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Preface

This book deals with problems related to the evaluation of customer satisfaction in
very different contexts and in many different ways. Analyzing satisfaction is not an
easy issue since it represents a complex phenomenon which is not directly measur-
able. Often satisfaction about a product or service is investigated through suitable
surveys which try to capture the satisfaction about several partial aspects which
characterize the perceived quality of that product or service.

In this book we present a series of statistical techniques adopted to analyze data
from real situations where customer satisfaction surveys were performed. The aim
is to give a simple guide of the variety of analysis that can be performed when
analyzing data from surveys.

Experiencing satisfaction when customers buy products or services is an index
of how a company is operating. Are goods or services appreciated by customers?
Are customers satisfied with goods or services of a specific company?

How they respond to similar questions is a crucial point in order to evaluate
and analyze the answers. For this purpose preference evaluation methods are good
candidates to understand how customers react to the evaluated items. A promising
and theory-based method is called CUB model. In the first chapter of this book
CUB model has been adopted in order to evaluate two latent variables, feelings and
uncertainty, that are supposed to be involved in the choice process of an item. The
application field refers to a genuine study conducted in Italy and in Austria about
the satisfaction level of customers about food packaging at the grocery store.

The second chapter deals with the concept of heterogeneity in satisfaction. Iden-
tifying customer groups characterized by “within homogeneity” and “between het-
erogeneity” could be a useful starting point of market segmentation. In this chapter
the main heterogeneity indices are introduced and testing methods for comparing
the satisfaction heterogeneities of two or more customer populations are described
also with different practical examples.

In the field of satisfaction assessment it is quite common that the final objective
is obtaining an appropriate ordering of different products or services under compar-
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vi Preface

ison. From a statistical point of view the issue of ranking several populations from
the best to the worse on the basis of one or more aspects of interest is not so easy. In
the third chapter of this book different examples of contexts where the problem of
ranking occurs are described and a nonparametric inferential approach is presented
with application to the field of food sensory analysis.

Another way to assess satisfaction is represented by the so-called composite in-
dicators which aggregate different dimensions of satisfaction into a single overall
indicator. How to suitably compute such indicator is the topic of Chap. 4. In this
chapter the construction of a composite indicator is discussed in general and a non-
parametric composite indicator which includes different benchmarks of satisfaction
is developed. The properties of the proposed indicator are shown by analyzing data
from a university students’ satisfaction survey.

Finally Chap. 5 describes some rank-based procedures for analyzing surveys data
with the help of a useful R package.
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Chapter 1
The CUB Models

The CUB model [12], where CUB stands for Combination of a discrete Uniform
and a shifted Binomial distributions assumes the involvement of two latent variables
during an evaluation process, that have been called feeling and uncertainty. In order
to justify the names for latent variables, consider the way you choose an evaluation
grade from a set of 9. The final choice reflects your feeling about the evaluated item,
your past experience, your knowledge about it, and so on. On the other hand, there
are some aspects concern with a basic uncertainty about the evaluated item, for ex-
ample you are asked to deal with it for the first time and you don’t know what grade
to choose, maybe the task is too difficult or the task is annoying you. These two
main components are supposed to move your final choice and they are supposed
to follow respectively a shifted Binomial distribution and a Uniform distribution
[12, 18]. The CUB models were first described as a suitable method for preference
evaluation [12]. There are two main approaches for evaluating preferences i.e. stated
and revealed preferences (see e.g. [1, 22]) and CUB models have been considered
a stated preference approach [18]. The probabilistic structure described by D’Elia
and Piccolo [12] considers the psychological process of evaluating a specific item
in a survey, where subjects are usually asked to evaluate some items (products, ser-
vices, etc.) by means of ranking or rating scales. The second one is usually the
most preferred by respondents. One of the first applications of CUB models was
described by Piccolo and D’Elia [25] where models were applied to a large data-set
on preferences about smoked salmons. Subjects were asked to evaluate five brands
of smoked salmons on a 9-point scale. In a first step, the authors estimated the two
latent variables, feeling and uncertainty, subsequently they introduced subject’s and
object’s covariates into the model in order to link some relevant information to the
latent variables. The CUB model with covariates has been extensively applied in
many studies after their introduction [5, 6]. CUB models have also been applied for

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
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2 1 The CUB Models

customer satisfaction investigations and they have been proven to help at dealing
with marketing questions. For instance, in a study on wine consumers CUB model
with covariates have been applied in order to identify which wine characteristics are
more relevant for Italian wine consumers [8]. For other examples of applications to
marketing issues see [20, 21]. The following section will describe the CUB model
structure and some extensions.

1.1 Description of CUB Models Structure

The CUB model is a mixture model that aims at evaluating two latent variables,
feeling and uncertainty, that are supposed to be involved in the choice process of an
item. The process of selecting a grade among m can be represented by the mixture
of two components: the liking—disliking towards the evaluating item (products or
services) and an inherent uncertainty that belongs to any human choice [12]. The
two components can be described by a mixture model of two random variables,
feeling and uncertainty, with a shifted Binomial and a Uniform distribution respec-
tively [12, 25]. When respondents are involved in the choice process of an evaluation
grade, they synthesize what they feel so that it has been adopted the wide term feel-
ing to cover the several psychological aspects surrounding the final choice, such
as motivation, awareness, attraction, knowledge, etc. A shifted Binomial random
variable is supposed to simulate the mechanism of selecting an evaluation grade
by means of paired comparisons among the grades [9]. Let us consider the scale
y = 1, . . . ,m. In the choice of a grade y, you show to prefer that point over the lower
and higher ones because they are not matching what you feel. Let p and 1− p be
the probability of rejecting a point respectively because it is too low and too high
compared to y, so the probability of choosing a grade y can be described by a shifted
Binomial distribution as follows [19]:

Pr(Y = y) =

(
m−1
y−1

)
py−1(1− p)my (1.1)

The uncertainty is considered a “gray zone”, where the choice of respondents is
affected by several aspects, e.g. limited time and knowledge, inherent aptitude to
give fake answers, etc. The maximum expression of these aspects describes a pattern
of responses where each choice has the same probability to occur. A probability
distribution that follows such a pattern is the Uniform discrete distribution Uy(m) =
1
m ,y = 1, . . . ,m. It should be noted that while uncertainty expresses the inherent
fuzziness of any human choice, randomness is linked to statistical aspects such as
measurement errors, sample methods and so on [18]. The components feeling and
uncertainty are combined in a mixture model whose probability function of the
random variable Y is as follows [7, 11, 12, 17, 18]:

Pr(Y = y) = π
(

m−1
y−1

)
(1−ξ )y−1ξ m−y +

(1−π)
m

(1.2)
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y= 1,2, . . . ,m, where Y varies from 1 to m, ξ ∈ [0,1], π ∈ (0,1]. Iannario [16] shows
that the model is identified for m > 3. The parameter vector θ = (π,ξ ) belongs to
the parameter space Ω(θ) = {(π,ξ ) : 0 < π ≤ 1,0 ≤ ξ ≤ 1}. This is a very flexible
distribution because it can assume many different shapes considering we have only
two parameters, π and ξ [12, 23].

The parameter π is an estimate of uncertainty and (1−π) is considered a mea-
sure of uncertainty with (1−π)/m the uncertainty shared by response categories.
Parameter ξ estimates the feeling component that affects a choice process, whose
interpretation depends on scale coding. Let us consider a 9-point scale with y = 1 as
minimum, then an estimate of ξ close to 1 indicates a feeling component very close
to minimum. In this case, the distribution of observed values has a mode close to
or at the point y = 1, so that (1−ξ ) can be considered a measure of feeling. In this
case, high values of (1− ξ ), i.e. values close to 1, indicate a mode close to y = 9
which means a high feeling/liking. In order to show the flexibility of the model, a
graphic (see Fig. 1.1) is aimed to show the distribution shapes of CUB model vary-
ing π and ξ parameter values. When ξ = 0.5 the distribution is symmetric with
mode on the central value. As (1− ξ ) parameter increases from 0 to 1, the mode
values increase showing that (1− ξ ) can be considered a direct measure of liking
[18]. About uncertainty, when π increases the distribution assumes a bell shape and
values on y axis increase rapidly. A pattern like this would mean a low uncertainty
among subjects’ responses.

Fig. 1.1 The distribution shapes of CUB model varying π and ξ parameter values
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D’Elia [10] and Piccolo [24] developed an E-M algorithm for the maximum like-
lihood estimate of parameters π and ξ and they present a detailed description of the
E-M algorithm.

1.1.1 Model Extensions

Since their introduction, CUB models have been supplied with several extensions.
The main scope of extensions was to let CUB models take into considerations some
aspects affecting the choice process, for instance the introduction of covariates into
the model. D’Elia [10] and Piccolo [24] provide a formal description of CUB model
with covariates. Information about subjects or objects can be introduced into the
model and linked to uncertainty and feeling by means of two logistic functions.
Consider the following specification of CUB model:

Pr(Yi = yi) = πi

(
m−1
yi −1

)
(1−ξi)

yi−1ξ m−yi
i +

(1−πi)

m
(1.3)

with y = 1,2, . . . ,m. Parameters πi ad ξi are explained by two covariate vectors,
Xi = (1,xi1, . . . ,xip) and Wi = (1,wi1, . . . ,wiq), that are linked to parameters by the
following relations:

πi =
1

1+ exp−β0−β1xi1−...−βpxip
=

1

1+ exp−β0−xiβ
(1.4)

and

ξi =
1

1+ exp−γ0−β1wi1−...−γqwiq
=

1
1+ exp−γ0−wiγ

. (1.5)

The CUB(p,q) model indicates p covariates for π and q covariates for ξ . By this
way, parameters can be linked to subjects’ covariates (gender, age, income, etc.)
or objects’ covariates (some characteristic of the item), showing which informa-
tion affects feeling ad uncertainty. The CUB model with covariates is an effective
approach to identify which objects’ or subjects’ characteristics are relevant in the
choice process. In particular, the approach can delineate clusters based on signifi-
cant covariates, which outline groups of subjects that behave differently in terms of
feeling and uncertainty. For example, Piccolo and D’Elia [25] applying CUB mod-
els with covariates identified a relation between gender and age in the likeness of
smoked salmons. Moreover they showed how sensory perception changes with re-
spect to different chemical characteristics of smoked salmon. Furthermore Iannario
and Piccolo [18] applied CUB models to investigate the link between satisfaction
and some relevant characteristics of a product. Iannario [15] introduced the con-
cept of shelter choice that has been supposed to be present in surveys with atypical
patterns of observed frequencies. An atypical pattern can be the results of an over-
selection of a specific grade because of unwillingness to respond or privacy reasons.
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Because of a difficult choice, subjects sometimes tend to simplify a response by se-
lecting the same grade of judgment. For instance, lazy subjects might prefer central
points of a rating scale in order to simplify a more demanding response. When they
are dealing with categories like satisfy, very satisfy, extremely satisfy, sometimes
the first positive category, i.e. satisfy, is chosen, so as to avoid a more elaborated
response. When an observed frequency is higher than an estimated one by CUB
model or when there are reasons to say that a certain point, let say y = c, could be a
shelter choice, should be taken into consideration an adequate extension of the CUB
model. Iannario [18] developed the following extension of the CUB model in order
to estimate the shelter effect:

Pr(Y = y) = π1

(
m−1
y−1

)
(1−ξ )y−1ξ m−y +

π2

m
+(1−π1 +π2)D

(c)
y . (1.6)

The CUB model with shelter choice describes the probability distribution of a
random variable Y , with θ = (π1,π2,ξ ) the parameter vector belonging to the pa-
rameter space defined as Ω(θ)= {(π1,π2,ξ ) : π1 > 0,π2 ≥ 0,π1 +π2 ≤ 1,0 ≤ ξ ≤
1}. D(c)

y is a degenerate random variable with D(c)
y = 1 when y = c and D(c)

y = 0
elsewhere. The equivalence δ = 1−π1−π2 quantity the shelter effect at Y = c. The
model can be formulated again considering the parameter vector Θ = (π,ξ ,δ ) as
follows:

Pr(Y = y) = (1−δ )[πby(ξ )+(1−π)Uy]+δD(c)
y (1.7)

where by is the shifted Binomial distribution and Uy is the discrete Uniform distri-
bution. Considering the two formulations of the CUB model with shelter effect, the
following relation among parameters can be determined:

{
π1 = (1−δ )π
π2 = (1−δ )(1−π)

⇐⇒
{

π = π1
π1+π2

δ = 1−π1 −π2

A detailed explanation of the L-M algorithm for parameter estimates of CUB
model with shelter effect is reported in Iannario [15]. CUB models estimate a prob-
ability distribution related to parameters that are supposed to measure latent vari-
ables. In order to evaluate the goodness of the model, estimated distribution and
observed distribution could be compared. When an estimated distribution does not
fit very well to the observed one and when variability is very high, e.g. presence
of more than one mode or high variance, a CUB model extension can be applied.
For instance, a CUB model could identify clusters of people describing very dif-
ferent observed distributions, or there could be a shelter effect. A third solution to
improve bad fitting is to measure overdispersion. The concept of overdispersion has
been introduced by Iannario [17] suggesting a high variability among subjects’ feel-
ing component. Overdispersion affects the feeling latent variable, the way subjects
react to evaluated items. In other words, overdispersion suggests an inter-personal
way to make choices that is very different among respondents. In order to modeled
overdispersion, Iannario [17] introduced a Beta-binomial distribution in the CUB
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model. The model with a Beta-binomial distribution has been called CUBE model
(Combination of a Uniform and a shifted BEta-binomial).

The model

Pr(Y = y) = π ·be(ξ ,φ)+(1−π)
1
m
,y = 1, . . . ,m (1.8)

represents the probability distribution of a random variable Y with the parameter
vector θ = (π,ξ ,φ) belonging to the parameter space Ω(θ) = (π,ξ ,φ) : 0 < π ≤ 1,
0 ≤ ξ ≤ 1,0 ≤ φ < ∞, and with the parameter φ �= 0 indicating an overdispersion
effect. In CUBE model, a relevant part is represented by a Beta-binomial distribution
be(ξ ,φ) whose derivation is explained in [17]. The Beta-binomial distribution is as
follows,

Pr(Y = y) = be(ξ ,φ) =

=

(
m−1
y−1

)
x

∏y
k=1 [1−ξ +φ(k−1)]∏m−y+1

k=1 [ξ +φ(k−1)]

[1−ξ +φ(y−1)] [ξ +φ(m− y)]∏m−1
k=1 [1+φ(k−1)]

(1.9)

y = 1, . . . ,m, where parameters ξ and φ are linked to feeling and overdispersion
respectively.

Let us consider the two central moments of first order of a Beta-binomial random
variable E(Y ) = ξ +m(1−ξ ) and Var(Y ) = (m−1)ξ (1−ξ )(1+ (m−2)φ

1+φ ) variance
increases of an amount depending on parameter φ > 0, that is linked to overdisper-
sion. The CUB models described so far give an overview of their great power in
explaining more than one behaviors related to a choice process. We stressed par-
ticularly on conceptual meaning of CUB models, notwithstanding we gave specific
references for a more detailed description of statistical derivation of models.

1.2 Fitting Measures

Models are usually considered useful tools for studying phenomena, but are they
adequately representing the object observed? In order to evaluate if a model is use-
ful, we need to have a measure of model fitting to observed data. In fact, all models
are wrongs but some are useful [4]. CUB models estimate probabilities given a pa-
rameter vector θ . The estimated probabilities py(Y = y|θ) should be very close to
observed probabilities fy when the model is good. The following index of fitting,
called normalized dissimilarity index, is a measure of distance between estimated
and observed frequencies:

Diss = 0.5
m

∑
y=1

∣∣ fy − py(θ)
∣∣ . (1.10)

The normalized dissimilarity index is considered a measure of goodness of fit-
ting [13, 14]. When Diss < 0.1, a model fitting is considered good [13], or when
0.08 ≤ Diss ≤ 0.12 it can be considered acceptable. Index Diss indicates the pro-
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portion of respondents that should change their choice in order to get a perfect fit-
ting [7]. While CUB model with shelter choice and CUBE model allow a Diss in-
dex, an index for CUB models with covariates cannot be derived. When comparing
CUB models with covariates it should be compared likelihood measures between
CUB model without and with covariates. The log-likelihood can be used to com-
pare nested models [13] and all CUB model extensions are nested into the CUB
model that estimates parameters ξ and π . In order to measure the goodness of a
CUB model with covariates, we have to rely on log-likelihood comparison. Let us
consider the relation

�(θ0)≤ �(θ)≤ �(θsat) (1.11)

with �(θ0) the likelihood of null model (only the constant), �(θ) the model es-
timated likelihood and �(θsat) the saturated model likelihood [13]. This relation
implies that greater is likelihood and better is an estimated model so that it make
sense to compare a CUB model (0,0), i.e. θ(π,ξ ), with a CUB model (p,q), i.e.
θ ′′

= (βi,γ j), i = 1, . . . , p+1 and j = 1, . . . ,q+1.
The Likelihood Ratio Test, LRT = −2(�(θ ′

)− �(θ ′′
)), is a measure of deviance

between log-likelihoods of two models with one model nested in another. The prob-
ability distribution of LRT follows a χ2 distribution with degrees of freedom equal
to the difference between parameters of compared models, as it shows Table 1.1.

Table 1.1 CUB model comparisons

CUB models Δ Log-likelihood Degrees of freedom
CUB(p,0) vs CUB(0,0) 2(�10 − �00) p
CUB(0,q) vs CUB(0,0) 2(�01 − �00) q
CUB(p,q) vs CUB(0,0) 2(�11 − �00) p+q

Such a test gives an indication on how good is a nested model compared to the
basic one. With respect to shelter choice and overdispersion, LRT should be taken
into account the distribution χ2 with 1 degree of freedom when comparing log-
likelihoods. Moreover, because of a particular parametrization, the p-value should
be halved [15, 17]. In the next sections will be described applications of CUB mod-
els to a case study on food packaging.

1.3 A Food Packaging Survey

In order to show an application of CUB models, we are going to describe a study
on food packaging [2]. Consumers are usually overwhelmed by the great number of
food packaging at grocery stores and packaging is considered a silent vendor as the
first characteristic evaluated by customers [26, 27]. A questionnaire on food packag-
ing was developed to have an overview on satisfaction and pitfalls when customers
are facing with packaged food and buying foods at the grocery store. The study has
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been conducted in Italy and in Austria, collecting opinions and satisfaction grades
of 209 subjects. The survey was centred on questions about packaging attributes like
capacity to preserve food, resealability and easy peel. About the buying behaviour,
subjects were asked to rate attention paid to several aspects, e.g. brand, packaging,
price, etc. (Table 1.2) shows the main variables and coding of measurement scale.

Table 1.2 Variables and measurement scales
Variables Δ Attributes Coding

Attention paid to
attributes

Nutrition facts, no GMO food,
region of provenance,
seasonality,

1 minimum attention

brand, price, discounted price, 6 maximum attention
innovation, advertisement,
packaging

Satisfaction about
packaging

Ability to preserve the food, 1 minimum satisfaction
resealability and easy peel 10 maximum satisfaction

Opinions on
packaging

Preservatives are the main
responsible of freshness, 1 no at all
packaging is the main 10 definitely yes
responsible of freshness

Subjects were also asked demographic and habit information, some of them in-
troduced as covariates (see Table 1.3) to improve the CUB model fitting. The sur-
vey included questions on attention level about some aspects related to products
respondents usually buy at grocery stores (attention variables). Respondents were
also asked to evaluate their satisfaction level about the following specific packaging
characteristics: the ability to preserve foods, the resealability and easy peel. More-
over, they were asked to express opinions about packaging and preservatives that
are usually involved in food preservation (satisfaction and opinion variables).

CUB models have been applied to attention variables and results are shown in Ta-
ble 1.4. Results show parameter estimate, dissimilarity index and log-likelihood of
each variable. Dissimilarity indexes are lower than 0.12 except for Advertisement.
CUB model has two advantages: the first one is a model with only two parameters
indicating we have a parsimonious model, the second one is a useful visual descrip-
tion by representing parameters into two dimensional space (Fig. 1.2).

Figure 1.2 indicates that the variable with the highest attention and the lowest
uncertainty is price, while in the opposite position there is innovation. Whereas
price and discounted price get the highest attention and the lowest uncertainty, re-
spondents don’t pay much attention to nutrition facts and innovation revealing very
different behavior (high uncertainty). About packaging, they pay attention to it but
uncertainty is high indicating very different attentional levels among respondents.
Let us take a look at Table 1.5. CUB models with and without covariates are applied
and Log-likelihoods are compared by Chi-square tests.
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Table 1.3 Covariates for CUB model
Covariates Δ Description Coding

Sex
36% males 0 male
64% females 1 female

Nationality
68% Italy 0 Italy
32% Austria 1 Austria

Educational level

9.3% elementary 1 elementary
28.1% intermediate 2 intermediate
43.4% high school 3 high school
19.2% graduate 4 graduate

Age
Min: 20 Continuous variable
Max: 82

Income (monthly
in Euros)

26.3% < 800 1 < 800
54.1% 800−1700 2800−1700
13.9% 1800−2900 31,800−2900
5.7% > 2900 4 > 2900

Purchase
frequency

54% Rarely 0 rarely
46% frequently 1 frequently

Attention paid to:
Biodegradable
packaging

66% yes 0 yes
34% no 1 no

Resealable
packaging

66.4% yes 0 yes
33.6% no 1 no

Easy peel
55.6% yes 0 yes
44.4% no 1 no

Table 1.4 CUB model estimates for attention variables
Coding Variable name π(s.e.) ξ (s.e.) Diss �(0,0)
1 Nutritional

values
0.157(0.045) 0.990(0.054) 0.078 −321.810

2 No GMO food 0.254(0.094) 0.820(0.071) 0.109 −326.081
3 Provenance 0.387(0.069) 0.082(0.030) 0.057 −306.455
4 Provenance 0.345(0.073) 0.075(0.037) 0.093 −310.359
5 Brand 0.327(0.101) 0.485(0.054) 0.045 −326.487
6 Price 0.779(0.056) 0.146(0.017) 0.113 −265.980
7 Discounted

price
0.610(0.061) 0.060(0.019) 0.106 −260.895

8 Innovation 0.053(0.066) 0.990(0.231) 0.087 −330.258
9 Advertisement 0.489(0.099) 0.864(.044) 0.166 −305.048
10 Packaging 0.177(0.098) 0.339(0.090) 0.064 −329.843

p-Values in Table 1.5 show that log-likelihoods for CUB models with covariates
increase. Significant covariates can help to understand how behaviours of subject’s
subgroups differ in terms of attention paid to attributes. The introduction of covari-
ates in the CUB model is supposed to be significant when log-likelihoods between
CUB model without and with covariates are significantly different. Table 1.6 de-
scribes which direction takes 1−ξ (attention) once covariates are introduced.
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Fig. 1.2 Attention variables with increasing attention (feeling) and uncertainty when parameters
tend to 1
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Table 1.5 Significant covariates for CUB models

Coding Variable name π ξ 2(�(p,q)− �(0,0)) Df, p-value
1 Nutrition facts Gender Education 14.074 2,<0.0001
2 No GMO food – Nationality 4.174 1,<0.05
3 Provenance – Age 27.560 1,<0.0001
4 Seasonality – Age 29.586 1,<0.0001
5 Brand – Gender 4.582 1,<0.05
6 Price – Income 34.522 1,<0.0001
7 Discounted

price
– Income 32.574 1,<0.0001

8 Innovation – Age 19.560 1,<0.0001

Table 1.6 Attention direction for significant covariates

Variable name Covariate Coding Attention
No GMO food Nationality 0;1 Increase
Provenance Age 20–82 Increase
Seasonality Age 20–82 Increase
Brand Gender 0;1 Decrease
Price Income 1;4 Decrease
Discounted price Income 1;4 Decrease
Innovation Age 20–82 Decrease
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In Table 1.6 we realize that older subjects paid more attention to provenance than
the younger ones and males (coded as 0) paid more attention to brand than females.
Another interesting results is that Italians seem to pay less attention to no GMO food
than Austrian. Let us take a look at subgroups that come from crossing the categor-
ical variables gender and education. We saw that covariate nutrition facts improve
log-likelihoods of CUB models for all subgroups but with different implications.
The logistic functions (1.4)–(1.5) estimate parameters π and ξ for each subgroup so
that to have rating distribution estimations (Table 1.7).

The expected value E(Y ) is derived as follows (see [14]):

E(Y ) = π(m−1)(
1
2
−ξ )+

(m+1)
2

. (1.12)

Females have higher uncertainty than males and their responses present higher dis-
persion. About education, the higher education affect attention paid to nutrition
facts. The expected values of females are quite similar whereas there is a clear

Table 1.7 Gender and education covariates for nutrition facts
Gender-education 1−π 1−ξ E(Y )
Male-elementary 0.604 0 2.51
Female-elementary 0.844 0 3.11
Male-intermediate 0.604 0.0007 2.51
Female-intermediate 0.844 0.0007 3.11
Male-high school 0.604 0.047 2.61
Female-high school 0.844 0.047 3.15
Male-graduate 0.604 0.788 4.07
Female-graduate 0.844 0.788 3.73

gap between high school (E(Y ) = 2.61) and graduate (E(Y ) = 4.07) conditions for
males. Figure 1.3 shows estimated probability distributions about covariates gender
and education.

The distributions in left panel (females) are flatter than ones in right panel (males)
indicating high uncertainty. Moreover, we cannot discriminate between elementary
and intermediate because of overlapping distributions. Respondents with a degree
clearly are connected with a higher level of attention to the nutrition facts. CUB
models can take into account several choice behaviors and in order to give an exam-
ple let us consider the variable advertisement. The dissimilarity index is quite high
(Diss = 0.166) meaning a bad match between estimated and observed distributions.
About observed relative frequencies of advertisement, we see a Mode at y = 1. The
score 1 has a high frequency and could indicate a shelter choice at c = 1. The hy-
pothesis is that some respondents have chosen the lowest score in order to simplify
the task and in order to test it we apply the CUB model with shelter choice at c = 1
(Table 1.8).
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Fig. 1.3 Estimated probability distributions of responses to nutrition facts for females (left panel)
and males (right panel)
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Table 1.8 Model without and with shelter for advertisement
Model π(s.e.) ξ (s.e.) Diss. index Log-likelihood
CUB π = 0.489(0.099) 0.864(0.044) 0.166 −305.048

CUB+shelter
π1 = 0.504(0.075)
π2 = 0.209(0.082)) 0.621(0.037) 0.021 −293.032
π∗ = 0.707(0.109)

The parameter δ = 0.285(0.044) is significant and dissimilarity index decreases
from 0.166 to 0.021. The CUB model with shelter choice improves the model and a
shelter choice behavior seems to explain for an over-selection of score 1. Parameters
ξ and π take different values in the CUB model with shelter choice so that we finally
have higher attention (from 0.135 to 0.378) and lower uncertainty (from 0.511 to
0.292). About satisfaction and opinion variables, as introduced before, respondents
evaluated their satisfaction concerning some packaging characteristics (ability to
preserve foods, resealability and easy peel). Moreover they expressed opinions on
packaging and preservatives revealing their beliefs. CUB models have been applied
to satisfaction and opinion variables (Table 1.9) and results show acceptable fitting
indexes for variables easy peel and preservatives.

Table 1.9 CUB model estimates for satisfaction and opinion variables

Coding Variable name π(s.e.) ξ (s.e.) Diss. index �(0,0)
1 Preservation 0.695(0.065) 0.366(0.018) 0.123 −384.280
2 Resealability 0.668(0.066) 0.333(0.019) 0.122 −383.851
3 Easy peel 0.628(0.072) 0.418(0.021) 0.085 −393.884
4 Preservatives 0.536(0.071) 0.293(0.023) 0.104 −399.914
5 Packaging 0.553(0.074) 0.322(0.025) 0.164 −400.412
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Parameter estimates, as coordinates, describe points in Fig. 1.4 and suggests two
clusters, the satisfaction variables (1, 2, 3) and the opinion variables (4, 5) with
the second ones in the upper right corner of the space. Opinion variable positions
suggest high uncertainty and high feeling.

Fig. 1.4 Satisfaction and opinion variables as coded in Table 1.9 with increasing feeling and un-
certainty when parameters tend to 1
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Dissimilarity indexes displayed in Table 1.9 indicate estimated distributions not
fitted so well to the observed data. A possibility is to investigate for groups of sub-
jects that behave in different ways by introducing covariates into CUB models. Re-
sults of CUB model with covariates are shown in Table 1.10.

Table 1.10 Significant covariates for CUB models

Coding Variable name π covariate ξ covariate 2(�(p,q)− �(0,0))Df, p-value
1 Preservation Age Purchase frequency 35.584 2,<0.0001

2
Nationality

Resealability – Purchase frequency 62.471 3,<0.0001
Resealable packaging

3
Nationality

Easy peel – Attention to easy peel 63.335 3,<0.0001
Resealable packaging

4 Preservatives Resealability
attention

Income 50.129 2,<0.0001

5
Packaging – Nationality 37.641 2,<0.0001

Purchase frequency
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The introductions of covariates led to an increment of log-likelihood and an im-
provement of CUB models. This result suggests that there are clusters with different
grades of satisfaction or different opinions on how preservatives and packaging are
linked to food preservation. Let us consider, for instance, satisfaction about food
preservation that seems to be not homogeneous among respondents. Covariates age
and purchase frequency were significant for uncertainty and feeling (satisfaction)
respectively so that they outline subgroups with different grades of satisfaction. In
order to estimate probability distributions of subgroups that come from crossing
variables age and purchase frequency, we made age a discrete variable. Probability
distributions are shown in Fig. 1.5.

Fig. 1.5 Estimated probability distributions about food preservation for frequent buyers of pack-
aged products (left panel) and not frequent buyers (right panel)
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From Fig. 1.5 we see that age affects uncertainty: older the respondents flatter the
distribution. Older respondents display greater uncertainty whereas frequent buyers
seem to be more satisfied than not frequent buyers about packaged fresh foods.

1.4 Final Remarks

The main aim of CUB models was to explain the psychological mechanism un-
derlying choice processes [10, 12]. Moreover, in order to take into account several
choice behavior, model extensions have been developed [16]. Within the framework
of preference evaluation methods, CUB models are considered a stated preference
method and suited to many real cases [25, 7, 6, 20], confirming CUB models as
useful and theorem based [19] statistical models. Moreover CUB models have been
applied in combination and integration with other methods like conjoint analysis
[3], indicating that they are also very flexible models. feeling and uncertainty as
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latent variables are supposed to be involved in the choice process of an item. The in-
terpretation is wide with feeling indicating constructs (satisfaction, preference or at-
tention) that are linked to the measurement scale adopted. In the real case study just
described, CUB models have been applied to specific questions relating to the level
of attention respondents usually pay to specific characteristics at grocery stores.
Moreover questions regarded also satisfaction level and opinions about some food
packaging characteristics. Results showed high levels of attention for price, dis-
counted price, seasonality and provenance but with different levels of uncertainty.
Packaging as a variable received medium-high grades of attention but uncertainty
was high: respondents seem to pay very different levels of attention about packaging
when they buy foods at supermarket. Packaging was not affected by any covariates
so the high uncertainty could indicate an attribute (packaging) respondents are not
used to evaluate or to consider when they buy products at the supermarket. This
could mean a low knowledge of the real utility/importance of packaging. Some de-
mographic characteristics introduced as covariates revealed the presence of clusters
of subjects whose responses were quite different in terms of feeling and uncertainty.
For example, males and females don’t pay the same attention to brands or again the
product provenance seems to be affected by age, older respondents are more inter-
ested product provenance than younger ones. The CUB model extension with shelter
choice has been applied to variable advertisement. The model fitting improved a lot
with a shelter at c = 1. From this results we reasonably state that respondents tend to
simplify the answer. Maybe choosing a grade reflecting how much attention is paid
to advertised products is not a simple task. Respondents were more satisfied with
preservation of the food and the resealability of the packaging than with packaging
with easy peel. Finally, from introducing covariates, we saw that a high frequency of
packaged-food product purchasing and satisfaction for food preservation are linked
in some ways. Concluding, the CUB models have proven to be very useful, flex-
ible and constantly evolving. They have a wide range of possible applications not
only as a single method but also in combination or integration with others statistical
methods.
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Chapter 2
Customer Satisfaction Heterogeneity

The measurement of the customer satisfaction concerns the gap between the cus-
tomer expectations about the product or service and the perceptions of the customer
after the consumption or use. In other words, the customer satisfaction is closely
related to the concept of “perceived quality”. According to the definition of Mont-
gomery [24], it depends on how much the products or services meet the require-
ments of the consumers/users and it is directly connected to the homogeneity of the
performance of the production process or service provision process.

When the performance is represented by a numerical variable, for instance when
the customers express their satisfaction degree with a numerical score, quality is in-
versely related to variability. High variability of the process means inhomogeneous
outputs and great percentage of waste. As a matter of fact, the process capacity in-
dices are measures used to evaluate the ability of the process to produce little waste
and are an inverse function of the standard deviation. Other important tools for pro-
cess quality control are the so called control charts and among them the R charts
and the S charts are commonly used to control range and standard deviation as main
indices of variability.

In many cases the customer satisfaction is measured through categorical judg-
ments, by using a Likert scale or a set of ordered categorical evaluations. Often, the
number of possible levels used to represent the different satisfaction degrees are 4,
5, 7 or 10. Even if sometimes, in the customer satisfaction questionnaires, the pos-
sible response alternatives are linked to integer numbers which represent the ranks
of the evaluations with respect to the judgment scale, the nature of the information
provided by the answers of the respondents is categorical. For this reason, range,
variance, standard deviation and other indices used to measure the variability of
the satisfaction, after transformation of the ordinal assessments into numeric scores,
often are not the suitable way to measure satisfaction inhomogeneity. The transfor-
mation of the original data can change the information provided by the statistical
surveys and cause a bias in the estimation of the customer satisfaction parameters,

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
R. Arboretti et al., Parametric and Nonparametric Statistics for Sample Surveys
and Customer Satisfaction Data, SpringerBriefs in Statistics,
https://doi.org/10.1007/978-3-319-91740-5 2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91740-5_2&domain=pdf
https://doi.org/10.1007/978-3-319-91740-5_2


20 2 Customer Satisfaction Heterogeneity

leading to unreliable results because the transformed data do not reflect the real
customers opinions.

Hence, the application of suitable statistical techniques for categorical variables
is preferable to the transformation of data into numeric scores and consequent ap-
plication of inferential methods for variability parameters (e.g. F test for variance
comparison). In this framework, interesting methodological tools to measure satis-
faction inhomogeneity are represented by the indices of heterogeneity for categori-
cal variables, such as Gini’s index, Shannon’s entropy, Rényi’s family of measures
and others. These indices can be used for inferential purposes, concerning hetero-
geneity estimation and test of hypothesis for comparing the heterogeneity of two or
more populations. Another good reason why the use of indices of heterogeneity for
categorical variables is preferable to data transformation and application of indices
of variability, is that the detection of customer groups characterized by “within ho-
mogeneity” and “between heterogeneity” could be a useful starting point of market
segmentation and product/service differentiation strategies.

The present chapter is dedicated to the description of testing methods, for com-
paring the (categorical) satisfaction heterogeneities of two or more customer popula-
tions. These methods are based on a nonparametric approach and on the comparison
of the Pareto diagrams of the probability distributions. In the next section the het-
erogeneity of categorical variables is defined and suitable indices of heterogeneity
are presented. In the section after that, the theory of the two-sample test for het-
erogeneity comparisons is introduced and some real applications shown. The final
section includes the extension of the method under study to the comparison of more
than two populations, from both theoretical and application point of view.

2.1 Heterogeneity Indices

The notion of statistical heterogeneity for categorical data finds several applica-
tions in different disciplines such as genetics, physics, engineering, environmental
sciences, sociology, economics, and others. According to the problem and the sci-
entific framework, it is associated to the concept of diversity, entropy, mutability,
dispersion, differentiation, dissimilarity or uniform distribution. For instance, it can
be used for studying market segmentation [10], biodiversity [26, 32, 33, 7], process
capability [11], clustering [38], genetic differentiation [6], customer satisfaction [5]
and many other phenomena typical of the mentioned disciplines.

Let us assume that the random variable Xj, representing the customer satisfaction
of population j ( j = 1, . . . ,C;C ≥ 2), may take m categories (judgments) v1,v2,. . . ,vm

and f jh denotes the absolute frequency of the j-th sample for the h-th category
( j = 1, . . . ,C;h = 1, . . . ,m). A 2×m contingency table of the absolute frequencies
[ f jh] is observed. In other words the categorical response variable Xj takes cate-
gories in {v1, . . . ,vm}, with unobserved probability distribution Pr{Xj = vh}= π jh,
h = 1, . . . ,m.

The heterogeneity of Xj or, equivalently, the heterogeneity of its distribution, is
minimum (in other words the homogeneity is maximum) when in the j-th population
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one modality is observed with probability 1 (certain event) and all the other modal-
ities with probability 0 (impossible event). In this population there is full judgment
homogeneity and then the distribution is degenerate. Conversely the heterogeneity
of Xj is maximum when all the modalities/categories are observed with the same
probability. In this population the distribution is uniform over the set of modalities,
that is π jh = 1/m, ∀h. Thus, heterogeneity depends on the concentration of proba-
bilities over the categories v1,v2,. . . ,vm.

An suitable measure of heterogeneity η j = het(Xj) must satisfy the following
properties:

1. it takes its minimum when the distribution is degenerate, i.e. when there is an
integer r ∈ {1, . . . ,m} such that π jr = 1 and π jh = 0, ∀h �= r;

2. the farther the distribution from the degenerate case and the closer to the uniform
case, the greater the index value;

3. it takes its maximum in case of uniform distribution, i.e. π jh = 1/m, ∀h ∈
{1, . . . ,m}.

The properties listed above hold for many different index types (for a review see
[31]). Each of this indices can be used as a measure of the degree of heterogeneity.
By assuming that log(·) correspond to the natural logarithm and that 0 · log(0) = 0,
let us consider the following indices:

Shannon entropy ([35]): η(S)
j =−∑m

h=1 π jh log(π jh),

Gini heterogeneity ([17]): η(G)
j = ∑m

h=1 π jh(1−π jh) = 1−∑m
h=1 π2

jh,

Leti index ([20]): η(L)
j = ∏m

h=1(π jh)
−π jh ,

Frosini index - euclidean distance ([16]): η(Fe)
j =

√
∑m

h=1(π jh −1/m)2,

Frosini index - Manhattan distance ([16]): η(Fm)
j = ∑m

h=1 |π jh −1/m|,

Rényi index of order δ ([34]): η(Rδ )
j = 1

1−δ log∑m
h=1 πδ

jh.

To facilitate the interpretation of the indices, after suitable transformation, it is
possible to compute, for each of them, the normalized version, which takes the min-
imum value 0 in case of degenerate distribution and the maximum value 1 in case
of uniform distribution (see [4]).

The index of entropy proposed by Shannon, is equal to 0 in the former case and
equal to log(m) in the latter case. Hence the normalized version of this index is
equal to

η̃(S)
j =

η(S)
j

log(m)
.

Also the Gini’s index, in case of degenerate distribution, takes value 0. When the
distribution is uniform it is equal to (m−1)/m. Thus the normalized version is
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η̃(G)
j =

m
m−1

·η(G)
j .

The Gini’s index can be interpreted as arithmetic mean of 1− π jh (h = 1, · · · ,m),
which can be considered measures of heterogeneity of the single attributes vh

(h = 1, · · · ,m). The logic underlying the index of Leti is similar, because the
Leti’s measure of heterogeneity corresponds to the geometric mean of 1/π jh (h =
1, · · · ,m). This index is a monotonic transformation of Shannon’s entropy since

η(L)
j = exp(η(S)

j ). Its normalized version is

η̃(L)
j =

η(L)
j −1

m−1
.

Quite a general approach was followed by Frosini, whose indices of homogene-
ity are defined as distances between the vector of probabilities (π j1,π j2, . . . ,π jm)

′,
which characterize the distribution of Xj (observed relative frequencies in descrip-
tive statistics), and the vector of expected probabilitites in case of uniform distri-
bution (1/m,1/m, . . . ,1/m)′. The normalized version of the index computed as eu-
clidean distance is

η̃(Fe)
j = 1−

√
m

m−1
·η(G)2

j ,

which is an increasing function of the Gini’s index. It can be proved that η̃(Fe)
j =

1−
√

1− η̃(G)
j . Both indices are a decreasing function of ∑h π2

jh, which is commonly
used as measure of homogeneity by several contributions.
The normalized Frosini’s index based on Manhattan distance is

η̃(Fm)
j = 1− m

2(m−1)
·η(Fm)

j .

The generalized index of entropy defined by Rény is a non-increasing function of
parameter δ , with δ �= 1. Some of the indices presented above, or increasing trans-
formations of them, can be considered members of the Rény’s family of indices. For
instance, let us consider the following cases:

• η(R1)
j = limδ→1[

1
1−δ log(∑m

h=1 πδ
jh)] = η(S)

j ,

• η(R2)
j =− log∑m

h=1 π2
jh =− log(1−η(G)

j ),

• η(R∞)
j = limδ→∞[

1
1−δ log(∑m

h=1 πδ
jh)] =− log[suph(π jh)].

Table 2.1 shows the values of some of the most common indices of heterogeneity
(in both non-normalized and normalized versions) related to specific probability
distributions in the case of 4 modalities or satisfaction levels. Three aspects are
evident from the table: the monotonic relationship between index value and degree
of heterogeneity, the similar normalized values of η(G) and η(S) and the normalized
values of η(R∞), which are much different from those of the other indices.
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2.2 Two-Sample Test for Dominance in Heterogeneity

2.2.1 Problem Definition

Let us consider the two-sample test where the hypothesis under study consists in the
comparison between the heterogeneities of the customer satisfactions of two popu-
lations, by assuming that the satisfaction is represented by the categorical variable
Xj ( j = 1,2), with support given by the set of modalities {v1,v2, . . . ,vm}. We could
be interested in assessing the plausibility of the hypothesis that the heterogeneity of
one population is greater than that of the other (one-sided test) or the hypothesis that
the two heterogeneities are not equal (two-sided test). To this end, let us suppose that
one random sample from each of the two populations is selected and denote the size
of sample j with Nj ( j = 1,2). As indicated in the previous section, the probability
distribution of Xj is {π jh,h = 1, . . . ,m}, with π jh = Pr{Xj = vh} ≥ 0 and therefore
∑h π jh = 1. The probabilities π jh are unknown parameters of the two populations.

If we denote the heterogeneity degree of the judgments of the j-th population
with het(Xj, the hypotheses of the one-sided testing problem can be formally defined
as follows:

H0 : het(X1) = het(X2)

against
H1 : het(X1)> het(X2).

Table 2.1 Probability distributions in the case of m = 4 modalities and measures of heterogeneity

Modalities Index Normalized index
v1 v2 v3 v4 η(S) η(G) η(R3) η(R∞) η̃(S) η̃(G) η̃(R3) η̃(R∞)

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.70 0.20 0.10 0.00 0.46 0.80 0.52 0.36 0.61 0.58 0.38 0.26
0.50 0.30 0.15 0.05 0.64 1.14 0.93 0.69 0.85 0.82 0.67 0.50
0.40 0.30 0.20 0.10 0.70 1.28 1.15 0.92 0.93 0.92 0.83 0.66
0.30 0.25 0.25 0.20 0.75 1.38 1.36 1.20 0.99 0.99 0.98 0.87
0.25 0.25 0.25 0.25 0.75 1.39 1.39 1.39 1.00 1.00 1.00 1.00

Let us denote with π j(1) ≥ π j(2) ≥ ·· · ≥ π j(m) the ordered probabilities of the
j-th population. All the indices defined in the previous section are order invariant,
i.e. their values do not change if they are computed with the ordered probabilities
instead of the unordered ones. Formally, if we denote with η j any index to measure
het(Xj) and we indicate it as a function of the unknown parameters, we can state that

η j(π j(1),π j(2), . . . ,π j(m)) = η j(π j1,π j2, . . . ,π jm),

thus we can express het(Xj) by using the ordered probabilities.
Let us observe that:

π1(h) = π2(h)∀h = 1,2, . . . ,m ⇒ het(X1) = het(X2).
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In other words, two populations with the same ordered distributions, are equally
heterogeneous. Moreover, if π1(h) = π2(h)∀h= 1,2, . . . ,m, exchangeability holds and
the permutation testing principle applies. According to it, the null hypothesis of the
testing problem can be represented as:

H0 : π1(h) = π2(h)∀h = 1,2, . . . ,m

or equivalently as

H0 : Π1(h) = Π2(h)∀h = 1,2, . . . ,m−1,

where Π j(h) = ∑h
s=1 π j(s) are the cumulative ordered probabilities, with Π j(m) =

∑m
h=1 π j(h) = 1.
The alternative hypothesis of the problem can be written as:

H1 : Π1(h) ≤ Π2(h)∀h = 1,2, . . . ,m−1,

and the strict inequality holds for at least one h = 1,2, . . . ,m−1.
The problem is then similar to stochastic dominance for ordinal categorical vari-

ables, where the order is here determined according to the values of the parameters
π jh, and not according to the categories v1,v2, . . . ,vm. In other words, under the null
hypothesis, the Pareto diagrams of the probabilities distributions are coincident and
under the alternative one diagram dominates the other. Therefore the problem under
study can also be named test on dominance in heterogeneity and be defined in terms
of comparison of probability concentrations.

2.2.2 Permutation Test

For problems of stochastic dominance many exact and approximate solutions have
been proposed in the literature (see [1, 18, 19, 22, 21, 23, 25]). For the univariate
case several authors proposed solutions based on the restricted maximum likelihood
ratio test [15, 36, 40]. According to these proposals, under the null and alternative
hypothesis, the distributions of the test statistics asymptotically are mixtures of chi-
squared whose weights essentially depend on the unknown population distribution.
Nonparametric solutions are proposed by other authors [39, 13, 27, 28, 29].

For comparing the heterogeneities of two populations, it is reasonable to choose,
as test statistic, the difference between the sampling values of an index η , as follows

Tη = η̂1 − η̂2,

where η̂ j = η j(p j(1), p j(2), . . . , p j(m)), p j(h) = f j(h)/Nj, with f j(h) and p j(h) ordered
relative frequencies and ordered absolute frequencies respectively, observed on the
two samples (h = 1, . . . ,m; j = 1,2). The ordered relative frequencies p j(h) = π̂ j(h)
are point estimates of the unknown ordered probabilities π j(h) as well as the sample
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indices η̂ j represent suitable point estimates of the indices η j. The null hypothesis
is rejected in favour of the alternative for large values of the test statistic.

In order to compute the p-value λ = Pr{Tη ≥ T (obs)
η |H0}, where T (obs)

η is the
observed value of the test statistic, we need to know the sampling null distribution
of the test statistic. Arboretti et al. [6] proposed a permutation solution that assumes
exchangeability under the null hypothesis. The authors consider different options
as test statistic, considering alternatively the indices of Gini, Shannon and Rény
of order 3 and ∞. The Rény’s index of order 2 is the most commonly used but,
according to the property mentioned above, it is permutationally equivalent to the
index of Gini.

Exchangeability under H0 holds if the true order of the unknown probabilities
were known. Since in practice the true order is not known, it must be estimated with
the sample data. Hence exchangeability under H0 is not exact, because the order
of the probabilities is estimated with the order of the observed frequencies (empir-
ical order) which presents a random component and it is subjected to the sampling
variations. Thus the solution is data driven. Anyhow, estimated and true order are
asymptotically equal with probability one, according to the Glivenko-Cantelli the-
orem [37], thus exchangeability holds asymptotically and the permutation test is
approximate for finite sample sizes.

For each sample, the observed relative frequencies are sorted in decreasing or-
der, as well as in the Pareto diagram, and the table of ordered relative frequencies
p j(h) (ordered table) is determined. The original variables Xj are then transformed
in such a way that, within the j-th sample, vh is replaced by the integer number r if

p jh = p j(r). The observed value of the test statistic T (obs)
η is computed as a function

of the frequencies of the ordered table. The null distribution of the test statistic is
obtained by considering all the permutations of the transformed dataset or (for com-
putational convenience) a random sample of them. In the latter case the permutation
p-value is not exact but estimated with the conditional Monte Carlo method. For
each permutation a new (permuted) table of the ordered frequencies is obtained and
the corresponding permutation value of the test statistic is computed. The permuta-
tion p-value is then

λη =
�(T ∗(b)

η ≥ T (obs)
η |X)

B
,

where T ∗(b)
η is the permutation value of the test statistic corresponding to the b-th

permutation, B is the number of permutations and the numerator is the number of
permutation values of the test statistic greater than or equal to the observed one,
given the observed dataset X . Thus the inferential result depends on the space gen-
erated by the permutations of X , that is the orbit associated with X . As usual, the null
hypothesis is rejected when λη ≤ α , where α is the significance level of the test.

Let us consider the following practical example, where 350 customers of a food
outlet were interviewed to evaluate a sweet snack bought in that shop. The evalua-
tion consisted in choosing a categorical judgment within a Likert scale with seven
satisfaction levels, where level 1 corresponds to “not at all satisfied” and level 7
corresponds to “very much satisfied”.
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Table 2.2 Contingency table of observed absolute frequencies in the customer satisfaction survey
about a sweet snack

Satisfaction Gender Total
Male Female

1 = not at all 18 5 23
2 25 17 42
3 31 28 59
4 35 36 71
5 27 39 66
6 22 28 50
7 = very much 17 22 39

Total 175 175 350

We wish to test the hypothesis that the satisfaction of males is more heterogeneous
than that of females at significance level α = 0.05. The observed contingency table
is shown in Table 2.2.

It is evident that the sample modal satisfaction for males corresponds to level 4
and for females to level 5. Hence, from a descriptive point of view and by using the
mode as location index, the satisfaction of females for the sweet snack seems to be
greater than that of males.

Since we are interested in the comparison of the heterogeneities, we can con-
sider the Pareto diagrams of the frequencies distributions, where the two cumulative
ordered frequency polygons can be represented to compare the frequency concen-
trations (see Fig. 2.1).

The frequencies of the customer satisfaction distribution for males seem to be
less concentrated, supporting the hypothesis of greater heterogeneity of judgements
for this category. The computation of the sample indices of heterogeneity of Gini,

Fig. 2.1 Pareto diagrams of the customer satisfaction survey about a sweet snack
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Table 2.3 Sample indices of heterogeneity in the customer satisfaction survey about a sweet snack

Index Gender

Male Female

Gini 0.849 0.831
Shannon 1.916 1.835
Rényi-3 1.862 1.739
Rényi-∞ 1.609 1.501

Shannon, Rény of order 3 and Rény of order ∞, conforms this idea as shown in
Table 2.3.

To test whether the observed positive differences between the indices of the two
groups are significant, we apply the permutation test described above, by estimating
the permutation p-values with B = 10,000 conditional Monte Carlo simulations and
using all the four measures of heterogeneity just mentioned. Table 2.4 reports the
observed values of the test statistics and the corresponding p-values:
According to the table, the observed difference of the sample indices is (positively)
significant when we use the indices of Gini, Shannon and Rény of order 3. It is non-
significant when we use the index of Rény of order ∞. Thus, according to the first
three procedures, the heterogeneity of males’ judgements is greater than the hetero-
geneity of females. This result is consistent with some evidences of the literature.

Table 2.4 One-sided test on heterogeneity in the customer satisfaction survey about a sweet snack

Index T (obs)
η p-value

Gini 0.018 0.028
Shannon 0.081 0.012
Rényi-3 0.123 0.046
Rényi-∞ 0.108 0.226

Arboretti et al. [6] prove that, in general, the test based on the index of Rényi-∞
is the least powerful among the four considered, and this is more evident for high
degrees of heterogeneity. As a matter of fact the degrees of heterogeneity in the
problem presented are very high. The normalized values of the Gini’s indices for
males and females are 0.991 and 0.970 respectively; the normalized values of the
Shannon’s indices are 0.985 and 0.943; for the index of Rényi-3 we have 0.957 and
0.894 and for the index of Rényi-∞ the values are 0.827 and 0.771.

2.3 Two-Sided Test

Sometimes, in the two-sample problem, the interest of the study concerns the test of
a two-sided hypothesis. For example let us consider the case of a survey to evaluate
the satisfaction of students about professors’ teaching effectiveness in an academic
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course. The students were divided into two groups that attended the lectures sepa-
rately at different times. A a matter of fact, the course was repeated twice and the
same classes were held by the same professors separately for the two groups.

Table 2.5 Contingency table of observed absolute frequencies of students’ satisfaction about
teaching effectiveness

Satisfaction Group Total

A B
Very dissatisfied 5 12 17
Moderately dissatisfied 18 35 53
Moderately satisfied 28 26 54
Very satisfied 9 9 18

Total 60 82 142

As shown in Table 2.5, the satisfaction is expressed by using a 4-level scale.
The satisfaction levels are: Very dissatisfied, Moderately dissatisfied, Moderately
satisfied and Very satisfied. The table shows the observed absolute frequencies of
the judgements for group A, group B and for the pooled sample. We are interested
in comparing the two distributions, to test whether the heterogeneities of the group
satisfactions are different at the significant level α = 0.01.

Fig. 2.2 Pareto diagrams of students’ satisfaction about teaching effectiveness
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The Pareto diagrams of the data presented in Table 2.5 are shown in Fig. 2.2.
From a descriptive point of view, to determine which of the two heterogeneities is
greater is not simple. The sample values of the heterogeneity indices can help in this
assessment.
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For the two-sided test, Arboretti and Bonnini [2] and Arboretti et al. [4] propose
the application of the permutation solution described in the previous section by us-
ing, as a test statistic, the difference squared of the sample indices. Formally the
problem can be represented by the null hypothesis

H0 : het(X1) = het(X2)

against the alternative hypothesis

H1 : het(X1) �= het(X2),

where X1 and X2 represent the satisfaction of the two compared groups. By denoting
with η̃ j a given sample index of heterogeneity, the test statistic for this problem is

Tη = (η̃1 − η̃2)
2,

and large values of Tη lead to the rejection of the null hypothesis in favour of the
alternative. Under the null hypothesis, exchangeability holds, even if, as remarked
above, it is approximate for finite sample sizes and exact only asymptotically. Thus
the permutation distribution of Tη can be estimated, the p-value of the test computed
and the usual decision rule applied to decide whether reject or not the null hypoth-
esis. In the mentioned publications, a further index, consistent with the two-sided
nature of the alternative hypothesis, is taken into account as alternative to the other
indices listed above. This is the well known chi-squared index

η(χ2)
j =

m

∑
h=1

(N p jh − N
m )

2

N
m

.

However, the test based on the chi-squared index is not well approximated as well
as the test statistics based on Shannon’s and Gini’s indices, because it tends to be
anticonservative under the null hypothesis. Furthermore it is less powerful than the
other two tests under the alternative hypothesis.

Table 2.6 Sampe indices of heterogeneity of students’ satisfaction about teaching effectiveness

Index Group

A B
Gini 0.663 0.684
Shannon 1.209 1.251
Rényi-3 1.010 1.085
Rényi-∞ 0.762 0.851

According to Table 2.6, the heterogeneity of judgments by group B seems to be
lightly higher, because all the sample indices of this group are lightly greater. We ap-
ply the permutation method here described to test the significance of the differences
between the sample indices.
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Table 2.7 Two-sided test on heterogeneity of students’ satisfaction about teaching effectiveness

Index T (obs)
η p-value

Gini 0.021 0.624
Shannon 0.043 0.627
Rényi-3 0.075 0.615
Rényi-∞ 0.089 0.672

In Table 2.7 we can see that all the p-values are much greater than the signifi-
cance level, hence we cannot reject the null hypothesis of equal satisfaction hetero-
geneities.

2.4 Multisample Test

When the compared categorical variables are more than two, a sort of ANOVA can
be applied to test the hypothesis that the heterogeneities of the C ≥ 3 distributions
are not equal (see [3]). An example is provided in [14], where the results of a cus-
tomer satisfaction survey on facilitis services in Terminal 2 at Tampere Airport are
published.

Table 2.8 Contingency table of observed absolute frequencies of customer satisfaction about fa-
cilities services in Terminal 2 at Tampere Airport

Satisfaction Terminal area
Entrance
concourse

Departure
lounge

Arrival lounge

Highly dissatisfied 4 4 3
Somewhat dissatisfied 7 9 9
Neutral 42 35 48
Somewhat satisfied 50 50 38
Highly satisfied 27 32 32

The data of the frequency distributions of the customer satisfaction about facil-
ities services are reported in Table 2.8. The total number of customers, travellers
who took part to the customer satisfaction survey, is 130 for all the areas under
evaluation, i.e. “Entrance course”, “Departure lounge” and “Arrival lounge”. We are
interested in comparing the heterogeneities of the judgements for the three areas
(α = 0.10).

In generale, given C distributions with C ≥ 3, the C-sample testing problem with
null hypothesis of equality in heterogeneity of the C distributions and alternative
hypothesis of inequality in heterogeneity of some of them, can be formally written as

H0 : het(X1) = het(X2) = · · ·= het(XC)

versus
H1 : ∃(i, j)|het(Xi) �= het(Xj), i �= j = 1,2, · · · ,C.
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The alternative hypothesis states that at least one couple of categorical random
variables which represents customer satisfactions present different heterogeneities.
Even in the multisample case, the hypotheses of the problem can be defined by
comparing the cumulative ordered probabilities, that is the Pareto diagrams of the
probability distributions, as follows:

H0 : Π1(h) = Π2(h) = · · ·= ΠC(h),∀h = 1,2, · · · ,m−1

versus

H1 : ∃(i, j)|Πi(h) �= Π j(h) for some h = 1,2, · · · ,m−1, i �= j = 1,2, · · · ,C,

with Π j(h) = ∑h
s=1 π j(s), where π j(s) is the s-th ordered probability in the j-th distri-

bution, that is in the probability distribution of the categorical variable Xj.
If the null hypothesis is true, asymptotically exact or, for finite sample, approx-

imate exchangeability holds. Thus the permutation distribution of a suitable test
statistic can be estimated and the p-value can be computed or estimated as usual. A
suitable test statistic for the multisample problem is:

Tη =
C

∑
j=1

(η̂ j − η̂•)2,

where η̂ j is a sample index of heterogeneity for the j-th sample and η̂• is the same
index of heterogeneity computed for the pooled sample. The algorythm for the ex-
ecution of the test is the same described above, except for the test statistic and the
number of samples.

Fig. 2.3 Pareto diagrams of customer satisfaction about facilities services in Terminal 2 at Tampere
Airport
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In the presented application example, from the descriptive point of view, the com-
parison of the sample Pareto diagrams does not reveal evident differences in the
frequency concentration over the categories (judgements) among the three samples
(see Fig. 2.3).

Table 2.9 Sampe indices of heterogeneity of customer satisfaction about facilities services in Ter-
minal 2 at Tampere Airport

Index Terminal area
Entrance
concourse

Departure lounge Arrival lounge

Gini 0.700 0.713 0.712
Shannon 1.323 1.358 1.344
Rényi-3 1.152 1.195 1.201
Rényi-∞ 0.956 0.956 0.996

The values of the sample indices of heterogeneity, as shown in Table 2.9, seem
to be consistent with the hypothesis of equality in heterogeneity. The described per-
mutation test can be applied to test whether the differences of the sample indices
between samples are significant.

Table 2.10 Multisample test on heterogeneity of customer satisfaction about facilities services in
Terminal 2 at Tampere Airport

Index T (obs)
η p-value

Gini 0.025 0.786
Shannon 0.043 0.820
Rényi-3 0.105 0.737
Rényi-∞ 0.320 0.366

Since the p-values of all the tests, reported in Table 2.10, are greater than α , than
we cannot reject the null hypothesis, that is there is not empirical evidence in favour
of the hypothesis of inequality in heterogeneity between some of the three compared
distributions.

2.5 Further Theoretical Developments and Practical Suggestions
for Users

The permutation test described in this chapter can be applied by choosing one of the
several indices of heterogeneity. In general the index of Shannon and the index of
Gini are preferable because the corresponding tests are well approximated (rarely
anticonservative under the null hypothesis) and in many cases more powerful than
other tests. These tests are unbiased, consistent and the convergence to one of the
power is fast.
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Bonnini [8] proposed a nonparametric alternative method for testing heterogene-
ity comparisons based on a different resampling strategy. This proposal consists in
a bootstrap test, where the null distribution of the test statistic is computed or esti-
mated through resamplings with replacements of the observed sample data, instead
of resamplings without replacements typical of the permutation tests. According to
the simulation study presented in this paper, the power behavior of the bootstrap
test is similar (in general slightly less powerful) to that of the permutation test but
sometimes it is anticonservative under H0, in particular for small sample sizes and
low heterogeneities, when the test statistic is based on η(R∞). In general it doesn’t
happen when the Shannon’s index or the Gini’s index are used, thus these two mea-
sures of heterogeneity are preferable even with the bootstrap test. The bootstrap
test can be used instead of the permutation test in particular for very small sample
sizes, because it allows a larger cardinality of the permutation space. Furthermore
the bootstrap techniques are appropiate when the inferential goal of the study con-
cerns interval estimation of the differences between the heterogeneities of two or
more populations. The slight power loss that occurs with the bootstrap test respect
to the permutation one, usually does not occur when using the index η(R3).

When there is not an evident reason to prefer one of the several indices of hetero-
geneity, a combined test can be applied by considering the problem as a multiaspect
test (see [30]). As a matter of fact, the several measures of heterogeneity are not
equivalent and different indices can lead to different results. Thus, each of them can
be considered as a partial aspect of a complex phenomenon and a combined test
seems to be appropriate. Following this idea, Arboretti et al. [7] proposed to use, for
the two sample problem, the following test statistic, based on the sum of the sample
normalized indices of Gini, Shannon, Rényi-3 and Rényi-∞

TDcomb = Tη(G) +Tη(S) +Tη(R3) +Tη(R∞) ,

where Tη(G) = η̃(G)
1 − η̃(G)

2 , Tη(S) = η̃(S)
1 − η̃(S)

2 and Tη(Rδ ) = η̃(Rδ )
1 − η̃(Rδ )

2 .
This can be considered a direct additive combination of the four tests. Other com-
bining rules based on the combination of p-values are applied by Bonnini (14b) [9].
These methods, in particular by using Fisher’s and Liptak’s combination, are a good
compromise that often garantees rejection rates not greater than α under H0 and a
good power under H1, by compensating the p-values of the partial tests, even when
some of these are anticonservative or underpowered.

A description of the permutation methods for heterogeneity comparisons and
of suitable R codes for their practical implementation, are presented in Bonnini
et al. [12].
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34. Rényi, A.: Calculus des probabilités. Dunod, Paris (1966)
35. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.

27, 379–423, 623–656 (1948)
36. Silvapulle, M.J., Sen, P.K.: Constrained Statistical Inference, Inequality, Order,

and Shape Restrictions. Wiley, New York (2005)
37. Shorack, G.R., Wellner, J.A.: Empirical Processes with Applications to Statis-

tics. Wiley, New York (1986)
38. Thornton-Wells, T.A., Moore, J.,H., Haines, J.L.: Dissecting trait heterogene-

ity: a comparison of three clustering methods applied to genotypic data. BMC
Bioinf. 7, 204 (2006)

39. Troendle, J.F.: A likelihood ratio test for the nonparametric Behrens-Fisher
problem. Biom. J. 44(7), 813–824 (2002)

40. Wang, Y.: A likelihood ratio test against stochastic ordering in several popula-
tions. J. Am. Stat. Assoc. 91, 1676–1683 (1996)



Chapter 3
Ranking Multivariate Populations

The need to define an appropriate ranking of several populations of interest, i.e.
processes, products, and so on is very common within many areas of applied re-
search such as Food Science, Chemistry, Engineering, Biomedicine, etc. The idea
of ranking in fact occurs more or less explicitly any time when in a study the goal is
to determine an ordering among several input conditions/treatments with respect to
one or more outputs of interest when there might be a “natural ordering”. We remark
that the “natural ordering” should be referred to the way in which the response is
interpreted and not to any kind of a priori knowledge on ordering of populations that
is not assumed at all. This happens very often in the context of food sensory analysis
problems where the populations can be varieties, products, processes, etc. and the
inputs are for example the food-related physicochemical properties which are put in
relation with some suitable outputs such as any performance measure. At the same
time, the ranking problem is a typical interdisciplinary subject, just think for exam-
ple on the development process of a new product where technological issues and
statistical techniques are jointly involved in order to achieve high quality and poten-
tially successful products. Many times the populations of interest are multivariate
in nature, meaning that many aspects of that populations can be simultaneously ob-
served on the same unit/subject. For example, in many food-related experiments the
treatments under evaluation provide an output of several univariate responses. From
a statistical point of view, when the response variable of interest is multivariate in
nature, the inferential problem may become quite difficult to cope with, due to the
large dimensionality of the parametric space. Moreover, when the goal is that of
comparing several multivariate populations, a further element of difficulty is related
to the nature of the response variable. If we consider a continuous response, pro-
vided that the underlying distributional and sampling assumptions are met and the
degree of freedom are large enough, then inference on populations can be performed
using classical methods (e.g. such as Hotelling T2). But when the response variables
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are ordered categorical the difficulties of the traditional methods based on contin-
gency tables may become insurmountable. Nonparametric inference based on the
NPC—NonParametric Combination of several dependent permutation test statistics
(see [10]), allows us to overcome most of these limitations, without the necessity
of referring to assume any specified random distribution. The main advantages of
using the permutation and combination approach to classify and rank several multi-
variate populations is that it is the only one testing method which allow us to derive
multivariate directional p-values that can be calculated also when the number of
response variables are much more larger than the number of replications (so-called
finite-sample consistency of combined permutation tests). It is worth noting that in
this situation, which can be common in many real applications, all traditional para-
metric and nonparametric testing procedures are not appropriate at all. For deeper
introduction on the topic of ranking of multivariate populations we refer the reader
to Corain and Salmaso [5].

3.1 Ranking Methods

Following results in Arboretti er al.[1], let us assume that data were drawn from each
of C multivariate populations Π1, . . . ,ΠC (i.e. items/groups/treatments), C > 2, by
means of a sampling procedure, so as to make inference on their possible equality
and in case of rejection of this hypothesis to classify those populations in order to
obtain a relative ranking from the ‘best’ to the ‘worst’ according to a pre-specified
meaningful criterion. We use the term relative ranking because we want to under-
line that it is not an absolute ranking but a kind of ordering that is only refereed
to the C populations at hand. Let Y be the p-dimensional response variable rep-
resented as a p-vector of the observed data from population Π and let us assume,
without loss of generality, that large values of each univariate aspect Y correspond to
a better marginal performance, so that when comparing two populations the possi-
ble marginal stochastic superiority should result in a high ranking position. In other
words, we are assuming the criterion “the larger the better”. The term “large val-
ues” has a clear meaning in case of continuous responses, while in case of binary or
ordered categorical responses, this should be intended in term of “large proportion”
and of “large frequencies of high score categories” respectively. The marginal uni-
variate components of Y are not restricted to belong to the same type, in other words
we can consider also the situation of mixed variables (some continuous/binary and
some others ordered categorical). We recall that our goal is to classify and ranking
Π1, . . . ,ΠC multivariate populations with respect to p marginal variables where are
available C samples, from each one population, of n j independent replicates repre-
sented by the random variables Y1, ..,YC, j = 1, . . . ,C. In other words we are looking
for an estimate r̂(Π j) of the rank r(Π j), i.e. the relative stochastic ordering of each
population when compared among all other populations, i.e. more formally

r j = r(Π j) = 1+ ∑
j �=h

I(Yj
d
< Yh) = 1+{#Yj

d
< Yh}, j,h = 1, . . . ,C, j �= h (3.1)
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where I(·) is the indicator function and # means the number of times. This definition
extends into a nonparametric multivariate framework the traditional definition of
ranking, hence it is consistent with the ranking problem literature (see [7] and [8]).
Under the hypothesis of distributional equality of the C populations, all true global
rankings would necessarily be equal to one, hence they would be in a full ex-aequo
situation, that is

r(Π j|H0) = {1+#Yj
d
< Yh,h = 1, . . . ,C, j �= h}= 1,∀ j (3.2)

This situation of equal ranking where all populations belong to just one ranking
class may be formally represented in a testing-like framework where the hypotheses
of interest are: ⎧⎨

⎩
H0 : Y1

d
= Y2

d
= . . .

d
= YC

H1 : ∃Yj

d
�= Yh, j,h = 1, . . . ,C, j �= h

(3.3)

In case of rejection of the global multivariate hypothesis H0, that is when data
are evidence of the fact that at least one population behaves differently from the
others, it is of interest to perform inferences on pairwise comparisons between pop-
ulations, i.e. ⎧⎨

⎩
H0( jh) : Yj

d
= Yh

H1( jh) : Yj

d
�= Yh, j,h = 1, . . . ,C, j �= h

(3.4)

Note that a rejection of at least one hypothesis H0( jh) implies that we are not in
an equal ranking situation, that is at least one multivariate population has a greater
ranking position than some others. Note that, as usual in the framework of the C-
sample inference, the rejection of the global null hypothesis is not informative on
the specific alternative has caused the rejection so that post-hoc analysis is needed
to look for which alternative is more likely. In this connection, to make inference on
which marginal variable(s) that inequality is mostly due to, it is useful considering
the inferences on univariate pairwise comparisons between populations, defined as:

⎧⎨
⎩

H0k( jh) : Yjk
d
= Yhk

H1k( jh) : (Yjk
d
< Yhk)

⋃
(Yjk

d
> Yhk), j,h = 1, . . . ,C, j �= h

(3.5)

because when Yjk

d
�= Yhk is true, then one and only one between Yjk

d
< Yhk and

Yjk
d
> Yhk is true, i.e. they cannot be jointly true. Looking at the univariate alter-

native hypothesis H1k( jh), note that we are mostly interested in deciding whether
a population is either greater or smaller than another one (not only establishing if
they are different). In this connection, we can take into account separately of the di-
rectional type alternatives, namely those that are suitable for testing both one-sided
alternatives (see [10, p. 163] and [2]). Let p+k( jh) and p−k( jh) be the permutation-based
marginal directional p-value statistics related to the stochastic inferiority or supe-
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riority alternatives H+
1k( jh) : Yjk

d
> Yhk and H−

1k( jh) : Yjk
d
< Yhk , respectively. Since

by definition p+k( jh) = 1− p−k( jh) = p−k(h j) , note that all one-sided inferential results
related to the hypotheses (3.5) can be represented as follows:

P+ =

⎡
⎢⎢⎢⎢⎢⎣

− p+1(1,2) p+1(1,3) . . . p+1(1,C)

p+1(2,1) − p+1(2,3) . . . p+1(2,C)

. . . . . . − . . . . . .
p+1(C−1,1) p+1(C−1,2) . . . − p+1(C−1,C)

p+1(C,1) p+1(C,2) . . . p+1(C,C−1) −

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

− p+p(1,2) p+p(1,3) . . . p+p(1,C)

p+p(2,1) − p+p(2,3) . . . p+p(2,C)

. . . . . . − . . . . . .
p+p(C−1,1) p+p(C−1,2) . . . − p+p(C−1,C)

p+p(C,1) p+p(C,2) . . . p+p(C,C−1) −

⎤
⎥⎥⎥⎥⎥⎦

Finally, let be p+•( j,h) the directional p-value statistics calculated via nonparametric

combination methodology [10]. All the C × (C − 1) p+•( j,h) can be represented as
follows:

P+
• =

⎡
⎢⎢⎢⎢⎢⎣

− p+•(1,2) p+•(1,3) . . . p+•(1,C)

p+•(2,1) − p+•(2,3) . . . p+•(2,C)

. . . . . . − . . . . . .
p+•(C−1,1) p+•(C−1,2) . . . − p+•(C−1,C)

p+•(C,1) p+•(C,2) . . . p+•(C,C−1) −

⎤
⎥⎥⎥⎥⎥⎦

Now, let α be the chosen significance α-level and let S the C×C matrix which trans-
forms the adjusted (by multiplicity) p-values p+•( j,h)ad j into 0-and-1 scores where

each element s j,h takes the value of 0 if p+•( j,h)ad j > α/2, otherwise it takes 1 if

p+•( j,h)ad j ≤ α/2, that is

S =

⎡
⎢⎢⎢⎢⎣

− S(1,2) S(1,3) . . . S(1,C)

S(2,1) − S(2,3) . . . S(2,C)

S(3,1) S(3,2) − . . . S(3,C)

. . . . . . . . . − . . .
S(C,1) S(C,2) . . . S(C,C−1) −

⎤
⎥⎥⎥⎥⎦

In practice, S is nothing more than a synthetic representation of results from all
multivariate directional pairwise comparisons suitable for estimating the possible
pairwise dominances. If we consider either the sum of the s( j,h) 0−1 scores along
the h-th column or the j-th row, then we are respectively counting the number of
populations which, at the chosen significance α-level, are considered to be stochas-
tically larger or smaller than the h-th population or the j-th row. That is, we are
defining an estimate r̂(Πh) and r̂(Π j) of the rank r(Πh) or r(Π j), i.e. the relative
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stochastic ordering of each population when compared with all other populations,
i.e. more formally

r̂D
h = 1+

C

∑
j=1

S( j,h),h = 1, . . . ,C (3.6)

r̂U
j = 1+{#(C−

C

∑
h=1

S( j,h))> (C−
C

∑
h=1

S( j′,h)), j′, j = 1, . . . ,C; j �= j′ (3.7)

where D and U and stands for downward and upward rank estimates respectively.
We note that the ranking estimators defined in (3.6) and (3.7) are deriving by count-
ing, on the basis of empirical evidence, how many populations are significantly
stochastically larger/smaller than the h-th/ j-th population at the chosen significance
α-level. The two estimated rankings r̂D and r̂U of the true rank r are intentionally
denoted with a different notation in order to highlight that sometimes they could
provide different rank estimates for the same population. We remark that, as we out-
lined in our literature review, the use of a pairwise matrix as to derive a ranking is
quite common, especially in the algorithmic ranking literature.

3.2 Set-Up of the Multivariate Ranking Problem

In Sect. 3.1 we formalized our approach to solve the problem we called the multi-
variate ranking problem, i.e. that of ranking several multivariate populations from
the ‘best’ to the ‘worst’ according to a given pre-specified criterion when a sample
from each population is available and for each marginal univariate response there
is a natural preferable direction. Since the key element of our solution is a testing
procedure suitable for multivariate one-sided alternatives, the NPC methodology
represents our main methodological reference framework. In fact, to the best of our
knowledge, the nonparametric combination of dependent permutation tests, the so-
called NPC Tests, is the only method proposed by the literature suitable to achieve
this goal. Moreover, when deriving the multivariate one-sided p-values we can also
benefit from the flexibility of the method for obtaining a series of advantages: NPC
methodology allows to handle with all type of response variable, i.e. numeric, bi-
nary and ordered categorical even in the presence of missing data (at random or not
at random, i.e. non-informative or informative) and this can be done also when the
number of response variables are much more larger than that of units without the
need of having to worry about the curse of dimensionality or the problem of the re-
duction of degrees of freedom. On the contrary, thanks to the so-called finite-sample
consistency of combined permutation tests, the power function does not decrease for
any added variable which makes larger standardized noncentrality. It is worth noting
that in this situation, which can be common in many real applications, all traditional
parametric and nonparametric testing procedures are not at all appropriate (also in
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the case all multivariate alternatives were of two-sided type). Finally, the NPC ap-
proach has a lot of nice feature: it is very low demanding in terms of assumptions
and provides always an exact solution for whatever finite sample size whenever the
permutation principle applies, i.e. when the null hypothesis implies data exchange-
ability. We recall that our goal is to classify and ranking C multivariate populations
with respect to several marginal variables where samples from each population are
available. Note that the multivariate ranking problem is essentially related to a post-
hoc comparative multivariate C-sample problem where the populations of interest
are treatments or groups or items to be investigated by an experimental or observa-
tion study.

It is worth noting that within the NPC framework an optimal statistic cannot exist
because it is function of the population distributions which is unknown by definition
[10]. For this reason it is important to consider for each type of response variable a
number of different test statistics. We recall that each univariate partial test statistic
we are presenting must be suitable for one-sided alternatives with respect to the
hypotheses H0k( jh) vs. H1k( jh). When the univariate marginal response variable is
continuous or binary, within the permutation framework we can use a number of
test statistics suitable for one-sided alternatives. In this context, we underline that
the test statistics should obviously be not permutationally equivalent, for example
we can refer to the difference of sample means:

TDM,k( jh) = ∑
i

Yi jk/n j −∑
i

Yihk/nh. (3.8)

When the univariate marginal response variable is ordered categorical with S ordinal
categories, within the permutation framework we can use a number of test statistics
suitable for directional alternatives. Some examples of suitable test statistics are the
Anderson-Darling test statistics:

TAD,k( jh) =
S−1

∑
s=1

Nhsk · [N·sk · (n jk +nhk −N·sk)]
− 1

2 (3.9)

where N·sk = Njsk +Nhsk are the cumulative frequencies, and the Multi-Focus test
statistics:

TMF,ks( jh) = ( f jks − f̂ jks)
2,s = 1, . . . ,S (3.10)

where f jks and f̂ jks are respectively the observed and the estimated frequencies of
the s-th two-by-to sub-table; note that there is a number of S multi-focus statistics for
each univariate response variable so that an additional combination phase is needed
to obtain the k-th test statistic. In order to define one-sided multivariate test statistics
within the combination of dependent permutation testing methodology, a suitable
combining function must be chosen [10]. Frequently used combining functions are:

• Fisher combination: φF =−2∑k log(λk)
• Tippet combination: φT = max1≤k≤p(1−λk)
• Direct combination: φD = ∑k Tk

• Liptak combination: φL = ∑k Φ−1(1−λk)

where k = 1, . . . , p and Φ is the standard normal c.d.f.
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3.3 Application to Food Sensory Analysis

Sensory analysis is a quantitative statistical subject aimed at using human senses
(sight, smell, taste, touch and hearing) for the purposes of evaluating consumer prod-
ucts. The discipline requires a group of panellist, i.e. panels of human assessors, on
whom the products are evaluated. By applying suitable statistical techniques to the
results of a sensory test it is possible to make inferences and find out insights about
the products under test. Especially in the food industry, useful experimental per-
formance indicators are individual sensorial evaluations provided by trained people
(panellists) during a so-called sensory test [9].

3.3.1 Wine Quality

The following sensory study aims at investigating the relation of wine quality sen-
sory assessments with the related wine physicochemical properties on a large sample
of red variants of the Portuguese “Vinho Verde” wine. This dataset is public avail-
able for research, the details are described in Cortez et al. [6]. The dataset is made
by 1599 records referring to independent red wine testing sessions where at least
three evaluations were made by wine experts. Each expert graded the wine quality
between 0 (very bad) and 10 (very excellent) and, as final output of wine quality, the
related median of scores was considered. Moreover, for each one tested red wine, a
number of 11 physicochemical properties were recorded:

1. fixed acidity (tartaric acid—g/dm3)
2. volatile acidity (acetic acid—g/dm3)
3. citric acid (g/dm3)
4. residual sugar (g/dm3)
5. chlorides (sodium chloride—g/dm3)
6. free sulfur dioxide (mg/dm3)
7. total sulfur dioxide (mg/dm3)
8. density (g/cm3)
9. pH

10. sulphates (potassium sulphate—g/dm3)
11. alcohol (% by volume)

First of all we represented in Fig. 3.1 the scatterplots of quality scores (median of
scores provided by experts) versus each physicochemical property, along with the
fitted line calculated by the simple linear regression.
According to the sign of the fitted regression lines, we classified the physicochem-
ical properties into two main domains, i.e. the direct and the inverse set of quality-
related physicochemical properties. In the fist domain there are “fixed acidity”, “cit-
ric acid”, “residual sugar”, “sulphates” and “alcohol”. In the second domain we
found “volatile acidity”, “chlorides”, “free sulfur dioxide”, “total sulfur dioxide”,
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Fig. 3.1 Scatterplot of quality vs. physicochemical property
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“density” and “pH”. After that, we defined four quality groups according to the
values of the quality score:

– Group Quality=1: scores equal or less to 4; 63 records met this condition;
– Group Quality=2: scores equal to 5; 681 records met this condition;
– Group Quality=1: scores equal to 6; 638 records met this condition;
– Group Quality=1: scores equal or greater to 7; 217 records met this condition.

Figure 3.2 displays the box plots of some of the most correlated properties by group
property.
As expected, when we move from group 1 to 4 the physicochemical property in-
creases or decreases accordingly to the positive or negative sign of the fitted regres-
sion line. We set up the ranking analysis problem as follows:

– type of design: one-way MANOVA design (four independent samples, i.e. four
multivariate populations to be ranked);

– domain analysis: yes (two domains, direct and inverse quality-related physico-
chemical properties);

– type of response variables: numerical continuous (11 numerical responses);
– Ranking rule: “the higher the better” and “the lower the better” for the first and

second domain respectively;
– Combining function: Fisher;
– B—Number of permutations: 2000;
– Significance α-level: 0.01.



3.3 Application to Food Sensory Analysis 45

Fig. 3.2 Boxplot of “volatile acidity”, “density”, “sulphates” and “alcohol” vs. Group Quality
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When applying the ranking method to wine quality data using directional paramet-
ric p-values performed via B = 2000 permutations we obtain results reported in
Tables 3.1 and 3.2, where directional multivariate permutation p-values in Table 3.1
have been adjusted by using the Bonferroni-Holm-Shaffer method [11].
It is worth noting that ranking analysis results allow to strongly support that the
sensorial perceived quality can be associated with higher or lower values of specific
direct and inverse quality-related physicochemical properties.

3.3.2 Cream Cheese

The goal of this sensory study it to investigate the influence of fat content on sensory
properties and consumer perception of dairy products of ten cream cheese. From the
full set of ten products investigated in Bro et al. [4] we selected a subset set of five
products whose description is detailed in Table 3.3.
From the full list of sensory descriptors as in Bro et al. [4], we focused on a sub-
set set of six sensory descriptors, belonging to two main domain i.e. firmness and
creaminess (Table 3.4).
Sensory evaluations was performed in three replicates by a panel consisting of eight
panellists. Figures 3.3 and 3.4 show the boxplot and the sample mean of sensory
data by each sensory descriptor and product.
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Table 3.1 Direct quality-related physicochemical properties: global ranking results (α = 1%) and
related adjusted directional multivariate and directional (raw-unadjusted) univariate permutation
p-values for the Wine Quality sensory study (α = 1%)

Direct quality-related physicochemical properties

Global ranking 4 3 2 1

Group Quality 1 2 3 4

1 – 0.636 1.000 1.000
2 0.003 – 1.000 1.000
3 0.001 0.001 – 1.000
4 0.001 0.001 0.000 –

Fixed acidity

Group Quality 1 2 3 4

1 – 0.931 0.981 1.000
2 0.70 – 0.976 1.000
3 0.020 0.024 – 1.000
4 0.000 0.000 0.001 –

Citric acid

Group Quality 1 2 3 4

1 – 1.000 1.000 1.000
2 0.000 – 0.997 1.000
3 0.000 0.004 – 1.000
4 0.000 0.000 0.000 –

Residual sugar

Group Quality 1 2 3 4

1 – 0.179 0.142 0.531
2 0.821 – 0.268 0.949
3 0.859 0.733 – 0.966
4 0.471 0.052 0.035 –

Sulphates

Group Quality 1 2 3 4

1 – 0.906 1.000 1.000
2 0.097 – 1.000 1.000
3 0.000 0.000 – 1.000
4 0.000 0.000 0.001 –

Alcohol

Group Quality 1 2 3 4

1 – 0.002 0.999 1.000
2 0.999 – 1.000 1.000
3 0.002 0.000 – 1.000
4 0.000 0.000 0.000 –
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Table 3.2 Inverse quality-related physicochemical properties: Global ranking results (α = 1%)
and related adjusted directional multivariate and directional (raw-unadjusted) univariate permuta-
tion p-values for the Wine Quality sensory study (α = 1%)

Inverse quality-related physicochemical
properties

Global ranking 3 3 2 1

Group Quality 1 2 3 4

1 – 0.003 0.001 0.001
2 0.003 – 0.001 0.001
3 0.177 1.000 – 0.000
4 1.000 1.000 1.000 –

Volatile acidity

Group Quality 1 2 3 4

1 – 0.000 0.000 0.000
2 1.000 – 0.000 0.000
3 1.000 1.000 – 0.000
4 1.000 1.000 1.000 –

Chlorides

Group Quality 1 2 3 4

1 – 0.315 0.052 0.002
2 0.686 – 0.003 0.000
3 0.950 0.998 – 0.000
4 0.998 1.000 1.000 –

Free sulfur dioxide

Group Quality 1 2 3 4

1 - 1.000 0.999 0.917
2 0.000 – 0.012 0.000
3 0.002 0.988 – 0.020
4 0.088 1.000 0.980 –

Total sulfur dioxide

Group Quality 1 2 3 4

1 - 1.000 0.980 0.512
2 0.000 – 0.000 0.000
3 0.021 1.000 – 0.005
4 0.490 1.000 0.996 –

Density

Group Quality 1 2 3 4

1 – 0.981 0.386 0.013
2 0.020 – 0.000 0.000
3 0.615 1.000 – 0.001
4 0.988 1.000 1.000 –

(continued)
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Table 3.2 (continued)

Inverse quality-related physicochemical
properties

pH

Group Quality 1 2 3 4

1 – 0.000 0.001 0.000
2 1.000 – 0.942 0.086
3 1.000 0.059 – 0.009
4 1.000 0.915 0.992 –

Table 3.3 Description of the five cream cheeses

Cream cheese description Product ID

Standard full fat cream cheese 1
Medium fat reduced cream cheese 2
Maximum fat reduced cream cheese 3
Prototype cream cheese 4
Prototype cream cheese + Butter Aroma 5

Table 3.4 Details on the six sensory descriptors of cream cheese

Domain Descriptors Abbreviation Definition

Resistance by hand H-Resistance Resistance during spreading with
knife

Firmness Firm by mouth M-Firm Hardness of sample in first press with
tongue against palate

Resistance by mouth M-Resistance Used force to dissolve food bolus

Creaminess by mouth M-Creaminess Creaminess sensation in mouth
Creaminess Cream flavor by mouth M-Cream Cream flavour assessed by mouth

testing
Cream aroma by nose N-Cream Cream aroma assessed by nose

testing

It seems that product 1 and 2 are the best ones, especially for the first domain, while
the remaining products look like not so different one each other.
We set up the ranking analysis problem as follows:

– type of design: multivariate randomized complete block design (five related sam-
ples, i.e. five multivariate populations to be ranked);

– domain analysis: yes (two domains);
– type of response variables: numerical continuous (six numerical responses);
– Ranking rule: “the higher the better”;
– Combining function: Fisher;
– B—Number of permutations: 2000;
– Significance α-level: 0.05.
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Fig. 3.3 Boxplot of sensory descriptor by product
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Fig. 3.4 Chart of sample means by sensory descriptor and product

H-Resistance M-Firm

0

2

4

6

8

10

2 3 4 5

M-CreaminessM
ea

n

M-Cream N-Cream

Product ID

Product IDM-Resistance

11 2 3 4 5

1
2

3
4
5

1 2 3 4 5

0

2

4

6

8

10

When applying the ranking method to wine quality data using directional paramet-
ric p-values performed via B = 2000 permutations we obtain results reported in
Tables 3.5 and 3.6, where directional multivariate permutation p-values in Table 3.1
have been adjusted by using the Bonferroni-Holm-Shaffer method [11].
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Table 3.5 Firmness domain: Global ranking results (α = 1%) and related adjusted directional mul-
tivariate and directional (raw-unadjusted) univariate permutation p-values for the Cream Cheese
sensory study

Firmness: all descriptors

Global ranking 2 1 3 3 3

Product ID 1 2 3 4 5

1 – 0.925 0.005 0.003 0.003
2 0.005 – 0.003 0.003 0.002
3 1.000 1.000 – 1.000 1.000
4 1.000 1.000 0.369 – 1.000
5 1.000 1.000 0.231 1.000 –

H-Resistence

Product ID 1 2 3 4 5

1 – 0.551 0.000 0.000 0.000
2 0.462 – 0.000 0.000 0.000
3 1.000 1.000 – 0.986 0.997
4 1.000 1.000 0.016 – 0.868
5 1.000 1.000 0.003 0.132 –

M-Firm

Product ID 1 2 3 4 5

1 – 0.994 0.000 0.000 0.000
2 0.007 – 0.000 0.000 0.000
3 1.000 1.000 – 0.883 0.724
4 1.000 1.000 0.127 – 0.217
5 1.000 1.000 0.292 0.792 –

M-Resistence

Product ID 1 2 3 4 5

1 – 1.000 0.012 0.000 0.000
2 0.000 – 0.000 0.000 0.000
3 0.989 1.000 – 0.315 0.155
4 1.000 1.000 0.698 – 0.272
5 1.000 1.000 0.850 0.744 –

It is worth noting the ranking results from the two domains are similar but some-
what different. Product 2 is the best product for firmness domain whose descriptors
allow. in general to strongly discriminate among panellist assessment. In the case of
creaminess domain there only very few significant differences and the best product
seems to be Product 1.
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Table 3.6 Creaminess domain: Global ranking results (α = 1%) and related adjusted direc-
tional multivariate and directional (raw-unadjusted) univariate permutation p-values for the Cream
Cheese sensory study

Creaminess: all descriptors

Global ranking 1 2 2 5 2

Product ID 1 2 3 4 5

1 – 0.597 0.123 0.005 0.093
2 1.000 – 1.000 0.360 0.450
3 1.000 1.000 – 0.648 0.861
4 1.000 1.000 1.000 – 0.951
5 1.000 0.753 0.720 0.360 –

M-Creaminess

Product ID 1 2 3 4 5

1 – 0.453 0.163 0.001 0.006
2 0.559 – 0.171 0.006 0.007
3 0.849 0.840 – 0.046 0.087
4 1.000 0.995 0.958 – 0.733
5 0.997 0.994 0.920 0.280 –

M-Cream

Product ID 1 2 3 4 5

1 – 0.043 0.018 0.019 0.078
2 0.963 – 0.543 0.471 0.686
3 0.984 0.478 – 0.419 0.674
4 0.983 0.548 0.597 – 0.734
5 0.930 0.327 0.342 0.282 –

N-Cream

Product ID 1 2 3 4 5

1 – 0.204 0.182 0.179 0.898
2 0.807 – 0.523 0.504 0.984
3 0.830 0.493 – 0.491 0.987
4 0.832 0.504 0.521 – 0.992
5 0.107 0.017 0.016 0.010 –

3.3.3 Assessing Five Breads

Five different breads were baked in two replicates giving a total of ten samples.
Eight different judges assessed the breads with respect to eleven different attributes
in a fixed vocabulary profiling analysis. The data was kindly provided by Prof.
Magni Martens (KVL, DK) and come from a student project in Sensory Science
[3]. Sensory evaluations was performed in two replicates by a panel consisting of
eight panellists. Figures 3.5 and 3.6 show the boxplot and the sample mean of sen-
sory data by each sensory descriptor and product.
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Fig. 3.5 Box plot of sensory attribute scores by bread. The empty dots represent the actual ob-
served pannelist assessments
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Fig. 3.6 Chart of sample means by sensory attribute score and bread
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At a first sight, product 4 and 1 look as the best and the worst one, while the remain-
ing products seems to differ only for some attributes. We set up the analysis ranking
problem as follows:



3.3 Application to Food Sensory Analysis 53

– type of design: multivariate randomized complete block design (five related sam-
ples, i.e. five multivariate populations to be ranked);

– domain analysis: no;
– type of response variables: ordered categorical (three ordered categorical re-

sponses in a 0-5 rating scale);
– Ranking rule: “the higher the better”;
– Combining function: Fisher;
– B—Number of permutations: 2000;
– Significance α-level: 0.01.

When applying the ranking analysis using directional permutation p-values (α =
5%), calculated via Anderson-Darling test statistic and performed with 2000 per-
mutations and using the Fisher combining function, we obtain the following results
(Table 3.7).

Table 3.7 Global ranking results (α = 1%) and related adjusted directional multivariate and direc-
tional (raw-unadjusted) univariate permutation p-values for the Five Breads sensory study

All attributes

Global ranking 5 2 3 1 4

Product ID 1 2 3 4 5

1 – 1.000 1.000 1.000 1.000
2 0.005 – 0.762 1.000 0.005
3 0.003 1.000 – 1.000 0.114
4 0.003 0.003 0.002 – 0.003
5 0.003 1.000 0.446 0.999 –

Colour

Product ID 1 2 3 4 5

1 – 0.997 0.986 1.000 0.151
2 0.006 – 0.490 0.991 0.000
3 0.027 0.643 – 0.990 0.001
4 0.000 0.026 0.023 – 0.000
5 0.932 1.000 1.000 1.000 –

Moisture

Product ID 1 2 3 4 5

1 – 1.000 1.000 1.000 1.000
2 0.000 – 0.046 0.824 0.148
3 0.000 0.985 – 0.998 0.852
4 0.000 0.258 0.006 – 0.028
5 0.000 0.928 0.268 0.988 –

(continued)
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Table 3.7 (continued)

All attributes

Tough

Product ID 1 2 3 4 5

1 – 1.000 1.000 1.000 1.000
2 0.001 – 0.415 1.000 0.942
3 0.001 0.698 – 1.000 0.982
4 0.000 0.000 0.000 – 0.000
5 0.000 0.106 0.037 1.000 –

Ranking analysis confirms the significant much more better multivariate assess-
ments of bread 4 over the other four breads. This result is mainly explained by the
better performance of bread 4 in the assessments of attribute Tough. In fact, this is
actually the attribute with the strongest significant differences (smallest p-values).
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Chapter 4
Composite Indicators and Satisfaction
Profiles

Evaluating the satisfaction about public services, organizations or products is very
important in order to have a measure of their efficiency and effectiveness. For what
concern the public service, in an interesting work Bird et al. [4] discuss about the im-
portance of adopting the performance monitoring (PM) and performance indicators
(PIs) also providing the steps to follow in order to reach them. Furthermore Marozzi
[16] discusses the important role of the trust in public institutions and the importance
of be able to assess it. In the years several authors debate the need of obtaining use-
ful instruments for evaluating countries or geographical areas in their quality of life,
job quality, living conditions etc. (see e.g. [5, 14, 10, 6, 12, 22, 26, 8]). In evaluating
the quality of life of a country an important role is played by the satisfaction about
its university system. The assessment of university satisfaction is widely discussed
in literature (see for e.g. [7, 11, 15, 19]). Assessing satisfaction is not an easy is-
sue since it is a complex phenomenon which is not directly observable and thus not
directly measurable [15]. Most of the literature about evaluation of performances re-
volves around composite indicators which aggregate different dimensions or single
indicators into a unique one. Indeed concepts as the impact of Government policies
on public services, trust in public institutions, quality of work life, satisfaction on
efficiency of university or school system etc. are multidimensional concepts which
cannot be captured by a single indicator. The use of a synthesis indicator is not a
trivial issue so that this topic has been widely discussed in literature and not always
in a positive sense. In [13] and [25] we can find a summary of the main pros and
cons of using composite indicators as discussed within the services of the European
Commission whereas in [24] the main controversies on the use of statistical indices
are discussed.
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The construction of a composite indicator substantially consists of two steps:
finding a data transformation T aiming at the comparability of different types of data
and choosing a link function f for aggregating single indicators into a composite
indicator. Thus a general composite indicator can be written as:

CI = f [T1(x1),T2(x2), . . . ,Tk(xk)]

where xi is the i− th simple indicator, i = 1, . . . ,k.
For what concerns data transformation there exist several types of functions

which lead to the comparability of data and they can be grouped in two main groups:
linear transformations and non-linear transformations. Furthermore there are many
ways to aggregate simple indicators with link functions. For an overview on the most
widely used transformation and link functions see [1]. Other works with interesting
discussion on aggregating functions are [20, 17, 23, 18, 27]. In practice most fre-
quently adopted functions for pooling preferences ratings are the simple weighted or
unweighted mean or summation, but when the distribution of the scores is not sym-
metric the mean is not valid, thus another way to summarize results is needed [2].

In what follow we introduce a suitable synthesis of a set of partial indicators fol-
lowing the nonparametric combination (NPC) of dependent tests methodology [21]
and then we show the application of this composite indicator in analysing data from
a students’ satisfaction survey from the School of Engineering of the University of
Padova.

4.1 NPC-Based Composite Indicator

The main purpose of NPC method is obtaining a single criterion for statistical
units under study, which summarize many partial aspects. In order to formalize
let us consider a k-dimensional variable X = [X1, . . . ,Xk] where the marginal vari-
able Xi, i = 1, . . . ,k assumes mi ordered modalities v1, . . . ,vmi or discrete scores,
h = 1, . . . ,mi,mi ∈ N \{0},mi > 1. If Xi is a categorical variable, then a numeri-
cal transformation of modalities v1, . . . ,vmi into scores is needed. Large values of
h correspond to higher satisfaction/quality rates. In order to simplify the notation,
let us assume that mi = m for every i, but it is not necessary that all variables have
the same number of modalities/scores. Let us suppose that these variables are given
different (non-negative) degree of importance:

0 < wi ≤ 1, i = 1, . . . ,k.

Such weights are thought to reflect the different roles of the variables in repre-
senting indicators of the specific quality aspect under evaluation and are provided by
responsible experts or from results of surveys previously carried out in the specific
context.
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4.1.1 Link Function

Suppose that N subjects give their judgement for k dependent variables each repre-
senting a specific aspect under evaluation. Thus the methodological problem we are
going to face concerns obtaining a composite indicator which represents a global
index of satisfaction for each subject starting from that k dependent variables. We
introduce a set of minimum reasonable conditions related to variables Xi, i= 1, . . . ,k:

1. for each of the k informative variables a partial ordering criterion is well estab-
lished, i.e. “large is better”.

2. Regression relationships within the k informative variables are monotonic (in-
creasing or decreasing).

3. The marginal distribution of each informative variables is non-degenerate.

It is worth to note that we do not need assuming continuity of Xi, i = 1, . . . ,k so the
probability of ex-equo can be positive. As link function we consider a real function
φ from a class of Φ of real combining functions satisfying the following minimum
properties:

1. φ must be continuous in all 2k arguments, in that small variations is any subset
of arguments imply a small variation in the φ -index;

2. φ must be monotone non-decreasing with respect to each argument:

φ(. . . ,Xi, . . . ;wi, . . . ,wk)≥ φ(. . . ,X ′
i , . . . ,wi, . . . ,wk)

if 1 > Xi > X ′
i > 0, i = 1, . . . ,k;

3. φ must be symmetric with respect to permutations of the arguments, in that if,
for instance, u1, . . . ,uk, is any permutation of 1, . . . ,k, then :

φ(Xu1 , . . . ,Xuk ;wu1 , . . . ,wuk) = φ(X1, . . . ,Xk;w1, . . . ,wk).

Property 1 is obvious. Property 2 means that if, for instance, two subjects have ex-
actly the same values for all Xs except for the ith, then the one with Xi > X ′

i must
have at least the same satisfaction φ -index assigned to it. Property 3 states that any
combining function φ must be invariant with respect to the order in which infor-
mative variables are processed. As link function, the Fisher’s combining function
defined as: φ =−∑k

i=1 wi × log(1−λi), where λi = (Xi +0.5)/(m+1) are normal-
ized scores defined in the open interval [0,1], satisfies the three described properties.

When dealing with assessment of satisfaction the Fisher’s combining function
appears more sensitive to assess higher satisfaction than to assess lower satisfac-
tion, i.e. small differences in the lower satisfaction region seem to be identified with
greater difficulty that those in the higher satisfaction region [9].
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4.1.2 How to Compute the NPC-Based Composite Indicator
Including Satisfaction Profiles

An aspect that should be considered when attempting to find a global index of sat-
isfaction are extreme units, in the sense that the relevant question may not be the
achievement of the absolute rank, but rather a more realistic expected one [4]. For
this perspective we propose an extension of the NPC ranking method to the case
of ordered categorical variables based on extreme satisfaction profiles [3]. Extreme
satisfaction profiles are defined a priori on a hypothetical frequency distribution
of variables Xi, i = 1, . . . ,k. Let us consider data X , where the rule “large is bet-
ter” holds for all variables. Observed values for the k variables are denoted by
x ji, i = 1, . . . ,k; j = 1, . . . ,N. Examples of extreme satisfaction profiles are given
below.

The strong satisfaction profile is defined as follows.
Maximum satisfaction is obtained when all subjects have the highest value of

satisfaction for all variables:

fhi =

{
1 for h = m

0 otherwise
∀i, i = 1, . . . ,k

where fhi are the relative frequencies of categories h,h= 1, . . . ,m, for variable Xi, i=
1, . . . ,k.

Minimum satisfaction is obtained when subjects have the smallest value of satis-
faction with relative frequencies varying across variables:

fhi =

{
1 for h = 1

0 otherwise
∀i, i = 1, . . . ,k

The weak satisfaction profile is defined as follows.
Maximum satisfaction is obtained when all subjects have the highest value of

satisfaction for all variables:

fhi =

{
ui for h = m

uhi otherwise, where∑m−1
h=1 uhi = (1−ui) i = 1, . . . ,k

Minimum satisfaction is obtained when subjects have the smallest value of satisfac-
tion with relative frequencies varying across the variables:

fhi =

{
li for h = 1

lhi otherwise, where∑m
h=2 lhi = (1− li) i = 1, . . . ,k

where ui and li represent realistic achievable targets that can be fixed observing
past experience or motivational targets established by managers or organizers in the
strategic and business planning.
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In order to include the extreme satisfaction profiles in the analysis, we transform
original values h,h = 1, . . . ,m as follow: separate the values of h corresponding to
a judgement of satisfaction, say the last t,1 ≤ t ≤ m, from those corresponding to
judgements of dissatisfaction, i.e. (m− t). For the last t values of h corresponding
to judgements of dissatisfaction, the transformed values of h are defined as:

h+ fhi ×0.5h = m− t +1, . . . ,m; i = 1, . . . ,k.

For the first (m− t) values of h corresponding to judgements of dissatisfaction, the
transformed values of h are defined as:

h+(1− fhi)×0.5h = 1, . . . ,m− t; i = 1, . . . ,k.

This transformation is equivalent to the assignment to the original values h,h =
1, . . . ,m, of additive degrees of importance which depend on relative frequencies
fih and which increase the original values h up to h+ 0.5. The limit 0.5 is fixed in
such a way that the increase in the original score h, positively (negatively) related
to the fraction of evaluators who choose the corresponding judgement, is less than
one; hence the transformation of h is less than h+ 1. Let us suppose, for example,
that h = 1,2,3,4 and values 3 and 4 correspond to judgements of satisfaction. By
applying the above transformation, the value of 3 tends towards the upper value for,
which represents higher satisfaction, when fi3 increases. On the contrary, the value
of 1 tends towards 2 (less dissatisfaction) when fi1 decreases. The transformation
of values h,h = 1, . . . ,m weighted by relative frequencies fih, is applied to observed
values x ji, i = 1, . . . ,k; j = 1, . . . ,N. For the last t values of h corresponding to a
judgement of satisfaction, the transformed values of x ji are defined as:

z ji = x ji +
m

∑
h=m−t+1

Ih(x ji)× fih ×0.5, i = 1, . . . ,k; j = 1, . . . ,N,

where

Ih(x ji) =

{
1 if x ji = h

0 if x ji �= h

For the first (m− t) values of h corresponding to judgments of dissatisfaction, the
transformed values of x ji are defined as:

z ji = x ji +
m−t

∑
h=1

Ih(x ji)× (1− fih)×0.5, i = 1, . . . ,k; j = 1, . . . ,N.

In this setting, we can consider the following transformations:

λ ji =
(z ji − zimin)+0.5
(zimax − zimin)+1

, i = 1, . . . ,k; j = 1, . . . ,N
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with zimin and zimax obtained according to an extreme satisfaction profile. If we
consider the strong satisfaction profile, we have:

zimin = x ji +
m−t

∑
h=1

Ih(x ji)× (1− fih)×0.5 = 1,

where fih = 1 and x ji = h = 1, i = 1, . . . ,k,

zimax = x ji +
m

∑
h=m−t+1

Ih(x ji)×0.5 = m+0.5,

where fih = 1 and x ji = h=m, i= 1, . . . ,k. If we consider a weak satisfaction profile,
for example with u = 0.7 and l = 1, we have:

zimin = x ji +
m−t

∑
h=1

Ih(x ji)× (1− fih)×0.5 = 1,

where fih = 1 and x ji = h = 1, i = 1, . . . ,k,

zimax = x ji +
m

∑
h=m−t+1

Ih(x ji)×0.5 = m+0.35,

where fih = 0.7 and x ji = h = m, i = 1, . . . ,k.
Note that zimax represents the preferred value for each variable, and it is obtained

when satisfaction is at its highest level according to the extreme satisfaction profile;
zimin represents the worst value, and it is obtained when satisfaction is at its low-
est level according to the extreme satisfaction profile. Scores λ ji, i = 1, . . . ,m, j =
1, . . . ,N are one-to-one increasingly related to values x ji,z ji. In order to synthesize
the k-partial rankings based on scores λ ji, i = 1, . . . ,m, j = 1, . . . ,N using NPC rank-
ing method, we use a combining function φ :

Tj = φ(λ j1, . . . ,λ jk;w1, . . . ,wk), j = 1, . . . ,N.

In order for the global index to vary in the interval [0,1] we put:

S j =
Tj −Tmin

Tmax −Tmin
, j = 1, . . . ,N,

where
Tmin = φ(λ1min, . . . ,λk min;w1, . . . ,wk),
Tmax = φ(λ1max, . . . ,λk max;w1, . . . ,wk),

and λimin and λimax are obtained according to the extreme satisfaction profiles:

λimin =
(zimin − zimin)+0.5
(zimax − zimin)+1

, i = 1, . . . ,k,

λimax =
(zimax − zimin)+0.5
(zimax − zimin)+1

, i = 1, . . . ,k,
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Note that value Tmin represents the unpreferred value of the satisfaction index since
it is calculated from (λimin, . . . ,λk min), while Tmax represents the preferred value
since it is calculated from (λimax, . . . ,λk max). Tmin and Tmax are reference values to
evaluate the distance of the observed satisfaction values from the situation of highest
satisfaction defined according to the extreme satisfaction profile.

4.2 A Students’ Satisfaction Survey

At the end of each teaching course, the students of the School of Engineering of
the University of Padova in Italy are required to complete a questionnaire on their
satisfaction about it. The questionnaire covers different aspects of satisfaction such
as organizational aspects, teaching activities and infrastructures. Finally students
were asked to give a judgement on their overall satisfaction. Questions of different
domains are shown in Table 4.1.

Table 4.1 Questions from each domain of satisfaction

Domain Questions

Organizational Aspects

D01. At the beginning of the course the aims and the
contents were clearly presented?
D02. The examination procedures were clearly defined?
D03. The times of teaching activities were complied with?
D04. The recommended course material was appropriate?

Teaching Activities

D05. The teacher encouraged/motivated the interest in the
subject?
D06. The teacher set out the topics clearly?
D07. The professor was during his office hours for
clarifications and explanations?
D08. Workshops, tutorial and seminars, if any, were
appropriate?

Overall Satisfaction D09. How much are you satisfied with the development of
the course on the whole?

Answers consist of scores in Likert scale 1–10 intended as “greater is better”. We an-
alyze data from this survey adopting the NPC-based composite indicator described
in previous section. It is common in practice to consider the simple mean of the
answers to the question related to the overall satisfaction (D09 of Table 4.1) as in-
dicator of global satisfaction about a teaching course. In the following sections we
aim at showing the advantages that NPC-based composite indicator brings in under-
standing the real students’ satisfaction.
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4.2.1 Satisfaction Profiles

In Sect. 4.1.2 we discuss the importance of considering different satisfaction pro-
files. In order to better understand the importance of this feature let us consider a
very simple example. A teaching course of the first year of Management Engineer-
ing is attended by 300 students. Suppose we want to assess the quality of the course
on the basis of the satisfaction about room (e.g. enough seats, good acoustics etc.)
and the satisfaction about the quality of teaching (e.g. if teacher explains well). Here
we can think to set two different benchmarks of satisfaction for the two aspects be-
cause different is the expected satisfaction from them. Indeed in a room with a lot
of students is unlikely to expect the highest satisfaction from all students about the
room, this is because for example, best seats are given early. On the contrary, we ex-
pect that all students are highly satisfied by the teacher. For these reasons it is reason-
able to think that the maximum expected satisfaction about room is reached when
at least the 60% of students have the highest satisfaction, whereas the maximum
satisfaction expected for teaching is that the 100% of the students have the high-
est satisfaction. Figure 4.1 shows how results and related conclusions, can change
adopting different satisfaction profiles. Since the NPC composite indicator ∈ [0,1]
let us suppose of considering the point 0.5 as a threshold of sufficient satisfaction.
We can see that considering a strong satisfaction profile, where the benchmark of
maximum satisfaction is that all students have the highest satisfaction for all partial
aspects, we obtain a composite indicator with a median around 0.40, that is under
the threshold of sufficient satisfaction. Thus we conclude that this course globally
does not satisfy sufficiently, students who attend it. On the other hand, when we
consider a weak satisfaction profile assigning different benchmarks of satisfaction
for different aspects (in line with the actual expectations) we obtain an indicator
with a median of 0.52 that is over the threshold of sufficient satisfaction. In this case
the same teaching course globally, sufficiently satisfy students who attend it.

4.2.2 Taking into Account All Partial Aspects

We also investigate the impact of single aspects of satisfaction both on overall sat-
isfaction intended as the answers to D09 and on the NPC composite indicator, by
means of a multiple linear regression model (other model could be also adopted as
latent classes, multilevel models, etc.). We would expect that the overall satisfaction
is influenced simultaneously by all partial aspects. Actually when we are asked to
express a judgement about something a complex mechanism is activated in our mind
and it is common to be guided only by a particular aspect or few aspects. Indeed an-
alyzing data from students’ satisfaction we found that the overall satisfaction seems
guided by the satisfaction on how much teacher motivates the interest in the sub-
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Fig. 4.1 Distribution of the NPC-based composite indicator using different satisfaction profiles.
Red dashed lines represent the point of sufficient satisfaction; black dashed lines represent the
median of the composite indicator
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ject (D05). Table 4.2 shows a representative extract of the results after adopting for
all teaching courses a regression model putting in relation the overall satisfaction
as indicated in D09 with partial aspects D01-D06. Since answers to D07-D09 pre-
sented a lot of missing values, we exclude them from this analysis. As we can see
satisfaction about D05 is present for each teaching course whereas other aspects do
not always influence the satisfaction. It is more evident in Fig. 4.2 where we report
the histogram showing the percentage of time when each partial aspect is resulted
significant (at a significance level α = 0.05) in the multivariate regression model
when putted in relation with D05 and NPC composite indicator. We can see that the
aspect related to the motivation of the teacher (D05) in the 80% of times impacts
on the overall satisfaction as intended by D09, followed by aspect related to the
teaching material (D04) and aspect related to teacher explanation (D06) both with
about 40%. Whereas the NPC composite indicator obviously (for its construction)
is influenced by all partial aspects (the distribution is almost uniform).
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Table 4.2 Extract of significant partial aspects in the regression model which put in relation the
overall satisfaction (D09) with partial aspects in the questionnaire

Teaching Course ID D01 D02 D03 D04 D05 D06

TC ID1 * *
TC ID2 * *
TC ID3 * * *
TC ID4 *
TC ID5 * *
TC ID6 * *
TC ID7 * * *
TC ID8 * * *
TC ID9 *
. . . . . . . . . . . . . . . . . .

The star means that the aspect is significative at a significance level α = 0.05

Fig. 4.2 Percentage of time when each partial aspect results significant (α = 0.05) in determining
the overall satisfaction
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In order to emphasize how the NPC-based composite indicator well explains the sat-
isfaction structure of the respondents we show for a teaching course the distribution
of the scores of each partial aspects, of the overall satisfaction and of the compos-
ite indicator (see Fig. 4.3). What we can see is that for example for this teaching
course, the distribution of the scores of the overall satisfaction (D9) is very much
similar to that related to teaching explanation (D6) confirming that the overall sat-
isfaction seems to be guided by a particular aspect. On the other hand the scores of
the composite indicator, converted on a scale 1–10, does not follow a specific aspect
but it mediate all partial aspects.

Fig. 4.3 Example of distribution of the scores of a teaching course for each partial aspect, overall
satisfaction and composite indicator
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Chapter 5
Analyzing Survey Data Using
Multivariate Rank-Based Inference

Data from customer satisfaction surveys are multivariate—there are several ques-
tions resulting in as many endpoints. Furthermore, survey data typically don’t fit
into simple parametric models. Indeed, the endpoints or response variables may be
measured on different types of scales (metric, ordinal, binary). For these two rea-
sons, one requires multivariate inference methods, and specifically methods that can
deal with a mix of response variable types. Additionally, it would be advantageous if
the procedures also performed well for small to moderate numbers of respondents,
as not every survey can afford to obtain responses from hundreds of participants.

Appropriate inference procedures fulfilling all these requirements for multivari-
ate data are rare. However, they do exist within the framework of the multivariate,
robust rank-based approach developed in the last decade through the publications
[1, 2, 4, 3, 11, 10, 12, 15], and implemented in the R package npmv [9, 19]. This
approach constitutes a nonparametric extension of parametric multivariate analysis
of variance (MANOVA), and it doesn’t suffer from the severe limitations of those
classical approaches. Another set of appropriate inference procedures for multivari-
ate non-normal data is described in the book by Pesarin and Salmaso [18] and refer-
ences cited therein. In this chapter, we will focus on the former approach, the latter
is described in other chapters of the book.

5.1 Why Should Classical Parametric MANOVA Methods Not
Be Used for Categorical Responses?

Recall that the classical MANOVA model assumes that observation vectors are real-
izations of multivariate normal random variables. Furthermore, the classical model
assumes that the covariances structure between the different outcomes doesn’t differ
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between groups. That is, no matter which group of respondents is considered, the
endpoints have the same variances and covariances. This latter assumption is called
homoscedasticity assumption.

To be mathematically precise, the classical model assumes the following.

(X (1)
i j , . . . ,X (k)

i j )′ ∼ Nk(μi,Σ), i = 1, . . . ,a; j = 1, . . . ,ni,

where the Xi j are independent random vectors of dimension k, following a multi-
variate normal distribution. The index i stands for a group or sub-population (e.g.,
male vs. female respondents), j represents a particular experimental unit or subject
within the group i (e.g., male respondents Adam, Bobby and Charlie, as well as
female respondents Debby and Evelyn), and there are k variables or endpoints be-
ing measured on each subject (e.g., answers to k different survey questions). The
k-dimensional vector of expected values, μi, may differ between groups. Its equal-
ity across groups is a typical null hypothesis in parametric models. The covariance
matrix Σ , however, is assumed to be equal across groups, when the classical model
is postulated.

Are the classical assumptions of multivariate normality and homoscedasticity
fulfilled in practice? Or can they at least be checked in a meaningful way?

As an example, consider a survey with male and female respondents who are
asked about the quality of instruction at a sports school using two different ques-
tions with ordinal response scale. First of all, it is clear that ordinal responses can
by no means be modelled through multivariate normal random variables. Even for
metric data, reliably checking the assumption of multivariate normality is practi-
cally impossible. Assessing univariate normality is often a difficult task already, in
particular for smaller data sets. However, for this illustrative bivariate example with
two ordinal endpoints, the use of classical MANOVA is clearly out of question.

ANOVA and MANOVA are based on comparing averages of responses, and tak-
ing their differences, but neither averages nor differences are meaningful concepts
for ordinal data. Differences between answers don’t have the clearly defined mean-
ing that they have for metric data. For example, the difference between categories
“very good” and “good” may not be perceived as being of equal size as the dif-
ference between “good” and “average” or “satisfactory”. If differences between re-
sponses don’t have a uniquely defined meaning in a particular situation, then also
the plethora of statistical methods developed for metric responses is not appropriate
for this situation. A few decades ago, appropriate nonparametric methods for the
analysis of multivariate ordinal data didn’t exist yet. Arguably, it is largely for this
reason that some researchers advocated use of the clearly inappropriate (M)ANOVA
methods in order to have at least some inferential techniques available to tackle their
data. This surely didn’t contribute to research reproducibility, which has become a
major issue of concern in several fields, and we have to strongly advise against this
strategy.

Apart from the obvious violation of the normality assumption in this example,
the assumption of equal covariance matrices is also a severe limitation in practice. It
would mean that, for example, male and female respondents would show the same
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degree of variation in answering the two questions, and the same correlation be-
tween the two responses. These are some rather strong assumptions. Why would
anyone who has no information regarding equal means, and thus wanting to test
their equality, believe in equal variances and correlations a priori? Even worse, vi-
olation of this so-called homoscedasticity assumption has rather detrimental effects
on the performance of classical MANOVA methods. Just as the two-sample t-test
with equal variance assumption performs poorly when variances are not equal and
samples not balanced, its extensions to ANOVA and MANOVA suffer from the same
problems. They may become very conservative (large type II error probability) or
very liberal (large type I error probability), depending on the configuration of sam-
ple sizes and underlying variances.

Concluding, there are obvious situations where classical MANOVA doesn’t make
sense for the data at hand because the response variables are not metric. However,
even for metric data, there is no guarantee that the actual error rates of classical
MANOVA procedures are close to the nominal error rates when the strong assump-
tions of multivariate normality and homoscedasticity are not fulfilled. And, if the
error rates are not reliable, those methods should not be used.

5.2 How Does the Nonparametric Multivariate Model Look
Like?

A fully nonparametric model for the multivariate observation vectors can be formu-
lated as follows.

(X (1)
i j , . . . ,X (k)

i j )′ ∼ Fi, i = 1, . . . ,a; j = 1, . . . ,ni,

where the Xi j are again independent random vectors of dimension k, and there is a
total of N = ∑a

i=1 ni respondents or response vectors.
The details of this nonparametric model formula look a bit simpler compared to

the parametric model above. In fact, there are no assumptions regarding any particu-
lar distribution, such as a multivariate normal distribution. Instead, the model simply
states that the observations from group i follow some multivariate distribution that
is denoted as Fi. Each group may have a different multivariate distribution. It may
be multivariate normal in one group, and multivariate exponential in another. Or, it
may even be some discrete or absolutely continuous distribution without name. In
fact, one endpoint may be ordinal, another endpoint may be quantitative (metric),
and a third endpoint may be binary. Clearly, the data-generating model could not be
more general.

Also, there are no assumptions on specific covariance matrix structures. In gen-
eral, the covariance structure between the endpoints may be different for each
group. However, the generality of this model comes along with a rather stringent
null hypothesis. For inference in the sense of hypothesis testing, the null hypoth-
esis is formulated in terms of equality of the multivariate distributions, namely
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HF
0 : F1 = · · ·= Fa. Thus, under this global null hypothesis, all multivariate distribu-

tions are equal. This implies that under null hypothesis, the means (if well-defined),
the medians, but also the dispersions are equal in each group. A bit later, when we
discuss the details on simultaneously testing subsets of the endpoints and of the
groups, this stringent null hypothesis will be softened somewhat.

Finally, the approach explained in this chapter does not require that group effects
point into the same direction for each variable, an assumption made in the test by
[17] that is widely cited in the medical literature. For example, an improvement in
a treatment, or a more favorable view of one sub-population, may in reality corre-
spond to increasing values of one outcome, and decreasing values of another, while
even other response variables may be completely unaffected. Such a situation would
present a challenge for methods designed similarly as the ‘O”Brien test. However,
in order to apply the methods presented here, it is not at all of importance. That is,
it is also not necessary to transform the variable scales in such a way that a favor-
able outcome always corresponds to larger values. In fact, no transformation at all is
needed in order to perform inference using the nonparametric multivariate methods
described here.

5.3 How Can Inference Be Performed for the Global Null
Hypothesis?

The global null hypothesis states that all k-variate distributions are equal for all a
groups that are being compared, namely HF

0 : F1 = · · ·= Fa. Valid inference for this
global null hypothesis can be performed using the following steps. All the steps
described here in detail can conveniently be performed automatically using the R
package npmv. However, we think it is instructive and helpful in a knowledgeable
interpretation of the results to know what is implemented in the software, and in
part also why. We will illustrate the correct use of the R package in the subsequent
section.

1. Ranking.
Replace the observations for each endpoint by their mid-ranks. That is, for each
response variable separately, the observations (across all groups) are ranked from
smallest (rank 1) to largest (rank N). This is called variable-wise ranking. In case
of ties, mid-ranks are recommended. Table 5.1 illustrates the rank calculation for
a simple example with three variables (k = 3) and two groups (a = 2) of size
n1 = 4 and n2 = 3, respectively. The example is deliberately chosen to include
outcomes measured on three different scales, namely a metric, an ordinal, and a
binary (dichotomous) variable. All three scales typically appear in surveys, and
the approach presented here is general enough to allow for valid inference in the
presence of even a mixture of the three. As long as variable-wise ranking is pos-
sible, the respective response variables can be included. The resulting ranks are
assembled in the matrix R given in Table 5.2. This matrix has k rows, correspond-
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ing to the k endpoints, as well as N columns. Each column represents the ranks
obtained for one specific respondent. The blocks indicate different groups of re-
spondents (for example, males vs. females, or different nationalities, or different
types of instruction experienced).

Table 5.1 Illustration of variable-wise rank calculations for k = 3 variables and a = 2 groups

Original observations (Mid-)ranks
Group 1 Group 2 Group 1 Group 2

X (1)
11 X (1)

12 X (1)
13 X (1)

14 X (1)
21 X (1)

22 X (1)
23 R(1)

11 R(1)
12 R(1)

13 R(1)
14 R(1)

21 R(1)
22 R(1)

23
3 2 1 4 2 2 1 6 4 1.5 7 4 4 1.5

X (2)
11 X (2)

12 X (2)
13 X (2)

14 X (2)
21 X (2)

22 X (2)
23 R(2)

11 R(2)
12 R(2)

13 R(2)
14 R(2)

21 R(2)
22 R(2)

23
-0.03 0.64 0.75 -0.80 0.97 0.24 -1.64 3 5 6 2 7 4 1

X (3)
11 X (3)

12 X (3)
13 X (3)

14 X (3)
21 X (3)

22 X (3)
23 R(3)

11 R(3)
12 R(3)

13 R(3)
14 R(3)

21 R(3)
22 R(3)

23
0 0 0 1 1 0 1 2.5 2.5 2.5 6 6 2.5 6

The two groups have n1 = 4 and n2 = 3 respondents, respectively. The first outcome is measured
on an ordinal scale with categories coded as numbers 1–5. The second outcome is metric, rounded

to two digits, while the third endpoint is binary. In case of ties, midranks are calculated. The
inferential methods presented in the text allow for such a mixture of outcome scales

Table 5.2 Matrix R of variable-wise mid-ranks
Group 1 Group 2 . . . Group a

R(1)
11 R(1)

12 . . . R(1)
1n1

R(1)
21 R(1)

22 . . . R(1)
2n2

. . . R(1)
a1 R(1)

a2 . . . R(1)
a,na

R(2)
11 R(2)

12 . . . R(2)
1n1

R(2)
21 R(2)

22 . . . R(2)
2n2

. . . R(2)
a1 R(2)

a2 . . . R(2)
a,na

. . . . . . . . . . . .

R(k)
11 R(k)

12 . . . R(k)
1n1

R(k)
21 R(k)

22 . . . R(k)
2n2

. . . R(k)
a1 R(k)

a2 . . . R(k)
a,na

Each row corresponds to one of the k endpoints, and each column corresponds to one of the N
respondents. The N respondents are divided up into a groups with possibly differing sample sizes

ni, i = 1, . . . ,a. The jth column in the ith group will be denoted as Ri j . The average of all ni

columns in the ith group is R̄i., and R̄.. denotes the average of all N columns

2. Estimating matrices representing sums of squares and cross-products.
Calculate the between- and within-group covariance matrices of these rank data.
This is similar to calculating the numerator and denominator sums of squares
in analysis of variance. The details are somewhat technical. We will denote the
between-group covariance matrix by H, and the within-group covariance matrix
by G. There is another subtle detail in that for each of these matrices H and G,
different versions exist, depending on whether weighted or unweighted means
shall be used in the sums of squares calculations. However, the practical perfor-
mance differences between these choices are actually minor. In Eqs. (5.1) and
(5.2), we only give the formulas for weighted means and refer to the appendix
of Ellis et al. [9], as well as the technical articles mentioned above, for further
details and alternative definitions.
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H =
1

a−1

a

∑
i=1

ni(R̄i.− R̄..)(R̄i.− R̄..)
� =

1
a−1

R

(
a⊕

i=1

1
ni

Jni −
1
N

JN

)
R� ,

(5.1)

G =
1

N −a

a

∑
i=1

ni

∑
j=1

(Ri j − R̄i.)(Ri j − R̄i.)
� =

1
N −a

R

(
a⊕

i=1

Pni

)
R� . (5.2)

The (k×N)-dimensional matrix R, and the k-dimensional vectors Ri j, R̄i., and
R̄.. have been introduced in Table 5.2. The matrix J is a square matrix of ones
(dimension indicated by the respective subscript), and Pni is a square matrix with
diagonal elements (1−1/d), while all other elements of this matrix are equal to
(−1/d)
The rightmost parts of Eqs. (5.1) and (5.2) define the matrices H and G in the
mathematically more elegant way which also allows for a straightforward imple-
mentation in statistical software. The left part uses the traditional summation no-
tation that can be found in classical textbooks on analysis of variance (ANOVA)
and related methods. Apart from the fact that the Ri j are not univariate scalars,
but instead vectors, the formulas are indeed very similar to those of numerator
and denominator in the ANOVA F-test. This traditional notation, however, be-
comes rather cumbersome when leaving the realm of simple designs, whereas
the elegant notation allows for a convenient generalization.

3. Building test statistics.
Based on the matrices H and G, compute one of the nonparametric test statistics
that have been developed and validated in the recent research literature. In par-
ticular, we recommend use of the nonparametric version of Wilks’ Λ , which is
defined as

λ =
det[(N −a) ·G]

det[(N −a) ·G+(a−1) ·H]
.

If the matrices H and G are singular (not invertible), Wilks’ Λ cannot be cal-
culated. This will happen in situations with more endpoints (questions) than
survey respondents, and it may also happen in other cases, in particular when
the dimension (k) of the response vector is high and there are many ties in the
data. A situation of many tied observations is unavoidable when survey outcomes
are measured on discrete, ordinal scales with few possible answer categories. In
cases where Wilk’s Λ cannot be calculated due to singularity, the nonparamet-
ric ANOVA-type statistic should be used. It is simply defined as the ratio of the
matrix traces, namely

TA = tr(H)/tr(G) .

It may appear that the ANOVA-type statistic uses less between-variable infor-
mation than Wilks’ Λ . However, the covariances or correlations between out-
comes are considered here, as well. Indeed, they enter into the p-value calcula-
tion, which is described in the next and last step.
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4. Finding sampling distributions and p-values.
In order to find valid p-values corresponding to ones observations, one needs val-
idated approximations to the true sampling distributions of the test statistics. In
particular, the approximations should be designed such that their tail probabilities
match the tail probabilities of the true process very well. Correctly approximat-
ing the tail probabilities matters so much because typically, statistical inference
is concerned with decisions regarding extreme probabilities (less than 0.05 or
less than 0.01). For each of the test statistics mentioned above (Wilks’ Λ and
ANOVA-type), there are basically two well-performing approximations to the
sampling distribution.
One of these approximations uses an F-distribution whose degrees of freedom
are estimated from the data. This idea goes back to Box [5] and leads to a decent
approximation even with moderate to small sample sizes. With small samples,
it works particularly well in balanced designs (equal number of respondents per
group).
The other approximation uses the permutation distribution of the respective test
statistic. The permutation distribution is obtained using these three steps: (1) re-
move all group labels of all respondents, (2) permute these group labels in all N!
possible ways among the respondents, (3) each time calculate the test statistic.
The resulting values, each weighted with probability 1/N!, constitute the permu-
tation distribution. This is actually not even an approximation, but indeed the ex-
act distribution under the null hypothesis of exchangeable random vectors, which
is implied by the null hypothesis of equal multivariate distributions. However, in
practice, the number N! of possible permutations can get rather large. Thus, one
typically resorts to an approximative solution by only considering, say, 1000 or
10,000 randomly chosen permutations. In principle, in the sense of not exceed-
ing the nominal type I error, the permutation distribution approach is expected
to work even for rather small sample sizes, but clearly it wouldn’t make sense to
conduct any study if there are too few observations to reach a reasonable power.
If there is any doubt whether power may suffice, a good strategy is to perform
some simulation experiments before actually starting the data gathering process.
In the simulation, synthetic data is generated that should closely resemble the
expected real data, along with the effects that the researcher would like to be able
to detect (for some ideas on how to generate realistic data, see also Sect. 5.5). If it
turns out that the expected effects are not detectable with the study size that can
be afforded, it may sometimes be best to pull the emergency brake and prevent
resources from being poured into a study that has only small chances to succeed.
As a general rule of thumb, we would recommend to have at least seven or eight
respondents per subgroup.
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5.4 How to Perform These Tests with Statistical Software?

All the steps outlined in Sect. 5.3 can be performed at once using the R-package
npmv (Ellis et al. [9]). The test statistics to be calculated (Wilks’ Λ or ANOVA-type)
can be selected by the user. In fact, there are two more test statistics implemented
in npmv whose performance is typically somewhat similar to that of Wilks’ Λ (the
Lawley-Hotelling and the Bartlett-Nanda-Pillai tests). By default, p-values based on
both approximations to the sampling distribution are provided (F-distribution and
approximated permutation distribution).

For the simple illustrative example above, the data can be entered into an R data
frame using the following few lines.

X1=c(3,2,1,4,2,2,1,4,4,3,4)
X2=c(-0.03,0.64,0.75,-0.80,0.97,0.24,-1.64,-1.79,

-1.14,-0.29,-0.41)
X3=c(0,0,0,1,1,0,1,0,0,0,0)
group=as.factor(c(rep(1,4),rep(2,3),rep(3,4)))
X=cbind(group,X1,X2,X3)
X=as.data.frame(X)

In addition to the numbers given in Table 5.1, we have added a third group of four
three-variate observations. However, please note that this should really be regarded
as a toy example for pure illustrative purposes. In practice, sample sizes of n1 = 4,
n2 = 3, and n3 = 4 would be too small to draw reliable conclusions—even if the
methods presented here provide interpretable answers.

The analysis using npmv can simply be performed with the following two lines
of R-code, assuming that the package has been installed.

library(npmv)
nonpartest(X1|X2|X3 ˜ group, X, plots=FALSE,

permtest=FALSE)

In the output, no significant differences are revealed for this data set. In other
words, the data have not provided sufficient evidence against the null hypothesis
that the three (a = 3) three-variate (k = 3) distributions F1, F2, and F3 differ from
each other. Given the small sample sizes, this is not a surprise.

The output also provides the following descriptive summary of the data in terms
of nonparametric relative effects.

$releffects
X1 X2 X3

1 0.44318 0.63636 0.48864
2 0.24242 0.59091 0.69697
3 0.75000 0.29545 0.36364

This is to be interpreted as follows. Regarding variable X2, the estimated marginal
nonparametric relative effect of group 3 equals about 0.3. This means that if a re-
spondent A was randomly chosen from group 3, and if another respondent B was
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randomly chosen from among all 11 participants in the study, then, regarding vari-
able X2, the probability is 0.3 that A’s outcome is at least as large as B’s. Thus, the
nonparametric relative effects provide for an intuitive descriptive interpretation that
can be used along with the inferential results.

For data with ties, the wording “at least as large” is interpreted as “at least as
large, where equality is only given half weight”. This is much easier said with a
mathematical formula, namely P(XA > XB)+

1
2 P(XA = XB).

5.5 Which Groups Differ from Each Other?

Here, we would like to investigate how differences between particular groups may
be investigated, in addition to an overall analysis of all groups. In classical terms,
this is often referred to as a post-hoc analysis.

In order to have a data set at hand that is somewhat more realistic in terms of its
size and usefulness, let us generate one using the random generator functions in R.

set.seed(0)
X1=c(rnorm(15),rnorm(15)+0.5,rnorm(15)+1,rnorm(15)+2)
X2=rnorm(60)
X3=X1+X2+0.5*rnorm(60)
group=as.factor(c(rep(1,15),rep(2,15),rep(3,15),

rep(4,15)))
X=cbind(group,X1,X2,X3)
X=as.data.frame(X)

These data consist of N = 60 observation vectors, each of the a = 4 groups has
ni = 15 respondents, and again the dimension is k = 3. The outcomes are generated
in such a way that in one of the variables (X1), the responses tend to take larger
values from group 1 to 4. The second variable (X2) may just be considered as random
noise without any information. And, the third endpoint is actually highly dependent
on the first two. Such a dependence of responses may occur in practice. Someone
who gives high marks for one question may do so for another, related question. In
that sense, this simulated data tries to mimic some features that could be encountered
in real data.

The analysis can be performed as in the previous example, except that here we
don’t suppress the graphical output because the number of observations is large
enough for it being possibly informative. Also, in this example, we don’t suppress
the calculation of the permutation test p-value. The only disadvantage of the per-
mutation test is that it takes some seconds to be calculated, but as the output shows,
the permutation approach agrees rather well with the corresponding p-values from
F-approximations.

library(npmv)
nonpartest(X1|X2|X3 ˜ group, X, permtest=FALSE)
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When all four types of tests can be calculated (ANOVA-type, Lawley-Hotelling-
type, Bartlett-Nanda-Pillai-type, Wilks’ Λ -type), as in this situation, we recommend
use of Wilks’ Λ -type statistic.

For this example, a highly significant difference between the groups is shown.
Between which groups?

The answer can be obtained with another function in the same R package.

ssnonpartest(X1|X2|X3 ˜ group, X, factors.and.
variables = TRUE)

This function performs a closed testing procedure which reveals all combinations
of groups that exhibit a significant difference between them. Ultimately, it shows all
pairwise group comparisons that are significant, if there are any. The whole proce-
dure maintains the familywise error rate. That is, all decisions are made simultane-
ously at the prespecified α , which per default is set to 0.05.

This is reported to the user with the following statement in the output. “All appro-
priate subsets using factor levels have been checked using a closed multiple testing
procedure, which controls the maximum overall type I error rate at alpha= 0.05.”

In this data example, significant pairwise differences are found between the fol-
lowing pairs of groups: 1–4, 2–3, 2–4.

Considering how the group differences are introduced in the simulated data in
variable X1, it is not surprising that those groups whose labels are furthest apart from
each other (1,4) show a significant difference, but the procedure is also capable of
detecting two more significant pairwise differences.

In the function call above, the option factors.and.variables = TRUE
ensures that group differences are actually evaluated. Since there are fewer variables
(k = 3) than groups (a = 4), if this option is not specified, the algorithm only looks
for differences between variables and not between groups.

Differences between variables are considered in the next Section.

5.6 In Which Endpoints Do the Groups Differ?

If a global difference is detected, one would usually like to know which of the out-
comes have driven this significance. This can be considered a variable selection
problem, namely trying to answer the question which variables are most important
in distinguishing the groups from one another.

Let us use the same synthetic data already considered in the previous section. The
global test indeed revealed a significant difference, so it is natural and legitimate to
look for the sources for this difference.

The same code as already presented in the previous section also provides the
answers to this quest. The procedure is a modification of closed testing, therefore
the wording of the final sentence in the output is somewhat different. Most impor-
tant is however that also this procedure maintains the familywise error rate at the
nominal level.
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“All appropriate subsets using response variables have been checked using a mul-
tiple testing procedure, which controls the maximum overall type I error rate at al-
pha= 0.05.”

For the simulated data set being analyzed as an example, the procedure has re-
vealed variables X1 and X3 as driving the significant differences. Again, the result
is not surprising because in the synthetic data, group differences are introduced in
variable X1. Variable X2 is only noise, so there should be no effect to be detected.
And X3 is highly influenced by X1, so the differences among groups that are manifest
in X1 also carry over to X3.

5.7 How to Interpret the Results?

As in most statistical analyses, there are two major components, each requiring care-
ful interpretation. Namely, a descriptive, and an inferential component. In the de-
scriptive part, graphical and numerical summaries of the data are provided. A good
visualization should always be the first step of any data analysis, after the typically
lengthy data cleaning. In fact, a good visualization may even provide hints that data
cleaning needs to continue. Inconsistencies in the data may best be discovered using
visual methods. In this chapter, we will not provide detailed advice on how to dis-
play data graphically, as most introductory statistics textbooks devote ample space
to this topic (see, e.g., [6, 7, 20]).

Part of the descriptive analysis is also the calculation of numerical summary mea-
sures. In the context of a nonparametric approach to data analysis, statistics such as
means, variances, and standardized mean differences (often referred to as Cohen’s
d or Hedges’ g) are not appropriate summaries. They do not make sense for ordinal
or highly skewed data, and they have in general no relation to the conclusions from
nonparametric inference methods, unless very specific models are assumed (e.g.,
location shift models).

The most appropriate summary measure is the nonparametric relative effect
which is the statistical functional underlying the most important classical nonpara-
metric tests for two and more samples [8, 21, 16, 13, 14]. The same functional is
also the basis for the nonparametric multivariate inference methods described in this
chapter. For two random variables X and Y , the relative effect is basically the prob-
ability that the first one takes a smaller value than the second one. More precisely,

pXY = P(X < Y )+
1
2

P(X = Y ).

Its empirical analog in case of two samples is the proportion of (X ,Y )-pairs from all
possible such pairs from the X- and Y -samples where the X-value is smaller than the
Y -value. In case of ties (equal values), one needs to add one half of the proportion
of pairs where both X and Y take the same value. In other words, the estimated
relative effect in two samples is the probability that a randomly chosen observation
from the first sample takes a smaller value than a randomly chosen observation
from the second sample, in case of ties corrected by one half of the probability of
an equal value.
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When there are three and more groups of experimental units, one compares the
observations in each group with those from a reference sample. Here, a useful ref-
erence sample is the combined sample of all respondents (from all groups) included
in the study. As described in Sect. 5.4, the estimated relative effect of group i is the
probability that a subject chosen randomly from all subjects in the study yields a
smaller value than a subject chosen randomly from all subjects in group i. Again, in
the presence of tied values, one half of the probability of an equal value is added.
“Randomly chosen” here means that each respondent in the respective sets has the
same probability of being chosen.

These estimated effects are provided in the output of the R-package npmv (Ellis
et al. [9]). They indicate a tendency of observations within a particular group to take
larger (or smaller) values, as compared to the other groups. A major advantage of
the relative effect is that it does not require metric responses. As long as a “smaller”
or “greater” relation can be assessed, the relative effect makes sense. Clearly, larger
values of the relative effect in one group indicate that this group tends to larger ob-
served values. A value of 1/2 for the relative effect can be interpreted as no tendency
to larger or smaller values in that particular group.

For the inferential analysis, the relative effects provide an important piece of
supplementary information. If the multivariate test reports a significant value, it is
instructive to look at the estimated relative effects, in order to be able to interpret
the significance.

Regarding the statistical inference itself, we recommend use of Wilks’ Λ when-
ever possible. If this test statistic cannot be calculated, the ANOVA-type statistic
should be used. If the p-value for an overall multivariate test based on the chosen
test statistic is small, there is evidence that in at least one outcome variable there is
at least one group whose observations tend to take smaller or larger values than in
the other groups, and this evidence is beyond mere chance.

Depending on whether interest focuses on groups or on outcome variables, in a
next step, a multiple testing procedure should be performed in order to identify the
groups or endpoints that are responsible for the detected significance. The method
implemented in the R-package npmv automatically adjusts for the multiplicity of
testing. Thus, the probability of making at least one false rejection is controlled
throughout the procedure.

Typically, the algorithm yields one or more endpoints or groups responsible for
the significant effect. Now, a descriptive reporting of the corresponding nonpara-
metric relative effects aids in interpreting the magnitude and direction of the effect.
Finally, a visualization involving the identified groups and endpoints is advisable.
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