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Preface

This monograph is on statistical inferences related to some combinatorial stochastic
processes. Especially, it discusses the intersection of three subjects that are studied
almost independently from each other: partitions, hypergeometric systems, and
Dirichlet processes. It is shown that the three subjects involve a common structure
called exchangeability. Then, inference methods based on their algebraic nature are
presented. The topics discussed are rather simple problems, but it is hoped that the
present interdisciplinary approach attracts a wide audience.

I am indebted to many people in my studies of the subjects discussed in this
monograph and in preparing this monograph. I would like to express my gratitude
to Prof. Akimichi Takemura, the editor of this volume, for his continuous
encouragement throughout the preparation of this work. Professor Akinobu
Shimizu and Prof. Koji Tsukuda read a draft of this work and gave careful and
useful comments. I would like to thank Mr. Yutaka Hirachi of Springer Japan for
his help and patience. This work was supported in part by Grants-in-Aid for
Scientific Research 15K05013 from Japan Society for the Promotion of Science.

Tokyo, Japan Shuhei Mano
May 2018
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Chapter 1
Introduction

Abstract Partitions appear in various statistical problems. Moreover, stochastic
modeling of partitions naturally assumes the exchangeability. This chapter intro-
duces this monograph by providing minimum definitions and terminologies related
to partitions and exchangeability. To illustrate the content of this monograph, we
present two simple statistical problems involving partitions.

Keywords A-hypergeometric distribution · Algebraic statistics
Bayesian nonparametrics · Dirichlet process · Exchangeability · Partition

1.1 Partition and Exchangeability

In this monograph, we discuss some combinatorial stochastic processes, which play
important roles in Bayesian nonparametrics and appear in count data modeling.
The statistical inferences inevitably involve two algebraic structures: partition and
exchangeability. This section defines both structures and introduces their fundamen-
tal concepts.

A partition is defined as follows.

Definition 1.1 Apartition of a finite set F into k subsets is a collection of non-empty
and disjoint subsets {A1, . . . , Ak} whose union is F .

Consider a sequence

λ = (λ1, λ2, . . .)

of nonnegative integers in decreasing order λ1 ≥ λ2 ≥ · · · and containing finitely
many nonzero terms. The nonzero λi are called the parts of λ. The number of parts
is called the length of λ, denoted by l(λ), and the sum of parts is called the weight
of λ, denoted by

|λ| := λ1 + λ2 + · · · + λl(λ).

© The Author(s) 2018
S. Mano, Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics,
JSS Research Series in Statistics, https://doi.org/10.1007/978-4-431-55888-0_1
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2 1 Introduction

If |λ| = n, λ is said to be a partition of a positive integer n, or an integer partition
of n, denoted as λ � n. For convenience, the notation

ci (λ) := #{ j; λ j = i}, i ∈ [n] := {1, 2, . . . , n}

is sometimes used, indicating the number of times each integer occurs as a part in
λ. In this expression, #{A} represents the cardinality of set A. In other words, ci is
the multiplicity of i in λ. Because multiplicities of integer partitions will frequently
appear in this monograph, we specifically refer to the set of multiplicities as size
index, a term coined by Sibuya [1].

We now define exchangeability. In this monograph, we explore only a few aspects
of exchangeability. An extensive survey on exchangeability was given byAldous [2].

We write X
d= Y if random variables X and Y have the same distribution.

Definition 1.2 If a finite sequence of random variables (X1, . . . , Xn) satisfies

(X1, . . . , Xn)
d= (Xσ(1), . . . , Xσ(n))

for any permutationσ of [n], then (X1, . . . , Xn) is called n-exchangeable (n is used to
indicate the finite number of random variables). If an infinite sequence (X1, X2, . . .)

satisfies

(X1, X2, . . .)
d= (Xσ(1), Xσ(2), . . .)

for any finite permutation σ (#{i; σ(i) �= i} < ∞) of N := {1, 2, . . .}, then (X1,

X2, . . .) is called exchangeable.

Example 1.1 Consider that there are n balls in an urn, each ball labeled with a
distinct number in [n]. When the balls are chosen and replaced, the infinite sequence
of drawn numbers is exchangeable. When the balls are drawn and not replaced, the
finite sequence of n numbers is n-exchangeable.

An independent and identically distributed (i.i.d.) sequence of random variables
is exchangeable, but the converse is not always true. In fact, exchangeability restricts
the correlation structure. The correlation coefficients of two randomvariables in an n-
exchangeable sequence (X1, . . . , Xn) satisfy ρ(Xi , X j ) ≥ −1/(n − 1), ∀ i �= j . In
Example 1.1 the lower bound saturateswhen the balls are drawnwithout replacement.

A probability measure on partitions is called a random partition. Let us introduce
infinite exchangeability of random partitions. For further discussion on this subject,
see Chap.11 of [2] and Chap.2 of [3]. Let us call an unordered integer partition
composition, and Cn denote the set of all compositions of n. A random partition Πn

of a finite set [n] is called exchangeable if its law is invariant under any permutation
of [n]. Equivalently, for each partition {A1, . . . , Ak} of [n],

P(Πn = {A1, . . . , Ak}) = pn(|A1|, . . . , |Ak |)
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for some symmetric function pn of compositions (n1, . . . , nk) ∈ Cn . This function pn
is called the exchangeable partition probability function (EPPF) ofΠn . Form ∈ [n],
let Πm,n denote the restriction of Πn to [m]. Then, Πm,n is an exchangeable random
partition of [m]with someEPPF pn:Cm → [0, 1]. So for each partition {A1, . . . , Ak}
of [m]

P(Πm,n = {A1, . . . , Ak}) = pn(|A1|, . . . , |Ak |)

is extended recursively to Cm for m = n − 1, n − 2, . . . , 1, using the addition rule
of probability. For each composition (n1, . . . , nk) of m < n

p(n1, . . . , nk) = p(n1, . . . , nk, 1) +
k∑

i=1

p(n1, . . . , ni + 1, . . . , nk). (1.1)

A sequence of exchangeable random partitions (Π1,Π2, . . .) is called consistent1

in distribution if Πm has the same distribution as Πm,n for every m < n. Equiva-
lently, there is a symmetric function p defined on the set of all integer compositions
such that p1(1) = 1, the addition rule (1.1) holds for all integer compositions, and
the restriction of p to Cn is the EPPF of Πn . Such a sequence (Π1,Π2, . . .) can be
constructed so thatΠm = Πm,n almost surely for everym < n. The sequence of ran-
dom partitions Π∞ := (Π1,Π2, . . .) is then called an infinite exchangeable random
partition.

1.2 Examples

This section presents two examples wherein exchangeable partitions appear. They
are intended as representative problems to be discussed throughout this monograph.
The former problem appears in Bayesian nonparametrics, and the latter appears in
algebraic statistics.

1.2.1 Bayesian Mixture Modeling

The following Bayesian mixture model is a simplified version of the Dirichlet pro-
cess mixture model discussed by Lo [5]. Section6.3 of [6] summarizes the recent
computational developments concerning the Dirichlet process mixture models. Con-
sider a clustering of a sample of size n. Let us fix the number of clusters k = 2, and
let the cluster that the i-th observation belongs to be xi ∈ {1, 2}. A clustering model

1This property is referred by several names in the literature. In the original paper by Kingman [4],
it was called the partition structure.
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assumes that each observation independently belongs to the first and second clusters
with probabilities θ and 1 − θ , respectively. Then, the sequence (X1, . . . , Xn) is a
Bernoulli trial of parameter θ . Suppose we have a sample (Y1, . . . ,Yn) and assume
a normal mixture model

Yi |Xi ∼ N(μXi , σ
2), Xi ∼ Ber(θ), i ∈ [n].

To simplify the discussion, we assume that the parameters of the normal distribution
are known. Then, a clustering is a sample from the posterior distribution

P(X |Y ; θ) ∝
n∏

i=1

φ(Yi |Xi , σ )P(X; θ),

where φ(Yi |Xi , σ ) is the normal density of mean μXi and variance σ 2, and

P(X1 = x1, . . . , Xn = xn; θ) = θ t (1 − θ)n−t . (1.2)

Here, the size of the first cluster T (X) := #{i; Xi = 1} is the sufficient statistic of
the Bernoulli trial.

In the Bayesian context, we may take a mixture over the parameter θ . Let us take
the beta distribution (the conjugate prior to the Binomial distribution) as the mixture
distribution. For the beta distribution of parameters α and β, we have

Pα,β(X1 = x1, . . . , Xn = xn)

=
∫ 1

0
P(X1 = x1, . . . , Xn = xn; θ)Fα,β(dθ) = (α)t (β)n−t

(α + β)n
, (1.3)

where

Fα,β(dθ) = 
(α + β)


(α)
(β)
θα−1(1 − θ)β−1dθ (1.4)

and we have used the rising factorial (x)i := x(x + 1) · · · (x + i − 1). This prob-
ability mass function is an example of an EPPF. The distribution of T (X) given
by

Pα,β(T (X) = t) =
(
n
t

)
(α)t (β)n−t

(α + β)n
(1.5)

is called the beta-binomial or negative hypergeometric distribution.

Remark 1.1 If the sequence of labels (X1, . . . , Xn) were observable, the expression
(1.3) would be themarginal likelihood in Bayesian terminology, as we integrate over
the parameter θ of the likelihood (1.2) with the prior distribution (1.4). In reality, the
labels are unobservable, and the marginal likelihood of the model is
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Pα,β(Y ) =
∑

x

n∏

i=1

φ(Yi |Xi = xi , σ )Pα,β(X = x).

In an empirical Bayes procedure, the estimated hyperparameters α and β should
maximize the marginal likelihood.

Note that (1.3) implies that themarginal distribution of the sequence (X1, . . . , Xn)

is exchangeable, but not i.i.d. The expression (1.3) represents the exchangeable
sequence as a mixture of i.i.d. sequences. This modeling is justified by the cele-
brated de Finetti’s representation theorem.

Theorem 1.1 (de Finetti 1937 [7]) An infinite exchangeable sequence of random
variables is a mixture of i.i.d. sequences of random variables.

Informally, de Finetti’s representation theorem states that an exchangeable
sequence is an i.i.d. sequence of a random probability measure, sometimes called the
de Finetti measure. If the observed sequence is sufficiently long, we can infer the
realized (true) probability measure. In the above modeling, the random probability
measure Λ on labels of clusters is given by

Λ := θδ1 + (1 − θ)δ2. (1.6)

As θ is a beta random variable, Λ should be a random probability measure. Suppose
that the realized sequence is a Bernoulli trial with parameter θ0. By the strong law
of large numbers, T/n → θ0, a.s. and the empirical measure is

Λn(X1, . . . , Xn) := T

n
δ1 +

(
1 − T

n

)
δ2 → Λ0, a.s.

as n → ∞, where Λ0 is the realized probability measure given by replacing θ with
θ0 in (1.6). By conjugacy, we have the posterior measure

Pα,β(Xn+1 = ·|X1, . . . , Xn) = α + β

α + β + n
Λ∗ + n

α + β + n
Λn,

Λ∗ := α

α + β
δ1 + β

α + β
δ2.

This expression is a convex combination of the prior measure Λ∗ and the empirical
measure Λn . As n → ∞, the posterior measure converges to the realized measure
Λ0 almost surely.

The above discussion is extendable to any number of clusters. For multiple clus-
ters, the role played by the beta distribution is played by the Dirichlet distribution.
The support of the random probability measure with an m-variate Dirichlet distri-
bution is [m]. Ferguson [8] defined an analogous object with a support of R, which
is now called Ferguson’s Dirichlet process.
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Definition 1.3 (Ferguson 1973 [8] ) Let α be a finite measure on a measurable space
(R,B(R)), where B(R) is a Borel field on R. If a random probability measure F
on R satisfies

(F(A1), . . . , F(Ak)) ∼ Dir(α(A1), . . . , α(Ak))

for any finite partition {A1, . . . , Ak} of R, then F is called a Dirichlet process.

The Dirichlet process is a fundamental prior process in Bayesian nonparametrics.
Chapter 4 will introduce the Dirichlet and related processes relevant to our discus-
sion. The Dirichlet process is probably most commonly used in mixture modeling.
However, this monograph mainly discusses EPPFs, which are marginal likelihoods
if their labels are observed (Remark 1.1), as in some categorical data. Focusing on
EPPFs will simplify our discussion. Chapter 5 will discuss samplers and conditional
maximum likelihood estimation involving EPPFs.

1.2.2 Testing Goodness of Fit

Diaconis et al. [9] discussed a goodness-of-fit test for a Poisson regression. Con-
sider a discrete covariate with m levels, and let the means of independent Poisson
random variables Ci be μi = exp(α + βi), i ∈ [m]. Also let α̂ and β̂ be the max-
imum likelihood estimates of α and β, respectively. A goodness-of-fit test of the
Poisson regression model with μ̂i = exp(α̂ + β̂i) can be constructed based on the
chi-square statistic

χ2 =
m∑

i=1

(μ̂i − Ci )
2

μ̂i
.

Asymptotic theory predicts an approximate chi-square distribution with m − 2
degrees of freedom. However, suppose we have a small sample that may not be
analyzed by asymptotic theory. The statistics

K (C) := C1 + · · · + Cm, N (C) := 1 · C1 + 2 · C2 + · · · + m · Cm (1.7)

are sufficient for the parameters α and β, where K (C) and N (C) are the total num-
bers of counts and levels, respectively. Let us assume a sample c∗ with K (c∗) = k,
N (c∗) = n, and a chi-squared value of χ2∗ . Consider a sample of size k comprising
independent label observations. Let the level of the i-th observation be Ni ∈ [m].
Then, the count vector (N1, . . . , Nk) is k-exchangeable with the sum of n, which
determines a partition of n with length k, and Ci = #{ j; N j = i} is the multiplicity
of i . Define the support Sn,k of a count vector (C1, . . . ,Cm) by (1.7), the set of
all nonnegative m-tuples (c1, . . . , cm) with K (c) = k and N (c) = n. Obviously, the
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problem is combinatorial, so that the cardinality of Sn,k grows rapidly with n. The
conditional distribution is

P(C1 = c1, . . . ,Cm = cm |K (C) = k, N (C) = n) = n!
|L(m)

n,k |
m∏

i=1

1

ci ! , (1.8)

where c ∈ Sn,k . The normalizing constant |L(m)
n,k | is a variant of the signless Lah

number [10], which exemplifies an associated partial Bell polynomial introduced in
the next chapter.

To calibrate the test, we must determine the proportion of Sn,k with chi-square
value exceeding χ2∗ . Finding this proportion by enumerating all c is impractical. The
solution can be approximated by sampling c fromSn,k using theMarkov chainMonte
Carlo (MCMC), whose stationary distribution is given by (1.8). Let R = (rcc′) with

rcc′ = P(Ct+1 = c′|Ct = c)

be the transition matrix of a finite-state Markov chain that is irreducible, aperiodic,
and symmetric. Then, the Markov chain with transition matrix P = (pcc′), where

pcc′ = rcc′ min

{
1,

πc′

πc

}
, c �= c′, pcc = 1 −

∑

c′ �=c

pcc′

has a unique stationary distributionπ satisfyingπ P = π . Reversibility immediately
follows from this observation, which provides the following Metropolis algorithm
for sampling from the stationary distribution π .

Algorithm 1.1 (Metropolis et al., 1953 [11]) A sequence of random variables from
a distribution whose stationary distribution is the target distribution π is generated
by the following algorithm:

1. Set t = 0 and pick an initial sample c(0).
2. Generate a candidate sample c′ according to P(C ′ = c′|c(t) = c) = rcc′ .
3. Accept the candidate c′ with probability

min

{
1,

πc′

πc

}

and set c(t+1) = c′. If rejected, set c(t+1) = c(t).
4. Increment t to t + 1 and return to Step 2.

The Metropolis algorithm can draw samples from any probability distribution,
provided that the acceptance ratio πc′/πc of the target probability functions is avail-
able. This property renders the algorithm quite useful, because calculating the nor-
malization constant is often difficult in practice. For a chain in the stationarity, the
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samples can be considered to be taken from the target distributionπ . In the goodness-
of-fit test discussedhere, the proportion of sampleswith chi-squared values exceeding
χ2∗ estimates the significance probability (p-value).

To implement the Metropolis algorithm, we must construct a connected Markov
chain over the support. A Markov basis is a finite set of moves that guarantees the
connectivity of all support elements (the Markov basis will be formally defined in
Chap. 5). The Markov chain can visit all elements by adding or subtracting moves
constructed by the Markov basis. In Chap. 5, we will show that a Markov basis for
the support Sn,k is

{ei + e j − ei+1 − e j−1; 1 ≤ i < j ≤ m; i + 2 ≤ j},

where ei is the m-dimensional unit vector with 1 in the i-th component and 0 in all
other components.

Example 1.2 [Poisson regression [9]] A chemical to control insectswas successively
sprayed onto equally infested plots. From plots 1 to 5, the concentration was 1, 2,
3, 4, and 5. The numbers of insects left alive on the plots were (c1, c2, c3, c4, c5) =
(44, 25, 21, 19, 11). The data were subjected to the above-described goodness-of-fit
test of the Poisson regression. The count vector gives k = 120, n = 288, and χ2∗ =
1.686. Following [9], the first 10, 000 samples were discarded and the significance
probability was estimated from the next 90,000 samples. The estimated p-value was
0.023. This result will be validated in Example 5.2.

The drawbacks of MCMC algorithms are well recognized. Practical problems
in implementation of MCMC samplers are discussed in [12]. Although the Markov
chain eventually converges to the target distribution, the initial draws deviate from
the target distribution. For example, when estimating the p-value above, we must
consider not only the Monte Carlo error but also the error caused by departure
from stationarity. Whether the chain is in the stationarity is not easily determined.
Therefore, in actual implementations, the initial samples must be discarded in the
so-called burn-in period. The appropriate burn-in period can be roughly estimated
by investigating the convergence. This topic is called mixing of Markov chains.
Another drawback is the autocorrelation among nearby samples in a chain. If we
need independent samples, most of the samples must be discarded. Autocorrelation
is commonly reduced by thinning, which retains every t-th sample in the chain over
some long interval t . A huge number of steps is required for a reasonable estimate.

A sampler that draws independent samples directly from the target distribution
would overcome the disadvantage of MCMC samplers. Chapter 3 introduces the
A-hypergeometric distribution defined by Takayama et al. [13], which constitutes a
class of discrete exponential families of distributions. Examples of A-hypergeometric
distributions are the conditional EPPFs discussed in the previous subsection and the
distribution given by (1.8). Chapter 5 presents a direct sampler for A-hypergeometric
distributions proposed in [14]. Aided by properties of polytopes and the infor-
mation geometry, Chaps. 3 and 5 discuss the maximum likelihood estimation of
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A-hypergeometric distributions. The computations demand an evaluation of the
normalization constants, which are the A-hypergeometric polynomials defined by
Gel’fand et al. [15]. For small samples that may not be analyzed by asymptotic the-
ory, the normalization constants must be evaluated numerically. Evaluation methods
are discussed in Chap. 3.
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Chapter 2
Measures on Partitions

Abstract After brief introduction of the multiplicative measure, defined as a family
ofmeasures on integer partitions, which include typical combinatorial structures, this
chapter introduces the exponential structure, which plays important roles in statistical
inference. It then introduces the Gibbs partition, a generalization of the exponential
structure. The generalization is achieved by systematic use of partial Bell polynomi-
als. Gibbs partitions characterize prior processes in Bayesian nonparametrics, and
appear as statistical models of diversity in count data. The Ewens sampling formula
and the Pitman partition are well-known examples of Gibbs partitions. Finally, this
section discusses the asymptotic behaviors of extremes of the sizes of parts in Gibbs
partitions. Some of the results are derived by simple analytic approaches.

Keywords Analytic combinatorics · Asymptotics · Ewens sampling formula
Exponential structure · Extreme · Gibbs partition · Multiplicative measure
Partial bell polynomial · Pitman partition

2.1 Multiplicative Measures

Let the set of integer partitions of n be denoted byPn := {λ; λ � n}, and the subset
of length k by

Pn,k := {λ; λ � n, l(λ) = k},

where Pn = ∪kPn,k .

Example 2.1 The number 4 is partitioned as

P4 = {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}.

For each length, we have P4,1 = {(4)}, P4,2 = {(3, 1), (2, 2)}, P4,3 = {(2, 1, 1)},
P4,4 = {(1, 1, 1, 1)}.

Integer partitions can be represented in a Young tableau, a collection of boxes
arranged in left-justified boxes, with the row length in non-increasing order. An inte-
ger partition λ ∈ Pn is uniquely determined by listing the number of boxes in each

© The Author(s) 2018
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12 2 Measures on Partitions

Fig. 2.1 Young tableau of
the partition (4, 2, 1) ∈ P7,3

row. An example is given in Fig. 2.1. The size index ci (λ) := #{ j; λ j = i} is the
number of rows with length i . In the present example, we have c4 = c2 = c1 = 1.

Stochastic processes on Young tableaux lie at intersection of probability theory
and representation theory, and have been extensively studied. Some pioneeringworks
are [1, 2]. Recent developments can be found in [3, 4] and references therein. As
is well known, partitioning integer into multisets and powersets (defined below),
corresponds to partitioning a given energy into bosons and fermions, respectively.
Therefore, these combinatorial structures have been important models for analyzing
numbers of states in systems in statistical mechanics [5]. Analyses of the modular
forms appearing in generating functions are also central to string and field theories.
For the details, refer to [6, 7] and references therein. Integer partitions appear as
statistical models of diversity in count data. An example is application to statistical
disclosure control. A comprehensive survey on the subject in Japanese is [8].

Vershik [5] discussed limit theorems for random functions induced by a proba-
bility measure on Young tableaux. The right continuous step function

ϕλ(t) :=
∑

i≥t

ci (λ), 0 ≤ t < ∞,

satisfying ∫ ∞

0
ϕλ(t)dt = n,

encodes the shape of aYoung tableau. Vershik defined a family of discrete probability
measures onPn , and called it the multiplicative measure. For a sequence of positive
real-number valued functions si (c), i ∈ N with si (0) = 1, let

F(λ) =
∏

i≥1

si (ci (λ)). (2.1)

The multiplicative measure is defined as

μn(λ) := Z−1
n F(λ), λ ∈ Pn, Zn :=

∑

λ�n

F(λ). (2.2)

The multiplicative measure is intuitively described as follows. For a combinatorial
structure determined by partitions, F(λ) is proportional to the number of possible
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structures with the partition λ, where all possible structures can occur with equal
probability. The ordinary generating functions of Zn and (si (c)) respectively given
by

F (x) =
∑

n≥0

Zn xn, Fi (y) =
∑

c≥0

si (c)yc,

are related through the multiplicativity:

F (x) =
∑

n≥0

∑

{c;∑ ici =n}

∏

i≥1

si (ci )xn =
∏

i≥1

∑

c≥0

si (c)xic =
∏

i≥1

Fi (xi ). (2.3)

For a given length l(λ) = k, the conditional probability measure is given by

μn,k(λ) = Z−1
n,k F(λ), λ ∈ Pn,k, Zn,k :=

∑

λ∈P n,k

F(λ), (2.4)

where Zn = ∑n
k=1 Zn,k .

Let us focus on three classes of functions for (si (c)). These classes, which yield
typical combinatorial structureswith simple probabilistic interpretations, are the neg-
ative binomial coefficients, the binomial coefficients, and the coefficients appearing
in the Poisson distribution. They are respectively given by

(
wi + c − 1

c

)
,

(
wi

c

)
,

(wi

i !
)c 1

c! , i ∈ N,

for some sequence of positive integers (wi ). The combinatorial structures given by
the negative binomial coefficients, the binomial coefficients, and the coefficient in the
Poisson distribution are called multisets, powersets (or selections), and exponential
structures (or assemblies), respectively. Arratia et al. [9] defined the conditioning
relation, the property under which the joint distribution of the size indices satisfies

(C1, C2, ..., Cn)
d= (X1, X2, ..., Xn|X1 + 2 · X2 + · · · + n · Xn = n) (2.5)

for a sequence of independent random variables (X1, ..., Xn). The above three coef-
ficients come from the distributions followed by (X1, ..., Xn). Further examples of
these three combinatorial structures, beyond the limited examples given here, are
given in Chap.2 of [9] and references therein. Chapter 5 of [10] is devoted to expo-
nential structures. Chapters1 and 2 of [11] provide systematic accounts of various
aspects of combinatorial structures using symbolic methods.

Multisets are combinatorial structures wherein each of ci parts of size i takes one
of the wi possible structures. The generating function of (si (c)) is

Fi (y) =
∑

c≥0

(
wi + c − 1

c

)
yc =

∑

c≥0

(−wi

c

)
(−y)c = (1 − y)−wi .
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By straightforward observation, one finds that the conditioning relation (2.5) is
satisfied by independent random variables Xi ∼ NegBin(wi , ζ

i ), i ∈ N, for some
ζ ∈ (0, 1).

Example 2.2 (Integer partitions) The integer partition is a multiset with wi = 1. As
F(λ) = 1, both μn(λ) and μn,k(λ) are uniform distributions on the integer partitions
in each support. For n = 4 in Example 2.1, we have Z4 = 5, so each partition occurs
with probability 1/5. For the subset with length l(λ) = 2, Z4,2 = 2, so each partition
occurs with probability 1/2. The number of distinct integer partitions Zn is called
the partition number. The well-known Hardy–Ramanujan formula gives

Zn ∼ 1

4n
√
3
exp

(
2π

√
n

6

)
, n → ∞.

This result can be obtained by evaluating the residue around the singularity at x = 1
of the generating function F (x) = ∏

i≥1(1 − xi )−1.

Powersets are combinatorial structures likemultisets, but are partitioned as subsets
rather than multisubsets. In powersets, each of ci parts of size i takes one of the wi

structures, andmust be distinct from all other parts. The generating function of (si (c))
is

Fi (y) =
∑

c≥0

(
wi

c

)
yc = (1 + y)wi .

The conditioning relation (2.5) is satisfied by independent random variables Xi ∼
Bin(wi , ζ

i/(1 + xi )), i ∈ N, for some ζ > 0.

Example 2.3 (Integer partitions) An integer partition with distinct integers is a pow-
erset with wi = 1. As F(λ) = 1, both μn(λ) and μn,k(λ) are uniform distributions
on the integer partitions in each support. In contrast to the multiset in Example 2.2,
the support does not consist of all partitions. For n = 4 in Example 2.1, the support
is {(4), (3, 1)}, and each partition occurs with probability 1/2.

Finally, let us visit exponential structures. The objects are unlabeled in multi-
sets and powersets, but are labeled in exponential structures. A typical example of
exponential structures is the partition of a finite set. A finite-set partition induces an
integer partition while ignoring the labels, as will be shown in Example 2.4. Labeled
objects are better discussed by exponential generating functions than ordinary gener-
ating functions. Chapter 2 of [11] discusses a combinatorial structure called sets, an
unlabeled version of multisets and powersets. An exponential structure is the com-
position of a set and a sequence of positive integers (wi ). Exponential structures play
important roles in statistical applications, as each observation can be usually labeled,
and the Poisson distribution is the standard model of count data.

Definition 2.1 Assume that a set [n] is partitioned into parts. For each part of size
i , one of wi possible structures is chosen independently. The resulting structure is
called an exponential structure.
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Let us count the number of possible instances of size n for a given size index c.
The number of ways is

n!
n∏

i=1

(
1

i !
)ci 1

ci ! .

For each part of size i , there are wi possible structures. Permutation with repetition
then yields

n!
n∏

i=1

(wi

i !
)ci 1

ci ! .

Let us set

F(λ) = n!
∏

i≥1

(wi

i !
)ci (λ) 1

ci (λ)! .

Here, the expression (2.1) is multiplied by n! because we are dealing with labeled
structures. The generating function of (si (c)), i ∈ N is

Fi (y) =
∑

c≥0

(wi

i ! y
)c 1

c! = exp
(wi

i ! y
)

.

Using the exponential generating function of the sequence of positive real numbers
wi , i ∈ N:

W (x) =
∑

i≥1

wi

i ! xi , (2.6)

and the relationship between the generating functions (2.3),we obtain the exponential
generating function of Zn = ∑

λ�n F(λ):

F (x) = eW (x). (2.7)

This formula, called the exponential formula, is a characterizing property of expo-
nential structures [10]. The conditioning relation (2.5) is satisfied by independent
random variables Xi ∼ Po(wiζ

i/ i !), i ∈ N, for some ζ > 0.

Example 2.4 (Set partitions) The partition of a finite set, or set partition, is an expo-
nential structure with wi = 1. The number of possible instances of size n in a set
that is called the n-th Bell number Bn . Thus, Zn = Bn and the exponential generat-
ing function isF (x) = exp(ex − 1). Moreover, Zn,k defines the number of ways of
partitioning a set of n objects into k non-empty subsets. The number is called the
Stirling number of the second kind, denoted by S(n, k). As Bn = ∑n

k=1 S(n, k), the
multiplicative measure (2.2) becomes

μn(λ) = n!
Bn

n∏

i=1

(
1

i !
)ci 1

ci ! , λ ∈ Pn.
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For a given length l(λ) = k, the conditional probability measure (2.4) is

μn,k(λ) = n!
S(n, k)

n∏

i=1

(
1

i !
)ci 1

ci ! , λ ∈ Pn,k .

Consider the integer partitions of n = 4 in Example 2.1. The subset of integer par-
titions of length l(λ) = 2 is P4,2 = {(3, 1), (2, 2)}. Each of the integer partitions
determines a subset of partitions of finite sets with identified cardinalities. For (3, 1)
and (2, 2), the instances are

{{{1, 2, 3}, {4}}, {{2, 3, 4}, {1}}, {{3, 4, 1}, {2}}, {{4, 1, 2}, {3}}}

and
{{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}},

respectively. As S(4, 2) = 7 and B4 = 15, we have

μ4,2((3, 1)) = 4

7
, μ4,2((2, 2)) = 3

7
,

and

μ4((3, 1)) = 4

15
, μ4((2, 2)) = 3

15
.

Remark 2.1 In Example 2.4, probability measures on the integer partitions were
induced by the equivalence relations under the actions of the symmetric group on
the uniform distribution on set partitions.

Example 2.5 (Permutations) A permutation may be viewed as a set of cyclic per-
mutations. Figure2.2 shows the decomposition of the permutation

(
1 2 3 4 5 6
2 4 5 1 3 6

)
= (1, 2, 4)(3, 5)(6),

where the parentheses on the right hand side denote cycles. There are (i − 1)! ways
to place i elements in a cycle. The decomposition of a permutation is an exponential
structure with wi = (i − 1)!. As the number of permutations of [n] is n!, we have
Zn = n!. The exponential generating function isF (x) = (1 − x)−1, and Zn,k is the
number ofways of decomposing a permutation of [n] into k cycles, called the signless
Stirling number of the first kind, denoted by |s(n, k)|. The multiplicative measure
(2.2) becomes

μn(λ) =
n∏

i=1

(
1

i

)ci 1

ci ! , λ ∈ Pn.
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Fig. 2.2 A permutation
represented by cycles

For a given length l(λ) = k, the conditional probability measure (2.4) is

μn,k(λ) = n!
|s(n, k)|

n∏

i=1

(
1

i

)ci 1

ci ! , λ ∈ Pn,k .

Each integer partition determines the subsets of permutations with identified cycle
lengths. For (3, 1) and (2, 2), we have P4,2 = {(3, 1), (2, 2)} with instances

{(1, 2, 3)(4), (1, 3, 2)(4), (2, 3, 4)(1), (2, 4, 3)(1), (3, 4, 1)(2), (3, 1, 4)(2),
(4, 1, 2)(3), (4, 2, 1)(3)}

and
{(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

As |s(4, 2)| = 11 and 4! = 24, we have

μ4,2((3, 1)) = 8

11
, μ4,2((2, 2)) = 3

11
,

and

μ4((3, 1)) = 1

3
, μ4((2, 2)) = 1

8
.

Remark 2.2 For permutations, the exponential formula (2.7) takes the form

F (x) = eW (x) = exp(− log(1 − x)).

A class of combinatorial structures whose members take this exponential-of-
logarithm form as the generating function is called exp-log class. Flajolet and Soria
[12] introduced this class and discussed the limit laws of its length of partitions.

Example 2.6 (Forests of labeled rooted trees) A rooted tree is a connected directed
acyclic graph with one distinguished vertex. To construct a forest of rooted trees, the
[n] labeled vertices are partitioned into subsets, and a rooted tree is made from all
vertices in each subset. The number of non-plane labeled rooted trees that can be
constructed from i vertices is given by Cayley’s formula, i i−1. Forests of rooted trees
are exponential structures with wi = i i−1. Considering each vertex adjacent to 0 is
the root of a tree, there exists a bijection between a single unrooted tree on vertices
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{0, 1, ..., n} and a forest of rooted trees on vertices [n]. Moreover, the number of
unrooted trees that can be constructed from (n + 1) vertices is (n + 1) times the
number of rooted trees that can be constructed from (n + 1) vertices. Therefore,
the number of forests of labeled rooted trees is Zn = (n + 1)n−1. The exponential
formula (2.7) yields a non-trivial identity:

F (x) =
∑

n≥0

{(n + 1)x}n

(n + 1)! = exp

(
∑

i≥1

i i−1

i ! xi

)
= e−W0(−x), (2.8)

where W0(x) defines the principal branch of the Lambert W function (product loga-
rithm) [13], which is the branch of inverse relation of the function f (z) = zez with
z ≥ −1. The combinatorics is further discussed in Sect. 2.5.1 of [11]. Each integer
partition determines forests with identified sizes of trees. For {(3, 1), (2, 2)}, the
number of possible forests are 36 for (3, 1) and 12 for (2, 2), respectively. Therefore,
we have

μ4,2((3, 1)) = 3

4
, μ4,2((2, 2)) = 1

4

and

μ4((3, 1)) = 36

125
, μ4((2, 2)) = 12

125
.

An instance of size (3, 1) is shown in Fig. 2.3.

A multiplicative measure can be obtained from a given multiplicative measure by
a simple operation called tilting. Tilting is achieved by substituting

F(λ) �→ θ l(λ)F(λ), θ > 0, (2.9)

into the expression (2.1). Tilting weights the probability mass function of the multi-
plicative measure (2.2) by the length. In particular, for exponential structures, tilting
(2.9) is equivalent to the mapping

wi �→ θwi , i ∈ N, θ > 0. (2.10)

Note that the exponential structure is invariant under this mapping

wi �→ φi wi , i ∈ N, φ > 0. (2.11)

Fig. 2.3 A forest of labeled
rooted trees of size (3, 1)
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Remark 2.3 Unlike the marginal probability measure, the conditional probability
measure for a given length (2.4) is invariant under tilting. This shows that the length
is the sufficient statistic for the tilting parameter θ .

Example 2.7 (Mappings) Consider all mappings form [n] to itself. The number of
mapping is Zn = nn . A mapping f corresponds to a directed graph with vertices [n]
and edges (i, f (i)), i ∈ [n], where the outdegree of every vertex is one. The graph is
decomposed into connected subgraphs. Katz [14] showed that i labeled vertices can
be arranged into a connected graph in fi = (i − 1)!∑i−1

j=0 i j/j ! ways. By the central
limit theorem, we have

fi

i ! = ei

i
P(Po(i) ≤ i − 1) ∼ ei

2i
, i → ∞,

where Po(i) is thePoisson randomvariable ofmean i . From (2.10) and (2.11),wefind
that the exponential structure given by the mapping decomposition is asymptotically
equivalent to that of decomposition of permutation into cycles in Example 2.5 with
tilting (2.9)with θ = 1/2. Each integer partition determines subsets ofmappingswith
identified size of connected subgraphs. For {(3, 1), (2, 2)}, the numbers of possible
mappings are 68 for (3, 1) and 27 for (2, 2), respectively. Therefore, we have

μ4((3, 1)) = 68

44
= 17

64
= 0.266..., μ4,2((3, 1)) = 68

95
= 0.716...

Meanwhile, the decomposition of permutation into cycles with tilting of 1/2 gives

μ4((3, 1)) = 32

105
= 0.305..., μ4,2((3, 1)) = 8

11
= 0.727...

As expected from Remark 2.3, the conditional probability measure determined from
the number of connected subgraphs approximates that obtained by decomposing a
random permutation into cycles with tilting of 1/2. An instance of mapping of size
(3, 1) is shown in Fig. 2.4.

Let us collect some formulae of multiplicative measures (2.2) induced by decom-
posing the permutation into cycles, as shown in Example 2.5 with tilting (2.9). It is
straightforward to see that Zn,k = θ k |s(n, k)|. Using the exponential formula (2.7)
and the negative binomial theorem, we obtain

Fig. 2.4 A mapping of size
(3, 1)
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Zn =
[

xn

n!
]
F (x) =

[
xn

n!
]

(1 − x)−θ = (θ)n,

where [xn/n!] f (x) represents the coefficient of xn/n! in expansion of f (x) as a
power series in x . The multiplicative measure is

μn(λ) = n!
(θ)n

n∏

i=1

(
θ

i

)ci 1

ci ! , λ ∈ Pn. (2.12)

This expression is known as the Ewens sampling formula [15], appeared in sampling
from genetic diversity (see Appendix A.2). This sampling formula was indepen-
dently derived by Antoniak [16] as the sampling distribution of the Dirichlet process
(see Chap. 4). The background is discussed in [17–19]. The conditional probability
measure given the length l(λ) = k (2.4) is

μn,k(λ) = n!
|s(n, k)|

n∏

i=1

(
1

i

)ci 1

ci ! , λ ∈ Pn,k . (2.13)

2.2 Exponential Structures and Partial Bell Polynomials

Thus far, we have discussed multiplicative measures induced by exponential struc-
tures. In this section, we generalize these measures to a family of discrete probability
measures on integer partitionsPn . The length of partition is recognized as an impor-
tant statistic. For example, in the Bayesianmixturemodeling discussed in Sect. 1.2.1,
the length is the number of clusters. Although the distribution of the length must be
flexible, the multiplicative measures admit only weights by the power of length,
namely, the tilting factor (2.9). The multiplicative measures induced by exponen-
tial structures can be generalized using relatives of Bell polynomials [20]. For an
extensive survey on this subject, see Chap.1 of [21].

Consider a sequence of positive real numbers (vn,k), k ∈ [n], n ∈ N, and begin
with

F(λ) = vn,l(λ)n!
∏

i≥1

(wi

i !
)ci 1

ci ! .

Moreover, let (wi ), i ∈ N be a sequence of positive real numbers (not restricted to be
an integer sequence). Identically to the case for the multiplicative measure in (2.4),
the conditional probability measure given length l(λ) = k is

μn,k(λ) = n!
Bn,k(w)

n∏

i=1

(wi

i !
)ci 1

ci ! , λ ∈ Pn,k, (2.14)
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Table 2.1 The partial Bell polynomials.

n\k 1 2 3 4 5

1 w1

2 w2 w2
1

3 w3 3w1w2 w3
1

4 w4 4w1w3 + 3w2
2 6w2

1w2 w4
1

5 w5 5w1w4 + 10w2w3 10w2
1w3 + 15w1w2

2 10w3
1w2 w5

1

where

Zn,k = vn,k Bn,k(w), Bn,k(w) := n!
∑

λ�n,l(λ)=k

n∏

i=1

(wi

i !
)ci 1

ci ! . (2.15)

The probability function (2.14) is a discrete exponential family with natural param-
eters (log(w1/1!), ..., log(wn/n!)) and sufficient statistics (c1, ..., cn). The normal-
ization constant Bn,k(w) is called the partial Bell polynomial, which defines the
number of exponential structures consisting of n elements with k parts. The partial
Bell polynomials are polynomials of the variables wi , i ∈ N. Some explicit expres-
sions for small n are given in Table2.1. As the convention, we set Bn,0(w) = δn,0. The
Bell polynomials are then given by Bn(w) := ∑n

k=1 Bn,k(w). Especially, the n-th Bell
number Bn is Bn(1·), 1· = (1, 1, ...). Chapter 3 of Comtet’s book [22] explains formal
series. Partial Bell polynomials play fundamental roles in the discussion and various
results on partial Bell polynomials can be found in the chapter. The multiplicative
measure (2.2) induced by the exponential structure now becomes

μn(λ) = n!
Bn(w)

n∏

i=1

(wi

i !
)ci 1

ci ! , λ ∈ Pn. (2.16)

The weighted Bell polynomials are given by

Bn(v, w) :=
n∑

k=1

vn,k Bn,k(w)

The partial Bell polynomials can be expressed by an exponential generating func-
tion of the sequence wi , i ≥ 1 (2.6):

[
xn

n!
] {W (x)}k

k! =
[

xn

n!
]
1

k!

(
∑

i≥1

wi

i ! xi

)k

=
∑

n1+···+nk=n

k∏

i=1

wni

ni ! = Bn,k(w).
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An equivalent exponential generating function of the partial Bell polynomials is

∑

n≥1

Bn,k(w)
xn

n! = {W (x)}k

k! . (2.17)

Suppose that the sequence (vn,k) does not depend on n, say (vk). By using the
exponential generating function

V (x) =
∑

k≥1

vk
xk

k! ,

we have Faà di Bruno’s formula

Bn(v, w) =
[

xn

n!
]
V (W (x)). (2.18)

Especially, for a tilting (2.9) with (vk) = (θ k), we have Bn(θ
·, w·) = Bn(θw·).

Remark 2.4 Faà di Bruno’s formula gives successive derivatives of composition of
functions:

{V (W (x))}(n) = Bn(V
(·)(W (x)),W (·)(x)),

where the superscript (n) means the n-th derivative. The formula (2.18) provides the
value at x = 0. Further discussion is given in Sect. 3.4 of [22].

Some examples are demonstrated below.

Example 2.8 (Stirling number of the second kind) In Example 2.4, wi = 1 and
W (x) = ex − 1. Now set vk = 1, Zn,k = S(n, k) = Bn,k(1·), and let vn,k = [θ ]k ,
Vn(x) = (1 + x)θ − 1, where the falling factorial [x]i := x(x − 1) · · · (x − i + 1)
is used. From faà di Bruno’s formula (2.18), we obtain the factorial generating func-
tion

Bn([θ ]·, 1·) =
n∑

k=1

[θ ]k S(n, k) = θn.

Example 2.9 (Signless Stirling number of the first kind) In Example 2.5, wi = (i −
1)! and W (x) = − log(1 − x). Now set vk = 1, Zn,k = |s(n, k)| = Bn,k((· − 1)!),
and let vk = θ k , Vn(x) = eθx − 1. From Faà di Bruno’s formula (2.18), we obtain
the ordinary generating function

Bn(θ
·, (· − 1)!) =

n∑

k=1

θ k |s(n, k)| = (θ)n. (2.19)
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Example 2.10 (Tilted forests of labeled rooted trees) In Example 2.6, wi = i i−1

andW (x) = −W0(−x). Although the partial Bell polynomial Zn,k = Bn,k(··−1) has
no specific name, a weighted Bell polynomial has a closed form. Setting vk = θ k ,
V (x) = eθx − 1, Faà di Bruno’s formula (2.18) yields the ordinary generating
function

Bn(θ
·, ··−1) =

n∑

k=1

θ k Bn,k(··−1) =
[

xn

n!
]

e−θW0(−x) = θ(θ + n)n−1, (2.20)

where the last equality follows by the Lagrange inversion formula (see Sect. A6 of
[11]). Let φ(u) = ∑

k≥0 φkuk with φ0 �= 0. The equation y = xφ(y) then admits a
unique solution with coefficients given by

y(x) =
∑

i≥1

yi x
i , yi = 1

i
[ui−1](φ(u))i .

The series expression of the Lambert W function in (2.8) directly follows from the
Lagrange inversion. As −W0(−x) = x exp(−W0(−x)), we identify φ(u) = eu and
immediately obtain as

y(x) = −W0(−x) =
∑

i≥1

i i−1

i ! xi .

The Lagrange-Bürmann inversion formula for fractional powers is given by

[xn]
(

y(x)

x

)θ

= θ

n + θ
[un](φ(u))n+θ , θ ∈ C.

Setting y(x)/x = −W0(−x) immediately yields (2.20). The partial Bell polynomial
also has a closed form:

Bn,k(··−1) =
(

n − 1
k − 1

)
nn−k .

Moreover, Bn(θ ··−1) = θ(θ + n)n−1.

Example 2.11 (Macdonald symmetric functions) This example is related to a family
of symmetric functions known as the Macdonald symmetric functions [23]. The
properties of the Macdonald symmetric functions used in this monograph are briefly
summarized in Sect. A.1. Setting

wi = t i − 1

qi − 1
(i − 1)!,
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where q, t > 1 or q, t < 1, the identity (A.6) implies that

Bn

(
t · − 1

q · − 1
(· − 1)!

)
= (t; q)n

(q; q)n
n!, (x; y)n :=

n−1∏

i=0

(1 − xyi ).

Taking t = qθ with q → 1, this expression reduces to (2.19). In this sense, the expo-
nential structure determined by the sequence wi = (i − 1)!(qiθ − 1)/(qi − 1) is a
“q-deform” of the tilted decomposition of permutations into cycles.

Example 2.12 (Hermite polynomials) This monograph considers positive real
sequences for (vk) and (wi ), since probability measures are constructed from such
sequences. However, Okano et al. [24] showed that

Bn((x,−1, 0, 0, ...)) = hn(x),

where hn(x) are the Hermite polynomials

hn(x) = (−1)nex2/x dn

dxn
e−x2/2, n ∈ N0 := {0, 1, 2, ...}.

Applying Faà di Burno’s formula, they also proved properties of the Hermite polyno-
mials. The Hermite polynomials with negative indices will appear in Example 4.12.

After normalization, the marginal probability measure onPn is given as

μn(λ) = vn,l(λ)n!
Bn(v, w)

n∏

i=1

(wi

i !
)ci 1

ci ! , λ ∈ Pn. (2.21)

When vn,k = 1, the probability function (2.21) reduces to a multiplicative measure
induced by exponential structures. The tilted measure is then obtained by taking
vn,k = θ k . These special probability functions are discrete exponential family. How-
ever, in general, the probability function (2.21) is not an exponential family because
it depends on the length l(λ) via vn,l(λ). In other words, the length l(λ) is the sufficient
statistic for the sequence (vn,k), and the conditional probability measure (2.14) is an
exponential family. In this monograph, we call the probability measure (2.21) the
Gibbs partition. The distribution of the length of partition is

P(l(Λ) = k) = vn,k Bn,k(w)

Bn(v, w)
. (2.22)

Remark 2.5 The Gibbs partition is not consistently defined in the literature. Infinite
exchangeability (see Sect. 1.1) is not assumed in this monograph, but is usually
assumed in Bayesian statistics literature. The definition in Pitman’s book [21] does
not assume infinite exchangeability, but assumes that (vn,k) is independent of n. In
this monograph, we assume neither infinite exchangeability nor the form of (vn,k).
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If the sequence (vn,k) is independent of n, the above construction of the Gibbs
partition has a simple probabilistic interpretation, and the model is specifically called
Kolchin’s model [25, 26]. Let (X1, X2, ...) be a sequence of i.i.d. random variables
and K be a random variable independent of (X1, X2, . . .). Suppose Xi and K follow
the power series distributions

P(Xi = x) = wx

W (ξ)

ξ x

x ! , x ∈ N,

P(K = k) = vk

V0(ζ )

ζ k

k! , k ∈ N0,

where ζ = W (ξ) and V0(ζ ) is the exponential generating function of (vk), k ∈ N0.
From the composition of probability generating functions of Xi and K , the distribu-
tion of SK := X1 + · · · + X K is obtained as

P(SK = n) = ξ n

n!
Bn(v, w)

V0(W (ξ))
,

where we set S0 = 0. If vk = 1, V0(ζ ) = eζ and SK follow a compound Poisson
distribution. Meanwhile, the multiplicative measure reduces to that of an exponential
structure (2.16).

Remark 2.6 Hoshino [27] called themultiplicativemeasure inducedby a exponential
structure the limiting conditional compound Poisson distribution, and characterized
it as the limit law of the counts of a sparse contingency table under the law of small
numbers.

Example 2.13 (Logarithmic series model) TheEwens sampling formula (2.12) is the
multiplicative measure induced by the exponential structure given by wx = θ(x −
1)!. Here,

P(Xi = x) = 1

− log(1 − ξ)

ξ x

x

is the Fisher’s logarithmic series distribution [28]. The unconditional distribution of
the size index, given by

P(C1 = c1, C2 = c2 · · · ) = (1 − ξ)
∏

i≥1

(
ξ i

i

)ci 1

ci ! .

According toHoshino and Takemura [29], the Fisher’s logarithmic series distribution
is the limit distribution of a Poisson-gamma model [30] under the law of small
numbers. The discussion parallels derivation of the Ewens sampling formula as the
limit of the Dirichlet-multinomial distribution (see Remark 4.6).
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Example 2.14 (Limiting quasi-multinomial distribution) The limiting quasi-
multinomial distribution introduced by Hoshino [31] is the multiplicative measure
induced by the exponential structure given by wx = θx x−1. Here,

P(Xi = x) = x x−1

−W0(−ξ)

ξ x

x ! .

This distribution is the tilted multiplicative measure induced by forests of labeled
rooted trees (see Example 2.10). The closed form of the normalization constant, or
the Bell polynomial, is an advantage for applications.

Example 2.15 (Macdonald symmetric functions) This example is a continuation of
Example 2.11. Themultiplicativemeasure induced by the exponential structure asso-
ciated with the Macdonald symmetric function is the multiplicative measure associ-
ated with the exponential structure given by wx = (x − 1)!(t x − 1)/(qx − 1). Here,

P(Xi = x) =
{
log

(t x; q)∞
(x; q)∞

}−1 t x − 1

qx − 1

ξ x

x
.

Themixing of a sampler from this multiplicative measure was discussed by Diaconis
and Lam [32], which will be explained in Sect. 5.1.3.

A well-known generalization of the Stirling number is the generalized factorial
coefficient. Various accounts of the Stirling numbers and their generalizations are
given in Chap.2 of [33]. The generalized factorial is defined as

[x]i;a := x(x − a) · · · (x − (i − 1)a), i ∈ N,

with [x]0;a = 1 by convention. The generalized factorial coefficients C(n, k;α),
α �= 0, is defined as identities among the generalized factorials

n∑

k=1

C

(
n, k; b

a

) [t]k;b
bk

= [t]n;a
an

, a, b �= 0. (2.23)

The generalized Stirling numbers [21] are given by

Sa,b
n,k ≡ C

(
n, k; b

a

)
an

bk
.

For the sequences

wi = (1 − α)i−1, i ∈ N, vk = (θ)k;α, k ∈ N (2.24)
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with α < 1, the negative binomial theorem and Faà di Bruno’s formula (2.18) yields

Bn((θ)·;α, (1 − α)·−1) =
n∑

k=1

Bn,k((1 − α)·−1)(θ)k;α = (θ)n.

Comparing this expression with the definition (2.23), we can relate the partial Bell
polynomials to the generalized factorial coefficients as follows:

C(n, k;α) = (−1)n Bn,k((−α)·). (2.25)

The following closed form expressions (see p. 158 of [22]) will be useful in later
chapters of this monograph:

C(n, k;−1) = (−1)n Bn,k(·!) = (−1)n n!
k!

(
n − 1
k − 1

)
, (2.26)

C

(
n, k; 1

2

)
= (−1)n−k Bn,k

((
−1

2

)

·

)

= (−1)n−k (n − 1)!
(k − 1)!

(
2n − k − 1

n − 1

)
2k−2n, (2.27)

where (2.26) is known as the Lah number. Some limits are

lim
α→−∞ α−nC(n, k;α) = S(n, k),

lim
α→0

α−kC(n, k;α) = (−1)n−k |s(n, k)|,
lim
α→1

C(n, k;α) = (−1)n−kδn,k .

Example 2.16 (Pitman partitions) The Gibbs partition (2.21) with the sequences
(2.24) has the following closed form:

μn(λ) = n!(θ)l(λ);α
(θ)n

n∏

i=1

(
(1 − α)i−1

i !
)ci 1

ci ! , λ ∈ Pn. (2.28)

This expression is known as the Pitman partition [34]. Being a probability mass
function, the parameter values of (2.28) are restricted to one of the following sets.

• α = 0 and θ > 0 (the Ewens sampling formula (2.12));
• α < 0 and θ = −mα, m ∈ N (the m-variate symmetric Dirichlet-multinomial dis-
tribution; see Remark 4.5);

• α ∈ (0, 1) and θ > −α.
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For the given length l(λ) = k conditional probability measure is given by

μn,k(λ) = n!(−1)n

C(n, k;α)

n∏

i=1

(
(−α)i

i !
)ci 1

ci ! , λ ∈ Pn,k . (2.29)

The Pitman partition will be revisited in Chap. 4.

Remark 2.7 By virtue of the closed form expression of the generalized factorial
coefficient of the parameter α = 1/2 (2.27), some Gibbs partitions other than the
Pitman partition are also closed form. For example, a distribution called the limiting
conditional inverse Gaussian-Poisson distribution, derived by Hoshino [35], is a
Gibbs partition with the sequences wi = (1/2)i−1 and vk = θ k . The normalization
constant, or weighted Bell polynomial, takes the form

Bn(θ
·, (1/2)·−1) = 2θn+1/2e2θ√

π
Kn−1/2(2θ),

where Kn−1/2(θ) is the modified Bessel function of the second kind. Tilted measures
involving the generalized factorial coefficient of parameters other than 1/2, are dis-
cussed with survey of relevant distribution theory in [36]. Another example is the
normalized-inverse Gaussian prior process, which will be introduced in Chap. 4.

2.3 Extremes in Gibbs Partitions

The behavior of extreme sizes of parts in random combinatorial structures is a classi-
cal subject. A statistical application is Fisher’s exact test for themaximumcomponent
in a periodgram [37]. The asymptotic behavior of extreme sizes of parts has also been
studied from purely mathematical interest, whose early studies include [38, 39]. In
number theory, a number whose largest prime factor does not exceed x is called an
x-smooth number, whereas a number whose smallest prime factor exceed y is called
y-rough number. Chapters3.5 and 3.6 of [40] discuss the smooth and rough num-
bers, respectively. Interestingly, the limiting distributions of the counting functions
of smooth and rough numbers coincide with the limiting distribution of the largest
and smallest cycle lengths in the decomposition of permutation into cycles, respec-
tively. This coincidence and other interesting aspects of the relationship between the
decomposition of permutation into cycles and integer factorization are presented in
Sects. 1.2 and 1.3 of [9] and Sect. 4 of [41].

Random combinatorial structures have been studied by both probabilistic and
analytic approaches. A comprehensive exposition of analytic combinatorics is [11].
Panario and Richmond [42] demonstrated that singularity analysis of generating
functions obtains the asymptotic behavior of the descending ordered cycle lengths in
the exp-log class (see Remark 2.2) of exponential structures. The Ewens sampling
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formula (2.12) is an exp-log class and has several nice properties. For instance, it
satisfies the conditioning relation (2.5) and the logarithmic condition

iP(Xi = 1) → θ, iE(Xi ) → θ, i → ∞, (2.30)

where (X1, X2, . . .) is the sequence of independent randomvariables in the condition-
ing relation. These condition lead to asymptotic independence of small components
(Theorem 6.5 of [9]):

(C1, C2, ...)
d→ (X1, X2, ...), n → ∞. (2.31)

The behavior was established in the Ewens sampling formula by Arratia et al. [43]
and Sibuya [17]. As we will see in Chap. 4, the properties of the limiting distribution
of descending ordered proportions of parts, called thePoisson–Dirichlet distribution,
arewell established. The Poisson–Dirichlet distribution is comprehensively surveyed
in [44]. The above properties confer great power on probabilistic approaches (see [9]
for the extensive discussion). However, probabilistic approaches tend to be model-
specific. In this section, we discuss analytic approaches to the asymptotic behaviors
of extreme sizes in Gibbs partitions (2.21).

To illustrate singularity analysis of generating functions, let us discuss the signless
Stirling number of the first kind, which was discussed in Example 2.9. The ordinary
generating function is (θ)n . By using the Stirling formula

Γ (z) ∼ √
2π zzze−z{1 + O(z−1)}, z → ∞,

for θ ∈ C\Z≤0, we have

(θ)n

n! = Γ (θ + n)

Γ (θ)Γ (n + 1)
= nθ−1

Γ (θ)

{
1 + O(n−1)

}
. (2.32)

For a fixed positive integer k, the asymptotic form for n → ∞ is straightforwardly
obtained as

|s(n, k)|
n! = [θ k] (θ)n

n! ∼ 1

n
[θ k−1]

{
exp(θ log n)

Γ (θ + 1)

}
= 1

n

(log n)k−1

(k − 1)! . (2.33)

Here, the asymptotic form (2.33) was adequately determined by evaluation of the
binomial coefficient (2.32). However, for obtaining a finer result than (2.32), more
systematic method is useful. Using complex analysis of the exponential generat-
ing function of (θ)n , F (x) = (1 − x)−θ , Flajolet and Odlyzko [45] established the
following result (Proposition 1 of [45]).
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Proposition 2.1 ([45]) For θ ∈ C\Z≤0,

[un](1 − u)−θ ∼ nθ−1

Γ (θ)

{
1 +

∑

i≥1

ei

ni

}
, n → ∞.

where ei := ∑2i
j=i λi, j [θ − 1] j with

∑

i, j≥0

λi, j v
−i t j = et

(
1 + t

v

)−(v+1)

.

Proof By virtue of the Cauchy-Goursat theorem,

[un](1 − u)−θ = 1

2π i

∮
(1 − u)−θ

un+1
du, i := √−1.

Take the cut at [1,∞) and the contour C = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1 =
{

u = 1 − t

n
; t = eiθ , θ ∈

[π

2
,−π

2

]}
,

γ2 =
{

u = 1 + t + i

n
; t ∈ [0, n]

}
,

γ3 =
{

u; |u| =
√
4 + 1

n2
; �(u) ≤ 2

}
,

γ4 =
{

u = 1 + t − i

n
; t ∈ [0, n]

}
.

The contour is shown in Fig. 2.5. The contribution from γ3 is exponentially small.
With changing variable u = 1 + t/n the contribution fromH = γ4 ∪ γ1 ∪ γ2 is

I := nθ−1

2π i

∫

H

(
1 + t

n

)−(n+1)

(−t)−θdt.

Extending the rectilinear parts of the contour H towards +∞ gives a new contour
H ′, and the process introduces only exponentially small terms in the integral. The
Hankel representation of the gamma function

1

2π i

∮

H ′
e−x (−x)−zdx = 1

Γ (z)

yields the leading term. It is the expansion of (1 + t/n)−(n+1) in descending powers
of 1/n that provides an explicit form of the ei . ��
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Fig. 2.5 The contour C
used in the proof of
Proposition 2.1

Remark 2.8 Hwang [46] obtained more general result by using singularity analysis
of the generating function. He showed that

|s(n, k)|
n! ∼ (log n)k−1

(k − 1)!n

[{
Γ

(
1 + k − 1

log n

)}−1

+ O

(
k

(log n)2

)]
, n → ∞,

which holds uniformly over the range 2 ≤ k ≤ η log n for any η > 0.

2.3.1 Extremes and Associated Partial Bell Polynomials

To discuss extreme sizes of parts in the exponential structures and the extension, the
Gibbs partition (2.21), the associated partial Bell polynomials introduced in [47] are
useful. They are obtained by restricting the supports to subsets of integer partitions.
We call the polynomials associated since they cover associated numbers appear in
combinatorics literature, such as the associated signless Stirling numbers of the first
kind and the associated generalized factorial coefficients [22, 33].

Definition 2.2 ([47]) Suppose the partial Bell polynomial Bn,k(w) defined by a
sequence of positive real numbers (wi ), i ∈ N (2.15). The associated partial Bell
polynomials are defined as follows.

Bn,k,(r)(w) :=
∑

λ�n,l(λ)=k,c<r (λ)=0

n!
n∏

i=1

(wi

i !
)ci 1

ci ! , n ≥ rk, (2.34)

B(r)
n,k(w) :=

∑

λ�n,l(λ)=k,c>r (λ)=0

n!
n∏

i=1

(wi

i !
)ci 1

ci ! , k ≤ n ≤ rk, (2.35)

with conventions Bn,k,(r)(w·) = 0, n < rk, B(r)
n,k(w·) = 0, n < k, n > rk, and

B(r)
n,k(w·) ≡ Bn,k(w·), n ≤ r + k − 1.
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Remark 2.9 If we define modified sequences, w(r)i = wi , i ≥ r , w(r)i = 0, i ∈ [r −
1], and w(r)

i = wi , i ∈ [r ], w(r)
i = 0, i > r , these associated partial Bell polynomials

are the partial Bell polynomials Bn,k(w(r)) and Bn,k(w(r)), respectively.

Example 2.17 (associated Striling number of the first kind) The associated partial
Bell polynomial Bn,k,(r)((· − 1)!) ≡ |sr (n, k)| is called the r -associated signless Stir-
ling number of the first kind [33], which is the number of permutations of [n] which
consist of k cycles whose lengths are not smaller than r . Other associated Stirling
numbers and generalization have similar interpretations.

Example 2.18 (associated signless Lah number) The associated partial Bell poly-
nomial B(r)

n,k(·!) ≡ |L(r)
n,k | is the associated signless Lah number, which appeared in

(1.8).

The associated partial Bell polynomials can be expressed in terms of the partial
Bell polynomials (Proposition 5 in [47] and Proposition 2.2 in [48]). Let us see an
expression for later discussion.

Proposition 2.2 For positive integer r and k, the associated partial Bell polynomi-
als, B(r)

n,k(w), satisfy, if r + k ≤ n ≤ rk,

B(r)
n,k(w) = Bn,k(w)

+
�(n−k)/r�∑

l=1

(−1)l

l!
∑

i1,...,il≥r+1,
i1+···+il≤n−k+l

Bn−(i1+···+il ),k−l(w)[n]i1+···+il

l∏

j=1

wi j

i j !

and B(r)
n,k(w) = Bn,k(w) if k ≤ n ≤ r + k − 1.

The associated partial Bell polynomials can be computed by solving recurrence
relations, which are given in Appendix A of [47]. One of the recurrence relation is
as follows. It also provides the partial Bell polynomials by setting r ≥ n − k + 1.

Proposition 2.3 The associated partial Bell polynomials (2.35) satisfy

B(r)
n+1,k(w) =

(r−1)∧(n−k+1)∑

i=0∨(n−rk+r)

(
n
i

)
wi+1B(r)

n−i,k−1(w), k ≤ n + 1 ≤ rk

with convention B(r)
j,0(w) = δ j,0, j ∈ N0. Here, a ∨ b := max(a, b) and a ∧ b :=

min(a, b).

Let us discuss distribution of extreme sizes of parts in the Gibbs partition (2.21).
They can be expressed as simple forms in terms of the associated partial Bell polyno-
mials. Let the descending ordered sizes of parts be denoted by (N(1), N(2), ..., N(l(Λ))).
By definitions of the associated partial Bell polynomials and the expression of the
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conditional probability measure given the length of partition (2.14), we have the
conditional distributions of extremes. The largest size follows

P(N(1) ≤ r |l(Λ) = k) = B(r)
n,k(w)

Bn,k(w)
,

n

k
≤ r ≤ n, (2.36)

and P(N(1) ≤ r |l(Λ) = k) = 0 for 1 ≤ r < n/k, while the smallest size follows

P(N(l(Λ)) ≥ r |l(Λ) = k) = Bn,k,(r)(w)

Bn,k(w)
, 1 ≤ r ≤ n

k
, (2.37)

and P(N(l(Λ)) ≥ r |l(Λ) = k) = 0 for r > n/k. Mixing with the distribution of the
length of partition (2.22), we obtain the marginal distributions of the extremes. For
the largest size, we have

P(N(1) ≤ r) =
n∑

k=�n/r�

vn,k B(r)
n,k(w)

Bn(v, w)
= Bn(v, w(r))

Bn(v, w)
, (2.38)

and for the smallest size, we have

P(N(l(Λ)) ≥ r) =
�n/r�∑

k=1

vn,k Bn,k,(r)(w)

Bn(v, w)
= Bn(v, w(r))

Bn(v, w)
, (2.39)

where the sequences w(r) and w(r) are defined in Remark 2.9. Note that the rightmost
hand sides of the expressions (2.38) and (2.39) can be computed by use of Faá di
Bruno’s formula (2.18).

2.3.2 Asymptotics

In this subsection some results on asymptotics of extreme sizes of parts in the Gibbs
partition (2.21) will be presented. More results are presented in [47]. We will con-
centrate on the Gibbs partitions (2.21) with infinite exchangeability (see Sect. 1.1
and Lemma 4.3), because of their special importance in statistical inferences. Nev-
ertheless, the methods used in this subsection will be applicable to Gibbs partitions
without infinite exchangeability. As we will see in Chap. 4, the Gibbs partitions with
infinite exchangeability can be characterized by the sequence

wi = (1 − α)i−1, i ∈ N, α < 1,

while the sequence (vn,k) will be discussed in Chap. 4.
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Let us prepare some asymptotic form of the generalized factorial coefficients
(2.25). See [47] for the derivations. For fixed positive integer k, we have

C(n, k;α)

n! ∼ (−1)n−k

(k − 1)!
α

Γ (1 − α)
n−1−α, α > 0 (2.40)

and
C(n, k;α)

n! ∼ (−1)n

Γ (−kα)k!n−1−kα, α < 0. (2.41)

as n → ∞.
Our discussion in this subsection only needs these results with k fixed. However,

for discussion in later chapters, let us prepare some more results on the asymptotics.
For α ∈ (0, 1) an asymptotic form

C(n, k;α)

n! ∼ (−1)n−k

(k − 1)! gα(s)αn−1−α, k ∼ snα, n → ∞,

follows immediately from the expression for the asymptotics of length of partition
(2.46) [49]. Here, gα(s) is the probability density of the Mittag-Leffler distribution
defined in Theorem2.1. Forα �= 0,Keener et al. [50] obtained an asymptotic form for
n � k → ∞ using a normal approximation of the distribution of length of partition.
Their expression is less explicit, however, useful for numerical computation.

Lemma 2.1 ([50]) For the generalized factorial coefficient of parameter α �= 0, the
generalized factorial coefficient satisfies

C(n, k;α)

n! ∼ 1

k!
(

x

x∗ − x

)k
(αx∗ − 1)n

√
2πnσ 2∗

√
α(x∗ − x)x

αx∗ − 1
,

k

n
→ x, (2.42)

as n � r → ∞, where

σ 2
∗ := sgn(α)

x − x∗

x∗2

(
x − α(x∗ − x)

αx∗ − 1

)

and x∗ solves

x = x∗
{
1 −

(
αx∗ − 1

αx∗

)α}
.

Here, x∗ is the unique positive or negative solution for α < 0 and α > 0, respectively.

Simple manipulations of the Riemann sums yields asymptotic forms of the asso-
ciated generalized factorial coefficient

Cr (n, k;α) := Bn,k,(r)((−α)·)(−1)n
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and that of the associated signless Stirling number of the first kind

|sr (n, k)| := Bn,k,(r)((· − 1)!).

For fixed integer k with 2 ≤ k < n/r and non-zero α, we have

Cr (n, k;α)

n! ∼ (−1)n

Γ (−kα)k!I
(k−1)
x,x (−α;−α)n−1−kα,

r

n
→ x <

1

k
, (2.43)

and |sr (n, k)|
n! ∼ 1

k!I
(k−1)
x,x (0; 0)n−1,

r

n
→ x <

1

k
. (2.44)

as n � r → ∞. Here, we used incomplete Dirichlet integrals of real parameters ρ,
ν, and m ∈ N

I (m)
p,q (ν; ρ) := Γ (ρ + mν)

Γ (ρ)Γ (ν)m

∫

Δm (p,q)

yρ−1
m+1

m∏

j=1

yν−1
j dy j

with convention

I (m)
p,q (0; ρ) :=

∫

Δm (p,q)

yρ−1
m+1

m∏

j=1

y−1
j dy j ,

where ym+1 := 1 − ∑m
i=1 yi . The support is the interior of them-dimensional simplex

Δm(p, q) := {(y1, ..., ym); p < yi , i ∈ [m], q < ym+1} ,

where

0 < q < 1, 0 < p <
1 − q

m
.

When either of ρ or ν is not positive, the integral over all of the simplex does not
exist.

The next proposition for the smallest size of parts given the length of partition fol-
lows immediately by substituting the asymptotic forms (2.33), (2.40), (2.41), (2.43),
and (2.44) into (2.37).

Lemma 2.2 ([47]) In an infinite exchangeable Gibbs partition, the smallest size of
parts given the length of partition satisfies

P(N(l(Λ)) ≥ r |l(Λ) = k) ∼ ωα(k; x),
r

n
→ x <

1

k
, 2 ≤ k <

n

r

as n � r → ∞ with k fixed, where
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ωα(k; x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

k
I (k−1)

x,x (0; 0)(log n)1−k, α = 0,

I (k−1)
x,x (−α;−α), α < 0,

Γ (−α)

Γ (−kα)

(−1)k−1

k
I (k−1)

x,x (−α;−α)n−(k−1)α, α ∈ (0, 1).

Remark 2.10 The distribution for α < 0 is the distribution of the smallest element
in the k-variate symmetric Dirichlet distribution. For α ∈ [0, 1) the smallest size of
parts tends to o(n) in probability.

Asymptotics of marginal distributions of extreme sizes of parts in an infinite
exchangeable Gibbs partition depend on the choice of the sequence (vn,k). Let us
take the Pitman partition in Example 2.16 as an example. That is vn,k = (θ)k;α . For
the Pitman partition many results on extreme sizes of parts have been obtained by
using probabilistic approaches (see Chap.5 of [9], Sect. 3.3 of [21], and Chaps. 2 and
3 of [44]). Let us see some reproductions of known results and a result obtained in
[47] using an analytic approach.

Before proceeding to the results on extreme sizes of parts, let us briefly summarize
behavior of the length of the Pitman partition. The probability mass function (2.22)
is now

P(l(Λ) = k) = θ k

(θ)n
|s(n, k)|, α = 0, θ > 0,

and

P(l(Λ) = k) = [−θ/α]k

[−θ ]n
C(n, k;α), α ∈ (0, 1), θ > −α.

For α < 0, θ = −mα, m ∈ N, the length of partition converges to m almost surely.
The asymptotics are given in the next theorem.

Theorem 2.1 ([49, 51]) In the Pitman partition, for α = 0 and θ > 0 the length of
partition satisfies

lim
n→∞

l(Λ)

log n
= θ, a.s. (2.45)

For 0 < α < 1 and θ > −α,

l(Λ)

nα
→ Sα, a.s. (2.46)

as n → ∞. Here, Sα is a strictly positive random variable with continuous density

P(Sα ∈ (s, s + ds]) = Γ (1 + θ)

Γ (1 + θ/α)
s

θ
α gα(s)ds

where gα(s) is the probability density function of a Mittag-Leffler distribution whose
p-th moment is Γ (1 + p)/Γ (1 + pα).
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Remark 2.11 The density of the Mittag-Leffler distribution satisfies (see Chap. 0 of
[21])

gα(s) = fα(s−1/α)

αs1+1/α
,

where fα(s) is the density of the α-stable distribution [52]

fα(s) = 1

π

∑

i≥0

(−1)i+1

i ! sin(iπα)
Γ (1 + iα)

s1+iα
(2.47)

The connection between the Pitman partition and the α-stable distribution will be
explained in Chap. 4.

Remark 2.12 For α = 0 and θ > 0, in addition to the law of large numbers (2.45),
Watterson showed the central limit theorem [53]. Namely,

l(Λ) − θ log n√
θ log n

converges to standard normal as n → ∞. Various generalizations and refinements
can be found in [9]. Yamato discussed improvements of the approximation in terms of
Edgeworth expansions andPoisson approximations [54, 55].Hansen [56] established
a functional limit theorem describing the counts of cycles up to nu ; the process

∑�nu�
i=1 Ci − uθ log n√

θ log n
, u ∈ [0, 1]

converges weakly to a standard Brownian motion in D[0, 1]. The L2(0, 1) conver-
gences of standardized processes for the counts of cycles up to n were also established
by Tsukuda [57].

Remark 2.13 Throughout this subsection we assume that θ is fixed. The cases that
θ grows with n have also been discussed in [58]. In the case of α = 0 and θ > 0,
Tsukuda [59] established Poisson approximations of the length of a partition and the
counts of small components in this setting. He [60] also showed that if θ/n2

� 0 as
n → ∞ the asymptotic normality of the length of a partition does not hold anymore.

For the largest size of parts, Proposition 2.2 is the key. Some manipulations of
the Riemann sums with the asymptotic form (2.41) yields the following result. The
proof in [47] seems to be more straightforward than the original proofs: Theorem 2
of [61] and Proposition 20 of [62].

Theorem 2.2 In the Pitman partition, the largest size of parts satisfies

P(N(1) ≤ r) ∼ ρα,θ (x) =
�x−1�∑

k=0

ρα,θ (k; x),
r

n
→ x,
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as n � r → ∞, where

ρα,θ (k; x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−θ)k

k! I
(k)
x,0 (0; θ), α = 0, θ > 0,

(−1)k
(

m
k

)
I

(k)
x,0 (−α; (k − m)α)1{mx>1}, α < 0, θ = −mα, m ∈ N,

(θ)k;α
αkk! I

(k)
x,0 (−α; kα + θ), α ∈ (0, 1), θ > −α,

Remark 2.14 The function ρ0,1(x−1) is known as Dickman’s function for the fre-
quency of smooth numbers in the number theory [40, 63]. The joint distribution of
the descending ordered proportion of parts for α ∈ (0, 1) was obtained by Handa
[64] as a property of the two-parameter Poisson–Dirichlet distribution, which will
be introduced in Chap. 4.

Remark 2.15 Here we assumed that θ is fixed. However, various interesting results
exist for large θ (see Chaps. 7 and 8 of [44]). For example, Griffiths [65] and Handa
[64] showed that for α ∈ [0, 1) and θ > −α the Gumbel distribution appears as the
limit law.

Theorem2.2 shows that the largest size of parts is asymptotically O(n) irrespective
of α. In contrast to the behavior of the largest size, the asymptotic behavior of the
smallest size heavily depends on α.

Let us begin with seeing the behavior in the regime of n � r . By using (2.32), we
have an asymptotic form

vn,k

Bn(v, w)
= (θ)k;α

(θ)n
∼ (θ)k;αΓ (θ)

(n − 1)! n−θ {1 + O(n−1)} (2.48)

as n → ∞ for fixed θ . Substituting the asymptotic forms (2.43), (2.44), and (2.48)
into (2.39), we have the following result.

Theorem 2.3 In the Pitman partition, for α = 0 and θ > 0 the smallest size of parts
satisfies

P(N(l(Λ)) ≥ r) ∼ Γ (θ)(xn)−θωθ (x),
r

n
→ x,

as n � r → ∞, where

ωθ(x) := xθ

�x−1�∑

k=1

θ k

k!I
(k−1)
x,x (0; 0).

For α < 0 and θ = −mα, m ∈ Z,

P(N(l(Λ)) ≥ r) ∼ I (m−1)
x,x (−α;−α)1{mx<1},

r

n
→ x,
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as n � r → ∞. For α ∈ (0, 1) and θ > −α,

P(N(l(Λ)) ≥ r) ∼ Γ (1 + θ)

Γ (1 − α)
n−θ−α, n � r → ∞.

Remark 2.16 This result for the case ofα = 0 and θ > 0was obtainedbyPanario and
Richmond in Theorem3 of [42] by an analytic combinatorics approach different from
the method here. Moreover, they obtained marginal distributions of the descending
ordered sizes of parts. Arratia et al. (Lemma 5.5 of [9]) obtained this result by
a probabilistic approach using the conditioning relation (2.5) and the logarithmic
condition (2.30).

Remark 2.17 The function ω1(x−1) is known as Buchstab’s function for the fre-
quency of rough numbers in number theory [40, 66].

According to Theorem 2.3, the smallest size of parts is o(n) in probability if
α ∈ [0, 1). Moreover, the distribution degenerates for α ∈ (0, 1) and θ > −α. In
contrast to the case of the largest size of parts, we have no analog of Buchstab’s
function for α ∈ (0, 1) and θ > −α, namely, the partition is always “smooth”. More
precise estimate is inevitable for further discussion of the smallest size of part. For
α = 0 and θ > 0, the asymptotic independence (2.31) immediately gives the next
theorem [67]. This result was obtained by Panario and Richmond in Theorem 3
of [42].

Theorem 2.4 In the Ewens sampling formula, the smallest size of parts satisfies

P(N(l(Λ)) ≥ r) ∼ e−θhr−1 , n → ∞, r = o(n) ≥ 2,

where hr = ∑r
i=1 i−1. Moreover, P(l(Λ) ≥ r) ∼ r−θe−γ θ as r → ∞, where γ is the

Euler-Mascheroni constant.

For α ∈ (0, 1) and θ > −α the Pitman partition is not in the exp-log class and
does not satisfy the conditioning relation (2.5). Nevertheless, the following theorem
can be proven using singularity analysis, as the proof for Proposition 2.1.

Theorem 2.5 ([47]) In the Pitman partition with α ∈ (0, 1) and θ > −α, the small-
est size of parts satisfies

P(N(l(Λ)) ≥ r) ∼ Γ (1 + θ)

Γ (1 − α)

{
r−1∑

i=1

pα(i)

}−1− θ
α

n−θ−α, n → ∞,

for r = o(n) ≥ 2, where

pα(i) :=
(

α

i

)
(−1)i+1, i ∈ N (2.49)
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is probability mass function of Sibuya’s distribution [68, 69]. Moreover,

P(N(l(Λ)) ≥ r) ∼ Γ (1 + θ)

Γ (1 − α)
n−θ−α, r → ∞.

Remark 2.18 Theorem 2.5 implies that the smallest size of parts converges to one
in probability. This theorem and Theorem 2.3 tell us more. Since

P(N(l(Λ)) = n) ∼ Γ (1 + θ)

Γ (1 − α)
n−θ−α, n → ∞,

we have P(r ≤ l(Λ) < n) = o(n−θ−α) as n, r → ∞, r � n. Therefore, apart from
the mass at n, the probability mass concentrates around o(n).

Remark 2.19 It is known that asymptotic behavior of smallest sizes of part in an
infinite exchangeable random partition has universal properties. The early works are
[70, 71]. Lemma 3.11 of [21] is as follows. The scaled length of partition

Tα := lim
n→∞ l(Λ)n−α, α ∈ (0, 1).

has the almost sure limit, which is strictly positive and finite, if and only if the
decreasing ordered proportion of parts (P(1), P(2), ...) satisfies

P(i) ∼ Zi−1/α, i → ∞,

for a positive random variable 0 < Z < ∞, where Z−α = Γ (1 − α)Tα and the joint
distribution of size indices satisfy

(C1, C2, ...) ∼ (pα(1), pα(2), ...)Tαnα, n → ∞, (2.50)

where pα( j) is the Sibuya’s distribution (2.49). Theorem 2.1 implies that for the
Pitman partition we identify the limiting random variable as Tα = Sα . Yamato and
Sibuya [72] obtained the joint distribution (2.50) by computing the moments.
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Chapter 3
A-Hypergeometric Systems

Abstract This chapter introduces the A-hypergeometric system of linear partial
differential equations. It presents the known results of the A-hypergeometric sys-
tem with a two-row matrix A and explains its relationship with integer partitions.
The A-hypergeometric distribution is a class of discrete exponential families whose
normalization constant is the A-hypergeometric polynomial. The A-hypergeometric
distribution emerges in multinomial sampling of log-affine models and is condi-
tional on sufficient statistics. After presenting the properties of the A-hypergeometric
distribution, the chapter discusses the maximum likelihood estimation of the A-
hypergeometric distribution of the two-rowmatrixA. Especially, using the properties
of partition polytopes, it proves the nonexistence theorem of themaximum likelihood
estimator. Finally, it introduces holonomic gradient methods (HGMs), which numer-
ically solve holonomic systems without combinatorial enumeration, and applies a
difference HGM to the A-hypergeometric polynomials of a two-row matrix A.

Keywords A-hypergeometric system · Discrete exponential family
Gröbner basis · Holonomic gradient method · Holonomic system
Integer partition ·Maximum likelihood estimation ·Monomial curve
Newton polytope · Partition polytope

3.1 Preliminaries

This section prepares materials concerning A-hypergeometric systems to be used in
later discussion. A lucid and comprehensive discussion ofA-hypergeometric systems
is provided in [1]. Backgrounds of computational algebra are given in [2–4], and
various statistical applications can be found in [4–7].

Consider a nonnegative integer-valued d × m matrix A. If there exists a vector c
for which c�A = (1, ..., 1), we say A is homogeneous. In other words, the row span
of A contains the vector (1, ..., 1). Throughout this monograph, we will assume that
A is homogeneous. The polynomial ring in x over C is denoted by C[x]. The toric
ideal is defined as follows.
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Definition 3.1 The binomial ideal

IA =
〈
xz+ − xz−; z ∈ KerA ∩ Z

m
〉
⊂ C[x],

where xz =∏
i xzi

i , z
+
i := max(zi, 0), and z−i := max(−zi, 0), is called the toric ideal

of A.

The zero set of IA determines a toric variety of dimension d − 1 in projective
space Pm−1.

The reduced Gröbner basis of a toric ideal can be computed using the following
algorithm (Algorithm 4.5 of [2]) based on the Buchberger’s algorithm.

Algorithm 3.1 ([2]) Let the toric ideal JA of a polynomial ring C[x, t] of variables
x1, x2, ..., xn and t1, t2, ..., td be

JA = 〈x1 − ta1 , x2 − ta2 , ..., xn − tan〉, tai :=
d∏

j=1
t
(ai)j

j ,

where ai is the i-th column vector of an integer-valuedmatrixA. Let G be the reduced
Gröbner basis of JA with respect to an elimination term order≺with {t·} 	 {x·}. Then,
the set G ∩ C[x] is the reduced Gröbner basis of the toric ideal IA of the polynomial
ring C[x] with respect to ≺.
Example 3.1 Let us obtain a reduced Gröbner basis of the matrix

A =
(
0 1 2 3
1 1 1 1

)
.

Consider the toric ideal JA of a polynomial ring C[x, t] of variables x1, x2, x3, x4,
t1, t2;

JA = 〈f1 = x1 − t2, f2 = x2 − t1t2, f3 = x3 − t21 t2, f4 = x4 − t31 t2〉.

Weuse the elimination termorder≺ by the reverse lexicographic termorderwith t1 	
t2 	 x1 	 x2 	 x3 	 x4. The underlined terms in the above expression are the initial
monomials. The Gröbner basis with respect to ≺ can be computed by Buchberger’s
algorithm.We obtain the reduced Gröbner basis of JA, and the reduced Gröbner basis
of the toric ideal IA is {x1x4 − x2x3, x2x4 − x23, x1x3 − x22}.

The Weyl algebra of dimension m is the free associative C-algebra

D := C〈x1, ..., xm, ∂1, ..., ∂m〉

modulo the commutation rules

xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj = xj∂i for i 
= j, and ∂ixi = xi∂i + 1.
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Gel’fand et al. [8] defined a class of functions called GKZ-hypergeometric functions,
also referred to as A-hypergeometric functions.

Definition 3.2 Let A be a nonnegative integer-valued d × m matrix of rank d , and
let b ∈ C

d be a fixed vector. The A-hypergeometric system HA(b) is the following
system of linear partial differential equations for an indeterminate function f (x):

Li :=
m∑

j=1
aijθj − bi, i ∈ [d ], (3.1)

∂c+ − ∂c− , c+ − c− ∈ kerA ∩ Z
m, (3.2)

where θj := xj∂j (the Euler derivative). We regard HA(b) as a left ideal in the Weyl
algebra D and call it the A-hypergeometric ideal. The second group of annihilators
generates the toric ideal of A.

Definition 3.3 The series solution of the A-hypergeometric function around the ori-
gin, given by

ZA(b; x) :=
∑

{c;Ac=b,c∈Nm}

xc

c! , xc :=
m∏

i=1
xci

i , c! :=
m∏

i=1
ci! (3.3)

is called the A-hypergeometric polynomial. As a convention, we set ZA(b; x) = 0 if
b /∈ ANm

0 =: N0A.

The A-hypergeometric system is a holonomic system and the A-hypergeometric
idealHA(b) is a holonomic ideal. The definitions and backgrounds around holonomic
systems are presented in Sect. 1.4 of [1]. In the following discussion, it can be more
efficient to replace the Weyl algebra by the ring of differential operators

R := C(x1, ..., xm)〈∂1, ..., ∂m〉.

This is the C-algebra subject to the commutative relations

∂i • c(x) = c(x) • ∂i + ∂c(x)

∂xi
, c(x) ∈ C(x).

For a holonomic ideal I , RI is a zero-dimensional ideal in R and rank(I) =
dimC(R/RI) (Corollary 1.4.14 in [1]). A Gröbner basis of RI with respect to any
term order on R determines a set of standard monomials,

{∂-monomials not in in≺(RI)} = {∂p(1), ..., ∂p(rank(I))}, p ∈ N
m
0 .

Here, we fix the term order as reverse lexicographic with ∂1 	 ∂2 	 · · · 	 ∂m. In this
monograph, the next result (Theorem 1.4.19 of [1]) is needed.
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Theorem 3.1 Let I be a holonomic ideal and U is a simply connected domain in
C\Sing(I), whereSing(I) is the singular locus of I . Consider the system of differential
equations I • f = 0, i.e., l • f = 0, l ∈ I , for holomorphic functions f on U. The
dimension of the complex vector space of solutions is equal to rank(I).

According to this theorem, the number of independent solutions of an
A-hypergeometric system is rank(HA(b)). The totality of the standard monomials
provides a solution basis of the A-hypergeometric system. The lower bound of the
rank is known (Theorem 3.5.1 of [1]).

Theorem 3.2 ([1]) Let A be a homogeneous integer-valued d × m matrix of rank
d ≥ 2. For any vector b ∈ C

d , rank(HA(b)) ≥ vol(A).

Other independent solutions can be systematically obtained by perturbing the
vector b. Thismethod generalizes themethod of Frobenius for finding series solutions
of second-order ordinary differential equations (Chap. VI, supplementary note I
of [9]). The procedure, which is described in Sects. 3.4 and 3.5 of [1], in Sect. 6.12
of [4], and used in the proof of Theorem 3.2 in [1], is briefly summarized here. The
A-hypergeometric system is formally solved as

φv(x) =
∑

{u;Au=0,u∈Zm}

[v]u−
[u + v]u+

xv+u,

where [v]u− :=
∏

i;ui<0[vi]−ui and [u + v]u+ :=
∏

i;ui>0[vi + ui]ui . Here, v ∈
(C\Z<0)

m are fake exponents of HA(b) with respect to a weight vector w ∈ R
n.

These exponents satisfyAv = b and
∏

i ∂
ei
i xv = 0, ∀∏i ∂

ei
i ∈ inw(IA), where inw(IA)

is the initial ideal of the toric ideal IA with respect to w (see Proposition 3.1.5 in [1]
for the definition). In particular, when b ∈ N0A, there is a unique exponent v in N

m
0

and φv(x) is a constant multiple of the A-hypergeometric polynomial (Lemmas 3.4.9
and 3.4.10 in [1]). Choosing a generic vector b′ in C

d , we then write v + εv′ as the
corresponding exponent of HA(b + εb′). The hypergeometric series

φv+εv′(x) =
∑

{u:Au=0,u∈Zm}

[v + εv′]u−
[u + v + εv′]u+

xu+v+εv′

provides an independent solution which is annihilated by HA(b).

3.1.1 Results of a Two-Row Matrix

A homogeneous two-row matrix A admits many explicit results for an
A-hypergeometric system. This subsection summarizes the results used in the next
section, following the presentation in [10]. Many of the results were obtained by
Cattani et al. [11] and extensively discussed in Sect. 4.2 of [1].
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Let 0 < i1 < i2 < · · · < im−1 be relatively prime integers (the greatest common
divisor is one). Without loss of generality, we can assume the following form of the
two-row matrix A:

A =
(
0 i1 i2 · · · im−1
1 1 1 · · · 1

)
, m ≥ 3. (3.4)

The convex hull of the column vectors is a one-dimensional polytope with a volume
vol(A) of im−1. The toric ideal IA determines a degree im−1 monomial curve (toric
curve) in the projective space Pm−1. The monomial curve is called normal if and only
if im−1 = m − 1. In this case, the monomial curve is the embedding of P1 in P

m−1
and is called the rational normal curve. The rational normal curve is the image of a
Veronese embedding P1 → P

m−1 which acts on the homogeneous coordinates (s : t)
as

(s : t) �→ (sm−1 : sm−2t : ... : tm−1).

The algebraic geometry is explained in [12].

Example 3.2 The toric ideal IA in Example 3.1 determines the rational normal curve,
which is specifically called the twisted cubic. This curve is the zero set of the three
homogeneous polynomials x1x4 − x2x3, x2x4 − x23, and x1x3 − x22.

Note that a homogeneous two-rowmatrix generates integer partitions. The matrix
A in (3.4) with im−1 = m − 1 and the vector b ∈ N0A determine an integer partition
because Ac = b is equivalent to

c1 + · · · + cm = b2, 1 · c1 + 2 · c2 + · · · + m · cm = b1 + b2,

which are the requisite conditions of the size index ci := #{j; λj = i} of the parti-
tion λ � (b1 + b2) with l(λ) = b2. In general, (3.4) determines the partitions with
forbidden summands (see Sect. 2.6 of [13]) satisfying

1 · c1 + (i1 + 1)ci1+1 + · · · + (im−1 + 1)cim+1 = b1 + b2

with l(λ) = b2. The associated partial Bell polynomials B(r)
n,k(w) defined in Defini-

tion 2.2 are equal to n! times the A-hypergeometric polynomial with

A =
(
0 1 2 · · · (r − 1) ∧ (n − k)

1 1 1 · · · 1

)
, b =

(
n − k

k

)
, (3.5)

where xi = wi/i!. However, the identity of the associated partial Bell polynomials
Bn,k,(r)(w) is not evident. Nevertheless, it can be shown [10] that they are proportional
to the A-hypergeometric polynomial with

A =
(
0 1 2 · · · n − kr
1 1 1 · · · 1

)
, b =

(
n − kr

k

)
.
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The rank of the A-hypergeometric ideal of a two-row matrix is completely deter-
mined. The following theorem is Theorem 3.7 in [11] and Theorem 4.2.4 in [1].

Theorem 3.3 ([1, 11]) For a homogeneous two-row matrix A, the rank of the A-
hypergeometric ideal is

rank(HA(b)) =
{
vol(A), b /∈ E (A),

vol(A)+ 1, b ∈ E (A),

where

E (A) := ((N0A + Za1) ∩ (N0A + Zam))\N0A, Zai := {λai : λ ∈ Z}.

An explicit solution basis for an arbitrary A-hypergeometric system with a two-
row matrix is given in [11]. The following lemma (Proposition 1.2 and Lemma 1.3
in [11]) is useful for our discussion.

Lemma 3.1 ([11]) For a homogeneous two-row matrix A, let ϕ be a local holomor-
phic solution of the A-hypergeometric system HA(b). If ϕ is a polynomial, then it
is a Laurent polynomial. Moreover, when the vector b is b ∈ N0A, the only Laurent
polynomials are the constant multiples of the A-hypergeometric polynomial (3.3).

Example 3.3 For amatrixA (3.4) with im−1 = m − 1, E (A) = φ and rank(HA(b)) =
vol(A) = m − 1.

Example 3.4 Let us consider an example with E (A) 
= φ. The same example was
presented as Example 4.3.9 in [1], one of Examples 1.8 in [11], and the “running
example” in [14]

A =
(
0 1 3 4
1 1 1 1

)
.

As vol(A) = 4, rank(HA(b)) is 4 or 5. For the vector b = (3, 2)� /∈ E (A)

rank(HA(b)) = vol(A) = 4. Moreover, as b ∈ N0A, the multiples of the
A-hypergeometric polynomial ZA(b) = 5!x1x4 are the only Laurent solutions of the
A-hypergeometric system. For the vector b′ = (2, 1)� ∈ E (A), rank(HA(b′)) = 5.As
b′ /∈ N0A theA-hypergeometric polynomial is not a solution of theA-hypergeometric
system. Two Laurent polynomial solutions are x22/x1 and x24/x3.

Let us summarize the above observations.

Proposition 3.1 For a homogeneous two-row matrix A and given b ∈ N0A, the
unique polynomial solutions of the A-hypergeometric system HA(b)

are constant multiples of the A-hypergeometric polynomial (3.3). Especially, the
A-hypergeometric polynomial with (3.5) is a constant multiple of the associated
partial Bell polynomial (2.35).



3.1 Preliminaries 51

Example 3.5 Let us consider the A-hypergeometric system with (3.5) and r =
n. The explicit solution basis for n = k + 2 ≥ 4 is obtained as follows. The A-
hypergeometric ideal HA(b) consists of the annihilators

L1 = θ2 + 2θ3 − 2, L2 = θ1 + θ2 + θ3 − n + 2, L := ∂1∂3 − ∂2
2 ,

and rank(HA(b)) = 2 (see Example 3.3). Suppose that A-hypergeometric ideal anni-
hilates a function g(x1, x2, x3). Under the annihilators L1 and L2, there exists a uni-
variate function f (y) such that

g(x1, x2, x3) = xn−4
1 x22f (y), y := x1x3

x22
,

and the annihilator L encodes the Gauss hypergeometric equation:

L • g(x1, x2, x3) = 4xn−4
1 {y(1− 4y)f ′′(y)+ (n − 3+ 2y)f ′(y)− 2f (y)} = 0.

Therefore, we have the hypergeometric polynomial

f (y) = 2F1(−1,−1/2; n − 3; 4y) = 1+ 2y

n − 3
,

and the A-hypergeometric polynomial is given by

ZA(b; x) = xn−4
1 x22

2(n − 4)!
(
1+ 2y

n − 3

)
, (3.6)

which is n! times the partial Bell polynomial Bn,n−2(x··!). There exists another inde-
pendent solution. It is a logarithmic solution obtainable by the perturbation method
introduced at the end of Sect. 3.1. For a weight vector w = (1, 0, 0), the reduced
Gröbner basis of the toric ideal is {∂1∂3 − ∂2

2 }. Solving v1v3 = 0 and Av = b, we
obtain the fake exponents v1 = (n − 4, 2, 0) ∈ N

3
0 and v2 = (0, 2n − 6, 4− n). The

unique polynomial solution v1 around the origin gives (3.6). For the other solution,
we take b′ = (0, 1)� and obtain the corresponding exponents of HA(b + εb′) as

v′1 = v1 + (1, 0, 0)�ε, v′2 = v2 + (0, 2,−1)�ε.

The logarithmic solution is then obtained by canceling the term of order ε−1:

lim
ε→0

{
1

2ε

φv′1(x)

(n − 4)! −
(n − 5)!
(2n − 6)! (−1)

nφv′2(x)

}
, n ≥ 5.
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The result is

ZA(b; x) log y + x2n−6
2 x4−n

3

{
yn−2

(n − 2)! 3F2

(
3

2
, 1, 1; n − 1, 3; 4y

)

− y

(n − 3)(n − 3)! −
(n − 5)!
(2n − 6)! (−1)

n
n−5∑
i=0

(3− n)i(7/2− n)i

(5− n)i

(−4y)i

i!

}
. (3.7)

This cancelation is inapplicable when n = 4 because the two fake exponents degen-
erate; however, a similar derivation for n ≥ 5 gives the result for n = 4. Replacing
the last term in (3.7) by (−4y) gives the result.

Let us see the relationship between the A-hypergeometric system and the partial
Bell polynomials explained in Sect. 2.2. The exponential generating function of the
partial Bell polynomials (2.17) can be recast as

ZA(b; x) = [ξ n] {W (ξ)}k
k! , W (ξ) =

∑
i≥1

xiξ
i. (3.8)

By an argument on the de Rham cohomology, the A-hypergeometric ideal HA(b)

eliminates the A-hypergeometric integral (see Sect. 5.4 of [1]). For a homogeneous
two-row matrix A and an integer-valued vector b, the integral is

ΦC(A, b; x) := 1

2π
√−1

∫

C
f (ξ, x)b2ξ−b1−1dξ, f (ξ, x) :=

m∑
i=1

xiξ
a1i .

If the cycle C belongs to the homology group H1(ξ ∈ C\{0}|f (ξ, x) 
= 0), this
expression is an element of the solution basis, because HA(b) annihilatesΦC(A, b; x)
by Stokes’ theorem (see Theorem 5.4.2 of [1]). The expression can be regarded as a
pairing of cycle C and the one-form f b2ξ−b1−1dξ . For the A-hypergeometric system
with (3.5) and r = n, let C be a cycle around the origin. The residue of the origin
gives

ΦC(A, b; x) = [ξ n]
{

n−k+1∑
i=1

xiξ
i

}k

,

which is a constant multiple of (3.8). Here, the vector b is resonant (Condition
2.9 of [8]), and the other elements of the solution basis cannot be represented in
integral form. Nevertheless, they can be obtained by perturbing the vector b, as we
demonstrated in Example 3.5.

Remark 3.1 A complex-valued vector b requires twisted de Rham theory, which
considers cycles of singular simplices with coefficients. As shown in [1, 8], the
A-hypergeometric integral gives the full solution basis.
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For later discussions, let us prepare some results for a matrix A of the form (3.4)
with im = m − 1. The following assertion can be straightforwardly confirmed by
computing the S-polynomials.

Proposition 3.2 A minimal Gröbner basis of the toric ideal IA, where the matrix A
of the form (3.4) with im−1 = m − 1 ≥ 2, is

GA = {∂i∂j − ∂i+1∂j−1; 1 ≤ i < j ≤ m, i + 2 ≤ j}.

Remark 3.2 The reduced Gröbner basis can be obtained by the minimal Markov
basis. The reduced Gröbner basis with m = 4 for the polynomial ring is given in
Example 3.1.

With the aid of GA, we obtain the standard monomials.

Proposition 3.3 ([10]) For a matrix A of the form (3.4) with im−1 = m − 1 ≥ 2 and
any vector b ∈ C

2, the totality of the standard monomials of the A-hypergeometric
ideal HA(b) is {1, ∂i; 3 ≤ i ≤ m}.

3.2 A-Hypergeometric Distributions

This section introduces the A-hypergeometric distributions defined by Takayama, et
al. [15]. The A-hypergeometric distribution is a class of discrete exponential fam-
ilies, which naturally appears under the exchangeability assumption, and in multi-
nomial sampling from discrete exponential families called log-affine models. An
A-hypergeometric distribution is the conditional distribution given the sufficient
statistics.

Definition 3.4 ([15]) Let A be a homogeneous d × m-matrix of rank d with non-
negative integer entries, and let b ∈ N0 be a fixed vector. The A-hypergeometric
distribution of the matrix A and vector b is the discrete probability mass function of
the count vector (c1, ..., cm),

pA,b(c; x) := 1

ZA(b; x)

xc

c! , x ∈ R
m
>0, (3.9)

where ZA(b; x) is the A-hypergeometric polynomial defined in Definition 3.3, and
the support is the b-fiber of matrix A, namely, Fb(A) := {c;Ac = b}.

The log-likelihood is given by

�(c; ξ) =
m∑

i=1
(ξici − log ci!)− ψ(ξ), ξi := log xi ∈ R, i ∈ [m], (3.10)
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where ψ(ξ) := logZA(b; eξ ). As the natural parameter space {ξ ;ZA(b; eξ ) < ∞} is
open, the probability mass function (3.9) is regular [16, 17].

We now derive the probability mass function (3.9). Consider that among m cate-
gories, ti is a category of the i-th observation in a sample of size n. The count vector of
sample (t1, ..., tn) is (c1, ..., cm), ci := #{j; tj = i}, where the homogeneity condition
is c1 + · · · + cm = n. The homogeneity condition fixes the total number of counts as
n. For an n-exchangeable sequence (T1, ..., Tn) of random variables, we have

P(C1 = c1, ..., Cm = cm) = n!
c1! · · · cm!P(T1 = t1, ..., Tn = tn).

With this expression, the count vector can be modeled as follows. Let us assume

P(C = c) = n!
c!

m∏
i=1
{pi(ξ)}ci , (3.11)

where each pi(ξ) follows a discrete exponential family as

log pi(ξ) =
d+g∑
j=1

ajiξj − φi(ξ) ⇔ pi(ξ) = e−φi(ξ)

d+g∏
j=1

x
aji

j (3.12)

with parameters (ξ1, ..., ξd , ξd+1, ..., ξd+g). This model is called a log-affine model
or a toric model. Substituting (3.12) into (3.11), we have the unconditional model:

P(C = c) = n!
c! exp

⎧
⎨
⎩

d+g∑
j=1

ξjbj −
m∑

i=1
φi(ξ)

⎫
⎬
⎭ . (3.13)

This probability mass function is a discrete exponential family, where (b1, ..., bd+g)

are sufficient statistics for the parameters (ξ1, ..., ξd+g) satisfying

bj =
m∑

i=1
ajici, j ∈ [d + g].

The above equations for j ∈ [d ] constitute the condition Ac = b in the definition of
the A-hypergeometric polynomial, and the conditional distribution is

P(C = c|AC = b) ∝ 1

c! exp
⎧
⎨
⎩

d+g∑
j=d+1

ξjbj

⎫
⎬
⎭ = xc

c! , log xi =
d+g∑

j=d+1
ajiξj.

Hence, we conclude that pA,b(c; x) = P(C = c|AC = b).
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The above parameters (ξ1, ..., ξd ) are regarded as the nuisance parameters. A
typical statistical application is the similar test, in which the rejection probability
under the null hypothesis does not depend on the nuisance parameters. When we
know the sufficient statistics for the nuisance parameters, the nuisance parameters
are excluded from the conditional distribution. Hence, the conditional test becomes
a similar test [18].

Example 3.6 (Poisson regression) In Sect. 1.2.2, we discussed a goodness-of-fit test
in m-level univariate Poisson regression. As Ci ∼ Po(μi), where μi = exp(α + βi)
with i ∈ [m], we have

P(C1 = c1, ..., Cm = cm) = exp

(
−αm + β

m(m + 1)

2

)
exp(αk + βn)

c! ,

where k = c1 + · · · + cm and n = 1 · c1 + · · · + m · cm are the sufficient statistics.
Whenwe are interested in the fitting only, the parameters α and β are both considered
as nuisance parameters. Then, given sufficient statistics, the conditional distribution
is an A-hypergeometric distribution:

P(C1 = c1, ..., Cm = cm|N (C) = n, K(C) = k) = 1

ZA(b; 1·)
1

c! ,

where

A =
(
1 2 · · · m
1 1 · · · 1

)
, b =

(
n
k

)
,

K(C) := C1 + · · · + Cn, and N (C) := 1 · C1 + 2 · C2 + · · · n · Cn. Here, the
A-hypergeometric polynomial ZA(b; 1·) is an n!−1 multiple of the associated signless
Lah number in Example 2.18.

Example 3.7 (Two-way contingency tables) Let us consider a 2× 2 contingency
table.

n11 n12 n1·
n21 n22 n2·
n·1 n·2 n··

The standard model of counts is (N11, N12, N21, N22) ∼ Multi(p11, p12, p21, p22).
Under the parameterization

ψ1 := log
p12
p22

, ψ2 := log
p21
p22

, λ := log
p11p22
p12p21

,

we have

P(N = n) = n..!
n11!n12!n21!n22!

× exp
{
n11λ+ n1·ψ1 + n·1ψ2 − n·· log

(
1+ eψ1 + eψ2 + eλ+ψ1+ψ2

)}
.
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We are usually interested in the odds ratio y = eλ, regardingψ1 andψ2 as the nuisance
parameters. The total number of counts n is fixed, so n1· and n·1 are sufficient statistics,
and the conditional distribution of the table with fixed marginal sums is free of the
nuisance parameters:

P(N11 = n11|N·· = n··, N1· = n1·, N·1 = n·1) = 1

ZA(b; x)

yn11

n11!n12!n21!n22! .

This probability mass function is the A-hypergeometric distribution with

A =

⎛
⎜⎜⎝
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ , c =

⎛
⎜⎜⎝

n11
n12
n21
n22

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

n1·
n2·
n·1
n·2

⎞
⎟⎟⎠ , x =

⎛
⎜⎜⎝

y
1
1
1

⎞
⎟⎟⎠ .

Here, the A-hypergeometric polynomial ZA(b; x) is proportional to the Gauss hyper-
geometric polynomial

2F1(−n1·,−n·1, n − n1· − n·1 + 1; y) =
∑
i≥0

(−n1·)i(−n·1)i

(n − n1· − n·1 + 1)i

yi

i! .

This A-hypergeometric distribution is called the generalized hypergeometric distri-
bution.Under the null hypothesis y = 1, it reduces to the hypergeometric distribution,
defined for tables with independence between rows and columns. The similar test
based on the conditional distribution is called Fisher’s exact test. The hypergeometric
series of type (r, r + c) [19] is defined as

F(α, β, γ ; y) =
∑

n

∏r−1
i=1 (ni· − nic)αi

∏c−1
j=1 (n·j − nrj)βj

(
∑r−1

i=1
∑c−1

j=1 nij)γ

r−1∏
i=1

c−1∏
j=1

yij
nij

nij! , (3.14)

where (nij) is a (r − 1)× (c − 1) matrix with nonnegative integer entries, and y is
a (r − 1)× (c − 1) matrix with complex number entries. The normalizing constant
of a r × c (r, c ≥ 2) contingency table with fixed marginal sums can be shown to be
proportional to a hypergeometric polynomial of type (r, r + c) with parameters

α = (−n1·, ...,−nr−1,·), β = (−n·1, ...,−n·,c−1), γ = n −
r−1∑
i=1

ni· −
c−1∑
j=1

n·j + 1

(3.15)
and variables

yij = pijprc

picprj
, i ∈ [r − 1], j ∈ [c − 1]. (3.16)
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The conditional distribution of the table with fixed marginal sums is the
A-hypergeometric distribution. The probability mass function is given by

1

ZA(b, x)

r−1∏
i=1

c−1∏
j=1

yij
nij

nij! ,

with

A =
(

Er ⊗ I ′c
I ′r ⊗ Ec

)
, c = (n11, ..., n1c, n21, ..., n2c, ..., nrc)

�, b = (n1·, ..., nr·, n·1, ..., n·c)�.

Here, the A-hypergeometric polynomial ZA(b; x) is proportional to the above-
described (r, r + c)-hypergeometric polynomial.

Example 3.8 (Exponential structures) In Sect. 2.2 we discussed the multiplicative
measure on partitions induced by the exponential structure (2.16). The probability
mass function of this measure is given by

μn(λ) = n!
Bn(w)

xc

c! , xi = wi

i! , λ ∈Pn,

where the size index of partition λ is given by ci(λ) = #{j; cj(λ) = i}. Recall that
this distribution satisfies the conditioning relation

P(C1 = c1, ..., Cn = cn|N (C) = n)

with Ci ∼ Po(xiζ
i) for some ζ > 0. Given the length of partition (2.14), the condi-

tional distribution can be written as

P(C1 = c1, ..., Cn = cn|N (C) = n, K(C) = k) = 1

ZA(b; x)

xc

c! , λ ∈Pn,k ,

where

A =
(
1 2 · · · n
1 1 · · · 1

)
, b =

(
n
k

)
.

Hence, the conditional distribution is an A-hypergeometric distribution. Here, n!ZA

(b; x) is the partial Bell polynomials Bn,k(w) defined in (2.15). For n = k + 2, we
have

ZA(b; x) ∝ 2F1(−1,−1/2, n − 3; 4y) = 1+ 2y

n − 3
, y := x1x3

x22
,

as shown in Example 3.5. Note that the conditional probability measure of a Gibbs
partition with given length has the same expression.
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A-hypergeometric polynomials (3.3) satisfy the contiguity relation [20]

θiZA(b; x) = xiZA(b − ai; x), i ∈ [m], (3.17)

where ai is the i-th column vector of the matrix A. The moments are given by

E(Ci) = ∂ξψ(ξ) = θiZA(b; x)

ZA(b; x)
= ZA(b − ai; x)

ZA(b; x)
xi. i ∈ [m]. (3.18)

The moments satisfy the polynomial constraint AE(C) = b. Therefore, the A-
hypergeometric distributions clearly comprises the algebraic exponential family
defined and studied by Drton and Sullivant [21].

The following proposition generalizes Proposition 4.2 of [10] and Theorem 2.5
in [22] for the Dirichlet-multinomial distribution (4.10). It directly follows from
the derivation of the A-hypergeometric distribution introduced at the beginning of
Sect. 3.2, and from the Lehmann–Scheffé theorem [23].

Proposition 3.4 For the A-hypergeometric distribution defined in Definition 3.4,
the unique minimum variance unbiased estimator (UMVUE) of the joint factorial
moments under the unconditional model (3.13) is given by

E

[
n∏

i=1
[Ci]ri |AC = b

]
= ZA(b −∑m

i=1 riai; x)

ZA(b; x)
xrI{b−∑m

i=1 riai≥0}.

If the vector v ≥ 0, all elements of v are nonnegative.

The expression (3.18) implies that the moments are invariant under a torus action:

xj �→ xj

d∏
i=1

s
aij

i , j ∈ [m]. (3.19)

In other words, ξ − ξ ′ ∈ ImA� have the same moment. The background of the torus
action is explained in Sect. 2.3 of [1]. Takayama et al. [15] defined the generalized
odds ratio for parameterizing the quotient space Rm/ImA�. This is given by

yi := xāi =
m∏

j=1
x

āij

j . i ∈ [m − d ]. (3.20)

Here, ā1, ..., ām−d are m-dimensional row vectors and the matrix

Ā =
⎛
⎜⎝

ā1
...

ām−d

⎞
⎟⎠ ,
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called the Gale transformation of A [1, 15], satisfies ĀA� = 0. For an d × m matrix
A over a field, there exists the Smith normal form as

SAR =
⎛
⎜⎝

α1 0 0 · · · 0
. . .

...
...

0 αd 0 · · · 0

⎞
⎟⎠ ,

where S and R are invertible d × d and m × m matrices, respectively, αi|αi+1, and
αi 
= 0. We thus obtain āi = (Red+i)

�.
Now, parameterization with the generalized odds ratio yields the one-to-one

moment map:
E(C) : Rm/ImA� → relint(New(ZA(b; x))), (3.21)

where the Newton polytope New(ZA(b; x)) is the convex hull of the support.
Takayama et al. [15] (Theorem 1) established the following theorem.

Theorem 3.4 ([15]) Let A be a d × m homogeneous matrix with nonnegative integer
entries. If the affine dimension of the Newton polytope New(ZA(b)) is m − d, then
the image of the moment map (3.21) agrees with the relative interior of the Newton
polytope. Moreover, the moment map is one-to-one.

Theorem 6 in [15] established an asymptotic normality for A-hypergeometric
distributions for γ b with b ∈ NA ∩ int(R≥0A) as γ →∞. The following asymptotic
formof theA-hypergeometric polynomial is derived from the normalization constant.

Theorem 3.5 ([15]) For an A-hypergeometric polynomial ZA(b; x), there exists a
unique μ ∈ R

m
>0 such that Aμ = b and y = μĀ. Moreover,

ZA(γ b; x) ∼ (xμ)γ

Γ (γμ+ 1)

(2πγ )m−d

det(ĀM−1Ā�)1/2
, γ →∞,

where M = diag(μ) and Γ (γμ+ 1) =∏m
i=1 Γ (γμi + 1).

Remark 3.3 The derivation of μ must be explained. Suppose that a count vector c
follows independent Poisson distributions with log-affine models

P(C = c) = exp(−1 · p)
pc

c! , log p(ξ) = A�ξ + ĀĀ�(ĀĀ�)−1 log y.

The maximum likelihood estimator (MLE) ξ̂ (y) can be numerically evaluated by
the iterative proportional scaling procedure [24]. Here, μ = p(ξ̂ (y)) is the unique
solution of Aμ = Ac and y = μĀ.
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3.2.1 Maximum Likelihood Estimation with a Two-Row
Matrix

In this subsection, we investigate the maximum likelihood estimation of a spe-
cific class of A-hypergeometric distributions, namely, the A-hypergeometric distri-
bution with (3.5) and r = n. The maximum likelihood estimation of another class of
A-hypergeometric distributions, the A-hypergeometric distribution of matrix A of
2× c contingency table, was discussed in Ogawa’s thesis [25].

Under the torus action (3.19) the A-hypergeometric polynomial transforms as

ZA(b; s·−11 s2x·) = sn−k
1 sk

2ZA(b; x).

This is a known property of partial Bell polynomials (p. 135 in [13]). The generalized
odds ratios (3.20) becomes

yi = xi
1xi+2
xi+1
2

, i ∈ [n − k − 1]. (3.22)

Under the torus action with s1 = x−12 x1 and s2 = x−11 in (3.19), we can set x =
(1, 1, y1, ..., yn−k−1) without loss of generality.

The convex hull of all exponent vectors appearing in the normally ordered expres-
sion in the homogenizedWeyl algebra is called the Newton polytope (see Sect. 2.1 of
[1]). For the A-hypergeometric polynomial with (3.5) and r = n, the support com-
prises the integer partitions Pn,k := {λ; λ � n, l(λ) = k}. For an integer partition
λ ∈Pn,k , the size index (c1, ..., cn−k+1) ∈ N

n−k+1
0 is an integer point and the convex

hull ofPn,k is the Newton polytope New(ZA(b; x)). To aid the following discussion,
we also define the partition polytope. For an integer partition λ ∈Pn = ∪n

k=1Pn,k ,
the size index (c1, ..., cn) ∈ N

n
0 is an integer point, and the partition polytope Pn is the

convex hull ofPn. The properties of partition polytopes were studied by Shlyk [26].
We are interested in a fundamental property of partition polytopes, namely, that Pn is
a pyramid with apex en, where en is the single vertex of Pn with cn > 0, and the other
integer points comprising the base of the pyramid locate in the hyperplane cn = 0.
Pn is the convex hull of en and the base, meaning that all vertices of Pn lie on the
faces of Pn. Precisely, the base contains the polytope Pn−1 translated by 1 along the
c1 axis and embedded into N

n
0. Identifying Pn−1 and its image under the translation

ϕ1 : (c1, c2, ..., cn−1) �→ (c1 + 1, c2, ..., cn−1, 0)

we can regard Pn−1 as a part of Pn. In this convention, the partition polytopes con-
stitute an embedded chain P1 ⊂ P2 ⊂ · · · . Theorem 2 of [26] gives the following
property of embedded chains.
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Theorem 3.6 ([26]) All vertices of Pn, except en, comprise the ϕi-image of the ver-
tices of some preceding polytopes Pn−i , i ∈ �n/2�, where

ϕi : (c1, ..., cn−i) �→ (c1, ..., ci−1, ci + 1, ci+1, ..., cn−i, 0, ...)

If v 
= en is a vertex of Pn and i = min(j; cj > 0), then v = ϕi(u) for some vertex u
of Pn−i .

Because the gradient of the log-likelihood (3.10) is ∂i� = ci − ηi, finding theMLE
is equivalent to finding the inverse image of the moment map (3.21). The following
theorem directly follows from the pyramid property of partition polytopes.

Theorem 3.7 ([10]) For the likelihood given by the A-hypergeometric distribution of
the matrix A and vector b in (3.5) with r = n, the MLE does not exist with probability
one.

Proof Because the probability mass function (3.9) is regular, the MLE exists if
and only if the point c represented by sufficient statistics locates in the interior of
the convex hull of the support (Theorem 5.5 of [16] and Corollary 9.6 of [17]).
Let us show that c never locates in the relative interior of the Newton polytope
New(ZA(b; x)). If n ≥ k ≥ n/2, there is a one-to-one affine map between a partition
inPn−k and that inPn,k :

Pn−k � (c1, ..., cn−k , 0) �→
(

k −
n−k∑
i=1

ci, c1, ..., cn−k

)
∈Pn,k .

This map is easily confirmed on a Young tableau; if we erase the rightmost column
of a partition in Pn−k , we obtain a partition in Pn−k . All vertices of the partition
polytope Pn−k locate on the faces of Pn−k . Since any vertex on the face of Pn−k is
mapped to a vertex on the face of New(ZA(b; x)) by the one-to-one affine map, all
vertices of New(ZA(b; x)) locate on the faces of New(ZA(b; x)). If 2 ≤ k < n/2, the
modified map

P̃n−k �
{

(c1, ..., cn−k , 0) :
n−k∑
i=1

ci ≤ k

}
�→

(
k −

n−k∑
i=1

ci, c1, ..., cn−k

)
∈Pn,k

is one-to-one, where P̃n−k is the collection of all integer partitions of n − k
with

∑n−k
i=1 ci ≤ k. Using this map, the assertion can be shown as done for n ≥ k

≥ n/2. � 
Remark 3.4 This assertion has an analogy in the theory of exponential families. If
the sample size is one, the MLEs of the beta and gamma distributions do not exist
with probability one, because the sufficient statistics are on the boundary of the
parameter space (see Example 5.6 in [16] and Example 9.8 in [17]). The size index
of the A-hypergeometric distribution can be regarded as a multivariate sample of size
one.
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From a statistical viewpoint, the nonexistence of the MLE shown in Theorem 3.7
arises from overparameterization of the model. The MLE can be recovered in two
ways: by reducing the parameter space using the curved exponential family (as dis-
cussed later in Sect. 5.2), or by assuming a sample consisting of multiple count vec-
tors, each of which follows the A-hypergeometric distribution independently. If the
size indices {c(1), ..., c(N )} are i.i.d., the log-likelihood becomes N

{∑
i ξi c̄i − ψ(ξ)

}

with c̄i := N−1∑N
j=1 c(j)

i . When N ≥ 2, c̄ can enter the relative interior of the New-
ton polytope, so the MLE can exist. The identifiability is given by the following
corollary of Theorem 3.4. The proof relies on the affine dimension of Pn being equal
to n − 1 (Theorem 1 of [26]), which follows from the discussion at the beginning of
this subsection.

Corollary 3.1 ([10]) For the A-hypergeometric distribution of the matrix A and
vector b in (3.5) with r = n, the image of the moment map (3.21) agrees with the
relative interior of the Newton polytope New(ZA(b; x)). Moreover, the moment map
is one-to-one.

Example 3.9 In Example 3.5, we considered an A-hypergeometric system for n =
k + 2 ≥ 4. The Newton polytope is the finite open interval between the two possible
observations (n − 4, 2, 0)� or (n − 3, 0, 1)�. The image of the moment map is

⎛
⎝

η1
η2
η3

⎞
⎠ =

⎛
⎝

n − 4
2
0

⎞
⎠+

(
1+ n − 3

2y1

)−1⎛
⎝

1
−2
1

⎞
⎠ , y1 ∈ R>0,

where y1 is the generalized odds ratio defined in (3.20). If N = 1, there are two
possible observations (n − 3, 0, 1) and (n − 4, 2, 0), with likelihoods of (1+ (n −
3)/(2y1))−1 and (1+ 2y1/(n − 3))−1, respectively. TheMLE does not exist in either
of these cases. Let us now assume N ≥ 2 and let the numbers of observations of
(n − 3, 0, 1)� and (n − 4, 2, 0)� be N1 and N2 = N − N1, respectively. Here, N1 ∼
Bin(N , η3(y)). The MLE of y1 exists for a sample with

c̄ =
(

(n − 3)N1 + (n − 4)N2

N
,
2N2

N
,

N1

N

)
, 0 < N1 < N .

The MLE of y1 is the unique solution of η(y1) = c̄, and ŷ1 = N1/N2 × (n − 3)/2.
The MLE is consistent in N →∞ and the asymptotic variance is

Var(log ŷ1) ∼ {y1 + (n − 3)/2}2
Ny1(n − 3)/2

.

Remarkably, the asymptotic variance increases linearly with sample size n when n
is large.
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3.3 Holonomic Gradient Methods

Hypergeometric functions can be evaluated through recurrence relations satisfied by
hypergeometric functions. This section discusses the evaluation ofA-hypergeometric
polynomials by various methods using recurrence relations.

Holonomic gradient methods (HGMs) are methods to solve holonomic system
while avoiding combinatorial enumerations. Various applications can be found in
[27]. In numerical evaluations of A-hypergeometric polynomials (3.3), we wish to
avoid enumeration of Ac = b. The first step in HGM construction finds a system of
partial differential equations for the holonomic ideal I :

θi • Q = PiQ, i ∈ [rank(I)], (3.23)

where the vectorQ constitutes the totality of the standardmonomials (see Sect. 3.1.1).
Such a system is called a Pfaffian system. A Pfaffian system follows from a unique
relation among standard monomials

∂i • ∂p(j) −
rank(I)∑

l=1
pijl(x) • ∂p(l) ∈ RI , i ∈ [m], j ∈ [rank(I)],

where the coefficients pijl(x) are rational functions which are obtained by Gröbner
basis normal forms with respect to a Gröbner basis. In principle, a Gröbner basis
is obtained through the Buchberger’s algorithm and then the normal forms can be
computed (Theorem 1.4.22 of [1]; see also Sect. 6.2 of [4]). However, the procedure
may be unrealistic in practice, because the computational cost grows rapidly with
the rank. In practice, explicit forms of a Pfaffian system and/or efficient methods for
their computation are needed.

The original HGM was formulated as follows [28]. Suppose that the value of Q
at a point x0 is known. If we know a Pfaffian system, we can compute the difference

Q(x + h)− Q(x) ≈
∑

i

hi

xi
θi • Q =

∑
i

hi

xi
PiQ

for small hi. A numerical integration method for difference equations, such as the
Runge–Kutta method, provides the approximate value of Q(x) at an arbitrary point
x. Ohara and Takayama [29] developed another type of HGM for A-hypergeometric
polynomials. Using the contiguity relation (3.17), they constructed a discrete analog
of the above-described HGM. Substituting (3.17) into a Pfaffian system (3.23) elimi-
nates the derivative, and difference equations forQ are available. The Pfaffian system
is computed along a line b − iv, i ∈ N, with a direction vector v, which should contain
a point at which the value of Q is known. Ohara and Takayama [29] referred to these
methods difference HGMs, and discussed the construction of a Pfaffian system for a
general matrixA. The author is aware of two classes ofA-hypergeometric polynomial
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with explicit forms of Pfaffian systems. One class constitutes the A-hypergeometric
polynomials of two-row matrix A; the other comprises hypergeometric functions of
type (r, r + c), whose polynomial versions are the normalizing constants of the two-
way contingency tables with fixed marginal sums (Example 3.7). In the following,
we present a difference HGM of a two-row matrix [10], then briefly introduce a dif-
ference HGM for hypergeometric polynomials of type (r, r + c), obtained by Goto
and Matsumoto [30].

Let us consider the A-hypergeometric system with (3.5), r = n, and n ≥ k + 2
≥ 4. The cases of n = k and n = k + 1 are trivial. As shown in Proposition 3.1,
the A-hypergeometric polynomial is a constant multiple of the partial Bell polyno-
mial. Therefore, A-hypergeometric polynomial can be numerically evaluated by the
recurrence relation in Proposition 2.3. Below we introduce difference HGM as an
alternative numerical method for evaluating A-hypergeometric polynomials.

According to Proposition 3.3, the Pfaffian system (3.23) should be given as

θi • Q(b; x) = Pi(b; x)Q(b; x), i ∈ [n − k + 1], (3.24)

where
Q(b; x) := (1, θ3, ..., θn−k+1)� • ZA(b; x).

Applying annihilators of higher order differential operators, the contiguity relation
(3.17), and the recurrence relation in Proposition 2.3, we obtain the following result.

Lemma 3.2 ([10]) A Pfaffian system (3.24) for an A-hypergeometric polynomial of
the matrix A and vector b in (3.5) with r = n and n ≥ k + 2 ≥ 4 is given by

(Pi)lm = δl,1(Pi)1m + δl,mδl,i−11{i≥3} + {(P̃(n)
i )−1}l−1,m−i1{2≤l≤n−k−i+1,i+1≤m≤n−k}

for l, m ∈ [n − k] and i ∈ [n − k + 1], where

(P1)1· = (2k − n, 1, 2, ..., n − k − 1), (P2)1· = (n − k,−2,−3, ...,−n + k),

(Pi)1j = δi,j+1, 3 ≤ i ≤ n − k + 1, 1 ≤ j ≤ n − k,

and P̃i are upper triangular matrices with elements

(P̃(n)
i )lm = m − l + 1

n − i − l − 1

xm−l+1xi+l+1
xm+2xi

, 1 ≤ l ≤ m ≤ n − k − i.

In the above expressions, Pi denotes Pi(b; x).

The Pfaffian system in Lemma 3.2 holds only for A-hypergeometric polynomials
and is not satisfied by the general solution of the A-hypergeometric system. This is
because the Pfaffian systemwas derived fromproperties specific toA-hypergeometric
polynomials.
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Example 3.10 As a continuation of Example 3.5, we now consider the case of n =
k + 2. The reduced Gröbner basis is

{x1∂1 − x3∂3 − n + 4, x2∂2 + 2x3∂3 − 2,

(x22 − 4x1x3)x
2
3∂

2
3 + (n − 3)x22x3∂3 − x1x2x3∂2}.

The totality of the standard monomials is {1, ∂3}, as we have seen in Proposition 3.3.
The matrices in the Pfaffian system (3.24) are

P1 =
(

n − 4 1
2y

1−4y
(10−4n)y
1−4y

)
, P2 =

(
2 −2
−4y
1−4y

4y+2(n−3)
1−4y

)
,

P3 =
(

0 1
2y

1−4y
−6y−(n−4)

1−4y

)
. (3.25)

These matrices are singular at the singular locus y = 1/4. A linear combination
of the solution basis (3.6) and (3.7) satisfies the Pfaffian system (3.24) with the
matrices (3.25). Meanwhile, the A-hypergeometric polynomial (3.6) satisfies the
Pfaffian system with the matrices given in Lemma 3.2:

P1 =
(

n − 4 1
0 n − 3

)
, P2 =

(
2 −2
0 0

)
, P3 =

(
0 1
0 1

)
.

However, the series (3.7) does not satisfy this Pfaffian system.

Let us obtain a difference HGM for A-hypergeometric polynomials of matrix A
and vector b in (3.5) with n ≥ k + 2 ≥ 4. Substituting (3.17) into the Pfaffian system
(3.24), the difference equation is given by

xiQ(b − ai; x) = Pi(b; x)Q(b; x), i = 1, 2. (3.26)

For simplicity and intuitiveness, we introduce the following notations:

Zij := ZA((i − j, j)�; x), Qij := Q((i − j, j)�; x), P(jl)
i := Pi((j − l, l)�; x).

Especially, we have Znk = ZA(b; x), Qnk = Q(b; x), and P(nk)
i = Pi(b; x). For 2 ≤

k < n/2, we then have

Qnk = xk−1
1

k−2∏
i=0

(
P(n−i,k−i)
1

)−1
Qn−k+1,1, (3.27)

where (Qn−k+1,1)i = (δi,1 + δi,n−k)xn−k+1 and

(P(ij)
1 )−1 = 1

2j − i

(
1 −1 −2 · · · −(i − j − 1)
0 (2j − i)Ei−j−1

)(
1 0
0 P̃(i)

1

)
.
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This method fails for n/2 ≤ k ≤ n − 2, because P(2j,j)
1 is singular. However, the case

n/2 ≤ k ≤ n − 2 can be solved by the following algorithm.

Algorithm 3.2 ([10]) Compute the solution basis of the A-hypergeometric polyno-
mial Q(b; x) in (3.24) for an A-hypergeometric polynomial of matrix A and vector b
in (3.5) with r = n. If 2 ≤ k < n/2, apply (3.27). If n/2 ≤ k ≤ n − 2,

1. Compute Z2i+1,i, i = 2, 3, ..., n − k − 1 using (3.27).
2. Set Q4,2 = (x1x3 + x22/2, x1x3)� and i = 3.
3. Compute

Q2i,i = 1

i

⎛
⎝
2x1 x2 −1 −2 · · · −(i − 2)
ix1 0 −2i −3i · · · −i(i − 1)
0 0 Ei−2

⎞
⎠
(

E2 0
0 x2P̃(2i)

2

)(
Z2i−1,i−1

Q2(i−1),i−1

)
.

4. If i < n − k, increment i to i + 1 and go to Step 2.
5. Else compute

Qn,k = x2k−n
1

2k−n−1∏
i=0

(
P(n−i,k−i)
1

)−1
Q2(n−k),n−k .

Let us consider the computational cost of the difference HGM (Algorithm 3.2).
The cases 2 ≤ k < n/2 and n/2 ≤ k ≤ n − 2 requireO((n − k)2k) steps andO((n −
k)4 + (n − k)2(2k − n)) steps, respectively. Simple use of the recurrence relation in
Proposition 2.3 requires O((n − k)2k) steps. Roughly speaking, the computational
effort increases with rank n − k, and the number of steps are roughly comparable in
the difference HGM and the simple recurrence. However, as shown in the following
example, the difference HGM requires much less computational time than the simple
recurrence, possibly because the latter involves huge numbers.

Example 3.11 (Generalized factorial coefficients) The generalized factorial coeffi-
cients introduced in Sect. 2.2 are given by the A-hypergeometric polynomials:

C(n, k;α) = (−1)n(−α)kn!ZA((n − k, k)�; (1− α)·−1/·!).

Note that the exact values at α = 1/2 (2.27) are known. Table3.1 displays the numer-
ical results at α = 1/2 calculated by the simple use of the recurrence relation in
Proposition 2.3, and by the difference HGM (Algorithm 3.2). For comparison, the
exact values obtained by (2.27) and the asymptotic values obtained by the asymp-
totic formula in Lemma 2.1 are also shown. All computations were performed on
rational numbers and were implemented by Risa/Asir, Version 20160405 [31] on an
Intel Xeon CPU E5-2680 2.80 GHz with 32 Gb memory. The computational time
was consistently smaller in the difference HGM than in the simple recurrence. In
the table entries containing dashes, the results were unavailable because of memory
overrun and computational times exceeding one hour.
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Table 3.1 Results of numerical evaluations of generalized factorial coefficients with α = 1/2. The
top, middle, and bottom are the results for k = 4n/5, k = n/2, and k = n/5, respectively. The exact
values and the asymptotic values are also shown. Time is in seconds. Dashes indicate that the results
were unavailable

n 50 100 200 400

Exact

logZ −99.54305 −250.06708 −605.88178 −1427.7256

Asymptotic

logZ −99.29945 −249.82778 −605.64463 −1427.4895

Recursion

logZ −99.54305 −250.06708 −605.88178 –

Time 0.082989 1.77773 771.334 –

HGM

logZ −99.54305 −250.06708 −605.88178 −1427.7256

Time 0.010998 0.148977 4.19437 153.563

n 50 100 200 400

Exact

logZ −48.350547 −126.08813 −315.53294 −763.04682

Asymptotic

logZ −49.039805 −126.77934 −316.22511 −763.73948

Recursion

logZ −48.350547 −126.08813 – –

Time 1.28181 1130.71 – –

HGM

logZ −48.350547 −126.08813 −315.53294 −763.04682

Time 0.231966 9.56455 414.03 17170.7

n 50 100 200 400

Exact

logZ −13.399179 −34.600777 −90.182133 −228.38177

Asymptotic

logZ −15.240772 −36.443802 −92.025903 −230.22597

Recursion

logZ −13.399179 – – –

Time 5.99109 – – –

HGM

logZ −13.399179 −34.600777 −90.182133 −228.38177

Time 0.082984 1.87172 41.6757 894.863
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Remark 3.5 Example 6.4 of [10] also evaluated generalized factorial coefficients
by the difference HGM. Although the cases examined in Example 3.11 were more
computationally demanding than those in Example 6.4 of [10], they were computed
by the difference HGMwithin a reasonable time (less than 10 seconds for n ≤ 100).
More computational time is needed for n > 100, but the errors in the asymptotic
values for n = 100 were below 1%. Therefore, when n exceeds 100, we can use the
asymptotic values rather than compute the difference HGM. Example 6.4 of [10]
and Example 3.11 were also performed in difference arithmetics basis, whereas in
Example 6.4 of [10] was computed in floating-point arithmetic, Example 3.11 was
computed in rational numbers. The numerical errors in the results of the difference
HGM, observed in Example 6.4 of [10], are attributable to the floating-point arith-
metic [32].

Goto andMatsumoto [30] studied the twisted cohomology group of hypergeomet-
ric functions of type (r, r + c). The normalizing constant of the two-way contingency
tables with fixed marginal sums is the hypergeometric polynomial for the parameter
vector (3.15). For a generic parameter vector, the A-hypergeometric integral aided
by the twisted de Rham theory provides a full solution basis (see Remark 3.1 and
the preceding discussion). Goto and Matsumoto [30] obtained the Pfaffian system
and contiguity relations as matrix representations of some linear maps on the twisted
cohomology group, thus generalizing their results on Lauricella’s FD (with r = 2)
in [33, 34]. In Sect. 7 of [30], they applied the difference HGM to the normalizing
constant of the two-way contingency tables with fixed marginal sums. Goto et al.
[35] and Tachibana et al. [36] discussed the implementation and several devices for
the efficient computations.

The rank of the twisted cohomology group is given by [19]

(
r + c − 2

r − 1

)
.

Let η = (α, β, γ ) be the parameter vector of the hypergeometric function of type
(r, r + c) in (3.14). Analogously to the vector Q in (3.23), Goto and Matsumoto
[30] constructed a vector of hypergeometric integrals,Φ(η; x), which they called the
Gauss–Manin vector. They also defined the shifted parameter η(i), an analog of b − ai

in the contiguity relation (3.17), and determined a cohomology group by an operator
of the form∇(i) = dξ + ω(i)∧, i ∈ [r + c − 1],whereω(i) is determinedby the shifted
parameter η(i). They then considered the linear map between these operators. A
hypergeometric integral is given by pairing of an element of the cohomology group
and a twisted cycle. Their obtained contiguity relation

Φ(η(i); x) = Ui(η; x)Φ(η; x)

is analogous to (3.26). The explicit form of the matrix Ui(η; x) contains intersection
numbers between pair of elements of cohomology groups (Theorem 5.3 of [30]).
Section7 of [30] provides an example of a 3× 3 contingency table. The Gauss–
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Manin vector of the hypergeometric polynomials are given by

(
F,

x12
n2·

∂F

∂x21
,

x22
n3·

∂F

∂x22
,−x11

n2·
∂F

∂x11
,−x12

n3·
∂F

∂x12
,

x11x22 − x12x21
n2·n3·

∂2F

∂x11∂x22

)
,

where xij = pi,j+1pr1/(pi1pr,j+1). A 2× 2 contingency table is exemplified in
Tachibana et al. [35, 36].
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Chapter 4
Dirichlet Processes

Abstract After preparing some basic facts in probability theory, this chapter intro-
duces de Finetti’s representation theorem. We, then, introduce the Dirichlet process
and the Poisson–Dirichlet distribution, which are closely related to exchangeability.
We discuss two constructions of the Dirichlet process: one based on the normalized
gamma process, the other using the stick breaking. The relationship between these
two constructions is revealed in terms of biased permutations. The sequential sam-
pling scheme is known as Blackwell–MacQueen’s urn scheme. A sample from the
Dirichlet process follows the Ewens sampling formula, which was encountered as
a measure on partitions in Chap. 2. The Ewens sampling formula is an example of
exchangeable partition probability function. The Dirichlet process possesses several
nice properties for statistical applications. Therefore, the Dirichlet process has been
used as a fundamental prior process in Bayesian nonparametrics. We will discuss
some prior processes as generalizations of the Dirichlet process. Several prior pro-
cesses naturally appear in connection with infinite exchangeable Gibbs partitions
introduced in Chap. 2.

Keywords Blackwell–MacQueen’s urn · De Finetti’s representation theorem
Dirichlet process · Exchangeability · Poisson–Dirichlet distribution
Poisson–Kingman distribution · Prediction rule · Subordinator · Gibbs partition
Normalized random measure with independent increments

4.1 Preliminaries

Let us prepare some basic concepts and definitions in probability theory, which will
be used in later discussion. The details are given in standard textbooks, such as [1–3].
The reader is referred to [4, 5] in Japanese.

Consider a probability space (Ω,F , P). Suppose that a real-valued function
X = X (ω), ω ∈ Ω is measurable under a map X : (Ω,F ) → (R,B(R)); that is,
X satisfies

∀A ∈ B(R), X−1(A) = {ω ∈ Ω; X (ω) ∈ A} ∈ F .

© The Author(s) 2018
S. Mano, Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics,
JSS Research Series in Statistics, https://doi.org/10.1007/978-4-431-55888-0_4
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Then, X is said to beF -measurable and is called a random variable. Now consider a
sub-σ field G ⊂ F . By the Radon–Nikodym theorem, for anF -measurable and P-
integrable random variable X , there exists a unique G -measurable and P-integrable
function Y with the following property:

∀B ∈ G ⇒ E(X, B) = E(Y, B).

Such a function Y is denoted as Y (ω) =: E(X |G )(ω). In particular, for a set A ∈ F ,

P(A|G )(ω) := E(1A|G )(ω)

is called the conditional probability of A given G .

Definition 4.1 If p(ω, A) := P(A|G )(ω) satisfies the following conditions, then
P(A|G )(ω) is called the regular conditional distribution of A given G .

• For a.e. ω ∈ Ω , A �→ p(ω, A) is a probability measure on (Ω,F ).
• For each A ∈ F , ω �→ p(ω, A) is G -measurable.
• For any sets A ∈ F and B ∈ G ,

P(A ∩ B) =
∫
B
p(ω, A)P(dω).

By using the regular conditional distribution, we have

E(X |G )(ω) =
∫

Ω

X (ω′)p(ω, dω′), a.s.

Hereafter, we omit (ω) to simplify the notations, provided that the omission causes
no ambiguity.

Consider a real-valued stochastic process (Xn; n ≥ 1) in the probability space
(Ω,F , P).

Definition 4.2 A sequence of sub σ -fields of F is monotonically increasing if the
following conditions hold:

• ∀n, Fn are sub σ -fields of F ;
• F1 ⊂ F2 ⊂ · · · .
Such a sequence (Fn) := (F1,F2, ...) is called a filtration, or a reference family.

A sequence of real-valued randomvariables X = (X1, X2, ..., Xn) is anRn-valued
random variable. The smallest σ -field that makes X a random variable is then given
by {X−1(A); A ∈ B(Rn)}. Let us denote it by σ(X1, X2, ..., Xn). In general, for a
given stochastic process (Xn; n ≥ 1), (Fn) with Fn = σ(X1, X2, ..., Xn) is called
the natural filtration of the process (Xn; n ≥ 1).
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Definition 4.3 If a stochastic process (Xn; n ≥ 1) satisfies the following three con-
ditions, then (Xn; n ≥ 1) is called a martingale with respect to the filtration (Fn),
or (Fn)-martingale.

• (Fn)-adapted: ∀n ∈ N, Xn is Fn-measurable.
• integrable: ∀n ∈ N, E(|Xn|) < ∞.
• ∀n ∈ N, E(Xn+1|Fn) = Xn , a.s.

The first two conditions are succinctly denoted as Xn ∈ L1(Fn).

Example 4.1 For a filtration (Fn) and an integrable random variable X , let Xn =
E(X |Fn). Then, (Xn) is an (Fn)-martingale.

The next proposition is obvious.

Proposition 4.1 If (Xn) is an (Fn)-martingale, then

E(Xn+k |Fn) = Xn, a.s., ∀n, k ∈ N.

Moreover, E(Xn) is a constant.

Asequence of real randomvariables (Xn; n ≥ 1) is said to be uniformly integrable
if it satisfies

lim
λ→∞ sup

n
E(|Xn|, |Xn| ≥ λ) = 0.

Under this condition, the tail integrals of |Xn| approach zero uniformly in n. Some
facts used in the following discussion are summarized in the next theorem (Theorem
2.57 of [4]), which is presented without proof.

Theorem 4.1 Let (Xn; n ≥ 1) be uniformly integrable. If Xn → X, a.s., then Xn →
X in L1, i.e., limn→∞ E(|Xn − X |) = 0. Moreover,

lim
n→∞E(Xn) = E(X) < ∞.

Remark 4.1 Lebesgue’s dominated convergence theorem posits that if Xn → X ,
a.s. and |Xn| ≤ Y , ∀n ∈ N for an integrable random variable Y , then limn→∞ E(Xn)

= E(X). The assertion is similar to Lebesgue’s dominated convergence theorem, but
hold under a weaker condition. In fact, |Xn| ≤ Y implies that E(|Xn|, |Xn| ≥ λ) ≤
E(|Xn|,Y ≥ λ) ≤ E(Y,Y ≥ λ) → 0, as λ → ∞.

Wenowpresent someconvergence theoremsofmartingales. For details, seeSect. 5
of [2], Sect. 5.5 of [5], and Chap.7 of [6]. Here, we follow the presentation of Itô [5].
Let us begin with the well-known martingale convergence theorem, which is stated
without proof.

Theorem 4.2 (Martingale convergence theorem) If a stochastic process (Xn; n ≥ 1)
is an (Fn)-martingale and supE(|Xn|) < ∞, then as n → ∞, Xn → X∞ a.s. with
E(|X∞|) < ∞.
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The limit is characterized by the next theorem.

Theorem 4.3 If a stochastic process (Xn; n ≥ 1) is a uniformly integrable (Fn)-
martingale, then (Xn; n ≥ 1) converges almost surely and in L1. The limit X∞ ∈
L1(F∞) satisfies

E(X∞|Fn) = Xn, a.s., ∀n ∈ N,

where F∞ = ⋃
n Fn.

Proof Because of the uniform integrability, supE(|Xn|) < ∞. Theorem 4.2 implies
almost sure convergence and X∞ ∈ L1(F∞). Moreover, Theorem 4.1 implies the L1

convergence. Form > n, since Xn = E(Xm |Fn) (Proposition 4.1), Jensen’s inequal-
ity gives

E(|Xn − E(X∞|Fn)|) = E(|E(Xm |Fn) − E(X∞|Fn)|)
≤ E(E(|Xm − X∞||Fn)) = E(|Xm − X∞|) → 0,

as m → ∞. Consequently, Xn = E(X∞|Fn), a.s. �

A stochastic process (X−n) := (· · · , X−2, X−1, X0) satisfying the conditions

X−n ∈ L1(F−n), E(X−n|F−n−1) = X−n−1, n ∈ N0,

is called (F−n)-martingale. We then have

E(X−n|F−n−k) = X−n−k, ∀k ∈ N, ∀n ∈ N0, a.s.

Theorem 4.4 (Reversed martingale convergence theorem) If a stochastic process
(X−n) is an (F−n)-martingale, then (X−n) is uniformly integrable, and converges
almost surely and in L1. The limit X−∞ ∈ L1(F−∞) satisfies

X−∞ = E(X−n|F−∞), a.s., n ∈ N0,

where F−∞ = ⋂
n F−n.

Proof Note that uniform integrability was assumed in Theorem 4.3. Here, we prove
the uniform integrability. Since |X−n| is a sub-martingale with respect to (F−n),

E(|X−n|, |X−n| ≥ a) ≤ E(E(|X0||F−n), |X−n| ≥ a) = E(|X0|, |X−n| ≥ a).
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Markov’s inequality gives

∀n ∈ N0, P(|X−n| ≥ a) ≤ E(|X−n|)/a ≤ E(|X0|)/a → 0, a → ∞

Thence, E(|X−n|, |X−n| ≥ a) → 0. �

4.2 De Finetti’s Representation Theorem

This section proves de Finetti’s representation theorem (Theorem 1.1) introduced in
Chap. 1. The presentation follows that of Aldous [7]. Various related topics are also
covered in his book.

A regular conditional distribution defined inDefinition 4.1 is a random probability
measure. Let the smallest σ -field that makes α a random variable be σ(α).

Definition 4.4 For a random probability measure α, consider a sequence of random
variables (X1, X2, ...) satisfying

• (X1, X2, ...) is conditionally independent given σ(α):

P(Xi ∈ Ai ; i ∈ [n]|σ(α)) =
n∏

i=1

P(Xi ∈ Ai |σ(α)), ∀Ai ⊂ B(R), i ∈ [n], n ∈ N;

• The conditional distribution satisfies

P(Xi ∈ Ai |σ(α))(ω) = α(ω, Ai ), ∀Ai ⊂ B(R), i ∈ N.

Such a sequence (X1, X2, ...) is called a mixture of i.i.d. sequences directed by α.

According to the Glivenko–Cantelli theorem [8], the empirical distribution of an
infinite i.i.d. sequence of random variables following the distribution Λ, given by

Λn(X1, ..., Xn) := 1

n

n∑
i=1

δXi , δXi (·) := 1{Xi∈·}, (4.1)

converges uniformly to Λ; that is

sup
x

|Λn((−∞, x]) − Λ((−∞, x])| → 0, a.s.,

as n → ∞. The next lemma (Lemma 2.15 of [7]) directly follows from theGlivenko–
Cantelli theorem.

Lemma 4.1 If an infinite sequence of random variables (X1, X2, ...) is a mixture of
i.i.d. sequences, then the directing random measure is a.s. unique and is the weak
limit of the empirical distribution.
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Example 4.2 Recall the Bayesian mixture modeling in Sect. 1.2.1, which models an
infinite sequence of random variables (X1, X2, ...) as a mixture of i.i.d. sequences

P(Xi = xi ; i ∈ N|σ(α))(ω) = P(Xi = xi ; i ∈ N; θ0) =
∏
i≥1

θ
xi
0 (1 − θ0)

1−xi .

Here, θ0 is the realized (true) parameter of the Bernoulli trial. The strong law of large
numbers implies that

Λn(X1, X2, ...)(ω) → θ0δ1 + (1 − θ0)δ2, a.s.,

as n → ∞. Here, Λ = θ0δ1 + (1 − θ0)δ2 is the directing random measure. In this
sense, de Finetti’s representation theorem gives a condition that justifies modeling
of an infinite sequence of random variables as a mixture of i.i.d. sequences.

Obviously, the random probability measure directing a mixture of i.i.d. sequences
is measurable by its tail σ -field

TX :=
∞⋂
n=1

σ(Xn, Xn+1, ...).

Moreover, the next lemma follows (Lemma 2.18 of [7]).

Lemma 4.2 An infinite sequence of random variables (X1, X2, ...) is a mixture of
i.i.d. sequences if and only if (X1, X2, ...) is conditionally i.i.d. given TX .

Let us prepare the exchangeable σ -field.

Definition 4.5 For an infinite sequence of random variables (X1, X2, ...),

EX :=
∞⋂
n=1

En, En := σ(Gn, Xn+1, Xn+2, ...),

with Gn(X1, ..., Xn) := σ( fn(X1, ..., Xn); fn is measurable and symmetric)
is called the exchangeable σ -field of (X1, X2, ...).

Example 4.3 A random variable is called n-symmetric if it is invariant under permu-
tations of the first n variables. En is the smallest σ -field that makes all n-symmetric
random variables are measurable. For example, X1X2X3 + X4X6 is 3-symmetric but
not 4-symmetric. Therefore, it is E3-measurable but not E4-measurable.

The next proposition obviously follows from these definitions.
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Proposition 4.2 TX ⊂ EX , a.s., and En ⊃ En+1, a.s.

By de Finetti’s representation theorem (Theorem 1.1), an infinite exchangeable
sequence is a mixture of i.i.d. sequences. The following proof comes from the proof
of Theorem 3.1 in [7].

Proof (Theorem 1.1) By the exchangeability, (Xi ,Y )
d= (X1,Y ), i ∈ [n] for all Y ∈

En , where En is defined in Definition 4.5. Moreover, by the symmetry, a bounded
measurable function φ satisfies

E(φ(X1)|En) = E(φ(Xi )|En), i ∈ [n]

= E

(
n−1

n∑
i=1

φ(Xi )|En
)

= n−1
n∑

i=1

φ(Xi ).

Since En ⊃ En+1, (E1,E2, ...) cannot be a filtration, but (...,E−2,E−1)with E−i := Ei
can be a filtration. Define

Y−n := E(φ(X1)|E−n).

Then, similarly to Example 4.1, the stochastic process (Y−n) := (· · · ,Y−2,Y−1) is
an (E−n)-martingale. By the reversed martingale convergence theorem, we conclude
that

n−1
n∑

i=1

φ(Xi ) = E(φ(X1)|En) ≡ Y−n → E(φ(X1)|E−∞), a.s., (4.2)

as n → ∞, where E−∞ = ∩n≥1E−n . In the same manner, for a bounded measurable
function φ(x1, ..., xk) with k < n, satisfies

E(φ(X1, ..., Xk)|En) = 1

[n]k
n∑

j1=1

· · ·
n∑

jk=1

φ(X j1 , ..., X jk )1Dn,k ( j1, ..., jk),

where Dn,k is a set of distinct indices. As #Dc
n,k = O(nk−1), we can conclude that

n−k
n∑

j1=1

· · ·
n∑

jk=1

φ(X j1 , ..., X jk ) → E(φ(X1, ..., Xk)|E−∞), a.s. (4.3)

Suppose that φ(x1, ..., xk) = φ1(x1) · · · φk(xk). By using (4.2), the left-hand side of
(4.3) yields

k∏
i=1

n−1
n∑

ji=1

φi (X ji ) →
k∏

i=1

E(φi (Xi )|E−∞), a.s.
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Meanwhile, the right-hand side of (4.3) is

E

(
k∏

i=1

φi (Xi )|E−∞

)

Takingφi (xi ) = 1{xi∈Ai },we conclude that (X1, X2, ...) is amixture of i.i.d. sequences
of random variables. �

A well-known application of de Finetti’s representation theorem is Hewitt–
Savage’s 0-1 law. In Proposition 4.2, we saw that TX ⊂ EX . If (X1, X2, ...) is
exchangeable, we can show that EX ⊂ TX and we can conclude TX = EX , a.s.
(Corollary 3.10 of [7]). Hewitt–Savage’s 0-1 law follows from this fact and the well-
known Kolmogorov’s 0-1 law.

Corollary 4.1 (Hewitt and Savage’s 0-1 law [9]) For an event A ∈ EX of an i.i.d.
sequence of random variables (X1, X2, ...) is either P(A) = 0 or P(A) = 1.

Example 4.4 Define a random walk Sn := ∑n
i=1 Xi by an i.i.d. sequence of random

variables (X1, X2, ...). The event {Sn = 0, i.o.} = ⋂∞
n=1

⋃∞
m=n{Sm = 0} is measur-

able by the tail σ -field TS of (S1, S2, ...). Here, Kolmogorov’s 0-1 law is inappli-
cable, because (S1, S2, ...) is not an independent sequence. Nevertheless, we cay
apply the Hewitt–Savage 0-1 law to concludes that P(Sn = 0, i.o.) is 0 or 1, because
{Sn = 0, i.o.} ∈ EX .

4.3 Dirichlet Process

The Dirichlet process, introduced by Ferguson in 1973, [10] is among the most
fundamental prior processes in Bayesian nonparametrics. This section introduces
two constructions of the Dirichlet process and discusses their relationship. Further
details of the Dirichlet process, as a stochastic process, are developed in Chap.10 of
[7]. Statistical aspects are summarized in Chap.3 of [11] and in [12]. Chapter 4 of
the recent appeared book [13] provides a comprehensive introduction.

As is well known, the beta and gamma distributions are related as follows:

Proposition 4.3 For independent random variables Xi ∼ Ga(αi , 1), i = 1, 2, we
have

X1

X1 + X2
∼ Beta(α1, α2),

which is independent of X1 + X2 ∼ Ga(α1 + α2, 1).
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The support of the m-variate Dirichlet distribution is the (m − 1)-dimensional
simplex

Δm−1 :=
{

(y1, ..., ym); yi ≥ 0, i ∈ [m],
m∑
i=1

yi = 1

}
(4.4)

and its probability density function is

f (y1, ..., ym) = Γ (α1 + · · · + αm)

Γ (α1) · · · Γ (αm)

m∏
i=1

yαi−1
i , (y1, ..., ym) ∈ Δm−1

with αi ≥ 0, i ∈ [m]. If αi = 0, we regard the probability density as δ0(yi ) by con-
vention.

Proposition 4.4 The Dirichlet distribution has the following properties.

1. For independently distributed Gamma random variables Xi ∼ Ga(αi , 1), i ∈
[m], we have

(
X1∑m
i=1 Xi

, ...,
Xm∑m
i=1 Xi

)
∼ Dir(α1, ..., αm),

which is independent of

m∑
i=1

Xi ∼ Ga

(
m∑
i=1

αi , 1

)
.

2. (additivity) Dirichlet random variables (Y1, ...,Ym) ∼ Dir(α1, ..., αm) satisfy

⎛
⎝∑

i∈A1

Yi , ...,
∑
i∈Ak

Yi

⎞
⎠ ∼ Dir

⎛
⎝∑

i∈A1

αi , ...
∑
i∈Ak

αi

⎞
⎠

for any partition {A1, ..., Ak} of [m]. If we set α(A) := ∑
i∈A αi and F(A) :=∑

i∈A Yi , then α(A) is a finite measure on [m] and F(A) is a random probability
measure on [m] satisfying

(F(A1), ..., F(Ak)) ∼ Dir (α(A1), ..., α(Ak)) .

3. For two independent m-variate Dirichlet random variables Dα ∼ Dir(α) and
Dβ ∼ Dir(β), and an independent beta random variable

Y ∼ Beta

(
m∑
i=1

αi ,

m∑
i=1

βi

)
,
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we have

Y Dα + (1 − Y )Dβ ∼ Dir(α + β).

4. (conjugacy) Let (n1, ..., nm) be a set of counts of a multinomial sampling. If the
prior is Dir(α1, ..., αm), the posterior is Dir(α + n).

A real-valued stochastic process with stationary and independent increments has
a càdlàg sample path and is called a Lévy process. The background is given in Chap.2
of [14]. It is known that for any infinitely divisible distribution, there exists a Lévy
process (Xt ; t ≥ 0), X0 = 0, such that X1 follows the distribution (Theorem 7.10
of [14]). As the gamma distribution Ga(θ, 1) is infinitely divisible, there exist a
Lévy process satisfying X1 ∼ Ga(θ, 1). Let us call it the gamma (θ ) process. The
characteristic function takes the following Lévy–Khintchine representation:

E(eiuX1) = exp

{∫ ∞

0
(eiux − 1)ν(dx)

}
, ν(dx) = θ

x
e−xdx, x > 0,

where i := √−1. From this representation, we know that the gamma process is a
pure jump process. The joint distribution of the jump size and time

{(x, t); Xt − Xt− = x}

follows the Poisson point process of intensity ν × μ, where ν is called the Lévy
measure and μ is the Lebesgue measure on R≥0 (see Theorem 19.2 of [14]). The
normalized process

(Yt ; 0 ≤ t ≤ 1) =
(
Xt

X1
; 0 ≤ t ≤ 1

)
(4.5)

has increasing paths with interchangeable increments satisfying Y0 = 0 and Y1 = 1.
The descending ordered countable increments (P1, P2, ...) follow a discrete distri-
bution whose support is the infinite-dimensional simplex

Δ∞ :=
{

(p1, p2, ...); p1 > p2 > · · · > 0,
∑
i≥1

pi = 1

}
. (4.6)

The distribution is called the Poisson–Dirichlet distribution introduced in Sect. 2.3.
Because of Property 1 of Proposition 4.4, we have

(Yt1 ,Yt2 − Yt1 , ...,Ytk − Ytk−1) ∼ Dir(θ t1, θ(t2 − t1), ..., θ(1 − tk−1)),
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for any sequence of times 0 < t1 < · · · < tk = 1. A sample path of the normalized
process (4.5) determines a probability measure on a partition

{[0, t1], (t1, t2], ..., (tk−1, 1]}

of time [0, 1]. The normalized process (4.5) induces a random probability measure
on [0, 1], as shown in Property 2 of Proposition 4.4 for the Dirichlet distribution.
More generally, for any partition

{A1 := (−∞, z1], A2 := (z1, z2], ..., Ak := (zk−1,∞)}

of R and a given probability measure μ on R, a random probability measure F
satisfies

(F(A1), ..., F(Ak)) ∼ Dir(θμ(A1), ..., θμ(Ak)),

where F(A1) := Yμ(z1), F(Ak) := 1 − Yμ(zk−1), and

F(Ai ) := Yμ(zi ) − Yμ(zi−1), 2 ≤ i ≤ k − 1

with μ(z) := μ((−∞, z]). This is the Dirichlet process of Definition 1.3 with α =
θμ. This random probability measure theDirichlet processwith parameter θ and the
base measure μ. Let the Dirichlet process be denoted by DP(θ;μ).

Remark 4.2 By its construction, the Dirichlet process has a purely atomic sup-
port. In fact, a continuous random probability measure F reduces to the base mea-
sure μ under the natural requirement that (F(A1), ..., F(Ak)) is exchangeable on a
partition {Ai ; i ∈ [k], μ(Ai ) = 1/k}. This result follows because every process of
the continuous-path interchangeable increments leads to an expression of the form
F([0, t]) = αB◦

t + βt , where B◦
t is a Brownian bridge with B◦

0 = B◦
1 = 0. See The-

orem 10.12 and the subsequent discussion in [7].

The above construction can be summarized as the following theorem by
Ferguson [10].

Theorem 4.5 ([10]) Let μ be a probability measure on a measurable space
(R,B(R)), and let (Xt ; t ≥ 0) be the gamma θ process with jump sizes (J1, J2, ...).
For an i.i.d. sequence of random variables (V1, V2, ...) following μ, we have

F =
∑
i≥1

Ji
X1

δVi ∼ DP(θ;μ).

An alternative construction of the Dirichlet process, obtained by Sethuraman [15],
is sometimes called the stick-breaking process. The concise proof of the following
theorem is based on the description in Sect. 3.2.2 of [11].
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Theorem 4.6 ([15]) For an i.i.d. sequence of random variables (W1,W2, ...) fol-
lowing Beta(1, θ), let

P̃1 = W1, P̃2 = (1 − W1)W2, ..., P̃j =
j−1∏
i=1

(1 − Wi )Wj , ...

Then, for an i.i.d. sequence of random variables (V1, V2, ...) following μ, we have

F =
∑
i≥1

P̃iδVi ∼ DP(θ;μ).

Proof Given a partition {A1, ..., Ak}, let us introduce the notation

δ
(k)
Vi

(A) := (δVi (A1), ..., δVi (Ak)).

Letting

Q := P̃1δ
(k)
V1

+ (1 − P̃1)U, U ∼ Dir(θμ(A1), ..., θμ(Ak)).

By Property 3 of Proposition 4.4, we obtain

Q|(V1 ∈ Ai ) ∼ Dir(θμ(A1), ..., θμ(Ai ) + 1, ..., θμ(Ak)).

If this expression is regarded as the posterior distribution, Property 4 of Proposi-

tion 4.4 implies that Q
d= U . To prove this assertion, we need to show that

(F(A1), ..., F(Ak)) =
∑
i≥1

P̃iδ
(k)
Vi

(A)

follows the same distribution asU . As
∑n

i=1 P̃j + ∏n
i=1(1 − Wj ) = 1,we have P̃n =

Wn(1 − ∑n−1
i=1 P̃i ). By using this expression and the fact that Q

d= U , we have

n∑
i=1

P̃iδ
(k)
Xi

+
(
1 −

n∑
i=1

P̃i

)
U =

n−1∑
i=1

P̃iδ
(k)
Xi

+
(
1 −

n−1∑
i=1

P̃i

)
(Wnδ

(k)
Xn

+ (1 − Wn)U )

d=
n−1∑
i=1

P̃iδ
(k)
Xi

+
(
1 −

n−1∑
i=1

P̃i

)
U

d= · · · d= U.

The assertion is proved in the limit n → ∞ of this expression. �

Remark 4.3 Theorem4.6 constructs an infinite sequence of randomvariables, whose
support is the infinite-dimensional simplex (4.6) of a sequenceof independent random
variables. Such a construction is called a residual allocation model. In particular, the
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law of (P̃1, P̃2, ...) in Theorem 4.6 is called the GEM distribution, after Griffiths,
Engen, and McCloskey.

Remark 4.4 One of the importance of Sethuraman’s construction is the easiness to
generate a sequence (P̃1, P̃2, ...) on computers, because independent beta random
variables are easy generated on a computer. The original construction by Ferguson
requires simulating the gamma process, but generating a stochastic process is a diffi-
cult task. However, Sethuraman’s construction has a difficulty in its implementation,
since it is impossible to generate infinite number of random variables. Problems
related to the truncated version were discussed in [16].

Comparing Theorems 4.5 and 4.6, we find that the infinite sequence of random
variables (P̃1, P̃2, ...) in Theorem 4.6 is a permutation of the sequence of random
variables in the Poisson–Dirichlet distribution. Such a permutation is called the size-
biased permutation. The size-biased permutation of a sequence (P1, P2, ...) is gen-
erated by the following scheme:

P(σ (1) = i1) = Pi1 ,

P(σ ( j) = i j |(σ (1), ..., σ ( j − 1)) = (i1, ..., i j−1))

= Pi j

1 − ∑ j−1
k=1 Pik

, i j ∈ N\{i1, ..., i j−1}, j = 2, 3, ...

The distribution of the first component, called the structural distribution, encodes
much information about the original sequence. In Sect. 2.3.2, we discussed the
asymptotics of the structural distribution of the two-parameter Poisson–Dirichlet
distribution, which will be introduced in Sect. 4.5. The following proposition is a
simple application of the size-biased permutation. More general result was presented
in Theorem 2.2. See also Sect. 2.3 of [17].

Proposition 4.5 For the Poisson–Dirichlet distribution with parameter θ , we have

P(P1 < x) = 1 − θ

∫ 1

x
y−1(1 − y)θ−1dy, x > 1/2.

Proof Let ν̃1 denote the distribution of P̃1, namely, Beta(1, θ). For a function g, we
have

∫ 1

0
g(y)ν̃1(dy) = E(g(P̃1)) = E

[∑
i≥1

Pi g(Pi )

]

Suppose that g(y) = 1{y>x}y−1. Being the only component that exceed 1/2 is P1,
the right-hand side equals to E(P1g(P1)) = P(P1 > x) for x > 1/2. �
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The Dirichlet process is a conjugate prior for multinomial sampling. Taking the
Dirichlet process as the prior process, F ∼ DP(θ;μ), we have

(F(A1), ..., F(Ak)) ∼ Dir(θμ(A1), ..., θμ(Ak)).

Owing to the conjugacy of the Dirichlet distribution for multinomial sampling
(Property 4 of Proposition 4.4), the posterior is given by

(Fn(A1), ..., Fn(Ak)) := (F(A1), ..., F(Ak))|(X1, ..., Xn)

∼ Dir

(
θμ(A1) +

n∑
i=1

δXi (A1), ..., θμ(Ak) +
n∑

i=1

δXi (Ak)

)
. (4.7)

Therefore, the posterior is

Fn ∼ DP

(
θ + n,

θμ + ∑n
i=1 δXi

θ + n

)
.

Using this fact, let us consider the sequential sampling scheme. For simplicity, we
assume that μ is diffuse (nonatomic). As

F(·) ∼ Beta(θμ(·), θ(1 − μ(·))),

we have

P(X1 ∈ ·) = E{P(X1 ∈ ·|F)} = E(F(·)) = μ(·).

Expression (4.7) then yields

F1(·) ∼ Beta(θμ(·) + δX1(·), θ(1 − μ(·)) + (1 − δX1(·))),

from which

P(X2 ∈ ·|X1) = E(F1(·)) = θμ(·) + δX1(·)
θ + 1

.

In the same manner, we obtain

P(Xn+1 ∈ ·|X1, ..., Xn) = E(Fn(·)) = θμ(·) + ∑n
i=1 δXi (·)

θ + n

= θ

θ + n
μ(·) + n

θ + n
Λn(X1, ..., Xn)(·), (4.8)

where Λn(X1, ..., Xn) is the empirical distribution (4.1). Note that the posterior
distribution is a convex combination of the prior distribution μ and the empirical
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distribution Λn , and θ represents the strength of the prior belief. The expression
(4.8) is sometimes called prediction rule. The posterior distributions are sequentially
updated by the observations. The scheme is thus called the Bayesian updating.

Before discussing sampling distribution from the Dirichlet process, we obtain the
sampling distribution of the m-variate symmetric Dirichlet distribution. The likeli-
hood of a multinomial sampling

Multi(p1, ..., pm), p1 + · · · + pm = 1

is

P(X1 = x1, ..., Xn = xn; p1, ..., pm) =
n∏

i=1

pi
ni =: pn,

where ni := #{ j; X j = i}. Taking the m-variate symmetric Dirichlet distribution
Dir(α), α > 0 as the prior distribution, the marginal likelihood is obtained as

Pα(X1 = x1, ..., Xn = xn) = Γ (mα)

{Γ (α)}m
∫

Δm−1

pn+α−1dp = (α)n1 · · · (α)nm

(mα)n
,(4.9)

where Δm−1 is the (m − 1)-dimensional simplex defined in (4.4). The sufficient
statistics are (N1, ..., Nm) and the distribution is

Pα(N1 = n1, ..., Nm = nm) =
(−mα

n

)−1 m∏
i=1

(−α

ni

)
. (4.10)

The expression for m = 2 was previously given as (1.5). The probability mass func-
tion (4.10) is called the Dirichlet-multinomial distribution, or the negative hyperge-
ometric distribution.

Remark 4.5 One can confirm that the m-variate symmetric Dirichlet-multinomial
distribution (4.10) is a Pitman partition (2.28) with parameter α < 0 and θ = −mα,
m ∈ N, α in (4.10) is (−α) in (2.28).

The sequential sampling from the Dirichlet distribution is achieved by Pólya’s
urn scheme. Consider a number of colored balls in an urn, where there are m ∈ N

distinct colors. Let the number of balls of the i-th color be αi , with i ∈ [m]. Take a
ball from the urn and return the ball and another same-colored ball to the urn. After
many repeats of this sampling scheme, the colors of the sampled balls (X1, X2, ...)

are distributed as

P(X1 = i) = αi

α1 + · · · + αm
,

P(Xn+1 = i |X1, ..., Xn) = αi + ∑n
j=1 δX j (i)

α1 + · · · + αm + n
. (4.11)
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It is straightforward to confirm that the samples drawn by this sequential sampling
scheme follow the probability mass function (4.9). The sequential sampling scheme
for the Dirichlet process can also be represented by an urn scheme called Blackwell–
MacQueen’s urn scheme [18], also known as Hoppe’s urn scheme [19] and the
Chinese restaurant process [7]. Blackwell–MacQueen’s urn scheme is the following
algorithm.

Algorithm 4.1 ([18]) Sequential sampling from the Dirichlet process.

1. Drop a black (colorless) ball whose weight of being sampled θ into the urn.
2. Set the number of colored balls to n and the number of balls of color i to ni . Draw

one ball from the urn.

• The black ball is drawn with probability
θ

θ + n
. Return the black ball to the

urn, and add a ball of color taken from the continuous spectrum of colors μ(·)
to the urn.

• An ball of color i is drawn with probability
ni

θ + n
. Return the ball to the urn,

and add a ball of the same color to the urn.

3. Return to Step 2.

The sampling distribution, or the marginal likelihood of multinomial sampling from
the Dirichlet process, is an analog of (4.9) for the symmetric Dirichlet distribution. If
there are k distinct colors, the probability of obtaining a sample of {n1, ..., nk} balls
in a specific order is

θ

θ

1

θ + 1
· · · n1 − 1

θ + n1 − 1
× θ

θ + n1

1

θ + n1 + 1
· · · n2 − 1

θ + n1 + n2 − 1
· · ·

× θ

θ + n1 + · · · + nk−1

1

θ + n1 + · · · + nk−1 + 1
· · · nk − 1

θ + n − 1
= θk

(θ)n

k∏
i=1

(ni − 1)!.

Ignoring the color labels and order of appearance, the sample {n1, ..., nk} gives an
integer partition of n. The probability of obtaining an integer partition λ is

μn(λ) = n!
n1! · · · nk !

n∏
i=1

1

ci ! × θ k

(θ)n

k∏
i=1

(ni − 1)! = n!
(θ)n

n∏
i=1

(
θ

i

)ci 1

ci ! ,

where we have used the size indices ci (λ) := #{ j; λ j = i}, i ∈ [n]. This expression
is the Ewens sampling formula (2.12) discussed in Chap. 2. The above derivation
was given in [20].

Remark 4.6 The Ewens sampling formula can be obtained by taking the limit
m → ∞, α → 0 with θ ≡ mα in (4.10). In this sense, the Dirichlet process is an
infinite-dimensional version of the Dirichlet-multinomial distribution. Comparing
the derivation (4.9) of the Dirichlet-multinomial distribution, we find that the Ewens
sampling formula is obtained without explicitly knowing the probability density.
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In Sect. 1.1, we have discussed probability measures on integer partitions. It is
sometimes convenient to represent the addition rule (1.1) in terms of the probability
mass function on integer partitions with size indices. In this representation, we have

μn(c1, ..., cn) = c1 + 1

n + 1
μn+1(c1 + 1, ...) +

n+1∑
i=2

i(ci + 1)

n + 1
μn+1(..., ci−1 − 1, ci + 1, ...). (4.12)

By a straightforward computation, one can see that the Ewens sampling formula
(2.12) and the Pitman partition (2.12) have the consistency.

Let us now discuss an analog of de Finetti’s representation theorem (Theorem 1.1)
for infinite-exchangeable randompartitions. In this analogous representation, the role
played by the i.i.d. sequence of randomvariables is played by theKingman’s paintbox
process. Letμbe apartly discrete andpartly continuous probabilitymeasure on [0, 1],
and specify color-coding variable. Two colors are the same if and only if their values
are the same. Imagine randomly coloring each object with an independently sampled
color from μ. Let the color of the i-th object be Xi . The identity of colors Xi = X j

imposes an equivalence relation i ∼ j between the objects. This relation induces
infinitely exchangeable random partitions, and depends on the masses of the atoms
of μ. Let us define a map

L(μ) = p, p ∈ ∇ :=
{

(p1, p2, ...); p1 ≥ p2 ≥ · · · ≥ 0,
∑
i≥1

pi ≤ 1

}
,

where pi is the i-th largest mass, and call the infinite exchangeable random partition
paintbox p process.Thenext theorem is analogof deFinetti’s representation theorem,
and is sometimes called Kingman’s representation theorem. Aldous gave a simple
proof by a trick labeling of the components by external randomization for applying
de Finetti’s theorem. See the proof of Proposition 11.9 in [7].

Theorem 4.7 ([21]) Let � be an infinite exchangeable random partition and let �n

be its restriction to [n]. Also, denote by Ln a map that aligns the sizes of parts in
decreasing order. The following properties then hold:

1. � is a mixture of paintbox P processes.
2. n−1Ln(�n) → (P1, P2, ...) ∈ ∇, a.s., as n → ∞.

Example 4.5 As the Ewens sampling formula is infinite exchangeable, there exists a
corresponding paintbox process. Moreover, because the Ewens sampling formula is
derived from the Dirichlet process, (P1, P2, ...) in Theorem 4.7 follows the Poisson–
Dirichlet distribution.

Kingman considered another natural property of random partitions called nonin-
terference [21]. If a part of size r is discarded from a sample of size n, the remaining
sample of size n − r follows the same law for the sample of size n − r . In terms of
size indices, the noninterference property means that
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rcr
n

μn(c1, ..., cn) = d(n, r)μn−r (..., cr − 1, ...),

where d(n, r) is independent of the size indices. The following theorem (Charac-
terization Theorem in [22]) is an important characterization of the Ewens random
partition.

Theorem 4.8 ([22]) If a random partition is infinitely exchangeable and possesses
the noninterference property, it coincides with the Ewens sampling formula.

4.4 Dirichlet Process in Bayesian Nonparametrics

Owing to its nice properties, the Dirichlet process is a fundamental prior process in
Bayesian nonparametrics. Several statistical properties of the Dirichlet process are
introduced through the sequential sampling scheme introduced in Sect. 4.3. We saw
that the Dirichlet process is a conjugate prior for multinomial sampling. Here, we
present further properties of the Dirichlet process as a prior process. Examples of
use of the Dirichlet process other than in mixture models are also provided.

An infinite sequence of random variables obtained by the sequential sampling
scheme is infinite exchangeable; therefore, by de Finetti’s representation theorem
(Theorem 1.1), it is a mixture of i.i.d. sequences. Let P∞

0 be the product measure of
the true (realized) i.i.d. sequence. The next theorem follows from Lemma 4.1.

Theorem 4.9 (Posterior consistency) Let the prior process be F ∼ DP(θ;μ), where
μ is nonatomic. Then, for diffuse P0, we have

P(Xn+1 ∈ ·|X1, ..., Xn) = E(Fn(·)) d→ P0(·), P∞
0 -a.e.

as n → ∞.

Example 4.6 ([10])Let us consider a two-sample problemofhypothesis testing. Sup-
pose there are two populations, one following a distribution ΛX , the other following
a distribution ΛY . To test the null hypothesis ΛX = ΛY , we sample i.i.d. sequences
of random variables (X1, ..., Xm) and (Y1, ...,Yn) from ΛX and ΛY , respectively. A
test is constructed by estimating of the probability

Δ0 := P(X1 ≤ Y1) =
∫

ΛXdΛY ,

where ΛX and ΛY denotes the cumulative distribution functions of ΛX and ΛY ,
respectively. Setting the prior processes as FX ∼ DP(θ;μX ) and FY ∼ DP(θ;μY )

for X and Y , respectively, the prior estimate is given by

∫
μXdμY
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and the posterior estimate is

Δm,n :=
∫

E(FXm)dE(FYn).

Here, E(FXm) and E(FYn) are given by the prediction rules (4.8) and we have

Δm,n = m

θ + m

n

θ + n

1

mn
U + θ

θ + m

θ

θ + n

∫
μXdμY

+ θ

θ + m

n

θ + n

1

n

n∑
i=1

μX ((−∞, Yi ]) + m

θ + m

θ

θ + n

1

m

m∑
i=1

(1 − μY ((−∞, Xi ])),

where

U := mn
∫

ΛXm(X1, ..., Xm)dΛYn(Y1, ...,Yn) =
m∑
i=1

n∑
j=1

1{Xi≤Y j }

isMann–Whitney’s U statistic. The Δm,n is a consistent estimator of Δ0.

The posterior consistency is analogous to the law of large numbers for i.i.d.
sequence of random variables. Lo [23] obtained an analog of the central limit theo-
rem. Asymptotic normality of an estimator in the posterior distribution is described
by a Bernstein–von Mises theorem. Chapter12 of [13] is devoted to this subject. See
Theorem 12.2 of [13] for the precise statement.

Theorem 4.10 (Bernstein–von Mises theorem) Let the prior process be F ∼
DP(θ;μ), where μ is diffuse. Then, for a diffuse P0,

√
n(Fn − E(Fn))(·) � GP0(·), P∞

0 -a.e.

as n → ∞. Here, GP0 is the P0-Brownian bridge with zero mean and covariances
E[GP0( f )GP0(g)] = P0( f g) − P0( f )P0(g), where P0( f ) = ∫

f (x)P0(dx).

Example 4.7 According to Theorem 4.9, E(Fn(·)) provides a consistent point esti-
mate of the true probability measure P0(·). Let us consider an approximate credible
set of the estimation. Theorem 4.10 and properties of the Brownian bridge, we obtain
the asymptotic (1 − α)-simultaneous credible set

[
E(Fn((−∞, x])) − λ√

n
,E(Fn((−∞, x])) + λ√

n

]
, ∀x ∈ R,

where λ solves the expression

2
∑
i≥1

(−1)i+1e−2i2λ2 = α.
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If θ tends to zero, this Bayesian credible set reduces to the simultaneous confidence
set given by the Kolmogorov–Smirnov test.

Estimating the number of unseen species is a classical subject in Bayesian statis-
tics. One of the early studies is done by Efron and Thisted on the estimation of the
number of words did Shakespeare knows [24]. Recent progress on the subject can
be found in [25–27]) and reference therein.

Example 4.8 Keener et al. studied this problem with an empirical Bayes approach
based on the Dirichlet-multinomial model and Dirichlet process [28]. Suppose fre-
quencies of species in a population follow them-variate symmetricDirichlet distribu-
tion of parameter α > 0. Then, the marginal likelihood is the Dirichlet-multinomial
distribution (4.10). Note that the total number of species m cannot be observed; the
number of observed species is the number of nonzero ni in (4.10). It is the sufficient
statistic of m. If the parameter α is known, the UMVUE of m can be constructed by
using the result in Proposition 3.4.

4.5 Related Prior Processes

Let us see some prior processes beyond the Dirichlet process and revisit some mea-
sures on partitions discussed in Chap. 2. As mentioned in Sect. 4.3, prior processes
can be modeled with prediction rules or with normalized Lévy processes. Models
beyond the Dirichlet process are concisely surveyed in [29]. This monograph we will
concentrate on random probability measures associated with normalized subordina-
tors (increasing Lévy processes). However, various random measures are also used
as prior processes in Bayesian nonparametrics. For examples, see [30, 31].

Theorem 4.8 concludes by assuming that both of infinite exchangeability and non-
interference property uniquely identifies the prior process as a Dirichlet process. In
usual statistical inferences, sizes of samples are arbitrary. Hence, infinite exchange-
ability is desirable. This chapter considers models with infinite exchangeability.

4.5.1 Prediction Rules

The present subsection discusses prediction rules. Prior processes given by prediction
rules are called species sampling priors. The prediction rule exists for any given
exchangeable partition probability function (EPPF). Let us consider a sequential
sampling scheme from a prior process F . Let the prior distribution μ be diffuse and
given by

P(X1 ∈ ·) = E(F(·)) = μ(·).
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The posterior distribution, or the prediction rule, for a given sample (X1, ..., Xn) is
given by

P(Xn+1 ∈ ·|X1, ..., Xn) =
(
1 −

Kn∑
i=1

fi (n1, ..., nKn )

)
μ(·) +

Kn∑
i=1

fi (n1, ..., nKn )δZi (·), (4.13)

where Zi is the i-th distinct value in (X1, ..., Xn) and Kn is the number of distinct
values in (X1, ..., Xn). If the sequence of random variables is exchangeable, we can
apply the consistency condition (1.1) for EPPF pn to get

1 −
k∑

i=1

fi (n1, ..., nk) = pn+1(n1, ..., nk , 1)

pn(n1, ..., nk)
, fi (n1, ..., nk) = pn+1(n1, ..., ni + 1, ..., nk)

pn(n1, ..., nk)
.

Remark 4.7 In Bayesian mixture models, prediction rules have been used as the
updating rules of Gibbs samplers. An earlier application of the Dirichlet process is
described in Escobar and West [32]. In mixture models, a sample is not (X1, ..., Xn)

(see Remark 1.1) and we need a prediction rule of Yn+1 given sample (Y1, ..., Yn).
The prediction rule involves integration of P(Y |X) with P(X) and this modification
causes difficulties, such as non-conjugacy and slow mixing. These issues for general
species sampling priors are extensively discussed in [16, 33].

An EPPF gives a prediction rule, but the reverse is not always true. Lee et al. [34]
established the following theorem.

Theorem 4.11 ([34]) The necessary and sufficient conditions under which a pre-
diction rule (4.13) gives an EPPF is

fi (n1, ..., nk) f j (n1, ..., ni + 1, ..., nk) = f j (n1, ..., nk) fi (n1, ..., n j + 1, ..., nk)

and

fi (n1, ..., nk) = fσ−1(i)(nσ(1), ..., nσ(k))

for all permutations σ of [k]. Here, (n1, ..., nk), i , and j are arbitrary.

The Gibbs partitions (2.21) introduced in Chap. 2 are fundamental models of
EPPFs. The probability mass function is

μn(λ) = vn,l(λ)n!
Bn(v,w)

n∏
i=1

(wi

i !
)ci 1

ci ! , λ ∈ Pn, (4.14)

or equivalently,

pn(n1, ..., nl(λ)) = vn,l(λ)

Bn(v,w)

l(λ)∏
i=1

wni . (4.15)



92 4 Dirichlet Processes

A Gibbs partition is not always infinitely exchangeable.

Example 4.9 (Pitman partition) The Pitman partition, which was extensively dis-
cussed in Chap. 2, is a well-known infinite exchangeable Gibbs partition. The species
sampling prior characterized by the Pitman partition is called the two-parameter
Poisson–Dirichlet process, or the Pitman–Yor process [16, 35]. Let it be denoted by
DP(α, θ;μ). The prediction rule is given by

1 −
k∑

i=1

fi (n1, ..., nk) = θ + kα

θ + n
, fi (n1, ..., nk) = ni − α

θ + n
. (4.16)

It is straightforward to confirm that this prediction rule gives the Pitman partitions,
as obtained for the Ewens sampling formula in Sect. 4.3.

After constructing a two-parameter Poisson–Dirichlet process with size-biased
permutation, we can establish the following theorem (Theorem 3.8 in [36]), which
implies that the two-parameter Poisson–Dirichlet process is conjugate tomultinomial
sampling if and only if α = 0.

Theorem 4.12 ([36]) Let the prior process be F ∼ DP(α, θ;μ), where μ is diffuse.
The posterior is given by

F |(X1, ..., Xn) ∼ UKn+1DP(α, θ + Knα;μ) +
Kn∑
i=1

UiδZi ,

where Zi is the i-th distinct value in (X1, ..., Xn), Kn is the number of distinct values
in (X1, ..., Xn), and

(U1, ...,UKn ,UKn+1) ∼ Dir(n1 − α, ..., nKn − α, θ + Knα).

Remark 4.8 Similar to the prediction rule of the Dirichlet process in Sect. 4.3. the
prediction rule of the two-parameter Poisson–Dirichlet process (4.16) is immediately
obtained from the posterior.

By similar arguments to those of Theorem 4.9, we obtain the following theorem.

Theorem 4.13 ([37, 38]) Let the prior process be F ∼ DP(α, θ;μ), where μ is
diffuse. Then, for some diffuse P0, F has posterior consistency if and only if α = 0.

Remark 4.9 A necessary and sufficient condition for a species sampling prior with
posterior consistency is

∑k
i=1 fi (n1, ..., nk) → 0 as n → ∞. See Theorem 4 of [38].
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Remark 4.10 Note that consistency depends on the context. Let us consider a
Bayesian mixture model: Yi |(Xi , σ

2) ∼ N(μXi , σ
2), where (X1, ..., Xn) follows

(4.13). Lo [39] discussed this model with the Dirichlet process. Consistency is
achieved if the posterior probability of the mixture distribution with a prior pro-
cess F :

∫
U

φσ (y − x)dF(x)

given observations (Y1, ...,Yn) converges to 1 for all neighborhoods U of the true
probabilitymeasure P0 as n → ∞, whereφσ (y − x) is the normal density withmean
0 and variance σ 2. This consistency has been established for the Dirichlet process by
Ghosal et al. [40], but it holds for more general classes of prior processes, including
the two-parameter Poisson–Dirichlet process [41].

Gnedin and Pitman [42] gave the following characterization of Gibbs partitions
with infinite exchangeability. The second assertion was given by Kerov [43].

Lemma 4.3 ([42]) A Gibbs partition (4.14) is infinite exchangeable if and only if
the sequence (wi ) satisfies

wi = (β − α)i−1;β, i ∈ N, α < β, β ≥ 0.

In particular, if the sequence (vn,k) does not depend on n, then a Gibbs partition with
infinite exchangeability is the Pitman partition (2.28).

Proof As the probability mass function is invariant under a change of sequences
(wi , vn,k) �→ (twi , t−kvn,k), we may set w1 = 1. The consistency condition (4.12)
for infinite exchangeability is

vn,k

Bn(v,w)
= vn+1,k

Bn+1(v,w)

n∑
i=1

ri ci + vn+1,k+1

Bn+1(v,w)
, ri ≡ wi+1

wi
, k ∈ [n].

Now set k = 2. As ri + rn−i regardless of i , ri is an arithmetic series. Putting ri =
βi − α, α < β, β ≥ 0, we obtain wi = (β − α)i−1;β . As

∑n
i=1 ri ci = βn − αk, we

have for the latter assertion

vk+1

vk
− αk = Bn+1(v,w)

Bn(v,w)
− βn = const. ≡ θ,

where vk denotes vn,k . Moreover, as the probability mass function is invariant under
the change of sequence vk �→ tvk , we may set v1 = θ . We, then, obtain vk = (θ)k;α
and Bn(v,w) = (θ)n;β . After normalization, we obtain β = 1, which completes the
proof. �
Remark 4.11 By Lemma 4.3, Kolchin’s model introduced in Sect. 2.2 reduces to the
Pitman partition under the infinite exchangeability.
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Moreover, under the change of sequence (wn,k) as vn,k �→ vn,kβ
−k , a Gibbs par-

tition with infinite exchangeability in Lemma 4.3 can be represented by a sequence
(wi ) of the form

wi = (1 − α)i−1, i ∈ N, α < 1. (4.17)

In the following discussion, we assume (4.17) for Gibbs partitions with infinite
exchangeability. To simplify the expressions, we also set

ṽn,k ≡ vn,k

Bn(v,w)
.

Gnedin and Pitman characterized the exchangeable Gibbs partitions by the fol-
lowing theorem (Theorem 12 in [42]).

Theorem 4.14 ([42]) An infinite exchangeable Gibbs partition of the form (4.14)
with a sequence (wi ) of the form (4.17) is one or a mixture of the following partitions:

• The Ewens sampling formula (2.12), if α = 0 and θ > 0.
• The m-variate symmetric Dirichlet-multinomial distribution (4.10), if α < 0 and

θ = −mα, m ∈ N.
• A Poisson–Kingman partition associated with the α-stable subordinator in Defi-
nition 4.9 (in the next subsection), if α ∈ (0, 1).

Remark 4.12 Some of the Gibbs partitions, such as the limiting quasi-multinomial
distribution (Example 2.14), the limiting conditional inverse Gaussian–Poisson dis-
tribution (Remark 2.7), and the multiplicative measure induced by the exponential
structure associated with the Macdonald symmetric functions (Example 2.15), are
not infinite exchangeable. Moreover, when the model involves dependence struc-
tures, such as regression, hierarchy, and spatiotemporal correlation, exchangeability
cannot be justified. Such modelings are discussed in [44–48].

Asmentioned in Sect. 4.3, the prediction rule (4.8) of the Dirichlet process gave us
a sampling scheme known as Blackwell–MacQueen’s urn scheme (Algorithm 4.1).
For an infinite-exchangeable Gibbs partition, the prediction rule (4.13) gives the
following modified Blackwell–MacQueen’s urn scheme. Note that this algorithm
demands infinite exchangeability.

Algorithm 4.2 ([49]) Sequential sampling froman infinite-exchangeableGibbs par-
tition.

1. Drop a black (colorless) ball into the urn.
2. Set the number of colored balls to n and the number of balls of color i to ni . Draw

one ball from the urn.

• The black ball is drawn with probability
ṽn+1,k+1

ṽn,k
. Return the black ball to

the urn, and add a ball with a color sampled from the continuous spectrum of
colors μ(·) to the urn.
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• A ball of color i is drawn with probability
ṽn+1,k

ṽn,k
(ni − α). Return the colored

ball to the urn, and add a ball of the same color to the urn.

3. Return to Step 2.

Example 4.10 (Pitman partitions) The prediction rule (4.16) of the Pitman partition
gives the probabilities in Step 2.

Example 4.11 (Generalized gamma NRMI) Next subsection introduces the general-
ized gamma NRMI, the only NRMI whose EPPF is an infinite exchangeable Gibbs
partition. The expressions for ṽn,k for the generalized gamma NRMI, which involve
sums of incomplete gamma functions, are expressed in (4.25). Numerical evaluations
are discussed in [50].

Example 4.12 (Poisson–Kingman partitions) For the conditional Poisson–Kingman
partition associated with the stable subordinator of parameter 1/2 (see next subsec-
tion), the probabilities in Step 2 of Algorithm 4.2 are given by

zhk−2n(z)

hk−2n+1(z)
,

2hk−2n−1(z)

hk−2n+1(z)

(
ni − 1

2

)
,

where hi (z) satisfies the recurrence relation

hi+1(z) = zhi (z) − ihi−1(z), h0(z) = 1,

h−1(z) = ez
2/2

∫ ∞

z
e−x2/2dx .

For i ∈ N, hi (z) are the Hermite polynomials, which are orthogonal with respect to
the standard normal density.

4.5.2 Normalized Subordinators

This subsection discusses the modeling of prior processes by normalizing a subor-
dinator. Especially, it introduces the normalized random measure with independent
increments (NRMI) and the Poisson–Kingman partition.

In Sect. 4.5.1, we introduced the two-parameter Poisson–Dirichlet process, which
can be constructed by normalizing the stable subordinator. See Chap.3 of [51] for
the detailed explanation. Let Z , Z1, ..., Zn be independent random variables fol-
lowing the α-stable distribution, whose Laplace transform satisfies E(exp(−λZ)) =
exp(−λα). We then have

n−1/α(Z1 + Z2 + · · · + Zn)
d= Z , α ∈ (0, 2].
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The stable distributions of α = 2 and α = 1 are the normal distribution and the
Cauchy distribution, respectively. We here consider the case of α ∈ (0, 1). The
probability density function of the α-stable distribution fα was given in (2.47).
The distribution of Z−α is the Mittag-Leffler distribution with the p-th moment
of Γ (1 + p)/Γ (1 + pα). The α-stable subordinator is a process (Xt ; t ≥ 0) with
X0 = 0 and X1 follows the α-stable distribution with the Lévy measure of

ν(dx) = αx−(1+α)

Γ (1 − α)
dx, x > 0. (4.18)

The normalized process (Yt ; 0 ≤ t ≤ 1) := (Xt/X1; 0 ≤ t ≤ 1) has interchangeable
positive increments satisfying Y0 = 0 and Y1 = 1. The descending ordered countable
increments (P1, P2, ...) follow a discrete distribution whose support is the infinite-
dimensional simplex in (4.6). This distribution is called the two-parameter Poisson–
Dirichlet distributionof parametersα and θ = 0. Forα ∈ (0, 1) and θ > −α, the two-
parameter Poisson–Dirichlet distribution Pα,θ is obtained by the measure changing
formula:

dPα,θ

dPα,0
= Γ (θ + 1)

Γ (θ/α + 1)
X−θ
1 . (4.19)

Remark 4.13 The two-parameter Poisson–Dirichlet distributions give the distribu-
tions of sequences of ranked excursion lengths of a standard Bessel process [17, 35,
52]. For a standard Bessel process of dimension 2 − 2α, up to time 1 and includ-
ing the meander length, the sequence follows the two-parameter Poisson–Dirichlet
distribution of parameters α and θ = 0. For a standard Bessel bridge of dimension
2 − 2α, the sequence follows the two-parameter Poisson–Dirichlet distribution with
parameters α and θ = α.

The two-parameter Poisson–Dirichlet process introduced in Sect. 4.5.1 is defined
in terms of the two-parameter Poisson–Dirichlet distribution as follows:

Definition 4.6 ([35]) Let μ be a probability measure on a measurable space (R,B)

and let (P1, P2, ...) be a sequence of random variables following the two-parameter
Poisson–Dirichlet distribution with parameters α ∈ (0, 1) and θ > −α. For an i.i.d.
sequence of random variables (V1, V2, ...) following μ, we have

F =
∑
i≥1

PiδVi ∼ DP(α, θ;μ).

The stick-breaking construction (see Theorem 4.6) is defined as follows.

Theorem 4.15 For a sequence of independent random variables (W1,W2, ...) with
Wi ∼ Beta(1 − α, θ + iα), let
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P̃1 = W1, P̃2 = (1 − W1)W2, ... P̃j =
j−1∏
i=1

(1 − Wi )Wj , ...

Then, for an i.i.d. sequence of random variables (V1, V2, ...) following μ, we have

F =
∑
i≥1

P̃iδVi ∼ DP(α, θ;μ).

Here, the sequence (P̃1, P̃2, ...) is a size-biased permutation of a sequence fol-
lowing the two-parameter Poisson–Dirichlet distribution (P1, P2, ...). The following
sketch of a proof derives from Sects. 4.1 and 4.2 of [17, 52, 53].

Proof Consider a subordinator (Xt ; t ≥ 0) with X0 = 0 with the Lévy density of
ν(dx) = ρ(x)dx . Let the probability density function of X1 be fX1(x). Then, for
λ ≥ 0 the Lévy–Khintchine representation is

E(e−λX1) =
∫ ∞

0
e−λx fX1(x)dx = exp(−Ψ (λ)), (4.20)

where the Laplace exponent is

Ψ (λ) :=
∫ ∞

0
(1 − e−λx )ρ(x)dx . (4.21)

Here, fX1 is uniquely determined by solving the following integral equation:

fX1(x) =
∫ x

0
ρ(s) fX1(x − s)

s

x
ds (4.22)

The Laplace transform of this integral equation is obtained by differentiating
(4.20) with respect to λ. Let the descending ordered jump sizes be denoted by
(J1, J2, ...) and let the size-biased permutation of (J1/X1, J2/X1, ...) be denoted
by ( J̃1/X1, J̃2/X1, ...). The right-hand side of the expression (4.22) has a simple
interpretation. The jump sizes follow the Poisson point process of intensity ν. Now,
decompose x into a randomly picked jump size s and the remainder x − s, where the
jump is picked by size-biased sampling. The probability that a jump size s is taken
is s/x , whose density is ρ(s). Therefore, the joint density of J̃1 and X1 is given as

f J̃1,X1
(s, x) = ρ(s) fX1(x − s)

s

x
,

The joint density of X̃1 ≡ X1 − J̃1 and U1 ≡ 1 − J̃1/X1 is

f X̃1,U1
(x, u) = u−1ρ∗((1 − u)u−1x) fX1(x),
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where we set ρ∗(x) ≡ xρ(x). Especially, for the α-stable subordinator, we have

f X̃1,U1
(x, u) ∝ (1 − u)−αuα−1x−α fα(x).

This implies that W1 ≡ 1 −U1 and X̃1 are independent, W1 ∼ Beta(1 − α, α), and
f X̃1

(x) ∝ x−α fα(x). In the same manner, we obtain

f J̃1, J̃2,X1
(s, t, x) = ρ(s)ρ(t) fX1(x − s − t)

s

x

t

x − s

and for the α-stable subordinator, we have

f X̃2,U1,U2
(x, u, v) ∝ (1 − u)−αuα−1(1 − v)−αv2α−1x−2α fα(x),

where U2 ≡ 1 − J̃2/X̃1 and X̃2 ≡ X̃1 − J̃2. This expression implies the indepen-
dence of W1, W2, and X̃2. Here, W2 ≡ 1 −U2 ∼ Beta(1 − α, 2α), and f X̃2

∝
x−2α fα(x). This procedure gives the assertion of the theorem for θ = 0. The assertion
for θ �= 0 follows immediately by applying the measure changing formula (4.19) to
the density fX1 . �

Remark 4.14 In Remark 4.3, the sequence obtained by size-biased permutation of
a sequence of random variables following the Poisson–Dirichlet distribution was
called the GEM distribution. The size-biased permutation of a sequence following
the two-parameter Poisson–Dirichlet distribution follows the two-parameter GEM
distribution, the only residual allocation model with invariance under biased permu-
tations [54].

The NRMI is defined as follows.

Definition 4.7 Letμ be a finite measure on a measurable space (R,B(R)) such that
for any A1, ..., An ∈ R, Ai ∩ A j = φ,∀i �= j , the randomvariablesμ(A1), ..., μ(An)

aremutually independent. Then,μ is called a complete randommeasure. The random
probability measure μ/μ(R) is called a normalized random measure with indepen-
dent increments.

Let us consider complete random measures μ = ∑
i≥1 JiδVi on R, where the

positive jumps Ji and the R-valued locations Vi are both random. If the jump-size
distribution is independent of their locations, the random measure μ is called homo-
geneous. Pitman [53] showed that a homogeneous NRMI is a species sampling prior
with the following EPPF:

p(n1, ..., nk) = (−1)n−k

(n − 1)!
∫ ∞

0
λn−1e−Ψ (λ)

k∏
i=1

Ψ (ni )(λ)dλ, (4.23)
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whereΨ (i)(λ) is the i-th derivative of the Laplace exponent (4.21). Lijoi et al. proved
that an NRMI whose EPPF is an infinite exchangeable Gibbs partition reduces to the
following generalized gamma NRMI [55].

Definition 4.8 ([55]) An NRMI with Lévy density

ν(dx) = x−(1+α)θe−τ x

Γ (1 − α)
dx, x > 0, α ∈ (0, 1), τ > 0, θ > 0 (4.24)

is called a generalized gamma NRMI.

A straightforward observation confirms that the EPPF of the generalized Gamma
NRMI is an infinite exchangeable Gibbs partition. Substituting the Lévy measure
(4.24) into (4.23), we have

p(n1, ..., nk) = eβαk−1

(n − 1)!
n−1∑
i=0

(
n − 1
i

)
(−1)iβ i/αΓ

(
k − i

α
, β

) k∏
j=1

(1 − α)n j−1,

where

Γ (z, β) =
∫ ∞

β

e−t t z−1dt, β ≡ θτα

α
.

Comparing this expression with (4.15), we obtain (4.17) and the following expres-
sion:

ṽn,k = eβαk−1

(n − 1)!
n−1∑
i=0

(
n − 1
i

)
(−1)iβ i/αΓ

(
k − i

α
, β

)
. (4.25)

Example 4.13 Taking θ = α and τ = 0 in (4.24) yields the two-parameter Poisson–
Dirichlet process with parameters α ∈ (0, 1) and θ = 0. Taking α = 0 and τ = 1
yields the Dirichlet process with parameter θ .

Example 4.14 The probability distribution function of the stable distribution with
parameter α = 1/2 (2.47) takes the following closed form:

f1/2(x) = x−3/2

2
√

π
e− 1

4x = P
(
B−2
1 /2 ∈ (x, x + dx]) /dx, B1 ∼ N(0, 1),

The generalized Gamma NRMI with α = τ = 1/2 is called the normalized-inverse
Gaussian process, because X1 ∼ IG(

√
2θ, 1), where the probability density function

of the inverse Gaussian distribution IG(β, 1) is

f (x) = β√
2π

x− 3
2 exp

{
−1

2

(
β2

x
+ x

)
+ β

}
, x > 0.
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Theproperties of the normalized-inverseGaussianprocess and applications to density
estimation are extremely discussed in [56].

The Poisson–Kingman partition appeared in Theorem 4.14 characterized the
exchangeable Gibbs partition. The definition is as follows:

Definition 4.9 Consider a homogeneous NRMI given by a subordinator with Lévy
measure ν. The randommeasure obtained by conditioningwith X1 = x is denoted by
Pν|x . The randommeasure obtained as themixture ofPν|x with themixing distribution
η(dx):

∫ ∞

0
Pν|x (·)η(dx)

is called the Poisson–Kingman distributionwith parameter ν and η. The EPPF of the
Poisson–Kingman distribution is called the Poisson–Kingman partition.

Example 4.15 If X1 ∼ η(x), the Poisson–Kingman distribution is a homogeneous
NRMI. If the EPPF gives the Gibbs partition, it reduces to a generalized gamma
NRMI. In Example 4.13, we showed that the two-parameter Dirichlet process with
parameters α ∈ (0, 1) and θ = 0 is a generalized gamma NRMI, given as a mixture
of Pν|x whose ν is the α-stable distribution (4.18) and the mixing distribution η are
α-stable distributions.

Example 4.16 The two-parameter Poisson–Dirichlet distribution with parameters
α ∈ (0, 1) and θ > −α is constructed as the Poisson–Kingman distribution. A mix-
ture of Pν|x whose ν is the α-stable distribution (4.18) and whose mixing distribution
is given by

η(dx) = Γ (1 + θ)

Γ (1 + θ/α)
x−θ fα(x)dx .

This expression follows from the measure changing formula (4.19). Comparing this

result with (2.1) we find that X1
d= S−1/α

α , where Sα is the scaled limit of the length
of the Pitman partition.

As the Poisson–Kingman distribution is a mixture of Pν|x whose ν is the α-
stable distribution, we can represent the Poisson–Kingman partition as a mixture
of conditional partitions given X1 = x , where X1 follows an α-stable distribution.
The conditional partition is also an infinite exchangeable EPPF with the following
form [53]:

ṽn,k |x = αk x−n

Γ (n − kα) fα(x)

{∫ x

0
yn−1−kα fα(x − y)dy

}
.
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For α = 1/2, the expression reduces to

2n−k zk−1hk+1−2n(z), z ≡ 1/
√
2x,

where hi (z) are the Hermite polynomials defined in Example 4.12. Moreover, Ho et
al. [57] derived closed expressions for general α ∈ (0, 1) in terms of some special
functions.
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Chapter 5
Methods for Inferences

Abstract This chapter introduces inference methods based on the models presented
in previous chapters. We discuss samplers, which are required for hypothesis test-
ing and posterior sampling. After a brief introduction of Markov chain Monte Carlo
(MCMC) samplers from A-hypergeometric distributions discussed in Chap. 3, we
introduce a direct sampler, which allows us to draw independent samples directly
from the target distribution. Gibbs partitions introduced in Chap. 2 and further dis-
cussed inChap. 4 are related to A-hypergeometric distributions of two-rowsmatrices.
We present some interesting topics on samplers from random partitions, including
mixing assessment in terms of symmetric functions and construction of direct sam-
plers by simulating stochastic processes on partitions. Finally, aided by information
geometry,we discussmaximum likelihood estimation of curved exponential families,
which arise in parameterization of the variables of A-hypergeometric distributions.

Keywords A-hypergeometric distribution · Curved exponential family
Direct sampler · Duality of Markov chains · Gibbs partition
Information geometry · Markov chain Monte Carlo · Mixing · Symmetric function

5.1 Sampler

This section introduces samplers from the A-hypergeometric distributions discussed
in Sect. 3.2. Suppose that among m categories, ti ∈ [m] is the category of the i-th
observation of a sample of size n. The count vector (c1, . . . , cm), ci := #{ j; t j = i}
of a sample

(t1, . . . , tn) (5.1)

should satisfy the homogeneity condition (see Sect. 3.1)

c1 + · · · + cm = n. (5.2)

If a sequence (T1, . . . , Tn) of random variables is n-exchangeable, the count vector
follows the A-hypergeometric distribution (Definition 3.4)
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P(C1 = c1, . . . ,Cm = cm) = 1

ZA(b; x)
xc

c! . (5.3)

Sections5.1.1 and 5.1.2 introduce MCMC samplers from A-hypergeometric distri-
butions. A Metropolis algorithm is discussed in Sect. 5.1.1, while a direct sampling
algorithm is discussed in Sect. 5.1.2.

Section 2.2 introduced the Gibbs partition, which determines the shape of a
random Young tableau. The roles in Bayesian nonparametrics were introduced in
Sect. 4.5.1. The probability mass function of the size index takes the form

P(C1 = c1, . . . ,Cn = cn) = vn,l(λ)n!
Bn(v,w)

xc

c! , xi = wi

i ! . (5.4)

Here, the categories are the sizes of parts (i.e., n is m in (5.2)). The conditional dis-
tribution is an A-hypergeometric distribution of two-row matrix (see Example 3.8).
Throughout Sect. 5.1, samplers from random partitions including Gibbs partitions
are discussed.

5.1.1 MCMC Samplers

AMetropolis algorithm requires construction of an irreducible and aperiodicMarkov
chain in the state space (see Sect. 1.2.2). Diaconis and Sturmfels [1] demonstrated the
construction using the Gröbner bases.Markov bases are comprehensively introduced
in [2].

The state space Fb(A) := {c; Ac = b} is the b-fiber of a matrix A. The set of
moves is denoted by M (A) := KerA ∩ Z

n , where a move z is written as

z = z+ − z−, z+
i := max(zi , 0), z−

i := max(−zi , 0).

A Markov basis characterizes consecutive moves along the Markov chain.

Definition 5.1 ([1]) IfB ⊂ M (A) is aMarkov basis, for any b and u, v ∈ Fb(A),
there exist zi ∈ B and εi ∈ {−1, 1} such that

v = u +
t∑

i=1

εi zi , u +
s∑

i=1

εi zi ∈ Fb(A), ∀s ∈ [t].

The map from a move z ∈ M (A) to a binomial z �→ xz
+ − xz

−
is one-to-one.

The fundamental theorem of the Markov basis is stated below (a proof is given in
Theorem 4.1 of [2]).

Theorem 5.1 ([1]) A set of movesB = {zi ; i ∈ [s]} ⊂ M (A) is a Markov basis if
and only if the set of binomials {xz+

i − xz
−
i ; i ∈ [s]} generates the toric ideal of the

matrix A.
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Example 5.1 (Two-way contingency tables) A two-way r × c contingency table has
m = r × c categories. The count vector is (n11, . . . , n1c, . . . , nr1, . . . , nrc)with sum
n = n··. Example 3.7 demonstrated that the conditional distribution of counts with
fixedmarginal sums is the A-hypergeometric distribution.AMarkov basis is obvious,
consisting of the following moves:

zi j =
⎧
⎨

⎩

+1, (i, j) = (i1, j1), (i2, j2),
−1, (i, j) = (i1, j2), (i2, j1),
0, others,

1 ≤ i1 < i2 ≤ r, 1 ≤ j1 < j2 ≤ c.

Example 5.2 (Poisson regression) In Sect. 1.2.2, we discussed a goodness-of-fit
test for the m-level univariate Poisson regression. Example 3.6 showed that the
conditional distribution of count vector given the sufficient statistics is the A-
hypergeometric distribution. The levels are the categories and the total number of
counts in the count vector (c1, . . . , cm) is k (n in (5.2)). Let us consider a Markov
basis for the matrix

A =
(
0 1 · · · m − 1
1 1 · · · 1

)
. (5.5)

By virtue of Theorem 5.1, a Gröbner basis of the toric ideal is a Markov basis.
Therefore, a minimal Gröbner basis given in Proposition 3.2

{ei + e j − ei+1 − e j−1; 1 ≤ i < j ≤ m, i + 2 ≤ j} (5.6)

is a Markov basis. Simple calculation gives the acceptance ratios in the Metropolis
algorithm. The explicit expressions are provided in [3].

Example 5.3 (Conditional Gibbs partitions) As shown in Example 3.8, the con-
ditional probability measure of a Gibbs partition with given length is an A-
hypergeometric distribution. The sizes of parts are the categories and the count vector
(c1, . . . , cn) is the size index (n and k are identical to m and n in (5.2), respectively).
The matrix A is given by

A =
(
0 1 · · · n − k
1 1 · · · 1

)

and b	 = (n − k, k). As the matrix A takes the form of (5.5), its Markov basis is
(5.6).

Remark 5.1 Example 5.3 provides clues for construction of anMCMC sampler from
(unconditional) Gibbs partitions (5.4) based on a reversible jumpMCMC [4]. Green
and Richardson [5] discussed such a sampler for posterior sampling from Dirichlet
process mixture models. The reversible jump MCMC requires two categories of
moves: those that maintain the lengths of partitions, and those that change the length
of partitions. The former category is given by the Markov basis (5.6), and the latter
category splits one part into two or merges two parts.



108 5 Methods for Inferences

5.1.2 Direct Samplers

As discussed in Sect. 1.2.2, a sampler that directly draws independent samples from
the target distribution would be beneficial in several respects. Fortunately, such
a direct sampler is available for A-hypergeometric distributions, but at the cost of
evaluating the normalizing constants (A-hypergeometric polynomials). Methods for
evaluating A-hypergeometric polynomials were discussed in Sect. 3.3.

Note that an A-hypergeometric system has the homogeneity constraint (5.2).
Equivalently, we have the annihilator

m∑

i=1

θi − n.

Applying this annihilator to the A-hypergeometric polynomial provides a relation
among the A-hypergeometric polynomials

m∑

i=1

xi Z A(b − ai ; x) = nZA(b; x).

Note that the degree of the polynomial ZA(b − ai ; x) is n − 1. This expression can
be probabilistically interpreted as follows. Consider a Markov chain with a state
space consisting of A-hypergeometric polynomials. Along each step of the chain,
the degree of the polynomial decreases by one. The transition probability from the
polynomial ZA(b; x) to the polynomial ZA(b − ai ; x) is given by

ZA(b − ai ; x)
ZA(b; x)

xi
n

= E(Ci )

n
=: p(i), (5.7)

which coincides with the expected proportion of the i-th category. Likewise, define

p(i | j1, . . . , jl−1) := ZA(b − a j1 − · · · − a jl−1 − ai ; x)
ZA(b − a j1 − · · · − a jl−1; x)

xi
n − l + 1

, (5.8)

if b ≥ a j1 + · · · + a jl−1 + ai , and set p(i | j1, . . . , jl−1) = 0 otherwise. This is the
expected proportion of the i-th category after removing j1, . . . , jl−1 categories from
the sufficient statistics b (see Sect. 3.2). A sample path of this Markov chain is a draw
of categories (5.1) from the A-hypergeometric distribution (5.3). The procedure is
implemented by the following sequential sampling algorithm.

Algorithm 5.1 ([3]) Sequential sampling of a vector of categories (t1, . . . , tn), when
the count vector (c1, . . . , cm), follows the A-hypergeometric distribution (5.3).

1. Pick t1 = i with probability p(i) defined by (5.7).
2. For l = 2, . . . , n, pick tl = i with probability p(i |t1, . . . , tl−1) defined by (5.8).



5.1 Sampler 109

This algorithm is now demonstrated with examples.

Example 5.4 (Two-way contingency tables) Algorithm 5.1 provides a direct sam-
pler from a two-way contingency table. The MCMC sampler was discussed in
Example 5.1. By sequentially picking a count of one cell in the contingency table, we
can sample a two-way contingency table with fixed marginal sums. The step-by-step
implementation of this algorithm is best shown by a toy example. Let b = (2, 1, 2, 1).
The sample path t = (2, 3, 1) corresponds to a sequence of contingency tables

1 1 2
1 0 1
2 1 3

→
1 0 1
1 0 1
2 0 2

→
1 0 1
0 0 0
1 0 1

→ 0,

or a sequence of monomials x1x2x3 → x1x3 → x1. The probability of generating
this path is

x1x3
x1x2x3 + x21 x4/2!

x2
3

× x1
x1x3

x3
2

= x1x2x3
x1x2x3 + x21 x4/2!

1

3! = 1

3!
x1x2x3
ZA(b; x) .

Here, the factor 1/3! appears because there are 3! equiprobable paths for generating
the count vector c = (1, 1, 1, 0). As another table is possible, the denominator of
the first fraction is binomial. As an example of real-life data, Table5.1 shows a
partial result of the 13th study of the Japanese national character in 2013, a regular
survey carried out by the Institute of Statistical Mathematics since 1953 [6]. The
table tabulates the answers to Question 2.11b by respondents in the 20–29 years age
bracket. The question consists of two items. The “experience” item represents “I
want to experience as much as possible in order to develop my capacities in work
and play”, and the “avoid trouble” item represents “I want to avoid trouble as much
as possible and live in peace and quiet”. The chi-squared value is 1.561 and the
p-value of the Fisher’s exact test of rows-and-columns independence (computed by
directly enumerating all possible tables) is 0.233. The estimated p-value based on
1,000 samples from the direct sampler was 0.236. The direct sampler performedwell,
despite the small number of samples, as confirmed by the similarity between the true
and estimated probabilities shown in Fig. 5.1. The computation was implemented by
Risa/Asir version 20160405 [7] with the gtt_ekn.rr package [8, 9].

Table 5.1 A partial result of
the 13th study of the Japanese
national character carried out
in 2013

Experience Avoid trouble

Males 53 19 72

Females 56 31 87

109 50 159
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Fig. 5.1 Probabilities of tables those chi-squared values are in the horizontal axis. Left is the true
probabilities. Right is the number of tables among 1,000 tables generated by the direct sampler

Example 5.5 (Poisson regression [10]) In Example 1.2, we introduced a goodness-
of-fit test for the univariate Poisson regression. The MCMC sampler was discussed
in Example 5.2. With the aid of Algorithm 5.1, we can sample a vector of levels by
sequentially picking a level among [m]. For the data in Example 1.2, the p-value of
the goodness-of-fit of the Poisson regressionwas estimated. First, followingDiaconis
et al. [10], we estimated the p-value by the MCMC sampler. Based on the 90, 000
steps with the initial 10, 000 steps having been discarded as the burn-in, the estimated
p-value was 0.023. The issue here is whether 10, 000 steps is sufficient to be free
from possible bias comes from departure from the stationarity. The estimate with
direct sampler can give an answer to this problem, since the estimate should have no
bias and the Monte Carlo error can be diminished simply by running a long chain.
The estimate based on 900, 000 samples from the direct sampler was 0.026. Since
this estimate is close to the estimate by theMCMC sampler, we can conclude that the
MCMC sampler gave a reasonable estimate, as confirmed by the similarity between
the two histograms in Fig. 5.2.

Example 5.6 (Conditional Gibbs partitions) In Example 5.3, we discussed the
Metropolis algorithm from the conditional probability measure of a Gibbs parti-
tion given length. Similarly, to the direct sampler for the Poisson regression in
Example 5.5, we can sample a partition from the conditional probability measure
by sequentially picking single row of the Young tableau. For a given length, Stewart
[11] proposed an algorithm that samples from the conditional probability measure of
the Ewens sampling formula (2.13). The MCMC sampler from the (unconditional)
Gibbs partition was discussed in Remark 5.1. A Gibbs partition (5.4) can be directly
sampled by selecting the number of rows of the Young tableaux (length of partition)
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Fig. 5.2 Histograms of the chi-squared values. Left is obtained by the direct sampler with 900,000
samples. Right is obtained by the MCMC sampler based on 90,000 steps with the initial 10,000
steps been discarded

k with probability in (2.22), then sampling the lengths of the rows (n1, . . . , nk) by
using Algorithm 5.1.

Remark 5.2 In Sect. 4.5.1, we introduced an analog of Blackwell–MacQueen’s urn
scheme (Algorithm 4.2) as a sampler from Gibbs partitions. Although being a direct
sampler, the urn scheme is available if and only if the Gibbs partition is infinitely
exchangeable (see Sect. 1.1 for the definition). Some Gibbs partitions discussed so
far are not infinitely exchangeable (see Remark 4.12). The direct sampler introduced
in Example 5.6 works without infinite exchangeability.

5.1.3 Mixing and Symmetric Functions

Given a target distribution, one can construct a Metropolis sampler by a Markov
basis. The mixing depends on the chosen Markov basis. A sampler from a Gibbs
partition admits any Markov basis of the fiber

(c1, . . . , cn), 1 · c1 + 2 · c2 + · · · + n · cn = n. (5.9)

The Metropolis sampler mentioned in Remark 5.1 utilizes the Markov basis (5.6) of
the matrix (5.5) and the splitting and merging moves

{ei + e j − ei+ j ; 1 ≤ i, 1 ≤ j, i + j ≤ n}. (5.10)
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It can be shown that the moves (5.10) form a Markov basis of (5.9). In fact, Han-
lon [12] considered a Metropolis sampler from the Ewens sampling formula (2.12)
with moves (5.10) only. He discussed the mixing using properties of Jack symmetric
functions (the symmetric functions appear here are briefly introduced in Sect. A.1).
Diaconis and Lam [13] discussed a MCMC sampler from the Gibbs partition associ-
atedwithMacdonald symmetric functions (see Example 2.15). The employedmoves
are different from (5.10). The following algorithm utilizes auxiliary variables, and
is known as the block spin algorithm in statistical mechanics [14].

Algorithm 5.2 ([13]) Sampling of a Gibbs partitions associated with Macdonald
symmetric functions (Examples 2.15) of weight n.

1. Set t = 0 and pick an initial sample λ(0).
2. Pick parts σ with probability

P(� = σ) = 1

qn − 1

n∏

i=1

(
ci (λ(t))

ci (λ(t)\σ)

)
(qi − 1)ci (σ ).

3. Pick parts σ ′ � |σ | with probability

P(�′ = σ ′) = t

t − 1

n∏

i=1

{
1

i

(
1 − 1

t i

)}ci (σ ′) 1

ci (σ ′)! .

4. Set λ(t+1) = (λ(t)\σ) ∪ σ ′, increment t to t + 1, and return to Step 2.

Remark 5.3 In each iteration of this algorithm, parts σ are replaced with parts σ ′,
while retaining λ\σ . In this step, the parts λ\σ are the auxiliary variables.

Consideration of the transition probabilitymatrix involves representations ofMac-
donald symmetric functions. As shown in Theorem 3.1 of [13], the eigenvalues are
given by

βλ = t

qn − 1

l(λ)∑

i=1

qλi − 1

t i

and the eigenvectors are

fλ(ρ) = Xλ
ρ(q, t)

l(ρ)∏

i=1

(1 − qρi ), Xλ
ρ(q, t) :=

∑

μ

χμ
ρ Kμλ(q, t).

Here, Xλ
ρ(q, t) are the coefficients occurring in the expansion of Macdonald sym-

metric functions in terms of power sums, where Kλ,ρ(q, t) are the two-parameter
Kostka numbers and χμ

ρ = 〈sμ, pρ〉 (see Sect. VI.8 of [15]). For a chain beginning
at the partition (n), the chi-squared distance after t steps is
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χ2
(n)(t) =

∑

λ

{(Pt )(n)λ − μn(λ)}2
μn(λ)

=
∑

λ �=(n)

β2t
λ f̄ 2λ (n),

where the eigenvectors f̄λ(n) are normalized to have unity norm. Theorem 5.1 of
[13] provides the explicit form of the upper bound.

5.1.4 Samplers with Processes on Partitions

In Sects. 5.1.1 and 5.1.3, MCMC samplers for random partitions were discussed. In
Sect. 5.1.2, direct sampling from random partitions using the direct sampler for the
A-hypergeometric distribution was discussed. In this section, we introduce a method
which enables direct sampling of random partitions by simulating random graphs
generated by processes on partitions. The notion of dualities between processes
on partitions and measure-valued diffusions are the key. The background is briefly
explained in Sect. A.2. Such inference methods have been developed in probabilistic
studies on genetic diversity in the field of population genetics. An extensive survey
of inferences in population genetics is [16].

The Ewens sampling formula satisfies the recurrence relation (A.12), which can
be understood with Kingman’s coalescent. Although the recurrence relation is a
linear system, it is extremely high-dimensional. It is unrealistic to solve it exactly.
Therefore,we consider a stochastic algorithm to sample a partition. Such an algorithm
was proposed byGriffiths andTavaré [17]. Solving high-dimensional systemof linear
equations via stochastic simulations was originated by von Neumann and Ulam, and
extended by Forsythe and Leibler [18].

Kingman’s coalescent is a process to generate random trees. Set the time direction
from the root to the leaves with the origin at the leaves. Let xt denote the state of
partition at time t . The waiting time (−T ) > −∞ exists such that x−T = e1. The
recurrence relation has the form of a forward equation

p(xt ) =
∑

{xt−1}
p(xt |xt−1)p(xt−1).

The problem is to compute the probability p(x0) of a sample x0. Since we know
the forward transition probabilities p(xt |xt−1), it is straightforward to generate a
tree from the root e1 to the leaves. However, the probability that a sample path
hits the state x0 is extremely low. A possible alternative is generating a tree from
x0 backward in time and stopping at time (−T ). A difficulty associated with this
method is that we do not know the backward transition probabilities p(xt−1|xt ). From
Bayes’ rule the backward transition probability can be expressed as p(xt−1|xt ) =
p(xt |xt−1)p(xt−1)/p(xt ); however, it is unknown as we do not know p(xt−1)/p(xt ).
The following importance sampling representation is based on an approximation of
the backward transition probabilities p̂(xt−1|xt ):
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p(x0) = E p̂

[
p(x0|x−1)

p̂(x−1|x0) · · · p(x−T+1|x−T )

p̂(x−T |x−T+1)
p(x−T )

]

≈ 1

N

N∑

i=1

⎧
⎨

⎩

−T+1∏

j=0

p(x (i)
j |x (i)

j−1)

p̂(x (i)
j−1|x (i)

j )
p(x−T )

⎫
⎬

⎭ ,

where E p̂ denotes expectation taken over backward paths {x−1, . . . , x−T } with the
approximated backward transition probabilities, and x (1), . . . , x (N ) are the N inde-
pendent sample paths. If p̂(xt−1|xt ) = p(xt−1|xt ), the importance weight becomes
p(x0). Stephens and Donnelly [19] proposed following approximation procedure,
which was formalized by de Iorio and Griffiths [20].

Let us consider a sampler from the symmetric m-variate Dirichlet-multinomial
distribution as an example. Let the sample be n = (n1, . . . , nm). In Sect. 4.3, we
observed that p(n) = 〈qn, πα〉, where qn is defined in (A.10) and πα is the density
of the Dirichlet distribution. However, suppose that we do not know these expres-
sions and want to approximate p(n). The exchangeability assumption in sequential
sampling demands that the approximated probability p̂(n) satisfies

π(i |n − ei ) p̂(n − ei ) = ni
n
p̂(n), (5.11)

where π(i |n − ei ) is the probability that an additional type chosen is of type i , given
a sample of n − ei . To determine π and p̂, de Iorio and Griffiths [20] proposed using
the condition for the generator of a diffusion (A.7):

〈
L j

∂qn
∂x j

, πα

〉
= 0, (5.12)

where L j is

L j :=
∑

i

1

2
ai j (x)

∂

∂xi
+ b j (x).

The condition (5.12) yields

n j (n − 1 + mα) p̂(n) = n(n j − 1) p̂(n − e j ) + α

m∑

i=1

(ni + 1 − δi j ) p̂(n + ei − e j ).

Using (5.11), we have

π(i |n) = α + ni
mα + n

.

Note that this expression coincides with the prediction rule of the Dirichlet-
multinomial distribution (4.11). Therefore, p̂(n) = p(n). This coincidence occurs
because theWright–Fisher diffusion (A.9) is reversible (see Sect. A.2). This approx-
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Table 5.2 The number of G/C copies among 20 gene copies at the 131 variable sites

G/C
copies

20 19 18 17 16 15 14 13 11 10 8 7 4 3 1

Sites 39 48 17 10 5 2 2 1 1 1 1 1 1 1 1

imation procedure is useful for models that do not have exchangeability and/or
reversibility.

In the importance sampler introduced here, simulation of random trees stops at the
root at time (−T ) < −∞, and the boundary condition p(x−T ) is applied. However,
in simulating general random graphs including those in Example 5.7, we encounter
a problem when we can stop simulation of random graphs. This is a problem called
coupling from the past. Propp and Willson [21] discussed the problem in general
MCMC setup. A path from the infinite past can be considered to be a path from the
stationary distribution of the sampler. Therefore, if a path from a finite past couples
with a path from the infinite past, the path can be considered to be a path from
the stationary distribution. The simulation can be stopped at the time of coupling,
because events before the coupling have no influence upon the sample. Following
this principle, we can stop generation of random graphs when coupling occurs. In
a tree structure, coupling must occur by (−T ). Refer to [22] for an application to a
branching-coalescent.

Example 5.7 (Votermodel) The following votermodelwas considered in [23]. Refer
to Part II of [24] for the background of voter models. Consider n groups of sites and
each group comprises N sites. All sites are connected to each other. Each site has
one of the two types of opinions. With fixed rates, a randomly chosen neighbor of a
site x follows the opinion of x . If the neighbor is in the same group, the rate does not
depend on the opinion of x . If the neighbor is in a different group, the rate depends on
the type of the opinion of x . Each site flips its opinion randomly with a fixed rate. In
the diffusion limit N → ∞, a Wright–Fisher diffusion on [0, 1]n appears. In [23], an
importance sampler was constructed for the maximum likelihood estimation of the
bias by simulating random graphs following a branching-coalescent. Although the
bias breaks reversibility, the approximation procedure discussed above was useful to
construct an efficient sampler. In genetics, it is known that there are family of genes
among which a part of gene is ‘copied and pasted’ to a part of another gene. The copy
and past mechanism is called gene conversion. It is also known that G/C nucleotides
are more frequently copied and pasted than A/T nucleotides. The biased voter model
introduced here was applied to a mouse gene family data set which consists of
n = 20 genes with 131 variable nucleotide sites with assuming that each site follows
the biased voter model independently. The data is tabulated in Table5.2. It was
estimated that G/C nucleotides are copied and pasted 1.2 times more frequently than
A/T nucleotides. Themeasure-valued diffusionwith infinitely-many type of opinions
without bias was studied by Shimizu [25]. He found that the Ewens sampling formula
appears. See [25] for the details.
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5.2 Estimation with Information Geometry

In statistical point of view, assuming variables of an A-hypergeometric distribution
to be parameterized by small number of parameters is reasonable to avoid overpa-
rameterization. Moreover, for two-row matrices, the maximum likelihood estima-
tor (MLE) does not exist for a count vector (Theorem 3.7). This section discusses
maximum likelihood estimation of curved exponential families, which appear by
parameterizing variables of A-hypergeometric distributions. Information geometry
[26] is a powerful tool to discuss the issue. Assume that the sufficient statistics c
of an A-hypergeometric distribution is average of N count vectors (see Sect. 3.2.1).
Then, c is a point in the Newton polytope New(ZA(b; x)). The log likelihood is

N {ξ i ci − ψ(ξ)}, i ∈ [m], (5.13)

where ξ i = log xi ∈ R and ψ(ξ) = log ZA(b; x). Einstein’s summation convention
will be used hereafter; indices denoted by a repeated letter, where the one appears
as a superscript while the other appears as a subscript, are summed up. The moment
map E(C) : Rm/ImA	 � log y �→ η in (3.2.1) provides the dual coordinate system
in the sense of information geometry. The dual coordinate is in (3.21) and the Fisher
metric is

gi j := ∂i∂ jψ(ξ) = ZA(b − ai − a j ; x)
ZA(b; x) xi x j I{b−ai−a j≥0} − ηiη j + ηiδi, j ,

respectively. Because of the dually flatness of the exponential family, the full expo-
nential family is e-flat and also m-flat [26].

Let M be a submanifold of New(ZA(b; x)) on which the curved exponential
family is defined. Let the coordinate system of M be ua , a ∈ [l]. We will use the
dual coordinate system η(u) to represent a point in New(ZA(b; x)). An estimator is
a mapping from New(ZA(b; x)) M :

f : New(ZA(b; x)) → M, c �→ û = f (c).

Let us call the inverse of the estimator A(u) = f −1(u) the estimating manifold
corresponding to the point u ∈ M . Let us prepare a new coordinate system of
New(ZA(b; x)) around η(u): A point η is indexed by (u, v), where v is the index
of η in A(u), where η(u) = η(u, 0). The tangent space of M at η(u) is spanned by
∂a , while the tangent space of A(u) is spanned by ∂κ , l + 1 ≤ κ ≤ m. The following
theorem is fundamental.

Theorem 5.2 ([26]) For a curved exponential family with submanifold M, an
estimator û is consistent if and only if the estimating submanifold A contains
point η(u) as N → ∞. The asymptotic covariance matrix of the estimator sat-
isfies limN→∞ NE[(ûa − ua)(ûb − ub)] = ḡab, where ḡab := (gab − gaκgκλgbλ)−1.



5.2 Estimation with Information Geometry 117

The estimator is first-order asymptotically efficient if and only if A(u) and M are
orthogonal.

Let us concentrate on a specific example of curved exponential family, which
appears by parameterizing variables of the A-hypergeometric distribution in
Example 3.8 with xi = (1 − α)i−1/ i !, α < 1. The likelihood is given in (2.29).
This curved exponential family appears as the conditional distribution of an infinite
exchangeable Gibbs partition given length, which was discussed in Sect. 4.5.1. The
submanifold M is now a curve parameterized by the parameter α. The generalized
odds ratios (3.22) become

yi = 2i+1

(i + 2)!
(1 − α)i+1

(1 − α)i+1
, i ∈ [n − k − 1]. (5.14)

The image of the moment map M is now a smooth open curve in the relative interior
of New(ZA(b; x)). One of the limit points is η = (k − 1)e1 + en−k+1, which appears
as α → 1. This is a vertex of New(ZA(b; x)) and the Fisher metric is zero. Another
limit point appears as α → −∞, where

ηi =
(
n
i

)
S(n − i, k − 1)

S(n, k)

and the Fisher metric is

gi j =
(

n
i, j

)
S(n − i − j, k − 2)

S(n, k)
I{n−k+2≥i+ j} − ηiη j + ηiδi, j .

No MLE exists if c is in the normal fan of M at α = −∞. The inverse of
the N times the asymptotic variance is gαα = ‖∂2

α‖ = gi j∂αξ i∂αξ j , where ∂αξ i =∑i−1
j=1(α − j)−1, i ≥ 2, and ∂αξ 1 = 0, which is the squared norm of the tangent vec-

tor along with the curve M . The squared norm vanishes as α → 1 and diverges as
α → −∞, which implies that the model is singular at these limit points.

Example 5.8 When n = k + 3 ≥ 6, the Newton polytope New(ZA(b; x)) is the
convex hull of the three vertices (n − 6, 3, 0, 0)	, (n − 5, 1, 1, 0)	, and (n −
4, 0, 0, 1)	. The image of the moment map is

⎛

⎜⎜⎝

η1
η2
η3
η4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

n − 6
3
0
0

⎞

⎟⎟⎠ +
3!

n−5 y1

1 + 3!
n−5 y1 + 3!

(n−4)(n−5) y2

⎛

⎜⎜⎝

1
−2
1
0

⎞

⎟⎟⎠

+
3!

(n−4)(n−5) y2

1 + 3!
n−5 y1 + 3!

(n−4)(n−5) y2

⎛

⎜⎜⎝

2
−3
0
1

⎞

⎟⎟⎠ .
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One of the limit points of the curve M with α → 1 is (n − 4, 0, 0, 1)	, while the
other limit point with α → −∞ is

(
(n − 4)2

n − 2
,
(3n − 11)(n − 4)

(n − 2)(n − 3)
,

4(n − 4)

(n − 2)(n − 3)
,

2

(n − 2)(n − 3)

)	
.

The latter point is in the relative interior of New(ZA(b; x)), but in the limit n → ∞
it tends to (n − 6, 3, 0, 0), which is a vertex of New(ZA(b; x)). An analysis of the
estimating equation tells us that MLE does not exist for small n. It can be shown [3]
that the MLE exists uniquely if and only if

c3 + 3c4 >
2(2n − 5)

(n − 2)(n − 3)
. (5.15)

Let us see (5.15) is certainly the condition of the orthogonal projection around
α → −∞. Let Bαi := ∂αηi (−∞, 0) = gi j∂αξ j and Bκi := ∂κηi (−∞, 0), where
∂α = Bαi∂

i and ∂κ = Bκi∂
i are the tangent vectors of M and A(−∞) expressed

in terms of basis {∂ i }, respectively. Taking ∂κ = δκ2(ci − ηi (u))∂ i , the condition of
possibility for the orthogonal projection is

gα2 = 〈∂α, ∂2〉 = Bαi B2 j g
i j = ∂αξ j (c j − η j (−α)) > 0,

which is equivalent to (5.15). If theMLEexists, the asymptotic variancewith N → ∞
is gαα/N ∼ n(α − 1)3(α − 2)/(4N ) for large n. The asymptotic variance increases
linearly with sample size n. Figure5.3 depicts the projection of the Newton polytope
for n = 10 and k = 7 onto the η3-η4 plane, which is the lower triangle of the diagonal,
and the submanifold M is the curve. The estimating manifold for the case of c =

Fig. 5.3 The Newton
polytope for n = 10 and
k = 7 projected onto the
η3-η4 plane is the lower
triangle. See text for the
MLE on it
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(4.8, 1.6, 0.4, 0.2) is shown by the arrow, and the MLE is α̂ = 0.073. If c is in the
shaded region, which is the normal fan of M at α = −∞, no MLE exists.

Essentially the same argument provides a classical result on the existence of the
MLE for a sample taken from the Dirichlet distribution. The log-likelihood of them-
variate symmetric Dirichlet-multinomial distribution of parameter (−α) > 0 is given
by (5.13) with ψ(ξ) = log(−mα)n , xi = (−α)i/ i !. This is a curved exponential
family. Using the variation-diminishing property of the Laplace transform, Levin et
al. [27] (Theorem 1) proved that the MLE exists uniquely if and only if

n∑

i=1

i2ci > n + n(n − 1)

m
(5.16)

is satisfied. In our context, the assertion is as follows. The image of the moment map
is now the partition polytope Pn instead of the Newton polytope. The submanifold
M is parameterized by α < 0 and the two limit points are η = en and

ηi = (m − 1)n−i

mn−1

(
n
i

)
,

which correspond to limits of α → 0 and α → −∞, respectively. The MLE does
not exist if c is in the normal fan at α = −∞, which is equivalent to (5.16).

Remark 5.4 Keener et al. [28] discussed several issues around parameter estimation
of the Dirichlet-multinomial distribution. The Dirichlet-multinomial distribution is
a Pitman partition of parameter α < 0 and θ = −mα, m ∈ Z≥1 (see Example 4.9).
Hoshino [29] discussed the maximum likelihood estimation of the Pitman partition.

Before closing this section, let us briefly illustrate numerical evaluation of the
MLE. We concentrate here on the A-hypergeometric distribution of two-row matrix
A. Methods for general A-hypergeometric distributions are given in [30]. For the full
exponential family (5.13), the MLE is

ŷ := argmaxy f (y), f (y) =
n−k−1∑

i=1

ci+2 log yi − ψ(y).

The derivative is

∂ f

∂yi
= y−1

i (ci+2 − ηi+2(y)), i ∈ [n − k − 1].

Evaluate ŷ is equivalent to finding the inverse image of the map c = η(ŷ). A simple
gradient descent algorithm is as follows.
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Table 5.3 Word frequency spectra of Alice in Wonderland (left) and Through the looking-glass
(right). Entries for i > 30 are omitted

i si ηi i si ηi i si ηi

1 1491 1579.94 11 26 26.71 21 7 9.73

2 460 410.76 12 30 23.33 22 9 9.04

3 259 207.59 13 22 20.60 23 2 8.42

4 148 130.38 14 19 18.35 24 3 7.87

5 113 91.48 15 12 16.48 25 1 7.38

6 78 68.68 16 21 14.90 26 5 6.93

7 61 53.97 17 12 13.55 27 3 6.53

8 47 43.83 18 11 12.39 28 7 6.16

9 28 36.49 19 16 11.38 29 5 5.82

10 26 30.98 20 9 10.50 30 2 5.52

Algorithm 5.3 Finding inverse image of the map c = η(ŷ).

1. Set i = 0 and take small ε > 0. Provide y(0) and set η(0) = η(y(0)).
2. End if

∂ f (i)

∂y j
= (y(i)

j )−1(c j+2 − η
(i)
j+2) ≈ 0, j ∈ [n − k − 1].

3. Else set

y(i+1)
j = y(i)

j + ε
∂ f (i)

∂y j
, η(i+1) = η(y(i+1))

increment i to i + 1, and return to Step 2.

If we use Newton’s method, which is called the natural gradient method in infor-
mation geometry, ∂ f/∂yi in Step 2 of Algorithm 5.3 is replaced with

n−k−1∑

j=1

(H−1)i j (c j+2 − η j+2(y)), (H)i j := ∂ηi+2

∂y j
= y−1

j gi+2, j+2.

Compared with the simple gradient descent algorithm, Newton’s method demands
cost of the matrix inversion. For the curved exponential family, slight modification
to the algorithm is needed. The algorithm for the parameterization (5.14) is given
in [3].

Example 5.9 (Conditional Gibbs partition) The data sets considered are from [31]
and concern word usage of Lewis Carroll in two works, namely, Alice’s Adventure
in Wonderland (Alice in Wonderland) and Through the looking-glass and what Alice
found there (Through the looking-glass).An empirical Bayes approach is as follows.
In these data, the size index ci is the number of word types that occur exactly i
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times. Alice in Wonderland consists of n = 26, 505 word tokens, and the number
of different word types in the full text of 26, 505 word tokens is k = 2, 651. For
example, a word type “Alice” occurs exactly 386 times and other word types do
not occur exactly 386 times, so c386 = 1. Consider application of a Gibbs partition
given the length k = 2, 651. The conditional MLE of α was carried out with the
A-hypergeometric distribution. To evaluate the A-hypergeometric polynomials, the
asymptotic approximation (Lemma 2.1) was employed. After 56 iterations of the
gradient descent, α̂ almost converged to 0.441. For Through the looking-glass, n =
28, 767, k = 3, 085, and α̂ = 0.478. The latter is Carroll’s second story about Alice.
We might hypothesize that Carroll benefited from his experience in writing Alice
in Wonderland, and that Through the looking-glass might be characterized by the
greater vocabulary richness [31]. This hypothesis is concordant with the result here,
because largerα implies stronger tendency to useword type that have never occurred.
Table5.3 displays word frequency spectra of Alice in Wonderland and Through the
looking-glass.
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Appendix A
Backgrounds on Related Topics

A.1 Symmetric Functions

This section presents minimum materials about symmetric functions used in this
monograph. For a comprehensive discussion, see Macdonald’s book [1] and Chap. 7
of Stanley’s book [2].

Consider the ring Z[x1, ..., xk] of polynomials in independent variables x1, ..., xk
with rational integer coefficients. The symmetric group Sn acts on this ring by per-
mutating the variables, and a polynomial is symmetric if it is invariant under this
action. The symmetric polynomial form a subring

Λk = Z[x1, ..., xk]Sk ,

where Λk is a graded ring: we have Λk = ⊕n≥0Λ
n
k , where Λn

k consists of the homo-
geneous symmetric polynomials of degree n, together with the zero polynomial. Let
λ be a partition of length l(λ) ≤ k. The polynomial

mλ(x1, ..., xk) :=
∑

σ

k∏

i=1

xσi
i

summed over all distinct permutations σ of λ = (λ1, ..., λk) is called monomial
symmetric function. Themonomial symmetric functions such that l(λ) ≤ k and |λ| =
n form a basis of Λn

k . For example,

m(2,1) = x21 x2 + x21 x3 + x21 x4 + x1x
2
2 + x22 x3 + x22 x4

+ x1x
2
3 + x2x

2
3 + x23 x4 + x1x

2
4 + x2x

2
4 + x3x

2
4 ∈ Λ3

4.

For each r ≥ 1 the r -th power sum is

© The Author(s) 2018
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pr := m(r) =
k∑

i=1

xri .

The power sum symmetric function is defined as

pλ := pλ1 · · · pλl(λ)
∈ ΛQ := Q[p1, p2, ...].

Section I.4 of [1] discusses orthogonality among symmetric functions. The Schur
symmetric function is defined as

sλ(x) := det(x
λ j+k− j
i )1≤i, j≤k

det(xk− j
i )1≤i, j≤k

.

It is well known that the Schur symmetric functions satisfy Cauchy’s identity:

∏

1≤i, j≤k

(1 − xi y j )
−1 =

∑

{λ;l(λ)≤k}
sλ(x)sλ(y). (A.1)

In the theory of symmetric functions, the number of variables is usually irrelevant,
provided that it is large enough, and it is often more convenient to work with sym-
metric functions in infinitely many variables. In the identity

∏

i, j

(1 − xi y j )
−1 =

∑

λ

sλ(x)sλ(y), (A.2)

the sum is over all partitions. Let us introduce the orthonormality:

〈sλ, sμ〉 = δλ,μ.

Here, sλ(x) such that |λ| = n form an orthogonal basis of Λn , where Λn consists
of homogeneous symmetric polynomials of degree n (refer to p. 18 of [1] for the
definition). Using the power sum symmetric functions, the identity (A.2) is recast
into ∏

i, j

(1 − xi y j )
−1 =

∑

λ

z−1
λ pλ(x)pλ(y), zλ :=

∏

i≥1

i ci (λ)ci (λ)!,

and it follows that 〈pλ, pμ〉 = δλμzλ, where pλ form an orthogonal basis of ΛQ .
The Jack symmetric function P (α)

λ (x) is a generalization of the Schur symmetric
function. Refer to Sect. VI.10 of [1] for the details. The Jack symmetric functions
satisfy ∏

1≤i, j≤k

(1 − xi y j )
−1/α =

∑

λ

(zλα
l(λ))−1 pλ(x)pλ(y).

Next, we introduce the following orthogonality relation:
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〈pλ, pμ〉α = δλ,μzλα
l(λ). (A.3)

The partial order among partitions of the same weight is defined as

λ ≥ μ ⇔ λ1 + · · · + λi ≥ μ1 + · · · + μi , ∀i ≥ 1,

for partitions μ and λ. It can be shown that (p. 322 of [1]) for each partition λ, there
is a unique symmetric function P (α)

λ such that

P (α)
λ = mλ +

∑

μ<λ

u(α)
λμmμ,

where
〈P (α)

λ , P (α)
μ 〉α = 0, λ 
= μ.

Here, the coefficient u(1)
λμ is called the Kostka number (see Sect. I.6 of [1]). The Jack

symmetric functions P (α)
λ such that |λ| = n form an orthonormal basis of Λn . The

inverse of the squared norm in the orthogonality relation (A.3) for each degree with
normalization yields the Ewens sampling formula (2.12). In fact,

∑

λ�n
θ l(λ)z−1

λ =
∑

λ�n

n∏

i=1

(
θ

i

)ci 1

ci ! = (θ)n

n! , θ ≡ 1

α
,

andn!θ l(λ){zλ(θ)n}−1 is the probabilitymass function of theEwens sampling formula.

Remark A.1 The Jack symmetric function of α = 1 is the Schur symmetric function,
and that of α = 2 with another normalization is known as the Zonal polynomial. The
Zonal polynomial appears in integrations of the Haar measure of the orthogonal
group, which appears in problems involving Wishart distributions [3]. Hashiguchi et
al. discussed evaluation of the distribution function of the largest root of a Wishart
matrix by using the holonomic gradient method discussed in Chap. 3 [4].

The Macdonald symmetric function is a further generalization of the Schur sym-
metric function. Chapter VI of [1] is devoted to this topic. The identity is

∏

i, j

(t xi y j ; q)∞
(xi y j ; q)∞

=
∑

λ

(zλ(q, t))−1 pλ(x)pλ(y) (A.4)

and the orthogonality relation is

〈pλ, pμ〉q,t = δλ,μzλ(q, t), (A.5)

where
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zλ(q, t) := zλ

∏

i≥1

(
1 − qi

1 − t i

)ci

, (x; y)n :=
n−1∏

i=0

(1 − xyi ).

When q = t , the Macdonald symmetric function reduces to the Schur symmetric
function, and when q = 0, it reduces to the Hall–Littlewood function. The Jack
symmetric function appears in the limit t = q1/α , q → 1.

The inverse of the squared norm in the orthogonality relation (A.5) for each
degreewith normalization yields amultiplicativemeasure induced by the exponential
structure (2.16) with wi = (i − 1)!(t i − 1)/(qi − 1). Setting x1 = x , y1 = 1, and
other variables to zero in the identity (A.4), we have

(t x; q)∞
(x; q)∞

=
∞∑

n=0

∑

λ�n
(zλ(q; t))−1xn .

From a q-analog of the negative binomial theorem (Theorem 12.2.5 in [5]):

1φ0(t;−; q, x) :=
∞∑

n=0

(t; q)n

(q; q)n
xn = (t x; q)∞

(x; q)∞
,

we have
∑

λ�n
(zλ(q; t))−1 =

∑

λ�n

n∏

i=1

(
t i − 1

qi − 1

1

i

)ci 1

ci ! = (t; q)n

(q; q)n
. (A.6)

A.2 Processes on Partitions

Stochastic processes on partitions and measure-valued processes are closely related.
Shimizu [6] discussed a measure-valued diffusion taking values in probability mea-
sures on Young tableaux. The Dirichlet process is the reversible measure of a
measure-valued diffusion called the Fleming–Viot process [7], which appeared as a
model of genetic diversity. It is one of the most studied measure-valued processes,
whose theory was founded by Feller [8]. This section presents minimum materi-
als about the Fleming–Viot process used in this monograph. Chapter 10 of [9] is a
detailed introduction. Further developments can be found in [10, 11], and in [12] in
Japanese. Related issues such as coagulation and fragmentation are discussed in [13,
14]. The roles in modeling of genetic diversity can be found in [15].

Consider a diffusion process with a generator

L =
∑

i, j

1

2
ai j (x)

∂2

∂xi∂x j
+

∑

i

b(x)
∂

∂xi
(A.7)
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whose backward equation for the transition density φ has the form ∂φ/∂t = Lφ. The
forward equation is ∂φ/∂t = L+φ, where L+ is the adjoint operator of L:

L+ • φ =
∑

i, j

1

2

∂2

∂xi∂x j
(ai j (x)φ) −

∑

i

∂

∂xi
(b(x)φ).

For a test function f and a probabilitymeasureμ, let us introduce a notation 〈 f, μ〉 :=∫
f (x)dμ(x). Let us assume existence of the unique stationary measure π for the

diffusion. It should satisfy L+π = 0, since

0 = d

dt
〈 f, π〉 = 〈L f, π〉 = 〈 f, L+π〉, ∀ f. (A.8)

Moreover, if π is reversible, π should satisfy

〈L f, gπ〉 = 〈Lg, f π〉, ∀ f, g.

It can be observed that this condition is equivalent to L+
j π = 0 for ∀ j , where

L+
j • φ =

∑

i

1

2

∂

∂x j
(ai j (x)φ) − b j (x)φ, L+ =

∑

j

∂

∂x j
• L+

j .

Let us consider a diffusion process whose diffusion and drift coefficients are
given by ai j (x) = xi (δi j − x j ) and bi (x) = α(

∑
j x j − mxi )/2, α > 0, respectively.

Consider a generator

L =
m∑

i=1

m∑

j=1

xi (δi j − x j )

2

∂2

∂xi∂x j
+ α

2

m∑

i=1

⎛

⎝
m∑

j=1

x j − mxi

⎞

⎠ ∂

∂xi
(A.9)

in the state space (x1, ..., xm) ∈ �m−1. A diffusion process in the simplexwith covari-
ance diffusion coefficients is calledWright–Fisher diffusion. Since L+ and L+

j anni-
hilate the density (4.3) of the symmetricm-variate Dirichlet distribution of parameter
α, the Dirichlet distribution is the reversible measure of theWright–Fisher diffusion.

Remark A.2 The condition that L+
j annihilates the density is useful to obtain explicit

expressions of the density of the reversiblemeasure. A demonstration is given in [16].
Moreover, the condition is useful to construct a sampler from random partitions (see
Sect. 5.1.4).

Remark A.3 For theWright–Fisher diffusion (A.9), Griffiths [17] obtained an expan-
sion of the transition density in terms of orthogonal polynomials of the form

f (x, y; t) = πα(y)

{
1 +

∑

i≥1

Pi (x)Pi (y) exp

(
− i(i − 1 + mα)

2
t

)}
,
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where πα is the density of the symmetric m-variate Dirichlet distribution and
{Pi (x), i ∈ N} are orthonormal Jacobi polynomials on the m-variate symmetric dis-
tribution scaled such that Eπα

[Pi (X)Pj (X)] = δi, j , i, j ∈ N. The symmetric kernel
reflects the reversibility of the process.

Taking the monomial

qn(x) = n!
n1! · · · nm ! x

n, xn :=
m∏

i=1

xi
ni , (A.10)

as a test function, we obtain the Dirichlet-multinomial distribution (4.10):

p(n) := 〈qn, πα〉 =
(−mα

n

)−1 m∏

i=1

(−α

ni

)
.

The Dirichlet-multinomial distribution is an EPPF introduced in Sect. 4.3. The sta-
tionarity condition (A.8) yields the recurrence relation

p(n) = n − 1

mα + n − 1

m∑

i=1

ni − 1

n − 1
p(n − ei )

+ α

mα + n − 1

m∑

i=1

m∑

j=1

n j + 1 − δi j

n
p(n − ei + e j ) (A.11)

with the boundary condition p(ei ) = 1/m, i ∈ [m]. Taking the limitm → ∞,α → 0
with θ ≡ mα in the Dirichlet-multinomial distribution gives the Ewens sampling for-
mula (2.12) (Remark 4.6). Rewriting (A.11) in terms of size indices (see exponential
structures in Sect. 2.1) and taking the limit, we have

μn(c) = n − 1

θ + n − 1

n−1∑

i=1

i(ci + 1)

n − 1
μn−1(c + ei − ei+1)

+ θ

θ + n − 1

{
c1
n

μn(c) +
n∑

i=2

i(ci + 1)

n
μn(c − ei−1 + ei − e1)

}
(A.12)

with the boundary condition μ1(e1) = 1. The Ewens sampling formula satisfies this
recurrence relation.

The above observation implies that the Dirichlet process is the reversible measure
of an infinite-dimensional diffusion. Such a diffusion was formulated by Fleming
and Viot [7], which is now called a Fleming–Viot diffusion. Let E be a compact
metric space. Let C (E) be set of continuous real-valued functions on E and P(E)

be the family of Borel probability measures on E . For f ∈ B(E) and μ ∈ P(E),
define

φ(μ) = F(〈 f1, μ〉, ..., 〈 fk, μ〉) ∈ C (P(E))
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for some k ∈ N. A generator of the Fleming–Viot diffusion with a linear operator B
on C (E) is defined as

Gφ(μ) = 1

2

k∑

i, j=1

(〈 fi f j , μ〉 − 〈 fi , μ〉〈 f j , μ〉)F,i j (〈 f1, μ〉, · · · , 〈 fk, μ〉)

+
k∑

i=1

〈B fi , μ〉F,i (〈 f1, μ〉, · · · , 〈 fk, μ〉), (A.13)

where F,i (x1, ..., xk) = ∂F/∂xi .

Example A.1 (Dirichlet distribution) Let E = {1/m, 2/m, ..., 1} and define

B fi = α

2

m∑

j=1

( f j − fi ).

The solution of the martingale problem defined by the generator (A.13) is μ(t) =∑m
i=1 xi (t)δi/m , where x(t) follows the Wright–Fisher diffusion governed by the

generator (A.9). The transition density is given in Remark A.3 and the reversible
measure is πα .

Example A.2 (Dirichlet process) Let E = [0, 1] and define

B f (x) = θ

2

∫ 1

0
{ f (y) − f (x)}dy.

The reversible measure of the diffusion governed by the generator (A.13) has the
form μ = ∑

i≥1 xiδVi , Vi ∼ Unif.([0, 1]), where x follows the GEM distribution
(Remark 4.3). Therefore, μ follows the Dirichlet process DP(θ;Unif.(E)), which
appeared in Sect. 4.3.

The Ewens sampling formula is a random integer partition and a sample from
the Dirichlet process. We have interest in stochastic processes on partitions which
is related with the Fleming–Viot diffusion. Kingman discovered such a PN-valued
process, which is called Kingman’s coalescent. It is a Markov chain on partitions
with the following transition rule. Assume that the process is in the state {A1, ..., Al}.
The only possible transitions are one of the l(l − 1)/2 partitions obtained bymerging
parts Ai and A j to form Ai ∪ A j and leaving all other parts uncharged at rate one. The
length of partition (Lt ; t ≥ 0), L0 = n, follows the death process whose transitions
are l → l − 1 at rate l(l − 1)/2. The process is eventually absorbed into the state of
one. Let us consider this process as generating a tree upward from the leaves to the
root. Time is vertical, and parts at a given time are located along a horizontal line.
A merger is called coalescence. Let us introduce a Poisson process of marks, which
is called mutation, along all branches of this tree at rate θ/2 per unit length. Then, a
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Fig. A.1 A realization of the
coalescent tree of the
partition (2, 2, 1)

random integer partition is generated by the equivalence relation i ∼ j if there is no
mutation on the unique path in the tree that joins i to j , see Fig. A.1.

The relationship between the Fleming–Viot diffusion and the Kingman’s coales-
cent can be understood by the notion of duality betweenMarkov chains. The method
of duality has been widely used in analyses of infinite particle systems. Many exam-
ples of the use can be found in [19]. If (Xt ; t ≥ 0) with X0 = x and (Yt ; t ≥ 0)
with Y0 = y are Markov processes in state spaces Ex and Ey , respectively, then the
processes Xt and Yt are said to be dual with respect to a kernel k(x, y) if the identity

Ex (k(Xt , y)) = Ey(k(x,Yt )), ∀x ∈ Ex , y ∈ Ey (A.14)

holds. Consider generators of Gx for xt and Gy for yt . Then, the duality relationship
(A.14) will be satisfied if the identity Gxk(x, y) = Gyk(x, y) holds for all x ∈ Ex

and y ∈ Ey . Therefore, if we know Gx , we may identify the dual Gy . Let us consider
the Wright–Fisher diffusion governed by the generator (A.9) and take the kernel
k(x, n) = xn/Eπα

(xn). We observe

Lk(x, n) = −n(n − 1 + mα)

2
k(x, n) + n(n − 1 + mα)

2

m∑

i=1

ni
n
k(x, n − ei ) = Gnk(x, n),

and can lead the process (Nt ; t ≥ 0), N0 = n from this expression. Taking the
limit m → ∞, α → 0 with θ ≡ mα, we can observe that Nt follows the infinite-
dimensional death process whose transitions are l → l − ei at late l(l − 1 + θ)/2 ×
li/ l. This process is certainly generated by Kingman’s coalescent; the rate l(l − 1)/2
comes from the coalescence, while the rate lθ/2 comes from the mutation.

Remark A.4 An extension of Kingman’s coalescent, the Λ-coalescent, has been
extensively studied. The fairly recent surveys are [20, 21]. The transition rule is
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as follows. Assume that the process is in the state {A1, ..., Ab}. Then, k blocks merge
with rates

λb,k =
∫ 1

0
xk−2(1 − x)b−kΛ(dx), 2 ≤ k ≤ b,

whereΛ is a nonnegativefinitemeasure on [0, 1]. Pitman [22] showed that the array of
rates (λb,k) is consistent if and only if λb,k = λb+1,k + λb+1,k+1. This condition orig-
inates from the de Finetti’s representation theorem (Theorem 1.1), because the rep-
resentation can be regarded as infinite exchangeable sequences of binomial random
variables. Kingman’s coalescent is the case of Λ = δ0. Another well-investigated
example is the beta coalescent, whoseΛ is the density of Beta(2 − α, α), α ∈ (0, 2).
The diffusion and jump part of the generator of a Λ-Fleming–Viot process are

Gφ(μ) =Λ({0})G0φ(μ)

+
∫

(0,1]

∫

E
{φ((1 − x)μ + xδa) − φ(μ)}μ(da)

Λ0(dx)

x2
,

where G0 is the diffusion term in (A.13) and Λ0 is the Λ on (0, 1].
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Markov chain Monte Carlo, 7, 106
Martingale, 73
Martingale convergence theorem, 73
Maximum likelihood estimation, 61, 115,

116, 121
Metropolis algorithm, 7, 106
Mittag-Leffler distribution, 36, 96
Mixing, 8, 111
Mixture model, 3, 76, 91, 93
Mixture of i.i.d. sequence, 75
Monomial curve, 49
Monomial symmetric function, 123
Multiplicative measure, 12
Multiplicativity, 13
Multiplicity, 2
Multiset, 13

N
Natural filtration, 72
Natural gradient, 120
Negative hypergeometric distribution, 4, 85
Newton polytope, 60, 116
Noninterference, 87
Normalized gamma NRMI, 95
Normalized-inverse Gaussian process, 28,

99
Normalized random measure with indepen-

dent increments, 98

P
Part, 1
Partial Bell polynomial, 21
Partition, 1
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Partition number, 14
Partition polytope, 60, 119
Partition structure, 3
Permutation, 16
Pfaffian system, 63
Pitman partition, 27, 92, 93, 119
Pitman–Yor process, 92
Poisson–Dirichlet, 29, 80, 96
Poisson-gamma model, 25
Poisson–Kingman partition, 94, 95, 100
Poisson regression, 6, 55, 107, 110
Pólya’s urn scheme, 85
Posterior consistency, 88, 92
Powerset, 13
Power sum symmetric function, 124
Prediction rule, 85, 91

R
Random graph, 113
Random partition, 2
Random variable, 72
Rational normal curve, 49
Reference family, 72
Regular conditional distribution, 72
Residual allocation model, 82
Reversed martingale convergence theorem,

74
Reversibility, 7, 114, 127
Reversible jump MCMC, 107
Rough number, 28

S
Schur symmetric function, 124
Selection, 13
Set, 14
Set partition, 15
Similar test, 55
Singularity analysis, 28, 39
Size-biased permutation, 83
Size index, 2
Smooth number, 28
Species sampling prior, 90

Stable distribution, 37, 95
Stable subordinator, 96
Standard monomial, 47, 53, 63
Stick breaking, 81, 96
Stirling number of the first kind, 16, 22, 29
Stirling number of the second kind, 15, 22
Structural distribution, 83
Sufficient statistics, 4, 19, 54
Symmetric function, 112, 123

T
Tail σ -field, 76
Thinning, 8
Tilting, 18
Toric curve, 49
Toric ideal, 45, 46, 106
Toric model, 54
Torus action, 58, 60
Tree, 17, 129
Two-parameter Poisson–Dirichlet process,

92, 96

U
Uniformly integrable, 73
Unique minimum variance unbiased estima-

tor, 58, 90

V
Voter model, 115

W
Weight, 1
Weighted Bell polynomial, 21
Weyl algebra, 46
Wright–Fisher diffusion, 127

Y
Young tableau, 11, 111
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