and dense willow clusters on banks and the isles 
located within the main channel. The analysis of fluctuation of geometrical growth parameters of wicker 
is presented in Section 21.4.2 (Figure 21.30). On this basis, the calculation scenarios have been adopted. 
By means of numeric simulation results of maximum flow Q = 6120 m3/s, a list of results generated by 
the water surface calculation system of all scenarios has been created for the cross-section at kilometer 
no. 371 [23]. This allowed for tracing of the temporal fluctuation of the water surface system due to over-
growth and development of wickers on isles (Figure 21.32). The modeled wicker isle overgrowth process 
has contributed to the backing up of the water surface system by above half a meter. The maximum 
backing up caused by the vegetation reached 64 cm and it occurred after 10 years. Thereafter, a fall of 
the water surface ordinate occurs, reaching 11 cm after 20 years (down to 53 cm). The high impact of isle 
vegetation is quite interesting due to the fact that they cover a surface of a mere 15.7 ha, which is approxi-
mately 10% of the entire high water level riverbed area, whereas the main channel occupies 42.5 ha, 
which is 26.7%. This confirms the important problem of the impact of vegetation, and particularly of 
its uncontrolled development, on the reduction of throughput capacity of a high water level riverbed.
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21.4.4  environmental Impacts of river Vegetation

Water and swamp habitat vegetation create a complex in the transitory zone between water and land eco-
systems. Through this complex, the transport and accumulation of allochtonous and autochtonous mat-
ter take place. In the course of the performed research, the significance of water, riverbank, and meadow 
vegetation has been proved. From the perspective of the environmental impacts of river vegetation, bank 
zone vegetation plays a particular role. The impact of riverbank strip vegetation may be brought down 
to embankments, riverbed temperature and brightness level adjustments, advantageous impact on water 
organisms, and the improvement of water quality [37]. As the most important functions of riverbank 
strips for the water environment and environmental protection, the following should be mentioned:

• Protection of banks and land from erosion and improvement of their stability by ground rein-
forcement with plant root systems and flow reduction, as well as wave suppression by overground 
plant elements

• Stabilization of bank collapsing by means of low vegetation, protection against the transporting 
of collapsed land on banks and flood zones by flood waters

• Increase in flow resistance and backing up of flood waters, and, as a consequence, higher water 
retention in the river valley

• Overshadowing of the river and thus reduction of its temperature, coupled with the rising of the 
oxygen saturation limit, its absorption, and content

• Improvement of water quality and self-purification capacity of the river—reduction of light expo-
sure and therefore the suppression of the excessive growth of algae, as well as, on the other hand, 
the increase in entirely or partially underwater vegetation collecting pollutants from the water 
and intensifying the sedimentation process [1]

• Differentiating of thermal and light conditions in rivers by the appropriate disposition and interval 
length in the riverbank strips, creating both light-exposed and warmer, as well as darker and colder, 
river sections (which enriches the abiotic conditions, and thus the variety of flora and fauna [36])

• Creation of a sequence of biotopes for permanent or periodical fauna and its prey, shelter, leth-
argy, and hatching locations

• Enabling connection and exchange between biotopes located mainly in the bank areas
• Creation of shelter for species of vertebrates, birds, insects, and other animals and numerous 

plants threatened by extinction
• Formation of a local microclimate and actions influencing the reduction of evaporation on fields 

located near to riverbanks, water and land thermal specifics, as well as the intensity of wind
• Creation of a protective zone between the river and agricultural land within the valley, in order to 

decrease the flow of water into local pollution by retaining land erosion products and chemicals within 
the vegetation strip, as well as the absorption of pollutants dissolved into water via the rootstock [45]

The functions of riverbank strips are obviously diverse according to the location and plant develop-
ment conditions. The pollutant purification function is the highest valued one (Figure 21.1). The well-
developed rootstock and rhizome system provide a large-surface, the environment of which is inhabited 
by microorganisms contributing actively to the purifying of water. According to research performed 
in the United States, it has been proved that riverbank strips are capable of retaining above 80% of 
sediments reaching the riverbeds from surface erosion [37]. It has also been proved that such vegetation 
zones may reduce the nitrogen concentration by 78%–98% in surface waters and 68%–100% in ground 
waters. Tanner [55] carried out a nitrogen elimination efficiency comparison in systems with and with-
out hydrophytes. According to this study, the impact of plants is particularly visible in terms of total 
nitrogen. Hydrophytes primarily contribute to the process of nitrification and denitrification, effecting 
the transformation of ammonium nitrogen into gaseous nitrogen (Figure 21.33).

Another research has also proved the impact of the vegetation strip width on the reduction of plant 
nutrient content [37]. In the case of a riverbank strip of 1.5 m width, the reduction of total phosphorus 
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in surface water amounted on average to approximately 6%, whereas in the case of a 9 m strip, it reached 
93%. On the other hand, the research performed in the river basin of the Maryland River, in the case 
of 19 m wide riverbank strips, has indicated a reduction of 83% and 81% of nitrogen and phosphorus 
content in water, respectively [37]. According to the research performed by [45], most of the nitrogen 
reaching the riverbank strips is retained within the first 10 m of their width (Figure 21.34). While select-
ing the strip width, one should consider the basic rules of operation of a water and land ecosystem, so as 
to avoid hindering of the downflow of ice and prevent it from increasing the flood risk.

Fischer and Fischenich [14] presented general recommendations for corridor restoration and 
management:

• Corridors that maintain or restore natural connectivity are better than those that link areas his-
torically unconnected.

• Continuous corridors are better than fragmented corridors.
• Wider corridors are better than narrow corridors.
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• Riparian corridors are more valuable than other types of corridors because of habitat heterogene-
ity and availability of food and water.

• Several corridor connections are better than a single connection.
• Structurally diverse corridors are better than structurally simple corridors.
• Native vegetation in corridors is better than non-native vegetation.
• Practice ecological management of corridors; burn, flood, open canopy, etc., if it mimics naturally 

occurring historical disturbance processes.
• Manage the matrix with wildlife in mind; apply principles relative to the native plant and animal 

communities in the area.

While analyzing the impact of macrophytes on the improvement of the environmental status of riv-
ers, one should also remember the possibilities of accumulation of heavy metals by macrophytes. 
Macrophytes have an advanced mechanism of active (selective) absorption of specific heavy metals. 
Metals are most commonly collected and used for vegetation purposes (copper and zinc). Passively 
absorbed metals include lead, cadmium, molybdenum, and nickel [60]. These elements do not par-
ticipate in the plant metabolism and are thus unnecessary for their development; however, they may 
be at times strongly concentrated in macrophytes [7]. The absorption of heavy metals by macrophytes 
depends on numerous local factors (mineral and organic sediment content, pH and environment tem-
perature). Nevertheless, the accumulation of heavy metals in water and riverbank plants is generally 
higher, compared with their accumulation in onshore vegetation.

21.5  Summary and conclusions

Natural river floodplains have vital ecological functions in riverine landscapes. Effects of vegetation 
on flow are significant and cause reduction in the channel capacity. Generally, nonsubmerged and sub-
merged conditions are distinguished, since flow phenomena become more complicated when the flow 
depth exceeds the height of plants. The correct assessment of the resistance coefficient and the descrip-
tion of phenomena associated with flows in riverbeds of various roughness, caused among others by the 
presence of vegetation, causes a lot of difficulties.

An additional feature, which must be considered in the analysis of the real flow conditions in a river-
bed with vegetation on flood areas, is the dynamic character of the changes of vegetation. The transitory 
changes caused by the current include, for example, elastic deformation of plants, whereas seasonal 
changes are considered as season-specific variation of plant structures.

Water vegetation also create a complex in the transitory zone between water and land ecosystems. 
Through this complex, the transport and accumulation of allochtonous and autochtonous matter take 
place. In the course of the research performed, the significance of water, riverbank, and meadow vegeta-
tion has been proved. From the perspective of the environmental impacts of river vegetation, bank zone 
vegetation plays a particular role.

This chapter provides an overview of methods for determining the capacity of vegetation troughs. The 
analysis includes stiff and flexible vegetation. The chapter also presents an assessment of the develop-
ment of impact of vegetation on flow resistance.
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22.1  Introduction

Regional flood frequency analysis (RFFA) is widely used to estimate design floods at ungauged or poorly 
gauged catchments. The success of any RFFA depends on the quantity and quality of gauged streamflow 
data availability to form homogeneous regions. An RFFA technique is intended for quick design flood 
estimation where the resolution of a complete streamflow hydrograph is not justified due to time and bud-
getary constraints. An RFFA method consists of three principal steps (as shown in Figure 22.1): (1) data 
preparation, selection of a set of gauged catchments, streamflow, climatic and catchment characteristics 
data preparation, and at-site quantile estimation; (2) formation of regions and formation of homogeneous 
regions from the available streamflow gauging stations; and (3) development of regional estimation mod-
els, and derivation of prediction equations to estimate flood statistics and quantiles.

22.2  Basics of regional flood frequency analysis

RFFA facilitates extrapolation of flood characteristics information from gauged to ungauged catch-
ments. RFFA attempts to compensate for insufficient temporal characterization of large flood behavior 
by exploiting the spatial coherence of hydrological variables. RFFA can be used to enhance the reliabil-
ity of quantile estimates at gauged sites or to obtain quantile estimates at ungauged sites. In an index 
type of RFFA technique, it is assumed that a region is a set of gauging sites whose flood frequency 
behavior is homogeneous in some quantifiable manner. A homogeneous region may be defined as a 
group of sites whose standardized flood frequency curves are similar to within a certain margin of 
sampling variability.

Preface

Regional flood frequency analysis (RFFA) is essentially a data-based approach that attempts to 
substitute space for time to enable design flood estimation at sites with little or no recorded flood 
data. An RFFA method consists of three principal steps: (1) data preparation, (2) formation of 
regions, and (3) development of regional estimation models.

This chapter intends to provide a theoretical understanding of various RFFA techniques to 
researchers and practicing hydrologists. We have attempted to cover essential aspects of RFFA, 
which include (1) data requirements, (2) selection of probability distributions, (3) formation 
of regions, (4) various forms of regional estimation equations, (5) validation of RFFA models, 
(6) RFFA in arid regions, and (7) impact of climate change on RFFA.

We would like to acknowledge the anonymous reviewers for making constructive comments 
and suggestions, which have improved the materials presented in this chapter. We would also like 
to acknowledge the members of our family for supporting us in writing this chapter.
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Cunnane [16,17] notes that even with RFFA techniques that make no explicit assumptions about 
homogeneity, it must be expected that the gains in using regional rather than at-site estimation will 
be greater if the region of interest is homogeneous. In the presence of extreme regional heterogeneity, 
at-site estimates are preferable to regional estimation [43,50]. This is particularly true for a catchment 
whose behavior differs most from the average catchment of the region [16]. It has been found that small 
departures from perfect homogeneity do not appreciably reduce the beneficial aspects of RFFA [50,51].

In defining homogeneous regions, a trade-off needs to be made between including more information 
from additional catchments and maintaining a high degree of similarity. If more sites are added to a 
region, more knowledge about flood characteristics is available; however, if the added sites are hydrolog-
ically dissimilar, the additional information does not result in more precise flood quantile estimation.

22.3  Data requirements and Data Preparation

The challenge in preparing a database for developing an RFFA technique lies in maximizing the amount 
of useful information contained in the flood data, while minimizing the noise in the data, which often 
are present in varying degrees in streamflow data. In any RFFA study, the preparation of the data-
base demands significant resources, time, and expertise. The development of RFFA technique in any 
given region largely depends on the quantity and quality of gauged streamflow data on which the RFFA 
is built on. In relation to quantity, there should be a sufficient number of gauged catchments avail-
able in the region to capture the hydrological and catchment variability existing within the region. 
The selected catchments should represent adequate spatial coverage. In a region with highly variable 
hydrology, a greater number of gauged catchments should ideally be available to form the region. The 
selected catchments should not be excessively large sized as RFFA techniques are primarily intended for 
application to small- to medium-sized ungauged catchments. For example, in Australia an upper limit 

1. Data preparation
a. Selection of gauged catchments
b. Streamflow data checking for gross error
c. Checking for rating curve extrapolation error
d. Gap filling in the annual maximum flood (AMF) series
e. Checking for outliers in the AMF series
f. Checking for trends in the AMF series
g. At-site flood quantile estimation/estimation of mean annual flood

2. Formation of homogeneous regions 
a. Identification of discordant sites
b. Assessment of regional heterogeneity

3. Development of regional estimation models
a. Selection of model form
b. Estimation of model parameters
c. Validation of the developed regional estimation model

FIGuRE 22.1 Steps in the development of an RFFA technique.



454 Handbook of Engineering Hydrology

of 1000 km2 has often been recommended [37]. The individual site should have enough record length 
to generate at-site flood quantiles with an acceptable level of accuracy as at-site flood quantiles are an 
important element in any RFFA. A shorter record length produces at-site flood quantiles being affected 
by a high degree of sampling variability. Furthermore, a region should have enough number of sites, so 
that it can deliver statistically meaningful prediction equations as well as an opportunity to carry out 
independent validation of the developed RFFA technique. Hence, the selection of a cutoff record length 
is an important step in any RFFA study; the record length should be as long as possible while retaining 
enough sites in the region.

The quality of streamflow data is equally important as “noisy” data do not add much useful infor-
mation, but rather this distorts regional statistics. Streamflow data can suffer from a wide variety of 
errors. The catchment condition should remain relatively unaltered during the period of streamflow 
data availability. A catchment condition can change dramatically due to factors such as the clearing of 
forest, construction of a dam, urbanization, and change of agricultural practice. Another important 
source of error in streamflow data arises from rating curve extrapolation error [29]. Streamflow gauges 
being affected by a high degree of rating curve extrapolation error can be identified with some extra 
efforts such as examination of the rating history of the gauging station. The presence of too many gaps 
in the recorded streamflow data makes some of the gauged catchments unsuitable for inclusion in the 
RFFA model data set. An appropriate method such as regression analysis should be adopted to infill the 
gaps in the streamflow data series where possible. Comparison of daily and monthly maximum flow 
series often assists in filling some of the existing gaps in the annual maximum flood series data [29]. The 
streamflow data should be checked for trends. The impact of climate variability can often be minimized 
by selecting a longer period of data representing an equal number of dry and wet episodes; however, the 
impact of climate change is more difficult to deal with, for which nonstationary RFFA methods need to 
be adopted [49].

22.4   Selection of Probability Distribution for 
at-Site flood Quantile estimation

The selection of an appropriate probability distribution and associated parameter estimation procedure 
is of prime importance in RFFA as this can affect the accuracy of derived at-site flood quantiles. This 
subject has received notable attention by researchers [6,16,30,54,56,60,77,83]. Cunnane [16] summa-
rized the distributions commonly used in hydrology, mentioning 14 probability distributions.

The selection of an appropriate distribution for a particular application cannot normally be made on 
a physical basis. Cunnane [16] noted that the distribution can only be supported by empirical data, and 
thus empirical suitability plays a much larger role in distribution choice than a priori reasoning [16]. 
WMO [86] reports that in many countries the selection of an annual maximum distribution is actually 
not made in an objective manner, no particular method of parameter estimation is preferred, and the 
graphical method is as frequently or even more used as any other method.

In some countries, a common distribution has been chosen to achieve uniformity between differ-
ent design agencies. The Interagency Advisory Committee on Water Data [38] and the Institution of 
Engineers Australia [37] recommended the log Pearson type 3 (LP3) distribution for use in United 
States and Australia, respectively. Other distributions that have received considerable attention include 
extreme value types 1, 2, and 3; generalized extreme value; Wakeby; generalized Pareto, two-component 
extreme value, and log-logistic.

The selection of an appropriate method of estimating the parameters of a given probability distri-
bution for a given data set is important. There are various methods for this, including the methods 
of moments (MOM), maximum likelihood (MLE), L moments, LH moments, and Bayesian methods. 
Although the MOM is widely adopted in practice, it has a serious limitation, that is, this gives equal 
weight to small values that do not constitute floods and to the larger observations. Also, in the MOM, the 
higher moments (e.g., coefficient of variation and skewness) are much affected by outliers and extremes 
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in the data series. To overcome the limitations associated with the MOM, method of L moments has 
been proposed that are less affected by extremes in the data series [33,35]. The method of LH moments 
provides more weighting to the larger values in the flood series and hence often provides better fits to 
the upper tail of the distribution [84].

As an alternative to the traditional MOM and MLE, Bayesian methods have also been proposed 
where both the likelihood function and the parameters to be estimated are described by probability 
distributions [30,43–46,48]. One of the limitations of the Bayesian approach is that complex models 
cannot be processed in a closed form because of the difficulty in computing the normalization factor. In 
such cases, simulation-based Monte Carlo techniques such as the Markov chain Monte Carlo (MCMC) 
approach using the Metropolis algorithm is used [47].

22.5  Method of L Moments

Hosking [33] defined L moments to be linear combinations of the probability-weighted moments 
(PWMs), introduced by Greenwood et al. [24]. For a random variable X, PWMs may be defined as
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where p, r, and s are real numbers. When r = s = 0, Equation 22.1 represents the ordinary product moment 
about the origin of order p. L moments are defined by
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where Pr
*( )⋅  is the rth shifted Legendre polynomial. L moments may be expressed in terms of PWMs:

 
λ βr r k k

k

r

p+

=

=∑1

0

,
*  (22.3)

where βk = M1,k,0

and

 
p

r

k

r k

k
r k

r k
,

* ( )= −









+









−1  (22.4)

L moment ratios, analogous to product moment ratios, are the following quantities:
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L moments are more convenient than PWMs in that they are more easily interpretable as measures of 
distributional shape. For example, λ1 is the mean of the distribution, a measure of location; λ2 is the 
measure of scale; and τ3 and τ4 are measures of skewness and kurtosis, respectively. L Cv = τ = λ2/λ1 is 
analogous to the conventional coefficient of variation Cv.

The main advantages of L moments (over conventional moments) are that L moments, being linear 
functions of the data, are subject to less bias, suffer less from the effects of sampling variability, and are 
more robust than conventional moments to extremes in the data. Conventional moment estimators 
such as the sample variance and sample coefficient of skewness require squaring and cubing the obser-
vations, respectively, which cause them to give greater weight to the observations far from the mean, 
thus introducing a substantial bias and variance [33,77].
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The L moments are defined previously for a probability distribution, but in practice, these are gener-
ally estimated from a finite sample. Given x1 ≤ x2 ≤ x3 ≤ … ≤ xn is a finite ordered sample, the unbiased 
estimator lr of λr is given by
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The distributional parameters θ1, θ2,…,θp are related to λ1, τ, τ3,…,τp and are estimated by the corre-
sponding sample L moments. From many research studies [56,64], it has been found that index flood 
procedures, coupled with L moments, yield robust and accurate flood quantile estimation.

Hosking and Wallis [34] proposed three statistics based on L moments to be used in RFFA: (1) a 
discordancy measure D that identifies the sites that are grossly discordant with the data set as a whole, 
(2) a heterogeneity measure H that is used to assess the degree of heterogeneity in a proposed region, and 
(3) a Z statistic that is used to judge the goodness of fit of a candidate probability distribution for a given 
region. Hosking and Wallis [34] suggested that a region should be considered “acceptably homogeneous” 
if H < 1, “possibly heterogeneous” if 1 ≤ H < 2, and “definitely heterogeneous” if H ≥ 2. The criteria H = 1 
and H = 2, though somewhat arbitrary, were found to be useful by Hosking and Wallis [34] in identifying 
homogeneous regions. The test is based on the assumption that the data are independent both serially and 
between sites, an assumption unlikely to be exactly satisfied in practical situations. The amount of serial cor-
relation likely to exist in annual flood series is small and unlikely to affect the reliability of quantile estimates.

22.6  Selection of Predictor Variables in rffa

In an RFFA study, the initial choice of climatic and physical catchment characteristics (catchment char-
acteristics) is important. There is, however, no entirely objective method for doing this. Many catchment 
characteristics are highly correlated, and the inclusion of highly correlated variables in prediction equations 
does not add much new information; it can also cause problems in statistical analysis (e.g., multicollinearity).

Most commonly adopted catchment characteristics used in RFFA studies are listed in Table 22.1. 
There is no entirely objective method of selecting catchment characteristics for an RFFA study. However, 
the following guidelines may help in making a reasonable selection [65]:

 1. The characteristics should have a plausible role in flood generation.
 2. They should be unambiguously defined.
 3. Characteristics should be easily obtainable. When a simpler characteristic and a complex one are 

correlated and have similar effects, the simpler characteristic should be chosen.
 4. If a derived/combined characteristic is used, it should have a plausible physical interpretation.
 5. The selected characteristics should not be highly correlated because this often results in unstable 

parameters in regression analysis.
 6. The prediction performance of a characteristic in other RFFA studies in similar hydrological 

regions should be taken into account as this will give some general idea regarding the importance 
of a characteristic.

From the initially selected predictor variables, a number of statistical criteria can be used to select the 
final set of predictor variables in the estimation model. These criteria include Bayesian information 
criterion (BIC), Akaike information criterion (AIC), and Anderson–Darling criterion [32]. Catchment 
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area often comes as the principal predictor variable followed by design rainfall intensity of a certain 
duration and average recurrence interval (ARI). Other predictor variables are often included in the 
model to enhance the accuracy of model prediction.

22.7  formation of regions in rffa

22.7.1  fixed region Based on administrative Boundary

In RFFA, regions can be formed in geographical or catchment attributes space as illustrated in 
Figure 22.2. In many previous applications, regions have been defined based on state/political bound-
aries. In this approach, homogeneous regions are spatially contiguous and are often defined on the 
basis of administrative, political, or geographical boundaries. For example, Matalas et al. [55] identi-
fied 14 homogeneous geographical regions in the United States. Panu et al. [63] divided the island of 
Newfoundland, Canada, into two geographical regions. In some cases, these regions have been sup-
ported by the plot of the regression residuals [39,79]. The problem with this type of fixed regions is that 
at state/regional boundaries, two different methods can provide quite different flood estimates. Merz 
and Bloschl [53] and Skoien et al. [74] showed that geographical proximity is a better predictor in RFFA 
than other catchment attributes.

22.7.2  regions in catchment characteristics Data Space

Regions can be identified in catchment characteristics data space using cluster analysis [1,7,10,26, 
57,61,79,80] and many other multivariate statistical techniques such as Andrews curves [59], principal 
component analysis [65], and canonical correlation analysis [4,61]. One of the limitations with this type 

TABLE 22.1 Most Commonly Used Climatic and Catchment 
Characteristics Used in RFFA

Category Name of Predictor Variable

Climatic characteristics Rainfall intensity with an 
appropriate duration and ARI
Mean annual rainfall
Mean annual snowfall
Mean annual evaporation
Mean annual number of rain days

Morphometric characteristics Catchment area
Main stream slope
Stream density
Main stream length
Elongation ratio
Circularity index
Bifurcation ratio
Stream order
Stream junction
Average land slope

Catchment cover and land use characteristics Percent forest cover
Percent urbanization

Geological and soil characteristics Soil type
Soil infiltration index

Storage characteristics Surface storage index
Location characteristics Latitude

Longitude
Distance from coast
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of region is that a correct method of assigning an ungauged catchment to a “homogeneous” region needs 
to be formulated, which is often problematic. If the ungauged catchment is assigned to the wrong region/
group, the resulting flood estimation is likely to be associated with a high degree of error.

22.7.3  cluster analysis

Cluster analysis is often adopted for identifying groups in data. It puts a set of objects into a set of 
mutually exclusive and exhaustive groups; objects in a group are relatively similar to one another, while 
objects in different groups are relatively dissimilar.

In cluster analysis, standardization of the data is recommended because differences in the units used 
for measuring different attributes can arbitrarily affect the similarities among objects. Standardization 
also makes attributes contributing more equally to the similarities among objects. The following stan-
dardization function, which gives zero mean and unit variance, is commonly used in cluster analysis:
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where
Zij is the standardized value for jth case of the ith variable
Xij is the corresponding original value
X̅i and si are, respectively, the mean and standard deviation of the ith variable

Clustering methods may be divided into two main groups: hierarchical and optimization. Hierarchical 
methods consist of two classes: (1) the agglomerative method, which proceeds by a series of successive 
fusions of the n individuals into groups and (2) the divisive method that separates the n individuals suc-
cessively into finer groupings. The optimization method produces a partition of the individuals for a par-
ticular number of groups, by either minimizing or maximizing some numerical criterion. The hierarchical 
methods represent clusters by a tree called dendrogram. Of all the methods, agglomerative hierarchical 
methods are most widely used. There are several agglomerative hierarchical techniques:

• Between-groups linkage or unweighted pair-group method using arithmetic averages. This 
defines the distance between two clusters as the average distance between all pairs of cases, the 
pairs being formed from cases in each cluster.

Regions in RFFA

Regions in geographical space Regions in catchment attributes space

Fixed regions ROI Cluster analysis ROI

Geophysical
boundary

Administrative
boundary

FIGuRE 22.2 Methods of forming regions in RFFA.
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• Within-groups linkage. This combines clusters, so that the average distance between all cases in 
the resulting cluster is as small as possible.

• Nearest neighbor or single linkage. Here, the distance between two clusters is the distance 
between their two closest points.

• Farthest neighbor or complete linkage. Here, the distance between two clusters is the distance 
between their two farthest points.

• Ward’s method. In this method, the two clusters that are merged are those that result in the 
smallest increase in the overall sum of the squared within-cluster distance.

The problem in selecting a linkage method for a given application is that different methods, applied to 
the same data set, often produce significantly different groupings. In order to obtain meaningful results, 
it seems to be appropriate to use several methods with the expectation that, if any natural groupings 
exist in the data, most of the methods will result in almost similar groupings.

A resemblance coefficient is used to measure the degree of similarity/dissimilarity between each pair of 
objects. Several resemblance coefficients have been proposed and use of different coefficients may lead to 
different groupings with the same data matrix. The difference in results arising from using different resem-
blance coefficients may be reduced to some extent by using the standardized data matrix. The best pos-
sible options seem to be using standardized data matrix and several resemblance coefficients and examine 
how much difference is found in the obtained groupings. If natural groupings do exist in the data, several 
methods will give similar results. The squared Euclidean distance and cosine coefficients have been found 
useful in hydrology by other investigators [59,65].

22.7.4  region of Influence approach

Since hydrological characteristics do not change abruptly across state boundaries, it is desirable to avoid 
fixed boundaries in the formation of region. Regionalization without fixed boundary was performed by 
Acreman and Wiltshire [2], and based on their research, the region of influence (ROI) approach was 
introduced by Burn [8,9] where each site of interest (i.e., catchment where flood quantiles are to be esti-
mated) has its own region. This way the defined regions may overlap and gauged sites can be part of 
more than one ROI for different sites of interest. The great advantage of the ROI approach is that it is 
not bounded by geographical regions often based on political boundaries such as state lines, and it thus 
avoids discontinuities at the boundaries of regions. In the ROI approach, a region can be formed based 
on the proximity in geographical or catchment characteristics space. The ROI approach was enhanced by 
adding a hierarchical method by Zrinji and Burn [88]. The ROI approach has been adopted in the United 
Kingdom [36,40,41] and in Australia [21,27,32,67] for RFFA.

22.8  assessment of the Degree of Homogeneity

Once a region is proposed, it is necessary to check its degree of regional heterogeneity. The degree of 
heterogeneity of a proposed region is generally judged on the basis of a dimensionless coefficient of the 
annual maximum flood series, such as the coefficient of variation, coefficient of skewness, or similar 
measures [1,11,13,18,34,52,85]. The relative power of a number of heterogeneity tests has been inves-
tigated by Viglione et al. [82]. The heterogeneity measure by Hosking and Wallis [34], based on the L 
moments, is widely used in RFFA.

22.9  Probabilistic rational Method

The rational method is often regarded as a deterministic representation of the flood generated from an 
individual storm and is generally applicable to only small catchments up to about 25 km2. However, its 
statistical form known as the probabilistic rational method (PRM) may be regarded as a form of RFFA 
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method, with catchment area and design rainfall intensity as predictor variables, and is applicable to 
much larger catchments up to maximum areas used in its derivation. In the PRM, the peak flow for a 
selected ARI is estimated from an average rainfall intensity of the same ARI. The central component 
of the PRM is a runoff coefficient; the use of this coefficient involves a simple linear interpolation over 
the geographic space between the nearest contour lines of the runoff coefficients, which assumes that 
geographical proximity is a surrogate for hydrological similarity, an assumption that is unlikely to be 
satisfied in many situations.

The PRM is represented by

 Q C I AY Y tc Y= 0 278. ,  (22.9)

where
QY is the peak flow rate (m3/s) for an ARI of Y years
CY is the runoff coefficient (dimensionless) for an ARI of Y years
Itc,Y is the average rainfall intensity (mm/h) for a design duration equal to the time of concentration 

tc (h) and an ARI of Y years
A is the catchment area (km2)

The runoff coefficient CY is estimated from the frequency analysis of flood peaks of the gauged catchments 
and design rainfall intensity of selected duration and the same ARI. Runoff coefficients are then plotted 
for the region for a reference ARI such as C10. An example is shown in Figure 22.3 for eastern New South 
Wales in Australia. The value of CY can then be estimated from CY = FFY × C10 where FFY is frequency factor 
for a given ARI and C10 is the frequency factor for 10-year ARI. The FFY values are derived from the results 
of the flood frequency analysis of the gauged catchments in the region. As an example, the values shown in 
Table 22.2 were derived from 107 gauged catchments in New South Wales in Australia [68].

The design rainfall intensity Itc,Y is associated with time of concentration tc. There are several equa-
tions available that can be used to estimate tc. It is important that the same equation be used in the 
derivation of the runoff coefficients and during its application. The following equation was suggested in 
Australian Rainfall and Runoff [37], which was also adopted by Rahman et al. [68]:

 t Ac = 0 76 0 38. .  (22.10)

where
tc is the time of concentration (h)
A is area of catchment (km2)

Although PRM is widely used in practice due to its simplicity, it has several limitations. The isopleths 
of the runoff coefficient ignore the existence of watercourses. Rahman et al. [68] found that quantile 
regression technique (QRT) is preferable to PRM for New South Wales catchments in Australia.

22.10  Index flood Method

The key assumption in the index flood method [18] is that the distribution of floods at different sites 
within a homogeneous region is the same except for a site-specific scaling factor, which is called the 
index flood. In practice, mean or median annual maximum flood is generally taken as the index flood. 
Homogeneity with regard to the index flood relies on the concept that the standardized flood peaks 
from individual sites in the region follow a common probability distribution with identical parameter 
values. The index flood method had been criticized on the grounds that the coefficient of variation 
of the flood series Cv may vary approximately inversely with catchment area, thus resulting in flatter 
flood frequency curves for larger catchments. This had particularly been noticed in the case of humid 
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FIGuRE 22.3 An example map of runoff coefficients (C10) for the state of New South Wales in Australia. (From 
Rahman, A. et al., Regional flood methods, Technical Report, Engineers Australia, Canberra, Australian Capital 
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catchments that differed greatly in size [5,70]. Since the introduction of L moments based index flood 
method [34], this has become a standard RFFA method in many countries. Various aspects of the index 
flood method have been widely researched [4,11,12,66,78].

In the index flood method, a flood quantile is estimated using the following equation:

 QT = MAF × ZT (22.11)

where
QT is the T-year flood quantile
MAF is the mean annual flood in m3/s
ZT is the regional growth factor for T-year flood

The MAF is estimated from the prediction equation developed for a given region where MAF is expressed 
as a function of easily measurable climatic and catchment characteristics such as catchment area, rainfall 
intensity, and stream density. The regional growth factors for various ARIs are estimated for a homoge-
neous region and are assumed to be applicable to all the catchments in the homogeneous region.

22.11  Quantile regression Technique

United States Geological Survey (USGS) proposed a QRT [81] where a large number of gauged catch-
ments are selected from a region and flood quantiles are estimated from recorded streamflow data, 
which are then regressed against catchment variables that are most likely to govern the flood generation 
process.

The QRT can be expressed as follows:

 Q aB C DT
b c d= …  (22.12)

where
B, C, D, … are catchment characteristics variables
QT is the flood magnitude with T-year ARI (flood quantile)
a, b, c, … are regression coefficients

In most practical applications of the QRT, Equation 22.12 is linearized through a logarithmic 
transformation:

 log(QT) = log(a) + blog(B) + clog(C) + ⋯ (22.13)

This method is not based on a constant coefficient of variation (Cv) of annual maximum flood series in 
the region like the index flood method. It has been noted the QRT can give design flood estimates that 
do not vary smoothly with ARI; however, hydrological judgment can be exercised in situations such as 
these when flood frequency curves need to be adjusted to increase smoothly with ARI.

The coefficients a, b, c, … of Equation 22.13 are traditionally estimated by ordinary least squares (OLS) 
regression. But in order for the OLS estimator to be statistically efficient and robust, the annual maximum 

TABLE 22.2 Frequency Factor Values (FFY) for 
Eastern New South Wales (Australia)
ARI (years) 2 5 10 20 50 100
FFY 0.37 0.73 1.00 1.20 1.45 1.58

Source: Rahman, A. et al., Regional flood methods, 
Technical Report, Engineers Australia, Canberra, Australian 
Capital Territory, Australia, 2012.
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flood series in the region must be uncorrelated; all the sites in the region should have equal record length 
and all estimates of T-year events have equal variance. Since the annual maximum flow data in a region 
do not generally satisfy these criteria, the assumption that the model residual errors in OLS are homosce-
dastic is violated, and the OLS approach can provide much distorted estimates of the model’s predictive 
precision (model error) and the precision with which the regression coefficients are estimated.

To overcome the previous problems associated with the OLS, Stedinger and Tasker [76] proposed 
the generalized least squares regression (GLSR), which can result in remarkable improvements in the 
precision with which the coefficients of regional regression models can be estimated, in particular when 
the record length varies widely from site to site. In the GLSR, the assumptions of equal variance of the 
T-year events and zero cross-correlation for concurrent flows are relaxed. This has been developed and 
enhanced by a number of researchers [25,31,32,80]. The GLSR accounts for correlated flood data and 
different record lengths and also distinguishes between sampling error and model error. Another posi-
tive aspect of the GLSR is that it allows for the development of a better uncertainty analysis framework 
in RFFA.

22.12  Parameter regression Technique

In the parameter regression technique (PRT), the parameters of a particular probability distribution 
are regressed against the catchment characteristics similar to the QRT [27,32]. Here, both the OLS and 
generalized least squares (GLS) methods can be used to develop the prediction equations for the mean, 
standard deviation, and skewness of the annual maximum flood series [32]. These equations are then 
used to predict the mean, standard deviation, and skewness of annual maximum flood series for an 
ungauged catchment to fit a particular probability distribution. This fitted probability distribution can 
then used to estimate the flood quantiles for the ungauged catchment.

22.13  Validation of an rffa Method

An RFFA method needs to be independently validated before it can be recommended for practical appli-
cation for any region. The most commonly used validation methods are as follows: (1) One is split-sam-
ple validation where 10% or 20% of the catchments are randomly selected as test catchments; prediction 
equations are then developed based on the remaining 90% or 80% of the catchments (called model 
catchments), which are finally applied to the independent test catchments to estimate the most likely 
uncertainty associated with the regional prediction equation. (2) Another is leave-one-out (LOO) vali-
dation where one catchment is selected as a test catchment and the remaining catchments are used as 
model catchments. The procedure is repeated until all the catchments have been tested independently. 
(3) Another method is Monte Carlo cross validation (MCCV) where different proportions of catchments 
are selected as test catchments (e.g., 10%, 20%, 30%, …) and regional prediction equations (developed 
based on the 90%, 80%, 70%, … model catchments) are tested on them; the procedure is repeated many 
times in a random fashion to assess the model uncertainty. Further details on MCCV can be found in 
Song Xu and Zeng Liang [75] and Haddad et al. [28].

22.14  rffa Methods Based on artificial Neural Networks

Artificial neural networks (ANNs) are regarded as universal approximators and have been widely 
applied to a wide range of hydrological problems, such as rainfall–runoff modeling and hydrologic fore-
casting, but there have been relatively fewer applications of ANNs to RFFA problems. Examples can be 
found in Muttiah et al. [3,19,58,71–73]. The ANNs can derive the underlying model structure between 
the inputs and outputs without the prespecification of the model by the user, and hence, ANNs are 
regarded as model-free techniques. ANNs tend to over fit the data and hence the outputs from ANN-
based RFFA models need to be examined in relation to hydrological significance.
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22.15  rffa in arid regions

Arid regions are characterized by low rainfall and high evapotranspiration. The ratio of annual pre-
cipitation (P) to annual potential evapotranspiration (PET) can be taken as an aridity index resulting 
in hyperarid region with P/PET < 0.03, arid region with 0.03 < P/PET < 0.2, and semiarid region with 
0.2 < P/PET < 0.5. Due to limited availability of recorded streamflow data, it is rather difficult to derive 
the RFFA methods for the arid regions. One of the most comprehensive RFFA studies in the arid region 
was presented by Farquharson et al. [23] that developed an index flood approach using data from 162 
catchments from Northwest Africa, Iran, Jordan, Saudi Arabia, Botswana, South Africa, Australia, 
southwest United States, and Russia. The main finding of this study was that all these arid regions except 
Iran and Jordan exhibited very similar flood frequency curves. In the case of Iran, floods were largely 
derived from snowmelt, and for Jordan, it was dominated by groundwater contributions. Thus, it was 
suggested that all arid areas worldwide could be treated as a single homogeneous region dominated by 
similar rainfall–runoff process.

The following index flood method can be adopted in the typical arid regions (where region-specific 
RFFA equations are not available) to estimate approximate flood quantiles [23]:

 QT = MAF × ZT (22.14)

where
QT is the T-year flood quantile
MAF is the mean annual flood in m3/s
ZT is the regional growth factor for T-year flood

According to Farquharson et al. [23], ZT values may approximately be taken from Table 22.3. The 
index flood (MAF) should be estimated from the locally available prediction equation. However, in the 
absence of locally available prediction equation, the MAF flood can approximately be estimated from 
the suggested equation by Farquharson et al. [23]: MAF = 1.87 × Area0.578 where area is in km2 and MAF 
is in m3/s. A recent study for Australian arid regions can be found in Zaman et al. [87].

22.16  Impact of climate change on rffa

RFFA methods are data-based techniques and are generally empirical in nature. An RFFA method is 
typically based on the following: (1) One is recorded streamflow data in the past; if the climate changes 
significantly with time, the past data are unable to represent the future, and hence, its use in develop-
ing the RFFA methods becomes rather limited. (2) Rainfall and other climate indices such as mean 
annual rainfall, design rainfall intensity, and mean annual evaporation are likely to be affected by cli-
mate change in many regions of the world; thus, the usefulness of these data in regional prediction equa-
tions becomes limited. (3) Catchment characteristics such as vegetation cover are likely to be affected 
by climate change as part of the long-term climate–catchment interaction process. Also, the catchment 
wetness indices are likely to be affected by climate change. All these factors modify the rainfall–runoff 
process of a catchment, and hence, the applicability of the regional prediction equations, based on the 
past data, becomes questionable. To account for the effects of climate change on flood frequency analysis 
methods, various nonstationary techniques have been investigated [14,15,20,22,42,49,62]. Some of the 

TABLE 22.3 Regional Growth Factors for World Arid Regions

Return period, T (years) 2 5 10 20 50 100
Growth factor, ZT 0.6 1.5 2.1 3.2 4.5 6.2

Source: After Farquharson, F.A.K. et al., J. Hydrol., 138(3–4), 487, 1992.
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nonstationary flood frequency analysis techniques assume that due to climate change the distributional 
parameters are likely to change (e.g., the location and scale parameters become nonstationary), and 
hence, the use of a nonstationary probability distribution is suggested.

22.17  Summary and conclusions

The RFFA attempts to transfer flood characteristics information from gauged catchments to ungauged 
ones on the concept of homogeneous regions. The success of any RFFA method largely depends on the 
available data in terms of quantity and quality, the adopted regional model estimation method, and 
independent validation. This chapter has covered principal steps in the RFFA including data prepara-
tion, formation of regions, different methods to build the regional estimation equations, adopted valida-
tion techniques, and the impact of climate change on RFFA.
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23.1  Introduction

Reliable estimation of hydrological variables, for example, rainfall, peak discharge series, low flow, wind, 
and evapotranspiration, is needed for a range of purposes in dam construction, reservoir management, 
environmental flow requirements, water uses, hydropower operation, irrigation schemes, reservoir 
water losses, water balance computations, and arid and semiarid management. In practice, data are col-
lected only at a limited number of sites, and it therefore frequently happens that no data are available at 
sites. In cases where no at-site data are available, one may use data from gaged neighboring catchments 
or, in general, data from catchments with similar hydrologic regimes.

The regionalization is based on the premise that areas of similar geology, vegetation, land use, and 
topography will respond similarly to similar weather patterns. Regional estimation (or regionalization) 
methodologies can be used to provide reliable estimates of hydrological variables at locations where 
hydrological variable records are limited or not available.

23.2  regionalization concepts

Regional estimation methodologies involve the pooling of information within a “homogeneous” region 
into the target site and include two main steps: the identification of groups of hydrologically homoge-
neous basins (or “homogeneous regions”) and the application of a regional estimation method within 
each delineated homogeneous region. The performance of any regional estimation method strongly 
depends on the grouping of sites into homogeneous regions [17,18]. Geographically contiguous regions 
have been used for a long time in hydrology, but have been criticized for being of arbitrary character. In 
fact, the geographical proximity does not guarantee hydrological similarity.

Preface

Due to lack and sparse hydrometeorological data in several geographical areas around the world, 
the formulation and proposal of numerous procedures for regionalization are needed to help 
reduce the negative consequences of data scarcity. In the context of regionalization, there are 
various methods. Much of this material is in journals and reports, and usually in a form that is 
not easily accessible to students and practitioners. The main purpose of this chapter is to present 
many of these procedures in a unified fashion so that they would be available to students and 
practitioners. The chapter can be used by hydrologists and water resources managers and plan-
ners active in the field of hydrometeorological analysis at the river basin scale. The text is divided 
into Selection of model inputs, classification, and regionalization approaches topics. Degree and 
postdegree students, research scholars, and professionals in the fields of civil, water resources, and 
watershed management engineering find this chapter useful. We would be glad to hear from the 
readers about the material discussed in this chapter and related matters and will be incorporated 
in the next edition.
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Regional analysis usually involves three steps: identifying groups of hydrologically homogeneous 
basins, describing a robust regional probability distribution, and applying a regional estimation method 
within the identified homogeneous region.

23.3  Hydrological Variables

23.3.1  rainfall

Rainfall data are collected through a nationwide network of rain gages and, more recently, radar and 
satellite imagery. These data are archived and readily available on the Internet at a number of web-
sites, the most accessible being the National Climatic Data Center [36]. This site provides free download 
access for point rainfall data. Data are stored in a database that is accessed through the website allow-
ing the location and extraction of rainfall data that suits a range of selection criteria such as latitude/
longitude, state/county/city name, ZIP code, or station identification number.

23.3.2  flood

Streamflow data are normally obtained at either natural sections. Typically, the water level (stage) is recorded 
and related to streamflow (discharge) by a stage–discharge relationship called a rating curve. Readings may 
be taken on an intermittent basis (e.g., weekly readings of a staff gage) or as a continuous record.

Data are usually available on a daily basis, with streamflow values expressed as a total daily volume or 
an average daily discharge. Instantaneous peak discharges and daily maximum and minimum flows are 
often provided as well. In the case of the annual maximum series data, the discharge is accompanied by 
a field that also identifies the date of occurrence of the annual maximum.

23.3.3  Low flow

The cumulative frequency distribution of daily mean flows shows the percentage of time during which 
specified discharges are equaled or exceeded during the period of record. The relationship is normally 
referred to as the flow duration curve. The curve is most conveniently derived from daily discharge 
data by assigning daily flow values to class intervals and counting the number of days within each 
class interval. Various indexes can be estimated by flow duration curve. In particular, Q95 flow quantile 
Pr( ) ,Q Q> =[ ]95 95  the 95 percentile flow, or rather the flow that has exceeded 95% of the period of record 

is a key index of low flow. The percentile used as low flow index depends on the type of the river being 
studied. However, the flows within the range of 70%–99% time exceedance are usually widely used as 
design low flow.

23.3.4  Wind

Wind speed and direction are measured by anemometer and wind vane respectively. The conventional 
anemometer is the cup anemometer formed by a circlet of three (sometimes four) cups rotating around a 
vertical axis. The speed of rotation measures the wind speed, and the total number of revolutions around 
the axis gives a measure of wind run, the distance a particular parcel of air travels in a specified time. 
The wind speed is usually 2 m above the surface.

23.3.5  evapotranspiration

Evaporation is defined as the rate of liquid water transformation to vapor from open water, bar soil, or 
vegetation with soil beneath. Transpiration is defined as that part of the total evaporation that enters the 
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atmosphere from soil through the plants. The rate of evaporation has traditionally been estimated using 
meteorological data from climate stations. The evaporation is usually measured using evaporation pan 
in climate stations.

23.4  Selection of Model Inputs

23.4.1  Principal component analysis

A principal component analysis (PCA) is used to develop a smaller set of components that summarize 
the correlations among the original variables. The object of PCA is to extract the maximum amount of 
variance from the data set with each component. The first component extracted is a combination of vari-
ables that best separates the individual observations (i.e., spreads them out along an axis). It accounts for 
as much of the variation in the original data as possible. The second component extracts the maximum 
amount of remaining variance that is not correlated with the first component (orthogonal to it). Ideally, 
the interrelationships will be displayed using as few dimensions as will suffice [15].

A problem of PCA is that components are dependent on the scale of the variable, for example, the 
variable with the highest variance will dominate the first component. It is preferable to first scale vari-
ables such that all have a variance near one. Results of a PCA are normally plotted with two axes to 
represent pairs of components. From these plots, the distance, clustering, and direction of the points 
relative to the axes can be examined. A large distance away from the origin along an axis indicates a 
close correlation with that component. Optimally, points should cluster near the end of an axis and near 
the origin; if clustering is not obvious, a component may not be clearly defined. If clusters do not line up 
on the axes, it may indicate a need to rotate the axes.

Rotation of axes can improve the usefulness and ease of interpretation of the solution. Varimax 
(orthogonal) rotation is most commonly employed, which assumes that the underlying processes influ-
encing each component are independent. Spatially, the axes are rotated so that they more closely pass 
through the variable clusters. This allows each cluster or individual to be more easily ranked by distance 
along an axis. The resulting components should also be examined in an attempt to understand the 
underlying unifying principle. This is usually characterized by assigning the component a name, for 
example, “richness of flavor” or “landscape form.” In fact, there is no objective measure for testing how 
“good” the resulting PCA solution is. The final choice is up to the researcher, based on its interpretabil-
ity, that is, does it make sense? Useful solutions ideally have a few components that are related by some 
common processes and are highly unlike the other components.

The Kaiser criterion is the most widely used method to evaluate the maximum number of factors (i.e., 
linear combinations) to extract from the data set [25]. This criterion requires that factors are retained 
only if their associated eigenvalues are greater than 1. The variables with the highest factor loadings 
within each separate factor will likely share a common characteristic or combination of characteris-
tics. These factor loadings are the correlation coefficients between the variables. The efficiency of PCA 
method was validated using Kaiser–Meyer–Olkin (KMO) and Bartlett tests. In the ideal case, KMO 
should be 1. High KMO values indicate a PCA with few errors, overall. If KMO is more than 0.5, PCA 
could be used [39].

Once obtained, principal components can be used as independent variables in regional analysis. 
Because the components are uncorrelated, the regional analysis results tend to be more stable and reli-
able than regional analysis made using the original variables [42].

23.4.2  Gamma Test

The gamma test (GT) estimates the minimum mean square error (MSE) that can be achieved when 
modeling the unseen data using any continuous nonlinear models [32]. Firstly GT is reported by Koncar 
[27] and Agalbjörn et al. [2] and later enhanced and discussed in detail by Durrant [8] and Tsui et al. [41].
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The basic idea is quite distinct from the earlier attempts with nonlinear analysis. Suppose we have a 
set of data observations of the form

 {( , ), }x y i Mi i ≤ ≤1  (23.1)

where the input vectors x ∈ Rm are m dimensional vectors (with a record length of M) confined to some 
closed bounded set C ∈ Rm, and without loss of generality, the corresponding outputs yi ∈ R are scalars. 
The vectors x contain predicatively useful factors influencing the output y. The only assumption made is 
that the underlying relationship of the system is of the form

 y f x x x ri m= +( , , , )2 …  (23.2)

where
f is a smooth function
r is a random variable that represents noise

Without loss of generality, it can be assumed that the mean of the r’s distribution is zero (since any 
constant bias can be subsumed into the unknown function f  ) and that the variance of the noise Var(r) 
is bounded. The domain of a possible model is now restricted to the class of smooth functions that have 
bounded first partial derivatives. The gamma statistic Γ is an estimate of the model’s output variance 
that cannot be accounted for by a smooth data model.

The GT is based on N i k, ,[ ]  which are the kth (1 ≤ k ≤ p) nearest neighbors xN i k,[ ] (1 ≤ k ≤ p) for each 
vector xi (1 ≤ i ≤ M). Specifically, the GT is derived from the delta function of the input vectors:
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where ...  denotes Euclidean distance, and the corresponding gamma function of the output values
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where yN(i,k) is the corresponding y-value for the kth nearest neighbor of xi in Equation 23.3. In order to 
compute Γ, a least-squares regression line is constructed for the p points (δ γM Mk k( ), ( )):

 γ δ= +A Γ  (23.5)

The intercept on the vertical axis (δ = 0) is the Γ value, as can be shown:

 γ δM Mk Var r k( ) ( ) ( )→ →in probability as 0  (23.6)

Calculating the regression line gradient can also provide helpful information on the complexity of the 
system under investigation. A formal mathematical justification of the method can be found in Evans 
and Jones [12].

The graphical output of this regression line (Equation 23.5) provides very useful information (to be 
presented later on). First, it is remarkable that the vertical intercept Γ of the y (or Gamma) axis offers 
an estimate of the best MSE achievable utilizing a modeling technique for unknown smooth functions 
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of continuous variables [12]. Second, the gradient offers an indication of model’s complexity (a steeper 
gradient indicates a model of greater complexity).

The GT is a nonparametric method, and the results apply regardless of the particular techniques used 
to subsequently build a model of f. We can standardize the result by considering another term Vratio, 
which returns a scale invariant noise estimate between 0 and 1. The Vratio is defined as

 
V

y
ratio =

Γ
σ2( )

 (23.7)

where σ2(y) is the variance of output y, which allows a judgment to be formed independent of the output 
range as to how well the output can be modeled by a smooth function. A Vratio close to 0 indicates that 
there is a high degree of predictability of the given output y. If the standard error value is close to 0, we 
have more confidence in the value of the gamma statistic as an estimate for the noise variance on the 
given output. Gradient is actually a rough measure of the complexity of the smooth function that we are 
seeking to construct. We can also determine the reliability of Γ statistic by running a series of GT for 
increasing M, to establish the size of data set required to produce a stable asymptote. This is known as 
M-test. M-test result would help us to avoid the wasteful attempts of fitting the model beyond the stage 
where the MSE on the training data is smaller than Var(r), which may lead to overfitting. The M-test also 
helps us to decide how many data points are sufficient for building a model with a mean squared error 
approximate to the estimated noise variance (when the M-test plot becomes flat). In practice, the GT can 
be achieved through winGamma™ software implementation [41].

23.5  classification

23.5.1  cluster analysis

Cluster analysis (CA) was firstly reported by Tryon [40]. CA is the task of assigning a set of objects 
into groups (called clusters) so that the objects in the same cluster are more similar (in some sense or 
another) to each other than to those in other clusters [24,29]. Many algorithms have been proposed for 
CA divided into two main groups including hierarchical and repeated discriminates.

The catchment characteristics are standardized (Equation 23.8) to ensure that the analysis is indepen-
dent of measurement units used for these variables:
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where
i = 1, …, nc catchments
j = 1, …, np explanatory variables
zij = standardized variable j at catchment i
xij = value of variable j at catchment i
x‾j = mean of variable j for the nc catchments
sj = standard deviation of variable j over all the nc catchments

The clustering technique used is the K-means algorithm that can be used to partition M objects (catch-
ments) into K groups (regions) based on the values of features, or attributes, of the objects. The algo-
rithm starts with an initial centroid, or seed point, for each of the K clusters. Each of the objects is 
then assigned to the “nearest” cluster centroid in terms of a similarity measure. Once all of the objects 
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have been assigned to a cluster, the centroid for each cluster is recalculated, and the objects may be 
reassigned to different clusters depending on the distance from the object to the new centroid location. 
This process is repeated until no object experiences a change in cluster membership. The dissimilarity 
measure that is used in this work to determine the closeness of each catchment to each cluster centroid 
is defined as
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where
Dij

d is the dissimilarity between catchment i and cluster j
Dij is the weighted Euclidean distance (in attribute space) between catchment i and clustery
dij is the geographical distance between catchment i and the geographic centroid of cluster j
db and w are parameters to be estimated

Since Equation 23.9 defines a dissimilarity measure, lower values for Dij
d indicate catchments that are 

closer to the corresponding cluster centroid.
The weighted Euclidean distance is defined as
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where
wk is the weight applied to attribute k
xik is the standardized value for attribute k for catchment i where the attribute values are standard-

ized by dividing by the standard deviation for the attribute
xjk is the centroid value for attribute k for clustery
m is the number of attributes used to define similarity

The attributes used in Equation 23.10 are physiographic characteristics of the catchments. The weights 
in Equation 23.10 are selected to satisfy
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The dissimilarity measure defined in Equation 23.9 was originally proposed by Webster and Burough 
[44] in an attempt to enhance the geographical continuity of clusters. The two parameters, <4 and w, 
control the relative influence in the composite dissimilarity measure of geographical distance versus 
the weighted Euclidean distance in attribute space. Within the Euclidean distance measure, the Wk 
values reflect the relative importance of each attribute in determining catchment dissimilarity. Initial 
estimates for the weights and the two parameters in the distance function can be selected using judg-
ment and then be refined using either an optimization algorithm or an ad hoc procedure. In this work, 
the parameters and weights were adjusted using a search technique to enhance the homogeneity of the 
regions that are formed. Output of hierarchical method is in dendrogramatic form, and the relation 
between each class of data is displayed by their similarity [40].
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23.5.2  Discriminant analysis

Discriminant analysis (DA) is defined as linear combinations that separate groups of observations, 
and canonical variates are defined as linear combinations associated with canonical correlations 
between two sets of variables. Objects that retain similar variances in the analyzed parameters will 
have similar discriminant scores and, therefore when plotted, will group together. Also relation-
ships between variables can be easily identified by the respective coefficients. Strongly correlated 
variables will generally have the same magnitude and orientation when plotted, while uncorrelated 
variables are typically orthogonal to each other [4]. The combination of variables (predictors) that 
separate from each other called discriminant function. These are much like multiple regression equa-
tion but produce a discriminant function “score.” This score gives an indication of the group to which 
a catchment belongs and whether it falls solidly into one class or into gray area between two different 
classes. Several functions may be needed to reliably separate groups. The total number of possible 
“dimensions” is either one less than the number of groups or the number of predictor variables, 
whichever is smaller [15].

23.5.3  andrews curves

If only two variables are required for describing the similarity between sites, streams, or catchments, 
then a simple two-dimensional scatter plot is sufficient for displaying groupings. Displaying these 
data becomes much more difficult with a larger number of variables. A graphical approach presented 
by Andrews (1972) provides a good method of viewing patterns of similarity or dissimilarity across 
multiple dimensions. A point in multidimensional space is represented by a curve described by the 
function
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where x1, x2, x3, x4, x5, … show each variable used for homogeneous watershed determination. These 
variables have the most correlation with the dependent variable [33]. The Andrews plot (Fourier 
curve) is a plot of (t, yt) in the range of tε[−π, π]. Curves representing points that are located near 
one another in multidimensional space will look similar, whereas points that are distant will pro-
duce curves that look different. Results will depend on the order in which the variables are labeled. 
The first variables will be described by low-frequency components (wider “waves”). These are more 
readily seen than the higher-frequency components representing the latter variables. Thus, it is more 
useful to associate the most important variable with x1, the second with x2, and so on [35]. This rela-
tive importance can be determined from a stepwise multiple regression analysis, PCA, or GT. The 
values should also be scaled to the same order of magnitude (e.g., by choosing an appropriate unit). 
One method to standardize is by subtracting the mean and dividing by the standard deviation of all 
observations of a given variable.

23.6  regionalization approaches

23.6.1  Geostatistics

The spatial distribution of hydrological variables such as rainfall, flood, low flow, wind, and evapotrans-
piration is needed whenever hydrological modeling is undertaken at the watershed scale. These models 
can be used to simulate hydrological processes at a daily or monthly time steps, and the interpolation 
of hydrological variables at this time scale poses a particular problem due to its large spatial variation. 
Geostatistical prediction includes two stages of which the first is the identification and modeling of spa-
tial structure. At this stage, continuity, homogeneity, and spatial structure of a given variable are studied 
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using variogram. Second stage is geostatistical estimation using kriging technique, which depends on 
the properties of the fitted variogram that affects all stages of the process.

23.6.1.1  Variogram analysis

Variogram method is a suitable technique for estimating spatial variability of a variable. Calculation of 
variogram graph is one of the essential stages in geostatistics, which is defined as follows:
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where
γ(h) is the value of variogram for pair points with distance h
n(h) is the number of pair points with distance h
Z(xi) is the observed value of variable xi
Z(xi + h) is the observed value of the variable with distance h from xi

For variogram plotting, it is necessary to compute γ(h) for different values of h and then to plot the 
values for different distances of h. In other words, variogram is the variance of different points with 
distance h. The obtained variograph of measured samples is called experimental variogram, which is a 
vector value that is a dependent on distance and direction.

Once we calculated an experimental variogram, we can fit it using some of the authorized variogram 
models, such as linear, spherical, exponential, circular, Gaussian, Bessel, power, and similar [14,23]. 
Figure 23.1 shows the parameters of the variogram model, for example, the nugget (C0), sill (C + C0), and 
the range (A) parameter. By knowing these parameters, we can estimate the semivariance at any loca-
tion in the area of interest.

The variograms are commonly fitted by iterative reweighted least-squares estimation, where the 
weights are determined based on the number of point pairs or based on the distance. Most commonly, 
the weights are determined using N hj j2 , where Nj is the number of pairs at certain lag, and hj is the 
distance. Note that this is only a sample variogram—if we would go and collect several point samples, 
each would lead to a somewhat different variogram plot. The target variable is said to be stationary if 
several sample variograms are very similar (constant), which is referred to as the covariance stationar-
ity. Otherwise, if the variograms differ much locally and/or globally, then we speak about nonstation-
ary inherent properties. In principle, assumptions of kriging are that the target variable is stationary 
and that it has a normal distribution, which is probably the biggest limitation of kriging. Once we have 
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estimated the variogram model, we can use it to derive semivariances at all locations and solve the krig-
ing weights. The OK weights are solved by multiplying the covariances:

 
λ0

1
0 0 10= ⋅ =( ) = +−C c C h C C;  (23.14)

where
C is the covariance matrix derived for n × n observations
c0 is the vector of covariances at new location

Note that C is in fact (n + 1) × (n + 1) matrix if it is used to derive kriging weights.
A distinction should be made between isotropic and anisotropic. Isotropic, when
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Anisotropic, when h depends not only on the length but also on the orientation of the separation vector. 
It is common to adapt a model of geometric anisotropy in which anisotropy variability can be turned 
into isotropic variability through a linear transformation of the coordinates. For example, one can select 
the x1,x2,x3 direction along the main axes of correlation anisotropy and use
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23.6.1.2  Theory of Ordinary Kriging

Kriging has for many decades been used as a synonym for geostatistical interpolation. It originated in 
the mining industry in the early 1950s as a means of improving ore reserve estimation. The original idea 
came from the mining engineers D.G. Krige and the statistician H.S. Sichel. The technique was first pub-
lished in Krige (1951), but it took almost a decade until a French mathematician G. Matheron derived the 
formulas and basically established the whole field of linear geostatistics [43].

Ordinary kriging is a prediction that considers values of a variable in unsampled points as a linear 
composition of the values of surrounding points (hydrological variables, e.g., rainfall, flood, low flow, 
etc.). Considering the values of variable Z in n measured points as follows:
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Estimation of Z in point x0 using kriging estimation is defined as
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The most important part of kriging is statistical weighs assigned to λi. To avoid the bias of estimation, 
the weighted should be determined in a way that summation is equal to one λi
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 and the vari-
ance of estimates should be minimized as
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23.6.2  Index flood Method

The index flood method, proposed by Dalrymple [7], is one of the first approaches to regional flood 
estimation.

The index flood method is carried out by the following steps:

 1. Establish a standard record length or base period. This is usually taken as the longest period of 
record.

 2. Estimate annual peak flow for missing years by a regression analysis from other longer-term 
station.

 3. Assign an order to all annual peak flow at each station, compute the plotting position, and plot 
frequency curves using the best standard distribution fit for each gage.

 4. Determine an index flood discharge, usually the mean annual flood, and the ratio of the flood 
with a 10 year return period (Q10) for each gage. The mean annual flood is commonly assumed to 
be flood with a return period of 2.33 years (EVI distribution). This can be changed to reflect the 
chosen probability distribution (e.g., normal distribution has a return period of 2 years).

 5. Test the data for homogeneity. This step is carried out in the following steps:
 a. Compute the homogeneity factor by
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 b. For each gage, compute Qk = KQ2.33 and the corresponding return period.
 c. Plot the values of return period obtained in step b. against the effective length of record, LE, 

for each gage where L is the actual length of record at a gage and LB is the length of the base 
record.

 d. Test for homogeneity by also plotting on this graph envelope curves determined from Table 
23.1, taken from Dalrymple [7]. This table gives the upper and lower limits, Tu and TL, as a 
function of the effective length of record.

 6. Using actual flood data, compute the ratio of each flood to the station mean, Q2.33, for each record.
 7. Compute the median flood ratios of the stations retained in the regional analysis for each rank or 

order m, and compute the corresponding return period by the Weibull formula, Tr = (n + 1)/m. (It 
is suggested that the median ratio be determined after eliminating the highest and lowest Q/Q2.33 
values for each ordered series of data).

 8. Plot the median flood ratio against the return period on probability paper.
 9. Plot the logarithm of the mean annual flood for each gage, Q2.33, against the logarithm of the cor-

responding drainage area. This curve should be nearly a straight line.

TABLE 23.1 Upper and Lower Limit 
Coordinates of Envelope Curve for 
Homogeneity Test

Effective Length 
of Record (Years)

Return Period Limits (Years)

Upper Limit Lower Limit

5 160 1.2
10 70 1.85
20 40 2.8
50 24 4.4

100 18 5.6
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 10. Determine the flood-frequency curve for any stream site in the watershed as follows:
 a. Determine the drainage area above the site.
 b. From step 9, determine the value of Q2.33.
 c. For selected return periods, multiply the median flood ratio in step 9 by the value of Q2.33 from 

step 10b.
 d. Plot the regional frequency curve.

23.6.3  Multiple regression

Regression can be used to drive equations to predict the value of various hydrologic statistics (includ-
ing mean, standard deviations, quantile, and normalized regional flood quantile) as a function of the 
watershed characteristics [38]. The multiple regression model can be expressed in the following form:

 y a A b Bi = + + + +α εlog( ) log( ) �  (23.21)

where
α is regression constant defined by regression analysis
a, b,… are regression coefficients defined by regression analysis
A, B,… are watershed characteristics

This form of the multiple regression model is achieved by linear regression of the logarithms of the 
variables. The observed ε is a combination of (1) the time-sampling error in sample estimators yi and 
(2) underlying model error (lack of fit) due to failure of the model to exactly predict the true value of the 
yis at every site [30].

23.6.4  Isoline Mapping

An isoline map is a map with continuous lines joining points of the same value. One regional scheme 
is described in the UK Flood Studies Report [37], which derived a qT relationship, where qT is a regional 
estimate of QT/Q‾, which is the mean annual flood), by combining all flood data within a region. U.S. 
federal agencies recommended procedures for flood-frequency analysis in Bulletin 17B [22]. The skew 
isoline maps are developed based on the plot of each station skew value at the centroid of its drainage 
basin and examined the plotted data for any geographic or topographic trend. If a pattern is evident, the 
isolines are drawn and MSE is computed. If no pattern is evident, then an isoline map cannot be drawn 
and is, therefore, not further considered.

23.6.5  Hybrid Method

The hybrid method for a regional regression analysis was described in detail by Hjalmarson and Thomas 
[19]. It is based on the station–year method [13] of a frequency analysis to produce regional flood–
frequency relations. The station–year method is based on the assumption that independent records of 
annual peak discharge from a region can be combined to form one long composite record if the peaks of 
the individual records can be reduced to a common base. Spatial sampling is assumed to be equivalent 
to time sampling if the records are reasonably independent. Therefore, for example, a combination of 
10 gaging stations, each with 10 years of records, results in a 100 year composite record.

The hybrid method starts with forming a single data set by pooling annual peaks from many gaging 
stations and historic flood estimates at ungaged sites with the assumption that the annual peaks are rea-
sonably independent. It uses the regression Equation 23.20, which is commonly used in many regional 
flood–frequency analyses.
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Because drainage area is the most significant independent variable that affects flood characteristics, 
the hybrid method starts the regression between discharge and drainage areas. It involves the following 
steps:
Step 1: The drainage area for all sites is ranked from the smallest to the largest. The combined single long 
record is then divided into three or more groups according to the basin drainage area:
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where
J is the maximum number of groups
Nf is the sum composite of the station-year records

Each group has a number of stations. Each station has a number of years with flow or with zero flow. To 
ensure an unbiased relation in the regression analysis, each group has a nearly equal sample size. The 
average weighted drainage area in each group is computed by the following formula:
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where
A‾i is the average weighted drainage area in group i
Aijk is the drainage area of station j in group i and station-year k
i is the number of groups (i = 1, 2, …, f)
j is the number of stations in group i (j = 1, 2, …, g)
k is the number of years in station j and group i

Step 2: Each peak discharge within each group is standardized by dividing by Ab (the exponent b is equal 
to one for the first iteration):
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where
Sijk is the standardized peak discharge k in station j and group i
Qijk is the annual peak discharge k in station j and group i
Aijk is the drainage area of station j in group i and k station-year

Step 3: In each group, the exceedance probabilities of the standardized peaks can be estimated either by 
fitting a theoretical flood–frequency curve if appropriate or simply by using a plotting position formula. 
To avoid extrapolations to the 1% annual chance flood level, each group has at least 100 station-years 
(peaks) with flow to estimate the 0.01 probability. If an elementary plotting-position formula is used, a 
theoretical probability distribution is no longer required. This advantage is important because in semi-
arid and arid regions, many station flood–frequency relations are typically undefined or unreliable if 
fitted with a theoretical curve.
Step 4: The frequency flows for each group obtained in Step 3 are destandardized by multiplying by the 
weighted geometric mean drainage area



484 Handbook of Engineering Hydrology

 Q S At t i
b

i i= ( )  (23.25)

where
Qti is the peak flow discharge with return period t in group i
Sti is the standardized peak discharge in station i with return period t
A‾i is the average weighted drainage area

Step 5: For each exceedance probability, a linear regression analysis is conducted between Q and mean 
drainage area in log space, and a new exponent, b, is computed. To perform a linear regression, the com-
bined data set has to be divided into at least three groups.
Step 6: Using the new exponent, an iterative process that uses a regression and flood–frequency analysis 
is repeated until the computed exponent converges.
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Each additional parameter can be separately added to the relation with the same iterative technique 
starting at Step 1. The new parameter (e.g., B or C) is used in place of drainage area. The original peak 
discharges in Step 2 are replaced with standardized discharges obtained from the last iteration for the 
previous parameter. The coefficient, a, in Equation 23.20 is determined during the last linear regression 
(in log space) of the last parameter.

23.6.6  L-Moments

The method of L-moments [20] is now a common and robust method for regional frequency 
analysis of different hydrologic and climatic variables. For example, Kumar et al. [28], Modarres 
[31], and Yurekli et al. [45] have used L-moments method for flood, wind speed, and extreme 
rainfall, respectively. L-moments are linear combinations of order statistics, which is used for 
summarizing theoretical distribution of an observed sample of a random variable (X). Hosking 
and Wallis [20] defined L-moments as linear functions of probability weighted moments (PWMs), 
which are robust to outliers and virtually unbiased for small sample. Greenwood et al. [16] defined 
PWMs as
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where
βr is the rth-order PWM
F x( ) is the cumulative distribution function of X

Unbiased sample estimators (bi) of the first four PWMs are calculated as
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where x(j) represents the ranked annual maximum series with x(1) being the highest value and x(n) the 
lowest value, respectively. The first four L-moments are given as

 λ β λ β β λ β β β λ β β β β1 0 2 1 0 3 2 1 0 4 3 2 1 02 6 6 20 30 12= = − = − + = − + −  (23.32)

In general,
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Different L-moment ratios can then be defined [21]. The L-mean, λ1, is a measure of central tendency and 
the L-standard deviation, λ2, is a measure of dispersion. Their ratio τ λ λ2 2 1= /  is termed the L-coefficient 
of variation (L-CV). The third and fourth moments, λ3 and λ4, are analogous to conventional moments. 
The ratio τ λ λ3 3 2= /  is referred to as L-skewness, whereas the ratio τ λ λ4 4 2= /  is the L-kurtosis.

Once the at-site L-moments are available, they can be used to identify the most suitable (paramet-
ric) regional probability distribution using L-moment ratio diagrams. A fundamental assumption of 
regional flood-frequency analysis is that floods from each site in the region are hydrologically similar, 
for example, they have similar causes and characteristics. L-moment techniques provide a discordance 
measure (D) for screening at-site data and a heterogeneity measure (H) to diagnose candidate regions 
based on simulations. The discordance measure, D, is defined as follows:
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where
N is the total number of observations
u is a vector containing the L-moment ratios (i.e., L-CV, L-skew, and L-kurtosis) for the site i: 

ui i i i
T= [ ]τ τ τ2 3 4, ,

The average value of D over all sites is 1. A site with D > 3 is considered discordant and should be exam-
ined (about 3% of sites should exceed 3 on average).

Heterogeneity, H, is defined as follows [20]:
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where
μv and σv are the mean and standard deviation of the simulated values of V
Vobs is obtained from the regional data [20]

When H is constructed with V1, it is denoted as H1 (based on L-CV); H2 reflects a combination of L-CV 
and L-skew variability.

The H statistics indicate that the region under consideration is acceptably homogeneous when H < 1, 
possibly heterogeneous when 1 ≤ H < 2, and heterogeneous when H ≥ 2. A grouping of sites therefore 
must have H < 2 to be considered as a “possibly homogeneous” region. Hosking and Wallis [20] also 
noted that the assignment of sites to regions must be based on variables other than their L-moments in 
order for the D and H statistics to have any significance. They also state that H1 is most closely compa-
rable to a formal statistical test.

23.6.7  region of Influence

The fundamental of the “region of influence” (ROI) approach is described by Acreman and Wiltshire 
[1]. This method is applied by Burn [3] in southern Manitoba, Canada, and Eslamian [9] in southeastern 
New South Wales, Australia.

The basis of the ROI approach is delineation of an “ROI” for each gaging station including the set of 
sites that are in proximity to the reference station, where proximity is defined in terms of the selected 
attributes rather than geographical location. Proximity is calculated by the Euclidean distance from 
Equation 23.10 in a multidimensional attribute space where the attributes are appropriate measures for 
the identification of stations with a similar extreme flow response.

The attributes can be selected from catchment characteristics for a station or from statistical mea-
sures of the data record at each site.

The standardization of the attributes involves dividing the raw data by the standard deviation 
of data calculated for attribute values from a total number of stations. The standardization pro-
cess eliminates the units from each attribute and reduces any differences in the range of values 
among the attributes. This procedure is invoked to avoid the introduction of bias due to scaling 
differences for the attributes. The distance value from Equation 23.20 will thus provide a measure 
of how close each station is to every other station (i.e., a symmetric NS by NS matrix of distance 
measures results).

The next step is the choice of a threshold value of the Euclidean distance that defines a cutoff to 
exclude gaging sites from the investigation of the region of the reference site. Any surrounding sites 
having Dij lower than the threshold value is considered for the inclusion in a ROI of the reference site. 
Remaining sites will be excluded from the ROI of this reference site.

Since all of the stations included in the ROI will not be equally close to the site for which the ROI is 
being determined, a weighting function is required to reflect the relative importance of each station in 
the estimation of the at-site extreme flows. The weighting function used was of the form
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where
WFij is the weighting for station j in the ROI for site i
THL is a parameter
n is a positive constant

The effect of the parameter THL is to dictate the value of the weighting function for stations at the 
threshold. For this reason, the value of THL should logically be greater than or equal to the threshold 
value. If THL is equal to the threshold, then stations at the threshold will have no contribution to the 
determination of at-site extremes; larger values will increase the weighting of all stations included in 
the ROI. The value of the constant n will determine the rate of decrease in the weighting values as sta-
tions further away from the site (in terms of the distance measure) are considered. Using the procedure 
outlined earlier, the stations that constitute the ROI for each site may be determined, and the relative 
importance of each member of the ROI in estimating at-site extreme flow values may be ascertained.

23.6.8  regional envelope curves

To examine flood-producing properties of a catchment and to estimate the maximum expected flood 
on ungaged streams, envelope curves are a useful tool. Within a given region, the highest observed 
discharge at all gaging stations is divided by the corresponding catchment area and then plotted against 
area using log–log axes. A curve that forms an upper bound to the data is called an envelope curve. The 
graph provides a summary of the flood magnitudes experienced in a region.

23.7  Validation of regional Models

The jackknife cross-validation procedure is used to assess the model performance. The jackknife cross-
validation procedure consisted of the following steps:

 1. Remove catchment i from the data set
 2. Update the catchment classification (if appropriate) for the remaining n – 1 catchments
 3. Assign catchment i to one of the regions obtained in (2)
 4. Estimate the coefficients of the regression equation for this region using all catchments in this 

region apart from catchment i
 5. Apply the regression equation obtained in (4) to predict the hydrologic variables characteristic at site i
 6. Repeat steps (1)–(5) for all n catchments
 7. Calculate the following five indices

The Nash criterion (NASH), the root mean squared error (RMSE), the relative root mean squared error 
(RMSEr), the mean bias (BIAS), and the relative mean bias (BIASr). The indices are computed according 
to the following equations:
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where
n is the total number of sites being modeled
Qi is the at-site estimation for site i
Q̂ 

i is the estimation obtained from the regional model for site i
Q‾i is the mean of at-site estimation of the n sites

23.8  case Study regionalization

23.8.1  case example in rainfall and Geostatistic

Nabipour [34] applied ordinary kriging, simple cokriging, ordinary cokriging, standardized ordinary 
kriging, and moving average using inverse distance with powers of 1–5 for spatial analyzing annual, 
monthly, and 24 h maximum rainfall data in Hajighoshan watershed located in northeast of Iran. The 
22 meteorological stations existed in and around the basin with data collection period of 30 years were 
selected for the analysis. According to the results obtained through the analysis of variogram model, 
Gaussian models are supposed as the best models for annual, monthly, and 24 h maximum rainfall data. 
The Gaussian model for annual rainfall data is shown in Figure 23.2.

According to Figure 23.2, nugget (C0), sill (C + C0), and the range (A) parameters are 100 m, 71.40 km, 
and 87.17 km, respectively. The results of geostatistic analysis showed that ordinary kriging is the best 
performed method with MAE = 34.26 and RMSE = 160.67 for annual rainfall, while moving average 
using inverse distance with power of 5 is the best method for monthly and 24 h maximum rainfall.

23.8.2   case example in flow Duration curve and Principal component 
analysis, cluster analysis, and Discriminant analysis

Khosrobeigi [26] applied regional flow duration curve analysis in Namak Lake watershed of Iran (water-
shed no. 41). The 18 physiographical, meteorological, geological, and land use characteristics of existent 
hydrometric stations are extracted. The independent parameters and homogeneous watersheds were 
recognized by using PCA (Tables 23.2 and 23.3), CA (Figure 23.3), and DA (Figure 23.4), respectively. 
The results of Table 23.2 shows that among the 18 variables, first six variables that had eigenvalues more 
than 1 were selected as independent variables and explained 83.55% of variability. Also, it can be seen 
from Table 23.3 that since the variable of weighted average height (Hmean) in the first factor can explain 
other factors, it was selected as an independent factor. In other factors, area (A), rangeland area (Pr), 
drainage density (Dd), permeable formations (PP), and main stream length (SL) were selected as inde-
pendent parameters respectively. According to Figures 23.4 and 23.5, the watersheds were divided into 
two homogeneous groups.
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23.8.3  case example in Peak flood Discharge and Hybrid Method

Chavoshi Borujeni and Eslamian [5] applied hybrid method with a total of 311 station-years from 
17 gaging stations located Isfahan and Charmahal and Bakhtyari provinces. The regression analysis 
suggests that the area (A) and average elevation watershed (H) should be included in the hybrid method 
in the study region because peak flood discharge has reasonable regression relationships with these two 
parameters. According to Equation 23.21, the data set was divided into three groups:

Group 1: the stations with 12–619 km2 in area including Marbran, Babahydar, Tong Esferjan, 
Chehlgerd, Monderjan, Vaneshan, and Godarkabk subwatersheds.
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FIGuRE 23.2 Variogram for annual rainfall data.

TABLE 23.2 Correlation Matrix of the Factors Selected by PCA

Factor Eigenvalue Total Variance (%) Cumulative Variance (%)

1 5.72 31.80 31.80
2 3.35 18.63 50.44
3 1.79 9.94 60.37
4 1.73 9.61 69.98
5 1.34 7.45 77.43
6 1.10 6.12 83.55
7 0.75 4.17 87.72
8 0.59 3.30 91.02
9 0.58 3.23 94.25

10 0.35 1.97 96.22
11 0.16 0.91 97.13
12 0.15 0.81 97.95
13 0.13 0.70 98.65
14 0.10 0.55 99.19
15 0.08 0.44 99.63
16 0.04 0.22 99.85
17 0.02 0.10 99.96
18 0.01 0.04 100.00
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FIGuRE 23.3 Annual isohyet map in Hajighoshan watershed.

TABLE 23.3 Component Loading Matrix

Component

Factor 1 2 3 4 5 6

Area −0.06 0.96* −0.08 −0.04 0.014 −0.01
Perimeter −0.31 0.83* −0.31 −0.09 −0.09 −0.13
Weighted average slope watershed 0.75* −0.21 −0.23 0.43 −0.07 −0.07
Maximum height 0.82* 0.13 0.20 0.06 −0.38 −0.01
Minimum height 0.02 −0.11 0.03 −0.00 0.80* −0.20
Weighted average height 0.89* −0.13 −0.01 0.21 0.12 −0.07
Average stream slope −0.10 0.97 −0.08 −0.09 0.05 0.04
Drainage density 0.13 −0.07 0.01 0.96* −0.06 0.03
Main stream length 0.00 −0.05 −0.05 0.09 −0.02 0.92*
Mean annual rainfall 0.90* −0.14 −0.01 −0.01 −0.03 0.18
Mean annual temperature −0.65 −0.05 0.48 −0.24 −0.25 0.11
Mean annual potential evaporation −0.79* 0.22 0.19 −0.23 0.08 0.14
Permeable formation −0.17 0.22 −0.01 −0.10 0.70* 0.34
Rangeland area 0.00 0.23 −0.88* −0.27 −0.15 0.04
Irrigated forming area −0.03 −0.06 0.77 −0.10 −0.34 −0.05
Dry forming area −0.34 −0.18 0.71 −0.11 0.32 0.01
Garden area 0.48 −0.30 −0.31 −0.12 −0.08 0.10
Rock area 0.25 −0.07 0.05 0.92* −0.00 0.07

* >0.7.
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FIGuRE 23.4 Dendrogram of the hierarchical clustering on watershed characteristics.
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Group 2: the stations with 712–1427 km2 in area including Hna, Savaran, Sarabhedeh, Tang Varkesh, 
Tang Zardalu, and Ghaleh Shahrokh subwatersheds.

Group 3: the stations with 1642–3820 km2 in area including Solegan, Eskandari, Kta, and Beheshtabad 
subwatersheds. Using Equation 23.23, the average weighted drainage area (A) and average elevation 
watershed (H) in each group were computed (Table 23.4). Also, Sijk, Qt, and bt using Equations 23.24 
through 23.26 were computed, respectively (Tables 23.5 through 23.7).

As described in Section 23.6.5, each of the regression variables should be determined separately. The 
second variable, that is, height (H), was analysis in next step and accomplished the hybrid method steps 
except the instead of peak flood discharge in Equation 23.23 from standardized peak flood discharge in 
repeat final in last variable (A) are used. The constant model, that is, α coefficient is determined during 
the final step. Finally, the regional flood analysis equations are estimated as follows:

TABLE 23.7 bt Estimation Values in Repeated One and Final for 
Drainage Area (A)

Return Period →
Group
↓

2 5 10 25 50 100

One 0.098 0.264 0.412 0.636 0.825 1.03
Final 0.1 0.266 0.412 0.636 0.83 1.03

TABLE 23.6 Qt (m3/s) Estimation Values in Repeated One

Return Period →
Group
↓

2 5 10 25 50 100

1 17 51 92 167 247 352
2 56 130 195 279 334 390
3 101 384 788 1707 2839 4485

TABLE 23.5 Sijk Estimation Values in Repeated One

Return Period →
Group
↓

2 5 10 25 50 100

1 0.07 0.21 0.38 0.69 1.02 1.45
2 0.06 0.14 0.21 0.3 0.36 0.42
3 0.1 0.38 0.78 1.69 2.81 4.44

TABLE 23.4 Average Weighted Drainage Area (A) and Average 
Elevation Watershed (H) in Each Group

Group
Average Weighted 

Drainage Area (km2)
Average Weighted Average 
Elevation Watershed (m)

1 242.42 2588
2 928.16 2447
3 1010.22 2444
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 Q A H2
0 1 0 03730= −. .  (23.44)

 Q A H5
0 266 0 12135= −. .  (23.45)

 Q A H25
0 636 0 24720= −. .  (23.46)

 Q A H50
0 83 0 26622= −. .  (23.47)

 Q A H100
1 03 0 24810= −. .  (23.48)

where
Qt is the peak flood discharge with t return period
A is the drainage area (km2)
H is the average elevation watershed (m)

23.8.4  case example in Low flow and Hybrid Method

Eslamian and Biabanaki [9] using the mean daily flow statistics from 41 hydrometric stations in 
Karkheh Basin, Iran, after checking the region homogeneity by cluster method and Andrew’s curves, 
low flow analysis has performed by several models, namely, multivariate regression for determining 
the relations between low flow values and hydrologic characteristics of basin (MRLF), index low flow 
method (ILFM), regionalization model of frequency formula parameters (RFFP, determining regression 
equation between mean and standard deviation of low flows and hydrologic characteristics of basin), 
and hybrid low flow model (HLFM). For goodness-of-fit test, the least-squares method (RSS) has been 
employed, and for determining the best distribution, an arbitrary distinction method has been used. 
The computed distinctions have been shown that the two parameters gamma distribution is better than 
the other ones in view of using in this study. Using this distribution, low flows with different return 
periods have been determined. The results of cluster method and Andrew’s curves show that 35 stations 
are in a homogeneous region. Developed regression models are as follows:

 Q bf hm area
5

0 442 5 01 10 1 381 10 0 53510
4 4

= − − × + × +− −. . . .  (23.49)

 Q bf hm area
10

0 460 5 44 10 1405 10 0 45210
4 4

= − − × + × +− −. . .  (23.50)

 Q bf hm area
20

0 481 5 94 10 1411 10 0 38610
4 4

= − − × + × +− −. . .  (23.51)

 Q area wsa25
42 539 10 0 124 1 767= ×. . .− + −  (23.52)

 Q area wsa50
42 211 10 0 111 1 589= × + −−. . .  (23.53)

 Q area wsa100
41 945 10 0 101 1 438= × + −−. . .  (23.54)

where
area is the area of basin (km2)
bf is the bifurcation factor
hm is the basin elevation (m)
wsa is the basin slope (%)
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In the ILFM, for the stations that are located in the homogeneous region, QT/Q2 should be calculated for 
different return periods and then their interstation averages should be obtained. For the ILFM, the final 
developed equation is as follows:

 Q bf be area
2

0 409 0 365 1 38 10 0 63410
4

= − − + × +−. . . .  (23.55)

where
area is the area of basin (km2)
bf is the bifurcation factor
be is the basin elevation (m)

For the RFFP method, the relation between averaged (mean) and standard deviation of low flows (Std) 
and characteristics of basin has been studied, and the obtained models for average and standard devia-
tion are as follows:

 Mean area Logbf be= × − − × +− −
101 435 10 2 678 2 8 10 0 5874 4. . . .  (23.56)

 Std lms Logbe bf= × − − + ×− −
106 147 10 0 263 0 203 4 618 104 2. . . .  (23.57)

where
area is the area of basin (km2)
bf is the bifurcation factor
be is the basin elevation (m)
lms is the length of main stream (km)

Classifying the area to several regions is the basis of the HLFM. So first, the area will be divided into 
several regions. In this work, two factors that are the area and mean slope of basin were selected as a 
criterion for dividing the basin. Reason for using these parameters is that when the hydrologic charac-
teristics of the basin have been used for analysis, only regression coefficients for the area and mean slope 
of basin were constant. Thus on the basis of these two factors and using the K average method (one of the 
CA methods), the area is divided into five different parts. The regional models for estimating low flows 
with different return periods according to hybrid method (HLFM) are as follows:

 Q area5
0 156814 86818= −. .  (23.58)

 Q area bs10
0 03121 0 8082814 10158= − −. ( ). .  (23.59)

 Q area bs20
0 01171 0 272832 34825= − −. ( ). .  (23.60)

 Q area bs25
0 00848 0 196581 76999= − −. ( ). .  (23.61)

 Q area bs50
0 00279 0 1064441 02680= − −. ( ). .  (23.62)

 Q area bs100
0 00068 0 015730 77993= − −. ( ). .  (23.63)

where
Q is the low flow (m3/s)
area is the area of basin (km2)
bs is the mean slope of basin (m/m)
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After determining the regional model for estimating low flows with four mentioned methods, the model 
accuracy of four studied methods by relative estimate error and the RMSE has been considered. For this 
purpose, the stations that have recorded the length of more than 30 years have been used. The results 
showed that MRLF and ILFM methods are more suitable than HLFM, but the RFFP has less accuracy 
as compared with HLFM.

23.8.5  case example in Low flow and Principal component regression

Eslamian et al. [11] attempted to estimate the low flow index (7Q10), the 7-day, 10-year low flow, using 
principal component regression (PCR) based on physiographic and hydrologic variables in Karkheh 
Watershed, Iran. Twelve variables (latitude, longitude, annual average precipitation, watershed area, 
watershed average slope, distribution ratio, summation of stream lengths, Miller coefficient, main river 
average slope, length of main channel, watershed average height from sea level, and drainage density) 
were determined using GIS software. The gamma distribution with two parameters was chosen as the 
suitable regional distribution using ranking method. Using gamma distribution, 7Q10 was estimated 
for all of the 35 gaging catchments. PCR was performed in order to eliminate large variances due to 
multicollinearity. Table 23.8 includes eigenvalues and eigenvectors.

As Table 23.8 shows, the eigenvector loadings for component one are not considerable (lik < 0.5). The 
variables with high loadings in component number two are the same as those in third component. In 
other words, components two and three possibly include the same specific data. It is likely that the 
remaining components, that is, components 4 and 5 are good candidates to be retained in the regression 
due to the fact that they each are made up of high loading variables (Miller coefficient in component 4 
and area in component 5).

To approve the assumptions mentioned earlier regarding which components to retain for use in PCR, 
factor analysis was performed using varimax rotation.

The data set was analyzed applying two, three, four, five, and six factors. The results indicate that 
two-factor rotation can better be justified. The results of applying two factors are shown in Table 23.9.

Table 23.9 indicates that the first factor is the size factor because the high loading variables represent 
size of the catchments in this factor. Factor 2 in which latitude has the highest value can be attributed to 
precipitation variability, which is represented by geographic position.

23.8.6  case example in Peak flood Discharge and Hybrid Method

Chavoshi Borujeni et al. [6] used L-moment for parameter estimation, homogeneity testing, and selec-
tion of the regional distribution in North Karoon catchment, Iran. There are a number of 30 hydromet-
ric sites in the study area, each of them with more than 5-year annual peak flood data. Among them, 

TABLE 23.8 Eigenvalues and Eigenvectors of Correlation Matrix

Model Variables

Component

1 2 3 4 5

Eigenvalues
3.14 1.3 0.43 0.1 0.01

Eigenvector
Latitude (°) 0.25 −0.68 −0.69 −0.06 −0.03
Area (km2) 0.54 0.23 0.03 −0.31 −0.75
Watershed average slope (%) −0.28 0.63 −0.72 −0.01 −0.04
Stream length summation (m) 0.53 0.24 −0.03 −0.48 0.66
Miller coefficient 0.53 0.19 −0.06 0.82 0.09
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sites that are independent, that is, not subjected to upper catchments or any practices, were selected for 
this study (Table 23.10).

Discordancy measure for each site of the basin has been calculated and found between 0.30 and 2.08. 
The data range shows no discordancy for the study sites. However, the values of different heterogeneity 
measures, H1, H2, and H3 are found as 5.93, 2.64, and 0.48, respectively. Since the first two heterogeneity 
measures, H1 and H2, are more than 2, dealing with heterogeneity of the studied sites, two suspected 
sites were removed and the process repeated. The results for the five remaining sites confirm that the rest 
of the sites may be considered as homogeneous regions (Table 23.11).

The values of different heterogeneity measures H1, H2, and H3 are found as 1.94, 0.84, and 0.28, respec-
tively. Therefore, the study region demonstrates acceptable homogeneity.

A number of 5 three-parameter distributions, that is, generalized logistic, generalized extreme value, 
generalized Pareto, general normal (LNIII), and Pearson type III were fitted to the region. The value of 
ZDIST statistic for the study area for each three-parameter distribution showed that all of the candi-
dates are acceptable; however, LNIII is the most appropriate one. Finally, the regional peak flood esti-
mates for each return period are obtained based on this distribution in the region.

TABLE 23.11 L-Moment’s Properties and Discordance Measure

Site N Name L-CV L-SKEW L-KURT D(1)

1 15 Zarinderakht 0.4671 0.2864 0.1404 0.81
2 14 Koohesookhteh 0.3117 0.2744 0.1091 1.32
3 17 Dezak 0.4617 0.3993 0.2227 0.52
4 15 Tangedarkesh 0.2318 −0.0026 0.0927 1.28
5 21 Godarkabk 0.3226 0.3564 0.2551 1.06
Weighted means 0.3594 0.2728 0.1728 —
Parameters of regional Kappa distribution 0.5539 0.5447 −0.0659 0.3719

TABLE 23.9 Two-Factor Analysis of Data

Factors

1 2

Factor Loadings Variance

Latitude (°) 0.07 −0.86 0.75
Area (km2) 0.99 −0.01 0.98
Watershed average slope (%) −0.39 0.70 0.64
Stream length summation (m) 0.98 0.00 0.97
Miller coefficient 0.94 −0.09 0.89
Low flow variance 0.24 0.76 0.64

TABLE 23.10 List of Studied Sites in the Region

Site River Area (km2) Elevation (m)

Zarinderakht Khan Mirza 397 1770
Koohesookhteh Kiar 2,909 1980
Dezak Biregan 630 2152
Tangedarkesh Jooneghan 899 2000
Godarkabk Agh Bolagh 716 2150
Marghak Bazoft 34,221 980
Lordegan Lordegan 374 1650
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23.8.7   case example in Peak flood Discharge and 
region of Influence Method

Eslamian [10] combined the physiographic characteristics of catchments with flood statistics in terms of 
defining ROI for selected sites in New South Wales, Australia. In this region, 22 catchments are selected 
for the analysis due to availability of geomorphological and physical characteristics of catchments. Six 
independent physical attributes including catchment area (A), length of main stream (L), median annual 
rainfall (MAR), 50-year rainfall intensity with 12-h period (I50), catchment compactness coefficient (Kc), 
and elevation (E), and three independent statistical attributes including coefficient of variation of flood 
series in log domain (Cv), the specific 50-year flood (Q50/A), and a new coefficient based on Pearson dis-
tribution (( ) ( )µ µ γ− −m / ), for defining the ROI of each site are applied. The relations between Cv, Q50/A, 
and A, Kc, L, MAR, I50, and E were not found robust because little is generally known regarding some of 
the factors and processes by which storm runoff occurs.

The physiographic characteristics of catchments were combined with flood statistics at catchment 
outlet in terms of defining the ROI for each site. When physical attributes were included in the attributes 
set, sites in the resulting regions were more concentrated around the reference site, and therefore the 
results were more satisfactory. This was expected since the contiguous sites usually display similar pat-
tern of rainfall and geomorphology.

23.9  Summary and conclusions

This chapter reviews the estimation methods developed and used in regionalization. It is intended to 
provide a quick reference guide for such methods used for hydrological prediction in ungaged basins. 
Having a large number of input variables is one of the main common problems in regionalization. The 
choice of variable selection plays an important role in regionalization due to collinearity problem. Some 
different methods have been introduced to reduce regional model inputs. Among them, PCA and GT are 
useful methods. In the process of regional analysis, the sites must be assigned to homogeneous regions, 
because approximate homogeneity is required to ensure that regional analysis is more accurate than at-
site analysis. Today, there are numerous ways available for detecting homogeneous regions. CA, DA, and 
AC are suitable for separating homogeneity regions. The information transfer is a fundamental step in 
regional analysis. In this chapter, index flood method, multiple regression, hybrid method, L-moments, 
ROI, and regional envelope curves explained for determining the relations between hydrologic variable 
values and characteristics of basin. Geostatistics was introduced as an approach of mapping hydrological 
variables. The regional analysis of hydrological variables can be performed by combination of the choice 
of variable selection, detecting homogeneous regions, and information transfer methods.
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24.1  Introduction

Remote sensing data and information have shown great potential in supplying relevant spatial data 
and parameters at the appropriate scale for use in distributed hydrological models for water resource 
applications. In contrast with many conventional data normally given as point measurements, remote 
sensing–based measurements are spatial averages over pixels, which can be more appropriate for use in 
distributed hydrological models. Furthermore, remote sensing enables data access from remote areas, 
where data are typically sparse. Remote sensing technology used electromagnetic spectrum in the range 
of wavelengths of different radiations reflected or emitted by objects. Although remote sensing spec-
trum varies from 0.03 nm to 100 cm, VIS, IR, and MW spectra are commonly used in the retrieval of 
hydrological parameters.

There are two main types of remote sensing: passive remote sensing and active remote sensing. The 
passive systems are based on the measurement of the natural thermal emission in the form of bright-
ness temperature from the earth surface. On the other hand, the active MW systems generate their own 
radiation, which is transmitted toward the earth surface, and measure the reflected energy.

The unique characteristics of MW energy compared to the VIS and IR remote sensing systems are 
the ability to penetrate the atmosphere under various conditions including clouds, light rain, snow, 

Preface

Advances in remote sensing techniques provide capabilities for the estimation of hydrological 
parameters at different spatial and temporal scales not necessarily possible with traditional field 
measurement techniques. This chapter provides an overview of how remote sensing techniques 
have been used over recent decades to estimate hydrological parameters including precipitation, 
evapotranspiration (ET), soil moisture, snow, lake ice, land use, and land cover. The sensors used 
are electromagnetic (in the visible [VIS], infrared [IR], or microwave [MW] sections of the spec-
trum) or gravitational, and may be passive or active. Case studies are presented to illustrate the 
use of remote sensing–based parameters in distributed hydrological models, for example, for flash 
flood forecasting, and for environmental studies.
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and smoke, as well as the ability of low frequency to penetrate vegetation up to a certain level. MW 
radiation is independent of solar radiation and can be used during both nighttime and daytime hours; 
high-frequency MWs are partially absorbed by vegetation; therefore, emitted signatures contain infor-
mation on vegetation properties [82]. The MW remote sensing data, which are more suitable to estimate 
hydrological variables including snow, soil moisture, and precipitation, can be obtained during day- or 
nighttime.

The two critical characteristics of remote sensing data for advancing the measurement of hydro-
logical parameters are spatial and temporal resolution. Remote sensing obtains spatially distributed 
information of hydrological variables that is important and helps to understand the spatial variability of 
watershed properties, to be included in modeling analysis. These data can be obtained at definite time 
intervals, which vary based on the sensors and type of orbit. The parameters such as precipitation are 
being monitored at every 15 min interval.

24.2  Monitoring Hydrological Parameters

24.2.1  Precipitation

Precipitation is a crucial parameter that drives the hydrological cycle, thus helps to improve weather 
and climate predictions. Improving hydrologic forecasting requires accurate quantitative precipitation 
measurements at higher temporal and spatial scales. The old and usually reliable network of rain gages 
provides an overview of approximate precipitation. However, spatial densities of these rain gages are 
the limiting factor to accurately capture the highly varied nature of precipitation. In such cases, remote 
sensing–based precipitation provides a spatially continuous gridded dataset, using area-averaged 
remotely sensed information rather than strictly an interpolated point-based rain gage field.

Precipitation retrievals from remote sensing sensors are carried out using VIS, IR, and MW wave-
lengths on geostationary and polar orbiting satellites. The IR sensor aboard detects radiation within the 
IR wavelengths that is emitted from the nearest surface beneath the satellite. This radiation is converted 
to a temperature and may be then correlated to surface-based rainfall based on an assumption such as 
that colder cloud temperatures indicate clouds of higher vertical extent and thus may be producing more 
rainfall. The currently operated IR sensors include National Oceanic and Atmospheric Administration 
(NOAA) Geostationary Operational Environmental Satellite (GOES), European METEOSAT, Russia’s 
Elektro-L, and India’s INSAT.

The MW sensors estimate rainfall based on a radiation emitted from sources such as liquid water 
droplets or suspended ice particles. Surface-based rainfall is thus correlated to the extent and composi-
tion of actual water in the atmosphere. The examples of MW-based sensors include NOAA, Defense 
Meteorological Satellite Program (DMSP), and TRMM satellites. The TRMM precipitation radar (PR) is 
an active sensor that measures the change between emitted and returned radiation due to atmospheric 
water particles and relates this to previously determined surface rainfall intensity [51].

The GPM is an international mission by JAXA and NASA as well as other international agencies 
that aims to unify and advance global precipitation measurements using MW sensors to be expected to 
be launched in 2014. This mission will provide global uniformly calibrated precipitation observations 
at every two to four h. The GPM mission will deploy dual-frequency precipitation radar (DPR) and a 
multichannel GPM Microwave Imager (GMI) with high-frequency capabilities. The GMI will serve as 
a reference standard for the constellation radiometers by means of an advanced calibration system, and 
the DPR will provide microphysical measurements such as particle size distribution and vertical struc-
ture of precipitating cloud systems. This system will be used in conjunction with cloud-resolving models 
for the creation of a common cloud-radiation database for precipitation retrievals from both the GMI 
and the constellation radiometers. The constellation members in GPM will be represented by existing or 
future satellites of opportunity such as those of the US DMSP, the EUMETSAT Polar System (EPS), the 
Japanese Global Change Observation Mission, the French–Indian tropical mission Megha-Tropiques, 
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and several others that are currently being planned. During the last two decades, several algorithms are 
developed for estimating rainfall from IR and MW satellite observations.

The global precipitation records from point measurements are available through last century (GPCC; 
http://gpcc.dwd.de). However, these datasets have own inherent adequacies to quantify the distribu-
tion of global precipitation to yield acceptable global climatology. The Global Precipitation Climatology 
Project was established by the World Climate Research Program in 1986 with an approach to merge data 
and information available from several sources of precipitation including IR and MW remote sensing 
sensors and rain gages [38].

24.2.2  evapotranspiration

ET is the largest component in terrestrial water budgets consisting of 60% of land precipitation. It mod-
ulates land surface energy budget and constitutes an important source of water vapor to the atmosphere. 
However, atmospheric water vapor is the most significant greenhouse gas and thus plays a fundamental 
role in weather and climate [39].

First, the remote sensing approach to estimate ET is based on thermal IR spectrum wavelength, by 
solving simplified form of surface energy balance model. In this approach, the radiometric surface tem-
perature is used for estimating the sensible heat flux (H) and obtaining ET as a residual of the energy 
balance. The latent heat flux (LE) representing the ET fraction can be derived from

 LE R G Hn= − −  (24.1)

where
LE is the latent heat of evaporation due to ET
Rn is the net radiation absorbed by the land surface, equal to incoming solar radiation (Rs) minus 

outgoing shortwave and longwave radiations
H is the sensible heat flux to the atmosphere
G is the heat flux to the soil

In this equation, variables are expressed in energy units (W m−2). ET can be calculated from LE by the 
amount of energy needed to evaporate water at a given temperature and pressure. If heat transfer coef-
ficients are known or can be estimated, H can, in theory, be calculated from the difference between air 
temperature at reference height and the land surface temperature, measured by thermal IR bands on sat-
ellites such as the Landsat series [2,7], GOES [40], the Advanced Very High Resolution Radiometer series 
[58], the Advanced Spaceborne Thermal Emission and Reflection Radiometer [24,77], and the Moderate 
Resolution Imaging Spectrometer (MODIS) sensors, both on the Terra satellite [63,64]. Estimates of Rn 
and G are available from remote sensing or ground data, allowing LE to be calculated as a residual in 
the earlier equation. This approach has been applied widely to ET measurements with higher accuracy 
in semiarid regions.

The second approach to estimate ET is based on vegetation indices derived from canopy reflectance 
data. In this approach, the crop coefficients are estimated, which are further used to convert reference 
ET to actual crop ET. The crop coefficients are modified for water demands by irrigated crops. The 
crop coefficients are empirical ratios relating crop ET to a calculated reference-crop ET that is based 
on atmospheric water demand over a crop cycle or to actual ET measurements [65]. A time series of 
vegetation indices is correlated with measured ET to develop a curve over the crop cycle. This approach 
requires local meteorological and soil data to maintain a water balance in the root zone of the crop [28]. 
Duchemin et al. [18] developed linear relationship between NDVI and crop coefficients with good accu-
racy to derive maps of leaf area index (LAI) and transpiration requirements using Landsat7-(Enhanced 
Thematic Mapper) ETM+ images for agricultural area. The vegetation indices–based approach is also 
tested successfully using AVHRR [21,68] and MODIS [16,32,54,65]. Future earth observation systems 
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designed with higher spatial and temporal resolutions would make these approaches feasible for the 
operational monitoring of ET at a regional and global scale.

24.2.3  Soil Moisture

Soil moisture is a very important variable in hydrology because its variations influence the evolution of 
weather and climate. The soil moisture controls runoff, affects vegetation growth, and plays a significant 
role in evaporation and transpiration at the land–atmosphere boundary as well as surface energy flux 
[9]. However, conducting ground-based measurements of soil moisture consistently and regionally is 
difficult. Remote sensing provides an opportunity without the limitation of time and area. Active and 
passive remote sensing systems and especially those operating in the MW region of the electromagnetic 
spectrum have shown the ability to measure the soil moisture content since it is very sensitive to the 
dielectric properties of the soil. Low-frequency MW spectrum has the advantage of longer penetration 
and, therefore, less atmospheric effect.

Spaceborne active MW sensors are able to provide high spatial resolution (up to 10 m), but have low 
temporal resolution and are more sensitive to surface characteristics than passive systems. However, 
passive MW sensors provide low spatial resolutions (40–50 km) with a higher temporal resolution 
(12–24 h). Most of the applications of active MW in soil moisture retrieval are based on the hypothesis 
that the signal backscattered from the observed scene is widely dependent on the dielectric contrast 
that exists between wet and dry soils. Indeed, under the same land cover condition, the stronger radar 
backscattering values are observed for high soil moisture. However, soil moisture estimation based on 
active MW data only may face several challenges since the MW sensors are sensitive to other land cover 
characteristics such as vegetation density, surface roughness, and soil texture [20,34,83].

The accuracy of satellite-derived soil moisture is usually affected by the presence of vegetation, which 
significantly modifies and attenuates the outgoing MW radiation of the soil and makes the retrieval of 
realistic soil moisture from satellite-based sensors difficult and inaccurate. Soil moisture estimation 
by active remote sensing involves the measurement of backscattering, which may be affected by both 
vegetation canopy and soil moisture. The vegetation canopy may affect the backscattered energy by con-
tributing to the volume backscatter of the observed scene and by attenuating the soil component of the 
total backscatter [44,83]. The total amount of attenuation and backscatter depends on several vegetation 
parameters, such as vegetation height, LAI, and vegetation water content, and on sensor-related charac-
teristics such as angle of incidence, frequency, and polarization.

Two MW satellite missions, the European Space Agency (ESA) Earth Explorer Soil Moisture and 
Ocean Salinity (SMOS) launched in November 2009 and Soil Moisture Active Passive (SMAP) by NASA, 
which has been proposed to launch in 2015, take advantages of low frequency in soil moisture retrievals. 
SMOS mission has been designed to observe soil moisture over the global land with the first-ever polar-
orbiting spaceborne radiometer. This novel technique of the SMOS mission will provide operational 
monitoring of water in soils. SMAP mission will overlap with the SMOS mission in time so that it will 
enable intercalibration and intercomparison of their respective data. Moreover, the synthetic aperture 
radar (SAR) in the SMAP will provide higher spatial resolution (1–3 km) soil moisture product. The 
EPS METOP will be a continuation of ERS scatterometer mission carrying the advanced scatterometer 
ASCAT. The METOP satellite series, with advanced scatterometer on board, will be the first operational 
satellite system dedicated to the retrieval of soil moisture information.

24.2.4  Snow

The storage of water in snowpack affects the surface runoff and soil moisture and is therefore important 
at the regional scale for various applications such as flood prediction and water resource management. 
The rising in air temperature over land and at most high northern latitudes, where snow cover is pro-
jected to contract, widespread melting of snow and ice could lead to rising global average sea level [39]. 
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Satellite observations in the VIS and MW spectral range have been used for the global monitoring of 
snow cover properties for more than three decades.

Remote sensing sensors in VIS/IR spectrum that are well-appropriate snow cover mapping due to the 
high albedo of snow present a good contrast with most other natural surfaces except clouds. The two 
VIS- and IR-based snow products are widely used for large-scale climate research. First, the Interactive 
Multisensor Snow and Ice Mapping System (IMS) by NOAA provides daily snow cover information for 
the Northern Hemisphere. The IMS product is based primarily on VIS and near-IR observations, judged 
and mapped manually, and covers the period from late 1998 to present. It continues to undergo improve-
ments and refinements. The IMS snow cover product is produced every day, regardless of the presence of 
clouds, which interfere with satellite visible and infrared retrievals. This is possible due to IMS analysts 
looping through sequential GOES and AVHRR images to evaluate snow cover based on time-integrated 
information [36,72]. Second, the suite of products derived from the MODIS by NASA provides weekly 
global snow cover information. The MODIS snow products are provided as a sequence of products 
beginning with a swath product and progressing, through spatial and temporal transformations, to an 
8 day global-gridded product (http://modis-snow-ice.gsfc.nasa.gov/). Snow cover products derived from 
MODIS are based on a band rationing of MODIS band 4 (green) (0.545–0.565 μm) and band 6 (near-IR) 
(1.628–1.652 μm). These bands are used to calculate the normalized difference snow index [33].

The passive MW remote sensing sensors, the Scanning Multichannel Microwave Radiometer (SMMR, 
1978–1987), Special Sensor Microwave/Imager (SSM/I, 1987–present), and the Advanced Microwave 
Scanning Radiometer-Earth Observing System (AMSR-E) on board the Aqua satellite (2002–2011), pro-
vided opportunity to global snow cover and snow water equivalent (SWE) mapping [6,46]. MW emis-
sion from snowpack depends on the snow grain size, density, depth, and SWE [31]. Passive MW sensors 
have the advantage of penetrating the cloud cover unlike VIS/IR sensors. However, passive MW data 
suffer from being a low-resolution measurement, on the order of 25 km. Therefore, an effort is being 
made to develop a combination of the two products to provide a significant improvement of snow cover 
and SWE product with high spatial resolution from the VIS/IR data and cloud transparency from the 
MW data [3,23,25,56,86].

24.2.5  river and Lake Ice

An effect of ice in river and lake produces an increased hydraulic resistance by growing ice and stor-
age of frozen winter precipitation that can readily be seen in dramatic short-term changes in flow and 
water levels [70]. Changes in freeze-up and break-up dates of the ice in rivers and lakes affect the sea-
sonal hydrograph, as significant quantities of water are stored and later released within river channels. 
Variability and trends in river and lake ice dynamics can serve as indicators of climatic change, as 
climate influences the timing of lake ice melt and freeze onset, ice duration, and lake thermal dynamics 
that feedback to the climate system initiating further change [53].

In the past decade, the use of satellite data has gradually developed to the point that today remote 
sensing–based techniques are the main tool in lake and river ice observation and monitoring. VIS and IR 
channels on board of polar orbiting satellites are capable of the visualization of the lake and river ice and 
location under cloud-free condition. Polar orbiting satellites such as MODIS, AVHRR, and Landsat were 
extensively being used due to their higher spatial resolution. Latifovic and Pouliot [53] proposed a profile 
feature extraction technique for lake ice phenology from historical satellite records acquired by the series 
of AVHRR sensors and then compared them with in situ observations successfully with high accuracy.

Active MW SAR data are also used successfully in conjunction with VIS and IR channels in order 
to monitor the ice extent, growth, and thickness even in the presence of cloud. However, temporal 
resolution (5–6 days) of current radar sensors and the short period for which measurements are available 
limit their use for climate change studies and operational monitoring [19]. Using SAR data (ERS-2 and 
RADARSAT-1), Nolan et al. (2003) were able to determine dates of lake ice formation, snowmelt, and ice 
melt to within a few days for four winter seasons [67].
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24.2.6  Water Storage

Changes in terrestrial surface water storage affect the gravity field, where the added water mass exert 
a slight additional attraction. Precise measurements of changes in the gravity field sensed by orbiting 
satellites give information about seasonal and interannual shifts in the surface mass distribution. Over 
land, the filling and emptying of water pools, including soil and aquifers, is the main contributor 
to gravity changes, though hydrologically irrelevant contributions such as glacial rebound of the 
lithosphere exists and must be subtracted from the total gravity signal to estimate the change in water 
storage. While gravimetric remote sensing cannot distinguish between different surface water pools at 
a given location, subtracting known changes in pools (such as lakes and snowpack) permits inference of 
changes in otherwise poorly observed regional pools (such as groundwater).

Gravity Recovery and Climate Experiment (GRACE) is a pair of NASA satellites launched in March 
2002, which measure earth’s gravity field from orbits at about 500 km height. Small changes in the 
distances between the satellites, due to gravity field variations, are measured via onboard K-band MW 
signals and the global positioning system. GRACE generates maps of gravity anomalies at approximately 
monthly time resolution and ∼250 km spatial resolution [79].

Over land, GRACE products show seasonal wet–dry cycles in areas such as the Amazon and 
Mississippi basins [78]. Interannual variability in water storage can be used to quantify drought and plu-
vial episodes. Regional decreasing trends in water storage over the observation period have been found, 
due to ice sheet melting over parts of Greenland and Antarctica and due to unsustainable groundwater 
withdrawals in regions such as northern India [81] and California’s Central Valley.

The constraints provided by GRACE data for hydrological variability have been used in various ways to 
test and improve hydrological models. For example, Niu et al. (2007) subtracted modeled soil moisture and 
groundwater variability from total water storage change inferred from GRACE to deduce SWE over boreal 
river basins [66]. Syed et al. (2008) compared water storage variability inferred from GRACE with that 
given by the Global Land Data Assimilation System [80]. Assimilation of water storage information from 
GRACE into regional hydrologic models, combined with other data such as streamflow, has been shown to 
improve the realism of these models’ simulations of river discharge and groundwater levels [57,85]. On the 
scale of large river basins, GRACE storage changes have been used together with precipitation, evaporation, 
and streamflow estimated from remote sensing and/or ground observations to test whether these estimates 
are good enough to close the water budget [76], and the correlation of GRACE water storage with observed 
streamflow has been used to extend water storage estimates to times where GRACE data are not available 
[8]. GRACE water storage has also been compared to streamflow in small watersheds (tens of square km) in 
order to clarify the consistency of the relationship between streamflow and watershed storage [50]. Bloom 
et al. (2010) correlated GRACE water storage with anomalies in column atmospheric methane, inferring 
that tropical moisture status is the leading contributor to interannual variability in methane emissions [11].

24.2.7  Water Quality

Water quality is a general descriptor of water properties in terms of physical, chemical, thermal, and/or 
biological characteristics that are suitable for human consumption. Major factors affecting water quality 
in water bodies include suspended solids, algae (chlorophylls), chemicals, dissolved organic matter, ther-
mal releases, aquatic vascular plants, pathogens, and oils. Monitoring and assessing the water quality 
are critical for managing and improving its quality. Polar orbiting, high spatial resolution hyperspectral 
remote sensing sensors are being used increasingly as a tool for monitoring water quality conditions in 
inland and near-coastal waters. Remote sensing techniques to estimates these water quality parameters 
are based on changes in the spectral signature from water bodies and relate these measured changes on-
site by empirical or analytical models. The empirical approach is based on using experimental datasets 
and statistical regression techniques to generate algorithms relating the water reflectance or radiances 
at the sensor in specific spectral bands or band ratios/combinations to the observed in situ water quality 
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parameters [62]. The selection of spectral channel depends upon the expected type and concentration of 
water constituents that affect quality (Figures 24.1 and 24.2).

Most of the research for water quality using remote sensing sensors has been carried out for 
chlorophyll content estimation, which is then used as an estimate for observing algal content and 
hence water quality. Commonly detected water quality parameters include the concentrations of 
phytoplankton pigments chlorophyll a (Chl a) [1,12,62], total suspended solids and inorganic sus-
pended solids [26,45,48,55,84], absorption by colored dissolved organic matter [52], and indicators 
of water clarity such as turbidity [30,69]. High-resolution Landsat ETM was used to estimate chloro-
phyll a (Chl a) concentrations using band ratios for lakes [1,12] and coastal sewage outfall area [22]. 
The Medium Resolution Imaging Spectrometer (MERIS) on board ESA’s ENVISAT is used success-
fully to estimate algal bloom and colored dissolved oxygen [15,27,59]. MODIS remote sensing data in 
conjunction with logarithmic band ratio model have shown its capability to monitor the impact of 
hurricane impact on chlorophyll-a concentration in Pensacola Bay system [37]. Estimation of water 
quality parameters from remote sensing has proved to be useful and successful and is being investi-
gated for operational use.

24.2.8  Land Use–Land cover

The vegetation or land cover plays critical part in hydrological processes including interception and 
transpiration, which are sink or loss term in water balance model. The runoff curve number uses land 

FIGuRE 24.1 High concentrations of microscopic plants called phytoplankton (brighter regions) along the 
Florida coast and in Tampa Bay are an indicator of ocean health and change as seen in this SeaWiFS image from 
October 2004. (Photo courtesy of NASA, Washington, DC.)
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use/land cover condition with soil texture to estimate runoff from precipitation. Therefore, accurate 
information on land cover and land use and their changes over time is necessary for hydrological and 
environmental modeling and decision making. Remote sensing is a powerful and cost-effective tool 
for assessing the spatial and temporal dynamics of land use and land cover to evaluate deforestation, 
biodiversity loss, and climate change [71,74]. Multitemporal images provided by remote sensing sensors 
for same location are being used in conjunction with geographical information system to effectively 
determine the land use and land cover changes over time [42]. In addition, retrospective and consistent 
synoptic coverage over 40 years from remote sensing satellites is greatly benefited to assess the historic 
or long-term land cover changes for climate studies.

Change detection methods including pre- and postclassification have been used wildly to evalu-
ate land use and land cover changes using remote sensing satellite data [35,41,47] In preclassification 
approach, procedures such as image differencing [10], band rationing [4], change vector analysis [5], and 
principal component analysis [14] have been developed and used. These techniques are developed on 
basic approach to estimate the differences in the pixel reflectance values between the dates of interest. 
However, while these techniques are effective for identifying change, they cannot identify the nature of 
change. On the other hand, in postclassification method, the comparison was done over independently 
classified land cover data. Despite the difficulties associated with postclassification comparisons, this 
technique is most widely used for identifying land use and land cover changes [17].

24.3  remote Sensing in Hydrological Modeling

The emergence of distributed hydrological model provides a powerful tool for water resource manage-
ment under changing environments. Distributed hydrological models are commonly physically based 

(a) (b)

FIGuRE 24.2 MODIS imagery has shown that water quality of Florida’s Tampa Bay decreases in winter months 
compared to summer. More particles suspended in the water, a measure called turbidity, show up as brighter in 
December (a) than in July (b). Images are composites of turbidity data collected in December and July, respectively, 
over a span of three years. (Photo courtesy of NASA/USF, Washington, DC.)
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water balance/water transport model that requires large amounts of high-resolution input data. The 
constant improvement of remote sensing data availability made it possible to meet data needs in dis-
tributed hydrological simulation. Compared with the conventional observation method, remote sens-
ing can periodically obtain grid-based ground observations within a certain period, so as to elevate the 
temporal–spatial resolution of data.

24.3.1  Land Surface Modeling

Historically, regional and global analyses and reanalyses used for weather forecasting or for diagnos-
ing climate variability and change did not directly use observations of many water fluxes and stores, 
either due to lack of observations (e.g., soil moisture) or because the assimilation techniques for using 
these variables were not developed (e.g., precipitation) [43]. This has improved to some extent in recent 
years, for example, the North American Regional Reanalysis [60] ingested land and sea snow/ice cover 
products based on remote sensing, and precipitation gage observations over land as well as precipitation 
information from satellites (CMAP) over oceans. In numerical weather forecasting models, there is a 
fundamental need to incorporate those physical processes in the analysis that are linked to atmospheric 
moisture and dynamics. NASA’s Land Data Assimilation System project has used observation-based 
forcing (precipitation, temperature, and radiation) datasets to drive land surface models over recent 
decades, helping elucidate trends and variability in soil moisture [29,73,88], but still does not use avail-
able observations of soil moisture or many other land surface variables.

Several recent pilot studies have showed encouraging results in assimilating remotely sensed soil 
moisture into land surface models in reanalysis mode, taking into account that soil moisture informa-
tion based on MW is typical only for a surface layer rather than for the entire soil column [75,89].

Preliminary work has also sought to assimilate both thermal and MW information on moisture sta-
tus in order to better constrain soil moisture at different depths. Additional data streams to assimilate 
include observed streamflow, which could in some cases be estimated from remote sensing, and GRACE 
water storage change [87]. Improvements in analyzed hydrology resulting from making full use of earth 
observing satellite observations promise to not only result in more accurate retrospective estimates of 
regional-to-global hydrological variability and change but also improve intermediate-to-seasonal range 
weather forecasts through better capturing land–atmosphere feedback [13,49,61].

24.3.2  flash flood Guidance and forecasting

Climate change and variability increase the probability of frequency, timing, intensity, and duration 
of flood events. After precipitation, soil moisture is the most important factor dictating flooding, since 
rainfall infiltration and runoff are based on the saturation of the soil. Flash flood guidance (FFG) sys-
tems provide lead-time for emergency responders to evacuate citizens and deploy resources to assess 
flood damage. Remote sensing technologies have proved to be valuable tools to support effective early 
flood warning system for disasters. There are few FFG systems that have the capability to indicate the 
likelihood of flooding of small streams or rivers over large regions by using bias-corrected remotely 
sensed precipitation estimates and real-time soil moisture estimates to produce FFG. The FFG systems 
have the potential to provide advance warning of situations likely to lead to floods and thus provide 
additional lead-time for emergency managers to monitor the situation and provide improved flood fore-
casting services. The FFG models are commonly water balance models that portray the grid-based run-
off generation process, using grid-based inputs including precipitation, evaporation, soil moisture, soil 
type, vegetation, and other underlying surface information.

Currently, National Weather Service issues a daily national map of gridded flash flood guidance, 
which is produced based on surface soil moisture deficit and threshold runoff estimates. Similarly, the 
Central America Flash Flood Guidance System (a regional FFG system) has been in operation since 2004. 
These systems use real-time remotely sensed precipitation datasets from NOAA satellites. However, 
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these systems are limited by real-time observations of soil moisture and hence use model-derived soil 
moisture information. Improved flash flood forecasting requires accurate and high-resolution soil sur-
face information. Recent development in soil moisture estimation using remote sensing shows potential 
in flash flood application. The already launched SMOS satellite’s mission and future SMAP mission are 
two potential sources of remotely sensed soil moisture data. SMAP is a directed mission within the 
NASA Earth Systematic Mission Program and is planned to launch in 2015, while SMOS is a Living 
Planet Programme from the ESA and launched in November 2009.

24.4  Summary and conclusions

Advances in remote sensing techniques provided many advantages in the estimation of hydrological 
parameters at different spatial and temporal scales over traditional field measurement techniques reli-
ably with sufficient accuracy. Over the last 10 years, use of remote sensing techniques in hydrology has 
advanced greatly with the launch of research platforms such as Terra and Aqua, TRMM, and opera-
tional platforms such as GOES and the DMSP series, as well as many other satellite platforms, and with 
the development of more sophisticated retrieval algorithms.

Currently, remote sensing data are being used operationally for the estimation of hydrological vari-
ables including precipitation, soil moisture, snow, and ice at varying spatial and temporal resolutions 
and accuracy via remote sensing. In the next decade, significant progress is expected in measuring other 
variables including albedo measurements, ET, sediment loads, erosion, and groundwater, to be opera-
tionally available for hydrological models. In some cases, current operational remote sensing–based 
techniques are used in only limited areas due to restriction from heavy forest or higher elevation moun-
tains, but their use is expected to expand in the future. However, these problems can be solved through 
additional research and development.

Using passive MW remote sensing for measuring snow, soil moisture, and precipitation has been 
used operationally; however, one of the limitations in measuring these parameters is lower spatial scale. 
Much effort is needed to develop a framework to integrate multifrequency remote sensing information 
to produce high-resolution hydrological products that can be used over a range of spatial scales, from 
field, farm, and watershed, up to regional scales. In case of precipitation, there are many remote sensing 
possibilities including ground-based radar, VIS and thermal IR satellite imagery, and MW satellite data. 
However, the development of hybrid solutions to combine the benefits of satellites and ground observa-
tions (e.g., ground radars and gage networks), and advanced multispectral algorithms to improve the 
accuracy and spatial resolution of satellite precipitation is needed.
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Preface

Several statistical tests have been performed in the literature on hydrologic and climatological 
data. The most commonly used tests are those of trend and cross-correlation between data. A basic 
assumption of many of these statistical tests is that the data in each involved variable are randomly 
ordered in time. However, while most natural data violate this assumption, many studies simply 
ignore the effect that persistence in natural data has on the results of statistical tests of significance. 
Although such effect has been noted and warned against very early in the literature, many past and 
current studies simply fail to consider taking this effect into account. This chapter sheds some light 
on the effect of persistence on the distribution of some commonly used statistical tests of signifi-
cance. Methods to account for the effect of persistence on these statistical tests are also discussed.
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25.1  Introduction

Measurement of different types of hydrologic and meteorological variables had been carried out for 
many past years. In fact, some sort of hydrologic measurements have been made since the dawn of civi-
lization as in the case of the Nile River [3]. The accumulation of various continuous measurements over 
the past century with reasonable quality and coverage has prompted many researchers to make use of 
this wealth of data for the benefit of mankind. This has been motivated by the need to assess the impacts 
of the observed large climatic variability and possible future changes in global and local climates. Two 
major directions have evolved in recent years that are based on statistical analysis of hydrologic and 
meteorological data. The first direction is concerned with the detection of the effect of climate change 
on various hydrologic processes, such as rainfall, runoff, and evapotranspiration, among others. The 
aim of this type of analysis is mainly to detect significant trends or possible abrupt change points within 
the observed time series in response to climate change. The second direction, on the other hand, is 
concerned with the prediction of various hydrologic phenomena, such as river flow or rainfall amounts, 
based on some global climatic indices that are observed in advance with sufficient lead times. In this 
case, statistical tests on the significance of the cross-correlation between hydrologic and global climatic 
indices are often used for the selection of best predictors.

Statistical analysis of hydrologic and meteorological data relies heavily on statistical tests of signifi-
cance. Originally, these statistical tests had been developed for random data obtained from random 
experiments, and as such, no correlation is expected between successive values of the measured variable 
or variables. This is a key fact that has often been overlooked by some researchers when dealing with 
natural data. Most natural data exhibit some type of “persistence,” which means that successive obser-
vations are significantly correlated, and are often referred to as “autocorrelated” or “serially correlated” 
data. The strength and extent of this autocorrelation in time has been typically divided into “short-term” 
and “long-term” persistence, but with no clear boundary between the two types. Because persistence 
violates the basic assumption of statistical tests of significance, many results become questionable if 
persistence is not properly dealt with. This chapter will concentrate on two widely used types of statisti-
cal tests of significance, which are trend tests and cross-correlation tests, although the same principles 
apply to other statistical tests of significance as well.

Typically, statistical tests are grouped into parametric tests, that is, those tests that depend on the sta-
tistical distribution of the tested data, and nonparametric (or distribution-free) tests, that is, those that 
are independent of the statistical distribution of the data. Under Gaussian (normal) distribution condi-
tions, parametric tests are more powerful than nonparametric tests, that is, they are favorably more sen-
sitive to small deviations from the null hypothesis. However, parametric tests have the disadvantage of 
losing power when the data deviate from the normality assumption, and distribution-free tests become 
more powerful [43]. Since most hydrologic data are skewed, with various degrees of deviation from 
normality, distribution-free tests will be considered in this chapter.

In the following sections, a sample of the previously mentioned statistical tests will be reviewed and 
the effect of persistence on the significance of their results will be discussed. Finally, methods to deal 
with the effect of persistence on these tests are surveyed.

25.2  Trend Tests

Through the past few decades, the topic of global warming, or climate change in general, has received 
a great deal of attention from researchers all over the world. In particular, there has been an interest to 
detect whether the observed changes in climate have significantly affected various hydrologic processes, 
such as rainfall and runoff. Studies have considered many aspects of change for both the magnitude and 
frequency of various events. For example, Kundzewicz et al. [29] studied trends in a number of river 
flow time series in different parts of the world, while Svensson et al. [37] studied trends in flood and 



Significance of Statistical Tests and Persistence in Hydrologic Processes 519

low-flow index series for the same group of rivers. Similarly, Andreadis and Lettenmaier [1] studied 
trends in the twentieth-century drought over the continental United States, Cunderlik and Ouarda [6] 
studied trends in the timing and magnitude of floods in Canada, McBean and Motiee [33] studied the 
impact of climate change on the great lakes of North America, and Estrela et al. [10] studied the impacts 
of climate change on water resources in Spain. These are but a few samples from a very long list of stud-
ies dealing with the subject.

The effect of persistence on the results of trend tests has long been known. For example, Cox and 
Stuart [5] stated that “Positive serial correlation among the observations would increase the chance of a 
significant answer even in the absence of a trend.” Nevertheless, a large number of earlier studies as well 
as a considerable number of recent studies fail to account for the effect of persistence on their results. 
This by itself does not automatically invalidate their results, but the statistical evidence may be weaker 
than implied, and therefore some of the conclusions may not be properly supported. Methods to deal 
with persistence in observed data were suggested in the literature since the early 1970s. Lettenmaier [30] 
considered the detection of trends in water quality data with dependent observations. Hirsch and Slack 
[22] suggested a nonparametric test for seasonal data with serial dependence. Van Belle and Hughes [38] 
also suggested a nonparametric test for trends in water quality. El-Shaarawi and Damsleth [11] surveyed 
a number of parametric and nonparametric tests for dependent data. Zetterqvist [46] discussed sta-
tistical estimation and interpretation of trends in water quality data. Von Storch [39] proposed a pre-
whitening procedure to eliminate the effect of serial dependence on trend results. Hamed and Rao [20] 
suggested a modified Mann–Kendall trend test for autocorrelated data. More recent literature deals in 
more detail with the issues of temporal and spatial correlation. Douglas et al. [9] investigated the impact 
of spatial correlation on trends in floods and low flows in the United States. Yue and Wang [41] discussed 
regional streamflow trend detection with consideration of both temporal and spatial correlation. Matalas 
and Sankarasubramanian [32] investigated the effect of persistence on trend detection via regression. 
Yue et al. [45] discussed the impacts of serial and cross-correlation on Canadian streamflow trend 
detection. Hamed [19] suggested a procedure for testing trend significance using the Mann–Kendall 
trend test for data that exhibit long-term dependence.

In this section, we will consider two commonly used distribution-free trend tests. The details of each 
test are reviewed and the effect of persistence on each test is then investigated.

25.2.1  Mann–Kendall Trend Test

The first test we consider is the Mann–Kendall trend test. The test is based on Kendall’s tau rank cor-
relation statistic [24] and was proposed for use as a trend test by Mann [31] through calculating the cor-
relation between the ranks of the observations with their order in time. The null hypothesis of this test 
is that data are randomly ordered in time. This means that the alternative hypothesis is that data are not 
randomly ordered, which encompasses both monotonic trends, whether linear or nonlinear, and serial 
correlation. In fact, the alternative hypothesis also covers abrupt changes (jumps) in the mean of the 
observations, although more specific tests are available for that specific case.

For a given sequence of observed data x1, x2, …, xn, the Mann–Kendall test statistic S is calculated as
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where sgn(xj – xi) is the signum (or sign) function that evaluates to +1 if xj > xi, to −1 if xj < xi, and to zero 
if xj = xi. Because of the use of the indicator function sgn(.), the value of the test statistic S depends only 
on the ranks of the observations and not on their actual distribution, giving the test its distribution-free 
property.
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Under the null hypothesis of random ordering, the statistic S has a zero mean [24] with a variance 
given by
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where n is the number of observations. The standardized test statistic u can be obtained by dividing S by 
its standard deviation. Kendall [24] suggests a correction of continuity by subtracting 1 from a positive 
S and adding 1 to a negative S:
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Kendall [24] shows that the distribution of the standardized variate u tends to a standard normal variate 
as the number of observations n becomes large and that the normal distribution is a good approxima-
tion for n greater than 10 observations. For n less than 10 observations, the full distribution is tabulated 
by Kendall [24]. Kendall also discusses a correction of the variance for tied ranks. However, since we are 
dealing mainly with continuous data, the probability of exact ties is theoretically equal to zero. If a few 
ties do exist, they would be due to rounding effect or lack of precision in measurements, but the effect 
on the test should not be large in this case. Hamed [19] gives a detailed discussion of the effect of ties on 
the variance of the Mann–Kendall trend test statistic.

When the data are serially correlated, and under the null hypothesis of no trend, it has been shown 
by Hamed and Rao [20] and Hamed [19] that the mean of the Mann–Kendall test statistic remains to be 
zero, while the variance can be calculated as
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where ρij for any two subscripts i and j is the autocorrelation coefficient between observations i and j of 
normally distributed data. If the observations are not normally distributed, these autocorrelations can 
be obtained after using a suitable transformation of the data, such as the well-known Box–Cox transfor-
mation. Alternatively, the autocorrelation ρij

R between the ranks, which is distribution-free, can be used 
to obtain the normalized autocorrelations using Kendall’s formula [24] as follows:
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Inspection of the variance given by Equation 25.4 reveals that the variance increases as the strength 
of positive autocorrelation among the data increases (variance inflation) and decreases as the negative 
correlation increases (variance deflation). The program P1 in Appendix 25.A is a simple MATLAB® 
code for calculating the variance of S for the case of AR(1) data, but the code can be easily modified to 
accommodate any other dependence model, simply by changing the formula used for calculating the 
autocorrelation coefficients of the data at different lags and supplying the required inputs.

Figure 25.1 depicts the variance inflation factor V(S)/V0(S) for data with AR(1) dependence for dif-
ferent values of the first-order autocorrelation coefficient and sample size, while Figure 25.2 depicts the 
same for fractional Gaussian noise (FGN) data. To appreciate the adverse effect of variance inflation, 
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Hamed [16] shows that a variance inflation as low as 1.1 results in the rate of false significant results 
(type I error) being increased relative to its nominal values by 16%, 24%, and 30% at significance levels 
10%, 5%, and 2% (two-sided test), respectively, while an inflation factor as low as 1.2 increases the rate 
by 34%, 48%, 70%, respectively. The variance inflation factors depicted in Figures 25.1 and 25.2 thus 
demonstrate how badly persistence can affect the results of trend tests. Hamed [17] discusses the full 
probability distribution of the Mann–Kendall trend test statistic for persistent data.
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FIGuRE 25.1 Variance inflation factors of the Mann–Kendall trend statistic S for AR(1) data as a function of 
sample size n and first-order autocorrelation coefficient ρ.
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25.2.2  Daniels Trend Test

Another distribution-free trend test that is less commonly used is the Daniels trend test [7]. The test is 
based on Spearman’s rho rank correlation coefficient [36] between the observations and their order in 
time. The null and alternative hypotheses of the Daniels test are the same as those for the Mann–Kendall 
test. For a given sequence of observed data x1, x2, …, xn, the Daniels test statistic rs is calculated as
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where n is the number of observations and
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where R(xi) is the rank of observation xi.
Under the null hypothesis of random ordering, the test statistic rs has a zero mean with variance 

given by
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Kendall and Gibbons [25] show that the distribution of rs tends to normal as the sample size n increases, 
albeit at a lower rate than that of the Mann–Kendall test statistic S and that the standard normal table 
gives an accurate approximation for n > 35. They also give distribution tables for sample sizes less than 
17 and selected quantile values of rs for n up to 35.

For correlated data, the mean of rs can be shown to remain equal to zero, while the variance is 
given by
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where ρij is as defined before in Equation 25.4. The program P2 in Appendix 25. A is a simple MATLAB 
code for calculating the variance of rs for the case of AR(1) data, but the code can be easily modified to 
accommodate any other dependence model.

Figure 25.3 depicts the variance inflation factor V(rs)/V0(rs) for data with AR(1) dependence for dif-
ferent values of the first-order autocorrelation coefficient and sample size, while Figure 25.4 depicts the 
same for FGN data. The distribution of the variance inflation factor in Figures 25.3 and 25.4 are very 
similar to that in Figures 25.1 and 25.2. This is not surprising, as the Mann–Kendall test and Daniels test 
are equivalent and have similar power [13,43].

25.3  cross-correlation Tests

The interest in the cross-correlation between hydrologic data and meteorological data, and between 
hydrologic and global climatic indices, started earlier than the interest in trends and climate change. In 
fact, as early as the 1930s (and probably much earlier), the topic of “teleconnection” between measure-
ments in different parts of the world has been tackled [8]. In recent years, a great number of studies 
tried to establish cross-correlations between different hydrologic and climatic data. In particular, many 
attempts have been made to connect hydrologic data in different parts of the world to global climatic 
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indices. Such global climatic indices are usually based on sea surface temperature (SST) in various parts 
of the oceans (e.g., El Niño, EN), variations in atmospheric pressure at different locations (e.g., south-
ern oscillations, SO), zonal wind anomalies (e.g., equatorial Indian Ocean oscillations, EQUINOO), 
or a combination thereof (e.g., ENSO), in addition to many other types of indices. In some cases, other 
types of data such as ice core measurements, lake depositions (varves), or tree ring width/density mea-
surements were also investigated as proxy to temperature as well as hydrologic data. For example, 
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Chiew et al. [4] studied the links between EN/SO and Australian rainfall, streamflow, and drought 
and the potential for using these links in forecasting. Huang et al. [23] studied the correlation of pre-
cipitation to temperature variation in the Huanghe River (Yellow River) basin. Zhang et al. [47] studied 
flood and drought variability in the Yangtze Delta and association with the climatic changes from the 
Guliya ice core. Fana et al. [12] attempted annual temperature reconstruction in the central Hengduan 
Mountains, China, using tree rings. Soukup et al. [35] studied the long lead-time streamflow forecast-
ing of the North Platte River incorporating oceanic–atmospheric climate variability. Ghanbari et al. 
[14] studied the coherence between lake ice cover, local climate, and teleconnections in Lake Mendota, 
Wisconsin. Again, these are only a few examples from a very long and diversified list of studies, most of 
which concentrate on the correlation between observations that are not directly related but are thought 
to be connected through some type of global climatic system interactions.

It is to be noted again that most of the natural time series involved in cross-correlation studies exhibit 
some type of persistence. Similar to the case of trend tests, positive autocorrelation between successive 
values results in a larger chance to identify significant cross-correlations when in fact none exists. This 
occurs through the same mechanism of inflation of the variance of the test statistic due to the nonran-
domness of the tested data. We reiterate that this in itself does not automatically invalidate the results of 
previous studies, but some type of accounting for the effect of persistence should be made before solid 
conclusions can be reached. In particular, there should be a sound physical basis for the causality of the 
relationship between the two studied variables [26] to insure that the identified cross-correlations are 
not spurious. This is actually very important since research has expanded to cover variables for which 
causality may be hard to prove. For example, Panarello and Dapeña [34] argued that large-scale mete-
orological phenomena, ENSO and ITCZ, defined the Paraná River isotope composition. Many other 
applications appear also in other fields, such as economics, medicine, and natural hazard. For example, 
Wang et al. [40] studied the correlations between forest fires in British Columbia, Canada, and SST of 
the Pacific Ocean and Kovats et al. [28] studied the correlation between ENSO and a number of epi-
demic diseases, to mention a few.

In this section, we will consider two commonly used distribution-free tests of cross-correlation 
between two variables. These two tests correspond to the two trend tests mentioned earlier. The details 
of each test are reviewed and the effect of persistence on each test is then investigated.

25.3.1  Kendall’s Tau

Kendall’s tau [24] is a measure of concordance between two observed random variables. For a given 
bivariate sequence (x1, y1), (x2, y2), …, (xn, yn) of two observed variables X and Y, Kendall’s tau test sta-
tistic S can be calculated as
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The formula in Equation 25.10 is similar to that in Equation 25.1 but involves the two variables x and y. 
Under the null hypothesis of X and Y being independent, that is, there is no cross-correlation between 
X and Y, and that the observations of each of the two series are randomly ordered, the test statistic S 
has a zero mean and the same variance V0(S) given by Equation 25.2 for the Mann–Kendall trend test.

When X and Y are each serially correlated, Hamed [16] shows that the mean of S remains to be zero 
in the null case of independence between X and Y, while the variance is given by
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where
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where
ρij for any two subscripts i and j is the autocorrelation coefficient between observations i and j of the 

equivalent normal X data
ry (i, j, k, l) is defined similarly for the variable Y

The program P3 in Appendix 25.A is a simple MATLAB code for calculating the variance of S for the 
case of AR(1) data, but the code can be easily modified to accommodate any other dependence model, 
where the autocorrelation models of X and Y need not be the same.

Figure 25.5 depicts the variance inflation factor V(S)/V0(S) for data with AR(1) dependence for a 
sample size n = 50 and different values of the first-order autocorrelation coefficients of X and Y as an 
example, while Figure 25.6 depicts the same for different sample sizes of X and Y for a set of equal cor-
relation coefficients. It should be noted that for variance inflation to vanish, it suffices that one of the two 
involved variables be randomly ordered (i.e., not autocorrelated).

25.3.2  Spearman’s rho

Similar to Kendall’s tau, Spearman’s rho [24,36] is a measure of rank correlation between two variables 
X and Y. For a given bivariate sequence (x1, y1), (x2, y2), …, (xn, yn) of the two observed variables X and Y, 
Spearman’s rho test statistic is given by
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which is the same as in Equation 25.6 in the case of the Daniels test, while now we have

 
d R x R yi i

i

n
2 2

1
∑ ∑= −[ ]

=

( ) ( )  (25.14)

where
R(xi) is the rank of observation xi

R(yi) is the rank of observation yi

Under the null hypothesis of X and Y being independent, the statistic rs has a zero mean and a variance 
given by Equation 25.8, the same as in the case of the Daniels trend test.

When the data are serially correlated, it can be shown that the mean remains to be zero, while the 
variance is given by
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where rx(.) and ry(.) are as defined before. The program P4 in Appendix 25.A is a simple MATLAB code 
for calculating the variance of rs for the case of AR(1) data, but the code can be easily modified to accom-
modate any other dependence model. It should be noted that the formula for the variance of rs involves 
six nested summations, making the calculation of the variance more computationally demanding than 
the three previous test statistics.

Figure 25.7 depicts the variance inflation factor V(rs)/V0(rs) for data with AR(1) dependence for differ-
ent values of the first-order autocorrelation coefficients of X and Y for sample size n = 20 as an example, 
while Figure 25.8 depicts the same for different sample sizes of X and Y for a set of equal correlation 
coefficients.
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25.4  Dealing with Persistence

Several methods have been suggested in the literature to deal with the effect of persistence on the results 
of statistical tests of significance. These methods can be divided into three categories. The first cat-
egory involves dealing directly with the statistical tests themselves, making necessary corrections in the 
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distribution of the test statistics. The second category involves the use of the principle of effective sample 
size. The third category involves manipulating the data to remove the effect of persistence. Each of these 
methods has its advantages and disadvantages that are explained in this section, along with examples 
of their applications.

25.4.1  Modified Statistical Tests

In this method, the distribution of the test statistic under the effect of persistence is derived, and testing 
is conducted considering the correct distribution of the test statistic. The same test procedure is used, 
replacing the original variance of the test statistic with the correct inflated variance (e.g., Equations 25.4, 
25.9, 25.11, 25.15) based on the autocorrelation information extracted from the data. Hamed [19] used 
the Mann–Kendall test modified by the inflated variance given in Equation 25.4 to reassess trends in 
a group of 57 worldwide total annual river flow time series that had been shown in an earlier study to 
exhibit significant trends. The use of the modified trend test resulted in a considerable reduction in the 
number of significant trends when the effect of persistence is taken into account. The exact full probability 
distribution of the Mann–Kendall trend test statistic for persistent data has been addressed by Hamed 
[17]. Similarly, Hamed [16] used a modified Kendall’s tau test to illustrate the role of persistence in the 
false identification of significant cross-correlation between unrelated segments of the Nile flow and North 
Hemisphere temperature time series. The exact full probability distribution of Kendall’s tau for persistent 
data has also been addressed by Hamed [15].

This method has the advantage that the original test is modified directly using basic probability 
theory, without the need to perform any modifications on the tested data, which might interfere with the 
results of the test. This is done with minimum assumptions about the structure of the data, since the 
autocorrelation among the ranks of the data is the only needed information to modify the variance. On 
the other hand, one disadvantage of this method is that each test has to be dealt with individually by 
deriving the distribution of the test statistic, which may not be a simple task. Also, the calculation of the 
modified variance becomes computationally demanding, if at all practical, as is the case with the vari-
ance of Spearman’s rho as given by Equation 25.15.

25.4.2  effective Sample Size

Since the variance of many statistics is inversely proportional to the sample size n, the inflated variance 
can be obtained by simply using a smaller value n* for the sample size to calculate the variance. The 
idea of using this “effective” sample size to calculate the variances of the sample mean, sample sec-
ond moment, and sample variance was suggested by Bayley and Hammersley [2]. For example, the 
effective sample size n* for the sample mean for data with autocorrelation function ρ(j), j = 1, 2, …, n 
is given by
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Lettenmaier [30] suggested the use of this effective sample size as an approximation to test the signifi-
cance of trends in autocorrelated time series using nonparametric tests. For the case of AR(1) autocor-
relation with first-order autocorrelation coefficient ρ, the formula in Equation 25.16 reduces to
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Hamed and Rao [20] suggested the use of a more accurate formula for the specific case of the Mann–
Kendall trend test, which is given by
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where ρR(.) is the autocorrelation function of the ranks of the observations. Yue and Wang [42] give an 
assessment of the use of effective sample size in detecting trends in serially correlated hydrologic series 
using the Mann–Kendall trend test.

The advantage of using the effective sample size is that the tested data are not modified. However, 
it should be noted that the formula for calculating the effective sample size depends not only on the 
autocorrelation function of the data but also on the distribution of the statistic under consideration. For 
example, the formula given in Equation 25.16 is only exact for calculating the variance of the sample 
mean, while its use in other cases may give varying accuracy depending on the type of statistic under 
consideration. Hamed [16] further discussed this aspect of variation in the effective sample size for dif-
ferent test statistics.

25.4.3  Prewhitening

As mentioned earlier, one basic assumption of statistical tests of significance is that the tested data are 
random. In the field of signal processing, random signals are commonly known as “white noise,” while 
autocorrelated signals are known as “colored noise.” The change of autocorrelated data into uncorrelated 
data has thus been known as “prewhitening,” that is, changing colored noise into white noise prior to 
performing a statistical test. This prewhitening is performed by applying an inverse transformation of a 
suitable autocorrelation model for the data. Von Storch [39] suggested that for AR(1) data series Xt, trend 
tests can be performed on the prewhitened series Yt that is calculated as

 y x xt t t= − −ρ 1  (25.19)

where ρ is the first-order autocorrelation coefficient of the series Xt. However, he warns that for higher-
order AR processes or other autocorrelation models, prewhitening using Equation 25.19 would be 
insufficient.

Yue and Wang [41], as well as Yue et al. [44], show that the existence of a real trend in the data may 
lead to overestimation of positive autocorrelation among the data, thus causing “the removal of a por-
tion of the trend” as a result of prewhitening. Hamed [18] further discussed this issue and suggested the 
simultaneous estimation of trend and first-order autocorrelation coefficient ρ from the data, in which 
case ρ would be downward biased, followed by a bias correction of ρ using one of the following two sug-
gested formulas:
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where ρ̂ is the estimate of ρ from the full length n of the time series, while ρ̂1 and ρ̂2 are estimates 
of ρ from the first and second halves of the time series. In the general case, including the AR(1) model, 
the following generalized formula for prewhitening can be used [21]:
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 y M x u= −−1( )µ̂  (25.22)

where
x is the vector of original time series
y is the prewhitened series
u is a vector of ones of size n
μ̂ is the estimated mean of x
M is an n × n lower triangular matrix obtained by the Cholesky decomposition of the autocorrelation 

matrix Cn(x)

Alternative methods of obtaining the matrix M are discussed by Koutsoyiannis [27].

25.5  Summary and conclusions

Persistence is a property that is naturally found in many hydrologic as well as other natural data, where 
observations that are adjacent in time are positively correlated. Using statistical tests that are originally 
designed for random data violates a basic assumption of such tests and often results in overstating the 
significance of the calculated test statistics. It has been shown that even moderate values of autocorrela-
tion among the data can result in considerably exaggerated significance. Examples from nonparametric 
tests of trend and cross-correlation have been given along with detailed effects of persistence on the 
variance of their test statistics. For the conclusions arising from statistical tests of significance to be 
properly founded, the effect of persistence has to be accounted for in these tests. A number of methods 
for achieving this goal have been surveyed. These methods include adjustments of the tests to derive the 
correct variances of the test statistics, adjustment of the number of observations used to calculate the 
variances, and removal of autocorrelation by means of prewhitening.
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appendix

The following programs are written in MATLAB language. The text should be saved as a plain text 
file with the same function name and extension “.m”. For example, Program P1 should be saved as 
“calvarMKS.m.”

Program P1:  calculation of the Variance of the 
Mann–Kendall Test Statistic S

function [v v0] = calvarMKS(n,r);
cf = @(t,r) r.^abs(t);
t = −n+1:n−1;
cr = cf(t,r);
ee = 0;
ss = (2−2*cr).^−.5;
for j = 1:n

for l = 1:n
a = cr(j−l+n);
for k = 1:l−1

c = cr(j−k+n);
for i = 1:j−1

b = cr(i−l+n);
d = cr(i−k+n);
e = (a−b−c+d)*ss(j−i+n)*ss(l−k+n);
ee = ee+asin(min(e,1));
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end;
end;

end;
end;
v = ee*2/pi;
v0 = n*(n−1)*(2*n+5)/18;

Program P2: calculation of the Variance of the Daniels Test Statistic rs

function [v v0] = calvarDRS(n,r)
cf = @ (t,r) r.^abs(t);
t = −n:n;
cr = cf(t,r);
cr2 = (2−2*cr).^−0.5;
ee = 0;
on = 1+n;
for i = 1:n

for l = 1:n
e1 = cr((i−l)+on);
for u = 1:n

if l = =u, continue;end;
e2 = cr((i−u)+on);
d1 = cr2((l−u)+on);
for j = 1:n

if i = =j, continue;end;
e3 = cr((j−u)+on);
e4 = cr((j−l)+on);
d2 = cr2((j−i)+on);
e = (e3−e2−e4+e1)*d2*d1;
if abs(e)>1;e = sign(e);end;
ee = ee+asin(e)*(i−1)*(l−1);

end;
end;

end;
end;
v = ee/(2*pi)*144/(n*(n^2−1))^2;
v0 = 1/(n−1);

Program P3: calculation of the Variance of the Kendall Test Statistic S
function [v v0] = calvarKTS(n,r1,r2);
cf = @ (t,r) r.^abs(t);
t = −n+1:n−1;
cr1 = cf(t,r1);
cr2 = cf(t,r2);
ee = 0;
ss1 = (2−2*cr1).^−.5;
ss2 = (2−2*cr2).^−.5;
for j = 1:n

for l = 1:n
a1 = cr1(j−l+n);
a2 = cr2(j−l+n);
for k = 1:l−1

c1 = cr1(j−k+n);
c2 = cr2(j−k+n);
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for i = 1:j−1
b1 = cr1(i−l+n);
b2 = cr2(i−l+n);
d1 = cr1(i−k+n);
d2 = cr2(i−k+n);
e1 = (a1−b1−c1+d1)*ss1(j−i+n)*ss1(l−k+n);
e2 = (a2−b2−c2+d2)*ss2(j−i+n)*ss2(l−k+n);
ee = ee+asin(min(e1,1))*asin(min(e2,1));

end;
end;

end;
end;
v = ee*(2/pi)^2;
v0 = n*(n−1)*(2*n+5)/18;

Program P4: calculation of the Variance of the Spearman Test Statistic rs

function [v v0] = calvarSRS(n,r1,r2)
cf = @ (t,r) (r).^abs(t);
t = −n:n;
cr1 = cf(t,r1);
cr2 = cf(t,r2);
cr15 = (2−2*cr1).^−0.5;
cr25 = (2−2*cr2).^−0.5;
on = 1+n;
ee = 0;
for i = 1:n

for l = 1:n
e14 = cr1((i−l)+on);
e24 = cr2((i−l)+on);
for j = 1:n

if i = =j;continue;end;
e13 = cr1((j−l)+on);
s11 = cr15((j−i)+on);

for k = 1:n
if i = =k;continue;end;
e23 = cr2((k−l)+on);
s21 = cr25((k−i)+on);
for u = 1:n

if l = =u;continue;end;
e11 = cr1((j−u)+on);
e12 = cr1((i−u)+on);
s12 = cr15((l−u)+on);
for w = 1:n

if l = =w;continue;end;
e21 = cr2((k−w)+on);
e22 = cr2((i−w)+on);
s22 = cr25((l−w)+on);
e1 = (e11−e12−e13+e14)*s11*s12;
e2 = (e21−e22−e23+e24)*s21*s22;
if abs(e1)>1;e1 = sign(e1);end;
if abs(e2)>1;e2 = sign(e2);end;
ee = ee+asin(e1)*asin(e2);

end;
end;
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end;
end;

end;
end;
v = ee/pi^2*36/(n*(n^2−1))^2;
v0 = 1/(n−1);
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26.1  Introduction

A hydrologic flow regime is a specific combination of stream flow events. The flow regime can be charac-
terized by runoff magnitude, frequency, predictability, duration, flashiness, and sequences of these flow 
characteristics [35]. Streams possess their own flow characteristics that support a particular biological 
community [5]. Several previous studies discussed the importance of hydrologic processes in explaining 
temporal and spatial stream biota distributions [8,20,21]. Urbanization and water infrastructure devel-
opment are two widely accepted phenomena that significantly affect stream flow regime by changing 
their flow frequency, volume, peak, base flow, erosion and sedimentation, and water quality [7,17]. In 
many cases, streams exhibit a distinctive variability in annual flows and peak discharges, character-
ized by large statistical moments of skewness and kurtosis. The interannual variability of flow acts as 
a dynamic force affecting stream ecosystem functions [8]. Proper understanding and quantification of 
flow regime is therefore critically important for sustaining streams.

The physical processes of stream ecosystems consist of water and sediment movements within the 
stream and between the stream and the floodplain [15,35]. Sediment transport and streambed distur-
bances are essential components for establishing a relationship between stream hydrology and ecological 
processes [6,24,25]. For example, macroinvertebrate diversity and density is a significant sign of stream 
ecological health. Rural streams generally possess an immense diversity of macroinvertebrates, whereas 
urban streams are dominated by less variety with few disturbance-tolerant species [34]. This distinction is 
because of changes in flow regime and deterioration of stream water quality from urban pollution [2,43].

Previous studies have indicated six major flow components in natural flow regimes and have delin-
eated their key roles in sustaining stream ecological and geomorphological processes [4,31,35,36,39]. 
Figure 26.1 shows a conceptual representation of different flow components. These flow components are 
the following:

 1. Cease to flow indicates no discernible flow and is generally observed in lowland streams; this flow 
component is responsible for localized extinction of certain species and increase of diversity and 
biomass in the long term.

 2. Low flow is the minimum continuous flow derived from base flow contributions into the stream; 
low flows are essential for recruitment of native fish species in lowland streams.

Preface

The importance of hydrologic flow regimes and flow metrics is well acknowledged by hydrologists, 
ecologists, and water resource managers. Human interventions, such as water reservoir, water 
supply, hydropower generation, flood control, recreation, and navigation, modify the flow regimes 
and thereby affect their ecosystems. Stream flow characteristics such as magnitude, frequency, 
duration, timing, and rate of change of flow events are significantly important for developing flow 
regime and stream regionalization. Each stream possesses their own flow characteristics that sup-
port a particular biological community. The interannual variability of flow acts as a dynamic force 
affecting stream ecosystem functions. Urbanization affects the flow regime by changing their flow 
frequency, volume, peak, base flow, erosion and sedimentation, and water quality. Urbanization-
induced changes in flow regime include increased flow frequency, increased peak flow and total 
flow, and decreased base flow. Runoff from impervious areas generally flows quickly and carries 
diverse sources of pollutants. Therefore, proper understanding and quantification of flow regime 
is critically important. A number of statistical flow parameters are being used for classification of 
flow regimes. In this chapter, stochastic flow parameters used in flow regime classification and in 
ecohydrological studies are delineated.
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 3. Freshes are small short-duration peak flows, a key contributor to the variability of flow regimes, 
providing short pulses in flow, and are essential for a range of ecosystem functions.

 4. High flows involve a persistent seasonal base flow component, and they are necessary for the 
breeding of some fish species.

 5. Bankfull flow is the highest flow confined within a stream; they create habitat for macroinverte-
brates, plants, and fishes and are important for shaping and maintaining distributaries; bankfull 
flow has a specific return period depending on climate and other hydrologic factors; bankfull 
flow is approximately equal to the dominant flow (channel-forming flow) at or near the dynamic 
equilibrium of streams, and for incised streams, bankfull flow is greater than dominant flow [27].

 6. Overbank flows inundate adjacent floodplains; they are important for floodplain productivity, 
carbon returns to the river, fish and water bird community diversity, invertebrate colonization, 
and linkages with the stream channel, wetlands, and lakes.

The stream flow that is responsible for transporting the majority of the sediment and is responsible 
for creating or maintaining the characteristic size and shape of the channel is known as the channel-
forming flow or the dominant discharge [27]. The maximum sediment transport usually occurs at 
relatively moderate flow events rather than large flow events since moderate flows occur much more 
frequently than larger events. In channels at or near dynamic equilibrium, the dominant discharge is 
approximately equal to the bankfull discharge or the flow that fills the channel from bank to bank before 
spilling into the floodplain [27]. In streams that have been significantly incised, the dominant discharge 
is typically less than the bankfull discharge, for example, the Navarro River, at Hendy Woods State Park, 
in December 2002.

A number of statistical flow parameters are being used for the classification of flow regimes. Kennard 
et al. [22] developed a methodology for stream classification in Australia based on a range of flow param-
eters in order to determine environmental flow requirements in streams. Arthington et al. [1] proposed 
a stream regionalization approach on the basis of natural flow variability as described by Poff et al. [35]. 
In this chapter, stochastic flow parameters used in flow regime classification and in ecohydrological 
studies are being described.

26.2  Predevelopment flow regime

Urbanization causes changes to predevelopment stream flow characteristics. Predevelopment is gener-
ally defined by 0% impervious area. Changes in flow regime include increased frequency, increased 
peak flow and total flow, and decreased base flow [12]. Figure 26.2 shows the general changes in stream 

(a)

(d)

(f)

(e)

(c)
(b)
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Time

FIGuRE 26.1 Conceptual representation of major flow components of a natural flow regime. (a) Cease to flow, 
(b) low flow, (c) freshes, (d) high flow, (e) bankfull flow, and (f) overbank flow.
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flow characteristics with urbanization. Runoff from impervious areas generally flows quickly and car-
ries diverse sources of pollutants. Consequently, urbanization changes the quality, flow characteristics, 
and ecosystem conditions of streams and riparian vegetation [41,42]. Increased imperviousness reduces 
infiltration and subsequently base flow. Small rainfall events over an impervious surface generate runoff 
and increased flow frequency in urban streams. Impervious surfaces generally cause increases in the 
flow velocity and peak discharges. Consequently, the lag time to peak discharge is decreased. In addi-
tion, reduced infiltration capacity in the urbanized catchment increases flow volume in urban creeks. 
A set of ecological consequences in urban streams such as loss of riparian zones, reduced diversity 
of indigenous flora and fauna, introduction of pests and weeds, and reduced dispersal of biota have 
been summarized in [7]. Streams behave differently in maintaining their ecological conditions. Rural 
(country side) streams are generally affected by extraction and storage of water and subsequent loss of 
natural ecosystems [13,17], whereas urban streams experience hydrologic changes and changes in pol-
lutant loads, channel erosion, and sedimentation [25,26,41]. While environmental flow restoration is 
essential for rural streams, urban streams generally require a reduction of runoff frequency, peak flow, 
and volume.

26.3  Stream ecosystem Health

Stream ecological conditions are influenced by the degree of catchment imperviousness [40]. Stream 
health indicators are generally categorized into four groups based on changed flow regime, water qual-
ity, biodiversity, and stream erosion and sedimentation [34]. Macroinvertebrate diversity and density is 
a significant sign of urban stream health. Forested or unimpacted streams have an immense diversity of 
macroinvertebrates, whereas urban streams are dominated by less variety with few disturbance-tolerant 
species [26,34]. Stream ecosystem health is generally represented by some ecohydrological indicators. 
These are categorized into (1) species organization (biodiversity, composition, food web structure), (2) 
vigor (production rates, nutrient cycling), and (3) their resilience to recover from disturbances [37]. 
Screening a wide range of stream health indicators in Australian streams, Bunn and Smith [9] classified 
indicators into five categories. These are (1) physicochemical, (2) fish, (3) ecosystem processes, (4) nutri-
ent cycles, and (5) macroinvertebrates. Some studies [32] recommended four categories of indicators: (1) 
biological (abundance of benthic macroinvertebrates), (2) physical (channel condition and suspended 
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FIGuRE 26.2 Schematic diagram showing changes in flow event due to urbanization (increase [↑] and 
decrease [↓]). (Based on Chowdhury, R. et al., Catchment hydrologic modelling for stormwater harvesting study in 
SEQ: From instrumentation to simulation, in Begbie, D.K. and Wakem, S.L. (eds.), Science Forum and Stakeholder 
Engagement: Building Linkages, Collaboration and Science Quality, Urban Water Security Research Alliance, 
Brisbane, Queensland, Australia, September 28–29, 2010, pp. 65–67.)
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solids), (3) chemical indicators (total phosphorus, total nitrogen, electrical conductivity, and pH), and 
(4) pathogenic indicators (Escherichia coli bacteria).

A scattered relationship between total impervious area (TIA) and stream health score in the United 
States was observed—with the highest dispersion observed from 3% to 17% of TIA (Figure 26.3) [2]. Based 
on a review of several previous studies [2], the ten-percent rule showed that streams are degraded when 
catchment TIA approaches 10% and beyond. In Australian catchments, Walsh [40] and Ladson et al. [26] 
reported that rather than TIA, a stream ecosystem is strongly influenced by directly connected impervi-
ous areas (DCIAs), a proportion of TIA that is connected to stormwater drainage inlets. DCIA is also 
known as the effective imperviousness. Decreased stream ecological conditions (water quality deteriora-
tion, algal biomass growth, and diatom and macroinvertebrate assemblage compositions) were observed 
with increased DCIA (1%–14%) until a threshold value, beyond which no further degradation occurred. 
Therefore, it was argued that it is possible to go beyond the ten-percent limit by means of disconnection 
of DCIA. This can be achieved through implementation of stormwater best management practice, water-
sensitive urban design, sustainable urban drainage, and low-impact development concepts. While DCIA 
was identified as a good predictor of urban stream ecosystem health, the difficulties in estimating DCIA 
cause many researchers to instead use a relationship between TIA and ecosystem health.

26.4  Stream flow and ecosystem

The interannual variability of flow characteristics has been identified as a significant dynamic force 
affecting stream ecosystem processes [8]. Therefore, understanding and quantification of pre- and post-
development flow regimes is critical for sustaining stream ecosystem health. Stream ecology is more 
reliant on natural flow variability [1]. Assigning a minimum flow using a rule of thumb is not a well-
accepted approach for sustaining environmental flows. Their study proposed a stream regionalization 
approach based on natural flow variability as described in [35]. Their four-step approach of stream 
regionalization is shown in Figure 26.4.

Several previous studies focused on the importance of natural flow regimes in sustaining native 
biodiversity and stream integrity [1,4,5,35,38]. Quantity and timing (predictability) of the stream flow 
are critical for water supply, water quality, and ecological integrity of stream water systems [35]. The 
temporal variation of flow influences the aquatic and riparian zone community structures, population 
dynamics, and functional processes in the stream [5]. From subdaily to annual temporal scales, stream 
flow variability affects stream geomorphology and ecosystems in different ways. In terms of sustaining 
stream ecosystems, Tables 26.1 and 26.2 summarize the significance of flow magnitude and temporal 
variability, respectively.
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FIGuRE 26.4 Stream regionalization process for environmental flow estimation on the basis of natural flow 
variability. (Based on Arthington, A.H. et al., Ecol. Appl., 16, 1311, 2006; Poff, N.L. et al., Bioscience, 47, 769, 1997.)

TABLE 26.1 Significance of Flow Magnitudes in Sustaining Stream Ecosystem Health

Flow Events Ecological Significance References

High (>1 year ARI) • Exerts larger disturbances [4,35]
• Removes and transports sediments from gravel interstitial spaces
• Imports woody debris into the stream and creates high-quality habitat

Small • Maintains habitat quality by flushing away silt and sediments [4]
Low • Limits habitat quantity [4,31]

• Provides recruitment opportunities for riparian species
• Species have physiological adaptation capability to survive dry spells

Variable • Flow variability is required by some aquatic and riparian species in their 
life cycle (e.g., spawning periods or migration upstream or downstream)

[31,35]

• Species persistence can be influenced by flashiness of flow

ARI is average recurrence interval; in some countries, return period is used instead of ARI.

TABLE 26.2 Influence of Temporal Scales of Flow Variability on Stream Ecological Processes

Temporal Scale Influence References

Subdaily Channel geomorphology controls the velocity and flow variability in the vicinity 
of benthic organisms. Channel roughness can increase turbulence (variation of 
velocity) due to vortices. Some benthic autotrophs change their growth form as 
a result of turbulence.

[5]

Daily Stream ecosystem characteristics are influenced by drag disturbance–related 
processes. Drag disturbance indicates loss of biomass due to high velocities and 
associated abrasion of bed sediments. A moderate-magnitude flood event (flow 
velocity > 1.5 m s−1) can remove up to 1% of biomass covering a wide range of 
species. Usually low-frequency, high-magnitude storm events are destructive to 
benthic macroinvertebrates.

[5,38]

Monthly Local topography has a strong effect on rainfall and intraannual flow variability 
that is linked with stream biota characteristics at the community level through 
diffusion and sediment crushing and stranding processes.

[5]

Annual Interannual flow variability is controlled by regional climatic systems that govern 
the whole ecology. In Australia, a number of natural climatic phenomena (El 
Niño Southern Oscillation Index, Southern Annular Model, Walker Oscillation, 
etc.) are responsible for interannual variability of rainfall and runoff.

[3,10,11,12]
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The physical processes affecting stream ecosystems include water and sediment movement within the 
stream and between the stream and the floodplain [15,35]. Conventionally, streams are assessed in terms 
of changes in flow statistics (such as changes in peak flow, lag to peak or time of concentration, recession 
rate or event volume, etc.) without considering geomorphic or ecological consequences [25]. In order to 
establish relationships between hydrologic changes and stream ecosystems, both sediment transport 
and streambed disturbances should be considered [6,24,25].

26.5  Stream flow Parameters

Stream flow characteristics such as magnitude, frequency, duration, timing, and rate of change of flow 
events are significantly important for developing flow regime and stream regionalization. A number 
of statistical flow parameters have been used in recent ecohydrological studies to regionalize streams 
and to develop environmental flow rules [22]. All of the parameters listed in this chapter are based on 
historical daily flow data.

26.5.1  flow Magnitude

Flow magnitude is the volume of flow events generally expressed in mega liter day−1 or m3 day−1. It is 
important to measure statistical parameters separately for low-, high-, and average-flow conditions. List 
of parameters, their definition, and measurement units are provided in Table 26.3. Some commonly 
used flow statistics are defined below for easy understanding of readers.

• Mean daily flow is a measure of central tendency. It is calculated as the average of all flow records 
considered over the analysis period (sum of flow values/number of days).

• Median daily flow is a measure of central tendency. The median flow (Q50) is the “middle” flow 
for the entire record. That is the median is the flow exceeded 50% of the time. The median is usu-
ally much lower than the mean daily flow because the distribution of discharge data is negatively 
skewed with a lower limit of zero and no upper limit.

• Minimum daily flow is the smallest input value for the specific reporting period.
• Maximum daily flow is the largest input value for the specific reporting period.
• Q10 is the flow exceeded 10% of the time, that is, it is the discharge that indicates the top 10% of 

the flow for the reporting period.
• Q90 is the flow exceeded 90% of the time, that is, it is the discharge that indicates the lower 10% of 

the flow for the reporting period.
• The number of zero flow days for the entire record under analysis is counted. The number of 

zero flow days does not include days with a missing record unless they are filled with zero 
values.

26.5.2  flow Distribution

26.5.2.1  coefficient of Variation of Daily flow

The coefficient of variation (CV) is a measure of variability of data. The CV of daily flow is the standard 
deviation for the daily flow values divided by the mean of all daily flow values. It is dimensionless. In 
annual scale, it can be used for flow regionalization purposes [16].

26.5.2.2  Standard Deviation of Daily flow

The standard deviation is a measure of how widely the values are dispersed from the mean value. The 
standard deviation has the same units as the input data.
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26.5.2.3  Skewness of Daily flow

Skewness is a measure of how different the mean and median flows are. It is a ratio of mean and median 
flows. For a small catchment, base flow is generally very low. After a big storm event, dramatic changes 
in discharge happen. Therefore, large discharges are observed during a storm, but most of the days, 
there exists a low base flow. Hence the median flow is low, and the mean flow is elevated by the much 
larger event-based discharges. As a result, skewness of a small catchment would be greater than that of 
a large catchment. Similarly, the skewness of an unregulated stream will tend to be greater than that of 
a regulated stream.

26.5.2.4  Variability of Daily flow

The measure of variability is based on the use of the median flow as a measure of central tendency. 
Variability of flow can be calculated as the range divided by the median. The range of flow is the differ-
ence between the Q10 and Q90 flows. Other quartile values can also be used as a range.

TABLE 26.3 Hydrologic Metrics for Low-Flow Condition

Flow Metric Definition of Metric Resolution Unit

Median of annual minimum 
flows

Median of the lowest annual daily flow divided by the 
mean annual daily flow (MADF) averaged across all 
years

Annual Dimensionless

Base flow index Ratio of base flow to total flow, averaged across all 
years, where base flow is calculated using three-way 
digital filter [19]

Annual Dimensionless

Coefficient of variation (CV) of 
base flow index

CV in base flow index Annual Dimensionless

Low-flow discharge
• 75th percentile
• 90th percentile
• 99th percentile

75th, 90th, and 99th percentiles, respectively, from the 
flow duration curve

Annual ML day−1

Specific mean annual minimum 
runoff

Mean annual minimum flow divided by catchment 
area

Annual ML day−1 km−2

Low-flow spell count (less than 
75th, 90th, and 99th 
percentiles)

Mean number of annual occurrences during which the 
magnitude of flow remains below a lower threshold 
defined by the 75th, 90th, and 99th percentiles, 
respectively (from the flow duration curve)

Annual Year−1

CV of low-flow spell count (less 
than 75th, 90th, and 99th 
percentiles)

CV in a number of annual occurrences during which 
the magnitude of flow remains below a lower 
threshold (75th, 90th, and 99th percentiles, 
respectively)

Annual Dimensionless

Low-flow spell duration (less 
than 75th, 90th, and 99th 
percentiles)

Mean duration of flows that remains below a lower 
threshold defined by the 75th, 90th, and 99th 
percentiles, respectively (from the flow duration 
curve)

Annual Days

CV of low-flow spell duration 
less than 75th, 90th, and 99th 
percentiles)

CV in duration of annual occurrences during which 
the magnitude of flow remains below a lower 
threshold (75th, 90th, and 99th percentiles, 
respectively)

Annual Dimensionless

Number of zero-flow days Mean annual number of days having zero flow Annual Year−1

CV of number of zero-flow days CV in annual number of days having zero flow Annual Dimensionless
Predictability (P) of minimum 

daily flow
Colwell’s predictability (P) of minimum daily flow Day Dimensionless

Seasonality (M/P) of minimum 
daily flow

Colwell’s seasonality (M/P) of minimum daily flow Day Dimensionless
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26.5.2.5  Standard Deviation of the Log of Daily flows

The standard deviation of the log of daily flow (S_Log) is an estimate of the standard deviation of the 
logarithm (base 10) of the daily flow values. Flow data are often logged to reduce the skew; S_Log is a 
measure of the distribution of this transformed data.

26.5.2.6  Laneʼs Variability Index

The Lane s̓ variability index is described as the standard deviation of the logarithms of the Q5, Q15, 
Q25, …, Q85, and Q95 values. Lane s̓ variability index is unsuitable for data sets with more than 5% zero 
values (Q95 = 0) or data sets dominated by zero flows [18].

26.5.3  flow Duration curve

Flow duration curve is widely used for representing the range and spread of stream flows in a time 
domain. To develop a flow duration curve, historical flow data need to be ranked from the largest to 
the smallest value and then plotted against a percentage value of time duration from 0% to 100%. The 
percentage time duration value indicates the proportion of time that a flow is exceeded. The first quarter 
(0%–25%) and the last quarter (75%–100%) of flow duration curve generally represent high-flow and 
low-flow conditions, respectively. The curve describes the characteristics of stream flow. As an example, 
flow duration curves for two creeks are shown in Figure 26.5. The Aldgate Creek exhibits a perennial 
stream flow characteristics (flow exists all the year-round) whereas the Inverbrackie Creek shows an 
ephemeral flow characteristics (seasonal flow exists, not all the year-round).

26.5.4  Base flow Index

A long period of relatively consistent groundwater-fed low flow is considered as base flow. The base flow 
index (BFI) can be defined as the ratio of base flow volume to the total flow volume. Base flow is impor-
tant for the development of stream macrophyte beds, algae growth, and macroinvertebrate density [28]. 
A three-way digital filter method [19] is used in the BFI estimation. Digital filters create a relatively 
smooth transition of the base flow period before and after a storm event. The Lyne and Hollick filter 
(described in [19]) can be applied to estimate the base flow component during a storm event. The BFI can 
be estimated using Equations 26.1 and 26.2:

 q i q i q i q i q if f f( ) ( ) { ( ) ( )} ( )( )= − + − − ≥+φ φ1 1 01 2/ for  (26.1)
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FIGuRE 26.5 Flow duration curve for two creeks (Aldgate Creek and Inverbrackie Creek) in the South Australian 
Mount Lofty Ranges region.
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BFI =

−q q

q
f  (26.2)

where
qf(i) is the filtered quick flow response for the ith observation
q(i) is the original stream flow at the ith observation
ϕ is a filter parameter

Nathan and McMahon [30] recommended ϕ = 0.925 for daily flow in Australian streams. The filter 
needs to be applied in three passes: the first and third passes are based on “forward” passes (Equation 
26.1) and the second pass is based on “backward” pass using (i + 1) instead of (i − 1) in Equation 26.1. 
Observed stream flow data are used as q(i) in the first pass. Estimated base flows from the first pass are 
used as q(i) in the second pass and base flows from the second pass are used in the third pass.

26.5.5  colwell’s Indices

Colwell’s indices of predictability, constancy, and contingency describe aspects of periodicity in biological 
phenomena [14]. These indices provide a measure of seasonal predictability of environmental events such 
as fish spawning. Colwell’s indices can be estimated for average-, maximum-, and minimum-flow condi-
tions. Predictability is a measure of how strongly an event is linked to a season. Predictability is maxi-
mized if the same seasonal pattern of events is repeated every year. It is the converse of uncertainty and 
has two components, constancy and contingency. Constancy is a measure of temporal invariance, and its 
value is maximized if any event or state is the same for all seasons in all years. For example, an ephemeral 
stream with many zero flow days will have a high constancy value. Contingency is a measure of periodic-
ity, and its value is maximized if the state is different for each season but the pattern is the same for all 
years. Contingency is minimal when the probability of occurrence of each state or event is independent of 
season. For example, if high flows occur every winter, the stream has a high contingency value. To estimate 
Colwell’s indices, flow time series data need to be converted to categorical data by selecting time series 
value classes. Frequencies of occurrence of values in each class in a time period are recorded. According to 
Kennard et al. [22], 11 flow classes have been considered with a central class of 20 times mean daily flow. 
For a frequency matrix with t columns and s rows, let Nij be the number of years for which the phenom-
enon is in state i at time j. Then column totals (Xj), row totals (Yi), and grand total (Z) can be estimated as
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Uncertainty with respect to time (H(X)), state (H(Y)), and interaction of time and state (H (XY)) can be 
expressed as
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The conditional uncertainty (HX(Y)) with respect to state (with time given) can be defined as

 H Y H XY H XX ( ) ( ) ( )= −  (26.9)

Predictability (P), constancy (C), and contingency (M) can then be estimated within the range (0, 1):
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26.6  Hydrologic Matrices

Hydrologic metrics are statistical flow parameters that can be used to describe ecologically relevant 
components of the hydrologic regime in terms of flow magnitude, frequency, duration, timing of flow 
events, rate of change in flow, and the temporal variability in these measures [22,33]. Several hydrologic 
metrics are used in ecohydrological analyses. In the United States, Olden and Poff [33] examined 171 
hydrologic metrics and quantified their ability to describe the key ecologically relevant components 
of hydrologic regimes in 420 stream gages. A number hydrologic metrics can be assessed using the 
Indicators of Hydrologic Alteration software package [29]. About 120 hydrologic metrics were listed for 
Australian streams that are ecologically important [22]. The extent of multicollinearity among hydro-
logic metrics, as evaluated by examining crosscorrelations between all 120 metrics, was found low [23]. 
Selected hydrologic metrics are listed in Tables 26.3 through 26.5 for low-flow, average-flow and high-
flow conditions, respectively.

26.7  Summary and conclusions

The importance of hydrologic flow regimes and flow metrics is well recognized by hydrologists, ecolo-
gists, and water resource managers. Aquatic ecosystems are linked to their hydrologic flow regimes. 
Anthropogenic activities, such as water reservoir, water supply, hydropower generation, flood con-
trol, recreation, and navigation, modify the natural flow regimes and thereby affect their ecosystems. 
Development of environmental flow rules requires understanding of flow regimes. Changes in flow 
regimes due to human interventions can be quantified using hydrologic metrics. Hydrologic metrics are 
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useful to classify regional streams. Streams and rivers that cluster together based on metrics presumably 
share certain ecological features.

Importance of natural flow regimes in sustaining native biodiversity and stream integrity is 
acknowledged. Amount and timing (predictability) of stream discharge are critical for water sup-
ply, water quality, and ecological integrity of stream water systems. Temporal variation of stream 
discharge influences the aquatic and riparian zone community structures, population dynamics, and 
functional processes in the stream. Urbanization (expressed in terms of the degree of impervious-
ness) causes changes to stream flow regimes. Changes in flow regime include increased frequency, 
increased total and peak flow, and decreased base flow, thereby affecting the stream ecosystem condi-
tions and riparian vegetation. Stream ecosystem conditions are generally expressed by stream health 
indicators that are categorized into four groups based on changed flow regime, water quality, biodi-
versity, and stream erosion and sedimentation. Macroinvertebrate diversity and density is a signifi-
cant sign of urban stream health.

The physical processes affecting stream ecosystems include both water and sediment movement 
within the stream and between the stream and the floodplain. In order to establish relationships 
between hydrologic changes and stream ecosystems, both sediment transport and streambed dis-
turbances should be considered. Stream flow characteristics are conventionally used to develop 
flow regime and stream regionalization. Several stochastic flow parameters are applied to develop 
environmental flow rules. Numerous hydrologic metrics are used to describe ecologically relevant 
components of the hydrologic regime. These metrics can effectively be applied in ecohydrological 
studies.

TABLE 26.4 Hydrologic Metrics for Average-Flow Condition

Flow Metric Definition of Metric Resolution Unit

Mean daily runoff Mean daily flow divided by catchment area Daily ML day−1 km−2

Median daily runoff Median daily flow divided by catchment area Daily ML day−1 km−2

CV of daily flow CV in daily flows Daily Dimensionless
Skewness in daily flow Skewness in daily flows Daily Dimensionless
Mean monthly flows Mean daily flow for each month averaged 

across years
Monthly ML day−1

CV monthly flows CV in mean daily flows per month Monthly Dimensionless
Mean annual runoff Mean annual flow divided by catchment area Annual ML year−1 km−2

CV of annual runoff CV in annual flows Annual Dimensionless
Skewness in annual runoff Skewness in annual flows Annual Dimensionless
Kurtosis in annual runoff Kurtosis in annual flows Annual Dimensionless
Median annual runoff Median annual flow divided by catchment area Annual ML year−1 km−2

Predictability (P) of mean 
daily flow

Colwell’s predictability (P) of mean daily flow Day Dimensionless

Constancy (C) of mean 
daily flow

Colwell’s constancy (C) of mean daily flow Day Dimensionless

Seasonality (M/P) of mean 
daily flow

Colwell’s measure of contingency (M), 
expressed as a proportion of predictability (P)

Day Dimensionless

Rise rate of flow events Mean rate of positive changes in flow from one 
day to the next

Day ML day−1 day−1

CV of rise rate of flow events CV in the rate of positive changes Day Dimensionless
Fall rate of flow events Mean rate of negative changes in flow from 

one day to the next
Day ML day−1 day−1

CV of fall rate of flow events CV in the rate of negative changes Day Dimensionless
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27.1  Introduction

Time series modeling of hydroclimatic processes has been widely used for planning and management 
of water resources systems [2,16,33,54]. The time series models are used to generate stochastic synthetic 
series that may occur in the future, and the series are utilized for estimating the probability distribu-
tion of key decision parameters such as reservoir storage size. Likewise, the models may be utilized for 
forecasting water supplies and water demands days, weeks, months, and years in advance with possible 
links to exogenous hydrometeorological information. The synthetically generated series and forecasts 
are used for real-time operation, for planning and testing operating rules, in estimating future power 
output of hydroelectric systems, for evaluating the performance of an irrigation system under uncertain 
irrigation water deliveries, and in linking future streamflow or hydrological response to measures of 
atmospheric circulation such as climate indices. For proper application of time series models for any 
hydroclimatic process, it is important to understand the underlying physical and stochastic mecha-
nisms involved.

A number of time series models have been considered in the literature for synthetic generation 
and forecasting of hydrologic processes. Parametric models [2,16,51,54] of hydrologic processes such 
as annual streamflow and precipitation may be well represented by stationary linear models such as 
autoregressive (AR) and autoregressive–moving-average (ARMA) models. These models are usually 
capable of preserving the historical annual statistics, such as the mean, variance, skewness, and cova-
riance. Parametric methods differ significantly from their nonparametric alternatives. Parametric 
methods require assumptions regarding the marginal probability distributions of the variables and 
the spatial and temporal covariance dependence structure, while nonparametric methods retain the 
empirical structure of the observed variables. Nonparametric data-driven methods have been gaining 
popularity in the last decades [28,75]. Nonparametric methods are based on resampling or bootstrap-
ping techniques [8], and they provide flexible and similar ways for modeling different types of data at a 
single site and multiple sites and for disaggregation of time series. Parametric models usually assume 
that the process follows the normal distribution that can introduce biases when transforming gener-
ated series back into the original domain. Nonparametric models are flexible, but the omission of an 
assumed parametric form makes it difficult to describe the modeling process mathematically, and 
in addition, any simulated values beyond the range of the sample observations may be significantly 
biased.

This chapter focuses on time series models used to model hydroclimatic data that are correlated in 
time and space but does not include stochastic process models such as Markov chain and point process 
models that are commonly used for modeling precipitation processes [50,51]. Stochastic processes of 
hydrologic data are described in Chapter 19. Many of the time series models in this chapter can be 

Preface

Time series modeling of hydroclimatic processes is a very powerful tool for planning and man-
agement of water resources systems. Time series models are used for generation of long synthetic 
time series, forecasting, evaluation of operational rules for water resources systems, sizing of res-
ervoirs, detection of trends and shifts, and filling in missing data and extending records. Analysis 
and modeling of time series of hydrologic data under climate variability and change can be used 
for evaluation of impacts and risks that can arise from natural variability and anthropogenic 
climate change in hydrologic time series. While time series models are in general stationary, they 
can be used to model nonstationary behavior such as trends and shifts. An important feature of 
time series models is their ability to model a complex dependence structure within a single time 
series and across multiple time series.
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found in common software packages, such as MATLAB®, R, SAS, and SPSS, and in specialized software 
for time series analysis [4] of hydrological systems, such as SAMS [57,66] and Spigot [15]. The methods 
presented here have been used for modeling of complex water resources systems such as the Colorado 
River, the Great Lakes, and St. Lawrence River System [9] and the Nile River.

27.2  Properties of Hydrologic Time Series

Statistical analysis of hydroclimatic time series involves calculation of basic statistic, estimating the 
autocorrelation function (ACF), partial ACF (PACF), and spectrum, analyzing the seasonal structure, 
and plotting the time series. Run, storage, drought, and flood statistics [51], the Hurst slope, and other 
statistics of interest may also be calculated. The time series may be tested for normality, trends, and 
shifts and transformed to normal if necessary.

27.2.1  Mean, Variance, and Skewness

The descriptive basic sample statistics of a time series yt of length N are the mean, standard deviation, 
and skewness {y‾; s; g}:
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where
y‾ is a measure of location
s is a measure of spread
g is a measure of shape

The corresponding population statistics are denoted by {μ; σ; γ}. The previous maximum likelihood 
estimates for s and g are biased for small samples, where for an uncorrelated time series, unbiased esti-
mate for s is given by using a divisor (N − 1) instead of N and for g by using N/[(N − 1)(N − 2)] instead 
of 1/N. For an autocorrelated series, the effective sample size is reduced due to the internal dependence 
structure, and thus complex bias corrections are needed to estimate unbiased statistics [51]. Similarly 
seasonal time series, such as monthly flows, are characterized by seasonal statistics. Let yv,τ be a sea-
sonal time series, where the year ν = 1,…, N and the season τ = 1,…, w. The mean, standard deviation, 
and skewness for season τ {y‾τ; sτ; gτ} with corresponding population statistics {μτ; στ; γτ} are estimated 
similarly as in (27.1) as
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27.2.2  acf and Pacf

The lag-h ACF(h) = ρh with the corresponding sample estimators rh is simply the cross-correlation 
between consecutive values of the process at lag-h:
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where ch is the lag-h sample autocovariance with c0 = s2. The corresponding population autocovariance 
function, ACVF(h), is C E y yh t h t= − −+[( )( )].µ µ  Across two sites i and j, the lag-h cross-correlation 
function is ρh

ij
h
ij ii jjC C C= / 0 0  with the lag-h cross-covariance function C E y yh
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−2, −1, 0, 1, 2, …. Similarly the sample lag-h ACF of a seasonal time series is rh,τ representing the season-
to-season correlation between season τ and τ − h:
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where ch,τ is the lag-h sample season-to-season autocovariance with c s0
2

, .τ τ=  The lag-h season-to-
season sample cross-correlation function between two sites i and j is similarly r c c ch
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/  For example, the lag-1 season-to-season correlation coeffi-

cients, r1,τ, represent r1,1 as the correlation between season 1 of the current year with season w of the 
previous year, and the correlation coefficients between season τ and (τ − 1) of the same year, τ = 2,…, w. 
Plot of the ACF versus h is referred to as a correlogram, where a quickly decaying correlogram to zero 
represents short memory of the process, while a slowly decaying correlogram to zero represents a long-
memory process often referred to as persistence or storage effect. The PACF is also a measure of serial 
dependence like the ACF but with all autocorrelations within the specified lag (i.e., 1 to h − 1) partialled 
out [3]. The PACF from a sample time series is estimated by repeatedly fitting AR(p) models to the time 
series (Section 27.4.1), where the PACF at lag p is equivalent to φp in the fitted AR(p) model. Approximate 
confidence intervals for both the ACF and PACF of a white noise process at the α significance level are 
±z1 − α/2/N0.5 [4] where z is the quantile of the standard N(0,1) distribution, that is, approximate 95% con-
fidence intervals are estimated by ±1.96/N0.5.

27.2.3  Spectral Density

Spectral analysis of the time series is used to detect cyclic components of the time series both with high 
and low frequency. The power spectrum and the spectral density function are mathematical character-
istics of the time series in the frequency domain, while the corresponding functions in the time domain 
are the autocovariance and ACFs, respectively. The spectral density function can be estimated in various 
ways by both parametric and nonparametric methods [4,5,24,44], and most software packages today 
include one or more methods for estimation of the spectrum. A simple estimate of the spectral density 
function in terms of the ACF is [24,54,80]
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where
rk is the ACF
Dk is a smoothing function [24]

For Dk = 1, the raw sample spectrum is estimated. Recommended values for m are between N/6 and N/4, 
that is, the number of lags of the ACF used in the estimation. The frequency spacing of 2 m in (27.5) 
is arbitrary, and the spectrum may be calculated at any frequency between 0 and 0.5. The raw sample 
spectrum is χ2 square distributed with approximate 2 N/m degrees of freedom for a white noise process. 
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The approximate confidence interval at the α significance level is [2df/x(1 − α/2, df), 2df/x(α/2, df)] where 
df are the degrees of freedom, x is the χ2 quantile, and the value of (27.5) for a white noise process is 2.

27.3  Time Series Modeling

A number of different alternative models are available for modeling of hydroclimatic time series. The 
choice of model should reflect its ability to reproduce important statistics of the process under consider-
ation. Time series is said to be stationary if the statistical properties of the time series do not change with 
time, that is, the probability distribution of the process is the same at all times. Conversely if any statisti-
cal property depends on time, then the process is nonstationary with regard to that statistical property. 
Most parametric time series models assume that the process being modeled is normally distributed and 
stationary in the mean and variance. Typical steps in decomposition of a time series that is non-normal 
and nonstationary are as follows [4]: (1) test for normality and transform the data to normal, (2) test for 
trends and shifts and remove them if necessary, and (3) if seasonality is present in the mean or variance, 
then remove them if a model with nonperiodic parameters is used. The typical steps involved in time 
series modeling are model identification, parameter estimation, and model testing and validation.

27.3.1  Tests of Normality

Plotting the empirical cumulative distribution function (CDF) on a normal probability paper based on 
selected plotting position formula provides a nonparametric way of visually checking if the data plots as a 
straight line and conforms to the normal distribution (Q–Q plot). Commonly used plotting position for-
mulas of nonexceedance probabilities for a time series of length N ordered from the smallest to the largest 
are Cunnane (i − 0.4)/(N + 0.2), Hazen (i − 0.5)/N, and Weibull i/(N + 1) for i = 1,…, N. Probability plot cor-
relation tests of normality are available for different plotting positions [12,25,74] with the Filliben prob-
ability plot correlation coefficient test of normality being the most popular one. Other tests include the 
skewness test of normality [63] for testing the hypothesis of zero skewness. The sample skewness g in (27.1) 
is asymptotically distributed as N N( , ).0 62σ = /  The null hypothesis H0: g = 0 versus H1: g ≠ 0 is rejected at 
the α-significance level if abs(g) > z N1 /2 /−α 6 .

27.3.2  Transformation to Normal

Most time series models assume that the underlying process is normally distributed. Time series failing 
a normality test can be transformed to normal using variety of parametric transformations [3,16,51,54]. 
Common transformations include Box–Cox Y X a bb= + −(( ) )1 /  for b ≠ 0, gamma Y = gamma (X), log-
arithmic Y = ln(X + a), and power Y = (X + a)b, where Y is the transformed normal series and X is the 
original observed series. The variables Y and X can represent either annual or seasonal data, where for 
seasonal data, the transformation coefficients a and b can be periodic if a periodic model is to be fitted 
to the data. Hydroclimatic data are often positively skewed and a widely used transformation for hydro-
climatic data is the lognormal transformation assuming that the underlying variable X is approximately 
lognormally distributed with a lower bound a. Transformation is also helpful when a time series shows 
changing variability with the level of the process. Nonparametric kernel density estimation (KDE) 
[59,62,70] can also be used where the corresponding estimated CDF is mapped onto the normal distri-
bution function to transform the data quantiles to normal. This may be useful for modeling bimodality 
and other behavior that may be difficult to describe by a parametric function.

27.3.3  removal of Trends

A number of parametric (e.g., t-test) and nonparametric (e.g., Mann-Kendall) tests [16,17,51] are avail-
able for testing for linear or nonlinear trends and for testing for shifts in the mean. In today’s changing 
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climate, trends may vary over time, for example, historical global temperature has been rising and pro-
jections of expected future trends from general climate circulation models exist [22]. Trends can by 
removed by a nonparametric smoothing filter, but often a parametric form of the trend is wanted so that 
the trend can be extrapolated for the purposes of prediction and simulation. In this context, a nonlinear 
trend can be approximated by piecewise linear trends, and the slowly varying time-dependent trend is 
simply removed by subtracting it from the data. Another form used for trend removal is differencing 
the time series at lag-1. Such procedures relate to the family of nonstationary autoregressive integrated 
moving average (ARIMA) models (Section 27.4.5). As for removal of seasonalities in the following dis-
cussion, for physically bounded hydroclimatic process, subtraction of a deterministic trend is preferred 
over differencing, although for time series of accumulated statistics, such as groundwater or aquifer 
levels, it may be necessary to differentiate these time series to make them stationary.

27.3.4  removal of Seasonality in the Mean and Variance

Hydroclimatic data are usually affected by the annual cycle, with monthly data showing a 12 month periodic 
structure and being nonstationary in the mean and the variance. The seasonality in the mean is removed 
for each season by subtraction of the seasonal sample mean. Similarly the seasonality in the variance is 
removed by division of the seasonal standard deviation. Seasonal standardization is done by both subtract-
ing the seasonal mean and dividing by the seasonal standard deviation for each season z y y sν τ ν τ τ τ, ,( ) ,= − /  
where zν,τ is normally distributed variable with standard deviation one and mean zero for year ν of the sea-
sonal series for season τ. Alternatively, seasonal differencing can be used for removal of seasonalities, that 
is, differencing monthly hydrologic time series at lag-12 removes the 12-month periodic hydrologic annual 
cycle from the time series. As explained in Section 27.4.5, it is preferred to use seasonal standardization 
over seasonal differencing for hydrologic time series that are considered to be physically bounded.

27.3.5  Model Selection

Often several alternative models may be fitted to the data. The ACF and PACF are often used to get 
an idea of the appropriate model to fit, and the model with the minimum residual variance is often 
selected as the best model. This does not penalize for number of parameters and a common practice is 
to use information criteria for selecting the best model penalizing for the number of parameters used 
in the model. The corrected Akaike information criterion (AICC) [4,19] and the Schwarz information 
criterion (SIC) [20,61] also referred to as the Bayesian information criterion are defined as
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where
N is the size of the sample used for fitting the model
k is the number of parameters excluding constant terms (k = p + q for the ARMA(p,q) model)
σ̂ 2(ε) is the maximum likelihood estimate of the residual variance as in (27.1)

The AICC statistic is efficient but not consistent and is good for small samples but tends to overfit for large 
samples and large k. The SIC is consistent but not efficient and is good for large samples, but tends to under-
fit for small samples. Efficiency is usually more important than consistency since the true model order is 
not known for real-world data. For a multivariate m-dimensional model, the AICC and SIC are given by
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where G  is the norm of the estimated residual variance–covariance G. The model that minimizes the 
AICC and/or the SIC is chosen as the best model.
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27.3.6  Model Testing

All the sample information on lack of fit is contained in the residuals. In most time series models, the 
residuals are assumed to be normally distributed with mean zero and variance σ2(ε). Thus, a plot of the 
residuals should look like an independent drawing from the normal distribution. The residuals should 
be uncorrelated with zero ACF and PACF and also independent of the explanatory variables used in 
the model. Nonnormal residuals may indicate lack of transformation of the data, while correlated 
residuals with nonzero terms in the ACF and PACF may indicate that a higher-order model is needed. 
In addition, synthetically simulated series from the model of the same length as the historical series 
should be capable of approximately reproducing the historical statistical properties of the original 
time series.

27.4  Univariate Modeling

In the parameterization of the models in this and following sections, the mean of the process is usually 
not shown. This is to simplify the representation where it is assumed that the mean has been subtracted 
from the process under consideration unless otherwise stated.

27.4.1  arMa

Stationary ARMA models [2–4,16,51] have become widely used for modeling of hydroclimatic time 
series and in particular of precipitation and streamflow, where physical justification of ARMA models 
of the conceptual rainfall–runoff process has been presented [16,56]. The ARMA models are flexible and 
can accommodate features of alternative models such as fractional Gaussian noise [37], broken line [40], 
and shifting mean (SM) [69]. The ARMA(p,q) of AR order p and moving average order q for a hydrocli-
matic process is defined as

 
Y Yt i t i

i

p

t j t j

j

q

= + −−

=

−

=
∑ ∑ϕ ε θ ε

1 1

 (27.8)

where
Yt is normally distributed with mean zero and variance σ2(Y)
εt is the independent normally distributed noise term with variance σ2(ε)
{φ1,…, φp} and {θ1,…, θq} are the AR and moving average parameters, respectively

εt is uncorrelated with Yt − i, that is, the noise is independent of past observations Estimation methods 
include method of moments, least squares, and maximum likelihood. For an AR(p) process, the well-
known Yule–Walker equations [16] or moment equations are given by σ σ ε ϕ2 2
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 where Ch is the lag-h population autocovariance Ch = E[Yt Yt − h] = C0ρh = σ2(Y)

ρh. Simple models such as AR(1) and ARMA(1,1) may often be adequate, while higher-order AR models 
are necessary for modeling of time series that show signs of quasiperiodic behavior although the use 
of higher-order models than AR(2) or AR(3) is rare. The characteristics of the ACF and the PACF of 
the ARMA(p,q) model for different p and q are given in Table 27.1. The AR(1) model Y Yt t t= +−ϕ ε1 1  has 
ACF(h) = ϕ1

h and PACF(1) = φ1 with PACF(h > 1) = 0. The parameter estimates based on the method of 
moments are given by φ̂ 1 = r1 and ˆ ( ) ( ˆ ),σ ε ϕ2 2

1
21= −s  where r1 is the sample ACF(1) and s2 is the sample 

variance. The least square method minimizes the sum of the squared residuals F t
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N
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1
 where N is 

the number of years of data and the residuals are estimated from (27.8). For a pure AR(p) model, (27.8) 
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is a traditional regression equation only conditioned on past observations, while for the ARMA(p,q) 
model with moving average terms, the past residuals in (27.8) are unknown. In that case, a high-order 
AR(p) model is fitted to the data to get initial estimate of the noise terms εt. Then iteratively a regression 
model is fitted to the data and the parameters φ’s and θ’s are reestimated and the residuals are recal-
culated until the sum of the squares of the residuals has converged to a minimum value. For details on 
parameter estimation, refer to [3,4].

In Figure 27.1, naturalized flows of the Colorado River at Lees Ferry are plotted. The ACF and 
PACF indicate that a low-order model is appropriate such as AR(1) or ARMA(1,1). The spectral den-
sity shows weak indication of a low-frequency component with period around 13 years, which could 
result from low-frequency atmospheric forcing and should be looked into before fitting a model. 
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FIGuRE 27.1 Naturalized annual flows of the Colorado River at Lees Ferry obtained from http://www.usbr.gov. 
(a) 1906–2008 annual flows in ac ft/year, (b) ACF, (c) spectral density with 95% one-sided CIE for a white noise 
process for the Tukey smoother. (d) PACF, (e) normal probability paper plot, (f) KDE with normal kernel. In (b) and 
(d), 95% CIE for a white noise process is also shown.

TABLE 27.1 Properties of the ACF and PACF of ARMA(p,q) Processes

AR(1) AR(p) MA(q) ARMA(p,q)

ACF Decays geometrically Tails off Zero at lag > q Tails off
PACF Zero at lag > 1 Zero at lag > p Tails off Tails off
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The normal probability paper plot and the kernel density estimate indicate that the annual flows are 
near normally distributed.

27.4.2  ParMa

For seasonal hydrologic time series, such as monthly series, seasonal statistics such as the mean and 
standard deviation may be reproduced by a stationary ARMA model by means of standardizing the 
underlying seasonal series by subtracting the seasonal mean and dividing by the seasonal standard 
deviation. However, this procedure assumes that season-to-season correlations are the same throughout 
the year for a given lag and thus do not preserve the seasonality in the covariance structure. Hydrologic 
time series, such as monthly streamflows, are usually characterized by different dependence structure 
(month-to-month correlations) depending on the season (e.g., spring or fall). Periodic ARMA (PARMA) 
models have been suggested in the literature for modeling such periodic dependence structure. A 
PARMA(p,q) model may be expressed as [51,53,54]
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where
Yν,τ represents the hydrologic process for year ν and season τ
The εν,τ is the uncorrelated noise term that for each season is normally distributed with mean zero 

and variance σ ετ
2( )

The {φ1,τ,…, φp,τ} are the periodic AR parameters
The {θ1,τ,…, θq,τ} are the periodic moving average parameters

If the number of seasons is ω, then a PARMA(p,q) model consists of ω-number of individual ARMA(p,q) 
models, where the dependence is across seasons instead of years. In most practical applications, PAR(1), 
PAR(2), and PARMA(1,1) have been found to be adequate, although residuals should always be tested to 
ensure adequate model fit. The PAR(1) model Y Yν τ τ ν τ ν τϕ ε, , , ,= +−1 1  preserves the lag-1 season-to-season 
correlation coefficient in addition to the seasonal mean and variance. Parameter estimates based on 
method of moments are ˆ ( ), , , ,ϕ τ τ τ τ τ τ1 1 1 1 0 1= =− −s s r c c/ /  and ˆ ( ) ,σ ετ τ τ τ

2 2
1

2
1
2= − −s s r  for τ = 1,…, w. The PARMA 

model is able to preserve the seasonal historical statistics of the annual cycle. However, since annual 
observations or statistics are not used in the estimation process, the annual statistics of the process 
may not be preserved from aggregated simulated samples to the annual scale. Disaggregation models 
(Section 27.6) modeling jointly the annual and seasonal process can be used as alternatives for joint 
preservation of annual and seasonal statistics.

In Figure 27.2, naturalized monthly flows of the Colorado River at Lees Ferry are plotted. The sea-
sonal distribution in (b) and the spectral density in (c) show periodicities due to the annual hydrologic 
cycles. In (e) and (f), the flows have been standardized by removing the seasonal mean and dividing 
by the seasonal standard deviation. There are two options, either to fit a PARMA model with periodic 
parameters to the data in (a) and (b) or to fit an ARMA model to the seasonally standardized data. An 
ARMA model would not be able to reproduce the seasonality in the month-to-month correlation coef-
ficients in graph (d), where the ARMA model would reproduce the month-to-month correlations at 
different lags as horizontal lines (i.e., all lag-1 values the same, lag-2 values the same). In addition, the 
ARMA model would not be able to reproduce seasonality in higher-order moments such as skewness 
and kurtosis. Despite this, an ARMA model could prove sufficient if it is not considered important to 
reproduce those seasonalities, which the PARMA model is capable of doing. From the boxplots of sea-
sonal distributions, it is clear that the data are positively skewed and need to be transformed to normal 
before fitting a stationary ARMA or PARMA model.



562 Handbook of Engineering Hydrology

27.4.3  Gar, PGar

Gamma-distributed AR(1) and PAR(1) models have been suggested [10,11,51] for direct modeling of skewed 
time series from a gamma-distributed process instead of the traditional approach of transforming such time 
series to normal before applying the selected ARMA or PARMA model. The gamma autoregressive (GAR) 
model is expressed as Y Yt t t= +−ϕ ε1  where Yt is a three parameter gamma variable, φ is the autoregression 
coefficient, and εt is the independent noise term. Similarly the periodic gamma autoregressive (PGAR) 
model is expressed as Y Yν τ τ ν τ τϕ ε, ,= +−1  for season τ.

27.4.4  SM

The SM model [67–69] is characterized by sudden shifts or jumps in the mean and can be used to 
model high- and low-frequency shifts in the mean of hydroclimatic processes [69]. More precisely, the 
underlying process is assumed to be characterized by multiple stationary states, which only differ from 
each other by having different means that vary around the long-term mean of the process. The process 
is stationary and autocorrelated, where the autocorrelation arises only from the sudden shifting pat-
tern in the mean. A general definition of the SM model [68,69] is Xt = Yt + Zt where {Xt} is a sequence of 
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FIGuRE 27.2 Naturalized monthly flows of the Colorado River at Lees Ferry obtained from http://www.usbr.gov. 
(a) 1906–2008 monthly flows in ac ft/year, (b) seasonal distribution, (c) spectral density with 95% one-sided CIE for 
a white noise process for the Tukey smoother. (d) month-to-month correlation at lags 1, 2, and 3, (e) spectral density 
of seasonally standardized flows, (f) seasonal distribution of seasonally standardized flows.
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random variables representing the hydrologic process of interest and {Yt} is a sequence of iid normal 
variables and mutually independent of the mean-level sequence {Zt}, where the length of each mean-
level state is a discrete stationary delayed renewal sequence. Bayesian version of the SM model has also 
been proposed [13], and it has been shown that the SM models belong to the class of hidden Markov 
chain models [13,71].

27.4.5  arIMa, SarIMa, and arfIMa

ARIMA models, where “I” stands for integrated, are ARMA models applied on differenced time series 
[3,4] and can be used to model certain types of nonstationary characteristics like trends. The ARIMA 
models in [3] were extended for modeling of seasonal time series (SARIMA) by using long-term sea-
sonal differencing (representing the annual cycle for hydroclimatic time series) in addition to short-
term seasonal differencing for trend elimination. Both of these models are sometimes referred to as 
multiplicative models. The SARIMA has been applied for modeling of monthly streamflows [2,39], but 
like the ARMA applied on deseasonalized time series, it is not able to reproduce the seasonality in the 
covariance structure since it does not have periodic parameters. As for the ARMA, these limitations 
may be overcome by applying a multiplicative PARMA model with periodic parameters. Care should 
be taken when using such differencing models to make the time series stationary in the mean and alter-
native methods of trend removal, and deseasonalization should be considered along with traditional 
application of ARMA and PARMA models, as the major drawback of ARIMA and SARIMA models is 
the increasing uncertainty of post-sample forecasts with the length of the forecasting horizon [34–36]. 
ARIMA models are nonstationary and as such might not always be appropriate for simulation of long 
time series of hydroclimatic data that usually are bounded by some physical process, although for time 
series representing accumulated statistics such as groundwater levels or aquifer levels, ARIMA models 
may perform very well. For short-term forecasting conditioned on past observations, ARIMA models 
often perform well and sometimes even better than other traditional ARMA models.

Fractional ARIMA (ARFIMA) models [5,16,18], on the other hand, are stationary models where frac-
tional differencing (1 − B)d for −0.5 < d < 0.5 is applied as opposed to d being an integer in the ARIMA 
model. The fractionally differenced time series is then modeled by an ARMA model. An interesting 
feature of an ARFIMA process is its long memory, where the ACF converges to zero with increasing 
lag-h at a much slower rate than for a traditional ARMA process. The ARFIMA model has been used 
for modeling of monthly and daily flows [42,43], and the ARFIMA(p = 0, d, q = 0) process is similar to 
fractional Gaussian noise that has been used in studies of the Hurst phenomenon and analyses of long-
term dependence in hydroclimatic time series [27].

27.4.6  Intermittent Models

Modeling of intermittent processes, such as short-term rainfall or flow in intermittent or ephemeral 
streams, can be done by using annual Yt = BtXt or seasonal Y B Xν τ ν τ ν τ, , ,=  product models [6,7,51]. Here, 
Bt or Bν,τ is a discrete correlated Bernoulli (0,1) variable mutually independent of X that is modeled by 
any traditional time series model such as ARMA, PARMA, GAR, or GPAR.

27.5  Multivariate Modeling

Multivariate models are used for modeling of complex dependence structure in space and time at mul-
tiple lags. Properties of the multivariate ARMA (MARMA) model have been widely studied [3–5,16,61] 
and of multivariate PARMA [1,4,5]. For modeling of hydroclimatic data at multiple sites, simpler con-
temporaneous ARMA (CARMA) and PARMA models [16,51,54] are often used. The difference between 
the full multivariate model and its contemporaneous counterpart is that the parameter matrixes in the 
contemporaneous models are diagonal. Thus, both models can preserve complex dependence structure 
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for each site, but only lag-0 cross-correlation coefficients are preserved across sites in the contemporane-
ous model, while higher lagged cross-correlation coefficients can be preserved in the full multivariate 
model. For example, for the MAR(2) and the equivalent CARMA(2,0), presented as follows, both models 
preserve AR(2)-type dependence structure for each site, but the MAR(2) model preserves correlation 
in space across all sites up to lag-2, while the CARMA model is capable of preserving only the lag-0 
cross-correlation in space between different sites, which is usually considered adequate for hydrocli-
matic series. On the other hand, the CARMA is more parsimonious than MAR, where, for example, the 
number of parameters for a MAR(2) model compared to a CARMA(2,0) for n sites is 2n 2 + 0.5(n2 + n) 
versus 2n + 0.5(n2 + n) or for 5 sites 65 versus 25, respectively.

27.5.1  Multivariate and contemporaneous arMa(p,q)

The full MARMA and the CARMA models for n sites are expressed in the same way as
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where Yt is a n ×1 column vector of normally distributed zero mean variables. The AR and moving aver-
age parameter matrixes Φi and Θj, respectively, are full n × n matrixes for the MARMA model but diago-
nal for the CARMA model, and { } ~ , )εεt iid MVN(0 G  is the n × 1 vector of normally distributed noise 
terms with mean zero and variance–covariance matrix G. In practice, the MAR(1) = MARMA(1,0), 
MAR(2), and MARMA(1,1) [16,38,52,54] have been used for modeling of streamflow, with MAR(1) 
being the most used one. The moment equations of the MAR(p) model are C G C0
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CARMA models have diagonal parameter matrixes, the multivariate CARMA model can be decoupled 
into univariate ARMA models, and the parameters are estimated independently for each single site 
by regular univariate ARMA model estimation procedures. This allows for identification of the best 
univariate ARMA model for each site. After having estimated the diagonal parameter matrixes, what 
remains is estimation of the noise variance–covariance matrix G, but the lag-0 cross-correlation coef-
ficients of Yt are preserved through G. The procedure requires that the CARMA(p,q) is causal, a com-
mon requirement in estimation procedures of ARMA models. Causality implies that Yt in (27.10) can 
be presented by an infinite moving average model [4] Yt j t j
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27.5.2  Multivariate and contemporaneous ParMa(p,q)

The full periodic multivariate PARMA (MARMA) and the periodic contemporaneous PARMA 
(CPARMA) models for n sites are expressed in the same way as
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where Yν,τ is a n ×1 column vector of normally distributed zero mean variables representing the pro-
cess for year ν and season τ. The Φ Φ Φ1 2, , ,, , ,τ τ τ… p  and Θ Θ Θ1 2, , ,, , ,τ τ τ… q  are the AR and moving average 
parameter matrixes, full n × n matrixes for the MPARMA model but diagonal for the CARMA. The 
{ } ~ , ),εεν τ τiid MVN(0 G  is the n × 1 vector of normally distributed noise terms with mean zero and peri-
odic n × n variance–covariance matrix Gτ. The moment equations for the MPAR(p) model are given by 
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similar way as for the MAR and CARMA with, for example, the parameters of the MPAR(1) model 
given by ˆ
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T  where ch,τ is the sample season-to-season lag-h cross-

covariance matrix.

27.6  Disaggregation Models

Disaggregation models in space and time (downscaling) are an important tool for modeling of complex 
hydroclimatic processes, whether it is downscaling of precipitation to fine time scales or disaggregating 
flows and precipitation in a complex stream network both in space and time [2,16,51,54]. Disaggregation 
model is able to reproduce statistics at different aggregation levels such as annual and seasonal. Valencia 
and Schaake (VS) [73] with a later extension by Mejia and Rousselle (MR) [30,41] introduced the basic 
disaggregation model for temporal disaggregation of annual flows into seasonal flow, although both 
models can also be used for spatial disaggregation. The VS and MR models have full parameter matrixes 
and require many parameters for temporal disaggregation; thus, alternatively condensed (Lane) [31] 
and contemporaneous (Spigot) [14,15] models with periodic parameters for temporal disaggregation 
were suggested reducing the number of parameters required drastically. For comparison, the numbers 
of parameters in disaggregation of annual flows to monthly (12 seasons) for one site in the VS, MR, 
Lane, and Spigot models are 156, 168, 36, and 48, respectively. In practice for hydroclimatic data, the VS 
and MR models are generally used for disaggregation in space and the MR, Lane, or Spigot for tempo-
ral disaggregation. Stagewise disaggregation [58] in time has been suggested to reduce the number of 
parameters in each disaggregation step, for example, going from annual values to sum of four months 
to monthly to finer scales. The number of parameters in the aforementioned models going from annual 
to sum of four months (three seasons) is 12, 15, 9, and 12, respectively, thus reducing the differences in 
number of parameters for different models.

The VS and MR models for spatial disaggregation of annual data from n key sites to m subsites are 
represented by

 Y AX B Y AX B CYν ν ν ν ν ν ν= + = + + −εε εεand 1  (27.12)

respectively, where
Xν is the n × 1 column vector of annual flows at the key sites modeled by an ARMA, CARMA, or 

MAR model
Yν is the corresponding m × 1 column vector at the subsites
εν is the m × 1 column noise vector uncorrelated in space
A, B, and C are full m × n, m × m, and m × m parameter matrixes, respectively

After applying the models once, they can be applied repeatedly using the subsites as key sites for further 
spatial disaggregation to new subsites as is common when modeling of complex streamflow networks. 
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Both models preserve the lag-0 correlation coefficient in space between all subsites through the matrix 
B and the lag-0 correlation in space between all subsites and key sites through the matrix A. The MR 
model additionally preserves the lag-1 correlation coefficient in space between all subsites through the 
matrix C, but hydroclimatic data usually show such type of persistence. The parameters are estimated 
by method of moments. For example, the parameters of the VS model are given by A C YX C X= −

0 0
1( ) ( ) 

BB C Y AC X AT = − −
0 0

1( ) ( )  where G = BBT is the noise variance–covariance matrix (B is the Cholesky 
decomposition of G) and C Y Y Yh h

TE( ) = −[ ]ν ν  and C YX Y Xh h
TE( ) = −[ ].ν ν  The previous models can also be 

presented in different form, for example, the MR model for spatial disaggregation of seasonal data is rep-
resented as Y A X B C Yν τ τ ν τ τ ν τ τ ν τ, , , , ,= + + −εε 1  one model for each season τ, and the same model for temporal 
disaggregation of annual data to seasonal data at same sites is represented as Y AY B CYν τ ν ν τ ν τ, , ,= + + −εε 1 
with Yν,τ being a nω × 1 column vector with the first ω-values being the seasonal values for site 1 and 
the last ω-values being the seasonal values for site n. This model does preserve additivity of the dis-
aggregated level in the normal domain. The model can be repeatedly applied in a stagewise manner 
down to finer time scales. The aforementioned Lane and Spigot temporal disaggregation models are 
represented in a similar way as the temporal MR model except that the parameter matrixes are periodic 
as mentioned previously. The Lane model requires adjustments of seasonal values to ensure additivity 
up to the aggregated level, while the Spigot model includes a transformation-dependent term ensuring 
approximate additivity of the model in the original domain.

When using disaggregation models for data generation for data requiring normalizing transforma-
tion or when various elements of the parameter matrixes are taken as zero for simplification, then sum-
mability may be lost and adjustments may be needed to ensure additivity constraints in the original 
domain, for instance, in spatial disaggregation, to ensure that the generated flows at subsites add to the 
total or a fraction of the corresponding generated flow at a key site or in temporal disaggregation, to 
ensure that the generated seasonal values add exactly to the generated annual value [14,66].

27.7  Nonparametric Models

Nonparametric models are an attractive alternative to parametric models. They do not require the data 
to be transformed to normal, and they can capture features, such as bimodality and nonlinear depen-
dence structure that is difficult to capture with traditional parametric models [28]. The simplest non-
parametric models are pure resampling or bootstrapping models such as the simple bootstrap based on 
resampling with replacement the historical time series. To account for autocorrelation, block bootstrap-
ping can be used [75]. Nonparametric simulation models based on conditional KDE have been used 
for monthly streamflow modeling f y yY Yν τ ν τ ν τ ν τ, ,

( ), ,− −1 1  and disaggregation of annual to monthly flows 
f y yYYν τ ν ν τ ν,

( ),  [60,70]. The k nearest neighbor (KNN) resampling models have been used for resampling 
of monthly streamflows, disaggregation of annual to monthly flows, and simulation of rainfall and other 
climatic variables [29,32,45–48,55,79].

27.7.1  KDe

Kernel density estimates are closely related to smoothed histograms. A kernel density estimate for a time 
series yt of length N is defined as
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where
h is the bandwidth or smoothing parameter
K is the kernel function [45,47]
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Multivariate kernel densities are obtained by replacing the scalars in (27.13) by vectors and the 
Mahalanobis distance is used as opposed to Euclidean distance in (27.13) to account for cross-covari-
ances between the variables. Typical kernel functions are uniform, normal, biweight, Epanechnikov, and 
others. The choice of the kernel function has been viewed as secondary in estimating the density, and 
the normal kernel of the standard normal distribution is commonly used K(x) = 1/sqrt(2π) exp(−0.5x2), 
although it has also been suggested for hydrologic data to log-transform the data prior to the density 
estimation [49,50] or use skewed gamma kernels [55]. The asymptotic equivalent smoothing factors 
assuming that the underlying distribution is normal are for the normal kernel [62] h s Ny≈ −1 06 1 5. /  where 
sy is the sample standard deviation as in (27.1).

27.7.2  KNN

The KNN procedures with stationary time series are similar to the KDE procedure except KNN-
estimated densities are used as opposed to KDE estimates. The simple KNN density is equivalent to 
using KDE with a uniform kernel and a location-dependent radius
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where vk(y) is the volume of the ellipsoid bounded by y to its kth nearest neighbors, with the distance to 
the kth nearest neighbor being measured by the Mahalanobis distance in the multivariate case and the 
Euclidean distance in the univariate one. It has been suggested using k N=  [29]. Similarly as in (27.13), 
a kernel function can also be used representing any probability density function [62].

27.8  Simulation

27.8.1  approach

Time series models are used to generate equally likely synthetic time series (simulation). Exact generation 
procedures are available for some simpler models, while for more complex correlated models depending 
on past observations and residuals, initial assumption can affect the generation process, with, for exam-
ple, the first generated value always being close to the mean of the process or the first values of a gener-
ated time series being correlated with the first values of the other generated time series. A simple way to 
remove the effects of initial assumptions is to use a short warm-up period of say length L, for example, 
arbitrarily chosen as 50, but a long-memory process needs longer warm-up period than a short-memory 
process. For example, for ARMA models, values of Yt prior to t = 1 are assumed to be equal to the mean 
of the process (which is zero in our presentation). Thus, Y1, Y2 ,…, YN + L are generated using Equation 27.8 
where N is the required length to be generated and L is the warm-up length required to remove the effect 
of the initial assumptions of Yt. Simulations can also start from some point or from the end of the his-
torical records, where historical observations are used to initialize the models and no warm-up period is 
used. In this case, all generated synthetic time series are generated in forecasting mode, where all genera-
tors are initialized with the past values of the historical data and all noise processes are initialized to zero.

27.8.2  random Noise Generation

Random generators of standard normal variables { } ~ ,z iid Nt 0 1( ) are available in most software pack-
ages. The white noise process in univariate models { } ~ , ( )εεt iid N 0 2σ ε( ) is generated by first generating 
a standard uncorrelated normal random variable zt and then estimating εt as ε σ εt tz= ˆ( ) . Similarly for 
n-dimensional multivariate models, { } ~ ,εεt iid MVN( )0 G  is the n × 1 vector of normally distributed noise 
terms with mean zero and variance–covariance matrix G. The noise vector is independent in time and 
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correlated in space at lag-0. The following notation is commonly used to simplify the generation pro-
cess εεt t= Bz  where { } ~ ,z It iid MVN( )0  is a n × 1 vector of independent standard normally distributed 
variables uncorrelated in both time and space. The n × n matrix B is a lower triangular matrix such that 
G = BBT, where B is the Cholesky decomposition of G.

27.8.3  Length and Number

How long should the simulated series be? For comparison of model statistics and historical statistics, the 
length of the simulated series should be the same as the length of the historical record. For operational 
and planning studies, the length of the simulated series should match the planning horizon. For deter-
mination of extreme floods or drought of a certain return period T, the length of the simulated series 
must coincide with T. Similarly for estimation of a return period of a specific event, the simulations must 
be carried out until the event is exceeded for floods or deceeded for droughts. For determination of a 
firm energy capacity of a power system for a predefined reliability close to one, the length of the simu-
lated series needs to correspond to that reliability in a similar way as for return periods. The number of 
generated series should make it possible to estimate the probability distribution or the uncertainty of 
the decision parameter. As a rule of thumb, 1000 or more generated series or instances of the decision 
variable should be adequate, exceeding most statistical criteria used [51]. For estimation of a probability 
that certain event occurs in the generated time series, much higher number of series may be needed if 
the event is only occurring in a small fraction of the generated of series.

27.9  forecasting

Starting simulations from the end of the historical data conditioned on the most recent historical obser-
vations can be used for both short-term and long-term forecasting, where all simulated time series can 
be regarded as equally likely to happen from that point on (refer to Section 27.8).

27.9.1  Method

Forecasting method is said to be “adaptive” if model parameters are updated as soon as new data are 
available, that is, one-step-ahead forecast for t + 1 always uses model parameters estimated using data 
up to time t. The method is “nonadaptive” if model parameters are updated after a block of new data are 
available, that is, model parameters estimated using data up to time t are used to compute forecasts up 
to time t + k at which time the model parameters are reestimated.

27.9.2  Performance

The forecast error at time t is denoted by ˆ ˆe y yt t t= −  where yt is the observation at time t and ŷt is the 
forecast at time t. To measure performance of different model alternatives for a common forecasting 
period of length m, the following mean-absolute-forecast error (MAFE) and root-mean-square-forecast 
error (RMSFE) can be used:
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27.9.3  Models

All the time series models presented in this chapter can be used for forecasting. In practice, models 
including exogenous information usually perform better than models based only on past observation of 
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the process being forecasted. For example, for forecasting of streamflow, the exogenous variable may be 
basin precipitation, a climate index such as ENSO or the PDO, or other measures of atmospheric circu-
lation influencing the local climate [65]. The transfer function noise (TFN) model [3,4] and the simpler 
special cases of TFN, the ARMAX and PARMAX models, with X denoting the exogenous variables are 
commonly used for forecasting. For example, ARMAX(p,q,r) model with one exogenous variable is 
denoted by
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with X being the exogenous variable leading the dependent variable by lag-k. It is not uncommon to 
have p = 0 and q = 0 and thus the only input being the exogenous variable especially when Yt is weekly 
correlated. When analyzing the relationship between Xt and Yt using cross-correlation, then the auto-
correlation should be removed from both series (pre-whitening) with appropriate ARMA models, and 
the resulting residuals from both models should be cross-correlated at different lags. If there are many 
exogenous variables available, many alternative models could be fitted and the resulting forecasts com-
bined by averaging or weighting [64]. In these circumstances, principal components [76,78] on the exog-
enous variables could be used to reduce the parameter space. Exact forecast procedures exist for models 
such as linear regression models and low-order ARMA, where the predictive distribution of the forecast 
is defined [4,25]. For complex models repeated, one-step-ahead prediction can be used for estimation 
of the prediction interval. In addition, if non-normality of the residuals is of concern, bootstrapping of 
the residuals with replacement and reestimating the model parameters can be used as an alternative for 
estimation of the prediction interval [64]. Other forecasting models exist for forecasting of hydrocli-
matic processes with many of the approaches and their application, including the previous ones, being 
described in [16,72].

27.10  climate change Implications

The modern climate change is dominated by human influences [26], and to date, there does not appear to 
be any study attributing the global warming observed over the last 50 years to any known natural causes 
[77]. Newer analyses of proxy data for the northern hemisphere indicate that the increase in temperature 
in the twentieth century is likely to have been the largest of any century during the past 1000 years and 
that 11 of the 12 years during 1995–2006 rank among the 12 warmest years of the instrumental record 
of global surface temperature since 1850 [21,22]. The historical trend in the global instrumental record 
from 1906 to 2005 is 0.74°C/century, and from 1956 to 2005 the trend is 1.3°C/century with projected 
temperature trends ranging from 1.8°C to 4.0°C/century over the next 100 years depending on different 
emission scenarios of greenhouse gases [22].

Changing climate due to anthropogenic impacts leads to changing distributional properties of the 
process under consideration calling for sophisticated risk analyses of possible climate change in both 
near and far future, where different methods must be explored for different situations and tasks. The 
methods for time series analysis presented in this chapter can be used for modeling changing distribu-
tional properties over time, where historical deterministic anthropogenic changes are removed from the 
process to make it stationary prior to fitting the appropriate stationary model to the process. Synthetic 
time series can be generated from the fitted model and corrected into original domain by reapplying the 
historical or projected anthropogenic changes. Common changes in distributional properties include 
the following [23]:

• The distribution shifts or slides over time. This is equivalent to time-varying trend in the mean μt. 
The process is made stationary by subtracting μt.
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• Increased or decreased variability with time. This is equivalent to having time-varying trend in 
the standard deviation σt. The process is scaled by σt to make it stationary. Alternative the process 
is standardized by μt and σt to make it stationary in both the mean and the variance.

• The shape of the distribution is asymmetrically changed with time. This is more complex and calls 
for a time-varying transformation of the process to normal.

Synthetically simulated series may need to be adjusted for different planning horizons into the 
future, for example, one year for operations, 10 or 20 years for investment planning, and 100 years 
or more when safety issues are considered. For estimation of a design event based on appropriate 
level for risk of failure, the simulated time series need to be adjusted over the expected lifetime of 
the project.

27.11  Parameter Uncertainty

The foregoing discussion has not dealt with parameter uncertainty. In practice, when modeling com-
plex hydroclimatic systems, model parameters are often treated as being deterministic and the only 
random components are the model noises or residuals. In a sense when multiple time series are syn-
thetically generated from a parametric model for analysis of the distribution of certain design statistics, 
it can be argued that parameter uncertainty is being somewhat implicitly embedded in the generation 
process, since for each synthetic series, the parameters could be reestimated and they certainly would 
be different than the original parameter set. This type of uncertainty analysis is, for example, com-
mon in frequency analysis of extreme events, where the uncertainty distribution of a design quantile 
is estimated by regenerating (from the initially estimated model) time series of the same length as the 
historical sample. Then for each time series, the model parameters are reestimated resulting in a new 
estimate of the design quantile. The classic time series texts [3,4,16,54] include sample distributions of 
the parameters of the ARMA and PARMA models. Also, since the parametric modeling schemes are 
usually linear in the parameters and most of them assume that the data are normally distributed, then 
in theory inclusion of parameter, uncertainty can be achieved by adopting the theory of parameter 
inferences from the classical univariate and multivariate regression model [25]. In addition, Bayesian 
modeling [1] offers a framework taking into account the uncertainty in the model parameters.

27.12  Summary and conclusions

Analysis and modeling of time series of hydrologic data under climate variability and change can be 
used for evaluation of impacts and risks that can arise from natural variability and anthropogenic cli-
mate change in hydrologic time series. Such studies may be used for estimation of design events and 
generation of long synthetic time series used for adaptation strategies to the natural climate variability 
and expected future climatic change. While time series models are in general stationary, they can be 
used to model nonstationary behavior such as trends and shifts. Time series models have been used 
traditionally for generation of long synthetic time series, for evaluation of operational rules for water 
resources systems and for sizing of reservoirs, for forecasting, for detection of trends and shifts, and for 
filling in missing data and extending records. An important feature of time series models is their ability 
to model the dependence structure within a single time series of sequential observations (autocorrela-
tion) and across multiple time series both in space and time (cross-correlation) and across time scales 
such as years to seasons to months to finer scales. This feature separates time series models from tradi-
tional probabilistic models, which commonly assume that the time series being modeled is independent 
and identically distributed that is usually not the case since most hydrologic time series show different 
types of dependence structure due to the annual hydrologic cycle and persistence and cycles in atmo-
spheric circulation patterns.
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Preface

Probable maximum precipitation (PMP) and probable maximum flood (PMF) have been com-
monly used in engineering practice for designing major hydraulic structures. However, in recent 
decades, there has been a growing concern regarding the uncertainties involved in estimating 
such extreme events. In this chapter, the concepts and methods for estimating the PMP and PMF 
considering their associated uncertainties are examined. After briefly reviewing the underly-
ing concepts and definitions, an overview of the methods for estimating the PMP is presented, 
which includes hydrometeorological methods, the statistical method by Hershfield, and some 
other statistical alternatives. Regardless of the methods applied for obtaining the PMP and 
PMF, a number of studies have shown that their estimates involve many uncertainties. While 
hydrometeorological methods likely provide the best estimates of PMP, however, in many regions 
of the world, hydrometeorological data are lacking, and consequently feasibility studies and 
designs of flood-related projects are being made based solely on Hershfield’s statistical method 
that provides a single value for the PMP. Thus, a method for quantifying the uncertainty of the 
PMP if Hershfield’s method is to be applied has been included in this chapter. Furthermore, the 
chapter includes sensitivity analysis, Monte Carlo analysis, and some statistical alternatives for 
PMF estimation and uncertainty.
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28.1  Introduction

Probable maximum precipitation (PMP) and the corresponding probable maximum flood (PMF) 
have commonly been utilized in engineering practice [81], particularly for designing hydraulic struc-
tures such as spillways of large dams whose failure may cause losses of life and catastrophic damage 
to nuclear power plants. In the United States, many federal and state agencies use the PMP and PMF 
for evaluating the adequacy and safety of major hydraulic structures. Regardless of the method uti-
lized for obtaining the PMP, the practice of designing and evaluating flood-related structures based 
on such PMP has been criticized among others because of the many uncertainties involved in deter-
mining them, the lack of a standard approach for estimating the PMP, and the perception that such 
estimated PMP (and the ensuing PMF) is an upper bound that may not be exceeded and as such a zero 
risk. However, an upper bound with zero risk is not realistic because there have been documented 
cases where the recorded floods have exceeded the estimated PMFs [4,15,45]. Thus, a risk-based design 
approach has been advocated by some hydrologists. For instance, Dawdy and Lettenmaier [15] sug-
gested as an alternative “to retain the PMF as a reference event and estimate its exceedance probability.” 
And they added “…there will be uncertainties associated with any risk estimates, especially for flood 
peaks and volumes with exceedance probabilities as low as those for the PMF. Any rational design 
approach must recognize this uncertainty.”

Therefore, in this chapter, the concepts and methods for estimating the PMP and PMF considering 
their associated uncertainties are examined. The main purpose is to summarize the alternative meth-
ods that are available for determining the uncertainties involved in estimating the PMP and PMF. The 
second section is a brief review of concepts and definitions of the PMP and PMF. The third section gives 
an overview of the classical methods for estimating the PMP such as hydrometeorological methods, the 
statistical method by Hershfield, and some other statistical alternatives. The fourth section discusses 
the uncertainty of the PMP considering hydrometeorological factors, and Section 28.5 presents in some 
detail a procedure for estimating the uncertainty of the PMP based on Hershfield’s method. Section 
28.6 describes PMF estimation and uncertainty, which includes sensitivity analysis and Monte Carlo 
analysis, as well as some statistical alternatives. The chapter ends with a section of concluding remarks.

28.2  concepts and Definitions of the PMP and PMf

PMP has its origin in what used to be called maximum possible precipitation (MPP) where it was defined 
as an upper bound maximum value [4], that is, the concept was to find a maximum value of precipita-
tion for a given storm duration over a basin that physically could occur but would not be exceeded. 
Unfortunately, it has been reported in literature that in some real cases, such MPP values have been 
exceeded [4]. This observation as a consequence has led to the renaming of “maximum possible precipi-
tation” to “PMP.” Thus, the PMP definition that has been widely accepted in literature is: “theoretically 
the greatest depth of precipitation for a given storm duration that is physically possible over a given size 
storm area at a particular geographical location at a certain time of the year” [31,83]. The PMP definition 
used by the World Meteorological Organization (WMO) [84] has been slightly changed, but the essence 
remains the same. The referred definition highlights the PMP as a physical upper limit, and often it is 
perceived to be a quantity that cannot be exceeded. However, WMO [84] acknowledges the fact that 
the value of the PMP that is calculated for a particular study area is only an approximation “due to the 
physical complexity of the phenomena and limitations in data and the meteorological and hydrological 
sciences.” Furthermore, as hinted by WMO [83], one must distinguish between the “theoretical PMP,” 
that is, an upper limit that is unknown, and the “operational PMP,” which is the PMP obtained by a 
given method that involves a number of assumptions, steps, and data that are uncertain.

The PMF is a deterministic upper limit flood that is commonly utilized as a design criterion by several 
organizations in many countries. However, the PMF is not so generally defined as the PMP. Newton 
[55] cites various definitions used by different US and international agencies. The PMF definition used 
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by some organizations such as the US Bureau of Reclamation (USBR) is “the maximum runoff con-
dition resulting from the most severe combination of hydrologic and meteorological conditions that 
are considered reasonably possible for the drainage basin under study” [14]. Other similar definitions 
of PMF are: “a flood that can be expected from the most severe combination of critical meteorologic 
and hydrologic conditions that are reasonably possible in a region” [34] and “PMF is the theoretical 
maximum flood that poses extremely serious threat to the flood control of a given project in a design 
watershed. Such a flood could plausibly occur in a locality at a particular time of the year under current 
meteorological conditions” [84]. The PMF is generally viewed as the flood resulting from a PMP, plus 
snowmelt where appropriate, applied to assumed antecedent basin conditions. However, the assump-
tions and procedures for selecting antecedent conditions and estimating the flood hydrograph from the 
PMP vary depending on the country, agency, and hydrologist. For example, there are some aspects of 
the PMP to PMF conversion that are unique to the USBR [73].

28.3  Overview of Methods for estimating the PMP

The manual of WMO [84] describes six methods for estimating the PMP: (a) the local method (local 
storm maximization model), (b) the transposition method (storm transposition model), (c) the com-
bination method (temporal and spatial maximization of storm), (d) the inferential method (theoretical 
model), (e) the generalized method, and (f) the statistical method. In addition, the manual describes 
two other methods that may be applicable for very large basins. The previous methods, categorized 
as hydrometerological (a–e) are generally based on deterministic approaches, that is, based on physi-
cal laws and principles, while method (f) is essentially the statistical method proposed by Hershfield 
[35,36]. The previous methods, categorized as hydrometeorological methods, the statistical method by 
Hershfield, and some statistical alternatives (that have been proposed in the last three decades), are sum-
marized in the following section.

28.3.1  PMP Based on Hydrometeorological Methods

There are several key references in literature outlining in some detail the various hydrometeorological 
methods available for estimating the PMP [31,32,84]. Modifications and improvements have evolved over 
the years. Hansen [32] summarized the developments through the mid-1980s for the various regions of 
the United States and discussed advances in estimating the PMP for regions where the convergence (non-
orographic) and orographic components of the PMP can be determined. Hansen also reexamined the data 
of estimates of PMPs and observed storms obtained by Riedel and Schreiner [69] and concluded that the 
PMP estimates were not too high. For example, for the east of the 105th meridian, out of 75 storms con-
sidered, 18 storms exceeded 70% of the PMPs and three storms exceeded 90%. Recently England et al. [25] 
reviewed the various PMP procedures and databases used in estimating the PMP based on hydrometeoro-
logical methods particularly those utilized for developing the hydrometeorological reports (HMRs) that 
provide generalized PMP estimates over large regions of the United States (e.g., HMR 58 for California). 
They also described the key concepts involved including depth-area duration analysis of large storms, 
storm maximization, storm transposition, and envelopment. Further technical details of the underlying 
concepts and procedures may be found in Hansen et al. [33] and WMO [84].

The methods based on storm models use physical parameters such as dew point temperature, storm 
depth, and inflow and outflow fluxes depending on the storm type [12]. For example, in areas subject to 
the occurrence of hurricanes, a hurricane model may be applied for estimating the PMP. An advection–
diffusion model of clouds for determining the temporal and spatial dynamics of extreme precipita-
tion in a catchment located in the Bernese Alps of Switzerland has been suggested [67]. Atmospheric 
models such as the Regional Atmospheric Modeling System (RAMS) and the fifth-generation NCAR/
Penn State mesoscale model (MM5) are being investigated for modeling extreme rainfall [13,62]. Storm 
maximization consists of adjusting a large observed storm precipitation to enable the convergence of the 
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maximum atmospheric moisture, that is, moisture maximization is increasing storm rainfall depth for 
the location and season, for higher atmospheric moisture than was available in the actual storm [25,37]. 
Transposition of storms means that the observed storm at a given location is translated to another 
location (say for an ungauged basin area) with appropriate adjustments such as those for differences 
in altitude [83]. The method assumes a region of homogeneous meteorology and topography. Using 
probability concepts for storm transposition has been examined by some researchers [1,30,26,27]. The 
regionalization methods (also called generalized PMP) are developed for large areas and generally are 
based on maximization and transposition of several types of storms (e.g., convective or cyclonic storms), 
depth–area–duration analysis, and envelopment. An example of this method is that developed by the 
National Weather Service of the United States [59]. Applications and developments in several other 
countries can be found in WMO [84 and the references therein].

28.3.2  PMP Based on Hershfield’s Statistical Method

Hershfield’s statistical method [35,36] was developed as an alternative to the traditional methods that 
are based on physical concepts. Hershfield’s method, popularized internationally by WMO [82–84], 
has been commonly utilized in practice, particularly for basins lacking hydrometeorological data. 
It has been utilized in several countries worldwide for comparing with other methods for determining the 
PMP [2] and for preliminary and feasibility hydrologic studies [5]. Hershfield’s statistical method is based 
on an equation similar to that of Chow [9] where a quantile of the underlying distribution is expressed as 
a function of the sample mean, the sample standard deviation, and a frequency factor K [10]. In the typical 
procedure for fitting the empirical frequency distribution of the data at hand using a probability distribu-
tion function (PDF), the value of K is related to the skewness coefficient and the exceedance probability. 
But in Hershfield’s method, the value of K was established after analyzing a large number of historical data 
of storm annual daily maximums so that an upper bound of K was determined, which was bigger than all 
values of K obtained from the historical sample.

Hershfield’s method was based on 24 h maximum precipitation data of 2645 stations (90% of which 
were stations in the United States and the rest for other parts of the world), which gave a total of about 
95,000 station-year data. The method uses the equation

 PMP X K Sn n= +  (28.1a)

where
X̅n is the mean annual maximum daily precipitation
Sn is the corresponding standard deviation
K is a frequency factor

Hershfield recognized that because X̅n and Sn are quantities that are estimated from a limited sample (n), 
they must be adjusted for sample size and for the effect of outliers. Graphs are available for obtaining the 
appropriate adjustment factors [35,83,84]. Another correction suggested by Hershfield was to account 
for the difference that exists between the daily maximum values and the 24 h maximums regardless of 
the calendar day.

Based on the data analysis of the 2,645 sites, Hershfield [35] found that the value of K in (28.1a) varied in 
the range 1.00–14.99 and that K ranged between 13.00 and 14.49 for only four stations. Consequently, he 
suggested utilizing the value of K = 15 for estimating the PMP. However, additional studies by Hershfield 
[36] indicated that K varied with the storm duration and the mean annual maximum precipitation; 
therefore, he provided additional relations (graphs) that enable one in determining the value of K for 
practical applications. Furthermore, other studies appeared in literature documenting the most appro-
priate values of K according to the climatic region of the study area. For example, Mejía and Villegas [50] 
analyzed 1, 2, and 24 h duration storm data for Colombia and suggested the corresponding envelopes for 
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determining K as a function of the mean annual maximum precipitation. Similar studies can be found 
for other locations in the world such as the southern half of the Indian peninsula [17], the Alpine region 
in Austria [56], the north region of India [66], the Czech Republic [68], the south region of Malaysia [16], 
and the Cataluña region of Spain [8]. Hershfield [35, pp. 101–102] recognized that K is a random variable 
and illustrated this point by associating the values of K with the return period (or exceeding probability) 
using as examples the Gumbel and lognormal distributions. Nevertheless, his rationale and intent was 
finding a value (actually an envelope function) that could be applicable for a given storm duration and 
climatic region. Such an envelope was obtained based on a large database of numerous storms that have 
been observed in historical records at similar locations. Hershfield [36, p. 967] argued that “enveloping 
K as a function of the mean serves a transposition purpose.”

For easy of explanation and subsequent reference, Hershfield’s method may be summarized as follows: 
(a) adjust X̅n and Sn for effect of outlier; (b) adjust X̅n and Sn for effect of sample size; (c) select K as a func-
tion of Xn̅, the storm duration, and the study region; (d) estimate the PMP from (28.1a); and (e) make an 
additional adjustment to account for the difference between the maximum of a given time period (storm 
duration) and the maximum of the observation time period (e.g., to account for the difference between 
the maximum of 1440 min storm duration and the maximum observed daily).

28.3.3   Statistical alternatives for estimating extreme 
Precipitation (Including PMP)

Koutsoyiannis [45] argued that K used by Hershfield could be fitted using some type of PDF and suggested 
the general extreme value (GEV) as a logical function since it deals with extreme events. Koutsoyiannis 
reexamined Hershfield’s results and concluded that the K = 15 suggested by Hershfield corresponds 
approximately to a return period of 60,000 years based on the GEV distribution. Koutsoyiannis also 
illustrated his alternative approach using 136 years of data of annual maximum daily rainfall in Greece. 
As expected, such a long record offers the alternative of fitting the frequency distribution of the data and 
finding quantiles for any desired return period. Likewise, Papalexiou and Koutsoyiannis [63] suggested 
finding design values of maximum precipitation simply using the frequency analysis of the observed 
data based on the GEV distribution. Douglas and Barros [19] approached the design of maximum pre-
cipitation using a completely different method, which is based on applying multifractal concepts for 
determining what they called the fractal maximum precipitation (FMP), and applied their approach to 
the eastern United States.

In addition to the proposed methods summarized previously, efforts have been made to extend 
(extrapolate) the traditional frequency curves (FCs) that may be obtained from historical records at 
single sites. However, extending the FCs also implies increasing uncertainty of the estimated quantiles. 
Figure 28.1 illustrates the “credible” limits of extrapolation for events considered as large, rare, and 
extreme as the annual exceedance probability (AEP) increases [53]. A technique that is often used for 
extrapolating the FCs is based on regional precipitation frequency analysis (e.g., using the index flood 
approach). This way one can determine precipitation quantiles for return periods further beyond the 
usual historical record lengths, which may be of the order of 50–100 years. Table 28.1 summarizes the 
ranges of “credible extrapolation” for various types of data and methods [53,77]. Also, the tendency has 
been to assign an AEP to the PMP. While assigning an AEP to the PMP may be inconsistent with the 
“upper limit” concept of the PMP, it has been argued that given that the PMP is an uncertain quantity, 
it may conceivably be exceeded [53]. Based on a review conducted by Laurenson and Kuczera [47] on 
studies made in Australia and elsewhere and considering that at present there is no conceptually sound 
basis for assigning an AEP to the PMP, a recommendation was made where the AEP of PMP estimates 
vary solely as a function of catchment area [53]. The recommendation is summarized in Figure 28.2. 
Note that Nathan and Merz [54] cautions that “there is considerable uncertainty surrounding these rec-
ommendations as they are for events beyond the realm of experience and are based on methods whose 
conceptual foundations are unclear.”
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28.4   Uncertainty of the PMP considering 
Hydrometeorological factors

The most recent manual of the WMO [84] states “Storms, and their associated floods, have physical upper 
limits, which are referred to as PMP and PMF. It should be noted that due to the physical complexity of the 
phenomena and limitations in data and the meteorological and hydrological sciences, only approximations 

TABLE 28.1 Data Type and Extrapolation Ranges for Frequency Analysis of 
Extreme Events

Type of Data Used for Frequency Analysis

Range of Credible 
Extrapolation for AEP

Typical Most Optimistic

At-site precipitation data 1 in 100 1 in 200
At-site gauged streamflow dataa 1 in 100 1 in 200
Regional streamflow datab 1 in 500 1 in 1,000
At-site streamflow and at-site paleoflood datac 1 in 4,000 1 in 10,000
Regional precipitation data 1 in 2,000 1 in 10,000
Regional streamflow and regional paleoflood data 1 in 15,000 1 in 40,000
Combination of regional data sets and extrapolation 1 in 40,000 1 in 100,000
aAt-site gauged streamflow data (Australia) 1 in 50 1 in 200
bAt-site/regional gauged streamflow data (Australia) 1 in 200 1 in 500
cAt-site gauged and paleoflood data (Australia) 1 in 5,000 1 in 10,000

Source: Adapted from Nathan, R.J. and Weinmann, P.E., Estimation of large to extreme 
floods, Book VI, Australian Rainfall and Runoff: A Guide to Flood Estimation, National 
Committee on Water Engineering, Institution of Engineers, Australia, 2001; US Bureau of 
Reclamation, A framework for characterizing extreme floods for dam safety risk assessment, 
prepared by Utah State University and USBR, Denver, CO, 67pp., 1999. With permission.
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are currently available for the upper limits of storms and their associated floods.” This concept must be 
clearly understood by water resources specialists involved in determining the so-called PMP and PMF.

The US National Research Council [58] considers two types of uncertainties that are summarized as 
follows: (1) Natural uncertainty represents the inherent variability of the physical system; it cannot be 
reduced. For example, if a given system is represented by a PDF say f(x,θ̲) with known parameter set θ̲, 
then X is random and as such its variability (uncertainty) is irreducible. (2) Knowledge uncertainty is 
due to the lack of understanding of the system and insufficient data. Using the same example as previ-
ously discussed, suppose we know the PDF but the parameter set θ̲ is unknown, so it must be estimated 
from data such as x x xN1 2, ,...,  where N is the sample size. Then, the parameter set is now referred to as 
θ̂ and any quantile say X̂q will be uncertain because of the uncertainty of the parameter set. However, 
knowledge uncertainty is reducible, for example, as the sample size N increases, the uncertainty of θ̂ 
and consequently the uncertainty of X̂q will decrease. In fact, as N → ∞, the uncertainty of θ̂ (and the 
uncertainty of X̂q) will become zero. Note that generally the PDF f(x,θ̲) is also unknown. Sometimes 
knowledge uncertainty has been referred to as “epistemic” [51].

As example of the previous concepts, we illustrate a method for determining the uncertainty of extreme 
precipitation (approaching the PMP) considering some of the hydrometeorological factors involved in 
estimating the PMP. Papalexiou and Koutsoyiannis [63] argued that the estimates of the PMP based on 
maximization of storm moisture do not appear having an upper bound. Based on the analysis of dew point 
temperature, atmospheric moisture, and maximized precipitation, they concluded that no upper bounds 
of the PMP estimates were evident. Instead of using the variability of these factors as they affect the esti-
mates of PMP, the concepts proposed by Klemes et al. [43] and Klemes [44] are described. The concepts are 
simple but have important implications for estimating precipitation FCs for extreme events and near the 
PMP. Actually two approaches were suggested that are summarized as follows. Let us consider that N years 
of one-day maximum rainfall data Rt are available for a given site. Based on this data set, one can make fre-
quency analysis following any well-known technique. Let us further assume that it is possible to separate 
the one-day maximum rainfall Rt into the convergence component Ct and the orographic component Ot. 
Thus, three sets of data of length N years each would be available. Klemes argued that the occurrence of the 
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convergence part of the storm is independent of the occurrence of the orographic part since they depend 
on different physical mechanisms. Then it is possible that in any given year, the maximum one-day rainfall 
may arise from any combination of the convergence and orographic components. Therefore, the combina-
tion of the two sets of data, that is, the convergence and orographic, will produce data of size N2, which is a 
significant gain. For example, if N = 100, the procedure outlined previously will lead to 10,000 data points.

The second approach suggested by Klemes et al. [43] builds on the same concept as in the previous 
discussion but brings a third component, that is, moisture maximization of storms and precipitable 
water (storm efficiency). The assumption is to combine the actual P/M ratio of a given storm (where P 
and M stand for precipitation and precipitable water, respectively) with the maximum observed precipi-
table water. Considering the P/M ratios of the orographic and convergence components as independent, 
the N orographic P/M ratios are combined with the N convergence P/M ratios yielding N2 total storm 
P/M ratios that are then combined with the N values of precipitable water. Thus, a total sample of N3 
possible precipitation values are obtained, which can be useful for frequency analysis.

Klemes et al. [43] and Klemes [44] illustrate the previous approaches for estimating the one-day 
PMP at Coquitlam Lake (CL) basin in Canada. The basin has an area of 193 km2, is located in the 
western Coast Mountains (elevations ranging from 153 m to over 2000 m), and is about 30 km NE 
of Vancouver. The referred authors used 40 years of relevant hydrometeorological variables such as 
maximum one-day precipitation and precipitable water, that is, N = 40. Various estimates of the PMP 
using the traditional hydrometeorological methods have been made for CL, and the referred papers 
suggest for comparison a PMP of about 400 mm. Precipitation essentially free of orographic influ-
ence is recorded at Vancouver International Airport (the airport is located in the general direction 
of the southwesterly flows) and has been considered as a good approximation of the convergence 
component of CL precipitation. Thus, the orographic component was estimated as the difference 
between the total precipitation recorded at CL and that recorded at the airport. Figure 28.3 shows 
the precipitation FCs for the total precipitation at CL and those for the two components. Also Figure 
28.3 shows with arrows a graphical extrapolation through 100 years (which is about twice the length 
of record, i.e., 2N in general). The resulting FC based on the combined sample of length 1600 (402) 
is shown in Figure 28.4. The figure shows also the original FC based on the original sample of size 
40 (square symbol). Figure 28.4 shows a pretty good agreement between the two FCs. Also note the 
final point (based on the extrapolations in Figure 28.3 as previously indicated), which shows a pre-
cipitation of 340 mm corresponding to about 10,000 years of return period. Figure 28.4 also points 
to about 100,000 years of return period for the estimated PMP of 400 mm. The interested reader may 
refer to the paper by Klemes et al. [43] for applications using the approach based on storm maximi-
zation, which enables one estimating the uncertainty of precipitation further closer to the range of 
the estimated value of the PMP.

28.5  Uncertainty of the PMP Based on Hershfield’s Method

The statistical method developed by Hershfield [35,36] gives a single value of the PMP. A simple method 
is proposed here to take into account the uncertainty of the PMP estimator arising from the uncertainty 
of the sample mean and sample standard deviation.

28.5.1  assumptions and Derivations

Referring to the original equation used by Hershfield [35], we observe that the PMP is a function of the 
sample mean X̅n, the sample standard deviation Sn, and the coefficient K. Let us denote by P̂ the estimator 
of the PMP such that

 P̂ X K Sn n= +  (28.1b)
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where n represents the sample size (number of years of data). Also let us recall that
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where X X Xn1 2, ,...,  is a random sample from an unknown distribution with population mean μ and 
variance σ2. Because X̅n and Sn are uncertain quantities and considering K as a constant (i.e., a maximum 
value corresponding to the duration of the storm, the value of X̅n, and the region where the basin of interest 
is located), one can calculate the mean and the variance of the PMP estimator P̂. It may be worthwhile men-
tioning that a constant value of K is considered following Hershfield’s approach in which a value of K is estab-
lished after analyzing many data of historical storms that have occurred in the region under study. Thus, the 
uncertainty associated with K is accounted for by using an envelope function and as such K is a constant. And 
the remaining uncertainty is associated with X̅n and Sn, which is the main subject of the argument herein.

The expected value of the estimator of the PMP, P̂, is equal to
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Note that in estimating E(P̂) for an actual case, the population quantities μ and σ are replaced by their 
corresponding sample estimates (after the appropriate adjustments for outliers as needed as suggested 
by Hershfield).

The variance of the PMP estimator P̂ of (28.1b) can be calculated as [52]

 Var P Var X K Var S KCov X Sn n n n( ) ( ) ( ) ( , )ˆ = + +2 2  (28.3a)

Since X X Xn1 2, ,...,  is a random sample, it is clear that Var X nn( ) .= σ2 /  Also it may be shown that the 
normal approximations for determining Var(Sn) and Cov(X̅n,Sn) are as follows: Var S nn( ) ( )≈ −σ2 2 1/  and 
Cov X Sn n( , ) ≅ 0 [42]. Then (28.3a) may be approximated as follows:
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And the standard deviation of the PMP estimator P̂ is
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The referred approximations Var S nn( ) ( )≈ −σ2 2 1/  and Cov X Sn n( , ) ≅ 0 are known to be valid where the 
underlying distribution of the random variable X is normal, that is, N(μ,σ2) [42]. However, extreme 
hydrologic events, such as annual maximum precipitation, are generally skewed, and one must check 
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whether the referred normal approximations for determining Var(Sn) and the covariance Cov(X̅n,Sn) are 
still valid for skewed variables. Thus, a limited simulation experiment has been conducted for checking 
the foregoing approximations and introducing the needed corrections as appropriate. For this purpose, 
the GEV type 1 or Gumbel distribution was assumed as the underlying distribution of annual maximum 
precipitation.

Firstly, to verify the approach, 1000 samples of size n = 15 were generated from the standard normal 
distribution and determined from each sample X̅n(i) and Sn(i), i = 1,…, 1000, that is, the sample mean 
and standard deviations, respectively. Then, based on the pair of 1000 values, the variance σ̂2(Sn) and 
covariance Cov X Sn nˆ ( , ) were estimated. The results from the simulated samples gave σ̂2(Sn) = 0.035 and 
Cov X Sn nˆ ( , ) = 0.00062, while the theoretical normal approximations give Var S nn( ) ( )= −σ2 2 1/  = 0.0357 
and Cov(X̅n,Sn) = 0. Hence, the simulation results indicate that even for a short sample, that is, n = 15, the 
approximations for obtaining Var(Sn) and Cov(X̅n,Sn) are correct (as expected).

For the Gumbel distribution, the CDF is given by F x x x( ; ) exp exp ( )θ α= − − −[ ]{ }0 /  in which 
θ α= { , }x0  is the parameter set where x0 is the location parameter and α > 0 is the scale parameter [72]. 
Thus, Gumbel random numbers were generated by x x u= − −0 α ln( ln ) in which u is a uniform (0,1) 
random number. The simulation experiments were made assuming that α = 1 and x0 = 1.9878, 0.7053, 
0.06405, and –0.256575, which correspond to coefficients of variation ηX = 0.5, 1.0, 2.0, and 4.0, respec-
tively (note that for α = 1, the population variance of the Gumbel distribution is σ2 = 1.645.) Also in this 
case, 1000 samples were simulated for sample sizes n = 15, 50, 100, and 150 and the variance σ̂2(Sn) and 
correlation coefficient ρ̂(X ̅n,Sn) determined. Table 28.2 summarizes and compares the results obtained 
for the variance and the correlation coefficient using the formulas that are valid for the normal distri-
bution and using simulation, assuming the Gumbel distribution. In Table 28.2, the rows corresponding 
to Var S nn( ) ( )= −σ2 2 1/  were obtained based on the assumed values of σ2 = 1.645 and n (e.g., for n = 15, 
Var(Sn) = 0.05875). On the other hand, the rows corresponding to simulation were obtained from the 

TABLE 28.2 Comparison of the Variances Var(Sn) and Correlation Coefficients ρ(X̅n,Sn) Obtained Based 
on the Normal Approximations and from Generated Random Samples Gumbel Distributed with 
Parameters α = 1 and x0 = 1.9878, 0.7053, 0.06405, and –0.256575 (for Coefficients of Variation ηX = 0.5, 1.0, 
2.0, and 4.0, respectively)

Sample 
Size n
(1)

Variance and 
Correlation

(2)
Approacha

(3)

Coefficient of Variation ηX

Average
(8)

Correction 
Factor fn

(9)
0.5
(4)

1.0
(5)

2.0
(6)

4.0
(7)

15 Var(Sn) σ2/2(n − 1)
Simulation

0.05875
0.1011

0.05875
0.1026

0.05875
0.1006

0.05875
0.1075

0.05875
0.10295

1.752

ρ(X̅n,Sn) 0.0
Simulation

0.0
0.5494

0.0
0.5550

0.0
0.4942

0.0
0.5388

0.0
0.5344b

50 Var(Sn) σ2/2(n − 1)
Simulation

0.01679
0.0323

0.01679
0.0342

0.01679
0.0328

0.01679
0.0336

0.01679
0.03322

1.979

ρ(X̅n,Sn) 0.0
Simulation

0.0
0.5581

0.0
0.5097

0.0
0.5515

0.0
0.5634

0.0
0.5457b

100 Var(Sn) σ2/2(n − 1)
Simulation

0.00831
0.0163

0.00831
0.0173

0.00831
0.0191

0.00831
0.0182

0.00831
0.01772

2.133

ρ(X̅n,Sn) 0.0
Simulation

0.0
0.5541

0.0
0.5367

0.0
0.5332

0.0
0.5516

0.0
0.5439b

150 Var(Sn) σ2/2(n − 1)
Simulation

0.00552
0.0110

0.00552
0.0118

0.00552
0.0120

0.00552
0.0120

0.00552
0.0117

2.120

ρ( , )X Sn n 0.0
Simulation

0.0
0.5377

0.0
0.5628

0.0
0.5279

0.0
0.5480

0.0
0.5441b

a Var(Sn) = σ2 2 1/ ( )n −  and ρ( , )X Sn n  = 0 are based on the normal approximation.
b The average value of ρ( , )X Sn n  obtained from the simulated samples is about 0.542.
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1000 values of Sn(i), i = 1,…, 1000. Likewise, for ρ(X ̅n,Sn), the rows of zero’s correspond to the result 
based on the normal approximation, while the values in the rows corresponding to simulation were 
obtained by correlating X ̅n(i) and Sn(i), i = 1,…, 1000.

First of all, one may observe that the values of Var(Sn) obtained by simulation do not vary that much with 
the coefficient of variation ηX; thus, one may use the average figures shown in the eighth column of Table 
28.2 (e.g., 0.10295 for n = 15). The ratios of the average values (obtained by simulation) and those from the 
formula (based on the normal approximation) are 1.752, 1.979, 2.133, and 2.120 for n = 15, 50, 100, and 
150, respectively, as shown in the last column of Table 28.2 (e.g., for n = 15, fn = 0.10295/0.05875 ≈ 1.752). 
As expected, Var(Sn) varies with n, but the ratios, denoted correction factors fn, after an initial increase 
for small n, seem to converge to a constant value as n increases, as shown in Figure 28.5. Thus, the factor 
fn can be used to calculate Var(Sn) for the Gumbel as Var S n fn n( ) [ ( )]≈ − ×σ2 2 1/  where fn, for a particular 
value of n, can be either interpolated from the values of Table 28.2 or read of from Figure 28.5. Note that 
for values of n ≥ 100, one may use fn ≈ 2.13, which is an average value for large n. Likewise, Table 28.2 
shows that the correlation coefficient ρ(X̅n,Sn), obtained from simulation, does not vary much with the 
coefficient of variation ηX nor with the sample size n (Figure 28.5); thus, an average figure such as 0.542 
may be a reasonable correlation to use for the Gumbel distribution (Table 28.2).

Therefore, (28.4) was modified so as to consider the corrections pertaining to the variance Var(Sn) and 
the covariance Cov(X̅n,Sn) as described previously. The covariance term can be written as
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 (28.5)

which is the standard deviation of the PMP estimator P̂ after the corrections as described previously that 
are applicable for skewed distributions such as the Gumbel distribution (the assumed distribution here).
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FIGuRE 28.5 Variation of the correction factor fn and the correlation coefficient ρ(X̅n,Sn) as a function of the 
sample size n obtained by simulation using Gumbel random numbers (see Table 28.2). The correction factor fn and 
the correlation coefficient ρ(X̅n,Sn) are used in developing σ(P̂) of (28.5).
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28.5.2  Design PMP and risk

Considering the uncertainty of the mean X̅n and the standard deviation Sn and the ensuing uncertainties 
of the PMP estimator P̂, one can estimate design values of the PMP by

 
ˆ ( ˆ) ( ˆ)P E P c Pd = ± σ  (28.6)

where
P̂d represents a design PMP value
c > 1

In other words, P̂d is a quantile of the uncertain quantity P̂ of which we do not know its distribution but 
only the estimate of its mean E(P̂) and the estimate of its standard deviation σ(P̂). Furthermore, in order 
to have an approximation to the probability that the PMP estimator P̂ may be smaller or greater than the 
said quantile P̂d, one can apply Chebyshev’s inequality [52], which can be expressed as

 
P E P c P P E P c P

c
[ ( ) ( ) ( ) ( )]ˆ ˆ ˆ ˆ ˆ− < < + ≥ −σ σ 1

1
2

 (28.7)

This inequality gives a bound of the probability that does not depend on the distribution of P̂. As 
expected, the probability bound is conservative since one only knows the mean and the standard devia-
tion of P̂ but not its distribution. The applicability of (28.7) is illustrated in the case study presented in 
the following section.

The proposed method for determining the PMP estimate, the corresponding uncertainty, the design 
PMP, and associated probability bounds may be summarized as follows: (a) adjust X̅n and Sn for effect of 
outlier as in the original method by Hershfield; (b) select K as a function of X̅n, the storm duration, and 
the study region; (c) estimate the expected value of the PMP estimator E(P̂) by using (28.2b) and multiply 
this value by an adjustment as in step (e) of Hershfield’s method as described previously at the end of 
Section 28.3.2; (d) estimate the standard deviation of the PMP estimator σ(P̂) by using (28.5) where the 
correction factor fn is obtained by interpolating from Table 28.2 or from Figure 28.5; (e) use (28.6) to 
obtain design values P̂d of the PMP; and (f) use Chebyshev’s inequality (28.7) for obtaining probability 
bounds of the PMP estimator P̂. This modified method is further illustrated in the following case study.

28.5.3  case Study

The case study refers to the design of the spillway capacity of a high dam that is being constructed 
at the Tona River north of Bucaramanga, Colombia, near its confluence with the Surata River (the area 
of the basin at the dam site is 195 km2 and the mean slope of Tona River is about 7%.) For this purpose, 
the Metropolitan Aqueduct for Bucaramanga contracted the pertinent hydrologic studies with leading 
consulting firms in Colombia. The consultants and designers of the dam decided using the PMP and PMF 
approach for estimating the design flood for the spillway. The hydrologic data and basic studies performed 
by the consultants considered estimating the PMP for various storm durations, and the methods utilized 
included storm maximization and transposition and Hershfield’s original statistical method. However, in 
this case study, only the statistical method due to Hershfield’s including the proposed modifications to 
account for the uncertainty (as described previously) is compared and discussed. The statistical estimates 
were based on 15 years of annual maximum daily precipitation recorded at the Martín Gill station (located 
within Tona’s River basin) where Xn̅ = 66.5 mm, Sn = 24.5 mm, and n = 15 (Table 28.3).

The main results of applying the original (statistical) method by Hershfield and those obtained using 
the proposed method of PMP with uncertainty are included in Table 28.3. The first line of results in 
Table 28.3 corresponds to the estimates based on the original method of Hershfield as described previ-
ously. The adjustments for the mean and the standard deviation to account for the limited sample size 



Uncertainty of the PMP and PMF 589

(as suggested by Hershfield) were made using the graphs available at WMO [83], (Figure 4.4) that gave 
adjustment factors equal to 1.03 and 1.13, for the mean and the standard deviation, respectively. Thus, 
the adjusted values of the sample mean and standard deviation are 68.5 and 27.7 mm, respectively (Table 
28.3). In addition, the value of the frequency factor K = 8.9 was obtained from the results for Colombia 
for 24 h duration of precipitation [50]. Then using the foregoing values, one can obtain from Equation 
28.1a the value of PMP = 315 mm. Note that Hershfield [35] recommended an additional adjustment of 
1.13 on the estimated PMP value to account for the difference between the daily maximums and the 24 h 
maximums. But other recent studies such as those in Spain [8] and Great Britain [20] gave adjustment 
factors of 1.16 and 1.17, respectively. Hence, in all subsequent calculations, the factor 1.17 was applied. 
Therefore, the PMP adjusted value using Hershfield’s method becomes 369 mm as shown in Table 28.3 
(see the notes at the bottom of table). One must also note that no adjustments for outliers were made 
because the analysis of the 15 years of data did not show any evidence of outlying observations. In addi-
tion, Hershfield’s method for adjusting for outliers gave adjustment coefficients for the mean and the 
standard deviation that were practically equal to one in both cases.

While Hershfield’s adjustments for the mean and the standard deviation have been a way of taking into 
account the limited sample size of the available precipitation records, however. Hershfield’s method does 
not give any information on the uncertainty of the PMP estimates, that is, the standard error of the estima-
tor P̂ of (28.1b), which arises from the uncertainties of the estimators X̅n and Sn. As suggested in Section 
28.5.1 previously, those estimates with uncertainties can be obtained approximately by (28.2b), (28.4), and 
(28.5), depending on the approximations utilized. For example, the second row of results in Table 28.3 
shows that E(P̂) = 328 mm, which is obtained from (28.2b) based on X̅n = 66.5, Sn = 24.5, n = 15, and K = 8.9 
and then multiplying the result from (28.2b) by the adjustment factor 1.17 as described previously. Next 
(column before the last one) are the results obtained for σ(P̂) applying (28.4), based on the normal approx-
imation that gave σ(P̂) = 41.7 mm and (28.5) based on the Gumbel approximation, which gave σ(P̂) = 58.2 
mm. In addition, the last column in Table 28.3 shows results of the design PMP P̂d of (28.6) consider-
ing four values of c, that is, c = 1, c = 2, c = 3, and c = 4. First, the concepts based on the results obtained 
using the normal approximations (for Var(Sn) and Cov(Xn̅,Sn)) are illustrated, and subsequently the results 

TABLE 28.3 Comparison of the 24 h PMP for Tona River Obtained Based on Hershfield’s Original Method 
and Based on the Proposed Method Considering Uncertainty Assuming the Normal and Gumbel 
Approximations for Calculating Var(Sn) and Cov X Sn n( , )

Mean X̅n (mm) Std. Deviation Sn (mm)

K

Traditional 
Hershfield’s 
PMP (mm) 
from (28.1a)

PMP with Uncertainty (mm)

Original
Adjusted 

Hershfield Original
Adjusted 

Hershfield
E(P̂) 

(28.2b) σ(P̂) (28.4) P̂d
∗ (28.6)

66.5 68.5 24.5 27.7 8.9 369a

66.5 24.5 8.9 328b 41.7 370c

411d

453e

495f

From (28.5)
58.2 386c

444d

503e

561f

a PMP = (68.5 + 8.9 × 27.7) × 1.17 ≈ 315 × 1.17 ≈ 369 mm (using an adjustment factor 1.17).
b The E(P̂) obtained from (28.2b) is multiplied by the adjustment factor 1.17.
P̂d of (28.6) considering the upper limit, that is, P̂d

∗ = E(P̂) + c × σ(P̂) in which
c c = 1.
d c = 2.
e c = 3.
f c = 4.
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obtained based on the Gumbel approximation are discussed. One may observe that (28.6) with c = 1 and 
the + sign, that is, P̂d

∗ = E(P̂) + σ(P̂), gives P̂d
∗ = 370 mm, which is the least conservative estimate and is about 

the same value obtained using Hershfield’s original method, that is, PMP = 369 mm. Obviously, the most 
conservative estimate included in Table 28.3 corresponds to c = 4, that is, P̂d

∗ = 495 mm. The decision for 
selecting a design value of the PMP based on statistical concepts must consider the fact that the estimates 
are based on statistics that are computed from a limited sample, and in this case study, the sample is 
only 15 years long. Thus, the selected design value must be such that the probability of that value being 
exceeded must be small.

The Inequality 28.7 provides some useful information that may help in selecting the design PMP 
value. Thus, applying (28.7) and σ(P̂) based on (28.4) gives the following:

 Forc P P= < < ≥1 286 370 0 0, [ ] .ˆ

 For c P P= < < ≥2 245 411 0 75, [ ] .ˆ

 For  c P P= < < ≥3 203 453 0 89, [ ] .ˆ

 For  c P P= < < ≥4 161 495 0 94, [ ] .ˆ

These results must be interpreted as follows. For example, for c = 3, the probability that the PMP esti-
mator P̂ is bigger than 453 mm and smaller than 203 mm is less than 11%. For comparison, if the true 
underlying distribution of P̂ were normal, then that probability would be less than 0.3% (instead of 11%). 
Likewise, if we take instead c = 4, then in this case the foregoing probabilities would be less than 6% and 
0.01%, respectively. Naturally, one could select even higher values of c and obtain more conservative 
values of the PMP with smaller risks of exceedances.

The foregoing analysis of the results included in Table 28.3 suggests that the PMP estimates considering 
the effect of uncertainty and the normal approximations vary in the range of 370–495 mm (the top four 
values shown in the last column of Table 28.3). The lowest value 370 mm corresponds to the case where 
the PMP is obtained simply by adding one standard deviation to the estimated mean value E(P̂). Without 
further information beyond the mean E(P̂) and the standard deviation σ(P̂), the probability bound pre-
viously suggests that it is very likely (in fact almost certain) that such value of 370 mm will be exceeded 
because of the uncertainty associated with estimating Xn̅ and Sn that are based on only 15 years of records. 
On the other hand, the value of 495 mm corresponds to a conservative estimate, that is, it is less likely that 
it will be exceeded because of the uncertainties associated with Xn̅ and Sn. Thus, the results show a major 
difference between the single value of the PMP (equal to 369 mm) that one obtains applying the original 
method of Hershfield and the range of PMP values obtained by the proposed method that takes into 
account the effect of uncertainty and their associated probabilities of exceedances.

The calculations and analysis of design PMP and probability bounds of the previous discussion have 
been made using (28.4) for calculating the standard deviation of the PMP estimator σ(P̂), which assumes 
the normal approximations for the variance Var(Sn) and the covariance Cov(X̅n,Sn) as described previ-
ously. However, using σ(P̂) of (28.5) will give more accurate results if the distribution of the annual 
maximum daily precipitation is skewed as one may expect. Thus, for comparison, we applied (28.5) 
where n = 15, σ = 24.5, K = 8.9 (Table 28.3), and f15 = 1.752 (see Section 28.5.1 and Table 28.2), which gives 
σ(P̂) = 58.2 mm, an amount that is about 40% higher than that based on (28.4). However, the overall 
increase in the design value of the PMP of (28.6) is not as high. Thus, we computed four design values 
of the PMP based on (28.6) for c = 1, 2, 3, and 4, and the values obtained are those shown in the lower 
portion of the last column of Table 28.3. For illustration, for c = 1, we get P̂d

∗ = 386 mm, which compared 
to the value 370 mm (Table 28.3) represents an increase of about 4%. Likewise, the percent increases for 
the other cases shown in Table 28.3 are about 8%, 11%, and 13% for c = 2, 3, and 4, respectively.
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One must note that the previous analysis clearly indicates the striking difference between the PMP 
value obtained using the traditional Hershfield’s method (PMP = 369 mm) and the PMP values that are 
obtained using the proposed method that accounts for the uncertainties involved, which gives values 
varying in the range of 386–561 mm (lower portion of the last column in Table 28.3). These values (386, 
444, 503, and 561 mm) are, respectively, about 5%, 20%, 36%, and 52% higher than the single value 
of PMP obtained with the original Hershfield’s method. Furthermore, the proposed method, which 
includes the probability bounds, suggests that using say the smaller value of 386 mm as the design PMP 
(which is even 5% bigger than the 369 mm PMP obtained from the original Hershfield’s method) would 
not be wise because it is certain that it will be exceeded. Therefore, a bigger value must be selected con-
sidering the associated exceedance probabilities (risk) as described previously.

28.6  PMf estimation and Uncertainty

28.6.1  PMf estimation from PMP

Several books and manuals have documented the procedures for determining the PMF from the PMP 
[14,57,65]. The following list is a simplified summary of the procedures followed by USBR and many 
other agencies in the United States [73]: (1) divide the basin into subbasins as needed and determine 
the drainage areas; (2) estimate the PMP; (3) arrange the PMP into a storm rainfall pattern; (4) estimate 
the rainfall losses due to surface detention and infiltration, and determine the rainfall excess for each 
time interval; (5) route the rainfall excess through each subbasin to estimate the flood hydrograph for 
each subbasin; (6) add to the flood hydrograph of each subbasin the corresponding base flow, flow from 
prior storms, as the case may be, to get an estimate of the flood hydrograph for each subbasin; (7) route 
the flood hydrograph from each subbasin to estimate the PMF at the point of interest (e.g., site of a 
dam); and (8) route the PMF through the reservoir storage, outlets, and spillway to obtain estimates of 
maximum storage, elevation, discharges, and durations at the project site. The procedures also include 
comparisons of applicable envelope curves of flood peaks and volumes if available.

Some of the previous steps (e.g., steps 4 through 7) may be computed using a given rainfall–runoff 
model. For this purpose, a number of models have been developed for the past several decades. For 
example, in the United States, the Hydrologic Engineering Center (HEC)-1 [75] and HEC-Hydrologic 
Modeling System (HEC-HMS) [76] models are widely utilized in practice for flood hydrograph computa-
tions. These models are based on the unit hydrograph concept, and also the flood hydrograph and runoff 
(FHAR) model promoted by the USBR uses the unit hydrograph [73]. The unit hydrograph approach rep-
resents the rainfall–runoff process as a linear system. Also, various rainfall–runoff models that consider 
the underlying nonlinear mechanism of the rainfall–runoff processes have been proposed in literature 
such as CASC2D [40] and Two-dimensional runoff, erosion, and expert model (TREX) [80].

In addition, the advances in GIS-based computer models in the past decades brought further capa-
bilities for analyzing runoff hydrographs as a function of the watershed characteristics and enhancing 
the applicability of distributed modeling in watershed hydrology. For example, CASC2D [39,40,41] is a 
raster-based watershed model that accounts for the spatial variability in the watershed topography, soil 
type, and land use. The CASC2D model has been extended to TREX by Velleux et al. [80] to simulate the 
transport and fate of metals in relation to rainfall–runoff and sediment transport at the watershed scale. 
England et al. [23] applied TREX to simulate extreme storms including the PMP on the Upper Arkansas 
watershed covering 12,000 km2 in Colorado.

As one may observe from the previous summarized steps, estimating the PMF for a specific basin (proj-
ect) involves a wide range of factors such as rainfall depth and duration (PMP), temporal pattern of the 
PMP, spatial distribution of the PMP, centering of the storm over the basin, lag time and unit hydrograph 
estimation, loss rates estimation, antecedent flooding before the onset of the PMP (previous storms and 
snowmelt as the case may be), and flood routing through the basin channels and reaches. Each of the 
referred factors of the previous discussion and the calculation steps to estimate the PMF involve some 
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degree of uncertainty. While this issue has been recognized in literature, still the knowledge for quantify-
ing the various uncertainties and their effects on the PMF is lacking. Bondelid et al. [6] indicated that the 
uncertainty in estimating the lag time may cause errors in estimating the maximum floods of the order of 
75%. Useful references on uncertainties of time of concentration and lag time for various types of water-
sheds and formulas commonly utilized in practice are available [29,48,49,74]. In the following sections, we 
illustrate the variability of the PMF based on sensitivity analysis and Monte Carlo simulation.

28.6.2  Sensitivity analysis

The TREX model is applied for sensitivity analysis of some of the model parameters on the PMF. For 
this purpose, the Semenyih watershed (236 km2), which is located in the state of Selangor in Malaysia, 
is utilized. The watershed is partially used for agriculture but urbanization (residential and industrial) 
development has rapidly transformed the area in recent decades. The topography of the watershed has 
been discretized with 29,139 cells at a 90 m × 90 m grid scale. The digital elevation model (DEM) data for 
the study site (Figure 28.6a) were obtained from the Department of Surveying and Mapping of Malaysia. 
The lowest elevation at the outlet is 40 m above sea level, while the highest point reaches 1100 m at the 
upstream end of the watershed. The average terrain slope is about 45% and ranges between 4% and 85% 
with very steep mountains overhanging flat and wide valleys (Figure 28.6a). The DEM also allowed the 
delineation of the channel network of the watershed where the total stream length reached about 36 km. 
Four soil types (Figure 28.6b) and six land uses (Figure 28.6c) were included in the raster-based GIS rep-
resentation of the watershed. The soil types allowed the definition of the effective hydraulic conductivity 
Kh, and the land use types enabled the definition of the land surface Manning’s roughness coefficients n.

The April 13, 2003, storm was used for model calibration where the precipitation and flow records were 
obtained from the Department of Irrigation and Drainage of Malaysia. The calibration procedure focused 
on properly simulating peak flow, discharge volume, and time to peak at the outlet. The TREX model has 
several parameters such as hydraulic conductivity, Manning’s roughness coefficient, interception depth, 
capillary suction head, and soil moisture deficit. These parameters were adjusted during calibration so as 
to achieve good agreement between the measured and simulated flow. The antecedent moisture condition 
of the watershed was assumed dry. Table 28.4 gives the values of the calibrated parameters Kh and n for the 
specified type of soils and land use (the other parameters are omitted).

Several studies have been made to estimate the PMP for Malaysia. For example, Poon and Hwee [64] 
reviewed earlier studies and Figure 28.7 shows the PMP estimates for various storm durations in the state 
of Selangor (S-PMP). For comparison, the figure also shows the rainfall depths for the 100-year-return 
period [18] and the world’s greatest precipitation events [38]. For the purpose of this study, the 16 h 
precipitation depths were utilized as input to the calibrated TREX model. These rainfall events are sum-
marized in Table 28.5. TREX calculates the distribution of flow depth on each calculation cell as a function 
of time. To illustrate the results, Figure 28.8 shows the calculated distribution of the peak flow depth on 
the Semenyih watershed at the time of the peak discharge during the S-PMP. The PMF hydrograph at the 
outlet of the basin is shown in Figure 28.9. For comparison, this figure also shows the flood hydrographs 
calculated for the 100-year and the world’s greatest storm events (Table 28.5). Also for comparison, the 
figure shows the hydrographs obtained using the HEC-HMS model (dashed lines).

Experience using the TREX model in simulating a wide range of rainfall–runoff events has shown that 
the most sensitive parameters are the saturated hydraulic conductivity Kh and the overland flow resistance 
Manning’s coefficient n [22,79]. Thus, the sensitivity analysis of the PMF considered here uses the range of 
values of the parameters Kh and n shown as lower and upper values in Table 28.4. The combination of the 
upper, lower, and calibrated values of Kh and n gave a range of calculated PMF values that are summarized 
in Table 28.6. It shows that the PMF values vary in the range of 1245–1866 cm and the mean and standard 
deviation are about 1527 and 270 cm, respectively. The maximum discharge is obtained for the lowest values 
of Kh and n. Besides showing the variability of the computed PMF, the results also suggest that the Manning’s 
roughness coefficient is the most important parameter controlling the flow at the outlet of the basin.
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FIGuRE 28.6 (a) Elevation, (b) soil type, and (c) land use for the Semenyih watershed in Malaysia.
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TABLE 28.4 Hydraulic Conductivity Kh and Manning’s n Values Obtained after 
Calibrating TREX Model for the Semenyih Watershed

Parameter Lower Calibrated Upper Soil Type/Land Use

Hydraulic 
conductivity Kh (m/s)

5.60 × 10−9

6.35 × 10−9

1.53 × 10−9

5.90 × 10−11

1.12 × 10−8

1.27 × 10−8

3.06 × 10−9

1.18 × 10−10

1.68 × 10−8

1.91 × 10−8

4.59 × 10−9

1.77 × 10−10

Sandy loams
Loams
Clay
Mountain–limestone

Manning’s n 0.050
0.025
0.100
0.050
0.050
0.020

0.100
0.050
0.200
0.100
0.100
0.040

0.150
0.075
0.300
0.200
0.150
0.060

Agriculture
Urban/commercial
Forest
Grass area
Open area
Channel bed

TABLE 28.5 Precipitation Depth and Intensity and Corresponding 
Flood Properties Obtained from Model TREX for the 100-year, PMP, and 
World’s Greatest Storms for the Semenyih Basin

Events

Precipitation Flood Hydrograph Results

Depth 
(mm)

Intensity 
(mm/h)

Peak Discharge 
(cm)

Time to 
Peak (24 h)

100-year 173 11 223 23:36
PMP 585 37 1484 19:06
World’s greatest rainfall 1092 68 3686 17:30

1

Minute
Hour 2

10010
100

1092.16 mm (68.26 mm/h)

585.44 mm (36.59 mm/h)

172.80 mm (10.80 mm/h)

1000

D
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m
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World greatest rainfall events
Selangor PMP
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FIGuRE 28.7 PMP estimates for the state of Selangor, Malaysia, for various storm durations. For comparison, the 
100-year rainfall depths and the world’s greatest rainfall depths are also shown.
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28.6.3  Monte carlo analysis

A Monte Carlo method has been developed to determine the uncertainty of the PMP in a joint effort 
by the USBR and Washington state [3]. Since then, a number of articles and applications have been 
made [70]. In Barker et al. [3], the various factors involved in estimating the PMF including some of 
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FIGuRE 28.8 Spatial distribution of peak flow depth in meters for the PMP event (37 mm/h at 16 h duration).
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the hydrologic model input parameters were treated as variables with specified distributions. Values of 
the various factors and parameters were drawn at random from the corresponding distributions that 
were then utilized for estimating the PMF. The overall method is summarized in the following steps: (a) 
select the season of occurrence of the PMP; (b) select all hydrometeorological, hydrologic, and hydraulic 
parameters that are dependent upon season of occurrence; (c) select all parameters that are independent 
of other parameters; (d) select all hydrologic and hydraulic parameters that are dependent upon other 
flood model parameters; (e) estimate the flood; (f) repeat steps (a) through (e) a large number of times, 
for example, 500 times; and (g) do statistical analysis of the estimated flood values.

The method summarized previously has been applied to the Bumping Lake basin located in the Cascade 
Mountains in Washington state [3]. The basin area is 67 miles2, the topography ranges from 3400 ft at the 
dam site to over 6000 ft at the headwaters near the crest of the mountains, and the mean annual precipita-
tion varies from about 48 in. near the dam to over 70 in. at the headwaters. The PMPs were determined 
based on the HMR-57 [60] as 10.6 in. for 6 h, 20.6 in. for 24 h, and 32.2 in. for the 72 h. The HEC-1 
program was utilized for the flood computations [75], and probability distributions were used for the fol-
lowing input parameters: season of occurrence of the PMP, antecedent precipitation, initial streamflow, 
antecedent snowpack, antecedent soil moisture, occurrence of frozen ground, minimum infiltration rate, 
and unit hydrograph time lag. Since the HEC-1 model utilized does not account for subsurface catchment 
response, appropriate additional steps were added to account for that component. Based on detailed analy-
sis of the hydrometeorological historical data for the study region, appropriate PDFs were selected for the 
various input parameters as summarized in Table 28.7. The results of 500 Monte Carlo simulations based 
on the PMPs specified in HMR-57 (as noted previously) are shown in the frequency distribution of the 
PMFs in Figure 28.10. The simulated PMFs gave the following: mean PMF = 64,000 cfs and standard devia-
tion of PMF = 7,220 cfs and a range of 45,000–84,000 cfs. Note that the PMF computed using the standard 
USBR approach gave a PMF equal to 71,000 cfs that is about one standard deviation above the mean of 
the simulated results. The results obtained suggest the uncertainty of the PMF (for the specified PMP) that 
arises from the uncertainty of the various hydrometeorological factors involved in estimating the PMF.

Two additional Monte Carlo studies were made where the magnitude and temporal characteristics 
of the precipitation input were assumed to vary in addition to the other parameters described previ-
ously [3]. In the first case, the 24 h PMP (20.6 in.) specified by HMR-57 was held constant, and the 
temporal characteristics were varied by examining the depth-duration curves contained in HMR-57 
and the extreme storms observed in the past. The results of 500 simulations gave mean PMF = 42,300 

TABLE 28.6 Sensitivity Analysis of the PMF Obtained 
from the TREX Model for Various Combinations of the 
Parameters for the Semenyih Watershed

Hydrologic Model Parameters
Flood Peak 

(cm)Hydraulic Conductivity Kh Manning’s n

Calibrated values 1474

Lower limit Lower limit 1866
Upper limit Upper limit 1242
Lower limit Upper limit 1249
Upper limit Lower limit 1859
Calibrated value Lower limit 1859
Calibrated value Upper limit 1245
Upper limit Calibrated value 1476
Lower limit Calibrated value 1472
Mean 1527
Standard deviation 270
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cfs and standard deviation of PMF = 10,200 cfs and a range of 14,700–75,100 cfs. Figure 28.11 shows the 
frequency plot of the PMFs obtained. The results show the sensitivity of the peak flow to the temporal 
pattern of the storm, the peak precipitation intensity, and the total volume of the storm [3]. In the second 
case, the 24 h precipitation depth was allowed to vary for each simulation run. For this purpose, the 
4-parameter kappa distribution was fitted to the historical 24 h annual maximum precipitation events. 
Monte Carlo simulations of the 24 h precipitation gave an AEP = 10−7.3 of the PMP, and the correspond-
ing simulations of the flood peaks gave a frequency distribution as shown in Figure 28.12. The figure 
shows that the PMF (71,000 cfs) has an AEP of 1.5 × 10−8, and the mean of the flood conditioned on the 
occurrence of the 24 h PMP (42,300 cfs, Figure 28.11) has an AEP of 1.8 × 10−6. This implies that the 
methods that are used to develop the PMF (standard USBR procedures) give a flood that is about two 
orders of magnitude more rare than the 24 h PMP that was used to generate the flood [3]. The results of 
the simulations serve not only for quantifying the uncertainty of the PMF but also for estimating the 
order of magnitude of the AEP of the PMF that is estimated using the traditional approaches.

28.6.4   Statistical alternatives for estimating 
extreme floods (Including PMf)

In the last decades, a tendency worldwide has been towards risk-based approaches for designing flood-
related structures such as flood walls and spillways [24]. As for extreme precipitation, studies of high 

TABLE 28.7 Probability Distributions Utilized in the Monte Carlo Method

Parameter Probability Model

PMP season of occurrence Beta distribution
Antecedent precipitation (bimonthly) Beta distribution
Antecedent temperature (bimonthly) Normal distribution
Antecedent snowpack (bimonthly) Regression with antecedent precipitation and 

temperature plus error term
September 1 soil moisture deficit Beta distribution
Minimum infiltration rate Symmetrical beta distribution
Deep percolation rate Symmetrical beta distribution
Unit hydrograph lag (natural variability) Normal distribution
Unit hydrograph lag (runoff mechanism) Linear scaling factor
Initial streamflow Regression with antecedent precipitation plus error term

Source: Barker, B. et al., A Monte Carlo approach to determine the variability of PMF estimates, 
Final Report on Bumping Lake Dam for USBR Dam Safety Office, 1997. With permission.
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return period floods based on statistical approaches have been proposed. They generally involve extrap-
olations of the FCs obtained from the systematic flood records including historical and paleoflood data 
[7,21,28,71]. However, federal and state agencies in the United States and similar organizations in other 
countries still use the PMF as the standard for assessing flood-related infrastructure. For example, the 
USBR’s current policy is to use the PMF as an upper limit to hydrologic hazard curve extrapolations 
[78] without directly assigning an AEP to the PMF [24], that is, there is no fixed assumption for AEP of 
the PMF. Examples of an array of techniques developed by USBR in the last two decades can be found 
in Swain et al. [73]. They involve using historical and paleoflood data, mixed-population approach, 
expected moments algorithm (EMA), and Bayesian maximum likelihood [11,21,61].
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FIGuRE 28.11 Relative frequency distribution of the PMFs obtained from the 500 simulations for Bumping Lake 
where the 24 h precipitation was held constant at the PMP, while the other variables, including the precipitation 
temporal pattern, varied. (From Barker, B. et al., A Monte Carlo approach to determine the variability of PMF esti-
mates, Final Report on Bumping Lake Dam for USBR Dam Safety Office, 1997. With permission.)

Bumping Lake dam
simulated flood frequency curve

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

Pe
ak

 fl
ow

 (c
fs)

PMF using standard
procedures

Mean value of PMF
from Monte Carlo 

simulation

10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 10–9 10–10

Annual exceedance probability

FIGuRE 28.12 Frequency distribution of the flood peaks obtained by Monte Carlo simulation considering the 
uncertainty of the 24 h annual maximum precipitation in addition to the uncertainty of the other driving variables 
to estimate the flood. (From Barker, B. et al., A Monte Carlo approach to determine the variability of PMF esti-
mates, Final Report on Bumping Lake Dam for USBR Dam Safety Office, 1997. With permission.)



Uncertainty of the PMP and PMF 599

Likewise, the USACE has been developing methods for extrapolating the flood frequency curves 
(FFCs) all the way to the AEP of the PMF. For example, the HEC has been developing methods for FFC 
extension to the level of the PMF and provides simple methods to estimate the AEP of the PMF [34]. 
For this purpose, the return period for the PMF is assumed to be in the range 10−3 to 10−6 and provide a 
simple equation to calculate the AEP of the PMF. In some cases, the extrapolation of FFCs beyond the 
range of the 100-year flood has been based on assuming (assigning) an AEP to the PMF. For example, 
the guidelines on extreme flood analysis for the Department of Transportation of Alberta, Canada, 
specify that the AEP for the PMF be set to 10−5 (100,000 years of return period) so that flood estimates 
for return periods of 1,000 and 10,000 years can be made [2].

28.7  Summary and conclusions

The topic of uncertainty in estimating the PMP and PMF has been the main trust of this chapter. 
There are many studies documenting the various developments for estimating the PMP and PMF 
based on physically based (hydrometeorological) and statistical approaches. And many federal and 
state organizations worldwide use the PMP and PMF as standards for designing some flood-related 
hydraulic structures. However, in recent decades, there has been a growing concern (expressed in 
literature) regarding the uncertainties involved in estimating such extreme events, and the tendency 
has been to estimate their exceedance probabilities. In this chapter, we included some developments 
directed to quantify the uncertainty of the PMP and PMF. While hydrometeorological methods likely 
provide the best estimates of PMP, however, in many regions of the world, hydrometeorological data 
are lacking, and consequently feasibility studies and actual designs of flood-related projects are being 
made based solely on the well-known Hershfield’s statistical method that provides a single value for 
the PMP. Thus, a method to quantify the uncertainty of the PMP if Hershfield’s method is to be 
applied has been included in this chapter.

Regardless of the method used for estimating the PMP and PMF, the current concern of climate 
change brings the issue on how possible changes in hydrometeorological variables such as air tempera-
ture, wind, humidity, snow cover, and sea levels may affect the estimates of extreme events in general 
and PMP and PMF in particular. Many studies have been made documenting possible trends in extreme 
precipitation and flood events and the possibility of using the so-called global climate model (GCM) 
outputs and projections for estimating extreme events, but results are still debatable and controversial 
(e.g., [25,46,65]). A review on efforts made on this issue in the past decades is available [25].
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29.1  Introduction

Urbanization involves the removal of natural vegetation and top-soil, recontouring the land, and com-
pacting the subsoil with heavy machinery as human populations concentrate into discrete areas [2]. 
This process leads to transformation of land for residential, commercial, industrial, and transportation 
purposes. Urbanized areas include densely populated centers as well as their adjacent suburban fringes. 
During the last 25 years, rapid urbanization has taken place in most developing countries. Substantial 
increase in built-up areas has taken place due to the development of residential and commercial areas 
mostly through private land developers and real estate business.

The urbanization process comprises construction of roads, buildings, driveways, parking surfaces, 
installation of services such as stormwater drains and water supply systems, replacement of top-soil, 
and addition of lawns. These activities affect streamflows because the newly created surfaces such as 
roads and roofs increase the impervious area and hence create obstruction to natural drainage pat-
tern, provide a greater volume of runoff from storms compared to natural areas, and shorten runoff 
concentration time. Runoff also reaches the streams more quickly through efficient drainage network 
of gutters and pipes. In addition, the water storage and holding capacity of the topsoil is reduced, 
further increasing peak runoff from urbanized areas. Thus, the increase in built-up and impervious area 
with the progression of urbanization within a catchment has corresponding changes to stream’s flow 
regime [4]. This chapter highlights the impact of land use and land cover changes due to urbanization 
on runoff characteristics.

29.2  Urban Dual Drainage components and Imperviousness

Urban stormwater drainage systems usually, termed dual drainage in the urban hydrology nomencla-
ture, consist of two elements: (1) surface components such as streets, rooftops, and ditches; and (2) 
subsurface components such as pipes and other manmade stormwater drainage conduits. These two 
elements are linked through street curb inlets and manholes. On the other hand, in partially urbanized 
catchments, these urban drainage components are often mixed with the natural channel drainage in 
portions of most of the confounding factors that can be controlled.

 1. Impervious cover (IC): all hard surfaces that do not allow water to penetrate the soil, such as 
rooftops, driveways, streets, swimming pools, and patios

 2. Total impervious area (TIA): all impervious area in catchment
 3. Effective impervious area (EIA): impervious area in catchment that is directly connected to stream 

channels (i.e., precipitation falling on that area is effectively transported to the stream)

Preface

There are four separable but interrelated effects of land-use changes on the hydrology of an area: 
changes in peak flow characteristics, changes in total runoff, changes in the quality of water, 
and changes in the hydrologic amenities. Of all land-use changes affecting the hydrology of an 
area, urbanization is by far the most forceful. This chapter presents a review of literature on the 
effects of urbanization on runoff regime. The rainfall–runoff response of a catchment can be 
radically altered as a consequence of urbanization. The introduction of impervious surfaces such 
as concrete, tarmacs, and tiles inhibits infiltration and reduces surface retention. The propor-
tion of storm rainfall that goes to surface runoff is increased while the proportion that goes to 
evapotranspiration, groundwater recharge, and baseflow is reduced. Urbanization also causes an 
increase in the amount of runoff, a more rapid response to produce more runoff in less time, yield-
ing a flood hydrograph that is faster to peak, faster to recede, and of increased peak discharge.
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EIA (also known as drainage connection or directly connected impervious area) is a better predictor of 
ecosystem alteration in urban streams [6]. The strength of EIA relationships suggests that stormwater 
management techniques aimed at disconnecting impervious areas from stream channels can improve 
urban water quality.

29.3  Stages of Urban Development Vital to Stream Hydrology

One of the major impacts of urbanization on streams is the effect on stream hydrology. Stream hydrol-
ogy is defined as the study of the movement or flow of water in streams. Understanding water movement 
is essential to understanding the impact of the development on urban streams.

There are three stages of urbanization that have repercussions on river channels. These are (1) a stable 
or equilibrium predevelopment stage; (2) a period of construction during which bare land is exposed to 
erosion; and (3) a final stage consisting of a new urban landscape dominated by houses, rooftops, gut-
ters, and sewers. Accompanying the construction phase is an initial increase in sediment production 
because of the erosion of bare surfaces, leading to sedimentation within channels. Central to the last 
stage is increasing impervious surfaces leading to greater runoff, which, together with decreasing sedi-
ment production, is followed by channel erosion and channel widening or enlargement. A conceptual 
model of urban change is shown in Figure 29.1.

Thus, urban development is characterized by

Riparian/channel alteration: Removal of riparian vegetation reduces stream cover and organic matter 
inputs; direct modification of channel alters hydrology and physical habitat.

Wastewater inputs: Human, industrial, and other wastewaters enter streams via point (e.g., wastewater 
treatment plant effluents) and nonpoint (e.g., leaky infrastructure) discharges.

Impervious surfaces: IC increases surface runoff, resulting in increased delivery of stormwater and asso-
ciated contaminants into streams.

Morphological change

Channel condition

D = physical + biological
       degradation

M = morphological

H = hydrological
       + runoff variables
       – lag  time 

I = imperviousness 

S = sediment
      production/yield 

Process variable 

Urbanization
phase 

Active
construction

Increasing
urban landscape

I, H, M, D

Net
erosion

Channel enlargement

Net
aggradation

S

Channel reduction

FIGuRE 29.1 General phases of urbanization with associated process changes, channel conditions, and morpho-
logical adjustments. (From Chin, A., Urban transformation of river landscapes in a global context, Department of 
Geography, Texas A&M University, College Station, TX, 2006, p. 6.)
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29.4  effects of Urbanization on Water resources

The water cycle, also known as the hydrological cycle, is the continuous exchange of water between land, 
water bodies, and the atmosphere. Approximately 97% of the earth’s water is stored in the oceans, and 
only a fraction of the remaining portion is usable freshwater. When precipitation falls over the land, it 
follows various routes. Some of it evaporates, returning to the atmosphere, some seeps into the ground, 
and the remainder becomes surface water, traveling to oceans and lakes by way of rivers and streams.

The effects of urbanization on water resources can be organized into four categories: water movement 
(hydrology), stream channel shape and function (fluvial geomorphology), water quality, and habitat. 
With regard to urban hydrology, urban development of rural areas generally has a significant impact 
upon the hydrologic and hydraulic regime of nearby creeks and rivers. Urbanization alters the overland 
flow paths, reduces the amount of water that is able to seep into groundwater sources, and reduces the 
time that it takes for the runoff to reach the catchment outlet. This reduction in travel time leads to 
higher peak flows that reach the catchment outlet much earlier than in the natural state. The increase 
in runoff observed can be attributed to the increase in average rainfall intensity that results from the 
decrease in travel time through the catchment. However, the effects of urbanization vary with average 
recurrence interval [10].

29.5  flow alteration in Urban Hydrology

How does urbanization affect stream hydrology? This is an invaluable question in urban hydrology 
because any change in runoff characteristics induced by urbanization is important for understanding 
the effects of land use and cover changes on earth surface hydrological processes.

With urban land development, impermeable land surfaces enlarge rapidly, the capability of rainfall 
detention declines sharply, and runoff coefficient increases. Urbanized land usually leads to a decrease 
in surface roughness; hard road and drainage system can greatly shorten the time of runoff confluence. 
Therefore, urbanized area would become more susceptible to flood hazard under conditions of high 
precipitation intensity.

Urbanization modifies hydrological processes by replacing vegetated land cover with impervious sur-
faces and by extending the natural drainage network to include artificial ponds, ditches, and conduits 
laid on the ground and underground. Impervious surfaces reduce infiltration, generally resulting in 
increased surface runoff and reduced baseflow. Artificial ditches and conduits alter runoff pathways 
and change stormwater drainage. In urbanizing catchments, surface flow may be diverted to artificial 
ponds or flood detention ponds built to reduce flood risks or in some cases for irrigation purposes [7].

Hydrological changes associated with urbanization have been extensively studied, and results from 
these studies have clearly shown that urban development leads to larger and more frequent floods. The 
main parameters demonstrated to have changed are peak discharge, lag time, flood frequency, and total 
runoff or water yield.

29.6  Hydrological changes That Occur with Urban Development

Alteration of natural hydrologic regimes is a consistent and pervasive effect of urbanization on stream 
ecosystems, as discharge patterns, the amount, and timing of water flow through streams change with 
urban development [3]. Common aspects of urbanization affecting streamflow regimes are shown in 
Table 29.1.

With regard to baseflow in urban rivers, urbanization generally results in increased magnitude and 
frequency of peak flows, but baseflow effects typically are more variable [11]. The effect of urbanization 
on the average annual flood is shown in Table 29.2, which shows the increase in average annual flood 
for different degrees of urbanization as measured by the increase in percentages of impervious area and 
area served by storm sewers.
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TABLE 29.1 Hydrological Effects of Urbanization

Flow 
Characteristic Effect of Urbanization

Stormflow • ↑ High flow frequency
• ↑ High flow magnitude
• ↑ Flashiness or rapidity of flow changes
• ↓ High flow duration
• ↓ Lag time

Baseflow • ↓ Low flow magnitude
• ↓ Low flow frequency
• ↑ Low flow duration
• ↓ Infiltration and ↑ surface runoff of precipitation associated with impervious 

(and effectively impervious) surfaces
• ↑ Speed and efficiency of runoff delivery to streams, via stormwater drainage infrastructure
• ↓ Evapotranspiration due to vegetation removal
• ↑ Direct water discharges, via wastewater and industrial effluents
• ↑ Infiltration due to irrigation and leakage from water supply and wastewater infrastructure
• ↑ Water withdrawals and interbasin transfers

Studies have shown that decreases in baseflow may result from
• ↓ Infiltration due to ↑ impervious surfaces
• ↑ Water withdrawals (surface or ground)

These decreases may be offset, however, by increases in baseflow resulting from
• ↑ Imported water supplies (i.e., interbasin transfers)
• ↑ Leakage from sewers and septic systems
• ↑ Irrigation (lawn watering)
• ↑ Discharge of wastewater effluents
• ↑ Infiltration due to water collection in recharge areas
• ↓ Evapotranspiration due to ↓ vegetative cover

Flooding • Disrupts natural water balance
• Increases flood peaks, stormwater runoff, and bankfull flows
• More frequent flooding
• Lower baseflow to streams (less water in the stream)

Source: Donaldson, S. and Hefner, M., Impacts of urbanization on waterways, Center for Watershed Protection, 
University of Nevada Cooperative Extension, Reno, NV, 1999.

TABLE 29.2 Effect of Urbanization on Annual 
Flood

Percentage of 
Area Sewered

Percentage of 
Area Impervious

Ratio to Average 
Annual Flood

0 0 1
20 20 1.5
40 40 2.3
50 50 2.7
80 60 4.2

100 60 4.4

Source: Leopold, B.L., Hydrology for Urban Land 
Planning: A Guidebook on the Hydrologic Effects of 
Urban Land Use, Geological Survey Circular 554, US 
Geological Survey, Washington, DC, 1968, p. 7.
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The volume of runoff is governed primarily by infiltration characteristics and is related to land slope 
and soil type as well as to the type of vegetative cover. It is thus directly related to the percentage of the 
area covered by roofs, streets, and other impervious surfaces (Figure 29.2).

With natural groundcover, 25% of rain infiltrates into the aquifer and only 10% ends up as runoff. As 
imperviousness increases, less water infiltrates and more runs off. In highly urbanized areas, over one-
half of all rain becomes surface runoff, and deep infiltration is only a fraction of what it was naturally. 
The increased surface runoff requires more infrastructure to minimize flooding. Natural waterways end 
up being used as drainage channels and are frequently lined with rocks or concrete to move water more 
quickly and prevent erosion. In addition, as deep infiltration decreases, the water table drops, reducing 
groundwater for wetlands, riparian vegetation, wells, and other uses.

29.7  effect of Urbanization on Hydrograph Peak Discharge

Urbanization tends to increase the flood potential from a given basin as river channels receive flows 
exceeding their storage capacities. Thus excessive runoff volumes lead to flooding. These excessive vol-
umes are caused by both the total amount of IC and the rate at which the runoff is delivered to the 
stream. Flooding is enhanced because [6]

• Curbs and gutters, storm drains, storm drain pipes, ditches, catch basins, and other drainage 
systems quickly speed the runoff to a stormwater detention/retention facility or directly into the 
nearest water body.

• Curbs and gutters are designed to deliver stormwater away from the road surface in an efficient 
and timely manner.

• Catch basins or inlets collect stormwater and direct it through pipes to a downstream stormwater 
detention/retention facility or to the nearest water body.

Evapotranspiration (40%)

Runoff

(10%)

Runoff

(30%)

Runoff

(55%)

Runoff

(20%)

Deep infiltration (25%)

Deep infiltration (15%)

Deep infiltration (21%)

Evapotranspiration (38%)

Evapotranspiration (35%) Evapotranspiration (30%)

Deep infiltration (5%)

Shallow
infiltration (25%)

Shallow
infiltration (20%)

Shallow
infiltration (10%)

Shallow
infiltration (21%)

(b)(a)

(d)(c)

FIGuRE 29.2 The shift in relative hydrological flow with increasingly imperviousness of watersheds. Note 
the large increase in stormwater runoff as imperviousness increases, at the expense of infiltration. (a) Natural 
groundcover/forested, (b) 10%–20% imperviousness, (c) 35%–50% imperviousness, (d) 75%–100% imperviousness. 
(From Paul, M.J. and Meyer, J.L., Annu. Rev. Ecol. Syst., 32, 333, 2001.)
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Streamflow can be divided into two components: the flow component that appears in the stream soon 
after rainfall is termed quickflow and a baseflow component infiltrates into the ground and reaches 
the stream slowly. Urbanization typically increases the quickflow component so that the magnitude 
and frequency of high flows are increased, and storm peak occurs more quickly after the onset of rain. 
This often leads to channel widening. At the same time, there are reduced opportunities of infiltration 
of water into the ground, and so there is reduced baseflow [4]. The changes are shown schematically in 
Figure 29.3.

A hydrograph is a graph showing the changes in streamflow with respect to time. During storms, in 
predeveloped or natural conditions (the solid line), the streamflow gradually increases to a relatively flat 
prolonged peak that is about twice the prestorm flow rate and gradually descends to a low-flow condi-
tion or gradual recession.

During storms, in the urbanized condition (dashed line), the flow rapidly increases to a peak that 
occurs earlier in time due to the rapid delivery of water from storm drains and pavement. It is clear that 
the peak flows are more than double than that prior to development. As a result, flows in the stream will 
be higher than that occurred during predevelopment period; hence, flooding may increase. The flow 
then sharply decreases, often to a low-flow condition that is lower than that occurred prior to develop-
ment. This means that during dry periods, the flow in streams is decreased, and impacts to water users 
or aquatic habitat may occur. Urban development is thus characterized by higher, sharper, and reduced 
baseflows.

Water balance is a measure of the amount of water entering and leaving a system. As rain falls to 
earth, some of it is infiltrated, absorbed, evaporated, transpired, and some becomes runoff. In a prede-
veloped setting, much of the rainfall is absorbed by the surrounding vegetation, soil, and ground cover. 
The diagram (Figure 29.3) shows how development and its corresponding increase in IC disrupt the 
natural water balance. In the postdevelopment setting, the amount of water running off the site is dra-
matically increased and the amount of water infiltration is decreased. The changes in the water balance 
in urban streams are affected by changes in the volume of runoff, increased peak flows and frequency of 
bankfull flows, floodplain widening, and decreased dry weather flows.

Figure 29.4 illustrates differences in lag times between stormwater peak discharges in an urban catch-
ment (high peak) and a less developed rural catchment (low peak). In an urbanized catchment with 
large amounts of IC, there is more flooding, larger volume, and faster rate of discharge than that in less 
developed catchments.

Predevelopment

Fl
ow

Postdevelopment

Time

FIGuRE 29.3 A typical storm hydrograph showing changes in streamflow before and after a high degree of 
urbanization. (From Elliott, S. et al., A guide for assessing effects of urbanisation on flow-related stream habitat, 
NIWA Science and Technology Series No. 52, 2004, p. 7.)



612 Handbook of Engineering Hydrology

29.8  Urbanization and Water Yield

A major effect of urbanization is the introduction of effluent from sewage disposal plants and often the 
introduction of raw sewage, into channels. In rivers passing through the city of Harare in Zimbabwe, 
raw sewage constitutes 70% of the total flow. As volume of runoff from a storm increases, the size of 
flood peak also increases. Runoff volume also affects low flows because in any series of storms, the 
larger the percentage of direct runoff, the smaller the amount of water available for soil moisture 
replenishment and for groundwater storage. An increase in total runoff from a given series of storms 
as a result of imperviousness results in decreased groundwater recharge and decreased low flows. 
Thus, increased imperviousness has the effect of increasing flood peaks during storm periods and 
decreasing low flows between storms. A sample of the early work conducted by Rao and Rao [12] indi-
cates that development had an overall effect of increasing runoff volume or water yield on the order 
of two to four times.

29.9   Decline in Streamflow Due to Diminished 
Groundwater recharge

Urbanization not only increases high flows, but can also reduce baseflow, reflecting the reduced ground-
water recharge under impervious surface such as roofs and roads. An increase in impervious surface 
often decreases the amount of rainfall available for infiltration. Without infiltration, the groundwater 
will not be recharged and the stream will lose this potential source of water. Urbanization not only 
increases high flows, but it can also reduce baseflow, reflecting the reduced groundwater recharge under 
impervious surfaces such as roofs and roads. Studies have shown that as the percentage of impervious-
ness within a catchment increases, the baseflow decreases [4]. Thus low flows tend to be lower in urban-
ized catchments than in natural watersheds (Figure 29.5). As the percentage of imperviousness within a 
catchment increases, the baseflow decreases [3].

The hydrological impact of urbanization is not limited to storm events. During dry weather peri-
ods, urban streams tend to have less flow because groundwater recharge from stormwater infiltration 
has been diminished [10]. While streams that have never been developed retain their flow during dry 
weather conditions, many urban streams lack the baseflow (flow contributed by groundwater) necessary 
to sustain healthy habitat conditions during extended periods of dry weather.
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FIGuRE 29.4 Hypothetical hydrographs for an urban stream (high peak) and rural stream (low peak) after a 
storm illustrating some changes in stormflow and baseflow that occur with urban development. (From Paul, M.J. 
and Meyer, J.L., Annu. Rev. Ecol. Syst., 32, 333, 2001.)
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29.10  Urban rainfall–runoff Modeling

In urban areas, catchment characteristics such as volume, peak flow, and flood return are generally 
highly heterogeneous. Hence the application of physically based process models of urban runoff is 
restricted to hydraulic planning and design of small catchments. Thus, urban catchment runoff and 
its period can be determined using simple rainfall–runoff models. These models (whether manual or 
computerized) generally incorporate precipitation, the casual process behind runoff into estimates of 
discharge. There are over a hundred urban rainfall–runoff models described in the literature [8]. All can 
be grouped according to the following classification that reflects their design purpose and complexity 
(Table 29.3).

Simple urban rainfall–runoff models take two forms. The simplest type estimates runoff as a function 
of rainfall and the runoff coefficient (i.e., ratio of runoff to rainfall) that is used to account for losses due 
to land-use and land cover characteristics such as interception, infiltration, and storage. The second type 
estimates runoff as a function of runoff depth and catchment area.

29.11  Managing and restoring Urban rivers

The process of urbanization is linked with economic development and makes an increasingly higher 
contribution to the national economy. However, when the growth of urban population takes place excep-
tionally at a rapid rate, most cities and towns are unable to cope with changing situations due to their 
internal resource constraints and management limitations. As population and land values increase, the 
effect of uncontrolled runoff becomes an economic burden and poses a serious threat to the health and 
well-being of citizens.

Urbanization is largely an irreversible process that changes earth surfaces; urbanizing stream 
channels are necessarily changed through the adjustment process, regardless of how well they can 
adjust [2,5]. Managing urban river channels poses particular challenges because most are undergoing 
adjustments at one stage or another. Thus, how can changing urban rivers be properly managed and 
potentially restored? Such understanding can assist in decision making, even if the magnitude of change 
cannot be predicted precisely.

Management of runoff from even a minor storm is rapidly becoming an engineering requirement 
to help reducing water logging, flooding, and stream erosion. It is important to realize that very few 
urban drainage systems are designed and built as a complete system. For the design of an adequate 
drainage system, it is essential to understand the changes in storm runoff characteristics with land-use 
changes. Urbanization of the land usually results in the highly accelerated removal of stormwater with 
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FIGuRE 29.5 Decrease in baseflow due to an increase in impervious surface. (a) Natural watershed and (b) 
urbanized watershed. (From Donaldson, S. and Hefner, M., Impacts of urbanization on waterways, Center for 
Watershed Protection, University of Nevada Cooperative Extension, Reno, NV, 1999.)
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corresponding increases in the volume and peak rate of runoff. The principal hydrological effects of land-
use and land cover changes have been related to changes in peak flow characteristics and total runoff.

29.12  Summary and conclusions

Urbanization has been observed to have significant effects on water balance in urban areas. The most 
dramatic changes occur in surface runoff, which generally increases most significantly due to the 
increase in paved areas and impervious surfaces. The increased volume and peak flows of stormwater 
discharges may cause problems of flooding and erosion. In urban areas, there is a variety of storm 
pollutant sources. Thus, in some cases, urban stormwater is a significant source of water pollution to 
receiving waters.

Impervious surfaces associated with urbanization alter the natural amount of water. The conse-
quences of this change are a decrease in the volume of water that percolates into the ground and a 
resulting increase in volume and decrease in the quality of surface water. These hydrological changes 
have significant implications for the quantity of fresh clean water that is available for use by humans, 
fish, and wildlife.

Increased IC associated with urbanization also alters the natural cycling of water. Changes in the 
shape and size of urban streams, followed by decreased water quality, are the most visible effects of 
increased imperviousness. Greater frequency and severity of flooding, channel erosion, and destruction 
of aquatic habitat commonly follow catchment urbanization [1,2]. Urbanization increases the hydro-
graph peak and overland flow volume and decreases the basin concentration time.

TABLE 29.3 Types and Characteristics of Urban Rainfall–Runoff Models

Type Characteristics

Simple models • Simple representation of the urban watershed
• Simplistic rainfall–runoff relationship based on runoff coefficient and catchment area

e.g., Q = C × P or Qp = C × I × A
where

Q is the annual runoff (mm/year)
Qp is the peak flow (m3/h)
C is the dimensionless runoff coefficient
P is the mean annual rainfall (mm/year)
I is the average rainfall intensity (mm/h)
A is the catchment area normally only impervious (km2)

• Minimal data requirements
• Cheap and easy to apply
• Produces long-term averages
• Use empirical and statistical methods such as coefficients and rational methods

Simple routing models • Routes flow through a rudimentary model of drainage network
• Accounts for delaying effect of routing
• Used to produce hydrographs over several years
• Use statistical and deterministic approaches based on unit hydrograph methods

Complex routing models • Routes flow through an extensive network of the drainage network
• Perform continuous simulation of hydrologic catchment system
• Used to produce hydrographs over short term (e.g., hours or days)
• Use deterministic methods to the process

Source: Knapp, H.V. et al., A review of rainfall–runoff modeling for stormwater management, Illinois Sate Water Survey 
Report 516, Champaign, IL, 1991.
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While most books examine only the classical aspects of hydrology, this three- 
volume set covers multiple aspects of hydrology and includes contributions from experts 
comprising more than 30 countries. It examines new approaches, addresses growing 
concerns about hydrological and ecological connectivity, and considers the worldwide 
impact of climate change.

It also provides updated material on hydrological science and engineering, 
discussing recent developments as well as classic approaches. Published in three books, 
Fundamentals and Applications; Modeling, Climate Change, and Variability; and 
Environmental Hydrology and Water Management, the entire set consists of 87 
chapters and contains 29 chapters in each book.

The chapters in this book contain information on

•     Climate change and hydrological hazards, hydrological modeling, and urban water 
systems, as well as climate change impacts on hydrology and water resources, climate 
change uncertainty, vulnerability, and adaption

•    Rainfall estimation and changes, hydrological changes of mangrove ecosystems, 
impact of the development of vegetation on flow conditions and flood hazards, 
urbanization impacts on runoff regime, and discretization in urban watersheds

•    Artificial neural network-based modeling of hydrologic processes, flow and sediment 
transport modeling in rivers, hybrid hydrological modeling, hydrologic modeling: 
stochastic processes, and time series analysis of hydrologic data

•    Dam risk and uncertainty, drought indices for drought risk assessment in a changing 
climate, hydrologic prediction and uncertainty quantification, uncertainty and risk of 
the PMP and PMF

•    Geostatistics applications in hydrology, GIS applications in a changing climate, GIS-
based upland erosion mapping, regional flood frequency analysis, regionalization of 
hydrological extreme events, remote sensing data and information for hydrological 
monitoring and modeling

•    Application of copulas in hydrology, bankfull frequency of rivers, statistical parameters 
used for assessing hydrological regime, significance of statistical tests and persistence 
in hydrologic processes

Students, practitioners, policy makers, consultants, and researchers can benefit from  
the use of this text.
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