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Preface

Behavioral, biobehavioral, and biomedical interventions play an important role in
society worldwide. These interventions are aimed at, for example, helping people
quit smoking; improving reading skills in children; helping autistic children learn
how to communicate verbally; improving family functioning; keeping convicted
criminals who have served their time from engaging in criminal activity; treating
cancer, diabetes, depression, and many other diseases and health problems; slowing
the progression of heart failure; preventing the onset of drug abuse; and improving
treatment regimen compliance in people living with HIV. These are just a few of
many, many examples.

This book and another book, titled Optimization of Behavioral, Biobehavioral,
and Biomedical Interventions: The Multiphase Optimization Strategy (MOST)
(Collins, 2018), are companion volumes. Both are focused on MOST, an
engineering-inspired framework for arriving at and then evaluating an optimized
intervention. The objective is to develop an intervention that is not only effective
but also efficient, economical, and scalable. MOST consists of three phases:
preparation, optimization, and evaluation. Activities in the preparation phase include
selection of the components that are candidates for inclusion in the intervention and
development of a detailed conceptual model of the process to be intervened upon.
In the preparation phase, the investigator also specifies an optimization criterion.
This criterion operationalizes the goal of optimization. For example, if it has been
established that to be scalable a particular intervention must cost no more than
$400 per participant to implement, an appropriate optimization criterion would
be “the most effective intervention that can be obtained for no more than $400
per participant in implementation costs.” In the optimization phase, which occurs
before an intervention is evaluated in an RCT, one or more optimization trials are
conducted to gather information on the individual and combined effects of the
candidate components. This information, along with the optimization criterion,
forms the basis for selection of the components and component levels that make up
the optimized intervention. The optimization trial may use any of a wide variety of
experimental designs and approaches, depending on the type of intervention to be
optimized, the precise research questions that are of interest, and the circumstances.
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vi Preface

In the evaluation phase, the effectiveness of the optimized intervention is confirmed
in a standard RCT. If the optimization criterion was appropriately specified, the
resulting intervention will be immediately scalable.

Collins (2018) provides a comprehensive introduction to MOST. In addition to
an overview of MOST, the book includes information on developing a conceptual
model; using factorial and fractional factorial designs in optimization trials, with
an entire chapter devoted to interactions; applying the resource management
principle when selecting an experimental design; making decisions about selection
of components and component levels based on experimental results; and numerous
other topics. The book also includes a chapter introducing adaptive interventions.

Early in the process of planning a book about MOST, it became clear that a
number of topics would need to be covered to arrive at a comprehensive treatment.
An in-depth treatment of the process of arriving at a conceptual model was
needed. Investigators wanting to conduct factorial optimization trials were asking
for practical advice about implementing large and complex experiments in field
settings. Intervention scientists who worked in populations with a cluster structure,
such as educational researchers, had been asking whether and how they could
appropriately conduct optimization trials. Clarification was needed on approaches
such as the SMART experimental design and system identification experiments,
and how they fit into the MOST framework. There was perennial confusion about
the difference between conducting a factorial ANOVA using effect coding and using
dummy coding. It seemed natural that cost-effectiveness could be a consideration in
the optimization phase of MOST, but it was not apparent how. Guidance was needed
on how to take advantage of the possibilities for interesting mediation analyses
opened up by factorial optimization trials.

Linda Collins was not an expert in many of these topics, and it was clear that
other authors would be able to do a much better job of presenting them. An edited
book, with chapters written by experts in each area, was needed in addition to an
authored book. Dr. Kari Kugler agreed to serve with Dr. Collins as coeditor. The
editors were extremely fortunate that a number of outstanding academics agreed to
contribute chapters.

The Chapters in This Book

The first chapter, by Kugler, Wyrick, Tanner, Milroy, Chambers, Ma, Guastaferro,
and Collins, describes a critically important, but too often overlooked, aspect
of intervention optimization: the development of a detailed and highly specific
conceptual model. Specification of a conceptual model is often a demanding and
challenging task, requiring the integration of a diverse body of scientific literature
and input from many members of the research team. However, it is worth the time
and effort, because it is ultimately rewarding to arrive at a sophisticated conceptual
model that will provide a firm conceptual foundation for the remainder of the
preparation phase as well as the optimization and evaluation phases of MOST.
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The chapter “Using the Multiphase Optimization Strategy (MOST) to Develop
an Optimized Online STI Preventive Intervention Aimed at College Students:
Description of Conceptual Model and Iterative Approach to Optimization” also
introduces the idea of taking an iterative approach to optimization. In this approach,
successive optimization trials are performed, with the objective of improving the
intervention by revising or replacing weak or inert components and re-testing the
components.

Readers who would like to use MOST in their work but are uneasy about
implementation of an experiment that can be much more complex than an RCT will
find that the chapter “Implementing Factorial Experiments in Real-World Settings:
Lessons Learned While Engineering an Optimized Smoking Cessation Treatment”
provides a wealth of valuable information. For nearly 10 years, Piper, Schlam,
Fraser, Oguss, and Cook have successfully conducted factorial optimization trials
in ordinary health care settings. In this chapter, they offer practical advice and
lessons learned based on their extensive experience in the implementation of large
factorial optimization trials in real-world field settings. Piper et al. discuss going
from selection of intervention components to a workable experimental design;
maintaining a high level of fidelity when conducting a complex experiment in the
field; conducting random assignment with as many as 32 experimental conditions;
and other considerations of particular interest to scientists who are relatively new to
MOST. The chapter “Implementing Factorial Experiments in Real-World Settings:
Lessons Learned While Engineering an Optimized Smoking Cessation Treatment”
will be helpful to readers who would like to know how to implement large factorial
experiments in field settings successfully and with few protocol deviations.

The chapter “Multilevel Factorial Designs in Intervention Development,” by
Nahum-Shani and Dziak, discusses design of optimization trials, statistical power,
and analysis of the resulting data when there is a multilevel (also called hierarchical,
cluster, or nested) structure. A multilevel structure can occur naturally when
experimental subjects are grouped in schools, neighborhoods, clinics, families, or
some other unit. A multilevel structure can also be induced by the experimenter,
for example, if part of the experiment involves assigning individuals to some kind
of group-delivered treatment. The presence of a multilevel structure has different
implications for experimental design, data analysis, and statistical power depending
on whether the clustering is naturally occurring or experimenter-induced and
whether individuals or entire clusters are to be randomly assigned to experimental
conditions. Nahum-Shani and Dziak provide a careful and comprehensive review
that will help investigators decide on the best way to conduct an optimization trial
when a multilevel structure must be considered. This chapter may be of particular
interest to scientists developing educational or other school-based interventions.

In an adaptive intervention, the intervention content, dose, or approach can
be varied across participants and across time, with the objective of achieving or
maintaining a good outcome for all participants (see Chapter 8 in the companion
volume). Adaptive interventions range in intensity of adaptation. In low-intensity
adaptive interventions, the content, dose, or approach is varied only a few times, or
adaptation occurs infrequently. In the chapter “Experimental Designs for Research

http://dx.doi.org/10.1007/978-3-319-91776-4_1
http://dx.doi.org/10.1007/978-3-319-91776-4_2
http://dx.doi.org/10.1007/978-3-319-91776-4_2
http://dx.doi.org/10.1007/978-3-319-91776-4_3
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on Adaptive Interventions: Singly and Sequentially Randomized Trials,” Almirall,
Nahum-Shani, Wang, and Kasari discuss the design of optimization trials when the
objective is optimization of a low-intensity adaptive intervention. Almirall et al.
demonstrate that a variety of experimental designs can be appropriate and remind
the reader that the choice of design must be based on the precise scientific questions
motivating the experiment. This chapter reviews a number of experimental design
alternatives, including types of singly randomized trials and sequential, multiple
assignment, randomized trials (SMARTs), most of which are variations on the
factorial experiment.

In contrast to low-intensity adaptive interventions, intensively adaptive interven-
tions may vary the content, dose, or approach frequently, for example, daily or even
several times per day. For example, mhealth interventions, in which the intervention
is delivered via a mobile device app, are often intensively adaptive. In the chapter
“Intensively Adaptive Interventions Using Control Systems Engineering: Two
Illustrative Examples,” Rivera, Hekler, Savage, and Downs discuss one approach
to design of optimization trials when the objective is to optimize an intensively
adaptive intervention. Their approach is not a variation on the factorial experiment.
Instead, these authors take a control engineering perspective. From this perspective,
the outcome, along with the behaviors and other factors that influence the outcome,
is considered a dynamical system, and the adaptive intervention is a controller
that can be used to modulate this system. Then the optimization trial is a system
identification experiment, which provides the data needed to develop the controller.
This chapter will appeal both to behavioral scientists considering using control
engineering principles in their work and to engineers who may be interested in
applying their skill set in the behavioral sciences.

Once an optimization trial has been conducted, the data need to be analyzed
properly so that the results can be used in making decisions about which components
and component levels will make up the optimized intervention. In the companion
volume, Collins recommended using effect coding rather than dummy coding when
analyzing data from a factorial optimization trial. However, dummy coding is more
familiar to many behavioral scientists. In the chapter “Coding and Interpretation of
Effects in Analysis of Data from a Factorial Experiment,” Kugler, Dziak, and Trail
compare and contrast effect coding and dummy coding of factorial experiments.
They demonstrate that in most cases, effect coding and dummy coding produce
different estimates of individual effects (although the omnibus F will be identical).
They also explain that effect coding models effects that correspond to the definitions
of analysis of variance (ANOVA) main effects and interactions that appear in most
statistics textbooks, whereas in general dummy coding models a different set of
effects. The chapter “Coding and Interpretation of Effects in Analysis of Data from
a Factorial Experiment” will clarify this important issue for data analysts and help
the reader to see why effect coding is usually a better choice for analysis of data
from an optimization trial.

In the companion volume, several different possible goals for optimization are
discussed, with the emphasis on seeking the most effective intervention that can
be obtained subject to a specified fixed upper limit on cost. However, in many

http://dx.doi.org/10.1007/978-3-319-91776-4_4
http://dx.doi.org/10.1007/978-3-319-91776-4_5
http://dx.doi.org/10.1007/978-3-319-91776-4_6
http://dx.doi.org/10.1007/978-3-319-91776-4_6
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situations it may be desired to use the results of the optimization trial along with
data on cost to identify the set of components and component levels that represents
the most cost-effective intervention. This requires a more sophisticated approach
to making decisions about selection of components and component levels; at this
writing, there are still many unanswered questions about how to accomplish this. In
the chapter “Optimizing the Cost-Effectiveness of a Multicomponent Intervention
Using Data from a Factorial Experiment: Considerations, Open Questions, and
Tradeoffs Among Multiple Outcomes,” Dziak discusses issues and open research
areas related to cost-effectiveness and MOST.

Optimization trials yield rich data that can form the basis for interesting and
informative secondary analyses. The final chapter, “Investigating an Intervention’s
Causal Story: Mediation Analysis Using a Factorial Experiment and Multiple Medi-
ators,” discusses one type of secondary analysis of a factorial optimization trial,
mediation analysis. The majority of readers of this book will have some familiarity
with mediation analysis of data from an RCT. The purpose of such analyses is
to determine which variables mediated any observed treatment effect, and thereby
obtain an empirical sense of the mechanisms underlying the intervention. Mediation
analysis of data from a two-arm RCT can be highly informative. However, because
in an RCT the treatment is an aggregate of all the components, it is not possible to
determine which variables mediate which individual components. Smith, Coffman,
and Zhu review the possibilities that are opened up by mediation analysis of data
when the treatment is a factorial experiment rather than a two-arm RCT. Here it
is possible to model mediation of the effect of a single factor, and even to model
mediation of an interaction effect! Mediation analysis of the data from a factorial
optimization trial can be helpful in the optimization phase of MOST and is likely to
be particularly helpful in informing the preparation phase of a subsequent cycle of
MOST.

How to Use This Book

From the beginning, the objective was that the two companion volumes would be
tightly integrated. The reader will see that each book cites the other repeatedly.
Moreover, the chapters in the present book assume an understanding of the material
in Collins (2018), so it is a good idea to have read that book before reading this one.
Each chapter in this book stands alone, and, unlike the chapters in the companion
volume, it is not necessary to read them in the order they appear.

The eight chapters in this book have been presented according to roughly where
they fall in the MOST process. The first two chapters discuss matters pertaining
primarily to the preparation phase of MOST and the early part of the optimization
phase, and the remaining chapters pertain to designing an optimization trial,
conducting primary data analysis, selecting components and component levels, and
conducting secondary analysis of data from an optimization trial. The material in the
Smith et al. chapter could also be considered part of the preparation phase, because

http://dx.doi.org/10.1007/978-3-319-91776-4_7
http://dx.doi.org/10.1007/978-3-319-91776-4_8
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mediation analyses are an excellent source of information useful in updating and
refining a conceptual model. This may be done in preparation for a subsequent round
of optimization aimed at further improvements to the intervention.

Intervention scientists often work in teams, and different team members may
have different roles. For a scientist whose role is primarily intervention develop-
ment, chapters “Using the Multiphase Optimization Strategy (MOST) to Develop an
Optimized Online STI Preventive Intervention Aimed at College Students: Descrip-
tion of Conceptual Model and Iterative Approach to Optimization” and “Optimizing
the Cost-Effectiveness of a Multicomponent Intervention Using Data from a Facto-
rial Experiment: Considerations, Open Questions, and Tradeoffs Among Multiple
Outcomes” may be of particular interest. For a team member responsible for
implementation, the chapter “Implementing Factorial Experiments in Real-World
Settings: Lessons Learned While Engineering an Optimized Smoking Cessation
Treatment” is essential reading. The chapters “Multilevel Factorial Designs in
Intervention Development,” “Experimental Designs for Research on Adaptive Inter-
ventions: Singly and Sequentially Randomized Trials,” and “Intensively Adaptive
Interventions Using Control Systems Engineering: Two Illustrative Examples” were
written to be helpful to those responsible for selecting the design of the optimization
trial. Those chapters, along with chapters “Coding and Interpretation of Effects in
Analysis of Data from a Factorial Experiment” and “Investigating an Intervention’s
Causal Story: Mediation Analysis Using a Factorial Experiment and Multiple
Mediators,” are likely to be interesting to a statistician, methodologist, or data
analyst.

We hope you find this book and its companion helpful and that you have an
opportunity to use MOST in your work.

University Park, PA Linda M. Collins
2018 Kari C. Kugler

http://dx.doi.org/10.1007/978-3-319-91776-4_2
http://dx.doi.org/10.1007/978-3-319-91776-4_3
http://dx.doi.org/10.1007/978-3-319-91776-4_4
http://dx.doi.org/10.1007/978-3-319-91776-4_5
http://dx.doi.org/10.1007/978-3-319-91776-4_6
http://dx.doi.org/10.1007/978-3-319-91776-4_8


Contents

Using the Multiphase Optimization Strategy (MOST) to Develop
an Optimized Online STI Preventive Intervention Aimed at College
Students: Description of Conceptual Model and Iterative Approach
to Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Kari C. Kugler, David L. Wyrick, Amanda E. Tanner, Jeffrey J. Milroy,
Brittany Chambers, Alice Ma, Kate M. Guastaferro, and Linda M. Collins

Implementing Factorial Experiments in Real-World Settings:
Lessons Learned While Engineering an Optimized Smoking
Cessation Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Megan E. Piper, Tanya R. Schlam, David Fraser, Madeline Oguss,
and Jessica W. Cook

Multilevel Factorial Designs in Intervention Development . . . . . . . . . . . . . . . . . . 47
Inbal Nahum-Shani and John J. Dziak

Experimental Designs for Research on Adaptive Interventions:
Singly and Sequentially Randomized Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Daniel Almirall, Inbal Nahum-Shani, Lu Wang,
and Connie Kasari

Intensively Adaptive Interventions Using Control Systems
Engineering: Two Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Daniel E. Rivera, Eric B. Hekler, Jennifer S. Savage,
and Danielle Symons Downs

Coding and Interpretation of Effects in Analysis of Data
from a Factorial Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Kari C. Kugler, John J. Dziak, and Jessica Trail

xi



xii Contents

Optimizing the Cost-Effectiveness of a Multicomponent
Intervention Using Data from a Factorial Experiment:
Considerations, Open Questions, and Tradeoffs Among Multiple
Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
John J. Dziak

Investigating an Intervention’s Causal Story: Mediation Analysis
Using a Factorial Experiment and Multiple Mediators . . . . . . . . . . . . . . . . . . . . . . 269
Rachel A. Smith, Donna L. Coffman, and Xun Zhu

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295



Using the Multiphase Optimization
Strategy (MOST) to Develop
an Optimized Online STI Preventive
Intervention Aimed at College Students:
Description of Conceptual Model
and Iterative Approach to Optimization

Kari C. Kugler, David L. Wyrick, Amanda E. Tanner, Jeffrey J. Milroy,
Brittany Chambers, Alice Ma, Kate M. Guastaferro, and Linda M. Collins

Abstract This chapter describes some aspects of an application of the multi-
phase optimization strategy (MOST) to optimize and evaluate itMatters, an online
intervention that targets the intersection of alcohol use and sexual behaviors to
reduce sexually transmitted infections (STIs) among college students. The chapter
emphasizes two aspects of this application. First, we describe the development of a
detailed conceptual model during the preparation phase of MOST. This conceptual
model guided decisions such as the choice of outcome variables. Second, we
describe an iterative approach to experimentation during the optimization phase
of MOST. The objective of the iterative approach is to build a highly effective
intervention by using repeated optimization trials to evaluate which intervention
components meet a given criterion for effectiveness and which do not. Revisions
are undertaken to improve the components that do not meet the criterion, and then a
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2 K. C. Kugler et al.

subsequent optimization trial is used to reevaluate the components. This iterative
approach has the potential to enable the investigator to develop more effective,
efficient, economical, and scalable interventions.

1 Introduction

Approximately 70% of college students are sexually experienced, yet only half of
sexually active students report using a condom during their last sexual encounter,
and 75% report inconsistent or no condom use (American College Health Associ-
ation, 2016). Concurrent and casual sexual partnerships are also common among
college students (Olmstead, Pasley, & Fincham, 2013), with one third reporting not
using a condom during a penetrative hookup (Fielder & Carey, 2010); a hookup is a
casual sexual encounter without the expectation of dating or a romantic relationship
(Garcia, Reiber, Massey, & Merriwether, 2012). Inconsistent condom use (Trepka
et al., 2008); multiple, concurrent partners (Lewis, Miguez-Burban, & Malow,
2009); and penetrative hookups (Paul, McManus, & Hayes, 2000) are all high-risk
behaviors that contribute to the high prevalence of sexually transmitted infections
(STIs) among college students (Kann et al., 2016). Drinking alcohol is a known risk
factor for unprotected sex, particularly among college students, and, by extension,
a risk factor for exposure to STIs. An extensive body of research (Scott-Sheldon
et al., 2016; Shuper et al., 2010) has documented a consistently strong and positive,
but also complex, relationship between alcohol use and unprotected sex (Ebel-Lam,
MacDonald, Zanna, & Fong, 2009; Prause, Staley, & Finn, 2011; Shuper et al.,
2010).

Numerous individual-level interventions for college students have been devel-
oped that focus separately on alcohol use (Carey, Scott-Sheldon, Elliot, Bolles, &
Carey, 2009) and condom use (Scott-Sheldon, Huedo-Medina, Warren, Johnson,
& Carey, 2011), but few have directly emphasized the alcohol-sex relationship.
Dermen and Thomas (2011) found that a brief intervention combining alcohol risk-
reduction content with HIV risk-reduction content produced effects on sexual risk
behaviors (e.g., frequency of unprotected sex), but not on alcohol use frequency or
intensity. Lewis and colleagues (2014) found that the use of personalized normative
feedback specific to drinking in sexual situations was effective at reducing alcohol
use and sexual risk behaviors (e.g., drinking alcohol prior to or during sex).

Although these studies suggest that interventions focusing on the alcohol-sex
relationship show promise, more research is needed to overcome some limitations.
For example, the study by Dermen and Thomas (2011) was based on a relatively
small sample of predominately White students. Lewis and colleagues (2014)
included only sexually active students with minimal levels of drinking behavior
and focused solely on challenging normative misperceptions. It is unclear whether
the findings would generalize to a more diverse population with a wider range of
sexual experiences and drinking behaviors. It is also unclear whether an intervention
would be more effective if it targeted other constructs beyond correcting normative
misperceptions.
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Thus there is a need for development of an effective STI preventive intervention
that targets the intersection of alcohol use and sexual risk behaviors and is aimed at
a diverse population of college students. This chapter describes an ongoing study
that is attempting to accomplish this aim by developing an online intervention
called itMatters. The objective of itMatters is to prevent STIs in college students
by focusing on the intersection of alcohol use and sexual risk behaviors. We are
applying the multiphase optimization strategy (MOST) to develop, optimize, and
evaluate itMatters.

MOST is an engineering-inspired framework for building more effective, effi-
cient, economical, and scalable interventions. MOST includes three phases: prepa-
ration, optimization, and evaluation. As part of the preparation phase, a carefully
specified, theoretically driven conceptual model is established to articulate how
each component that is a candidate for inclusion in the intervention is hypothesized
to affect the outcome. During the optimization phase, the effectiveness of the
individual intervention components is examined experimentally. Based on the
information obtained via this experimentation, the components and component
levels that make up the optimized intervention are selected. In the evaluation phase,
the resulting optimized intervention is evaluated using a standard RCT.

MOST has been applied to develop interventions in a wide range of health areas,
including school-based prevention of alcohol and drug use and HIV (Caldwell
et al., 2012), drug use among NCAA athletes (Wyrick, Rulison, Fearnow-Kenney,
Milroy, & Collins, 2014), smoking cessation (e.g., Baker et al., 2016), weight loss
(Pellegrini, Hoffman, Collins, & Spring, 2014, 2015), and cardiology (Huffman
et al., 2017). For a more detailed description of MOST, see the companion volume
(Collins, 2018).

1.1 The Current Chapter

The purpose of the current chapter is to describe our application of MOST to
optimize and evaluate the itMatters intervention. The chapter emphasizes two
aspects of this application. First, we describe the development of a detailed
conceptual model during the preparation phase of MOST (see Chapter 2 in the
companion volume). Second, we describe an iterative approach to experimentation
during the optimization phase of MOST. The objective of the iterative approach
is to build a highly effective intervention by using repeated optimization trials to
evaluate which intervention components meet a given criterion for effectiveness
and which do not. Revisions are undertaken to improve the components that do
not meet the criterion, and then a subsequent optimization trial is used to reevaluate
the components.
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2 The Conceptual Model of the Intersection of Alcohol Use
and Sexual Behaviors

2.1 Overview

During the preparation phase of MOST, a carefully specified, theoretically driven
conceptual model is articulated. As noted in the companion volume, the purpose of
the conceptual model is to express “all of what is known or hypothesized about how
the intervention under development is to intervene on the behavioral, biobehavioral,
or biomedical process” (Collins, 2018, p. 64). In other words, the conceptual model
forms the basis for the intervention by specifying the set of components that are
candidates for inclusion in the intervention, identifying the proximal mediators that
are immediate targets of each component, and outlining the causal pathways by
which these candidate intervention components are intended to have an impact on
the proximal and distal outcomes.

The conceptual model that forms the basis of the itMatters intervention expresses
how alcohol use is hypothesized to lead to sexual risk behaviors (e.g., unprotected
sex, penetrative hookups) and how this increases the risk for STIs among college
students. Because examination of the intersection of alcohol use and sex has been
limited primarily to laboratory studies (Davis et al., 2014; George et al., 2009;
Prause et al., 2011), this conceptual model has been informed by empirical research
and behavioral theory on alcohol use and sexual risk behaviors separately and
together.

The itMatters conceptual model is depicted in Fig. 1. The purpose of Fig. 1
is to provide a visual representation of how the intervention components are
hypothesized to prevent alcohol-related sexual risk behaviors and, ultimately, STIs.
As the figure suggests, a conceptual model is similar to a logic model but goes a
step further by detailing the mechanisms by which each intervention component is
expected to effect change in the primary outcome(s) (see Chapter 2 in the companion
volume for more detail).

Before examining Fig. 1 in more detail, it is necessary to define two terms. The
first is protective behavioral strategies (PBS). In this case, PBS are approaches
an individual uses to reduce the potentially negative consequences associated
with alcohol-related sexual risk behaviors (Treloar, Martens, & McCarthy, 2015).
Examples of PBS include limiting alcohol intake; using a condom, including making
sure they are readily available and that the skills needed to use them properly have
been acquired; designating a friend to step in if an individual appears headed for
excessive alcohol use or an unintended sexual encounter; and proactively sharing
sexual boundaries with a partner.

The second term to be defined is myopic effects. Myopic effects are cogni-
tive effects of alcohol that affect an individual’s appraisal of sex potential and
risk (Sevincer & Oettingen, 2014). In particular, alcohol use leads to cognitive
impairment that can affect decision-making and lead to a higher probability of risk-
taking. Alcohol myopia theory (Sevincer & Oettingen, 2014) helps explain this.
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Alcohol myopia theory posits that alcohol increases a person’s concentration on
the immediate situation (e.g., enjoyment), limits higher-level cognitive functioning,
and reduces attention on more distant events or cues (e.g., reducing the risk of
unprotected sex); these effects are intensified as the quantity or dose of alcohol
increases (Dry, Burns, Nettelbeck, Farquharson, & White, 2012). As suggested
by this theory, the mechanism of how alcohol use affects sexual behaviors is
further influenced by several factors, such as primary (e.g., sex potential) and
secondary (e.g., STI risk) appraisals, which are anticipated to influence alcohol-
related sexual behaviors directly (Purdie et al., 2011) and indirectly through PBS
strategies (Abbey, Saenz, & Buck, 2005).

Examining Fig. 1 from left to right shows how each component targets a
particular putative proximal mediator (henceforth termed proximal mediator). These
proximal mediators, in turn, affect their respective proximal behavioral outcomes:
they reduce alcohol use and increase the use of PBS. A decrease in alcohol use
leads to a decrease in myopic effects, which decreases the likelihood of engaging
in alcohol-related sexual risk behaviors directly and indirectly by increasing the
likelihood of using PBS. Increased use of PBS leads to a decrease in the likelihood
of engaging in alcohol-related sexual risk behavior.

Figure 1 is not a structural equation modeling diagram, although it resembles
one in some ways. One important difference is that Fig. 1 is meant to convey
the rationale for the intervention, not provide a summary of how data would be
analyzed. For this reason, the figure does not contain an arrow representing every
anticipated nonzero regression coefficient. Another difference is that some of the
boxes represent an increase or decrease in a variable. This is not always a feature
of figures representing conceptual models. We used this approach here to avoid
complicating the figure with negative signs on some paths.

2.2 Intervention Components

Figure 1 shows six components. One component, information, is represented by
a bar on the far left of the figure to indicate that information is considered a
necessary foundation for the other components. The information component will not
be examined experimentally during the optimization phase. Because this material
is foundational to the remaining components, an a priori decision has been made
to include it in the intervention. All experimental subjects will be provided with
the information component. The remaining five components are candidates for
inclusion in itMatters and therefore will be examined experimentally. These are
listed in the left-hand area of Fig. 1. Each is labeled with a brief name of the
proximal mediator it targets: outcome expectancies, descriptive norms, injunctive
norms, perceived benefits of PBS, and self-efficacy to use PBS. The arrow labeled
Target indicates the immediate target of each component. (Note that even though
each component is connected by an arrow only to the mediator it directly targets,
a component may have an effect on other mediators. As mentioned previously,
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the purpose of Fig. 1 is to depict the reason why a component is a candidate for
inclusion in the intervention, not to show every possible nonzero path.) Figure 1
specifies the hypothesized causal pathways of the effect of each of these intervention
components on the proximal behavioral outcomes (i.e., alcohol use, use of PBS), the
distal behavioral outcome (i.e., alcohol-related sexual risk behaviors), and the distal
biological outcome, STIs, via the proximal mediators. A detailed description of the
pathways is provided below. First, we review each candidate component.

2.2.1 Outcome Expectancies

Informed by expectancy theory (Jones, Corbin, & Fromme, 2001), this component
challenges positive expectancies related to alcohol use before or during sex, such
as expectancies that using alcohol will increase the likelihood of engaging in sex
(Davis et al., 2010). Thus, the component is designed to convince participants
that no, or at most limited, alcohol use is needed before or during sex. Outcome
expectancies are consistently associated with behavioral outcomes, with positive
expectancies associated with an increased likelihood of alcohol consumption (Davis
et al., 2010) and a decrease in PBS (Logan, Koo, Kilmer, Blayney, & Lewis, 2015).
There is a notable moderating effect by the use of PBS.

Grazioli and colleagues (2015) found that the association between expectancies
and alcohol use was weaker for students with a high use of PBS (e.g., predetermined
strategies to limit or stop drinking). This implies an interaction between PBS and
the outcome expectancies proximal mediator. This is represented by a dashed line
in Fig. 1 running from the box representing PBS to the line representing the relation
between outcome expectancies and alcohol use.

2.2.2 Descriptive Norms and Injunctive Norms

Two different types of social norms, descriptive (perceived prevalence of a behavior;
social norms theory (Berkowitz, 2004)) and injunctive (perceived peer approval
of a behavior (Ajzen, 1991)), are positively associated with alcohol use (Reid &
Carey, 2015) and inversely associated with PBSs (Lewis, Rees, Logan, Kaysen, &
Kilmer, 2010). For example, perceptions that participating in sexual behaviors while
under the influence of alcohol is prevalent (descriptive norms) and is approved of by
one’s peers (injunctive norms) increase the likelihood of using alcohol and decrease
the use of PBS. However, a recent study by Lewis and colleagues (2014) found
that, although college students tend to underestimate the prevalence of protective
behaviors (e.g., condom use) and overestimate the prevalence of risk behaviors (e.g.,
drinking prior to sex), only norms pertaining to the overestimation of sexual risk
behaviors (i.e., descriptive norms) are related to actual behavior.
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2.2.3 Perceived Benefits

According to the health belief model (Rosenstock, 1990), perceived benefits of
using PBS to reduce the negative consequences of using alcohol or having sex
are expected to have an impact on both alcohol use and use of PBS. Although
there is evidence to support the idea that perceived benefits of using PBS reduce
alcohol consumption (Pearson, 2013), there is less empirical evidence that perceived
benefits of using PBS lead to an actual increase in use of PBS. Thus, inclusion of
this component is more supported theoretically than empirically. Nevertheless, we
hypothesize that increasing perceived benefits of using PBS will lead to decreased
alcohol use and increased use of PBS.

2.2.4 Self-Efficacy to Use PBS

This component is designed to increase self-efficacy to use PBS. Self-efficacy
(Bandura, 1977) for using PBS such as limiting alcohol intake or planning to
discuss sexual boundaries with a partner when intoxicated is expected to decrease
alcohol use (Pearson, Prince, & Bravo, 2017) and increase the use of PBS. In a
study specifically about alcohol use, Ehret, Ghaidarov, and LaBrie (2013) found that
drinking refusal self-efficacy was associated with decreased weekly alcohol use. In
a study focused on sexual risk behaviors, Nesoff, Dunkle, and Lang (2016) found
that condom use negotiation skills were positively associated with condom use.

2.3 Pathways from the Intervention Components
to Alcohol-Related Sexual Risk Behaviors and STIs

Figure 1 shows that each component targets one of the proximal mediators. In turn,
each mediator is hypothesized to produce an effect on the proximal behavioral
outcomes, that is, a reduction in alcohol use and an increase in the use of PBS.
Two main pathways lead to a reduction in alcohol-related sexual risk behaviors and
a reduction in STIs, each associated with one of the proximal behavioral outcomes.
Reducing alcohol use leads to a decrease in myopic effects and also to an increase
in the use of PBS, both of which lead to a decrease in alcohol-related sexual risk
behaviors. The increased use of PBS can itself decrease alcohol use (and then the
subsequent pathway to alcohol-related sexual risk behaviors can be followed as
described above), and it can directly decrease the use of alcohol-related sexual risk
behaviors. For example, even without reducing alcohol intake, a student could be
sure to use a condom as appropriate in any sexual encounter. In this case, even
though the sexual encounter may be alcohol-related, its risk is greatly reduced.
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2.4 Potential Moderators

We do not make specific hypotheses about moderators, but we note a number of
potential moderators that will be examined in data analysis. They are not included in
the conceptual model because we chose to develop a model focusing specifically on
how the candidate intervention components are hypothesized to have an effect on the
proximal mediators, proximal behavioral outcomes, and distal biological outcomes.
However, we include a description of potential moderators here for completeness.

2.4.1 Gender

Gender differences in alcohol use and sexual behaviors are well documented.
For example, males report higher participation in heavy episodic drinking in the
past 30 days (American College Health Association, 2016) and typically report
higher levels of specific sexual behaviors than females (e.g., more lifetime sexual
partners; (Chandra, Copen, & Mosher, 2013)). Males and females report comparable
numbers of hookups, yet males report more penetrative behaviors during a hookup
(i.e., vaginal and anal sex) than females. Fisher (2009) suggests that this may be
due to reporting bias that is a by-product of the social desirability of penetrative
behaviors among males. Further, in a study by Kirmani and Suman (2010), males
reported more positive norms for engaging in sexual behaviors and more positive
alcohol- and sex-related expectancies than females. Although these differences are
important, they are not expected to moderate either component effects or the effects
of mediators. The itMatters intervention components have been developed to work
equally well for both males and females. Although we hypothesize that there will be
no gender-by-component interactions, we will explore this interaction empirically.

2.4.2 Race/Ethnicity

Notable race/ethnicity differences have been observed in alcohol use and sexual
risk behaviors. Although African American/Black and Hispanic/Latino students
typically report lower alcohol use than White students (Paves, Pedersen, Hummer,
& Labrie, 2012), Black and Latino students report more unprotected sex and more
partners than White students (Randolph, Torres, Gore-Felton, Lloyd, & McGarvey,
2009) and carry a disproportionate STI burden (Centers for Disease Control and
Prevention, 2013). This disparity is often attributed to the gender ratio (more
females than males on campus) and available sex partner pools on college campuses,
particularly at historically black colleges and universities (Ferguson, Quinn, Eng,
& Sandelowski, 2006; Jennings et al., 2010). Thus the association between self-
efficacy and use of PBS might be weaker for Black students than White students:
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Black women may perceive less power to negotiate condom use and discuss safer
sex openly due to fear of losing a male partner to another woman.

2.4.3 Other Individual-Level

Another possible moderator is individual differences in sexual sensation-seeking.
Individuals who are high in sexual sensation-seeking are expected to experience
a more negative impact of the effects of alcohol (e.g., reduced condom use and
increased penetrative hookups) than those who are lower in sexual sensation-seeking
(Hendershot, Stoner, George, & Norris, 2007). Relational factors may moderate the
association between the use of PBS and alcohol-related sexual risk behaviors. For
example, the association between negotiating condom use and using a condom is
weaker for individuals in a committed relationship than those in a casual relationship
(Brown & Vanable, 2007) and weaker when a sexual partner is 3 or more years older
compared to less than 3 years older (Ford, Sohn, & Lepkowski, 2001). In addition,
the association is weaker if there is a reliance on hormonal contraception versus a
barrier method such as a condom (Bailey, Fleming, Catalano, Haggerty, & Manhart,
2012).

2.4.4 Environmental

There is less scientific literature on environmental moderators between the proximal
mediators and distal behaviors among college students. However, we hypothesize
the association between accurate perceptions of descriptive norms, and behavioral
outcomes is weaker when a Greek system exists on campus than not, and we
hypothesize that the association between having a plan to use condoms (a PBS)
and using condoms is stronger if free condoms are available on campus (Reeves,
Ickes, & Mark, 2016).

3 Optimizing itMatters

3.1 Overview of the Iterative Approach to Optimization

The goal of the current study is to build an effective and efficient STI preventive
intervention. By effective intervention, we mean an intervention that has been
empirically demonstrated to decrease alcohol-related sexual risk behaviors and,
ultimately, STIs. By efficient intervention, we mean an intervention that is made up
exclusively of components that have empirically detectable effects on the proximal
mediators. In other words, we plan to use the all active components optimization
criterion (see Chapter 2 in the companion volume).
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As mentioned above, this application of MOST is using an iterative approach
to optimization. An iterative approach involves conducting more than one, in this
case two, separate and sequential optimization trials. The research plan calls for
us to proceed as follows: Use the first experiment to determine which of the
five candidate components described previously have an empirically detectable
effect. Any components that do not have an empirically detectable effect are then
revised, with the objective of improving their effectiveness. Next, conduct a second
optimization trial to evaluate the new set of five components, made up of the
components found to be acceptable in the first optimization trial plus the newly
revised components. After this second experiment, construct the optimized itMatters
intervention using the all active components optimization criterion; in other words,
the optimized intervention will consist of all the components that had empirically
detectable effects. Finally, proceed to the evaluation phase of MOST and confirm by
means of an RCT that the optimized intervention has a statistically significant and
clinically meaningful effect.

At the time of this writing, the first optimization trial has been completed, and the
second is in the field. Below we describe the general strategy we used for identifying
which components require revision and for revising those components in preparation
for the second experiment.

3.2 Criteria for Determining Whether a Component Has
an Empirically Detectable Effect

Whether each component has an empirically detectable effect will be established
in the optimization trial, described below. To our knowledge there are no currently
established standards of what constitutes an effective intervention component. We
specified a priori that a component will be deemed effective if the results of the
optimization trial indicate that it achieves a main effect of d ≥ 0.15 in the anticipated
direction. This is what we consider the minimum clinically significant effect size
for a component, and it reflects the notion that in an efficient intervention, every
component should have an effect that is at least small by Cohen’s rule of thumb
(Cohen, 1988). We will also examine interactions between components, though
based on the conceptual model, we do not anticipate any large interactions.

We recognize that if there are interactions between components, the combined
effect of the components will be different from what would be expected based on
the main effects. In particular, if any interactions are primarily antagonistic, this
combined effect will be less than what would be expected based on the main effects.
Nevertheless, if we are able to arrive at a set of five components that achieve the
stated minimum effect size, we expect that the resulting intervention package will
achieve an effect size in the d = 0.35–0.5 range. This would exceed the effects
of existing interventions aimed at alcohol use (Scott-Sheldon et al., 2016; Tanner-
Smith & Lipsey, 2015) and condom use (Scott-Sheldon et al., 2011).
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More about how decision-making can be carried out based on the results of a
factorial experiment can be found in Chapter 7 in the companion volume.

3.3 Design of the Optimization Trials

As noted above, in this application of MOST, the purpose of the optimization trials is
to determine which of the candidate components achieve a main effect of d ≥ 0.15.
The resource management principle (see Chapter 1 in the companion volume) states
that the most appropriate experimental design for the optimization trial is one that
addresses the key research questions while making the best use of the resources
available.

A factorial design was selected for the optimization trials for three reasons.
First, a factorial experiment provides the necessary scientific information because
it separates component effects, enabling estimation of the main effect of each
candidate component (five in the current study). Second, the factorial experiment
is the only design that will enable us to examine interactions between components.
For example, the results of the factorial experiment will address the question of
whether, contrary to our conceptual model, the effect of the expectancies component
varies depending on whether a participant is provided with the self-efficacy
component. Third, a factorial experiment is a highly efficient way to examine
multiple intervention components. To achieve the same statistical power for tests of
component effects, a factorial experiment requires substantially fewer participants
than alternative approaches, such as conducting individual experiments on each
component (Collins, Dziak, & Li, 2009). (For more about factorial experiments,
see Chapters 3, 4, 5, and 6 in the companion volume.)

Each of the two factorial experiments to be conducted in the optimization phase
uses the same experimental design. There are five factors—a factor corresponding
to each component except the information component. Each factor has two levels:
no, in which the component is not provided to the participant, and yes, in which
the component is provided. A factorial experiment including five two-level factors
requires 25 = 32 experimental conditions. Table 1 shows the names assigned to
each factor and the 32 conditions in this experiment. Note that all of the participants
receive the information component. For example, a participant randomly assigned
to experimental condition #8 receives, in addition to the information component,
the injunctive norms (INORM = yes), perceived benefits (BENEFITS = yes), and
self-efficacy candidate components (SELFEFF = yes). By contrast, a participant
randomized to experimental condition #32 receives all of the components.

We considered conducting a 25–1 fractional factorial design (see Chapter 5 in the
companion volume), which would have cut the number of experimental conditions
in half, to 16. This would have meant that, as in all incomplete factorial designs,
there would have been aliasing (combining) of effects. In this case, each main effect
would have been aliased with a four-way interaction, and each two-way interaction
would have been aliased with a three-way interaction. Aliasing can be an acceptable
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Table 1 Experimental conditions in factorial design

Experimental

Condition Number

FACTORS

Information

component
EXP DNORM INORM BENEFITS SELFEFF

1 Yes No No No No No

2 Yes No No No No Yes

3 Yes No No No Yes No

4 Yes No No No Yes Yes

5 Yes No No Yes No No

6 Yes No No Yes No Yes

7 Yes No No Yes Yes No

8 Yes No No Yes Yes Yes

9 Yes No Yes No No No

10 Yes No Yes No No Yes

11 Yes No Yes No Yes No

12 Yes No Yes No Yes Yes

13 Yes No Yes Yes No No

14 Yes No Yes Yes No Yes

15 Yes No Yes Yes Yes No

16 Yes No Yes Yes Yes Yes

17 Yes Yes No No No No

18 Yes Yes No No No Yes

19 Yes Yes No No Yes No

20 Yes Yes No No Yes Yes

21 Yes Yes No Yes No No

22 Yes Yes No Yes No Yes

23 Yes Yes No Yes Yes No

24 Yes Yes No Yes Yes Yes

25 Yes Yes Yes No No No

26 Yes Yes Yes No No Yes

27 Yes Yes Yes No Yes No

28 Yes Yes Yes No Yes Yes

29 Yes Yes Yes Yes No No

30 Yes Yes Yes Yes No Yes

31 Yes Yes Yes Yes Yes No

32 Yes Yes Yes Yes Yes Yes
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price to pay for greatly increased efficiency (for example, see (Piper et al., 2016)).
However, ultimately we decided that in this case, the increase in efficiency would not
be great enough to compensate for aliasing. Because all of the candidate components
were to be delivered online, the additional resources required to conduct 32 as
compared to 16 experimental conditions would have been minimal and, in our view,
did not justify the use of a fractional factorial design.

3.4 Subjects and Measures

3.4.1 Subjects

Subjects for both optimization trials were freshmen students at several 4-year,
coeducational, public universities in the United States. The universities varied in
characteristics such as size, location, and ethnic composition, providing a diverse
sample.

3.4.2 Outcome Measures

The outcome measures for the optimization trials are drawn directly from the
conceptual model. As shown in Fig. 1, each component targeted a proximal
mediator—expectancies that alcohol is not needed before or during sex, accurate
perceptions of how many people use alcohol before or during sex, accurate
perceptions of acceptability of using alcohol before or during sex, perceived benefits
of using PBS related to alcohol and sex behaviors, and self-efficacy to use PBS
related to alcohol and sex behaviors. Measures of these mediators were the outcomes
used for making decisions about whether a particular component needs revision. We
used proximal mediators as outcomes, instead of the proximal behavioral outcomes
of sexual risk behavior in the first experiment, because the proximal mediators
could be measured sooner. This helped provide enough time for us to analyze the
data, determine which components are working, and make the necessary revisions
before conducting the subsequent experiment. We plan to use proximal mediators
as outcomes for the second experiment as well as to allow us the time to prepare
the itMatters-optimized intervention package for an evaluation by means of an RCT
within 1 year.

Our conceptual model justifies this approach. According to the conceptual model,
the proximal mediators ultimately affect alcohol-related sexual risk behaviors,
which in turn are hypothesized to affect STI incidence. Thus if each component has
an effect on its target mediator, this indicates that the optimized intervention package
can be expected to have the desired effect on the proximal behavioral outcomes (i.e.,
alcohol use, use of PBS), the distal behavioral outcome (i.e., alcohol-related sexual
risk behaviors), and the distal biological outcome, STIs. As will be discussed below,
for the RCT to be conducted in the evaluation phase of MOST, a measure of alcohol-
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related sexual risk behavior will be used as the primary outcome, and alcohol use
and use of PBS will be secondary outcomes.

3.5 Revision of Components

As noted above, this is an ongoing study, with the first of two optimization trials
completed. This section describes very briefly how results from the first experiment
were used to identify which components needed revision. A regression approach to
ANOVA was used to determine which intervention components were satisfactory
(i.e., achieved an effect of d ≥ 0.15) or needed revision (i.e., achieved an effect of
d ≤ 0.15). Preliminary analyses suggest that only the descriptive and injunctive
norms components were satisfactory; the remaining three components required
revisions. We made some initial revisions based on feedback from student focus
groups. We then asked several outside experts to give us a fresh perspective on
the revised components. We specifically asked them to identify content that was
missing and/or unclear. We revised the components based on their feedback. These
components will be evaluated in a second factorial experiment.

3.6 Secondary Analysis of Data from the Optimization Trials

Above we reviewed a number of variables that could be moderators, including
gender, race/ethnicity, other individual-level variables, and certain environmental
variables. Secondary analyses will examine whether any of these variables moderate
the effects of any of the five candidate components. We consider any analyses
involving moderating effects to be exploratory and acknowledge that we may not
have power to detect moderation effects. However, we expect these analyses to be
helpful in generating hypotheses that can be evaluated in subsequent studies that
will be powered for that purpose.

4 Evaluating itMatters

After the two rounds of optimization trials, we will know which of the candidate
components achieved the desired effectiveness on the proximal mediators and will
be included in the optimized intervention. The next step will be to evaluate whether
the optimized intervention is more effective than a suitable control using a two-arm
RCT. The primary outcome for this phase will be the proximal behavioral outcome,
alcohol-related sexual risk behaviors. This is the primary outcome specified in the
conceptual model, but measuring this outcome requires following students for a
longer period of time. We will use the necessary time to measure this outcome in
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the RCT. If shown to be effective, the optimized intervention will then be released
and made available to other universities interested in reducing alcohol-related sexual
behaviors and ultimately STIs among college students.

5 Discussion

5.1 The Conceptual Model

The first objective of this chapter is to describe the conceptual model for itMatters,
an online STI prevention intervention among college students. The development of
a conceptual model is a critical part of the preparation phase of MOST. In order
to create the conceptual model (Fig. 1), we drew heavily on theory and relevant
literature on alcohol use and sexual risk behaviors separately and laboratory studies
and the few interventions that have specifically targeted the intersection of alcohol
and sex.

The conceptual model is critical in MOST for several reasons. First, during inter-
vention development, the conceptual model has served as a powerful reminder to the
research team that it is essential to retain focus on the intersection of alcohol and sex,
rather than to develop an intervention that is a disjointed amalgam of interventions
focused separately on alcohol and sexual behaviors. Second, the proximal mediating
variables (i.e., expectancies, descriptive norms, injunctive norms, perceived benefits,
and self-efficacy) were clearly identified in the conceptual model as the intervention
targets, which guided the content of the components. Third, as discussed above, the
conceptual model pointed the way to selection of short-term outcomes for making
decisions about the effectiveness of a given component.

Development of a conceptual model can itself be an iterative process. During the
course of this project, we have revisited the conceptual model (and the literature)
numerous times as new literature emerged and as we refined our understanding of
the mechanisms by which alcohol use influences sexual risk behaviors. The research
team drafted more than 20 versions of the conceptual model, stopping only when
we felt it accurately represented the current empirical literature, scientific theory,
and our own ideas about mediating pathways by which proximal cognitive factors
influence behavior and ultimately STIs. Figure 1 represents our current thinking.

5.2 The Iterative Approach to Optimization

The second objective of this chapter is to describe the iterative approach to
optimization used in the current study. Using sequential optimization trials in an
iterative fashion provides an opportunity to improve the effectiveness of individual
candidate components before making final decisions about whether or not to include
them in the optimized intervention. In the current study, we are conducting two
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optimization trials, but more than two could be used if resources permit. To conduct
two or more optimization trials within a single optimization phase of MOST, it is
necessary to have access to enough subjects and sufficient time to conduct multiple
experiments.

Because we are conducting this study in university settings, we have a new set
of freshmen every year, so we have access to sufficient subjects. Using measures
of mediators as short-term outcomes afforded us enough time to conduct two
optimization trials in 2 years. However, when mediators are used as short-term
outcomes, the test of effectiveness is less definitive than it would be if the outcome
of ultimate interest were used. In this case it is particularly important to confirm the
effectiveness of the optimized intervention by means of an RCT using the outcome
of ultimate interest.

In this application of MOST, we used the all active components optimization
criterion, which means we were primarily interested in achieving effectiveness and
efficiency. As discussed in the companion volume, economy and scalability may
also be important in other settings. For example, in this application we could have
used the iterative approach to develop the most effective intervention we could
obtain that could be completed within some upper limit on time, say 30 min. This
might have improved both the economy (expressed in terms of participant time)
and scalability of the intervention. Thus the iterative approach can be used with the
objective of improving effectiveness, efficiency, economy, or scalability.

The iterative approach may not be feasible in situations where subjects, for exam-
ple, clinical subjects, must be recruited over a period of time or offered generous
compensation for their participation. It also may not be feasible for interventions
that take a long time to deliver or where the outcome of interest is far in the
future and it is not desirable to use measures of mediators as short-term outcomes.
But where resources permit its use, the iterative approach has considerable appeal,
because it has the potential to systematically and incrementally strengthen the effect
of an intervention before it is evaluated in an RCT. We are hopeful that the use
of this approach will enable us to develop an online intervention that approaches
the effectiveness of comparable traditional implementer-led interventions, and we
believe it could improve the public health impact of many behavioral, biobehavioral,
and biomedical interventions.
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experience implementing optimization trials, including implementing three factorial
experiments in primary care clinics simultaneously (N ≈ 1700). This chapter
provides evidence for the feasibility of conducting large factorial experiments in
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1 Introduction

The way to build a complex system that works is to begin with a very simple system that
works. Kevin Kelly, American Editor/Publisher (Kelly, 1994)

Smoking is the leading preventable cause of death and disease in the United
States, killing almost half a million people each year (U.S. Department of Health and
Human Services, 2014). Tobacco researchers have worked for decades to develop
and disseminate evidence-based treatments to help smokers quit. However, even
with such treatments, the vast majority of smokers who try to quit ultimately
return to smoking (Fiore et al., 2008). To address this issue, our research team at
the University of Wisconsin Center for Tobacco Research and Intervention (UW-
CTRI) sought to build more effective treatment packages more efficiently and
decided to try a novel approach to smoking treatment development – the multiphase
optimization strategy (MOST; Collins, 2018, companion volume, Collins et al.,
2011; Collins, Kugler, & Gwadz, 2016). Briefly, in MOST, promising behavioral
and pharmacologic intervention components are examined in an optimization
trial (e.g., a factorial experiment). The most promising (e.g., effective, scalable)
components are then combined into an optimized treatment package consisting only
of components shown to be effective and to work well together; the optimized
treatment package is then evaluated in a randomized clinical trial (RCT), and the
treatment package is disseminated.

Over the last 9 years, in conjunction with collaborators at the Pennsylvania State
University and the University of Illinois, Chicago, we have worked to develop
optimized smoking cessation treatments that can be effectively and efficiently
delivered in primary care settings. To achieve that goal, we have completed five
optimization trials and one randomized controlled trial (RCT) that completed a
full cycle of MOST. Our optimization trials have primarily been factorial screening
experiments; we have also conducted one fractional factorial screening experiment
(Collins, companion volume) and are currently conducting a sequential, multiple
assignment, randomized trial (SMART; Almirall, Nahum-Shani, Wang, & Kasari,
this volume). Both fractional factorial experiments and SMARTs are special cases
of the factorial experiment. The term screening experiment refers to a factorial or
fractional factorial experiment whose primary purpose is to screen out inactive or
underperforming components and/or to choose the collection of components that
will be most effective given constraints on time or money. In one center grant,
we recruited almost 1700 participants into three factorial experiments implemented
in primary care clinics; we implemented more than 80 different experimental
conditions simultaneously and with fidelity. Informed by the results from the first
round of optimization trials, we are currently conducting another factorial screening
experiment and a SMART. The goal of this chapter is to provide evidence for the
feasibility of conducting large factorial experiments in real-world settings and to
share strategies and important considerations for successfully implementing such
experiments. Some of these strategies are also relevant to implementing RCTs
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and may be familiar, but implementing factorial experiments also involves unique
considerations and modifying standard strategies.

2 Tobacco Treatment Optimization Trials

We began our research with a center grant from the National Cancer Institute (NCI;
2009–2014). The goal of this center grant was to identify promising intervention
components to treat all smokers seen in primary care, including those who are
not ready to quit. Based on behavior change theory and prior literature, different
intervention components were designed to (1) motivate smokers who were initially
unwilling to quit to make quit attempts sooner and increase the success of those
attempts and (2) help smokers who were willing to quit to become smoke-free. All
patients attending primary care visits were asked about their smoking status by clinic
staff. Identified smokers were invited to participate in a study where they would
receive treatment to either cut down on their smoking or quit. Interested patients
were then referred to our research office via the electronic health record (Fraser,
Christiansen, Adsit, Baker, & Fiore, 2013; Piper et al., 2013).

Patients who smoked who were eligible and interested in reducing their smoking,
but not in quitting, were assigned to Motivation Study 1 (Cook et al., 2016; see
Table 1). Participants were randomized to 1 of 16 treatment conditions as part of
a 4-factor screening experiment (see Table 2). The intervention components were
designed to reduce smoking and promote future cessation. Smoking patients who
were interested in quitting were randomized to one of two cessation screening
experiments. Cessation Study 1 (Piper, Fiore, et al., 2016; see Table 1) was
a fractional factorial experiment that examined the effects of six intervention
components focused on the preparation and cessation phases of treatment, targeting
treatment mechanisms relevant to the opportunities presenting in the 3 weeks prequit
and 2 weeks postquit, respectively (Baker et al., 2011; see Table 3). Cessation Study
2 (Schlam et al., 2016; see Table 1) was a five-factor experiment with 32 conditions
(see Table 4) that screened components designed to target challenges to medication
adherence and challenges in the maintenance phase. Thus, this center grant allowed
us to conduct three factorial optimization trials and screen 15 potential intervention
components in primary care clinics.

The findings from this research were used to engineer an abstinence-optimized
treatment package that we then evaluated in an RCT as part of a subsequent NCI-
funded center grant (2014–2019). This cessation RCT – designed to evaluate the
effectiveness of the optimized treatment package – represented the completion
of one cycle of MOST. We found that the MOST-engineered treatment package
doubled abstinence rates at all time points (through 52 weeks after the target quit
day), compared to a recommended usual care treatment (Piper et al., in press).

As part of this 2014–2019 center grant, we are also conducting a second
optimization trial of intervention components for smokers initially unwilling to
quit, in an effort to more effectively increase the percentage who eventually make
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Table 2 The factors and experimental conditions for Motivation Study 1

Conditions Nicotine patch Nicotine gum
Behavioral reduction
counseling

Motivational
interviewing strategies

1 Patch Gum Yes MI
2 Patch Gum Yes No MI
3 Patch Gum No MI
4 Patch Gum No No MI
5 Patch None Yes MI
6 Patch None Yes No MI
7 Patch None No MI
8 Patch None No No MI
9 None Gum Yes MI
10 None Gum Yes No MI
11 None Gum No MI
12 None Gum No No MI
13 None None Yes MI
14 None None Yes No MI
15 None None No MI
16 None None No No MI

MI motivational interviewing

quit attempts and the success of those attempts (Motivation Study 2). In that
trial, participants are randomized to one of two levels on four different factors
aimed at reducing smoking (see Table 1). The third experiment in this center grant
screens intervention components designed to help smokers who have tried to quit
and relapsed (Testing Relapse Recovery Intervention Components Study). This
experiment uses a SMART design – an innovative approach aimed at optimizing
adaptive treatments. In a SMART design, randomization occurs at more than one
stage, with randomization at a later stage based on response to treatment at an earlier
stage. This optimization trial tests adaptive intervention components at two stages:
when a smoker relapses and when a smoker decides to make a new quit attempt.
Participants initially receive a usual care cessation treatment. If they relapse, they
are randomized to one of three Relapse Recovery conditions (see Table 1). If
participants not in the control condition choose to make a new aided quit attempt,
they are randomly assigned to one of four treatment conditions (in a 2 × 2 factorial
design) screening two cessation intervention components. We have also conducted
other factorial experiments detailed in Table 1.

In the subsequent sections of this chapter, we will share how we implemented
these optimization trials, the challenges we encountered, and the lessons we learned.
While we do not profess to have all the answers, we will discuss our approach
to addressing the complexities of implementing factorial designs. Specifically, this
chapter will address treatment factor selection, factor integration and implemen-
tation, fidelity in implementation, randomization, data collection, considering the
participant perspective, and reporting results of factorial experiments.
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Table 3 The factors and experimental conditions for Cessation Study 1

Condition

Prequit
nicotine
patch

Prequit
nicotine
gum

Prequit
counseling

In-person
cessation
counseling

Phone
cessation
counseling

Postquit nicotine
patch + gum
duration

1 Patch Gum Intensive Minimal Minimal 8 weeks
2 Patch Gum Intensive Minimal Intensive 16 weeks
3 Patch Gum Intensive Intensive Minimal 16 weeks
4 Patch Gum Intensive Intensive Intensive 8 weeks
5 Patch Gum None Minimal Minimal 16 weeks
6 Patch Gum None Minimal Intensive 8 weeks
7 Patch Gum None Intensive Minimal 8 weeks
8 Patch Gum None Intensive Intensive 16 weeks
9 Patch None Intensive Minimal Minimal 16 weeks
10 Patch None Intensive Minimal Intensive 8 weeks
11 Patch None Intensive Intensive Minimal 8 weeks
12 Patch None Intensive Intensive Intensive 16 weeks
13 Patch None None Minimal Minimal 8 weeks
14 Patch None None Minimal Intensive 16 weeks
15 Patch None None Intensive Minimal 16 weeks
16 Patch None None Intensive Intensive 8 weeks
17 None Gum Intensive Minimal Minimal 16 weeks
18 None Gum Intensive Minimal Intensive 8 weeks
19 None Gum Intensive Intensive Minimal 8 weeks
20 None Gum Intensive Intensive Intensive 16 weeks
21 None Gum None Minimal Minimal 8 weeks
22 None Gum None Minimal Intensive 16 weeks
23 None Gum None Intensive Minimal 16 weeks
24 None Gum None Intensive Intensive 8 weeks
25 None None Intensive Minimal Minimal 8 weeks
26 None None Intensive Minimal Intensive 16 weeks
27 None None Intensive Intensive Minimal 16 weeks
28 None None Intensive Intensive Intensive 8 weeks
29 None None None Minimal Minimal 16 weeks
30 None None None Minimal Intensive 8 weeks
31 None None None Intensive Minimal 8 weeks
32 None None None Intensive Intensive 16 weeks

3 Factor Selection

In a factorial experiment, researchers select possible levels of an intervention
component, and together these levels make up a factor (a manipulated independent
variable in the experiment). Some factors have an intervention component turned
on or off (e.g., nicotine gum vs. none), whereas in others the levels represent a
more intensive versus a less intensive version of an intervention component (e.g.,
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Table 4 The factors and experimental conditions for Cessation Study 2

Cessation interventions Adherence interventions

Condition

Nicotine
patch + gum
duration

Maintenance
phone
counseling

Medication
adherence
counseling

Automated
medication
adherence calls

Medication
monitoring
feedback

1 26 weeks Intensive MAC Calls Feedback
2 26 weeks Intensive MAC Calls No feedback
3 26 weeks Intensive MAC None Feedback
4 26 weeks Intensive MAC None No feedback
5 26 weeks Intensive None Calls Feedback
6 26 weeks Intensive None Calls No feedback
7 26 weeks Intensive None None Feedback
8 26 weeks Intensive None None No feedback
9 26 weeks None MAC Calls Feedback
10 26 weeks None MAC Calls No feedback
11 26 weeks None MAC None Feedback
12 26 weeks None MAC None No feedback
13 26 weeks None None Calls Feedback
14 26 weeks None None Calls No feedback
15 26 weeks None None None Feedback
16 26 weeks None None None No feedback
17 8 weeks Intensive MAC Calls Feedback
18 8 weeks Intensive MAC Calls No feedback
19 8 weeks Intensive MAC None Feedback
20 8 weeks Intensive MAC None No feedback
21 8 weeks Intensive None Calls Feedback
22 8 weeks Intensive None Calls No feedback
23 8 weeks Intensive None None Feedback
24 8 weeks Intensive None None No feedback
25 8 weeks None MAC Calls Feedback
26 8 weeks None MAC Calls No feedback
27 8 weeks None MAC None Feedback
28 8 weeks None MAC None No feedback
29 8 weeks None None Calls Feedback
30 8 weeks None None Calls No feedback
31 8 weeks None None None Feedback
32 8 weeks None None None No feedback

MAC medication adherence counseling

26 vs. 8 weeks of medication). Selecting which intervention components to test
in a factor, according to MOST, should be based on theory, an explicit conceptual
model, and, most importantly, extant research supporting promising intervention
components (Collins et al., 2011, 2016; Collins, Murphy, Nair, & Strecher, 2005;
see Chapter 2 of the companion volume, Collins, 2018). There are also practical
considerations to take into account when selecting components and component
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levels for an experiment, including selection of robust intervention components with
appropriate comparison levels, common treatments/constant components, and the
similarity of the intervention components being tested.

3.1 Selection of Robust Intervention Components
with Appropriate Comparison Levels

One of the strengths of factorial designs is they enable researchers to tease apart the
main effects of each intervention component tested and determine which interven-
tion components are and are not exerting effects on the primary outcome. Therefore,
selecting components and appropriate comparison levels is key. It is important to
include comparison levels that would be appropriate to include in the final optimized
treatment package (i.e., both levels would be feasible and appropriate to implement),
and it is important to ensure that the intervention and the comparison level address
the research question. Finally, in order to have the best probability of observing an
effect, if there is one, while maintaining a reasonable sample size, the comparison
levels of the factors must be selected to produce a clinically meaningful effect
size. The difference in outcome between the on vs. off (or of more intensive vs.
less intensive) levels needs to be sufficient so that the main effect of on vs. off
produces a measurable, ideally statistically significant (however that is defined),
independent effect. This is particularly important because, in designs with more
than two factors, the majority of the participants receive additional intervention
components. For instance, in the Cessation Studies 1 and 2, we included a factor that
examined medication duration (8 vs. 16 weeks of combination nicotine replacement
therapy (NRT) in Cessation Study 1 and 8 vs. 26 weeks of combination NRT in
Cessation Study 2). Although we did not find significant differences in 26-week
abstinence rates in the 8- vs. 16-week comparison, 26 weeks of combination NRT
yielded higher abstinence rates than 8 weeks (Piper, Fiore, et al., 2016; Schlam
et al., 2016). This was an important empirical question: Do smokers need 26 weeks
of medication, or does 16 weeks sufficiently improve upon the effects of 8 weeks
of medication? However, if we only had one study and wanted to know whether
extended medication was better than the standard 8 weeks of medication, we would
have wanted to ensure that our comparison was strong enough to exert an effect (e.g.,
26 vs. 8 weeks of medication). In other words, the target intervention component
(the on condition) needs to be robust, and the comparison level (the off condition)
needs to be appropriate, such as the current clinical practice; the comparison should
not be a straw man nor should it be so robust that it won’t yield a main effect of
the intervention component. For example, if a factor compared three counseling
sessions (on) vs. two counseling sessions (off), one might need a very large sample
size to achieve sufficient statistical power to detect the main effect. In summary, it is
important when powering a factorial design to choose the effect size carefully and
to select factor levels that are robust enough to deliver that effect.
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In addition, it is important to ensure that either level of a factor (i.e., the lower
and higher levels) could be included in the optimized treatment package. If it turns
out that 16 weeks of combination NRT is not more effective than 8 weeks, then the
lower level of 8 weeks of medication would be the level identified as appropriate
for the optimized treatment package. Therefore, the lower level and the higher level
need to be appropriate and feasible for future implementation. That is, by including
8 weeks of NRT as the lower level, one is committing to providing at least 8 weeks
of NRT to all participants in the eventual RCT and scaled intervention.

3.2 Common Treatments or Constant Components

When conducting a factorial experiment, it is also important to consider whether
to use a common treatment (called a constant component in Chapter 3 in the
companion volume). For instance, in Cessation Studies 1 and 2, all participants
received a common treatment of 8 weeks of combination NRT, a very effective
smoking cessation treatment (Cahill, Stevens, Perera, & Lancaster, 2013) that
exceeded standard of care. This design likely made it more difficult to demonstrate
a main effect of intervention components that were added to this strong common
treatment. When the lower level of a factor already has a considerable effect, or
when the common treatment is strong, the on conditions need to be strong enough
to produce detectable main effects (or, alternatively, a larger sample size is needed
for adequate power to detect the smaller effect size).

3.3 Similarity of the Intervention Components

Another practical consideration when selecting intervention components is ensuring
that two intervention components are not so similar that they could be considered
equivalent. For example, researchers should consider whether the desired goal is
to compare two different approaches to addressing one specific treatment mecha-
nism or whether each intervention component addresses an independent treatment
mechanism. Redundant intervention components included as distinct factors that
address the same treatment mechanism may produce an antagonistic interaction (see
Chapter 4 in the companion volume). In Cessation Study 1, we tested an in-person
counseling factor and a phone counseling factor, each with intensive vs. minimal
levels; both forms of counseling were delivered during the first 2 weeks after the
target quit day and covered similar topics. We wanted to determine whether one
modality was better than the other (in-person vs. phone) and whether they exerted
additive effects (i.e., was more counseling contact better than less as reported in
Fiore et al., 2008). However, by treating the in-person and phone counseling as
independent factors, we ended up with an antagonistic interaction: receiving both
treatments, via different modalities, did not improve cessation rates on average
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above receiving just one or the other. Clearly identifying the scientific question
can help protect against this problem. If the goal is to compare two intervention
components that are similar (i.e., they target the same mechanism), but only one
component would be included in the final treatment package, then consider making
each component a level of a single factor (e.g., in-person counseling vs. phone
counseling), rather than two separate factors (in-person counseling vs. none; phone
counseling vs. none). Using this approach, no participant would get both in-person
and phone counseling.

4 Factor Integration and Implementation

Once the intervention components and their appropriate comparisons have been
selected, the components need to be delivered in a compatible way, even if the
components’ mechanisms of action are quite different. Given that the goal is to
develop an optimized integrated treatment package from these components, it is
essential that intervention components do not contradict one another, operate via
antagonistic mechanisms, or require incompatible delivery methods. For example,
in Motivation Study 1, we tested behavioral reduction counseling and motivational
interviewing. The theoretical rationales behind these two different treatments were
quite distinct; behavioral reduction is a behavioral, directive approach that involves
setting reduction goals, whereas motivational interviewing is a nondirective, client-
centered counseling technique for eliciting behavior change by helping clients to
explore and resolve ambivalence. Although these treatments likely targeted different
potential mechanisms, it was important to ensure the protocols were presented in a
compatible manner to participants randomized to the on levels of both factors (e.g.,
the more participant-focused motivational interviewing was provided first, followed
by the more directive behavioral reduction counseling).

Another key design consideration involves participant burden. How intense is
the treatment, and what is the participant burden, if all factors are set to on or if
all are set to off? Components and levels need to be selected to ensure that if any
combination of levels (including all on or all off) is selected, the condition is feasible
to deliver. If all factors are set to off, is the participant getting any treatment? Is this
ethical? If all factors are set to on, is the burden beyond what a participant may
be willing to endure? We found that if participants do not receive any meaningful
treatment to help them quit smoking, it can compromise participant retention. This
finding highlighted the need for there to be either a constant component or for
at least some of the factors to designate lower levels that include evidence-based
treatment to ensure that all participants got at least some treatment (although, as
noted previously, the constant component or lower level should not be so potent that
the effects of the higher or on level will likely not be detectible). We also learned that
when all levels were set to on, some participants experienced high burden: (1) long
in-person counseling sessions (e.g., 45 minutes in the Relapse Recovery Study), (2)
long phone calls consisting of assessment plus three types of counseling (50-minute
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calls; Motivation Study 2), and (3) four counseling sessions in the first week of the
quit attempt (Cessation Study 1). The amount of time and attention required for this
much counseling content was difficult for some participants and may have resulted
in failure to sustain engagement or to benefit from the intervention. To the extent
that this engendered treatment fatigue, it likely lowered the “dose” of treatment and
lowered the effect size of the individual treatment components among this subgroup
of participants. The benefit of a factorial design, however, is that when considering
how many factors of each type (e.g., counseling) to include in a study, researchers
can prioritize the factors and perhaps choose less burdensome factors so that those
included in the experiment are delivered in an adequate dose to all participants.

Finally, when integrating factors, the timing of intervention component delivery
needs to be considered. If a factor is not implemented until later in the experiment
(e.g., after the target quit day or after an early smoking relapse), then fewer
participants may receive that treatment due to study attrition. For example, in
Cessation Study 2, maintenance counseling calls did not begin until 3 weeks after
the target quit day. This timing may make it harder to detect an effect of this
intervention component because some participants will be unwilling or unavailable
to receive the treatment because they are discouraged about being able quit and
have dropped out of the study. A similar pattern may occur if an intervention
component delivered early in treatment negatively affects treatment engagement,
but this is difficult to predict in advance. This type of effect appeared to occur in the
Smokefree.gov study (Fraser et al., 2014); we observed that sending multiple daily
emails starting immediately after enrollment was associated with lower use of the
website, which interfered with the beneficial effect of the website.

5 Implementing Factors with Fidelity

We identified four key elements to implementing treatment with fidelity – appro-
priate protocols, staff training, a rigorous system to guide study activities, and
fidelity checks. These are important in all research, but when using complex factorial
designs, they are critical.

5.1 Protocols

Implementation of each intervention component as intended requires a detailed
protocol for each component and a clear plan for integrating various components.
In other words, protocols are required for all levels of each factor, as are protocols
for implementing multiple factors set to the on level. In addition, there needs to
be a clear, consistent temporal order of intervention components. If two factors are
on, in what order should they be provided? Should one factor be provided first,
based on its purported mechanism? As noted above, in Motivation Study 1, we
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kept the sequencing of the counseling intervention components consistent across
participants with both components on (e.g., motivational interviewing counseling
always preceded behavioral reduction counseling in hopes that the mechanisms
would have the least interference).

Once the implementation order has been determined, pragmatic adjustments may
be necessary for certain combinations of intervention components. For instance,
the timing of intervention components that co-occur should be considered. If
two intervention components are scheduled to occur on the same day and that
might result in excessive burden, then can the timing be adjusted to maintain
fidelity to the treatment yet minimize participant burden? In Cessation Study 1,
we tested in-person and phone counseling designed to support participants in the
days surrounding the target quit day. Both factors included a contact on the quit
day. However, it did not make sense to have both a quit day visit and a phone call.
Therefore, for participants randomized to the ON level of both the in-person and
phone counseling factors, we moved the quit day call to 1 day after the quit day to
keep the combined protocol as consistent as possible with the standard protocol,
yet also make clinical sense. If we had decided to include both components in
our optimized treatment package, this is how we would have implemented the
optimized treatment. Having appropriate protocols to guide the implementation of
each intervention component, including the implementation of certain components
in concert, increases the likelihood that each intervention component will be
implemented as intended, providing the most rigorous test of the intervention.

5.2 Staff Training

As with any study, staff training is critical to implementing treatment with fidelity.
Even with a large number of treatment conditions, staff training and study design
can ensure that implementation with fidelity is feasible for staff. In our studies,
bachelor-level staff serve as health counselors. When preparing to launch a study,
our health counselors (HCs) are first trained on individual protocols for each level of
each factor (2–5 factors). This approach ensures the HCs are able to administer each
of the intervention components with fidelity. We then train HCs to administer com-
binations of intervention components. Transitions from one intervention component
to the next are scripted in the counseling protocols, with the order of implementation
specified by the study database. Thus, in our 5-factor experiment (Cessation Study
2), we did not train staff to administer 32 different treatment conditions. Rather,
we thoroughly trained HCs in each individual treatment component protocol and
then in any necessary transitions, so they were able to easily use the protocols in
all possible combinations. HCs were required to demonstrate proficiency in each
intervention component and in a few key combinations before treating participants.
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5.3 Rigorous Systems

Our ability to focus on training HCs to administer just five intervention protocols
(rather than 32) is due to the use of a rigorous database with embedded protocols
to guide study activities. This system allows researchers to ensure that participants
receive all the intervention components to which they are assigned and only the
intervention components to which they are assigned. Because the components are
independent of one another, they can be clearly defined and specified so that
HCs know exactly who gets what and at which study contact each intervention
component should be carried out. Our study databases also include a scheduling
program that tracks when research contacts occur, including when visits or calls
need to be scheduled based on the participants’ condition. The length and timing
of appointments vary by condition; this information is populated in the database by
condition, making scheduling relatively straightforward for the HC.

For our studies, we use an Access/SQL Server database (other relational
databases could also perform this function) that allows researchers to create
condition-specific templates, randomize participants, and then immediately create
a participant’s treatment and assessment schedule based on the templates and
randomized condition. Figure 1 provides an example of a participant’s study
appointment schedule. It includes the ideal date to schedule the appointment
(typically based on either the date of consent or the target quit date), as well
as start and end windows that tell HCs the range of dates in which they can
schedule the appointment and not have it fall “out of window.” The database also
contains condition-specific preparation lists for each appointment (not shown) so
that HCs know what they need to do to prepare for the upcoming visit or phone

Fig. 1 Condition 1 participant schedule
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Fig. 2 Condition 1 participant flowsheet (Note. In Condition 1, all factors are on. At this visit, the
health counselor distributes medication and provides three types of counseling. There are separate
lines in the flowsheet for each counseling type (5Rs motivation counseling, behavioral activation
[BA], and behavioral reduction [BR]); this allows the counselor to see what counseling needs to be
provided at a glance and to document that they provided all three types of counseling. However,
the counseling protocol provided in the link (the green box) is the combined counseling guide
customized for Condition 1 with appropriate transitions between the three types of counseling)

call, including what medication (type, dose, and amount) needs to be prepared.
For each appointment (in-person or phone), the database provides HCs with a
procedure checklist or “flowsheet” (see Fig. 2). HCs proceed through the flowsheet,
implementing each appointment activity, in order, for that appointment. For each
relevant flowsheet item, the database has an electronic link to the appropriate online
assessment (e.g., Visit 2 assessment) or treatment tailored to each participant’s
specific condition and appointment. For example, there is a link to the medication
distribution instructions for Visit 4 or a link to the counseling protocol for that
participant for that contact (e.g., Visit 1 5Rs motivation counseling, behavioral
activation, and behavioral reduction protocols with appropriate transitions between
the types of counseling). As shown in Fig. 2, HCs simply click on the green “Click
Here to Edit Live” button to the right of the Qualtrics assessment item, opening up
the Visit 1 assessment for participants randomized to Condition 1.

In sum, when participants provide consent, they are randomized to an exper-
imental condition, and the database creates a study schedule for them based on
their experimental condition and corresponding flowsheets for each contact that
guide the delivery of treatments and assessments (i.e., the database ensures that
HCs are prompted to deliver all participants in Condition 14 identical Condition
14 interventions and assessments and nothing else). It is important to note that
flowsheets and scheduling could be tracked using paper forms and/or Excel
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worksheets (e.g., Pellegrini, Hoffman, Collins, & Spring, 2014). This method would
likely be more cumbersome than using a database but would likely still achieve the
goal of ensuring that what happens to each participant, and when, is clearly spelled
out for each experimental condition.

5.4 Fidelity Checks

Fidelity checks are also critical for ensuring that participants are receiving the
intervention components consistent with their assigned experimental condition
and, conversely, are not receiving intervention components to which they are
not assigned. For our research, we audio-record counseling sessions to provide
supervision and feedback. We also score the recordings for counseling content to
ensure the appropriate content is being covered (i.e., we confirm each highlighted
topic is addressed), and no non-protocol content is addressed (see Fig. 3). If
an experiment includes more than one counseling intervention component, it is
important to verify that there is no bleeding over of counseling content between
intervention components. Further, implementing a factorial experiment with fidelity
requires ensuring that each level of each factor is implemented the same way
irrespective of the other levels of the other factors (except in the case of planned
exceptions, such as those addressed above regarding avoiding scheduling two study
contacts on the same day).

Fig. 3 Condition 1 participants’ fidelity checklist for Visit 1 counseling (5Rs motivation counsel-
ing, behavioral reduction, and behavioral activation)
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While implementing factorial experiments with fidelity is a challenge, it is
definitely possible. When beginning this line of research, we found it helpful to
recruit slowly for the study at first and to enroll “pilot” participants. This allowed
us to get feedback from staff on all aspects of implementation, from participant
understanding of the consent procedures to the ability of the database to keep staff
on track regarding which treatments should and should not to be delivered. This
also allowed us to talk to participants about their experiences and get their feedback.
These processes allowed us to address unforeseen problems and feel confident when
we officially launched the study.

6 Randomization

Randomization for factorial experiments, as for RCTs, is essential because it
strengthens the inferences that can be made about the effects of treatment on
outcome. This is, in part, because randomization reduces the impact of individual
difference variables; participants randomized to an experimental condition should
have equal representation in terms of gender, age, race, etc. However, randomization
is more likely to fail (i.e., experimental conditions will not have equal representation
of baseline characteristics) when individual experimental condition sample sizes are
small (Saint-Mont, 2015). We opted to use stratification/blocking variables (e.g.,
gender, healthcare clinic) to minimize failures of randomization. We found that
when using stratified randomization for a factorial study, overall condition allocation
initially looked somewhat uneven. However, distribution across all 8, 16, or 32
conditions tended to even out over time (e.g., after there were about 10 participants
per condition). We carefully track the condition allocation by block and stratum to
ensure that the randomization routines work as intended.

The complexity of implementing large-scale factorial designs (with 4–5 factors
resulting in 16–32 different intervention combinations) led us to randomize partici-
pants prior to their first treatment visit and prior to them providing informed consent.
In RCTs, treatment condition should not be known by the staff or participants
prior to providing consent to ensure that participants do not differentially decline,
based on their treatment assignment. However, we found that informing staff of
the participants’ treatment condition prior to consent is important in our factorial
experiments in order to know how long to schedule the initial visit, which may
vary considerably by experimental condition when lengthy intervention components
are assigned. Knowing the treatment assignment also ensures staff have adequate
time to prepare the appropriate treatment (e.g., review counseling protocols, have
appropriate handouts, prepare medication with proper dosing based on information
collected during screening). It is critical that staff are not rushed so there is
no increased risk of providing the wrong treatment. We do not, however, reveal
the treatment condition to participants prior to consent. An alternative solution
would be to randomize participants after consent but not provide treatment until
a subsequent visit. This rigor should be weighed against the burden on participants
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of an additional study contact and the likelihood that some participants will drop out
after providing written consent and never attend the first treatment contact if these
procedures are not completed in the same visit.

7 Data Collection

As with any study, in a factorial experiment, it is important to consider who will
conduct the assessments (i.e., will they be conducted by the treatment provider or
at another time by an independent assessor), as well as the duration and timing of
assessments. As for who conducts the assessments, the most rigorous assessment
approach would be to have nontreatment providers blind to treatment condition
conduct the assessments. However, this can be a challenge in a factorial design
where some participants may have many more treatment contacts than others.
To minimize participant burden and reduce the overall number of contacts, the
treatment provider can conduct both assessments (especially intervention-specific
assessments) and treatment. This is typically how we have conducted assessments
in our factorial experiments. During in-person visits, participants complete most
assessments independently using a web-based survey on a tablet the treatment
provider does not see. During follow-up calls, nontreatment providers collect
outcome data. However, during treatment phone contacts that involve assessment,
HCs collect assessments first and then provide the treatment in an effort to
minimize demand characteristics. This approach has two unfortunate side effects:
the treatment provider collecting the data potentially biases the answers and calls
which involve assessment followed by counseling can become excessively long and
burdensome.

By the time the assessment is complete (especially if participants elaborate on
their answers during the assessment), some participants may have little energy left
to devote to the counseling. This problem is particularly challenging during certain
phone contacts. We have found that if the HC clearly explains that topics that arise
during the assessment can be explored in more detail during the counseling, this
can reduce the duration of the assessment and mitigate fatigue. The design and
administration of assessment – as it relates to both burden and possible conflict
with treatment delivery – are important to consider during protocol development.
Generally, we have tried to limit the assessment burden during sessions where
lengthier counseling treatments are being delivered and to administer the majority
of assessments during in-person visits when assessments can be completed via web-
based surveys, which are faster than answering questions over the phone.

In factorial designs, assessments related to specific intervention components
(e.g., medication adherence, mechanisms of action, outcomes) need to be sched-
uled appropriately for the participants receiving those components. Therefore,
researchers need to ensure that they have clear flowsheets that specify the timing
of each assessment for each condition, especially if there are different versions
of assessments for different conditions or at different times (e.g., we asked about
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medication use late in treatment only of those randomized to extended medication).
As discussed above, our database has assessment links embedded in participants’
flowsheets so that the staff can click on the link and go directly to the assessment
appropriate for that treatment condition and that study contact.

Variability in treatment and assessment contacts in factorial designs can make it
challenging to assess constructs consistently. For instance, in Cessation Study 2, at
Week 16 only half of the participants attended an in-person treatment visit, but all
participants received an assessment phone call (the call was scheduled before the
visit for those receiving both). We therefore did not obtain in-person biochemical
verification of abstinence from any participants at Week 16; rather, in the Week
16 phone call, we assessed self-reported abstinence from everyone because that was
the measure we could collect consistently from all participants regardless of whether
they had an in-person visit. Regardless of condition differences, it is important that
all major outcomes be assessed at an appointment that is identical for all participants
(either an in-person visit or a call) and that all participants are scheduled to attend
(e.g., a 26-week assessment call for all participants).

8 The Participant Perspective

Factorial experiments are an efficient way to address many research questions,
but they are more complicated to implement than randomized controlled trials.
However, participants do not need to understand or experience this complexity.
Participants need to understand the different treatments they might receive in order
to provide informed consent, but they do not need to understand the complexities
involved in creating and keeping track of 32 sets of flowsheets and checking for
treatment fidelity. Rather, participants should experience their assigned treatment
condition as a single, seamless treatment package. When we inform participants
about our studies, we describe each level of each factor, including potential risks,
and explain that they will get a combination of these intervention components
(e.g., we tell them “you may get one or more of the following treatments”). This
approach ensures that participants are providing informed consent to receive all
possible intervention components and combinations. We also inform participants
that the study will have a range of study contacts (e.g., 3–5 study visits, up to 4
coaching calls, and 3 follow-up calls). To ensure that participants experience the
study as seamless, once they are randomized, we provide them with condition-
specific treatment summary letters that list exactly which intervention components
they will receive as part of the study and when they will have study contacts.

It is important to note that participants may elect not to engage or continue
with a specific intervention component (e.g., take medication, attend counseling
sessions), even after consenting to receive all possible intervention components
and combinations. Because each factor is independent, participants should still
receive the other components, as appropriate, based on their experimental condition.
Therefore, if a participant were no longer able to use medication due to an adverse
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event, the participant would still receive the counseling intervention components.
Note that discontinuation of certain constant components may affect the relevance
of certain intervention components. For example, if a participant in Cessation
Study 2 decided to discontinue the constant component of cessation medication,
intervention components designed to increase medication adherence would be
irrelevant. In such cases, it is important to have infrastructure for documenting
intervention discontinuations and protocol deviations (e.g., noting that an irrelevant
treatment was discontinued). Despite changes to individual treatment regimens, all
participants should be included in analyses, using the intent-to-treat principle, based
on their assigned condition, regardless of whether they engaged in each intervention
component. In fact, one of the benefits of a factorial design is the ability to assess
overall engagement in each individual component and how such engagement is
related to the outcomes of interest.

As mentioned above, participant burden is an important consideration from both
the clinical and scientific perspective. To minimize participant burden, it is important
to consider the amount and spacing of all types of contacts (assessment, reminder
calls, treatment). If the research procedures are so demanding that participants do
not engage in the treatment (or do not engage fully), this compromises the ability
to draw firm conclusions about the effects of the intervention component (although
the argument could be made that lack of engagement is an important outcome).
The number and timing of treatment contacts in the factorial experiment should
be examined with the “frequency of contact” burden in mind. To determine our
contact schedule for participants, we first develop a list of ideal contact dates, with
corresponding windows surrounding each ideal contact date (showing the range of
acceptable dates in which to complete that contact) to provide adequate opportunity
to collect data or provide treatment at our desired time points as well as ensuring
breaks between contacts. Figure 1 shows the ideal date and the start and end window
dates surrounding the ideal date of each appointment.

9 Reporting Results

In a reporting and publishing world built for RCTs, factorial designs are sometimes
a round peg trying to fit in a square hole. We have encountered a few challenges
and developed solutions when reporting results in both the National Clinical Trial
Registry and in journals.

A factorial screening experiment funded by the National Institutes of Health
in the United States is considered a clinical trial and needs to be registered in
clinicaltrials.gov (see Smokefree.gov study: NCT01342523 or Motivation Study
1: NCT01122238). However, clinicaltrials.gov is designed for reporting RCTs. We
have developed strategies for registering our factorial trials. First, each level of each
factor should be entered as a treatment (e.g., for Cessation Study 1, treatments would
include minimal in-person counseling, intensive in-person counseling, 8 weeks of
patch, and 16 weeks of patch). Second, all combinations of treatment (e.g., every
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experimental condition) must be entered as if they were separate conditions (i.e.,
separate “study arms”); select which intervention components are offered in each
particular condition. This produces a rather large matrix (depending on the number
of factors). Third, some results (e.g., number recruited, withdrawals, abstinence
rates) are reported at the condition/study arm level (e.g., Condition 1: N = 12,
withdrawals = 2, percent abstinent = 34%). Other results (e.g., adverse events) are
reported for each level of each factor (e.g., the adverse events for 8 weeks of patch
vs. the adverse events for 16 weeks of patch); if there are participants randomized
to not receive medication (as in Motivation Study 1 for those with both nicotine
patch and gum turned off), these can be combined in a single group. Finally, the
main outcomes are entered in relation to the primary study aims (e.g., smoking
abstinence) for each of the study’s primary comparisons (i.e., on vs. off). It is
important to note that the professionals at clinicaltrials.gov will provide consultation
as needed.

Another substantial reporting challenge for factorial clinical trials involves
reporting participant flow in consort diagrams and outcome tables. Our first
published factorial experiment, the Quitline Study (see Table 1), was a 23 factorial
design. The outcome paper (Smith et al., 2013) included a consort diagram with
factors branching off one by one until each condition was represented with its
individual results (e.g., 8 conditions with 8 abstinence rates). For our subsequent
factorial studies (Cook et al., 2016; Fraser et al., 2014; Piper, Fiore, et al., 2016;
Schlam et al., 2016), consort diagrams and outcomes were reported based on the
factors (on vs. off; subjects were thus counted multiple times). We prefer the latter
approach because factorial studies evaluate outcomes based on main effects (i.e.,
comparisons of on vs. off); therefore, it is important to examine participant flow in
each on vs. off level. This approach also provides a cleaner presentation of results,
especially when there are more than three factors.

Finally, translating the complexity of factorial designs into a written manuscript,
within the word limits imposed by most journals, is a challenge. The design is
somewhat more complex and requires descriptions not only of the design but also of
each level of each factor. In addition, the need to report main effects and interaction
effects increases the number of primary outcome results to report, plus there may
be additional relevant analyses to report. One approach for investigators to consider
is publishing the study methods in a separate paper and referring to this paper in
subsequent outcome papers.

10 Conclusions

Factorial experiments permit efficient evaluation of multiple intervention compo-
nents as part of the MOST approach to engineering optimized treatment packages.
While there are complexities to implementing factorial experiments, they are
certainly feasible, as we have demonstrated in our simultaneous screening of
15 potential intervention components with 80 different experimental conditions
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within a single NCI center grant. In this chapter, we reviewed some of the
implementation complexities, including implementation considerations to address
during study design, factor integration, fidelity, timing and implementation of
assessments, randomization, issues to consider regarding the participant perspective,
and reporting results. We reviewed various implementation challenges and shared
our approach to addressing these issues.

One final note of encouragement to researchers is that while there may be
additional considerations in the initial implementation of factorial experiments and
in reporting the results, once the protocols are written and the appropriate systems
are in place, factorial designs can run as smoothly as RCTs while providing much
more detailed and nuanced information.
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Multilevel Factorial Designs
in Intervention Development

Inbal Nahum-Shani and John J. Dziak

Abstract Factorial designs are one of the many useful experimental tools that can
be used to inform the construction of multicomponent behavioral, biobehavioral,
and biomedical interventions. Clustering presents various challenges to investigators
aiming to implement such designs. Clustering means that some or all individuals
are nested in higher-level social or administrative units (e.g., schools, therapy
groups). These multilevel settings generate dependency in data within clusters
because individuals in one cluster tend to be more similar to each other than to
individuals in other clusters. Such dependency has implications for the design of
the factorial experiment, the model used to analyze the data, and the power for
detecting the effects of interest. In this chapter, we discuss five classes of multilevel
factorial designs that vary in terms of the nature of clustering (i.e., the process
by which individuals become clustered or the reason why they are considered
to be clustered), as well as the randomization scheme employed (i.e., whether
randomization to experimental conditions is done at the individual level, the cluster
level, or both). For each of the five classes, we discuss the scientific motivation for
employing the multilevel factorial design, provide a model for analyzing data arising
from employing a multilevel factorial design of this class, and offer formulas that
investigators can use to calculate the expected power. Design considerations are also
discussed with respect to each class. Our goal is to provide a comprehensive review
to help investigators select the most suitable design given their scientific questions,
target population, and available resources.
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1 Introduction

Factorial designs are a useful experimental tool in the construction of multicompo-
nent behavioral, biobehavioral, and biomedical interventions (MBIs). These designs
can be used in the optimization phase of the multiphase optimization strategy
(MOST) to screen out multiple candidate intervention components simultaneously
and inform their inclusion in an intervention package (see Collins, 2018, which is
a companion to this volume). One challenge in implementing factorial experiments
relates to the multilevel1 nature of the targeted population. Specifically, in many
cases the target population involves lower-level units (such as students, employees,
or patients) that are clustered, namely, nested in higher-level social or administrative
units (e.g., schools, organizations, therapy groups). This generates dependency in
data within clusters because individuals in one cluster tend to be more similar to
each other than to individuals in other clusters.

Clustering has implications for statistical power for detecting treatment effects.
In addition to standard considerations that are relevant in any experiment (e.g.,
sample size, effect size, selected type I error rate), investigators planning an
experiment with clustered individuals also have to take into account the number
of clusters (J), the number of individuals within each cluster (n), and the intraclass
correlation (ICC). The ICC reflects the degree of dependence in the response (i.e.,
outcome) among individuals within clusters. A large ICC can result in reduced
power, particularly if J is small or n is large. However, the implications of these
elements on power also depend on the nature of clustering in the experiment, as
well as the randomization scheme employed.

By the nature of the clustering, we refer to the process by which individuals
become clustered or the reason why they are considered to be clustered; there
are two main reasons. First, individuals might belong to pre-existing units, such
as clinics, hospitals, schools, or organizations. Here, we use the term pre-existing
clusters (PECs) to describe units that exist prior to experimentation. Second, clusters
might be generated as part of the experimentation itself. This can occur when
individuals are independent prior to experimentation, but dependence within clusters
of individuals is generated over the course of the experiment. This dependence
may be generated for reasons that are practical (e.g., each of several therapists
delivers the intervention to a subset of individuals), scientific (e.g., investigators
seek to facilitate therapeutic group processes and capitalize on social reinforcers),
or both. Such experimentally induced clusters (EICs) can be generated for all study
participants (i.e., full EIC) or for only a subset of them (partial EIC).

1We would like to point out that in this chapter, the term level is used in two different ways. Here
the term level is used to refer to a level of nesting in data with a cluster structure. Later, the term
level will also be used to refer to one of the values that can be taken on by a manipulated factor in
an experiment. We considered using a different term in one of these contexts but ultimately decided
to remain consistent with the existing scientific literature. We made an effort to write this chapter
so that the context makes the meaning clear.
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The randomization scheme can also differ from one study to another. Specifically,
randomization to experimental conditions can be done at the individual level (i.e.,
individuals are randomized), the cluster level (i.e., clusters are randomized), or
both. The options available here depend on the nature of clustering as well as other
considerations, which we discuss in detail below.

In this chapter, we discuss five classes of multilevel factorial designs that vary in
terms of the nature of clustering, as well as the randomization scheme employed.
The first involves PECs, with individuals within each cluster being randomized
to experimental conditions. We label this class within-PEC factorial experiments.
The second class also involves PECs, but clusters are randomized to experimental
conditions. We label this class between-PEC factorial experiments. The third class
can be conceptualized as a hybrid of a within-PEC and a between-PEC factorial: the
unit of assignment is the individual (rather than cluster), but each individual has only
a subset of possible experimental conditions to which s/he can be assigned, with
the specific subset determined by membership in PECs. We label this class hybrid-
PEC factorial experiments. The fourth class involves EICs that are generated for all
individuals. Here, either individuals or clusters can be randomized to experimental
conditions. We label this class full-EIC factorial experiments. The fifth class also
involves EICs, but here clusters are generated for only a subset of the individuals.
Hence, clusters of individuals are randomized to some experimental conditions, and
single individuals are randomized to others. We label this class partial-EIC factorial
experiments. These classes are summarized in Table 1.

Existing literature (e.g., Dziak, Nahum-Shani, & Collins, 2012; Nahum-Shani,
Dziak, & Collins, 2017) provides some information on various forms of multilevel
factorial designs, including power planning resources. Our goal in this chapter is
to provide a comprehensive review to help investigators select the most suitable
design given their scientific questions, target population, and available resources.
Hence, for each of the five classes above, we begin by providing an example to
clarify the scientific motivation for employing such multilevel factorial design and
the settings in which this class would be most relevant. We then provide a model for
analyzing data arising from employing a multilevel factorial design of this class.
Based on these models, we then provide formulas that investigators can use to
calculate the expected power for each class of multilevel factorial designs. The
power formulas provided in this chapter are simplified versions of existing power
planning resources; we re-expressed the original formulas so that they would include
parameters that an investigator can relatively easily elicit, such as correlations rather
than variance components. Finally, for each class we discuss design considerations,
namely, strategies investigators can employ when planning a multilevel factorial
design to make the experiment as informative and efficient as possible. We focus
somewhat more on the hybrid-PEC factorial experiments than on the other four
classes because the planning and analysis of hybrid-PEC factorial experiments has
not yet been explored elsewhere to our knowledge.

For simplicity our discussion focuses on complete factorial designs. However,
fractional factorial designs can also be employed with all five classes, and the
modeling principles and power planning resources are relevant to both the complete
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Table 1 Summary of five classes of multilevel factorial designs

Type of clustering Randomization scheme

PECs
or EIC?

Full or
partial
clustering?

Unit randomly
assigned to
experimental
conditions

Procedures for
randomizing
individuals or clusters

Within PEC PEC Full Individuals; clusters are
complete blocks

Within-cluster
assignment: one or more
individuals within each
cluster are randomly
assigned to each
condition

Between PEC PEC Full Clusters Between-cluster
assignment: whole
clusters are randomly
assigned to conditions

Hybrid PEC PEC Full Individuals; clusters are
incomplete blocks

Hybrid between within-
and between-cluster
assignment. Individuals
within each cluster are
randomly assigned to
only a subset of the
experimental conditions
(i.e., a packet)

Full EIC EIC Full Clusters (after assigning
individuals to clusters)

Individuals are either (a)
assigned to clusters,
which are then assigned
to conditions, or (a)
assigned to conditions
and then to clusters
within each condition

Partial EIC EIC Partial Individuals or clusters,
depending on the
condition

Individuals are assigned
to conditions and are
assigned to clusters only
within those conditions
that involve clustering

Notes: PEC pre-existing clusters, EIC experimentally induced clusters

and the fractional factorial case (see Dziak et al. 2012; Nahum-Shani, Dziak, et al.
2017). Further, fractional factorial designs play an important role in our discussion
of hybrid-PEC factorials. Also for simplicity, we restrict the discussion to designs
with only three factors of theoretical interest, which we label X1, X2, and X3. Of
course, the number of factors can be higher; see Collins, Dziak, and Li (2009) and
the companion volume (Collins, 2018) for a detailed discussion of how this may
affect sample size requirements. We assume the factors are dichotomous, with two
levels2 each, which are labeled on (experimental) and off (control) for convenience.

2Note that here, the term level refers to a value that can be taken on by an experimental factor.
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Table 2 Experimental conditions in the 2 × 2 × 2 factorial examples

Experimental condition X1 X2 X3 Example with blocked within-PEC
Clinic Strategy I Clinic Strategy II

1 Off (−1) Off (−1) Off (−1) A A
2 Off (−1) Off (−1) On (+1) A B
3 Off (−1) On (+1) Off (−1) A B
4 Off (−1) On (+1) On (+1) A A
5 On (+1) Off (−1) Off (−1) B B
6 On (+1) Off (−1) On (+1) B A
7 On (+1) On (+1) Off (−1) B A
8 On (+1) On (+1) On (+1) B B

Notes: PEC pre-existing clusters

The number of levels per factor can be higher, but this would have large implications
for sample size planning, which we do not explore here. Further, the levels of
the dichotomous factors could instead be labeled as low and high or any other
dichotomy, instead of on or off. A complete factorial design in this setting will result
in 2 × 2 × 2 = 8 experimental conditions (see Table 2). Throughout, we assume that
the levels of the factors are effect-coded, where the off level is coded −1 and the on
level is coded +1; see Kugler, Dziak, and Trail (2018) in the current volume for a
detailed discussion of coding in factorial designs. We also assume that the outcome
response Y is normally distributed and that the effects of the factors on Y are being
modeled, using a pretest P as a covariate.

2 Classes of Multilevel Factorial Designs

2.1 Within-PEC Factorials

These factorial experiments involve clusters that exist prior to experimentation
and a randomization scheme in which individuals are randomized to experimental
conditions within each cluster. Hence, different members of the same cluster are
independently assigned to different conditions (see Dziak et al. 2012 for published
examples).

Example Suppose an investigator wishes to develop an intervention program to
improve the emotional well-being of high-school students. Assume the outcome of
interest, denoted Y, is some measure of emotional well-being, with higher values
representing a more desirable outcome. The investigator would like to address three
scientific questions, namely, whether the targeted outcome would be improved by
including each of the following three components: (1) weekly videos that provide
stress-coping training (Video), (2) access to an interactive website (Website), and (3)
access to a mobile app that facilitates daily self-monitoring of mood and provides
supportive messages (App). Hence, the three factors of theoretical interest are
VIDEO (X1), WEBSITE (X2), and APP (X3). To address the three questions noted
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above, high-school students within each school are randomized to the resulting eight
experimental conditions.

Model Assuming there are j = 1, . . . , J clusters, with nj individuals in the jth
cluster, and denoting the response for individual i within cluster j as Yij, a model for
a within-PEC factorial can take on the following form:

Yij = γ0 + γP Pij+
γ1X1ij + γ2X2ij + γ3X3ij+
γ4X1ijX2ij + γ5X1ijX3ij + γ6X2ijX3ij+
γ 7X1ijX2ijX3ij+
uj + eij .

(1)

Here the eij, which represent a combination of random individual variability and
measurement error, are independent N(0, σ 2); and the uj, which represent the
random cluster effects, are independent N(0, τ 2). The regression coefficient γ P

represents the effect of pretest on posttest; this effect can be omitted if pretest is
unavailable. γ 1, . . . , γ K are the regression coefficients for the K effects of interest,
including main effects and interactions. Because we use effect coding, the main
effect of each factor can be expressed as two times the coefficient representing the
effect of this factor. For example, the average effect of offering Video (versus not
offering Video) would be expressed by 2γ 1, where the multiplier 2 comes from the
difference between effect codes for the on and off levels, that is, (+1)−(−1) = 2.
Notice that these coefficients represent effects at the individual level. For example,
γ 1 represents one-half the expected difference between individuals assigned to the
on level of Video and those assigned to the off level of Video.

If the investigator wishes to assume that one or more interactions are negligible,
the term representing that particular interaction can be omitted. For simplicity,
similar to Dziak and colleagues (2012), Model (1) assumes no cluster-by-treatment
interactions. This assumption could be relaxed by including cluster-by-treatment
interaction terms; for details, see Raudenbush and Liu’s (2000) description for a
single-factor design.

Power For all models provided in this chapter, the main effects and interactions
of interest can be tested using significance tests for the corresponding regression
coefficients (e.g., γ 1 for the main effect of VIDEO (X1) and γ 4 for the interaction
of VIDEO (X1) and WEBSITE (X2)). The power for such a significance test can be
estimated as the probability that a variable with a noncentral F distribution with
noncentrality parameter λ exceeds the critical value for the test (see Appendix 1
for more details). In general, λ equals γ 2/Var (γ̂ ) , where γ is the true value of
the coefficient being tested and Var (γ̂ ) is the sampling variance (squared standard
error) of its maximum likelihood estimate for samples of the size proposed.

The appropriate variances for a within-PEC factorial were derived in Dziak et al.
(2012), and the resulting noncentrality parameter formula is shown in Table 3. As
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shown, the formula for λ in the case of within-PEC factorials is similar to the
standard formula used in the case of independent randomization (i.e., no clustering).
Specifically, λ will increase to the extent that the squared true effect coefficient as a
ratio of the total error variance (γ 2/σ 2

Y ) increases. For convenience, in Table 4 we
also re-expressed the formulas in terms of d = 2γ /σ Y to clarify the connection to
Cohen’s (1988) standardized effect size for the main effect of a given component.
Here, d is the ratio of the expected mean difference in the response (adjusted for
pretest) between the two levels of a given factor to the overall within-condition
standard deviation (σ Y ). Hence, as in the case of independent randomizations, power
will increase to the extent that the standardized effect size is larger.

The noncentrality parameter λ will also increase to the extent that the within-
person correlation between pretest response and posttest response (ρpre, post) and
the total sample size (N) are larger. This is illustrated in Fig. 1, which provides
the expected power (based on the formula for Design 2 in Table 3) for varying
levels of ρpre, post and sample size. This figure emphasizes the added value of having
a relatively large ρpre, post. For example, with ρpre, post = 0.75 , a researcher may
achieve adequate power (0.80) even with relatively small sample size. Of course,
this feature is not unique to within-PEC factorials or to multilevel factorials more
generally. As discussed by Dziak et al. (2012), if the probabilities of assignment
to experimental conditions in the within-PEC factorial case are the same across all
clusters, and if there are no cluster-by-treatment interactions, then the implications
of clustering on power for within-cluster randomized designs are negligible. Hence,
for power planning purposes, the data can be conceptualized as having only one
level rather than two, namely, as if the individuals were independent.

The critical value for the F-test is determined by the alpha level of the test, as
well as the degrees of freedom, which are 1 for the numerator, representing one
coefficient that is being tested and some value υ for the denominator. For example,
the critical value is about 3.90 for a test with an alpha level of 0.05 and with 150
denominator degrees of freedom. The denominator degrees of freedom υ depends
on the design and the sample size. As can be seen in Table 1, for a within-PEC
factorial, υ relies heavily on the total number of individuals rather than the number
of clusters. Software packages such as SAS or R can quickly compute the power
given λ and υ; sample code for doing this is provided in Appendix 2.

Throughout, our power formulas assume no random slopes for cluster – that
is, no cluster-by-treatment interactions. For example, we assume that Video does
not work better for some schools than for others. If this assumption does not hold,
the formulas here may be too optimistic. Formulas for a single-factor within-PEC
experiment with cluster-by-treatment interactions are given by Raudenbush and
Liu (2000). Further methodological research on cluster-by-treatment interactions
in various factorial designs may be warranted.

Design Considerations When considering a within-PEC factorial, investigators
should take into account the feasibility of assigning different individuals within the
same cluster to different conditions, as well as the risk for contamination. Here, risk
for contamination refers to the chances that an intervention component intended for
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Fig. 1 Expected power for within-PEC factorials. (Notes: PEC pre-existing clusters. This figure
shows the calculated power for a test of a main effect or interaction in Model (1) for a within-
PEC factorial design. This means we assume a linear model with normally distributed responses,
no cluster-by-treatment interaction, and a fitted model that contains three dichotomous factors
and all interactions included (hence 9 regression coefficients including the pretest). Note that the
number of parameters has only a modest effect on power for a given parameter. Balance is also
assumed, namely, that each cluster has the same number of individuals in each condition, although
this may not be exactly possible in practice. To illustrate the link between power and the within-
person correlation between pretest and posttest responses (ρpre, post), it is assumed that there are 10
clusters with 10, 25, or 50 members each and no dropout and that the true value of the standardized
regression coefficient is .15 (hence a Cohen’s d of 0.3 if a main effect is being tested))

individuals in one experimental condition will be received by individuals in another
experimental condition to which this intervention component was not intended to
be provided. As we discuss below, if assigning different individuals within the same
cluster to different experimental conditions is not feasible for logical, practical,
financial, or ethical reasons, such as in a setting where the risk for contamination
is high, a between-PEC approach (described below) should be considered.

The random assignment of individuals to experimental conditions in a within-
PEC factorial can be done in several ways. The simplest way is to assign each
individual independently without regard for their cluster membership. While rather
straightforward, this approach entails a risk that some clusters might be highly
unbalanced on one or more components. The most extreme case of imbalance
would arise if a cluster is missing a level of a component. As an example, consider
a case where all of the students in a particular cluster receive the off level of
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Video. This particular cluster would provide no information at all about the effect
of that component. This potential problem can be resolved by treating each PEC
as a “block” for randomization purposes: that is, to conduct the randomization in
a restricted way so that each cluster (i.e., “block”) contains at least one member
assigned to each experimental condition. In other words, each cluster is a replication
of the entire experiment. In the context of our example, each school should ideally
have at least one student assigned to each of the eight experimental conditions
resulting from the 2 × 2 × 2 factorial design, and the number of students from
each cluster in each condition should be as close to equal as possible.

2.2 Between-PEC Factorials

We now turn our attention to between-PEC factorials. Like within-PEC factorials,
these factorial experiments involve clusters that exist prior to experimentation.
However, between-PEC factorials use a randomization scheme in which clusters,
rather than individuals, are randomized to experimental conditions (see Dziak et al.
2012 for published examples).

Example Suppose again that an investigator wishes to develop an intervention
program to improve the emotional well-being of high-school students. Although
the outcome and three factors of theoretical interest remain the same, assume that
now the investigator is concerned about contamination. For example, suppose the
investigator has reasons to expect that students may share the videos with other
students in their school. In this case, randomizing students within a school to the
eight experimental conditions entails high risk that conditions involving the off level
of Video will be contaminated.

Besides contamination, there are other logical, practical, financial, and ethical
reasons to consider randomizing clusters rather than individuals within a cluster.
For example, the nature of one or more intervention components may require
administering them at the cluster level. This is the case in curriculum reforms
or educational programs that are designed to be implemented at the school level.
This is also the case when intervention components are designed to affect the
individual by changing social processes at the cluster level, such as interventions
that are designed to facilitate prosocial and pro-academic school climates, where
school climate is defined as “the shared beliefs, values, and attitudes that shape
interactions between the students, teachers, and administrators” (Mitchell, Brad-
shaw, & Leaf, 2010, p. 23). Another example concerns intervention components
that involve training professionals (e.g., healthcare providers, teachers) who support
or treat many other individuals (e.g., patients, students). This makes individual-
level randomization infeasible, as it is usually impossible to train professionals
for treating one participant and then untrain them for the next. In some cases,
randomizing clusters is preferable for ethical reasons. This includes settings where it
is considered unethical (e.g., from the point of view of fairness and equity) to offer a
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particular component to some individuals and not to others within the same cluster
(Moerbeek & Teerenstra, 2015). The rationale for electing to randomize clusters
rather than individuals has been discussed in detail in literature on single-factor
between-PEC trials (e.g., Donner & Klar, 2000; Eldridge, Ashby, Feder, Rudnicka,
& Ukoumunne, 2004; Murray, 1998; Taljaard et al. 2009; Weijer et al. 2011).

Model Assuming, as before, that there are j = 1, . . . , J clusters, with nj individuals
in the jth cluster, and denoting the response for individual i within cluster j as Yij, a
model for a between-PEC factorial can take on the following form:

Yij = γ0 + γP Pij+
γ1X1j + γ2X2j + γ3X3j+
γ4X1jX2j + γ5X1jX3j + γ6X2jX3j+
γ 7X1jX2jX3j+
uj + eij

(2)

where, as before, the eij and the uj are independent N(0, σ 2) and N(0, τ 2), respec-
tively. Notice that the only difference between Models (2) and (1) is the subscript
for the X variables, which are written here as Xkj rather than Xkij because factors in
Model (2) cannot vary within a cluster. This has implications for the interpretation
of the regression coefficients γ 1, . . . , γ K (as well as for the power formula, as we
explain below). In Model (1), γ 1, . . . , γ K represent individual-level effects, but in
Model (2) they represent cluster-level effects. For example, γ 1 represents (half) the
expected difference between clusters assigned to the on level of VIDEO and those
assigned to the off level of VIDEO.

Note that in Dziak et al. (2012), the subscripts for the regression coefficients also
differed between the model for within-PEC and the model for between-PEC. This
is because the authors used formal multilevel notation, where the subscripts of the
regression coefficients represent levels of nesting. For example, a coefficient labeled
here as γ k was labeled there as γ k0 for within-PEC factorials and γ 0k for between-
PEC factorials, to emphasize that it represented an individual-level contrast in the
within-PEC case and a cluster-level contrast for the between-PEC case. Here, we
elect to use the same subscripts for the regression coefficients in Models (1) and (2)
because algebraically Model (2) is merely a special case of (1) where all Xij within
a cluster are set to the same value Xj. Hence, the same mixed model can be applied
in both cases.

Power Based on the work of Dziak et al. (2012), Table 3 presents a simplified
formula for calculating the noncentrality parameter λ, as well as the denominator
degrees of freedom υ, when planning power for a between-PEC factorial. Note that
although Model (2) is suitable for analyzing data from a between-PEC factorial, the
power formula in Table 3 is based on a more elaborate repeated measures model.
This is because planning power for between-cluster designs requires specifying
how the cluster effect on the pretest relates to the cluster effect on the posttest
(see Murray, 1998 for more details). The parameters of Model (2) cannot be used
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to specify this because the pretest response is treated as a covariate. A repeated
measures model, on the other hand, treats the pretest response as a separate time
point in a multilevel repeated measures design. Hence it enables the researcher
to specify how cluster effect on pretest response and cluster effect on posttest
response are related (see Dziak et al. 2012 for a more detailed explanation). The
use of a repeated measures model, rather than the pretest-adjusted model, to guide
the development of the power formula explains why the power formula in Table
3 for between-PEC factorials seems different from other formulas in that table.
For example, unlike the other formulas in Table 3, the formula for between-PEC
factorials involves the within-cluster ICC of the change score (ρchange), which
represents the extent to which members of a given cluster are similar in how their
response has changed from pretest to posttest.

Similar to the within-PEC scenario, the noncentrality parameter λ in the formula
for between-PEC factorials will increase to the extent that the within-person correla-
tion between pretest and posttest response (ρpre, post), the total sample size (N), and
the standardized effect size (d) increase. However, in the between-PEC scenario, λ is
also a function of the within-cluster ICC for change scores (ρchange) and the posttest
ICC (ρpost), which represents the extent to which members of a given cluster are
similar in their posttest response. Note that for simplicity, this formula is based on
the assumption that the posttest ICC is the same as the pretest ICC.

Figure 2a provides the expected power (based on the formula for Design 3 in
Table 3) for a varying number of clusters, as well as varying values of ρpost and
ρchange. This figure shows that more clusters will be needed to achieve adequate
power when the within-cluster ICC for change scores is large than when it is small.
Interestingly, given a fixed within-cluster ICC for change scores, the number of
clusters needed to achieve an adequate level of power is only slightly affected by
the posttest ICC. One intuition for why the within-cluster ICC of the change score
might be more important for power than the ICC of the posttest is that some of the
variance in posttest response is shared with the pretest, and this variance is removed
when taking into account the change in response from pretest to posttest (see Dziak
et al. 2012).

Also, notice that in between-PEC factorials, the denominator degrees of freedom
(υ) are calculated based on the number of clusters (J) rather than the total number of
individuals (N). This is one reason why power in between-PEC experiments is more
heavily influenced by the total number of clusters than by the number of individuals
within a cluster (n). This feature is illustrated in Fig. 2b, which provides the expected
power (based on the formula for Design 3 in Table 3) for varying values of N, J,
and n.

Design Considerations In between-PEC factorials, all members of a given cluster
are assigned to the same experimental condition, so that clusters are nested within
conditions. To preserve the balance property of a factorial design, namely, to ensure
that each level of each factor contains about the same number of clusters, it is
recommended that clusters be assigned to conditions in a restricted manner. For
example, if there are 20 schools in the hypothetical scenario described above, the
investigator could first randomly assign schools in a way that ensures that there are
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Fig. 2 (a) Expected power for between-PEC factorials: fixed cluster size, varying ICCs. (Notes:
PEC pre-existing clusters. This figure shows the calculated power for a test of a main effect
or interaction in Model (2) for a between-PEC multilevel factorial design. Model (2) assumes
normally distributed responses and no cluster-by-treatment interaction. Here we further assume
that the fitted model has three dichotomous factors and all interactions included (hence 9 regression
coefficients including the pretest), although the number of parameters has only a modest effect on
power for a given parameter. Balance is also assumed, namely, that each condition receives the
same number of clusters and each cluster has the same number of individuals, although this may
not be exactly possible in practice. To illustrate the link between the number of clusters and power,
it is assumed that the within-person correlation between pretest and posttest response (ρpre, post) is
.65 and that the true value of the standardized regression coefficient is .15 (hence a Cohen’s d of
0.3 if a main effect is being tested). The cluster size is set to 20, and various possible posttest ICC
(ρpost) and change ICC (ρchange) are being compared).

two schools in each of the eight experimental conditions and then randomize the
remaining four schools to any condition in a way that ensures that no condition
receives more than one of them. In this example, each condition will contain either
two or three clusters, so that conditions will not differ in size by more than one
cluster.

In some situations, there may be important cluster-level demographic covariates
(such as whether a school is public or private, urban or rural, or has received a
particular kind of intervention before). Because the number of clusters is often
modest, the distribution of such a covariate may easily be somewhat imbalanced
between treatment levels on an assigned factor, even though the assignment is
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Fig. 2 (continued) (b) Expected power for between-PEC factorials: fixed ICCs, varying cluster
size. (Notes: PEC pre-existing clusters. This figure shows the calculated power for a test of a main
effect or interaction in Model (2) for a between-PEC multilevel factorial design. Model (2) assumes
normally distributed responses and no cluster-by-treatment interaction. Here we further assume
that the fitted model has three dichotomous factors and all interactions included (hence 9 regression
coefficients including the pretest), although the number of parameters has only a modest effect on
power for a given parameter. Balance is also assumed, namely, that each condition receives the
same number of clusters and each cluster has the same number of individuals, although this may
not be exactly possible in practice. To illustrate the link between the total sample size, number of
clusters, number of members per cluster, and power, it is assumed that the within-person correlation
between pretest and posttest response (ρpre, post) is .65 and that the true value of the standardized
regression coefficient is .15 (hence a Cohen’s d of 0.3 if a main effect is being tested). The posttest
ICC (ρpost) is set to .10, the change-score ICC (ρchange) is set to .05, and various possible cluster
sizes are being compared for every given total sample size)

random. That is, the covariate may have a non-negligible sample correlation with a
factor, even though the factors are randomized independently. This may not always
be avoidable, especially if there are many covariates of interest. However, if there
is severe imbalance on a covariate of theoretical interest, then the randomization
should probably be repeated. Obviously, this must be done before administering
treatment, so it would be important for these cluster-level covariates to be available
to the person performing the randomization. A more advanced statistical way of
dealing with the risk of poor randomizations in experiments is described by Morgan
and Rubin (2015). However, because they described their method primarily in
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the case of a single-factor experiment with unclustered participants, some further
methodological work is needed before their method would be convenient for
between-PEC factorial experiments.

2.3 Hybrid-PEC Factorials

The discussion above of factorial experiments with PECs focuses on scenarios in
which the randomization scheme involves randomizing either individuals (within-
PEC) or clusters (between-PEC) to experimental conditions. However, in some
factorial experiments with PEC, the randomization scheme lies somewhere between
these two approaches. Specifically, these PEC factorials involve a randomization
scheme in which individuals within a cluster are randomized to only a subset
of the experimental conditions. Here, different members of the same cluster are
independently assigned to different conditions, but these conditions might differ
from those conditions to which members of another cluster may be assigned. As
noted earlier, this class of multilevel factorials can be conceptualized as a hybrid
between a within-PEC factorial, in which the members of a given cluster can receive
any of the eight conditions, and a between-PEC factorial, in which the members of a
given cluster must all receive the same condition. Here, a member of a given cluster
has only a subset of possible experimental conditions to which s/he can be assigned,
with the specific subset determined at the cluster level. The unit of assignment is still
the individual, not the cluster, but the possible conditions are limited for individuals
within any given cluster.

Example Suppose that now the investigator wishes to develop an intervention for
improving the coping skills of adolescents with mental illness in primary care prac-
tices. Unlike the previous examples, the goal here is to build an intervention program
that will be delivered or managed by local clinic staff. Assume that now the outcome
of interest, Y, is a reverse-coded measure of symptom severity, so that as before,
higher values represent a more desirable outcome. As before, three components are
of theoretical interest; however, now these components are (1) in-person biweekly
coping skills training (In-Person), (2) brief phone coaching sessions that focus on
addressing barriers to implementing adaptive coping strategies (Phone), and (3)
weekly email contact with parent(s) focusing on ways parents could be most helpful
with their adolescents’ coping skills training (Parent). Hence, the corresponding
factors are IN-PERSON (X1), PHONE (X2), and PARENT (X3).

In this hypothetical scenario, local staff at each clinic must be trained and
supervised by study staff to implement each experimental condition. Suppose
that local staff at each clinic have the capacity (in terms of time and available
resources) to implement at most four experimental conditions simultaneously with
a reasonable degree of fidelity to the protocol. Further, suppose that resources are
not available to retrain the local staff so that they can implement four conditions
first and then implement the other four. Hence, the investigator decides to divide the
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eight experimental conditions (perhaps randomly) into two “packets,” Packet A and
Packet B; each packet includes four experimental conditions, and each clinic will
be assigned only one packet, either A or B. In other words, each clinic will conduct
four and only four of the eight conditions.

Model Although in this scenario the possible conditions to which an individual
can be randomized are limited by cluster membership, the design is still a within-
PEC factorial, and Model (1) can still be used to analyze the resulting data. It
might seem as though the packets of experimental conditions to which members
of a given cluster can be randomized ought to be considered as an additional
level of nesting that needs to be included in the model. However, the selected
packets do not generate dependency in the responses of individuals in the same
manner that cluster membership does. Clusters assigned to a given packet are similar
only in that their members have access to the same subsets of conditions; hence,
conditional on the experimental condition, members of the different clusters are not
necessarily statistically dependent simply because their clusters receive the same
packet. As such, the packets do not introduce another source of variation beyond that
generated by the experimental conditions. Rather, the packets are merely another
form of restricted randomization, similar to the restrictions used to guarantee that
the members in a cluster (for an ordinary within-PEC design) or the clusters in the
sample (for a between-PEC design) are allocated in a roughly balanced way. As in
the case of a standard within-PEC factorial, it is conceivable that the presence of one
treatment component in a cluster might affect the outcomes of even those cluster
members who, by design, are not supposed to receive the component; however,
this would be a case of contamination, and if it is considered likely to occur,
then a between-PEC design might be more suitable. In classic experimental design
terminology, a within-PEC experiment without packets uses “complete blocks,” and
a within-PEC experiment with packets uses “incomplete blocks” (see, e.g., Kuehl,
2000).

In summary, it is reasonable to analyze data resulting from a hybrid-PEC factorial
by using the same model proposed above (Model 1) for standard within-PEC
factorials. First, as discussed above, in a hybrid setting, it is not necessary to
conceptualize and model the packets as another level of analysis. Second, as we
explain in detail below under design considerations, when the possible conditions
to which an individual can be randomized are limited by cluster membership, it
is sometimes necessary to assume that certain cluster-by-treatment interactions are
negligible. This assumption is compatible with Model (1), which already assumes
no cluster-by-treatment interactions.

Power Assuming no cluster-by-treatment interactions, and assuming the number
of conditions within each packet is large enough to ensure balance across clusters
for main effects, power calculations for main effects can reasonably be done in the
same way as for an ordinary within-PEC design. That is, the same formulas for
calculating the noncentrality parameter λ and the denominator degrees of freedom
υ can be employed for within-PEC factorials, whether or not the possible conditions
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to which individuals can be randomized are limited to packets determined by cluster
membership. However, as described below, power calculations for interactions can
be more complicated in the hybrid-PEC case, because it is possible that not all of the
clusters will provide as much relevant information for estimating a given interaction.

Design Considerations As described earlier, in the case of a hybrid-PEC factorial,
each cluster is assigned to only a subset (“packet”) of conditions. Here, the
randomization involves two stages: first, randomly determine which clusters get
each of the packets and second, randomly determine which cluster members get
which experimental condition from the packet available to them. The packets
themselves should be constructed prior to the first stage in a careful and systematic
way so as to make the overall experiment as informative and efficient as possible.

To clarify this, assume there are only two clinics in the example above, labeled
clinic A and clinic B. Thus, there must also be two packets, one to be assigned to
each clinic. Note that this assumption is made for illustrative purposes alone and
does not imply that a design with only two clusters is recommended. One arbitrary
way to assign the conditions would be to assign conditions (1) through (4) as a
packet to clinic A and conditions (5) through (8) as a packet to clinic B. This is
shown as Strategy I in Table 2. This strategy has a serious limitation: patients in
clinic A are only assigned to conditions in which the In-Person component (X1) is
set to off, whereas patients in clinic B are only assigned to conditions in which In-
Person is set to on. Thus, the effect of cluster membership is aliased (confounded
by design), with the main effect of In-Person. To make this concept more concrete,
assume the investigator finds that the difference in mean outcome Y between
individuals in conditions 5 through 8 and individuals in conditions 1 through 4 is two
units on the scale of measurement being used, in favor of individuals in conditions
1 through 4. Suppose that this is large enough to be statistically and practically
significant. What should the investigator conclude based on this information?
Unfortunately, the investigator cannot make any definitive conclusions. It is unclear
whether the difference of two units indicates that providing In-Person sessions (the
on level of X1) is on average more effective than not providing In-Person sessions
(the off level of X1) or that members of clinic B do better on average compared to
members of clinic A for some other reason unrelated to the treatment factors. Thus,
the main effect of X1 and the effect of clinic membership are confounded – they
cannot be distinguished when using Strategy I.

The main problem with Strategy I is not the fact that it involves aliasing per se but
rather the nature of the aliasing employed. Specifically, Strategy I aliases the main
effect of X1 with cluster membership. The underlying assumption is that cluster
membership has a negligible effect and hence can be confounded with another effect
that is of considerable theoretical interest. However, in many cases this assumption
might be unreasonable. For example, for some reasons intrinsic to the clinic, such as
more qualified staff, better facilities, or a more supportive management, members of
one clinic might do better on average than members of another. This would seriously
bias the estimate of the main effect if Strategy I were to be used. Fortunately,
much more informative strategies can be found by using ideas from the fractional
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factorial experimental design literature, which focuses on making experiments more
practically feasible yet still informative.

Conceptualizing cluster membership as a factor in a factorial design makes it
easy to see that using cluster membership to limit the possible conditions to which
an individual can be randomized can cause cluster membership to be confounded
with some other effects. Specifically, in our hypothetical example, conceptualizing
cluster membership as another factor in the design, a full factorial would include 24

experimental conditions (because there are four factors with two levels each, three
of them are the treatment factors and the remaining one is the cluster membership
factor). However, the design implemented in Strategy I is a 24–1 fractional factorial
(see Collins (2018) companion volume), including half of the conditions a full
factorial would include in our hypothetical scenario. Selecting only a subset of
the conditions, a full factorial would include aliasing (i.e., confounding) – the
inability to estimate certain effects separately. However, just like in a fractional
factorial experiment, it would also be possible to make a hybrid-PEC factorial
more informative by aliasing cluster membership with a high-level interaction that
is of little theoretical interest and is assumed to be negligible, rather than with a
main effect. To clarify this, consider Strategy II in Table 2, where the first packet
includes conditions 1, 4, 6, and 7; and the second packet includes conditions 2,
3, 5, and 8. This strategy was selected using an experimental design procedure
in SAS called PROC FACTEX; details are provided in the appendix. In this
carefully constructed strategy, none of the main effects of theoretical interest, and
none of the two-way interactions, are confounded with clinic membership. Instead,
the main effects are only confounded with three-way interactions involving two
assigned factors and the cluster membership factor (e.g., X1 × X2 × CLINIC).
Additionally, two-way interactions between each pairs of factors are aliased with an
interaction between clinic membership and the remaining third factor. For example,
the two-way interaction between IN-PERSON (X1) and PHONE (X2) is aliased with
the interaction between PARENT (X3) and clinic membership. Finally, the three-
way interaction between all three factors is aliased with the main effect of clinic
membership itself.

Overall, Strategy II allows the cluster random effect (namely, the effect of
the clinic), as well as the fixed main effect of each of the three factors, to be
estimated subject to more reasonable assumptions. For example, to estimate the
main effects of the three factors without bias, it is only necessary for three-way
interactions involving two assigned factors and the cluster membership factor (e.g.,
X1 × X2 × CLINIC) to be negligible. It is often more reasonable to assume
that higher-order interactions, such as X1 × X2 × CLINIC, are negligible than
to assume that lower-order effects, such as the effect of the clinic itself, are
negligible (see Wu & Hamada, 2000). Hence, Strategy II would offer more useful
and interpretable information compared to Strategy I, because of its more reasonable
aliasing structure.

In the discussion above, we assume that there are only two clinics available.
However, there will often be more than two clusters available for experimentation.
This provides additional design options, which, if used wisely, will allow the
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experimenter to estimate the effects of scientific interest with less aliasing, more
power for estimated effects, or both.

For convenience, suppose that there are ten clusters. One approach would be to
replicate Strategy II five times, namely, to use the same two packets, but assign five
clinics to each packet, instead of one to each packet. Recall that doing so does not
create another level of nesting in the model. Precisely which five clusters get the
first packet and which get the second packet should be random, but the packets are
the same as those that were found to be optimal in the two-cluster case; that is, the
two packets each include the same subset of conditions as the corresponding packet
in the two-cluster example. Of course, this randomization should be restricted so
that five clusters receive each packet. Although it would be possible to assign seven
clusters to one packet and three clusters to the other, this would not provide as
much statistical power and precision because the sample sizes receiving different
conditions would be highly unbalanced. If there are a total of eleven clinics instead
of ten, the assignment would have to be slightly imbalanced, whereby six clinics
would be assigned to one packet and five to the other, but this imbalance would
be much less severe. That is, all else being equal, it is best to assign clusters to
packets in a manner that provides as much balance as possible for the comparisons
of primary theoretical interest.

However, simply repeating Strategy II several times has a remaining limitation:
it does very little to resolve the confounding between cluster membership and
the three-way interaction. Because there are ten instead of two clusters, there is
now some information for distinguishing the two formerly aliased effects but only
a very small amount. Within any given cluster, there is still no information for
distinguishing the two effects, so inference for this interaction can only be done at
the between-clusters level, for which there are very few degrees of freedom. Recall
that ten clusters is a very small sample size for a between-clusters comparison,
although it may be ample for within-clusters comparisons. In practice, the three-
way interaction can now be tested but will have very low power; this is called partial
confounding.

Instead of repeating Strategy II five times, another strategy is to sample randomly

among all possible packets. For example, there are

(

8
4

)

= 70 possible packets

of four conditions that could be assigned to any given clinic, so the investigator
would randomly assign each clinic to one of the 70 packets. Alternatively, to ensure
balance, the investigator might randomly choose the packets for half of the clinics
and then assign the complementary packets to the other half. For example, if one
clinic received cells 3, 4, 5, and 8, then another should receive 1, 2, 6, and 7. Because
it explores a more diverse range of combinations of experimental conditions, a
random strategy may have less aliasing than a repetitive strategy.

Although sampling randomly among all possible packets might perform very
well by chance, it also might perform very poorly by chance. It can be shown that
among the 70 possible packets of 4 experimental conditions, only 20 are balanced
across all 3 factors (i.e., for each of the factors, the number of conditions in which
the factor is set to on equals the number of conditions in which it is set to off) and
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only 2 out of them – specifically, the packets mentioned in Strategy II – are balanced
across the 3 factors and their 2-way interactions. Therefore, if it is reasonable to
ignore three-way interactions, then simply replicating Strategy II for as many pairs
of clusters as are available is likely to offer more efficiency than a more complicated
but poorly chosen approach. Especially if there are relatively few clusters, it is
quite possible that a random arrangement would cause aliasing, or at least strong
imbalance and low power, for an important effect of interest. Therefore, it is not
recommended to create the packets randomly; or at least, if this is done, simulations
should be performed after selecting the random packets in order to ensure that there
is no serious limitation in the set of packets chosen.

Another strategy would be to combine the careful planning of Strategy II with
the diversity of the random strategy. The concept of “foldover” in the literature on
fractional factorial design suggests that the aliasing in a particular fractional factorial
design can be overcome by doing a new experiment with carefully chosen conditions
that complement the information in the original experiment. In the current context,
this idea means that the aliasing in a particular pair of packets can be overcome
by adding more packets and that it can be overcome most efficiently by choosing
these packets in a careful way. Following a procedure outlined in the documentation
for PROC FACTEX (see the “Replicated Blocked Design with Partial Confounding”
example, SAS Institute, 2011, pp. 679–682), it can be shown that there is a particular
set of four packets that would allow all of the main effects and interactions to be
tested. Specifically, in terms of the cells listed in Table 2, the packets would be {1,
4, 6, 7}, {2, 3, 5, 8}, {3, 4, 5, 6}, and {1, 2, 7, 8}. The first pair of packets is the
same as in Strategy II. If only these first two packets were available, then the three-
factor interaction would be aliased with cluster effects, but nothing else would be
aliased. The remaining pair of packets, if it were used alone, would allow the three-
way interaction to be estimated but would alias one of the two-way interactions
(e.g., IN-PERSON × PHONE) with cluster effects. Combining the two pairs of
packets guarantees that there is at least some information on all of the interactions.
However, the three-way interaction and the IN-PERSON × PHONE interaction will
be somewhat underpowered, because each is informed by only half of the design.
Adding more packets can help to balance out this partial aliasing, so that all the
interactions will be closer to having optimum power. This is described further in the
appendix.

This “foldover” method is probably the best way to choose packets, in the
absence of strong assumptions that certain interactions between factors can be
ignored. However, the method described earlier of choosing a pair of packets
that alias only an interaction considered negligible, and then replicating only this
pair, will be somewhat more powerful for tests of two-way interactions than the
foldover approach. Therefore, it might be a better choice than the foldover approach
if it were known that the three-way interaction could likely be ignored. Further
methodological research would be helpful for comparing these approaches in order
to provide clearer guidance to researchers planning a hybrid-PEC factorial.

The hybrid designs we discussed in this section are motivated by real-world
constraints of implementing factorial designs in the field, namely, cases in which
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it is impossible for a cluster to implement all experimental conditions. However,
in some cases, it might be possible for a cluster to implement the conditions in
cohorts; that is, some conditions would be implemented initially, and the rest would
be implemented later. For example, consider a scenario in which each cluster can
implement only half of the conditions in Year 1 and the remaining half in Year 2.
In such cases, it is important that the investigators ensure that the implementation
of conditions in cohorts entails minimal risk for contamination. Further, it is
important to minimize the confounding effect of cohort implementation (e.g., the
possibility that the effect of In-Person is due to implementing most of the conditions
involving the on level of this factor in Year 2, in which implementation fidelity
was higher because staff was more experienced).This can be done by stratifying the
randomization based on the cohorts (ensuring that each condition is implemented
equally in each of the cohorts), as well as including cohort effect and the interaction
between cohort and the factors in the model.

2.4 Full-EIC Factorials

We now move on from discussing factorial experiments with PECs to those in which
the experimenter assigns individuals to clusters as part of the experimentation,
namely, to factorial designs that involve EICs. We begin with the simplest case of
EIC, in which every individual is assigned to a cluster (see Nahum-Shani, Dziak,
et al. 2017 for a brief review of published examples with this kind of clustering).

Example Suppose again that an investigator wishes to develop an intervention for
improving the coping skills of adolescents with mental illness; however, now the
program will be delivered by external experts, rather than by local clinic staff.
Further, although the outcome of interest is similar to the previous scenario, the
scientific questions motivating the study are different. Specifically, for illustrative
purposes alone, suppose that a specific form of group therapy that focuses on skill
learning and social support (facilitated by a trained practitioner) has proven to
be effective in several randomized controlled trials and is considered an effective
gold standard treatment appropriate for use as a benchmark in this field. Still, in
light of empirical evidence suggesting that this group therapy results in clinical
improvement that is small to moderate in magnitude, the investigator is motivated
to develop ways to further improve the short- and long-term effectiveness of this
approach. Hence, the investigator seeks to address three scientific questions, namely,
whether the targeted outcome would be improved by augmenting an intervention
program that is based on weekly group sessions with each of the following three
components: (1) weekly instructional and motivational videos that individuals will
watch and discuss as a group (Video), (2) weekly phone-based individual coaching
sessions (Phone), and (3) supportive text messages (Text). Hence, the factors of
theoretical interest are VIDEO (X1), PHONE (X2), and TEXT (X3). Although it is an
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important part of the intervention, the group therapy itself is not one of the factors
in the experimental design because it is offered to all individuals.

To address these questions, all individuals are assigned to therapy groups of
about five individuals each. The therapy groups did not exist prior to the beginning
of the study; they are generated as part of the study design. For the purposes of
the experiment, individuals will be randomly assigned not only to an experimental
condition but also to a therapy group. To avoid contamination of experimental
factors and/or perceptions of inequalities within the group, individuals are first
assigned randomly to groups, and then groups are randomly assigned to each of the
eight experimental conditions. Thus, each subject is nested within a cluster, and each
cluster will belong to one of the eight experimental conditions. In this scenario, the
individual-level outcomes are independent at pretest but are no longer independent
at posttest because (a) group members potentially influence each other and (b) group
members will be influenced by the shared practitioner.

In this setting, the motivation for generating clustering as part of the experimenta-
tion is both scientific and therapeutic. Specifically, the intervention is designed to be
delivered in group settings, in order to facilitate therapeutic group processes and to
make therapeutic use of social reinforcers such as social support, sense of belonging,
cohesiveness, and social accountability. In these cases, the outcome for treated
individuals may be correlated due to common experiences, informal processes of
socialization, and group dynamics. However, there are other practical reasons that
often motivate the generation of clusters as part of a study. These often concern the
availability of resources and/or the feasibility of intervention delivery. For example,
intervention science experiments commonly include a staff of therapists, each of
whom delivers the intervention to a subset of individuals (e.g., Cloitre, Koenen,
Cohen, & Han, 2002). Hence, the outcomes of individuals may be correlated due to
shared provider effects.

Model Similar to between-PEC factorials, the factors of interest in the full-EIC
scenario described above cannot vary within a cluster. This is because clusters,
rather than individuals, are assigned to the experimental conditions. However, the
full-EIC scenario differs considerably from a between-PEC factorial in other ways
as well. In a between-PEC factorial design, the clusters are pre-existing units, and
hence the response is expected to have a positive ICC at both pretest and posttest.
In a full-EIC design, the clusters are created by the investigator during the study by
random assignment. Thus, the pretest ICC is expected to be zero because individuals
have no shared experience prior to the intervention, whereas the posttest ICC is
expected to be positive because individuals from the same group are likely to have
shared experiences during the study. Despite these differences, Model (2) proposed
above for between-PEC factorials can also be used to analyze data arising from
factorial experiments with full EIC. This is because Model (2), which models the
effects of cluster-level factors, does not specify whether the pretest response Pij is
clustered or not. Note that for simplicity, we assume that it is not necessary to model
a practitioner effect in addition to a therapy group (i.e., cluster) effect. In practice,
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however, it might be desirable to model them both as nested random effects if a
given practitioner must supervise multiple treatment groups.

Power Based on the work of Nahum-Shani, Dziak, et al. (2017), Table 3 presents
a simplified formula for calculating the noncentrality parameter λ, as well as the
denominator degrees of freedom υ when planning power for a full-EIC factorial.
Here, in addition to the parameters influencing power in the case of a within-PEC
factorial, power will be reduced to the extent that individuals within a cluster are
similar in their posttest response (i.e., have a higher ρpost). Further, as in a between-
PEC factorial, the denominator degrees of freedom (υ) are calculated based on the
total number of clusters (J). Hence, the number of clusters in a full-EIC factorial
has more influence on power than the number of individuals within a cluster. Both
issues are illustrated in Fig. 3, which provides the expected power (based on the
formula for Design 5 in Table 3) for various values of ρpost, J, and n. This figure
shows that to the extent that the posttest ICC is higher, more clusters will be needed
to achieve adequate power. Further, although power improves as a function of both
the number of clusters and the number of individuals within a cluster, the number
of clusters plays a more important role than the number of individuals, especially if
the posttest responses of cluster members are highly correlated.

Design Considerations As discussed earlier, similar to between-PEC factorials,
power for factorial experiments with full EIC is more heavily influenced by the total
number of clusters than by the number of individuals within a cluster. However, this
feature might be more important to consider when designing factorials with EIC,
rather than factorials with PEC. While investigators typically have limited control
over the size of clusters that exist prior to experimentation, they are likely to have
more influence on the size of clusters that are induced by experimentation. Hence,
investigators designing factorial studies with EIC might consider dividing a given
sample into more (smaller) clusters, rather than fewer (larger) clusters, in order to
enhance power.

Of course, power is not the only aspect investigators should consider when
selecting cluster size in factorial designs involving EIC. Practical limits might
also arise concerning the cluster size. For example, in a group therapy setting,
groups larger than, say, six individuals may be difficult for the therapist to manage.
Another example concerns a setting where In-Person therapy is provided by several
therapists. Here, each therapist might be able to treat only a limited number of
individuals. Additionally, there may be theoretical reasons to expect a particular
cluster size to have the most therapeutic effect. Hence, when planning factorial
designs with EIC, careful consideration should be given to the number of individuals
assigned to each cluster. In some situations, it would even be reasonable to
empirically investigate the most effective cluster size. This can be done either by
conducting a pilot study to investigate the feasibility and acceptability of various
cluster sizes prior to conducting the factorial design or by including cluster size as
one of the factors under investigation in a factorial study.
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Fig. 3 Expected power for full-EIC factorials. (Notes: EIC experimentally induced clusters. This
figure shows the calculated power for a test of a main effect or interaction in Model (2) for a full-
EIC multilevel factorial design. Model (2) assumes normally distributed responses and no cluster-
by-treatment interaction. Here we further assume that the fitted model contains three dichotomous
factors and all interactions (hence 9 regression coefficients including the pretest), although the
number of parameters has only a modest effect on power for a given parameter. Balance is also
assumed, namely, that each condition receives the same number of clusters and each cluster has the
same number of individuals, although this may not be exactly possible in practice. To illustrate the
link between the posttest ICC and power, it is assumed that the within-person correlation between
pretest and posttest response (ρpre, post) is .65 and that the true value of the standardized regression
coefficient is .15 (hence a Cohen’s d of 0.3 if a main effect is being tested))

Planning the randomization scheme for full-EIC factorials should involve careful
consideration of potential contamination. If individuals within a cluster receive
different experimental conditions (i.e., different combinations of treatment com-
ponents), then the potential for contamination could be high (see Dziak et al.
2012). If the potential for contamination is high, randomization should be done in a
manner that ensures that everyone in a given cluster is also in the same condition.
Specifically, investigators can either begin by assigning individuals to clusters and
then randomly assigning clusters to experimental conditions or they can begin by
assigning individuals to conditions and then assign individuals to clusters within
each experimental condition. Either approach assures that all the members of a given
cluster receive the same experimental condition.
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2.5 Partial-EIC Factorials

Like full-EIC factorials, partial-EIC factorials involve generating clusters in the
course of the study itself, as part of the experimentation. However, in partial-EIC,
clusters are generated by experimentation for only a subset of the individuals (see
Nahum-Shani, Dziak, et al. 2017 for published examples of this kind of clustering).

Example Suppose the same scenario as before, where an investigator wishes
to develop an intervention for improving the coping skills of adolescents with
mental illness. However, now assume that there is insufficient empirical evidence
to determine whether the group-based therapy would improve symptom severity
(the outcome of interest). Hence, unlike the previous example where the group
therapy was assumed to be an effective gold standard treatment, in this scenario
the investigator would like to address a scientific question concerning whether the
targeted outcome would be improved by group-based weekly sessions (Group).
As before, the investigator is also interested in addressing the scientific questions
concerning weekly videos (Video) and supportive text messages (Texts). Hence, the
factors of theoretical interest are GROUP (X1), VIDEO (X2), and TEXT (X3).

To answer these questions, only individuals randomized to the on level of Group
are assigned to groups of about five individuals each. As before, each individual in
a given support group is given the same level of all of the assigned experimental
factors (i.e., the same levels of Video and Text) as his/her fellow group members. In
this scenario, the individuals in the on level of Group are clustered, whereas those
in the off level remain independent.

Model In writing the model for a partial-EIC setting, it is not convenient for Y to
have a single subscript for some individuals and a double subscript for others. Based
on the work of Roberts and Roberts (2005), Bauer, Sterba, and Hallfors (2008) and
Nahum-Shani, Dziak, et al. (2017) recommended an approach where it is assumed
that all individuals are clustered, yet the single individuals (i.e., those unclustered
by design) are in “trivial” clusters of size 1. Specifically, for each cluster j, define a
dummy-coded variable Cj, which is 1 if the cluster consists of multiple individuals
assigned to be together and 0 if the cluster consists of a single individual. Thus, a
cluster with Cj = 1 represents a “genuine” cluster, such as a therapy group, while
a cluster with Cj = 0 is a trivial cluster of size one, such as a single individual not
assigned to any therapy group. Assume there are j = 1, . . . , J clusters, both genuine
and trivial, with nj individuals in the jth cluster (of course, nj = 1 if Cj = 0), and
denote the response for individual i within cluster j as Yij. Then, a model for a
factorial design with partial EIC can take on the following form:

Yij = γ0 + γP Pij+
γ1X1j + γ2X2j + γ3X3j+
γ4X1jX2j + γ5X1jX3j + γ6X2jX3j+
γ 7X1jX2jX3j+
Cjuj + eij

(3)
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where the eij and the uj are independent N(0, σ 2) and N(0, τ 2), respectively. Here,
multiplying uj by Cj assures that cluster-level variability is included in the model
only for genuine and not for trivial clusters. This is an important feature of Model
(3), because individual-level and cluster-level variability cannot meaningfully be
distinguished from each other for trivial clusters. It may be desirable to allow the
individual-level error variance σ 2 to differ between genuinely clustered and trivially
clustered individuals.

Nahum-Shani, Dziak, et al. (2017) showed that even though the effect-coded
cluster-generating factor X1 and the dummy-coded clustering indicator Cj contain
the same information, they do not cause the model to be confounded in a deleterious
way, because one is used only in the fixed-effects part of the model and the other
is used only in the random-effects part. Here, the average effect of being in group
therapy (versus not being in group therapy) would be expressed by 2γ 1, while the
deviation of the performance of a particular therapy group from the average would
be expressed by uj.

Model (3) differs from Model (2) only in that uj is multiplied by the clustering
indicator Cj. In fact, Model (3) can be considered a generalization of models (2), if
the values of Cj are adjusted accordingly. Specifically, if Cj = 1 for all individuals,
indicating that individuals are all clustered such that the factorial design is a full
EIC, then Model (3) becomes Model (2).

Power Based on the work of Nahum-Shani, Dziak, et al. (2017), Table 3 (Design
6) presents a simplified formula for calculating the noncentrality parameter λ, as
well as the denominator degrees of freedom υ, when planning power for partial-EIC
factorials. The formula for λ is presented in two forms: one for a simplified scenario
in which there is equal allocation of individuals to clustered and unclustered
conditions and another for a more general case in which this allocation might be
unequal.

Ordinarily, it is desirable to have balanced assignment on factors. However,
individuals with X1 = + 1 will be subject to cluster-level variance τ 2 in addition to
their individual-level variance σ 2. Thus, if the individual-level variance σ 2 is equal
for each cell, then cells with X1 = + 1 have a higher total error. Consistent with
prior investigations of cluster allocation in randomized controlled trials with partial
EIC (Baldwin et al. 2011), the formula for λ provides a small increase in power
when allocating more individuals to the clustered condition compared with equal
allocation. This is illustrated in Fig. 4, which provides the expected power (based
on the formula for Design 6 in Table 3) for various allocation proportions, as well as
various cluster sizes and total sample size. This figure indicates that across various
scenarios of cluster size and total sample size, the optimal allocation proportion to
the clustered conditions is often between 0.6 and 0.7. The exact optimal allocation
will depend heavily on the assumptions made about the variance components (see
Nahum-Shani, Dziak, et al. 2017, for more information).

In the formula provided in Table 3, the denominator degrees of freedom υ is
calculated conservatively based on the number of genuine clusters. However, as
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Fig. 4 Expected power for partial-EIC factorials. (Notes: EIC experimentally induced clusters.
This figure shows the calculated power for a test of a main effect or interaction in Model (3) for
a partial-EIC multilevel factorial design. This means we assume a linear model with normally
distributed responses, no cluster-by-treatment interaction, and a fitted model that contains three
dichotomous factors and all interactions included (hence 9 regression coefficients including the
pretest). Note that the number of parameters has only a modest effect on power for a given
parameter. Balance is also assumed, namely, that each clustered condition receives the same
number of clusters, each cluster has the same size, and each unclustered condition receives the
same number of unclustered individuals, although this may not be exactly possible in practice. To
illustrate the link between the allocation proportion (i.e., the proportion of individuals assigned
to the clustered vs. the unclustered conditions) and power, it is assumed that the within-person
correlation between pretest and posttest response (ρpre, post) is .65, the posttest ICC (ρpost) is .10,
and the true value of the standardized regression coefficient is .15 (hence a Cohen’s d of 0.3 if a
main effect is being tested))

recommended by Nahum-Shani, Dziak, et al. (2017), when actually performing the
hypothesis test, a Satterthwaite approximation can be used to provide slightly more
power.

Design Considerations As with full-EIC factorials, careful consideration should
be given to the number of individuals assigned to each group. The selection of the
number of individuals within each group should be based on practical considera-
tions, as well as empirical and theoretical evidence relating to the feasibility and
the theoretical or clinical implications of employing various group sizes. Addi-
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tionally, as with full-EIC factorials, the investigator should consider the potential
for contamination when planning the randomization scheme for factorial designs
with partial EIC. However, because in the partial-EIC setting certain experimental
conditions are clustered while others are not, individuals cannot be assigned to
clusters before they are assigned to conditions. A better option would be to first
assign individuals to experimental conditions, and then randomly assign individuals
to clusters within each clustered condition. Alternatively, the investigator can divide
the randomization scheme into three steps. First, assign individuals to the two levels
of the clustering factor X1. Second, randomly assign individuals in the on level (i.e.,
the clustering level) of X1 to clusters. Finally, randomly assign clusters in the on
level of X1, as well as single individuals in the off level of X1, to the experimental
conditions resulting from crossing the remaining (non-clustering) factors X2 and
X3. Either approach will ensure that all members of a given cluster receive the same
combination of treatment conditions.

3 Discussion

Multilevel factorial designs offer many opportunities for building the empirical
evidence necessary for developing multicomponent behavioral, biobehavioral, and
biomedical interventions. This chapter provides guiding principles for designing
multilevel factorial designs and reviews five different classes of multilevel factorial
designs that vary in terms of the nature of clustering and the randomization scheme
employed. Our discussions of these classes highlight the importance of specifying
the scientific questions of interest as a key to select the most appropriate class
of multilevel factorial design and to plan procedures for randomizing individuals
and/or clusters that would make the selected class as informative and efficient as
possible. We also provide power planning resources, which overall demonstrate that
multilevel factorial designs can offer adequate power for detecting the effects of
scientific interest under reasonable scenarios in terms of number of clusters and
individuals.

Nonetheless, our review highlights several important topics that require further
research in order to improve the utility and accessibility of multilevel factorial
designs for intervention scientists. These include the need for a systematic compar-
ison of different approaches for selecting packets in hybrid-PEC factorials, as well
as the importance of developing power planning resources for multilevel factorial
studies that involve more than one level of clustering (e.g., factorial studies in
which individuals are assigned to groups, and then multiple groups are led by
each of a limited number of therapists). Below we elaborate on two additional
important directions for future research. The first concerns accommodating cluster-
by-treatment interactions, and the second concerns sequential randomizations.
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3.1 Accommodating Cluster-by-Treatment Interactions

For simplicity, cluster-by-treatment interactions are not included in any of the
models reviewed in this chapter for multilevel factorial designs in which individuals
(rather than clusters) are randomized to conditions. The underlying assumption
here is that any cluster-by-treatment interaction is negligible. However, Raudenbush
and Liu (2000) highlight the scientific benefit of estimating cluster-by-treatment
interactions in settings where clustered individuals are randomized to experimental
conditions. First, differences in cluster-based resources, such as in knowledge,
skills, or environmental/social conditions, might lead to differences in the effects
of certain intervention components, creating additional uncertainty concerning how
and to what extent these components affect the targeted outcome. Second, cluster-
by-treatment interactions can be viewed as an important test of the generalizability
of treatment effects over the various settings in which intervention components
may be implemented in the real world. From this point of view, each cluster
contributes an independent study of intervention components, and the cluster-by-
treatment interaction is conceptualized as a “meta-analysis” of treatment efficacy
across clusters.

Even in situations where cluster-by-treatment interactions are not of theoretical
interest, they may still affect the results of the analysis if they are of sufficient size.
In general, with normally distributed response variables, the cluster-by-treatment
interactions will not bias the estimates of the main effects or interactions of factors.
However, they will add noise, which is not accounted for by the power formulas
provided here. Power formulas for multilevel factorial designs with cluster-by-
treatment interactions have not yet been derived, but this is an important topic
for future research. Raudenbush and Liu (2000) discuss the power implications
of cluster-by-treatment interactions in the case of a single-factor within-PEC
experiment, namely, a multisite randomized controlled trial with one experimental
condition and one control condition. They show that power becomes smaller to
the extent that the variance component for the cluster-by-treatment interactions
becomes larger, especially if there are a few large clusters instead of many small
clusters. Hence, the formulas shown in Tables 3 and 4 offer the best-case scenario
in terms of the predicted power, as the cluster-by-treatment variance is assumed to
be zero. Generalizing the formula of Raudenbush and Liu (2000) to multiple factors
may be a good starting point for future research aiming to develop power formulas
for multilevel factorial designs with cluster-by-treatment interactions.

There are some special cases in which cluster-by-treatment interactions may
cause estimation bias in addition to reduced power. One such case would be
a hybrid-PEC design in which an effect of primary interest is aliased with a
non-negligible cluster-by-treatment interaction. Another would be a non-normal
response variable (e.g., binary) or, more generally, a situation in which a noticeable
floor or ceiling effect occurs for the outcome variable. In these cases, effects or
interactions that would classically be orthogonal may become related in more
complicated ways (see Cox & Snell, 1988; Gail, Wieand, & Piantadosi, 1984).
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Research is also needed on power and sample size planning for multilevel factorial
experiments with binary or count responses (see Demidenko, 2007; VanderWeele,
2012; Wittes, 2002; Wolbers et al. 2011 for the non-multilevel case). In the absence
of formulas for calculating power and planning sample size for such scenarios,
computer simulation methods can offer a flexible alternative (Arnold, Hogan,
Colford, & Hubbard, 2011).

3.2 Extensions to Sequential Randomizations

In all the multilevel factorial designs reviewed in this chapter, it was assumed
that all individuals are randomized to experimental conditions once in the course
of the study. However, multilevel factorial designs can instead be sequential,
multiple assignment, randomized trials (SMARTs; Murphy, 2005). A prototypical
SMART is a special form of a factorial design in which some or all individuals
can be randomized to experimental conditions more than once in the course
of the experiment. Specifically, a SMART includes multiple, sequential stages
of randomization, where each stage is designed to address a scientific question
concerning the construction of an adaptive intervention. An adaptive intervention is
a sequence of individualized intervention components that guide decision-making in
clinical, educational, public health policy, and other settings (see Almirall, Nahum-
Shani, Wang, & Kasari, 2018). The individualization in an adaptive intervention
uses ongoing (dynamic) information about how well the individual is doing in the
course of the intervention to modify the type, timing, and/or modality of treatment
delivery (Collins, Murphy, & Bierman, 2004).

As in standard interventions, participants in an adaptive intervention can be
members of PECs (e.g., schools or clinics) or can be assigned to clusters (e.g.,
therapy groups, online support networks) as part of the intervention. Hence, a
SMART aiming to inform the development of clustered adaptive interventions
(Kilbourne et al. 2013) might involve individuals that are clustered in pre-existing
social or administrative units (PEC) and/or individuals that are assigned to clusters
as part of the experimentation (EIC). Further, such multilevel SMARTs might
employ various randomization schemes, randomizing individuals, clusters, or both
to experimental conditions. However, in a SMART the nature of clustering as well as
the randomization scheme might differ from one stage of randomization to another,
depending on the motivating scientific questions and the type of intervention options
compared at each stage.

To clarify this, consider a hypothetical SMART aiming to develop an adaptive
intervention for improving the coping skills of adolescents with mental illness.
As before, assume that the outcome of interest, Y, is a reverse-coded measure of
symptom severity, so that higher values represent a more desirable outcome. Again,
for illustrative purposes alone, suppose that a specific form of group therapy that
focuses on skill learning and social support (facilitated by a trained practitioner) is
considered an effective gold standard treatment appropriate for use as a benchmark
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in this field. Still, assume that empirical evidence suggests that a sizable proportion
of individuals do not benefit from this intervention; and in fact, it is possible to
identify those individuals early in the course of the intervention (say, about 4 weeks
after beginning the group therapy). Hence, the investigator is motivated to improve
the effectiveness of the group therapy sessions by integrating other, potentially more
engaging, intervention components in the sessions for all individuals, as well as by
offering additional intervention components to individuals who by week 4 show
early signs of non-response (i.e., early non-responders). Specifically, the investigator
seeks to address two scientific questions, namely, whether the targeted outcome
would be improved by (1) integrating weekly instructional and motivational videos
in the group therapy sessions for all individuals (individuals will watch and discuss
the videos in their therapy group; Video) and by (2) adding weekly phone-based
individual coaching sessions to individuals who by week 4 show early signs of non-
response (Phone). Note that based on the notion that “if it’s not broken, don’t fix
it,” the investigator decides that adolescents who show early signs of response (i.e.,
early responders) to group therapy sessions by week 4 should continue with that
intervention approach.

Based on the hypothetical example above, the experimental design (see Fig. 5)
should involve two factors: VIDEO (X1) and PHONE (X2). As before, each factor
would have two levels, on and off. Notice that now the randomization to these factors
should be sequential – individuals should be randomized to the two levels of VIDEO
initially and then (at week 4) to the two levels of PHONE. Also notice that to answer
the second scientific question, only early non-responders should get randomized to
the two levels of PHONE. Specifically, a multilevel SMART design (see Almirall
et al. 2018) aiming to answer these scientific questions would involve two stages of
randomization. The first stage would involve randomly assigning all individuals to
therapy groups (full EIC), as well as randomizing the therapy groups (clusters) to the
two levels of VIDEO, namely, to either receive videos as part of the group therapy
sessions (on level of X1) or not (off level of X1). The second stage of randomization
would involve re-randomizing only those individuals who at week 4 show early
signs of non-response to the two levels of PHONE, namely, to either add phone
sessions to the initial intervention (on level of X2) or not (off level of X2). The exact
definition of early non-response would be operationalized based on pre-specified
evidence-based criteria.

Interestingly, in this scenario the intervention options at the second-stage ran-
domization (add phone coaching vs. no phone coaching) are designed to be
offered to individuals based on their individual-level non-response status. Hence,
the second-stage randomization would involve assigning individuals, rather than
therapy groups, to the two levels of X2. However, these individuals are now
clustered in social units that existed prior to the second-stage randomization; that
is, although the therapy groups were experimentally induced during the first-stage
randomization, they represent PECs for the second-stage randomization. Overall,
in this hypothetical example, the first stage of the design is a full EIC, and the
second stage is a within-PEC design. Besides the methodological issues involved,
the investigator would also have to consider possible ethical concerns and risk of
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Fig. 5 Hypothetical SMART study

contamination that might arise when offering different members of the same therapy
group different treatments at the later stage.

Despite the increased interest in using SMARTs to build high-quality adaptive
interventions, there has been little research on using SMARTs to develop an adaptive
intervention in a setting where individuals are clustered. A comprehensive review
of possible types of multilevel SMARTs and design principles to guide the design
of such studies has the potential to advance the science of adaptive interventions.
Further, existing data analytic methods for analyzing data arising from a SMART
are not suitable for analyzing multilevel SMART data. These include methods
for comparing adaptive interventions that are embedded by design in a SMART
(Nahum-Shani et al. 2012a), as well as methods for exploring ways to further tailor
(personalize) these embedded adaptive interventions (e.g., Q-learning; Laber, Linn,
& Stefanski, 2014; Nahum-Shani et al. 2012b; Nahum-Shani, Ertefaie, et al. 2017).
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Further research is needed to extend these methods to multilevel data arising from
various types of multilevel SMARTs and provide power planning resources for
multilevel SMARTs.
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A.1 Appendix 1: Details Concerning Power Calculations

For all models provided in this chapter, the main effects and interactions of interest
can be tested using significance tests for the corresponding regression coefficients.
The power for such a significance test is estimated as the probability that a variable
with a noncentral F distribution with noncentrality parameter λ exceeds the critical
value for the test. To clarify this, the sampling distribution of the test statistic
for the relevant coefficient is assumed to follow an F distribution. Under the
null hypothesis, this F distribution has two parameters, the numerator (ω) and
denominator (υ) degrees of freedom (determined based on the sample). This is
called a central F distribution, which is the F distribution one can typically find
tables for in statistics textbook and other resources. However, under the alternative
hypothesis (i.e., when an effect exists in the population), the sampling distribution
of the test statistic will have another parameter, in addition to ω and υ. This
parameter is known as the noncentrality parameter, which is often denoted by
λ. This distribution is called a noncentral F distribution. When the noncentral F
distribution has a noncentrality parameter of zero, it is identical to the standard
(central) F distribution. In other words, a noncentral F distribution includes the
F distribution as a special case (see Koele, 1982; Raudenbush & Liu, 2000, for
additional details).

To calculate the power to detect a particular alternative hypothesis, we first
compute the critical value for the F statistic under the null hypothesis using the
selected type I error rate and the appropriate degrees of freedom. We then need to
specify the alternative hypothesis in the form of its λ value. As explained earlier, λ

equals γ 2/Var (γ̂ ), where γ is the true value of the coefficient being tested (under
the alternative hypothesis) and Var (γ̂ ) is the sampling variance (squared standard
error) of its maximum likelihood estimate for samples of the size proposed. The
power of the test to detect the given alternative hypothesis is then equal to the area
under the noncentral F distribution to the right of the critical value for the test. To
the extent that λ is larger, the power of the test increases. Hence, λ represents the
expected amount of evidence against the null hypothesis that will be available in
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a sample with the proposed true parameters and the proposed sample size. Murphy
and Myors (2004, p. 27) call it a measure of “how wrong” the null hypothesis is.

B.1 Appendix 2: Sample R and SAS Code for Calculating
Power

Here, we provide examples of how the noncentrality parameter can be used to
calculate power using standard software such as R and SAS. For illustration, this
sample code calculates power for detecting a standardized effect size of 0.15 (the
true value of the coefficient being tested [gamma] divided by the square root of
the variance of posttest response adjusting for treatment effect [sigmaY]) in a
model with 9 regression coefficients (p), with 0.05 type I error rate, total sample
size (N) of 250 individuals who are independent (not clustered), and 0.5 within-
person correlation between pretest and posttest response (rhoPrePost). Here,
“lambda” is the noncentrality parameter (calculated based on N, gamma/sigmaY,
and rhoPrePost), and “critical” is the critical value for the hypothesis test
(calculated based on the type I error rate and the appropriate degrees of freedom,
which are 1 for the numerator, and N-p for the denominator).

Sample R code:

N <- 250;
rhoPrePost <- .5;
gamma <- .15;
sigmaY <- 1;
p <- 9;
df <- N - p;
lambda <- (N/(1-rhoPrePost))*((gamma/sigmaY)ˆ2);
critical <- qf(p=.95,df1=1,df2=df,ncp=0,lower.tail=TRUE);
power <- 1-pf(q=critical,df1=1,df2=df,ncp=lambda,lower.
tail=TRUE);
print(power);

Sample SAS code:

DATA data1;
N = 250;
rhoPrePost = .5;
gamma = .15;
sigmaY = 1;
p = 9;
df = N - p;
lambda = (N/(1-rhoPrePost))*((gamma/sigmaY)**2);
critical = FINV(.95,1,df,0);
power = 1-PROBF(critical,1,df,lambda);

RUN;
PROC PRINT DATA=data1; RUN;
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C.1 Appendix 3: SAS Code for Hybrid-PEC Designs

Sample SAS code to fit models for within-PEC and between-PEC factorial exper-
iments is included in the online supplemental appendix of Dziak, Nahum-Shani,
and Collins (2012). Likewise, sample SAS code for fitting models for full-EIC
and partial-EIC factorial experiments is included in the appendix of Nahum-Shani,
Dziak, et al. (2017). However, hybrid-PEC designs are not discussed in those papers.
Therefore, sample SAS code for creating such a design and for analyzing the
resulting data is included here.

We first present how to use the “foldover” method to choose the contents of
packets. Our presentation here is based on Example 7.12 (“Replicated Blocked
Design with Partial Confounding”) on pages 679–683 of SAS Institute, Inc. (2011).
In the example of hybrid EIC in the body of the chapter, there are three factors
of interest, called IN-PERSON, PHONE, and PARENT, defining 2 × 2 × 2 = 8
possible conditions. Also, we assume there are ten clusters, and that within each
cluster, it is possible to implement only four of the eight conditions. Hence, we must
repeatedly divide the eight conditions into two packets of four conditions each.

PROC FACTEX;
FACTORS InPerson Phone Parent;
BLOCKS NBLOCKS=2;
MODEL EST=(InPerson Phone Parent InPerson*Phone

InPerson*Parent Phone*Parent);
EXAMINE CONFOUNDING ALIASING;
OUTPUT OUT=PacketPair1 BLOCKNAME=Packet NVALS=(1 2);
RUN;

In the FACTORS statement, we listed the names of the three factors in the
example. Concerning the BLOCKS statement, it is important to note that here a
“block” means a packet. We ask for two packets at a time because we decided that
we wanted packets of four conditions each. If we ask for four packets, for example,
the software will offer us four packets of two conditions each, which is not what
we want here. In the MODEL statement, we specified the effects we would like to
estimate. Here, seven effects might be of interest: three main effects, three two-way
interactions, and one three-way interaction. Because the conditions will be divided
into two packets and we are assuming that each packet will be given to only one
cluster, the random effect of the cluster within this pair must be aliased with one of
the effects. We choose to sacrifice the three-way interaction here; hence the MODEL
statement does not include the three-way interaction. SAS will select the packets in
order to provide us with interpretable information about the other six effects. Using
the EXAMINE statement, we ask that the structure of the design will be outputted
as well as the confounding rules (i.e., block with IN-PERSON*PHONE*PARENT).

The above code creates the first two packets (consistent with Strategy II in the
book chapter) and writes them to a dataset (which we name here “PacketPair1”). We
could just stop here if we had only two clusters, as in our first hybrid-PEC example.
However, because we assume we have ten clusters, as in the case of our second
hybrid-PEC example, we could either stop here and replicate the packets five times
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or create more packets to which we can assign the ten clusters. With the former
option, we would have some information to estimate the three-way interaction,
albeit with very little power. With the latter option, we could enhance our ability to
test the three-way interaction, by looking to add other combinations of conditions.
Hence, we can ask PROC FACTEX to create more packets. Notice that we do not
have to call PROC FACTEX a second time, because we used RUN but not QUIT to
close this PROC. We can simply add the following code:

MODEL EST=(InPerson Phone Parent
InPerson*Parent Phone*Parent InPerson*Phone*Parent);

OUTPUT OUT=PacketPair2 BLOCKNAME=Packet NVALS=(3 4);
RUN;

Following the “foldover” idea described in the SAS/QC(R) users’ guide, we now
ask for another two packets. We want these packets to provide us with information
about the three-way interaction, which was assumed negligible earlier. However,
in order to do this, we now need to confound these two packets with the two-
way interaction between In-Person and Phone (IN-PERSON*PHONE). This means
that using this pair of packets will not provide information about this two-way
interaction. However, using the first pair of packets will provide information about
this two-way interaction. Hence, when all four packets are combined, we will be
able to estimate and test both the two-way interaction between In-Person and Phone
and the three-way interactions. We could just stop here and have four packets, which
are replicated for two or three clusters each (in our ten-cluster example). However,
this would mean that the first two-way interaction and the three-way interaction will
have somewhat lower power than the other effects, because they are each informed
by only half of the packets in the study. If we want more balance in the amount of
statistical power each test will possess, we must add more packets. This can be done
by using the following code:

MODEL EST=(InPerson Phone Parent
InPerson*Phone Phone*Parent InPerson*Phone*Parent);

OUTPUT OUT=PacketPair3 BLOCKNAME=Packet NVALS=(5 6);
RUN;

The packets created with the code above will provide information about every-
thing except the two-way interaction between In-Person and Parent. Alternatively,
the code below generates packets that provide information about everything except
the interaction between Phone and Parent.

MODEL EST=(InPerson Phone Parent
InPerson*Phone InPerson*Parent
InPerson*Phone*Parent);

OUTPUT OUT=PacketPair4 BLOCKNAME=Packet NVALS=(7 8);
RUN;

The example in the SAS user’s guide stops here and concludes that each main
effect is informed by the whole sample, and each interaction is informed by 75%
(= 6/8) of the sample. However, in our example in the body of the chapter, we
assumed that we had ten clusters. Therefore, we can add more packets so that more
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information will be used to estimate each interaction. We elect to add another pair
of packets in which the three-way interaction is not aliased. This will provide 100%
efficiency for the main effects, 80% efficiency for the two-way interactions, and
60% efficiency for the three-way interaction.

MODEL EST=(InPerson Phone Parent
InPerson*Phone InPerson*Parent

InPerson*Phone*Parent);
OUTPUT OUT=PacketPair5 BLOCKNAME=Packet NVALS=(9 10);
RUN;

QUIT;
DATA Packets;
SET PacketPair1 PacketPair2 PacketPair3 PacketPair4 PacketPair5;

RUN;

The dataset packets created with this code will contain 40 rows, corresponding
to the 4 conditions in each of the 10 packets. Each of the ten packets must now be
randomly assigned to one of ten clusters.

PROC PRINT DATA=Packets;
RUN;

We argue in this chapter that the data from the resulting experiment can then
be analyzed in the usual way for a within-PEC factorial, without including packet
as a level of nesting. For example, the following code fits a linear model with all
interactions among factors:

PROC MIXED DATA=StudyData;
MODEL Y = InPerson | Phone | Parent @ 3;
RANDOM INTERCEPT / SUBJECT = clusterID;

RUN;

The following code also allows interactions between factors and clusters:

PROC MIXED DATA=StudyData;
MODEL Y = InPerson | Phone | Parent @ 3 / DDFM=Satterthwaite;
RANDOM INTERCEPT InPerson Phone Parent / SUBJECT = clusterID;

RUN;

However, as we discuss in the book chapter, the performance of factorial designs
when there are interactions between factors and clusters has not yet been well
studied in the social sciences, and further research is needed to better understand
the role of possible interactions between treatments and clusters when analyzing
a factorial design. Note that the Satterthwaite approximation is now used to
calculate the denominator degrees of freedom because this code estimates the
cluster-by-factors interactions (rather than just the effects of the factors); hence, the
denominator degrees of freedom have to be calculated based not only on the number
of individuals but also on the number of clusters.



86 I. Nahum-Shani and J. J. Dziak

References

Almirall, D., Nahum-Shani, I., Wang, L., & Kasari, C. (2018). Experimental designs for research
on adaptive interventions: Singly and sequentially randomized trials. In L. M. Collins & K.
C. Kugler (Eds.), Optimization of behavioral, biobehavioral, and biomedical interventions:
Advanced topics. New York, NY: Springer.

Arnold, B. F., Hogan, D. R., Colford, J. M., & Hubbard, A. E. (2011). Simulation methods to esti-
mate design power: An overview for applied research. BMC Medical Research Methodology,
11(1), 1.

Baldwin, S. A., Bauer, D. J., Stice, E., & Rohde, P. (2011). Evaluating models for partially clustered
designs. Psychological Methods, 16(2), 149–165.

Bauer, D. J., Sterba, S. K., & Hallfors, D. D. (2008). Evaluating group-based interventions when
control participants are ungrouped. Multivariate Behavioral Research, 43, 210–236.

Cloitre, M., Koenen, K. C., Cohen, L. R., & Han, H. (2002). Skills training in affective and
interpersonal regulation followed by exposure: A phase-based treatment for PTSD related to
childhood abuse. Journal of Consulting and Clinical Psychology, 70(5), 1067.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Collins, L. M. (2018). Optimization of behavioral, biobehavioral, and biomedical interventions:
The multiphase optimization strategy (MOST). New York, NY: Springer.

Collins, L. M., Dziak, J. J., & Li, R. (2009). Design of experiments with multiple independent
variables: A resource management perspective on complete and reduced factorial designs.
Psychological Methods, 14(3), 202.

Collins, L. M., Murphy, S. A., & Bierman, K. L. (2004). A conceptual framework for adaptive
preventive interventions. Prevention Science, 5(3), 185–196.

Cox, D. R., & Snell, E. J. (1988). Analysis of binary data (2nd ed.). London, UK: Chapman &
Hall.

Demidenko, E. (2007). Sample size and optimal design for logistic regression with binary
interaction. Statistics in Medicine, 27, 36–46.

Donner, A., & Klar, N. (2000). Design and analysis of cluster randomization trials in health
research. London, UK: Arnold.

Dziak, J. J., Nahum-Shani, I., & Collins, L. M. (2012). Multilevel factorial experiments for devel-
oping behavioral interventions: Power, sample size, and resource considerations. Psychological
Methods, 17, 153–175.

Eldridge, S. M., Ashby, D., Feder, G. S., Rudnicka, A. R., & Ukoumunne, O. C. (2004). Lessons
for cluster randomized trials in the twenty-first century: A systematic review of trials in primary
care. Clinical Trials, 1(1), 80–90.

Gail, M. H., Wieand, S., & Piantadosi, S. (1984). Biased estimates of treatment effect in
randomized experiments with nonlinear regressions and omitted covariates. Biometrika, 71,
431–444.

Kilbourne, A. M., Abraham, K. M., Goodrich, D. E., Bowersox, N. W., Almirall, D., Lai, Z., &
Nord, K. M. (2013). Cluster randomized adaptive implementation trial comparing a standard
versus enhanced implementation intervention to improve uptake of an effective re-engagement
program for patients with serious mental illness. Implementation Science, 8(1), 1–14.

Koele, P. (1982). Calculating power in analysis of variance. Psychological Bulletin, 92(2), 513.
Kuehl, R. O. (2000). Design of experiments: Statistical principles of research design and analysis.

Pacific Grove, CA: Duxbury Press.
Kugler, K. C., Dziak, J. J., & Trail, J. (2018). Coding and interpretation of effects in analysis of data

from a factorial experiment. In L. M. Collins & K. C. Kugler (Eds.), Optimization of behavioral,
biobehavioral, and biomedical interventions: Advanced topics. New York, NY: Springer.

Laber, E. B., Linn, K. A., & Stefanski, L. A. (2014). Interactive model building for Q-learning.
Biometrika, 101, 831–847.



Multilevel Factorial Designs in Intervention Development 87

Mitchell, M. M., Bradshaw, C. P., & Leaf, P. J. (2010). Student and teacher perceptions of school
climate: A multilevel exploration of patterns of discrepancy. Journal of School Health, 80(6),
271–279.

Moerbeek, M., & Teerenstra, S. (2015). Power analysis of trials with multilevel data. New York:
Chapman and Hall/CRC.

Morgan, K. L., & Rubin, D. B. (2015). Rerandomization to balance tiers of covariates. Journal of
the American Statistical Association, 110, 1412–1421.

Murphy, K. R., & Myors, B. (2004). Statistical power analysis (2nd ed.). Mahwah, NJ: Lawrence
Erlbaum.

Murphy, S. A. (2005). An experimental design for the development of adaptive treatment strategies.
Statistics in Medicine, 24(10), 1455–1481.

Murray, D. M. (1998). Design and analysis of group-randomized trials (2nd ed.). New York, NY:
Oxford.

Nahum-Shani, I., Dziak, J. J., & Collins, L. M. (2017). Multilevel factorial designs
with experiment-induced clustering. Psychological Methods. Advance online publication.
https://doi.org/10.1037/met0000128.

Nahum-Shani, I., Ertefaie, A., Lu, X. L., Lynch, K. G., McKay, J. R., Oslin, D. W., & Almirall,
D. (2017). A SMART data analysis method for constructing adaptive treatment strategies for
substance use disorders. Addiction, 112(5), 901–909.

Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W. E., Gnagy, B., Fabiano, G. A., . . . Murphy,
S. A. (2012a). Experimental design and primary data analysis methods for comparing adaptive
interventions. Psychological Methods, 17(4), 457.

Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W. E., Gnagy, B., Fabiano, G. A., . . . Murphy,
S. A. (2012b). Q-learning: A data analysis method for constructing adaptive interventions.
Psychological Methods, 17(4), 478.

Raudenbush, S. W., & Liu, X. (2000). Statistical power and optimal design for multisite
randomized trials. Psychological Methods, 5(2), 199–213.

Roberts, C., & Roberts, S. A. (2005). Design and analysis of clinical trials with clustering effects
due to treatment. Clinical Trials, 2, 153–162.

SAS Institute Inc. (2011). SAS/QC® 9.3 users’ guide. SAS Institute, Inc.
Taljaard, M., Weijer, C., Grimshaw, J. M., Belle Brown, J., Binik, A., Boruch, R., . . . Saginur, R.

(2009). Ethical and policy issues in cluster randomized trials: Rationale and design of a mixed
methods research study. Trials, 10(1), 61.

VanderWeele, T. J. (2012). Sample size and power calculations for additive interactions. Epidemi-
ologic Methods, 1(1): Article 8. https://doi.org/10.1515/2161-962X.1010.

Weijer, C., Grimshaw, J. M., Taljaard, M., Binik, A., Boruch, R., Brehaut, J. C., . . . Saginur, R.
(2011). Ethical issues posed by cluster randomized trials in health research. Trials, 12(1), 100.

Wittes, J. (2002). Sample size calculations for randomized controlled trials. Epidemiologic
Reviews, 24, 39–53.

Wolbers, M., Heemskerk, D., Chau, T. T., Yen, N. T., Caws, M., Farrar, J., & Day, J. (2011).
Sample size requirements for separating out the effects of combination treatments: Randomized
controlled trials of combination therapy vs. standard treatment compared to factorial designs
for patients with tuberculous meningitis. Trials, 12, 26.

Wu, C. F. J., & Hamada, M. S. (2000). Experiments: Planning, analysis, and parameter design
optimization. New York, NY: Wiley.

http://dx.doi.org/10.1037/met0000128
http://dx.doi.org/10.1515/2161-962X.1010


Experimental Designs for Research
on Adaptive Interventions: Singly
and Sequentially Randomized Trials

Daniel Almirall, Inbal Nahum-Shani, Lu Wang, and Connie Kasari

Abstract In clinical or educational practice, it is often necessary to use an indi-
vidually tailored, sequential approach to intervention in order to improve outcomes.
Adaptive interventions (also known as dynamic treatment regimens) can be used
to guide such sequential intervention decision-making. Adaptive interventions are
multicomponent, multistage intervention packages. The multiphase optimization
strategy (MOST) is a comprehensive research framework for development, opti-
mization, and evaluation of multicomponent intervention packages, such as adaptive
interventions. When working within the optimization phase of MOST, behavioral,
biobehavioral, and educational intervention scientists often have important scientific
questions about how best to optimize an adaptive intervention. This chapter
discusses various types of experimental designs that can be used to optimize an
adaptive intervention. In some of these, participants are randomized once over the
course of the trial (i.e., singly randomized trials, or SRTs), and in others, participants
are randomized at multiple stages (i.e., sequential, multiple assignment, randomized
trials, or SMARTs). The choice between SRT and SMART ultimately is driven by
the scientific questions that the intervention scientist seeks to answer. Motivated by
the development of an adaptive intervention to improve social skills and academic
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engagement among children with autism, we illustrate these ideas by presenting
four example of experimental designs: two examples of a SRT and two examples of
a SMART. We present the rationale for each experimental design and the questions
each is designed to answer. In doing so, this chapter provides an expanded set of
tools that investigators aiming to develop an adaptive intervention can draw from
within the MOST optimization phase toolbox.

1 Introduction

In many areas of clinical and educational practice, it is often necessary to use
an individually tailored, sequential approach to intervention in order to improve
outcomes in the long term. In a sequential approach, interventions (or intervention
components) may be adapted and readapted over time based on changes in the
individual, including changes that could occur as a result of prior intervention.
Adaptive interventions are intervention designs that can be used to guide such
sequential intervention decision-making. An adaptive intervention is a sequence of
prespecified decision rules that can be used to guide whether, how, or when—and
based on which measures—to alter an intervention or intervention component (e.g.,
treatment type, duration, frequency, or amount) at critical decision points during
the course of care (Almirall, Nahum-Shani, Sherwood, & Murphy 2014; L. Collins,
Murphy, & Bierman 2004; L. M. Collins, Nahum-Shani, & Almirall 2014; Nahum-
Shani et al. 2012a).

An adaptive intervention is a type of multicomponent, behavioral, biobehavioral,
or biomedical intervention (see companion book L. M. Collins 2018). Specifically,
an adaptive intervention includes decision points or time points at which interven-
tion decisions are made; tailoring variables, which can be used to make intervention
decisions at each decision point; intervention options at each decision point; and a
decision rule, which is used at each decision point to link the values of a (set of)
tailoring variable(s) with a specific intervention option or set of intervention options.
The intervention options at each decision point may focus on treatment, prevention,
or both; they may include behavioral, pharmacological, or educational interventions.

As with all interventions, adaptive interventions are characterized by the unit(s)
at which components are targeted (e.g., the individual, the parent, or the classroom
environment), the entity or individual(s) providing each component (e.g., the
clinician or the therapist), and the goals of the intervention—the short- and long-
term outcomes the adaptive intervention is intended to impact. It is important to
define the unit to which the intervention is delivered (e.g., the school, in a school-
wide program) and also the unit at which the intervention should have an effect
(e.g., individual students). For example, a classroom intervention may target the
classroom environment, but its ultimate goal may be to impact the outcomes of the
children within the classroom.

The multiphase optimization strategy (MOST) is a comprehensive framework
for development, optimization, and evaluation of intervention packages, including
adaptive interventions (L. M. Collins et al. 2011; L. M. Collins, Murphy, Nair, &
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Strecher 2005; L. M. Collins, Murphy, & Strecher 2007). The objective of the opti-
mization phase in MOST “is to make a multicomponent intervention more effective,
efficient, economical, and scalable” (L. M. Collins 2018). The optimization phase
is often based on factorial experimental (i.e., randomized) designs (Chakraborty,
Collins, Strecher, & Murphy 2009; Nair et al. 2008). Many scientific questions arise
when seeking to develop and optimize an adaptive intervention when organizing
components into the stages that make up an adaptive intervention package. These
questions include the following:

• Which intervention option is the best to start with?
• When, or under what conditions, is it best to transition from one intervention

stage to the next?
• What subsequent intervention option is the best for individuals who are non-

responders to initial intervention options?
• What is the best way to define response versus non-response?
• At each stage, based on what information/variables should we tailor the interven-

tion options (i.e., treat one individual differently from another)?

Over the past 10–15 years, motivated in part by interest in research on “personal-
ized” or “precision” medicine (F. S. Collins & Varmus 2015; National Research
Council 2011), research has accelerated on developing and optimizing adaptive
interventions. At the same time, there has been a surge of interest in experimental
designs used to inform the construction of effective adaptive interventions.

The primary goal of this chapter is to review four types of experimental designs
for optimizing adaptive interventions. Two of these designs are singly randomized
trials (SRTs), in which participants are randomized only once in the course of the
trial. The remaining two designs are sequential, multiple assignment, randomized
trials (SMARTs), in which participants are randomized multiple times in the course
of the trial (Chakraborty & Moodie 2013; Kosorok & Moodie 2015; P. W. Lavori
& Dawson 2014; Lei, Nahum-Shani, Lynch, Oslin, & Murphy 2012; Murphy
2005). Ultimately, the choice of a particular design should be driven by the
scientific questions the intervention scientist seeks to answer. Hence, we highlight
the scientific questions that can be addressed with each design approach. Concrete
examples, motivated by the development of an adaptive intervention to improve
social skills and academic engagement among children with autism, are provided to
ground the discussion.

By describing four different types of experimental designs that can be used to
answer different sets of questions to develop an optimized adaptive intervention,
this chapter also accomplishes the following. First, the chapter showcases diversity
in the types of experimental designs that investigators aiming to optimize an
adaptive intervention can employ within the MOST optimization phase toolbox.
This addresses a common misconception that all research related to optimizing an
adaptive intervention requires a SMART; in fact, two of the experimental designs
described in this chapter employ a single randomization, rather than sequential
randomizations. Second, the chapter demonstrates how data from an optimization
trial can help refine the tailoring in an adaptive intervention.
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The remainder of this chapter is outlined as follows: In Sect. 2, we define adaptive
interventions and provide a concrete example of an adaptive intervention. In this
section and throughout the chapter, our examples center around developing an adap-
tive intervention for improving social skills and academic outcomes among children
with autism spectrum disorders (ASD). Motivated by the concrete example, in
Sect. 3, we list various questions researchers may have concerning the development
of an adaptive intervention. In Sect. 4, we describe the design of two SRTs and two
SMARTs, the rationale for each, and the specific question(s) each is designed to
answer.

2 Adaptive Interventions

An adaptive intervention aims to provide a replicable guide for the type of sequential
intervention decision-making that is often typical (or even necessary) in practice. In
an adaptive intervention, baseline information, such as demographics, biomarkers,
or baseline severity or risk, may inform initial intervention decisions. Then, baseline
information as well as post-initial intervention information, such as changes in
severity, risk, context, intervention engagement, or adherence, may be used to make
subsequent intervention decisions.

The information used in an adaptive intervention to make intervention decisions
is referred to as tailoring variables. Their use in an adaptive intervention is
operationalized via a decision rule, one at each decision point, which links values
of the tailoring variable(s) with a recommendation for one or more subsequent
intervention options. Thus, an adaptive intervention is a protocol comprising a
sequence of individualized intervention options.

As stated earlier, an adaptive intervention is a type of behavioral, biobehavioral,
or biomedical intervention (L. M. Collins 2018). Collins (2018) defines a component
as “any part of an intervention that can be separated out for study” (p. 49). In an
adaptive intervention, components may be items related to the tailoring variables,
decision points, intervention options, or decision rules that make up an adaptive
intervention, such as the following: (1) The schedule (e.g., daily versus weekly) used
to measure an individual’s progress to inform subsequent intervention is an example
of a component related to the tailoring variables; (2) in an adaptive intervention that
triggers an intervention if insufficient improvement is made, time span over which
improvement is determined based on weekly measurements of progress (e.g., at
week 6 vs. at week 12) is an example of a component related to the decision points;
(3) the type of intervention to provide a child who is not improving sufficiently
(e.g., a peer-mediated social skills intervention vs. a parent-mediated social skills
intervention) is an example of a component related to the intervention options; and
(4) the threshold or levels of a tailoring variable used to decide which (set of)
intervention option(s) to provide is an example of a component related to the
decision rules. Note that each of these components could, itself, be multicomponent.
This has to do with the issue of the granularity of components (L. M. Collins 2018,
see section 2.5.1). For example, the parent-mediated social skills intervention may
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involve various components, such as the frequency with which the therapist meets
with the parent, the meeting place, or components related to the content that is taught
to the parent (e.g., how to organize play dates).

An adaptive intervention approach is often necessary in settings where there is
wide treatment effect heterogeneity. This includes settings where there is between-
unit heterogeneity in treatment effects (e.g., what works for one unit may not work
for the other) or there is within-unit heterogeneity in treatment effects over time
(e.g., what works now for one unit may not work in the future for the same unit or
vice versa). Adaptive interventions may also be useful in settings in which effective
interventions (or intervention components) cannot be made available to the entire
population of interest or cannot be made available to the population of interest for
the whole course of their disorder because of resource constraints (e.g., monetary
cost, time cost, burden).

From the point of view of the entity (or entities) providing the intervention,
an adaptive intervention is a sequence of decision rules guiding the individualized
sequencing of intervention. From the point of view of the unit (or units) experiencing
the intervention, an adaptive intervention may be experienced as a sequence of
interventions.

Importantly, an adaptive intervention is an intervention design, not an experimen-
tal design. Thus, an adaptive intervention typically does not involve randomization
for the purpose of scientifically investigating intervention components. Rather, as
we discuss below, randomization can be used in experimental studies that seek
to develop optimized adaptive interventions. (Randomization can also be used to
evaluate an adaptive intervention.)

Adaptive interventions have been described and discussed most commonly in a
treatment domain (e.g., to guide how to initially treat, adapt, and readapt treatment
for children diagnosed with mood disorders in a psychiatric clinic setting (Dawson,
Lavori, Luby, Ryan, & Geller 2007; Gunlicks-Stoessel, Mufson, Westervelt, Almi-
rall, & Murphy 2015)). Here, the intervention target is typically the patient, and the
entity providing the intervention is the clinician. However, adaptive interventions are
not exclusive to the treatment domain or the medical setting. Adaptive interventions
can also be used in prevention, recovery, maintenance, education, health policy,
operations management, or combinations of these.

Adaptive interventions are also known as “adaptive treatment strategies” (Daw-
son & Lavori 2008; Murphy 2005; Murphy, Lynch, Oslin, McKay, & Tenhave
2007; Oetting, Levy, Weiss, & Murphy 2011), “treatment algorithms” (Trivedi,
Fava, Marangell, Osser, & Shelton 2006), or, in the statistical literature, “dynamic
treatment regimens” (Chakraborty & Moodie 2013; Ertefaie, Wu, Lynch, & Nahum-
Shani 2016; Laber, Lizotte, Qian, Pelham, & Murphy 2014; P. W. Lavori & Dawson
2014; Murphy & Bingham 2009; Orellana, Rotnitzky, & Robins 2010; Wang,
Rotnitzky, Lin, Millikan, & Thall 2012; Zhao, Zeng, Laber, & Kosorok 2015) or
“individualized decision rules” (Chakraborty & Murphy 2014). A popular, special
case of an adaptive intervention is the “stepped care intervention model” (Bower
& Gilbody 2005; Sobell & Sobell 2000), where a less intensive/costly intervention
is provided first and more intensive/costly interventions are provided to individuals
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who are not responding sufficiently. Adaptive interventions are more general, in
that they may also include strategies that “step down” intervention; for example,
they may consider maintenance interventions once sufficient response has been
achieved, or they may include switching from one type of intervention to another
that is parallel in cost or intensity. Another special case of an adaptive intervention
is when there is a single stage of intervention (one intervention decision point, e.g.,
one of two medications for a new patient, a single stage of intervention), and that
decision is based on history of medications or likelihood of side effects based on
individual characteristics of the patient.

Next, we provide an example of an adaptive intervention delivered in a school
setting. Its primary goal is to improve social skills outcomes among students with
ASD. Later, this example will be used to motivate a discussion about various types
of experimental designs for developing adaptive interventions.

2.1 An Example Adaptive Intervention: Social Skills
Intervention in a School Setting for Children
with Autism Spectrum Disorder

Background: Social impairment is one of the core deficits for children with ASD.
These children often experience isolation, peer rejection, and lack of friends (Kasari,
Locke, Gulsrud, & Rotheram-Fuller 2011). This worsens with age (Rotheram-Fuller
2005) and leads to poor academic outcomes (Steedly, Schwartz, Levin, & Luke
2008). Yet few interventions address social impairment in school-aged children
with ASD in the “natural” school environment. Including children with ASD in
schools (i.e., inclusive schools)—where they may interact with typically developing
children—is a necessary, but likely insufficient (Ochs, Kremer-Sadlik, Solomon,
& Sirota 2001), first step to address social impairment. Children with ASD may
benefit more from a school-based intervention approach that provides evidence-
based interventions to accelerate development of social and academic engagement.

Need for an Adaptive Intervention Approach: Various evidence-based inter-
ventions exist for improving social skills in children with ASD, including peer-,
classroom-, parent-, and school-targeted interventions (these are reviewed below);
however, not all children will benefit from such interventions. In general, hetero-
geneity in the characteristics of children with ASD and in response to treatment
undermines the effectiveness of such interventions. Peers, parents, classrooms,
and schools are all also expected to respond heterogeneously to interventions that
are ultimately directed to their children with ASD. School leaders, teachers, and
therapists also expect that not all children will respond equally well to a specific
intervention but often have no guidelines on when and how to modify an approach
(Kasari & Smith 2013). Further, due to cost and potential time burden for school
employees and parents, not all evidence-based interventions can be provided in
all schools, at all times, to all children with ASD. This suggests the need for an
individualized, adaptive intervention approach.
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Fig. 1 An example of adaptive intervention delivered in the school setting to improve academic
outcomes among schoolchildren with autism spectrum disorder. Classroom supports intervention
targets the classroom. Peer denotes peer-mediated social skills intervention, which targets the
child’s peers. Parent denotes parent-mediated social skills intervention, which targets the child’s
parents. The playground intervention, remaking recess, is provided to all children at the beginning
of the school year. This is an intervention design, not an experimental trial design

Figure 1 shows a schematic of an example adaptive intervention for guiding how
to individualize interventions in a school setting for children (ages 5–12) with ASD.

Specific Intervention Goals: The short-term goal of the adaptive intervention is to
improve social engagement (i.e., reduce social impairment). The long-term goal of
the adaptive intervention is to improve academic engagement, which, in school-aged
children, can be affected by social impairment.

Intervention Targets: In order to improve the child’s social engagement, there are
four targets of intervention in this adaptive intervention: the child’s peers, the child’s
classroom, the child’s parent(s)/family, and the child’s school playground.

Intervention Options: Remaking recess (RR; Kretzmann, Shih, & Kasari 2015),
which targets the school playground, is a naturalistic, behavioral intervention that
promotes social engagement during unstructured school times, such as recess
and lunch breaks. RR includes a paraprofessional, employed by the school, who
monitors and facilitates social interaction on the playground. The paraprofessional
structures playground activities that seek to engage all children; importantly, this
person is also responsible for monitoring the children for progress on the playground
for purposes of deciding what intervention options to provide at later stages (see
Tailoring Variables below). Classroom supports (CS; Lord & McGee 2001) targets
the child’s classroom. The main strategy comprising the CS intervention is to
provide the teacher with skills related to developing visual supports with transition
schedules in order to improve the behavioral regulation and classroom management
of children. Peer-mediated intervention (Peer; Kasari & Patterson 2012) involves the
use of a small group of typical peers from the target child’s classroom (usually three
peers). Peer targets the child’s peers: the peers selected for each child with ASD
are taught specific strategies for engaging that specific child on the playground.
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Parent-assisted interventions (Parent) help parents support their children to develop
friendships by teaching them how to facilitate social skills development in their
children and teaching them how to host successful play dates (Frankel, Gorospe,
Chang, & Sugar 2011). Parent, which targets the child’s parent(s)/family, takes place
in the home of the child with ASD. Most inclusive schools will have more than one
child with ASD in the school and sometimes more than one child with ASD per
classroom. Thus, RR and CS are considered “cluster-level” interventions, in the
sense that an intact cluster of more than one child with ASD is potentially impacted
by the intervention when the school or classroom, respectively, is targeted. On the
other hand, in this adaptive intervention, Peer and Parent are considered “individual-
level” interventions because only a single child is potentially impacted when the
child’s peers and parent(s)/family are targeted. In Peer, if there are multiple children
with ASD in the same classroom, different peers are used for each target child.
Concerning Parent, it is rare for a family to have more than one child with ASD at
the same developmental age (i.e., in the same school). Further, play dates (one of
the skills taught in Parent) are most often with typically developing peers.

Tailoring Variables: In this example, the intervention is tailored at the week 20
decision point. The tailoring variable—response status—used to make the week 20
intervention decision is collected by the paraprofessional who is part of the RR
intervention. Using a “Clinical Global Impression” measure (CGI; Guy 1976), at
week 20, the paraprofessional rates each child from 1 to 7 in terms of his/her
improvement in peer engagement on the playground (1, very much improved; 2,
much improved; 3, minimally improved; 4, no change; 5, minimally worse; 6, much
worse; 7, very much worse). Based on prior literature and clinical expertise, children
with CGI < 3 are identified as responders; children with CGI ≥ 3 are identified as
slower responders in need of a change in treatment.

Intervention Points: Intervention is delivered approximately over the course of
a full school year. There are four intervention points in this example adaptive
intervention: at the beginning of the school year and at 4, 8, and 20 weeks into the
school year. These intervention points were selected, primarily, based on practical
considerations. As stated above, in this example adaptive intervention, only one
of these intervention points (the week 20 intervention point) involves a decision
rule where treatment is tailored. Next, we discuss the intervention options provided
at each intervention point. Intervention Point 1: At the first intervention point,
which is at the beginning of the school year, all inclusive schools with children
with ASD receive the playground intervention, RR. Intervention Point 2: At the
second intervention point, which is at week 4, all classrooms with children with
ASD receive CS. Teachers are often overburdened prior to and during the first 4
weeks of the school year; beginning at week 4 with CS provides sufficient time
for teachers to settle into their new classes and be receptive to the CS intervention.
Intervention Point 3: At the third intervention point, which is at week 8, all children
with ASD receive Peer. Beginning this component at week 8 provides sufficient
time for the paraprofessional to observe the typically developing children and
the children with ASD on the playground and to select appropriate typical peers
within the ASD child’s classroom for the peer-mediated social skills intervention.
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Beginning with Peer, an individual-level intervention, at week 8 also provides
sufficient time to intervene prior to the holiday break.

The Decision Rule at Intervention Point 4: The fourth intervention point, which
is at week 20 (after the holiday break), involves a decision rule. The intervention
options provided at week 20 depend on whether the child is rated as a responder
or slow responder (see above for definition). Children with ASD who are rated
as responders stay the course with Peer, whereas those who are rated as slower
responders are provided parent intervention (at home) in addition to Peer. The
rationale for augmenting Peer with Parent for only children showing signs of slower
response concerns (and not for all children) is that significant resources are needed
to deliver Parent. By resources we mean the (time or monetary) cost to parents who
must alter their schedules to be available for home visitations, as well as the cost to
providers who would need to expend resources (e.g., clinicians) to intervene at both
school and home.

As discussed above, only intervention point 4 involves a decision rule whereafter
different intervention options are provided to different children, in this case
depending on the child’s week 20 response status. It is also possible to view
intervention points 1, 2, and 3 as involving a special type of decision rule, in
which the same intervention is assigned regardless of information known about
the status of the child. Implicit in this are two key ideas: (1) that there exist (or
could exist) other intervention options for schools at the beginning of the school
year, for classrooms at week 4, and for children at week 8 and (2) that the adaptive
intervention shown in Fig. 1 could be revised to use (or to collect and use) additional
information about the school prior to the beginning of the school year, about the
classroom prior to week 4, or about the child prior to week 8 to decide between
these alternative intervention options.

Indeed, this chapter focuses on how adaptive interventions, such as the one shown
in Fig. 1, could be optimized in such settings, including what kinds of questions
behavioral intervention scientists might ask in such settings, and, therefore, what
kinds of experimental studies behavioral intervention scientists could mount to
address such questions about building an optimized adaptive intervention.

3 Unanswered Questions When Building an Optimized
Adaptive Intervention

When developing an adaptive intervention, scientists often have important ques-
tions that cannot be answered based on existing (empirical, theoretical, practical)
evidence. These unanswered questions typically concern the effectiveness of one
or more components of an adaptive intervention, at one or more stages of the
adaptive intervention. General examples include questions about how best to begin
intervention for all individuals in a setting where it is has been decided (or it is
known) how to adapt intervention in the future—whether to augment, intensify, or
switch intervention for individuals who are non-responders (or non-adherers or non-
engagers) to some initial intervention; the definition of non-response (e.g., which



98 D. Almirall et al.

cutoff should be used to determine non-response to the initial intervention); or the
timing of the interventions (e.g., when or how frequently the decision points should
be set).

Next, we describe three pairs of example questions motivated by the ASD
adaptive intervention described above (Fig. 1). The scientific questions, which are
not immediately evident from Fig. 1, center around alternatives to the intervention
decisions at weeks 4, 8, and 20 in Fig. 1. Specifically, there is one pair of questions
related to each of the week 4, week 8, and week 20 decision rules in the example
adaptive intervention. In each pair the first question, denoted (i), is about a main
effect (i.e., the average difference between two adaptive interventions); and the
second question, denoted (ii), concerns candidate tailoring variables relevant for
this effect (i.e., do certain factors moderate the effect of the adaptive intervention).
Note that they are presented below in order of increasing complexity.

The following are questions related to the week 8 decision rule.

Question 1(i): Parent vs. Peer, on average? One question is whether, in the context
of the adaptive intervention shown in Fig. 1, it is better to begin the individual-
level intervention at week 8 with parent-mediated social skills intervention
(Parent) rather than Peer. More specifically, “What is the effect on playground
peer engagement of the adaptive intervention shown in Fig. 1 versus one that
replaces Peer at week 8 with Parent?” This addresses the question of whether
building social skills in the home via the parent is more important than building
social skills at the school via the child’s peers prior to deciding whether to
provide combined Peer + Parent intervention. This is a critical question given
the potential added cost or burden of intervening initially in the home (relative to
the Peer intervention).

Question 1(ii): Parent vs. Peer, for whom? A second question concerns parent
involvement or school attendance as candidate tailoring variables—variables that
can inform the decision to offer Parent, rather than Peer, at week 8. Specifically,
“Does the effect specified above (i.e., the difference between the adaptive
intervention shown in Fig. 1 and an adaptive intervention that offers Parent
instead of Peer at week 8) vary depending on the child’s school attendance
or parent involvement?” It may be that children with relatively lower parent
involvement during the first 8 weeks of the school year benefit more from
starting with Peer than starting with Parent at week 8 (because it would be more
difficult to engage such parents in the parent-mediated social skills intervention).
On the other hand, children with relatively lower school attendance during the
first 8 weeks of the school year may benefit more from starting with Parent than
starting with Peer at week 8 (because the child’s peers have fewer opportunities
to impact the child’s social skills on the playground).

The following are questions related to the week 20 decision rule.

Question 2(i): Peer vs. Parent + Peer among slow responders? Another question is
whether, among the slower responders to Peer, it is better to stay the course on
Peer, rather than provide combined Parent + Peer. Specifically, “What is the effect
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of the adaptive intervention shown in Fig. 1 versus one that stays the course on
Peer regardless of the child’s early response status?” It may be the case that, on
average, children that are slower responders to Peer at week 20 simply need more
time on Peer to see improved outcomes, indicating no need for Parent (which is
costlier).

Question 2(ii): Peer vs. Parent+Peer, for different types of slow responders? A sec-
ond question concerns social connections as a candidate tailoring variable—
namely, as a variable that can inform the decision to add Parent, rather than
to continue with Peer at week 20 for slow responders. Specifically, “Among
slow responders, does the difference between adding Parent vs. continuing with
Peer at week 20 vary depending on the extent to which a slow responding child
developed additional social connections during the first 20 weeks of school?” It
may be that children who are identified as slower responders and developed no
additional, sustained social connections on the playground as a result of Peer are
more likely to benefit from adding Parent versus those who developed any social
connections.

The following are questions related to the week 4 decision rule.

Question 3(i): Classroom Supports, on average? Another question is whether, in the
context of the adaptive intervention shown in Fig. 1, there is any evidence to
support including the CS intervention. Specifically, “What is the effect of the
adaptive intervention shown in Fig. 1 versus one without the CS intervention?”
It may be the case that social skills and academic engagement outcomes are
similar, on average, regardless of whether children receive CS. This may be
important given the already busy schedules of teachers and the added cost to
school administrators of implementing CS in every inclusive classroom.

Question 3(ii): Classroom Supports, for different types of classrooms? A second
question concerns the classroom’s inclusion environment as a candidate tailoring
variable—a variable that can inform the decision of whether to intervene with
CS at week 4. Specifically, “Does the effect of intervening in classrooms with
CS versus not intervening in classrooms with CS vary depending on the extent to
which the classroom is identified as being more or less inclusive during the first
four weeks of the school year?” It may be that classrooms with a less inclusive
environment benefit more from CS, whereas classrooms with a more inclusive
environment do not benefit as much from CS.

4 Experimental Designs for Building Effective Adaptive
Interventions

This section uses a case-study approach. We present four design examples, two
employing a SRT and two employing a SMART. All four designs are motivated
by one or more of the hypothetical scientific questions listed above concerning
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the example adaptive intervention shown in Fig. 1 for improving social skills in
schoolchildren with ASD. For each trial design, we present the following:

• Brief introduction related to this type of trial design;
• Which scientific questions the trial is intended to answer, from the list above;
• Schematic and description of the flow of the trial;
• Analytic comparisons associated with each question;
• Brief discussion about the trial design; and
• Review of the literature related to this type of trial design (if applicable).

In each of the four trial designs presented below, we presume all children are
exposed to the remaking recess (RR) playground intervention at the beginning of
the school year. In other words, this intervention component is not investigated in
any of the trials below.

4.1 Example 1: A Two-Arm SRT

Introduction: Singly randomized trials (SRTs) are trials where units are randomized
only once. The simplest case is a two-arm SRT, such as the first example presented
here (Fig. 2). In this example, each of the two arms is an adaptive intervention;
the two adaptive interventions differ only in terms of a first-stage component (i.e.,
Peer vs. Parent at week 8). In SRTs that are more complex than the one described
here, the single randomization may be among a subgroup of individuals/units (see
Example 2), or the randomization may be to three or more arms (e.g., component
factors with more than two levels). In the case where multiple components are being
investigated (each with two or more levels), the single randomization may be a
factorial randomization (L. M. Collins 2018, see Chapters 5 and 8).

Scientific Questions Motivating the Design: This trial addresses the first pair
of questions in the previous section, concerning the week 8 decision rule. For
convenience, we repeat the questions here.

Question 1(i): Parent vs. Peer, on average? “What is the effect on playground peer
engagement of the adaptive intervention shown in Fig. 1 versus one that replaces
Peer at week 8 with Parent?”

Question 1(ii): Parent vs. Peer, for whom? “Does the effect specified above (i.e., the
difference between the adaptive intervention shown in Fig. 1 and an adaptive
intervention that offers Parent instead of Peer at week 8) vary depending on the
child’s school attendance or parent involvement?”

Schematic and Flow: See Fig. 2. Beginning at week 4, all children are exposed to
the CS intervention. At week 8, children are randomized with equal probability to
peer- versus parent-mediated social skills intervention (Peer vs. Parent). At week 20,
all children are assessed for early versus slow response status. Children identified
as early responders stay the course on their initially assigned intervention (Peer or
Parent). Children identified as slower responders are provided both Peer and Parent
(Peer+Parent).
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Fig. 2 A two-arm singly randomized trial for developing an adaptive intervention to improve
academic outcomes among schoolchildren with autism. Classroom supports intervention targets
the classroom. Peer denotes peer-mediated social skills intervention, which targets the child’s
peers. Parent denotes parent-mediated social skills intervention, which targets the child’s parents.
The playground intervention, remaking recess, is provided to all children at the beginning of the
school year. A circled “R” denotes randomization. The adaptive interventions given by cells A+B
(Arm 1 in this trial) comprise the adaptive intervention shown in Fig. 1

Comparisons: To describe the analytic comparisons associated with each of the
scientific questions this design is intended to answer, we refer to cells A–D in
Fig. 2, which denote the intervention-response pathways a child may experience.
Question 1(i) compares the two adaptive interventions embedded in this trial.
Children assigned to A or B are consistent with an adaptive intervention that offers
Peer at week 8, whereas children assigned to C or D are consistent with an adaptive
intervention that offers Parent at week 8. Both adaptive interventions offer CS to
all children at week 4, examine slow response at week 20, assign children who are
early responders to stay the course, and provide Peer + Parent to slower responders.
To address question 1(i), outcomes at the end of the study (or change in outcomes
from week 8 onward) are compared between children assigned to cell A or B and
children assigned to cell C or D. To address question 1(ii), outcomes are compared
between cells A+B and C+D for children with different values of school attendance
and parent involvement. These comparisons correspond to a standard moderation
analysis.

Discussion: The trial design shown in Fig. 2 is a two-arm randomized trial, where
each arm is an adaptive intervention; cells A+B represent one adaptive intervention,
and cells C+D represent a second adaptive intervention. Thus, standard data analytic
methods for multi-arm randomized trials can be used to analyze the above-listed
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questions using data arising from such a trial. However, note that in this example,
the two-arm SRT is not a “standard” randomized controlled trial (RCT), in the sense
that there is not a “business as usual” control group (i.e., neither of the two adaptive
interventions represents the current standard used in schools to improve social and
academic outcomes in children with ASD).

4.2 Example 2: An Enhanced, Non-responder SRT

Introduction: The second example trial design (Fig. 3) is an enhanced non-
responder SRT. It is an SRT because there is a single randomization (at week 20).
It is a non-responder trial because the single randomization is among a subset of
study participants characterized as non-responders (referred to as slow responders
in our examples). In standard non-responder randomized trials, often only non-
responders to previous intervention are recruited to participate in the study,
consented, and randomized to the subsequent intervention options—responders
often do not participate in the study. See Prasad (2007) for a brief discussion of
standard non-responder trials of pharmacological agents in cardiovascular disease.
(Standard responder trials are similar, except the focus is on recruiting, consenting,
and randomizing responders.) By contrast, in an enhanced non-responder trial,
such as the one shown in Fig. 3, individuals are recruited and consented at the start
of intervention (e.g., at the beginning of the school year), and both responders and
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Fig. 3 An enhanced non-responder trial for developing an adaptive intervention to improve
academic outcomes among schoolchildren with autism spectrum disorders. Classroom supports
intervention targets the classroom. Peer denotes peer-mediated social skills intervention, which
targets the child’s peers. Parent denotes parent-mediated social skills intervention, which targets
the child’s parents. The playground intervention, remaking recess, is provided to all children at the
beginning of the school year. A circled “R” denotes randomization
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non-responders are followed over all stages of the intervention. Non-responder trials
are common in the behavioral intervention sciences; below we provide a review of
standard non-responder trials (and analogous “responder trials”).

Scientific Questions Motivating the Design: This trial addresses the second pair
of questions in the previous section, concerning the week 20 decision rule. For
convenience, we repeat the questions here:

Question 2(i): Peer vs. Parent+Peer, among slow responders? “What is the effect of
the adaptive intervention shown in Fig. 1 versus one that stays the course on Peer
regardless of the child’s early response status?”

Question 2(ii): Peer vs. Parent+Peer, for different types of slow responders?
“Among slow responders, does the difference between adding Parent vs.
continuing with Peer at week 20 vary depending on the extent to which a
slow responding child developed additional social connections during the first
20 weeks of school?”

Schematic and Flow: See Fig. 3. Beginning at week 4, all classrooms are
provided the CS intervention. At week 8, all children are provided Peer. At week
20, all children are assessed for response status. All children identified as early
responders stay the course on Peer (the initially assigned intervention). Children
identified as slower responders to Peer are randomized with equal probability to
stay the course versus Peer+Parent intervention.

Comparisons: Question 2(i) compares the two interventions embedded in this
trial. Children assigned to A or B receive a fixed intervention that offers Peer at
week 8 and remains on Peer regardless of early or slower response, whereas children
assigned to A or C are assigned to an adaptive intervention that offers Peer at
week 8 and then, at week 20, stays the course on Peer for early responders and
provides Peer+Parent for slower responders. To address question 2(i), outcomes at
the end of the study (or change in outcomes from week 20 onward) are compared
between children assigned to A or B versus A or C. The analysis associated
with this comparison is an easy-to-implement weighted analysis because children
assigned to A are shared between the two interventions being compared and they
are also overrepresented (slower responders in cell B or C have 1/2 the chance of
being represented in each of the two interventions). To accommodate these design
considerations, the data for slower responders are upweighted relative to those for
early responders in the corresponding regression analysis. The weights here are
known by design (specifically, slower responders are given a weight of 2, whereas
early responders are given a weight of 1); see Nahum-Shani et al. (2012a) for details.

To address question 2(ii), outcomes are compared between cells B and C for
children with different values of social connectedness on the playground during the
first 20 weeks of the school year. A straightforward data analysis associated with
this comparison is a standard moderation analysis where the data are restricted to
slow responders (i.e., only slow responders are included in this analysis).

Discussion: As mentioned above, children in cell A or B receive a fixed
intervention (L. M. Collins 2018, Section 1.7), that is, an intervention that is not
adaptive. Children in this intervention are offered Peer at week 8 and remain on
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Peer regardless of their response status. On the other hand, children in cell A or C
receive an adaptive intervention. Hence, the comparison associated with question
2(i) is a contrast of a fixed versus an adaptive intervention. As such, 2(i) evaluates
all of the components making up the second decision rule as a package: the choice
of week 20 as a second decision point, the use of response status at week 20 as a
tailoring variable, and the choice of interventions offered for early responders and
slow responders.

Recall that in a standard non-responder SRT, often only non-responders to
previous intervention are recruited to participate in the study, consented, and
randomized to the subsequent intervention options. Both the standard and enhanced
non-responder SRTs may yield data that can inform the effect of staying the
course on Peer versus adding Parent among slower responders. However, the
enhanced non-responder trial design has at least five potential advantages over the
standard non-responder trial design. First, there is a potential for selection bias
with the standard non-responder trial because in many applications participants
are recruited/consented after they have become a non-responder (by contrast, in an
enhanced non-responder trial, participants are consented to be part of the study prior
to any intervention). Thus, participants in an enhanced non-responder trial should
be a better representation of the non-responders that will be part of an intervention
in the field.

Second, generalizability of the results of a non-responder trial may be com-
promised in some applications of the standard non-responder trial because other
aspects of the adaptive interventions prior to or after becoming a non-responder
are not well operationalized. For example, in studies where the earlier stage
treatments are observed rather than provided, unclear criteria might be used for what
constitutes earlier stages of intervention, or, in standard non-responder trials where
recruitment/consent takes place after non-response, the timing of the transition
between the two stages of intervention may be unclear or not well operationalized.

Third, standard non-responder trials may have limited ability to investigate
certain important time-varying moderators (type 2(ii) questions). For example,
information about social connectedness on the playground during the first 20 weeks
of the school year or adherence or engagement to interventions prior to becoming a
slower responder at week 20—which may be of interest in investigating who may
benefit more or less from staying the course with Peer versus Peer+Parent—may be
unavailable or imprecise. Because enhanced non-responder trials collect data over
the entire course of the intervention, these data will usually be available for analysis.

Fourth, the enhanced design provides an opportunity to estimate the difference
in mean outcome under each of the two adaptive interventions, whereas (when there
is no selection bias) the standard design only ensures an opportunity to estimate
the mean outcome under the subsequent intervention options for non- (or slow)
responders. This is because, for some of the reasons provided above, the rate of non-
response at week 20 following RR, CS, and Peer interventions may be unavailable or
imprecisely estimated in standard non-responder trials, and this rate is necessary for
estimating the difference in mean outcome between the two adaptive interventions
(see Appendix for more details). If the focus is on testing whether the difference is
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zero, the non-response rate is not necessary, but the assumption of no selection bias
remains critical.

Fifth, the enhanced design would allow for secondary (noncausal) analyses
about the time course of the responders; these analyses may be used to design
future studies on adaptive interventions. For example, in the design in Fig. 3,
investigators might observe how well early responders maintain their response
while receiving Peer. If at some point there is a reduction in social connectedness
on the playground for some children, such observations may help investigators
develop new intervention strategies for further improving or maintaining the social
connections on the playground. Such observations are not possible in a standard
non-responder trial.

The primary limitation of the enhanced non-responder trial (relative to the
standard non-responder trial) is the additional complexity and cost of the trial (e.g.,
the added cost of the longer study duration and of measuring outcomes for the
individuals in cell A).

Review of (Non-)responder Trials in Behavioral Intervention Science: A number
of studies have utilized standard non-responder trials to study how to improve long-
term outcomes among youth with mental health disorders who do not respond
sufficiently to a first-stage course of intervention. One example is the adolescent
depression antidepressant and psychotherapy trial (Goodyer et al. 2007). This
was a pragmatic, non-responder clinical trial that compared selective serotonin
reuptake inhibitor (SSRI) medication versus the combination of SSRI plus cognitive
behavioral therapy (CBT) among depressed youth attending routine child and
adolescent mental health service centers in the UK who had not responded to
an initial course of brief psychosocial intervention. A second example is the
treatment of SSRI-resistant depression in adolescents (TORDIA) trial, in which
adolescents with depression who did not respond to an adequate course of SSRI
were randomized to switch to another SSRI or to venlafaxine medication, with
or without CBT (Brent et al. 2008). A third example is the pediatric obsessive-
compulsive disorder (OCD) treatment study II (POTS II) study (Freeman et al.
2009), which compared two forms of second-stage OCD-specific CBT among
youth with OCD who were partial responders to first-stage treatment with selective
serotonin reuptake inhibitor (SSRI) medication. In a fourth example, a group of
Scandinavian investigators compared continued CBT versus a switch to sertraline
medication among youth with OCD who were non-responders to 14 weeks of first-
stage CBT (Skarphedinsson et al. 2015).

A number of other studies have utilized standard responder trials to study
how to maintain early improvements over the longer term (or prevent subsequent
relapse) among individuals who respond to an initial course of intervention. In one
example, Emslie et al. (2004) examined the impact of discontinuing medication
among children and adolescents with major depression who had an adequate
response after 12 weeks of fluoxetine medication. In a second example, Kennard
et al. (2008) examined the feasibility and acceptability of continued antidepressant
medication versus medication plus CBT among youth with major depressive
disorder who had responded to first-line medication. A third example is a study
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that examined the effect of discontinuing versus continuing risperidone medication
(an antipsychotic) among children with ASD with severe disruptive behaviors who
had already responded to an initial 8-week course of medication (McCracken et al.
2002). A fourth example is a weight loss maintenance study (Svetkey et al. 2008)
that compared a personal-contact intervention; an interactive, technology-based
intervention; and a self-directed intervention for sustaining weight loss among obese
or overweight individuals who successfully lost a significant amount of weight
during a first-stage standard behavioral weight loss intervention.

4.3 Example 3: A Prototypical SMART Design

Introduction: The third example trial design is a SMART. SMART designs were
developed explicitly for the purpose of answering multiple open questions (at
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multiple intervention stages) when building an optimized adaptive intervention
(P. Lavori & Dawson 2000; Murphy 2005). The SMART design presented in Fig. 4
is considered a “prototypical SMART,” in that it has become one of the most
popular types of SMART designs: it employs two stages of randomization, where
all individuals are randomized initially to two stage 1 intervention options and non-
responding individuals are randomized subsequently to two stage 2 intervention
options. However, SMART designs can have various forms, including SMARTs
that do not restrict subsequent randomizations based on response to previous
intervention (Example 4 is like this), SMARTs that re-randomize only responders,
and SMARTs that randomized both responders and non-responders.

Scientific Questions Motivating the Design: This trial addresses both the first and
second pairs of questions in the previous section. For convenience, we repeat the
questions here:

Question 1(i): Parent vs. Peer, on average? “What is the effect on playground peer
engagement of the adaptive intervention shown in Fig. 1 versus one that replaces
Peer at week 8 with Parent?”

Question 1(ii): Parent vs. Peer, for whom? “Does the effect specified above (i.e., the
difference between the adaptive intervention shown in Fig. 1 and an adaptive
intervention that offers Parent instead of Peer at week 8) vary depending on the
child’s school attendance or parent involvement?”

Question 2(i): Peer vs. Parent+Peer, among slow responders? “What is the effect of
the adaptive intervention shown in Fig. 1 versus one that stays the course on Peer
regardless of the child’s early response status?”

Question 2(ii): Peer vs. Parent+Peer, for different types of slow responders? “Among
slow responders, does the difference between adding Parent vs. continuing with
Peer at week 20 vary depending on the extent to which a slow responding child
developed additional social connections during the first 20 weeks of school?”

This trial also addresses additional questions concerning two fixed interventions.
One of them provides Parent at week 8 and stays the course regardless of response at
week 20, and the second one provides Peer at week 8 and stays the course regardless
of early or slower response at week 20.

Schematic and Flow: See Fig. 4. Participants in this trial may be randomized
twice, at week 8 and at week 20. Beginning at week 4, all children are given the
CS intervention. At week 8, children are randomized with equal probability to Peer
or Parent. At week 20, all children are assessed for response. Children identified
as early responders stay the course on their initially assigned intervention (Peer
or Parent). Children identified as slower responders are re-randomized with equal
probability to stay the course versus Peer+Parent.

The SMART in Fig. 4 has four sequential intervention strategies embedded
within it. Two of these interventions are adaptive, and two are fixed. These are shown
in Table 1. Note that the two fixed interventions provide the same intervention at
week 8 and at week 20—they do not adjust the intervention based on the response
status at week 20. For example, the “Always Peer” intervention provides CS at week
4 and provides Peer from week 8 to the end of the school year, regardless of response
status at week 20. Similarly, the “Always Parent” intervention provides CS at week 4
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Table 1 The four sequences of intervention embedded in the example prototypical SMART in
Fig. 4. The two intervention sequences labeled with a dagger (†) are fixed interventions, whereas
the other two are adaptive interventions. The playground intervention, remaking recess—which is
provided to all children at the beginning of the school year—is not shown in the Table

Intervention Intervention
Intervention decision at decision at Cells
sequence week 4 week 8 Intervention decision at week 20 (Fig. 4)
“Always Peer” † CS Peer Peer A+B

“Always Parent” † CS Parent Parent D+E

“Peer First” CS Peer Early responders get Peer A+C

Slower responders get Peer+Parent
“Parent First” CS Parent Early responders get Parent D+F

Slower responders get Peer+Parent

and provides Parent from week 8 to the end of the school year regardless of response
status at week 20.

Comparisons: Question 1(i) is a comparison of children assigned to A or C versus
those assigned to D or F. Question 2(i) is a comparison of children assigned to
A or C versus those assigned to A or B. Because this trial has four (rather than
two) embedded sequences of intervention, additional questions are possible. For
example, with this SMART, it is possible to compare adaptive interventions D and
F to D and E. (Intervention sequences D and F were not available in any of the
other designs.) In addition, it is possible to examine how the week 8 and week
20 intervention decisions interact with each other—how Peer vs. Parent at week
8 interacts with staying the course versus Peer+Parent at week 20 among slower
responders.

Discussion: As in the enhanced non-responder trial, the analysis associated with
the comparison of the four embedded adaptive interventions requires an easy-to-
implement weighted regression. Here, children assigned to A or D are shared
between multiple adaptive interventions; these children are also overrepresented
relative to slower responders in cells B, C, E, and F. To accommodate these design
considerations, slower responders are given twice the weight of early responders in
the corresponding regression analysis. Again, see Nahum-Shani et al. (2012a) for
details.

The SMART can also be used to investigate candidate tailoring variables for
both week 8 and week 20 intervention options in the context of the four embedded
adaptive interventions. This includes the ability to investigate questions 1(ii) and
2(ii) and others involving the fixed interventions “Always Peer” and “Always
Parent.”

Review of SMART Designs in Behavioral Intervention Science: SMARTs have
become popular over the past 10 years. They have been (and are currently being)
used to address important questions in the development of adaptive interven-
tions across a wide spectrum of the behavioral, biobehavioral, biomedical, and
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educational sciences. In oncology, SMART designs have been used to develop
adaptive interventions for prostate cancer (Kidwell 2014; Thall, Wooten, Logothetis,
Millikan, & Tannir 2007; Wang et al. 2012). Lei et al. (2012) provided an
excellent review of four example SMART studies to develop behavioral adaptive
interventions, one each in ASD and ADHD and two in adult substance use; this
article includes a description of each SMART and the types of scientific questions
they were designed to answer. The Clinical Antipsychotics Trial of Intervention
Effectiveness (Lieberman et al. 2005; Shortreed & Moodie 2012) and the Sequenced
Treatment Alternatives to Relieve Depression (P. W. Lavori et al. 2001; Rush et al.
2004) studies are examples of early precursors to the SMART in adult mental health
research. Recently, there has been increased interest in adaptive interventions and
SMART designs in child and adolescent mental health (Almirall & Chronis-Tuscano
2016; Kasari et al. 2014).

The Methodology Center at Penn State University hosts a web page with an
updated list of SMART designs across a wide range of the behavioral, biobehavioral,
and educational sciences (Methodology Center 2016), including studies in weight
loss (Naar-King et al. 2015; Sherwood et al. 2016; Spring & Nahum-Shani 2016)
and smoking cessation (Joseph 2016).

4.4 Example 4: A Clustered, Non-restricted SMART Design

Introduction: The fourth example trial design (Fig. 5) is also a SMART because
it has two randomizations, one at week 4 and another at week 8. This example
demonstrates how a SMART can be designed to optimize sequences of intervention
options at multiple levels of intervention, here, at both a cluster level (the classroom)
and an individual level. Accordingly, unlike the SMART design in the third example
(Fig. 4), which randomizes only at the individual level, the SMART in this fourth
example (Fig. 5) randomizes to intervention options both at the classroom level and
at the level of the individual child with ASD within the classroom.

Scientific Questions Motivating the Design: This trial addresses the first and third
pairs of questions in the previous section. For convenience, we repeat the questions
here:

Question 1(i): Parent vs. Peer, on average? “What is the effect on playground peer
engagement of the adaptive intervention shown in Fig. 1 versus one that replaces
Peer at week 8 with Parent?”

Question 1(ii): Parent vs. Peer, for whom? “Does the effect specified above (i.e., the
difference between the adaptive intervention shown in Fig. 1 and an adaptive
intervention which offers Parent instead of Peer at week 8) vary depending on
the child’s school attendance or parent involvement?”

Question 3(i): Classroom Supports, on average? “What is the effect of the adaptive
intervention shown in Fig. 1 versus one without the CS intervention?”

Question 3(ii): Classroom Supports, for different types of classrooms? “Does effect
of intervening in classrooms with CS versus not intervening in classrooms with
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CS vary depending on the extent to which the classroom is identified as being
more or less inclusive during the first four weeks of the school year?”

This trial also addresses additional questions concerning two adaptive interventions
that, at week 8, provide Parent instead of Peer.

Schematic and Flow: See Fig. 5. Beginning at week 4, classrooms are random-
ized with equal probability to receive or not receive the CS intervention. At week
8, all children in all classrooms (regardless of whether CS is provided or not) are
randomized with equal probability to Peer versus Parent. At week 20, all children
are assessed for early versus slow response status. All children identified as early
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Table 2 The four adaptive interventions embedded in the example cluster-randomized SMART
in Fig. 5. The playground intervention, remaking recess—which is provided to all children at the
beginning of the school year—is not shown in the Table

Intervention Intervention
Adaptive decision at decision at Cells
intervention week 4 week 8 Intervention decision at week 20 (Fig. 5)
“CS, Peer” CS Peer Early responder get Peer A+B

Slower responder get Peer+Parent
“No CS, Peer” No CS Peer Early responder get Peer C+D

Slower responder get Peer+Parent
“CS, Parent” CS Parent Early responder get Parent E+F

Slower responder get Peer+Parent
“No CS, Parent” No CS Parent Early responder get Parent G+H

Slower responder get Peer+Parent

responders stay the course on their initially assigned intervention (Peer or Parent).
Children identified as slower responders are offered Peer+Parent intervention.

The SMART in Fig. 5 has four adaptive interventions embedded within it. These
are shown in Table 2. In all of them, children who are early responders at week
20 stay the course, whereas children who are slower responders at week 20 are
provided Peer+Parent. The four adaptive interventions differ in terms of whether
or not classrooms are provided with CS at week 4 and their initial individual-level
intervention (Peer vs. Parent) at week 8.

Comparisons: To address question 1(i), outcomes at the end of the study (or
change in outcomes from week 8 onward) are compared between children in cell A
or B and children in cell C or D. To address question 1(ii), outcomes are compared
between children in cell A or B and those in C or D for children with different values
of school attendance and parent involvement.

To address question 3(i), outcomes at the end of the study (or change in outcomes
from week 4 onward) are compared between children in cell A or B and children in
cell E or F. To address question 3(ii), outcomes are compared between children in
cell A or B and those in cell E or F for children with different values on the extent to
which the classroom is more or less inclusive during the first 4 weeks of the school
year.

Questions 1(i)–(ii) concern the effect of Peer vs. Parent at week 8 in a setting
where CS is provided to all classrooms (A and B vs. C and D), whereas questions
3(i)–(ii) concern the effect of CS vs. no CS in a setting where Peer is provided to all
children at week 8. However, in this SMART, because both factors are varied (CS
vs. no CS at week 4, as well as Peer vs. Parent at week 8), additional questions
are possible. For example, it is possible to examine how the week 4 and week
8 intervention decisions interact with each other: how Parent vs. Peer at week 8
interacts with previous exposure to CS vs. not at week 4.
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Discussion: In addition to being different from the SMART in Fig. 4 because
this trial includes cluster randomization, this example SMART also differs in
another respect: in this cluster-randomized SMART, none of the randomizations
are “restricted,” whereas in the SMART design in the third example, the second
randomization was restricted to only slower responders. (In other words, in the trial
in Example 3, the second randomization is conditional on response status.) The
decision to “restrict” randomizations in a SMART is based on ethical, scientific, or
practical/feasible considerations having to do with whether particular intervention
options at particular stages ought to be or ought not to be considered for certain
subgroups. For example, in the third example (Fig. 4), due to its cost, Peer+Parent
was deemed not to be a feasible option for early responders at week 20; for this
reason, the SMART in Fig. 4 considers randomizing only slower responders at week
20 to Peer+Parent. By contrast, in the SMART in Fig. 5, it was feasible at week 4
for all classrooms to be provided or not provided CS (and this was an interesting
scientific question), and therefore all classrooms were randomized. Similarly, in
both of the SMART designs presented (Figs. 4 and 5), at week 8, it was feasible
for all children with ASD within all classrooms to be provided Peer or Parent (and
this was an interesting question), and therefore in these two designs, all children
were randomized at week 8.

Review of Cluster-Randomized SMART Designs in Behavioral Intervention Sci-
ence: Research on optimizing multilevel (or cluster-level) adaptive interventions—
and, especially, the use of cluster-randomized SMARTs for their optimization—is
not as common as research on optimizing individual-level adaptive interventions.

Here, we review two studies in the field of implementation science, which (for
the most part) concerns the development and evaluation of multilevel interventions
to promote the integration of evidence-based individual-level interventions into
authentic clinical practice settings, such as hospitals or clinics. Such multilevel
interventions, which are known as implementation interventions, are designed to
address barriers that impede the adoption of evidence-based practices in clinical
practice settings, with the ultimate goal of improving individual-level (patient)
health outcomes. The first study (Kilbourne et al. 2013; Kilbourne, Almirall,
Goodrich, et al. 2014) is a SRT to develop an optimized adaptive implementation
intervention to improve the adoption of an outreach program for patients with a
diagnosis of serious mental illness in VA facilities nationwide. The study design
was an enhanced non-responder trial, much like the study shown in Fig. 3, but with
the randomization at the level of the VA facilities.

The second study (Kilbourne, Almirall, Eisenberg, et al. 2014) is a cluster-
randomized SMART, still in the field collecting data as of this writing, to develop
an optimized adaptive implementation intervention designed to improve the
uptake/adoption of a brief, evidence-based intervention for mood disorders in
community mental health settings across Colorado and Michigan. This SMART
seeks to understand when and for which sites to utilize a relatively costly internal
facilitator component among sites having difficulty adopting the evidence-based
intervention.
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5 Discussion

Motivated by the development of an adaptive intervention in an authentic school
setting for improving social skills and academic engagement among children with
ASD, this chapter provides a review of adaptive interventions and the types of
questions investigators often have in the process of building these interventions. The
four examples of experimental designs provided here demonstrate how various trial
design tools can be used in the optimization phase of MOST to address different
types of open scientific questions concerning the construction of an adaptive
intervention. As intervention scientists increasingly acknowledge the critical role the
optimization phase plays in the process of developing high-quality multicomponent
interventions, we expect the use of these (and other) experimental designs to grow
accordingly.

The four hypothetical trial examples provided in this chapter highlight the
various ways experiments can be designed to optimize an adaptive intervention.
Experimental designs for optimization of adaptive interventions may be singly
randomized or sequentially randomized; randomizations may be restricted among
a subgroup of participants (including on the basis of response to prior intervention)
or unrestricted, and randomizations may be at the individual level or a cluster level.

Ultimately, the design of the experiment should be motivated by the scientific
questions the investigator wishes to answer. For example, the design in Fig. 2
focuses on which individual-level component (Peer or Parent) to offer at week
8 in the context of an intervention that subsequently adapts the individual-level
intervention at week 20. This trial design does not address questions about the
effectiveness of Peer + Parent among slower responders at week 20 or about
the classroom-level intervention component (CS) at week 4. This study also does
not address questions about the school-level intervention component (RR). For a
scientist utilizing the design in Fig. 2, such questions are not of scientific interest,
there is previous evidence (e.g., clinical, theoretical, or practical) suggesting that
these questions need not be addressed via randomization, or the questions are of
scientific interest but are to be examined in a future study. As an example of a
practical consideration, suppose that the rate of slow response at week 20 is very
small; in such a setting, it may not be practical to randomize slower responders
to two intervention options at week 20. The SMART design is a special case of
the factorial experimental trial design (Almirall et al. 2014; L. M. Collins 2018,
see Chapter 3). This idea is most easily appreciated by observing how the SMART
in Example 3 (Fig. 4) effectively crosses the single 21 randomization in Example 1
(Fig. 2) with the single 21 randomization in Example 2 (Fig. 3), leading to the 22 = 4
embedded adaptive interventions described in Table 1. In a similar way, the SMART
in Example 4 (Fig. 5) crosses the single 21 randomization that investigates whether
or not to employ the CS component with the single 21 randomization in Example 1
(Fig. 2), leading to the four embedded adaptive interventions described in Table 2.
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Note that, for simplicity, in all of the example trials presented in this chapter
(including the SMART designs), each randomization involves a single factor
with two levels (i.e., in all example trials, each randomization was a 21-way
randomization). Some investigators, however, may be interested in investigating
a single factor with three levels at a particular stage of intervention, necessitating
a 31-way randomization at that stage of intervention. Other investigators may be
interested in investigating multiple factors (e.g., screening multiple intervention
components)—say, p > 1 factors—each with two levels at a particular stage of
intervention, necessitating a 2p-way randomization at that stage of intervention.

In addition, for simplicity, the two SMART designs presented in this chapter
only considered randomization at two stages. However, some investigators may be
interested in addressing important questions at more than two stages of an adaptive
intervention. Indeed, if justified by the science, the two SMARTs in Figs. 4 and 5
could be combined into one, three-stage sequentially randomized trial. At this
point in research on adaptive interventions using sequentially randomized trials,
randomizations at more than two stages remain rare.

The focus of this chapter has been on experimental designs for the optimization
phase of MOST, specifically for optimization of adaptive interventions, and not
experimental designs for the preparation or evaluation phases (L. M. Collins
2018). For preparation, intervention scientists may conduct pilot studies that focus
on feasibility or acceptability considerations in the development of an adaptive
intervention (Almirall, Compton, Gunlicks-Stoessel, Duan, & Murphy 2012; Kim,
Ionides, & Almirall 2016) or analyses using data from existing observational or
experimental studies that provide the rationale for exploring new questions in the
development of an optimized adaptive intervention (e.g., analyses suggesting new
targets for intervention or new decision points at which changes in intervention are
critical). Such an approach is consistent with MOST (L. M. Collins 2018). For
evaluation, intervention scientists typically would use a standard two- or multi-
arm RCT design. For example, following any one of the example trial designs
presented in this chapter, a behavioral intervention scientist may choose to conduct
a follow-up two- or multi-arm RCT of the optimized adaptive intervention versus
a suitable control, or a behavioral intervention scientist may choose to conduct
another optimization trial to answer different questions.

In addition, because the focus in this chapter was on the design of the
experiments—and especially the types of questions motivating the use of different
types of experiments for optimizing adaptive interventions—data analytic methods
or sample size/power resources were not discussed. This is an active and
ever-growing area of methodological research. Two books describe design and
(primarily) analytic methods for SMARTs in greater detail (Chakraborty & Moodie
2013; Kosorok & Moodie 2015). Analysis methods for the comparison of embedded
adaptive interventions (Nahum-Shani et al. 2012a) have been extended for survival
(Li & Murphy 2011) and longitudinal continuous (Lu et al. 2016) outcomes.
A number of manuscripts focus on sample size calculators for different type of
SMART designs (Almirall et al. 2012; Kim et al. 2016; Li & Murphy 2011; Oetting
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et al. 2011). A large and growing literature now exists on analytic methods for
examining candidate baseline and time-varying tailoring variables using data from
a SMART (see Nahum-Shani et al. 2012b and Zhao et al. 2015).

There are various directions for future work. In terms of design, there is
currently a dearth of methodological work on experimental design considerations
for multilevel SMART designs. The SRT and SMART designs by Kilbourne and
colleagues (Kilbourne et al. 2013; Kilbourne, Almirall, Eisenberg, et al. 2014;
Kilbourne, Almirall, Goodrich, et al. 2014) and the design shown in Fig. 4 are
exciting first steps in this direction. Such designs could have great appeal to
educational intervention scientists who, by definition, work in clustered settings
(e.g., repeated outcome measures for children nested within classrooms and nested
within schools); implementation scientists (e.g., repeated outcome measures for
patients, nested within clinics/hospitals); and prevention scientists, who often work
on interventions at multiple levels (e.g., universal community-level interventions
followed by selective individual-level interventions).

There is also a need for new methodological research on primary aim data
analytic methods that behavioral intervention scientists have become accustomed to.
These include the development of random effects or mixed models for comparing
the embedded adaptive interventions in a restricted SMART design and methods for
handling different types of outcomes (e.g., over-dispersed or zero-inflated outcomes
in substance use research).

Appendix

Let z ∈ (−1, 1) be an indicator for the two interventions embedded in the enhanced
non-responder trial shown in Fig. 3. Specifically, let z = −1 indicate the (non)
adaptive intervention that provides RR at week 0, CS at week 4, Peer at week
8, and a continuation of Peer at week 20 regardless of response status. In Fig. 3,
individuals in cells A and B are consistent with this intervention. Let z = 1 indicate
the adaptive intervention that provides RR at week 0, CS at week 4, Peer at week 8,
continued Peer at week 20 for slower responders, and Peer+Parent at week 20 for
slower responders. In Fig. 3, individuals in cells A and C are consistent with this
intervention.

Let Y (z) denote an end-of-study outcome under the adaptive intervention
indexed by z. Let R denote binary response status (= 1 for early responder; = 0
for slower responder) at week 20 under the previous sequence of interventions: RR
followed by CS followed by Peer. Response status is not indexed by z because z is
unknown at the time the response status is assessed. Let π = Pr(R = 1) be the
response rate at the end of week 20 under RR followed by CS followed by Peer.

For a fixed embedded adaptive intervention z, the marginal mean outcome had
the entire population followed adaptive intervention z, denoted μ(z) = E(Y (z)),
can be written as a weighted average of the mean outcome given week 20 response
status:
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μ(z) = E(Y (z)) = E(Y (z) | R = 1) · π + E(Y (z) | R = 0) · (1 − π).

In question 2(i), the goal is to estimate and test � = μ(1) − μ(−1); that
is, the difference in mean outcomes had the entire population followed adaptive
intervention z = 1 versus had the entire population followed adaptive intervention
z = −1.

Plugging in the above expression for μ(z) and utilizing the fact that in the
enhanced non-responder trial

E(Y (−1) | R = 1) = E(Y (1) | R = 1),

that is, both adaptive interventions have the same mean outcome among responders,
then we have that the causal effect is equal to

� = E
(

Y (1) − Y (−1) | R = 0
) × (1 − π).

The above derivation shows that (in the population) the difference in outcome
between the two adaptive interventions is a product of the non-response rate 1 − π

and the difference in mean outcomes among non-responders (i.e., E(Y (1)−Y (−1) |
R = 0)).

These derivations may suggest that data arising from a standard non-responder
trial could be used to estimate �. However, there are two caveats to this. First,
the standard non-responder trial must have recruited from the same population of
non-responders to RR, CS, and Peer (no selection bias). Second, an appropriate
estimate of the non-response rate under RR, CS, and Peer must be available. If
interest is solely in testing whether � = 0 (i.e., there is no interest in estimating �),
then only an estimate of the difference in mean outcomes among non-responders is
necessary, since 1 − π is expected to be nonzero (otherwise, it would be difficult to
justify conducting either a standard or an enhanced non-responder trial). However,
the requirement that there is no selection bias in the sample of non-responders still
applies.
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Intensively Adaptive Interventions Using
Control Systems Engineering: Two
Illustrative Examples

Daniel E. Rivera, Eric B. Hekler, Jennifer S. Savage,
and Danielle Symons Downs

Abstract Control systems engineering is a diverse field that examines how system
variables can be adjusted over time to improve targeted outcomes. In recent years,
control engineering approaches have shown significant appeal in the optimization
phase of the multiphase optimization strategy (MOST). Control engineering can
provide the basis for modeling intensive longitudinal data and using these models
to optimize personalized, time-varying interventions. This chapter describes how
control systems engineering principles, particularly system identification and model
predictive control, can be applied to serve as dynamic modeling methods and opti-
mal decision frameworks, respectively, for two intensively adaptive interventions:
Just Walk, an intervention to promote walking in sedentary middle-age adults, and
Healthy Mom Zone, an intervention to manage gestational weight gain in obese and
overweight pregnant women. The integrated system identification-model predictive
control strategy described in this chapter, as well as the pivotal role that behavioral
theory plays in developing dynamical models, is illustrated with examples taken
from these two interventions.
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1 Introduction

In the development of effective behavioral, biobehavioral, and biomedical inter-
ventions, it is becoming increasingly important to seek alternatives to standard
intervention practices, such as the multiphase optimization strategy (MOST; see the
companion volume, Collins, 2018). Conventional fixed interventions are designed
for a standard response that may not recognize individual participant characteristics
or be readily amenable to optimization procedures. One promising approach lies
in time-varying adaptive interventions; these adjust treatment dosages over the
course of the intervention based on the values of tailoring variables; these are
often measures of participant response or adherence (Collins, Murphy, & Bierman,
2004) but can also include external factors that influence behavior (e.g., weather).
In this chapter, we describe how control systems engineering (Aström & Murray,
2010) offers a potentially useful framework for optimizing the effectiveness of
broad classes of adaptive behavioral interventions, particularly those that are
referred to as intensively adaptive interventions, which feature frequent (e.g.,
weekly, daily, or even more frequent) adaptations. Specifically, the development
of decision policies from control systems engineering, coupled with technological
enhancements in information and computer technology, will result in novel forms
of time-varying adaptive interventions that increase compliance, enhance overall
intervention potency, and reduce waste of time and other resources (Bekiroglu,
Lagoa, Murphy, & Lanza, 2017; Chakraborty & Murphy, 2014; Riley et al. 2011;
Rivera, 2012; Rivera, Pew, & Collins, 2007; Zafra-Cabeza, Rivera, Collins, Ridao,
& Camacho, 2011).

Control systems are widely used in industrial practice to achieve desired behavior
of processes by systematically adjusting manipulated variables based on measured
information (Aström & Murray, 2010; Ogata, 2010; Skogestad & Postlethwaite,
1996). Prior work (Rivera et al. 2007) has established that time-varying adaptive
interventions featuring repeated assessments, intensive data collection, and frequent
decision-making can be conceptualized as engineering control systems. In a control
engineering approach to time-varying adaptive interventions, the controller assigns
dosages to each participant as dictated by the solution of a formal optimization
problem that fully incorporates the parameters or predictions arising from a
dynamical systems model (in control systems this corresponds to a mathematically
specified conceptual model; the conceptual model is discussed in detail in Chapter
2 of the companion volume Collins, 2018).

In this chapter we illustrate how control engineering is applied for two behavioral
interventions: Just Walk, an intervention focused on increasing walking activity in
sedentary adults, and Healthy Mom Zone, an intervention to manage gestational
weight gain (GWG) in obese and overweight pregnant women. Just Walk and
Healthy Mom Zone are two ongoing intervention studies, for which we present
some experimental results to date and discuss the envisioned full outcome of the
intervention in simulation. For both interventions, we discuss how a data-based
modeling technique from engineering known as system identification (Ljung, 1999)
can be used to estimate relevant dynamical system models that relate treatment
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components of an adaptive intervention and external factors to outcomes of interest.
System identification is an N = 1 or idiographic approach (Molenaar & Campbell,
2009; Velicer, 2010). The estimated dynamical systems models then serve as the
basis for applying a control technology known as model predictive control (MPC)
as a decision algorithm for automatic dosage selection. In the adaptive intervention
literature, decision algorithms are often called decision rules. A multiple-degree-of-
freedom formulation for MPC is presented that enables the interventionist to adjust
the speed at which a desired target outcome should be reached, with the capability
to independently adjust to both anticipated and unanticipated changes in symptoms
(as well as possible side effects). Simulation results are presented to illustrate the
performance of the proposed decision scheme, which incorporates individual par-
ticipant response, intervention constraints, modeling errors, and variability typically
present in a real-life application.

This chapter is organized as follows: Sect. 2 defines and provides a general
overview of “open-loop” dynamical systems modeling and how the presence of a
controller achieves “closed-loop” control (defined in Table 1). Section 3 discusses
the use of system identification to arrive at dynamical system models for intensively
adaptive interventions; this can be done with both black-box and semi-physical
approaches, the latter of which can be related directly to behavioral theories. Section
4 presents the use of MPC as an effective means to accomplish closed-loop control
in an intervention setting, while Sects. 5 and 6 present the application of these ideas
(either already implemented or envisioned) to the Just Walk and Healthy Mom Zone
interventions, respectively. The chapter ends with a summary and conclusions in
Sect. 7, which includes a discussion on future directions in this area.

2 A Control Systems Engineering Approach for Modeling
Interventions

Control systems engineering is a diverse field that examines how a system variable
(i.e., an intervention component) can be adjusted over time so that its dynamical
response (i.e., its behavior over time) is transformed from undesirable to desir-
able. Cruise and climate control in automobiles, the “sensor reheat” feature in a
microwave oven, the home thermostat, and the artificial pancreas are all examples
of control systems engineering at work; these are just a few of many applications
and success stories (the interested reader can learn about these and more in
http://ieeecss.org/general/impact-control-technology). The conventional approach
to control systems engineering is to first accomplish some form of dynamical
systems modeling to understand the response of the system in open loop (i.e.,
describe system behavior in the absence of a formal set of decision rules; Table 1
and Sect. 2.1) and then to use this model to design a controller and then implement
automatic or closed-loop control (Table 1 and Sect. 2.2). These concepts are further
developed in the subsections below.

http://ieeecss.org/general/impact-control-technology
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Table 1 Some relevant control engineering terminology

Term Definition

Block
diagram

Graphical representation of the signals and systems that comprise a closed-loop
control system

Closed loop Mode of operation of the control system, once a controller/set of decision rules
is implemented

Controller Mathematical set of relationships that translate error (i.e., deviation from a goal
or set point) into settings for a manipulated variable (which defines an
intervention dosage). Also referred to as a set of decision rules in the context of
this chapter. Sometimes referred to in the scientific literature as a decision policy

Control
engineering

Field that considers how to manipulate system variables in order to transform
dynamic behavior to desirable from undesirable

Control
error
(e = r − y)

Difference between the controlled variable and the set point; in a walking
intervention, if an individual walks 6000 steps in a day and her daily set point
target is 10,000 steps, the control error is 4000 steps. The ultimate goal of a
control system is to have the controlled variable perfectly track the set point, in
which case the control error would correspond to zero

Control loop Closed-loop system
Control
structure

Refers primarily to whether feedback or feedforward strategies (or their
combination) are applied in a closed-loop system

Controlled
variables (y)

System variables that we wish to keep at a reference value or set point (r)

Disturbance
inputs (d)

System variable that influences the controlled variable response but cannot be
manipulated by the controller; disturbance changes occur external to the system
(hence sometimes referred to as exogenous variables). Disturbance inputs can
be measured or unmeasured

Disturbance
rejection

Ability of the control system to manipulate system variables such that the
controlled variable is kept as close as possible to the set point, in spite of
significant changes in the disturbance variables

Error
projection

Signal created by the model predictive control algorithm that indicates the
discrepancy between predicted outputs and their reference trajectories (set
points) over a future horizon. The model predictive control algorithm relies on
the error projection and the dynamical model to optimize future control actions

Feedback
control

Control strategy in which a controlled variable (y) is measured and compared to
a reference value or set point (r). The controller issues actions (decisions on the
values of a manipulated variable (u)) on the basis of the discrepancy between y
and r (which is referred to as the control error e)

Feedforward
control

Control strategy in which changes in a disturbance variable (d) are monitored
and the manipulated variable (u) is chosen to counteract anticipated changes in y
as a result of d

Fluid
analogy

A representation of a control engineering problem as an interconnection of tanks
in which the amount of liquid in a tank (its corresponding “inventory”) changes
as a consequence of the actions of inputs to the system (represented as inflows
and outflows)

Manipulated
inputs (u)

System variable whose adjustment influences the response of the controlled
variable y; the magnitude of u is determined by the controller

(continued)
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Table 1 (continued)

Term Definition

Model error Discrepancy between the parameter values and structure of the dynamical model
that is used to design the control system, versus that of the model that actually
describes the plant. Control systems are ideally designed to be robust to
specified levels of model error. Not to be confused with the control error e. Also
referred to as plant-model mismatch

Model
predictive
control
(MPC)

Control engineering algorithm that optimizes, using a moving horizon
philosophy, an explicit objective function under constraints. Model predictive
control presents an optimization strategy that accomplishes feedback and
feedforward control in this problem space

Offset Sustained discrepancy between the controlled variable response and the set
point in a closed-loop system; it is reflected in a nonzero control error e during
all time in the operation of the control system

Open loop Dynamical system behavior without a controller (i.e., without a set of decision
rules)

Output
variables

Dependent variables in the system; typically these reflect outcomes of interest.
Controlled variables y correspond to an output variable, which has a desired
reference set point r

Process The dynamical system under study, for which a closed-loop controller or
decision rule will be applied

Set point
tracking

The ability of the control system to manipulate system variables such that the
controlled variable follows a reference (set point) trajectory as closely as
possible

2.1 Open-Loop Dynamical Systems Modeling

A foundational starting point in MOST is the conceptual model. As defined in
Chapter 2 of the companion volume, “the conceptual model expresses all of what
is known or hypothesized about how the intervention under development is to
intervene on the behavioral, biobehavioral, or biomedical process” (Collins, 2018,
p. 36). Similarly, control systems engineering requires clear specification of what
is known, hypothesized, or conjectured; this takes the form of a dynamical systems
model, along with any information regarding constraints that are in place (or need
to be enforced) during the intervention. Control systems engineering is particularly
interested in supporting decision-making in systems whose behavior varies over
time; dynamical systems modeling considers how to characterize the change over
time or transient response resulting from changes in manipulated inputs (e.g.,
intervention components whose dosage can be adjusted by the intervention scientist,
denoted by u) and disturbance inputs (e.g., external influences which are not
manipulated directly in the intervention, denoted by d) on outputs (e.g., proximal or
distal outcomes; could also represent mediators, denoted by y) measured in an inten-
sive longitudinal setting. In a typical intervention, the input (u) will represent the
dosage of a primary intervention component such as activity goals, medication, or
counseling, while a disturbance (d) corresponds to behavioral constructs associated
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Fig. 1 An input-output “block” diagram representation of the effect of an input (u) and disturbance
(d) on the output (y) via a dynamical system (P). This is an open-loop configuration, as u is
exogenous to the system and not dictated by a set of decision rules. Changes in the input u (e.g.,
daily step goals, meal demonstrations) produce, based on the system dynamics P, a resulting
change in an output y (e.g., daily steps walked, weight gain) while in the presence of external
disturbances d (e.g., busyness, stress, bad weather)

with the intervention that influence outcomes but are independent of treatment, such
as reported levels of busyness, anxiety, or stress. The output (y) can be an outcome of
interest that the intervention aims to modify, such as physical activity, steps walked,
or weight gain. In Fig. 1, we show that u, d, and y can be related to each other by a
model P, which symbolically represents a dynamical system. P can be expressed
mathematically using a system of ordinary differential equations (in continuous
time t) or a system of difference equations (in sampled or discrete time k), among
various other representations. A dynamical systems approach allows for an efficient
mapping of the causal relationship between variables by capturing the concepts of
change and effect in interventions.

The problem of an individual driving a car is an everyday illustration of an
open-loop dynamical system. The steering wheel, gas pedal, and brake pedal are
examples of manipulated variables that are adjusted by an operator (the driver).
The velocity and direction of the vehicle are proximal outcomes of interest (which
we refer to as outputs); being able to arrive at a particular location in a given
amount of time could be considered a distal outcome. The ability of the vehicle
to achieve its objectives (e.g., go in a particular direction or take an individual or
group of individuals from point A to B) is influenced by external factors such as
road conditions, the presence of other vehicles, and weather; these are examples of
variables that we would consider as disturbance inputs. For example, in behavioral
interventions, a disturbance input might be weather conditions that inhibit (or
promote) physical activity or stresses, such as managing childcare, that may prevent
a pregnant woman from pursuing healthy eating. While some disturbances will be
inherently unmeasured, it is most beneficial to measure and model how disturbance
effects influence the outputs (i.e., outcomes of interest).

2.2 Controller Design and Closed-Loop Control

The ultimate goal in the use of control systems engineering is to develop a closed-
loop intervention in which an algorithmic control system, relying on a model
and repeated measurements of important system variables, assigns appropriate
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Fig. 2 Conceptual block diagram representation of a control system showing a closed-loop
strategy using a desired reference for a designated cost function and clinical constraints. This figure
extends the ideas introduced in Fig. 1 by closing the loop. In a closed-loop system, dosages u are
assigned by the controller C based on the solution of an optimization problem that minimizes a cost
function (subject to intervention constraints) to take outcomes to a specified goal (the reference set
point)

dosage magnitudes automatically over time (Table 1). Because the controller now
determines the response of the manipulated variable u(t) (Fig. 2), the control loop
is considered closed. Many controller forms (and control design strategies) are
available, but our emphasis in this chapter will be on MPC approaches that solve
an optimization problem in real time, taking into account problem constraints
and relying on measurements of both outcomes of interest (controlled variables)
and external factors (disturbances) provided by or assessed from the participant.
In the adaptive intervention language of Collins et al. (2004) and Chapter 8 of
the companion volume, the controller represents a set of decision rules, and any
measured variables y or d that influence the decisions made by the controller
correspond to tailoring variables.

To illustrate a control engineering strategy, we examine the block diagram shown
in Fig. 2. P represents the dynamics expected of the treatment intervention on
outcomes of interest; this is the same block as in Fig. 1. The controller, represented
by the symbol C, is given a set of operating intervention constraints and a cost
function providing a performance metric for the optimization problem. Intervention
constraints include limits on the dosages of intervention components, while the
cost function represents a performance metric such as the average deviation from
a goal over time. These constraints are the control systems engineering equivalent
of MOST optimization constraints. Indeed, efficiency, economy, and scalability
(see Chapter 2 of the companion volume) are domains that can feasibly indicate
constraints to be accounted for by a controller. As control systems engineering
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is particularly interested in responses over time, added constraints (e.g., plausible
dosages, amount of change in dosage from 1 day to the next, anticipated rate of
response to an intervention that is deemed healthy vs. unhealthy) must also be
specified and understood when establishing constraints for the controller; these
ideas will be illustrated in detail later in the chapter. Based on the discrepancy
between the measured outcomes y (e.g., steps walked, weight gained) and their
desired reference values (which we refer to as the control error e(t) = y(t) − r(t)),
the controller assigns dosages u(t) to enable a desired closed-loop response for each
participant (Ogunnaike & Ray, 1994; Rivera et al. 2007). The assessed values of
current and possibly future disturbance signals (e.g., stress, busyness, day of week)
can influence the model and ultimately have a role in decision-making; when these
measures are available, they can be part of the closed-loop control system. The
closed-loop system aims to achieve control by accomplishing the following three
primary functional tasks.

1. Reaching a desired goal (set point tracking). Intervention dosages are assigned
that will ultimately change an outcome of interest, to reach a desired goal.
For example, when designing an intervention to increase physical activity, the
intervention scientist may decide on a goal of a sustained increase of 3000 steps
walked per day within 6 weeks of the start of the intervention.

2. Accounting for measured external factors (rejection of measured disturbances).
The controller can decide on component dosages to mitigate the effect from
reported or assessed external influences (e.g., anxiety) using disturbance models.
For instance, if some external event that leads to increased stress or anxiety is
known a priori, then dosages can be adjusted to compensate for this disturbance.
The mode of operation that accomplishes this task is referred to as feedforward
control. The controller algorithm possesses the functionality to allow this feature
to be turned on or off or otherwise “tuned” (as discussed later in the chapter) for
a desired level of performance.

3. Accounting for unmeasured (and/or unmodelled) external factors (rejection of
unmeasured disturbances). The controller can adjust component dosages to
mitigate the effect of unknown or unmodelled external influences. For example,
there could be a change in physical activity or weight gain that may not be
directly explained by changes in measured or reported conditions. In such cases,
the controller, through the process of feedback control, is able to adjust dosages
to mitigate the effects of this unmeasured disturbance.

It is valuable to examine a representative controller equation that reflects the
previous discussion. Consider an intervention where the dosage of an intervention
component u(t) is determined by a controller equation incorporating both feedback
and feedforward functionality. One such equation would be

u(k) = u (k − 1) + K1 e(k) + K2 e (k − 1) + K3 d(k). (1)

Equation (1) indicates that the dosage at the current review interval k (u(k)) is
determined from the dosage from the prior review interval u(k – 1) with some scaled
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corrections that arise from current and previous control errors (e(k) = r(k) − y(k)
and e(k − 1) = r(k − 1) − y(k − 1), respectively) and the current measured value
for a disturbance d(k). K1, K2, and K3 are controller coefficients that are dependent
on the model and other considerations; they represent controller tuning. Note the
contrast between the controller determination of dosage in (1) and classical if-then
decision rules used to assign dosage in an adaptive intervention (which may assign
u based on the current measurement of y, using a threshold and without articulating
a control error or taking advantage of a measured disturbance (Hekler et al. 2018)).

The three functional tasks of the control system have to be fulfilled under a
number of practical requirements; hence this functionality has to be integrated into
controller design and implementation. In conventional practice, intervention dosage
limits are often set to avoid adverse iatrogenic effects (e.g., drug toxicity, inadequate
GWG). In addition, intervention dosages are generally designed at categorical (i.e.,
discrete) levels. For example, counseling sessions can either be weekly, biweekly,
or monthly. Similarly, a commercially produced drug may be available only in
certain fixed dosages; these limits need to be recognized by the control algorithm.
Furthermore, dosage changes occurring day-to-day should not be very abrupt, due
to potential negative consequences that the participant may experience, such as
confusion related to frequent changes in counseling session frequency or withdrawal
symptoms when medication dosages are changed. Hence, the controller should be
“tuned” in such a way that dosing can be adjusted from more aggressive settings
(where intervention dosages change rapidly over a relatively short time frame) to
more conservative settings where dosage changes relatively slowly over time. These
decisions should ultimately be made on the basis of theoretical, conceptual, and
clinical insights.

3 System Identification to Obtain Dynamical System Models

In traditional control engineering problems, the dynamics of a system can be
modeled on the basis of physical laws (“first principles”), by applying conservation
and accounting concepts on extensive variables of interest, such as total mass and
total energy. However, the underlying complexity and often poorly understood
mechanisms of many systems of practical interest present challenges to first-
principles modeling, leading to the use of modeling methods based on experimental
data, that is, system identification methods (Ljung, 1999). In general terms, the
problem of system identification focuses on modeling dynamical systems from
intensive data, using systems engineering concepts (such as optimization and signal
processing) and statistical principles. The presence of disturbances, particularly
unmeasured ones, presents a challenge that makes system identification a nontrivial
task in many situations of industrial and practical importance. System identification
is traditionally broken down into four steps.
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1. Experimental design. This is often the most important step and most critical
to success of the overall system identification procedure. Part of this step is
choosing the parameters that define the input into the system; these inputs will
be experimentally manipulated. This chapter will illustrate the use of a system
identification-based experimental design in the description of Just Walk (Sect. 5).

2. Definition and selection of a model structure. The structure can be either a
general, “ready-made” black-box structure (such as autoregressive with external
input (ARX) models) or other members of the family of prediction-error models
(Ljung, 1999). Other alternatives include semi-physical structures based on first
principles such as fluid analogies. Black-box and semi-physical structures are
both illustrated in this chapter.

3. Parameter estimation. The parameter estimation step involves using a numerical
procedure to obtain estimates of the model parameters. The type of objective
function (e.g., squared sum of the prediction error), the model structure, and the
nature of any prefiltering operations on the data are among a myriad of design
variables that must be specified in parameter estimation. Other factors that must
be considered are potential numerical problems that might impact the quality of
the parameter estimates.

4. Model validation. Having estimated a model, its adequacy must be assessed.
Among the issues that must be considered is whether the output predicted by
the model compares favorably with the measured output, whether the “step
response” of the estimated model agrees with expert intuition, and to what extent
unmodelled dynamics and model uncertainty will impact the ability to design a
well-performing control system.

In practice, system identification is an iterative procedure (Fig. 3). The lack of a
priori information regarding a system will require that some of the steps initially be
examined in a cursory manner. After each stage, the user must discern whether any
previous steps were accomplished incorrectly; the procedure is then repeated until a
suitable model is obtained. This is in line with the continual optimization principle
used in MOST, with two different types of system identification experiments
available that roughly correspond to that which would be used in the preparation
stage versus the optimization phase. In the preparation phase, an open-loop system
identification experiment can be conducted as the control systems equivalent of a
pilot study. As described in Chapter 2 of the companion volume (Collins, 2018), the
purpose of pilot studies is both to support initial examination of the feasibility to
conduct the research study in general (e.g., ability to recruit, run the trial, gather
data, analyze the results) and to test the feasibility of the approach. As control
systems engineering places such high priority on a mathematical specification via
a dynamical model, there is a requirement for a pilot study that can provide initial
insights, beyond just simulation studies, for creating dynamical models. The open-
loop system identification experiment is an appropriate methodology for this type of
pilot testing because it can support the other targets of pilot testing in the preparation
phase of MOST (i.e., pilot the methods, examine feasibility of the intervention
for real-world use) while also supporting dynamical systems modeling. This will
be illustrated with the Just Walk case study in Sect. 5. In contrast, a closed-loop
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Fig. 3 System identification problem – iterative loop schematic

experiment that includes the controller/set of decision rules is the design often
more appropriate for the optimization phase. In particular, a closed-loop experiment
enables examining the quality of the decision rules, intervention constraints, and
other procedures used to create an automated intensively adaptive intervention.

In this section we provide some additional details and illustrations of dynamic
modeling via system identification in two forms: black-box/fully empirical methods
and semi-physical approaches.

3.1 Black-Box Approaches

Black-box approaches are best suited in scenarios in which little is known about
the mechanisms of change between inputs and outputs. These methods can be
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valuable in settings where only limited involvement can be expected from personnel
analyzing the intervention data and building models. The estimated model can serve
myriad purposes, such as providing predictions that are used by a controller to
assign dosages based on measured participant responses. The modeling procedure
undertaken in this study is summarized in three subparts, as follows.

1. Data preprocessing. Data preprocessing operations include interpolation or
imputation for missing entries, mean subtraction or removal of trends, and
filtering operations to provide the appropriate level of description in the data. For
instance, in Deshpande, Nandola, Rivera, and Younger (2011), a 3-day moving
average filter is applied to attenuate the high frequency (i.e., rapid day-to-day)
variations in the data.

2. Discrete-time modeling using multi-input ARX models. Preprocessed data are
fitted to an ARX parametric model (ARX [na nb1 nb2 . . . nbnu

nk1 nk2 . . . nknu
])

that is defined by a difference equation involving current and prior values of y
and u:

y(k) + a1y (k − 1) + · · · + anay (k − na) = b11u1
(

k − nk1

) + . . .

+b1nb1
u1

(

k−nk1−nb1+1
) +b21u2

(

k−nk2

)+ . . . +b2nb2
u2

(

k − nk2 − nb2+1
)

...

+ bnu1unu (k − nk) + · · · + bnunbnu
unu

(

k − nknu
− nbnu

+ 1
)

+ e(k).

(2)

nu represents the number of inputs [u1 u2 . . . unu]; na, nb1 , nb2 , . . . , nbnu
are the

model orders; and nk1 , nk2 , . . . , nknu
are the input delays. e(k) is the prediction

error, while k is a discrete time index (e.g., day). The model parameter vector
[

a1, . . . , ana , b11, . . . , b1nb1
, b21, . . . , b2nb2

, . . . , bnu1, . . . , bnunbnu

]

(3)

is estimated using regression. ARX parameter estimation constitutes a linear least-
squares regression problem (Ljung, 1999) and has attractive statistical properties,
such as consistency.

3. Model validation. Model validation in black-box modeling can take many forms.
Simulation of the estimated output from the model to measured data is typical
and is best when done with a “fresh” dataset (i.e., one that was not used for
estimation); this dataset is referred to as a validation dataset, and the validation
procedure is referred to as cross-validation. In the absence of a cross-validation
dataset, good fit does not necessarily imply a predictive model. Model fit can
be quantified based on the value of the objective function (from parameter
estimation); however, a popular metric in system identification to determine the
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percentage of output variance explained by the model is the normalized root-
mean-square error (NRMSE) fit index:

Model fit (%) = 100 ×
(

1 −
∥

∥y(k) − ŷ(k)
∥

∥

2

‖y(k) − y‖2

)

, (4)

where y(k) is the measured output, ŷ(k) is the simulated output, y is the mean of

all measured y(k) values, and ‖·‖2 indicates a vector 2-norm (‖ x‖2
def= √

xT x).
Various statistical tests can be performed as part of model validation, including
testing the residual time series from model fitting to determine whether it can
be classified as white noise. If a residual time series consists of white noise,
this indicates that all the important correlation and dynamic behavior have
been captured by the estimated model, so what remains unmodelled in the data
is completely random. There are many benefits to ARX estimation, and it is
possible to synergistically integrate the various steps involved in identification
to develop effective, practical procedures. Substantial literature exists that can
provide guidance for this process. For instance, Ljung (1994) suggests starting
with fourth-order ([na = 4 nb = 4 nk = 1]) ARX models; if this is not
satisfactory, the recommendation is to increase the model order to eighth order,
include additional inputs, or move to a nonlinear model structure. Because
ARX parameter estimation consists of linear regression and is computationally
inexpensive, it is possible to exhaustively examine ranges of ARX model orders
and then, using cross-validation and goodness-of-fit measures, systematically
identify model structure(s) and parameters that adequately describe the system.
Computational tools such as the system identification toolbox in MATLAB
support this functionality; however, reproducing these methods in standard
statistical packages is not insurmountable.

3.2 Dynamic Modeling Beyond Black-Box Approaches:
The Use of Behavioral Theory

The previous section described an empirical “black-box” modeling approach for
determining the system dynamics where the choice of model structure is primarily
driven by aspects of goodness of fit on a validation dataset. However, it is possible,
and in many instances desirable, to incorporate theories from behavioral science in a
dynamical systems framework relevant to interventions (Hekler, Klasnja, Froehlich,
& Buman, 2013; Martín et al. 2014; Navarro-Barrientos, Rivera, & Collins, 2011).
In the following subsections, we discuss the use of the theory of planned behavior
(Ajzen, 1991, 2005) and social cognitive theory (Bandura, 1986) to inform the
development of dynamical systems models for behavior change.
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Fig. 4 Path diagram for the theory of planned behavior

3.2.1 Theory of Planned Behavior and Its Fluid Analogy

The theory of planned behavior (Ajzen, 1991, 2005) is used broadly to describe
the relationship between behaviors, intentions, and other psychosocial constructs.
Figure 4 shows a path diagram for the theory based on structural equation modeling
(Bollen, 1983). It depicts the steady-state relationships between variables. ηi

represents endogenous variables, ξ i represents exogenous variables, β ij and γ ij

are regression weights, and ζ i are disturbance variables. The theory of planned
behavior says that an individual’s behavior η5 is influenced by perceived behavioral
control (perceived ease or difficulty to adopt the behavior) η3 and intention (level
of motivation) η4. Intention, in turn, is determined by attitude toward the behavior
(positive and negative evaluation of the behavior) η1, subjective norms (influence of
significant others) η2, and perceived behavioral control η3. The exogenous variables
are expressed as follows:

ξ1 = b1 × e1 ξ2 = n1 × m1 ξ3 = c1 × p1, (5)

where b1 represents the strength of beliefs about the outcome, e1 is the evaluation
of the outcome, n1 is the strength of normative beliefs, m1 is the strength of the
motivation to comply to the different normative beliefs, c1 is the strength of the
control belief, and p1 is the perceived power of the control factor.

The path diagram representation in Fig. 4 is typically used to describe phenomena
cross-sectionally, and it does not take time into account. It is possible, however, to
rely on information provided by the path diagram to develop a dynamical model
corresponding to the theory of planned behavior, in which variables are expressed as
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Fig. 5 Fluid analogy for the theory of planned behavior, consistent with the path diagram in Fig. 3

functions of time, as demonstrated using the concept of fluid analogies in Navarro-
Barrientos et al. (2011). Each of the endogenous variables in the model can be
postulated as liquid (e.g., water) in a tank; the value of the endogenous variable
defines the fluid inventory, as depicted in Fig. 5. The exogenous variables ξ1, ξ2,
and ξ3 are inflows into the inventories (i.e., dosage of each intervention component
influencing the target behavior). A dynamical system description can be generated
by applying the principle of conservation of mass (Ogunnaike & Ray, 1994) to each
inventory, leading to a system of ordinary differential equations:

τ1
dη1

dt
= γ11 ξ1 (t − θ1) − η1(t) + ζ1(t) (6)

τ2
dη2

dt
= γ22 ξ2 (t − θ2) − η2(t) + ζ2(t) (7)

τ3
dη3

dt
= γ33 ξ3 (t − θ3) − η3(t) + ζ3(t) (8)

τ4
dη4

dt
= β41 η1 (t − θ4) + β42 η2 (t − θ5) + β43 η3 (t − θ6) − η4(t) + ζ4(t) (9)

τ5
dη5

dt
= β54 η4 (t − θ7) + β53 η3 (t − θ8) − η5(t) + ζ5(t) (10)
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where τ i are time constants, θ i represent time delays, and ζ i represent disturbances.
In this dynamical representation, the regression weights β ij and γ ij from the struc-
tural equation model correspond to gains of the dynamical system. The dynamical
model can be used for modeling idiographic behavior; these parameters can be used
to determine the shape and the speed of the response of the individual’s behavior
changes. While (6), (7), (8), (9), and (10) are written using first-order derivatives,
higher-order derivatives with additional parameters can be used to augment the
model equations to reflect more complex dynamical system behavior such as inverse
response, underdamped (e.g., oscillatory) response, and the like. The use of higher-
order derivatives is discussed in Martín et al. (2014) and Navarro-Barrientos et al.
(2011).

This section describes one means for arriving at a dynamical system model for
the theory of planned behavior; additional examination in a control engineering
context has been developed by Vanderwater and Davison (2011).

3.2.2 Social Cognitive Theory Dynamical Model

Social cognitive theory describes a human agency model in which individuals
proactively self-reflect, self-regulate, and self-organize (Bandura, 1989). It estimates
an individual’s ability to engage in a targeted behavior, based on internal and
external parameters and their interrelationships, with some self-perceived and others
externally measured. Social cognitive theory components occur as a consequence of
variation in external or internal stimuli. From an engineering perspective, a number
of social cognitive theory components can be treated as output variables (y), such as
the following.

• Self-efficacy, which is the perceived confidence in one’s ability to perform a target
behavior. It is an essential factor that influences behavior and that is influenced
by behavior and the environment (e.g., one’s belief that one is able to go for a
walk every day).

• Outcome expectancies are the perceived likelihood that performing a target
behavior will result in specific, anticipated outcome (e.g., one’s belief that going
for a walk every day will result in weight loss).

• Behavior is the action of interest (e.g., walking).
• Behavioral outcomes, which are outcomes obtained as a result of the behavior.

These are directly related to outcome expectancies and the future behavior (e.g.,
increasing daily steps by 3000). In the case of physical activity, for example,
a behavioral outcome could be weight loss (positive) or pain resulting from
exercise (negative).

According to the theory, there are variables that act as stimuli to promote or
inhibit behavior and to attenuate or enhance the effect of the components. These
can be considered inputs to the system, and they can be external or internal to the
individual. The following are some examples of these types of variables.
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Fig. 6 Fluid analogy for a version of the dynamic social cognitive theory model meaningful to a
physical activity intervention. Inputs are represented as inflows and outputs as inventory levels

• Environmental context in which the behavior occurs and which directly influ-
ences the resultant behavioral outcomes. For physical activity, this could include
factors such as weather or whether a day is a weekday or weekend day.

• Internal and external cues to action that directly influence behavior. In social
cognitive theory, beliefs (e.g., self-efficacy) are conceptualized as predispositions
for engaging in a behavior that is then triggered by a cue to action.

A fluid analogy of the social cognitive theory has been developed (Martín et
al. 2014; Riley et al. 2016) that depicts how the various components relate with
one another over time, particularly to understand behavior. Figure 6 is a simplified
version of the model that represents how a behavioral scientist might articulate the
determinants of behavior (Ferster, 1970). Main constructs are treated as inventories;
other components and properties are depicted as inflows and/or outflows.

In Fig. 6, behavior (η4) is represented as a fluid inventory that increases and
decreases in frequency and/or duration over time. Self-efficacy (η3) is represented
as an inventory of varying levels that differs between different behaviors, different
individuals, and even within an individual. Prior experience engaging in the behavior
(β34) is a critical learning feedback loop that adds or depletes self-efficacy to
subsequently engage in the behavior.
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Martín et al. (2014) and Riley et al. (2016) describe a model that is broadly
applicable to many health behaviors. Consider the Just Walk intervention (explained
further in Sect. 5), where the main goal is to promote physical activity among
sedentary individuals. Such an intervention relies on the systematic delivery of the
following intervention components, based on individual performance.

• Daily goals (u8), to quantify the desired behavior (e.g., 10,000 steps per day).
• Expected points (u9), the announced daily reward points that will be granted to

individuals if they achieve the daily goal.
• Granted points (u10), given every day if individuals reach the set goal. Points can

later be exchanged for tangible rewards (e.g., gift cards).
• As depicted in Fig. 6, additional inputs include the following.
• Outcome expectancy (OE) for reinforcement: expected daily reward points (ξ9).
• Reinforcement: received daily reward points resulting from behavior (ξ10).
• Goal attainment: (ξ11) computed as the difference between the daily goal and

the actual performed behavior, which influences self-efficacy. This signal is
particularly useful in developing a social cognitive theory model that properly
predicts “ambitious but doable” goals, since individuals might react negatively
to a goal that seems unattainable.

To obtain a mathematical model, it is necessary to describe how the inventories
and their respective inflows and outflows fit within a dynamical system. The
procedure is as described by Navarro-Barrientos et al. in a dynamic model for
the theory of planned behavior Navarro-Barrientos et al. (2011). Five inventories
represented by the variables η2, . . . , η6 are considered in the fluid analogy in
Fig. 6. The exogenous inputs are represented by ξ4, ξ7, ξ8, ξ9, ξ10, and ξ11.
From each inventory there are a number of inflow “resistances” (represented by
the coefficients γ 25, . . . , γ 68) and outflow “resistances” (represented by β25, . . . ,
β46). There are additional parameters that represent the physical characteristics of
each inventory and flow; these have an important effect on the dynamic behavior
of the system. There are the time constants τ 2, . . . , τ 6 that denote capacity and
allow for exponential decay (or growth) of the inventory, and time delay parameters
(θ2, . . . , θ22) can be used for each flow signal to capture dead time. Unmeasured
disturbances (which can reflect unmodelled dynamics) are also considered as ζ 2,
. . . , ζ 6.

In the fluid analogy, the principle of conservation of mass is used, such that for
each inventory, an accumulation term is defined as the sum of all the inflows minus
the sum of all the outflows. The accumulation term is denoted by the time constant τ

times the rate of change (derivative) in the inventory. The following equations define
the system for each tank.

τ2
dη2

dt
= γ29ξ9 (t − θ21) + β25η5 (t − θ14) − η2(t) + ζ2(t) (11)

τ3
dη3

dt
= γ311ξ11 (t − θ22) + β34η4 (t − θ13) − η3(t) + ζ3(t) (12)
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τ4
dη4

dt
= β42η2 (t − θ6) + β43η3 (t − θ8) + β46η6 (t − θ17) + β45η5 (t − θ19)

−η4(t) + ζ4(t) (13)

τ5
dη5

dt
= γ57ξ7 (t − θ15) + γ510ξ10 (t − θ20) + β54η4 (t − θ12) − η5(t) + ζ5(t)

(14)

τ6
dη6

dt
= γ64ξ4 (t − θ11) + γ68ξ8 (t − θ18) − η6(t) + ζ6(t) (15)

As in the case of the theory of planned behavior, the system represented by (11),
(12), (13), (14), and (15) is written using first-order differential equations, but in
order to describe more elaborate transient responses (that may include overshoot
and oscillatory behavior), a higher-order model relying on second-order derivatives
could be used (Navarro-Barrientos et al. 2011). More detailed descriptions of the
constructs, model considerations, simulation scenarios, and additional features that
can be incorporated to the model are provided in Martín et al. (2014) and Riley et
al. (2016).

3.2.3 Other Theories: Self-Regulation and Mediation

Self-regulation theory in psychology has been largely influenced by the work of
Carver and Scheier (1998). As discussed in Dong et al. (2012) and Carver and
Scheier (1998), many theories of self-regulation are conceptualized on the basis of
feedback control systems. How self-regulation can be incorporated within the scope
of the theory of planned behavior is presented in the work of Dong et al. (2012).
Likewise, Timms and co-workers (Timms, 2014; Timms, Rivera, Collins, & Piper,
2014) have developed dynamical systems models from path models for mediation,
using the ideas and concepts described in this chapter. The interested reader can
consult these references for details.

4 Model Predictive Control

This section presents MPC as the algorithmic framework for making system-
atic dosage assignments in closed-loop, intensively adaptive interventions. MPC
has widespread application in diverse industries, ranging from petrochemicals to
aerospace (Qin & Badgwell, 2003). This technology has also been useful in design-
ing treatment regimens for diverse medical applications, from diabetes mellitus
control to HIV/AIDS treatment (Deshpande, 2011; Nandola & Rivera, 2013; Wang,
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Dassau, & Doyle, 2010; Zurakowski & Teel, 2006). As noted previously, control
engineering, such as MPC, is one approach to optimizing an adaptive intervention,
and a closed-loop experiment for the purpose of developing a controller is one type
of optimization trial (Collins, 2018). In this section we further describe the logic
behind MPC.

Figure 7 depicts the “receding horizon” strategy that forms the conceptual
basis for MPC. The predicted change in outputs in the future (calculated using
the estimated model from system identification) augmented with predictions from
measured disturbance variables (when available) can be used to generate an error
projection signal that represents expected deviations between the outputs and the
goal, based on current and past control actions. Because past actions of the control
system have already taken place and cannot be reversed, the only option left
to the controller is to determine future values of the manipulated variables that
will bring the outputs closer to desired reference trajectories. On the basis of the
error projection signal and the dynamical model, the optimization step in MPC
calculates a sequence of future control actions that will minimize the projected
error with respect to a desired goal. The control actions are determined by an
online optimization algorithm as follows: the constrained optimization problem
shown in Eqs. (16), (17), (18), and (19) is numerically solved at each decision
point (e.g., daily) based on model-based predictions over a period of time (defined
by the prediction horizon p) and optimal manipulated variable changes over a
period of time (defined by the move horizon m). Instead of implementing all
of the calculated control actions, only the one corresponding to the immediate
future decision point is applied, with the procedure repeated at the next assessment
interval (e.g., daily) and then continuously until the end of the intervention. This
strategy allows the controller to respond to unforeseen or unpredictable changes
(i.e., unmeasured disturbances) and account for plant-model mismatch (i.e., model
error) as it systematically relies on up-to-date participant response information to
make its calculations. In Eq. (16), the optimization objective is related to the error
between the predicted values (y(k + 1), . . . , y(k + p)) and the reference set point
yr, with Qy as a user-defined weight. It is solved under constraints on the allowable
minimum and maximum outcome values, input treatment dosages, and their rate of
change (represented by �u(k) = u(k) − u(k − 1)). Variables p and m correspond to
the prediction horizon and the control horizon, respectively.

min
{

[u(k+i)]m−1
i=0

}

J �
p

∑

i=1

(y (k + i) − yr)
T Qy (y (k + i) − yr) (16)

ymin ≤ y (k + i) ≤ ymax, 1 ≤ i ≤ p (17)

umin ≤ u (k + i) ≤ umax, 0 ≤ i ≤ m − 1 (18)



Intensively Adaptive Interventions Using Control Systems Engineering: Two. . . 141

Predicted
Outcome  

(t+i)

Prior
Outcome

Assessments

Future Dosages u(t+i)

Prior
Measured 

Disturbance

Prior
Dosages

t t+1 t+m t+p

Move Horizon

Prediction Horizon

Umax

Umin

Forecasted Disturbance dF (t+i)

(if available)

Outcome Goal
(Setpoint r(t+i))

D
is

tu
rb

.
V

ar
ia

b
le

C
o

n
tr

o
lle

d
 

V
ar

ia
b

le
M

an
ip

u
la

te
d

 
V

ar
ia

b
le

Past Future

Fig. 7 Conceptual representation of the receding horizon strategy used by the MPC algorithm,
depicted for an intervention featuring scalar controlled (y), manipulated (u), and measured
disturbance (d) variables. In an intervention to promote increased physical activity (such as the
Just Walk intervention described in Sect. 5), the controlled variable represents daily steps walked
by a participant, which should ultimately reach a desired outcome goal (denoted by the set point
signal r). The controller algorithm determines daily step goals (the manipulated variable) over a
future horizon of decision intervals (denoted by m) to achieve this goal with minimum deviation
(as determined by an objective function). Measurements and forecasts of a disturbance variable
(such as predicted busyness) are used by the MPC algorithm to improve the prediction of future
outcomes (over a prediction horizon p) and establish a closed-loop error projection signal that is
then mitigated by the controller

�umin ≤ �u (k + i) ≤ �umax, 0 ≤ i ≤ m − 1 (19)

The optimization problem in Eq. (16) is solved through established numerical
procedures from operations research. For linear dynamical models with categorical
inputs, the optimization problem in Eq. (16) is solved using a mixed-integer
quadratic program (MIQP). Details of the algorithm and its solution are provided
in Nandola and Rivera (2013).
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There are many possible ways to formulate an MPC algorithm, all featuring
the receding horizon approach described previously. The MPC algorithm evaluated
in this chapter relies on what is referred to as a “three degree-of-freedom”
(3DoF) tuning approach to achieve desired levels of performance (Lee & Yu,
1994; Wang & Rivera, 2008). The 3DoF tuning method enables the performance
requirements associated with reaching a desired goal and accounting for measured
and unmeasured disturbances to be adjusted independently by varying three “knobs”
represented by the parameters αr, αd, and fa, respectively (Deshpande, 2011;
Deshpande et al. 2011; Nandola & Rivera, 2013). This tuning approach provides the
intervention scientist a flexible and intuitive method to adjust the controller so that
the outputs achieve a desired speed and shape of response. In the ensuing sections,
we demonstrate how the 3DoF formulation enables obtaining desirable participant
response profiles over time while accommodating clinical constraints.

An important aspect of the 3DoF approach is its ability to address the presence
of plant-model mismatch (i.e., model error) and provide robustness to the control
system. In industrial practice, robustness to modeling errors and other forms
of uncertainty is an important practical consideration (Aström & Murray, 2010;
Skogestad & Postlethwaite, 1996). In the context of behavioral interventions,
robustness issues arise from the statistical errors resulting from parameter estimation
during system identification, the variability that may exist between participants,
unmodelled dynamics that are not captured during system identification, or changes
in the model that may occur within the participant over time. Space limitations
prevent describing these concepts in more detail, but control system robustness is
evaluated in a series of simulated scenarios relevant to the adaptive intervention that
is described in Deshpande (2011, 2014).

5 Control Systems Engineering for a Physical Activity
Intervention: Just Walk

5.1 Description of the Just Walk Intervention

Just Walk (Freigoun et al. 2017; Hekler et al. 2018; Korinek et al. 2018; Phatak
et al. 2018) was developed as an mHealth adaptive, walking intervention for
sedentary, overweight adults, designed primarily as a tool to generate individualized
computational models for understanding behavior via system identification. The
pilot intervention system included a front-end Android app (Just Walk), a backend
server, and wearable devices (Fitbit Zip) to objectively measure physical activity
and automatically sync with the smartphone application. Participants were recruited
nationally to partake in a walking intervention in which they would be assigned
daily step goals via the Just Walk app, and points were awarded if the goals were
achieved. Points were converted into Amazon gift cards after a certain threshold
was reached. Participants were also required to complete a series of daily morning
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and evening ecological momentary assessment (EMA; Shiffman, Stone, & Hufford,
2008) measures (e.g., confidence in achieving goal, predicted busyness for that day,
previous night’s sleep quality) for the entire duration of the study.

The total study duration was 14 weeks, including an initial 2-week baseline
period in which no step goals were delivered. Each participant’s step goals were
based on his/her median daily step value, calculated from the 14-day baseline
period, and were designed to establish a mechanism for individualizing the defi-
nition of an ambitious but achievable step count. The methods used to determine
each daily goal are described below. All physical activity data were collected from
the Fitbit Zip (provided to participants as a part of the study) and stored both locally
and in Fitabase (Small Steps Labs, San Diego, CA, USA; a secure research platform
that stores information provided to it by the Fitbit API in an SQL server database).

Participants were generally healthy, inactive, 40–65 years old, with a body mass
index (BMI) of 25–45 kg/m2 who currently owned an Android phone capable
of connecting to a Fitbit Zip via Bluetooth 4.0 and were willing to engage with
the mHealth intervention for 14 weeks. Participants were considered inactive and
eligible for the study if they engaged in less than 1000 metabolic equivalent
of task (MET)-minutes/week, as measured by the International Physical Activity
Questionnaire (IPAQ) (Craig et al. 2003). Individuals were excluded if they did
not speak English, were pregnant, had a BMI over 45 kg/m2, indicated medical
problems that precluded unsupervised physical activity based on the Physical
Activity Readiness Questionnaire (PAR-Q), or were currently participating in a
commercial or research-related diet or exercise program. Participants were recruited
nationally through community advertising techniques (e.g., emails to listservs,
word-of-mouth, social media advertisements) and were provided a Fitbit Zip upon
enrolling in the study.

5.2 System Identification Design of the Open-Loop
Intervention

The Just Walk intervention features an innovative idiographic (single-subject)
experimental design based on system identification, resulting in a unique dataset
that is the basis of this study. The goal of this research activity is to perform a
number of analyses leading to more predictive models that will ultimately inform
intervention development, including development of the set of decision rules that
will define a personalized and perpetually adapting intervention (i.e., one that can
take into account daily changes in variables such as personal stress levels, sleep,
and social context). Figure 8 shows screenshots of the mobile application that was
specifically developed for this study. This mobile application automatically retrieves
intensive measurements (e.g., physical activity, location, weather, day of the week)
and also records scaled states from daily participant feedback (e.g., sleep, stress,
mood).
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Fig. 8 Selected screenshots from the Just Walk app. (a) displays the opened app displaying
progress towards the current goal (red box), daily steps achieved (as determined from the latest sync
with Fitbit; green box) and expected points that the participant will receive if the goal is achieved
(gold medallion). The lower portion of the screenshot displays the step and goal achievement
history. (b) displays an example of a daily morning question. (c) shows how the user can specify
morning and evening notification times

5.2.1 Input Signal Design

The input signal design procedure utilized in the Just Walk study relies on using
deterministic yet “pseudo-random” signals that are orthogonal (i.e., independent) in
both time and frequency domains. The procedure is described in detail in the work
of Martín, Rivera, and Hekler (2015a). In Just Walk, two manipulated variables
are adjusted experimentally: goals and expected points. Goals quantify the desired
behavior at a daily level, while expected points are the daily available points
announced each morning that are granted upon achievement of the daily goal. These
two manipulated input signals un, n = 1, 2 are generated from a sum of sinusoid (i.e.,
multisine) signals, defined as

un(k) = λn

ns
∑

j=1

√

2α[n,j ] cos
(

ωjkT s + φ[n,j ]
)

, ωj = 2πj

NsTs

, k = 1, . . . , Ns.

(20)

As manipulated variables, the parameters and properties of the multisines in (20)
are specified by the intervention scientist. Ns corresponds to the number of samples
per period, while Ts is the sampling time (Ts = 1 day for Just Walk). ωj is the
frequency for the jth sinusoid; these are linearly spaced over an interval. The number
of sinusoids ns(≤Ns/2)) and their corresponding amplitudes (specified through λn
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Fig. 9 Illustration of the time series corresponding to multisine excitation for manipulated
variables (goals and available points) in Just Walk. Signal magnitudes are personalized

and α[n, j]) are chosen to meet identification requirements for achieving sufficient
variation in the signal (formally referred to as persistency of excitation); persistent
excitation is dictated by the order of the models to be identified (Ljung, 1999). In
this experiment, ns = 6 is used. To obtain signals that are statistically independent,
α[n, j] is chosen so that the signals are orthogonal in frequency, leading to a so-
called “zippered” power spectral density, as described in Rivera, Lee, Mittelmann,
and Braun (2009). A signal length corresponding to Ns = 16 days was chosen
to avoid any connection of signal periodicity with the number of days in a week,
and the phases φ[n, j] were selected to minimize the crest factor (i.e., time-domain
distribution) of the signal using the algorithm developed by Guillaume, Schoukens,
Pintelon, and Kollar (1991).

Figure 9 illustrates the time series corresponding to manipulated inputs goals and
expected points as two orthogonal multisine signals following a baseline (Martín et
al. 2015a; Phatak et al. 2018). Magnitudes of the input signals were chosen relying
on experiences from previous studies (Adams et al. 2013; King et al. 2013) designed
to obtain an expected profile of physical activity. The maximum number of steps
to be set as a goal is calculated as a factor of the initial baseline level of physical
activity. For most cases in our experimental design, this factor is equal to 2; however,
it was varied if the actual baseline step level of individuals was too high or low.
Specifically, if a participant’s baseline median steps were below 3000, then the range
for the goals was between 1 and 2.5 of their baseline median steps, to increase the
likelihood of “ambitious” goals. If baseline median steps were greater than 7500
steps, then the range was set between 1 and 1.75 (to reduce the likelihood of overly
ambitious goals, such as 15,000 steps in 1 day). The cycles are repeated for the
duration of the study; each additional cycle that is implemented increases the length
of the overall dataset, offering the opportunity to collect validation data and helping
to reduce variance errors in the subsequent model estimates.
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Fig. 10 Time series plot showing seven selected input sequences (manipulated inputs and
measured disturbances), predicted behavior (from an ARX black-box model), actual behavior,
model overall fit, and estimation and validation cycles (1st, 2nd, and 5th for estimation; 3rd and
4th for validation) for a selected Just Walk participant

In addition to the two manipulated inputs, a large set of disturbances were also
measured using mHealth technologies (smartphone and wearable devices). Overall
experimental duration beyond the baseline varied between five and six cycles for
each participant. A time series plot for a representative participant that depicts the
behavior and seven inputs is shown in Fig. 10.

5.2.2 Data Preprocessing and Model Structure Considerations

Having executed the experiment and collected data, the next step is data preprocess-
ing (see Fig. 3). Data preprocessing tasks include interpolation (to impute missing
values) and mean subtraction.

Model structure selection decisions consist of determining the input signals
to be included for each participant and the corresponding ARX model orders
for the output and each input, in accordance with Eq. (2). Taking advantage of
the computational simplicity of ARX modeling, the approach taken here is to
exhaustively examine a range of model orders and use model validation procedures
to determine the most suitable structure. For this problem, ARX model order ranges
for na and nb from 1 to 3 (i.e., max (na) = 3 and max

(

nbj

) = 3 ∀j = 1, . . . nu)

seem reasonable. A priori knowledge of the social cognitive theory fluid analogy
model developed in Martín et al. (2014) implies that very high-order models
should not be necessary to characterize these behavior change dynamics. From
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inspecting the intervention data, it is reasonable to assume a basic unit input delay
(i.e., nkj

= 1 ∀j ). Finally, the absence of drifts in the data leads us to assume
stationary (though potentially time-varying) noise characteristics over the course
of the intervention period.

In determining the inputs to be considered, our approach is to start with
a basic three-input model consisting of goals (u8), expected points (u9), and
granted points (u10); from this basic model then additional inputs (e.g., predicted
busyness, predicted stress) are added, with all possible combinations of these inputs
estimated. Model validation following estimation ultimately determines which of
these inputs are most important in describing individual behavior; nonetheless, in
the preprocessing stage, correlation analysis can be used to determine inputs that
may be significantly cross-correlated with each other or to identify inputs that appear
to have no significant effect on the output. In both scenarios, the number of inputs
that need to be considered in the parameter estimation procedure can be reduced,
ultimately leading to parsimonious models that can be generated with less effort.

5.2.3 Model Parameter Estimation and Validation

Model estimation and concomitant validation with the Just Walk intervention
data are now considered. As noted previously, initially a core three-input model
consisting of goals (u8), expected points (u9), and granted points (u10) is evaluated,
then additional inputs (e.g., predicted busyness, predicted stress) are added, with all
possible combinations of the additional inputs being estimated. At an individual
level, the full dataset is segmented into informative 16-day cycles for model
estimation/validation. The cycle length is defined by the multisine input signal
described in Sect. 5.2.1.

Cross-validation (the process of evaluating model fit over data not used for
estimation) represents one of the most valuable activities in system identification
(Ljung, 1994). The conventional approach in system identification is to assign
a certain percentage of data for estimation, followed by validation (e.g., 50%
estimation, 50% validation). Such an approach assumes that the noise characteristics
of the problem remain unchanged during the course of the intervention. However, it
is reasonable to expect that noise and disturbance characteristics will vary over long-
duration interventions such as Just Walk. In our analysis, each data cycle is assigned
to either estimation or validation; all combinations of data cycles involving at least
two cycles for validation are generated and evaluated.

Table 2 summarizes results of this procedure for a four-input model (goals,
expected points, granted points, and predicted busyness) of a selected participant.
The NRMSE fit index from Eq. (4) is calculated for each cycle and averaged
for estimation and validation data, respectively. All data cycle combinations that
feature at least two cycles for validation or estimation (20 candidate ARX models)
are evaluated. For each of these combinations of estimation and validation cycles
(corresponding to a specific row in Table 2), ARX orders are determined from
an exhaustive search routine that selects a stable ARX model with the highest
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Table 2 Intermediate results for a 4-input ARX model of a selected participant from Just
Walk. The model highlighted in yellow corresponds to the best model (balancing estimation and
validation data fits) for four inputs, for this participant

E* V*
NRMSE Fit (%) Average 

Es�ma�on 
NRMSE Fit (%)

Average NRMSE 
Valida�on Fit 

(%)

Overall 
NRMSE Fit 

(%)

ARX Order (4-
input) 

[na1,nb1,nb2,nb3,nb4]
Exp. #1 Exp. #2 Exp. #3 Exp. #4 Exp. #5

[1,2] [3,4,5] 77.40% 85.44% 79.27% 27.68% 13.70% 81.42% 40.22% 40.11% [1,1,1,1,3]
[1,3] [2,4,5] 77.39% 82.25% 81.30% 26.88% 15.36% 79.35% 41.50% 40.60% [1,2,1,1,3]
[1,4] [2,3,5] 64.82% 71.25% 67.27% 45.89% 21.04% 55.36% 53.19% 42.29% [1,3,1,1,1]
[1,5] [2,3,4] 61.36% 59.51% 60.96% 40.14% 24.47% 42.92% 53.54% 37.40% [1,1,1,3,1]
[2,3] [1,4,5] 70.46% 90.25% 84.15% 25.00% 11.19% 87.20% 35.55% 37.70% [3,3,1,2,3]
[2,4] [1,3,5] 49.06% 71.94% 67.25% 52.39% 22.98% 62.17% 46.43% 40.56% [3,1,2,1,3]
[2,5] [1,3,4] 54.89% 61.75% 60.36% 47.35% 23.68% 42.72% 54.20% 39.33% [3,1,1,1,1]
[3,4] [1,2,5] 45.97% 61.27% 69.24% 51.46% 24.02% 60.35% 43.75% 41.15% [1,3,3,1,3]
[3,5] [1,2,4] 63.11% 66.96% 52.29% 41.52% 19.47% 35.88% 57.20% 41.12% [1,1,1,1,1]
[4,5] [1,2,3] 36.37% 52.47% 50.06% 49.24% 25.88% 37.56% 46.30% 32.75% [1,1,1,3,2]
[3,4,5] [1,2] 53.63% 64.61% 49.26% 46.59% 19.93% 38.59% 59.12% 40.12% [1,1,1,1,1]
[2,4,5] [1,3] 50.12% 59.76% 59.36% 49.92% 23.64% 44.44% 54.74% 38.71% [3,1,1,1,1]
[2,3,5] [1,4] 58.63% 66.76% 64.91% 49.62% 27.28% 52.98% 54.13% 40.59% [3,1,3,2,1]
[2,3,4] [1,5] 59.43% 76.99% 70.11% 41.51% 22.32% 62.87% 40.88% 41.61% [2,3,3,2,3]
[1,4,5] [2,3] 57.91% 61.11% 60.18% 45.69% 24.92% 42.84% 60.65% 38.81% [1,1,1,3,1]
[1,3,5] [2,4] 66.34% 66.02% 67.24% 42.13% 22.57% 52.05% 54.08% 41.31% [1,3,1,1,1]
[1,3,4] [2,5] 68.39% 77.75% 73.46% 41.86% 18.78% 61.24% 48.27% 42.26% [1,3,2,1,1]
[1,2,5] [3,4] 61.85% 56.05% 68.43% 44.82% 35.02% 50.97% 56.63% 46.03% [2,3,1,2,3]
[1,2,4] [3,5] 71.99% 73.18% 72.36% 43.28% 20.40% 62.82% 46.38% 43.61% [1,2,1,1,3]
[1,2,3] [4,5] 75.95% 87.02% 80.67% 26.39% 13.36% 81.21% 19.88% 39.87% [1,1,1,1,3]

E ≡ Estimation Cycles (magenta), V ≡ Validation Cycles (cyan)

predictive ability (based on the maximum average validation fit). This step provides
a safeguard against overparameterization.

The final chosen model should reflect, in addition to a good fit to validation data,
a good fit for the entire dataset (consisting of both estimation and validation cycles).
This suggests that the final model choice should correspond to the model that yields
highest overall fit (the “overall NRMSE fit” column in Table 2). Incorporating the
overall fit criterion with the fit to cross-validation data balances good prediction with
model accuracy over the entire dataset. Note that using this analysis, the best results
for the specific participant occur in the model resulting from row 18 (cycles 1, 2, and
5 for estimation; 3 and 4 for validation) with an overall NRMSE index of 46.03%
for a model with structure na = 2, nb1 = 3, nb2 = 1, nb3 = 2, and nb4 = 3. This
model performs close to the model with best fit over the validation data (56.63%
for row 18 vs. 60.65% in row 15); however, the model with the best fit to validation
data does not exhibit the best fit to data overall (38.81% in lieu of 46.03%).

5.2.4 Overall Fit Analysis and Assessment of Individual Participant
Characteristics

Analyses similar to those in Table 2 can be performed with additional inputs for
all possible combinations. For example, for a total of seven inputs, 16 different
input models can be generated for each participant (since goals (u8), expected
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Fig. 11 Average validation fit percentages of individualized ARX models from black-box system
identification for three individual participants from Just Walk. The base model (in green)
contains the inputs goals, expected points, and granted Points. Additional inputs consist of Busy
(i.e., predicted busyness), stress (i.e., predicted stress), typical (i.e., predicted typicality of the
participant’s day), and wknd (i.e., weekday vs. weekend)

points (u9), and granted points (u10) are always grouped). Evaluating these 16
input combinations enables making some important conclusions on participant
characteristics resulting from the intervention.

Figure 11 depicts model validation fit percentages from three different partici-
pants from Just Walk. The Y-axis indicates the fit percentage of the 3, 4, 5, 6, and
7-input models, and the X-axis corresponds to the psychosocial measures (busyness,
stress, weekday, typicality (i.e., how typical the day was)) measured daily. Here, we
can see that participant A’s walking behavior is largely driven by stress (highest fit
percentage seen for the stress bar in the four-input model), participant B’s behavior
is driven by day of the week, and participant C has the highest fit percentage for
the three-input model, indicating that the daily step goal had the greatest impact on
behavior. Step responses from the individual ARX models can be used to reveal
more precise direction and magnitude information. This strategy has significant
implications for personalized and adaptive behavior change interventions; if one
can determine the inputs that are most meaningful for a given individual in a given
context, it is possible then to optimize the target behavior over a specified time
(hours, days, weeks, months).

5.3 Conceptual Design of a Hybrid MPC-Based Closed-Loop
Intervention for Just Walk

As noted in the Introduction, Just Walk represents an ongoing effort. One goal
of future research is closed-loop implementation and validation in a real-world
setting. Substantial efforts have been made to formulate and evaluate closed-loop
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Fig. 12 Conceptual diagram for the proposed intervention based on the simplified social cognitive
theory model

intervention strategies via simulation (Martín, 2016; Martín, Rivera, & Hekler,
2016a). The proposed closed-loop intervention is depicted in Fig. 12. It relies on
the simplified version of the dynamic social cognitive theory model described in
Sect. 3.2.2 and includes a self-regulator via internalized cues as described in Martín
(2016). The intervention considers measurements of the actual steps (behavior y4)
and environmental context (e.g., weather), which are used by the decision algorithm,
now implemented as a hybrid MPC controller. While actual steps and measured
environmental context constitute controlled and measured disturbance variables,
respectively, from the standpoint of control engineering, they are both considered
tailoring variables of the adaptive intervention, as changes in these signals have an
influence on how the MPC decision algorithm decides on intervention dosages.

The goal of the Just Walk adaptive intervention is to have participants achieve
a desired sustained level of daily steps, while considering some important physical
and operational constraints, such as the following.

• Maximum and minimum values for goals and points (u8, u9, and u10) depending
on physical conditions (e.g., maximum and minimum daily step goals for an
individual). Financial limitations lead to bounds on the expected reward points,
since these have a direct conversion into monetary value.

• Goals and reward points must be drawn from discrete sets of integer values that
may represent meaningful effects on the intervention. As prior physical activity
experiments have shown (Adams et al. 2013; King et al. 2013), having a fixed set
of goals and points could be important to analyze specific aspects of interest on
the intervention.

• The intervention may be configured in different stages, where some of the inputs
may be deactivated or partially activated. For instance, when the behavior has
reached the desired level and is successfully sustained, a gradual decrease in
rewards may be activated.
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The control strategy for intervention design must incorporate the defined require-
ments and constraints for the physical activity behavioral intervention. Hybrid MPC
(HMPC) (Martín et al. 2016a; Nandola & Rivera, 2013), summarized in Sect. 4,
is applied to this problem since it incorporates hybrid dynamics (Bemporad &
Morari, 1999). Hybrid dynamical systems consider discrete and continuous events
simultaneously; they can be represented by differential (or difference) equations and
logical conditions describing their categorical or binary response. The aim of control
design is directed to the following tasks:

• Set point tracking: Goals and expected reward points are assigned to obtain the
desired amount of daily steps following continuous and discrete constraints.

• Rejection of measured disturbances: The controller manipulates goals and
expected points to mitigate the effect from measured external disturbances (e.g.,
environmental context) relying on the subsystem of the social cognitive theory
model that is related to those signals. For instance, if an environmental event
(e.g., bad weather) is known a priori, then goals or expected rewards can be
adjusted to compensate for that disturbance.

• Rejection of unmeasured disturbances: Inputs are manipulated to mitigate the
effect of unknown and possibly unmodelled external influences. For example,
any unexpected situation that may impact the individual’s likeliness to engage in
physical activity (e.g., sickness of a family member, sudden party invitation) can
be mitigated by adjustments on goals or points by the controller.

For the envisioned Just Walk closed-loop intervention, the input u and output y
are

u = [

u8 u9 u10
]T

, nu = 3 (21)

y = [

y2 y3 y4 y5
]T

, ny = 4 . (22)

5.3.1 Maintenance Training Stage

In Just Walk, once the desired goal has been reached and sustained for a pre-
determined number of days, a maintenance training stage of the intervention is
initiated, and the number of points is reduced. Here the HMPC algorithm must
be reconfigured to maintain the daily performed steps in spite of a reduction in
the number of points, and, if needed, reactivate the use of points if a significant
relapse of sedentary behavior occurs. To adapt the HMPC performance to these new
considerations, the objective function in (16) is modified to include targets on the
manipulated variables:

J �
p

∑

i=1

(y (k+i) −yr)
T Qy (y (k+i)−yr)

+
m−1
∑

i=1

(u (k+i)−ur)
T Qu (u (k+i) −ur) . (23)
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Beyond yr and Qy that existed previously in (16), ur and Qu represent reference
values and penalty weights for u, respectively, which can be adjusted during the
course of the intervention.

During the initiation phase, the main goal is to achieve the required daily steps.

The reference output set point is yr = [

yr2 yr3 yr4 yr5

]T
, where yr4 is the desired

amount of daily steps (e.g., 10,000). Considering vectors u and y defined in (21)
and (22), the weight matrices Qu and Qy are specified in the objective function
(23) such that set point tracking is applied only to the variable y4 (daily steps). The
maintenance stage is enabled when the goal has been achieved and sustained at
least ns − 2 times during the last ns days. The goal is considered achieved when
the difference between the actual steps and the reference is within a predefined
tolerance Tol4. A logical constraint is added to the HMPC optimization problem
to enforce this requirement. During this phase it is necessary to reconfigure the

controller to target a low use of points (u9). With target inputs ur = [

ur8 ur9 ur10

]T
,

an appropriate value for ur9 must be selected (e.g., ur9 = 0 points) with the weight
matrix Qu changed such that this requirement is now part of the objective function
of the control system. The value of wu9 depends on the expected performance of the
set point tracking versus the input targeting. The matrix Qy remains unchanged. If at
any time k the logical condition is not satisfied (e.g., a relapse), the initiation phase
is reactivated.

5.4 Simulation Scenario for the Closed-Loop Adaptive
Intervention

The simulation results presented in this section assume a hypothetical individual
with a sedentary lifestyle, performing an average (i.e., baseline) of 5000 steps per
day with an intervention starting at day zero. This simulation scenario considers the
same model parameters used in the open-loop intervention. Delays (θ i) and internal
disturbance parameters (ζ i) are not considered. The sampling time is T = 1 day;
controller horizons are p = 7 and m = 5 days, while maximum and minimum bounds
on u, �u, and y are

• umin = [

5000 0 0
]T

, umax = [

10000 500 500
]T

• �umin = [− 1000 −500 −500
]T

, �umax = [

1000 500 500
]T

• ymin = [

0 0 0 0
]T

, ymax = [

10000 10000 12000 10000
]T

The categorical values of the intervention components are defined by the sets

• U8 = {5000, 6000, 7000, 8000, 9000, 10000}
• U9 = {100, 200, 300, 400, 500}
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Fig. 13 Simulation results for the HMPC-based adaptive intervention for a participant with low
physical activity

The unmeasured disturbance is assumed Gaussian with d ′(k) ∼ N (0, 40000).
To allow for a progressive increase on the performed steps and a fast disturbance
rejection, the tuning parameters are

αr = [

0 0 0.96 0
]T

αd = 0.1 fa = [

0 0 0.3 0
]T

.

Simulation results are shown in Fig. 13, where goals (u8) and available points
(u9) are generated by the HMPC algorithm. The value for granted points (u10) is
taken from the available points only when the previous day goal is achieved, as
enforced by model constraints. The maintenance stage is illustrated via a shaded
region; this phase starts when the goal has been achieved at least 4 times during the
last ns = 6 days with a tolerance of Tol4 = 600 steps. During this stage a reduction
in the number of available and granted points results from the actions of the control
system. The impact of measured disturbances (e.g., environmental context) is tested
via a downward pulse starting at day 110 and lasting for 15 days; as a result, the
individual tends to reduce his or her steps, so the controller reacts by discontinuing
the maintenance phase and relying again on points to compensate for any deviations.
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Fig. 14 Comprehensive illustration of a representative time series resulting from the Just Walk
intervention that features four phases: measurement-only, identification testing, initiation, and
maintenance

Figure 14 summarizes the overall life cycle of the Just Walk intervention, as a
closed-loop experiment with four phases. Phase 1 is an initial measurement-only
period, which provides a baseline measurement of a person’s current activity. Phase
2 is an open-loop experiment, which is similar to our pilot study. This phase enables
estimating/validating our dynamical model and individualized tailoring variable
selection as per our pilot study. In Phase 3, we conduct a closed-loop experiment
focused on behavioral initiation. Specifically, this phase incorporates MPC to make
daily decisions, and the system will refine these decisions based on data gathered
each day. During Phase 3, the MPC controller will strive for appropriate targets for
our at-risk group (i.e., 10,000 steps/day on average or, if a participant does not seem
capable of meeting that goal, 3000 steps/day above the participant’s baseline median
steps). Finally, Phase 4 of the study is a closed-loop experiment, meant to optimize
the controller for maintenance. Specifically, the goal is to optimize our approach for
providing the minimum support at which the participant maintains set-point targets.
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6 Control Systems Engineering for a Gestational Weight
Gain Intervention: Healthy Mom Zone

6.1 The Healthy Mom Zone Intervention

6.1.1 Description of the Problem and Need for Intervention Approach

The majority of women in the childbearing years are overweight, which elevates the
risk for myriad health problems (Flegal, Kruszon-Moran, Carroll, Fryar, & Ogden,
2016) particularly with the transition to motherhood. Maternal obesity and subse-
quent high GWG are strongly related to and independently predict adverse obstetric
outcomes (e.g., preterm delivery, gestational diabetes, hypertension, preeclampsia)
and elevate risks for macrosomia and early onset of obesity in the offspring
(Institute of Medicine & National Research Council Committee to Reexamine IOM
Pregnancy Weight Guidelines, 2009). GWG is a modifiable factor that can be
targeted to reduce risks, and managing it can impact the offspring’s likelihood of
being obese.

In 2009, the Institute of Medicine (IOM) report reexamining the GWG guidelines
called for effective interventions to manage weight gain, especially in overweight
and obese women, who often gain more weight in pregnancy than is recommended
(see Table 3). However, there is currently no “gold standard” intervention to prevent
high GWG in overweight/obese pregnant women. Past randomized interventions
have shown that GWG can be effectively managed by “mirroring” effective
programs used in non-pregnant adults (e.g., frequent contact, weight/dietary intake
monitoring, engaging in exercise); however, the effects have largely been limited
to women who are not overweight or obese (Olson, Strawderman, & Reed, 2004;
Phelan et al. 2011; Polley, Wing, & Sims, 2002). Overweight/obese pregnant women
may require a more individualized approach, such as a program that helps each
overweight or obese pregnant woman to control her GWG on a weekly basis and
adapts to her unique needs over pregnancy. In other words, the intervention strategy
would involve varying the component dosages in response to an individual’s needs,
much like clinical practice (Kumar, Nilsen, Pavel, & Srivastava, 2013). We have
developed such an intervention, described in this chapter as Healthy Mom Zone, that
uses control systems engineering to construct a dynamical model of energy balance
(Dong, 2014; Dong et al. 2012, 2013) and considers how GWG responds to changes

Table 3 Institute of Medicine (2009) GWG guidelines

Category Prepreg BMI (kg/m2) GWG range (pounds)
Rates of GWG 2nd–3rd TRI
(M range in pounds/week)

Underweight < 19.8 28–40 1 (1–1.3)
Normal 19.9–24.9 25–35 1 (0.8–1)
Over weight 25.0–29.9 15–25 0.6 (0.5–0.7)
Obese ≥ 30.0 11–20 0.5 (0.4–0.6)

Institute of Medicine and National Research Council Committee to Reexamine IOM Pregnancy
Weight Guidelines (2009)
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in energy intake, exercise, and planned/self-regulatory behaviors for a customized
program for each woman. This novel, ongoing intervention has the potential to shift
the focus of weight management from a “one size fits all” method to an individually
tailored and adaptive approach to effectively manage GWG and promote maternal
and infant health.

6.1.2 Goals of the Healthy Mom Zone Intervention

The Healthy Mom Zone intervention is an individually tailored behavioral inter-
vention designed specifically to manage GWG among overweight/obese pregnant
women throughout their pregnancy. The conceptual framework of the intervention
(see Fig. 15) is based on a dynamical model of energy balance that describes
how a behavioral intervention can influence GWG (Dong, 2014; Dong et al.
2012, 2013). It relies on integrating mechanistic energy balance and dynamical
models of planned/self-regulatory behaviors describing how internal psychological
processes can reinforce positive program outcomes. This model includes (a) a two-
compartment energy balance model predicting changes in body mass as a result
of energy intake and physical activity, (b) two theory of planned behavior (Ajzen,
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2005) models describing how energy intake and exercise are affected by behavioral
variables (including women’s attitude, social influences, perceived control, and
motivation), (c) a program delivery module relating magnitude and duration of
components to inflows of the theory of planned behavior models, and (d) two self-
regulation units modeling how success expectancies in the intervention influence
one’s goal achievement motivation. The final module of Healthy Mom Zone is
comprised of decision rules that rely on assessed values of the tailoring variable
(GWG) to make decisions on intervention components. Phase 2 of Healthy Mom
Zone (currently ongoing) is relying on if-then decision rules, but the overall goal of
the research is to determine the feasibility and usefulness of hybrid MPC. This is
illustrated in a simulation later in this chapter (Sect. 6.2).

A fluid analogy for this dynamical system model is shown in Fig. 16. A complete
description and the mathematics behind the analogy are found in Dong (2014) but
are briefly explained here. The energy balance model corresponds to two inventories
for fat mass and fat-free mass, which are built by energy intake but depleted through
basic metabolic function and physical activity. Theory of planned behavior models
for energy intake and physical activity corresponds to the fluid analogy described
in Sect. 3.2.1 and Fig. 5. Self-regulation loops and intervention delivery inventories
(which account for the accumulation or depletion of the inflows to the models) form
part of the fluid analogy as well. A set of decision rules were developed based
on the IOM (2009) GWG guidelines, our own research (e.g., Dong et al. 2012,
2013; Symons Downs, 2016; Symons Downs, Savage, & Rauff, 2014; Thomas et
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Fig. 17 If-then decision rules for evaluating GWG and adapting the Healthy Mom Zone interven-
tion

al. 2012), and clinical insight that inform when and how to adapt the components.
Decision rules define changes to the intervention and correspond with altering the
dosage (Collins et al. 2004). The dosage level is based on tailoring variables that
are expected to impact the effect of the component (e.g., effect of exercise on
GWG), and the level of intervention required to address the needs of individuals
varies according to the tailoring variable (GWG). In Healthy Mom Zone, GWG is
evaluated weekly, and the collective weight gain is assessed over a 3–4 week period.
If a woman is within her GWG goal, she continues to receive the same dosage of
the intervention. If she does not meet her goal, her intervention dosage is adapted or
“stepped up” (Fig. 17). If she is under her goal, we use clinical guidance to decide
whether and how the dosage change should be made.

6.1.3 Components of the Healthy Mom Zone Intervention

The Healthy Mom Zone intervention components were informed by past research
and our pilot data (Diabetes Prevention Program Research Group, 2002; Dong
et al. 2012, 2013; Symons Downs, DiNallo, & Kirner, 2007; Symons Downs &
Hausenblas, 2004; The Look AHEAD Research Group, 2006) showing that when
people are taught how to set appropriate goals, self-monitor, and effectively manage
their time, they are more likely to achieve their goals and see positive behavioral
outcomes (e.g., eating healthy, engaging in exercise, managing weight; see Fig.
18). All women start in Healthy Mom Zone with the baseline intervention, which
includes standard prenatal care and education on GWG, healthy eating, exercise, and
self-monitoring. The intervention adapts or “steps up” based on the GWG evaluation
and decision rule criteria described above and includes different variations of
hands-on active learning strategies that are added to the baseline intervention
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Fig. 18 Healthy Mom Zone intervention components

sequentially (e.g., step-up 1 = baseline intervention + active learning healthy
eating demonstrations + exercise session; step-up 2 = baseline intervention + step-
up 1 + additional active learning components (e.g., additional on-site exercise
session, portion size, and containers)). Self-monitoring of GWG, healthy eating,
and exercise behaviors includes the use of mHealth tools (e.g., Wi-Fi scale, dietary
intake smartphone app, activity monitors) to facilitate self-regulation, motivation,
and behavior change.

6.1.4 Study Assessments

Intensive longitudinal data are used in Healthy Mom Zone to assess the pri-
mary study outcome of GWG and several biobehavioral/psychological secondary
outcomes (Table 4). Pre- and post-intervention assessments are conducted at the
Pennsylvania State University Clinical Research Center, and the secure data capture
(RedCAP) system is used to collect electronic survey data. Women use a Wi-Fi scale
and an activity monitor (daily) and a smartphone app (weekly) at home to measure
their weight and kcal activity expenditure and intake.

6.1.5 Flow of Participants

The target for Healthy Mom Zone is 30 overweight and obese pregnant women
(BMI 25; 40 with physician approval). Eligible participants (e.g., singleton pregnan-
cies, ages 18–40 years, able to read and understand English, no obstetric/medical
complications limiting participation) are screened, enrolled, and consented. They
complete pre-intervention assessments both on-site at the research center (e.g.,
body composition, bloodwork) and at home (e.g., electronic surveys) and are then
randomized to either the control condition (standard of care) or treatment condition
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Table 4 Healthy Mom Zone assessments

Variable Assessments

Weight and height High precision stand-on adult scale; stadiometer for height
Wi-Fi smart scale

Metabolism Mobile metabolism device
Biomarkers Blood, urine
Adiposity Body composition
Healthy eating behaviors Smartphone dietary intake app (kcal intake)

Back-calculation method to estimate energy intake (kcal intake)
Eating inventory

Exercise behaviors Activity monitors and survey (expenditure)
Exercise log

Motivational determinants Attitude, subjective norm, perceived behavioral control, intention
surveys

Self-regulation Self-regulation index and questionnaire
Sociodemographic Health and history questionnaire

Fig. 19 Process for evaluating maternal GWG in Healthy Mom Zone: monitor and plot weekly
weight, compare to IOM guidelines, and evaluate every 3–4 weeks to make decisions about
adapting intervention dosages

(Healthy Mom Zone intervention) from early (e.g., 6–12 weeks gestation) through
late pregnancy (e.g., 37 weeks gestation). GWG is evaluated in 3–4 week cycles,
and the intervention dosage is adapted as necessary to help women stay within their
GWG goals. An illustration of how participant weights are plotted and evaluated in
Healthy Mom Zone is shown in Fig. 19.
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6.1.6 Illustration from Phase 1 Participant Data

As noted previously, Healthy Mom Zone is an ongoing study. Phase 1 of the
intervention has focused on feasibility of dosages and measurements, in order
to better understand user acceptability of the intervention. Phase 2 is a proof-
of-concept study that is implementing a fully adaptive intervention using if-then
decision rules and is intended to characterize the effects of energy balance and
planned and self-regulatory behaviors on GWG. In this section, we illustrate
with selected Phase 1 participant data some aspects of the conceptual framework
described in Sect. 6.1.2. The first is the energy balance model. As noted in Dong
(2014), Guo, Rivera, Downs, and Savage (2016), and Thomas et al. (2012), under
conditions of constant resting metabolic rate, the effect of changes in energy intake
(�EI) and physical activity level (�PAL) on change in gestational weight (�W) is
reasonably approximated by the differential equation:

�W(t)

dt
= KEI�EI (t) + KPA�PAL(t) (24)

KEI and KPA correspond to the gain parameters of integrating systems (Ogunnaike
& Ray, 1994) corresponding to changes in energy intake and physical activity,
respectively. Figure 20 illustrates how this simple dynamic energy balance model
adequately captures the data for a Phase 1 participant. It should be noted that proper
use of the energy balance model involves addressing issues of missing data, energy
intake underreporting, and the possibility of changing resting metabolic rate over
time; these are problems that are being investigated at this time, with a series of
approaches presented in Guo et al. (2016) and Guo, Rivera, Savage, and Downs
(2017).

Phase 1 data have also been used to perform some initial parameter estimation of
dynamic theory of planned behavior models. Figure 21 shows show a dynamical
model in accordance with Sect. 3.2.1 and Eqs. (6), (7), (8), (9), and (10) for a
Phase 1 participant in a reduced structure involving subjective norm, perceived
behavioral control, intention (INT), and physical activity as constructs. The model
was estimated using semi-physical identification routines in MATLAB, with the fit
calculated using the NRMSE criteria from Eq. (4).

6.2 Simulated Comparison of Decision Rules Versus
an MPC-Based Closed-Loop Intervention

In this section, we consider a simulated comparison of “if-then” decision rules
(patterned after the general structure in Fig. 17) and a hybrid MPC-based controller
as described in Sect. 4 based on a hypothetical participant, a 25-year-old female with
pregravid body mass 75 kg, 160 cm in height, which classifies her as overweight
(BMI = 29.30). The open-loop model for GWG interventions is as described in
Dong (2014) and Dong et al. (2012, 2013) and is conceptually depicted in Fig. 15.
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For the sake of simplicity, we focus only on the effects that intervention components
and self-regulation play on the perceived behavioral control inflow in the theory of
planned behavior models. The 2009 IOM guidelines for GWG in Table 3 are used
as reference trajectory for both the HMPC controller and “if-then” decision rules.

In this illustration, we will consider three (nc = 3) intervention components (u1,
u2, u3), which are augmented or reduced to prespecified dosage levels during the
GWG intervention. These are healthy eating active learning (as u1(k) ∈ {0,1,2,3}),
physical activity active learning (as u2(k) ∈ {0,1,2,3,4}), and goal setting (as
u3(k) ∈ {0, 1}). In the baseline program, all three components are introduced
simultaneously to define the base dosage as uj(k) = 1, j ∈ {1,2,3}.

The availability of multiple intervention components in this problem forces a
decision regarding which component should be augmented or reduced first at each
decision point (biweekly in this illustration) when the dosage can be updated per the
individual’s measured outcomes and performance. These decisions (which apply to
both the if-then decision rules and the HMPC controller) are summarized in Table 5.
We consider that physical activity active learning (u2) will be augmented from the
baseline only when healthy eating active learning (u1) reaches its maximum dosage
and healthy eating active learning (u1) will not be reduced from full dosage until
physical activity active learning (u2) returns back to the base dosage (augmentation
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Fig. 21 Theory of planned behavior dynamic model for Phase 1 Healthy Mom Zone participant
for a reduced structure involving subjective norm, perceived behavioral control, and intention
(INT) to describe physical activity. Solid line is measured data, while dashed line corresponds
to model prediction. Fit corresponds to the NRMSE index shown in Eq. (4)

and reduction sequence above baseline). When it is necessary to decrease the dosage
from the baseline, u2 is reduced first, followed by u1 and u3; the augmentation
sequence from zero dosage to baseline will be in the opposite order, with u3
increased to base dosage first, followed by u1 and u2 (augmentation and reduction
sequence below baseline). At each decision point, there will be only one intervention
component augmented or reduced, which necessitates the selection of only one input
change (if, �ui(k) �= 0 then �uj(k) = 0 for j �= i; i, j ∈ {1, 2, . . . , nc}). The logic in
the set of decision rules is sequential and restricts how the future dosage can be
specified, based on the current dosage. We note that in Phase 2 of Healthy Mom
Zone, we used an exclusively step-up approach and did not reduce dosage (Fig. 17);
this was a conscious decision because most women need support managing their
weight, so it was important to not take the support away, even if this implies greater
consumption of intervention resources. However, for sake of illustration in this
simulation, we consider decision rules in which the dosage can be adapted up or
down.

In our simulation we assume that with no intervention, this participant will have
a ramp increase in her energy intake from day 14 to day 91 and her energy intake
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Table 5 Summary of dosage augmentations and reductions followed by the if-then decision rules
and the HMPC controller for the simulations of a GWG adaptive intervention in Sect. 6.2

Options Description

Step down 3 Reduction of goal setting (u3)
Step down 2 Reduction of healthy eating active learning (u1)
Step down 1 Reduction of physical activity active learning (u2)
Baseline Baseline dose for all components
Step up 1 First augmentation of healthy eating active learning (u1)
Step up 2 Second augmentation of healthy eating active learning (u1)
Step up 3 First augmentation of physical activity active learning (u2)
Step up 4 Second augmentation of physical activity active learning (u2)
Step up 5 Third augmentation of physical activity active learning (u2)

will keep constant throughout the remainder of the pregnancy. The participant has
maintained a sedentary lifestyle up to the point of entry in the intervention and, in the
absence of intervention, would potentially engage in less physical activity from the
second to third trimester as she gains weight. The intervention can help improve her
physical activity level in the second trimester, but she will still decrease her physical
activity in the third trimester. These are two physical activity disturbances for the
intervention and no intervention cases, which will reduce her energy expenditure in
the energy balance model.

The hypothetical intervention scenarios assume the participant enters the inter-
vention with baseline program at gestation week 14 and starts engaging in self-
regulatory behaviors (e.g., weighing herself to monitor GWG, using dietary records
to monitor energy intake and pedometer to monitor physical activity). The dosage
of the intervention components is adapted every 2 weeks until week 36. In
the simulation study, we assume the anticipated disturbance occurs late in the
participant’s second trimester and continues until her delivery, when there is no
intervention. The intervention will help the participant attenuate this energy intake
increase.

Table 6 summarizes the model parameters in this simulation study, including
the behavioral parameters, time constants τ i, time delays θ i, gains assumed for the
participant, and filter parameters. The definition of these variables can be found in
Dong (2014) and Dong et al. (2012, 2013). All values are hypothetical but can be
selected such that the simulated responses mimic those of an actual participant. The
parameters for the HMPC are as follows: p = 30 and m = 28, Qy = 10, αr = 0.9,
αd = 0.3, fa = 1.0, the sampling time for the participant to measure her GWG and
monitor dietary record is Ts = 1 day, and the decision interval is Tsw = 14 days. The
move size constraints for the manipulated variables at the decision intervals for the

HMPC controller are �u(k)max = [

1 1 1
]T

and �u(k)min = [−1 −1 −1
]T

, to
match those of the “if-then” decision rules (where no more than one augmentation
or reduction is allowed per decision point). However, HMPC faces fewer restrictions
in this regard, as can be seen in simulations presented in Dong (2014), in which the
HMPC algorithm is not limited to move sizes of ±1.
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Table 6 Model parameters for the simulation study in Sect. 6.2. Time constants (τ i), delays (θ i),
and self-regulation adjustable parameters (λr, λd) are in units of days

Parameter EI-TPB PA-TPB Parameter EI-TPB PA-TPB

b1 3 1 e1 6 4
n1 2 7 m1 3 8
p1 1 4 c1 2 2
τ 1 1 30 γ 11 1 0.7
τ 2 1 30 γ 22 1 0.5
τ 3 1 10 γ 33 1 0.7
τ 4 1 20 β41 1 0.34
τ 5 1 30 β42 1 0.27
θ1, . . . , θ3 0 0 β43 1 0.13
θ4, . . . , θ6 0 0 β53 0 0.08
θ7, θ8 0 0 β54 1 0.42
ku1 0.004 0 θu1 0 0
ku2 0 0.01 θu2 0 0
ku3 0.002 0.006 θu3 0 0
λr 70 100 λd 90 155

Dong (2014) and Dong et al. (2012, 2013)
TPB theory of planned behavior, EI energy intake

The simulation responses for maternal body mass, energy intake, energy expen-
diture, the intervention component dosages, and the perceived behavioral control
inflows to theory of planned behavior models under different scenarios (HMPC-
based intervention, adaptive intervention using decision rules, and no intervention)
are shown in Fig. 22. The scenario in the absence of the intervention is presented in
order to illustrate how the interventions play an important role in the participant’s
improvement in behavior, specifically how significant disturbances in energy intake
and physical activity influence weight gain. From looking at the energy intake
profile, we can see that in the absence of intervention, the participant will increase
her energy intake not only in the first trimester before the intervention due to her
awareness of the pregnancy but also late in the second trimester after the intervention
starts. At the beginning of the intervention, the participant’s weight is within the
IOM guidelines, although her energy intake (3302 kcal/day) is already 100 kcal
higher than the energy intake reference values (3202 kcal/day) assumed for the
third trimester. Therefore, for both the HMPC-based intervention and the “if-then”
decision rules, the initial dosage this participant receives is the baseline program.

In the HMPC-based intervention, this participant’s weight is always within the
IOM guidelines after the intervention starts. In order not to have this participant
reduce too much weight, which might even be below the lower bound of IOM
guidelines, the HMPC controller first reduces the intervention for this participant by
setting the dosage to zero for component u2(k) at week 16. At this reduced dosage,
the other two components at their baseline doses can still maintain this participant
within the IOM guidelines during the week 16–20 when there is no additional energy
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Fig. 22 Simulation results in Sect. 6.2 for a hypothetical Healthy Mom Zone participant, showing
responses for maternal weight, energy intake, energy expenditure, intervention component dosages,
and perceived behavioral control inflows to the theory of planned behavior models for an HMPC-
based intervention, an adaptive intervention using if-then decision rules, and no intervention cases.
The red curves (with high/low intervals) shown in the upper left participant weight and energy
intake plots correspond to the 2009 IOM Guidelines ((Institute of Medicine and National Research
Council Committee to Reexamine IOM Pregnancy Weight Guidelines, 2009), Table 3) applied on a
daily basis; the nominal (center) lines represent set points for the HMPC weight controller and the
energy intake self-regulator, respectively. The blue solid lines are the case with an HMPC-based
intervention, the black dashed-dotted lines represent the case with adaptive intervention using “if-
then” decision rules, and the magenta dotted lines are the case in the absence of an intervention.
Both the “if-then” decision rules and the HMPC controller rely on the dosage sequence described
in Table 5

intake increase (disturbance). At week 20, the HMPC controller augments the
intervention by adding this component u2(k), which restores the intervention to the
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baseline program. The energy intake disturbance occurs at day 170, and therefore
the HMPC controller continues augmenting the intervention at week 22 (day 154)
by increasing the dose for u1(k), considering the prediction horizon m = 30. The
component u2(k) does not get augmented until 2 weeks later, on week 26, which is
2 weeks after u1(k) = 3. The move size constraint on u2(k) in this scenario is also ±1
to match the case using if-then decision rules, to allow for a proper comparison. The
intervention reaches the maximum dosages for all the components at week 30 and
remains unchanged until the end of the intervention. This hypothetical participant
with the HMPC-based intervention is able to keep her weight within the IOM
guidelines throughout her whole pregnancy, even in the presence of an energy intake
increase as a disturbance. This participant also manages to control her energy intake
within the reference values in the mid-third trimester. The participant’s perceived
behavioral control inflows to the theory of planned behavior models increase faster
when the intervention gets augmented and more slowly when the intervention gets
reduced.

Examining the adaptive intervention using the “if-then” decision rules, the
participant will receive the same baseline program at entry to the intervention due
to her weight being within the IOM guidelines. Because she is able to meet her
GWG goal under the baseline program for two intervention decisions (4 weeks),
her intervention gets reduced by setting the dosage of component u2(k) to zero at
week 18. With this reduced intervention, for the next 4 weeks, this participant’s
weight gain continues to remain within the IOM guidelines, and, therefore, the
dosage of component u1(k) gets reduced to zero at week 22, at which time only the
component u3(k) with base dosage is assigned to this participant. This participant
still succeeds in maintaining her GWG within the IOM guidelines for the next
4 weeks, and, hence, at week 26, the dosage of u3(k) is also decreased to zero.
The energy intake increase occurs at day 170 (late second trimester). With this
energy intake disturbance, her high energy intake increase in the first trimester, and
her low-intensity (or even no) intervention, and her weight gain moves outside the
IOM guidelines around day 195, at which time the intervention is resumed with
component u3(k) added first at week 28, u1(k) and stepped up at week 30, and u2(k)
added at week 32. At week 34, her intervention is augmented above the baseline
by increasing u1(k) to step 2, and the intervention stops at week 36. Because the
if-then decision rules do not incorporate a dynamical model, all these augmented
actions do not take place in the most timely manner. As a result, this participant’s
GWG falls outside the IOM guidelines late in her pregnancy, and her energy intake
is above the reference values throughout her pregnancy. The “if-then” decision rules
are better than having no intervention, but the improvements in perceived behavioral
control to the theory of planned behavior models are only around half of those using
HMPC-based intervention.

This hypothetical case study illustrates how aspects of the control engineering
formulation provide potential benefits of HMPC over “if-then” rules that rely
only on current values of tailoring variables. Specifically, the feedforward control
action in the HMPC controller is very useful in addressing anticipated disturbances
that may be known a priori or can be measured/predicted in the course of
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the intervention, while the feedback control action will respond to unmeasured
disturbances. The HMPC controller will assign the future dosages based not only
on the participant’s past and current dosages, but also on the predicted measured
outcomes over the prediction horizon, while the “if-then” decision rules described in
the chapter adapt the intervention only based on the participant’s current responses.
Hence, when the anticipated disturbance is available, the HMPC-based intervention
can better predict the future responses of the participant and make the dosage
adjustment earlier than the intervention using decision rules that may or may not
provide the augmentation in time. The “if-then” decision rules do offer the benefit
of simplicity, so it is up to the intervention scientist to decide whether the additional
implementation effort required by the HMPC controller is justifiable.

7 Summary and Future Directions

In this chapter, our goal has been to show how behavioral interventions can
benefit from a control systems engineering perspective. This has been accomplished
through descriptions of a comprehensive control engineering methodology that is
illustrated in two behavioral application settings: Just Walk and Healthy Mom Zone.
The control engineering approach consists of two major steps: system identification
to estimate (black-box or semi-physical) dynamical models and control algorithms
that rely on these estimated dynamical models to optimize decision-making in the
intervention. Behavioral theory can influence the task of dynamic model building
and system identification; this was demonstrated for the theory of planned behavior
and social cognitive theory. In all cases, the common algorithmic framework
for achieving closed-loop control is hybrid MPC (HMPC), which consists of
a constrained optimization problem that is solved in real time via a receding
horizon approach. Through the choice of horizon lengths, weight values, and filter
parameters, HMPC can be tuned to achieve desired levels of performance and
robustness and thus represents a flexible, extensible framework for decision-making
in intensively adaptive mHealth interventions.

Space limitations keep us from describing some interesting extensions of this
work currently underway. These include modeling efforts (as part of Healthy Mom
Zone research) to enhance the adaptive intervention to include fetal weight and
infant birth outcomes (Savage, Downs, Dong, & Rivera, 2014) and ways to apply
identification and state estimation methods with energy balance models to estimate
energy intake (Guo et al. 2016). Identification test monitoring (Martín, Rivera,
& Hekler, 2015b, 2016b) is being studied as part of Just Walk to systematically
determine the optimal number of multisine input cycles and thereby establish a
minimal duration for the intervention.

The intensively adaptive interventions presented in this chapter involve a daily
timescale for decisions. Augmenting an intensively adaptive intervention with a
“just-in-time” adaptive intervention (JITAI; Nahum-Shani, Hekler, & Spruijt-Metz,
2015) that can provide support when needed, multiple times within a day, represents
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an important future direction for this work. Developing an effective JITAI requires
recognizing just-in-time states when a participant has the opportunity to engage
in a behavior and is receptive to support. State estimation techniques, such as
model on demand (Stenman, 1999) or machine learning, can be used to infer the
existence of just-in-time states on the basis of available measurements and models.
This research activity calls for alternative approaches to system identification
experiments (e.g., micro-randomization (Klasnja et al. 2015)) in order to generate
informative databases.
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Coding and Interpretation of Effects
in Analysis of Data from a Factorial
Experiment

Kari C. Kugler, John J. Dziak, and Jessica Trail

Abstract This chapter is intended to describe the differences between effect coding
and dummy coding when the multiple regression approach is used to perform
analysis of variance (ANOVA) with balanced (i.e., an equal number of subjects in
each experimental condition) factorial designs. Using a hypothetical example of
a 23 factorial experiment, we present these two coding schemes for categorical
independent variables and explain how the effects estimated can have different
interpretations depending on the coding scheme used. Particular attention is paid
to highlighting how and why differences exist and when a researcher might want to
use one coding scheme over another. We demonstrate that effect coding is usually
preferred for analyzing data from factorial experiments in the optimization phase of
the multiphase optimization strategy.

1 Introduction

Factorial experiments are increasingly being used in the behavioral sciences, in
part due to the rising interest in optimization of multicomponent behavioral,
biobehavioral, and biomedical interventions. In the companion to this volume,
Collins (2018) describes an approach for optimization of interventions called the
multiphase optimization strategy (MOST). As part of this approach, the investi-
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gator conducts an experiment to gather the information needed to optimize the
intervention; the approach to experimentation varies depending on the resources
available and the objectives of the optimization. Frequently the optimization of
the intervention requires assessing the individual and combined effects of a set of
intervention components, so that the investigator can determine which components
and component levels meet the optimization criterion that has been selected. When
this kind of information is needed, often factorial designs emerge as the most
efficient and economical way to gather the information needed for optimization.

Many behavioral scientists have had some training in factorial experiments,
mostly the 2 × 2 factorial, and are familiar with the textbook definitions of the
terms main effect and interaction. They are also familiar with the facts that these
experiments are often analyzed using factorial analysis of variance (ANOVA) and
that ANOVA analyses can be reexpressed as multiple regression models by using
certain numerical coding systems for the categorical factors. However, researchers
may not be aware that how factor levels are coded in the regression factorial analysis
of variance (ANOVA) determines how the resulting effect estimates should be
interpreted. In fact, when dummy coding (0s and 1s) is used, significance tests
of the resulting effect estimates generally do not represent tests of the statistical
significance of main effects and interactions according to the ANOVA textbook
definitions, but rather are more complicated linear combinations of these effects.

The purpose of this chapter is to demonstrate how the choice between dummy
coding and effect coding can change the interpretation of the effects estimated based
on the results of a factorial experiment. As will be shown, the two coding schemes
always yield the same omnibus F statistic used for testing the overall predictive
ability of the fitted linear model. However, they can yield different estimates, test
statistics, and p-values for the main and interaction effects. Neither dummy coding
nor effect coding is right or wrong per se, but because the resulting estimates have
different meanings, one or the other of the coding schemes will be more appropriate
for any given set of research questions. Therefore, it is important for investigators
to have a clear understanding of the differences. Hardy (1993) provides an excellent
discussion of this topic in the context of nonexperimental studies; however, in this
chapter we focus on the differences between effect and dummy coding for factorial
experiments. For simplicity, the discussion is limited to factorial experiments in
which all factors have two levels, often referred to as 2k experiments, where k
denotes the number of factors. This type of factorial design is typical in screening
experiments (see the companion volume; Collins, 2018).

The chapter is organized as follows: First we provide a brief introduction to the
factorial design. We follow this with a description of the classical definitions of
main effects and interactions. We then present the two different coding schemes
for categorical factors. We provide a discussion of how to interpret regression
coefficients when effect coding is used and when dummy coding is used. Next
we provide a numerical example comparing effect and dummy coding. We then
discuss how to analyze data generated from a factorial experiment using two of the
most widely used statistical software packages (SAS and SPSS). We conclude with
a discussion about how behavioral scientists might integrate this information into
their research.
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2 Brief Introduction to the Factorial Design

Suppose an investigator is interested in examining the effects of three components
of an obesity preventive intervention designed to increase adherence to protocols
related to weight loss (e.g., Pellegrini et al., 2014, 2015): coaching calls, text
messages, and a report provided to the individual’s primary care physician (PCP).
The investigator wants to optimize this intervention using MOST (Collins, Dziak,
& Li, 2009; Collins, Kugler, & Gwadz, 2016) and decides to conduct a factorial
experiment. The following three factors are identified: (1) COACH (yes/no), (2)
TEXT (yes/no), and (3) PCP (yes/no). This is a 2 × 2 × 2, or 23, factorial
experiment. The design of this experiment is depicted in Table 1. In the experimental
condition column of Table 1, a “+” represents yes (i.e., this component is provided)
and a “−” represents no (i.e., this component is not provided). Instead of yes and
no, the levels could also be high/low or any other reasonable two-level comparison.
As Table 1 shows, there are 23 = 8 experimental conditions. Each experimental
condition represents a unique combination of the levels of the three factors, and all
unique combinations are included in the design.

2.1 Classical Definition of Effects

Let us review the classical definitions of effects of factors with two levels.

2.1.1 Main Effects

The classical definition of the main effect in a 2k ANOVA is the difference between
the mean response at one level of a particular factor and the mean response at the
other level, collapsing over the levels of all remaining factors (Montgomery, 2009).
For a 23 factorial experiment with factors A, B, and C, the main effect of factor A is
represented by

Table 1 Experimental conditions for the hypothetical 23 factorial experiment examining weight
loss adherence intervention components

Experimental condition
number

Experimental
condition

Factor 1
COACH

Factor 2
TEXT

Factor 3
PCP

1 − − − No No No
2 − − + No No Yes
3 − + − No Yes No
4 − + + No Yes Yes
5 + − − Yes No No
6 + − + Yes No Yes
7 + + − Yes Yes No
8 + + + Yes Yes Yes
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MEA = μ(+··) − μ(−··),

where μ(+··) and μ(−··) represents the mean response for the “+” and “−” levels,
respectively, of factor A, collapsing over the levels of factors B and C (the dot
subscript means “summed over”). Here the notation μ denotes a mean of means,
that is, an average of the mean responses across several experimental conditions.
In the experiment depicted in Table 1, μ(+··) is the mean response of experimental
conditions 5–8, and μ(−··) is the mean response of experimental conditions 1–4.
Thus, in the factorial experiment described above, the main effect of COACH is the
difference between mean adherence for COACH at the yes and no levels, collapsing
over levels of TEXT and PCP.

After some algebra, using facts such as μ(+··) = (

μ(+++) + μ(++−) + μ(+−+)+
μ(+−−)

)

/4, the main effect equals

MEA = 1

4
μ(+++) + 1

4
μ(++−) + 1

4
μ(+−+) + 1

4
μ(+−−)

− 1

4
μ(−++) − 1

4
μ(−+−) − 1

4
μ(−−+) − 1

4
μ(−−−).

The main effects of B and C are defined similarly:

MEB = μ(·+·) − μ(·−·)

and

MEc = μ(··+) − μ(··−).

2.1.2 Two-Way Interaction Effects

There is an A × B interaction if the effect of factor A is different depending on the
level of factor B (or, equivalently, if the effect of factor B is different depending
on the level of factor A). In a 2k ANOVA, a two-way interaction is the average
of the difference in the effect of a particular factor across the levels of a second
factor, collapsing over all other factors (Montgomery, 2009). For example, consider
a classical 23 ANOVA. There is an interaction between factors A and B if the average
effect of A differs over levels of B:

(

μ(++·) − μ(−+·)
) �= (

μ(±·) − μ(−−·)
)

.

Therefore, one straightforward definition of the A × B interaction could be

(

μ(++·) − μ(−+·)
) − (

μ(+−·) − μ(−−·)
)

,
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which is zero if the effect of A does not depend on that of B. After some algebra,
using facts such as μ(++·) = 1

2 (μ+++ + μ++−), this definition of the interaction
equals

1

2
μ+++ + 1

2
μ++− − 1

2
μ−++ − 1

2
μ−+− − 1

2
μ+−+ − 1

2
μ+−− + 1

2
μ−−+ + 1

2
μ−−−.

However, there is a problem with this definition because it essentially inflates
the scale of measurement for the interaction relative to the main effect; notice the
1
2 coefficients above relative to the 1

4 coefficients in the similar decomposition of
the main effect. Therefore, a more consistent definition of the interaction would be
half the difference in differences, and we will use that definition here. This allows
the interaction to be twice its effect-coded regression coefficient, just as the main
effect is twice its own effect-coded regression coefficient. Specifically, we define
the A × B interaction as

INTA×B = 1

2

[(

μ(++·) − μ(−+·)
) − (

μ(+−·) − μ(−−·)
)]

.

The rescaling does not matter for testing purposes, because rescaling the mean
also rescales the standard error. However, when reporting effect sizes, it is important
to be clear about what definition is being used (see Dziak, Nahum-Shani, & Collins,
2012).

In the example experiment, the COACH × TEXT interaction is the average of
the difference in the effect of COACH on adherence when TEXT = yes and the
effect of COACH when TEXT = no, collapsed over levels of PCP. If the effect of
COACH on adherence is the same when TEXT = yes and when TEXT = no, there
is no COACH × TEXT interaction, and this difference is zero. For a more detailed
discussion of interactions, see Chap. 4 in the companion volume.

2.1.3 Three-Way Interaction Effects

There is an A × B × C interaction when the A × B interaction effect is different
depending on the level of factor C. (This can alternatively be thought of as any of
the two-way interaction effects differs depending on the level of the third factor.) In
a classical 2k ANOVA, a three-way interaction is (half) the average of the difference
in the two-way interaction effects at differing levels of a third factor, collapsing
over any remaining factors. For example, in a 23 ANOVA, this is represented by the
following:
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INTA×B×C = 1

2

[

1

2

[(

μ(+++) − μ(−++) )−( μ(+−+) − μ(−−+)

)]

−1

2

[(

μ(++−) − μ(−+−) )−( μ(+−−) − μ(−−−)

)]

]

.

Notice the additional 1
2 multiplier, similar to the multiplier for INTA × B. In the

companion volume (Collins, 2018), the 2 or 4 in the denominator of INTA × B or
INTA × B × C is called a coefficient correction.

The COACH × TEXT × PCP interaction is the average of the difference between
the COACH × TEXT interaction when PCP = yes and the COACH × TEXT
interaction when PCP = no. If there were additional factors in the experiment, this
difference would be collapsed over those factors as well.

2.2 Coding Schemes for Categorical Variables

In the section that follows, we present the details of dummy coding and effect coding
of experimental factors. In later sections we demonstrate how these two coding
schemes differ, how the effects they estimate are different, and how one could come
to a different conclusion depending on the type of coding scheme used. In particular,
we will demonstrate that significance tests of the coefficients of effect-coded factors
and their products are equivalent to tests of ANOVA main effects and interactions,
but significance tests of the coefficients of dummy-coded factors are not equivalent
to tests of ANOVA effects unless there are no interactions in the model. When
there is not a product term in the model, it does not matter what type of coding
scheme is used: The test for significance will be the same for each of the effects.
However, there will be differences in the scale of the regression coefficients. For the
dummy-coded additive model, the regression coefficient represents the classically
defined main effects, whereas with effect coding, the regression coefficient needs
to be multiplied by a scaling factor of 2 in order to be equivalent to the classically
defined main effect. The rescaling by two occurs because the high and low levels of
effect codes are placed further apart (+1 − (−1) = 2) than those of dummy codes
(1 – 0 = 1); it could be avoided by using +1/2 and − 1/2 as codes instead of the
usual +1 and −1 (as in, e.g., Raudenbush & Liu, 2000), but we do not address
this form of notation here because it would make other notational issues related to
factorial experiments become much more complicated.

We begin with dummy coding, which is the type of coding perhaps most familiar
to behavioral scientists.
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2.2.1 Dummy Coding

In a dummy coding system, 1 represents membership in one level/category of a
factor, and 0 represents membership in the other. For participants who were provided
COACH, the dummy variable has a value of 1, and for those who were not provided
COACH, the dummy variable has a value of 0. The same approach would be used
for TEXT and PCP. (Readers interested in learning more about dummy coding for
factors with more than two levels are referred to Hardy (1993, pp. 8–9).)

Table 2 shows the dummy coding scheme for the factorial design in Table 1.
The rows correspond to the experimental conditions, and the columns correspond
to the dummy variable vector for each effect. We are avoiding the use of the
terms main effect and interaction here because, as will be demonstrated below,
the effects estimated when dummy codes are used are generally not main effects
and interactions according to the classical definitions above. Instead, we will
use the terms first-order effect (FOE) instead of main effect, second-order effect
(SOE) instead of two-way interaction, third-order effect (TOE) instead of three-way
interaction, and so on.

The column labeled ZCOACH represents the dummy variable corresponding to
the FOE of the factor COACH (the letter Z was arbitrarily chosen and should not
be confused with a Z score). All those at the no level are given a 0 (Rows 1–4),
and all those at the yes level are given a 1 (Rows 5–8). The column labeled ZTEXT

represents the dummy variable corresponding to the FOE of the factor TEXT. Again,
a 0 is listed for all those at the no level (Rows 1,2,5,6); a 1 is listed for all those
at the yes level (Rows 3,4,7,8). The column ZPCP represents the dummy variable
corresponding to the FOE of the factor PCP. Here, Rows 1,3,5, and 7 are given a 0
for the no level, and Rows 2,4,6, and 8 are given a 1 for the yes level.

The next three columns contain the dummy codes for the SOEs. These are
constructed by multiplying the elements in the FOE vectors for the individual factors
involved in the SOE. For example, ZCOACH × TEXT represents the COACH × TEXT
SOE. It is created by multiplying the elements in the vector for ZCOACH by the
elements in the vector for ZTEXT . Finally, the last column represents the TOE, and it
is obtained by multiplying the three FOE vectors.

The role these vectors play in conducting a factorial ANOVA will be discussed
in Sect. 2.3.5.

2.2.2 Effect Coding

Effect coding is similar to dummy coding, in that a 1 represents membership in one
of the levels/categories. However, in effect coding for two-level variables, the other
level is coded −1 rather than 0 (see Hardy, 1993, pp. 64–71, for a description of
effect coding for variables with more than two levels). The variables representing
the interactions are constructed by multiplying the vectors corresponding to the
factors involved in the interactions, in a manner analogous to what was shown above
for dummy coding. Table 3 presents the effect coding scheme for the hypothetical
factorial experiment in Table 1.
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2.3 Use of Codes in Regression Models and Interpretation
of Coefficients

In this chapter we compare the algebraic implications of dummy codes and effect
codes on the interpretation of regression coefficients. Although we introduced
dummy codes first above because they are more familiar to most researchers, it
is convenient in this section to discuss effect codes first and then show how dummy
codes differ from them.

2.3.1 Population Means for Each Experimental Condition When Effect
Coding Is Used

Below is the hypothetical experiment with three factors, each with two levels,
expressed as an effect-coded regression equation:

μ = β0 + β1XCOACH + β2XT EXT + β3XPCP + β12XCOACH×GUM

+β13XCOACH×PCP + β23XT EXT ×PCP + β123XCOACH×T EXT ×PCP . (1)

In Eq. (1) above, μ represents the population mean of the outcome of interest,
that is, adherence to weight loss protocol; and each X corresponds to a column from
Table 3. Each regression coefficient (β1, β2, β3, etc.) expresses the expected change
in μ given a one-unit change in the associated X, holding all else constant. For
example, for an individual in experimental condition (1) in Table 3, the expression
would be

μ−−− = β0 + β1 (−1) + β2 (−1) + β3 (−1) + β12(1)

+β13(1) + β23(1) + β123 (−1) .

Table 4 shows the population means for each experimental condition, expressed
in terms of Eq. (1) using effect coding.

When effect coding is used, the intercept, β0, is the grand mean. This can be
seen by examining Table 4 carefully. Assuming a balanced design (see Chap. 3 in the
companion volume), in which each experimental condition has the same sample size
n, the grand mean is the average of all the experimental condition means. Expressing
these means in terms of regression coefficients, as is shown in Table 4, and taking
the average shows that the result is β0.
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Table 4 Population means for each experimental condition when effect coding is used

Experimental
condition
number

Experimental
condition Population means

1 − − − μ(− − −) = β0 − β1 − β2 − β3 + β12 + β13 + β23 − β123

2 − − + μ(− − +) = β0 − β1 − β2 + β3 + β12 − β13 − β23 + β123

3 − + − μ(− + −) = β0 − β1 + β2 − β3 − β12 + β13 − β23 + β123

4 − + + μ(− + +) = β0 − β1 + β2 + β3 − β12 − β13 + β23 − β123

5 + − − μ(+ − −) = β0 + β1 − β2 − β3 − β12 − β13 + β23 + β123

6 + − + μ(+ − +) = β0 + β1 − β2 + β3 − β12 + β13 − β23 − β123

7 + + − μ(+ + −) = β0 + β1 + β2 − β3 + β12 − β13 − β23 − β123

8 + + + μ(+ + +) = β0 + β1 + β2 + β3 + β12 + β13 + β23 + β123

2.3.2 Interpretation of Effects in Effect Coding

Main Effects

In (1), β1 represents the main effect of COACH. This main effect is computed by
taking the difference between the average of Rows 5–8 (COACH = yes) and average
of Rows 1–4 (COACH = no).

μ(+··) = 1

4
[(β0 + β1 − β2 − β3 − β12 − β13 + β23 + β123)

+ (β0 + β1 − β2 + β3 − β12 + β13 − β23 − β123)

+ (β0 + β1 + β2 − β3 + β12 − β13 − β23 − β123)

+ (β0 + β1 + β2 + β3 + β12 + β13 + β23 + β123)]

= 1

4
[4β0 + 4β1] = β0 + β1μ(−··) = 1

4
[4β0 − 4β1] = β0 − β1

Using the population means for each experimental condition in Table 4, the main
effect is expressed as follows:

MECOACH = μ(+··) − μ(−··) = (β0 + β1) − (β0 − β1) = 2β1,

and the regression coefficient is expressed as follows:

β1 = 1

2
∗ MECOACH .

As shown in this equation, with effect coding the βs correspond to the main
effects according to the classical definition. In order to compute the actual main
effect, a simple linear transformation is required, that is, multiplying the regression
coefficient by a scaling constant of 2. This scaling constant has no effect on the
hypothesis test, because it is also applied to the standard errors.
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Two-Way Interaction Effects

Using the same approach, the effect of the COACH × TEXT interaction is calculated
as follows:

μ(++·) = 1

2
[2β0 + 2β1 + 2β2 + 2β12]

μ(−+·) = 1

2
[2β0 − 2β1 + 2β2 − 2β12]

μ(+−·) = 1

2
[2β0 + 2β1 − 2β2 − 2β12]

μ(−−·) = 1

2
[2β0 − 2β1 − 2β2 + 2β12]

INTCOACH×T EXT = 1

2
[(2β1 + 2β12) − (2β1 − 2β12)] = 2β12

β12 = 1

2
INTCOACH×T EXT

Thus, with effect coding, β12 represents one-half the classical definition of a
two-way interaction. In other words, the effect of the COACH × TEXT interaction
is simply 2β12.

Three-Way Interaction Effects

Again, using the same approach, the following represents the COACH × TEXT ×
PCP interaction effect:

INTCOACH×T EXT ×PCP

= 1

2

[

1

2
[(2β1 + 2β12 + 2β13 + 2β123) − (2β1 − 2β12 + 2β13 − 2β123)]

−1

2
[(2β1 + 2β12 − 2β13 − 2β123) − (2β1 − 2β12 − 2β13 + 2β123)]

]

= 2β123

and so,
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β123 = 1

2
INTCOACH×T EXT ×PCP .

2.3.3 Summary: Effect-Coded Effects

When effect coding is used, the regression coefficients in a regression model are
equivalent to the classically defined main effects and interactions, except for a
scaling constant of 2 that does not affect hypothesis tests. Simply multiplying the
regression coefficient by this scaling constant produces the estimated main and
interaction effects for factors with two levels.

2.3.4 Population Means for Each Experimental Condition When Dummy
Coding Is Used

Below is the hypothetical experiment with three factors, each with two levels, now
expressed as a regression equation using dummy coding:

μ = α0 + α1ZCOACH + α2ZT EXT + α3ZPCP + α12ZCOACH×T EXT

+α13ZCOACH×PCP + α23ZT EXT ×PCP + α123ZCOACH×T EXT ×PCP. (2)

In Eq. (2), μ again represents the outcome of interest, that is, adherence to
weight loss protocol. Each Z corresponds to a column from Table 2. We use α to
represent regression coefficients to distinguish these from the regression coefficients
in Eq. (1).

Table 5 shows the population means for each of the experimental conditions
expressed in terms of Eq. (2) when dummy coding is used. For example, the
expected mean for experimental condition 1, in which each of the three factors is
set to the no (−) level, is

μ(−−−) = α0 + α1(0)+α2(0)+α3(0)+α12(0)+α13(0)+α23(0)+α123(0)=α0,

as shown in Row 1 of Table 5. This shows that the intercept, α0, equals μ−−−, the
mean when all of the independent variables are set to zero—in this case, the no level
of each factor. Each of the remaining coefficients represents the expected change in
μ given a one-unit change in the associated Z, holding all else constant. As another
example, the population mean for experimental condition 8 is

μ(+++) = α0 + α1(1) + α2(1) + α3(1) + α12(1) + α13(1) + α23(1) + α123

= α0 + α1 + α2 + α3 + α12 + α13 + α23 + α123,

as shown in Row 8 of Table 5.
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Table 5 Population means for each experimental condition when dummy coding is used

Experimental
condition
number

Experimental
condition Population means

1 − − − μ(− − −) = α0

2 − − + μ(− − +) = α0 + α3

3 − + − μ(− + −) = α0 + α2

4 − + + μ(− + +) = α0 + α2 + α3 + α23

5 + − − μ(+ − −) = α0 + α1

6 + − + μ(+ − +) = α0 + α1 + α3 + α13

7 + + − μ(+ + −) = α0 + α1 + α2 + α12

8 + + + μ(+ + +) = α0 + α1 + α2 + α3 + α12 + α13 + α23 + α123

Comparing Tables 4 and 5 shows that the type of coding scheme used produces
dramatically different expressions for the population means for each experimental
condition. It is also worth noting that the intercept has a different meaning. When
effect coding is used, the intercept, β0, is the grand mean, but the intercept in a
dummy-coded regression model, α0,is the mean response when each of the three
factors is set to the no (−) level.

2.3.5 Expressing Dummy-Coded Effects in Terms of Classical Effects

When dummy coding is used and product terms are included in the model, the
regression coefficients do not correspond to the main effects and interactions
according to the classical definition (Hardy, 1993). This is not inherently bad or
a mistake; however, it is important to be aware of the interpretational differences
to ensure that the coding scheme selected is appropriate for the research questions
at hand. In this section we directly compare the two coding schemes by expressing
dummy-coded effects in terms of classical effect-coded effects.

FOEs

As discussed above, the main effect of COACH is computed by taking the difference
between the average of Rows 5–8 (COACH = yes)

μ(+··) = 1
4 [(α0 + α1) + (α0 + α1 + α3 + α13) + (α0 + α1 + α2 + α12)

+ (α0 + α1 + α2 + α3 + α12 + α13 + α23 + α123)]

= 1
4 [4α0 + 4α1 + 2α2 + 2α3 + 2α12 + 2α13 + α23 + α123]
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and Rows 1–4 (COACH = no)

μ(−··) = 1
4 [(α0) + (α0 + α3) + (α0 + α2) + (α0 + α2 + α3 + α23)]

= 1
4 [4α0 + 2α2 + 2α3 + α23]

MECOACH = μ(+··) − μ(−··)
= 1

4 [4α0 + 4α1 + 2α2 + 2α3 + 2α12 + 2α13 + α23 + α123]

− 1
4 [4α0 + 2α2 + 2α3 + α23]

= 1
4 [4α1 + 2α12 + 2α13 + α123]

= α1 + 1
2α12 + 1

2α13 + 1
4α123.

.

Based on this, it is now possible to solve for α1:

α1 = FOECOACH = MECOACH − 1

2
α12 − 1

2
α13 − 1

4
α123.

As shown in this equation, when dummy coding is used, α1 does not represent the
main effect of COACH according to the classical definition. Instead, α1 is a linear
combination of the classically defined main effect of COACH and the higher-order
effects that involve COACH, in this case two SOEs and the TOE. Thus, a test of the
null hypothesis that α1 equals zero is not a test of the null hypothesis that the main
effect of COACH equals zero.

This raises the question of how α1 should be interpreted. α1 is the effect of
COACH when all the other factors in the model are set to zero, also known as a
simple effect. An explanation of this is provided in Appendix 1.

SOEs

Using the same approach as above, the COACH × TEXT interaction is calculated
as follows: First, notice that the means conditional on the first two factors can be
written as

μ(++·) = 1

2
[2α0 + 2α1 + 2α2 + α3 + 2α12 + α13 + α23 + α123] ,

μ(−+·) = 1

2
[2α0 + 2α2 + α3 + α23] ,

μ(+−·) = 1

2
[2α0 + 2α1 + α3 + α13] ,

and

μ(−−·) = 1

2
[2α0 + α3] .
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Substituting these into the definition of the interaction term, we have

INTCOACH×T EXT = 1

2

[

1

2
[(2α1 + 2α12 + α13 + α123) − (2α1 + α13)]

]

= 1

2
α12 + 1

4
α123.

That is, the second-order coefficient α12 equals

α12 = SOECOACH×T EXT = 2INTCOACH×T EXT − 1

2
α123

and hence does not represent the interaction itself, but a combination of the two-way
and three-way interactions.

Thus the test of the null hypothesis that α12 equals zero is not a test of the null
hypothesis that the COACH × TEXT interaction equals 0 (Chakraborty, Collins,
Strecher, & Murphy, 2009). Instead, α12 is a linear combination of the classically
defined COACH × TEXT interaction and the TOE. Appendix 1 shows that the
hypothesis test should be interpreted as a test of the null hypothesis that the
COACH × TEXT interaction equals 0 when PCP is set to zero. The same holds
for the other SOEs in the model. That is, interpreting the COACH × PCP (e.g.,
α13) coefficient as an interaction requires setting TEXT to zero, and interpreting the
TEXT × PCP (e.g., α23) coefficient as an interaction requires setting COACH to
zero.

TOEs

Using the same approach, the following is the COACH × TEXT × PCP interaction
effect:

INTCOACH×T EXT ×PCP

= 1

4
[[(α1 + α12 + α13 + α123) − (α1 + α13)] − [(α1 + α12) − (α1)]]

= 1

4
α123.

Therefore,

α123 = T OECOACH×T EXT ×PCP = 4 INTCOACH×T EXT ×PCP .

This TOE is the only effect in this model that corresponds to the classically
defined effect, in this case a three-way interaction. In general, the test of significance
for the highest-order effect is equivalent in dummy coding and effect coding.
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2.3.6 Summary: Dummy Coding Effects

When dummy coding is used and product terms are included in the model, the
regression coefficients no longer estimate effects corresponding to the classically
defined main effects or interactions; rather, they estimate simple effects—the effect
of a factor when the other factors are set to zero. The one exception is the
highest-order effect. Although the magnitude of the highest-order effect estimates
is typically different, the hypothesis tests are identical. Table 6 provides a summary
of the effects with effect coding and dummy coding.

2.4 A Numerical Example

2.4.1 Experimental Design

To illustrate the difference between effect coding and dummy coding, we present
a hypothetical numerical example of the aforementioned factorial experiment and
compare analyses of the data using effect coding and dummy coding.

For this experiment, 32 adults are randomly assigned to one of the eight
experimental conditions. Below are the results of the hypothetical experiment,
presented first for effect-coded independent variables and then for dummy-coded
independent variables. We assume balanced data (i.e., there are an equal number of
subjects in each condition at the end of our study). Please note that the numerical
example is based on artificial data.

2.4.2 Effect Coding Results and Interpretation

Table 7 shows the output for an effect-coded multiple regression model that
includes the three main effects, three two-way interaction effects, and one three-
way interaction effect using PROC REG procedure in SAS/STAT software (SAS
version 9.4, SAS Institute Inc.).

For researchers interested in making decisions about which levels of a factor
to include in an optimized intervention, focus is drawn to the parameter estimates
corresponding to the main effects (for a more detailed discussion of decision-
making, see Chap. 7 in the companion volume). Beginning with the regression
coefficient for XCOACH , the parameter estimate of 6.52 is significant (p < 0.01),
meaning that, on average, the receipt of COACH increases adherence by 13.04 units
(6.52*2) compared to not getting COACH, collapsing over levels of TEXT and
PCP. The parameter estimates for the TEXT and PCP regression coefficients are not
significant, p = 0.53 and p = 0.27, respectively, meaning that there is not enough
evidence to suggest that these factors have an effect on mean adherence in these
artificial data.
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Table 7 Annotated regression output for effect-coded variables

The REG procedure

Model: MODEL1

Dependent variable: adherence

Number of observations read 32

Number of observations used 32

Analysis of variance

Source DF

Sum of

squares

Mean

square F value Pr > F

Model 7 1686.53173 240.93310 217.32 <.0001

Error 24 26.60724 1.10863

Corrected total 31 1713.13897

Root MSE 1.05292 

R-square 0.9845

Dependent mean 0.17256

Adj R-Sq 0.9799

Coeff Var 610.15872

Variable DF

Parameter

estimate

Standard

error t  value Pr > 1

Intercept 1 ─0.17256 0.18613 0.93 0.3631

XCOACH 1 6.51605 0.18613 35.01 <.0001

XTEXT 1 0.11797 0.18613 0.63 0.5322

XPCP 1 ─

─

─

─

0.21210 0.18613 1.14 0.2657

XCOACH×TEXT 1 3.13873 0.18613 16.86 <.0001

XCOACH×PCP 1 0.40815 0.18613 2.19 0.0383

XTEXT×PCP 1 0.31576 0.18613 1.70 0.1027

XCOACH×TEXT×PCP 1 0.26153 0.18613 1.41 0.1728

─

─

─

There are two significant two-way interactions: the COACH × TEXT interaction
(p < 0.01) and COACH × PCP interaction (p = 0.04). We can interpret the
regression coefficient for the COACH × TEXT interaction as follows: The expected
difference between the effect of COACH on adherence when TEXT is used and the
effect of COACH on adherence when TEXT is not used, collapsing over levels of
PCP, is 6.28 units (3.14*2). In other words, the effect of COACH on mean adherence
increases by 6.28 units when TEXT is used compared to when TEXT is not used,
collapsing over levels of PCP.

An interesting feature about the results of a multiple regression analyses when
effect coding is used is that all of the standard errors are the same and the effect
estimates are uncorrelated. This is demonstrated in Table 8; all of the variances are
0.03, and all of the covariances are 0.
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Table 9 Annotated regression output for dummy-coded variables

The REG procedure

Model: MODEL1

Dependent variable: adherence

Number of observations read 32

Number of observations used 32

Analysis of variance

Source DF

Sum of

squares

Mean 

square F value Pr > F

Model 7 1686.53173 240.93310 217.32 <.0001

Error 24 26.60724 1.10863

Corrected total 31 1713.13897

Root MSE 1.05292

R-square 0.9845

Dependent mean 0.17256

Adj R-Sq 0.9799

Coeff Var 610.15872

Variable DF

Parameter

estimate

Standard

error t  value Pr > |t|

Intercept 1 3.62490 0.52646 6.89 <.0001

ZCOACH 1 6.46140 0.74452 8.68 <.0001

ZTEXT 1 4.88693 0.74452 6.56 <.0001

ZPCP 1 0.08592 0.74452 0.12 0.9091

ZCOACH×TEXT 1 11.50880 1.05292 10.93 <.0001

ZCOACH×PCP 1 0.58648 1.05292 0.56 0.5827

ZTEXT×PCP 1 2.30917 1.05292 2.19 0.0382

ZCOACH×TEXT×PCP 1 2.09224 1.48905 1.41 0.1728

─

─

─ ─

─

─

─

─

─

─

2.4.3 Dummy Coding Results and Interpretation

Table 9 shows the output for a multiple regression model with the same data as in
Table 7 but this time using dummy coding, so that three FOEs, three SOEs, and one
TOE are estimated.

The overall F statistic is exactly the same (F = 217.32, p < 0.01) as that obtained
in the effect-coded model shown in Table 7. In addition, the test for significance for
the highest-order effect, ZCOACH × TEXT × PCP, is the same (p = 0.17). However, this
is where the similarities end. All of the other regression weights, standard errors,
and hypothesis tests are different and must be interpreted differently. For example,
the regression coefficient for ZCOACH is significant (t = 8.68, p < 0.01). The dummy-
coded analysis indicates that, on average, COACH increases adherence by 6.46 units
compared to no COACH, when TEXT and PCP are set to zero. Stated another way,
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the t test for this regression coefficient tests the null hypothesis that the effect of
COACH on mean adherence among those who did not receive TEXT or PCP is zero.
This is very different from the classical definition of a main effect. Note that the
regression coefficient αTEXT is statistically significant, but its counterpart in effect
coding, βTEXT , is not significant. This illustrates how the results of hypothesis tests
of individual effects can differ between effect and dummy coding. There are also
noticeable differences in the variance-covariance matrix, as shown in Table 10. First,
the variances of the dummy-coded effects vary depending on the order of the effect.
Second, the covariances are non-zero and substantial, and the covariance matrix
displays a complicated pattern of positive and negative signs.

2.5 Regression Software Packages

2.5.1 SAS (v 9.4)

The analyses reported in the numerical example above were obtained using SAS
PROC REG. We recommend this procedure when using SAS because in PROC
REG the user is responsible for coding the independent variables. We find with this
approach the interpretation of effects is more straightforward, because it is always
clear what coding scheme has been used.

Another procedure, PROC GLM, can be used to analyze data from a factorial
experiment. In the GLM procedure, the user has the option to use or not use
the CLASS statement. The CLASS statement can be used to indicate that one
or more variables represent discrete levels or categories, such as the levels of
experimental factors. If the CLASS statement is not used, the independent variables
are considered quantitative (as they are in PROC REG), that is, they are handled the
same way as they are in PROC REG, so the way in which they are coded by the user
matters. In other words, different results will be obtained depending on whether
effect coding or dummy coding is used. By contrast, if the CLASS statement is
used, which seems like an intuitively appealing approach when analyzing data from
a factorial experiment, the output can be confusing. The ANOVA table for the Type
I sums of squares (described below) corresponds to the effects using effect coding;
however, for the regression parameter estimates, the SAS default is to report results
for dummy-coded variables. Thus if the CLASS statement is used, the ANOVA
table, which is based on effect coding, reports different hypothesis tests than those
in the regression section of the output.

Particular ANOVA-related tests reflect different partitions of the sums of squares
associated with particular sources of variability. In this context, these correspond
to tests of coefficients in different coding schemes. In PROC REG, Type I
(hierarchical) and Type II (partial) can be requested as additional output. In PROC
GLM, Type I (hierarchical) and Type III (partial) are the default with the request of
a solution. Table 11 explains how the coding scheme and use of a CLASS statement
can change the meaning of the effects for the PROC GLM procedure. In general,
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Table 11 Interpretations of results from different approaches to conducting ANOVA using PROC
GLM

Coding scheme Interpretation of effect estimates
Effect coding Without CLASS statement With CLASS statement

Type I sums of squares Classicala Classical
Type III sums of squares Classical Classical
b weights and hypothesis tests Classical Dummy

Dummy coding
Type I sums of squares Classical Classical
Type III sums of squares Dummyb Classical
b weights and hypothesis tests Dummy Dummy

aInterpreted as classical effects
bInterpreted as first-order, second-order, third-order, etc., effects as produced by dummy-coded
independent variables

if PROC GLM is used, we recommend not using the CLASS statement and coding
the independent variables yourself to avoid confusion.

2.5.2 SPSS (PASW Statistics 23)

As in SAS, there are two options available to SPSS users to analyze factorial
experiments. Users can invoke either the “LINEAR” procedure under the “Regres-
sion” pull-down tab or the “UNIVARIATE” procedure under the “General Linear
Model” pull-down tab. Similar to SAS PROC REG, the LINEAR procedure assumes
the independent variables are quantitative; therefore, how the variables are coded
determines whether or not the parameter estimates and corresponding tests reflect
the classical definitions. Within the UNIVARIATE procedure, the user can enter
the variables as covariates or factors. If the variables are entered as covariates, then
the way in which the variables are coded matters; it is only with effect coding that
the results will be consistent with the classical definitions of effects (see Table 10).
However, if the variables are entered as factors, then SPSS will dummy code the
variables. The partitioning of the sums of squares (SS) is also included in the output
for the UNIVARIATE procedure. Type III SS (partial) is the default, although Type
I and Type II can be requested. Table 12 demonstrates how the coding scheme and
the choice of how the variables are characterized changes the meaning of the effects.
To avoid confusion, we recommend that if the UNIVARIATE procedure is used, the
independent variables should be entered as covariates, not as factors.
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Table 12 Interpretations of results from different approaches to conducting ANOVA using SPSS
UNIVARIATE procedure

Coding scheme Interpretation of effect estimates
Effect coding Variables as covariates Variables as factors

Type III sums of squares Classicala Classical
b weights and hypothesis tests Classical Dummy

Dummy coding
Type III sums of squares Dummyb Classical
b weights and hypothesis tests Dummy Dummy

aInterpreted as classical effects
bInterpreted as first-order, second-order, third-order, etc., effects as produced by dummy-coded
independent variables

2.6 Discussion

In this chapter we have presented a hypothetical example of a 23 factorial exper-
iment to demonstrate that how a categorical variable is coded determines the
interpretation of its effects in a regression analysis. We showed that different coding
schemes for categorical variables estimate different effects and, therefore, can result
in different results and different conclusions. If dummy coding is used and product
terms are included in an analysis, the significance tests for the regression coefficients
do not readily correspond to the classical ANOVA tests of main effects and
interaction effects. Rather, the effects in a regression with dummy-coded variables
should be interpreted as the effect of the variable, when all other variables in the
analysis are set to zero (i.e., a simple effect); the only exception is the highest-
order effect. This is contrasted to effect coding, where if product terms are modeled
in an analysis, significance tests of the regression coefficients do correspond to
the classical ANOVA tests of main effects and interaction effects. Effect-coded
coefficients actually represent exactly half the corresponding ANOVA effect, but
this cancels out when doing a significance test because they also have exactly half
the standard error. We also discussed two of the many statistical software options
available to researchers to analyze data from factorial experiments using multiple
regression. Researchers should be aware of the default options and how use of these
defaults may affect their results.

Researchers trained in using dummy coding may be surprised at the emphasis
given in this chapter to the differences between dummy coding and effect coding
and the advantages of the latter when testing interactions. Indeed, readers may have
experience in testing interactions with dummy-coded covariates, and we are not
suggesting that their results were wrong. In many cases outside an optimization
trial, the main focus of a regression model that includes interactions is on testing
the highest-order interaction. As was shown above, the test of the highest-order
interaction is equivalent regardless of whether factors are dummy-coded or effect-
coded. However, in the context of an optimization trial, a researcher is interested in
using information from multiple main effects and interactions considered together
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to make decisions; thus, it is important to be more mindful of the coding of factors
and the interpretation of their coefficients.

In the beginning we noted that this chapter is based on experiments with balanced
data. This was done to avoid making the discussion overly complex; however,
the general principles discussed here hold even when the number of subjects is
not exactly the same across experimental conditions. In addition, the hypothetical
example did not include other covariates in the regression analyses. Similar to
analyses of other experimental data, the benefits of adding covariates to the
regression models (e.g., reduction in variance) are the same for analyses of data from
a factorial experiment. This extends to including all the variables corresponding to
the effects from the factorial model; in models where all the variables of the effects
are included, the standard errors are smaller than models where only the variables
corresponding to main effects are included, and this changes the interpretation of
the hypothesis tests.

This chapter has only considered the coding of effects in linear models, but
factorial experiments are also performed in settings with binary (e.g., Cook et al.,
2007; Ledolter & Swersey, 2006), count, or even survival time (e.g., Day et al.,
2002; Wolbers et al., 2011) outcomes. The implications of the coding of factors
for these outcomes are beyond the scope of this chapter. We briefly consider the
coding of factors with binary outcomes in order to illustrate the issues involved. In
a two-factor binary logistic regression with an interaction, one could write

log odds (Y = 1) = β0 + β1XA + β2XB + β12XA×B.

If there is no interaction (β12 = 0), then one can test the effects of factors A and
B by testing the significance of β1 and β2, respectively, regardless of whether the
X factors are dummy-coded or effect-coded. However, if there is an interaction, the
interpretation of the main effect becomes complicated, again regardless of whether
the X factors are dummy-coded or effect-coded.

Thus, although one could correctly write

log odds (Y = 1 | XB = +1) = β0 + β1XA + β2 + β12XA

and could also correctly write

log odds (Y = 1 | XB = −1) = β0 + β1XA − β2 − β12XA,

it is not possible to average these together and conclude that

log odds (Y = 1) = β0 + β1XA,

in the same way that one could previously collapse across rows or columns in a
balanced linear model to get an overall mean for each column or row. This is because
the average of two log-odd estimates does not give the overall log odds in the way
that an average of two means gives an overall mean; the log-odd function is not a
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linear function like the mean. This is not pointed out in order to discourage the use
of non-normally distributed outcome variables, but only to say that some additional
care may be required. Cox and Snell (1988) and Collet (1991) describe the analysis
of binary data, including factorial experiments with binary outcomes.

This chapter has also not considered the issue of unbalanced effect coding (e.g.,
te Grotenhuis et al., 2016). This is a modified form of effect coding that is mostly
applicable to observed rather than randomized factors, and is therefore not likely to
be very helpful in the context of a randomized factorial experiment.

In conclusion, the goals of this chapter were to highlight how the coding scheme
of categorical variables determines the interpretation of its effects in a regression
analysis. This becomes apparent in the analysis of data generated from a factorial
experiment as part of the optimization phase of MOST. While either coding scheme
can be used, the different coding schemes estimate different effects, particularly
when product terms are included in the model; it is important for the researcher to
be clear of what question they are interested in answering to guide the selection of
a coding scheme.
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Appendices

Appendix 1: Basis for Interpretation of Regression Coefficients
When Dummy Coding Is Used

The equations below show the correspondence between the population means and
the regression coefficients for dummy-coded variables.

1. Interpretation of α1
Notice that μ(− − −) = α0 is the mean response when factor A = no, B = no, and
C = no.

Also, μ(+ − −) = α0 + α1 is the mean response when A = yes, B = no, and
C = no.

Therefore, α1 = μ(+ − −) − μ(− − −), that is, the effect of A = yes vs. A = no,
when B = no and C = no.

Note the similarities and differences between this and the classical definition
of a main effect of A: μ(+··) − μ(−··).

2. Interpretation of α12
μ(− − −) = α0 is the mean response when A = no, B = no, and C = no.
μ(+ − −) = α0 + α1 is the mean response when A = yes, B = no, and C = no.
μ(− + −) = α0 + α2 is the meanresponse when A = no, B = yes, and C = no.
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μ(+ − −) = α0 + α1 + α2 + α12 is the mean response when A = yes, B = yes,
and C = no.

Therefore, α12 = μ(+ + −) − μ(+ − −) − μ(− + −) + μ(− − −) = (μ(+ + −)
− μ(− + −)) − (μ(+ − −) − μ(− − −)), that is, the difference in the effect of
A = yes vs. A = no when B = yes, C = no and B = no, C = no.

Note the similarities and differences between this and the classical definition
of a two-way interaction effect of A and B:

A × B = 1

2

[(

μ(++·) − μ(−+·)
) − (

μ(+−·) − μ(−−·)
)]

.

3. Interpretation of α123
The eight condition means are as follows:
μ(− − −) = α0: Mean response when A = no, B = no, and C = no.
μ(+ − −) = α0 + α1: Mean response when A = yes, B = no, and C = no.
μ(− + −) = α0 + α2: Mean response when A = no, B = yes, and C = no.
μ(+ + −) = α0 + α1 + α2 + α12: Mean response when A = yes, B = yes, and
C = no.
μ(− − +) = α0 + α3: Mean response when A = no, B = no, and C = yes.
μ(+ − +) = α0 + α1 + α3 + α13: Mean response when A = yes, B = no, and
C = yes.
μ(− + +) = α0 + α2 + α3 + α23: Mean response when A = no, B = yes, and
C = yes.
μ(+ + +) = α0 + α1 + α2 + α3 + α12 + α13 + α23 + α123: Mean response
when A = yes, B = yes, and C = yes.

Therefore,

α123 = μ(+++) − μ(−++) − μ(+−+) − μ(++−) + μ(+−−)

+ μ(−+−) + μ(−−+) − μ(−−−)

= [(

μ(+++) − μ(−++)

) − (

μ(+−+) − μ(−−+)

)]

− [(

μ(++−) − μ(−+−)

) − (

μ(+−−) − μ(−−−)

)]

.

That is, the difference in the interaction effect of A and B when C = yes and
C = no.

Note that this is essentially the same (except for rescaling) as three-way
interaction effect of A, B, and C:

A × B × C = 1

4

[[(

μ(+++) − μ(−++)

) − (

μ(+−+) − μ(−−+)

)]

− [(

μ(++−) − μ(−+−)

) − (

μ(+−−) − μ(−−−)

)]]

.



Coding and Interpretation of Effects in Analysis of Data from a Factorial Experiment 203

4. Another way to look at α1 is as follows: As shown on Page 14,

α1 = MEA −
(

1

2
α12 + 1

2
α13 + 1

4
α123

)

(∗)

MEA = μ(+··) − μ(−··)

α1 = μ(+−−) − μ(−−−) (∗∗)

α12 = μ(++−) − μ(−+−) − μ(+−−) + μ(−−−)

= (

μ(++−) − μ(−+−)

) − (

μ(+−−) − μ(−−−)

)

α12 = μ(+−+) − μ(−−+) − μ(+−−) + μ(−−−)

= (

μ(+−+) − μ(−−+)

) − (

μ(+−−) − μ(−−−)

)

α123 = μ(+++) − μ(−++) − μ(+−+) − μ(++−) + μ(+−−) + μ(−+−)

+ μ(−−+) − μ(−−−)

= [(

μ(+++) − μ(−++)

) − (

μ(+−+) − μ(−−+)

)]

− [(

μ(++−) − μ(−+−)

) − (

μ(+−−) − μ(−−−)

)]

So, (∗) becomes

α1 = 1
4

{[

μ(+++) + μ(++−) + μ(+−+) + μ(+−−)

]

− [

μ(−++) + μ(−+−) + μ(−−+) + μ(−−−)

]}

− 1
2

{[

μ(++−) − μ(−+−)

] − [

μ(+−−) − μ(−−−)

]}

− 1
2

{[

μ(+−+) − μ(−−+)

] − [

μ(+−−) − μ(−−−)

]}

− 1
4

{[(

μ(+++) − μ(−++)

) − (

μ(+−+) − μ(−−+)

)]

− [(

μ(++−) − μ(−+−)

) − (

μ(+−−) − μ(−−−)

)]}

= 1
4μ(+++) + 1

4μ(++−) + 1
4μ(+−+) + 1

4μ(+−−) − 1
4μ(−++) − 1

4μ(−+−)

− 1
4μ(−−+) − 1

4μ(−−−) − 1
2μ(++−) + 1

2μ(−+−) + 1
2μ(+−−) − 1

2μ(−−−)

− 1
2μ(+−+) + 1

2μ(−−+) + 1
2μ(+−−) − 1

2μ(−−−) − 1
4μ(+++) + 1

4μ(−++)

+ 1
4μ(+−+) − 1

4μ(−−+) + 1
4μ(++−) − 1

4μ(−+−) − 1
4μ(+−−) + 1

4μ(−−−)

= μ(+−−) − μ(−−−),

which is exactly the same equation in (∗∗).
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Appendix 2: Example Dataset and Code

options ls=100 ps=150 nodate formdlim='-';

data anova;
input A$ B$ C$ Y;
datalines;

no no no -4.535654
yes no no 2.263351
no yes no -8.841193
yes yes no 8.046294
no no yes -3.736171
yes no yes 2.307247
no yes yes -12.173537
yes yes yes 8.624994
no no no -3.778953
yes no no 3.883212
no yes no -9.232583
yes yes no 9.034533
no no yes -3.738127
yes no yes 4.092454
no yes yes -10.897736
yes yes yes 9.106033
no no no -3.995389
yes no no 2.009244
no yes no -8.046562
yes yes no 9.562785
no no yes -3.498379
yes no yes 1.601328
no yes yes -10.072611
yes yes yes 10.104139
no no no -2.189597
yes no no 3.190188
no yes no -7.926976
yes yes no 11.189867
no no yes -3.870586
yes no yes 5.347232
no yes yes -10.483766
yes yes yes 11.132855
;
run;
data dummy;

set ANOVA;
dummyA=(A="yes");
dummyB=(B="yes");
dummyC=(C="yes");
dummyAB=dummyA*dummyB;
dummyAC=dummyA*dummyC;
dummyBC=dummyB*dummyC;
dummyABC=dummyA*dummyB*dummyC;

run;
data effect;

set ANOVA;
if A="yes" then effectA=1;

else effectA=-1;
if B="yes" then effectB=1;

else effectB=-1;
if C="yes" then effectC=1;

else effectC=-1;
effectAB=effectA*effectB;
effectAC=effectA*effectC;

run;
proc glm data=anova;

class a b c;
model y = a|b|c / solution;
lsmeans A B C A*B A*C B*C A*B*C;

run;
proc reg data=dummy;

model Y=dummyA dummyB dummyAB dummyC dummyAC dummyBC dummyABC;
run;
proc reg data=effect;

model Y=effectA effectB effectAB effectC effectAC effectBC effectABC;
run;
proc glm data=dummy;

class dummyA dummyB dummyC dummyAB dummyAC dummyBC dummyABC;
model y = dummyA dummyB dummyC dummyAB dummyAC dummyBC dummyABC / solution;
lsmeans dummyA dummyB dummyC dummyAB dummyAC dummyBC dummyABC;

run;
proc glm data=effect;

class effectA effectB effectC effectAB effectAC effectBC effectABC;
model y = effectA effectB effectC effectAB effectAC effectBC effectABC/ solution;lsmeans effectA effectB effectC effectAB effectAC effectBC effectABC;

run;
quit;
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Optimizing the Cost-Effectiveness
of a Multicomponent Intervention Using
Data from a Factorial Experiment:
Considerations, Open Questions,
and Tradeoffs Among Multiple Outcomes

John J. Dziak

Abstract Cost-effectiveness—increasing the benefit obtained for a given expendi-
ture of time or money—is an important idea in many applied research fields. It is
one important quality that a researcher interested in the multiphase optimization
strategy (MOST) may wish to optimize. However, further research is needed about
how to best incorporate cost information into the analysis of factorial experiments
typically used during the optimization phase of MOST. This chapter will review the
issues involved in making cost-effectiveness judgments using the results of factorial
experiments and explore some possibilities for further methodological research on
how best to estimate and compare cost-effectiveness using the results of factorial
experiments.

1 Introduction

Because of great needs and limited resources, cost-effectiveness is a very important
goal in much research both in the social and behavioral sciences and in the medical
and life sciences. The multiphase optimization strategy (MOST) can be used to
make a multicomponent behavioral, biobehavioral, or biomedical intervention more
efficient by selecting high-performing components or omitting low-performing
ones. This is closely aligned with the goal of cost-effectiveness, which is to provide
as much improvement on an outcome as possible per unit cost. Demonstrating and
improving the cost-effectiveness of interventions may lead to increased adoption of
these interventions and to great public health benefits (Guyll, Spoth, & Crowley,
2011; see also Crowley & Jones, 2017; Embry & Biglan, 2008; Van Ryzin,
Roseth, Fosco, Lee, & Chen, 2016). MOST offers the possibility of analyzing
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effectiveness and cost-effectiveness for individual intervention components rather
than only packages as a whole, thereby potentially developing more efficient
interventions (Collins, Dziak, & Li, 2009; Collins, 2018, companion volume).
3However, the question of how to directly compare effectiveness and cost has not
yet been adequately considered in the MOST literature. This chapter will explore the
relationship between cost-effectiveness and factorial experiments within the context
of MOST and how data from an optimization or evaluation trial can be used to
improve cost-effectiveness.

Consider the choice of whether to include or omit a component in an intervention.
If a component were known to be iatrogenic or ineffective, then omitting it would
be a straightforward decision. However, it may happen that a component shows
at least some evidence of effectiveness, but is perhaps not effective enough to
justify its cost of inclusion. This suggests a need to balance effectiveness and cost
in an analysis. Such analyses can be described as cost-effectiveness analyses, a
kind of economic decision-making method. This requires a perspective that differs
somewhat from classic practice in many fields of research in the social sciences,
which often focus on effectiveness as defined by statistical significance. Cost-
effectiveness analysis is focused on the practical significance of the effect of an
intervention or a component of an intervention, especially in relation to its cost, and
it requires that both effectiveness and cost be operationally defined and measured.
There is an extensive literature on cost-effectiveness analyses of interventions as a
whole, as in a two-condition randomized controlled trial (RCT) comparing a new
intervention to a standard one, but much less literature exists on cost-effectiveness
analysis based on factorial experiments.

1.1 Cost-Effectiveness as an Optimization Criterion in MOST

Researchers using MOST should specify an optimization criterion: roughly speak-
ing, a performance measure they wish to improve in an intervention. If cost-
effectiveness is the criterion of interest, then the researchers will have to do some
kind of cost-effectiveness analysis, both in the optimization phase (choosing a
proposed intervention) and in the evaluation phase (confirming that the proposed
intervention performs satisfactorily). The data for the evaluation phase will often
be based on an RCT. However, the optimization phase of MOST often involves a
factorial or fractional factorial experiment (see Collins et al., 2009; Collins, Kugler,
& Gwadz, 2016; Wu & Hamada, 2009, and the Collins, 2018, companion volume).
The literature on making cost-effectiveness decisions from factorial experiments
is in its infancy, and many questions await further explanation. Therefore, there
is much room for further methodological research on how to approach such an
analysis. Because of this the current chapter cannot serve as a complete instruction
manual. Instead, it is intended as an introduction to the issues and questions
involved, in order to stimulate further thinking and research.
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This chapter will focus mainly on cost-effectiveness analysis, rather than cost-
benefit analysis (see Crowley, Hill, Kuklinski, & Jones, 2014; Gift, Haddix, &
Corso, 2003; Messonier & Meltzer, 2003; National Academies, 2016, for a discus-
sion of the distinction). Cost-effectiveness analysis is focused on determining what
interventions obtain the best health outcomes per unit of cost. Cost-benefit analysis
goes further and assigns monetary values to different health outcomes, in order to
try to decide how much money is worth spending on various interventions. Cost-
benefit decisions are more difficult and controversial (Appelbaum, 2011; Carroll,
2014; Kolata, 1992) and are beyond the scope of this chapter, although they are
relevant and closely related to some of the ideas herein (particularly the weighting
of multiple outcomes, described later in this chapter). Of course, decisions about
how much money is to be spent must ultimately still be made by someone—so
focusing on cost-effectiveness rather than cost-benefit analysis does not remove the
question, but rather passes it on to a decision-maker (Gift et al., 2003).

1.2 Outline of Chapter

This chapter will begin by considering the basic ideas of cost-effectiveness in
simple contexts (i.e., two-arm RCT) and then explore how they might be extended
to more complex ones (i.e., factorial experiments). Specifically, cost-effectiveness
methods will first be introduced for analysis of an RCT comparing two conditions
and then for an RCT comparing more than two conditions. This will be done by
first introducing the cost-effectiveness plane (a graphical aid for making decisions)
and then considering ways of combining cost and effectiveness information, such
as by specifying a willingness-to-pay parameter. Finally, cost-effectiveness ideas
will be applied to the more complex situation of a factorial design, with special
emphasis on factorial designs as they are used for component-screening experiments
in the context of the optimization phase of MOST. After this, the issue of how to
balance multiple dimensions of effectiveness or cost will be considered. Finally,
other special issues which may merit further research are described.

2 Economic Evaluation in a Two-Condition Randomized
Controlled Trial

As mentioned above, the simplest case of interest here is the evaluation of an
RCT comparing a new intervention to an alternative choice, such as an existing
standard of care. This alternative choice could be nothing at all (e.g., a waitlist
control) or some placebo-like intervention, or a standard regimen of care already
known to be reasonably effective. Suppose that a scientist is interested not only
in determining whether the new intervention is more effective but also in whether
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it is more cost-effective than the alternative choice. This scenario is summarized
below and reviewed in more depth in tutorial articles by Petrou and Gray (2011)
and Bensink and co-authors (2013), in a book by Drummond, Sculpher, Torrance,
O’Brien, and Stoddart (2005), and in a review of best practices by the National
Academies (2016).

Suppose that a new weight loss intervention is under consideration. In order to
experimentally evaluate the effectiveness and cost-effectiveness of the intervention,
participants will be randomized to receive either the new intervention or a control
intervention. This choice of what intervention to compare with the new intervention
is very important because it determines the precise question that the RCT answers
and what claims can be made afterward. That is, an intervention can only be said
to be more effective or more cost-effective compared to some defined alternative
or “comparator,” not just effective or cost-effective in the abstract. In an RCT,
the comparator of interest is the treatment condition given to a control group. For
the purposes of the current discussion, suppose that the comparator is an existing
standard-of-care treatment, which is being used as a control group condition.

2.1 Operationally Defining Cost and Effectiveness

It is necessary to specify an outcome variable of interest; the effectiveness of
the intervention is essentially defined as the size of its effect on this outcome
variable. The simplest choice for the outcome variable in the hypothetical weight
loss example is to measure effectiveness as mean kilograms lost.1

2.1.1 Effectiveness Alone

In an RCT that ignores cost information, it is necessary only to measure the
effectiveness variable in each group and to compare the group means (generally
using some kind of significance test on that variable). If there is a statistically
significant difference, then the treatment can be considered effective. However,
in order to compare cost-effectiveness, rather than simply effectiveness, it is also
necessary to measure the cost per participant of the experimental treatment and the
control treatment. This includes the cost of paying the instructor or therapist, buying
the equipment and medication, and so on. The cost might be a literal cost in money,
but it might also be measured in something else such as time (participant time,

1Weight loss is actually a change score (value after minus value before). Change scores are not the
only way to measure change from baseline. It has been argued that it is more statistically efficient
to model posttreatment outcome adjusted for pretreatment status as a covariate, rather than using
change scores directly (see, e.g., Vickers, 2001; Vickers & Altman, 2001). However, weight loss
in kilograms is the simplest choice here and therefore the best choice for illustrative purposes.
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provider time, or both). For now, assume there is a single effectiveness measure E
(weight loss in kilograms) and a single cost measure C (in dollars). Let E0 and E1
designate the estimated effectiveness of the control and experimental interventions,
and likewise C0 and C1 the estimated per-participant cost for the control and
experimental interventions, respectively.

In the simplest case, the estimates of effectiveness may be the sample mean
responses observed in each of the two conditions. Most often, there will be a pretest
or other covariates, as well as missing data, and so the effectiveness estimates are
likely to be fitted values from some model. Another option is to use a Bayesian
approach; for example, Claxton (1999) focused on posterior means from a Bayesian
model, which can take prior information into account, but in the absence of an
informative prior, these simply reduce to frequentist means or fitted values. Methods
for estimating cost are described in Bensink and colleagues (2013); Crowley and
colleagues (2014); Drummond and colleagues (2005); Haddix, Corso, and Gorsky
(2003); and Petrou and Gray (2011). However, for the purposes of this chapter, it is
assumed that cost is a known quantity for each treatment.

If the goal of the study is to explore cost-effectiveness for future use in the
field (i.e., regular clinical practice instead of well-controlled setting supervised by
researchers), then the cost measure should be an estimate of future cost per person to
deploy a treatment in the field, not the cost of including that condition in the current
experiment. This is important, because costs and logistics may differ between an
initial, well-controlled research study on the one hand and routine practice on the
other. Because of differences in overhead resources available, the per-person cost of
implementing a condition on a large scale in the future may not be the same as the
average cost of implementing it in the sample, and the former is of more interest for
decision-making.

2.2 The Cost-Effectiveness Plane

It is very helpful to think of each intervention as a point on a plane whose x-axis is
E and whose y-axis is C; this is called the cost-effectiveness plane (Black, 1990; see
also Bensink et al., 2013; Petrou & Gray, 2011). As in Fig. 1, the control condition
(E0,C0) can be pictured as the center (origin) of the plane. This does not imply
that the control condition costs zero dollars and has zero effectiveness, but merely
that it is the baseline (control or “comparator”) to which the other condition will
be compared. As illustrated in Fig. 1, valuable information for selecting a treatment
is gained by considering which quadrant of the plane contains the point (E1,C1). If
E1 > E0 and C1 < C0 (the “southeast” quadrant), then the new intervention is to be
preferred because it is less expensive but more effective. If E1 < E0 and C1 > C0 (the
“northwest” quadrant), then the standard intervention is better than the new, in that
the new is both less effective and more expensive. In either of these quadrants, one
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Fig. 1 A sample cost-effectiveness plane (see Bensink et al., 2013; Black, 1990; Petrou & Gray,
2011). The x-axis represents effectiveness (e.g., mean weight loss per participant in kilograms for
an obesity treatment program). The y-axis represents cost (e.g., total cost for time, provider salary,
and supplies in units of $100 per participant). (Adapted from similar figures in Belsink et al., 2013;
Black, 1990; Petrou & Gray, 2011)

treatment is said to dominate the other: it is better in at least one way and not worse
in any other way, so the choice to be made is relatively unambiguous.2

In the other two cases, the data alone do not provide all of the information
needed to make a decision, because one intervention is more expensive but more
effective than the other, so a tradeoff is inevitable. If E1 > E0 and C1 > C0, the new
intervention costs more, but delivers more. If E1 < E0 and C1 < C0, then the new
intervention is less effective but less expensive. Thus, a decision still has to be made

2This chapter will use the term “dominate” in a somewhat informal way. The economics literature
sometimes distinguishes between strong and weak dominance. Option A is said to strongly
dominate Option B if A is both less costly and more effective. Option A is sometimes said to
weakly dominate Option B if A is either equally costly but more effective or less costly but
equally effective. This is not a large distinction for our purposes, first because it is unlikely that two
treatments would have exactly the same cost or exactly the same benefit (Drummond et al., 2005)
and second because it does not necessarily change the implied decision. The term weak dominance
is also sometimes used when Option A delivers more effectiveness per unit cost than Option B (Gift
et al., 2003). However, this kind of “dominance” does not necessarily imply that Option A is better
in every sense, as Option B might still have less total cost or more total effectiveness. Therefore,
the sense of the term “dominance” in this chapter is essentially that of strong dominance.
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about whether to choose the more effective intervention or the less expensive one.
Science can inform but cannot answer this question; financial, logistical, and ethical
factors must be considered, and the answer is partially dependent on subjective
judgment. Empirical tools to help inform the decision are the main focus of this
chapter.

2.3 Options for Considering Cost and Effectiveness

The following three subsections will describe the ramifications of three potential
approaches to making cost-effectiveness tradeoffs. The first approach is to ignore
cost and simply recommend the most effective intervention available. The second
is to specify a fixed budget cap for the amount that may be spent per person and
to recommend the most effective intervention among those that are expected to cost
less than that amount. The third is to specify a ratio known as the willingness-to-pay
parameter and use it as a standard way to compare the practical significance of the
difference in effectiveness to that of the difference in cost.

2.3.1 Ignoring Cost

Suppose that the experimental intervention is more expensive but more effective
than the standard-practice control intervention. What should the scientist recom-
mend? In theory, the simplest approach could be to argue that the more effective
treatment should always be provided, no matter the cost. Unfortunately, this is not
always possible.

Many prevention scientists and health researchers are motivated by the desire to
help people, save lives, or prevent suffering, and they are probably not viscerally
motivated by the desire to save money for government bureaucracies or large insur-
ance corporations. There is a very strong ethical and practical case to be made for
increased societal investments in empirically supported interventions to prevent or
treat adverse health conditions, especially for children and other people lacking the
resources to provide adequately for themselves (see, e.g., Bierman, Henrichs, Welsh,
Nix, & Gest, 2017; Bradley et al., 2016; Holzer, Whitmore Schanzenbach, Duncan,
& Ludwig, 2008; Komro, Flay, Biglan, & Promise Neighborhoods Research Con-
sortium, 2011; Prado et al., 2017; Shoemaker, Tully, Niendam, & Peterson, 2015).
Well-delivered health interventions can provide great economic as well as human
benefits (see, e.g., Belli, Bustreo, & Preker, 2005; Guyll et al., 2011). Furthermore,
it could be socially unethical to allow patients to go without needed treatments for
lack of money to pay (see American Medical Association, 1995; Williams, 2015).
More also needs to be done to improve awareness and accessibility of existing
resources (see Miller, Nowels, VanderWielen, & Gritz, 2016; National Academies,
2017). Unfortunately, however, no institution has infinite money, and no service
provider has infinite time. Therefore, difficult decisions have to be made about
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which programs to fund or which treatments to provide. Decisions would still have
to be made even if society invested much more heavily and much more efficiently
in human life and health than is currently the case. Even nonprofit foundations
motivated purely by altruism have to decide between providing intensive programs
to a few people in need and providing basic programs to many people in need; there
may be a good argument for each, but it might not always be possible to do both.
This is an inherent tradeoff that requires that financial cost information and scientific
effectiveness information be considered together.

2.3.2 Specifying a Fixed Budget

The simplest way to make a cost-effectiveness decision is to have a known and fixed
budget. Suppose it has been determined that the provider simply cannot afford to pay
a cost of more than Cmax units (dollars per participant, hours, etc.). Then the more
effective treatment will be chosen only if its cost is less than Cmax. Otherwise, either
the less expensive treatment will have to be used even though it is known to be less
effective, or else more research will need to be done to find a more satisfactory—but
still affordable—treatment.

While the perspective of a fixed budget may be useful for many researchers, it
is not the main approach used in published cost-effectiveness studies. Perhaps the
reason why health economists do not rely solely on a fixed maximum cost is that it
involves somewhat dichotomous thinking: as long as the cost is less than Cmax, only
effectiveness matters and the cost can be ignored; but if cost is even a penny greater
than Cmax, then no gain in effectiveness is large enough to justify it. This approach
may be too inflexible.

2.3.3 Specifying a Willingness-to-Pay Parameter

Instead of a fixed budget, economists are more likely to use the idea of willingness
to pay. An insurer, granting foundation, or governmental body is willing to pay λ

units of cost, in exchange for one unit of effectiveness (see Bensink et al., 2013;
Petrou & Gray, 2011). For example, in the weight loss example, perhaps they might
be willing to pay $200 per kilogram expected to be lost.

There are different ways to think about the meaning of λ. Mathematically, it
is a weight that converts effectiveness units into cost units so that both can be
compared on a common scale; that is, the experimental treatment will be considered
more cost-effective if λE1 − C1 > λE0 − C0. This may be easier to understand
by first considering a situation in which the production of a physical commodity,
rather than the health outcome from an intervention, is the process of interest.
In an industrial or agricultural setting (e.g., Harrington, 1981), where methods of
producing a product for sale are being compared, E might be the expected sales
value of product yield, and C might be the investment required to produce the
product. Thus, one could simply set λ = 1 and let λE − C be the net profit. It is then
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easy to see that the manager of a farm or factory would want to choose the strategy
with highest net profit, not necessarily with highest gross production alone or lowest
cost alone. Similarly, in planning an intervention aimed at improving human health,
it might sometimes be too simplistic to focus only on maximum effectiveness per
participant or minimum cost per participant and might be necessary to consider both
effectiveness and affordability. Thus, the estimated net benefit, λE − C, generalizes
the idea of profit in expressing the overall utility of a given treatment. In the case of
the weight loss example, λ is the number of dollars that a decision-maker would be
willing to pay per expected kilogram lost.3

The λ parameter can also be interpreted as a cutoff to be compared with another
quantity called the incremental cost-effectiveness ratio (ICER). It is easiest to
understand the ICER in the case where the experimental treatment is more expensive
but more effective than the control treatment (E1 − E0 > 0 and C1 > C0), so that the
analyst is trying to decide whether the cost increase is worthwhile. Then the ICER
is defined as

ICER = C1 − C0

E1 − E0
.

This is a measure of the gain in cost-effectiveness by using the experimental
rather than the control treatment. More specifically, it is the increase in cost per
unit of effectiveness gained when moving from the control to the new treatment.
In this context, λ is the cutoff being used to determine what counts as “large
enough,” because λE1 − C1 > λE0 − C0 if and only if ICER < λ. That is, λ

determines whether the cost-effectiveness of the new intervention (as measured by
ICER) is better or worse than that of the old intervention. Geometrically, on the
cost-effectiveness plane, an experimental treatment in the northeast quadrant must
fall below a line with slope λ passing through (C0, E0) in order to be considered
cost-effective. This is illustrated in Fig. 2.

Note that λ is chosen subjectively or based on budgetary and legal standards.
Thus, the conclusion in a cost-effectiveness analysis, unless one alternative dom-
inates the other, will not be based solely on the observed data from the study.
Although this reality may feel strange or uncomfortable to a scientist who wishes

3In practice the farm or factory owner might use a weight other than one; for example, they might
discount (proportionally reduce) E, in order to reflect time delay in production and uncertainties
in sales (see Harrington, 1981; Petrou & Gray, 2011). However, the basic intuition still applies:
convert a gross gain to a net gain by subtracting off some measure of cost. This kind of discounting
of future predictions can also be done in cost-benefit analysis in promoting human health. The
discounted benefits minus discounted cost (essentially, E-λC) is therefore called the “net present
value” of an intervention (see Messonier & Meltzer, 2003). In the weight loss example, if a
particular λ is used to convert kilogram units into money units, and the decision-maker is trying
to find out how much money to spend on weight loss versus other priorities, then cost-benefit
analysis is being done, rather than cost-effectiveness analysis. The focus of this chapter is on cost-
effectiveness rather than cost-benefit analysis, so the question of how to choose λ is beyond the
scope of this chapter.
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Fig. 2 The northeast quadrant of a cost-effectiveness plane, reflecting a situation in which an
experimental treatment is more expensive but more effective than the control treatment. As
neither treatment dominates the other, it is necessary to introduce another parameter, typically
a willingness-to-pay parameter λ. The new treatment is cost-effective if it is above the dividing
line with slope λ through the origin. Setting λ = 0 reflects a desire to save money at all costs
(more cost-effective simply means less costly), while λ = ∞ suggests that cost is ignored (more
cost-effective simply means more effective). (Adapted from similar figures in Belsink et al., 2013;
Black, 1990; Petrou & Gray, 2011)

to be objective, it is unavoidable if a practical decision, and not just a theoretical
conclusion, is to be made. This is because science can help people find the best way
to achieve their goals, but cannot directly tell them what their goals should be or
how they should weight competing goals.

The case described above, in which E1 > E0 and C1 > C0, is common and
easy to imagine. Scientists are often trying to find a more effective alternative to
existing intervention approaches and are accustomed to trying to establish that their
intervention is more effective than the control treatment. It is also often true that
experimental treatments cost more than the existing standard. However, it is also
important to consider the opposite situation: a new treatment that is less expensive
but less effective than the old one. The following subsection briefly considers this
case.



Optimizing the Cost-Effectiveness of a Multicomponent Intervention Using. . . 217

2.4 What if the Experimental Treatment Is the Cheaper One?

From a purely mathematical standpoint, it does not matter whether the less
expensive treatment is labeled as the control or the experimental one; all that matters
is whether the point on the cost-effectiveness plane for the experimental treatment
falls below the sloped line passing through the point on the plane for the control
treatment. In other words, it is possible that the new intervention could be judged
to be more cost-effective than the standard (because it is below the sloped line in
Fig. 2), even though it is less effective than the standard (because it is to the left of
the y-axis in Fig. 2). That is, an experimental treatment in any quadrant of Fig. 1
may potentially be chosen, except for the northwest quadrant, which can never be
below the sloped line.

In the context of medical treatments for serious diseases, Bensink and colleagues
(2013) recommend that an intervention that is less effective than the standard of care
generally should not be chosen even if it is more cost-effective, because it could be
unethical to restrict a patient to substandard treatment simply in order to save money.
In this context, an experimental treatment must be both at least as cost-effective and
at least as effective as the control in order to be chosen (i.e., it must both be below
the sloped line and to the right of the y-axis in Fig. 1, thus eliminating both the
northwest and the southwest quadrants from consideration).

However, there are other contexts, perhaps especially in the context of large-scale
prevention programs, in which a more cost-effective but somewhat less effective
intervention may still be desirable because given a fixed budget it can be given
to more people. Suppose that the control condition is the best known treatment and
has been shown to be effective in well-funded academic studies, but is too expensive
and time-consuming to deploy at large scale in the field. In other words, suppose the
control condition represents an expensive gold standard that only a few people are
currently able to receive. In that case, if the new treatment is 90% as effective for
30% of the cost, then more lives may be saved by the new treatment than the old,
simply because it can be given to more people. As an analogy, it has been found
that the expansion of prescribing authority for nurse practitioners has increased the
volume of care being accessed, even while somewhat reducing the cost per unit care
(Muench, Coffman, & Spetz, 2016). Although one might prefer, all else being equal,
to be treated by a physician with an M.D. degree rather than a nurse practitioner,
the option of being treated by a nurse practitioner if a physician is unavailable can
be beneficial for overall population health. This suggests that researchers should
report both cost and effectiveness, so that those reading the research can make their
own decisions based on the Cmax or λ defined by their own situation. In addition
to reporting cost and effectiveness, it is usually important to report some measure
of uncertainty, such as standard errors for the effectiveness estimates. This issue is
discussed in the next section.
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3 The Relationship Between Economic Decisions
and Scientific Conclusions

As in other research settings, if statistical inference is to be made, it is also
important to take into account the amount of uncertainty present in the estimates of
effectiveness or cost. In this chapter so far, no standard error, p-value, or confidence
interval has been mentioned; cost and effectiveness have been treated as known
quantities, so the question has not been about whether the difference in effectiveness
is statistically significant, but only whether it is practically significant in the sense of
justifying cost. This is not realistic, because there is always uncertainty in real-world
results. Clearly, one cannot ignore issues of statistical generalizability. However,
issues of practical significance are just as important as statistical significance when
making economic decisions. For example, if the null hypothesis E1 − E0 = 0 is
strongly rejected (p < 0.001), but the difference on the raw scale is judged to be
not large enough to justify the increased cost, then the control treatment will still
be recommended. Conversely, suppose the null hypothesis is not quite rejected
(p = 0.07), but there appears to be substantial benefit of the new treatment relative to
the control (E1 > E0), and the increased cost is minimal (C1 ≈ C0). The investigator
probably cannot publish a scientific article recommending the new treatment as
better in general, but also cannot reasonably describe the new treatment as having
been discredited. The new treatment may still be very promising and might be
supported with future studies.

3.1 Statistical Significance and Practical Significance in Four
Hypothetical Examples

For a graphical illustration of these ideas, consider Fig. 3. It shows four possible
outcomes of a two-condition RCT comparing a more costly experimental treatment
to a less costly control treatment. The error bars in the plot may represent either
frequentist or Bayesian confidence intervals. For simplicity it is assumed that the
cost for each treatment is fixed and known and did not have to be estimated
using experimental data; otherwise, instead of error bars, there would be elliptical
confidence regions reflecting uncertainty in both the x- and y-axes. For a comparison
of methods of calculating these elliptical regions if they are required, see Stevens,
O’Hagan, and Miller (2003).

In Fig. 3a, the difference in outcome between the control and experimental
treatments would probably not be found statistically significant in a test because
the confidence intervals appear to largely overlap. There is not enough evidence
to claim that the experimental treatment is more effective than the control. That
is, although the best point estimates suggest a provisional guess that it is slightly
more effective, it may in fact be better, equal, or worse in effectiveness. Also, it is
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Fig. 3 Four ways in which the statistical significance (in terms of confidence interval overlap)
and the practical significance (in terms of cost-effectiveness) of two interventions may differ. All
scenarios assume that the experimental treatment is estimated to be least somewhat more costly
and at least somewhat more effective than the control treatment (i.e., they are all in the northeast
corner of Figs. 1 and 2). “Con.” denotes control and “Exp.” denotes experimental. (a) Neither
statistically significant nor cost-effective, (b) statistically significant and cost-effective, (c) not
statistically significant but probably cost-effective, and (d) statistically significant but possibly not
cost-effective

clear that it costs over twice as much as the control treatment. In most situations
it would probably be decided to implement the control intervention rather than the
experimental intervention in future practice.

In contrast, in Fig. 3b, the difference in outcome is highly statistically significant
and also highly practically significant. Furthermore, the difference in cost is very
small. These results would strongly support the use of the experimental intervention
in future practice.

In Fig. 3c, the evidence is not conclusive enough to publish a scientific paper
claiming that the experimental intervention has been reliably shown to be superior
to the control intervention. However, it would be incorrect to say that the control
and experimental interventions have been shown to be equivalent; the lack of
statistical significance might be a result of an inadequate sample size or poor
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measurement. Preliminary evidence suggests that the experimental intervention
provides much better outcomes at a minimal increased cost, although this has not
yet been scientifically established according to accepted standards. To rule out the
experimental intervention from further consideration, based on a single and perhaps
flawed trial, would be harmful both to science and to human health. Thus, the
experimental intervention is at least worthy of further investigation, even though
it cannot be conclusively argued to be superior.

In Fig. 3d, there is strong statistical evidence that the experimental treatment is
more effective than the control treatment. However, the experimental treatment is
much more expensive. In practice, consumers, insurers, or funding agencies would
have to decide whether they could afford it (specify Cmax) and might also have to
decide whether they are willing to pay the additional cost even if they can afford
it (specify λ). Thus, the experimental treatment is more effective than the control,
but whether it is judged more cost-effective depends on the budget Cmax or the
willingness-to-pay parameter λ of the stakeholder who is considering paying for it.
Without specifying Cmax or λ, a conclusion that the experimental treatment is more
effective can still be made, but a financial decision about whether or not to fund it
in future practice cannot.

3.2 Possible Priorities in Data Analysis

Figure 3 suggests that a conclusion-priority analysis (aimed at establishing and
publishing evidence of effectiveness) and a decision-priority analysis (aimed at
choosing whether or not to invest in a more expensive treatment option) are
related but not the same. In conclusion-priority analysis, the researcher may strive
to be as objective as possible and simply make conclusions from the evidence;
however, in decision-priority analysis, subjectivity and context are unavoidable. In a
conclusion-priority analysis, one either rejects or fails to reject the null hypothesis.
However, in a decision-priority analysis, one must choose one option or another,
and there might not be an option to “fail to choose.” In a conclusion-priority
analysis, a Type I error (false positive) is considered worse than a Type II error
(false negative); in a decision-priority analysis, which error is worse depends on the
practical consequences of the error. The differences between conclusion-priority and
decision-priority analyses are further discussed in the Collins (2018) companion
volume. Many researchers are more familiar with conclusion-priority analyses,
especially in the context of null hypothesis testing.

These differences in focus are not merely different interpretations of the same
analyses but can suggest a need for different methods of analysis. In conclusion-
priority analysis, it is often customary to focus on presenting the results of null
hypothesis significance tests in order to judge whether the treatments reliably differ
in effectiveness. In a decision-priority analysis, significance tests are much less
central, although they can still play a role. In a decision-priority analysis, the
most important quantities are the costs C1 and C0, the estimated effectiveness E1
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and E0, and the willingness-to-pay λ; quantities such as p-values are much less
important (Claxton, 1999; Sullivan & Feinn, 2012). Once the cost, effectiveness,
and willingness to pay are specified, a utility or net benefit (i.e., λE − C) can
be estimated for each treatment, and whichever treatment has the higher utility
is preferred. It would not be reasonable to automatically choose the experimental
option just because the difference in effectiveness is statistically significant in a
null hypothesis test, because the difference in cost is also important. It would
also not be reasonable to automatically choose the control option just because
the difference was not statistically significant. That is, giving the benefit of the
doubt to the older or less expensive treatment, just because it is associated with the
“null hypothesis” condition rather than the alternative, might lead to poor treatment
decisions, especially if policy-makers interpret a failure to reject the null hypothesis
as proof that the null hypothesis is true. Tests and confidence intervals can indicate
a degree of confidence in a choice or can suggest that more data are needed before
making a final decision, but they do not, in themselves, directly tell us what choice
to make.

Fortunately, an approach to scientific inference using significance tests and
an approach to practical decisions using cost-effectiveness methodology can be
complementary. Researchers can study the questions of both effectiveness and cost-
effectiveness, even in the same trial, and both kinds of questions are valuable
(Bensink et al., 2013; Ramsey et al., 2005). A simple focus on statistical significance
ignores the scale of the y-axis and, hence, the difference between panels 3a and 3c
and the difference between 3b and 3d in Fig. 3. A simple focus on point estimates of
efficacy and cost ignores the width of the error bars. Considering both perspectives
allows an investigator to avoid having to ignore these vital features of the findings.
That is, a researcher can do both a conclusion-priority analysis and a decision-
priority analysis on the same dataset and report the results of both. Thus, it is
possible to make nuanced statements like “We established that the new treatment
is more effective, but also found that it was unexpectedly costly and difficult, so we
suspect that it may be too expensive to use at scale in our setting,” or “Although the
difference was not statistically significant, the new treatment still has great potential
for public health due to its high estimated effectiveness and low estimated costs, and
it is worth further study in a larger trial.”

Also, the distinction between conclusion-priority and decision-priority analyses
should not be considered absolute. In particular, there are analyses that could be seen
as combining elements from a conclusion-priority analysis of effectiveness and a
decision-priority analysis of cost-effectiveness, in order to provide a conclusion-
priority analysis of cost-effectiveness. These analyses are very important in the
cost-effectiveness and cost-benefit literature; it is desirable and important to be
able to make a statistical inference with high confidence that one intervention
is more cost-effective than another. Unfortunately, making a generalizable claim
that an intervention is more cost-effective than a less expensive one is likely
to require at least as large a sample size as making a generalizable claim that
the intervention is more effective (to see this, consider that cost-effectiveness
differences become equivalent to effectiveness differences if the costs are equal).
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Therefore, in the optimization phase of MOST, there will probably not be adequate
information to provide statistically significant evidence for pairwise differences of
cost-effectiveness between individual conditions. Thus, the results from the analysis
might be better considered to be primarily decision-priority (see Chapter 3 in
Collins, 2018, companion volume). In the evaluation phase of MOST, conclusion-
priority comparisons of cost-effectiveness might become more feasible because only
one condition (the optimized intervention) is being compared to another (the control
or standard of care). Conclusion-priority analyses of cost-effectiveness go beyond
the scope of this chapter, but are briefly described in the following subsection, which
may be skipped without loss of continuity.

3.3 Statistical Inferences About Cost-Effectiveness Measures

Techniques for taking uncertainty into account when making conclusions about
cost-effectiveness analyses are reviewed elsewhere (see, e.g., Bensink et al., 2013;
Fenwick, O’Brien, & Briggs, 2004; Ramsey et al., 2005; Stevens et al., 2003).
As an example of conclusion-priority analysis of cost-effectiveness, a researcher
might provide a confidence interval for the incremental cost-effectiveness ratio.
Alternatively, the investigator could present curves giving, for each possible value
of λ, some measure of degree of certainty that the experimental treatment is or is not
the best choice according to that λ. The most natural form of these curves, although
only available in a Bayesian context, is a plot of the posterior probability that the
experimental treatment has a higher net benefit than the control, as a function of λ.
At the λ = 0 end of the curve, the plotted value is the estimated probability that the
experimental treatment is less expensive, ignoring the effectiveness. At the λ → ∞
end of the curve, the plotted value is the estimated probability that the experimental
treatment is more effective, ignoring the cost. At intermediate values, the plotted
values are the probability that the experimental treatment should be favored for a
particular λ. The graph can even be used to find the λ for which the probability
is 50% (i.e., the least λ at which the more expensive treatment begins to look
better). These probabilities are intended to be used to inform practical decisions
and determine whether further study is warranted, but they are not intended to be
evaluated in a binary way as in a null hypothesis significance test. Drummond and
colleagues (2005) recommend either (1) constructing joint confidence intervals for
cost and effectiveness or confidence intervals for net benefit, (2) fitting regression
models directly to obtain estimates and standard errors for net benefit, or (3) esti-
mating cost-effectiveness acceptability curves. Drummond and colleagues (2005)
and Gift et al. (2003) also point out the usefulness of doing sensitivity analyses to
explore the effects of various choices and assumptions made during the analysis.
Ramsey and colleagues (2005) summarize the findings of an international task
force that studied how best to conduct cost-effectiveness analyses in the context
of RCTs. They recommend reporting confidence intervals for the cost-effectiveness
acceptability curve and encourage measurements of cost on a per-person basis. They
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favor an intent-to-treat approach and also favor the use of bootstrapping, multiple
imputation, and sensitivity analyses to get better measurements of uncertainties
about costs and benefits. The National Academies (2016) report also recommends
reporting uncertainty when making published claims about cost-effectiveness and
discusses the role of Monte Carlo simulations and sensitivity analyses. Some
of these advanced methods may require consulting with an economist and/or a
statistician. Although useful for assessing generalizability, these advanced methods
may not be strictly necessary in order to make a cost-effectiveness decision.

3.4 Summary and Further Resources

In summary, cost and effectiveness for each condition in an experiment can be
measured. Cost-effectiveness techniques help integrate both into a final decision.
Making an economic decision about what treatment to provide is related to, but not
exactly the same as, making a scientific decision about what treatment is effective.
The economic decision requires a subjective statement of maximum budget, willing-
ness to pay, or both. Further reviews of cost-effectiveness analyses and their use in
RCTs can be found in Bensink et al. (2013); Gift et al. (2003); Ramsey et al. (2005);
Sculpher, Claxton, Drummond, and McCabe (2006); and Weinstein, Siegel, Gold,
Kamlet, and Russell (1996). They describe best practices, limitations, and issues
to consider. Claxton, Lacey, and Walker (2000) describe the topic in a somewhat
different way, using a Bayesian, decision-theoretic point of view. Two recent real-
world examples of cost-effectiveness analyses of RCTs regarding weight loss are
Fuller and colleagues (2013) and Tsai and colleagues (2013); see Saha, Gerdtham,
and Johansson (2010) for a further review and discussion. In theory, cost-benefit
analysis can even be used to plan whether it is worthwhile to do a particular research
study or not; this is called “value of information” analysis (see Eeren, Schawo,
Scholte, Busschbach, & Hakkaart, 2015; Tuffaha, Gordon, & Scuffham, 2014), but
applying it to MOST could be complicated.

3.5 Relevance to MOST

Cost-effectiveness methods are highly relevant to MOST when cost-effectiveness
is the optimization criterion on which the investigator wishes to focus. There are
at least two situations during the process of implementing MOST in which the
investigator may wish to estimate cost-effectiveness: using data from a component-
screening factorial or fractional factorial experiment during the optimization phase
and using data from an RCT during the evaluation phase (see Collins, 2018,
companion volume).

In the evaluation phase, the cost-effectiveness analysis would be of a confirma-
tory nature. It might be desirable to demonstrate that the selected (“optimized”)
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intervention package was more cost-effective than a standard intervention (in terms
of ICER). Alternatively, it might be desirable to show that the selected package
was more effective than a standard package while also meeting some cost-related
constraint (such as costing less than a budget Cmax). Both of these goals are very
similar to goals for cost-effectiveness analyses done often in the field of health
economics. Thus, the ideas reviewed in this section can be applied directly to the
evaluation phase.

In contrast, in the optimization phase, multiple factors are generally being
considered at the same time, and, therefore, many potential interventions are
implicitly under consideration: that is, each of the 2k combinations of the k factors
is being considered to decide whether it is the optimal intervention according to
the goals and optimization criterion at hand. The researcher may be considering
only k candidate intervention components, but the combinations of these choices
represent 2k potential interventions. If a complete factorial design is being used, this
also represents 2k treatment conditions. The basic ideas of the cost-effectiveness
plane still apply, but a more complicated approach is required, which will differ
somewhat from what is usually done in a two-condition setting. Thus, it will be
necessary to consider some new questions and ideas. However, instead of jumping
directly from a single-factor experiment with two conditions to a multiple-factor
experiment with 2k conditions, it is helpful to first consider an intermediate case: an
experiment with, say, three or four conditions, not arranged in a factorial way. This
is a sort of stepping stone that will introduce the comparison of multiple conditions
at once, without dealing with the question of how to take factorial structure into
account.

4 Randomized Controlled Trials with Three or More
Conditions

In the previous section, some of the basic terminology and ideas of cost-
effectiveness were discussed in the context of an RCT with two conditions
(sometimes called “treatments” or “arms,” hence the term “two-arm RCT”): a
standard (control) intervention and an experimental (new) intervention. Although
some of the underlying issues and available methods were potentially complicated,
the two essential questions were simple: Is the new intervention more effective
than the control, and is the new intervention more cost-effective than the control?
However, some experiments involve assessing the comparative effectiveness and/or
cost-effectiveness of three or more different conditions (arms), each representing a
different treatment (intervention). Very often, one condition will be designated as
the control, but this is not always the case. For example, three different treatments
might be compared against each other without a control; or two controls, one
inactive (attention only, wait list, or placebo) and one active (standard care), might
both be compared against a new treatment. The multiple-condition RCT is still less
complicated than a large factorial experiment, but it is more complicated than the
two-condition RCT described above.
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Fig. 4 The costs of four
different hypothetical
interventions are plotted
against point estimates and
confidence intervals for their
effectiveness. Note that cost
is the x-axis and effectiveness
is the y-axis, unlike Figs. 1, 2,
and 3. It can be seen that
intervention O is dominated
by M and N M
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4.1 Comparing Multiple Points on a Cost-Effectiveness Plane

There are several possible approaches to analyzing the results of this kind of study.
To make them more concrete, consider the scenario in Fig. 4. It illustrates the
effectiveness (in kilograms of weight loss) observed in a hypothetical study of
four potential weight loss interventions, labeled M, N, O, and P. It is still assumed
that the cost (perhaps in hundreds of dollars) per person to provide each potential
intervention is known.

To avoid possible confusion, it is useful to point out that Fig. 4 is drawn somewhat
differently from Figs. 1, 2, and 3. First, unlike Figs. 1 and 2, none of the treatments
are put at the origin, because no single treatment is necessarily the standard of
comparison. Second, unlike Figs. 1, 2, and 3, the x- and y-axes have been transposed,
making effectiveness the y-axis. The previous figures had been drawn according to
the convention in the field of cost-effectiveness, to facilitate comparison with other
papers in that field. However, for reasons that will become clear later, Fig. 4 is drawn
in a way that may be more familiar for researchers who are accustomed to studying
comparative effectiveness without explicitly considering cost in the analysis. In such
analyses, it is common to see treatment as the independent variable (hence the x-axis
by general convention) and effectiveness as the dependent variable (hence the y-axis
by general convention).

In Fig. 4, it appears that N performs significantly better than O and that P per-
forms significantly better than M and O. These are interesting scientific conclusions,
but they do not consider cost, so they alone are not enough to tell a decision-maker
which condition to select as best for future evaluation or implementation. Suppose
that beyond simply reporting the comparisons, it was also necessary to choose a
single intervention to recommend, implement, or fund. This decision depends on
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the circumstances and on one’s goals; as discussed in the previous section, it does
not flow directly from the scientific results, although ideally it should have a strong
basis in them. In particular, N, O, and P are progressively more expensive than M.
This needs to be considered along with the differences in effectiveness.

4.2 The Data Alone Do Not Always Provide a Universal Best
Decision

One straightforward first step is to eliminate intervention O from consideration. It
is dominated by (inferior to) M and N. That is, it costs more but delivers less, so
there would be no reasonable criterion by which O would be a good choice. The
set of non-dominated options is sometimes called the Pareto front or Pareto frontier
(see Chapman, Lu, & Anderson-Cook, 2014). In this example, they are M, N, and
P. The use of the term “frontier” may seem strange; it is a metaphor suggesting a
border distinguishing between the conditions that are dominated because they are
too expensive, and those that are dominated because they are not effective enough.
Every treatment on the “frontier” is the most effective option available for some
budget, and so any one of them could be a rational choice. In our example, when
considering M, N, and P, it is possible to make a rational argument for any of them,
depending on how one wishes to make the subjective tradeoff between cost and
effectiveness.

One could try to ignore the tradeoff and make the decision on a statistical basis
alone. For example, one could somewhat naïvely argue that because M was not
statistically significantly different from N, and N was not statistically significantly
different from P, they therefore all had the same effectiveness. According to this
argument, the less expensive one (i.e., M) should be recommended. However, this
ignores the fact that P may still be statistically significantly more effective than M.
More subtly, it also ignores the fact that failure to observe a statistically significant
difference between two quantities does not prove that they are really the same. Thus,
it would not make sense to recommend M solely on the basis of significance tests.

Another approach would be to argue as follows: because P is statistically
significantly more effective than M and at least as effective as N, it is reasonable
to recommend P. This argument would be compelling if resources were not limited,
but in practice it ignores the fact that P is more expensive than M or N.

Someone else might offer treatment N as a common-sense compromise, but there
does not seem to be a principled way to defend this. It has not been conclusively
proven that N is better than M, and it has not been conclusively proven that P is not
better than N (despite their overlapping confidence intervals). In some situations,
the investigator might be permitted to refuse to make a recommendation at all until
more data are available. However, in other situations this might not be feasible.
Because the objective scientific findings alone do not translate directly into an
unambiguous recommendation, the decision-maker must make the best decision
available, keeping in mind what goal he or she is trying to achieve (or more
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specifically, what optimization criterion is to be maximized) and what constraints
there are on this choice. For example, suppose that the investigator is trying to
optimize effectiveness subject to a constraint on cost, and P was judged to be too
expensive. In that case, the investigator would presumably select N as the best bet
available.

4.3 Comparing Possible Decision Goals in a Decision-Priority
Analysis

Using ideas from the section on two-condition RCTs, it is easy to think of several
prototypical goals in choosing an intervention. They include:

1. Maximize E: Find the most effective intervention overall.
2. Minimize C: Find the least costly intervention overall.
3. Maximize E with constraint on C: Find the most effective intervention that has

at most some specified maximum cost.
4. Minimize C with constraint on E: Find the least costly intervention that has at

least some specified minimum effectiveness.
5. Maximize E/C (or, equivalently, minimize C/E). Find the most effective

intervention per unit cost.

In the terminology used in MOST, each of these is a possible optimization criterion
(or optimization criterion and constraint, in the case of options 3 and 4 above). Less
formally, however, it might be helpful to imagine these as the goals of different
friends who ask the researcher what they should do.

Maximize E First suppose that a very wealthy friend, who wants very strongly to
lose weight, were to approach the investigator and ask for a best guess at the most
effective intervention, ignoring cost. In this case, the most rational recommendation
is P. It would be honest to point out that the investigator is not confident that P is
more effective than N (noting that their confidence intervals overlap in the figure),
so that more study is needed. However, if pressed to give a single answer in the
meantime, the investigator would probably reply that P appears to be the best bet in
terms of the information currently available.

Minimize C Next suppose that a friend has limited resources and wants the
intervention that costs the least. This is not an interesting goal in the context of
the current example, because costs are assumed here to be known a priori, so there
would be no need to do a statistical analysis to find the answer. The y-axis data
would not be needed in order to reply that M was the cheapest. However, if cost and
effectiveness were both subject-level observed variables, as in many formal cost-
effectiveness analyses, this could be a nontrivial question. Still, this goal would be
of only limited interest in the weight loss example, because if effectiveness is really
irrelevant, then cost could be cut all the way to zero by simply doing nothing.
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Maximize E with Constraint on C Now suppose a highly motivated friend, but
one with modest resources, came to ask the investigator’s advice. This friend also
desperately wants to lose weight, but can only afford to pay a maximum cost of
Cmax. The investigator can answer this question, but only if the friend is willing to
tell what Cmax is. Depending on Cmax, the best affordable intervention might be M,
N, or P.

Minimize C with Constraint on E It is also possible that a friend might insist that
he or she needed to lose at least Emin kilograms and wanted the cheapest intervention
having an expected mean effectiveness of at least Emin per person. This requires, at a
minimum, specifying Emin. Suppose Emin is 3.5 kilograms. Even then, the question
could still be interpreted in two ways. If it is only desired to have the estimated
effectiveness be greater than 3.5, then condition N is sufficient. However, if it is
desired to have the lower bound of the confidence interval be greater than 3.5, then
condition P is required.

Maximize E/C Finally, suppose a very budget-conscious friend asked for the
intervention that costs the fewest dollars per kilogram lost. This is different from
the previous question. One option would be to calculate the ratio C/E for each
intervention. Using the point estimates of E, this comes out to 3/2 = 1.5, 4/4 = 1,
2/6 ≈ 0.333, and 5/8 = 0.625. Ironically, intervention M is the most cost-effective
in this sense, even though it is the least effective, because it provides at least some
effectiveness without much cost.

In this example, each intervention’s cost and effectiveness can be compared
to zero (spending zero money and losing no weight at all). In other examples, a
zero point might not be meaningful, or it might be desirable for interpretational
reasons to compare both cost and effectiveness to those observed in a control
group rather than considering them in isolation. Thus, one would replace the cost-
effectiveness ratio with the incremental cost-effectiveness ratio (ICER) as defined
earlier. Specifically, a cost-effectiveness ratio (CER) is Ck/Ek for a given treatment
with cost Ck and effectiveness Ek, while an incremental cost-effectiveness ratio
(ICER) is (Ck − C0)/(Ek − E0) for a given treatment k versus a control condition
having cost C0 and effectiveness E0. The investigator must decide which ratio is
more important to optimize in his or her situation. The two ratios will probably
differ from each other if the control condition is the usual standard of care, as
it will almost certainly have some nonzero cost and probably have some nonzero
effectiveness. The cost-effectiveness acceptability curve, mentioned earlier for the
two-condition case, could also be extended in different ways to the comparison of
multiple conditions.4

4One alternative could be to consider two conditions at a time and compute a confidence interval for
the ICER, or for the cost-effectiveness acceptability curve at a given λ, for each of these pairwise
comparisons. Another alternative would be to designate a control condition and compare every
other condition with that one only. Furthermore, if one is using a Bayesian approach with posterior
probabilities, one could calculate, for each candidate intervention, either its posterior probability
of being having the best utility measure λE-C among the conditions available, or its posterior
probability of having a utility measure above some threshold.
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The diversity of possible goals may seem overwhelming, but of course it is not
necessary for any given investigator to investigate all of them. Investigators have
considerable freedom to specify a goal (i.e., an optimization criterion) that is of
interest in their own situation (see also Collins, 2018, companion volume). The point
of this section is not that there is a single correct answer or even a single correct
question, but to illustrate the diversity of questions that can be meaningfully asked
and answered using cost-effectiveness ideas.

4.4 Goals Involving Statistical Inference About Effectiveness

In addition to the questions listed above, it is also possible to incorporate informa-
tion on statistical significance into the statement of the goal. For example, someone
could ask for the least expensive intervention that has been shown to be more
effective than condition M (i.e., letting condition M serve as the control group).
This is a reasonable question in light of the growing emphasis on evidence-based
practice. However, it does not provide a way to avoid subjectivity and uncertainty.
First, the answer might be different if condition N or condition O were designated as
the control group. Second, both the sample size of the study and the desired level of
confidence determine the length of the confidence intervals; therefore, they would
both affect the answer to this question.

The situation would be somewhat different if a friend asks for the least expensive
intervention that has not been shown to be less effective than M. This is because “not
shown to be less effective” is not the same thing as “shown to be no less effective.”
In particular, the fact that two confidence intervals overlap is not sufficient reason
to conclude that two means are known to be equal. They might have overlapped
because of insufficient sample size or poor study implementation. That is, an
absence of evidence is not evidence of a total absence of an effect. If the question
of equivalency or non-inferiority is really important, then special methods must be
used. Roughly speaking, they require choosing a large enough sample size so that
the confidence interval for the difference in treatment effects will be narrower than
the least clinically significant difference and then using special one-sided statistical
inference techniques (see, e.g., Rothmann et al., 2003). These methods are important
topics of current research in biostatistics (e.g., Zhang, Nie, Soon, & Zhang, 2014),
but they have not yet been widely used in the social and behavioral sciences.

Finally, it is possible to construct confidence intervals for the utility or net benefit
λE − C or to test contrasts between conditions on this quantity. In the weight loss
example, one could measure the weight loss Yi and cost Ci for each participant in
the condition and use them to construct a new variable λYi − Ci. (The notation
Y is used here for weight loss instead of E, because it is an individual’s outcome
rather than a group comparison.) Mean comparisons on this variable could be used
to make conclusions about λE − C. Of course, this requires specifying λ. Also, an
investigator might consider using multiple-comparison techniques if it is desired to
control experimentwise error rates when comparing multiple conditions. Therefore,
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in the following subsection, multiple-comparison techniques that may be useful
for optimization contexts are reviewed. They can be used either for comparing an
outcome variable (estimating E) or comparing a cost-penalized outcome variable
(estimating E − λC). The following subsection may be skipped if the reader is not
planning to implement multiple-comparison correction techniques; it is presented
mainly as a possible aid to future research in this area.

4.5 Multiple-Comparison Techniques for Comparing
Effectiveness or Utility

Classic frequentist experimental design theory, much of it derived originally from
agricultural studies, offers many methods for multiple comparisons. In a standard
course on experimental design, a common approach for analyzing a study like that
illustrated in Fig. 4 would be to compare the four intervention groups using a one-
way analysis of variance (ANOVA) under the assumption of homoskedastic normal
responses, or perhaps some alternative procedure such as a generalized linear model
or nonparametric test. Assuming that its statistical assumptions were reasonably
close to being met, the ANOVA could be used first to test the (admittedly rather
uninteresting) omnibus null hypothesis that all interventions have the same mean
effectiveness. The ANOVA would then be augmented by planned contrasts, pairwise
comparisons, or specialized multiple-comparison techniques to make more specific
statements about the response means of the individual interventions (see, e.g., Day
& Quinn, 1989; Kuehl, 2000). This approach could presumably be combined in
some way with cost information, perhaps by treating the cost-penalized outcome
variable for some penalty weight λ, instead of the raw outcome itself, as the response
variable. It could alternatively be done by comparing the effectiveness among only
the treatments that were found to have average cost less than some fixed Cmax. In
fact, there has been some research on incorporating multiple outcome dimensions
into multiple-comparison testing (Hasler & Böhlendorf, 2013), although that is
beyond the scope of this chapter.

The best known multiple-comparison procedures are those involving all pairwise
comparisons of treatments. For example, in Fig. 4, tests or confidence intervals
would be constructed for six contrasts: M versus N, M versus O, M versus P,
N versus O, N versus P, and O versus P. Various techniques are available for
performing these contrasts simultaneously at a fixed familywise Type I error rate. Of
these, Bonferroni adjustment is the best known but not always the most efficient. An
alternative would be to designate one intervention as the control and to compare each
other intervention with it alone. For example, if M is the control, tests or confidence
intervals would be constructed for only three contrasts: N versus M, O versus
M, and P versus M. Because fewer comparisons are being done, the individual
comparisons can be made slightly more powerful without affecting the familywise
alpha level. However, another approach is more interesting for our purposes: Hsu’s
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multiple comparison with the best (Hsu, 1984; see also Bechhofer, Santner, &
Goldsman, 1995; Ertefaie, Wu, Lynch, & Nahum-Shani, 2015). This procedure
requires defining what constitutes a “best” intervention, generally the highest or
lowest mean value on the response variable. The procedure then determines, for each
other intervention, whether there is enough evidence to state with some confidence
that it is not the best. The end product is a list of possible best interventions and a
list of interventions that can be ruled out. For example, if only effectiveness were
of interest, then N and P might be chosen as possible best interventions in Fig.
4. Unfortunately, requesting a very high degree of confidence or having a smaller
sample size available might lead to a list of possible best interventions that is
impractically long. The best-case scenario is that a single intervention is identified
as best with high confidence; the worst-case scenario is that no interventions are
ruled out, indicating very little confidence in which to choose. Technical details of
these procedures are described further in standard experimental design textbooks
such as Kuehl (2000). Ertefaie and colleagues (2015) consider how to implement a
technique like Hsu’s in the context of a sequentially randomized experiment, which
is basically a form of factorial experiment.

Bechhofer and colleagues (1995) describe related selection approaches. All of
these approaches combine statistical inference with decision guidance, but they are
derived in somewhat different ways. The authors distinguish between “indifference
zone,” “subset selection,” and “multiple-comparison” techniques. In indifference
zone techniques, one seeks a high probability of choosing the best condition,
assuming that this condition is at least some quantity (denoted delta) higher than
the second best (i.e., one is indifferent to the choice of treatment as long as it is
at least near to being the best, but any treatment outside this zone is considered
significantly inferior). (If the best and the second best may be arbitrarily close,
such as a mean weight loss difference of one gram, then there is no way of
having adequate confidence to separate them.) In subset selection techniques, one
seeks to find a subset of conditions that contains the best condition with high
probability of success; the goal is to make this subset as small as possible without
making confidence too low. Finally, multiple-comparison techniques focus on a
joint confidence region for differences among condition means. Bechhofer and
colleagues also describe methods for sample size planning in order to obtain a
desired probability of a useful outcome under a given set of assumptions; this is
somewhat analogous to power planning for more traditional analyses that focus on
null hypothesis testing. However, the techniques in their book have not yet been
widely used, at least in the social and behavioral sciences, and may require further
research and elaboration to be helpful in the cost-effectiveness context. Also, many
of the techniques reviewed in Bechhofer’s text are intended more for non-factorial
RCTs with multiple conditions (“one-way” layouts), or at most two-way factorial
experiments, rather than factorial designs with many factors. They could perhaps
be extended to higher-order factorial experiments, but this has not been done yet.
Therefore, they are not reviewed further here.
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4.6 Relevance to MOST

Almost any of the comparison criteria described in this section (e.g., maximizing
E/C, maximizing E with a constraint on C) could be an optimization criterion during
an optimization trial in the context of MOST. However, the multiple-condition RCT
design considered in this section is unlikely to be realistic in MOST. This is because
one of the main limitations of the multiple-condition RCT is that often very few
conditions can practically be included. As the total pool of participants is divided
among more and more conditions, the power for making pairwise comparisons
becomes smaller and smaller. This is one of the main reasons why factorial designs
are used, instead of designs with many unrelated conditions (see Collins et al.,
2009). Therefore, cost-effectiveness analyses with factorial designs will be explored
in the following section.

5 Cost-Effectiveness Concepts in a Factorial Design

Analysis of data from a factorial experiment involves different issues from analyzing
data from a standard multiple-condition RCT. To explore these issues in a relatively
simple context, first consider a 2 × 2 factorial experiment comparing weight
loss interventions. The first factor, A, compares a proposed intensive diet-focused
intervention component (the “on” level) with a less expensive standard diet-
focused intervention (the “off” level). The second factor, B, similarly compares
an augmented exercise-focused intervention component (on) with a less expensive
standard of care (off). Effect-coding notation will be used here (Kugler, Dziak, &
Trail, 2018), denoting the standard level as −1 and the augmented level as +1 for
each of the two components. Participants are assigned at random to four possible
conditions: (−1, −1), (+1, −1), (−1, +1), and (+1, +1). Each condition represents
a possible intervention package: neither factor on, only factor B on, only factor A
on, or both factors on. The conditions are also known as “cells” because they can
be listed in a table as combinations of the levels of the first factor (as rows) and the
second (as columns). Factorial experiments are described further in Wu and Hamada
(2009), Myers and Well (2003), and the Collins (2018) companion volume. Suppose
that a researcher wants to do a cost-effectiveness analysis to choose which of the
four cells mentioned above should be recommended for future use. The future use
need not be direct implementation in general practice; it could be a confirmatory
RCT in the evaluation phase of MOST.

5.1 The Role of Interactions in Estimating Cost-Effectiveness

There are two possible ways to interpret cost-effectiveness when analyzing a
2 × 2 factorial experiment. Is the investigator trying to answer two separate
questions: Which level of factor A is more cost-effective, and which level of factor
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B is more cost-effective? Alternatively, is there only one question: Which of the
four conditions defined by combinations of factor A and factor B is most cost-
effective? The difference has to do with how one wishes to handle the possibility
of interactions. In the first approach, the investigator would consider only the main
effects of each factor, averaging over the levels of the other factor. In the second
approach, the investigator would consider both their main effects and their possible
interaction, in case the most cost-effective level of A depends on the level chosen for
B. Interactions are introduced in many statistical textbooks, such as Myers and Well
(2003) and Wu and Hamada (2009), and their implications for MOST are discussed
at length in the Collins (2018) companion volume.

Interactions make analyses more complicated, but sometimes they cannot be
ignored. First, the factors could interact in determining effectiveness. For example,
it might be that some of the new educational content of the two experimental
components overlaps, so their combination is slightly less effective than the sum
of the parts. That is, there could be diminishing returns (the added component helps
less in the presence of the other component than it would have helped in isolation)
or even an iatrogenic interaction (the added component actually causes harm in
the presence of the other component). Alternatively, they might work together very
well, so that the effect of each factor is greater when the other is set to +1. This
sort of interaction is familiar to readers with a background in experimental design.
However, the factors could also interact in determining cost. For example, it might
be that staff have to be hired to provide support for implementing the intensive
level of either component, but the same staff member can handle both components.
In this case, if it is decided to implement the augmented levels of both levels in
future practice, this will cost somewhat less than the cost of augmenting A alone
plus the cost of augmenting B alone, because the costs partly overlap. Note that
when estimating “cost” here, the researcher should primarily consider the future
marginal cost per patient in clinical practice, not necessarily the average cost per
patient in the factorial experiment, because the goal is to make recommendations
for future practice. For example, an experimenter should not include additional
overhead resources or expenses charged by his or her research institution when
calculating the costs to implement the final intervention.

If there are no practically significant interactions (neither in terms of cost or
effectiveness), then decisions about the two components can be made independently.
Separate tests of effectiveness and separate estimates of cost-effectiveness can be
done for factor A (averaging over levels of factor B) and then for factor B (averaging
over levels of factor A), in almost exactly the same way as if they had been two
separate two-level RCTs. However, if there are practically significant interactions
either in cost or in effectiveness, then a decision based solely on main effects will
ignore some potentially important information and could lead to a poorer decision
(Cox & Snell, 1989, pp. 84–92; Myers & Montgomery, 1995). It would thus be
important to consider the simple effects of each factor conditional on the level of
the other factor; that is, the researcher must directly compare the fitted values for
estimated cost, effectiveness, or cost-effectiveness among all four of the cells (see
Chapter 4 in Collins, 2018, companion volume for a greater description).



234 J. J. Dziak

Furthermore, even if there are no interactions in the usual sense, a constraint
may require that factors be considered together. Specifically, if a maximum cost
constraint (Cmax) has been set, it may not be possible to choose a level for each
factor without considering the level of the others. As an extreme example, suppose
the investigator is asked for a recommended treatment to use in a resource-poor
setting in which it is expected that there will be only enough money or time available
to implement one of the two components in clinical work. In this case, even if the
(+1,+1) condition had been found to be highly effective in the special setting of
the factorial experiment, it cannot be recommended for general use in the resource-
limited setting. For such a question, the only interesting conditions to be compared
would be (−1, −1), (−1, +1), and (+1, −1). This is another scenario where a
one-factor-at-a-time, main-effects-only approach would be inadequate for making a
practical decision.5

5.2 Making a Bias-Variance Tradeoff

In the previous subsection, it was observed that ignoring interactions could lead to
poor decisions when interpreting the results of a factorial experiment. However, the
opposite approach, to consider both main effects and the interaction, has a serious
disadvantage as well. To see this, consider the regression equation for modeling the
expected value of the outcome Y for a given cell in the 2 × 2 factorial. Let XA be the
effect-coded representation of factor A and XB be the effect-coded representation of
factor B. Then the saturated model is

(Yi |XA,XB) = β0 + βAXA + βBXB + βABXAXB.

Notice that four quantities (the cell means) are being represented by four quantities
(the regression coefficients). This means that the model for the cell means is
saturated, so the estimate for the expected value for each cell will be the observed
average value in that cell. The estimated expected value for a particular cell in a
saturated model is the sample mean of participants in that cell, and so it is informed
only by the participants within each cell, as though the other cells were not present.
The situation becomes more urgent as the number of factors increases. If fitted

5As a caveat, if it were known in advance that only three of the four conditions were of interest,
then an incomplete factorial comparing only those three conditions might be more appropriate than
a complete 2 × 2 factorial (see Collins et al., 2009 for advantages and disadvantages of incomplete
designs). However, if, say, only four out of six components could affordably be implemented at
a time in practice, there are still many affordable conditions, so a complete or fractional factorial
experiment might still be appropriate. As another caveat, the challenge of creating special programs
for resource-poor settings has raised important debates about equity and disparities which are
beyond the scope of this chapter; for example, consider the criticism by Kozol (2005) and defense
in Slavin (2006) of the use of a particular program for disadvantaged schools.
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values from a 25 factorial must be obtained in the same way as those from a 32-
arm RCT, with each cell being studied on its own, then having power and precision
for all pairwise comparisons could require tens of thousands of participants, more
than most researchers can afford. This is because pairwise comparisons are simple
effects, not main effects, and cannot combine the information from all participants as
main effects can (see Collins et al., 2009, and the Collins, 2018 companion volume).

Using fewer parameters would allow information to be borrowed across cells,
reducing standard errors. For example, suppose it was determined that the main
effect of factor A was practically and statistically significant (βA �= 0) but the main
effect of factor B and the interaction were not significant. Fitted values from the
model

(Yi |A = a, B = b) = β0 + βAXA

would have lower standard errors than those from the saturated model because there
are more constraints on this parsimonious model. Because both of the cells with
XA = + 1 are constrained to have equal expected values, their estimate is the sample
mean of all participants in each cell (possibly a weighted mean if cell sizes are
unequal). Thus, each fitted value is being informed by twice as many individuals,
leading to less random variability. Of course, there is a disadvantage to using a
constrained model: the possibility of bias if the constraints do not accurately reflect
the process or population being modeled.

This creates a dilemma. Trying to make cost-effectiveness decisions for one
factor at a time risks bias by leaving some potentially important information out
of the model, but trying to make decisions at the level of the cells while ignoring
the factorial structure leads to too much sampling variance and not enough power.
This dilemma was described but not fully resolved by Bechhofer et al. (1995).
They describe methods for selecting the best level of each factor in a two-factor
experiment, but they focus almost entirely on the case where interactions can be
ignored. They briefly mention the possibility of interactions but conclude that in
this case one must choose the best level of one factor within each level of the other
factor (see also Wu & Cheung, 1994). If all of the factors represent intervention
components (as opposed to existing population strata such as age or gender), then
this essentially means choosing the best condition (cell). Thus, using their methods
it is clear how to analyze a 2 × 2 factorial as either two artificially separated two-
condition RCTs (one for factor A and one for factor B), or how to analyze it as one
single four-condition RCT, but it is still not clear whether or how it is possible to
make specific use of the factorial structure to inform decisions.

One possible approach is to treat this dilemma as an example of a “bias-variance
tradeoff.” This is a very general idea that arises in many situations of statistical
analysis, with variable selection in regression being a prominent example. An overly
simple model can be biased, in the sense of being unable to detect certain effects
and relationships. An overly complicated model can be subject to high sampling
variability and overfit the available data. In other words, an overly simple model
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misses some signal, and an overly complicated model misconstrues some noise
as being part of the true signal. A model of moderate complexity can sometimes
outperform either extreme by including enough detail to be useful but not enough
to be misleading. When the amount of available data is limited, it may be necessary
to fit a simpler model than one would otherwise wish (to “bet on sparsity”) in order
to have reasonable hope of obtaining interpretable and generalizable results. These
ideas are further developed in statistical textbooks such as Hastie, Tibshirani, and
Friedman (2009).

The idea of a bias-variance tradeoff suggests that the best answer is a compromise
between extreme possibilities. Choosing which intervention is likely to give the
best outcome, whether on the basis of effectiveness or cost-effectiveness, requires
a model that provides fitted values for individual cells. However, the model must
also be able to borrow information across cells as much as feasible by ignoring
unimportant effects (especially nonsignificant higher-order interactions). One way
to do this is to construct a parsimonious model that contains only statistically
significant interactions and excludes statistically nonsignificant interactions and
then use this model to obtain fitted values for effectiveness. For example, in a 2k

factorial experiment, a saturated model has 2k parameters and is too large, while
a main-effects-only model has k parameters and is too small. A model with an
intermediate number of well-chosen parameters could perform better than either.
A method like this was employed by Harrington (1981) in one of the few published
examples of a cost-effectiveness analysis on a factorial experiment with more than
two factors. The advantage of this method is that it attempts to borrow information
across cells wherever possible but not collapse cells where it is inappropriate to do
so. The same procedure could be used for cost if that is an observed variable subject
to variance.

The 2 × 2 design is the simplest factorial design, but factorial optimization trials
in MOST are likely to include three or more factors (see Collins et al., 2009; Nair
et al., 2008). Therefore, consider the following hypothetical example involving five
factors.

5.3 A Hypothetical Five-Factor Example

In order to demonstrate some of the ideas described above, consider the following
hypothetical example of a five-factor experiment. In the simulated example con-
sidered here, five potential intervention components, labeled as R, S, T, U, and V
here, are being tested for possible inclusion in a future highly effective and cost-
effective weight loss MBI. For a somewhat similar real-world study that is currently
being done, see Pellegrini, Hoffman, Collins, and Spring (2014, 2015a, 2015b).
A simulated dataset for this hypothetical example is available online at https://
methodology.psu.edu/mostbooks/dziak.

In this hypothetical example, each of the five components may be either provided
or not provided; in addition, a limited amount of information and support is given

https://methodology.psu.edu/mostbooks/dziak
https://methodology.psu.edu/mostbooks/dziak
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to all participants. For simplicity, assume that cost per person is measured in dollars
and reflects the cost of supplies and payment for staff, although in practice it might
also be important to consider participant burden. Also for simplicity, continue to
assume that the effectiveness measure is weight loss in kilograms. The components
are compared in a 25 full factorial factor-screening experiment (as described in, e.g.,
Collins et al., 2009, 2014). There are 2 × 2 × 2 × 2 × 2 = 32 cells (i.e., conditions;
combinations of treatment factors) in the experiment, representing each possible
combination of providing or not providing each of the five components. The factor
R, which contrasts the inclusion versus exclusion of component R, is represented
numerically by an effect-coded variable XR, with XR = + 1 for inclusion (on)
or XR = − 1 for exclusion (off); effect-coded variables XS, XT , XU , and XV are
defined similarly. Suppose that there are about 20 participants per cell, for a total
size of about 640 participants. Also assume that the costs per component are known
but unequal, as follows:

• The base cost per participant is $100.
• Turning factors R, S, or V on costs $200 each.
• Turning U on costs $400.
• Turning T on costs $600.

Thus, the possible cost per participant ranges from $100 (the basic treatment only,
all components off) to $1700 (all components on).

Results of a multiple linear regression analysis are as shown in Table 1. Three-
through five-way interactions were also tested, but none were significant, so only
main effects and two-way interactions are shown. Factors R, T, and V are found
to have statistically significant positive main effects. Factor U has a significant
negative main effect. There are statistically significant positive interactions between
components R and V and components U and V, as shown in Fig. 5. Following
the reasoning of Collins et al. (2009, 2014, 2018 companion volume), a researcher
would probably choose the combination R, T, and V. This combination would then
be recommended for inclusion in a confirmatory evaluation in the evaluation phase
of MOST and then for eventual use in practice if the evaluation is favorable. Indeed,
the combination of R, T, and V will be more effective than the full package of
all five components, because it does not include the counterproductive component
U. It will also have lower cost than the full package, because it does not include
either the useless component S or the counterproductive component U. Because it
is less costly and more effective than the full package, it would certainly be more
cost-effective by any reasonable definition. However, it costs $1100, and in some
settings that might be too expensive. Budgetary realities might impose a maximum
cost constraint Cmax, a maximum willingness-to-pay λ, or both. Thus, a further
consideration of cost-effectiveness would be necessary.

In theory, cost-effectiveness decisions could be made either at the level of
the component (e.g., “Is component R more cost-effective?”, “Is component T
cost-effective?,”) or the cell (e.g., “is the condition with only component R
included cost-effective?” or “Is the condition with components R and T included
cost-effective?”). Making decisions component by component, without explicitly
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Table 1 Coefficient
estimates from a saturated
model fit to simulated 25

factorial experiment data

Effect Estimate t p

Intercept 0.027 0.117 0.907
XR 0.613 2.698 0.007**
XS 0.071 0.313 0.754
XT 0.744 3.273 0.001**
XU −0.539 −2.370 0.018*
XV 0.512 2.253 0.025*
XR × XS 0.065 0.287 0.774
XR × XT 0.093 0.410 0.682
XR × XU −0.215 −0.947 0.344
XR × XV 0.492 2.164 0.031*
XS × XT 0.030 0.130 0.897
XS × XU 0.132 0.580 0.562
XS × XV −0.156 −0.686 0.493
XT × XU −0.086 −0.377 0.706
XT × XV −0.049 −0.218 0.828
XU × XV 0.541 2.379 0.018*

Notes: Three-, four-, and five-way interac-
tions were included in the model but were
not statistically significant and are not shown
here. Standard errors are approximately 0.23
for each effect coefficient; they are approx-
imately equal because the model is lin-
ear and the design is close to balanced.
The error standard deviation is 5.75. Thus,
for comparison, a Cohen’s d of 0.2 would
correspond to a regression coefficient of
0.2 × 5.75/(+ 1 − (−1)) = 0.575. Note
that the intercept in an effect-coded facto-
rial regression model is not the expected
response for the “none” (all −1) cell, but is
instead the mean expected response for all
cells. The two values are close in the current
example, but this is coincidental.
*p < 0.05; **p < 0.01.

comparing individual cells, seems simpler. However, because of the interaction, as
well as a possible cost constraint on the total amount spent, it may be necessary to
consider all of the components together instead of considering each separately: that
is, to compare the effectiveness of specific cells. This suggests plotting the cells on
a figure similar to Fig. 4. It will not be necessary to explicitly consider all 32 cells;
it is already known that cells with factors S or U set to “on” will not be adequately
cost-effective compared with other cells. However, this still leaves eight possible
cells with S and U off:

• R, T, and V on ($1100)
• T and V on ($900)
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xR × xV Interaction Plot

xU × xV Interaction Plot
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Fig. 5 Interaction plots for simulated 25 factorial example

• R and V on ($500)
• V on ($300)
• R and T on ($900)
• T on ($700)
• R on ($300)
• None on ($100)

Cost is assumed to be known for each cell, but an effectiveness estimate for each cell
is still needed. Let μ̂k be the estimated effectiveness (the estimated expected value
of weight loss) in cell k. The most obvious and straightforward (but not necessarily
the best) option for this estimate is yk , the observed mean of the approximately
20 individuals in the cell. This is the same as the fitted value for the cell from the
saturated linear model containing all possible main effects and interactions among
the five components. However, this estimate does not borrow any information across
cells nor take advantage of the factorial structure of the experiment in any way.
Comparing any two cells in this way would make use of only about 40 participants
and not use any information from the other 600. Therefore, it would not be a good
choice unless the available sample size is huge.

It would probably be better to use information from a “parsimonious” (sparse
or unsaturated) model, which borrows some information from similar cells when
constructing the predicted value for a given cell. This is done by estimating the
effectiveness for each cell not from the cell mean directly, but from its fitted value
from a reduced regression equation that retains only significant effects. Substituting
one regression equation for another may seem somewhat alarming because the
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values and meanings of coefficients in a model may change as effects are added to or
removed from the model; that is, in a multiple regression framework, the coefficient
for a particular predictor variable expresses its degree of linear relationship with the
response after adjusting for the other predictor variables, and not necessarily its
marginal linear relationship with the response. However, in a linear model with
effect-coded dichotomous factors near balanced allocation, removing one effect
from the model has little effect on the coefficients for the other effects (see Collins,
2018, companion volume), and in any case it is only proposed to remove effects that
are estimated to be fairly near zero.

5.4 Fitting a Parsimonious Predictive Model

How should the parsimonious model be constructed in this particular example? The
nonsignificant main effect of factor S and the nonsignificant interactions can be
ignored, thus saving many degrees of freedom and reducing the risk of overfitting.
However, even though it was already decided to exclude component U from the
final intervention, it is not appropriate to exclude the corresponding factor U from
the model. This is because factor U has a significant main effect and interaction and
is therefore important to computing accurate fitted values.

The results from the selected and refitted unsaturated model are shown in Table
2, and the fitted values for the cells of most interest, using this model, are shown
in Table 3. Note that because a linear model with effect coding is being used, the
effects in Table 1 are near orthogonal; therefore, the coefficients in Table 2 are not
very different from the corresponding coefficients in Table 1, even though some of
the effects in Table 1 have been removed from the model and the coefficients have
been re-estimated (Kugler et al., 2018; Myers & Well, 2003).

Table 2 Coefficient
estimates from parsimonious
model fit

Effect Estimate t p

Intercept 0.038 0.169 0.866
XR 0.614 2.749 0.006**
XT 0.730 3.273 0.001**
XU −0.537 −2.408 0.016*
XV 0.507 2.270 0.024*
XR × XV 0.477 2.135 0.033*
XU × XV 0.531 2.380 0.018*

Notes: Standard errors are approximately
0.22 for each effect coefficient. The error
standard deviation is 5.67. Thus, a Cohen’s d
of 0.2 would correspond to a regression coef-
ficient of 0.2 × 5.67/(+1 − (−1)) = 0.567
*p < 0.05; **p < 0.01
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Table 3 Fitted values from the saturated and parsimonious models

Components Effect-coded components Saturated model Parsimonious model
Included XR XS XT XU XV Cost Estimate SE Estimate SE

R + T + V +1 −1 +1 −1 +1 $1100 3.33 1.25 2.37 0.58
T + V −1 −1 +1 −1 +1 $900 −0.35 1.39 0.19 0.60
R + V +1 −1 −1 −1 +1 $500 0.79 1.20 0.91 0.58
V −1 −1 −1 −1 +1 $300 −0.64 1.29 −1.27 0.59
R + T +1 −1 +1 −1 −1 $900 2.32 1.25 1.47 0.60
T −1 −1 +1 −1 −1 $700 0.73 1.20 1.19 0.58
R +1 −1 −1 −1 −1 $300 −1.32 1.44 0.01 0.60
None −1 −1 −1 −1 −1 $100 0.15 1.20 −0.27 0.58

Notes: Estimate=estimated cell effectiveness and SE=standard error of the estimate. The SEs for
the saturated model would be the same for each cell under balanced cell sizes, but in fact differ
slightly due to different cell sizes in the simulated dataset, caused by simulated random missingness

For simplicity, Table 3 shows fitted values only for the cells that are most likely to
be under consideration (those having factors S and U set to off). There are eight such
cells in Table 3, reflecting two possibilities for factor R (on or off), times two for T
and times two for V. The values in Table 3 are calculated from the fitted coefficients
in Table 2. For example, the condition setting factors R, T, and V to on has xR = + 1,
xS = − 1, xT = + 1, xU = − 1, and xV = + 1. Thus, using the predictive model
in Table 2 and recalling that factor S is being ignored, the expected value for the
response in this cell is

μ̂R,T ,V = β0 + βRxR + βT xT + βUxU + βV xV + βRV xRxV + βUV xUxV

= 0.038 + (0.614) (+1) + (0.730) (+1) + (−0.537) (−1) + (0.507) (+1)

+ (0.477) (+1) (+1) + (0.531) (−1) (+1) = 2.372.

Some of the fitted values may seem surprising at first. Notice that though factor V
has a positive main effect (+0.507), the condition with only component V included
has a poorer expected response (−1.27) than the condition with no components
included at all (−0.268). Specifically,

μ̂V = 0.038 + (0.614) (−1) + (0.730) (−1) + (−0.537) (−1) + (0.507) (+1)

+ (0.477) (−1) (+1) + (0.531) (−1) (+1) = −1.270

but

μ̂none = 0.038 + (0.614) (−1) + (0.730) (−1) + (−0.537) (−1) + (0.507) (−1)

+ (0.477) (−1) (−1) + (0.531) (−1) (−1) = −0.268.

This happens because of interactions (see the interaction plots in Fig. 5). Recall that
ANOVA main effects are really averages of simple effects and can be very different
from the individual simple effects when large interactions are present.
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Fig. 6 Plot of effectiveness (estimated from parsimonious model) by cost

5.5 Plotting Cell Predicted Effectiveness Against Cell Cost

The fitted values from the parsimonious model are plotted against cost in Fig. 6. For
simplicity, conditions that had negative estimated effectiveness or that were ruled
out already are not shown. The T + V condition is shown to be dominated, in that it
is less effective than another condition that is no more expensive. The V condition
actually has a negative effectiveness estimate, so it is also dominated because even
providing nothing would be less expensive and more effective. The other six cells
are not dominated, so any of them could be a rational choice, depending on the
researcher’s exact goals.

If the goal is to find the most effective intervention that costs no more than Cmax,
then one could draw a vertical line on the plot at cost = Cmax and then choose
the non-dominated point that is as close as possible to Cmax but still to the left of
Cmax. For example, if Cmax = 500, then one should choose the R + V condition; if
Cmax = 1000, then one should choose the R + T condition.

If the goal is to find the most cost-effective intervention in terms of kilograms
lost per dollar spent, then a different approach is required, as illustrated in Table 4.
Arithmetically, one could simply divide the cost by the effectiveness for each cell
to get the estimated price of losing 1 kilogram under each proposed treatment
combination; this ratio is much like ICER, and the combination of components
used in a given condition could be called cost-effective if the ratio is less than λ.
In Table 4, the R + T + V condition is found to be the most cost-effective in this
sense because of its very large effectiveness, despite its relatively large cost. The
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Table 4 Cost-effectiveness and effectiveness-cost ratios

Included
Cost (in hundreds of
dollars)

Effectiveness
(kg lost) Cost/effectiveness Effectiveness/cost

R + T + V 11 2.37 4.64 0.22
T + V 9 0.19 47.4 0.02
R + V 5 0.91 5.49 0.18
V 3 −1.27 N/A N/A
R + T 9 1.47 6.12 0.16
T 7 1.19 5.88 0.17
R 3 0.01 300 0.00
None 1 −0.27 N/A N/A

Notes: In this table, cost is measured in hundreds of dollars. Effectiveness is measured in kilograms
lost. Therefore, the cost-effectiveness ratio is expressed in hundreds of dollars per kilogram lost,
and the effectiveness-cost ratio is in kilograms lost per hundred dollars

increase in effectiveness is more than proportional to the increase in cost relative to
other treatment options.

One could also divide effectiveness by cost; this ratio tells the estimated weight
loss per dollar in a given cell. It is desirable for the ratio of effectiveness to cost
to be large (or equivalently, for the ratio of cost to effectiveness to be small; either
form makes sense, but of course it is important to be consistent when using them).
Recall that Figs. 1, 2, and 3 designate cost to be the y-axis following economists’
tradition, while Figs. 4, 5, and 6 designate effectiveness to be the y-axis following
experimentalists’ tradition. In Figs. 4, 5, and 6, the effectiveness-to-cost ratio is the
slope of a line from the origin to a given point, and a decision-maker would want
this slope to be as “steep” (i.e., as high in the positive direction) as possible to reflect
high effectiveness per cost unit. In contrast, a steep slope from the origin (control)
to the plotted (experimental) treatment point in Figs. 1, 2, and 3 would reflect a
high incremental cost per incremental effectiveness unit, which is undesirable. One
caution when using ratios is that subtracting a constant from the numerator and
denominator of a ratio changes the overall ratio. Thus, it makes a difference whether
the numerator and denominator are total effectiveness and total cost relative to doing
nothing, or simply incremental effectiveness and incremental cost relative to the
least expensive cell, treated as a kind of control condition. This rather subtle issue
is described further in the following section.

5.6 Effectiveness Versus Control or Versus Nothing?

As mentioned earlier, an intervention can only be effective or cost-effective in
comparison to some alternative, not simply in a vacuum. In the context of the figures,
if one wishes to draw a comparison line through the condition in order to compare its
slope to λ, another endpoint is needed to draw the line. One might draw the line from
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zero cost and zero effectiveness (representing not being treated at all). Alternatively,
the other endpoint could be the cell with all components set to off (which might
have some overhead cost and some effectiveness due to aspects of treatment that are
given to all participants for practical or ethical reasons). For example, suppose that
the fitted value for the “none” cell in Table 3 had been approximately 1 instead of
approximately 0. That is, suppose that patients may lose a kilogram or so simply
from being given the minimal level of education and positive attention, which was
given to all participants in the study. If this loss is judged to be real, and not just a
Hawthorne effect or regression to the mean, then it is conceivable that the “none”
cell might be the most cost-effective. That is, it might be judged that a given budget
could cause more total population weight loss by giving the minimal treatment to
a very large number of people rather than giving any treatment augmentations to
anyone. Simple or inexpensive interventions can sometimes have surprising and
important effects, and even individually small effects may be meaningful when
applied to large groups (e.g., the aspirin example in Rosnow & Rosenthal, 2003;
see Sullivan & Feinn, 2012, for an opposing assessment).

For simplicity, the simulated example used in this section was constructed so that
the “none” cell has very low cost and essentially zero effectiveness, so this decision
does not have to be considered here. In other words, in this example, questions about
total cost and absolute effectiveness (measured from zero) are practically the same
as questions about incremental cost and effectiveness (measured from the “none”
cell).

5.7 Interpreting Borderline Statistical Significance When
Constructing the Parsimonious Model

This constructed example did not consider a possible case in which a given
factor was not quite statistically significant, but suggested a beneficial effect. For
example, suppose that the regression coefficient estimate for XS had been 0.40
with a p-value of 0.08, instead of 0.07 with a p-value of 0.75. In a conclusion-
priority analysis, it could not be claimed that component S had been established
effective at the 0.05 level. A researcher probably could not publish a paper arguing
that S was shown to be effective, with only this level of evidence. However, in a
decision-priority analysis within the context of MOST, it might make sense to keep
factor S in the model. This is because if XS is not included in the parsimonious
model, the contribution of component S will be assumed to be exactly zero for
purposes of drawing the cost-effectiveness plot. Thus, every cell with S set to on
will automatically be considered dominated, unless the cost of S is exactly zero.
However, if S were very inexpensive or the willingness to pay was high, then
eliminating it from consideration solely on the basis of the 0.05 threshold might
not be rational (see Claxton, 1999). Instead, it might be wiser to include XS in the
parsimonious model so that its estimated benefits can be openly compared to its cost.
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A component whose effect-coded factor is included in the parsimonious model can
still be eliminated from the final recommended intervention if it is judged not to
be cost-effective; but a component omitted from the parsimonious model does not
get another chance to be selected, even if it is very inexpensive. For this reason
one should be somewhat careful about omitting the main effects of factors when
constructing the parsimonious model in the optimization phase of MOST.

This reasoning would seem to suggest that borderline-significant interactions
should also be included. However, there is some need for caution here. In a
25 complete factorial design, there are 31 effects, including 5 main effects, 10
potential two-way interactions, 10 potential three-way interactions, 5 potential four-
way interactions, and 1 potential five-way interaction. In a linear model with a
balanced design, each of these effects has, in theory, an independent 5% chance
of being declared significant even if its true effect is exactly zero. If a higher alpha
level is used, then this chance will be even higher. Thus, some interactions will
probably be found significant, likely one or more of the 16 high-order interactions
(i.e., 3-, 4-, or 5-way), which are notoriously difficult to interpret. Allowing more
and more interactions would bring the so-called parsimonious model closer and
closer to being saturated and increase the risk of overfitting, especially since the
same data are being used for model selection and estimation. This reflects the
bias-variance tradeoff: leaving out an interaction risks bias, but including it risks
increasing random noise. Further research is needed as to which decision rules are
most reasonable here. Inspired by the ideas of the sparsity principle, hierarchical
ordering principle, and heredity principle (Myers & Montgomery, 1995; Wu &
Hamada, 2009), it might be reasonable to require a stricter significance standard
for interactions whose parent main effects are not significant. For example, if the
evidence is ambiguous, the investigator might be more skeptical about an R × S
interaction than an R × T interaction, given that S has a negligible main effect,
but R and T have significant effects. The investigator would probably not be as
skeptical about an R × U interaction because R and U are both significant, even
though the effect of R is negative. The investigator might also be more skeptical
about an R × S × T × U interaction than an R × S interaction. Nonetheless, if
there is solid evidence of a non-negligible interaction, then it must be included in
the model in order to get reasonable predictions, and this may mean that its parent
main effects and their lower-order interactions need to be included.

Cohen, Cohen, West, and Aiken (2003), in their textbook on regression analysis,
give different advice about interactions for different situations. Each piece of advice
is reasonable in some situations, but considered together they may be confusing.
Depending on the relationship of the interactions to the hypothesis of most interest
in the study, they might recommend testing a given interaction at a higher alpha
level than normal (e.g., if the investigator wishes to be more confident in asserting
that the interaction is not present; p. 373), a lower alpha level than normal (i.e.,
with a multiplicity correction; p. 296), or not at all (e.g., a high-order interaction
between covariates of little interest in an observational study). A recommendation
of how this differing advice applies to MOST requires further research; in particular,
Monte Carlo simulation studies may be informative here.
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5.8 Options for Handling Uncertainty in the Selection of Terms
or the Estimation of Effects

A final limitation of the approach presented in this example is that statistical
uncertainty, particularly model uncertainty, was not taken into account in making
decisions. Even using the parsimonious model, the confidence intervals for the
individual condition (cell) means are wide, as shown in Fig. 7. In fact, it could
be argued that the confidence intervals shown in Fig. 7 should be drawn even wider,
because they ignore possible error introduced by false negatives when choosing
which coefficients to include in the parsimonious model. The issue of variable
selection uncertainty and possible ways of correcting for it have been discussed
in the statistical literature (see Chatfield, 1995; Claeskens & Hjort, 2008). One
might also argue that adjustment for multiple comparisons should be made, as
the researcher is basically making pairwise comparisons among the conditions of
interest. However, these objections are beside the point, as even without adjustments
it is clear that many of the pairwise differences are not statistically significant. The
sample size for the factorial experiment had been reasonable for detecting small-
to medium-sized main effects, but nowhere near large enough for making confident
pairwise comparisons of 32 different cells. Nonetheless, it is a condition (i.e., cell),
not a factor, which is being chosen for future implementation.

The best way to handle this dilemma is not yet clear and requires further research.
Harrington (1981) collapses across nonsignificant interactions, as is recommended
here, and also attempts to correct for possible overoptimism in experimental results
by adjusting all of the effectiveness estimates downward by a fixed percentage.
However, other than this he treats effectiveness estimates as point values, not

Fig. 7 Effectiveness-cost
plot for non-dominated
conditions, with 95%
confidence bands added

0 200 400 600 800 1000 1200

0.
0

0.
5

1.
0

1.
5

2.
0

R

R+V

T

R+T

R+T+V

Cost

E
ffe

ct
iv

en
es

s



Optimizing the Cost-Effectiveness of a Multicomponent Intervention Using. . . 247

confidence intervals; that is, he basically ignores the standard errors of the fitted
values. Although it seems naïve, this may actually be the most reasonable approach
in some cases. It would be at least as naïve to argue that the least expensive cell
available must be used, merely on the argument that the others have not been proven
better in a pairwise sense. As mentioned earlier, failure to reject a null hypothesis
in the conclusion-priority sense does not necessarily mean that the null hypothesis
should be accepted as true when making decisions. It would be possible to say that
the experiment was inconclusive and that a newer one with fewer factors or more
participants needs to be done. This is mathematically reasonable but may or may
not be practically feasible. For example, in the context of MOST, an investigator
might or might not have sufficient funding to do multiple factorial experiments in
the optimization phase before proceeding to the evaluation phase.

Chapman et al. (2014) point out that sampling variability may affect which
conditions are estimated to be on the Pareto frontier. They suggest that in addition
to creating a plot like Fig. 6 to show which cells are non-dominated according to
their fitted values (which are the middle of their confidence intervals and hence best
guesses at what their future effectiveness will be), one should also create a plot that
compares worst-case estimates of their effectiveness (such as the lower endpoints
of their confidence intervals). Generalizing this idea, one might also perform some
kind of sensitivity analysis to account for the effects of model selection by randomly
perturbing the data in some way or changing the model assumptions in some way,
to see which conditions tend to remain non-dominated and which are sometimes
dominated, but this is beyond the scope of this chapter.

It is reassuring that when a factorial experiment is being used as a screening
experiment, it is likely to be treated as somewhat exploratory and followed up
by further experimentation—either a more focused factorial experiment in the
context of response surface optimization (see Myers & Montgomery, 1995) or a
confirmatory two-condition RCT in the context of MOST (see, e.g., Collins et al.,
2016). Thus, final recommendations will not be based on the factorial experiment
alone. However, if the results of the factorial experiment are to be used in a different
way from that envisioned in MOST (e.g., to determine which medical procedures
should be permitted or reimbursed), then it becomes much more important to
immediately acknowledge uncertainty, and it may be best to allow physicians and
patients to select from several good options instead of claiming to have found a
single best.

5.9 Application to MOST

The approach of constructing a parsimonious model and using it to estimate
condition effectiveness may be very important for MOST users for whom cost-
effectiveness is the optimization criterion of interest. It is also a possible analytic
approach even if effectiveness itself is the quantity to be optimized, without regard
to cost. It also has some similarities to the approach recommended by Collins and
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colleagues (2014), who emphasized making decisions based on plots of significant
main effects and significant interactions (hence, indirectly, on fitted values from a
parsimonious model).

No analysis method can guarantee that the condition selected by analyzing the
factorial experiment will be optimal in the literal sense, that is, the very best
possible out of all those that are available; the main challenge here is that there
is not enough information in a realistically sized clinical trial to make confident
pairwise comparisons among dozens of cells. However, the use of a parsimonious
model is the most straightforward way in this situation to obtain the effectiveness
estimates necessary to make principled choices about cost-effectiveness. Bayesian
methods might provide an attractive alternative to significance testing for achieving
a bias-variance tradeoff and making decisions about utility, but this has not yet been
explored in the context of MOST; this is discussed further at the end of this chapter.

6 Dealing with Multiple Dimensions of Effectiveness or Cost

This chapter so far has been focused on research intended to find ways to balance
two separate goals—high effectiveness and low cost. Considering two goals instead
of one requires the introduction of new concepts. These concepts include identifying
a Pareto frontier, as well as distinguishing between scientific questions about
expected outcomes on the one hand and subjective decisions about weighing
outcome versus cost on the other. However, in some cases there are more goals
than just two. There might be more than one dimension of effectiveness, more than
one dimension of cost, or both.

When effectiveness has more than one dimension, there are sometimes said to
be multiple outcomes. For example, a healthy eating and exercise program may be
hypothesized to improve mood and reduce weight. If the program is effective, it
ought to do both things. However, one could imagine a program (perhaps involving
grueling exercise and extreme caloric restriction) that reduces weight but makes
mood worse. More realistically, some interventions might be more beneficial for
one outcome than for another. For example, some character education or health
education programs in schools are intended to help young people avoid more than
one kind of unhealthy behavior. A particular intervention or component might have a
significant effect on, for example, binge drinking—but little or no effect on smoking.
In fact, two candidate intervention packages might each have statistically significant
effects on a different outcome, but one is more effective for the first outcome, while
the other is more effective for the second.
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Table 5 Effectiveness of two hypothetical interventions on two outcomes

Intervention Daily calorie reduction (kcal) Daily activity increase (minutes)

A 300 20
B 200 30
Control 10 2

6.1 An Example with Two Outcomes of Interest

Because of the added complexity associated with discussing effectiveness on two
outcome variables instead of one, let us simplify somewhat by returning to an RCT
setting rather than a factorial experiment. Suppose that a three-condition RCT is
comparing two interventions (A and B) with an information-only control condition.
The outcomes of interest are reduction of calorie consumption and increase in
daily physical activity, both evaluated as a change from baseline after 3 months.
Suppose that the results were as shown in Table 5. Also suppose for simplicity
that all of the pretest-to-posttest changes except those for the control condition
were statistically significant at the 0.05 level and that all of the pairwise differences
between conditions on the outcomes were also statistically significant. Last, suppose
for now that difference in cost is negligible, and focus only on the two dimensions
of effectiveness.

From a conclusion-priority point of view, the results in Table 5 would be suffi-
cient for writing an interesting and informative scientific paper. Both interventions
are effective on both outcomes, but Intervention A has more of an effect on calorie
consumption, and Intervention B has more of an effect on daily activity. From
a decision-priority point of view, however, the analysis is clearly not over. If
someone were to ask the investigator to make a recommendation about which of
the interventions would be best for them to use, what would be a reasonable reply?

Once again, the data alone cannot answer this question. If calorie consumption is
more important, then Intervention A is better. If daily activity is more important,
then Intervention B is better. It would be easy to reply that both outcomes are
important. However, if it is considered necessary to make a single decision about
which intervention to choose, then it is implicitly necessary to make some kind of
statement about the relative importance of the goals. Because the relative value of
different outcomes is now being considered, it may be necessary to move beyond
cost-effectiveness into some form of cost-benefit analysis (for reviews of the latter,
see Messonnier & Meltzer, 2003). This introduces many new possibilities and
questions for analysis, but in the context of this chapter, it is only possible to
introduce a few basic ideas.

Fortunately, as before, just because the decision is partly subjective does
not mean it is entirely arbitrary; methods have been developed for combining
information from multiple outcomes. These methods can be divided into two general
approaches: weighting approaches (combining all of the outcomes into one common
scale, based on some system of prioritization) and partial ordering or set-valued
approaches (weeding out conditions that are clearly inferior and then providing
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a list of all of the conditions that remain; Laber, Lizotte, & Ferguson, 2014).
Both approaches have parallels in the previous sections about balancing cost and
effectiveness. This is no coincidence; the question of cost-effectiveness is just a
special case of the question of multiple outcomes, with cost as an outcome that is
reverse-scaled (lower is better).

Let us first consider weighting approaches. In a way, they provide the most
straightforward approach to an unambiguous decision. However, they raise the
question of how to choose the weights. There are several ways to choose the weights;
they are explored in the following three subsections.

6.2 Standardized Weights for Combining Equally Important
Variables

The basic idea of the weighting approach is to turn two variables into one. In our
example, let calorie reduction be E1 and activity increase be E2. The decision-maker
must specify some weights a1 and a2 that reflect his or her own interpretation of the
relative importance of the goals. Given these weights, the optimal decision for that
decision-maker will be one that maximizes the quantity a1E1 + a2E2. This weighted
sum is a new constructed variable that is used in place of E1 and E2. The advantage
of this approach is that it applies a simple procedure that gives a straightforward
answer. The disadvantage, of course, is the necessity of specifying a1 and a2.

The weights a1 and a2 must accomplish two tasks. First, they must standardize
the outcomes somehow so that they can be made comparable even if they were
originally on two different and incompatible scales of measurement. Second, they
must express whether, and to what extent, one outcome is more or less important to
the decision-maker.

To see the importance of standardization, consider the simplest approach to
determining the weights: automatically making them equal (i.e., a1 = a2 = 1). In
the example in Table 5, this approach would be illogical because the two outcomes
are not on the same scale of measurement: one is in calories and the other is in
minutes, and there is no meaningful way to add calories to minutes. Intervention A
(300 + 20 = 320 points) appears to win over Intervention B (200 + 30 = 230
points), but only because of an arbitrary difference in scale of measurement. If
activity had been measured in seconds, Intervention B would have won. It is
necessary, therefore, to standardize the endpoints somehow. One option would be
to divide each by its estimated standard deviation, although this arguably gives a
disadvantage to outcomes that are more dispersed or harder to measure precisely.
Another would be to scale each from 0 for the worst possible value on each outcome
to 1 for the best. Defining the worst and best levels is not always possible, but when
it is feasible, it can add flexibility to the analysis (see the discussion of additive
versus multiplicative weighting in Chapman et al., 2014).
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As important as standardization is, it is not the only function of the weights,
because the variability or spread of a variable does not in itself express the practical
worth of changing the variable. Even if the outcomes are expressed on the same
scale, they might not be of equal interest: as an extreme example, risk of becoming
infected with the common cold virus and risk of becoming infected with HIV can
both be expressed as percentages or odds ratios. Thus, the choice to give both
variables equal weight after standardization will sometimes be too simplistic.

Because the weight indicates not only statistical variability but also importance
to the decision-maker, the optimization of a weighted combination of multiple
different outcomes is essentially cost-benefit analysis. In this simple example, if
being infected with HIV is considered to be $1,000,000 worth of undesirability, and
being infected with a common cold is considered to be $100 worth of undesirability,
then it would be rational to spend 10,000 times as much to prevent an HIV infection
as to prevent a common cold. The difficulty, of course, is not in the math but in
finding a rational way to measure the desirability or undesirability of outcomes on a
common scale; methods for doing so are discussed in Messonier and Meltzer (2003).

6.3 Using Weights from a Formula or Model to Construct
a New Outcome Variable

In some cases, there is a somewhat less subjective way to set the weights. As a
simple example, a researcher might translate daily activity increase into calories.
If the added activities burn an average of 240 kcal per hour (i.e., 4 per minute),
the researcher could set a1 = 1 and a2 = 4. Then Intervention A will result in a
total reduction of 300 + (4 × 20) = 380 calories per day, and Intervention B will
result in a total reduction of 200 + (4 × 30) = 320 calories per day. From this
perspective, Intervention A may be judged to be superior. This approach has at least
the appearance of objectivity but still involves some risk of oversimplification. For
example, exercise has other benefits besides burning calories (e.g., it may improve
mood and attention), and these benefits are not being taken into account.

A more ambitious approach would be to weight both outcomes according to their
predicted contribution to a later health outcome, based on a predictive model. This
might involve using information from past literature to predict an outcome that was
not measured during the duration of the study. For example, the investigator may
have a predictive model that can estimate the 5-year risk of heart disease given the
calorie intake and daily exercise estimates obtained from the study. Thus, if the
overall goal is to reduce heart disease, the constructed variable of heart disease
risk can be substituted for the two observed outcomes. Now there is only one
effectiveness variable (i.e., estimated heart disease risk), and whichever intervention
does a better job at improving it can therefore be considered the most effective
intervention. Of course, this also involves making assumptions and simplifications.
First, if the study used a 3-month follow-up to calculate 5-year risk, then the dubious
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assumption is being made that behavior will remain constant over time. If it were
feasible, it might be more defensible to have a longer follow-up and either actually
observe whether heart disease occurs or not or at least do a more comprehensive
assessment of risk. Second, there are many different constructed outcomes that
could be chosen (e.g., risk of diabetes, cancer, depression, etc.), so an argument
would need to be made for why only heart disease is being considered.

Another type of constructed outcome would combine multiple potential health
conditions. For instance, the outcome might be death by any cause (whether
predicted using a model or observed at a follow-up). However, even this may not
be a full use of all of the information available. First, statistical power and precision
for an analysis with death as an outcome may sometimes be very limited, due to
the rare and binary nature of the response. Second, there are many health and social
conditions that seldom directly cause death but do cause suffering and disability, and
a truly comprehensive assessment would arguably take these into account somehow.

6.4 Quality-Adjusted Life-Years Are a Special Constructed
Variable

Because it is important both to save lives and to reduce suffering during life, cost-
effectiveness and cost-benefit analyses in medical contexts often employ the idea of
a quality-adjusted life-year (QALY). QALYs are an attempt to provide a combined
measure of life and health. A treatment that provides an extra year of fully healthy
life is considered to be worth more QALYs than a treatment that provides an extra
year of life but with serious remaining mobility restrictions or pain. QALYs are a
basic tool in many effectiveness and cost-effectiveness studies. Both the advantage
and the difficulty in using QALYs are that they require that multiple aspects of
life functioning and experience be considered together, not just one objectively
observable outcome such as weight loss or smoking cessation. This requires setting
numerical values on human experiences, a form of cost-benefit analysis. For
instance, most people might intuitively agree that deafness is worse than acne but
not as bad as death; but a quality-of-life scale requires actually assigning numbers to
the undesirability of each. Considerable research has been done on using patients’
reported preferences to create quality-of-life ratings (see Dasbach & Teutsch, 2003;
National Academies, 2016; Petrillo & Cairns, 2008; Ramsey et al., 2005), but it is
still a difficult and controversial endeavor, in part because it is difficult to take into
account the fact that judgments may differ by person (see Holmes, 2013; Smith,
1987). However, QALYs are often used in comparative effectiveness and health
economics (e.g., Li, Zhang, Barker, Chowdhury, & Zhang, 2010) because of their
ability to incorporate many outcomes into a single measure for decision-making
purposes. A PubMed search for “qalys or ‘quality adjusted life years’” conducted on
June 9, 2016, resulted in 11,624 articles. Nonetheless, QALYs will not be relevant
or helpful to all researchers using MOST. Researchers in education or in primary
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prevention may not have enough data to link their observable outcomes (such as
short-term behavior changes) to disease states or may be interested in aspects of
life functioning other than health per se (e.g., school performance). Thus, QALYs
are certainly not the only valid form of weighted effectiveness measure for cost-
effectiveness or cost-benefit analyses. Furthermore, in some situations, it will not be
possible to find a weighting scheme that fully reflects the priorities and beliefs of all
stakeholders. This possibility is described further in the following subsection:

6.5 When Value Judgments Are Unavoidable, There May Be
No Consensus on Weights

For some researchers who are comparing different candidate interventions, it will
not make much practical difference whether the outcome is deaths prevented, years
saved, or QALYs gained. For example, consider a school-based intervention to
prevent the onset of tobacco use. In this example, all of the participants are young
and are unlikely to develop severe consequences of tobacco use until many years
after the end of the study. Thus, using any of these three overall health endpoints
would require long-term predictions about how many students given a particular
intervention would go on to develop smoking-related lung cancer, heart disease, or
emphysema much later in life. Researchers might disagree on how best to predict
such outcomes, even in the unlikely case in which they could agree upon how to
weight them.

Alternatively, different stakeholders on the research team might have different
ideas about what outcomes are important. One researcher might be interested in
preventing smoking altogether (so that 1 cigarette per week is practically as bad
as 50), while another is content with harm reduction (so that 1 is worse than none
but better than 50).

For these reasons, the outcomes observed in a study might have to be treated
as “apples and oranges”: they are each important, but it is too difficult to get a
consensus on which is more important or by how much. This suggests another
approach to considering multiple outcomes, which is to abandon the search for a
single best choice and instead simply provide a short list of reasonable choices.

The Pareto frontier (i.e., the set of non-dominated options) provides a conceptual
and methodological framework for handling these situations (Chapman et al., 2014).
As discussed earlier, a dominated option is one that is less effective in terms of
one dimension of effectiveness than some other option, but not more effective on
any other dimension of effectiveness. For example, in Table 5, row A does not
dominate row B, and row B does not dominate row A, because they both have the
advantage in one dimension of effectiveness or the other. They each dominate the
control condition, because they each outperform it on both dimensions. However,
the effectiveness of A cannot be directly compared with that of B without first
making one’s priorities clearer (e.g., setting weights). That is, condition A is better
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Table 6 Effectiveness of two hypothetical interventions on two outcomes

Intervention
Daily calorie
reduction (kcal)

Daily activity
increase (minutes)

Cost to administer
(hundreds of dollars)

A 300 20 10
B 200 30 20
Control 10 2 5

than the control condition, and condition B is better than the control condition, but
it is not possible to clearly state whether condition A is better, worse, or equal to B.
This is an example of what mathematicians sometimes call a semiorder or partial
ordering (see Luce, 1956): a set of objects, such that some pairs in the set can be
put in order to determine which are greater or less, but other pairs in the set cannot
necessarily be unambiguously compared.

Recall that in the examples shown in Figs. 4 and 6, with a single effectiveness
measure and a single cost measure, one can first eliminate those options that are
dominated by other options and then simply report the cost and effectiveness of the
remaining options in the form of a table or plot. The job of choosing the desired
tradeoff between cost and effectiveness is deferred to the final decision-maker (e.g.,
a physician, school superintendent, or health management organization director).

As noted earlier, effectiveness and cost can simply be seen as two different
outcomes, the latter of which happens to be reverse-coded. Thus, the example in
Table 5 is not really different from the preceding examples. In particular, the first
two rows of Table 5 could be seen as a Pareto frontier, with the last row being
dominated.

As mentioned earlier, one could combine a cost measure with two or more
effectiveness measures (as in Table 5) or combine two or more cost measures (e.g.,
financial cost and participant burden) with one or more effectiveness measures. It
would become more difficult to draw a plot like Fig. 4 or 6 because such a plot
would now have to be three-dimensional. However, one could still provide a table.
For example, Table 6 is an expanded version of Table 5, including a hypothetical
cost measure.

6.6 Advantages and Disadvantages of Weights

A philosophical advantage to a partial ordering approach is that it recognizes human
subjectivity and does not pretend that a single answer will be best for everyone. Of
course, this is also its disadvantage: it does not provide a single answer, and the work
of making the final decision is left to someone in the future. The problem becomes
more complex as more outcomes (i.e., more dimensions of effectiveness and/or cost)
are considered. For example, in Table 6, because of the addition of an extra column,
now none of the rows are dominated, not even the control condition (because,
although it is less effective on both outcome measures, it still has the advantage
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of being less expensive). A cynical assessment would be that nothing has been
accomplished by such a study; the researcher began by being undecided between
three options and ends in exactly the same place. However, a fairer assessment
would be that much information has been gained but that different readers could
prioritize this information differently in making their own choices. Graphical and
statistical approaches are also available for exploring a set of choices further, such
as by describing the different sets of weights that would be required in order to make
one option emerge as the best (Chapman et al., 2014; Lizotte, Bowling, & Murphy,
2012).

In summary, some kind of prioritization, usually through weighting, is unavoid-
able in order to come to an unambiguous single answer. However, in the absence
of such prioritization, one can still report some information in terms of a list of
non-dominated conditions.

6.7 Constraints Instead of Weights

There are also other options besides weights for expressing one’s priorities.
One would be to try to optimize the effectiveness upon one outcome under the
constraint that the effectiveness upon each of the other outcomes is in some region
deemed acceptable. This is mathematically the same thing as maximizing a single
effectiveness variable subject to a cost constraint. The difference is that instead of
keeping cost below some Cmax, the constraint would be to keep the effectiveness on
the constrained outcome above some Emin. In this case, both outcomes are treated
as important, but in different ways; one of them is considered a variable which must
be kept above a certain level, while the other is considered a variable which should
be made as high as possible but does not have an absolute required cutoff.

6.8 Importance of Multiple Outcomes

Multiple outcomes of interest are common in real-world empirical studies, and
multiple goals or criteria to be optimized are common in real-world decisions. One
general conclusion, then, is that the answer depends on the question: the optimal
choice depends on the definition of what is to be optimized. Deciding exactly what
to optimize is often at least as difficult as deciding how to optimize it. This is
especially evident when deciding how to divide very scarce and very necessary
resources. As a very extreme example, consider a famous controversy in medical
ethics: how to determine the recipients of donated organs (discussed by American
Medical Association, 1995; Courtney & Maxwell, 2009; Hoffmaster & Hooker,
2013, among others). From the perspective of maximizing population health in
life-years (whether or not quality-adjusted), young and otherwise healthy people
ought to be given priority over people who would not live very long even if they do
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receive the organ. However, from the perspective of human equality, every patient
ought to have an equal chance of receiving what they need to survive and should
not be discriminated against on the basis of age or preexisting health conditions.
If the optimization criterion could be unambiguously specified as either equality or
effectiveness, then it would be easy to apply empirical data to compare different
distribution strategies. However, in practice decision-makers need either to choose
between one goal or the other or else find a workable way of compromising between
them without perfectly optimizing either, and there is no numerical way to take the
need for subjective human judgment out of this question.

The phenomenon of multiple outcomes can arise in unexpected ways in many
contexts, even when the primary outcome may at first seem clear. For example,
Laber et al. (2014) considered the problem of choosing a dosage of medication that
balanced symptom relief with side effects. The side effects could be thought of as
a second outcome, or equivalently as a non-monetary cost. Different patients might
have different preferences for symptom relief versus side effect avoidance.

In summary, comparing candidate interventions across multiple outcomes
involves an extension of the ideas and methods proposed earlier for cost-
effectiveness. In fact, a study of cost and a single dimension of effectiveness can be
reconceptualized as a special case of a study of two outcomes. Determining which
intervention is best requires prioritizing the different outcomes—either by setting
weights for each outcome or by designating one outcome to be optimized subject to
a constraint on the other outcome. However, if no consensus can be reached about
how to set the priorities, the researcher can still remove obviously inferior choices
and provide a shortened list of best candidates to decision-makers. Let us now
consider how these ideas apply to analysis of factorial experiments specifically.

6.9 Implementation in Factorial Designs and MOST

How does this extend to analyzing the results of factorial experiments in the MOST
framework? Presumably the basic process described earlier in the context of the
simulated 25 factorial experiment could be followed: obtain estimates of each
dimension of effectiveness and cost for each cell, and use these to choose a cell. As
before, the estimates should come from some kind of parsimonious model that takes
advantage of the factorial structure by considering only significant main effects and
significant interactions, rather than comparing the empirical means of each cell as
the effectiveness estimates. It is not necessary that the same predictive model be
used for each outcome. That is, a particular factor or interaction could be significant
in predicting one outcome but not significant in predicting another. (It might be
possible to borrow information across the different predictive models, but this has
not yet been fully explored.) Once the predictive models are constructed, the non-
dominated conditions can be reported in a table such as Table 6.

If there are many cells and several outcomes of interest, it might be difficult to
weed out all of the dominated conditions manually. However, this can be done easily
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with a computer. Compare each condition c to each other condition c′, in order. If
c is equal to or worse than c′ on every outcome and is actually worse on at least
one outcome, then c is dominated (i.e., it can be ruled out as inferior to some other
choice). Otherwise, c is not dominated (i.e., it is a viable choice).

These comparisons would presumably be made using the estimates from the
parsimonious model, but would not necessarily have to be treated as pairwise tests
for significant mean differences. That is, just as before, a researcher might have to
give a tentative recommendation in favor of c′ even if it is not, strictly speaking,
statistically significantly better than c. This is particularly likely to be the case
in the optimization phase of MOST, because a condition must usually be chosen
without having adequate power for all pairwise comparisons. Of course, even though
a decision might have to be made, it is still healthy to remember that the uncertainty
exists. That is, the decision to choose cell c′ in that situation should not necessarily
be interpreted as a finding that cell c′ has been scientifically demonstrated to be
definitively superior. Rather, it would simply be a case of doing the best one can
with the information available while acknowledging that one’s knowledge is not
perfectly precise.

7 Discussion and Open Questions

This chapter has presented a framework, based on existing literature in engineering
and health economics, for making decisions about cost-effectiveness for behavioral
interventions using a factorial experiment. This is especially relevant for investi-
gators planning a MOST investigation with cost-effectiveness as the optimization
criterion, although many of the ideas are relevant in other research settings as well.
Unfortunately, it is impossible at this time to provide a “cookbook” of procedures
or a consensus on correct interpretations. This is partly because uncertainty and
subjectivity are inextricably part of the decision-making process, and partly because
little methodological research has been done on how to combine the factorial
experiment literature with the cost-effectiveness analysis literature.

A recurring difficulty faced in this chapter was the necessity of choosing a
condition (a cell in the factorial experiment) as most cost-effective, despite having
very limited power for pairwise comparisons of cells. The recommended approach
was to rely on effectiveness estimates from a parsimonious model containing only
the significant main effects and interactions. This is not the only possible solution;
another is Bayesian analysis, particularly with model averaging. This possibility is
briefly described further at the end of this chapter.

Several open questions were encountered but not resolved in this chapter. Some
of the most prominent are listed below. They may provide useful starting points to
future methodological research.
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7.1 How Should These Methods Be Adapted to Diverse
Real-World Settings?

This chapter has not distinguished between efficacy (the usefulness of an inter-
vention estimated under optimal conditions in a well-funded, well-controlled
academic study) and effectiveness (the usefulness of an intervention estimated in
realistic field conditions; see, e.g., Singal, Higgins, & Waljee, 2014). Ideally, cost-
effectiveness decisions should be based on estimates of real-world effectiveness and
cost (Drummond et al., 2005). However, these might not always be available. This
chapter has also not focused on the estimation of mean cost in the realistic case in
which treatment costs vary from participant to participant. For more information
on such analyses, see Haddix et al. (2003), Petrou and Gray (2011), and Stevens et
al. (2003). This chapter has also not considered how effectiveness (and thus cost-
effectiveness) depends on personal characteristics (moderators; see, e.g., Simon &
Perlis, 2010). The questions of what works best on average and of what works best
for different individuals are distinct, but each line of research may provide relevant
information for the other if understood correctly (see Garber & Tunis, 2009). Further
research is also needed on how best to estimate cost from a factorial experiment, in
which factors may interact not only in their effect on the outcome variable but also
in their effect on cost (e.g., due to potentially overlapping overhead costs).

7.2 How and When Should Equity or Social Concerns
Be Addressed?

A possible limitation of cost-effectiveness analysis is that it does not directly take
into account equity, that is, fairness (National Academies, 2016; Smith, 1987).
Some populations (e.g., very elderly people, people who have severe disabilities,
or people who are addicted to drugs) may be more difficult to help than others,
making interventions to help them appear to be less cost-effective than interventions
for other populations; but this does not mean that they are less worthwhile. For
reasons like this, it is often recommended that cost-effectiveness be considered
together with other criteria, rather than on its own, when making funding decisions
(Carroll, 2014; Drummond et al., 2005; National Academies, 2016). It has been
argued by proponents of cost-benefit analysis that moral ideas such as equity can be
incorporated by, for example, treating justice versus injustice as another category of
benefit or cost (see, e.g., Zerbe, 2004); however, this question is beyond the scope
of this chapter. Many empirical researchers, who will already have a specific target
population in mind and are not entrusted with society-wide fiscal decisions, may not
have to specifically address equity in their studies. However, exploratory analyses to
compare cost-effectiveness among different subgroups in a sample (at least gender
or broad age categories) might be worthwhile if sample size allows.
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7.3 How Can Sample Size and Power Planning Be Done
for Comparisons of Fitted Values?

Perhaps the largest limitation of the current chapter is that it is currently not
possible to offer power or sample size guidance for cost-effectiveness comparisons
in a factorial experiment. Sample size planning for factorial experiments is usually
presented in terms of power for detecting statistically significant main effects and
interactions. It is not immediately clear how this translates into the probability of
finding the best or near-best cell, and more research is needed (the recent work of
Ertefaie et al., 2015, may be a helpful starting point). Existing resources, usually in
one-way ANOVA, suggest that the needed sample size depends on one’s goal and
assumptions (see, e.g., Bechhofer et al., 1995; Gupta & Hsu, 1978). A researcher
who wishes to identify the best-performing cell with high confidence will need a
large sample, especially if it is assumed that some cells might be very close to
each other in importance. Therefore, the analyses described in this chapter might
be considered more exploratory than confirmatory and aimed at finding a good
intervention rather than the best intervention possible. This is relevant whether one
is studying cost-effectiveness or simply effectiveness. It is sometimes argued in the
literature (e.g., Clegg, Scott, Sidhu, Hewitson, & Waugh, 2001) that, where feasible,
it would be preferable to base cost-effectiveness decisions on multiple studies rather
than single ones.

7.4 What if the Factors Are Continuous Instead
of Categorical?

This chapter only considers categorical (in fact, dichotomous) factors, rather than
continuous ones. Factors with more than two categories are not very different
conceptually, although they define an even larger number of conditions and have
implications for statistical power and precision. Continuous numerical factors (such
as the dose provided of various therapeutic agents) can also be involved in attempts
to optimize an intervention or process for effectiveness or for cost-effectiveness,
and they need to be treated in a different way. This often involves response
surface designs and related analyses (see, e.g., Dillon, 1966; Dunn, 2016; Myers
& Montgomery, 1995; Wu & Hamada, 2009). Dong et al. (2011) describe such an
analysis in an agricultural study with multiple factors and outcomes. This author is
unaware of any current examples in the social or behavioral sciences. However,
continuous factors in the form of dosage levels are found in medical research,
including some work that has focused on studying tradeoffs between multiple
outcomes (such as effectiveness versus toxicity of cancer medications, with the latter
being a kind of cost; see literature review in Thall & Cook, 2004).
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7.5 What if the Outcomes Are Binary Rather than
Continuous?

Consider a situation in which a researcher has a choice between multiple variables
that are conceptually related. For example, the ultimate goal in a smoking cessation
study is total cessation with no relapse. However, even a reduction in the number
of cigarettes smoked would still be of some potential health value. Such reduction
might be easier for the participants to achieve than total abstinence, as well as
perhaps providing more statistical power because it is no longer a binary outcome.
Therefore, it might be useful to consider both binary smoking status and daily
cigarette count as two separate outcomes in a cost-effectiveness analysis, even
though they are obviously related. How best to do this is a question for future
methodological research. Also, it may be important not to take this idea too far.
For example, a researcher might try to get by with a smaller sample size by simply
establishing that a treatment reduces craving, rather than that it increases quit rate.
Affecting a short-term predictor such as craving might be easier than preventing
relapse itself. However, subjective craving in itself might not be enough to do a
helpful cost-effectiveness analysis, if only because insurers’ willingness-to-pay for
simply reducing a subjective feeling might be low unless behavior change could also
be demonstrated. If the actual outcome of interest is binary, then it is probably better
to work with the binary outcome, even though the sample size required might be
rather high. Drummond and colleagues (2005) further discuss the issues of handling
intermediate endpoints and modeling their relationship to future endpoints.

7.6 What if Retention Varies by Condition or Is an Outcome
of Interest in Its Own Right?

The idea of a Pareto frontier or of tradeoffs between multiple outcomes may
provide a useful alternative way of looking at certain situations that appear at
first to involve only a single outcome. For example, in studies involving cessation
of smoking or other drug use, participants sometimes drop out of both treatment
and the study before the scheduled end of treatment. Simply removing these
individuals listwise from the analysis would likely give an overly optimistic estimate
of remission rates, because relapse might be a cause or consequence of leaving
the study. Different methods for imputing the final use state have been compared
(Hedeker, Mermelstein, & Demirtas, 2007; Jackson, White, Mason, & Sutton,
2014). However, as an adjunct to these methods in analyzing this kind of data, it
might be useful to consider retention in treatment and final cessation as two different
outcomes of interest, rather than the former being simply a nuisance in analyzing
the latter.

Admittedly, retention as a goal in itself is usually less impactful than cessation.
After all, simply keeping a participant busy in a program that is not benefitting
him or her is likely to be useless from the viewpoint of effectiveness, and actually
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deleterious from the viewpoint of cost-effectiveness. Thus, from the perspective
of evaluating the effectiveness of an existing intervention program, failure is
failure, and it does not matter whether the addict relapses while in treatment or
instead leaves treatment early and then relapses. However, from the perspective of
understanding how the intervention works or fails and how it can be improved, the
two ways of relapsing are different. For example, a very intrusive and restrictive
treatment program might have higher dropout rates due to burden, but also higher
eventual success rates for those who do not drop out, relative to a less rigorous
program. Assuming that this finding was not simply due to selection bias (e.g.,
the rigor of the program merely causes unmotivated or unprepared individuals to
leave, without actually improving the outcomes of the individuals who remain), it
would provide some interesting information for a conclusion-priority paper. It might
also provide, in an exploratory sense, ideas for future decision-priority research.
For example, retention information might be useful in deciding whether a given
intervention can best be improved by becoming less intensive or more intensive. In
a factorial context, if it is found that one treatment component increases dropout
but improves success rate for those who do not drop out, then this may suggest to
a researcher that it needs to be augmented with a component aimed specifically at
improving retention. There might also be psychological and medical situations in
which program retention has some benefits even if patients do not recover on the
primary endpoint; for example, being in the program might have some secondary
benefit such as social support, monitoring, and the potential for crisis intervention

7.7 How Can Bayesian Methods Be Used to Help Estimate Cell
Effectiveness or to Help Make Decisions?

Recall that in order to construct the parsimonious model for estimating the
effectiveness of each cell in a factorial experiment, many interactions had to be
tested. This created many opportunities for Type I or Type II errors, any of which
could change the estimates, the standard errors, and the conclusions. An alternative
option would be to use a shrinkage approach, whether informative Bayesian (Simon
& Freedman, 1997), empirical Bayesian (Chen & Meeter, 1999), or frequentist
(Li & Lin, 2009), perhaps in the form of model averaging (Claeskens & Hjort,
2008), in order to allow certain interactions to be included in a partial or restricted
way rather than entirely in or entirely out. This might provide a more stable
and interpretable answer. Instead of one supposedly best model arrived at after a
series of error-prone dichotomous decisions, it is possible to work with a weighted
combination of multiple possible models with differing posterior probabilities.
Bayesian theory has natural connections with decision theory (see, e.g., Rice, 1995,
for an introduction), especially because it can be used to estimate the posterior risk
of each possible intervention, a measure which can combine cost information with
the distribution of the expected outcome variable. Decision theory is considered
relevant to engineering and design optimization in many fields (e.g., Davis, Kisiel, &
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Duckstein, 1972). Some researchers have made suggestions about how to apply it to
RCTs (Lindley, 1998; Longford, 2016; Manski & Tetenov, 2016), and presumably it
could be extended to factorial experiments. However, this chapter has focused on the
use of significance tests to create a parsimonious model, both because that approach
will be somewhat familiar for many social and behavioral scientists and because
it resembles the approaches used in some of the past published methodological
research on optimization using factorial experiments (see Collins et al., 2014;
Harrington, 1981; Taneja & Dudewicz, 1987). Readers may refer to Simon and
Freedman (1997) for a discussion of potential benefits of using Bayesian shrinkage
instead of dichotomous significance tests; Wu and Hamada (2009) also give a brief
description of an approach to Bayesian model selection.

8 Conclusion

In conclusion, cost-effectiveness analyses of data from a factorial optimization trial
can involve complexities and difficult subjective decisions but can provide a great
deal of information. Researchers and practitioners regularly make decisions about
what can be done with limited time and money, and these decisions should be made
in a careful, mindful, and data-driven way. For this reason, further research on how
to integrate data from factorial experiments into effectiveness and cost-effectiveness
decisions is of great importance.
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Investigating an Intervention’s Causal
Story: Mediation Analysis Using
a Factorial Experiment and Multiple
Mediators

Rachel A. Smith, Donna L. Coffman, and Xun Zhu

Abstract Behavioral, biobehavioral, and biomedical interventions presume a
causal story. This causal story is used to create a conceptual model of why the
intervention caused the observed outcome. Methods are needed to investigate the
extent to which changes in the outcome are due to exposure to an intervention.
This chapter describes the use of a factorial experiment in which an intervention’s
components are varied, the mediating mechanisms and outcome are measured,
and then an analysis is performed to investigate an intervention’s causal story.
To illustrate the procedures, a case study examines an intervention guided by
the model of stigma communication (MSC; Smith, Commun. Theory 17:462–
485, 2007; Stigma communication and health. In T. L. Thompson, R. Parrott, &
J. Nussbaum (Eds.), Handbook of health communication (2nd ed., pp. 455–468).
London, UK: Taylor & Francis, 2011; Commun. Monogr. 79:522–538, 2012). In the
case study, we show how to conduct a mediation analysis when four components of
an intervention have been manipulated in a 24 factorial experiment (N = 299), and,
in addition, four hypothesized mediators have been measured. We reflect on how the
results provide more precise conclusions about the theory guiding the intervention
and opportunities for refinement.
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1 Introduction

Behavioral, biobehavioral, and biomedical interventions (hereafter referred to pri-
marily as interventions) presume a causal story: the outcome of interest changes as
a result of exposure to an intervention. Put differently, exposure to the intervention
causes the exposed audience to think, feel, or act differently than if they had not been
exposed to the intervention.1 An important corollary is that the use of an intervention
presumes that we know why our intervention causes an observed change in the
outcome.

As pointed out in Chap. 1 of the companion volume (Collins, 2018), the “why”
may be built from various sources, such as theory, clinical experience, and practical
experience; however, many interventions use theory to design and evaluate their
interventions because theory provides “guides to understanding and predicting
events in the world about them” (Jaccard & Jaccoby, 2010, p. 3). With respect to
the multiphase optimization strategy (MOST), theory provides useful guidance for
the preparation phase (see Chap. 2 of the companion volume, Collins, 2018, for
more details): what should be included in an intervention, what outcomes can be
expected, and why should the intervention produce the expected outcomes (Glanz
& Bishop, 2010). For example, a theory may suggest that exposing people to health
information describing the risk of contracting an antibiotic-resistant infection will
cause them to wash their hands more often.

Often, theory provides more complicated stories, in which exposure to an
intervention causes an outcome to change because of an intermediate psychological
or physiological process. For example, the theory may state that exposing people to
health information about their risk causes them to become afraid, and it is fear that
causes people to wash their hands more often.

Some scholars (e.g., Glanz & Bishop, 2010) argue that an intervention is effective
to the extent that the rationale (from theory and any other source) guiding the
intervention correctly and sufficiently identifies what to include in the intervention,
what outcomes to expect from exposure to it, and the causal process(es) by which
the exposure results in the expected outcomes. One way to detail an intervention’s
causal story is to create a conceptual model as described in Chaps. 1 and 2 in the
companion volume (Collins, 2018; also, see Chap. 1 in this volume).

A robust test of the intervention’s causal story, including mediating mechanisms,
has important implications for intervention science. If the intervention produces
expected changes in an outcome, but the causal model for why the intervention
should work is not supported, then intervention scientists have the opportunity to
pause and investigate why an intervention is causing an effect on the outcome.
There are many reasons why the causal story may not be supported. The theoretical
rationale may not generalize to the intervention’s context of interest. The theory may

1This story assumes that the intervention’s outcome can change. For example, if an intervention’s
goal is to improve how often people wash their hands, then handwashing rates must be able to
change.
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be flawed and need refinement before it is applied in an intervention (Baranowski,
Anderson, & Carmack, 1998). The theory may be valid and reasonable for the con-
text of interest, but the abstract theoretical concepts may not have been instantiated
well in the intervention, which requires a return to the preparation phase of MOST.
Investigating these types of failures allows intervention scientists to advance theory,
which, in turn, offers useful guidance for future practice. Regardless of the ultimate
reasons for failure of an intervention’s causal model, practically, it is better to know
if an intervention may be making change for the wrong reasons before it is scaled up
and distributed widely. The current state of the art, however, typically approaches
effectiveness by demonstrating that an intervention has produced measurable change
on a predefined outcome relative to a control group (Michie & Abraham, 2004),
without demonstrating that the claims of mediating processes have been supported
(Baranowski et al., 1998; Noar, 2007).

Evaluating the causal story of an intervention also provides an opportunity to
investigate unintended iatrogenic effects. Critics may argue that an existing interven-
tion causes an outcome to get worse or causes a different or an unintended negative
outcome to occur. The effectiveness of an intervention is sometimes considered
as “the level of good over harm that a program achieves under typical real-world
conditions” (Flay, 1986, p. 451). A full investigation needs to demonstrate that the
intervention does more good than harm in the targeted population and to reveal any
paths through which unintended effects arise (Cho & Salmon, 2007; Flay, 1986).
Existing theory may provide guidance on why exposure to a particular kind of
intervention may result in iatrogenic effects, such as creating a health stigma. For
example, a theory may explain why health-risk information written in a particular
way causes the exposed audience to stigmatize those living with an antibiotic-
resistant infection, instead of or in addition to causing them to wash their hands
more.

Different methods may be needed for different purposes. One method might
be used to show that an intervention has the intrinsic qualities it is claimed to
possess (e.g., the intervention included scary images and content); another method
might show that exposure to the intervention causes the outcome as predicted (e.g.,
exposure to intervention created fear, which increased handwashing); and a third
method might investigate whether changes in the outcome are caused by exposure
to the intervention (e.g., versus other alternative explanations). Previous research has
focused on issues related to the intrinsic qualities of an intervention (e.g., O’Keefe,
2003). This chapter focuses on methods to investigate the causal story of how the
intervention causes the outcome to change.

The methods needed to investigate the extent to which changes in the outcome
are due to exposure to an intervention are not self-evident or trivial. In this chapter,
we explore mediation analysis combined with a pretest/posttest experimental design
as a powerful way to make causal inferences. For intervention scientists using
MOST, there is also interest in optimizing the intervention. In many cases, we
can decompose an intervention into multiple components. An intervention may
include multiple components for two reasons. First, investigators may have included
multiple components to trigger one intermediary psychological or physiological
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process, which ultimately shapes the outcome of interest. For example, to increase
perceived risk, investigators may include a frightening image, content about high
rates of infection, and content about possible morbidity and mortality resulting from
having an antibiotic-resistant infection in health information. Second, investigators
may use different components to trigger different intermediary psychological or
physiological processes that affect the outcome. For example, investigators may
include one component to increase perceived risk of getting an antibiotic-resistant
infection and a different component to increase perceived efficacy about a recom-
mended strategy (e.g., handwashing) to avoid getting an infection. As described
in MOST, decomposing an intervention into components makes it possible to
use factorial experiments to investigate the components’ relative effectiveness and
interactions between components.

A holistic test of the intervention’s causal model, then, can be carried out by
conducting a factorial experiment of the components and then investigating the
resulting effects with a mediation analysis. Although combining the benefits of
factorial experiments with those of mediation analysis is intuitive, there currently
is little guidance in the methodological literature about how it should be conducted.
The purpose of this chapter is to discuss how to conduct a mediation analysis
when several components of an intervention have been manipulated in a factorial
experiment and several hypothesized mediators have been measured. This kind of
procedure can be used to investigate whether an invention works as we expect and
to investigate whether it causes unintended consequences. We will illustrate the
procedures with a case study of an unintended consequence: a health stigma created
as a result of a communication intervention. In this chapter, we review causal models
and mediation analysis, review factorial designs, and then present an illustration of
our suggested procedures with the case study.

1.1 Causal Models and Mediation Analysis

Mediation analysis is a set of statistical procedures used to assess how well empirical
data support a causal model that involves mediation (MacKinnon, 2008). In the
simplest case, mediation analysis involves one independent variable (e.g., the
intervention), one mediating variable, and one outcome variable. Figure 1 shows the
relations among these three variables. As Fig. 1 shows, exposure to the intervention
(the independent variable) causes change in a mediator (a path) that, in turn, causes
change in the outcome (b path). The path represented by c′ is the effect of the
intervention on the outcome that does not go through the mediator.

Estimating the paths in Fig. 1 enables researchers to address the following
questions about an intervention’s effects: (1) Did the mediator influence the outcome
as hypothesized (b path)? (2) Did the intervention affect the mediator (a path)?
(3) How much of the relation between the intervention and the outcome was not
explained by the mediator (c′ path)? Addressing these three questions provides a
detailed assessment of which parts of a causal model are supported by the empirical
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Fig. 1 (a, b) The top figure shows the basic mediation model, with one intervention, one mediator,
and one outcome. The bottom figure shows a mediation model with one intervention, two
mediators, and one outcome. Arrows represent relations among variables: a represents relation
of the intervention to the mediator (associated with action theory, Chen, 1990; MacKinnon et
al., 2002); b represents relation of the mediator to the outcome adjusted for the intervention
(associated with conceptual theory, Chen, 1990; MacKinnon et al., 2002); and c′ represents the
relation of the intervention to the outcome adjusted for the mediator. The symbol e1 (and e3 in
b) represents residuals in the mediator, and e2 represents residuals in the outcome variable. The
mediator and outcome are presented in an oval to suggest that they may be latent variables, whereas
the intervention may be observed

data, which parts are not supported, and where the causal model may be incomplete.
For example, a very small direct effect (c′ path) would suggest that the proposed
mediating psychological or physiological processes are sufficient to explain the
relation between exposure to the intervention and changes in the outcome of interest,
whereas a large direct effect would suggest that additional mediators are needed to
explain the observed relation and/or the intervention directly affects the outcome.

One approach to considering mediation has been discussed in reference to
conceptual and action theories (Chen, 1990; MacKinnon, Taborga, & Morgan-
Lopez, 2002). The focus is first on the b path, that is, on identifying mediators
hypothesized to be causally related to the outcome (MacKinnon et al., 2002). This
is referred to as the conceptual theory (Chen, 1990). The second focus is to create an
intervention that causes change in the mediator (MacKinnon et al., 2002), referred
to as action theory (Chen, 1990).



274 R. A. Smith et al.

1.2 Multiple Mediators

An intervention may affect several mediators, which may have different influences
on the outcome. For example, the desired effect on the outcome could be obtained
through some mediators, and an effect in the opposite direction could be obtained
through others.

There are currently two options for research scenarios involving an intervention
and multiple mediators. The first option, which is by far the more common, is
to refrain from breaking the intervention into components, instead manipulating
a single independent variable with levels representing exposure to the entire
intervention package (see Chap. 1 in the companion volume) or no exposure to
the intervention package. In this approach an experiment would be conducted
with random assignment to the intervention (or not), and all of the hypothesized
mediators would be measured (MacKinnon et al., 2002). Figure 1b shows the
relations with one intervention package, two mediators, and one outcome.

The results from mediation analyses of such an experiment can show which
mediator is a more powerful predictor of the outcome (by comparing estimates from
the b paths). Thus, the findings can enable researchers to make informed decisions
about the mediators (MacKinnon et al., 2002). If the mediator effects (b paths)
are not significant, but the intervention still influences the outcome (the c′ path),
then attention needs to be paid to uncover an unmeasured mediational process (or
processes; MacKinnon et al., 2002). The findings cannot, however, provide insights
into which specific components of the intervention package caused changes in
which mediators.

1.3 Intervention Packages

Most interventions have multiple “content” components (see Chap. 1 of the
companion volume, which provides a great example of a hypothetical intervention).
This chapter focuses on health information as the intervention, such as information
designed to persuade people to think or feel a certain way about a health topic
(e.g., antibiotic-resistant infections are scary) or to engage in healthy behaviors
(e.g., more handwashing). Health information may be designed with components
composed of verbal (e.g., word and grammar) and nonverbal content (e.g., images,
colors) to evoke the same mechanism. For example, as guided by theories of health-
threat messaging (e.g., extended parallel process model; Witte, 1992), intervention
scientists may include multiple forms of verbal content about the severity of
antibiotic-resistant infections (e.g., morbidity, curability, and mortality) and the
risk of contracting them (e.g., prevalence rates, especially among people similar
to the target audience). They might also include images of infections and maps
of prevalence rates. All of this verbal and nonverbal content instantiates a health-
threat component in the health information, which is predicted to cause fear, which,
in turn, is predicted to motivate people to take action to avoid the health threat
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(Witte, 1992). Indeed, health messages created with this kind of guidance have been
related to a variety of health topics (e.g., gun safety, sexually transmitted infections,
cyberbullying; see Roberto, 2013 for a discussion). What is unclear for any
particular intervention is how many instances of the verbal and nonverbal content
were necessary to trigger the psychological process that induces action. Theories
offer little information about whether more instances of the same kind of content
(more verbal and nonverbal health-threat content) cause health outcomes to occur
more quickly or more dramatically because they create a stronger psychological
or physiological response—or whether there is a maximum amount of repeated
exposure that could be offered before people become desensitized to it.

Clarifying what is needed to achieve a particular goal for a health outcome has
many benefits. It would allow us to more accurately anticipate the effect size of
an intervention as well as the speed at which the effect would occur. Practically,
including more verbal and nonverbal content in an intervention can create greater
demands on readers’ time, attention, and processing, thereby increasing audience’
fatigue toward an intervention (cf. So, Kim, & Cohen, 2017). Each word and
image carry a cost in production (e.g., capturing an image, hiring speakers) and
dissemination (e.g., longer and bigger press releases, brochures, pamphlets, and
posters cost more money).

Clearly articulating the conceptual model for the health information also helps
to refine the intervention’s causal story. As highlighted in Chap. 1, “one component
may be enhanced or undermined by the presence or level of one or more other
components . . . A component may be effective only when certain other components
are included or may be effective unless combined with certain other components” (p.
5). Some theories suggest that the intervention must include multiple components
to create an effect. In health messaging, a theory may posit that multiple kinds
of content are needed to create a particular sort of frame that privileges some
explanations and outcomes over others (e.g., Entman, 1993); and without all of the
content, the frame is not created. Furthermore, it is unclear whether each component
causes an outcome to occur through the same or different mediating mechanisms.
Knowing what parts of an intervention are needed, and in what amounts, has benefits
to optimizing an intervention. It also has benefits for theory development. Through
optimization, for example, we might discover nonlinear relationships in which too
many components trigger a level of the mediating psychological and physiological
mechanism that makes the health outcome worse. Research (e.g., Shen, 2016) has
shown such a nonlinear relationship with fear, where there is a “sweet spot” in which
fear best motivates behavioral action; too much or too little results in less action.

Instead of keeping the intervention package as a whole, researchers can choose to
use a factorial experiment in which components of the intervention are manipulated,
and participants are randomly assigned to a combination of them. The factorial
experiment has several advantages over separate studies varying one component
at a time. First, the factorial experiment treats the components in the intervention
package as parts of a theory, instead of investigating each one in isolation. Jaccard
and Jaccoby (2010) suggest that factorial experiments involving several independent
variables can “make the relationships you have intuitively generated more explicit”
(p. 122). Second, it allows for testing interactions among the intervention’s compo-
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nents, which reveals whether the effect of one component on a mediator or outcome
varies depending on the level of another component. Third, the factorial experiment
requires fewer subjects to maintain a comparable level of statistical power (Collins,
Dziak, & Li, 2009) and thus can be relatively economical.

To summarize this section, mediation analysis is a powerful means by which to
investigate an intervention’s causal story. For an intervention that can be broken into
components, a factorial experiment in which the components are manipulated and
then evaluated with a mediation analysis provides even more powerful insights into
why the intervention works (or does not work). Based on these insights, intervention
scientists are better positioned to make informed decisions about which and how
many components need to be included for the desired outcome to appear.

2 Case Study

The present study tests a potential unintended consequence: whether exposure to
information about a health condition results in stigmatizing people living with
the health condition. This kind of intervention is not uncommon when trying to
inform the public, especially about health crises. For example, the world learned
of the largest outbreak of Ebola in recorded history (Centers for Disease Control
and Prevention [CDC], 2015) from health agencies through their press releases
and interactions with media outlets. Although health agencies (and media outlets)
probably intended to share the outbreak news to inform the public and promote
behaviors to limit the epidemic’s spread, the 2014 Ebola coverage has been
described as stigmatizing (e.g., Cheung, 2015). This critique is not novel: media
coverage has been thought to be responsible for stigmas associated with other
infectious diseases (e.g., Eichelberger, 2007), mental illness (e.g., President’s New
Freedom Commission, 2003), and suicide (e.g., World Health Organization, 2014).

Until the publication of the model of stigma communication (MSC; Smith,
2007, 2011), little attention was paid to explaining why some messages provoke
stigma-related outcomes, but others do not (Corrigan, Powell, & Michaels, 2013;
Pescosolido, Martin, Lang, & Olafsdottir, 2008). This is surprising, because one
claim in stigma research (e.g., Goffman, 1963; Link & Phelan, 2001; Pescosolido
et al., 2008) is that stigmas are communicated to and among community members
so that the public learns to recognize the stigmatized people and to stigmatize them
(Smith, 2007, 2011).

The MSC provides guidance on why writing health information with a stigma
frame (intervention) causes readers to experience cognitions and negative feel-
ings (mediators) that increase the message recipients’ stigmatization of persons
infected with the contagious disease (outcome). Frames are considered distinct from
health information’s topic (Pan & Kosicki, 1993). Instead, frames provide cues
(1) to define the problem at hand—to determine who is doing what, with what
consequences; (2) to diagnose the cause of the problem; (3) to evaluate, morally,
the problem, its generators, and its effects; and (4) to offer and justify remedies for
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the problem (Entman, 1993). Thus, for intervention scientists, the MSC provides
guidance about the content to avoid in order to prevent stigmatizing those with the
health condition.

Stigmatization is a broad term encompassing many outcomes, including forming
stigma beliefs, spreading stigma messages, creating social distance, and regulating
stigmatized people’s lives. This case study focuses on regulating the lives of
stigmatized people in ways that may infringe upon their rights and create dis-
crimination; regulation includes isolating infected persons from the general public,
forcing treatment even if unwanted, monitoring by health agencies, quarantining by
officials, providing separate transportation and separate medical shelters, registering
with health departments, and creating real-time, publicly available maps of where
stigmatized persons reside. (Hereafter this outcome will be referred as regulation.)
For many health conditions, these types of actions do not curb the presence or
spread of the health threat. For example, the risk of contracting a diseases caused
by vectors, such as mosquitos, mice, or birds, does not improve by quarantining
infected people.

In this chapter, we test the MSC in the context of providing health information
about an infectious disease. The group at risk for stigmatization when deploying
such an intervention is those who have contracted an infectious disease. According
to the MSC, the relation between exposure to health information with a stigma frame
and regulation of infected people is mediated by the following mechanisms: (1)
belief that stigmatized individuals made choices that resulted in getting infected
(responsibility); (2) perception of stigmatized people as a unique, distinct social
group (group entitativity); (3) belief that the stigmatized group and its members are
able and likely to harm the rest of the community by their presence and actions
(dangerous); and (4) feeling anger, disgust, and fear toward the stigmatized people
(negative affect).

2.1 Separating the Stigma Frame into Content Components

According to the MSC (Smith, 2007, 2011, 2012), a stigma frame includes four
intrinsic features (mark, label, etiology, and peril). A stigma frame, then, represents
the type of multiple-component intervention described in Chap. 1 of the companion
volume (Collins, 2018), in which the assumption is that all four features are needed
to create the effect. (We treat this assumption as an empirical question that will be
addressed in the factorial experiment.) As shown in Fig. 2, according to the MSC,
exposure to health information with all four features results in stigmatization (e.g.,
stigma beliefs, social distance, or regulation), through four different mediators.

A mark describes ways to identify another person as a member of a stigmatized
group (Smith, 2007). Marks are particularly effective when they include visible
(Deaux, Reid, Mizrahi, & Ethier, 1995; Frable, 1993; Jones et al., 1984) and
disgusting (Goffman, 1963; Haidt, McCauley, & Rozin, 1994; Jones et al., 1984)
features, because they are easier to recognize and they evoke the stigma-appropriate
action tendency to remove and isolate stigmatized persons.
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Fig. 2 Conceptual model of the causal process by which presenting health information with a
stigma frame results in stigmatizing those with the health condition

Labels are terms used to reference people with the health condition. Labeling
a group by its stigmatizing issue keeps the group threat salient, which would
encourage separating the stigmatized group away from a community. It accentuates
intergroup differences (cf. Tajfel, 1959) and leads to depersonalizing people into
embodiments of a group’s attributes. Differences between reference terms can be
subtle yet important. For example, one can refer to people who suffer from a disorder
(e.g., people living with epilepsy), or instead label affected people as the disease
(e.g., epileptics).

Etiology is the description of how a person becomes a member of the stigmatized
group. Etiology content includes implicit or explicit references to the choice and
control a person has over their stigmatized condition (Smith, 2007, 2012); it aligns
with how practice links to negative consequences. Some infectious diseases have
multiple forms of transmission, which provide intervention scientists with options
about which form of transmission to highlight. A recent example is the Zika virus,
which can be transmitted through mosquitos or human-to-human contact (Musso
et al., 2015). Content highlighting human behavior implies choice and control over
violating social contracts. People judge those who engage in taboo activities or act in
ways that threatened the group as having a fundamental character flaw of immorality
(Goffman, 1963; Jones et al., 1984).

Conceptually, peril content describes the danger the stigmatized group poses
to the rest of the community (Smith, 2007). Drawing upon research in product
hazards (DeTurck, 2002), peril content may include the source of the danger,
recommendations to avoid dangerous people, and the consequences if one fails
to avoid the danger (Smith, 2007). Operationally, peril content has been varied
by describing the consequences of the infectious disease (Smith, 2012) as fatal,
incurable, and causing great muscle pain and possible paranoia and aggression (high
peril) or easily curable and rarely fatal, with mild, temporary discomfort (low peril).

The illustration tested herein includes (a) a description of visible symptoms of
infection (mark); (b) the use of a group label when referring to those with the
infection (label); (c) a description of the curability, pain, and suffering associated
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Fig. 3 The graphic represents a mediation model with a factorial experiment, four mediators, and
one outcome measured before and after exposure to the health information (intervention). Dotted
lines represent correlated error terms and the pretest covariate

with the infectious disease (peril); and (d) the human means (vs. nonhuman, such as
mosquito bites) by which people become infected (etiology).

Although it is possible to make one intervention package of health information
with all of the theory-driven content and then evaluate the health information’s
influence on the outcome through the theorized mediators, this strategy leaves
us with little insight into which content or mediator was most important (see
Chap. 1). It is possible to vary the four content components in a 24 factorial
experiment (see Fig. 3). The factorial design allows us to examine the main effects
of content components and their interactions. The MSC predicts that the devastating
effects of stigmatization (damaging material, social, and psychological well-being;
e.g., Goffman, 1963; Hatzenbuehler, Phelan, & Link, 2013; Link, Phelan, &
Hatzenbuehler, 2014; Miller & Major, 2000) occur as a result of the presence of
all four content components. For an interventionist, such results would suggest that
the presence of one or two components such as describing visible symptoms to
recognize someone who is infected (mark) and the consequences of infection (peril)
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may be included without concern, as long as the other components (e.g., labels and
etiology) are not included. The theory, however, could be wrong. It may be that
only a subset of the content components creates stigmatization and they would be
the most important components to avoid.

2.2 The Present Study

A mediation analysis of a factorial experiment provides a comprehensive test of
many aspects of the MSC. Importantly, it enables us to assess whether any of the
mediators and content components could be removed from the MSC to produce
a more parsimonious theory. We hope to answer three kinds of questions with the
mediation analysis: (1) How well do the mediators (responsibility, group entitativity,
dangerous, and negative affect) predict postexposure levels of regulation (b paths)?
(2) How well does each type of content (mark, label, etiology, and peril) evoke
each of the four mediators (a paths)? (3) How much of the relation between the
intervention’s content components and regulation (outcome) is explained by the four
hypothesized mediators (the product of a and b paths)? (4) How much variability
between the content components and regulation support is unexplained (c′ paths)?

3 Methods

3.1 Participants

Participants (N = 299, 58% female, 0.3% unidentified) on average were 36 years old
(SD = 12.13, Minimum = 21, Maximum = 74). Participants were recruited through
Amazon’s Mechanical Turk, which provides access to a diverse pool of adults who
react similarly to those recruited through offline strategies (Mason & Suri, 2011).
Participants identified their race as White (81%), African American (8%), Asian
(6%), American Indian or Alaska Native (1%), and Native Hawaiian or Pacific
Islander (1%); 3% did not report a racial identification. Five percent identified their
ethnicity as Hispanic.

3.2 Design

The experimental design was a 24 (2 × 2 × 2 × 2) between-subjects factorial,
with factors (level) as follows: MARK (yes, no), LABEL (yes, no), ETIOLOGY
(airborne [human], mouse-only [nonhuman] transmission), and PERIL (high, low).
The intervention was adapted from Smith (2012). The intervention is based on CDC
newsroom reports of hantavirus pulmonary syndrome but was given a fictitious
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name—cautela acervusary virus (CAV; see Smith, 2012 for a full description of
the intervention’s conditions). The disease was described as creating open sores
on arms and producing a loud, wet cough (mark) or having no visible symptoms
(no mark). Infected people were referred to as Cavers (label) or as people infected
with CAV (no label). Etiology was described as transmission either via contact with
infected mice feces (vector-borne; nonhuman etiology) or directly between persons
through sneezed or coughed droplets (airborne; human etiology). The disease was
described as painful, incurable, and often fatal, with possible paranoid delusions
and aggression (high peril) or as mildly uncomfortable, curable, nonfatal, with no
mental changes (low peril). Regulation (outcome) was measured before and after
exposure to the intervention.

3.3 Procedures

An institutional review board approved the study. The procedures follow those
in Smith (2012). Adults registered with Amazon’s Mechanical Turk participated
in this study. After giving consent, the online survey instructions stated that the
participants would be presented with health information under consideration for
future public health alerts and that the health condition is a fictitious representation
of an existing illness. The participants were asked to consider the message’s content
(as opposed to delivery). Participants were shown 1 of the 16 possible versions
of the health information through random assignment (about 19 participants per
cell). Participants were asked to judge the health information (the intervention)
on its believability, credibility, and importance; these judgments did not vary by
condition (F < 1). After exposure to the health information, participants were asked
to complete the scales listed below and then answer demographic questions. Of note,
participants completed the scales capturing mediators before the scales capturing the
outcome.

3.4 Measurement

3.4.1 Mediators

Dangerous. Four items (adapted from Smith, 2012; α = .92, asymptotically
distribution-free (ADF) 95% CI [.90, .94; Maydeu-Olivares, Coffman, & Hartmann,
2007], Skewness = −0.02, Kurtosis = −1.26) were used to assess the perceived
danger of infected persons (e.g., putting others in danger and dangerous to be
around). Responses were marked on five-point scales (1 = strongly disagree to
5 = strongly agree), with higher scores indicating that participants perceived
infected persons as more dangerous.
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Responsibility. Four items (adapted from Smith, 2012; α = .70, ADF 95% CI [.64,
.76], Skewness = 0.23, Kurtosis = 0.23) were used to assess the perceived respon-
sibility of infected persons for getting CAV (e.g., at fault for or responsible for).
Responses were marked on five-point scales (1 = strongly disagree to 5 = strongly
agree), with higher scores indicating that participants perceived infected persons as
more responsible for their infection.

Group Entitativity. Six items (described in Smith, 2012; α = .88, ADF 95% CI
[.86, .91], Skewness = 0.29, Kurtosis = −0.40) were used to assess the degree to
which those infected with CAV were a distinct social entity. Responses were marked
on five-point scales (1 = strongly disagree to 5 = strongly agree), with higher scores
indicating greater perceived entitativity.

Negative Affect. Four items (α = .83, ADF 95% CI [.80, .87], Skewness = 0.90,
Kurtosis = 0.10) were used to assess how strongly participants felt different
emotions after reading the message: disgust, anger, fear (from Smith, 2012), and
worry (added in this experiment). Responses were marked on five-point scales
(1 = not at all to 5 = strongly). Higher scores indicate greater negative affect.

3.4.2 Outcome

Regulation. Eight items (based on Smith, 2012; pretest α = .90, ADF 95% CI
[.88, .92], Skewness = −0.46, Kurtosis = 0.04; posttest α = .94, ADF 95% CI
[.93, .95], Skewness = −0.30, Kurtosis = −0.96) were used to assess to what
extent participants agree with eight different intervention options, if this were a
real situation and this alert had been shared with them. These options included
isolating infected persons from the non-infected public, treating infected persons
even if they did not want to be treated, monitoring infected persons by health
personnel, quarantining infected persons, providing separate transportation for
infected persons, providing new medical shelters in which to treat infected persons,
registering infected persons with the health department, and providing a way to see
where infected people live (i.e., a map). Responses were marked on five-point scales
(1 = strongly disagree to 5 = strongly agree), with higher scores indicating stronger
support for regulation.

4 Results

4.1 Descriptive Statistics

The measures showed acceptable levels of skewness and kurtosis; therefore,
they were not transformed. Table 1 presents the means, standard deviations, and
zero-order correlations among variables. The measured mediators—dangerous,
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Table 1 Descriptive statistics for variables (N = 299)

M SD Range 1 2 3 4 5

1. Pre-regulation 3.65 0.85 4.00
2. Post-regulation 3.23 1.21 4.00 .45*
3. Responsible 2.63 0.73 4.00 .23* .13*
4. Group entitativity 2.54 0.92 4.00 .19* .37* .05
5. Dangerous 2.83 1.29 4.00 .15* .74* .09 .25*
6. Negative affect 2.03 0.98 4.00 .07 .39* .06 .29* .40*

Note: Responses were marked on five-point scales (e.g., 1 = strongly disagree to
5 = strongly agree)
*p < .05

responsibility, group entitativity, and negative affect—were averaged into composite
scores before the descriptive statistics were computed. Table 1 shows that the
correlations between some mediators were statistically significant.

Change scores were created to provide insight into whether exposure to the
health information created change. Participants’ willingness to regulate infected
people changed after exposure to the intervention (Mchange = −0.42, SD = 1.12,
Maximum = 3.50, Minimum = −4.00). Participants with higher preexposure
willingness to regulate showed less change, r (297) = −.27, p < .001. Figure 4
shows the mean changes in regulation support by experimental condition, arranged
by size. The means show that regulation, the form of stigmatization investigated
in this study, increased in only 4 of the 16 conditions. In Fig. 4, the on (e.g.,
high or present) condition is represented with a capital letter, whereas the off (e.g.,
low or not present) condition is represented with a lowercase letter. As expected,
the version with all four content components (i.e., “MLEP”) was one of the four
conditions with increases in willingness to regulate infected people. The three other
conditions (MlEP, mLEP, and mlEP) all had the etiology and peril components. This
finding suggests the etiology and peril components may be particularly important
components in a stigma frame.

4.2 Mediation Analysis

This mediation analysis, like all mediation analyses, requires several assumptions.
We assume that the mediators and residuals are independent (MacKinnon, Fairchild,
& Fritz, 2007). We also assume no interaction between the experimental condition
and the mediators; no misspecification of the causal order of the stimuli, mediators,
and outcome (as would occur if, e.g., in reality content component → regulation
→ dangerous); and no misspecification due to unmeasured variables or imperfect
measurement. These assumptions are challenging to test (MacKinnon et al., 2007).

Figure 3 illustrates the tested model, which included a, b, and c′ paths. This
model included one dependent variable: posttest regulation. The model included the
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Fig. 4 Average change in willingness to regulate infected people and 95% confidence intervals by
experimental condition. The “on” (yes, person-oriented, or high) condition is represented with a
capital letter; the “off” (no, nonhuman, or low) condition is represented with a lowercase letter

following independent variables: the pretest of regulation and the 15 vectors repre-
senting the four main effects, six two-way interactions, four three-way interactions,
and one four-way interaction. Because effect (−1, 1) codes were used, the ANOVA
effect vectors as well as the resulting effect estimates were uncorrelated. Because
we used random assignment to experimental conditions, the pretest of regulation
was not correlated with the ANOVA effect vectors in the model. In addition, there
were (1) the four mediators, (2) paths from the pretest of regulation to the mediators,
(3) paths from the ANOVA effect vectors (i.e., the a paths), and (4) paths from the
mediators to the posttest of regulation (i.e., the b paths). Finally, the c′ paths were
the paths from the ANOVA effect vectors to the outcome.

To conduct the mediation analysis, we fit a structural equation model (SEM)
using maximum likelihood estimation in the software program AMOS 24. The
variables represented in ovals in Fig. 3 were modeled as latent; the measured items
were included in the measurement submodel tested in AMOS but are not shown
in the figure. Neither the errors of prediction nor the errors of measurement were
allowed to covary. A post hoc power analysis was conducted for the SEM; it includes
main effects, interaction effects, mediators, and pretest regulation. With N = 299
and df = 1052 (1225 distinct sample moments-173 parameters to be estimated),
the power to detect a close-fitting model (root mean-square error of approximation
(RMSEA) = .05) versus a perfectly fitting model (RMSEA = .00) at p < .05 was
greater than .999 (Preacher & Coffman, 2006). Bias-corrected confidence intervals
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Table 2 Effects of mediators on post-exposure regulation (b paths)

Unstandardized b path Standardized b path 95% CI

Responsible 0.05 .02 −.08, .12
Group entitativity 0.16 .07 −.01, .15
Dangerous 0.68 .73* .62, .83
Negative affect 0.05 .05 −.05, .15

Notes: CIs are for the standardized estimate, with bias-corrected confidence intervals (Hayes &
Scharkow, 2013) using bootstrapping procedures (2000 bootstrap samples)
*p < 0.05

(Hayes & Scharkow, 2013) were estimated using 2000 bootstrapped samples. The
goodness-of-fit estimates for the SEM were χ2(1058, N = 299) = 2459.34, p < .05,
RMSEA = .07 (CI: .06, .07), and SRMR = .07.

4.2.1 Mediators to Outcome

First, we assessed how well the hypothesized mediators predicted the outcome (b
paths). Table 2 shows the b paths. Only one of the mediators, dangerous, was a
statistically significant predictor of regulation.

4.2.2 Experimental Factors to Mediators

The next step was to assess the effects of the factors on the mediators (a paths).
In this case, because dangerous was the only statistically significant mediator
and the other mediator effects are close to zero, we have shown only how well
the intervention’s components predicted dangerousness (see Table 3). Two main
effects and three interactions were statistically significant. As hypothesized, content
describing the infectious disease as more perilous increased perceptions of the
infected persons as dangerous in comparison to less-perilous content. As predicted,
infected persons were perceived as more dangerous if the infection had airborne
(human-based) instead of vector-borne (nonhuman) etiology.

Three interactions were statistically significant: MARK × LABEL and
LABEL × ETIOLOGY, which are antagonistic interactions (see Chap. 4 in the
companion volume, Collins, 2018) and ETIOLOGY × PERIL (which is a synergistic
interaction). The pattern of means showed weaker perceptions of the infected
people as dangerous in the no mark/no label condition versus the others, and in
the no label/nonhuman etiology condition versus the others. In contrast, perceiving
infected people as dangerous was particularly common in the human etiology/high-
peril condition versus the others. Presenting both human etiology for a disease and
significant consequences caused people to support regulating infected people.
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Table 3 Parameter estimates for relations from message components to dangerous

Unstandardized a path Standardized a path 95% CI

Pretest regulation 0.58* .23 .13, .33
MARK 0.02 .01 −.09, .11
LABEL 0.08 .05 −.04, .15
ETIOLOGY 0.76* .52 .44, .61
PERIL 0.44* .31 .22, .40
MARK × LABEL interaction −0.14* −.10 −.19, −.01
MARK × ETIOLOGY interaction 0.01 .00 −.09, .10
MARK × PERIL interaction −0.06 −.04 −.14, .05
LABEL × ETIOLOGY interaction −0.15* −.11 −.20, −.01
LABEL × PERIL interaction −0.05 −.03 −.12, .06
ETIOLOGY × PERIL interaction 0.17* .12 .02, .21
MARK × LABEL × ETIOLOGY
interaction

0.06 .04 −.05, .13

MARK × LABEL × PERIL
interaction

0.02 .01 −.08, .10

LABEL × ETIOLOGY × PERIL
interaction

0.03 .02 −.08, .10

MARK × ETIOLOGY × PERIL
interaction

0.10 .07 −.02, .16

MARK × LABEL × ETIOL-
OGY × PERIL interaction

0.10 .07 −.02, .16

Notes: Analysis of the separate a paths, provided by the factorial experimental design, shows the
variation in the main effects of factors and interactions among factors. CIs are for the standardized
estimate, with bias-corrected confidence intervals (Hayes & Scharkow, 2013) using bootstrapping
procedures (2000 bootstrap samples)
*p < .05

4.2.3 Unexplained Effects

The final step was to assess the main effects of the factors and the interactions
between factors on the posttest outcome (c′ paths, i.e., direct effects). Table 4
shows that there is a statistically significant, direct effect of PERIL on regulation.
This finding suggests that additional mediators need to be included to completely
understand how peril content shapes regulation. Table 4 also shows the indirect
effects of the factors on regulation via the mediators. The tests of the indirect effects
consider the mediators together, which may be reasonable when the mediators are
correlated (VanderWeele & Vansteelandt, 2014).

5 Discussion

This chapter explores issues involved in testing an intervention’s causal story and
demonstrates how to conduct a mediation analysis in situations in which an inter-
vention has been decomposed into several components and has been theorized to
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Table 4 Parameter estimates for direct and indirect effects of factors on postexposure
regulation

Direct
Std.
direct 95% CI Indirect

Std.
indirect 95% CI

Pretest regulation 0.56* .24 .14, .34 0.45* .19 .19, .28
MARK 0.04 .03 −.04, .10 0.01 .01 .01, .08
LABEL 0.04 .03 −.04, .10 0.06 .05 .05, .12
ETIOLOGY −0.01 −.01 −.09, .08 0.52* .39 .39, .48
PERIL 0.12* .09 .01, .17 0.34* .25 .25, .35
MARK × LABEL 0.04 .03 −.04, .10 −0.11* −.08 −.08, .00
MARK × ETIOLOGY −0.03 −.02 −.09, .05 0.00 .00 .00, .08
MARK × PERIL −0.04 −.03 −.10, .05 −0.04 −.03 −.03, .04
LABEL × ETIOLOGY 0.05 .04 −.03, .10 −0.11* −.08 −.08, −.01
LABEL × PERIL −0.04 −.03 −.10, .04 −0.03 −.02 −.02, .05
ETIOLOGY × PERIL −0.05 −.04 −.11, .03 0.12* .09 .09, .16
MARK × LABEL × ETI-
OLOGY

−0.01 −.01 −.07, .06 0.04 .03 .03, .10

MARK × LABEL × PERIL 0.01 .00 −.07, .08 0.02 .01 .01, .09
LABEL × ETIOL-
OGY × PERIL

0.04 .03 −.04, .10 0.02 .01 .01, .08

MARK × ETIOL-
OGY × PERIL

−0.06 −.05 −.12, .02 0.07 .06 .06, .13

MARK × LABEL × ETI-
OLOGY × PERIL

0.00 .00 −.07, .07 0.06 .05 .05, .12

Notes: Std. = standardized. CIs are for the standardized estimate, with bias-corrected confi-
dence intervals (Hayes & Scharkow, 2013) using bootstrapping procedures (2000 bootstrap
samples)
*p < .05

cause an outcome to occur through multiple mediators. The methods demonstrated
herein tested the data from a factorial experiment with a mediation analysis.

5.1 Insights into the Case Study

As a reminder, the case study illustrating these issues explored an iatrogenic effect,
creating a health stigma, as a consequence of presenting health information about a
health condition (the intervention) with a stigma frame (Smith, 2007). The stigma
frame is theorized to include four intrinsic features, representing the assumption
that all four features are needed to cause stigma-related outcomes (see Chap. 1
for multiple-component interventions with different assumptions). We separated the
intrinsic features into four content components and examined them using a factorial
experiment that included a factor corresponding to each of the four components (i.e.,
16 different versions of the health information).
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5.1.1 The Intervention Package

Conservatively, if a stigma frame worked as one package, then stigmatization should
only have increased when all of the content components were present (labeled as
“MLEP”). As seen in Fig. 4, regulation, the form of stigmatization investigated in
this study, increased in 4 of the 16 conditions. The four conditions were ones in
which ETIOLOGY was set to person-oriented (airborne), PERIL was set to high,
and MARK and/or LABEL were present. This finding confirms the findings from
the main effects: the etiology and peril components may be particularly important
components in a stigma frame. Without the factorial design, there would have been
no way to glean any of these theoretical insights.

From a practical perspective, the finding that etiology and peril are such
important content components calls for careful attention. Intervention scientists who
want to present health information that highlights a human etiology for contracting
a disease and significant physical consequences associated with it may need to find
strategies to avoid creating new or increasing existing health stigma as they optimize
their intervention for delivery.

5.1.2 The Causal Process

The factorial experimental design and focus on mediators provided information that
allowed for more precise conclusions about the theoretical model and opportunities
for refinement. The mediation analysis revealed several statistically significant indi-
rect effects of the experimental factors on stigmatization through the hypothesized
mediators. One consequence of multiplying the estimates for the two paths together
is that the product term (i.e., indirect effect) does not allow an assessment of the
two component paths of the mediated effect separately. Furthermore, the current
test of the indirect effects considers the mediators to be correlated (VanderWeele
& Vansteelandt, 2014). Indeed, Table 1 showed that a few of the mediators were
correlated, but one (responsibility) was not correlated with any of them. Instead of
relying only on indirect effects, we decided to attend to the effects of the mediators
on the outcomes (b paths) explicitly.

The mediation analysis showed that perceiving infected people as dangerous was
the only supported mediator for understanding why the health information caused
stigmatization to occur. We tested one type of stigmatization: regulation support.
If the results generalize, this finding suggests that a more parsimonious theoretical
model with the elimination of group entitativity, responsibility, and negative affect
may be needed. The findings suggest that perceiving those with the health condition
described in health information as dangerous is the central mechanism among the
theorized contenders.

We then investigated which content components caused infected people to be
perceived as dangerous. Two factors, ETIOLOGY and PERIL, showed statistically
significant main effects. Significant interactions between other factors, including
MARK and LABEL, appeared. These findings suggest that content components, like
etiology, produce the mediating effects by themselves, as evidenced by main effects,
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and in combination with other components, as evidenced by interactions. These
interactions again provide general support for the idea that these multiple intrinsic
features create a stigma frame that causes an outcome together. Without the factorial
design, there would have been no way to glean any of these theoretical insights.

Data from a factorial experiment allowed us to investigate important claims in
the mediation analysis. This is a case of mediated moderation, which is when the
interaction between two predictor variables has an effect on the outcome through a
mediator. In our case, the two predictor variables are both randomly assigned, which
means that their interaction effect can be interpreted as causal. If the two predictor
variables had not been randomly assigned, or if only one of them had, then the effect
could not be interpreted as causal without further assumptions.

5.1.3 Implications for Theory

Good theories are parsimonious (Jaccard & Jaccoby, 2010). In an attempt to
build communication theory, researchers often include multiple message variables
and multiple mediators to explain particular message effects or outcomes. The
illustration showed how the relatively new MSC (Smith, 2007) benefits from
the rigorous analysis proposed in this chapter. The findings suggest that a more
parsimonious theoretical model might remove group entitativity, responsibility, and
negative affect and keep only dangerous. We note that the use of multiple mediators
is one way to deal with omitted confounders of the M to Y relation. If some potential
mediators show evidence for a mediated effect and others do not, then this provides
evidence for the specificity of that mediator (for more discussion of these issues see
MacKinnon & Pirlott, 2015 and Pirlott & MacKinnon, 2016).

The direct effects of the content components on the outcome (Table 4) showed
that the presence of peril content increased stigmatization, even after accounting for
the mediators. This finding suggests that further research is needed to identify an
additional mediator (or mediators) to explain why presenting different types of peril
in health information cause the exposed audience to stigmatize infected people. One
option may be to include a measure of perceived threat of the infectious disease. It is
possible that participants are responding to differing levels of threat, and perceived
threat of the infection is a more important mediator than perceived dangerousness
of infected people.

Notably, the model explains 78% of the variance in postexposure regulation;
there is still 22% of the variance left to explain. The work to refine the MSC will
not be complete until the mediators significantly and sizably predict its stigma-
related outcomes, the stimuli evoke the mediators significantly and sizably, and the
residual variance is eliminated, with the outcomes completely (100%) predicted by
the theoretical model. This target for completion may be more aspirational than
practical. On a practical level, even though the peril component caused people to
perceive infected people as more dangerous, which caused greater stigmatization, it
is not clear what precise, fine-grained aspect of the manipulation led to the effect.
More investigations can be done to increase precision.
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5.1.4 Limitations to the Case Study

The findings reported here are limited in a few ways. The mediators were measured
immediately after exposure to the message. It is possible that the cognitive mediators
(responsibility and group entitativity) would have demonstrated more or less
measurable change after more time had elapsed. More work is needed on the role
of time in mediation, and behavioral theories should be more specific about the
expected time lag between cause and effect (Collins, 2006). Our findings are also
limited by the sample’s demographics.

A different manifestation of the intervention components (e.g., different word-
ing or imagery) might have evoked the mediators such as responsibility more
strongly. Perceived responsibility, then, might have affected the outcome measur-
ably. Notably, participants did not perceive infected people as responsible, and the
standard deviation was small. Varying the stimuli, timing, and measures would
provide confidence in the findings and support for eliminating mediators from the
MSC. Importantly, the findings reported here are limited to regulation, which is
just one of three stigma-related outcomes described in the MSC. Further studies
are needed to examine the MSC’s parsimony in explaining the other two outcomes:
stigma-belief formation and social distancing.

This case was conducted in a setting with a large participant pool (through
Amazon’s Mechanical Turk) and with content components that we could easily
manipulate. For field interventions in other settings (e.g., schools, doctor’s offices)
with other forms of delivery (e.g., in-person sessions; literature in doctor’s offices),
the factorial design may be more challenging (although, see the Piper et al.’s (2018)
chapter in this volume).

6 Future Directions

A future direction is to extend the model to include moderation effects between
observed pre-intervention variables and intervention components. Although we
included interactions among our experimentally manipulated variables (referred to
as treatment interactions in the epidemiology literature; VanderWeele, 2009), we
did not include moderators, such as personality traits. For example, it is possible
that some people are more susceptible or resistant (e.g., cynics, Smith, 2012) to the
health information. Audience variables like these could be important moderators.
Moderation effects of any type in combination with mediation processes are quite
complex, and there is a growing literature on these complexities (e.g., Edwards &
Lambert, 2007; Muller, Judd, & Yzerbyt, 2005; Preacher, Rucker, & Hayes, 2007).

Factorial experiments designed to assess the effects of individual intervention
components enable testing hypotheses not only about which mediators have an
effect on the outcome, but also about which components of the intervention package
have (or do not have) an effect on particular mediators and about whether there
is a direct effect for each component. This information can be extremely valuable
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in intervention development and in advancing intervention theory (Lipsey, 1993).
Although factorial experiments are still relatively rare in behavioral intervention
science, applications are increasing, as seen in the other chapters of this book.
Although the factorial experiment has clear benefits, guidance is needed for how
to deal with many orthogonal tests and controlling experiment-wise error rates. The
illustration included 60 a path estimates, 4 b path estimates, and 16 c′ path estimates.
In addition, we had two levels of each component (e.g., high or low). We could have
presented more levels (e.g., high, medium, and low), which may have resulted in
more tests at some stage. The issues of correcting for error rates are not trivial,
and corrections for type I error can come at the cost of creating type II errors (e.g.,
Smith, Levine, Lachlan, & Fediuk, 2002). In intervention science, we may want
to hold type II error rates as most critical as we discover what is important as we
create an intervention. Control of type I error rates may become more critical as we
move through the optimization process. Correction for experiment-wise error rates
in multiple mediator models has rarely been addressed (c.f., MacKinnon, 2000) and
needs attention.

6.1 Conclusion

We all benefit by learning how to innovate and create, as well as test and prune, our
ideas to their most elegant forms. We hope that this chapter provides one step in that
direction.
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